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ESTIMATING VARIANCES FOR STATISTICS CANADA HEALTH SURVEYS: 
A COMPARISON OF THE OPTIONS AVAILABLE TO USERS 

Ivelina DeLeva and François Brisebois' 

ABSTRACT 

in the analysis of survey data, variance estimation is of critical importance. When dealing with data 
collected through complex survey designs, variance estimation is typically obtained using one of two 
methods: Taylor linearization or replication. This paper gives an overview of the variance estimation 
methods available to users and the software programs that support them. In particular, it compares the 
linearization method to one of the replication methods (the Bootstrap) in the context of their 
availability and flexibility in software packages. Three popular software packages were examined for 
these comparisons: SAS V8 (Taylor via SURVEYMEANS and Bootstrap via the BOOTVAR 
program), SUDAAN V9, and WesVar V4.2. The comparisons presented in this paper were done 
empirically using Statistics Canada health survey data from the Canadian Community Health Survey 
Cycle 1.2. The results show the differences and effects of using one method or one software program 
over another, as well as the ability of the software packages to incorporate the components of the 
survey design and weight adjustments into calculations. 
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ESTIMATION DE LA VARIANCE POUR LES ENQUETES SUR LA SANTE DE 
STATISTIQUE CANADA: COMPARISON DES OPTIONS DISPONIBLES AUX 

UTILISATEURS 

Ivelina DeLeva et François Brisebois 

RESUME 

Lors de l'analyse de données d'enquête, Pestimation de la variance est d'une importance cruciale. Dans 
le cas oü les données sont recueillies via un plan de sondage complexe, l'estimation de Ia variance est 
habituellement accomplie en ayant recours a deux méthodes: la Iinéarisation de Taylor, ou I'approche 
par replication. Ce document présente un survol des méthodes d'estimation de variances disponibles 
aux utilisateurs, de même que les progiciels supportant celles-ci. Plus particulièrement, Ia méthode de 
linéarisation de Taylor est comparée a une des méthodes par replication (le Bootstrap) du point de vue 
de sa disponibilité et souplesse d'emploi dans les progiciels. Trois progiciels communément utilisés 
sont examines: SAS V8 (Taylor via SURVEYMEANS, et Bootstrap via le programme BOOTVAR), 
SUDAAN V9, et WesVar V4.2. Les comparaisons empiriques présentées dans ce document sont 
effectuées a Paide de données dtenquête sur Ia sante de Statistique Canada, plus précisément du Cycle 
1.2 de 1'Enquête sur Ia Sante dans les collectivités canadiennes. Les résultats présentent les differences 
numériques et l'impact d'utiliser une méthode ou un progiciel plutôt qu'un autre, de même que Ia 
capacité des progiciels a incorporer dans les calculs les composantes du plan de sondage et des 
ajustements faits au poids. 

Mots des: 	Bootstrap; Taylor; Estimation de variance; Ajustement des poids; Comparaison de 
progiciels. 
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1. INTRODUCTION 

Variance estimation is crucial when analyzing survey data. First, it indicates how precise computed 
estimates are, which guides analysts on how to interpret results before publishing. Next, variance 
estimation is required for the statistical testing of hypotheses about population parameters. When 
analyzing data from survey samples, computation of variance estimates must account for the 
specifics of the survey design used to collect the data. Moreover, variance estimation should also 
incorporate the effects of the various stages of weight adjustment. In most household surveys 
conducted by Statistics Canada, complex designs using stratification and clustering are used, and 
sampling weights are corrected to account for factors such as nonresponse and calibration. When 
dealing with such data, it is not always possible to obtain a closed form algebraic expression to 
estimate variances; therefore, one needs to rely on approximation methods. The two most 
commonly used approximation methods consist of Taylor series linearization (Taylor) and 
replication techniques. The Bootstrap method is one of several replication techniques, which has 
become the recommended method for a large number of Statistics Canada household surveys. Both 
Taylor and the Bootstrap are discussed more fully in further sections of this paper. 

The main challenge faced by analysts in doing variance estimation using these approximation 
methods is finding a statistical software package that will support these methods, as well as offer 
the statistics/models of their interest. Most standard statistical software packages generally cannot 
support the correct use of survey data from a complex design, since they typically assume simple 
random sampling of elements. A number of packages include the Taylor variance estimation 
method under the condition that one can provide the variables containing survey design information 
such as the stratification and clustering (often referred to as PSU) variables. The challenge with 
software packages is even more evident when specifically using the Bootstrap method, since at the 
present time none of the most popular commercial statistical software packages directly support the 
method. In order to fill this gap, a macro program (the BOOTVAR) was created by Statistics 
Canada methodologists and distributed to analysts when the Bootstrap method was first adopted. In 
the end, both the Taylor and Bootstrap show some advantages and disadvantages from technical 
and practical points of view. Thus, analysts must often make a decision on which method and 
software package to use, without even knowing the impact that choice would have on their variance 
estimates. 

The goal of this working paper is to provide analysts with a reference document that profiles both 
Taylor and Bootstrap variance estimation methods, in terms of both their theory and their 
accessibility in software programs. The paper also examines empirically the quantitative 
differences in the results obtained from the two methods via available software packages, using 
data from the Canadian Community Health Survey (CCHS), a survey conducted by Statistics 
Canada since September 2000. This should give analysts a better idea of the difference resulting 
from the choice of one method over another when certain software is used. 

Many comparisons have been done both in the area of the different methods and in the area of the 
different software packages available. However, most of these studies make their comparisons on a 
fairly general level. This paper offers additional valuable information as it examines the methods in 
greater detail in conjunction with the capabilities of the software packages. One important factor for 
this paper is that the data used for its analyses is taken from a household health survey, so the 
conclusions and results are particularly applicable to the behaviour of this kind of data. Secondly, in 



evaluating the performance of the variance estimation methods, this study looks at the impact of 
incorporating a post-stratification and a nonresponse adjustment. In addition to that, the paper 
discusses the use of the Bootstrap method in software programs that do not directly support it. 

