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MARGINAL MODELS FOR LONGITUDINAL DATA 
ANALYSIS USING COMPLEX SURVEY DATA 

loana Schiopu-Kratina I  

ABSTRACT 

This article covers three aspects of statistical inference with data from longitudinal surveys 
with complex sample designs. Firstly, the consistency of the parameter obtained as a root 
of a generalized estimating equation (GEE) is proved. Next, we prove a central limit 
theorem and thirdly we prove the consistency of the Jackknife estimator of the asymptotic 
variance. 

loana Schiopu-Kratina, Expenditure Survey Analysis Methods Section, Household Survey Methods 
Division, Statistics Canada, Ottawa, Ontario, KIA 0T6. 



MODELES MARGINAUX POUR DES DONNEES PRO VENANT D'UNE ENQUETE 
LONGITUDINALE AU PLAN COMPLEXE 

loana Schiopu-Kratina2  

RÉSUMÉ 

Cet article porte sur trois aspects de l'inférence statistique avec des données provenant 
d'une enquete au plan complexe. On démontre d'abord la convergence ponctuelle de 
l'estimateur défini comme racme d'une &luation  de type GEE. Un théorème limite centrale 
et Ia convergence de l'estimateur Jackknife associé a la variance asymptotique sont 
egalement démontrés. 

loana Schiopu-Kratina, Méthodes d'enquêtes sur les dépenses et d'analyse, Division des méthodes 
d'enquêtes auprès des ménages, Statistique Canada, Ottawa, Ontario, K1A 0T6. 



1. Introduction. In longitudinal surveys subjects are observed on at least two different occasions, 

which makes such surveys suitable for studying change over time at the individual, or unit level. In 

addition to the production of crossectional estimates, data from longitudinal surveys may be used, 

for instance, to estimate gross flows (important in the study of labour market dynamics), or in event 

histoiy modelling, which may be used to uncover determinants of survival for individuals afflicted 

with a serious health condition. More generally, longitudinal data may be used for modelling a 

response variable as a function of covariates and time, with applicability in many areas. Rao 

(1998) and the references therein give a more complete description of possible uses of data from 

longitudinal surveys and the statistical techniques that are available to explore them. 

Large scale longitudinal surveys are often carried out by large organizations like Statistics Canada. 

Their primary goal in conducting a survey is to obtain design - based estimates of totals, means or 

proportions for a target population, which is finite. The selection of the sample generally follows a 

complex plan with goals like reducing the cost of the survey. The conditions for model based 

inference are often not met by the data collected according to the survey design, even if the finite 

population is large. Design - based inference, introduced by Binder (1983), offers a solution, as it 

allows for the use of modelling techniques in the context of survey randomization. We follow this 

approach, which is also that of Rao (1998), and consider marginal models for longitudinal data as 

in Liang and Zeger (1986) in the context of design - based inference. 

In longitudinal data, observations on the same subject are dependent, and this dependence is different 

from the clustering effect due to the sampling selection. Liang and Zeger (1986) introduced 

Generalized Estimating Equations (GEE), which require only specification of the marginal model 

mean and variance for each individual. Correlation across time for the same individual is assumed 

to exist, but it is not specifically modelled. In the special situation when the observations across time 

are assumed independent for each individual (the working independence assumption), GEE becomes 

the Independence Estimating Equation (lEE). 
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Three areas of design - based inference are presented in this article: consistency of the estimator of 

the regression coefficient implicitly defined by estimating equation (EE), the corresponding Central 

Limit Theorem (CLT) and the consistency of the jackknife estimator of the asymptotic variance. 

The topic of consistency of the main estimator seems to have been neglected in the literature - it is 

not even mentioned in Liang and Zeger (1986). Yet consistency is an essential ingredient in the proof 

of asymptotic normality. Due to the nature of design inference, we can only define weak consistency, 

i.e. in tenns of convergence in probability. The sets on which the estimators are roots of estimating 

equations (REE) have asymptotic probability 1 (see the statement of Theorem 1). When discussing 

the asymptotic variance of these estimators we will make the stronger assumption that the estimators 

of the main parameters are REE's on every selected sample. We do not make any assumptions 

regarding the uniqueness of the REE. We first give an analytical proof of consistency (Theorem 1), 

then show how it applies in the GEE situation (Corollary 3). The proof of Theorem 1 is loosely 

patterned after the proof of Theorem, p.  145, Serfling (1980). 

We prove asymptotic normality (CLT) in Theorem 2. The proof exploits the form of the GEE, which 

"separates" into factors related to the covariance structure over time and linear statistics, for which 

CLT's are available. 

The consistency of the jackknife estimator of the asymptotic variance was proven only for the JEE 

case. It could be generalized to cover the GEE situation using the proof and the results of 

Theorem 2. 

The technical problems that we had to overcome were due to the estimation of the variance structure 

across time and to obtaining asymptotic results in finite populations with survey randomization. The 

first problem was solved by Liang and Zeger (1986) in a model - based context. However, they do 

not supply proof for their asymptotic results. In order to do design inference, we tried to give simple 

analytical proof which do not depend on model assumptions in a superpopulation, as in Binder 

(1983). However, some of our conditions appear more natural if a superpopulation were assumed 



to exist and some model assumptions were present (e.g. (i) and (ii) of Assumption 1 - see Example 

3 and model assumption (1)). The results of Binder (1983) had to be extended from the LEE case 

to GEE. 

