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Foreword 

When I first started investigating the variance issue NLSCY had (described in the 
introduction below) I knew nothing (at least worth mentioning! ©) about the bootstrap. 
As I dug deeper (and deeper and ... ) into the issue, I explored the bootstrap more and 
more. This paper contains all the lessons I've learnt (the hard way) as I made my way 
through the investigation. I've made a serious attempt to make the paper self-sufficient 
for those starting with the bootstrap (though it most certainly fails in the end due to the 
scope of the undertaking); it contains bits of theory, how some of the theory is meant to 
be applied in practical situations, ready-to-submit SAS programs to explore the bootstrap 
andlor to get you started with its implementation, etc. While the paper doesn't require 
any firsthand knowledge of the bootstrap, it does assume in return that the reader is 
familiar with all the methodological steps underlying the creation of survey estimates. 
With regard to the subjects treated here and there in the paper, like nonresponse and post-
stratification just to name these two, I take for granted that the reader's knowledge on 
these issues is roughly that of Statistics Canada's Survey methods and practices (2003). 

The style of writing is not formal. Actually, my natural style for writing is wordy and 
personal; I like to talk to the reader and explain one thing from several perspectives. (A 
former supervisor of mine once said that my favourite three words in English were "In 
other words ... " Read the paper and see if that person knew me well or not!) In other 
words, expect redundancy and lengthy explanations throughout. For example, one 
formula can be stated algebraically, explained through a paragraph and illustrated with a 
numerical example. I think this will appeal to those who are just making their beginning 
with the bootstrap; the experts may find the pace too slow for their own taste. But then, 
it's not with them in mind that I wrote this paper. 

I don't see this paper as static but rather as evolving over time as more people will tackle 
the bootstrap with it as their companion. Consequently, any feedback, suggestions, etc. 
are welcome and will be taken into consideration as further editions of this paper will be 
made in the future. 

An investigation of this scope couldn't (and shouldn't!) be undertaken by just one person. 
The work I'm reporting here as greatly benefited from (too-numerous-to-count!) 
discussions held in many brainstorming sessions involving the following people: Michel 
Ferland, Sarah Franklin, Yves Lafortune, Scott Meyer, Michelle Simard and Marcelle 
Tremblay. Many thanks to Jean-François Beaumont who has kindly answered numerous 
initial queries on my part regarding the bootstrap and read an earlier version of this paper. 
Also, I'm very grateful to Dr Rao for reading a draft version of this paper and being so 
enthusiastic about this whole endeavour, making me benefit as the review process went 
along from his keen insights into the bootstrap. 

I'm indebted to Sarah Franklin, Yves Lafortune and Michelle Simard for their unfailing 
support throughout the time I've spent investigating and writing this. Mille merci a toi 
Beatrice Chapman for the extensive reviewing and proof-reading that you've done of this 



paper. And my final thanks go to Owen Phillips, Yves Lafortune and Martin Provost for 
agreeing to review the final version of this paper as it was turned into a Branch Working 
Paper. 
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Abstract 

The bootstrap is used in estimating variance in many 
surveys at Statistics Canada. It is perceived as a versatile, 
reliable and easy-to-implement approach, hence its growing 
popularity. From a theoretic perspective, it's actually a 
difficult and still on-going challenge to successfully adapt 
the bootstrap as it makes its transition from classical 
statistics, its nurturing ground, to the survey sampling 
statistical context. This explains why there are several 
versions of the bootstrap in the survey setting, one of which 
is the Rao-Wu rescaled bootstrap. It's the one most used at 
Statistics Canada and this is why this paper focuses 
exclusively on it. 

But difficulties with the bootstrap are not only theoretic in 
nature. The practitioner implementing the bootstrap for real 
in a survey will find that the bootstrap is not as well 
described for practical purposes as one may have been lead 
to believe. There are indeed numerous pitfalls to avoid, 
corners to cut (and others not to cut!), etc. when 
implementing the bootstrap, and yet the existing literature is 
hardly of any help regarding these issues. This paper 
attempts to close the gap between the theory and the 
practice of the bootstrap, at least the way it's customarily 
implemented at Statistics Canada. It describes the bootstrap 
method at great length, provides tips and describes common 
pitfalls the user needs to stay away from and encloses SAS-
based computer programs providing useful details on its 
implementation. 
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Résumé 

Le bootstrap est employé comme technique destimation de 
Ia variance due a I'échantillonnage par plusieurs enquétes a 
Statistique Canada. On Ia décrit comme une technique 
versatile, liable et facile a mettre en oeuvre, d'oà sa 
popularité grandissante ces dernières années. D'un point de 
vue théorique, adapter le bootstrap au cadre des enquêtes 
statistiques, alors qu'il a été conçu au depart pour Ia 
statistique classique, reprCsente encore aujourd'hui un deli 
de taille pour les chercheurs. Cela explique pourquoi 11 
existe plusieurs versions du bootstrap dans le cadre des 
enquêtes, parmi lesquelles on trouve Ic Rao-Wu rescaled 
bootstrap. C'est Ia forme de bootstrap Ia plus en vogue a 
Statistique Canada et cet article porte exciusivement sur 
cette technique. 

Ccci Ctant dit, les difficultés qui accompagnent le bootstrap 
ne sont pas que de nature theorique. En effet, le 
méthodologiste qui fait face au défi d'adapter le bootstrap a 
son enquête s'apercevra qu'en dépit de sa popularité, le 
bootstrap ne s'accompagne pas d'une documentation 
volumineuse qui Ic guiderait dans sa mise en oeuvre. 11 y a 
de nombreux pièges a dviter, des coins a arrondir (et 
dautres qu'on ne doit pas arrondir!), etc. Iorsqu'on met en 
oeuvre Ie bootstrap, et pour ces enjeux Ia littérature 
existante n'est guère de quelque utilité. Cet article tente de 
combler le vide qui sépare Ia théorie de Ia pratique en ce qui 
a trait au bootstrap, du moms de Ia façon que Ic bootstrap 
est communément mis en ceuvre a Statistique Canada. 11 
contient une description détaillée, des conseils, des pièges a 
éviter ainsi que des programmes SAS qui seront utiles a 
quiconque souhaitant mettre en ceuvre le bootstrap. 
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1. INTRODUCTION 

With the recent advent of powerful PCs the bootstrap has made its way into many 
surveys at Statistics Canada, providing methodologists with a seemingly easy-to-
implement, flexible and versatile variance estimation methodology. But is it really? As it 
turns out, there are quite a few pitfalls awaiting the practitioner in his/her efforts to 
implement the bootstrap in a specific survey context; things can indeed get ugly when 
one leaves the realm of simple surveys to undertake the bootstrap with complex and/or 
longitudinal surveys. 

While performing routine evaluations in the wake of cycle 5's production on earlier-
released variance estimates for the National Longitudinal Survey of Children and Youth 
(NLSCY), which are based on a bootstrap methodology, a series of weird variance 
estimates were unearthed. They are the consequences of the pitfalls alluded to above of 
implementing the bootstrap. To give a flavour of what was noticed, Table 1 contains one 
such series of weird variance estimates; it's about the proportion of children in the 
Atlantic provinces who, back at cycle 1 of the NLSCY. had a Person Most 
Knowledgeable (PMK) 1  who lived alone2 . 

Cycle Estimate (%) S.E. (%) Domain Sample DEFF 
1 15.72 1.16 541 3,678 3.73 
2 15.86 0.30 471 3,361 0.23 
3 15.46 0.97 475 3,322 2.41 
4 15.14 1.08 424 1 	2,993 2.71 
5 14.81 0.91 383 1 	2,814 1 	1.86 

Fsble1: Point and variance estimates about the proportion of children in the Atlantic provinces who at 
cycle I had a PMK who lived alone. 

In Table 1, DEFF is the design effect associated with the point estimate, which is the 
ratio of the variance calculated for the NLSCY to the variance one would get under a 
Simple Random Sampling design Without Replacement (SRSWOR) of comparable 
sample size. It is provided in Table I as a means to assess just how less effective 
NLSCY's design is compared to a SRSWOR design. Also, it shows how the variance of 
the NLSCY is affected over cycles by attrition compared to what we'd observe under a 
SRSWOR design. Domain is the un-weighted count of children whose PMK lived alone 
at cycle 1; Sample indicates the number of individuals there are in the sample from the 
Atlantic provinces; SE. is the estimated standard error associated with the point estimate, 
expressed in the same units (here, percentage points). 

Looking at Table 1, a few things stand out. For instance, the sampling error estimate (the 
SE. column) of 0.30 calculated for cycle 2 is plain wrong (not to mention nonsensical). 

In a survey on children like the NLSCY, the PMK is a key element, the PMK is the one person whos in the best position to answer 
questions relating to a surveyed child. More oflen than not the PMK is the mother. 
2  A PMK was deemed to live alone if he/she had either a value of 04 (single - never married), 05 (widowed), 06 (separated) or 07 
(Jiorced) with regard to the cycle I collected variable AMMPQ04 enquiring about the marital status of the PMK A very similar 
characterization of PMK living alone can be obtained using another collected variable, namely ADMPD06A. which enquires if the 

of the PNIK lit es in the Itiriehtild 



Furthermore, across cycles, the sampling error estimates are inconsistent: they do not 
steadily increase over cycles as one would expect them to as a result of the declining 
effective sample size. 

In the investigation process that ensued, several issues were discovered about the 
implementation of the bootstrap in the NLSCY which, compounded, have lead to the 
strange estimates that were obtained. This paper describes the bootstrap most commonly-
used at Statistics Canada (the Rao-Wu rescaled bootstrap) to the practitioner who knows 
little about it. It exposes both the theoretical and practical sides of the bootstrap, with 
particular emphasis on computer-related issues and pitfalls to avoid when implementing 
it. The bootstrap gains here from setting the record straight with regard to all the 
implementation issues we've encountered because practitioners are bound to hear about 
them one way or another (maybe from firsthand experience in their own efforts 
implementing the bootstrap). And when they do, these unaddressed issues will 
jeopardize in due time the coveted status the bootstrap currently enjoys with users as a 
versatile, easy-to-use variance estimation method. 

This paper is structured as follows. Section 2 reviews the inferential framework under 
which we conduct variance estimation. Section 3 will introduce you to the principle 
behind the bootstrap. Section 4 describes the aspects of the NLSCY which are relevant 
for variance estimation purposes. Section 5 and those that follow describe at length the 
implementation of the bootstrap. 

n 
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2. A WORD OIN VARIANCE ESTIMATION 

Before tackling the bootstrap, it's a good thing to revisit the inferential framework we're 
usually in when we conduct a survey. The best overview of the inference challenge may 
very well come from Ardilly (2000) p.25; it's translated and adapted here (but the final 
touch of humour, in italics, is his!). 

0: 	Of interest to us (it's the parameter we're after) but unknown, 
hence... 

Great, it's computable! But it's plagued with uncertainty so... 

V(0): 

	

	Of interest to us (tells us how good 0 is) but unknown, hence... 
Great, it's computable! But it's plagued with uncertainty so... 

[Are you starting to see a pattern emerging here? ©] 

Of interest to us (tells us how good V(0) is) but unknown, hence... 
Great, it's computable! But it's plagued with uncertainty so... 

and this can go on and on... 

Computing algebraically V(0) is often nothing short of inpossible... and i2()? 
We 'd rather leave it to God. 

There are a few things worth saying about the inferential chain above. First, for surveys, 
we'd like to have an estimate () or a good approximation of it but all we'll ever have 
to work with is one observed sample. While we're chiefly interested in computing 
(and let's admit it: we can't usually compute much of anything further down that 
inferential chain anyway) we still need to have a clue somehow if VV(0)) is indeed so 
small (compared to 	as to be ignored; we need such a condition to be (reasonably) 
fulfilled in order to have any faith whatsoever in practice in our estimate (ô). We'll see 
in later sections that the computer-based environment can get us pretty close to a suitable 
answer to that question (and it may not be what you're expecting i.e., that it's not always 
that small). 

Also, by focusing solely above on variance, and not on Mean Squared Error (MSE), 
we've assumed (implicitly at the very least) that the estimator used Ô was (nearly) 
unbiased for 0. While for cross-sectional surveys this is a reasonable assumption to make 
(in truth, we make that assumption because we usually lack a way to discredit it), it's not 
that clean-cut in the case of longitudinal surveys. For such surveys an issue arises with 

. 

he kiijoic has been taken out from the most recent re-edition ot the hook. 
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the Mean Squared l'rror MS I ' hich is pr hahl more conceptual than anything but is 
worth mentioning here nonetheless. To illustrate what the issue is, suppose we're at 
cycle 2 of a longitudinal survey and we intend to use cycle 2 weights to estimate a cycle I 
characteristic. (We therefore assume explicitly here that the characteristic is either static- 
in-time by nature or kept fixed. In relation with Table 1 above, the characteristic Alone is 
an instance of a kept-fixed characteristic since the marital status of an individual may 
change over time.) Denote by bC2  the cycle 2 weighted estimate of this cycle 1 

characteristic and O the original estimate based on cycle I weights. This could be of 
interest as a form of diagnostic on the efficiency of the cl-to-c2-nonresponse model to 

keep nonresponse bias to a minimum. Suppose that 8C2  turns out to be quite different 

from 0ci  Under the assumption that cycle 1 's estimate is to be favoured over that of 
cycle 2's (after all, cycle 2 has fewer respondents than cycle I 's so there can hardly be a 
gain in information in losing data), we need to compute the variance for cycle 2 
accordingly. Since a cycle 2 variance estimate of any kind (let it be under bootstrap or 
anything else) will hinge on the cycle 2 sample-based estimate, which is off from that of 
cycle I, variance and MSE won't match in this case. So if one used cycle 2 to compute 
the "variance" then one should actually report the computed variance plus a term for the 
discrepancy between the "pivot" k2 and the "most suitable" estimate 

MSEcycIe2  =variance+(0c2 -0c1 ) 2 	 (1) 

The point of all this is that a longitudinal setting may give rise to issues that are otherwise 
not met in cross-sectional surveys, those for which methodologists usually owe most of 
their experience. 

There are two grand avenues being offered to us in getting the sought-after variance 
estimate V(9): Taylor linearization and replication methods. The former usually leads to 
closed-form formulas that appear in survey sampling books. It applies to "well-behaved" 
estimators like ratios and is best used with simple designs. Taylor linearization is what's 
behind Statistics Canada's Generalized Estimation System (GES) (when an exact 
derivation of the variance can't be obtained of course). Taylor linearization will allow 
you to perform variance estimation for basic estimators like totals and ratios under cluster 
sampling and simple two-phase designs. 

One of the shortcomings of GES as a Taylor-linearization-based tool, though, is that it 
doesn't carry out variance estimation for the median and some methodologists in the past 
have turned to the bootstrap solely because of this. If you're in that situation, then 
consider using Woodruff's method since the only input it really needs is a variance 
estimate of some weighted mean and, depending on the design used, this may be 
obtainable through exact methods directly or Taylor linearization (see Annex B for 
further details on Woodruff's method - it's an expanded version of Girard (2005)). This 
would be greatly beneficial in the case of stratified SRSWOR with large sampling 

. 
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fractions and nonresponse (which are typical conditions in business surveys) as it's 
shown later that the bootstrap doesn't capture all of the variance in that context. 

There are a number of replication methods that are used for variance estimation, among 
which are the jackknife and the bootstrap. This paper will focus (almost!) exclusively on 
one of the many existing versions of the latter, the Rao-Wu rescaled bootstrap. (See 
Section 3 for the "almost" part and more generally Lohr (1999) and Rust and Rao (1996) 
for a complete account of other methods.) 

In a few words... 

- Whether it's through Taylor linearization, replication methods or whatever else, in 
practice variance estimation is conducted using just one sample, the one you've observed. 

- While the bootstrap (and more generally replication methods) can proved to be a 
suitable choice for variance estimation in a given context, methods based on Taylor 
linearization should not be discarded too quickly. Woodruff's method may supply you 
with the means (!) to circumvent the limitations of Taylor's technique in dealing with the 
median. 

- in a non-conventional setting (e.g., longitudinal surveys for all those methodologists 
whose experience draws from cross-sectional surveys), revisit basic concepts to make 
sure nothing gets missed. For example, is everything worth reporting in terms of 
sampling error well captured by variance alone or is there a need for something like a 
MSE? 



3. THE BOOTSTRAP 

This section hardly has anything new to say about the bootstrap; it rather tries to gather in 
one place a series of facts about the bootstrap that are spread out in the literature, books, 
oral tradition, etc. (and make them somewhat more explicit while we're at it). 

Originally, the bootstrap was developed by Bradley Efron (in Efron (1979) and Efron 
(1982) and presented in extended form in Efron and Tibshirani (1993)) in the framework 
provided by independently selected observations (a.k.a. classical statistics), and as 
Särndal et al. (1992) remarked (see page 442) this is not without causing problems to 
survey samplers: 

So far, the [bootstrap] technique is somewhat unexplored for survey sampling. 
The bootstrap technique was originally designed for use with independent 
observations, the standard assumption of traditional statistical theory. One basic 
problem, not yet definitely answered, is how the technique should be correctly 
modIed to accommodate the special features of survey sampling, including the 
nonindependence arising in sampling without replacement and other complexities 
of designs and estimators. 

In other words, as far as classical statistics (i.e., the nurturing ground for the bootstrap) is 
concerned, just about everything goes wrong here in survey sampling. 

What we call the bootstrap in the survey setting actually is a body of techniques which 
are inspired from the (true) bootstrap and try to achieve the same success in surveys as it 
has had in classical statistics. Many variants of it thus exist, bearing names like mirror 
bootstrap and the Rao-Wu resealed bootstrap for example. Despite the work that has 
been done since the early 1990s on bridging the gap between classical statistics and 
survey sampling as far as the bootstrap is concerned, we feel that Särndal ci al. (1992) 5 s 
description of the situation is still of topical interest today and should be kept well in 
mind by every survey sampler. 

First, let's describe a survey setting where the use and implementation of the bootstrap 
should not cause any problem; it helps see how the bootstrap operates: 

- The observed sample s of size n is drawn according to a Simple Random Sampling 
design With Replacement (SRSWR) from a population of N elements, with N/n an 
integer. 

2 - A pseudo-population of N elements is created by stacking N/n copies of the n 
elements of the observed sample one on top of the other, thus yielding in all (N/n)*n =N 
elements. 

3-Draw a large numberBof samples, called replicates, each of size in and independently 
from the pseudo-population using SRSWR. 

12 
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4 - Form B estimates 9boot,I ..... °boot,B from the B replicates in the same manner as the 

basic estimate was obtained from s, the observed sample4 . 

The bootstrap variance estimate computed in practice is the following approximation 5 : 

"boot (o) = 	(a 001 ,, - 	 (2) 

Computational Tip #1 

When a sampling space (i.e., the set of all possible outcomes from the underlying 
random process) is so huge that it makes it impossible in practice to work with all 
possible cases (even with powerful computers), results are obtained using a subset 
of that space by considering some large number of cases at random; this is known 
as a Monte Carlo simulation. Given that the space underlying the re-sampling 
needed to carry out the bootstrap is huge, we work in practice from a randomly 
selected set of B cases instead as mentioned above. Consequently, that makes the 
variance estimate (2) a Monte Carlo approximation of the bootstrap variance. 

What makes estimator (2) a reasonable one to choose? The answer lies in its 
. 	 unbiasedness for the exact variance V(Ô) of the estimator 9. To express that condition 

explicitly, we need to realize that variance estimation using the bootstrap actually 
involves two distinct random sampling mechanisms: the original sampling (which yields 
the observed sample and provides the framework for design-based inference) and the 
bootstrap per se. The unbiasedness condition on v51  (Ô) spells out as: 

EDEbOQI boot (0)14= V(9) 	 (3) 

The inner expectation is taken with respect to the re-sampling process (i.e., the 
bootstrap), given the observed sample, while the outer expectation. E0 , is taken with 
respect to the sampling design. Whenever you wonder whether the bootstrap "works" or 
"doesn't work" in a given inferential setting (i.e., given sampling design, estimator, etc.) 
you're actually asking whether (3) holds or doesn't hold in that situation. 

