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A NOTE ON VARIANCE ESTIMATION IN MULTI-STAGE SAMPLING

Paddison WongI

ABSTRACT

In multi-stage sampling surveys, the variance of an estimator has contributions from all stages of
the survey design. The expressions of the total variance and its estimator are usually
complicated. However, with certain choice of sampling scheme, they can be simplified. In the
case of sample survey with r stages, if the first stage is with replacement, the total variance of an
estimator has a simpler expression because the combined variance of the last r-1 stages has been
integrated into the other terms in the equation. This is one advantage of sampling with
replacement in the first stage over sampling without replacement. However, it should be noted
that the variance of an estimator for sampling with replacement in the first stage is always greater
than that for sampling without replacement in the first stage.

' Paddison Wong, Expenditure Survey Analysis Methods Section, Household Survey Methods
Division, Statistics Canada, Ottawa, Ontario, K1A 0T6.



NOTE CONCERNANT L’ESTIMATION DE LA VARIANCE DANS
L’ECHANTILLONNAGE A PLUSIEURS DEGRES

Paddison Wong2

RESUME

Dans des enquétes a plusieurs degrés, toutes les étapes de I'enquéte contribuent a la variance
d’un estimateur. Les expressions de la variance totale et de son estimateur sont habituellement
complexes, mais elles peuvent étre simplifiées si 1’on choisit certains plans de sondage. Dans le
cas d'un plan de sondage de degré r avec remise au premier degré, la variance totale d’un
estimateur n’a qu’une expression simple, puisque la variance combinée des demiers r-1 degrés a
été incorporée dans les autres termes de 1'équation. C’est un avantage de 1'échantillonnage avec
remise au premier degré sur I'échantillonnage sans remise. Il faut cependant préciser que la
variance d’un estimateur pour I’échantillonnage avec remise au premier degré est toujours plus
grande que celle pour I’échantillonnage sans remise au premier degré.

* Paddison Wong, Méthodes d’enquétes sur les dépenses et d’analyse, Division des méthodes
d’enquétes auprés des ménages, Statistique Canada, Ottawa, Ontario, K1A 0T6.



1 Introduction

In elementary sampling courses, sample surveys are usually assumed to have only one stage.
Estimators, as well as their variance estimators, of population parameters are constructed
and studied under such a simple system. However, many surveys, especially the large scale
ones, are carried out with multi-stages. The estimation of the parameters and of the variance
of the estimators, in multi-stage sample surveys, could be very complicated due to the
complexity of the survey designs. It is reasonable to think that the variance estimation of an
estimator should have contributions from the variation in all stages of the design. However,
it can be shown that it may not be true in all cases. The estimation of the variance could
be simplified dramatically with some smart choice of sampling schemes. This surprising and
important result has a crucial impact on the variance estimation of the estimators because

it saves time and cost in the estimation procedure.

In this paper, we study the variance estimators in the case of multi-stage sampling fol-
lowing the same approach given by Stuart [4]. It is shown that the first stage of sampling
always plays an important role regarding the variance of an estiumator ;i of a population
parameter which has a linear form as in equation (1). In general, the true sampling variance
of V(ji) consists of two parts: the variance due to the first-stage sampling and the variance
due to the last r — 1 stages of sampling. If the first stage of sampling is without replacement,
the total variance involves the variance of the last r — 1 stages explicitly as in equations (10)
and (12). However, if the first stage of sampling is with replacement, the total variance is
less complicated and it is not necessary to calculate the variance of the last r — 1 stages
explicitly as in equations (14) and (15) because it has been integrated into the other terms.
Az a result, the estimated variance has a simpler form than the one for sampling without

replacemnent in the first stage.



2 Total Sampling Variance in Multi-Stage Surveys

Suppose in a multi-stage sampling, there are r stages. and p is a population parameter of

interest with an estimator of the form

b= th‘ (1)
i=1

where n first-stage units are selected from a population of size NV and ¢; is a sample statistics
from the ith selected PSU based on the last r — 1 stages. The Horvitz-Thompson estimator
is a special case of . The Horvitz-Thompson estimator of the population total as defined

in equation (6.12) in Lohr [2] is given by

tur = Z% (2)

i=1
where {; is an estimator for the ith unit from the last » — 1 stage. It is easy to see that t; in
equation (1) is a weighted statistic corresponding to f,/7; in equation (2). The statistics t;
and t; are independent for 7 not equal to j. An unconditional variance of [i can be expressed

as a sum of the variance of conditional mean and the mean of conditional variance, namely,
V[i] = ViEL[a] + E1Vi[jz] (3)

where L means the last r — 1 stages. Furthermore,

ELla] = Z EL[t] (4)

and because t; and ¢, are independent for i # j,

AEDRAL (5)
i=1

and hence expression (3) can be written as
VIRl =V _Eft]+ B> Vi[t] - (6)
i=1 =)
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Let 7; represent a population value of the ith selected PSU with an unbiased estimator

t; with respect to the last r — 1 sampling stages, that is E, [t,-] = 7;, the first term in (6) can

