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Diversity measures of interviewer error in categorical survey data 

Takis Merkouris 1  

ABSTRACT 

This article considers the measurement of interviewer error in polytomous categorical responses in 
surveys. Treating this error as extra-multinomial variation in the categorical responses, a statistical 
analysis of measurement error is formulated in a factor-response framework that is analogous to the 
random effects analysis of variance for quantitative data. Unlike current methodologies based on 
standard ANOVA assumptions, the proposed methodology is based on a measure of diversity for 
categorical variables that allows valid inference procedures for interviewer errors in polytomous 
responses. An extension of the methodology to mixed effects can incorporate effects of factors other 
than interviewers, such as interviewing modes and question types, on hierarchical or cross-classified 
polytomous categorical survey data. 

Key Words: Diversity; random effects; intraclass correlation; interviewer variance; Gini-Simpson 
index. 

'Takis Merkouris, Household Surveys Methods Division, Statistics Canada, Ottawa, 
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Des mesures de diversité de l'erreur due a I'intervieweur dans les 
données d'enquête catégoriques 

Takis Merkouris 

RESUME 

Dans cet article on considère la determination de l'erreur due i lintervieweur dans les rCpoilses i 
categories polytomiques dans les enquêtes. En traitant cette erreur comme une variation extra 
multinomiale dans les réponses a categories, on peut formuler une analyse statistique de l'erreur dc 
mesurage dans une optique de facteur-réponse analogue a l'analyse des effets aléatoires sur Li 
variance de données quantitatives. Contrairement aux methodologies actuelles basées sur le 
suppositions ANOVA classiques, la méthodologie proposée est basée stir une mesure de la diversiic 
pour les variables catégoriques qui permet des procedures d'inférence valides pour les erreurs due : a Uintervieweur dans les réponses polytomiques. Une généralisation de la méthodologie aux efft\ 
mixtes peut incorporer les effets de facteurs autres que les intervieweurs, tels Ic mode de collecte et 
le type de question, sur les données d'enquête hiCrarchiques ou a catCgories polytomiques croisCes. 

Mots des: Diversité; effets alCatoires corrclatian intracIassc variance due i lintervieweur: indeNe 
de (TiiniSirnpon. 

2Takis Merkouris, Division des méthodes des enquêtes auprès des ménages, Statistique 
Canada, Ottawa (Ontario) K I A 0T6 



1 Introduction 

In this article, the measurement error introduced by interviewers into categorical survey 
data is considered. For the analysis of the interviewer error the existing methodology typi-
cally treats the categories of a polytomous categorical response as dichotomous responses. 
The interviewer error is then considered as the random component in a random effects 
(components of variance) model, which is directly analogous to the standard random ef-
fects ANOVA for quantitative variables; for a review of this modeling approach, see Biemer 
and Stokes [2]. The two basic quantities describing the random interviewer effect, namely 
interviewer variance and intraclass (intra-interviewer) correlation coefficient, are defined 
through this simple random effects model. Mixed models, with fixed effects due to sources 
of measurement error other than interviewers, have also been considered in various stud-
ies of interviewer error. For such models, however, standard ANOVA inference procedures 
for the interviewer variance and the intraclass correlation coefficient, based on normality 
assumptions and constant variance components, are not valid for dichotomous variables. 

The problems with using standard ANOVA techniques for dichotomous variables has 
led investigators to consider alternative methods of inference for the interviewer effect. The 
existing methodology includes likelihood-based inference assuming a beta-binomial distribu-
tion for the random interviewer effect (Pannekoek [6]), quasi-likelihood inference procedures 
(Pannekoek [6]), and likelihood methods based on modeling the distribution of a contin-
uous latent variable underlying the categorical response (Stokes [7]). These methods are 
based on distributional assumptions that may be unsubstantiated, and are computationally 
complicated. Moreover, whereas the existing methodology analyzes polytomous categori-
cal responses component-wise, i.e., a separate intraclass correlation coefficient is computed 
for each category treated as dichotomous, an overall measure of intraclass correlation that 
would effectively combine these separate measures is of considerable interest. 