This article is organized as follows: Section 2 presents marginal models as in Liang and Zeger 

(1986). Example I illustrates the classical use of EE's in calculating an estimator of a regression 

coefficient for the linear model. This estimator becomes the census parameter in the context of 

design - based inference, which is outlined in Section 3. The design that we consider is stratified, 

multistage and with replacement at the first stage. Example 2 shows the calculation of the design 

based estimator from the weighted' EE in Example 1. Section 4 is devoted to design - consistency. 

Example 3 illustrates conditions for consistency on the EE in Example 2. Example 4 is a genuine 

example of GEE on which we illustrate the conditions for consistency. Section 5 deals with 

asymptotic normality and the consistency of the jackknife estimator of the asymptotic variance. The 

proof of Theorem 3 is completed in the Appendix. 

2. Model set-up. We describe briefly the set-up in Liang and Zeger (1986). Consider M individuals 

observed on d, occasions ( i = I, ... M). The univariate responses y 11 and the p - covariates x 1 re 

recorded, t = 1, ... d1  , i = 1,... M. We assume that d i= d , i = 1, ... M. Typically, d is small for 

marginal models. Otherwise, time series techniques may be more appropriate. Here only E. [y j and 

Varm  (y ) are specified, where m stands for model- based, for all t, i 2! I. Liang and Zeger (1986) 

consider probability densities of the following type: p (y1 ) = exp [{y11  0j , - a (0 ) + b (y 1  ) } p] with 

= h(r 1 ). r, = x1 	where a, b and h are known (differentiable) functions, { 0, ), cp are 

parameters, x1 T  is an I x p matrix of covariates and 3 is an p x 1 vector of main parameters, for all 

t, i 2: 1. Here T stands for transposition of matrices. Note that for random variables with such 

densities we have: 

(1) 	 EmLYit] = p i , = a' (0), for alit, i;-> 1: 

Let i(ri) = a'() , for any ri in a space of parameters 0. The function g is a link function if gai(0 11 ) 
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= x1 1T 
, 
for all t, i,~ l• If g = 	, then g is called the canonical or natural link, the function Ii above 

can be taken to be the identity and the parametric form of the model is the natural one. With binary 

response, the logit link function g(p) = log{p/(l-p))is the natural link associated with the logistic 

regression model. EE's are formed that mimic log likelihood equations associated with exponential 

distributions (e.g. normal, binomial, logistic, Poisson). These are quasi - likelihood equations if the 

original distributions belong to the normal family upon further restrictions, e.g. knowledge on the 

dispersion parameter .p  (Shao 1999, p.  242). The idea is to produce estimators for 13 which are REE 

by making few assumptions on the distribution of the observed data, and then study the properties 

of these estimators. 

When GEE's are used, it is assumed that correlation of observations yj  across time for the same 

individual is the same for all individuals, and is represented by a matrix R(a), with a a "nuisance 

parameter". More precisely, let U, (0, a, (p) = D 11  V 1 ' S ,V 1  = 1hp[A1  R (a)A'], D1  = 

A, A,X 1 , S 1 =Y 1 -a'(O ),A I  =diaga"(9 1 inR'and ii .=diag[dO 1 /dr 1 J,whichcouldbe 

taken to be the identity matrix 'd'  for all i ~t 1. Notice that the covariates are contained in D. and that 

as well as S i  (through a') contain the main parameter 13, i ;—> 1. The GEE, or equation (7) of Liang 

and Zeger (1986), is: 

(2) 	 E U (13, & (13),p(s, 13)) = 0 

Equation (2) above is called a pseudo-likelihood equation in Shao (1999), p.  315. Note that it 

consists of p scalar equations. In equation (2) & and 9(s, 13) are estimates of nuisance parameters 

that are obtained from the sample and generally contain P. When the solution to (2) exists and is 

unique , i.e. when 13 is defined implicitly by (2), it is denoted by OG  in Liang and Zeger (1986). Note 

that this approach is different from the one presented in Section 5 of Rao (1998). It is important to 

note that (2) contains only 13 as unknown parameter and that, due to the estimation of the nuisance 

parameters, the left hand side of (2) is, in general, a nonlinear function of the sample observations. 



When the observations across time are assumed independent for each individual (the working 

independence assumption), equation (2) becomes lEE. In this case R(a) = 'd and there is no need to 

estimate nuisance parameters in (2). This is the situation discussed, in a design randomization 

context, by Binder (1983). In the context of lEE and survey randomization (see Section 3), O G 

becomes the "census" parameter defined in Binder (1983). The example below illustrates the 

calculation of OG  from an WE. Notice that the presence of the time dimension is accounted for by 

the increase in the number of data points (from M to 2xM in this case). 

Example 1 	Assume that the individual observations are independent, identically distributed 

(i.i.d.) and that they follow a normal distribution. Take p = 1 and d =2 occasions. We have R(a) = 

12  (case WE). Assume that x,  3 are scalars, i,t >_ 1 and that h is the identity. 

