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Diversity measures of interviewer error in categorical survey data

Takis Merkouris'

ABSTRACT

This article considers the measurement of interviewer error in polytomous categorical responses in
surveys. Treating this error as extra-multinomial variation in the categorical responses, a statistical
analysis of measurement error is formulated in a factor-response framework that is analogous to the
random effects analysis of variance for quantitative data. Unlike current methodologies based on
standard ANOVA assumptions, the proposed methodology is based on a measure of diversity for
categorical variables that allows valid inference procedures for interviewer errors in polytomous
responses. An extension of the methodology to mixed effects can incorporate effects of factors other
than interviewers, such as interviewing modes and question types, on hierarchical or cross-classified
polytomous categorical survey data.

Key Words: Diversity; random effects; intraclass correlation; interviewer variance; Gini-Simpson
index.

'Takis Merkouris, Household Surveys Methods Division, Statistics Canada, Ottawa,
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Des mesures de diversité de I'erreur due a l'intervieweur dans les
données d'enquéte catégoriques

['akis Merkouris®

RESUMI

Dans cet article on considére la détermination de 'erreur due a l'intervieweur dans les réponses 4
categories polytomiques dans les enquétes. En traitant cette erreur comme une variation extra
multinomiale dans les réponses a catégories, on peut formuler une analyse statistique de l'erreur de
mesurage dans une optique de facteur-réponse analogue a l'analyse des effets aléatoires sur la
variance de donnees quantitatives. Contrairement aux méthodologies actuelles basées sur les
suppositions ANOVA classiques, la méthodologie proposée est basée sur une mesure de la diversite
pour les vanables catégoriques qui permet des procédures d'inférence valides pour les erreurs dues
a I'intervieweur dans les réponses polytomiques. Une généralisation de la meéthodologie aux effets
mixtes peut incorporer les eftets de facteurs autres que les intervieweurs, tels le mode de collecte et
le type de question, sur les données d'enquéte hiérarchiques ou a catégories polytomiques croisées.
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1 Introduction

In this article, the measurement error introduced by interviewers into categorical survey
data is considered. For the analysis of the interviewer error the existing methodology typi-
cally treats the categories of a polytomous categorical response as dichotomous responses.
The interviewer error is then considered as the random component in a random effects
(components of variance) model, which is directly analogous to the standard random ef-
fects ANOVA for quantitative variables; for a review of this modeling approach, see Biemer
and Stokes [2]. The two basic quantities describing the random interviewer effect, namely
interviewer variance and intraclass (intra-interviewer) correlation coefficient, are defined
through this simple random effects model. Mixed models, with fixed effects due to sources
of measurement error other than interviewers, have also been considered in various stud-
ies of interviewer error. For such models, however, standard ANOVA inference procedures
for the interviewer variance and the intraclass correlation coefficient, based on normality
assumptions and constant variance components, are not valid for dichotomous variables.

The problems with using standard ANOVA techniques for dichotomous variables has
led investigators to consider alternative methods of inference for the interviewer effect. The
existing methodology includes likelihood-based inference assuming a beta-binomial distribu-
tion for the random interviewer effect (Pannekoek [6]), quasi-likelihood inference procedures
(Pannekoek [6]), and likelihood methods based on modeling the distribution of a contin-
uous latent variable underlying the categorical response (Stokes [7]). These methods are
based on distributional assumptions that may be unsubstantiated, and are computationally
complicated. Moreover, whereas the existing methodology analyzes polytomous categori-
cal responses component-wise, i.e., a separate intraclass correlation coefficient is computed
for each category treated as dichotomous, an overall measure of intraclass correlation that
would effectively combine these separate measures is of considerable interest.

In this article, the statistical analysis of interviewer effect on categorical survey responses
is formulated in the general factor-response framework. In this framework, a general analy-
sis of variation for categorical data known as analysis of diversity (ANODIV), Rao [10],
analogous to the ANOVA for quantitative data, is used to determine the effect of the levels
of the factor interviewer on a polytomous categorical response variable.

The formulation involves an extension of the ANODIV to random and mixed effects
factors, which is suitable for hierarchical and cross classifications of categorical survey data.
In this mixed eflects set-up the explained diversity is partitioned by source, namely the
random interviewer factor and a fixed factor which could be the interviewing mode, the
interviewer shift or the question type. Unlike the standard ANOVA applied to dichotomous
variables, the proposed formulation defines overall intraclass correlation coefficients, over
the categories at given level of the fixed factor, as well as over the levels of the fixed factor.
The intraclass correlation coefficient can then be used effectively as a single summary of
interviewer effects on hierarchical or cross classified polytomous categorical survey data, or
as a comparative measure of interviewer effects across fixed factor levels.