In this article, the statistical analysis of interviewer effect on categorical survey responses 
is formulated in the general factor-response framework. In this framework, a general analy-
sis of variation for categorical data known as analysis of diversity (ANODIV), Rao [10], 
analogous to the ANOVA for quantitative data, is used to determine the effect of the levels 
of the factor interviewer on a polytomous categorical response variable. 

The formulation involves an extension of the ANODIV to random and mixed effects 
factors, which is suitable for hierarchical and cross classifications of categorical survey data. 
In this mixed effects set-up the explained diversity is partitioned by source, namely the 
random interviewer factor and a fixed factor which could be the interviewing mode, the 
interviewer shift or the question type. Unlike the standard ANOVA applied to dichotomous 
variables, the proposed formulation defines overall intraclass correlation coefficients, over 
the categories at given level of the fixed factor, as well as over the levels of the fixed factor. 
The intraclass correlation coefficient can then be used effectively as a single summary of 
interviewer effects on hierarchical or cross classified polytomous categorical survey data, or 
as a comparative measure of interviewer effects across fixed factor levels. 

Much has appeared in the literature about the measurement of interviewer error, as 
well as about its effect on descriptive statistics or on methods of statistical inference; for 
a review of the various aspects of the study of interviewer error see Biemer and Trewin 
(3]. The attention in this article is confined to the measurement of the interviewer error 
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in polytoiuuus cal 	ritni iV5)( )iiSC. It is IU t Ins re tricted seiise t lint I lie term interviewer 
effect will be used here, ii., tn clewne itw eoiiijiien1 of variation (Inc to jut erviewers in 
the survey response.. 

In Section 2, ve provhie a background r view of the problem a 1(1 niotivatioli for t in 
proposed methodology. In Section 3, we formulate an analysis of diversit.y components, and 
define parameters of interest. In Section 1. we derive estimates of the various parameters. 
Concluding remarks are made in Section 5. 

2 Background Review 

There exists a considerable amount of work in the sample survey literature concerning the 
modeling of the interviewer error; see Biemer and Stokes [2] and references therein. Since 
interviewers are typically thought of as being randomly chosen from a conceivably infinite 
population of interviewers, the interviewer error is considered as random measurement error. 
Traditionally, polytomous categorical survey responses have been analyzed component-wise. 
with each category treated as dichotomous for analysis. Then the interviewer error is 
considered as the random component in a random effects model that is directly analogous 
to the standard random effects iNOVA for quantitative variables: see. for cxaniple, Stokes 
and Muiry [9], Pannekoek [5]. 

Thus, in a random sample of i units let yj  denote the response of the j-th unit inter-
viewed by the i-th interviewer, where i = 1, . . . , I; j = 1,. . . , mj. For a specific category of a 
polytomous categorical response, yij  is a dichotomous response with the value of 1 if the unit 
j is classified into the category, and the value of 0 otherwise. For a given interviewer i, the 
Yij'S are postulated as independent Bernoulli random variables with the same conditional 
probability 7ri  = P(y13  = 1i) = E(y131i) that interviewer i records a randomly chosen unit 
as belonging to the category. Since it is typically assumed that the interviewers are raii-
domly selected from a infinite population of interviewers, the probabilities ir, i = 1..... I, 
are assumed to be realizations of a random variable it, say, with E(ir) = ,u and Var(ir) = 

The one-way random effects model applied to the dichotornoi.is responses to describe the 
effect of the interviewer error is given by 

i=1,...,I; j1,...,iij, 	 (1) 

where 7t1  - i is the random effect of the i-th interviewer on the responses. Note that since 
the possible values of yj2  are either 1 or 0, the values of € j  are restricted to —7Fj and 1 - 
with conditional probabilities 1 — 7ri  and it1  respectively, for each i. The variance components 
for the model (1) are derived from the variance decomposition 

Var(y13 ) = EVar(y1 Ii) + VarE(y13 1i) 
= E[(7r1 (1 - ir)] + Var(7r1 ). 	 (2) 

A more explicit representation of (2) in terms of the model parameters is 

=E[(ir1 (1—ir)]+o. 	 (3) 

The variance component o is called interviewer variance, and represents what is called 
extra-multinomial variation. Note that Gov(y13, y) = Var('ir) = a, where yjj, Yji are 
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observations on respondents j and 1 recorded by the same interviewer i. Then, the intra-
interviewer (intraclass) correlation is defined by 

p = Cov(y13 ,y21)/Var(y 1j) = 	- IL). 