Section 2 introduces the CCHS, from which data was used for the empirical comparisons. A 
general overview of the survey is presented, as well as the survey design and weighting procedure 
specifics, since these aspects affect variance estimation. Section 3 presents the two variance 
estimation methods of interest for this paper: the Taylor series linearization method and the 
Bootstrap method. Some statistical software packages supporting these methods are examined and 
compared (in terms of variance estimation) in section 4. Section 5 provides the empirical results 
obtained from the two variance estimation methods, and outlines the differences observed from one 
software program to the other. Finally, sections 6 and 7 present a general conclusion and the future 
work left from the findings, respectively. 

2. THE CANADIAN COMMUNITY HEALTH SURVEY (CCHS) 

The CCFIS is one of Statistics Canada's largest household surveys. Its main objective is to provide 
reliable cross-sectional information on health status and health determinants at the national, 
provincial and regional levels. The strategy adopted to meet this objective was to implement a 
biennial cycle of data collection, which for the first year consists of a health region-level survey, 
and for the second year focuses on a specific health topic and provides data at the provincial level. 
More information on the biennial cycle strategy can be found in Béland, Bailie, Catlin and Singh 
(2000). The data used in this paper was collected from the second year of the first biennial cycle, 
more commonly referred to as Cycle 1.2. 

The area frame used and maintained by the Canadian Labour Force Survey (LFS) was used to 
select the CCHS Cycle 1.2 sample of dwellings, using a stratified multi-stage design. A complete 
description of the LFS area frame is given in the Methodology of the Canadian Labour Force 
Survey (Statistics Canada, 1998), while Morano, Lessard and Béland (2000) address the changes 
made to the standard LFS sample selection process in order to meet the specific sample size 
requirements of the CCHS. 

The weighting procedure for Cycle 1.2 included the traditional steps of nonresponse adjustment and 
calibration. Brisebois and Thivierge (2001) present the details of the weighting strategy used in the 
context of Cycle 1.1 of the CCHS, which similarly to Cycle 1.2, used the LFS area frame to select 
part of its sample. As mentioned earlier, ideally, the effect of all these weighting adjustments 
should be incorporated into variance estimation calculations. This issue will be discussed later in 
the comparisons of the variance estimation methods. 



3. VARIANCE ESTIMATION METHODS 

As explained above, variance estimation can be done using one of two types of estimation 
approaches: Taylor series linearization, or replication methods. Of the replication techniques, 
Balanced Repeated Replication (BRR), Jackknife (JK), and Bootstrap are some of the more 
commonly used methods. For National Population Health Survey (NPHS) data, the predecessor to 
the CCHS, the Bootstrap was recommended as the preferred method for variance estimation. 
Specifics on the methodology and reasons for this recommendation can be found in Yeo, Mantel, 
and Liu (1999). The following sections present the Taylor and Bootstrap methods in greater detail. 

3.1 Taylor Linearization 

This method relies on the simplicity associated with estimating the variance of a linear statistic 
(Flores-Cervantes, 1997). The linearization of the statistic is done by taking the first order term 
of the Taylor series expansion around the mean to obtain a linear approximation of the statistic. 
Its variance is then estimated by the variance of this linear approximation using the usual 
variance formulas for linear statistics. 

Studies done by Dippo and Wolter (1984) investigate the more accurate second order Taylor 
approximations in the case of proportions. They observed that in these approximations, the first 
order term accounted for 100.8% of the variance when the stratum sample size was 6. These 
results indicate that first order Taylor approximations can in fact overestimate the variance for 
proportions. In addition to that, Dippo and Wolter show that while the bias is reduced, the 
variance of the variance is increased and calculations are considerably more complex for the 
second order variances. For this reason, all of the software packages examined in this paper use 
the first order approximation, since the results produced are considered to be of decent quality 
and are obtained with relatively simple computations. Wolter (1985), however, cautions users 
that these first order approximations may be unreliable in the context of highly skewed 
populations. 

3.2 Bootstrap 

The Bootstrap (Efron, 1979) can also be applied to estimating variances. In a review of re-
sampling methods and their properties, Shao (1996) outlines the different variants of the 
Bootstrap, of which the rescaling Bootstrap proposed by Rao and Wu (1988) is the basis for 
variance estimation in complex survey designs. An extended version of this proposed Bootstrap 
(Rao, Wu, Yue, 1992) was implemented for the NPHS and CCHS surveys. 

Similarly to other re-sampling methods, the Bootstrap method uses the existing sample as a 
population which is re-sampled to imitate the original sampling approach. In order to achieve 
high accuracy in computing a variance estimate, ideally, a number of completely new samples, 
each representative of the population, could be drawn individually to compute the same statistic. 
Since each of these separate samples would independently represent the population, the variance 
between the set of estimated statistics would be an accurate estimate of the variance of the 
statistic of interest. However, this approach would be extremely costly and highly impractical. 
So instead, since the existing sample is originally selected to be representative of the population, 
it is treated as if it were the population and is then re-sampled. In other words, a sub-sample is 
taken from the existing sample B times and the statistic is calculated for each of these B sub- 
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samples, called replicates. The variance is then estimated by the variance of this set of 
replicates. 

3.3 Review of the comparisons in the literature 

These methods, together with other re-sampling methods, have been compared both 
theoretically and empirically in numerous studies. Results vary from study to study as variance 
estimation in complex surveys depends on, and is influenced by, each element of the survey 
design. Consequently, two general schools of thought have emerged, usually based on empirical 
evidence supported by some theoretical justification: linearization is a more stable estimator and 
thus more reliable; versus, replication is an estimator that better reflects the survey design of a 
complex survey. 