This pseudo-population form of the bootstrap is intuitive: failing to have in practice the 
benefit of re-sampling from the whole population (as required, by definition, for design-
based variance estimation) because values for the characteristic of interest in its non-
sampled portion are unknown to us, we form a makeshift population from what we do 
know i.e., the sample. 

This instruction was written here as it's usually told in practice to new users of the bootstrap. We'll see 
later on that taken literally this can lead to serious problems. 

Some authors use B as the denominator instead of our B-I; it doesn't usually matter which one you 
choose. 

13 



There are practical difficulties though 'P'. ith this first Rrrn of the bootstrap. First, it's 
expressed solely in terms of SRSWR and cannot be easily generalized to other designs 
(how to appropriately stack up the sample to create the pseudo-population when the units 
have unequal weights?). Also, but to a lesser extent, N/n has to be an integer. 
Nonetheless, work has been carried out in the literature to extend that form of the 
bootstrap and to develop close siblings which overcome the difficulties we've alluded to; 
see Sitter (1992) for further details. 

As we mentioned in Section 2, any variance estimation method, the bootstrap included, 
has to work in practice from one sample (and one only), and that's quite a challenge 
when you come to think of it. Indeed, how can we possibly hope to have something 
meaningful to say about a quantity like the sampling variance using just one sample when 
by definition it takes all of the possible samples to construct it? And amazingly we often 
can do as much with apparently so little! Actually, the name "bootstrap" does capture that 
eerie-feeling of getting away with something when at first there seemed to have been no 
way out. Indeed, apparently the word is taken from the expression "to pull oneself up by 
one's bootstraps" which is a line from a story describing how one of the characters pulled 
himself out of a bad spot by using his bootstraps when there were actually no other 
"conventional" way out (Efron and Tibshirani (1998) p. 5 .). 

Even though this paper is all about the bootstrap, it's probably good to differentiate it 
here from the jackknife method since it seems the two are often mistaken one for the 
other. The (delete-i) jackknife can be described as forming all possible sub-samples 
from the observed sample of units obtained by removing one (sampling) unit at a time. 
The remaining units in a given sub-sample are re-weighted appropriately to account for 
the loss of the removed unit and an estimate is built from such a sub-sample the same 
way the sample-based estimate was obtained. A key feature of the jackknife is that it 
does not usually give rise to a huge sampling space as with the bootstrap so in 
implementing it one can actually exhaust it. Consequently, there's no error component 
due to re-sampling in estimating variance with the jackknife since the entire re-sampling 
space is used, not just a subset of it as with the bootstrap. Despite this, the bootstrap is 
oflen preferred to the jackknife (again, see Lohr (1999) or Rust and Rao (1996) for 
further discussion). 

3.1 Bootstrap and with-replacement designs 

The method of implementation of the bootstrap which is in vogue at Statistics Canada, 
and was the one used for the NLSCY, is known as the Rao-Wu rescaled bootstrap. We 
describe it here in the case of a stratified multi-stage with-replacement sampling design. 

- Within each stratum h, draw directly from the observed sample of nh Primary 
Sampling Units (PSUs) some large number B of sub-samples of size nh - . hereafter 
called replicates, according to SRSWR (using SAS proc survevseleci. say). 

. 

. 
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2 - Compute the initial bth  bootstrap weight6  for all units k according to 

initial 	h 	x multkb )< W 	 (4) Wkb =1
nh - 

where: - wk is the design weight of unit k; 

- rnultkb is the multiplicity of unit k in replicate b i.e., the number of times it was 
selected under the SRSWR scheme. 

3- Use the set of B weights to obtain B bootstrap estimates boot,I ..... 0boot,B in the same 
manner as the final estimate was obtained from the observed sample s (i.e., have the 
replicates go through nonresponse and post-stratification methodologies, for instance, 
should these apply to the survey under study - we'll have more to say on what this 
precisely means later on) and compute the following: 

B 	 2 

Vb, 	 (5) 

Notes: 

- You may find the use of a stratified multi-stage design as the framework to introduce 
the bootstrap a bit too general for your own taste. If so, then you'll enjoy Simulation A 

. which is all about the bootstrap in the context of good old SRSWR (actually, Simulation 
A exploits SRSWOR but the sampling fraction used there is so small that it amounts to 
conducting SRSWR). 

- When sampling with replacement n-i elements from a set of n distinct identifiers 
{id 1 .....id} (i.e., the sample) according to Step I above, what is obtained as a result is a 

set of n-i survey identifiers .. ....... id,,_1) } which are (quite possibly) no longer all 
distinct. Indeed, some units from the sample may be selected more than once under the 
with-replacement scheme to form a given replicate. In practice, though, we prefer to 
work again from a set of distinct identifiers id (I) ,...,id (J) J made of the j distinct 
identifiers making the given replicate. But in order to do that and not lose all of the 
information originally contained in {id (* ) id l) } we need to keep track of each distinct 
identifier's multiplicity. In other words, in practice instead of working from the set 

id_I) } we prefer the set of pairs t(id(I),mu1t(I)), ... ,(id( J ),rnu 1l( J )) and this is 
precisely what we exploit in (4). 

- Strictly speaking, the rescaled bootstrap originated in Rao and Wu (1988) but the 
"weight-based" presentation of it that we use, i.e., (3), is taken from Rao, Wu and Yue 
(1992). 

"To avoid over-crowding equations with too much notation, let's keep the stratum subscript out of them 
whenever the context allows. For example. despite the missing subscript At . the design weight is considered 
tu he dependent upun the strttum the unit is in 
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- You may find it odd (at least now that we're about to mention it! ©) that nothing is said 
of Secondary Sampling Units (SSUs) that arise in two-stage sampling; the only re-
sampling we've described here is solely in terms of PSUs. We'll see in Section 7.1 what 
bearing SSUs have on variance estimation and what the bootstrap, when constructed the 
way that we've just described, can (and can't) do for us. 

- You may wonder why, in Step 1, we picked nh - PSUs with replacement and not, say, 
nh — 2 ? The paragraph here is too narrow to contain the beautiful argument behind that 
one choice so we refer you to the box From Efron 's bootstrap to Rao-Wu bootstrap, 
below, to get the full story on this. 

- And while we're at it, how does one come to even propose that the bootstrap weights 
should take the form (4) to begin with? In short, the bootstrap weights precisely take that 
form so that the bootstrap variance estimate of the mean coincides with the usual exact 
variance estimate. Here again, you'll have to refer to the box From Efron 's bootstrap to 
Rao-Wu bootstrap, below, to learn more on this. 

Computational Tip #1 (continued) 

To drive home the point made in Computational Tip #1 about the size of sampling 
spaces, let's see just how big the one arising from the Rao-Wu resealed bootstrap 
actually is. For example, bootstrapping a sample made of just 50 units will 
generate a sampling space of some S0 49  replicates. In practice, we never pick 
more than B1,000 replicates. Even if B appears large, it falls considerably short 
of the 5049  figure. To appreciate how big a number 5049  is, notice that while 
there are 4 digits in "1,000", [log(50 4 )]+I = [491og(50)]+1 =84 digits are needed 
to write 	in decimal notation! (Note: the brackets stand for the floor 
function). 

So, an important implication of this is: when we choose to work with the 
bootstrap from B replicates instead of the whole truckload of replicates there 
exist, what we'll get in the end is a Monte Carlo approximation of the bootstrap 
variance estimate. In other words, don't get the idea from Simulation A that 
"Monte Carlo" and "bootstrap" are two "competing" methods; they're not 
comparable at all, the same way an adjective is not to be mistaken for a noun. 
Something is qualified as being "Monte Carlo" when it exploits only a portion of 
the whole space defined by some random process. So the bootstrap can be Monte 
Carlo (and will always be in practice actually) if the number of replicates used 
does not exhaust all possibilities. Monte Carlo is not in itself a random process 
like sampling from the population or re-sampling from an observed sample are: 
it's merely the acknowledgement that not all of the possibilities generated by the 
underlying process are being exploited. 

Ll 
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Before digging any further into the bootstrap let's illustrate all this with a SAS-supported 
example - all figures and estimates quoted in Simulation A below are taken from the 
SAS code provided in Program A. The SAS code may actually help you "see" what the 
bootstrap is all about. 

Simulation A 

A population of 10,000 units is created with a normal variable of interest Y 
randomly generated. The population mean, 5,  is 49.85981 and the idea here is to 
estimate it using the usual Horvitz-Thompson estimatorusing an observed 
sample of size 100 drawn from the population under SRSWOR: 

kEs k 

N 

where iTk  is the (first-order) inclusion probability of the kth  unit. 

The (exact) variance of that estimator is calculated to be (see for instance Result 
3.3.2, in Samdal etal. (1992) on page 68): 

3882015 
J•'(c)=(l-fl/v)---=(l-loO/lOOOO)

100 	
=3.843195 

An approximation of that variance was obtained by a Monte Carlo simulation 
where 10,000 samples were drawn and the empirical variance of the ensuing 
estimates c,i O.c0000 calculated; we obtained: 

VMC (j) = 3.837265 

Of course, a Monte Carlo approximation really is useful when, contrarily to our 
setting the exact variance is not known beforehand (i.e., cannot be computed 
from a formula, which would have been the case had we been interested here, say, 
in the median instead of the mean). But even then the Monte Carlo estimates tell 
us, as a whole, something valuable about the estimator used: the histogram we 
plot from them approximates the sampling distribution of the estimator. For 
reasons that will become apparent later we didn't plot the Monte-Carlo estimates 
directly but rather the differences or errors (0Mc1  —9), for I = 1,...,lO,000, between 
each Monte-Carlo estimate and the true mean. 

LI 
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Graph 1: Sampling distribution of the estimator of the mean obtained through a Monte Carlo 
simulation. 

An unbiased estimator of that variance using the observed sample s can be used to 
get an estimate of the variance: 

Bootstrapping this sample with one set of 1,000 replicates we get, using (5): 

Vb, (5) = 3.722582 

More precisely, 1,000 sub-samples (i.e., the replicates), each of size 99, were first 
drawn under SRSWR from the observed sample. Afterwards, bootstrap weights 
were assigned to units according to (4) and the ensuing bootstrap-weighted means 
were computed for each of the 1,000 replicates in order to compute (5). 

It's interesting to draw the histogram (using the same scale as the one above 
depicting Monte Carlo estimates) of the bootstrap estimates: 

S 
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(rapIi 	Sampling distribution of the estimator of the mean obtained under bootstrap. 

As 	ith the Monte Carlo histogram, differences rather than the estimates 
themselves were plotted. It's important to note that the differences here with the 
bootstrap are taken between the bootstrap estimates and the sample-based 
estimate of the mean (and not the true mean). This is because the bootstrap 
estimates are distributed about the sample-based estimate "the same way" as the 
Monte Carlo estimates are distributed about the true mean; consequently, to make 
distributions directly comparable, differences must be computed accordingly. 

It's quite striking how the two histograms are alike. This is actually no accident because 
both the Monte Carlo simulation, as it's used here, and the bootstrap work to approximate 
the (exact) sampling distribution of the estimator of the error 	(That distribution of 
errors and the sampling distribution of the original estimator . of are just a translation 
factor away from one another. We paraphrase this by saying that while the original 
sampling has the population value in its sight, the bootstrap rather has the sample-based 
estimate in its sight. So, our discussion above can be summarized as follows: both 
sampling processes behave the same way with regard to their respective targets.) So, the 
bootstrap does not get to estimate the exact sampling variance just because it's conceived 
to track it" but rather because it works to match the whole sampling distribution of the 
estimator of the error -  . And once that match has (reasonably) been achieved, any 
characteristic of the sampling distribution can then at once be estimated from the 
bootstrap distribution whether it's a given moment, its median, its inter-quartile range, 
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etc. ( )t' course, in practice. we're merely interested only in its variance. The point is that 
the bootstrap does not estimate the sampling variance per se but provide the means for its 
to estimate it as a by-product of its efforts estimating the whole sampling distribution. 

Furthermore, as Rao and Wu (1988) observe (see page 232, below equation 2.6), in the 
case of the mean, the variance estimate under bootstrap (not its Monte Carlo 
approximation) is the usual variance estimate. (Actually, this is where condition (3) 
described above comes from.) In other words, if we had the benefit of computing the 
bootstrap variance estimate from all possible replicates (and not just rely on a Monte 
Carlo approximation using B of them as we always do in practice), then the numerical 
value would be that of the usual variance estimate. So our Monte Carole bootstrap 
variance approximation, obtained from bootstrapping an observed sample, gets closer and 
closer, with the increasing number of replicates used, to the usual sample-based estimate 
of variance, not to the exact one. It goes to the exact variance only when we further take 
expectation with respect to the sampling design (i.e., by averaging the bootstrap 
approximations obtained, arising from bootstrapping a large number of observed 
samples). 

This is as good a place as any to address the following issue that may have come up to 
your mind: How do we get from Efron's bootstrap to Rao-Wu rescaled bootstrap? In 
other words, where do the bootstrap weights given by (4) come from anyway? If you feel 
like learning about the genesis of the Rao-Wu rescaled bootstrap then the iicxt box is br 
you; otherwise you can skip it without compromising the sequel. 

From Efron's bootstrap to Rao-Wu's bootstrap 

To help introduce Rao-Wu rescaled bootstrap we'll follow very closely the 
presentation given in sections 2, 2.1 and 2.2 of Rao and Wu (1988) and provide 
additional details as we go along. 

Let's consider a sample s which was obtained from a stratified design with an 
unequal probability selection of flh  (>1) PSUs with replacement within strata and 
that we're interested in estimating the variance of the usual estimator of the 
population mean. Suppose the sample in stratum h is the set Sh = {y(k)Ik = "••' h }• 
(The index notation used to describe sh is to remind the reader that the values Y(k) 

need not be all distinct due to the with-replacement feature of the design.) An 
unbiased estimator of the mean for stratum h is then 

Y
- 

h 	
7 h k=l P(k) 

= 
Nh 

where P(*)  is the probability of selection of unit (k). 

The estimator for the overall mean is 

. 
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= 
h=I 

where W, is the weight assigned to the stratum h with 21 Wh  = 1. 
h 

Adapting equations 2.9.7 and 2.9.9 from Särndal et al. (1992) to our situation we 
find that an unbiased estimator of the variance of y, in stratum h is given by: 

nh 

'h(Yh)h1 	
1 

2 
— I 	

2:(Y(k)  

Nh  nhP(k) JNh  nh(h —1)p( k )  nh 1=1 P(1)) 

Let's now see what we get by bootstrapping the sample. For starters, Efron's 
bootstrap requires that we perform simple random sampling of size nh with 
replacement from s,, within each stratum and independently across strata; this 

yields within stratum h the set of PSUs {} 1 , which is customarily called a 

replicate (or a bootstrap sample). Again, due to the with-replacement feature of 
the bootstrap this time, any given y-value Y(k)  of s 1, may be chosen more than 
once in a replicate ;  this is reflected here by the asterisk "a".  (In other words, it 

10 may very well be that y = y, =y(k) for some k and il #j2 .) Then form the 

bootstrap estimator 9bh  from the replicate drawn the same way the estimator h 

was built from the sample sh;  by doing so we get: 

nh yJ 

- j=1 hPj 

•
h -  

Nh 

The theory behind SRSWR ensures that 0b)i  is unbiased for yh: 

flft
• 	 flj, 

I YJ  
____ 	k=I 

Eh(bh)= ESRSWRh 	 =Yh [ 	

J Nnp 

Indeed, under SRSWR an estimator of the total of a variable y, y,, in the 
lESh 

"population" 5h  of size nh is Y y, the latter being built from a SRSWR 
IESSRcWR 

sample of SI7C ?1, (Be vigilant here: n 1  is both the population size and the 
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sample size in our SRSWR design. So whenever it enters a formula make sure you 
know if it's as the 'samp1e size" or as the "population size".) 

(Note: E. 1, is the expectation with respect to the bootstrap in stratum h and is the 
notation used in Rao-Wu (1988); it corresponds, by definition of the bootstrap, to 
the expectation taken with respect to SRSWR in stratum h,) 

We now need to evaluate the (exact) variance with respect to the bootstrap 
sampling of db within a given stratum h, V.h(Ohh) and see if we get exactly 

Vh(yh)or not. 

To this end, let's rewrite our bootstrap estimator in terms of Särndal et al. 
(1992)'s notation in their Section 3.3.2 with the intent of using their equation 
(3.3.23) later on: 

L 	j=I 1 hPj 	I 	I 	I - 
jbh - 	 Z_d 	-

ZOS 
Nh 	Nh 'h j=1 Pj Nb 

What their equation (3.3.23) says in terms of our context and ,, is: 

- 	- h 	- 1) S f : 
VspswR(ZOS)_ 	2 

flit 
where: 

'I,, 

S = 
nh  - I j-1 

To see that, you need to make the following equivalences between their notation 
andours: U=Sh, m=nit, N=nh. Thisyields 

V*h(Obh)=--VswR( OS )=-- 
Nh 	 N2 

	
it 	flit 

Explicitly, 

—1_k=d,.P(k) 	1=1 	)  P(l)  

- N, 	nh 	flit(flit 1) 	- nh 

. 
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The bootstrap variance estimate in stratum h thus differs from the corresponding 
standard variance estimate of the estimator of the mean under unequal probability 
with replacement sampling computed earlier, Vh (h) simply by the multiplicative 

- factor 
nh 

The journey up to here has been somewhat treacherous so let's summarize our 
findings so far. We've noticed that the expectation and variance under bootstrap 
of 0b,h  were. 

E.g, (öb,h )= E5WR(9bh  ) = Y,, 

V*h(Ohh)= h 	'h(Yh) 
nh 

where, again, Vh(Yh)  is the estimate of the variance under the (original) sampling 
design. 

What does it all mean? It means that while Efron's bootstrap leads to a (point-) 
bootstrap estimator which is unbiased for the estimated mean within any given 

. stratum h (which is a desirable feature), it doesn't quite yield the usual variance 
estimate. So what would? We need to rescale the bootstrap estimator so it would 
fit both criteria above. But how? We can first propose an alternative estimator of 
the form adl . h  for some a yet to be determined. While this fix would allow us to 
retrieve the variance estimate with the proper choice of a, it would also lead to a 
bootstrap estimator biased for 5.  Indeed, E.(aObh)5 unless we make the 
getting-us-nowhere choice a = I. 

What if we propose instead an alternative estimator of the form 9bh = aObh  + /1 
for suitable constants a and fi? Its expectation and variance with respect to the 
bootstrap would be respectively: 

E.h(aObh --M= aYh ±fl 

Vsh(aObh+/J)=a 2 flhl() 
nh 

The latter equation forces our choice for a: 

nh Fnh - 

0 
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Consequently, in order to get a bootstrap estimator in stratum h which is unbiased 
for Yh  we need to choose fi as: 

E*(a _
____  	I_____ 

	

bh +)=  	h   Yh  	=Yh  	=[l_  	l]Yh —1 

So, the grand conclusion we've reached here is this: a linear function 0b . h  of 
Efron's bootstrap estimator in stratum h which is unbiased for 

, 
and whose 

variance under bootstrap sampling is the usual sampling variance estimate is: 

b,h=F-n
[' Ih Fn

(~J" 

	 ___
-) 

To keep the derivation of Rao-Wu bootstrap as close as possible to Efron's we've 
restricted ourselves here to re-sampling of size n

, 
from the sample in stratum h of 

size n. If we allow from the beginning the re-sampling to yield bootstrap 
samples of arbitrary size mh  in stratum h then we'll end up proposing as the Rao-
Wu rescaled bootstrap estimator: 

	

______  	______
)~h 	 Fn(db.h 

 
0b,h

- 
  = 	9b,h +  I -  I_m h 	 =

-  	

-   Yh)    Vh+I 	h1  	
- 

Mh 

where: 0b,h = 
f_Imhpf 

 N fl  

This is precisely the estimator obtained by Rao and Wu (1988); see their equation 
(2.4). 

