
I l-619E 	titictics 	St:tistque 
:u1lti; 

No. 2005- 
006 

c.3 

Methodology Branch 

Household Survey 
Methods Division 

Direction de hi méthodologie 

Division des méthodes 
d'enquêtes des ménages 

Canad 





WORKING PAPER 
METHODOLOGY BRANCH 

THE USE OF THE TRANSPORTATION PROBLEM IN CO-ORDINATING 
THE SELECTION OF SAMPLES FOR BUSINESS SURVEYS 

HSMD-2005-006E 
0 2005  

Lenka, Mach, Philip T. Reiss, I. Schiopu-Kratina 
'AR 

.-..: 

Household Survey Methods Division 
Statistics Canada 

The work presented in this paper is the responsibility of the author and does not necessarily 
represent the views or policies of Statistics Canada. 



U 



TIlE USE OF THE TRANSPORTATION PROBLEM IN COORDINATING THE 

SELECTION OF SAMPLES FOR BUSINESS SURVEYS 

Lenka Mach, Philip T. Reiss, loana SchiopuKratina* 

ABSTRACT 

We view the problem of maximizing or minimizing the expected overlap of two surveys as a 

transportation problem (TP) and give simple selection algorithms for solving it. Although we use 

linear programming (LP) to formulate our problem and invoke results and techniques from 

optimization theory, the main purpose is to justify our selection algorithms and demonstrate the 

optimal properties of the solutions they generate. Our methods are relevant to surveys, such as 

typical govermnent business surveys, with stratified frames and simple random sampling without 

replacement (SRSWOR) applied independently in all strata. We show that our coordinated 

selection preserves both sample designs and optimizes the expected overlap of samples. Our 

selection algorithms proceed in two steps, the details of which are determined by the specific 

problem. For example, when updating a population only for births, the first step consists of 

deciding on the number of births in the new sample through a random selection from a 

hypergeometric distribution. In the second step, the chosen number of births are selected by 

SRSWOR from the pool of new units. We then randomly select or deselect "old" units in order to 

obtain the required sample size. The procedure guarantees that the design is SRSWOR for the 

updated survey and that the expected number of selected births is minimal. Consequently, the 

expected cost of first contacts, which could otherwise be quite high, is minimized. Through a 

simulation study, we compare our method with methods based on the assignment of permanent 

random numbers (PRN) to all units in the population. Our mathematical approach has the 

advantage that we can theoretically prove the properties of our solutions. We show that the 

variance of our solutions cannot be improved within a class of comparable solutions. 

* Lenka Mach, SSMD, Statistics Canada Philip T. Reiss, Department of Biostatistics, Mailman School of Public 
Health, Columbia University. loana Schiopu-Kratina, HSMD, Statistics Canada. 



L'UTILISATION DU PROBLEME DE TRANSPORT DANS LA COORDINATION DE 
LA SELECTION DES ECHANTILLONS POUR DES ENQUETES AUPRES DES 

ENTREPRISES 

Lenka Mach, Philip T. Reiss, loana Schiopu-Kratinat 

RESUMÉ 

Nous envisageons le problème de la maximisation ou de la minimisation du chevauchement espéré de deux enquêtes 

comme un problème de transport (PT) et nous donnons des algorithmes de selection simples pour Ic résoudre. Bien 

que nous utilisions Ia programmation linéaire (PL) pour forrnuler notre probléme et que nous invoquions des 

résultats et les techniques de la théorie de l'optimisation, l'objectif principal est de justifier nos algorithmes de 

selection et de démontrer les propriétés optiniales des solutions qu'elles génèrent. Nos méthodes sont applicables 

aux enquêtes, telles que des enquêtes gouvernementales typiques auprès des entreprises, réalisées au moyen de bases 

de sondage stratifiées, selon une méthode d'échantillonnage aléatoire simple sans remise (EASSR) appliquee 

indépendamment dans chaque strate. Nous montrons que notre selection coordonnée permet de respecter les deux 

plans de sondage en optimisant le chevauchement espéré des échantillons. Nos algorithmes de selection comportent 

deux étapes, dont les details sont déterminés par Ic problème a résoudre. Ainsi, si l'on met a jour une population 

uniquement pour tenir compte des nouvelles entreprises, la premiere etape consiste a decider du nombre de 

nouvelles entreprises dans le nouvel échantillon au moyen d'une selection aléatoire a partir d'une distribution 

hypergeométrique. A Ia seconde étape, le noinbre choisi de nouvelles entreprises est sélectionné par EASSR parmi 

les nouvelles unites. Ensuite nous sélectionnons ou désélectionnons aléatoirement parmi les <<anciennes> unites 

afin d'obtenir la taille d'échantillon requise. La procedure garantit que le plan de sondage est EASSR pour l'enquéte 

misc a jour et que le nombre espéré de nouvelles entreprises sélectionnées est minimal. 

Par consequent, le coüt prévu des premiers contacts, qui pourrait autrement être assez élevé, est réduit au minimum. 

Au moyen d'une étude de simulation, nous comparons notre méthode aux méthodes fondées sur l'attribution d'un 

numéro aléatoire permanent (NAP) a chaque unitée de Ia population. Notre approche mathematique permet de 

prouver theoriquement les propriétés de nos solutions. Nous montrons que la variance de nos solutions ne peut pas 

étre améliorée a l'mtérieur d'une classe de solutions comparables. 

t t Lenka Mach, SSMD, Statistics Canada . Philip T. Reiss, Department of Biostatistics, Mailman School of Public 
Health, Columbia University. loana Schiopu-Kratma, HSMD, Statistics Canada. 