Since linearization is a much older method, its stability has been illustrated by several empirical 
studies. Comparing three variance estimation methods using three sample designs, Kish and 
Frankel (1974) found that the variability was consistently lowest for Taylor estimates and 
highest for BRR, a method very similar to the Bootstrap. These results suggest that the Taylor 
estimator is more stable than the BRR estimator since the variability referred to in Kish and 
Frankel's conclusions is the variability of the variance. Wolter (1985) summarizes similar 
results from five Monte Carlo studies done during the previous 20 years focused on evaluating 
the accuracy of different variance estimators in finite samples. From these results collectively, 
Wolter makes two main conclusions. First, he points out that, in terms of the MSE and bias 
criteria, the Taylor method shows greater stability. Next, he explains that, from the point of 
view of confidence interval coverage (which is considered to be the most relevant criterion of 
accuracy), the replication methods are preferable. 

In another study, using a sample with a stratified systematic design, Zhang (2001) shows that in 
some cases the Taylor method as implemented in SUDAAN may result in greater variance 
estimates than the Bootstrap. He obtained Bootstrap standard error estimates for proportions 
that were consistently smaller than those from the without replacement (WOR) and with 
replacement (WR) Taylor methods. The observed differences are attributed to the limitations in 
the design options available in SUDAAN, which are often not entirely appropriate for the 
underlying complex survey design. 

Since replication methods can incorporate the effects of weight adjustments in variance 
estimation, it would be expected that they produce larger variances than methods only 
incorporating the design information in the calculations. In a more recent study, Valliant (2004) 
recognizes that replicate estimators are superior to linearization estimators precisely because 
they account for the various stages of weight adjustment, but found that this was the case only 
in a limited sense. The replicate estimator examined in his study (the Grouped Jackknife) tended 
to be a substantial overestimate especially with smaller sample sizes. On the other hand, 
linearization methods, as well as other variance estimators based on squared residuals, were 
found to yield underestimates. 

Along the same lines, Flores-Cervantes (1997) explains how software programs using the 
Taylor method often do not offer the option to account for nonresponse or all levels of post-
stratification adjustments. He points out that the variance estimate can in some cases be 
improved with post-strati fi cation options, but the improvement would only reflect the reduction 
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in variance due to adjusting to control totals in one dimension. In replication, this is not a 
problem as the replicate weights can fully account for this effect when they are created, even if 
the post-stratification is of more than one dimension. Consistent with Flores-Cervantes, 
Kaufman (2000) states that the Bootstrap is expected to more correctly measure the variance 
(than Balanced Half Replicates or Jackknife) because it has more flexibility in adjusting for the 
dependent sampling (assuming an appropriate adjustment can be derived), as in the case of a 
finite population sample. 

As discussed by Flores-Cervantes, the limitations of the Taylor variance estimates for currently 
available statistical packages come from the lack of flexibility in the existing options of the 
software programs. Taylor variances can, however, be computed to account for necessary 
adjustments using the method of estimating equations (EE). Much theory exists on this 
methodology, but there is still no software with built-in procedures that implement it. The EE 
approach to variance estimation relies on the fact that (finite) population parameters can be 
expressed as solutions to suitable "census" estimating equations. Consequently, parameter 
estimates may be obtained by solving sample EE, which incorporate design weights as well as 
adjustment factors based on post-stratification information. This approach is discussed in 
greater detail by Hidiroglou, Rao, and Yung (1999), where results for Taylor variances 
reflecting design and post-stratification adjustments are derived for stratified multi-stage 
complex surveys. Yung, Hidiroglou, and Rao (2001) extend these results to the case where 
weight adjustments are also made to account for nonresponse. 

This approach in using estimating equations can be very appealing as it provides a unified 
method for estimating both simple and complex statistics (linear or not). However, while it is 
flexible in its ability to be used for any type of parameter, it has two important limitations: it 
requires that a suitable function u(0) is known for 0, the parameter of interest, which can be 
difficult to find; and implementation in a computer system is entirely up to the user. Rao, Yung, 
and Hidiroglou (2002) provide some directives and propose a general methodology for a 
computer implementation. 

3.4 Advantages and disadvantages of the Bootstrap 

For surveys with a large number of PSUs, the Bootstrap can be perceived as preferable over the 
Jackknife because the number of replicates needed is not dictated by the number of PSUs. 
While the Jackknife requires a replicate for each sample PSU, the number of replicates for the 
Bootstrap is not dependent on such design specifics. Furthermore, in a study by Yeo, Mantel, 
and Liu (1999) using NPHS data, results indicated that Bootstrap CVs become more stable than 
the Jackknife, as B (the number of Bootstrap samples) increases. In addition to that, it is well 
established that Bootstrap has better properties for non-smooth statistics, such as percentiles. 
More generally, replication methods have an advantage over the Taylor linearization of statistics 
because they do not necessitate the derivation of linearization functions and derivatives which 
can sometimes be difficult or tedious, if not impossible (Shao, 1996). 

As well as better representing the specifics of the sampling design and the weighting 
procedures, the Bootstrap method has further benefits for the purposes of data dissemination. 
Public-use micro-data files (PUMF) are released containing general demographic and health 
information of all sampled respondents. As explained in Yeo, Mantel, and Liu (1999), in order 
to use the Taylor method to estimate variances, access to design information is required. In 
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addition, to account for the first and second stage sampling fractions (also known as the finite 
population correction or fpc adjustment), more information (e.g. population counts) is required. 
However, for the protection of respondent confidentiality, such information does not appear in 
the PUIMF, as it can potentially be used to identify a particular respondent. The creation of 
Bootstrap replicates does not solve this problem completely, but it makes it much more difficult 
for users to reveal geographical information about respondents. 