2 

p(y11)=exp- 	=exp {y011 -a(0 1 )+b(y11) } 	a(0)= -L,b(y11)= - 

2 2 

da 	d2a 	 01=x1p,i,t E [y11J = O, 
= 	

~

., 
dO211 

	1. 

Note that each x11  has as many components as 0 (p = 1 components here) and, for i, t ~! 1: 

dlogp(y,) 2  

d13  
= y1 x11  - x.j3 

Now a' (O f ,) = O i  t = x 1 3, i, t ;-,, 1 and (2) is: 

M 2 	 M 2 	 xityit 

(3) 	 X11)1- 	E 	13 =O 	13G 
= 	 . 

i1 	t1 	11 	I 	I 2 
L L Xi: 
1=1 r=1 

3. The design and the design-based inference. In the article, inference is done in the design - 

based randomization as proposed by Binder (1983). As mentioned in his paper, conclusions can be 
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drawn only in designs in which conditions have been given for the Central Limit Theorem (CLI) 

to hold. The design that we consider here is stratified, multistage in which the p.s.u.'s (clusters) are 

selected with replacement from a population of M individuals (or 'ultimate' selection units). 

Conditions for the CLT to hold in such designs have been given by Krewski and Rao (1981) and by 

Yung (1996). Here the cluster totals (or 'normalized' cluster totals) are i.i.d.'s in the design 

randomization within each stratum and independent random variables (r.v.'s) across strata. Thus, 

the r.v. 's involved in the limiting theorems are the clusters rather than the individuals. The 

populations change with the increase in the number of units involved in the inference. The sampling 

distributions of these variables change with the changing populations and so does the finite 

population parameter. It is therefore appropriate to consider CLT's for arrays. To simplify notation, 

we index the populations by the total number of associated r.v.'s involved in the limiting process, 

i.e. the total number of clusters N from which n p.s.u.'s are selected. Thus, the census parameter 

defined by (3) for the LEE case will be denoted PN =  PG' rather than 3M  which would be more 

appropriate. The parameter to estimate in the design randomization context changes as n- °o  (which 
PN 	 PN 

implies that N, M -. oo). In this article P0  is a limit point, e.g.: ON 	where —9 	means 

convergence in the design probability, which is consistent with Binder (1983). In some instances, 

one might wish to link P0  to the superpopulation parameter, e.g. if one wishes to give an 

interpretation to the finite population parameter. We do not attempt to do this here. 

For simplicity, we consider that the selected sample s consists of respondents only. The 

generalization to the situation where nonresponse occurs completely at random is straightforward 

(see J.N.K. Rao, 1998). Consider a population that consists of M individuals and which is partitioned 

into L strata. Each stratum consists of M h  individuals from which Nh  clusters are formed, h = 1,.. .L. 

From each stratum h, nh  clusters are selected with replacement and a further selection of m hi 

individuals takes place within each cluster i, i = 1,... nh,  h = 1,... L. We denote by n the total 

number of clusters selected. To each individual k we attach a basic weight appropriate to the sample 

selection mechanism. As in Yung (1996), we 'normalize' it by dividing the basic weight by M, the 

total number of individuals in the finite population. We denote the resulting weight by Whi k and, 

whennoconfusionmayarise,by w k ,k=l,...M,i=l,...n h ,h=l,...L 
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Definition 1. In the case of the GEE (2), the census parameter ON  is defined as the solution (when 

it exists and is unambiguously defined) of equation (4) below: 

(4(13, CLN(P) ,  PN (13))-O 

We will define next a sample - based estimator 13N'  which will serve to make design based inference 

on the census parameter 13N  In conjunction with the GEE (2), we define, for 13 E 0: 

'i'N(13) = VN(s , 13) = E WkUk(13,aN(13), (PN(s,p)) 
kEs 

In (5) a(13) and PN(  ,(3) are sample based estimators of the census parameters UN,  respectively 

PN Notice that in case of with - replacement sampling, s is an ordered sample, i.e. the same p.s.u.'s 

may appear several times in the sample s (Särndal et al 1992, p.72) 

Definition 2. The REE estimator ON  of the census parameter ON  is defined as a solution to 

'VN (s,13) = 0, with VN (s,13) as in (5) above. 

Example 2. Consider the simpler situation of an lEE presented in Example 1. The census 

parameter in Example 1 is ON =  OG in (3). A design based estimator ON  is a solution to 

= VN('13) = 0, where: 

PN  (s, 13) = 	W 	x(y - x 13) 
kes 	1=1 

This estimator can be found explicitly as the EE above has the unique solution: 

Wk Xk, Yk: 
- - 	kes:I 

kes t=I 

Note that in (6) the normalized weights can be replaced by the original design weights. • 



4. Consistency of PN•  We first give conditions for the existence of an REE estimator ON  as well as 

on its convergence to a constant, which is a major step in proving its design consistency. 

Assumption 1 (also included in Binder (1983)): 

PN 
'VN (s,13) 	í  (n), for any f3 E 0, where , (f3) is a non random function defined on the 

space of parameters 0 which may be unbounded. Recall p N is the design probability. 

w (3) = 0, and all partial derivatives of w () exist and are continuous around  00 . 