The intraclass correlation coefficient p is a measure of the relative magnitude of the inter-
viewer variance. For a good discussion on the importance of p in survey data analysis see 
Stokes [7], and Biemer and Trewin [3]. 

The standard variance components estimation procedure gives unbiased estimates for 
all variance components and, for large number of interviewers, a consistent estimate of p. 
The estimation of c requires a randomization scheme known in survey methodology as 
interpenetration. In its most basic form, interpenetration consists of randomly dividing 
the sample into a number of subsamples (possibly of varying sizes), and assigning each 
subsample to a single interviewer. In view of this, the conditioning in (2) is on the random 
assignment of the ni respondents to interviewer i as well as on the randomly selected 
interviewer i. 

In estimating the variance components, the dichotomous nature of the responses is 
ignored and the analysis is carried out using the ANOVA method. It is not valid, however, 
to assume normality for either .7ri  or €j. Furthermore, the variance components Var(yi3Ii) 
are not constant across interviewers. Therefore, standard ANOVA methods of interval 
estimation and testing for a and p are not appropriate for dichotomous variables. For 
this reason, investigators have proposed alternative methods of inference regarding the 
interviewer variance and the intraclass correlation. Stokes and Hill [8], and Pannekoek [5] 
assume a beta distribution for the random effect ir, and carry out likelihood based inference 
for o and p. 

Situations in which, in addition to the random interviewer effect, a fixed factor might 
affect the responses can be described by mixed effect models. In such mixed models, it is 
assumed that each interviewer is randomly selected from a different population identified 
with a level of a fixed factor, so that for level h, say, the 7rh2's  are realizations of a random 
variable lrh with E(irh) = lAh and Var(irh) = o. The random factor may be nested within 
a fixed factor (such as area, or interviewing mode), or crossed with a fixed factor (such as 
interviewer shift or question type). For example, a nested survey design with interviewers 
within areas can be modeled by 

Yhij =p+ah -i- bh()+h, h= 1,...,H, 	 (4) 

where a, = Ph - p is the fixed area effect, and 	= lrh, - Ph is the random effect of 
the i-th interviewer within area h. Then, in contrast to the usual set-up for quantitative 
responses, an intraclass correlation coefficient is defined at each level of the fixed factor, 
as Ph = 71h /ph( 1  - ph), and thus an overall measure of intraclass correlation needs to be 
defined to describe the intra-interviewer correlation of the responses over the levels of the 
fixed factor. 

As in the case of the simple random effects model, ANOVA type inference procedures 
about the parameters of the mixed effects models, based on normality assumptions and 
constant variance components, are not valid for dichotomous variables. Anderson and 
Aitkin [1], and Stokes [7] proposed logit regression models for a hypothetical continuous 
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latent. v riable that deteriiiines I he VaIu(s ut the dichot ollimis response. They used 1ike1il.'od 
based inference for the parameters of their model. Pannekoek [6] considered a generalized 
linear mixed model with the fixed effects measured at the interviewer level. For estimation 
of the parameters of his model he used two methods, maximum likelihood based on tin 
assumption that the lthj'S are realizations of beta distributed random variables, and the 
generalized estimating equation approach, which does not require such a distributional 
assumption. 