Replicate methods such as the Bootstrap were originally considered to have a serious drawback 
of being strongly computer intensive. With the advent of faster and more powerful personal 
computers, this perspective became less of an issue. A more current challenge with using the 
Bootstrap method is the fact that it is not readily available in any commercial software programs 
as a direct procedure. However, because of its close resemblance with BRR, it is possible to use 
software that supports BRR variance estimation to get Bootstrap estimates. In general, use of 
the Bootstrap requires a bit more handling, so software using Taylor and Bootstrap is discussed 
in more detail in Section 4. 

3.5 Variance Estimation in STC Health Surveys 

Statistics Canada's population health surveys (CCHS and NPHS) use complex survey designs 
to select multi-stage samples with a large number of PSUs. Since the Bootstrap estimator is able 
to incorporate both design elements and weight adjustments for a better, more accurate 
representation of the variance, it was selected as the method for variance estimation. Refer to 
Yeo, Mantel, and Liu (1999) for details on the reasons behind the adoption of the method. 

To address the lack of software programs supporting the Bootstrap method, STC Population 
Health Survey Methodologists have developed BOOTVAR, a series of SAS (or SPSS) macros 
that allow users to carry out the calculations using the Bootstrap method. The BOOTVAR is 
primarily made available to all Statistics Canada health survey users through the dissemination 
of the data. 



4. TOOLS / SO yr WARE FOR VARIANCE ESTIMATION 

SAS, SUIDAAN, and WesVar are three commonly used software programs for statistical analysis 
that support either or both Taylor and replication methods. More recently, STATA has become 
increasingly popular, but is not discussed in this paper. As indicated above, the Bootstrap and 
Taylor variance estimators were compared across the three software packages. Since each program 
has different capabilities, it requires its own set of steps to obtain the proper variance estimates. For 
the Taylor estimates, the specification of the design variables is required; and for the Bootstrap 
estimates, the specification of the Bootstrap replicates is required. The steps and considerations are 
outlined below and the results are presented in the next section with an evaluation of the 
performance of each method using CCHS Cycle 1.2 data. 

4.1 The software: SAS V8 

Until recently, the SAS software was only able to do SRS variance estimates, which are 
inappropriate and highly inaccurate for a complex survey design. in Version 8 of SAS, two 
built-in procedures (SURVEYMEANS and SURVEYREG) were added to the software package 
to deal with proper calculation of variance estimates for complex surveys using the Taylor 
linearization method. Two more procedures will be added in Version 9 (SIJRVEYFREQ and 
SURVEYLOGISTIC), which will allow for more options in this matter. In addition to that, even 
though Bootstrap is not directly available in SAS, the BOOTVAR macro-based program 
mentioned above (also available in SPSS) enables users to calculate Bootstrap variances. 

4.1.1 Taylor variances 

• Taylor variances can be obtained using the SURVEYMEANS and SIIRVEYREG 
procedures in SAS V8 and SURVEYFREQ/SURVEYLOGISTIC in SAS V9. 

• Specifying the sampling fraction for an fpc adjustment is an option for cases where the 
sampling fraction is large enough to have a significant impact on the variance. However, 
the formula behind the calculation at the moment is incomplete as it only accounts for 
the first stage sampling fraction adjustment (i.e. the variance between clusters) and omits 
the second stage sampling fraction (the within-clusters variance component). 

• If the fpc is used for a two-stage design, the correction would be only partial and 
therefore an understatement of the variance. However, the formula is perfectly good for 
a single stage design as it accounts for any necessary fpc corrections at that level. This 
discrepancy should be corrected in a future version of the software. 

• Formula used in SAS V8 for Taylor variances (with an fpc adjustment, but not 
accounting for the post-stratification adjustment) in terms of the SAS Online 
Documentation notation (SAS Institute, 1999): 

= nJ,(l fh) 	
(Yhi. Yh..) 

h=1 	- 	i=I 
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where: 
Ii = 1,2,...,H is the stratum number, with a total of H strata 

h is the cluster number within stratum Ii, with a total of nk  sampled clusters 

j = 

 

1,2,...,rn, 1  is the unit number within cluster i of stratum Ii, with a total of mh, units 
is the number of clusters in the sample 

Nh 	is the number of clusters in the frame 
/1 n m 

I lylj why yhy 
   

• 	 YhI. = Z WhY YhY  

Yh.. =Y 

fh =  'h INk  is the first stage sampling fraction for stratum h 

• Since the design dealt with in this analysis is a two-stage design and for which sampling 
fractions at each level are considered small enough to be negligible, the focus was on 
Taylor variance estimates without an fc adjustment. The formula for Taylor (no 1c) 
estimates is the same as the one shown above where the first stage sampling fraction is 
equal to zero (i.e. f,, = 0). 

4.1.2 Bootstrap variances through the BOOTVAR macro program 

• Bootstrap variances for totals, ratios, differences between ratios, and linear and logistic 
regression estimators can be obtained using the BOOTVAR macros (calculations are 
done as described by Yeo, Mantel, and Liu (1999)). 

• Formula used in BOOTVAR for Bootstrap variances: 

= (B 1  —13)1b 

where: 

B, are the point estimates obtained from the ith  Bootstrap replicate 

B is the average of the Bootstrap replicates, B1  

B is the estimate of the statistic (computed using the sampling weight) 
b is the number of Bootstrap replicate weights used (CCHS provides 500 Bootstrap weights) 
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4.2 The software: SUDAAN V9 

The current version of the SUDAAN software (Version 9 was used) supports both the Taylor 
method and some replication methods for variance estimation, but not Bootstrap. However, it is 
possible to obtain Bootstrap variances by taking advantage of the similarity between Bootstrap 
and the BRR method, available in SUDAAN. Since the form of the Bootstrap variance 
estimator is the same as that of the BRR estimator, SUDAAN is in fact able to produce 
Bootstrap estimates given that you provide the Bootstrap replicate weights. More on this is 
presented in Section 4.2.2. Unlike SAS where the different methods of estimation require the 
use of different procedures, the approach in SUDAAN is to use the same procedure in each 
case, but to specify different options. Different estimation methods can be obtained using the 
DESIGN option, together with the corresponding components required for the selected method 
(e.g. indicating the replicate weights when using the BRR method). 