1. INTRODUCTION 

We discuss in this article some problems related to the coordination of samples selected for 

business surveys. For such surveys, SRSWOR samples of fixed size are selected independently 

from each stratum. We are interested in the problem of maximizing or minimizing the expected 

overlap of samples while attaining the inclusion probabilities of all orders (preserving the entire 

design) for all surveys considered. This last requirement is sometimes referred to in the literature 

as "integration of surveys," a term coined by Mitra and Pathak (1984), which is fom1ally 

expressed by (TP) in Section 2. Thus we formulate our problem as a transportation problem (also 

abbreviated TP) and present simple algorithms for solving it. Our method is adequate for large 

samples, according to the classification given in the comprehensive article by Ernst (1999). We 

compare our method with three PRN methods: sequential SRSWOR for positive and negative 

coordination, the method of collocated samples (see Ohlsson (1995)), and the PRN method with 

full-stratum rotation. 

There is a vast body of literature on coordination of samples for several surveys, starting with the 

pioneering work of Keyfitz (1951). For detailed descriptions of methods, we refer to Ernst 

(1999) and Ohlsson (1995). Even though we formulate each sample coordination problem as a 

transportation problem and show that a solution given by the Northwest Corner Rule (NWCR) is 

adequate, our approach is not technically an LP approach. We obtain an analytical form of the 

solution (see Proposition 1) and proceed with a two-stage selection algorithm (Theorem 1). 

Therefore, our approach is not directly comparable to other LP applications to integration of 

sample surveys (e.g. Causey, Cox and Ernst (1985), Ernst and Ikeda (1994)). 

One of the first major applications of the transportation problem to survey sampling was 

developed by Raj (1956) and can be formulated as follows. Assume that two surveys are earned 

out on the same population concentrated in centers that are geographically far apart. The surveys 

must be integrated and the cost of transportation has to be minimized. This translates into the 

requirement that a maximum number of settlements be visited once to gather information for 

both surveys. 

Another frequently encountered situation is the updating of the frame of a business survey. New 

units (births) must be added to the frame, while others, which are found inactive (deaths), must 

be discarded. The updates could also be the result of changes in the definition of strata, which 

requires a reclassification of units. In each new stratum, which we assume is an estimation 



domain, one would like to retain as many units as possible from the previous sample so as to 

obtain comparable estimates over time. One is also interested in reducing the cost of first 

contacts, which means maximizing the expected number of "non-births" in the sample. 

The minimization of the expected overlap is motivated by the following situation, often 

encountered in practice. Several surveys are carried out on the same population. Some units may 

be selected in more than one survey and the burden of providing a lot of information may lead to 

nonresponse and a general deterioration in the quality of the collected data. We would therefore 

like to minimize the "cost" of responding to several surveys. Mathematically, these problems 

can be treated in a similar fashion. It is interesting to note that in our formulation the 

minimization problem is not the mathematical dual of the maximization problem, since the 

objective functions (the functions we want to optimize) are different. 

Once we define the meaning of "overlap" or "response burden", we can write the objective 

function and formalize each problem as a transportation problem (see Section 2), which can be 

solved using LP techniques. This LP problem may have a large number of variables. Even listing 

all possible samples in one survey is a difficult task. Attempts at reducing the problem for 

general designs have been given in, e.g., Aragon and Pathak (1990) and Ernst and Ikeda (1994). 

In our approach, because of the symmetry (exchangeability) of the SRSWOR design, we 

consider configurations (groups of samples) instead of the individual samples. To illustrate this, 

assume that before the updates to a stratum, we selected n units out of N available. Instead of 

considering the list of 
(N) 

possible samples, we look at configurations defined by the number of 

dead units observed in the sample of n units after the updates. There are at most n+l such 

configurations and each has an associated probability given by a hypergeometric distribution. We 

show that the problem of coordinating the selection of samples for two different surveys reduces 

to optimizing an overlap function defined at the level of configurations of samples. 

The NWCR is a very efficient algorithm for finding a solution to a transportation problem. This 

algorithm gives an optimum value for the objective function if this function has the appropriate 

Monge property (in the literature inconsistently referred to as either our Definition 1 or 2). In 

Proposition I, we calculate the joint distribution given by the NWCR. The NWCR cumulative 

distribution is the minimum of the cumulative distributions of the marginals, which are 

hypergeometnc distributions (see Proposition 1). The actual selection proceeds in two stages. 

For a simultaneous selection for two surveys, we first perform a probability-proportional-to-size 
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selection from the NWCR solution to determine the actual number of common units in both 

samples. We then randomly select these units from the common pooi and select additional units 

to complete each of the two samples. The same mechanism is adapted to updating a sample 

selected on a previous occasion. 

One advantage of our method (henceforth called the NWCR method) over others is that we solve 

well-defined mathematical problems and so our solutions have verifiable properties. We prove 

that the surveys considered are integrated and that the expected overlap has the optimum desired 

properties, including minimum variance when minimizing the overlap of two surveys. We also 

show that all solutions to the maximization problem have the same variance. This means that one 

cannot find another solution to the maximization problem that would have a smaller variance 

than the NWCR solution. Furthermore, the NWCR method can be applied on an ad hoc basis, i.e. 

to surveys that are not necessarily run from a business register with PRNs assigned to all units. 

The algorithm that we propose is easy to apply and lists of samples or even configurations of 

samples are not needed. On the other hand, it is not clear how the NWCR method for 

maximizing the overlap can be adapted if the classification of units (for example, their industry 

or size code) is updated on the frame. The NWCR method for minimizing the overlap does not 

have a straightforward generalization to more than two surveys. In this latter situation, it might 

be worthwhile to investigate a bona fide LP application, since the number of variables 

(configurations) does not appear to be large. This would also give us some flexibility in the 

choice of the objective function when dealing with several surveys which may incur different 

response burden on respondents, as is provided by the software Salomon (see Rivière (2001)). 