D [, (Ii)] I = - J0  is invertible (it suffices to have det I D  [w ( 0) 11 po  # 0), where 

D [ji (3) I is the pxp matrix of partial derivatives of i 

Remark 1 Assume that P0  is the true superpopulation parameter used in S i  , i = 1,...N. Then 

Em  [Y1  - a' (0)] = 0, i ~! 1, by the first model assumption in equation (1).. 

Assumption 2 For K0  = K( f3) a compact containing 0 0 , K0  c 0 and any ii > 0, there exist a 

constant ho  and an integer n such that, for the partial derivatives of WN  (s,) = 

( 'i'/"(s13 )) I3 (I3kk=I....p 

sup pN{S:  sup 	I
8(s,) 

j 
n~->n0 	P €K0 	aPk 

foral1j,k=l, ... p 

We note that (iv) is equation (4.69) of Shao (1999). 
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Example 3 : We consider again Example 2 above. 

'PN (s , 13) = 	W E x (y - XIa 13) 
kEs 	t1,2 

a E x(y-xji) 
1=1,2 

(if design consistency holds). 

if the Strong Law of Large Numbers holds in the superpopulation, we have 

M 

E Xkl [E4Yk:] - Xk1 13] -. w (p3) 
t=1,2 

M 

if urn 
Mk=1 

E 	= 	< 00 

= 1,2 

by the model assumption (1), where: 

'I'(P)=-(P -  13) 

Therefore (i) of Assumption 1 holds. Now clearly w (130) = 0 and so (ii) also holds. For (iii) to 

hold, we notice that the derivative of i  ( 13) is - ' 2 which is different from zero if at least one of 

the covariates is. 

To verify Assumption 2, we first take the derivative of jc( 13 ) with respect to 13, N a 1. We note that 

the survey weights do not depend on 13 and neither does D N (  13) in this example. Furthermore, if 

we have design consistency of totals, we conclude that: 

-1 
(7) 	 D [ 4N (01 D[ 111NU3:)] 

=
X/g 

Note that the right hand side of the equation above is bounded if the covariates are equibounded 

(there exists a common upper bound for all (k, t)) or if the right hand side converges, i.e. . <• 
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The proof of the following result was given in the scalar case only ( p = 1 ). 

Theorem 1. (Existence and convergence of fN , N ;>- 1). Assume that 4 ,N 2.  1 are continuous 

and that the convergence in (i) of Assumption 1 is uniform in P. Assume further that (ii) and (iii) 

of Assumption 1 hold. There exist then estimators O N such that, for any ii,  ö > 0 , there 

existsn0  (i, S) = no  and: 

sup 	
- 	 I :g 8, IIJN(sj30 = o) 2~  i - 11 

fl 2tfl0  

The same conclusion holds if Assumptions 1&2 hold. 

Proof The proof relies on functional properties of w which is invertible in a neighbourhood 

of ( by (ii), (lii) and the inverse function theorem), and the uniform convergence of the sequence 

lvN(P), N ~t 1 . The uniform convergence (in J3) of the 	's is essential in proving consistency of 

the estimators. More precisely, it leads to 'v (AN) - 0 = 'v (P0 ) and, because 	exists and is 

continuous around 00 , 
	 () = 	'v 'v() = 	The intermediate value theorem is also 

used, which makes the proof unsuitable for p> 1. 

From the uniform convergence assumption we have that, on a compact set K0 , 00  E K0 , for any pair 

c,r>0 there exists no  (c,r) = no  such that: 

sup 	sup I '4'N(P) - *(1) I > cI :~ 
(8) 	N;->n0  

We now show the existence and tightness of MLE's N'  N 2~ 1. More precisely, for any Tj >0, 

there exist a compact set in the space of parameters, (which contains say K0  = K1  (3), ON'  as 

well as No  = No (Ti),  such that: 

-14- 
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sup PN { s: PN € K0, IPN (s, PN 'aN, 4N) = 0 } 
N ~ No  

We prove (9) for j E R and scalar !only. This is not just for the sake of simplicity, but also because 

we use an order relation on the space of parameters to define monotone functions and the estimators 

N 2t 1 as in (10) below. Let aN = aN(s, ON ' N )  'N = PN(s, N) Now q, (p0) = 

and .ji (3) is smooth at 13g . It is also 1:1, by (ii) and (iii) and the inverse function theorem (see 

Rudin 1964, Theorem 9.17, p.  193) . There exists therefore 3 	and 3 €®, 

P + <P <3 	y ( ) >0, , (3 ) <0 say, and w (1) is a homeomorphism on U 
{ 

3,, f3 
], 

where 

U is an open set. 	By (8), for T1>0 and for all large N 2t  no  

PN () = PN s: '',, (s, 3 ) >0, 1JN  (s, ) <0 J ;'-- 1 - 11. By the continuity of the 41N1  on 

there exists 
( 

such that 1'N 	0. Note that we used the intermediate value theorem which 

restricts our proof to the case p = 1. For every N, define the REE: 

 
ON 	

f there is suchP 

PN otherwise 

if K0  [J3, 3], we have (9). We can take P. , 3closer to Po  so Ko  D [[h, 31, as 'qi is strictly 

decreasing. To complete the proof, note first that: 

4'N (AN) - P ()! = I l' (AN) 1  -5 c 

on a large set and for a large N, by the definition of ON  E K0  and (8). Note that qi is 1:1 and locally 

a homeomorphism and so its inverse 	exist and is continuous (locally) . Take any 

8>0, c(s) =c smalisothat B. 	V,B(f30 )cU and ycB(0)='w(y)EB5  ( 0 ).Thuswe 

have '4' () c  B(0) - ir'w (N)c 	(B(0)) c B(0) 	N c B(p0)  , which proves weak 

consistency. 