4.2.1 Taylor variances 

• A SAS-callable version of SUDAAN is available, which behaves as an addition to the 
standard SAS package (i.e. SUDAAN procedures and code can be used in the SAS 
environment). 

• Taylor variance estimates for totals and ratios are obtained using the DESCRIPT, the 
CROSSTAB, and the RATIO (ratios only) procedures. For more details on how to use 
these procedures, refer to the SUDAAN User's Manual (Research Triangle Institute, 
2001). 

• As with SAS, it is possible to compute estimates with an fc adjustment and estimates 
without such an adjustment; but unlike SAS, the formula here is complete and accounts 
for both sampling fractions in a two-stage design. 

• Specifying a without replacement (WOR) design indicates that a finite population is 
used and requires the specification of sampling fractions (for the fpc adjustment) for 
each stage of sampling. 

• Formula used in SUDAAN V9 for Taylor variances (WOR, not accounting for the post-
stratification adjustment) in terms of the SUDAAN user guide notation (Research 
Triangle Institute, 2001): 

H 	 H 	'I 

'WOR(') 	(1 —fh)nhsh2 + 
h=I 	 ,I=1 	j=I 
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where: 

h 1,2,..., H 	is the stratum number, with a total of H strata 

nh 	is the cluster number within stratum h, with a total of n h  sampled clusters 

j = 1,2,..., m,, is the unit number within cluster i of stratum h, with a total of m hi sampled units 

n, 	is the number of clusters in the sample for stratum ii 

Nh 	is the number of clusters in the frame for stratum h 

Mhi 	 is the number of units that are sampled in cluster i of stratum h 

Mbi 	 is the number of units in the frame for cluster i of stratum h 

zi Yhi. 	 and YhI. = 	Why  Yhy 
h=1 	i=1 

Sh2 
= 	

and Yh.. 
= 
i Yki. )In, 

2  

Ski 
2 
- 	h (Whii 	- Yh.) 	and Yhi. 	IYh&)/Mhi 

	

(m 	—1) j= I 	h 1=' 

and the first and second stage sampling fractions are (respectively): 

fh = nh/Nh 	 and 	fhi = mh/Mh 

The above formula is equivalent to the fpc formula in SAS V8 except that the SAS 
formula consists of only the first term and omits the second term of the above equation. 
Specifying a with replacement (WR) design will generate estimates with no f,c 
adjustment. SUDAAN treats this to be equivalent to a WOR design without the finite 
population correction. 
Formula used in SUDAAN V9 for Taylor variances (WR, not accounting for the post-
stratification adjustment) in terms of the SUDAAN user guide notation (Research 
Triangle Institute, 2001): 

H 
flh Sh 2  

h=1 

where all components in the equation are defined the same way as for the WOR 
variance formula 

• As total stratum and cluster counts are often unavailable to data users, only Taylor 
variances without an fpc adjustment (WR design) were examined here. 

a 

. 
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4.2.2 Bootstrap variances 

• Though there is no option for a Bootstrap design, Bootstrap variances can he obtained 
by specifying a BRR design and providing the externally generated Bootstrap weights 
as the replicate weights. 

• Phillips (2004) discusses the differences and similarities between the Bootstrap and the 
BRR and demonstrates by way of example how to use the Bootstrap weights in 
SUDAAN (and WesVar) to compute Bootstrap variance estimates. 

• Formula used in SUDAAN V9 for BRR variances in terms of the SUDAAN user guide 
notation (Research Triangle Institute, 2001): 

- 	 lb 	- 

VBRR(B)= -. >(Bj —B) 2  

where: 

B is used when the final sampling weight is specified and represents the estimate 
based on the full sample using the sampling weight -  

B is used when the final sampling weight is not specified and represents the 
average of the replicate weights 

B 1 	is the point estimate obtained using the 1h  replicate 

b 	is the total number of replicate weights used 

• Note that the results produced in SUDAAN will differ from the ones obtained through 
BOOTVAR. When the final sampling weight is not specified, SUDAAN will produce 
the same variance estimates as BOOTVAR; however, the point estimate will 
correspond to the mean as computed from the bootstrap replicates. Conversely, 
including the final sampling weight in the procedure will produce the same point 
estimate as that of BOOTVAR, but the variance estimate would be computed around 
the final sampling weight. Although such small differences can be observed, both 
results are considered acceptable since the point estimate from the final sampling 
weight and the mean of the bootstrap replicates are asymptotically equivalent. 

4.3 The software: WesVar 4.2 

The WesVar Version 4.2 software supports replication methods only, but no Bootstrap 
explicitly. This software is more user-friendly than SAS and SUDAAN as it requires no 
programming. It consists of a graphical user interface containing a series of menus and options 
that the user can specify on a point-and-click basis. 
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4.3.1 Bootstrap variances 

• Similarly to SUDAAN, Bootstrap variance estimates can he obtained using a BRR 
design and the externally generated Bootstrap replicate weights. For more details on the 
methods used by WesVar, refer to the WesVar User's Guide (Westat, 2002). 

• Phillips (2004) provides a visual illustration using screenshots of the steps to be 
followed in obtaining Bootstrap variance estimates in WesVar. 