This article is organized as follows. Section 2 presents the mathematical formulation of the 

problem as a transportation problem and gives an analytical solution based on the NWCR 

(Proposition 1). Section 3 presents the NWCR solution to the problem of maximizing the overlap 

of surveys (Theorem 1). Section 4 is dedicated to the problem of minimizing the overlap of two 

surveys. In Section 5, we present the results of a simulation study which compares the NWCR 

method to the sequential SRSWOR for positive and negative coordination, the method of 

collocated samples and the PRN method with full-stratum rotation. We illustrate our definitions 

and methods on Example 1, which appears first in Section 3.1. 

2. THE TRANSPORTATION PROBLEM FOR TVO SURVEYS 

3 



In this article, we consider two SRSWOR designs used for two surveys of a finite population. 

This covers the situation of two distinct surveys as well as two different selections for the same 

survey when the population of a stratum has been updated for deaths and births. Initially, we 

have N units in the stratum population. After the updates, there are N' units in the stratum. If D 

denotes the number of deaths, i.e. units that belong only to the initial (first) population, B the 

number of births, i.e. units only in the updated (second) population, and C the number of units 

that belong to both populations, then N' = N - D + B = C + B. For the first survey, an 

SRSWOR of n units is selected from the population of size N, and, for the second survey, an 

SRSWOR of n' from N'. We denote 

by S and S' the set of all possible samples in the first and second survey, respectively. The 

overlap of the samples s E S and s'e S', denoted by o(s, st), is the number of units that the two 

samples have in common. Our ultimate objective is to find a joint distribution for all pairs of 

samples (s, st) that will maximize or minimize their expected overlap, given the marginal 

distributions in each of the two surveys. Consider the 	matrix whose (i, j) entry is 

o (s 1 , si '), where (s 1  ,..., 	is an ordering of the samples from S which groups them into 

super-rows in a manner to be described below; and likewise the ordering(s,...,s.)groups 
1n ) 

samples from 5' into super-columns. We calculate from the two designs the probability 

distributions P = (p1)1 , and Q = (q ) 	super-rows and super-columns, respectively. 

These super-rows and super-columns form a matrix of blocks. Depending on our goal, certain 

pairs of samples within a given block will give an optimal overlap value: maximum overlap 

within the block in case of positive coordination, and minimal overlap for negative coordination. 

To encompass either case, we refer to this optimal value as the block optimum. The block optima 

constitute the coefficients of the linear function (the objective function) which we optimize at the 

first stage of our algorithm. The joint distribution (the probabilities assigned to blocks) is 

represented by a table whose rows and columns correspond to groups of samples from the old 

and new designs, respectively. We therefore seek a joint distribution X = (x )> with P and Q 

as marginals, i.e. a solution to the transportation problem (TP), which optimizes an objective 

function to be defined subsequently: 
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(TP) 	X, j ~:O, 	Xp,l:!~ i!~ fl, 	xq 13 1:!~ j!~ rn, 	p1=q =1. 

A solution to (TP) always exists (e.g., we can define x
ii = p, x q ,i = 1,..., n,j = 1.... 1 .rn0. 

The NWCR gives a solution X = (x ),,> to the TP and is a greedy algorithm, i.e., each x u  is the 

maximum possible probability (mass) given the marginals p 1  , q and the mass assigned to 

"previous" blocks, x, with i' i,j'j and (i',j 	(i,j). Hoffman (1985) explains the NWCR 

algorithm as follows. 

(NWCR): We set x i  = 0, x0  = 0 and, if Xr  has been defined for all pairs (r, s), 

j-I 	i-I 
r :!~ i, s:~ j, (r,$)# (1,1), then: xV = rnin{p—x 1 , q 	Xrj} ' if? 1. 

The above expression represents the greatest assignable mass given the marginals, since it 

represents the as-yet-unassigned mass of that row or column, whichever is less. For a more 

explicit construction, see the Appendix. See also pp.  248-250 of Arthanari and Dodge (1981).. 

Let P(i) = p,, , Q(j) = q,, X(i, j) = 	x be the cumulative distributions. 
k=1 	 k=l 	 k=I 1=1 

For any joint distribution Xand each (i,j), X(i,j) min{P(i), Q(j)} (see also (2.5) of Hoffman 

(1985)). The following proposition asserts that equality holds ifXis given by the NWCR. 

Proposition 1: IfXis given by the NWCR, then X(i,j) = mm {P(i), Q(j)}, i,j? 1. 

Proof: 

Case 1: xU > 0. Without loss of generality, suppose that xU =  pi - Exis  . If X(i, j) < P(i) then 
3=1) 

I 
>X <p for some k < 1, since Lx is  = p, . Given such a k, there exists n >j with x > 0; 
s=I 

but this inequality, taken together with x ii > 0, contradicts XkJ = rnin{p * 	q — xd}. 

Thus X(i,j) ?P(i) ?rnin{P(i), Q(j)} and soX(i,j) = min{P(i),Q(j)}. 

Case 2: xy  = 0. By (NWCR), p,  (or (1,) has been distributed before columnj (row i). Assume the 

distribution of q1  was completed in row k < i. Then, as in Case 1 above, we have X(k.j) Q(/) 

X(Q) (since k < 1), so X(i, j) ? min{P(i), QO} which proves the equality. . 
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Of particular interest to us are matrices of overlaps R = (p ) 	satisfying one or the other of the 

following definitions, which are taken from Ross (1983). 