- (El ZT,) . (M

=]

be written as

1% [i EL[t)

Now let T be a population value of the jth PSU for j = 1,..., N which has the form of the

Tt n

>3

i=1 j#i

+ E;

= B |:i 7'1,2

=]

7;'s such that when the jth PSU is selected in the ith draw, 7, = T;. For instance, 7; could
be the total of the ith selected PSU and T; the total of the jth PSU in the population frame.
Also let v, be a population value of the ith selected PSU with an unbiased estimator ¢? with
respect to the r — 1 sampling stages, that is v, = Ey, [tf] and let T'; be defined similarly as
T; for all PSUs in the sampling frame and has the same function as v's. That is, when
the jth PSU is selected in the ith draw, 4; = I';. Note that both 7; and ~; are parameters
with respect to the last r — 1 stages but they are random variables with respect to the first
sampling stage. Suppose 7; is defined as in Appendix (A.1), the second term of (6) can be

expressed as

Z ‘I [fl]} = EJ
i=1

since E) [Z:;l Tf] =N 7w T?, and B, [Z;l 7,-] = 5" m T asshownin Appendix (A.1).

S-S0 Sam

i=1

Equation (6) with expression (7) and (8) is always true whether the first stage is with or

without replacement.



3 Sampling Without Replacement At The First Stage

For sampling without replacement at the first stage, it has been shown in Appendix (A.1)

that E, [2?:1 D i TiTj] =" Z;'.\;i mi; T;T; and (7) becomes

n N N £
SEp| - Trrt XS n - (ZT)
=]l i=1 :

=1 j#i

N
= ZW,I—WIT2+ZZ7F,J ;) T (9)
i=1

=1 j#i

Therefore, the total variance after the substitution of (8) and (9) in (6) is
Vieor Lit] Z 1—7T,T2+ZZ iy — mm;) TT +Z7r, ;-T2 (10
=1 =1 j#i
Note that this expression is equivalent to (4.4.2) in Sarndal et al. [3] and equation (6.20)
in Lohr [2] where the first two terms here equal to V,, and the last term is V, in (6.20).

After some arrangement of the terms, the above equation can be written as:

N
Vaworlit] = Y (ml ZZ i — mm;) T +Z (n?; — w2T2)  (11)
i=1 i=1 j3#1
. N
= Zm(l F+ZZ7r,J T;) TT+Z”T F—T-2
i=1 =l

with an unbiased estimator

n n

Vior ] = Z 1-m)+ Y S TET0 (mij — 7“”’ S i L +Z7‘ Vi [t (12)

i=1 j#i
provided that VL [t,-] is unbiased for V}, [t,—] with respect to the last r — 1 stages of sampling.
Note that equation (11) and (12) are the same as equation (6.13) and (6.14) for the Horvitz-

Thompson estimator respectively in Lohr [2]. To show that (12) is unbiased, note that

n

E; E'L[Z(l —m)t ] El[ j (1-— 71',-)7,] = ﬁ:m(l — )T,

=1



n n N N

E E"[Z Z (_m_f_;ﬂf_ ] £ {z Z (miy — mim;) S i) T,'r,] = Z Z(?r,]- — mm I T;

S =1 gt =1 Jitd
and
n ) n n N
i [ DRSS [ti]] = [va[, [tl” = [ (% = fr,?)] =S 2 (r -1
=1 =) f=il =1

The first two terms in (12) is the contribution from the first stage of sampling and the last

term is from the last r — 1 stages.