• Formula used in WesVar 4.2 for BRR variances in terms of the WesVar User's Guide 
notation (Westat, 2002): 

VBRR (=c(BI  b) 2  

where: 

B, is the estimate of B based on the observations included in the i' replicate 

B 	is the full - sample estimate using the final sampling weight 
b 	is the total number of replicate weights used 

c 	is a constant that depends on the replication method (in this case c = 

4.4 Alternative ways to using the software for variance estimation 

As can be seen already, design information is a vital part in computing accurate variances. This 
information is usually included in survey datafiles, but is missing from public release datasets 
because it puts data confidentiality at risk. For the CCHS, since design identifiers represent 
finer geographical information than what is permitted on public-use microdata files (PUMF), 
they are not available to users of these files. The possibility of using and releasing collapsed 
versions of these identifiers have been studied but without success (Mayda et al., 1996). 
Therefore, for PUMF users, it is not possible to compute accurate variances using either Taylor 
or the bootstrap method. One could argue that performing the bootstrap method through the use 
of the externally generated replicate weights does not require knowledge of the design 
information. However, by the nature of the method, it would be possible to recreate stratum and 
PSU membership from patterns in the bootstrap weights, which makes the design information 
indirectly available when bootstrap weights are provided. 

Faced with the impossibility of using appropriate variance estimation calculations, users of 
public release datasets still have recourse to some alternatives. One option consists of 
integrating average design effects into calculations of SRS variances, while another alternative 
rests on the use of CV look-up tables. Both of these (alternate methods) rely on approximate 
results which translate inevitably into a great loss of precision for variance estimates. 

4.4.1 Use of average design effects 

The design effect is a commonly used indicator that measures the impact of computing 
variance estimates according to a given survey design compared to what would be obtained 
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under a simple random sampling (SRS) scheme. Since most statistical packages treat 
sample data as if they were resulting from a SRS design, which is often not the case, it is 
possible to use the design effect to "correct" variance estimates produced under SRS 
assumptions to obtain a better picture of the variability contained in the estimates. Given 
that design effects will vary from one characteristic to another, average design effects are 
often reported to data users as a tool to apply an "average" correction to SRS variances. In 
its PIJMF documentation, CCHS publishes average design effects for various 
subpopulations mostly consisting of geographical areas of interest such as provinces and 
health regions. 

A more direct approach of using these average direct effects consists in the creation of what 
is commonly referred as a design-adjusted weight. This adjusted weight is obtained by 
dividing each individual sampling weight by the average design effect corresponding to the 
population of interest. Using this design-adjusted weight will result in variances that 
incorporate an average effect of the design on variance estimates, therefore accounting in 
part for the complex survey design effect. 

4.4.2 CV lookup tables 

Look-up tables of coefficients of variation, or simply CV look-up tables, are often provided 
with public release datasets as a tool to quickly obtain a general idea of the sampling 
variability associated with estimates of totals and proportions for categorical variables. 
Many Statistics Canada surveys publish such tables with their PUMFs, and CCHS is one of 
them. Sets of tables are usually produced for different subpopulations of interest that are 
covered by the survey; CCHS typically provides CV tables to be used for estimates 
computed either at the national, provincial, or health region levels. 

The basis of each CV table is the average design effect computed for the population it 
covers. Design effects are calculated for a subset of key survey characteristics and an 
average value is chosen. Approximate CV tables are then obtained by calculating the 
variance under simple random sampling and incorporating the design effect into the 
calculation (Phillips and Kaushal, 1998). 
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5. RESULTS OF COMPUTATIONAL COMPARISONS 

The computational analyses were primarily done to compare the Taylor method to the Bootstrap 
method from an empirical perspective, as implemented in the software packages discussed in 
Section 4. Estimates of totals and their respective variances were computed for variables of a post-
strata domain, which is equivalent to estimating the variance for proportions. But before those 
results are presented, it is important to briefly look at how the BOOT VAR (the program distributed 
with Statistics Canada Health Survey data) compares to SUDAAN and WesVar in estimating 
Bootstrap variances. The formulae and details in sections 4.1 to 4.3 illustrate the differences 
between these packages. For the results in this study, point estimates of the total were identical for 
BOOTVAR and WesVar, but differed slightly for SUDAAN. The discrepancy observed comes 
from the fact that for an appropriate variance computation, no final sampling weight was given in 
the SUDAAN program, so the point estimate was computed as the average of the replicate 
Bootstrap weights. 

In terms of the variance estimates, the WesVar estimate was the one that differed from the other 
two. The observed difference was small and entirely due to the restrictions of the program; while 
BOOTVAR computes the variance around the mean of the replicate estimates, WesVar does it 
directly around the estimate itself. Unlike SUDAAN, WesVar does not allow the user to omit 
specifying this option, so that the calculation would be done using the full sample estimate. 

Figure 1 presents a comparison of the results of higher interest: those of Bootstrap (using 
BOOTVAR) versus Taylor (no fc). SAS and SUDAAN produce identical results for Taylor 
variances when using the same specifications. However, since SUDAAN offers more options, 
which are exploited later, all Taylor results presented here were obtained through SUDAAN. The 
data in Figure 1 expresses the difference between the Taylor and Bootstrap variance estimates in 
terms of the relative percent differences of these estimates graphed against the corresponding 
coefficients of variation (CVs). Clearly, the plot displays a strong trend for the SUDAAN Taylor 
variances to be greater than the BOOTVAR. The difference is considerable since on average the 
Taylor variances are relatively 54% larger than the Bootstrap. However, in this case, there are many 
weighting factors that the Bootstrap accounts for and the Taylor does not which are reflected in this 
difference. 

Flores-Cervantes (1997) supports such an outcome by explaining how certain post-stratification 
adjustments reduce the variance but are not reflected in software program procedures using the 
Taylor method. Furthermore, providing empirical evidence for such results, Zhang (2001) found 
that in his study, Taylor variance estimates from stratified WOR and WR using SUDAAN are 
bigger than Bootstrap estimates for his proportion estimators. 