Now, this being said, how do we get something like (4)? In other words, if we 
chose to write the estimator Yh  in the following form: 

Y(k)'(k) 
- 	 k=1 

h 

for some "weights" W(k),  then what would be the ensuing weights WbOOt(k) for the 
corresponding bootstrap estimator fl? To answer that, we first need to express 
Rao-Wu rescaled bootstrap estimator in terms of the units of the sample itself, 
rather than in terms of the units in the bootstrap sample as it's currently in. The 
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trick is that the latter may contain several 'copies" of any given sampled unit. We 
achieve that transition without losing information by introducing bootstrap 
multiplicities multi, (k) which simply count how many times a given sampled unit 
was selected by the bootstrap: 

	

h YJ 	nh Y(k)111b(k) 

j=I mhpl = k=l 	mhpk 

	

Nh 	Nh 

Then, 

nil  

W(k) Y W(k)y(k) 	W(k)y(k) I 
°b,h = k=I 
	+ I_mJ, 	k=1 /, 	- k=1 

	

Nh 	
1h_lL 	

Nh 	Nh 	
j 

I 
Y(k)W(k)I -

Fmh
+
rmhh 

	

k=1 	L 	 l mh 	) 
Nh 

This suggests to define the bootstrap weights Wboot(k)  when mh  are taken with 
replacement from the n, sampled units as 

nh 
Wboo,(k) W(k)Ll 

 Fn
h

+
- 	mh 

In the (important) special case resulting from the choice of m, = 	- 1 the 
expression of the bootstrap weights can be seen to simplif' to (4). 

What values should you take for mh?  Why mh = h - above all other choices? 
There's no completely satisfactory answer to this riddle; let's nonetheless explore 
some avenues. The choice 'h = h - 1 sure leads to the simplest of all forms for 

the bootstrap weights since the term I - vanishes for that choice of rn. 
Fnh 

Actually there's more to it: Mh =1h —1 is then the only choice of m, which 
results in zero weights for units not selected in the replicate. A choice of 
Mh > nh - 1 will lead to negative weights for those units which are not selected in 
the replicate. Even though this doesn't invalidate in any way the resulting 
bootstrap, it's an annoyance to have negative weights. Any given choice of 
Ifl/ <011 - I sure presents the advantage of leading to replicates smaller in size (i.e., 

. 
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S 
the number of units the would contain) over the choice m1, - 	- I though 
improvements on bootstrap performance appear dubious to us. Preston and 

Chipperfield (2002) describe a bootstrap which hinges on the choice rnh = 

simulations we've performed with the Rao-Wu rescaled bootstrap has not yielded 

any noticeable advantage from choosing m1 = 	over mh = - 1. While there 
doesn't seem to be any real gain in bootstrap performance resulting from a choice 
of ni<n- 1 we suspect such a choice to lead to greater instability in the variance 
estimates as m gets smaller but this we didn't explore. Rao and Wu (1988) 
initially built a theoretic case in favour of mh = h —3 from matching the third 
moment of the bootstrap distribution with the corresponding moment of the 
sampling distribution but this choice didn't translate into any performance gain 
when scrutinized under simulations. 

If we redo this exercise all over again but this time for a without-replacement 
design then we'll recover equation 4.2 from Rao and Wu (1988) as the chosen 
rescaled bootstrap estimator in this case. 

Computational Tip #2: 

Some people will themselves compute in SAS the bootstrap variance estimate (5) 
rather than rely on some existing statistical software to compute it for them. 
Unless they're very careful, what people working in SAS with proc sunimarv 

(say) will end up calculating actually is: 

I 	B 	 2 

Vb0of o)= _-.- 	Ô boo! b - oot) 	 (6) 

°boot.b 

where: hoof 
= b=l 

B 

So, while (5) calls for squared deviations to be computed with respect to the 
sample-based estimate 9. (6) actually computes the square deviations with 
respect to the average of the bootstrap estimates O,. While in many situations 
both computations will nearly (numerically) agree, one must not resort to this 
shortcut blindly. In the program provided as Program A about Simulation A. we 
computed at its very end (5) and (6) and got 3.722582 and 3.72225. respectively. 
(While this is not a difference to get excited about, it remains that Simulation A 
hardly qualifies as an exciting framework to begin with either! (D) It's interesting 
to observe that the variance estimate vhOot (O )= E,,,,01 (~hooj,b

- 0boot 
)2 

is smaller than  

. 
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. 

the bootstrap variance estimate vbooj 	
- 	this follows from the 

general observation that E(X - a) 2  is minimize fix the choice a = E(X). 

Sofiwares like SUDAAN compute the bootstrap variance estimates along the lines 
of(5), and not (6), with the already-mentioned exception that SUDAAN uses B as 
the denominator instead of our B-i. This is incidentally why SUDAAN asks of 
the user both the bootstrap weights and the design weight; the latter is used by 
SUDAAN in the background to compute the point estimate needed in the squared 
term of(S). 

One inconvenience of SUDAAN (and many other such softwares) is that 
intermediate results needed to get (5) are not accessible aüerwards to the user. 
For instance, one cannot access the B replicate estimates SUDAAN used to 
compute the variance. These are useful for plotting purposes (to run diagnostics, 
better understand the bootstrap. etc.). 

Strictly speaking, SUDAAN (which is better known to many users through its 
SAS-callable version) does not support the bootstrap method per se. What it does 
support is the balanced repeated replication (BRR) whose variance estimate is 
computed using an expression identical to our (5) using BRR replicates in lieu of 
bootstrap replicates. So, ilbootstrap replicates are fed directly into SUDAAN as 

. 

	

	 if they were replicates obtained under BRR, then SUDAAN will correctly 
compute for us the ensuing bootstrap variance estimate. 

In Simulation A, B=1,000 was used and this happens to be the number of replicates 
NLSCY uses also. There are surveys whose bootstrap relies on 500, and there are 
specific settings where one could get away with variance estimation just fine using as 
little as 250 replicates. The generally accepted rule is that you should consider having as 
many replicates as your computer system will allow: the bootstrap should not freeze all 
resources nor take forever to run. Youll find in Section 9.1 heuristic results on the 
stability of variance estimates as a function of the number of replicates that may be of 
some assistance; but in the end the number of replicates to use in a given setting is a call 
the practitioner has to make. In the meantime, here's a trick some like to use: 

Computational Tip #3 

Some methodologists like in practice to compute bootstrap variance 
approximations arising from ever-increasing numbers of replicates used and plot 
them (such a strategy is described in Program B): 

. 
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Graph 3: Variance estimates as a function of the number of replicates used. 

They then eye-ball the graph for some threshold number of replicates beyond 
which variance approximations seem to stabilize and go on to use it as the 
survey's number of replicates. The question is: looking at Graph 3, where would 
you draw that line? 

Since the discussion so far has hincd on simulations. a word of warninz is in order. 
Since in a simulation framework the value of the population parameter we're after, 6, is 
known, it's quite tempting to substitute this value for the estimate C in (5) and thus 
compute instead 

2 
all v, 

( 	
- o)  

After all, why resort to the sample-based estimate 	when we can actually do "better" 
and use the true value 0 instead? Tempting as it is, it's wrong. Indeed, rearranging (7) 
will show the difference arising from using 8 instead of 0 in the variance computation: 

B 	 2 

VbOO:(0)Bl(0bOo, b 

- 	

B 

B 	(bz,b 
_Ô)2 + 2(Ô-0)(â, b  -0) + 

B 

- b=1 	 b=l 	 b=I 

B 

(bt,b —9) 
 

B—i 	B 	B—I 

C onseq ucnt ly. 

S 

S 

. 
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(The rightmost term of (8) is a constant with respect with the inner-expectation i.e., it's 
independent of the replication process, so all that remains is the expectation taken with 
respect to the design and this is by definition the sampling variance.) 

So, with the alternate approximation (7) which uses 0 directly, you end up calculating 
the variance twice! Therefore, the point that was made right after Simulation A is all the 
more important: the bootstrap, as a re-sampling method, hinges on the observed sample 
and not on the population directly as the usual survey sampling procedure does. In other 
words, bootstrap estimates vary about the sample estimate the same way the sample 
estimates vary about the true value; therefore, if the bootstrap estimates are compared 
directly to the true value, then the variability of the bootstrap estimates assessed in such a 
way involves "double counting". 

Computational Tip #4 

This computational tip is about saving space in storing bootstrap files. 

There are usually two files produced by the bootstrap sampling process: a file of 
multiplicities and a file of bootstrap weights. Both tiles will likely require insane 
amounts of storage space on a server. A bootstrap file can easily be several mega- 

. bytes big. \Vhile the sheer size of these tiles isn't in itself an issue, their ever-
growing number on a given server is due to surveys cumulating many cycles 
worth of data over time. 

Two things conspire in making bootstrap files huge: a by-default allocation in 
SAS of too much memory to store a bootstrap weight variable and the fact that 
there's too much air" in the file. Thus, to save space all we need is to refrain 
ourselves from using the space-consuming memory allocation provided to 
variables by SAS as the default and compress the ensuing output SAS file. 

First, the default length for a numeric variable in SAS is 8 bytes. In most (if not 
all) practical settings this is overkill: the level of precision this provides ftr 
exceeds what is typically needed. For example, if a numeric variable can only 
contain an integer, as it's the case in a file of multiplicities, then using 3 bytes in 
SAS (which is the minimum) through the length statement will save lots of 
storage space and won 't result in any loss of precision. On the other hand, if a 
variable contains real numbers, then it may very well be that 4 bytes will capture 
all the precision that's relevant fbr computation purposes. 

We can on top of that compress the file to take the "air" out. While this can be 
done using WinZip. compression can also be handled by SAS directly as it creates 
the permanent output file. The big advantage of this over zipping the file is that 
the SAS-compressed file looks like any regular SAS file. It doesn't require any 
specific manipulation when it's read back into SAS: the dc-compression is 
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operated by SAS automatically without the user having to bother with it in any 
way. 

Described this way it's pretty esoteric but it's really quite simple as the provided 
Program I illustrates. The program shows how to assign a variable a given 
number of bytes for storage through the length statement and how the 
compression is implemented. By running the program you'll find that the size of 
the file of multiplicities (which is full of integers) can be reduced by some 80% 
while the file containing real numbers is reduced in size by about 60%. 

What about running time when dealing with compressed files? While SAS' 
documentation mentions that processing a compressed SAS file may take more 
time, we didn't notice any significant difference in reading time between 
compressed and corresponding un-compressed files. Another potential issue has 
to do with the "truncation" which results in using fewer than 8 bytes for a variable 
having as value real numbers (like a bootstrap weight variable): does it impact on 
the results? For example, will the estimated variance using the truncated bootstrap 
file of weights be different than the one relying on all 8 bytes? Tests performed 
using NLSCY's data show that with 4 bytes the farther apart the ensuing variance 
estimate has been from the corresponding estimate based on 8-bytes variables was 
one thousandth of one percent! 

Bottom line: you should evaluate in light of the uses of the data what precision 
level for numeric variables is more than enough: this will greatly contribute in 
keeping the size of files to a minimum. 

If you're still worried about truncating a numeric variable, compare the "error" in 
the ensuing estimates that you introduce by truncating a weight variable to 3 
decimals, say, as opposed to using all 8 bytes to that of the sampling error of the 
estimate itself. You'll find that the truncation will affect digits in the estimates 
which are plagued with much greater uncertainty due to the sampling variance. In 
other words, the error due to truncation is expected to be several orders of 
magnitude smaller than the sampling error. To illustrate, suppose an estimated 
value of 10,000 based on truncated weights differs by its last digit with the 8-
bytes-based estimate; if the sampling error is as low as 1%, then this means that 
our 8-bytes-based estimate was uncertain as far as the hundreds go. So why 
differentiate two estimates which are identical except, due to truncation, for their 
last digit then? 

3.2 Bootstrap and without-replacement designs 

In Simulation A above, the sampling fraction of 100/10,000=1% was deemed low enough 
to conduct the bootstrap there ignoring the without-replacement nature of the initial 
SRSWOR design used. It's as good a time as any to talk about the bootstrap in the case 
where the sampling fraction in a stratum h is too large to ignore; this topic in the context 
of complex surveys is the main focus of Mach ci al. (to appear). (Actually, it's instructive 
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to keep in mind while reading this the issues they raise in their conclusion and see to 
hat extent the points covered here and there in this paper address them.) One proceeds 

as above except that the following bootstrap weight is calculated instead of (4) in a given 
replicate b and stratum h: 

w .'" 	 .i +Jl_fh( 	) k,b  
_ 
11h _1 

h muItkb]wk 	 (9) 

Note: You get (9) from Rao and Wu (1988)'s equation 4.1 the same way we've obtained 
(4) in the box From Efron's boo/strap to Rao-Wu bootstrap, above, from their equation 
2.4. 

The bootstrap weight obtained through (9) contains a factor which is a function of the 
sampling fraction fh  in stratum h which allows us to recover for a total (or a mean) the 
finite population correction factor (fpc) l—fh  that distinguishes its variance estimator 
under SRSWOR from that obtained under SRSWR. In other words, if in the context of 
SRSWOR we compute in parallel bootstrap variance estimates using (4) and (9) with 
ever growing sampling fractions, then we'll see the two variance estimates drift further 
and further apart. This is what Simulation C illustrates. 

Simulation C 

In Program C you'll find the code for a limited simulation that shows how 
bootstrap variance estimates based on (4) and (9) differ when the sampling 
fraction is no longer negligible; it was used to obtain the figures of Table 2. The 
idea here is to address an ambiguous statement often heard about the bootstrap 
and large sampling fractions; it goes something like this: "The bootstrap doesn't 
work when the sampling fraction is large." This is true only if by "bootstrap" we 
mean the one which does not integrate the finite population correction factor i.e., 
the bootstrap implemented using (4). But then, when the design is with 
replacement this is not the form of the bootstrap one should be using! If one uses 
in such situations the bootstrap defined by the weights (9) (as one should) then the 
bootstrap does work for large sampling fractions. This simulation is used to show 
that each form of the bootstrap "tracks down" correctly the variance with respect 
to the design it was built for: with-replacement bootstrap goes with SRSWR and 
without-replacement bootstrap goes with SRSWOR. It's when people start to 
carelessly mix with-replacement bootstrap and without-replacement designs that 
things go awry; if it backfires, then don't blame it on the (with-replacement) 
bootstrap. 

For each of the SRSWOR and SRSWR designs, the exact variance, its usual 
unbiased estimator and the corresponding bootstrap variance approximation (with 
or without the finite population correction factor, accordingly) are calculated. 
BS_NO_FPC is the variance approximation obtained using (4) and BS_FPC is the 
variance approximation obtained using (9). 
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SRSWOR   SRSWR  
n f(%) Exact Estimated BS_FPC Exact Estimated BS_NO_FPC 

100 1 3,8432 3.7742 3.8567 3.8820 3.8124 3.8956 
500 5 0.7376 0.7067 0.7157 0.7764 0.7439 0.7533 

1,000 10 0.3494 0.3532 0.3499 0.3882 0.3925 0.3888 
2,000 20 0.1553 0.1507 0.1514 0.1941 0.1883 0.1892 
3,000 30 0.0906 0.0913 0.0919 0.1294 0.1304 0.1313 
4,000 40 0.0582 0.0568 0.0507 0.0971 0.0946 0.0845 
5,000 50 0.0388 0.0389 0.0394 0.0776 0.0778 0.0788 

Table 2: Bootstrap variance approximations (9) and (5) as a function of the sampling fraction. 

We know from the exact variance formulas that the variance of the Horvitz-
Thompson estimator of the mean under SRSWR is 100x(l/f-1)' % greater than 
that under SRSWOR. Indeed, 

(10) 

SPSWR(/') -- 	 (11) 
n 

The relative difference between the two is computed to be: 

100 xl VSJSWR (ü) - VSW0R (ft)l relativedifference= 	 = l00x(N1n-1)'' 	(12) 
VsvQR (fi) 

So, with a sampling fractionf of 25%, the variance under SRSWR is 30% larger 
than that under SRSWOR: it gets to 100% when the sampling fractionfis 50%. 
Our simulation's findings agree (as they should!) with these results which stem 
from the theory of survey sampling. The simulation does show that in presence of 
large sampling fractions the bootstrap conducted from (4) still is on track (and 
doesn't go awry as some have been lead to believe) provided you're working 
from a SRSWR design. But if you're in fact dealing with SRSWOR, as it's 
usually the case, then you have to switch to (9) to conduct your bootstrap: 
otherwise you'll be estimating variance as if you were under SRSWR, not 
SRSWOR. 

It's important to note a peculiar feature of the bootstrap weights obtained through (9) 
which may have repercussions on just how appropriate a variance estimate obtained using 
them will be in practice. Going back to (4), we notice that if a unit k is not selected in a 
given replicate (i.e., its multiplicity term is 0) then its corresponding bootstrap weight is 0 
as we expect it to be (we expect units not selected by the bootstrap to form a given 
replicate not to contribute to the (replicate) point-estimate). But the same doesn't arise in 
(9): units with a multiplicity term of 0 will inherit a non-zero bootstrap weight; it will 
actually be equal to tv 

fpc.1111fial=[I - ,jl - f,, ]wk. Even though this weight is usually not big k,b 
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in itself (you can actually show it's smaller than I in the case of SRSWOR), there are 
often many non-selected-in-the-replicate units out there so that the whole contribution of 
non-selected units is non-negligible. So, all the units in the observed sample get to 
contribute in each of the replicates, regardless of whether they were selected in the 
replicate or not. This has an impact on how we conduct domain estimation. Usually, we 
expect that for a given domain and replicate, only the units that we've selected in the 
replicate and belong to the domain would contribute. But here, we get a contribution 
from two classes of units: units belonging to the domain, regardless of whether they were 
selected in the replicate or not. But these units belonging to the domain have had their 
total" weight shared with everyone. So, are these two contributions enough to recover 

all that is due for the domain? Quite possibly, but still the user has to be on the lookout 
for anything fishy in the estimates that could point out to specific issues with the "shared" 
weights. 

Computational Tip #5 

As we've just pointed out, conducting bootstrap variance estimation using the 
weights (9) requires special care. Since units with zero multiplicity nonetheless 
get a non-zero weight, the output of proc surveyseleci is no longer enough to 
conduct the inference. Indeed, those sampled units not selected in a given 
replicate (i.e., those with multiplicity zero) are not included in the output file by 
the procedure. (And if you forget that, your bootstrap variance approximations 

01 	
will not hold water.) 

The procedure has an option outall that can he specified which forces proc 
surveyseleci's output to be based on all units that have been sampled; this option 
cannot be used, though, with all designs. 

A way to assemble all that is needed which will work when the option outcill is 
not available is to first stack the sample on top of itself as many times as there are 
replicates while taking care to index the copies from I to the number of replicates 
using a variable called replicate. One then proceeds to merge this file of copies of 
the sample to the replicated units on the variables replicate" and unit identifier". 
In the resulting file, those units with a missing multiplicity (i.e., those in sample 
but not in the corresponding replicate) are then assigned a multiplicity of zero 
before actually computing (9). 

If the without-replacement scheme is not (stratified) SRSWOR than things get quite 
difficult. We don't cover here those cases because we didn't experiment them at all - 
this was not required for the NLSCY; we refer the reader directly to the sources, e.g., Rao 
and Wu (1988), Sitter (1992), for available options. 

At this point we've seen how basically the bootstrap operates: it remains to see how it's 
implemented in real survey situations. The NLSCY will serve here to illustrate many key 
features of the bootstrap implementation: it is briefly introduced in the next section. 

0 
tM 



In a few words... 