All the methods for the analysis of interviewer effects cited above arose from the concern 
about the propriety of applying standard ANOVA methodology to dichotomous responses. 
These methods, however, are themselves problematic in various ways. The assumption of 
beta distribution for the random effect may be unsubstantiated. The distributional assump-
tions of Anderson and Aitkin [1] and Stokes 171 are open to the same criticism. Regarding 
mixed models, the beta binomial approach is limited in its scope of application to the nested 
model (4). The latent variable method uses a parameter measuring interviewer variability 
that is not interviewer variance. Furthermore, all these methods, particularly the latent 
variable method, are computationally quite complex. A common characteristic of the exist-
ing methodology for measuring interviewer effects is that a separate measure of interviewer 
variance is determined for each category of a polytomous response. This approach, born of 
analytical convenience, has the disadvantage of not defining a single measure of intraclass 
correlation that would provide a convenient summary of interviewer effect on a polytomous 
response. In mixed effects situations, overall intraclass correlation coefficients defined over 
the categories at a given level of the fixed factor, as well as over the levels of the fixed factor, 
would be of considerable interest. They could be used effectively as single summary of in-
terviewer effects on hierarchical or cross classified polytomous categorical survey data, or as 
comparative measure of interviewer effects across fixed factor levels. For an exemplification 
of the riced of such overall measures see studies of interviewer effects in Pannekoek [5, 61. 

3 Analysis of Diversity Components 

The analysis of interviewer effects on categorical survey data can he formulated in a general 
factor- response framework. In this framework, the interviewer effect is defined as the 
association of a categorical response with the explanatory categorical variable "interviewer". 
This approach is based on a proper measure of variation (diversity) for categorical variables. 

Formally then, let Y be a categorical response variable with multinomial probability 
vector 12 = (/21,. . . , j.&,.). Define a measure of difference d(y, y') between Y and another 
categorical response Y' independent of Y, but identically distributed, to be zero if they 
agree and one otherwise. Then, as in Ran [10]. a measure of variation D. called diversity, 
for the categorical variable Y is defined as 

D(Y) = Ed(y, y') = >jLk( 1  - 12k)- 	 (5) 

The diversity D is interpreted as the probability that two independent categorical re-
sponses with the same probability vector are different. A useful representation of D is 
D(Y) = where A is the matrix of differences between categories of Y. For nominal 
responses. as in the present context. the diagonal entries of A are zeros and the rest are 
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ones. It is clear from (5) that D(Y) is the sum of the diagonal entries in the covariance 
matrix E,, say, of the multinomial distribution with probability vector P. Thus, we can 
also write D(Y) = trE,. In the special case of a dichotomous response, D(Y) reduces to 
the variance of a binomial variable, as in (3). The diversity measure defined by (5) is known 
as the Gini-Simpson index. 

Now, let a categorical explanatory variable X, with I levels, represent the factor inter-
viewer. Also let 7ri = (iri,.. . , Ttir) '  be the conditional probability vector of the response 
Y at the i-th level of X. Then, the conditional diversity of Y at the i-th level of X is 
D(YI7r 2 ) = 7r'A7i = trE, where E, is the covariance matrix of a multinornial distribution 
with fixed probability vector it2 . As indicated in the previous section, the probability vectors 
ir, i = 1,.. . , I, associated with the levels of the random factor interviewer, are realizations 
of a random vector it, with expectation E(ir) = ji and covariance matrix E,. By relating 
the average conditional diversity ED(YIir)  to the unconditional diversity D(Y) it can be 
readily shown that 

= E(ir'Air) - E(ir - ji)'(ir - ji). 	 (6) 

For the matrix L considered in this paper, we have —E(7r—fL)'i(7r—/.t) = E(it—ji)'(it—). 
Noting further that E(ir - ji)'(ir - i) can be written as the expected half of the square 
Euclidean distance (1/2)E(7r 2  - ir.)'(7r1  - 7r2 ) between any two realizations of the probability 
vector it, a diversity measure of it can be defined in analogy with (5) as D(ir) = E(ir - 

— = tr. It is to be noted that for a more general matrix i, as in the case of 
ordinal responses, we have D(ir) = - triE,r , and conditions have to be imposed on the 
pairwise differences between categories to ensure the non negativity of the terms in (6). 
Now, we may formally write (6) as 