To prove the last assertion, we have that Assumptions l&2 hold. Then (8) is the probabilistic 
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equivalent of the classical theorem which states that pointwise convergence to a continuous function 

on a compact set (Assumption 1) and equicontinuity of a sequence (follows from Assumption 2) 

imply uniform convergence in P . Thus (8) could follow, for example, from a modification of the 

proof of b) of Theorem 7.23 on p. 144 of Rudin (1964). 0  

Corollary 1 Assume that: 

PN 
N(o) -* 0 

PN 
D 	I —4 	D(3), uniformly in 3 E 0 fl K, where D(P) is a nonrandom function 

continuous on K, a compact set containing  00 . 

Jo  = - D(130) is positive definite and invertible. 

We conclude then that there exists a function w (3) , 3 E K, where K is a compact set in 0, such 

that (8) (i.e. uniform convergence in probability), holds for WN()  and ij, (3), as well as for 

D 111N I and D V 1 0  = D(f3). Furthermore, the conclusion of Theorem 1 also holds. 

Proof: The fact that { D 0  c'N I }, N ~! I converges to D(0) uniformly in 3 on a compact set 

containing 00  (i.e. condition (8) for { D 1 N } ), follows from (12) and (14) below, as in the proof 

of Theorem 1. 

From Theorem 7.17 on p.  140 of Rudin (1964), we obtain a function i 	condition (8) for 

N2tl and , () , 	 K, as well as the fact that the derivatives { D 0  1 N IL 
N ~! 1 converge in probability to the derivative D qi I p  = D(). Then (13) ensures that i is 

invertible in a neighbourhood of and the proof of Theorem 1 follows as before. Note that J0  in 

Example 3 (see (7)) is positive. 
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Remark 2: Note that uniform convergence in (12) is implied by pointwise convergence and: 

(14) Condition (iv) of Assumption 2 holds for D ( N) rather than 

The conditions of Corollary 1 are stronger than those of Theorem 1. However, some of the 

conditions could be required in the proof of the Central Limit Theorem anyhow. Note that conditions 

(12) and (14) imply condition 7 of Binder (1983), P.  291. 

In Example 3 the verification of the assumptions was done in two stages, the first based on 

assumptions of design consistency and the second on Assumptions 1&2 holding for 

vN(s , n),, N ;-~ 1, Under this new set of conditions, we also obtain 00  and consequently 
design consistency: 

Corollary 2. If Assumptions I &2 hold and y(s,  0.), DyN(s, 13 ) N z 1 are design consistent, 

PN .. PN 
then 13N 	N  	 and so 	- 	 0 as n - . Furthermore, the convergence Ar  

in (i) of Theorem 1 is uniform in ON ON 

Theorem 1 is also valid in the GEE situation. Conditions for Assumptions 1&2 to hold are more 

complex if V,. i ~ 1 are not known and must be estimated from the sample. In this case, the EE are 

no longer sums of independent r. v.'s in the design, due to the presence of the estimated correlation 

structure across time (see the pseudo-likelihood equation (2)). 

In order to do statistical inference for GEE, we must find a sample based estimator of Vk  = 

Vk  (a, 13) (see Rao (1998)), and replace it in U k  (a, 13, cp) = DkT  Vk '  Sk , k = l .... M. This corresponds 

to the case when R(a) is completely unspecified in Example 5 of Liang and Zeger (1986). In this 

instance there is no need to estimate the overdispersion parameter p. To estimate Vk(13) 

=ACN  (a,13)A 2  , k 2,  1 for fixed values of the parameters, we estimate the common correlation 
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structure across time, denoted here CN (a, f3), by 	W A,"2(13)Sk(13)SkT(P)Ak 112(13) The entries 
kEs 

of this matrix are: 0(13) = E wk[a"(1k i  (I.3))a " (rIkJ(f3 ))J 112 sk(13)skJ(f3). where  Ski 	= Ykj 12k,(13) 
kE S 

k = 1,,.. M, i 
, j = 1,...d, 13 c e . Let 	/ (13), i 

, j, = I, ...d, 13 E 0, be the entries of Ô' (13) 

which is assumed to exist. Then V.  (13) has entries 	13) [a  "(rlkj (f3))a 11(lkJ(13))F"2 , i,j = 1,...d. 

We substitute in GEE (5): Uk( 13 k(13)) =DkT  Y(13)Sk 	5k =  k -a '(ak)'  for any k ;~ 1 and obtain: 

i(13) w(s, 13) ,  
i,j=1,..d 

a 
with 	 V(s, 1) = 	W [ // 	J"x sk)([3) 	i, j = 1, ... d. 

k€s 	a (1(13)) 

Therefore, the GEE in (5) can be written as a finite sum of terms with each of these terms equal to 

a product of two estimators. Furthermore, each i(s ,13), i, j = 1 ,...d, is a sum of random variables 

for which the conditions for consistency in Theorem 1 can easily be applied. 