- The distribution of all bootstrap estimates matches (up to a translation factor) the 
sampling distribution of the estimator. We can avoid talking about that translation factor 
if we express ourselves in terms of errors rather than estimates: the distribution of errors 
of the bootstrap with respect to the sample-based estimate matches that of the distribution 
of errors of the estimator with respect to the population parameter of interest. From this 
fundamental correspondence follows the equivalence of any corresponding moments, for 
example, one of which is the sought-after variance of the estimator. 

- The Rao-Wu rescaled bootstrap is attractive to survey samplers because, among other 
things, there's a weight-based form to it (see Rao, Wu and Yue (1992), first paragraph of 
Section 3.3). 

- Rao-Wu rescaled bootstrap is designed in such a way as to yield a bootstrap estimate 
which coincides with the usual variance estimate in the case of a mean. 

- Use the form of the bootstrap that suits best the design, depending on whether the latter 
is with or without replacement. 

- Rao-Wu rescaled bootstrap must be implemented with care in SAS depending on 
whether the sampling fraction is negligible or not. Furthermore, when the weights (9) are 
computed, extra care must be taken to ensure that the SAS file driving the computations 
contains a record for everyone sampled. 

- The set of all possible replicates that can be drawn is usually so huge that only B of 
them can be investigated in practice. Consequently, the variance estimate we get in 
practice should rather be described as a Monte Carlo approximation of the bootstrap 
variance estimate. 

- Use as many replicates B as possible without monopolizing all resources of a PC. There 
is usually little benefit from drawing more than one thousand replicates. 

- Considerable savings can be made in terms of storage space of the bootstrap files if the 
precision needed about the weights is scrutinized (i.e., 8 bytes is overkill) and the files 
are compressed within SAS as they're outputted to their storage locations. 

. 

. 
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4. OVERVIEW OF THE NLSCY 

In this section we briefly discuss aspects of the National Longitudinal Survey of Children 
and Youth (NLSCY) which are of particular importance for variance estimation. The 
idea here is not to become an expert of the NLSCY but rather to get a feel for the 
methodological context that give the issues addressed here all their flavor. 

Two aspects of the NLSCY drive its variance methodology: it's a longitudinal survey and 
it's based on the LFS. (If you have little interest in longitudinal or LFS supplement 
surveys then you may want to skim through this section and just read the summary at the 
end.) Some of the earlier work done in relation with variance estimation and the 
NLSCY can be gathered from Laflamme (2002). A more complete account of the LFS as 
far as NLSCY is concerned can be obtained from Chapter 5 of NLSCY's Cycle 6 
UserGu ide. 

The NLSCY has existed since 1994. Over the years, it gave birth to several cohorts, one 
of which was born when the survey itself was first introduced. Throughout the life of a 
NLSCY cohort (some cohorts have a shorter life span than others), a new cycle of 
collection is undertaken every two years; as these words are written, the original cohort is 
in the field for its seventh cycle. A new cohort, called an Early Childhood Development 
cohort (ECD) is freshly introduced at each cycle. It starts up with a sample of 0-1 year-
olds taken from some of the LFS rotation groups which cover the age period of interest. 

While the NLSCY has drawn babies at one point in its history from the Birth Registry, it 
chiefly obtained for its still-active cohorts its children from the rotating samples of the 
LFS. Thus the focus here is on parts of the LFS design that are relevant to the NLSCY 
and leave issues specifically related to the Birth Registry out. Furthermore, only 
generalities about the LFS are presented; exceptions to what is presented here exist and 
the reader is referred to LFS' documentation for an exhaustive description of the LFS 
design. 

The LFS is based on a stratified two-stage design. Within LFS strata, which are 
geographic areas, clusters of households are formed and we can think of these as city 
blocks. The clusters are assigned randomly to one of 6 entities called a rotation group. 
Each rotation group is assigned to 2 months: Rotation 1 is associated to January and July; 
Rotation 2 is associated to February and July; and so on. At any given time the LFS 
sample is made of households from all 6 rotation groups. Each month a sub-sample of 
households, taken under a systematic selection scheme from the rotation group associated 
to the month, enters the LFS and will remain in the survey for 6 months; it replaces a sub-
sample of households which are due out, now that their 6-month period has come to an 
end. For example, in July of a given year, the sub-sample taken from Rotation I which 
has entered the LFS back in January is due to exit and is to be replaced by a sub-sample 
taken from Rotation I. A given rotation group thus contributes a sub-sample to the LFS 
every six months. When a given rotation group is exhausted, which may take 2 to 4 
years. its replaced by a fresh cluster from which upcoming sub-samples will now be 

. 
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taken. Each rotation group indexed by the date it's rotating in is thus a PSU thr the 
NLSCY and these are the units we'll re-sample in NLSCY to carry out the bootstrap. 

The following diagram illustrates all this in 3 steps. The large rectangle is a stratum and 
the 6 upward rectangles are the selected clusters; they're numbered from 1 to 6. Each has 
a light-gray top portion representing its contribution to the first sample that has rotated in. 
The darker-gray portion below it represents the part of the clusters that rotates in as the 
corresponding light-gray portion rotates out, and so on. 

Light-grey rotates out while... 
FEB MAR APR MAY JUN JUL 

LFS stratum A 

rotatejj ____ - 	I 
dark-greyrotatesin 

Diagram 1: Illustrating how a sub-sample of rotation group I enters a LFS stratum in 
January, remains for six months before exiting only to be replaced by another sub-sample 
from rotation group 1. 

Since the NLSCY is interested in sampling 0-1 year-olds, which is a rare domain of the 
LFS, a large number of rotation groups must be surveyed; depending on the cycle and the 
province of residence, NLSCY typically uses from 12 to 15 rotation groups. Why not 
more? Two reasons: 1) there are not that many other rotation groups which cover a given 
reference period of 0-1 year-olds; 2) as exciting and important the NLSCY is, it's not the 
sole survey resting on the LFS so overlap must be controlled, and thus rotation groups 
left entirely for others to use. 

While the sub-samples of any six successive months are independent one from another, 
this is not true when more than six are visited: two sub-samples will unavoidably have 
come from the same rotation group. So, as a result of sampling more than 6 successive-
in-time PSUs, there's dependence among the PSUs taken from a same rotation period at 
an interval of 6 months. This inner-cluster dependence of sub-samples is not documented 
in the NLSCY and presumably has gone unnoticed. The Youth In Transition Survey 
(YITS) was aware of it and actually revised LFS design weights to account for it. In 
upcoming months we'll investigate whether we should adjust the LFS weights in a 
similar fashion. We already know that often a sub-sample taken from a cluster yields no 
eligible kids for the NLSCY so pairs of dependent sub-samples may not exist at all. In 
other words, given NLSCY's target population is rare with respect to the LFS, are there 
enough "opportunities" in the contributing sub-samples for the dependence to manifest 
itself? This will require further investigation. In the short note Beaumont (2000) you'll 
find a way to account for the inner-cluster dependence into the weights; this is what YITS 
has relied on for its LFS-based weighting strategy. 
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The weight of a household as inherited from the LFS is passed on to the children. Within 
NLSCY the adjustments such as nonresponse and post-stratification are child-based. One 
important feature of the LFS which has important repercussions in NLSCY is its unequal 
weights. LFS is by no stretch of the imagination close to relying on a self-weighted 
design. Since the LFS stratification has a very strong geographical component, the 
distribution of the LFS weights of the households entering the NLSCY at cycle I were 
plotted in PEI and Ontario. Notice just how the scales involved with these two 
distributions are different. Having to deal in variance estimation with such hugely 
dissimilar weights is bound to have repercussions in the whole (point and variance) 
estimation process. We can certainly expect variance estimates to be unstable i.e., vary a 
lot when inferential circumstances are quite similar, more than they'd be under an equal 
weights design for instance. 
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Graph 4: Distribution of LFS weights in cycle I of the NLSCY in Prince-Edward-Island 
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Graph 5: Distribution of LFS weights in cycle I of the NLSCY in Ontario 

In the NLSCY there exist two types of longitudinal inferences depending on who is 
considered a respondent at a given cycle. One approach is to consider a kid a 
(longitudinal) respondent if and only if the kid was a respondent to all previous cycles: 
the kid is not allowed to have known one episode of nonresponse. This is called the 
funnel approach. On the other hand we allow to some extent episodes of past 
nonresponse; this is called the swiss-cheese approach. (If you think of the "holes" in the 
file such episodic nonresponse creates, then you'll see where the terminology used comes 
from.) 

The NLSCY also supports, as other longitudinal surveys often do, some cross-sectional 
analyses. When a cross-sectional analysis is made using a longitudinal cohort, several 
samples are usually involved. For example, assume there's interest in some common 
characteristic of 0-5 year-olds at cycle 3 of the NLSCY. To infer on that cross-sectional 
population we rely on samples taken from 3 different cycles. Indeed, the 4-5 year-olds at 
cycle 3 entered the NLSCY as 0-1 year-olds back at cyclel; the 2-3 year-olds at cycle 3 
were actually introduced as 0-I year-olds in cycle 2; the 0-1 year-olds at cycle 3 were just 
introduced (i.e., cycle 3). To simplify, assume that a given group of 0-1 year-olds 
entering the NLSCY (i.e., at a given cycle) is the result of looking for 0-1 year-olds in 15 
of the rotation groups of the LFS covering the reference period. Therefore, to get our 
cross-sectional sample of 0-5 year-olds at cycle 3, in all 45 rotation groups were probed. 
The question is: should the variance methodology hinge on all 45 rotation groups? How? 
We can decide to work as if we had just one sample responsible of getting us the 0-5 
year-olds provided we see that sample as having been stratified by age group: 0-1 / 2-3 / 
4-5. It then becomes clear what to make of all 45 groups: we need to only consider that 
for a given stratum we sampled from 15 rotation groups. 
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NLSCY being a longitudinal survey we need to have bootstrap replicates at every cycle 
of a cohort's lift. What is used in the NLSCY is what some call coordinated bootstrap: a 
set of bootstrap replicates is chosen once when the cohort is born and these are used at 
every subsequent cycle; a new set of replicates is not drawn at each cycle. (This topic, 
among others, is discussed in Roberts el al. (2001)) To renew the resampling at each 
cycle would only introduce further instability in the variance estimates. 

One last thing worth describing in details is the faith of out-of-scope units with regard to 
the bootstrap. In the NLSCY there are essentially two ways for a selected unit to be out-
of-scope. First, a household selected from the LFS can be out-of-scope for the NLSCY if 
it has no eligible children to provide to the NLSCY. Since the NLSCY targets a rare 
population from LFS' standpoint, such out-of-scope units are very common. Second, 
should a child die or leave the country after entering the NLSCY's sample then he or she 
vi Ii become cross-sectionally out-of-scope, though longitudinally such children remain 
in-scope for the entire life of the cohort they're in. Either way, out-of-scope units are 
dealt with in NLSCY's weighting using the theory of domain estimation (see Särndal et 
al. (1992) section 14.7, especially item i) of sub-section 14.7.2 for further details). So, 
for example, while a household from the LFS having no eligible child can be seen as 
being out-of-scope for the NLSCY, it's actually treated in NLSCY's weighting as not 
belonging to the domain of children targeted by the NLSCY. One implication of this is 
that the LFS-weight assigned to these out-of-scope households is lost" and not 
redistributed among the in-scope ones. 

In the sequel we won't mention explicitly again out-of-scope units though what to do 
ith them with regard to the bootstrap will be implicit from the exposé on domain 

estimation. 

In a few words... 

- Upon closer look, there's nothing truly specific to the NLSCY in this section: all of it is 
relevant to any given survey, longitudinal or not, LFS-based or not. The example of the 
NLSCY is used here merely to illustrate how some issues "come to life" in a given 
survey context; you may ignore some (or all!) of the specificities if you want - the paper 
is about the bootstrap after all, not the NLSCY! 

- The longitudinal component of the NLSCY has brought the need for coordinated 
bootstrap which avoids introducing additional noise in variance estimation by using the 
same set of replicates through all cycles of a cohort. 

- A survey which rests upon a sampling design with greatly unequal weights will be 
facing issues with stability of its estimates (point and variance); what would have 
required few units andlor few replicates will all of a sudden require much more. 

- The treatment of out-of-scope units in the NLSCY is carried out using the theory of 
domain estimation.  
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5. INITIATING THE BOOTSTRAP 

5.1 Multiplicities 

Before computing bootstrap weights, we need to create the B replicates themselves. 
With the advent of SAS proc surveyseleci this is a walk in the park; this is much 
appreciated by those who have attempted implementing in SAS a procedure of their own 
that performs with-replacement sampling. The abundant use of proc surveyselect in the 
SAS simulations accompanying this document should prove to be more than enough to 
get you well-acquainted with its syntax. 

To carry out the bootstrap, we first need an observed sample; this is illustrated by the 
SAS code below which draws a sample of 100 units from a SRSWOR design: 

proc surveyselect data=population method=srs seed=1 n=100 
out=observed_sample; 
run; 

Note: If you're not familiar with the concept of a seed, let's simply say that specif'ing a 
value for it is a way to recover time after time, run after run, the same results. (If you're 
writing a document like this one and you haven't set a value for the seed, then you can 
kiss consistency goodbye because users won't be able to reproduce (and/or check) your 
results.) 	 to 
We then need to draw with replacement some large number B of sub-samples from an 
observed sample, each of size n-I (which is 99 in our example). This would typically be 
carried out using a SAS code similar to, choosing to draw B=1,000 replicates: 

proc surveyselect data=observed_sample method=urs seed=2 n=99 
rep=1 000 out=multiplicities; 
run; 

As a result of performing with-replacement (i.e., method=urs) with proc surveyselect, 
you'll get a file of multiplicities. It describes a given replicate by listing all units that 
were chosen at least once along with the number of times each unit was chosen (i.e., the 
multiplicity). The sum of the multiplicities within a given replicate and stratum ought to 
give the number of units you've sampled with replacement in that stratum (i.e., nh-I).  In 
the example above, summing within a given replicate the variable NumberHits found in 
the proc surveyselect output file inultiplicizies will yield 99. 

The first step in carrying out the bootstrap for a real survey thus appears benign enough: 
we just need to repeatedly sample with-replacement flh-I  units within each stratum from 
the observed sample. But taking the NLSCY as an example we'll show how things can 
get messy pretty quickly if one is not careful. As mentioned above already, in the 
NLSCY the PSU is the LFS rotation group indexed by the date it rotated in. Also, the 
number of PSUs in a LFS stratum that are visited for NLSCY's sampling purposes often 
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exceed 12, while the exact number depend on cycle and province. But the important 
point here is this: not all these PSUs have eligible kids to provide to the NLSCY; many 
are actually empty in this regard i.e., do not yield any 0-I year-olds. Though these 
selected but empty PSUs have no bearing on the weighting of the NLSCY (since they can 
be ignored altogether as if NLSCY's population simply was a domain of the LFS), they 
have to be accounted for in the variance calculation. Indeed, we have to pay a price for 
"wasting" some of our sample size the way we do trying to find members of our target 
population within the LFS. So, out of 12 selected PSUs in a stratum, say only 5 turned 
up to be non-empty; we must then re-sample from all 12 PSUs not just the 5 non-empty 
ones. You may wonder at this point if it really mailers whether we re-sample from the 
whole set of 12 PSUs (by taking 11) or are the 5 enough (and hence choose 4)? Free of 
NLSCY's jargon the question here is this: when the sample you use actually is a subset of 
a sample that was drawn from some design i.e., a domain of the main survey, can you 
bootstrap it directly or do you rather need to bootstrap the main sample? 

If you do wonder whether it matters or not, then you're actually asking what the 
distribution of the multiplicities within a replicate and stratum looks like (arid does it 
depend or not on the sample we bootstrapped from). Other distribution-related questions 
are: How likely is a given unit not selected at all to form a replicate? If we sample with 
replacement 99 units out of a sample of 100, will we often encounter a unit that has been 
selected say more than 10 times? If you're curious about these issues (or you can never 
say no to an exercise in combinatorics!) then Computational Tip#6 is for you; otherwise, 
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	 then you can skim through it but pay close attention to the paragraph that follows it where 
the lesson learned in the tip is restated. 

Computational Tip#6 

To help answer the questions that have lead us here, let $am;;le  stand for the 

probability that any given unit of the full sample gets to appear exactly r times in 
a bootstrap replicate of n-I units selected from n units. Then, 

_IYii 	 (13) 
sansp1e 	r 	n) 

	)n-l-r 

(Indeed, out of the n-I trials, there were r successes and each trial had a I/n 
chance of resulting in a success i.e., the selection of the unit.) In other words, the 
!nultipl icities are binomial ly distributed. 

Similarly, let d,,ain  stand for the corresponding probability under bootstrap of 

nD —1 units selected from n D (<n) units. (The example that lead us here used 

n=12 and n 1  =5, the domain D being the NLSCY.) '[his corresponds to 

bootstrapping only to the part of the sample that was found to pertain to the 
domain D. Then, 
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Here are a few interesting observations to be made about these two probabilities: 

With the exception of a tiny domain size nD  (say < 10 units), both probabilities 
are (for all practical purposes) equal for the same given multiplicity r. In words, a 
given unit bootstrapped from either the full sample or the domain has equal 
chances of getting any given multiplicity! 

For not-too-small nD (and n), say, then one can show that both probabilities 
are (essentially) equal to exp(—l)/r!. In other words, the distribution of 

multiplicities is well-approximated by the Poisson distribution with A =  

Actually, comparing (13) with n20 to the Poisson yields: 

r 1sampie Poisson 
0 0.3774 0.3679 

0.3774 0.3679 
2 0.1787 0.1839 
3 0.0533 0.0613 
4 0.0112 0.0153 
5 0.0018 0.0031 
6 0.0002 0.0005 

They both say the same thing: don't count upon getting a multiplicity over 4 (let 
alone 10, as we considered in the discussion above that has lead us here) 
regardless of whether you re-sample 1.000 replicates from 20 or a trillion units. 

But for variance purposes, this is not enough it's not because re-sampling from 
20 units or more yields the same (univariate) distribution of multiplicities that all 
is well. We need to make sure that p-variate vectors of multiplicitics are also as 
likely to be observed and that's neither as simple nor as true as the univariate 
case. Yet, more importantly, by resampling within the domain we're guaranteed 
if a non-random sample size within replicates equal to flD-1 \ rhereas resampling 
done in the sample will lead to a random sample size within replicates for the 
domain D. 

So, when facing the issue of re-sampling from a stratum with 12 PSUs, of which only 5 
are non-empty, Computational Tip #6 tells us that we need to re-sample the 12 PSUs to 
have any chance of getting the variance estimation right. More generally, all PSUs that 
were consulted for the sampling of the NLSCY, regardless of whether they had 
something interesting or not for the survey, have to be accounted for in the variance. 
This means taking them into account to obtain the proper set multiplicities. 
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Computational Tip #7 

While it's now clear that we need all sampled PSUs for re-sampling purposes, it's 
quite easy to forget all about the empty ones Nkhen actually merging the various 
survey files in the ongoing process of implementing the bootstrap. Indeed, in the 
timeline of a survey of NLSCY's scale, several months go by from the time a 
cohort is sampled to when its variance estimation is undertaken. Also, variance 
estimation is oflen carried out straight from estimation files (which need not 
include the empty PSUs). Add to all this staff movement and in practice things 
definitely can get missed. So, if one starts up all this from the survey weights file, 
then in all likelihood these PSUs will get missed. To prevent that from happening 
in NLSCY, a pseudo-household was created in the main internal file (called the 
Histoire file, for it keeps track of the trek of every kid and household into the 
NLSCY at any given time) that ensures a record for the corresponding empty 
PSU. This way we make sure that the PSUs we need to bootstrap are all 
accounted for and as soon as replication is done (i.e., obtaining the set of 
multiplicities) we get rid of the pseudo-households. 