4 Sampling With Replacement At The First Stage

If the sampling is with replacement at the first stage, £} [Zt ! ZJ¢1 T J] = Z,:_l Z,\l i Ty
Note that the sum is over all k and [. The variance in (7) becomes

n N 5
ZEL[t] = Z?l’;‘rlk +ZZ}T“TA7[ (Z?Tka>
=l A=

k=) =il

N N N N
= Z (1 = m)Ti + Z YomBTi- Yy mmhTi. (13)
k=1

k=1 (=1 k=l (£K

Substituting (13) and (8) into (6), we obtained

an[[‘] : Z'TA l—”k)lk ol ZZTH] i = ZZ’UW{HT[ I Zﬂ'; | —]

k=1 I=1 kil 1k
]\Y

= Z”"I" +Z>'_4(‘“ 7k/.1)Tk71 (1‘1)

k=1 k=1 l=1

which has an unbiased estimator given by
Ty — MW
HRNJ—E I+E E e (15)
=il gl
which shows that. when the first stage i1s with replacement, the overall variance and its

unbiased estimator are less complicated because the variance from the r — | stages has



and let g(:,y;) and g(Y;,Y)) be functions of sample values (y;, y,) and population values

(Y. Y;) respectively,

E [Z > gy y; ')}

N N
EN>5 fjg(}';,}'})}

i=l j#i

N N
= > ) E[LL]s(Y..Y;)

i=1 $eki

N N
> D meYiY)

=1 %7

=1 j#i

A.2 Example: Simple random sample without replacement.

For simple random sample, the probability of inclusion is 7, = n/N and hence

Z”‘ Z,V=7

which completes the proof of unbiasedness. To show that the variance of the sample mean

is (1 — £)S?/n, consider the following

(54

1=1
1 n ‘ n n —9
> ZyHZZyzy}} -}
' i=1 1=]1 ]#’
[ ’
m(z;[ +X;ZFII YY) Y’

T i J#Ei

N

1 B n(n — 1) 772
77_2( }1+ZZ}V;\’- )”)

1=l =1 j#i
] N R n (n I ) n ( n 1 ) N 2
A L y2 i el B Y; o TS
72 (\ N(N = 1)) TNV (Z‘ )




n " N N

mm (Y3 ] g [3y EEE] S S -

i=1 g#i H i=1 j#i i=1 g#i
and
E, E,,[irriVL[ti]] =E1[imVL[ti]] = B ,, mi{x— )] = 3 72 (I - T2) .
i=1 il i=1 i=1

The first two terms in (12) is the contribution from the first stage of sampling and the last

term is from the last 7 — 1 stages.

4 Sampling With Replacement At The First Stage

If the sampling is with replacement at the first stage, F; [Z; A Z#z T,T]] = :‘21 Z{L i T T

Note that the sum is over all k& and {. The variance in (7) becomes

n N 2
ZEL[ti] = Zﬂ'ka -f-ZZTFk[TkT[ (Zﬂ—ka)
i=1

k=1 l=1

N

"
= Zm (1 - m)TE + ZZ”“T‘T’ SN mmT . (13)

k=1 1=1 k=1 Lok
Substituting (13) and (8) into (6), we obtained

VWR[[L] = Z"rkl—ﬂ'k’] -f-ZZﬂ”HTkTI ZZ?TkTF[TkT[-FZTQ Fk—Tk

k=1 I=1 k=1 l#k

= Zml} + ZZ (me — mem)TiTh (14)

k=1 I=1

which has an unbiased estimator given by
R Tmr]
Vi [1] Z{ +ZZ == dpr (15)
(3 B -2
which shows that. when the first stage is with replacement, the overall variance and its

unbiased estimator are less complicated because the variance from the r — 1 stages has



already been integrated into the other terms. To prove the unbiasedness of the estimator in

(15), note that

n n

EIEL[th]: [Z] ka (16)

i=1 i=1

and
Tij — T L e Tgy—T 305 i B
ElEL[ZZ tt]=E1 [ZZT ] ZZ TTH—TTkTU kan
i=1 j#i i=1 j#i 7 k=1 =1

(17)
Compare (12) and (15), equation (15) has a simpler form which makes the estimation much

easier.

5 Conclusion

In sampling with replacement, the same sampling unit may be selected more than once. It
may not be a favourable sampling scheme to everyone because it is less efficient than sampling
without replacement. If we compare equation (10) for sampling without replacement and

equation (14) for sampling with replacement, we obtain the following relationship:

‘WOR( ) = ‘/wn /1') . ZWtT?

If we make the similar comparison on the unbiased estimators of the variances in (12) and

(15), we have
Vwoa(p’) = ‘:/WR(ﬂ) - Zﬂi (VL [ti] - t?) :

i=1
Whether we are interested in the variance or its unbiased estimator, they always have a

simpler form when the first stage of sampling is with replacement. This is a major advantage
of sampling with replacement over sampling without replacement in the first stage of selection

in multi-stage sample surveys.