Example 4. The marginal model is that of Example 1. Recall that a Ok !) = 1, k, t ;-> 1 in this 

case. An estimator of Vk  (13) = V(P) , k = 1,...M is the 2x2 matrix CN  (13) with entries 

ej(13) = 	wkskl(P)skj(13), i,j = 1,2, where skl(13) =ykj - 4uk1 (13), i = 1,2 andk = 1,... M. The 
kEs 

condition for GN  (13) = (I '(13) to exist becomes A(P ) = e1,' () 	ê, 2(13) - (e.,2(13)) 2  *. 

The entries of the matrix GN  (13) = 6 1 (13), when it exists, are: 	' (13) = ê72(13)xL( 1)', 

12 	21 i 	22 	11 g (13) = N (f3)=-ê,,2(13)xi(13) 	c (p) = CN (13)xA(13y' , 13E0. As above, we have 
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= 	f3) 	where '1'(J3) = wkxkiskJ(i) i,j = 1,2. 
i,)=1.2 	 kEs 

We assume first that a symmetric, invertible matrix C(3) exists and is continuous at 0 0  and that: 

PN 
(v) 
	

CN(13) —4 C(), 

PN 
This implies: 	(3) —9  g  '() , V 0 E ®, i,j = 1 ,...d. Therefore the asymptotic behaviour of 

i,(s,3) is the same as the asymptotic behaviour of Ml(s,l3)= > 	g U() Ni(s,P), which can 

now be written as a linear combination of sample indicators. We can verify the conditions of 

Theorem 1 for w(s , 3). However, we often need uniform convergence on a compact space 

containing 00  and so we would have to impose conditions stronger than (v). Consider now the 
d 41N () information matrices 3N 	= 

- 	 d 	
, N ~! 1. 

Corollary 3. Assume that (12) holds for 	(13) andg  (13) , i,j = 1... d. 

ii Then, by the proof of Corollary 1, 	w , (s , 13 ) 

PN  
- 

PN 
w" ([3) and 	(li) 	_.....) 	gU (13)for 

some 	l4i 	(0), g ' (0) i,j = 1,... d. 	Let w(13) = g'3([3) 	j,hi(13).  We assume that Ni  ([3) = 0 

dw(13  ) 
i.j-1 ... d 

and that -J0  = 	 ~ 0. Then the conclusions of Theorem 1 hold for 4'N(13)  and  
PN 

Furthermore, N(  13) are equicontinuous 	at PO  and N(  [3) 	—3 	J0 . Under the additional 

conditions 'tj/ (1) =0, i,j = 1,...d, we have that J0  = 
d 	(f3 ) 

- 	 g i(0) 	 0  
d [3 

Proof: By the proof of Corollary 1, we also have: 

PN 	 PN 
(s,j3) -- 	j,13 ([3) and 	! ([3) — 	g ' ([3) uniformly in 0so, 

vN(s,[3) = 	i([3) w(s , [3) converges uniformly to W(P) = 	g 13(13) w'(f) and  'v (Pa) 
i,j=1...d 
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d iiJ,(f3) 

	

dN() = 	dg(p) 	
+ 	 At =0. Now: 

df3 	ij =I..,d 	d 	 i,j=I....d 	d13  

have convergence to -J ;t 0. By the proof of Corollary 1, the conclusions of Theorem 1 hold . The 

statement about uniform convergence follows from the expression above and the properties of the 

functions on the right hand side. The last assertion also follows from the expression above. • 

5. The asymptotic variance and the jackknife estimator. We discuss first the asymptotic 

distributionofn2[N '3N]' as 	n 00 

Theorem 2 Assume that conditions of Corollary 3 and the conclusions of Corollary 2 hold . We 

assume that there exist finite population parameters g,j (N) such that, for i, j = 1 ,...d: 

PN 
(vi) 	 (RN) - g, (N) - 	0 

and that 	 n112 	'i (Ps ) is 0PN  (1), 

Then n N N' and _Jn2 I g1/() $4(N) have the same asymptotic distribution. 
i,j=I,...d 

Furthermore, if F is the limiting distribution and & is the limit of the variance 

Jn VN [ 	& ( N )  'i(PN)} 1 as n °° then & is the variance associated with F. 

Proof: By Corollaries 1 and 2, ON 	for any ON  contained in the closed interval defined by 

I3N'N and N(N) -. 	* 0 in PN  .FromTheorem 1,we have that WN(s'iN)  =Oonasetof 

large probability and for a large n, and so 1VN(s,13N) - WN(s,13N) =- w() on that set. By the 

mean value theorem and on the same large set, we have: - ¶N(s,3N) =- N(PN)[PN PN] , or 
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1/2[ 	PN] =i,( N )n 2 'q(sJ3) Now fl  'VN('I3N) = 	g(s,) 	sj3N). 

We add and subtract g (PN)' and use (vi) for 	( 	and j (1N)  to obtain 

that n I/2[ PN - N] 	J 	1/2 	g1( N) v(s, PN) in PN  The statement about the variance 
i,j=1 .... d 

follows from (viii - B) p. 121 of C.R. Rao (1973). • 

Condition (v) appears in Shao (1999), p.  315. Notice that it is stronger than condition (vi) above. 