5.2 Bootstrap weights 

Once the file of niultiplicities is obtained, at cycle 1 of a longitudinal survey like the 
. NLSCY there's no other choice but to initiate the bootstrap using the design weights 

inherited from the LFS using (4). So, the preliminary (i.e., before adjustment due to 
nonresponse) b th  bootstrap weight of unit k at cycle 1 is computed as: 

Cl ,inhticii  
Wkb 	=1_ h 

 Jxmultkb 'k 	 (15)
nh 

- 

Then comes the nonresponse adjustment 7  to the bth  bootstrap weight of unit k by going 
through the Response Homogeneous Group (RHG) it was put in: 

W C1,:nstaaI \ 
( 	

J, 	I 
Cl,nr

= 
 Cl,initva! 	r+nr€RHG 	I 

k,b CI.in,taoI 	I I I Wi 	I 
rERHG 	 ) 

(16) 

It's when we reach cycle 2 (or any subsequent one) of a longitudinal survey that things 
can get messy pretty quickly if we don't make the proper turn at the crossroads. (In what 
follows we'll ground the discussion on cycle 2 vs. cycle I to simplify the exposé but the 
reasoning applies to a cycle i+l that follows any cycle i.) 

Nonresponse and post-stratification in the context of the bootstrap will be discussed later. Nonresponse is 
nly mentioned here because it's the factor in the NLSCY leading to cycle 2's set of units being a subset of 
.'Ie l's. 
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To properly conduct the bootstrap at cycle 2. the bootstrap file constructed for cycle I has 
to contain the following information: identification, design weight. RHG affiliation, all B 
"basic" bootstrap weights, all B nonresponse adjustments, post-strata affiliation and all B 
post-stratification adjustments. Only with such a file at hand can we start up the 
bootstrap at cycle 2 where we left things up last time around i.e., at cycle 1. If the cycles 
of a longitudinal survey were occurring closely in time, then this would be so natural to 
do that we'd have a hard time justif'ing why we're even talking about it! But in reality a 
lot of time elapses between successive cycles (in the case of the NLSCY two years go by 
in-between cycles) and maintaining such files with their huge number variables is an 
annoyance at best, one that many would be glad to go along without. So, what one often 
finds in practice is a bootstrap file, at a given cycle, containing only the B final bootstrap 
weights (along with identifiers, RHG and post-strata affiliations of course but none of the 
intermediate adjustments). This saves storage space. The proponents of that approach 
don't see the need to pursue the bootstrap cycle 2 from cycle I 's bootstrap weights: cycle 
1 sample weights, as "start-up" weights, will do just fine. The rationale here is that since 
the sample based weights used to jump-start the bootstrap already encompass the 
nonresponse adjustment needed to go from cycles I to 2, then nothing is lost.., right? 
Wrong. 

The remainder of this section is to show why (and how) the above rationale is wrong: you 
can't use the survey (or sample, if you prefer) weights at a given cycle and think that the 
cumulative nonresponse adjustments they contain will suffice to capture the variance 
these adjustments have introduced so far in the estimator. There's no way around it: you 
need to pursue the bootstrap from the very beginning until the end, no matter how 
cumbersome that may be. (This does not literally mean that you need to process the 
bootstrap from the beginning of a longitudinal cohort for every cycle. Indeed, the file(s) 
about the latest cycle may very well do provided you took care to store in them all the 
required information to carry the bootstrap forward.) 

The discussion which follows hinges on one principle: whatever way you choose to 
conduct your estimation (i.e., obtaining sample weights), you must be sure that the 
methodology you've actually implemented will allow for the variance to be captured 
when replicated. Often, implementation shortcuts, like carrying forward estimation from 
the latest cycle, will work just for the sample weights: shortcut or not, the final weight is 
the same. This is a first-order moment criterion (i.e., estimates to be obtained from those 
sample weights will be, on average, what they ought to be) but not a second-order one: 
estimated variance under shortcut or no-shortcut need not be equal. And this is what 
matters for variance estimation. 

At cycle 2, ignoring for the moment incentives to post-stratify to focus solely on 
nonresponse, the weight for the sample s certainly can be computed in any of two ways: 

= Wk x(Cl's nonresponse adjustment) x (C2's nonresponse adjustment) 	(17) 

i.e., start all the way from the LFS; or we could use the shortcut that we've already done 
some of this work for cycle l's purpose: 
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..s 	C1,nr 
= Wk 	x (C2's nonresponse adjustment) 	 (18) 

where: Clnr = wk >(C l's nonresponse adjustment). 

It seems pointless to make the distinction between the two ways of computing a weight at 
cycle 2 i.e., proceeding according to either (17) or (18); it actually is pointless here in the 
case of the sample, because we're dealing solely with point-estimation and not variance 
estimation. In other words, both approaches are equivalent as long as all we're interested 
in the end is getting the same point-estimate. But for the purpose of calculating bootstrap 
weights to capture adequately the variance introduced by the adjustment the two are not 
equivalent. 

With many cycles under the survey's belt the advantage of the shortcut computation (18) 
over (17) becomes obvious. Now, remember we're told with the bootstrap we have to 
replicate" what was done with the sample. Can we use here also the shortcut of starting 

our computations at cycle 2 from the sample-based weight obtained after cycle 1? (This is 
the trap we alluded to in the footnote 4 about item 4 of the implementation of the 
bootstrap.) The answer is a big "no"! Why? While it's true that cycle I sample-based 
weight does include the "first-order moment effect" of cycle l's nonresponse through the 
adjustment it was exposed to. it doesn't capture what is required to evaluate the second-
order moment of the adjustment. And there's no other way to capture that than to go all 
the way back to the LFS weight and have each replicate go successively through each 
wave of nonresponse. (Of course, if in cycle I bootstrap weights file all intermediate 
weights were kept one can start from that file but, as we've mentioned already, one often 
throws them away due to the resulting size of the file.) 

Let's now see what the bootstrap weights would look like depending on whether they 
were obtained trying to replicate the long-form (1 7) or the shortcut (18). 

After wave I of nonresponse we have: 

h(j) 
xmull J b 

 nh  
Wk 	

I f+flfEJfG 	h(f) - I 
= 	X 	Xmul t. 1, 

nh 	 h(j) xmuIt,, 
rewaveIcRHG 	h(j) - 

The notation n1, , is used to make clear that the units from a given RHG need not come 
from the same stratum. 

After wave 2 of nonresponse, starting 'from the ground up" as we should, we get 
(l7boot) which is the bootstrap counterpart of equation (17): 

. 

. 
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CInr 
"j,b 

C2,nr 	CI,nrrewaveIrRNG 
Wk.b 	 CI,,,r I (l7boot) 

	

Wk.b 	
Wj  

rEWaVe2rRHG 

Observe that in (1 7boot) the starting point of the bootstrap weight for cycle 2 is the 
replicate-dependent bootstrap weight of cycle I (adjusted for Cl 's nonresponse): 
different replicates yield different starting points. This is the key to capturing the 
variance this adjustment has introduced in the overall picture. Let's see what we'd have 
instead if we initiated the bootstrap using Cl's sample-based weight (adjusted for Cl's 
nonresponse). 

After wave 2, the shortcut-form for the bootstrap weights builds on the (sample-based) 
weight of the latest wave and leads to: 

X multJb  
h(j) 

	

C2,nr,shocu:CI,nr 	nh 	 I rew'eiRHG 	h(j) - 
Wkb 	= Wk 	X 	xmultkb xl 	 (I8boot) 

11h —1 
w" x 	xmultfb J rEwave2rPJjG 	h(J) 

Note: The notation used here for RHGs is admittedly clumsy; there's a dependency on 
the cycle that ought to be acknowledged somehow in the last few equations and instead 
"RHG" is used throughout here as a generic term. This was intentional. Indeed, since 
knowing what the RHGs really are is totally secondary to the issue here, we preferred to 
keep things "conceptually" simple by not cluttering up equations with additional notation. 

Observe that contrarily to the long-form (I 7boot), the cycle-2-start-up weight w 1'' in 
(18boot) is the same for all replicates. In other words, with this shortcut- form, whatever 
effect cycle I 's nonresponse may have had on the estimates is captured solely through the 
effect it had on the sample (i.e., first-order or "average" effect), not on each of the 
replicates (i.e., second-order). This is a crucial difference with (17boot), 

Again, one may proceed this way because he/she feels that keeping all the (relevant) 
intermediate bootstrap information is just a waste of space and (processing) time. Failing 
to have that information, one tries to compensate by supplying instead sample-based 
information but this is far from being enough. 

Here are two additional ways (other than the main one given above on first-/second-
order-moments considerations) to see why the shortcut is inappropriate for variance 
calculations; just pick the one that you find more telling. 

To further help compare the two algebraic expressions for the bootstrap weight we get 
after wave 2, we'll consider a particular case by assuming that wave 2 of nonresponse is 
actually a ghost: no nonresponse at cycle 2 has actually occurred. After two waves of 
collection we're left with those respondents of wave I; therefore, as far as weighting is 
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concerned wave 2 never has occurred. In this case we still have two choices on how to 
conduct our bootstrap for wave 2: start from the design weight (i.e., from ground up) or 
from wave l's nonresponse adjusted weight (i.e., shortcut). If the two approaches were 
equivalent, we should be indifferent to which one we pick in this special case. 

So, the equivalent of(17) in this special case (sc) is: 

wix 	
h(j) 

C2, 	______ 	I j€r+nrRHG 	h(j) - I 	J 1 
Wkb = Wk X 	- xmultkb 1 	h(j) 	

I xl 	(l7sc) I 

ix 	X flUltjb Jwave2 

t jErcRHG 	h(j) 

And the equivalent here of(18) is then: 

C2,nr,thoiicui - C1,nr 
Wkb 	- Wkb X 

(:1wJ 
sample,nr 

x 

X ?flultkb 
__ 	 I jEr+nrRHG 

sample.nr - x 
\ JEI(ThRHG 	 p 

h( j) 
x Multj,b  

11h(j) - 	I(l8sc) 
1 h(j) 

xmult)b j 
h(j) 

wave2.=I 

Let's rewrite w7 in (18sc) to expose the design weight Wk  as to make the two 
expressions (I 7sc) and (1 8sc) more directly comparable: 

( 	w J  " 
C2.nr.shorgc 	I JEr+nrrRJIG I 

W 	
,a 

kb 	= Wk X1 	
Wj17h 1 

xmulrkb 	 (l8sc') 

j€rnRllG j 

Comparing (17sc) and (18sc') one notices that the nonresponse adjustment is different: 
starting from the design weights the multiplicities (in l7sc) are factored in while they're 
left out in (18sc'). This means that in the shortcut the adjustment for nonresponse in a 
replicate is independent of the replicate. Instead of having a nonresponse adjustment that 
fluctuates from one replicate to another the shortcut uses their average" instead. 

Another way of reaching the same conclusion (which you may find more 
methodologically intuitive and less dependent upon equations) is not to see the set of 
bootstrap weights obtained through the shortcut as inadequate for our estimator but rather 
find the actual estimator for which this would be an appropriate way to compute its 
variance. It will then become apparent that the estimator we obtain this way is different 
from the one we're using, hence the error. Consider 

WkVk RHG 

	
(19) 

fl' 
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Here NRPJG = I(RHG) is the known count (taken from the frame) for the RHG and 
U 

N Q  is the corresponding count estimated using the observed sample s. A "hat" was not RH 
put onto NG  to emphasize that when calculating the variance of(19) we don't intend to 
re-compute sample after sample this component: we'll use in all calculations the one ratio 
we got using the sample we observed. NJJG is not known prior to sampling but once s is 
obtained we'll regard this quantity from now on as known and we'd use it as such in 
variance computations. Compare that to the estimator: 

Whyk 
11T1G 	 (20) 

The "hat" in ZIRyG  puts emphasis on the fact that we intend to re-compute this quantity 
sample after sample in order to compute its variance. 

Now, while both estimators have approximately the same expected value with regard to 
the design, they don't have the same variance. 

The morale here is this: the shortcut-form of the weighting is not the one to replicate and. 
more generally, while the bootstrap is about doing to each of the replicates what was 
done with the sample. one must make sure that whatever shortcut was first used with the 
sample does capture adequately the corresponding variance component when replicated. OR 
In a few words... 

- Bootstrap must be carefully investigated to ensure that the proper replication is made 
i.e., variance is properly estimated through bootstrapping. This was illustrated by the 
issue of whether we can just bootstrap the domain of interest of a survey (e.g., the 
NLSCY) or we actually need to bootstrap the entire sample (e.g., the LFS). 

- Shortcuts in creating weights must be carefully assessed. They are not appropriate for 
variance computations purposes if they don't capture the second-order moment of the 
intended adjustment to the weights. Indeed, shortcuts are introduced to simplif' the 
implementation of the weighting methodology and for that purpose they are (usually) 
adequate. But this in itself does not mean that they are adequate substitutes from a 
variance perspective; this is the pitfall awaiting the methodologist when using shortcuts. 
In the NLSCY, we've come to affectionately describe the methodology of using shortcuts 
with the bootstrap as "shortstrap". So, the bottom line is: be very careful whenever you 

. 
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6. DOMAIN ESTIMATION 

In this short section we investigate how the theory of domain estimation is carried out 
with regard to the bootstrap; we'll try to dissipate some of the confusion there seems to 
exist about the mechanics of its implementation. 

We've already tackled one important part of this in Computational Tip #6 where we saw 
that we need to bootstrap the sample not the domain, even if the domain is all we're ever 
interested in. While point-estimation will be the same either way (i.e., shortcut or no 
shortcut), it remains that variance estimation requires, to some extent, the full sample. 
Indeed, one consequence of re-sampling flD-1  units from a "sample" of flD  units in the 
sampled domain is that the sum of the multiplicities in any given bootstrap replicate will 
be exactly nJ)- I. If we instead resample n-I units from n, then the portion of a domain in 
any given replicate will be random in size. This is the way the bootstrap will penalize you 
for conducting the estimation on a domain rather than on a stratum. 

Now, suppose we want to estimate a domain total 

YD =  
k€D 

then the estimator to use is: 

t) = 
kEsrmD 

In practice, this estimate will numerically match with the estimate provided by the 
following: 

= 
ICES 

IWkifkED 
where: k . OifkD 

	

Note that the estimate i 	is constructed from the entire sample but taking care frst to 
set the weight of units outside of D to zero. There's nothing sacred about setting the 
weights of units outside of D to zero and keeping intact the corresponding y-values; we 
could have actually chosen to do the opposite and set they-values to zero instead: 

(2) 
= ZWkYk 

ICes 

* 	ykifkED I where: Yk = OifkD 

. 
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While the end result is the same both ways (i.e., you get the same numerical value either 
way), none is conceptually satisfying: they involve tampering with either the weights or 
the y-values. What we should compute instead is: 

11D = 	Wkyk 	WkykIk(D) 
kEsr- 1J 	kes 

I where: Ik(D)=1 
lifkeD 

This form neutralizes the units outside of the domain with the help of an indicator 
variable and avoids tampering of any kind with either the weights or the y-values. 

The corresponding bth  bootstrap estimate would then be constructed as: 

b)(b) 
= Wk Yk'k(') 

k€b 

Again, all three ways to compute the estimate here are numerically equivalent for a total. 
But we believe the latter form is more satisfying conceptually since 1) we don't mess 
with either the weights or the v-values in order to "neutralize" the contribution to the 
estimate of units outside of the domain D: 2) it's more easily exportable to other 
estimators. 

. 

50 



7. NONRESPONSE AND TWO-STAGE SAMPLING 

In this section we investigate the bootstrap's capacity to capture adequately the total 
variance arising from either nonresponse or a second-stage of sampling. Let's first focus 
on nonresponse. Many people take the usual motto of bootstrap "do with the replicate all 
that was done for the sample" to mean that all that is needed to fully capture the 
component of variance due to nonresponse is to replicate the nonresponse adjustment. 
Popular belief as it is, it's not adequate. While there are situations where the bootstrap 
appears to capture well the nonresponse contribution to variance (e.g., a negligible 
sampling fraction), it's deceptive: even in those favourable situations the bootstrap misses 
one component of the total variance. It just happens that, in those situations, the 
component that is missed is so small that it can legitimately be ignored. 

The bootstrap's motto never was meant for nonresponse (or a further stage of sampling 
for that matter), but rather was intended for methodological processes like post-
stratification with no "randomness of its own". While it's true that post-stratification 
involves randomness (i.e., the sample size that will materialize itself within a given post-
stratum is random), it's entirely determined as a process once the sample has been 
observed. In other words, conditionally on the observed sample, post-stratification no 
longer is a random process though nonresponse (or a second stage of sampling) still is 
random even when the sample is observed. Actually, the nonresponse model that you 
adopt is a description of the randomness which is introduced by the nonresponse and 
remains even after the sample has been observed. 

7.1 Stochastically modelled nonresponse and second-stage sampling components to 
variance 

The reader may find odd that this sub-section puts nonresponse and a second-stage of 
sampling into the same pot. Odd as it is there's no need to treat them differently when it 
comes to variance estimation. First, let's start by saying that two grand sampling schemes 
are the two-phase sampling and the two-stage sampling. To help tell one term from the 
other, it is customary to over-simplify and describe two-phase sampling as sampling in 
two steps the same type of units (say, individuals at both steps) while two-stage sampling 
involves different types of units from one step to the other (say, hospitals in the first step 
and doctors in the second step). A more substantial methodological distinction between 
the two would emphasize the fact that a two-phase sampling design is about gaining 
efficiency despite a poor-on-auxiliary-data frame to begin with. Indeed, ideally one 
could say that had the frame been rich in information, one phase would have sufficed. 
But since it's not the case, we gain from a preliminary phase where the frame gets 
enriched so that the second phase can then be "efficient". Two-stage sampling does not 
have the benefit of a frame comprising the units of interest, even one poor in content 
would have been welcome! In such a case we reach the units of interest by constructing 
intermediate frames from which we sample (e.g., a frame of all hospitals and within 
selected hospitals a frame of all their doctors, assuming here we're after doctors). 

. 
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How does nonresponse fit into that at all? Traditionally, to help capture the variance 
component due to nonresponse, the nonresponse mechanism given the observed sample is 
modelled as if it operated on the sample the way a (random) sampling mechanism would. 
In other words, sample first according to some design followed with an episode of 
nonresponse is treated for variance purposes as if two-phases of sampling had taken 
place: the first phase covers the (intentional) sampling by the methodologist and the 
second phase describes the (un-intentional) sampling forced upon the methodologist by 
nonresponse. (See Sections 9.8 and 15.6 of Sämdal cial. (1992) for a detailed exposé of 
the two-phase model for nonresponse.) Bottom line: mathematically, nonresponse's 
impact on variance is gauged through a two-phase sampling design. 

To summarize, two-phase sampling (of which a one-phase survey facing nonresponse is 
an important case) and two-stage sampling certainly are different from a methodological 
perspective. But the key aspect here is that mathematically, both designs are covered 
from one and the same inferential setting: the two-phase framework. The latter serves to 
track the variance of a process having two phases of random sampling. (The reader may 
also want to read Section 9.1 of Sarndal et al. (1992).) Loosely speaking, the two-phase 
framework allows us to consider random processes like nonresponse where given the 
observables of the first phase, randomness is still at work to yield the second phase 
observables (i.e., the observables of the second phase are not entirely determined now 
that phase one has occurred). 

In the two-phase framework, you can decomose the total variance component into two: 
one of such decomposition known as reverse two-phase is due to Fay (1991) and can be 
stated as (see equation (4) of Shao and Steel (1999)): 

V,(9)=E,,2VPrn (9)+VpH2EpH I(0) 	 (21) 

Note: The inner expectation (respectively, variance) is an expectation (respectively, a 
variance) conditional on the observables of phase 2. 

At first glance, this reverse two-phase may appear quite twisted from a methodological 
standpoint, not to mention nonsensical: how can phase two observables be available 
before we even got phase I 's observables? While not all nonresponse models will allow 
such a decomposition to take place, most will. What is merely required of the model for 
the reverse approach to (mathematically) work is that a unit probability of response is 
assumed to be independent of other units. In other words, as soon as a given unit is in 
one sample or another it is assumed that its true probability of response is the same 

Briefly put, this approach treats nonresponse as if the initial sampling was carried out on two sub-
populations: one of respondents and one of nonrespondents. This is obviously bogus from a 
methodological perspective but then mathematically it makes no difference one way or the other. 
Consequently, one picks in a given context the one mathematical formulation which is easier to work from 
and as it turns out the reverse approach does wonders in account Ir the nonresponse component to 
variance. 