Much has appeared in the literature about the measurement of interviewer error, as
well as about its effect on descriptive statistics or on methods of statistical inference; for
a review of the various aspects of the study of interviewer error see Biemer and Trewin
[3]. The attention in this article is confined to the measurement of the interviewer error
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observations on respondents j and [ recorded by the same interviewer i. Then, the intra-
interviewer (intraclass) correlation is defined by

p = Cou(yij,ya)/Var(yi;) = o2/l — ).

The intraclass correlation coeflicient p is a measure of the relative magnitude of the inter-
viewer variance. For a good discussion on the importance of p in survey data analysis see
Stokes (7], and Biemer and Trewin (3].

The standard variance components estimation procedure gives unbiased estimates for
all variance components and, for large number of interviewers, a consistent estimate of p.
The estimation of 2 requires a randomization scheme known in survey methodology as
interpenetration. In its most basic form, interpenetration consists of randomly dividing
the sample into a number of subsamples (possibly of varying sizes), and assigning each
subsample to a single interviewer. In view of this, the conditioning in (2) is on the random
assignment of the n; respondents to interviewer i as well as on the randomly selected
interviewer <.

In estimating the variance components, the dichotomous nature of the responses is
ignored and the analysis is carried out using the ANOVA method. It is not valid, however,
to assume normality for either m; or €;;. Furthermore, the variance components Var(y;;|i)
are not constant across interviewers. Therefore, standard ANOVA methods of interval
estimation and testing for o2 and p are not appropriate for dichotomous variables. For
this reason, investigators have proposed alternative methods of inference regarding the
interviewer variance and the intraclass correlation. Stokes and Hill [8], and Pannekoek [5]
assume a beta distribution for the random effect #;, and carry out likelihood based inference
for 02 and p.

Situations in which, in addition to the random interviewer effect, a fixed factor might
affect the responses can be described by mixed effect models. In such mixed models, it is
assumed that each interviewer is randomly selected from a different population identified
with a level of a fixed factor, so that for level h, say, the mp;’s are realizations of a random
variable mp with E(my) = pp, and Var(ms) = o2, . The random factor may be nested within
a fixed factor (such as area, or interviewing mode), or crossed with a fixed factor (such as
interviewer shift or question type). For example, a nested survey design with interviewers
within areas can be modeled by

Yhij = p+ ap + bpi) + €nij, h=1,..., H, (4)

where ap, = pp — p is the fixed area effect, and by;y = mp, — pp is the random effect of
the i-th interviewer within area h. Then, in contrast to the usual set-up for quantitative
responses, an intraclass correlation coeflicient is defined at each level of the fixed factor,
as pp = 02, /pa(1 — pr), and thus an overall measure of intraclass correlation needs to be
defined to describe the intra-interviewer correlation of the responses over the levels of the
. fixed factor.

As in the case of the simple random effects model, ANOVA type inference procedures
about the parameters of the mixed effects models, based on normality assumptions and
constant variance components, are not valid for dichotomous variables. Anderson and
Aitkin (1], and Stokes 7| proposed logit regression models for a hypothetical continuous
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3 Analysis of Diversity Components
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responses. as in the present context. the diagonal entries of A are zeros and the rest are




ones. It is clear from (5) that D(Y') is the sum of the diagonal entries in the covariance
matrix ¥, say, of the multinomial distribution with probability vector u. Thus, we can
also write D(Y') = trX,. In the special case of a dichotomous response, D(Y) reduces to
the variance of a binomial variable, as in (3). The diversity measure defined by (5) is known
as the Gini-Simpson index.

Now, let a categorical explanatory variable X, with I levels, represent the factor inter-
viewer. Also let m; = (miy,..., ™)’ be the conditional probability vector of the response
Y at the i-th level of X. Then, the conditional diversity of Y at the i-th level of X is
D(Y|m;) = miAm; = trE,,, where X, is the covariance matrix of a multinomial distribution
with fixed probability vector m;. As indicated in the previous section, the probability vectors
mi, 1 = 1,..., I, associated with the levels of the random factor interviewer, are realizations
of a random vector 7, with expectation E(n) = u and covariance matrix £,. By relating
the average conditional diversity ED(Y|7) to the unconditional diversity D(Y) it can be
readily shown that

WAp = E(x'Ar) - E(r - u)Alr - p). (6)