It is, however, not sufficient to ensure the asymptotic normality of n -1/2 [ ON - N ]• Note that -J 

is 'the bread of the sandwich' in the asymptotic variance of n '2 [ ON - 

We denote by u (s43 ) the P th component of U 1  above, P = 1,..p, i = 1,... M. For the rest of the 

section, we assume equicontinuity of the components of U1  , i = 1, ... M (see Shao (1999), p.  318 

and Theorem 3 below) i.e. we require: 

(E) 	The family of functions { ui,t  (I ) } i ,l  is equicontinuous in 3 at 

Note that this condition is related to the previous conditions (e.g. in Corollary 3) once we take the 

normalized weights into account. Such assumptions appear elsewhere in the technical literature in 

connection with asymptotic results for GEE or TEE (e.g. Theorem 5.14 of Shao (1999) and Rubin - 

Bleuer (1998) when p  =1). In many interesting instances, condition (E) is implied by continuity of 

functions of the covariates and boundedness of the covariates (e.g. equation (3) in Example 1). 

We consider now the one - step jackknife estimator with the design described in section 3. From the 

sample of n clusters, let us delete cluster i, which we assume belongs to stratum h. All individual 

weights in each of the remaining n - 1 clusters in stratum h are multiplied by the factor ni, /(nh - 1) 

to compensate for the deletion of one cluster. The weights in other strata are left unchanged. Of 

course, all individual weights in cluster i are set to 0. Let 	k  be the new weights, k E s. The 
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estimator that corresponds to 1'N (13) in (5) will be denoted, for simplicity, by "iii, (13). More 

precisely, we have, for each cluster i e s: 

= 

	

	wkUk(13,aU3),(pU3)) 
kcs\i 

We introduce, for cluster i E s, the pxp "information" matrices J 1  (13) along with the p - 

component vectors 	, with ON  as in Definition 2: 

(13) =- 	' 	= 13 + .( 13N)xJ. (13N)' iEs, ap 

Note that in (16) one must state conditions for the definitions to be valid (i.e. the inverse matrices, 

should exist at least asymptotically). We can now define the jackknife estimator v, (fl). For 

simplicity of notation, we write 0 for ON  when no confusion may arise. 

L 	-1 ' 
vj()=E h 

h=1 

For the remainder of the section we assume that N 	= 0, N = 1,.. .The main result presented in 

this section is the consistency of the jackknife estimator of VN (N)' the variance of ON  i.e.: 

PN 
n[vJ(13N) - VN(13N)] —3 	0 as n-.00 

We consider the following condition (see Krewski and Rao, 1981): 

PN 
max,1J1 (13N) - oI — 	0 as n- 

We state condition C4 of Yung (1996), which appears in Shao and Tu (1995): 
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(C4) 	 n maxhlk mhl Whik = O( 1) 

This condition can be interpreted in terms of the weights associated with the sample design. 

It requires that the design weights be comparable in size. We will state the main result of this article, 

for the lEE and the case p = 1 only. Let uhl(13) = E  Whik  Uhik (13) be an unbiased estimator of the 
k€.r 

mean of cluster i in stratum h (recall that the weights are normalized), where i = 1,... Nh,  h = 1, 

..L. Note that uhl([3)  are independent random variables, i = 1,... Nh,  h = 1.....L, and that 

L Nh 
u,(13). Condition (Cl) below is a Lyapounov type condition. Both (Cl) and (C2) 

are typical conditions required in the proof of CLT. 

	

, 	 PN  

Theorem 3 Assume that the conditions of Corollary I hold and that 	00  , so 13N 	130 
PN 

and PN13N*  Oasn-°°. We also assume (19), (C4)and: 

(CI) 	n'4Uhi 	 O(l),forsomeö>O. 

(C2) 	nVN(iN(I3O)) 	—9 a2  > 0. 

(E) 	maxhlk uhlk(13) -uhIk(13o) --~ 
c if 	-13 ~ (c), for some 6(c)>O. 

Then the jackknife estimator is consistent as in (18). 

L n  -1 
Proof: Write v 	= 	

h 	(3), where Sh  represents the sample of clusters in 
hI 	'7h 

stratum h. We have: 

L 
(20) 	nv(i3) =n> 

	

h=I 	nh  iES h  

j2 
- Jo-2] P1 (I) + 	vi (çl)() 

We will show: 
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PN 
n [v (,) (13) - VL ('1') (P)1 —* 	0 

u,(13) 
nh  where 	VL (')( 3 ) = 	[( 13) 	U(13)] , 	uh(P) 

= EESh 

h=1 'hl1Esh 	 nh 
L Nh 

is the usual estimator of the variance of c'N(13)= 	u, 1 (13). As in Yung (1996), (Cl) and (C2) 
PN 	 h1 1=1 PN 

imply that nvL ()(I3o) —3. 	a. Let us assume (21) for now. Then nv()(1i) —3 	&, the 

first term of (20) converges to 0 by (19) and the second converges to j2o  (12 thus: 
PN 	2 nv(I3) —3 	Jo  

On the other hand, it can be shown (using (C2) and condition (E), as in the Appendix) that: 

n[VN(41N(13N)) - VN((4i1(130))] 	—) 	
0. 