D(Y) = ED(Y lit) + D(ir). 	 (7) 

Equation (7) provides a decomposition of the total (unconditional) diversity of Y into 
two additive components, the average conditional diversity of Y given X, and the (extra-
multinomial) diversity due to X. This decomposition is analogous to the usual variance 
decomposition for quantitative variables. It provides an analysis of diversity components 
for one-way classified categorical data (two-way contingency table), analogous to the one-
way random effects ANOVA for quantitative data, as in (2). 

Note that the formulation presented in this section is independent of quantifying the 
response variable Y, and of specifying a model for it. It is clear from (6), that the analysis of 
diversity components is entirely in terms of relating the unconditional and the conditional 
probability vectors of the variable Y to each other. Yet, for the matrix A defined above an 
interesting connection exists between the analysis of diversity components defined through 
(7) and the one-way multivariate analysis of variance (MANOVA) for a component of vari-
ance (or random effect) model. With quantification of the nominal response variable Y by 
an r-dimensional indicator variable (with 1 corresponding to the category of the response) 
a multivariate components of variance model can be set up as 

(8) 

where it - ji is the random effect component, and € is the error vector, with its r entry 
values and its distribution determined by Y. For this model the MANOVA decomposition 
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of variance (O1i1pOI1€1itS inultrvauiate aiialoiii' of (2)) is 

Ell = E + 7r, 
	 (9) 

where E = 	- E,, and E, and E. are as before. The MANOVA decomposition (9 
can be viewed as a decomposition of a diversity measure defined as the variance-covariance 
functional, that is, the expected distance between two variables, say Zi  ans Z2, in E 

drawn randomly from the same population, with distance d(Z1, Z2) =(Z1 - Z))(Z 1  - 72 

Specifically, for this distance measure, E = Ed(Y1,Y2) and E = Ed(7ri , 72). 

The special case of analysis of diversity for a nominal response variable descrihed in 
this paper corresponds to the additive variance component model (8) with the diversity 
measure in (5) equivalently defined as the expected Euclidean distance E(Y1 - Y2)'(Y1 - 

between two realizations of the indicator variable Y. This leads to the decomposition 

trE = trEe  + trE 11., instead of (9). 
It is to be emphasized that the connection between MANOVA and the analysis of 

diversity for categorical data is restricted to the case of nominal categorical variables, with 
associated matrix A of differences among categories as described above. Unlike the rather 
arbitrary MANOVA variation measure for nominal variables, using the trace metric, the 
equivalent diversity measure D(Y) = ilL.ji is founded on the notion of quadratic entropy 
(Rao, [101), which in its present special case of the Gini-Simpson index has the distinctive 
probabilistic interpretation noted above. Moreover, expressed only in terms of probabil 
vectors the diversity D(Y) lends itself to easy algebraic manipulation, as will be shown 
the next section. 

Returning to the diversity formulation, in the context of interviewer effects the first te 
in the right hand side of (7) is the average diversity within interviewers assignments, a: 
the second term is the diversity between interviewers. The shortcut notation T, W and 
for the total, within and between diversities will be used for convenience in Sect.i 1 	ii 
analogy with the interviewer variance, we call D(ir) interviewer diversity. The rat I 

D(ir) - E(ir—p)'(ir—p) = tr 	 lu. 
D(Y) - 	 try,, 

is the proportion of diversity explained by the random interviewer factor X. It is a riieasiire 

of association between X and Y, and defines an intraclass (intra-interviewer) correlation 
coefficient for the polytomous response Y. It follows from (10) that p = 0 if ir is constant 
equal to M, and p = 1 if 1rk = 1 for some k. Therefore, p represents the degree of horn 
geneity of responses within the levels of X. For each response category k of Y, treated as 
dichotomous, the coefficient p reduces to the coefficient Pk = of the previous section. 
Clearly then, p can be written as the weighted average 

- >2apk 
f)— >2cr 

of the individual intra-interviewer coefficients, with weights the unconditional diversities 
(variances) associated with the categories of Y. 