For the matrix A considered in this paper, we have —E (7 — u)'A(r —p) = E(rm —p) (7 —p).
Noting further that E(m — u)'(m — u) can be written as the expected half of the square
Euclidean distance (1/2) E(m; — ;) (7 — i) between any two realizations of the probability
vector =, a diversity measure of 7 can be defined in analogy with (5) as D(#) = E(7 —
p)(m — p) = tr&,. It is to be noted that for a more general matrix A, as in the case of
ordinal responses, we have D(n) = —trAX,, and conditions have to be imposed on the
pairwise differences between categories to ensure the non negativity of the terms in (6).
Now, we may formally write (6) as

D(Y) = ED(Y|r) + D(m). (7)

Equation (7) provides a decomposition of the total (unconditional) diversity of Y into
two additive components, the average conditional diversity of ¥ given X, and the (extra-
multinomial) diversity due to X. This decomposition is analogous to the usual variance
decomposition for quantitative variables. It provides an analysis of diversity components
for one-way classified categorical data (two-way contingency table), analogous to the one-
way random effects ANOVA for quantitative data, as in (2).

Note that the formulation presented in this section is independent of quantifying the
response variable Y, and of specifying a model for it. It is clear from (6), that the analysis of
diversity components is entirely in terms of relating the unconditional and the conditional
probability vectors of the variable Y to each other. Yet, for the matrix A defined above an
interesting connection exists between the analysis of diversity components defined through
(7) and the one-way multivariate analysis of variance (MANOVA) for a component of vari-
ance (or random effect) model. With quantification of the nominal response variable Y by
an r-dimensional indicator variable (with 1 corresponding to the category of the response)
a multivariate components of variance model can be set up as

Y=p+(n-p)+e (8)

where m — p is the random effect component, and € is the error vector, with its r entry
values and its distribution determined by Y. For this model the MANOVA decomposition
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diversity for categorical data is restricted to the case of nominal categorical var ables, with
associated matrix A of differences among categories as described above Unlike the rather
arbitrarv MANOVA variation measure for nominal variables; using he trace metric, ti
equivalent diversity measure D )% ' A is founded on the notion of quadratic entropy
(Rao, {10 vhich in its present special case of the (inl Simpson index has the distinctive
probabilistic interpretation noted above. Moreover, expressed only in terms of probabiliiy
vectors the dn ity D(Y) lends itselt to easy rebraic manipulation, as will be shown 1in
the next sectio

R rning he diversity formulation. in the context of interviewer effects the first te:m
n the riecht hand side of (7) is the average diversity within interviewers assignments, &
the second term is the diversity between 1nterviewers The shortcut notation T W and &
for the total. within and between diversities will be used for convenience in dection & In

naloev with the interviewer variance, we call D(7) interviewer diversity. The ratio

D(n E(r—p)(m—p (D

D(Y /Ap trs,

on of diversity explained by the random interviewer factor X. [t is a measure

of association between X and Y. and defines an intraclass (intra-interviewer) orrelation

coefficient for the polvtomous response Y. It follows from (10} that p 0 1f 7w 18 constant
I
equal to u, and ¢ 1 if 1 for some k. Therefore, p represents the legree of homi-
ceneitv of responses within the levels of X. For each response category k of Y . treated as
dichotomous. the coefficient p reduces to the coe fhicient py (o= .\‘ ot the previous sectiol
Clearly then, in be written as the weighted average
.2,
o5 i
5 X 0

of the individu itra-interviewer coefficients, with weights the uncounditional diversities
rariances) associated with the categories of }
The analysis of diversity components described so far is an extension of the original

'Sy ANODIV), (Rao [10]) for the assessment of the effect of a fixed




categorical factor on a categorical response — to the random effect case. To explain the de-
velopment of an analysis of diversity for mixed effects, we present next the basic formulation
of ANODIV.

In the fixed factor setting of ANODIV, let the conditional probability vectors mp, h =
1,...,H, be fixed (nonrandom). Let also A, (h = 1,...,H; 3> Ay = 1), be probabilities
associated with the levels of the fixed factor X, so that A, is the probability that the
response Y is at the h-th level of X. Then, the unconditional probability vector of Y is
the mixture u = E(x) = ) Apmp. With conditional and unconditional diversities of Y as
before, and with the same matrix A as in (6), the decomposition of the total diversity is

WAL= MThAmh + Y An(mh — p) (Th — ). (11)

For a comprehensive exposition of ANODIV, see Rao [10].