APPENDIX A

A.1 Expectations for Sampling Without Replacement

Suppose Y, Yy, ... Yy are measurements of individuals in a population of size N and
Y. ¥2. - ., Yn are measurements of individuals in a sample of fixed size n from this popu-
lation. Let I; = 1 (I; = 0) if the ith individual is selected (not) in the sample. Define 7; to
be the probability that the ith individual is selected in the sample, that is, m; = P(I; = 1),
and define 7;; to be the probability that both individuals : and j are selected in the sample,
that is m;; = P(I; = 1,1; = 1). It is easy to show that E[I;] = m; and E[I; I;] = m;;. Consider

the sample mean

which has an expectation

n

,£: Yi Y is given by

Zzyzyj] = E

=1 g

Similarly, the expectation of 3\, 3

N N
D 2 LLYY,
= i
NN
= 3.5 A5 %E
=1 jzi
0l

N
= ) > mny.

i=l g

E

More generally, let g(y) and g(Y;) be functions of sample value y; of the ith draw and
population value Y; of the ith unit respectively, the expectation of > | g(w:) is given by

N

ZL‘Q(Y;‘)

i=]

n

Zg(yi)

1=1

E =5

N

E[L]g(¥)) = Z 7g(Y;)

=1



and let g(y:,y;) and g(Y;,Y;) be functions of sample values (¥, y;) and population values

(Yi, Y;) respectively,

n n N N
E Zzg(yt-y))] - E[ZZI,IJQ(}’:,YJ)]

i=1 j#i i=1 i
N N
- ZZE[J.-Ij]g(}Q,},)
i=1 j;éi
S ZZWUQ(Y“ f)
=1 j#i

A.2 Example: Simple random sample without replacement

For simple random sample, the probability of inclusion is 7; = n/N and hence

oy Wy
E Ll P,
b- 53 -5
which completes the proof of unbiasedness. To show that the variance of the sample mean

is (1 — £)S?/n, consider the following

o - 2
el E)

i=1 ==l

SR IS 9 I B g

=1 j5ki
N N
1 =4
- —Z(ZE 2+ SN B L)Y, .)—Y?
n - 1#1
I M on 2
_ 2 . =
= F(ZT} +ZZ Y}) ¥
=il )7!::
N ’ N 8
1 n  n(n-1) s n(n-—1) =2
= = CPEL LA L el B W AR B
2 ;(N m_n) 2= 15
i = n(N —n) N(n—l)—z 7
o2 1\N—l n(N — 1)



5
N-—-n - N—n 2
= e B }/2____ e

nN(N — I)Z ' (N .

N-—-n -
L Y? _ NV
nN(N -1) (Z ) : )

- (1_N)S2‘

A.3 Some properties of 7, and 7;; without replacement

For sampling without replacement we have the following relations:

N N N
Zm:n; Zm, (n—1)m,; Zijzn(n—l).
i=1

#i i=1 j#i
Note that I; has a value of 1 if the ith individual is selected in the sample, otherwise 0. To

prove the first relation, note that 7; = E[I;] and we can write ZZL T = val E[I;). Because
the sum of an expectation is the expectation of the sum, we can write : o am=FE N, L]
and the sum of I; over the total population is equal to the sample size which is assumed
to be fixed. Therefore, the sum of m; over N is equal to n. To prove the second relation,
note that 7,; is the inclusion probability that both individuals ¢ and j are in the sample and

E[l; I;} = m;;. We use the similar argument that Z?;i T = ZJ 4 E1:1;], and therefore

N N
Z?ﬁj = ZE[LIJ]
IF# J#i
- ‘[v
- ELgl,-Ij]
) N
= B LZJJ]
T j#
N
=) {I:l}E[Z IH
I
- E {1,:1}(”_1)]
= (71-—1)7(1'

9



Therefore, the second relation is true. The third relation is easy to deduce from the first

two.