Definition 1: The matrix (pt, ), 	is supermodular (SM) if it satisfies: 

(SM) 	 p j +pr5 ~!pjj +p j ,forall1_<r_<i,1::,~ s:~,j.0 

Definition 2: The matrix (p ), 	is submodular (sM) if it satisfies: 

(SM) 	 p + p3 P is 	forall 1!5r!~ i,1:~ s!~ j.0 

For a matrix of overlaps and a solution X to (TP), we define the expected overlap by 

and the variance of the overlap by V(p) = [p  _E(p)] 2 x = 

ii 
j )— [E (p)]2 Ex  (p2) - [E  

It is well known that, if the matrix of overlaps is SM, than the solution X 0  obtained by the 

NWCR maximizes the expected overlap, i.e., Ex. 	max E p,j  x, where the maximum is 
ij 

taken over all solutions X to (TP) (see Result 5.6.2 of Arthanari and Dodge (1981)). A similar 

result holds for sM matrices. In Proposition 2, we present a more general result for SM matrices, 

which also holds for sM matrices. 

First, we introduce some notation. Define Ak(  (i, f) to be the n x in matrix with only four nonzero 

entries, placed as follows at the vertices of a rectangle: 1 is placed in each of the cells (i,j) and 

(i+ k,j+€), while -1 is placed in each of the cells (i,j+t), (i+k,j). We call a constant multiple of 

such 	a 	matrix 	an 	elementary 	difference 	matrix. 	We 	write 

= p. + 	
- 	

- 	 and note that A tt 	0 if the matrix of overlaps is 

SM, and is negative if the matrix of overlaps is sM. The next proposition states that the 

difference between the NWCR solution and any other solution to (TP) can be written as a finite 

sum of elementary difference matrices. The proof is similar to that of Result 5.6.2 of Arthanari 

and Dodge (1981) and is given in the Appendix. 

Proposition 2: If X 0  is given by the NWCR and Xis any solution to (TP), we have 

X0 =X+a7 A 7  for some positive numbers aI,...,aG,  where A= Ak(i,j),  for some i,j, k, € 

as above.. 



Corollary I: If the matrix of overlaps is SM (SM) then E 0  (p) is maximal (minimal). 

Proof: Since the matrix of overlaps is SM (SM), we haveE, (p) ~: 0 (E
AY 

	0), 

= 1,.. .,G. The maxirnality (minirnality) of E.0  (p) follows directly by applying Proposition 2 

and observing that E 0  = E + 	aY EA  .. 

For an illustration of the application of the NWCR, see Table 2 in Example 1 below. 

Proposition 3: A matrix R is SM if and only if(SM') holds: 

(SM') 	 p 11  +p +  ~! 	+ p1,1 , i =1..... n —1, j=1,...,m - I 

The matrix R is sM if and only (SM') holds: 

(sM') 	 P1.! +P1+.1+i ~ Pi,i+I+ P1+1 , 

Proof: We will prove the first statement only, since the second can be proved in a similar 

fashion. It is obvious that (SM) implies (SM'). We show the reverse implication by induction on 

the "perimeter of the rectangle." Without loss of generality, consider a rectangle with corners (i, 

j), (i,j++1), (1+ k,j+1+l), (i + k,j), i.e., of perimeter 2 k(f+l). By the induction hypothesis 

applied to rectangles with perimeters 2kt and 2k, we have p1 +Pj4kj, ~: P,+k.f and 

P +, + P1+kJ+(+I 	+ 	. 	 We 	now 	add 	these 	inequalities 	and 

Pi+k , j+ ti  ~ 	 , which Iroves (SM) for the rectangle with perimeter 

2k(I+1).. 

Lemma I: If c1 , i = I,..., n, and c1 1 , I = I..... rn, are two decreasing sequences of positive 

numbers, then the nxrn matrix with entries o,,  = mm {c1  ,c1  '} is SM. 

Proof: By Proposition 3, it suffices to prove (SM'). Because the two sequences of positive 

numbers are decreasing, we can express the overlaps on the right hand side of (SM') as: 	= 

min{ Pq'  c11 ' } and p,11=  min{p, c1 .f1  }. The right hand side of(SM') can be now written as: 

min{ p,  min{ c 41  , c 11 ' } } + min{ p,  max{ c141  c1' }}, since one number of the pair c,, 

c 1 ' is the minimum and the other is the maximum of the two. (SM') then becomes p,, f 

min{p, c1+1  , c 11 '} ? min{p, rnin(c, 1  , c 1 ,' }}+ min{ p1, max{c11  , c11' } }, which 
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reduces to p, ~: min{ p,, max{ c.+1 , c 1 ' } }. We have equality if and only if p ij  = max{ c 1 , 

c,, 1  1 ) . m 

3. MAXIMIZING THE EXPECTED OVERLAP 

3.1 Notation and Definitions 

Consider SRSWOR selections from a stratum common to two surveys and recall the notation 

introduced in Section 2. We denote by C the set of units common to the two populations. For 

s E S. c(s) (or c) denotes the number of units from the set C (non-deaths). Similarly, c '(s) (or c) 

represents the number of non-births in s', s 'ES'. We group the "old" samples s with the same 

value of c into super-rows, and order the super-rows in decreasing order of c. We likewise group 

the "new" samples s' into super-columns and order the super-columns in decreasing order of c'. 

Due to the SRSWOR design, the marginal probability of a super-row with a specified value of c 

is given by the hypergeometric distribution p(c;N,n,C) = ()(,)/('). Similarly, the marginal 

probability of a super-column with a specified value of c' is given by the hypergeometric 
' distnbution q(c ;N ,n',C) = ( 

C' 	B 	I 
(

N 
). 

Remark 1: The number of units from C found in the first sample may be anywhere from Cm  = 

max(n-D,O) to ci,. = min(C, n); and the number in the second sample, from cm' = max(n '-B, 0) to 

CA! '  = min(C, n '). With the decreasing-order arrangement, the jth  of the (cAl  - Cm  +1) super-rows 

consists of samples selected from the first population that contain exactly (CM - i+ 1) units from 

C, while the 1th  of the (ca ' - cm ' +1) super-columns consists of new samples with (CA!'  -j+l) 

units from C. 