In addition to that, the data in Figure 1 displays an inverse relationship between the relative 
differences and the CVs of the estimates. In other words, for estimates of higher quality (having a 
small CV), the difference between the Taylor variance estimates and the Bootstrap variance 
estimates is quite large as computed by the software. Conversely, for estimates of lower quality 
(having a large CV), the difference is extremely small and almost negligible. 
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Figure 1: Relative Percent Differences of Taylor (no fpc) and Bootstrap Variances 

Relative % Difference Taylor (no fpc) to Bootstrap 
with respect to the Bootstrap CV 
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As post-stratification adjustments appear to have such a large effect on the variance and are so 
important for obtaining better accuracy, post-stratified Taylor variance estimates were computed 
using SUDAAN, the only software package among the ones examined in this study with this 
capability for the Taylor method. Figure 2 displays how those results compare to the BOOTVAR 
estimates. The data is presented in the same fashion as in Figure 1 and shows a much closer 
relationship between the variances. Here, the plot is much more evenly dispersed around the zero, 
but still shows a bit of a tendency to be more positive than negative. Accounting for the post-
stratification adjustment in the Taylor method brings the variances closer together, but the software 
computes the Taylor variance to be still higher than the Bootstrap by an average relative percent 
difference of 1.3% and a median of 1.0%. This slight positive difference can be interpreted as the 
combined effect of incorporating the nonresponse adjustment in variance calculations and of using 
different methods. However, since the two methods should produce similar results for large 
samples such as the one used here, it can be inferred that the positive difference in Figure 2 
represents to a large degree the effect of the nonresponse adjustment reflected in the Bootstrap 
estimates but not in the Taylor. If the negligible fc effect on variance estimates varies between 
methods, then it could be considered as an additional factor in explaining the difference observed. 

Figure 2: Relative Percent Differences of Taylor (post-stratified) and Bootstrap Variances 
Relative %Difference Taylor (post-stratified) to Bootstrap 

with respect to the Bootstrap CV 
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The above results would indicate that the nonresponse adjustment contributes to the variance by 
decreasing it. Such a hypothesis is confirmed by Mantel, Nadon, and Yeo (2000) in the context of 
the National Population Health Survey (NPHS), a close relative to the CCHS in terms of design and 
weighting procedures. Mantel, Nadon and Yeo found that the nonresponse adjustment to the 
weights had a decreasing effect on the variance that was small and virtually negligible, whereas the 
final calibration (post-stratification) effects were larger by an order of magnitude. Similar results 
regarding adjustments for nonresponse in the context of imputation are also confirmed by 
Beaumont (2004). Moreover, the results in Figure 2 show that there is no strong tendency for the 
relative differences to behave inversely to the CVs, since the points in the plot are more or less 
evenly dispersed at all levels of the CV. This would suggest that the two methods produce variance 
estimates that are relatively close regardless of the variability of the point estimate. 

Since the Taylor variance from SUDAAN has, at this point, reached its limits in terms of feasible 
adjustments, it is not possible to obtain estimates that would encompass all of the elements that the 
Bootstrap estimates do in the BOOTVAR. Even the latest Version 9 of the SUDAAN software does 
not provide the option to account for the nonresponse in the Taylor variance estimates. Therefore, 
to get a sense of how big that nonresponse effect is (not clear from the results in Figure 2), using 
BOOTVAR, Bootstrap estimates were computed with replicate weights that didn't incorporate the 
nonresponse adjustment and ones that did. The results are shown in Figure 3, where the average 
relative percent difference is 0.4% with a median still larger than zero showing that Bootstrap 
variances without the nonresponse adjustment are slightly larger than the ones that include the 
adjustment. 

Figure 3: Relative Percent Differences of Bootstrap (without nonresponse adjustment) and 
Bootstrap (with nonresponse adjustment) Variances 

Relative %Difference Bootstrap (no NR)to Bootstap (with NR) 
with respect to the Boostrap CV 
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The above results illustrate the insignificant effects of the nonresponse adjustment for this data and 
show consistency with the conclusions of Mantel, Nadon, and Yeo (2000). 
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6. CONCLUSION 

In summary, two acceptable and popular options used by health surveys analysts consist of using 
the Bootstrap weights with the BOOTVAR program, or using the Taylor linearization method with 
the SUDAAN software to do their variance estimation. The theory and empirical results presented 
in this study show that these two methods are not fully comparable and differ in many ways. Figure 
4 illustrates the comparisons between methods and software presented in the preceding sections. 

Fioiirp 4 Siimmrv of enmnarisnns done between methods and software 
- Bootstrap Taylor 

Post-stratification and BOOTVAR N/A 
Nonresponse adjustment (code in appendix 10.1) 

Figure 3 
Figure 2 

Post-stratification BOOTVAR SUDAAN (DESCRIPT) 
No nonresponse adjustment (code in Appendix 10.3) 

No post-stratification N/A SAS (SURVEYMEANS) 
No nonresponse adjustment (code in Appendix 10.2) 

As can be seen from the above results, variances obtained using the Taylor method without any 
adjustments are much greater than those obtained using the Bootstrap replicates (Figure 1). In an 
effort to make the Taylor variance more comparable to the Bootstrap, applying post-stratification 
adjustments showed that the variance decreases substantially (Figure 2). This is not a surprising 
outcome since the post-stratification effect for the data used here is magnified by the fact that the 
estimates in the results are all of a post-strata domain. In addition to that, the nonresponse 
adjustment appeared to further decrease the variance, even if by a small amount (Figure 3). 
However, for analysts, even if the nonresponse adjustment is negligible, it is not actually possible to 
obtain post-stratified Taylor variance estimates using SUDAAN. The reason for this is because the 
final weights on the master file are already post-stratified, so post-stratification of already post-
stratified weights would not reflect the true reduction in the variance. Thus, from a practical point 
of view, the only Taylor variance that is available to users is the no-fc variance where only the 
design information is specified. Since this alternative to the Bootstrap generally overestimates the 
variance (at least for the data used in this analysis), users should use it with caution, or limit its use 
for explanatory work. Given that the Bootstrap captures all the variability by incorporating both 
design and weighting information into the calculation, it remains the recommended method. 