Therefore, by (C2), the equicontinuity of the information matrices and the proof of Theorem 2, 

nVN()= n J 2(13) VN(41N(13N)) —* 	J 2&, 

which is the limit in (22). To complete the proof of (18), we need to prove (21). After some 

algebraic manipulations, we have that, for i 2: 1, ii, () = n/(n -1 )[u() u1(3)]  and so 

(ç)( ii) = n VL  (',)(f3). We used the fact that c'N () = 0. For the proof of (21), we recall 

VL M(P) = 	' 	[u(13) - u 1 (13)] 2  , and define c,,, = 	w [Uhik 	-uhlk(130)], 
'3= 'h - 1 hi 

Chi 
= iEsh  , where S '3  is the second stage sample selected in cluster i of stratum h. Then 

nh  

uh() -u 1() = ch - ch+üh(13o) -u,(P0) and 

[u() u ì((3)} =[ c 	 -u,(f30)] +[ü00) - u(f30)] 2 . The contribution of 
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the last term is nvL(iI(Po)),  which is what is needed. We must show that the contribution of the first 

terms is 0 asymptotically. We will first deal with the cross terms. 

They contribute 2 n> 	
h 	

[h - eJuh(0) - uhl (t30)], and by Schwarz inequality ,  , this is 
hI flhliEsh  

L
h 	

1/2 

bounded by 2 in 	 [ch - e,.} 2] in VL () (p0)] 1/2•  It suffices to show that the contribution 
h=1 

of the first term is asymptotically 0, i.e. 

(23) 	 n L h [-ch - Ch.] 	 0 
h1 

2 Since [h - Ch.] ~ 2(e + c.) ~ 211 	Eh,/flh + 
I ES 

we have [ch  - Ch1] 2 s 4 maxhlk 	~ 4 c2maxhlk(whlkmh,)2  by (E ) when 	is close to 0  . Since 

nh  2: 	n/(n-l) :5 2, we have that the left hand side of (23) is bounded by 

-~ 8 c2maxhIk(nwhlkmhl)2 which can be made as small as possible by (C4). Recall that 

E 1 = 	nh = n, the total number of clusters selected. • 
h=I IEsh 	h1 

6. Conclusions. Design inference is a useful, interesting and challenging subject. Inference is 

generally more difficult in finite populations than in infinite populations. In the finite population 

situation, we have to deal with 2 levels for each of the main and 'nuisance' parameters. Many of the 

techniques that are used in classical inference can be adapted to the context of survey randomization. 

However, 'regularity conditions' that involve the interchange of derivatives and expectations taken 

with respect to the superpopulation model must be replaced by functional conditions. We tried to 

-25- 



reduce the model assumptions to a minimum. As in Rao (1998), we retained the first moment model 

assumption in (1). Even though convergence of census parameters (including population averages 

in Example 3) can be treated as limits of functions, it is more natural to view them as realizations 

of sums of r.v.'s, as indicated in Example 3. Therefore, it appears more natural to view design - 

inference within the more general set-up presented in Rubin-Bleuer (1998), which allows for joint 

model and design-based inference. 11 
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APPENDIX 

To complete the proof of Theorem 3, we must show that n[VN(N(N)) - V,.,,(4iN(00))] —9k 	0, 

We write ''N ( N)  = AN + ''N(Po) - Ei,(f30) = AN  +ZN , where AN  = WN(N) - 'VN(o) + EfN(I3o). 

Notice that , by the definition of the census parameter in (4), AN  is centered and so is 

Thus VN(N(PN))=E(A)+EZ + 2E[ANZN], where VN(N(I3o)) = EZJ.. Now nEZ  

by (C2) and , applying Schwarz inequality to the cross term we reduce the problem to showing that 

nEA=nVN (AN) —3 0. We calculate the design variance of AN,  which equals 

VN [E L [uh .( 13 N) - uh.(130)]]. Because of the independent selection in each stratum, this variance 
h=1 ies 

L 	 S 

is F
, 
 VN(E [uh(I3N) - u4 (130)]). We can write: 	 - uhl(130) = ("nh)  E E  8hi 1(r) where 

h=I 	iEs 	 iEs, 	 j=1 i=1 

6h1 = 	whlk[uhik( 13N) - uhlk(f30)I, I. is the sample indicator of cluster i, rhJ  is the sample selected 
ke h in stratuni h at the j th independent draw. Recall that Shi  is the second stage sample selected in 

cluster i of stratum h. By the independence due to the "with replacement" selection, we have 

nh Nh 	 f1 h 	Nh 	 n h 	Nh 

VN 101nh)> 	I h 1 (rhJ)1= nh ,  E VN(E hIII(rhJ)) :~ 	E[(> 6,,III(rhf))] 2 . Since in each 
j=t al 	 jI 	 j=I 	 1=1 

Nh  

stratum only one cluster is selected at each draw, the expectation above equals E E[ 1  II(rhf))]. 

Now 	[maxhlkwhlkmhl]2 	ON  is close to , by condition (E). Thus, 
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N,, 

:g 	 [maXhikWhikMhi 	n  hI E[I,( rh!)] = fl62  [maxwm]2 E n,. ,which can be made 

arbitrarily small by (C4), as 6 can be made arbitrarily small. We used the fact that the probability 

of selecting at each draw one cluster from each stratum is 1. 
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