The interior of the matrix defined by super-rows and super-columns consists of blocks. The 

block identified by (c, c') consists of all pairs of samples (s, s') with c(s) = c and c'(s') = c', and 

we define its block optimum by p(c, c) = min{c, c'}. The block optimum represents the largest 

possible overlap of a pair of samples within the block. We note that the matrix of block optima 

is SM by Lemma 1. 

Example 1: Let N = 6, n = 3, D = 3 and B = 2. Then N' = 5, from which we select n '= 4 units by 

SRSWOR. In Tables 1 and 2, the left margin refers to the original survey while the top margin 
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refers to the new survey. The margins of Table 1 are the possible values of c and c', and the 

entries give the resulting block optimum, p (c, c) = min{c, c'}. The margins of Table 2 contain 

the hypergeornetric probabilities corresponding to the super-rows and super-columns, p(c) and 

q(c'), and the entries are the joint probabilities assigned by the NWCR. 

Table 1. Matrix of block optima 	 Table 2. Matrix of block probabilities 

c\c' 3 2 	 p(c)\q(c') 8/20 12/20 
3 	3 2 	 1/20 	1/20 	0 
2 	2 2 	 9/20 	7/20 1/10 
1 	1 1 	 9/20 	0 	9/20 
0 	0 0 	 1/20 	0 	1/20 

There are four super-rows and two super-columns in each table. Thus, there are only eight 

blocks for which we need joint probabilities. By contrast, even for the small population and 

sample sizes in Example 1 there are 100 possible pairs of samples (s, s ). In Table 2, the joint 

probabilities represent a solution to (TP) which can he obtained by directly applying (NWCR) or 

using Proposition 1.. 

3. 2 Simultaneous Selection for Maximization 

Construction of a joint density for maximization. Given two SRSWOR surveys, a solution to 

(TP) which maximizes the expected overlap can he obtained by a two-stage procedure: 

I. Form a table whose marginals are the super-row and super-column probabilities arranged in 

descending order of c and c' as above, and derive the joint distribution of the blocks by the 

NWCR. 

2. Within each block, divide the mass equally among those individual pairs of samples (s, s) 

which attain the largest possible overlap for that block. 

To clarify the second step: The super-row consisting of all old samples with c units from C and 

the super-column consisting of all new samples with c' units from C form a block (c, c') 

	

containing 	( )C)()L) 	pairs 	of samples (s, s '). 	Of these, there are 

j D 	,' C 	,- C—min(c,c') 	B 	
- 	

D 	
,' 	

C 	rnax(c,c') 
' 

B 	. 
n—c) "min(c,() )kmax(c,c')—min(c,c')) n'—c') 	n—c) rnax(c,c') A niin(c,c') 	pairs (s, s ) sharing 

rnin(e, c) units and thus attaining the largest possible overlap within the block, i.e., 



o(s,s') = p(c,c') = min(c,c). The proposed conditional-on-block distribution divides the mass 

equally among these latter pairs. 

Theorem I: (a) The joint density X0 defined on the set of pairs of samples (s, s) by the two-stage 

procedure above has SRSWOR marginals. 

X0 has the maximum expected overlap within the set of joint densities with the given 

marginals. 

All joint densities which satisfy (a) and (b) have the same variance. 

Proof: (a) We show that the probability of selecting any sample seS is l/(') . Consider a 

(CJ(  B
sample s in super-row i. In super-columns with c1 ' ~ c i., there are exactly 	 w') samples s' 

(c-c  \( B 
that share c' units with s. In super-columns with c' >c,, there are exactly \c;-ç J\nt-c; 

samples s' that share c, units with s. The probabilityp(s) of selecting a sample s in super-row i is 

the sum of all probabilities assigned in step 2 above on row s and across all super-columns: 

Y 
 -r 	

R - ) 

p(s) 
= C'j ~Cj  [{seJ:osci} (nC, )( X4.)L.)] 	[{5.j:O)C) (D )(C )(C 

- ,!., 	- 	1 	(, )(_ ) - 

-- (')(:) 	N 	
- 

where the second equality follows from (i) and (ii) above. Similarly, it can be shown that the 

probability of selecting any sample s'ES'is 1/('). 
To show optimality, it suffices to apply Corollary 1 at the level of blocks because the entire 

mass of a block is divided only among those pairs (s, s) that have the maximum possible 

overlap. The matrix of block optima is SM (Lemma 1), so the NWCR gives the maximum 

expected overlap by Corollary 1. 

To prove the result about the variance, we again use Proposition 2. If X represents a solution 

with the maximum expected overlap and X 0  is the NWCR solution, it suffices to show that 

E 0  (p 2 ) = E (p 2 ). Since the matrix of block optima is SM, we must have EA (p) = 0, y = 1,.. .,G, 

in the representation given in Proposition 2. By Lemma A. 1 	in the 
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Appendix,E(p2 )0,r=l,...,G. We now apply Proposition 2 to the matrix (p),1  and obtain 

Example 2: We refer to Example I and expand below the block corresponding to ccli 

(2, 2). The "marginals" are now the samples. We use u, d and b to denote the units from the 

conirnon pool, deaths and births respectively. Here c = 	= 2. The top margins list all new 

samples with two births, while the left margins list all old samples containing one death. Table 3 

contains the actual overlap of pairs of samples, and Table 4 the probabilities of selection in the 