APPENDIX B

B.1 Expectations for Sampling With Replacement

For sampling with replacement, the fixed sample size n can be considered as the number of
independent draws. At each draw, an individual k has a probability px of being selected.
Measurements y; and Y; are similarly defined as in the sampling with replacement context.
Let Iix be an indicator variable for the kth individual in the ith draw. If the kth individual
is selected in the ith draw, I;x = 1 with probability pi, and if it is not selected in the ith

draw, I;x = 0 with probability (I — px). Consider the ith individual in the sample,

N
yi = ZL’kYk ;
k=1

The sum of y; has an expectation

T
E Yi
i=1
n

where m = 3°" | pr = npr. Also consider the expectation of 31, 2 iz Yi Y

n n N N
D3N vy

1=1 j#i k=] l=1

& i
= 2.0 > D Elulyny:.

i=1 j#i k=1 I=]

n N

Z Z LYy

=1 k=1

/o) =F

N n N
= ZZPkYk = Zﬂ'kyk
k=1

k=1 i=1

T

i=1 jai

E E

Because the draws i and j are independent E{L-klﬂ] = E[I,-k]E[Iﬂ] and hence

iiww] S H NI

i=1 i i=1 j#i k=1 I=1

N N n n
= 2.2 2.0 mpli¥.

k=1 I=1 i=l j#i

E

10



Let Ty =3 0, P& Z;;.' p = n(n — 1)pxpi, we can re-write the above equation as

n n N N
E [ZZ;}.!{,} = Zzﬂ'klykyl -
i=l j#i k=1 1=1

Another approach for the above results is by looking at the multiplicity of an individual
k in n draws, that is, J& = 32" Ix and S0, % = o4, JpYi. Let the expectation of
JP be m. = E[J}], it is easy to justify that m, = np, which is the expected number of
times the kth individual is selected in n draws. Now let J§ = Y7, Z;'# Lk I;; which is
the number of times that the individuals k and [ are selected in n draws and we can write
Yot D Pty = S Sh JaYe Y with my = E[Jg] = E[T5, PR Ii]. We can

rewrite this expectation as

B[R] = E[ZZM fﬂ]

i=1 j#i

= ZZE[L;;G(]
i=1 j#i

= ZZE[{Lk =11 E{I;‘[‘L’k] ]
=] Jor
i=1 JF

Note that the probability of selecting individual k at each random draw is py which is the

1,';(], is the same as E[ Z;tll I]-,] = E[JMY)

same for all i. The conditional expectation, E [1 it

because the draws are independent. Notice that E[J"!] is not a function of i and hence,

E[J) = IE[i{Iikzl}]E[Jp-l]

- B[R)E[)

n(n — Vpp

which can be interpreted as a product of the expected number of times the Ath individual is

selected in n draws and the expected number of times the /th individual is selected in n — 1

11



draws.
As in sampling without replacement, let g(y;) and g(Y%) be functions of sample value

y; of the ith draw and population value Y; of the kth unit respectively, the expectation of

Yo 9(yi) is given by

and let g(y;,y;) and g(Yx, ¥7) be functions of sample values (y;, y;) and population value (Y%,

Y:) respectively, the expectation of } . Z;;i 9(y:, y;) is given by

n n N N
E Zzg(yi,yj)} = E|Y > JaaViY)
i=1 j#i k=1 j=1
N N
= Zzﬂ’ug (Y. Y,

ad
I

1 j=1
B.2 Example: Simple random sample with replacement

For simple random sample with replacement, the probability that an individual k& in the
population is selected at random in any single draw ¢ is p, = 1/N for all 7 and 7, = npy.

The expectation of the sample mean is given by

Blm =E

n N
e

which completes the proof of unbiasedness. Note that my = n(n — 1) pxpr = n(n — 1)/N2.

For the variance of the sample mean, we have

12



L i=1
1
= BEE ¥+ ZZ:},%]—}
=1 j#
N N N ,
= — (Zﬂkylf + ZZ 9 h) —Y
= k=1 (=1
| N N N
= — (Z npx Y2 + Z n(n — )pepr Y Y) -Y
= k=1 =1
1 (SKn A n(n—1)
R LA, - ||
- n? (ZNYk +ZZ N? hh) !
A=1 k=1 (=1
I ol n—1 . ) 2
k=1 k=1
1 ( N g
= Y2+ N(n-1Y —nNY )
nN =
1 N \
=3 ———\* (Z 3";‘.2 o } h)
= ]

B.3 Some properties of 7, and 7;; with replacement

For sampling with replacement, we have the following relations very similar to those in

samplings without replacement:

N N

an:17; Zﬂ}d:(n—l)ﬂk; ZZﬁklzn(n.—l).

13



Note that S™  py = 1 for all draws and the first relation is proved. Since D i Y=
(n — 1), the second relation is then obvious. The third relation is a consequence of the first

two. Also note that my; is not equal to 7 @ but

(n—1)

T = n(n — 1)pep = Ty

for all k and [.
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