1] 
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though in practice different samples this unit is in may yield ditlerent estimated 
probabilities of responding, but this is a separate issue). 

Methodologically twisted as it looks, you must realize one thing: what only matters 
sometimes (and it's the case here) is the mathematics of an argument, not the way it 
would look if implemented. For any given methodology, its practical implementation 
and its underlying mathematics are two very separate things. In order for the 
mathematical development of a methodology to be valid, it need not correspond to the 
way one would actually go about implementing it in practice. So, in the end, if it's 
mathematically simpler for us to decompose a mathematical entity like variance in what 
is methodologically a reverse way, then let's by all means make progress in our variance 
calculations by going full reverse! © 

The crucial fact to know about that variance decomposition (21) and the bootstrap is the 
following: the bootstrap can (essentially) only act as an unbiased estimator of the first 
variance component V1 . ( We'll see why in Example I below.) So what about the whole 
of V,? If the sampling fraction at phase 1 is negligible then as it turns out V2  can be 
considered to be tiny compared to V1 , small enough to be ignored (or "unbiasedly" 
estimated by 0 if you prefer); this means that the bootstrap which estimates only V1  is 
essentially unbiased for J. as well. For the practitioner this means that the bootstrap 
performs well for a one-phase design survey dealing with nonresponse or a two-stage 

S 
survey if the sampling at first phase/stage is small. Iff, on the other hand, the sampling 
fraction at phase 1 is not so small, then V2  also becomes non-negligible. And to make 
matters worse, the smaller the sampling fraction at phase 2 the larger the component V2  
becomes. 

For the user this spells trouble in two cases: 1) when sampling within strata involves 
large sampling fractions and nonresponse occurs; 2) the survey relies on a two-stage 
design with sampling at first stage involving a large sampling fraction of PSUs. When 
this happens, the component to the total variance missed by the bootstrap can no longer 
be neglected; there's currently nothing in the literature on the bootstrap that can be used 
to compensate: we still don't know how to bootstrap adequately in presence of 
nonresponse. Our current knowledge allows us to capture only part of the total variance, 
and often times this is enough. 

A simple example of two-phase sampling can be investigated to help see what is going 
on. The SAS code behind Example I is provided in Program G. The reader fluent in 
French will find a thorough discussion along those lines in tlaziza (2005). 

Example 1 

Consider drawing in phase one of a survey a sample of size n using SRSWOR 
followed at phase two by nonresponse occurring totally at random and yielding r 
respondents. (Without going into the details, the latter assumption on the response 
mechanism ensures that the reverse approach will work here.) In this case, one 
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can show that in this context an unbiased variance estimator of the mean is the 
one we usually get under SRSWOR with sample size equal to r (see Exercise 9.14 
of Sämdal etal. (1992)). We can get the corresponding decomposition that suits 
this situation by adapting equations 15 and 17 from Shao and Steel (1999). 
Actually, they considered the case of SRSWOR with ratio imputation performed 
for nonrespondents; one recovers our particular situation by noticing successively 
that: 1) imputation by the mean is a special case of imputation by a ratio (set 
x 1  =Ifor all 1, in which case Y =x 1  and s =Sd =0); 2) imputation by the mean 
within the sample amounts here to re-weighting9 : 

2 
V,(9) ErVD(GIr)  + Vr ED (Ofr) 	I -- 	-+ 1' 	(22) ' 

N) r N N) r 
VI 	V2 

VI 	V2 

Note: Er  (respectively, E0 ) is the expectation with regard to the response 
mechanism (respectively, design) and the conditioning is done with respect to the 
observed set of respondents r (respectively, observed set of sampled values s) and 
similarly for the variances. (Note: The notation "r" used describes either the set 
of respondents or the size of that set; the very place where "r" enters (22) should 
make it clear which of the two it represents.) 

In this specific example it's easier to see the connection between the bootstrap 
and the variance component V1  we alluded to above. So, let's say we seek using 
our one-and-only observed sample s an estimate of 

V1  (9) = EfVD(61r) 
	 (23) 

Since in practice all we'll ever have is one estimate 2D (jr) of VD(Or),  this 
implies that our best estimate of ErV(O]r)  is indeed then just r2D(r).  (When 
you have only one observed value x of a random variable X for which you seek an 
estimate of E(X), then the best you can do is estimate it by x.) Now, the 
conditioning in VD(Ofr)  is there to remind us that we're working from a given set 
of respondents r; sure, we could be observing other sets under the response 
mechanism but fact is, in practice, we're given that r. This means that although 
the response indicator associated to each unit is a random variable, the 
conditioning that was done makes the observed response indicator a typical 
survey (i.e.. fixed or non-random) variable. And the bootstrap is meant to act as a 
design-based estimator of variance of a quantity made of fixed variables i.e., an 
estimator of VD(Ofr). 

Using the SAS program provided in Program G, the empirical results in Table 3 
below were obtained which support (at least in the case of SRSWOR and 

If this statement comes in as a surprise, then take a look at Annex A. 

. 
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uniformly occurring nonresponse) the trends depicted above in terms of sampling 
tiactions at both phases. Note just how in Program G the nonresponse was dealt 
with in each replicate. Practitioners believe that this ought to be enough to 
capture the whole variance V in any setting but it's not whenever the sampling 
fraction at phase 1 is non-negligible even when the weights (9) are used. Had we 
not processed the nonresponse adequately in the replication program we would 
have observed that the ensuing "bootstrap variance estimate" doesn't even 
estimate V1  well. So, all we accomplished in the program by feeding the 
replicates through the nonresponse methodology was to keep track of V1 : V2  still 
evades us. 

f r V1  V.,  Vbs  

10% 
100% 0.3759 0 0.3759 0.3772 
80% 0.4663 0.0099 0.4762 0.4697 
50% 0.8030 0.0448 0.8478 0.8613 

25% 
100% 0.1219 0 0.1219 0.1213 
80% 0.1515 0.0101 0.1616 0.1521 
50% 0.2590 0.0443 0.3032 0.2662 

50% 
100% 0.0399 0 0.0399 0.0418 
80% 0.0490 0.0096 0.0586 0.0498 
50% 0.0788 0.0395 0.1183 0.0823 

75% 
100% 0.0131 0 0.0131 0.0136 
80% 0.0163 0.0098 0.0262 0.0164 
50% 0.0261 0.0388 0.0649 0.0272 

Table 3: Variance components of V, in equation (22) as functions of the sampling fraction at first (I)  and 

second (r) phases 

In Table 3: observe notably that: 

- if there's no nonresponse, then the bootstrap captures well the overall variance 
V. (which is only in fact V1 , V2  being negligible here); 
- for a givenf, the smaller the r, the larger the second variance component V2 ; 

- the second variance component V., only becomes an issue (compared to V,) 
when the sampling fraction at first phasef is not small. 

The morale of Example I is clear: the bootstrap's motto does not capture the entire 
nonresponse component to variance. It is therefore not enough to bootstrap the sample 
and have the replicate go through the nonresponse adjustments and think you've captured 
all of the variance you were after. 

But the motto does work for post-stratification and domain estimation because contrarily 
to nonresponse, the post-stratification and domain estimation we carry out are entirely 
determined once the sample is drawn. Let's consider in more details the case of post-
stratification. More precisely, lefs suppose the sampling design is SRSWOR and post- 
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stratification has given rise to G post-strata. In such a situation, the advocated post-
stratified estimator for the mean of a variable of interest Y is (see Särndal et al. (1992), on 
the SI design in Section 7.6): 

GN 

g=1 N 	fl3 
	 (24) 

We're not going to decompose the total variance according to the reverse approach but 
rather using the direct two-phase approach this time; the latter is more natural in this case 
since there's really here just one phase of sampling. It spells out as: 

Vro:ai(i) = VSJWOREPOST_R(5IS)+ ESPSWORVPOST_STR(S) 	 (25) 
VR 	 .,DIR 

The second component VfIR  is 0 because once the sample is given no randomness 
remains (i.e., given s the only quantity that was random to start with, n, is now a 

constant.). In other words, V2DIR  is 0 because VpQs.._sTR (is) is 0. For the same reasons, 

Epo._R (yIs) simply is 5, so that 

'rotaI€) VswQR() 	 . 

A similar reasoning will show that with domain estimation, as with post-stratification, 
there's not truly two phases of randomness: the first-phase sampling 'is responsible" for 
it all. As a result, if we're interested in an estimator 1°  of a domain D mean like (see 
Sarndal etal. (1992), Section 10.3) 

WkYk 
JD YD J  

then the bootstrap ought to capture all of its variance. (See Program H for the SAS code 
which tests this.) 

Now that the applicability of the bootstrap's motto has been clarified, does it mean we 
never were meant to capture the whole variance V under nonresponse even when the 
design is SRSWOR? Actually we could provided we "bootstrapped the right design" or 
succeeded in conducting two bootstraps: one for each component of(22). 

10  If you find puzzling that the estimator proposed is this one regardless of whether the domain size .V 1 , is 
known or not, then you may want to read Annex A. 
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Let's first see what is meant by "bootstrapping the right design" by considering the case 
of SRSWOR yielding a sample of size n followed by uniformly occurring nonresponse 
which yields a set of respondents of size r. This is the framework in Example 1 above. 
We saw that bootstrapping the SRSWOR design and then feeding the replicates through 
the nonresponse methodology devised on the sample was not the way to go. But we have 
already noticed in Example I that, in this case, the resulting set of respondents r could be 
treated as if it had been obtained directly from a SRSWOR design yielding a sample of 
size r. Having concluded that we can take advantage of it and bootstrap directly the set r 
of respondents. This would imply computing the weights according to 

1 	r 
r 	FI N kbWkb 
N

I l _ \riii1 	+ - mul1 	 (26) 

rather than starting with 

N( 	n 
Wkb=1 1 	1 

- 	n 

nN F N+ 	mult flkb 	 (27) 

and have the weights go through the nonresponse adjustments as we did in Example I 
above. The obvious problem with this solution is that a multi-phase framework usually 
doesn't conveniently "collapse" into a one-phase well-known design as it was the case 
here. 

Another tentative solution is to have two bootstrap processes, one for each component of 
(22). To help see how this could work, let's re-write the second component of(22) as: 

	

2 	 2 
'-- + (-f- - --'1 '-- 	+ 

t, 
	~ , _ 

  !') '-- 

	

N) r N N) r 	N) r N 	n) r 
Vt 	 V2 	 Vt 	 V2 

So, the second component of the variance for the mean can be captured by a bootstrap 
procedure of its own because it corresponds to a SRS WOk that draws r units from the 
observed saniple of n units (with the drawn sample playing the role of the population 
here) with the sampling fraction at phase I as an adjustment factor in front of it all. This 
is implemented in Program G2. As a consequence, for the mean, to get both variance 
components of (22) you need to run Programs 0 (for V1 ) and 02 (for V2 ) and add the 
results. The problem with this approach is that we're totally dependent on the mean for 
the decomposition of the variance (not to mention the dependence on the design 
SRSWOR). While (22) tells us how the two fit into the total variance there's no reason 
for that decomposition to hold for estimators other than the mean. Indeed, one can use 
Programs G and 02 for the median and show that the variance estimates obtained don't 
add up to that of the median obtained under SRSWOR of r units drawn from N. 

[1 
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7.2 Replicating the nonresponse adjustment 

We've already encountered nonresponse as the factor in a longitudinal survey like the 
NLSCY which is responsible for the attrition in sample sizes observed as cycles of 
collection take place. 

To capture the bulk of the (total) variance attributed to the nonresponse adjustment under 
a without-replacement design with small sampling fraction using the bootstrap, the best 
known practices call for the replication of the adjustment 11 ; this should yield the best 
estimate possible of V1  under the circumstances (though not, as argued above, the whole 
of V,). Many surveys, NLSCY included, rest their nonresponse methodology on the 
concept of Response Homogeneous Group (RHG). A RHG is, by definition, a group of 
units which are deemed to have the same propensity to respond. A RHG can notably be 
obtained by crossing several variables or by grouping predicted response probabilities 
from a logistic regression model fit to the data at hand. 

So, in concordance with the best known practices, we need to compute in each RHG the 
following adjustment for each replicate b: 

W + Wk 

"Replicate-based" nonresponse adjustment - r€t' 	nrEb 	 (28) 

rEb
-  

Computationally, this is quite involved; it requires evaluating two quantities for each 
replicate: the numerator of the adjustment for a given replicate along with the 
corresponding denominator. This is not that big of a deal in the current era of powerful 
computers but for surveys whose variance methodology based on the bootstrap was 
implemented a while ago this could very well have been an issue. So, it's possible that in 
order to reduce computations one computed the numerator using the sample instead of 
the bth  replicate: 

	

W. + Z  W 	
nr 

"Sample-assisted" nonresponse adjustment= Ei 	flEES 	TES 	 (29) 
Wk 	 Wj 

rEb 	 rEb 

where: w' is the design weight adjusted for nonresponse occurring in the sample. 

The latter is called "sample-assisted" because the numerator of the adjustment is now 
made independent of the replicates and is determined solely by the sample. This 
approximation is attractive on the grounds that the average of all adjustments for a given 

Actually, some argue that we should replicate the entire nonresponse methodology by revisiting the RHG 
construction every time (like re-estimating within each replicate the logistic model parameters). If truly 
needed, then this would be very time consuming since the construction of RHGs often can't always be 
easily automated as it requires lots of specific decision making and investigation. (See Faucher el of. 
(2003) for a discussion on this.) 
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RI lG over all replicates should be indeed about (28). In other words, the first-order 
moment of (28) is (essentially) preserved by using the less computer-intensive (29). 
Also, it doesn't require messing around with the nonrespondents. But here's the catch: 
we're after variance estimation and to be adequately captured, variance requires that an 
adjustment preserves the second-order-moment, in addition to the first. So, as attractive 
as it is, the adjustment (29) doesn't preserve the second-order moment at all and for 
variance this is a big "no". In other words, there's variability in the adjustment (to be 
captured as variance) that comes from having a replicate-dependent numerator. (You 
should by now have a strong feeling of déjà vu: this shortcut of building the bootstrap 
nonresponse adjustment (partly) on the sample is a close-cousin of the shortcut described 
in Section 5 about initiating the bootstrap at a given cycle from the sample-based weight 
of the previous cycle.) 

To help see just how (29) is inadequate in preserving the second-order moment of the 
adjustment (28), consider that we only have 5 replicates to work from and one RHO; the 
following adjustments were computed according to (28) and (29): 

Replicate (28) i.e., correct (29) ie., erroneous 
110/92 100/92 

2 105/91 100/91 
3 100/90 100/90 
4 95/89 1 	100/89 
5 1 	90/88 1 	100/88 

l'able 4: Numerical example illustrating the difference between adjustments (28) and (29). 

Observe that while the average of the 5 adjustments (over the 5 replicates) is about the 
same for both adjustments (i.e., first-order moment preservation), their spread about that 
common average is far from being the same (i.e., (29) fails to capture the second-order 
moment of(28)). 

The consequence of using (29) instead of (28) can be pretty dramatic and is best seen 
from a post-stratification standpoint. Indeed, while a true post-stratification adjustment 
has as its numerator some known total (from an external-to-the-survey source), (29) uses 
an internal total. In other words, the RHGs were used as if they were post-strata. 
Contrarily to post-stratification, the internal-to-the-sample total is not known prior to 
sampling; but once the sample is drawn we can think of calibrating our respondents-only 
weights to it. (Why we'd want to do that is a totally different issue!) Post-stratifying, 
either to an external or an internal total, has one effect on variance: it brings it to zero for 
count estimates of domains which are a (direct) sum of post-strata. Incidentally, some 
people feel uneasy about reporting a zero variance under post-stratification. A zero 
variance is correct in the case of the usual post-stratification because we assume the 
known total to be true (i.e., there'd be no bias introduced by aiming at that target because 
it's assumed to be the target). Consequently, our best estimate sample after sample ought 
to be that calibrated-to total, hence no variance and our claim that our post-stratified 
estimator is unbiased (i.e., no overall sampling error). So, any uneasiness about zero 
vari:lncc here directly spells out as concerns about the known total to be true. But it is 

. 
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wrong for an internal total: what guarantees do we have that this sample-based total is 
true? None, whatsoever. By forcing all the replicates to yield the sample-based estimate 
of the RHG total (which can only coincide with the true total by mere luck) our estimator 
becomes biased though it has zero variance. 

Indeed, suppose the domain of interest coincides with the RUG (our makeshift post-
stratum). In such a case we have the following replicate-based estimate of the number of 
units in the domain (which, we re-emphasize, is the RUG here): 

w7 
jeDnresp 

WA X 	 = 	w7 
j 	j€Dresp 

fED mreri 

(30) 

Equation (29) thus leads to a replicate-independent estimate which is equal, by 
construction, to the sample-based one. In the example above, this means that the 5 
replicate-based estimates would be 110,105,100,95 and 90, if (28) was used, and 
100,100,100,100 and 100, if(29) was instead used, hence a reported bootstrap variance of 
0 in this latter case. If the bias introduced is not properly gauged, then the estimated 
variance as a stand alone estimate of the (total) sampling error becomes absurd. 

This is the chief reason why the variance estimate in Table 1 at cycle 2 is so low; had it 

not been for the usual post-stratification that was put on top of that and thus brought in 
some noise, the estimated variance reported for cycle 2 would have been zero! Indeed. 
the domain variable alone happened to play a very special role in the methodology of the 
NLSCY: it is the one (categorical) variable behind the construction of RHGs in the 
Atlantic for cycle 2! 

7.3 On the construction of RHGs 

While the fashionable trend is to form RHGs by grouping predicted response 
probabilities arising from a logistic model fitted to the data, many surveys still rely on 
chi-square detection of distortions in distributions. The latter methodology may not 
sound familiar to you but the software that is often used to carry it out may ring a bell: 
KnowledgeSeeker. Loosely speaking, the chi-square-based methodology identifies 
variables whose distribution of values after nonresponse represents a distortion of what it 
was before nonresponse occurred. For example, say men and women in a given survey 
were of equal number before nonresponse only to have men dominate the set of 
respondents; this is an instance of a distortion that could be detected using 
KnowledgeSeeker. 

The danger with such a methodology is to let the tool get out of hand by creating a huge 
number of RHGs. For instance, at cycle I of the NLSCY, there were well over 400 
RHGs. Sorting first in ascending order all the ensuing nonresponse adjustments, one can 
then compute the average relative difference between two consecutive adustrnents. For 
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example, successive adjustments of 1.1 and 1.2 differ by 9.1%. The average relative 
dilierence computed for cycle l's adjustments is 0.09%!! The huge number of RHGs, 
and incidentally the limited number of units they're bound to contain, is a contributing 
factor to unstable variance estimates across cycles. Indeed, too small a RHG will present 
highly variable nonresponse adjustments from one replicate to another depending on the 
nonresponse composition of each replicate. This further becomes an issue when 
considering that nonresponse adjustments in a longitudinal survey get compounded 
across cycles, and thus RHGs are to become smaller and smaller over successive cycles. 