NWCR solution. 
Table 3. Overlaps within block (2, 2) 	Table 4. Probabilities within block (2, 2) 

u 1 u,b 1 b 2  11 3 11 2 b 1 b 	u 1 u 3 b 1 b, 	 u 1 u 2 b 1 b2  u3u2b1b2 111113h1b2 

u 1 u 2 d 1  2 1 1 U 1 11 2 d 1  1/90 0 0 

u 3 u 2 d 1  1 2 1 u 3 u 2 d 1  0 1/90 0 

u 1 u 3 d 1  1 1 2 u 1 u 3 d 1  0 0 1/90 
2 1 1 u 1 u 2 d 2  I / 90 0 0 

u 3 u 2 d 2  1 2 1 u 3 u 2 d 2  0 1/90 0 
u 1 u 3d 2  1 1 2 u 1 u 3 d 2  0 0 1/90 

u 1 u 2 d3  2 1 1 u 1 u 2 d 3  1/90 0 0 

u 3 u 7 d 3  1 2 1 u 3 u 2 d3  0 1/90 0 

14u 3 d 3  1 1 2 u 1 u 3 d3  0 0 1/90 

Recall that the probability of the block is 1/10. We distribute it equally among the 9 pairs of 

samples with overlap of 2, so each receives a mass of 1/90. All other pairs in the block have 

probability 0 of being selected. . 

Remark 2: Using the results of Bein, Brucker, Park and Pathak (1995), Theorem 1 can be 

extended to apply to more than two surveys. In this case, we have a choice of objective 

functions. For three surveys, we could, for example, associate a different weight to the overlap of 

pairs of samples for each of the 3 possible pairs of surveys and add it to the overlap of the three 

surveys. Note that a linear combination of SM functions with positive coefficients is an SM 

function.. 

3.3 Applications 

The following algorithm for selecting a pair of samples for two different surveys is justified by 

the proof of Theorem 1. 
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Selection Algorithm 1 (Simultaneous selection for maximization): Consider two surveys with 

sample sizes n and n'. From the joint distribution given by Proposition 1, we randomly select a 

block labelled (1, j), say. If p (c1 , ci ') = mm {c 1 , c '} = ci ', we first randomly select c' units 

from C. To complete the selection of the sample s', we randomly select n' - c units from the B 

births. To complete the selection of the sample s, we randomly select c, - units from the 

remaining C - c1 ' common units, and then n - c 1  more units from the D deaths. The case 

mm {c , c '} = c, is similar and will be omitted. . 

Assume now that a sample s has already been drawn and that it belongs to super-row i. As is 

often the case in ongoing surveys, we need to select s' from the updated population so that the 

expected overlap is maximized and the estimates are unbiased. This last requirement is satisfied 

if the new conditional selection corresponds to a joint distribution with prescribed marginals as 

described in Section 3.2 and justified in Theorem I. Since all rows within a super-row have equal 

probabilities, it suffices to consider the conditional distribution of super-columns given that a 

super-row i has been selected. 

Application 1 (Conditional distribution given a super-row): Recall the notation and the proof of 

Proposition I and set P(0) = 0. For each super-row i, i = 1 .....n, the conditional cumulative 

distribution of super-columns, given this super-row i, is [X(i,j) - P(i - 1)}/p, for allj such that 

Q(j) > P(i - i), and 0 otherwise. u 

Selection Algorithm 2 (Sequential selection for maximization): Let us assume that the old sample 

s belongs to super-row i. To obtain a new sample, we first randomly select a super-colunm from 

the conditional distribution above - say, the super-columnj of new samples s ' with c' units from 

C. If c<c' then the new sample s' is formed by retaining the ci  common units from s and 

randomly selecting c '- ci  more units from the remaining C—c1  units in C and n '- c' units from 

the B births. If c '<c,, we deselect randomly c1  - c/ units from the c1  units in snC and then 

complete s ' by randomly selecting n '- C3 ' births. . 

Example 3: We consider Examples I and 2 and assume that s=u 1 u 2 d 1  was selected first, 

in super-row 2. From Table 2 we have x21  = 7/20 and x 22  = 2/20. We pick a random number r 

9/20, say r = 3/20. Since 3/20 < 7/20, the new sample s' is in super-column 1 with c' = 3. To 
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select s, we retain u 1 u 21  add u from C and randomly select one of the two births, say b, so 

the new sample iSs=uu,u 3 b 2 .0 

The implementation of the selection algorithm is particularly simple when we are updating for 

births (or deaths) only or simply changing the sample size. 

Application 2 (Births only): Assume that D = 0, so we have only one super-row with 

c(s) = n for all s E S, and we determine the number of births from the appropriate 

hypergeometnc distribution. We then select the units as above. We applied this method in 

selecting a sample for Statistics Canada's Local Government Surveys. . 

Application 3 (Deaths only): Now B = 0, so there is only one super-column. We simply select or 

deselect sequentially to attain the new sample size ii'. An even simpler case is when both B and 

D are 0, i.e. only the sample size has changed. . 

4. MINIMIZING THE EXPECTED OVERLAP 

4.1 Simultaneous Selection for Minimization 

Consider surveys with a stratified SRSWOR design and a common stratification as in Section 

3.1. For the purpose of minimizing the expected overlap, we define the block optimum of the 

block labeled (c, c') as p(c, c) = max {0, c + c' - C}. In this section the block optimum is the 

smallest possible overlap that can be attained by a pair of samples within that block. In this 

section, in order to obtain sM matrix, we must label the rows and the columns of the matrix of 

overlaps in opposite order. 

C'onstruction of a joint density for minimization. Given two SRSWOR surveys, a solution to (TP) 

which minimizes the expected overlap can be obtained by a two-stage procedure. 

Form super-rows and super-columns as in Section 3.1. Label the super-rows in increasing 

order of c and the super-columns in decreasing order of c'. Form a table whose marginals are 

super-row and super-column probabilities ordered as above and derive the joint distribution 

of the blocks by the NWCR. 