The analysis of diversity components described so far is an extension of the original 
analysis of diversity (ANODIV), (Rao [10]) 	for the assessment of the effect of a fixed 
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categorical factor on a categorical response - to the random effect case. To explain the de-
velopment of an analysis of diversity for mixed effects, we present next the basic formulation 
of ANODIV. 

In the fixed factor setting of ANODIV, let the conditional probability vectors irj, h = 
1, , H, be fixed (nonrandom). Let also ), (h = 1,..., H; ZAh = 1) 1  be probabilities 
associated with the levels of the fixed factor X, so that Ah is the probability that the 
response Y is at the h-tli level of X. Then, the unconditional probability vector of Y is 
the mixture p = E(ir) = Api'r. With conditional and unconditional diversities of Y as 
before, and with the same matrix A as in (6), the decomposition of the total diversity is 

= >Ah 7 h 7rh + }h(1rh - jL) ' (7rh - jt). 	 (11) 

For a comprehensive exposition of ANODIV, see Rao [10]. 
We can now consider more general classifications involving fixed and random factors. 

For an hierarchical classification with the levels of a random factor nested within the leveLs 
of a fixed factor, the analysis of diversity is as follows. Let 7rhi  be the random probability 
vector associated with the h-th level of the fixed factor and the i-th level of the random 
factor, so that /.h (= E(7rh)) is the probability vector associated with the h-th level of 
the fixed factor, and j (= E(Jlh) = 	) iz,) is the probability vector of Y. Let also 
D(Y) = j'Aj, (Ylh) = 	and D(YI7rh) = 7rhiA7rhi be the diversities within various 
levels of classification. Then, in view of (6) and (11), the decomposition of the total diversity 
of Y, in two stages, is 

D(Y) = >AhD(YIh) + >. Ah(uh - ji)'(j.Lh - 

= >AhED(YIlrh) + )hD(lrh) + >Ah(ph - /i)'(ph - ) 	(12) 

or more explicitly 

/tL4L = 	 + 	Ah(/Lh - P) ' (I'h - /4) 

= >AhE( 1rA7rh) + > AhE(lrh - ph)'(lrh - ) + 	Ah(11h - 1a) ' (/ih - 

In the context of interviewer effects, the diversity components in the right hand side of (12) 
are, in order, the average (overall) diversity within interviewer assignments, the average 
(over the levels of the fixed factor) diversity between interviewers, and the average diversity 
between the levels of the fixed factor. Here, the AhS  are to be interpreted as the mixing 
proportions of respondents corresponding to the levels of the fixed factor. The main pa-
rameters of interest are the interviewer diversity within the h-th level of the fixed factor, 
D(lrh) = E(lrh - ,ah) ' ( 7rh - /4h), and the overall (average) interviewer diversity E XhD(lrh). 
We can also define useful measures of relative diversities as follows. 

The proportion of total diversity explained by the fixed factor, given by 

p(F) -- 
D(Y) - I A 	

- 
hD(YIh) - E A(im - 	- 12 

D(Y)  

is a measure of association between the response and the fixed factor. 
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The proportion ol divrsitv explaill('d I)V t lie ralldoin tact or at t lie li-I Ii level ()t he lixed 

factor, given by 

R F - 
 h" - D(lrh) - E(lrh, -  

- 	D(Yh) - 

defines an intraclass correlation coefficient at the h-th level of the fixed factor. It can is' 

used to compare interviewer effects at. different levels of the fixed tact or. e.g.. iii different 
areas or interviewing modes. 