Whether it's through KnowledgeSeeker, logistic regression or what have you, 
nonresponse methodology is all about modelling. For instance, if for your cross-sectional 
survey you establish two RHGs based on gender, one for each, then your nonresponse 
model has one factor, gender. It's customary to hear practitioners say in such a situation 
that they've found gender to explain the occurring nonresponse. The issue with this 
terminology is that it's too emotionally charged. If explain is used as in "the set of 
explanatory (dependent) variables of the model", then there's no harm in it. But people 
get easily caught up in the terminology and lose sight of what the modelling 
circumstances (or model assumptions if you prefer) were. For instance, after explaining 
nonresponse through gender an estimate of age, say, was produced for which the true 
total is known as the variable lies on the survey frame, and the two don't match: "Isn't 
that embarrassing given that gender was meant to explain nonresponse and obviously it 
doesn't explain everything? There's still some explaining to do!" The way out is simple: 
ilonresponse was modelled through the effect it had, in this case, on gender (and nothing 
else). Was it a bad choice of leaving all other variables out? If so then this was a bad 
modelling exercise. And if not, then it's a collateral damage: the model can only be 
expected (and you knew about it all along) to correct for what it explicitly accounted for. 
As far as modelling goes, you just don't get something for nothing. 

To help keep the proper perspective on the modelling exercise, here's another point of 
view. Don't perceive nonresponse modelling as explaining nonresponse but rather as 
putting to light effects it has had on your ability to recover stuff that was known (and 
deemed important) prior to nonresponse. For example, before nonresponse say we were 
able to get count estimates of both men and women; let's suppose these summed to a 
ratio of roughly 2:1 in favour of women: we have an estimate of women twice as large as 
that of men. While these totals may not be the true values (which they'd be if we'd had 
post-stratified on gender), we may feel that the sample is the best information we've got 
and in particular that the rough ratio of 2: 1 is to be trusted (short of putting our hands on 
the true totals). And then nonresponse comes and creates one big mess: the ratio in 
estimates using respondents only is now 1:1, not 2: 1. If we feel strongly about our earlier 
estimates on gender (and more generally the distribution we obtained for gender in the 
population) and about the relevance gender has in our survey, then we'll want to rectify 
this "imbalance" introduced by nonresponse. We do that by proposing a model based on 
gender i.e., a meaningful way to summarize the effects nonresponse has had on gender. 
Therefore, the model is simply seen as a mathematical way to acknowledge the shift in 
the distribution of gender we've noticed with the advent of nonresponse. and ultimately 
our intent to correct it. 

. 
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This point of view sure is attractive: it stipulates dearly what we've attempted to do (and 
equally importantly what we didn't attempt to do), namely rectify the distortion 
nonresponse has introduced in our earlier sample-based estimates of gender. Nothing 
less but also nothing more. So if we're interested in age and find dubious the results 
obtained with the modelling then it's hardly any surprise: we've only (and openly) 
attempted to rectify the shift observed on gender. Should we have attempted to rectify 
age also? Sure, if we had any reason to care about it. To drive the point: suppose on the 
frame on children we have the benefit of knowing the eye color of the maternal great-
grand-mother of every child and found that its respondents-only distribution differed 
from that obtained before... Why should we care? 

7.4 On the estimation of "response probabilities": the multiplication of adjustments 
over cycles 

Successive waves of nonresponse call for successive nonresponse models; how should 
they interact with one another? This is an issue that we'll investigate some in this sub-
section. This is more a weighting issue than a bootstrap one. But then, if the weighting 
strategy is not appropriate, then replicating it for variance estimation purposes is certainly 
not adequate. 

What is often seen is that nonresponse modelling at cycle 1+1 is carried out ignoring the 
model from cycle 1; in other words, all respondents of cycle i are pooled and modelling is 
done to explain how a (sub-)set of these have become the respondents of cycle i+l. This 
is the view that nonresponse modelling should bring you "one step back", back into 
known territory (i.e., prior to latest wave of nonresponse). 

To see what is going on, consider the following setting. By the time cycle 2, say, is over. 
the NLSCY has gone through two waves of nonresponse. So, starting from the design 
weights, we need to factor in two nonresponse adjustments in order for those remaining 
individuals at cycle 2 to represent adequately the cohort's target population. Since the 
occurring nonresponse is modelled as being the result of a random process, which is 
reminiscent of a multi-phase approach. the "response probabilities" are treated just as if 
they were true selection probabilities. The issue here has to do with the way by which we 
estimate, or obtain, these probabilities. Suppose that at cycle 1 gender was used to form 
two RHGs, men and women. The cycle 1 adjusted weights for nonresponse are thus 
devised to take this distribution imbalance about gender into account. Suppose now we're 
at cycle 2, with further attrition going on. What is found in NLSCY amounts to the 
following: pool all of cycle 2's respondents regardless of their gender (i.e., cycle l's 
RHO) and propose an RHO model which explains the cycle 1-to-cycle 2 attrition. Form 
then a weight to account for two cycles of nonresponse by simply multiplying the inverse 
of the two nonresponse estimated probabilities. 

But when is such a pooling justified? Proponents of this approach rely (whether they 
realize it or not) on the (largely un-verifiable) assumption of independence-over-cycles of 
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nonresponse factors. This issue is not explicitly addressed in the sampling books. For 
instance, in Survey methods and practices, section 7.1 on Weighting one reads: 

"Thus, for a two-phase sample where a unit 's probability of selection is if1 at the first 
phase and 1t2 at the second phase, a sample unit i design weight, is 

(31) 
1 

There's an imprecision about this advice which is at the heart of this sub-issue: the 
second-phase selection probability will in general be dependent upon the first-phase 
result, hence the following notation reminiscent of that used in Särndal etal. (1992): 

I 	I 

	

Wd X__ 	 (32) 
it, 	

'p211 

But even with appropriate notation, the issue nonetheless remains: how to account 
adequately in practice for the dependency of successive waves of nonresponse? A good 
modelling exercise will do that, but what would a good model here look like anyway? 

l'ossibly the easiest way to implement such a model is to nest RHGs: a RFIG at cycle 2 is 
. constructed, if needed, within a given RHG of cycle 1, and so on. Using our example on 

i.ender above, this would call for nonresponse modelling at cycle 2 by gender (i.e., the 
RlIG of cycle 1). So, males could have a RHG at cycle 2 based on marital status (married 
vs. alone, say) while women's RHG at cycle 2 could be based on education level. But 
this raises a further issue of its own: the number of groups created in such a nested 
fashion may very well grow too quickly to handle as the survey goes through several 
cycles of nonresponse. 

Here again, the calibration point-of-view can help see the good in nesting. At cycle I, by 
forming RHGs based on gender, we essentially said that we wanted the initial distribution 
of gender restored so we proceeded with the adjustments on weights of the responding 
units to straighten it up. Equivalently said, we calibrated cycle 1 's weights after 
nonresponse onto the counts obtained before nonresponse has occurred; those (internal) 
totals matter to us. Now comes a second wave of rionresponse which compromises yet 
again our ability to yield the original sample-based counts on gender. Since cycle 1 's 
nonresponse weights were adjusted to preserve them, it seems natural to work from now 
on within gender to ensure consistency. Whatever way we'll split men into RHGs, the 
sum of all cycle 2 nonresponse adjusted weights for men will match the cycle I 's target 
men total. It thus appear natural from a calibration stand point that any adjustment you'd 
like to make in the present must not in any way compromise all the past calibration 
you've performed. And nesting is such a way (conceptually at least if not practical). 

Now that you know about this imprecision, you may choose to ignore it. The 
consequence is certainly more a first-order preoccupation than a second-order one. If you 



intend to do so, you should conduct simulations to test under SRSWR what would be the 
impact. 

In a few words... 

- While two-phase sampling and two-stage sampling are methodologically different, they 
are mathematically the same for variance estimation purposes. 

- The bootstrap captures only a portion of the total variance under a two-phase setting. 
When the sampling fraction at phase one is negligible, the portion not captured by the 
bootstrap is similarly negligible. As a consequence, the bootstrap 'works" for a survey 
with nonresponse or one with a two-stage sampling design precisely as long as the 
sampling fraction at phase one is negligible. It is not currently known how to implement 
the bootstrap in order to capture the total variance under nonresponse. 

- A methodology should be chosen with some consideration for variance estimation. This 
would avoid creating, for example, a hopelessly large number of RHGs which is 
detrimental to variance estimation (and hardly beneficial anyway for point-estimation). 

. 
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S. I'()ST-Si'RATIFICATION 

Post-stratification is routinely carried out in many surveys as the last methodological step 
in the creation of releasable survey weights; the post-stratified weight is usually 
computed as: 

T 
wr5' 	 (33) 

w7 
POSt -Sfrat urn 

where: T is the known total of the corresponding post-stratum. 

One thing should strike you if you've adopted the calibration point of view to 
nonresponse: we're not nesting the post-strata and the RHGs. As a result, whatever 
"cal ibrat ion" we performed through nonresponse is compromised by post-stratification 
carried out this way. (However, the nesting issue should be minimal here since the post-
stratification factor should be close to I.) The question naturally presents itself: can we 
forget all about RHGs and post-stratification and do everything under the Sun through 
calibration. The answer is yes. at least in principle. See Singh el al. (2005) for a view 
along such lines. The idea is the following: you want to replace the set of design weights 
by a set of final weights such that some functions are invariant (or kept fixed) under the 
veights used. For example, those functions could be about yielding counts (to match at 

• all times known population counts) andlor totals (to match at all times earlier cycle 
released estimates for some variables of interest in a longitudinal survey). But not any set 
of weights satisfying the invariance condition on these functions would do. Indeed, 
we're not ready to throw out our design weights for just about anything: we want to 
maintain whatever feature the design has. We do that by imposing that a distance 
between the optimized weights and the design weights is minimal. This way we ensure 
that our design is kept well in mind in our efforts to have the weights yet satisfy 
conditions not verified by the design weights themselves. (This is incidentally the same 
reason Deville and Särndal (1992) built their GREG optimization around minimizing a 
distance.) The issue of calibration is not as much conceptual as computational. In order to 
have some benefit, extensive optimization has to take place and this is computer-
intensive. An in-depth study of the possibilities and limitations of calibration to address 
at once nonresponse and post-strati fi  cation issues is the focus of research to come. 

Returning to the usual post-stratification, what is a primary concern for variance 
estimation is the size of post-strata. Indeed, they must contain enough units as to make 
the replicates' (and not just the sample's) composition of the post-strata adequate. In 
other words, post-strata must not become empty (or even close) for some replicates. 

In the NLSCY the post-stratification rests upon crossing age (of the kid at cycle 1), 
gender and province of residence at cycle 1; there are 240 such post-strata in the NLSCY. 
Table 5 below gives the post-strata composition for the original cohort of the NLSCY at 
cycle 6 in terms of number of kids. The shaded cells are those that become empty for at 
least one replicate. Table 6 is expressed in terms of number of PSUs and therefore there's 
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double-counting: a same PSU may (and generally will) contribute to more than just one 
post-stratum, which is not the case for children (i.e., Table 5). 

Sex 	Age 	NFD 	PEI 	NS 	NB 	QC 	ON 	MB 	SK 	AB 	BC 

44 15 43 30 Female 	0  140 187 64 66 57 53 

35 22 55 51 154 203 62 51 60 57 

26 16 30 30 2 83 121 43 46 56 42 
17 12 42 34 3 91 113 43 35 45 51 
23 13 35 31 4 1 	81 131 33 33 47 1 	51 
32 16 42 30 5 74 98 35 43 36 28 
18 17 21 33 6 69 96 23 30 40 40 

36 10 30 20 7 72 107 23 30 39 44 

30 8 32 22 8 68 105 38 44 42 31 
24 21 29 23 9 77 88 29 38 42 40 

36 18 30 25 

- 	 23 

10  1 	79 97 28 36 38 37 
36 14 28 11  1 	61 87 26 30 41 31 

Male 	0 

1 

2 

3 

4 

5 

S 

7 
8 

9 
10 

11 

37 20 49 44 142 188 58 52 70 64 
37 22 65 44 145 168 63 62 78 55 
23 10 35 32 112 146 41 48 54 46 
36 13 33 40 106 131 44 51 37 34 
25 14 1 	41 28 1 	85 105 23 41 43 1 	43 
17 13 34 35 88 112 43 51 33 42 
24 18 30 29 64 103 39 26 40 46 
26 9 27 22 69 95 29 37 46 34 
27 8 39 24 68 	1  116 36 24 45 36 
35 10 19 23 63 	1 86 31 31 35 29 
26 11 25 21 58 84 20 26 49 33 
19 9 25 16 59 	1 67 31 27 36 25 

Table 5: Number ofchidren within each post-stratum. 

Sex 	Age 	NFD 	PEI 	NS 	NB 	QC 	ON 	MB 	SK 	AB 	BC 

11 

35 13 38 Female 	0  27 105 150 53 51 43 47 
28 20 42 37 119 167 46 37 52 45 
22 15 21 24 2 67 96 32 40 46 36 
15 8 30 22 3 74 84 32 27 36 40 
19 9 23 23 4 64 101 31 29 37 42 
26 14 34 21 5 62 76 26 30 27 24 
15 18 16 24 6 52 75 18 25 31 28 
27 10 20 14 7 51 79 19 25 27 31 
21 5 21 16 8 54 73 27 30 29 22 
17 12 20 15 a 55 71 23 25 27 29 
22 12 19 18 10  58 66 21 28 25 28 
27 10 20 15 46 70 14 23 28 22 
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29 16 38 34 114 151 44 41 56 49 

26 18 53 33 110 134 52 48 61 44 

20 10 29 28 96 111 29 39 41 41 

24 10 26 28 82 1 	108 38 1 	36 30 28 

21 12 1 	31 26 67 80 21 32 33 36 

14 10 24 28 70 89 38 40 27 35 

17 13 22 23 52 79 30 21 29 38 

20 7 22 14 50 69 21 32 36 29 

19 5 27 21 48 89 22 18 31 30 

26 9 15 14 46 62 23 23 25 21 

17 11 19 14 42 59 13 16 37 20 

14 1 	8 20 10 41 47 22 20 23 21 

Table 6: Number of PSUs (ie., setection units) per post-stratum. 

Currently, when a post-stratum becomes empty for a given replicate, the corresponding 
bootstrap weight is set to 0 for all implicated units. This patch doesn't address the real 
issue: post-strata are unstable the way in which they were designed. One solution is to 
collapse some of them... but according to which of the three variables? This is both a 
subject matter issue (for which sub-populations do we really need to have our weights set 
out to yield known counts?) and a methodological one (which variables can really be 
collapsed?). The methodological issue is not trivial; let's first look at the current post-
stratification adjustments: 

Male 

10 

11 

S 

. 

67 



1.04 1.09 1.12 1.02 1.05 1.23 1.40 1.17 1.12 1.30 

1.18 1.09 0.98 1.05 1.05 1.76 1.19 1.03 1.13 1.72 

1.50 1.86 1.44 1.59 1.18 1.08 1.64 0.96 1.08 1.32 

0.96 1.39 1.38 0.92 1.67 1.09 0.96 0.96 1.68 1.85 
1.27 1.10 1.18 1 	1.57 1.30 1.45 1.87 1.20 1.36 1.28 

2.14 1.02 1.20 0.96 1.29 1.41 0.99 0.84 1.56 1.08 

1.19 0.84 1.03 1.09 1.58 1.38 1.34 1.46 1.16 1.07 
1.25 1.49 1.53 1.36 1.22 1.14 1.45 1.25 1.22 1.42 
1.16 1.68 1.00 1.59 1.34 1.08 1.17 1.83 0.96 1,18 
1.01 1.91 2.17 1.52 2.19 1.35 1.35 1.47 1.24 1.43 
1.22 1.49 1.62 1.86 1.25 1.42 1.96 1.57 1.13 1.29 

2.38 1.92 1.57 2.13 1.50 1.89 1.32 1.72 1.87 1.69 

Male 	0 

1 
2 

3 

4 

$ 

6 
7 
8 
S 

10 
11 

S 

Sex 	Age NFD 	PEI 	NS 	NB 	QC 	ON 	MB 	SK 	AB 	BC 

0.82 1.59 1.34 1.69 Female 	0  1.08 1.23 0.82 0.85 1.45 1.31 

1.09 1.09 0.95 0.83 0.99 1.01 1.19 1.33 1.46 1.25 

1.35 0.96 1.82 1.14 2 1.50 1.22 1.28 1.15 1.04 1.58 

1.68 1.44 0.97 1.07 3 1.20 1.53 1.32 1.32 1,38 1.27 

1.60 1.44 1.02 1.15 4 1.53 1.07 1.66 1.63 1.04 1.04 

0.91 0.98 1.02 1.05 5 1.23 1.20 1.06 1.04 1.50 1.63 

1.98 0.97 1.59 1.05 6 1.27 1.43 1.67 1.35 1.13 1.25 

0.74 1.38 1.04 1.66 7 1.16 1.10 1.76 1.26 1.08 0.93 
1.04 1.79 1.41 1.51 8 1.10 1.39 1.10 0.95 1.11 1.47 

1.29 0.57 1.29 1.47 9 1.39 1.42 1.15 1.04 1.19 1.15 

0.96 0.76 1.54 1.24 10 ___  1.26 1.29 1.56 1.05 1.16 1.21 

1.01 1.14 1.23 1.45 11  1.36 1.46 1.24 1.49 1.15 1.61 

Table 7: Current post-stratification adjustments. 	 - 	 - 

One cannot better illustrate the (adverse) effect of small post-strata on variance than to 
draw the histogram of the 1,000 post-stratification adjustments. Here are the non-zero 
bootstrap adjustments for the post-stratum of 8 year-old male kids in PEI: 
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Graph 6: Distribution of post-strati fi cation adjustments within replicates for the post-stratum of 8 year-old 

males in PEI 

To give you a comparison point, here's the histogram (using the same scale) of bootstrap 
adjustments for a post-stratum with a similar (sample-based) adjustment but more 
densely populated: 3 year-old males in Québec: 
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Graph 7: Distribution of post-stratification adlustrnents within replicates for the post-stratum of 3 year-old 
males in Québec 

Another telling example is taken from 7 year-old males in PEI compared to 4 year-old 
males in Ontario (again, the latter was chosen because the sample-based adjustment was 
similar and is more densely populated): 
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Graph 8: Distribution of post-stratification adiustmcnts within replicates for the post-stratum of 7 year-old 
males in PEt 
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Graph 9: Distribution of post-stratilication adjustments within replicates for the post-stratum of 7 year-old 

nalcs in Ontario 

S 

71 
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Should we consider in the smaller province to collapse according to gender, even if that 
proved to be the scenario chosen by subject-matter? The danger with any collapsing is to 
blend two trends. To illustrate, look at 5 year-olds in Newfoundland. We gather from the 
corresponding adjustments that female weights had to be reduced through post-
stratification in order to match known counts on females while for the boys the opposite 
took place: we had to (considerably) inflate their weights to match known totals on boys. 
If we pool these two sub-populations into one, then at least one of the two trends 
(downward for the females and upward for the males) will be lost, if not both! What 
we'd like from a methodological standpoint is to recover (as closely as possible) sub-
population totals while working at a more aggregate level. To illustrate, suppose post-
strata involving I year-olds in PEL were collapsed to form just one, there'd then be no 
harm done since in both cases the trend was upward by 9% (i.e., an adjustment of 1.09). 

In a few words... 
I 	 .4 

- As with nonresponse, post-stratification should be implemented with considerations for 
variance estimation. Tiny post-strata are detrimental to variance estimation and after-the-
fact collapsing is at best an ad hoc approach that should be avoided with proper planning 
instead. 

. 
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. HscELLANii:ol S 

In this section we cover other important but isolated issues relating to the bootstrap. 

9.1 Stability of the variance estimates 

As we pointed out already in Section 3, variance estimation using the bootstrap involves 
two separate random mechanisms: the original sampling and the re-sampling. A 
satisfactory variance estimator under bootstrap, 	(e). of V(0) should be unbiased: 

EDEb $  (vb (  (0)Is)= V(0) 	 (34) 

if VbO0I(0)  indeed satisfies (approximately) (34), then we'll customarily say that the 
bootstrap "works" for 9. In that sense, bootstrap works for many types of estimators 
which include as an important sub-class those estimators which arise from a smooth 
transformation of the mean, and even works for the median (and more generally for 
quantiles). But here's the catch: in practice we don't have the benefit of evaluating the 
double expectation in (34) and we must instead rely on approximations. The question of 
interest then becomes: are approximations obtained in practice "all equally reliable"? The 
answer is no. There are inferential frameworks (i.e., given estimator and sampling 
design) where vbOO,o)  is very stable as in the case of the estimator of the mean and SRS. 