Within each block, divide the mass equally among those pairs of samples (s, s') that have the 

smallest possible overlap for that block. 

Theorem 2: (a) The joint density X0  defined on the set of pairs of samples (s, s) by the two- 

stage procedure above has SRSWOR marginals. 
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X0  has the minimum expected overlap within the set of joint densities with the given 

margin als. 

X0  has the minimum variance within the set of joint densities which satisfy (a) and have the 

minimum expected overlap. 

Proof: (a) This follows as in the proof of Theorem 1. 

(b) By Corollary I, it suffices to show that the matrix of overlaps is sM, for which we use 

Proposition 3. The super-rows were labeled in increasing order of c, while the super-columns 

were labeled in decreasing order of c'. For a block with the optimum overlap 

pij  = max {O, c 1  + c C} , we distinguish three cases: 

c, + c3 ' > C. Then 	= p —1, pi'ij =  Py + 1 and 	= p +1I, SO (SM) holds 

with equality. 

c.+c' = C. Then p +111 =p =0, p 1 , 1  Pij 	and 	= 0, and so (sM)holds with 

strict inequality. 

c1  + 	< C. Then all four entries are 0, and so (sM) holds again with equality. 

(c) We note that the matrix of the squares of the block overlap is also sM. Thus, E 0  (p 2 ) is 

minimal, and consequently, since E 0  (p) is equal to the minimum expected overlap and hence 

fixed, it follows that V (p) = E (p2 )- [E (p)1 2  is also minimal. . 

Example 4: Consider Example 1 with the overlap function defined in this section. The 

corresponding matrix R is sM: 

Table 5. Matrix of block optima for minimization 

c\c' 3 2 
0 00 
1 	10 
2 	21 
3 	32 

Remark 3: Even if n + n' C and the minimum overlap in each block is 0, we must still decide 

how many units from the common pool must belong to each sample. Here we need not use the 

NWCR to obtain a feasible solution. We could, for instance, give each block a probability equal 
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to the product of the marginals. This does not mean selecting independently in each survey, since 

within blocks we do coordinate the selection of the samples as above. u 

4.2 Applications 

Selection Algorithm 3 (Simultaneous selection for minimization): The matrix with super-rows 

and super-columns is constructed as in Section 4.1. The selection of the super-row and super-

column is as in Selection Algorithm 1. We select the actual units as follows: Using an SRSWOR 

selection scheme, we first randomly select p units from C. Next, we randomly select from the 

remaining units in C, c' - p units for s' and a different set of c - p units for s. We complete s' by 

randomly picking n '- c' births. Similarly, we select n - c deaths for s. 

Application 4: Note that if the two populations are the same and only the sampling fractions 

differ, then c = n, c' = n' and the algorithm simplifies greatly since we have only one block. In a 

minimization scheme with n + n ' N, we always randomly select n units for the first survey and 

n different units for the second survey. i 

5. COMPARISON WITH OTHER METHODS 

We compare the NWCR method to three PRN methods: sequential SRSWOR, the method of 

collocated samples and the PRN method with full-stratum rotation. In the PRN methods, all units 

in the frame are independently assigned random numbers from the uniform distribution on [0, 1], 

which are then retained permanently. Each of the three studied methods uses these PRNs to 

select samples. 

1. Sequential SRSWOR: The frame is sorted in the order of the PRNs. To select a sample, we 

choose a starting point a E [0, 1] and a direction (right or left). To select it units according to an 

SRSWOR design, we take the units corresponding to the first n PRNs to the right (or left) of a. 

This method is due to Fan, Muller and Rezucha (1962). It is shown in Ohisson (1992) that this 

technique produces an SRSWOR design. When the frame is updated, births are independently 

assigned newly generated PRNs and the dead units are discarded with their PRNs. 

Sequential SRSWOR for positive coordination (maximizing the overlap) of two surveys uses the 

same starting point (origin) and direction to select pairs of samples to maximize the expected 

overlap. For negative coordination (minimizing the overlap), distinct and preferably far apart 

origins aj and a2 are chosen and the directions are either the same or opposite (Ohlsson (1995)). 
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The method of collocated samples: In collocated sampling, the units are first arranged in a 

random order and then assigned a sample selection number (SSN) by transforming their rank so 

that the SSNs are equally spaced on the interval [0, 1]. All units whose SSNs lie within the 

sampling interval [a, a + n/N] are included in the sample. The random ordering can be done by 

sorting the units in the order of their PRNs. For more details, see Ohlsson (1995) and Srinath and 

Carpenter (1995). We use repeated collocated sampling as described by Srinath and Carpenter 

(1995). After removing deaths and adding births, the SSNs within a stratum are no longer equally 

spaced, and thus this method gives variable sample size n'. 

PRN method with full-stratum rotation: This method is for minimizing the overlap and is 

described in Ernst, Valliant and Casady (2000). It assumes that a sequential SRSWOR sample 

has been selected on the first occasion by moving to the right. Let ao be the largest PRN 

associated with a unit in this sample. On the second occasion, ao becomes the starting point for 

the selection of the second sample. Ernst et al. (2000) showed that this method has a slight 

selection bias toward births. 

Some formal properties of the PRN methods, like the expected overlap, do not appear to have 

been studied. To compare methods, we conducted a simulation study and performed 100,000 

repetitions using the data in Example 1. The three measures used for comparison are: E, V and 

the selection bias, where E is the expected overlap and V the corresponding variance. Let Q = 

(q(s')) ç  be the design probability on the second occasion. Ernst et al. (2000) defined the 

selection bias by 	b(s')q(st)/n'— B/Nt, where b(s) is the number of births in s'. This is the 
S'ES' 

difference between the expected sample proportion of births and the population proportion of 

births. Since the NWCR method requires (TP) to hold, we obtain an SRSWOR design on the 

second occasion with no selection bias. 