The overall intraclass correlation coefficient is defined by 

p (RIF) -- 
FhD(h) - >AhD(Ylh) —A,ED(YI7r,) 

 A,D(Ylh) 	 E ,\hD(YIh) 

This is a measure of partial association between the response and the random factor after 
eliminating the effect of the fixed factor. It has the form of the weighted average 

- >JhD(YIh)P(RL' = Ii) p(RIF) - 	>khD(YIh) 

A measure of multiple association between the response ai. 	it 	 I 	I I 

as 	 D(Y) - 
f). R) -- 	D(Y) 

4 Parameter Estimation 
The various diversity components in (6) and (13) are quadratic functions of population 
probability vectors that can be estimated from sample observations. The resulting sam-
ple diversities can then be used to estimate the population diversities. We illustrate first 
this estimation procedure for the diversity components in (6), corresponding to the simple 
random effects ANODIV. 

Let rlk, i = 1, . . . ,I; k = 1, . . . , r, denote the number of responses in the k-tb category 

for the i-th level of X. Let also ni = k nik and n = E j  n. We will also use the notations 

Vi 	(flu,.. - ,flir) ' , for the vector of frequencies in the i-th level of X; pi = (i/n)v, for the 

vector of observed proportions in the i-th level of X; p = 	(n/n)p = (1/n) > v, for the 
vector of observed proportions in the combined sample. For a vector a = (ai, . . . ,a1.) ' , we 

will use Aa  to denote the diagonal matrix with elements a 1 ,. .. , a,-. 

For estimation, we assume that the responses at different levels of X are stochastically 
independent, and that conditionally on the distribution of 7ri the vector vi follows multino-

mial law with parameters ni and 7ri = (7r1,. . ,ir)'. Thus the conditional expect.ati@Ii and 

covariance matrix of p2  are iri  and (1/n), where E, = A,i - irjir. 
With the above notations, the sample versions of the diversities T, W and B are 

	

f - IAp; it = njpp; E = - 	Tii(P, - )'L(j)1 

satisfying T = W + B. 
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It is easy to verify that for the matrix A considered in this paper 	= 0. Then, 
conditionally on the ir k 's, standard calculations involving expectations of quadratic forms 
VU 1(1 

E() = -- 	- 1)7r7r 	 (14) 

E(E) = - 	j( - n)ir 	- 	- )'z(ir - 	 (15) 

E(t) = - - nirir, (16) 

where ir = >(n/n)irj. The expressions (14), (15) and (16) above are random quantities, 
as functions of the ir 's. Taking expectations with respect to the distribution of ir on both 
sides of (14), (15) and (16) we get after simple matrix algebra 

EE(1) = 	 = 	' [trE+ 'p]= 	'[tr—trEI = n 	 n 

EE(.) = ____ 
	- trE} + - 	(ni)] tr,  = 	+ [i - 

( n, ) 2 
E  — I B, 

EE(i') = 
fl 	 + [i - 	( fl)2] 

trF 	
+ 	- 	

( fl)2] 
B. 

Letting 	
n 	 1 	2 V'n2] W= 1 W ;  E= 1 1 B; flO(j 1) fl - 

we obtain unbiased estimators 

I'; 	- 7]; --[E + (no - 
n0 	n0  

of W, B and T, respectively. Then a consistent estimator of the intraclass correlation 
p=B/Tis 	 - 

B—W 
p 

These results are analogous to those obtained by the standard ANOVA method applied to 
an one-way random effects model for a quantitative response variable Y. This is explained 
by the connection between the diversity and MANOVA components of a nominal response 
variable, established in the previous section. A similar connection exists between the cor-
responding sample quantities. Noting that the diversity components W, B and T can be 
written as 

w = 	 = _>. fli>Pik(1 Pjk), 	 (17) 

E= ni>. (pik_k) 2 , 	 ( 18) 



Pk(1 	Pk). 	 (l 

it is easy to see that the traces of the MANOVA within-group, between-grOUP and tot 
group sum of squares matrices corresponding to the vectors of the observed proportions 

and p are simply n times the quantities in (17), (18) and (19), respectively. Hence, stand 
MANOVA carried out using the trace metric will produce the estimates for the divers 

components W, B, T, and for the intraclass correlation p = B/T. 
The estimation procedure described above extends readily to the mixed effect ANODIV 

wit Ii the hierarchical classification discussed in the previous section. A brief outline follows. 