ON 



7. FUTURE WORK 

The results summarized in the previous sections were obtained on the basis that the sampling 
fractions in the sample were small and had a negligible effect on the variance. However, even if the 
fractions are small, they are not zero and consequently do have some impact. Fpc adjustments were 
not done in this study as the information required is generally not available to users. Moreover, at 
the moment, such a correction is possible both in SUDAAN and in SAS for a single-stage design, 
but is only accurate in SUDAAN for a two-stage sample, such as the one used for this analysis. 

As a preliminary look at the degree of improvement of accounting for the f,c in the variance 
calculations, estimates were obtained using the CCHS 1.2 Department of National Defense datafile 
(a single stage sample used as a supplement to CCHS 1.2). Since this supplemental sample did not 
require calibration and had high sampling fractions, it represented a purer source for this 
investigation. Due to the high sampling fractions within all strata, Bootstrap weights were 
generated incorporating the fpc adjustment, as described in Rao and Wu (1988). Using this dataset 
and the same statistical packages as for the main analysis, Bootstrap and Taylor variances were 
obtained on a subset of the same variables as those used for the CCHS 1.2 results presented earlier. 
A relative difference that was much smaller was observed between the fc adjusted Taylor and 
Bootstrap variances. In fact, 39 out of the 44 variance estimates were within 5% of each other. 
Furthermore, these preliminary results indicate no tendency for Taylor (with fc) to be larger than 
the Bootstrap, as was the case for the no-fpc comparison. This suggests that further investigation of 
fc adjustments may reveal a closer relationship between the linearized method and the Bootstrap. 

Alternatively, considering the Bootstrap currently used for CCHS data, it may be of interest to 
investigate results obtained from a larger set of Bootstrap replicates. For variance estimation, the 
convergence of the estimate is extremely important in achieving accuracy. Some preliminary 
measures of the convergence of the variance estimates presented in the above analysis indicated 
that some of the estimates were of questionable convergence. As a validation to the above results, 
estimates of questionable quality were excluded and the remaining results were observed to reveal 
the same trends as those summarized in the previous section. Though replicate convergence criteria 
did not impact the conclusions in this study, it may be of some merit to investigate it more 
thoroughly. 
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APPENDIX 

Sample code for BOOTVAR estimates 

libname ml "C:\Cyclel  .2\VarianceProject\MasterFile"; 
libname in2 C: \Cyclel 2\Master',Bootstrp\Data"; 
libname out "C:\Cyclel  .2\VarianceProject\MasterFile\OUt"; 

* -------------- -------- ESTIMATES USING BOOTVAR IN SAS --------------------------- 

*analysis file, bootstrap weights file; 
%let Mfile = inl.c12; 
%let bsamp = in2.b5; 

*breakdown variables, number of b-weights, macro file needed; 
%let classes = geob_prv; 
%let B = 500; 
%include "C:\Cyclel  .2\Master\Bootstrp\SAS\MaCrOeV 20 .SaS 

*estimateS 
%total(asthma); 
%total(diabetes); 
%total(married); 
%total(single); 

%output; 

*savjng the results in a file; 
data out.sas_bs; 

set &result; 
run; 

* end of program; 

Sample code for estimates in Figure 1 

libname ml "C: \Cyclel .2\VarianceProject\MasterFile"; 
libname out "C: \Cyclel .2\VarianceProject\MasterFile\Out"; 

* -------SAS TAYLOR ESTIMATES no fpc (TOTALS AND RATIOS) 
proc surveymeans data=inl.c12 alpha=0.05 cisum cv std sum varsum; 

domain geob_prv; 
cluster cluster; 
strata stratum; 
var 	asthma diabetes married single; 
weight wtsb_m; 
ods output Domain=out.sas_tl; 
run; 

* end of program; 
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Sample code for estimates in Figure 2 

libnanle ml C:\Cycle1  .2\VarianceProject\MasterFile; 

libname out "C:\Cyclel  .2\VariancePro)ect\MaSterFile\OUt 

* ------SUDAAN TAYLOR ESTIMATES no fpc • poststratified (TOTALS AND RATIOS) ---------

proc sort data=inl.c12_post; 

by stratum cluster; 

run; 

proc descript data=inl .c12_post filetype=SAS design=WR; 

nest stratum cluster; 

weight wgtl7; 

subgroup geob_prv agegrp dhhb_sex; 

levels 10 4 2; 

recode geob_prv=(10 11 	12 13 24 35 46 47 48 59); 

postvar geob_prv agegrp dhhb_sex; 

postwgt 38030.11 	37161.17 78885.32 81189.24 71480.64 

71718.59 27046.93 33292.65 10140.23 9905.7 19739 

20341.2 17218.06 17446.45 7459.36 9791.41 	62495.56 

61083.47 132125.86 140619.65 118582.88 122155.19 51152.78 

68171 .79 49987.54 48233.97 110474.9 112283.97 96574.61 

97781.86 39636.97 53039.25 488950 467401.62 1129443.2 

1096109.61 962440.81 984777.69 386561.31 525291.28 803372.33 

771009.59 1891110.22 1895310.52 1403210.44 1454945.89 632692.44 

804229.22 76240.3 73127.37 159515.86 155358.63 127691.39 

129998.13 62000.52 80940.71 72540.86 68044.55 132210.14 

132130.74 110124.6 109030.45 59360.28 75357.64 233894.38 

221841 .71 	499199.59 480913.56 353996.82 343857.73 133701.5 

161422.12 275531.56 267468.64 616177.33 624180.67 513082.41 

520287.98 232031 .86 283230.63; 

var asthma diabetes iliarried single; 

catlevel 4*1; 

table geob_prv; 

output/filename=out.sd_post" filetype=SAS replace tablecellall; 

run; 
* end of program; 

PAU 







A 

i ltl\ 	t1 t 	It Il 
1010407740 