For positive coordination, we compared the NWCR and sequential SRSWOR methods and the 

two methods performed equally well as shown in Table 6. They have no selection bias and attain 

the maximum expected overlap. As it appears that the sequential SRSWOR method possesses the 

same optimal properties as the NWCR method, we did not include the method of repeated 

collocated sampling, for which n varies, in the study. 

Table 6. Positive coordination of two surveys 

Method 	 E 	V 	Selection bias 
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NWCR method 1.50 0.45 0 

Sequential SRSWOR 1.49 0.43 0 

Table 7. Negative coordination of two surveys 

Method E V Selection bias 

NWCR method 0.90 0.19 0 

Sequential SRSWOR 0.91 0.52 0 

PRN, full-stratum rotation 0.69 0.39 0.054 

Repeated collocated 0.88 0.39 0 

The NWCR method performs very well for minimizing the overlap. It has the smallest variance 

and thus the overlap of each pair (s, s') selected by the NWCR method is likely to be close to E. 

The full-stratum rotation method has the smallest expected overlap but it does not produce an 

SRSWOR design on the second occasion. Repeated collocated sampling performs better than 

sequential SRSWOR, but has the disadvantage that the associated sample size n' is a random 

variable (here 2 < n' 5). On the whole, the simulations confirm that the NWCR method gives 

solutions with very good properties. For the negative sample coordination, it has the advantage 

of minimizing both the expected overlap and its variance, while attaining the required SRSWOR 

design on the second occasion. 

APPENDIX 

Explicit construction of the NWc'R solution 

The following is a step-by-step algorithm for NWCR. 
1. Define x 0 =0,x 1 =0. 
2. Seti=j=l. 
3. There are three cases. 

If p. —x 15  < 	- 	then x = p. - 	; x = 0 for s>j; increment i by 1.r=O 

If p1 - 	> q. - 	then x = q - 	; Xrj = 
0 for r>i; incrementj by 1.  Xrj 

If p1  - 	= q j - 	OXrJ then set 	to their common value; x 5  = 0 for s>j; 

X rj = 0 for r>i; increment i andj by 1. 
4. If I is now n+lorj is m+l, stop; otherwise return to step 3 with the updated value of(i,j). 
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Proof of Proposition 2 

The nonzero entries of X0 can be ordered as in the above NWCR construction. We suppose that 

the first k, I :!~- k :!~ n x rn nonzero entries of X0 equal to the corresponding entries of X and 

describe a procedure to obtain X* = X + 1 at 7  , another solution of(TP), such that the first 

k+l nonzero entries of X0 equal the corresponding entries of X*.  This will suffice to prove the 

proposition, since by applying this procedure repeatedly, we can obtain a solution of (TP) of the 

desired form, which has all the same nonzero entries as Xo, and which therefore equals X0 . 

Assume that xO corresponds to the (k+ I)" nonzero entry of Xo  and that x °  # xy . Because of the 

marginal and positivity constraints, X also coincides with X0  on all zero entries created by the 

application of the NWCR algorithm (see Step 3 in the NWCR algorithm above), prior to 

calculatingx. Consequently, on row i, x.5  = x,°  for s <j;  on columnj, Xrj = x for r < i; and thusri  

Xii 
 <x. For X to have the correct marginals, there niust then exist nonempty sets Q = 

{r>i:x 3  >x} and 5 = {s>j:x 1  >x}. Pick rER and sES, let 

a 1  = min{x rj  - x ,x - x }, and define X 1  = X + aiA r j s j(i,f). X is another solution to (TP) 

such that (using obvious notation) either R = { r > i: > x } or
ri 

Si = { s > j: x > x } has one fewer element than did or S. Form X2  from X1 , R,1  and S  in theis 

same way, that we formed X1  from X, ?and S. We continue in this way, forming X3 , X4 , ..., XG* 

and stopping when either or SG+l  is empty. At this point, we have x = x, so XG* is the 

desired X*  such that the first k+I nonzero entries of X0  equal the corresponding entries of X*.. 

I n......n A 1 

With the notation introduced before Proposition 2, set A = Ak,(i,J). If the matrix (pa)  is a 

matrix of block optima constructed as in Section 3.1, then, E(p2 ) 0 and E(p2 )= 0 if and 

only if E(p)=0. 

Proof: By Lemma 1, the matrix (pt),  with P 2 =  min 2 {c 1 ,c 1 '}, i=l,...,n, j=l,...,m, is SM 

and so E (p 2 ) ~! 0. We prove the statement about the zero expectations using mathematical 
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induction on k+L First consider A 11 (i,j). In the proof of Lemma 1, we showed that 

p+p 1  =p+p 	, and hence 	 = 0, if and only if p = max{c11 ,c 141 1 }. 

For E (p 2 ) = 0, we need p + p ,+1 = + p.. Using the proof of Lemma 1 again, 

we see that the equality for p 2  is attained if and only if p= max 2  fr141, c11  }, or equivalently, 

if and only if E (J)  (p) = 0. This proves the lemma fork =1, t =1. 

Without loss of generality, it suffices to prove the statement for Ak41,(i,j),  assuming that it is 

true for all (k',€'), k'+V <k +1 + f . We write A = A k+j ,(i,f) = Ak,€(i,i) + A(i+k,j) = 

A 1 +A, and note that E (p 2 ) + E (p 2 ) = E (p 2 ) = 0 holds if and only if both terms are zero. 

Since k + € <k + t +1, we use the inductive hypothesis and conclude that this is equivalent to 

EA (p )=Oand E(p )=0, or E(p )=O.. 
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