Let then nhik, h = 1,. . - , H; i = 1,. . . , Ih; k = 1,. . . , r, denote the number of responses 
in the k-th category for the i-th interviewer at the h-th level of the fixed factor. Let also 

11hi = Ekhik, nh = Ei flhi, n = Eh nh, and Ah = Ilh/n- Then, for Vhj = (nhil,. . .,flhjr) '  

Phi = (1/nh)vhj is the vector of observed proportions in the (h, i) class of the hierarchical 

classification; Ph = >(nhi/nh)Phi is the vector of observed proportions in the combined 

sample at the h-th level of the fixed factor; 13 = ) h -hPh is the vector of observed proportions 

in the combined sample over the levels of the fixed factor. 
In this setting we assume that the responses are stochastically independent across the 

various levels of the hierarchical classification, and that conditionally on the distribution 

of 7rhi the vector Uhi follows multinomial law with parameters nhi  and lThi. Thus the con-

ditional expectation and covariance matrix of Phi are 7rhi and (1/n,1j)r. from which the 

expectations and covariance matrices of Ph and p can be readily obtained. The saiiij1e 

versions of the diversity components in (13) are 

= 	= 

B(R) 	jj )\- >nhj(Phj - Ph)'t(Phi - Ph); E(F) = – >.)'h(Ph – J.i)'(Ph – Pb 

h 	h, 	 h 

where B(R) and i3 (F) denote diversity among levels of the random factor and between levels 
of the fixed factor, respectively. These sample diversities satisfy T = W + B(R) + B(F). 
The derivation of unbiased estimators of the diversity components in (13) is similar, though 
more involved, to that described above for the simple random effects ANODIV. Thus writing 

h )thWh, B(R) = Eh ,Bh(R), and letting 

= flh Wh; Bh = 	—Bh(R); 	
= 	1 	– n] 

flh(1h1) 

we obtain unbiased estimators 

>.\hWh; >Ah_{Bh - Wh] 

I H 	Ah 	LrLh – n(Ih – 1) - n]h + [n(Ih - n) + (n - 
h 

T -1- - 	
' h— [[n, – n(Ih – 1)]Bh + [Ti(Ih - Thh)]Wh 
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of W, B(R), B(F) and T. respectively. Then consistent estimators of the various measures 
of relative diversities defined in the previous section can be derived. In particular, a con-
sistent estimator of the overall intraclass (intra-interviewer) correlation coefficient p(RIF) 
is 

h[Bh—Wh] 
,5(RIF)= 

>2h [Bh + (n - 1)Wh] 

The estimation technique employed for the random effect ANODIV for hierarchical classifi-
cation of responses is based on the familiar ANOVA method of moments. As with ANOVA, 
for mixed effect ANODIV with cross classification, or for more general mixed effect AN-
ODIV situations, the various diversity components can be estimated by adopting the usual 
Henderson's method of fitting constants. 

5 Concluding Remarks 

In this article we have outlined an alternative methodology for the analysis of interviewer ef-
fects on categorical responses. The generality and computational simplicity of the ANODIV 
procedure makes it readily applicable to a wide range of problems involving the assessment 
of the effect of interviewers, or other factors defined at the interviewer level, on polytomous 
categorical survey data. Inferential aspects have been discussed in the context of estimation 
of parameters of interest. It is important to note that no distributional assumptions are 
made beyond the second moments. Relevant non-parametric hypothesis testing techniques 
may be developed based on the asymptotic behaviour of the estimated parameters. It is 
interesting to note that testing the hypothesis of interviewer effect amounts to a homogene-
ity test in a random set of multinomial distributions identified with the random levels of 
the interviewer factor. Since the probability vectors of these multinomial vectors are ran-
dom, such a homogeneity test is equivalent to testing that the frequencies of the responses 
associated with the interviewers are multinomial, against a general alternative of mixture 
multinomials. Results on hypothesis testing will be discussed elsewhere. 
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