We can now consider more general classifications involving fixed and random factors.
For an hierarchical classification with the levels of a random factor nested within the levels
of a fixed factor, the analysis of diversity is as follows. Let mp; be the random probability
vector associated with the h-th level of the fixed factor and the i-th level of the random
factor, so that up (= E(mp:)) is the probability vector associated with the h-th level of
the fixed factor, and pu(= E(un) = 3 Anpn) is the probability vector of Y. Let also
D(Y) = p/Ap, A(Y|h) = pp, App and D(Y |mpi) = 73, Amhi be the diversities within various
levels of classification. Then, in view of (6) and (11), the decomposition of the total diversity
of Y, in two stages, is

DY) = 3 MD(Y|h)+ D Anlpn — ) (th — )
D_MED(Y|m) + 3 _MnD(mn) + 3 Mn(pn = ) (uh = p) (12)

Il

or more explicitly

WAL = ) MaphBDpn+ Y An(un — 1) (un — p)
= D ME(mhATR) + Y ME(mh — pa)' (mn — pn) + 3 _An(pn = p)' (un — 1) (13)

In the context of interviewer effects, the diversity components in the right hand side of (12)
are, in order, the average (overall) diversity within interviewer assignments, the average
(over the levels of the fixed factor) diversity between interviewers, and the average diversity
between the levels of the fixed factor. Here, the Ay's are to be interpreted as the mixing
proportions of respondents corresponding to the levels of the fixed factor. The main pa-
rameters of interest are the interviewer diversity within the h-th level of the fixed factor,
D(np) = E(mp — pp) (7n — pn), and the overall (average) interviewer diversity > ApD(mp).
We can also define useful measures of relative diversities as follows.
The proportion of total diversity explained by the fixed factor, given by

(F) = DY) - Y MDY |h) _ ¥ An(pn — ) (un — 1)
Y D(Y) h WA

is a measure of association between the response and the fixed factor.
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4 Parameter Estimation

The various diversity components in (6) and (13) are auadratic functions of population
I | I
probability vector that can be estimated ifrom -.'ﬂnplf observations. The resulting sam-

ple diversities can then be used to « ite the population diversities. We illustrate hirst

this estimation procedure ior the di components in (6), corresponding to the simple

random effects ANODIV

Let ny, ¢ = 1, I k=1 r denote the number of responses in the k-th category
for the i-th level of X. Let also n; = e and n ‘.'__ n.. We will also use the notations
U (n41 n...). for the vector of frequencies in the 2-th level of X; p; (1/n;)v;, for the
vector of observed pr oportions the i-th level of X:p j‘i::::.', )P; = (1/n )L v;, for the
vector of observed proportions in the combined sample. For a vector a = (a ar), we
will use A, to denote the diagonal matrix with elements a; ., Qy

For estimation. we assume that the responses at different levels of X are stochastically

independent, and that conditionally on the distribution of m; the vector v; follows multino-

mial law with parameters n and m; = (m5, .- ., Tir) Thus the conditional expectation and

v 7
covariance matrix of p; are m; and (1/n V..., where ¥, = Ay T

With the above notations, the sample versions of the diversities T', W oand B are

P ) s oAb , L — oA
P Epi\y e —:\__ nip.Api; B = Ln‘»lp; PYA(pi — P,

satisfying 7' = W + B.




It is easy to verify that for the matrix A considered in this paper trAA,, = 0. Then,
conditionally on the =;’s. standard calculations involving expectations of quadratic forms
vield

E(W) = %gi:(ni = Ducas (14)
E(B) = ;15 > (n - o) Am - % S s — 7Y A - 7) (15)
E(T) = #'A% - ;15 Y nimlAmg, (16)

where # = 3_.(n;/n)m;. The expressions (14), (15) and (16) above are random quantities,
as functions of the m;'s. Taking expectations with respect to the distribution of 7 on both
sides of (14), (15) and (16) we get after simple matrix algebra

) . -1 N -
EE(W) = L B IE(W’AT() ke [trZn + p'Ay) = i [trZ, — trZ;] = =

-2 (3)]

1

Ly ()]

1

W,

= N\ 2 -
EE(B) = i - l[tTEp - tTEn] ¥ [1 = Z (%) ] s — .{n_IW +

(2]

- n o .- - n -
W= W' B:——B- ° 2
n—1 " e o = 1)[n Zn]

EE(T) = %p’Au +

Letting

we obtain unbiased estimators
. 34 B L2 B
W, —[B-W]; —[B+ (no - 1)W)|
Mo o

of W, B and T, respectively. Then a consistent estimator of the intraclass correlation
p=B/Tis

B-w
B+ (no-1)W
These results are analogous to those obtained by the standard ANOVA method applied to
an one-way random effects model for a quantitative response variable Y. This is explained
by the connection between the diversity and MANOVA components of a nominal response
variable, established in the previous section. A similar connection exists between the cor-
responding sample quantities. Noting that the diversity components W, B and T can be
written as

p=

s 1
= Z’HPQAPi = %Z"i Zpik(l = Pik); (17)

B=-= Zn,(p, p)'A(p an Z@ik - px)?, (18)
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components W, B, T, and for the intraclass co lation p = B/

The estimation procedure described above extends readily to the mixed effec ANODIV

with the hierarchical classification discussed in the previous section A brief outline follows

Let then npk, h = 1 Ei: 7. =1 I,- k=1,...,r, denote the nun ber of responses
in the # catego for th th imterviewer at the h-th level of the hxa d factor. Let also
R ‘4 n} 2 t_'_ Nhi, T \;._ ny, and Ap ny /n. Then, for v (nhi1 Nhir )
Dh (1/11; )Uns 18 1€ vector of observed proportions .)_ﬂwlﬂl-.‘-"\.l-wﬂ the hierarchi 3
classification; p ST (npi/n Phi the vector o1 ODSe I'\'t(‘l proportions m the commbine d
sample at the h-th level ot the hxe ] factor; p = Y_p AnDh . the vector of observed proportions

in the con bined sample over the levels of the 11"3*;l factor.
11| this setting we assullle that the esponses are stoc 11:,,,\"};:)1!‘. ;l,cltlnl.nla-!_f across |!;6‘

that conditionally on the distribution

various levels of the hierarchical classification, and
multinomial law with parameters np; and Tp, Thus the con-
]

11

of TH ne vectior Uk follows
ditional expectation and covariance natrix of pp; are mp and (1/n3:) %, . from which

expectations and covariance matrices of p, and # can be readily obtained. [he sample

versions of the diversity components 1 13) are

D e

T =fap:s W=3_ oD thith Apn
! L} 2
l !

=

B(R)=—>_ A

}
it

x‘" rni(phi — Pr) D (pri — Pr) ; BF) = S ol =BG ~ ),

where B(R) and B(F) denote diversity among levels of the random factor and between levels
of the fixed factor, respectively. These sample diversities satist) T =W + B(R) + B(F).
The derivation of unbiased estimators of the diversity components in (13) is similar, though

more involved, to that described above for the simple random effects ANODIV. Thus writing

W =, AWh, B(R) = $p MBa(R), and letting

=1 1} L} ' o .
W, Bh s, . B, = —2—Bn(R); nj = ——(nk S oniy)

T Iy ' B — nn (I 1) L
we obtain unbiased estimators
- 1 =
S AWh: Y An—=[Br—Wi|;
P A P‘,'
h ! h
| T - .
T 4= \ Ap— Nl7"1‘1 — n; (14 n Iih } i-“I"‘II- n)+ (N — N |4 h
o — ns G : |

h
h n

PR R 1 - s
T+ =3 Ap— |lnn — np(In - 1)|By + [na(In — nn) Wy
=5 n; L

B
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of W, B(R), B(F) and T, respectively. Then consistent estimators of the various measures
of relative diversities defined in the previous section can be derived. In particular, a con-
sistent estimator of the overall intraclass (intra-interviewer) correlation coefficient p( R|F)
is N .
p %%[Bh B Wh]
S 3¢ [Bh + (nf, — )W)

p(R|F)

The estimation technique employed for the random effect ANODIV for hierarchical classifi-
cation of responses is based on the familiar ANOVA method of moments. As with ANOVA,
for mixed effect ANODIV with cross classification, or for more general mixed effect AN-
ODIV situations, the various diversity components can be estimated by adopting the usual
Henderson’s method of fitting constants.

5 Concluding Remarks

In this article we have outlined an alternative methodology for the analysis of interviewer ef-
fects on categorical responses. The generality and computational simplicity of the ANODIV
procedure makes it readily applicable to a wide range of problems involving the assessment
of the effect of interviewers, or other factors defined at the interviewer level, on polytomous
categorical survey data. Inferential aspects have been discussed in the context of estimation
of parameters of interest. It is important to note that no distributional assumptions are
made beyond the second moments. Relevant non-parametric hypothesis testing techniques
may be developed based on the asymptotic behaviour of the estimated parameters. It is
interesting to note that testing the hypothesis of interviewer effect amounts to a homogene-
ity test in a random set of multinomial distributions identified with the random levels of
the interviewer factor. Since the probability vectors of these multinomial vectors are ran-
dom, such a homogeneity test is equivalent to testing that the frequencies of the responses
associated with the interviewers are multinomial, against a general alternative of mixture
multinomials. Results on hypothesis testing will be discussed elsewhere.
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