. 	 indeed, provided sufficient sample size and replicates are used, the estimate can almost 
he confounded with the unknown value itself. And there are other settings where the 
uncertainty around 	() cannot be as readily dismissed; this is the case of the 
estimator of the median under SRS. The measure we'll use to gauge stability is (an 
approximation under Monte Carlo of) the variance of the variance estimate; we'll show 
that under SRS the bootstrap variance estimator of the mean is much more reliable than 
its counterpart for the median. it is important to stress that the instability is not due to the 
re-sampling (or the bootstrap if you prefer) but rather to the nature of (design) variance 
estimation in presence of the median. We'll have more to say on this in Section 9.2. 

Consider the following (general) question: if for some reason the relation V1  <V2  should 

hold for two (exact) variances V1. V2  then would we necessarily have i2 <V2  for any two 
of their estimates? To put this in the context of the NLSCY, let V = V. 1 , the variance of 
an estimator at cycle I for a static characteristic and V2  = V 2  the corresponding variance 
at cycle 2 with attrition due to nonresponse being the sole factor explaining how one gets 
to cycle 2 from cycle I. Consequently, we should have V 1  <V- 2  since, all other things 
being equal, the effective sample size at cycle 2 is smaller than that of cycle I. The 
relationship between the true variances will hold for any two variance estimates, that is 
estimates obtained from possibly dtfjèrent samples, provided that the variance estimation 
of V and V2 is a reliable enough process. This simply means that we require that the 
V s and the 22  's are tightly spread about V1  and V2 . respectively (and thus lay 
iifficiently far away from V and V1 , respectively), in order to preserve the relation 
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between any two variance estimates. Our concern here, with Table 1 well in mind, is: 
when will we really see a variance estimate of a cycle exceed that of the previous cycle 
(as it should for a static variable) as a result of occurring nonresponse? 

To answer questions of this kind, we must keep in mind that there are always two forces 
at work which can make the variance estimates unreliable: the sampling design and the 
bootstrap (hence the two expectations in (34)). For one, the number of replicates used to 
conduct the bootstrap will have an effect on how good the computed variance estimate 
will be as far as replication is concerned. This is what people typically find in practice 
when they notice that in a given situation not much gain in stability in the variance 
estimates is achieved by using 1,000 replicates instead of 500, say. More precisely, the 
variability in the variance estimates due to the bootstrap comes from which set of B 
replicates (among all possible such sets) is actually used: different sets of B replicates 
will yield different bootstrap variance estimates. This is the sampling framework 
underlying the use of the bootstrap. 

Observe that with the bootstrap, one set of B replicates will yield B estimates; these 
bootstrap estimates can in turn be likened to B estimates taken directly from the sampling 
distribution of the estimator. This means we can see the bootstrap as a sampling 
mechanism operating from the (sampling) distribution of the estimator. In other words, 
the replication acts as if the B bootstrap estimates actually were (up to a translation 
fctor) B observed survey estimates: the distribution of the bootstrap estimates attempts 
to recreate the sampling distribution of the estimator. 

Reiterating a point made earlier, if one had access in any given situation to a closed-form 
expression for the variance estimate, one provided by the sampling theory, then one could 
see the bootstrap method used in practice as an attempt to yield a variance estimate as 
close as possible to that coveted closed-form estimate. The closed-form conceptually 
corresponds to having all possible replicates. But even a variance estimate obtained from 
sampling theory in the form of a closed algebraic expression would vary from sample to 
sample under hypothetical repeated sampling from the population. This is simply the 
(design) variance of the variance estimator itself. This component of the (overall) 
variance of the variance estimates is the one we would like most to guard ourselves 
against, but one for which the bootstrap has no influence on whatsoever. Indeed, recall 
that the bootstrap can only attempt to provide us with an estimate "close" to the theory-
supported variance estimate if such an estimate was actually available: the greater the 
number of replicates used, the closer the bootstrap estimate gets to its closed-form 
counterpart. But once the bootstrap (reasonably) achieves that, there's nothing else it 
can do about the sample-to-sample variability which is still present in the variance 
estimates themselves. This main component to the variability in the variance estimates 
thus depends on specific features of the sampling design, like the sample size used. 

In practice one can usually guard oneself against the variability arising from the bootstrap 
by choosing a large enough number of replicates, as large as available time and resources 
permit. But while this keeps one source of variability in the variance estimates under 
control, it achieves nothing with regard to the other component which then can easily be 
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lurgotten. Unfortunately, the component of variance in the variance estimates arising 
from the number of replicates used is usually not the dominant one. Furthermore, control 
over the minor component (i.e., arising from the bootstrap) must not be mistaken as 
control over both components at once. 

A more visual way of saying the same thing is to represent the situation of estimating the 
variance using the bootstrap in the form of a grid which describes all possible variance 
estimates that can be obtained under the two random mechanisms at work. 

Set of B renlicates used 
Observed sample 1 2 3 4 and so on... 

1 II 2 13 
r2 

14  

2 "2I  

'31  V33  V43  

V42 P43 V44  

and so on... ... ... 
Table 8: A two-dimensional representation ot all possible variance estimates arising trom 000tstrapping 
samples. 

In Table 8 there's one line for each of the different observed samples one could have to 
work from (all obtained from the same sampling design of course) and there's one 

.  column for each set of B replicates one could possibly draw. (Observe that it's not the 
number of replicates B that changes from one set to another but rather which units of the 
observed sample get to make the B replicates.) The main entries of the Table 8 represent 
the various variance estimates one would obtain under these two sampling mechanisms. 

In practice, that is bootstrapping only one sample, one obtains only one entry of the two-
dimensional Table 8 above; let's say it's the entry (1,1): first line and first column. 
Indeed, one usually has only one observed sample from which to conduct the bootstrap 
using only one set of B replicates. So, in practice we want to know just how , as an 
estimate itself, is variable. But there are two ways of answering this. Indeed, we can ask 
what other variance estimates we would have obtained had the set of B replicates been 
different than the one actually used to compute . These variances make the entries on 
the same line as 	. Or we can ask what other variances we would have obtained had 
the observed sample been different than the one used to compute V11  . These variances 
are found in the same column as i 11 . (For the intellectual gymnastic of changing 
samples but keeping the same set of replicates, we need to think of the bootstrap as 
selecting rankings in a sample rather than labels. So a given replicate did not result in the 
choice of unit labelled 2, say, but rather the second unit in the (random) ordering by 
which units of the sample are listed.) The column-to-column variability in the variance 
estimates is due to the bootstrapping while the line-to-line variability is due to the 
sampling design. 
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We can therefore liken the computation of bootstrap variance estimates on a very large 
number of replicates to an attempt to provide ourselves with a variance estimate close to 
the estimate we would get if a closed-form expression provided by the sampling theory 
was available to us. 

Closed-form variance expressions were referred to quite a few times above as the 
sampling theory counterparts to the computed bootstrap variance estimates. It may help 
to see this parallel if we put the closed-form variance estimation framework in a grid-
form like the one above. For that purpose, consider that the design is SRSWR and we're 
interested in estimating the variance of estimates of the mean. In such a simple setting 
we have a closed-form expression for the variance estimates, it is: 

S 2  (35) 
a 

The grid in this case can be seen as the two-dimensional Table 8 above "collapsed" to 
only one column: one set made of all possible replicates, since if we took all possible 
replicates we'd fall back on the usual variance estimate. 

Observed sample Variance estimate 
= 

2 
V = Ss2=/;;' 

 
= 

S=/3 

'I 
V = s 4/ 

and so on... 
Table 9: This is the two-dimensional Table 8 collapsed to just one dimension when all replicates can be 
used 

To help gauge the two components to variance estimation just mentioned, we'll 
repeatedly use the following result from classical statistics. But since our context is not 
classical statistics but rather survey sampling, we need to keep in mind that this result is 
at best heuristic in our context. Actually, the main reason a result like this is considered 
here is to ground simulations. indeed, running simulations can be hazardous, especially 
in uncharted territory, due to computational errors, misunderstood assumptions, etc. It 
considerably helps (and secure later findings) if one starts with simulations in simple 
frameworks where outcomes can somewhat be predicted. Once a simulation is validated 
this way, we can have some confidence extending it to more complex frameworks where 
essentially it will sail on its own. With hindsight, you'll find that each simulation that 
was used in this paper never was solo. For example, if it was about the performance of a 
little-tested estimator like the median, then it also featured a better-known estimator like 
the mean to help "cross-validate it". 

to 
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The result is the following - see Dudewicz and Mishra (1988) p.325  (Efron and 
iibshirani (1998) get essentially to the same result, but by different means): 

Result 1 

Let X I ,X2 ,...,X M  be M i.i.d. variables with mean p and variance o.2  The 
M 	- 

sample-based variance estimate S2 = 	
M 	

of c72  has a variance which is 

given by 

V(S2) (a 4  —i)o 	 (36) 
M 

where a4  is the kurtosis of the distribution of the X,'s. 

Note: Since there's no consensus on the delinition of the kurtosis, it's important to make 
precise which one we use. For our purposes the kurtosis of the distribution of 
probabilities associated to the random variable X with mean ji and variance 0.2  is 
delined as: 

/_(_',_ - / 1 
(14 = 

0• 

In some books and, most importantly for the user, in SAS the kurtosis used is the kurtosis 
defined by (37) minus 3. This is done so normal distributions get a kurtosis value of 0 
(instead of the unremarkable value of"3" they get under our definition). 

Let's now consider the two cases of stability separately and use Result 1 to evaluate how 
important each component is. 

lithe sample's composition changes but the set of replicates used remains the same. then 
we're assessing the stability of the variance estimates with regard to the sampling from 
the population. (By considering the same set of replicates for each drawn sample, we're 
doing as if that set provided us with an error-free estimate as far as bootstrap goes.) 
Therefore, for a given set of B replicates, the stability of the bootstrap variance estimates 
depend on how the characteristic of interest is distributed in the population. In this case, 
we can rewrite (36) in terms of CV as: 

U 
CVB(S) ja

4  _i) 

- 	n 

. 

(38) 
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where a ... 1  is the kurtosis of the distribution of the characteristic of interest. 

Simulation D 

In Program D, one hundred samples of size 100 (500 and 1.000) were drawn from 
a population of 10,000 under SRSWOR; there are two characteristics of interest: 
one normally distributed (with a kurtosis of 3) and the other exponentially 
distributed (with a kurtosis of 8.75). Each sample was bootstrapped using the 
same set of 1,000 replicates. We're interested in the stability under the sampling 
design of variance estimates for the estimator of the mean. Tables 10 to 12 below 
give the CV of various variance estimators for sample sizes of 100, 500 and 
1,000. 

Estimator Source Normal Exponential 

Mean 
Closed form 15.2 25.7 
Heuristic 14.1 27.8 
Bootstrap 15.6 26.5 

Median Bootstrap 47.0 48.4 
Table 10: Comparison ofCVs obtained under a sample size of 100. 

We can see from the Table 10 that all results concur in the case of the mean; 
variance estimates for the exponential variable vary more from one sample to 
another than those for the normal because of its greater kurtosis. In the case of 
the median we only have one source, the bootstrap. According to it, the variance 
estimates for the median vary much more from one sample to another than those 
for the mean for the same variable of interest. 

Estimator Source Normal Exponential 

Mean 
Closed form 5.5 11.3 
Heuristic 6.3 12.4 
Bootstrap 6.6 12.1 

Median Bootstrap 29.9 36.1 
Table I 1: Comparison of CVs obtained under a sample size of 500. 

Estimator Source Normal Exponential 

Mean 
Closed form 4.3 7.8 
Heuristic 4.5 8.8 
Bootstrap 6.4 9.7 

Median I Bootstrap 1 	25.5 1 	30.2 
Table 12: Comparison ofCVs obtained under a sample size of 1.000. 

The lesson here is this: for a given sample size, variance estimates for the median are 
much less stable than corresponding variance estimates for the mean. So, while the 
bootstrap "works" for both the mean and the median in the sense that the expectation of 
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S the bootstrap variance estimator (essentially) is the true corresponding variance, in 
practice variance estimates for the two are not equally reliable. 

On the other hand, if we work from the same observed sample, then the stability of 
bootstrap variance estimates is now dependent on the re-sampling. By fixing the observed 
sample, we can then liken the bootstrapping to sampling directly from the sampling 
distribution of the estimator. The precision of the estimate of its variance is then solely 
expressed in terms of the number of replicates used, say B: hence: 

- 	
—I) J (a estimator 

cv (s 2)   
B 

The kurtosis now entering (36) is that of the sampling distribution of the estimator for all 
practical purposes we can assume this distribution is normal and hence get the following 
CV: 

et,n,ator 	1) 
CVp,nhj (ooszrap )=

~ (a 4s - 

B 	= 
(40) 

Stability of bootstrap variance estimates in terms of the 
number of replicates B 

0.25 

> 	\ 
0.1 

0.05 

0 	 I  
0 	200 	400 	600 	800 	1000 	1200 

Number of replicates B 

Graph 10: Stability of the variance estimates as a function or the number of replicates used in the bootstrap. 

(39) 
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(iraph 10 depicts somethin 	\ hich isalrcad\ veII-known Of users about the bootstrap 
through simulations: the largest gains in stability are provided by the first 250 replicates. 
In Simulation E we illustrate the heuristic result regarding the stability in variance 
estimates with respect to the bootstrapping. 

Simulation E 

In Program E, a population of 10,000 units was created with 2 variables of 
interest: one is normally distributed and the other exponentially distributed. A 
sample of 100 units is drawn under SRSWOR to play the role of an observed 
sample in practice. The observed sample is bootstrapped to yield 1,000 replicates. 
The bootstrapping is done 100 times. The kurtosis is assumed to be 3 (i.e., a 
normal sampling distribution for the estimator). (The program also expresses the 
stability of the variance estimates for the mean with regard to the bootstrap in 
terms of root mean-squared errors - RMSE). 

Seed (sample) Mean normal Mean exp. Median 
normal  

Median exp. 

1 4.9 4.7 3.3 3.3 
2 4.1 4.4 5.3 4.7 
3 4.6 4.6 5.5 4.8 
4 4.4 1 	4.9 1 	5.1 1 	4.2 
5 4.9 1 	4.4 1 	7.4 1 	4.0 

Table 13: Stability of variance estimates under bootstrap tOr the mean and median in terms of CV. 

The context in Simulation E allowed us to ignore the finite population correction factor in 
the bootstrap. A question that arises is whether the bootstrap in the context of a non-
negligible sampling fraction is as stable as in the negligible case. It turns out that 
whether or not you work with a negligible sampling fraction the same number of 
replicates will buy you the same stability in the bootstrap variance estimates as 
Simulation E2, below, shows. 

Simulation E2 

Program E2 is a variant of Program E that allows for larger sampling fractions to 
be processed in a timely fashion. The population made of 1,000 units was created 
with the same two characteristics as in Simulation E. Sample sizes of 100, 250 
and 500 were considered allowing testing the stability of the bootstrap over larger 
and larger sampling fractions. The observed sample was bootstrap 100 times, 
each bootstrap run using 1,000 replicates. 

The stability of the variance estimates is expressed in terms of CVs. 

. 
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S Sampling 
fraction  

Mean normal Mean exp 

10°/o 4.8 4.2 
25% 1 	4.7 1 	4.4 
50% 1 	4.6 1 	4.3 

As you can see the CV doesn't change significantly with the sampling fraction 
used in drawing the observed sample. 

Now that we've gone to great lengths describing both random processes behind bootstrap 
variance estimation in practice, we're ready to give a more compact description of it all. 

The idea here is to decompose the total variance i.e., the variance due to all random 
processes at work confounded, into its components using conditional 
variance/expectation. (This trick was used above when we investigated the two-phase 
framework.) We get: 

VVb (i)) = Edesign  Vb $  'b (0)15) + Vdes,gn  Eb001(Vb (0)ls) 

The component EdCS,Vb,(Vh(0)Is)  evaluates the contribution to the overall variance of 
. 	 the fact that bootstrap involves a sampling process of its own. Indeed, given a sample s 

(0)15) evaluates the variability we'd observe in the bootstrap variance estimate 
, 1e) as we go through different sets of replicates (each set containing the same given 

number B of replicates). This is the column-wise variability of Table 8. Once that 
variance has been calculated. we must 'average it out" over all possible samples to 
relieve the dependency of the calculation performed on the specific sample that was used 
in the conditioning. As we saw above the component Ede51gfl Vboo,vb (0)Is) is usually not 
the major one and actually it goes to 0 as the number of replicates increases to ultimately 
reach the total number of replicates the re-sampling gave rise to. 

The component VdCS,,EbOQ,(vb(0)Is)  evaluates the contribution to the overall variance of 

the design variance. Indeed, given a sample s Eb1(1'b(0)ls)  first "stabilizes" the 
bootstrap variance estimates with regard to re-sampling. By averaging out with respect to 
the bootstrap process, we take the replicate-effect out in a way, thus revealing the 
sampling design aspect before even thinking of assessing its role in the overall picture by 
computing Vdes, g , l (•). As we saw above, this is of the two the major component to the 
overall variance (i.e., variance estimates usually vary more from one observed sample to 
another than from one set of B replicates to another). 
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9.2 Bootstrap and the median 

The median is often cited as an example of a non-smooth estimator for which the 
bootstrap works. But what is a smooth estimator anyway? An estimator is smooth if it 
can be expressed as a function g of an estimated total whose derivative is itself a 
continuous function. What's the big fuss about smooth functions then? A big part of the 
answer comes from classical statistics where the following can be shown to hold. 

Result 2 (Theorem 6.3.18, Dudewicz and Mishra (1988), p.327). 

Suppose that J(x —0) _d ,N(O2)  and that g(x) is a function for which the 
derivative g'(x) exists and is continuous in some neighbourhood. Then 

a' 	N(O,[g(e)]2o.2) 	 (41) 

Into words: the transformation of a "normal-inclined" random variable yields also a 
normal-inclined provided the transformation is a smooth one. 

We've already noticed that the variance estimate under SRSWOR of the median doesn't 
enjoy the same level of stability as that of the mean. This is an important issue to keep in 
mind because in practice we only have the benefit of one variance estimate. And things 
can potentially get worse for other quantiles. Indeed, for most distributions the 
practitioner will encounter (i.e., unimodal ones), the median will reside in a "densely' 
populated neighbourhood of the distribution. This would not be true though for a 
distribution with two humps, one looking like a camel's back: the median would then be 
located in a scarcely populated area. Quantiles other than the median tend to occupy 
scarcely populated area of the cumulative function; think of the 95% quantile for 
instance. Furthermore, Woodruff s method hints that in order for a variance estimation 
method of a quantile to be efficient, the local shape of the underlying cumulative function 
must be "stable". 

To illustrate, take a normally distributed variable of interest Y. Its (discrete) cumulative 
distribution is given by the broken (or blue or dark) line while the continuous (or pink or 
light-coloured) line is the cumulative we'd observe if Y were continuous (i.e., infinite 
population). See how the two lines are locally, here and there, quite apart; these 
discrepancies will create instability in the inferential process for the quantiles. 
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Graph 11: The cumulative function of a normally distributed variable on a discrete support. 

Computational Tip #8 

There's an issue with the way SAS computes a median from weighted data that 
the user needs to know. SAS first computes the 50th  point on the weighted data 
and this is done the expected way. If it falls between two successive values in the 
dataset then SAS chooses as the median the larger of these two values. In other 
words, the weighted median of a variable of interest is always an observed value. 
Consequently, the further apart successive values (or the units' weight) in the 
"middle" of the dataset are, the more discrete is the set of possible" medians. 
For example, under re-sampling, a given replicate will come to a median value 
that is close to the one obtained based on the sample. So, if in that area values are 
distant from one another (or weights are large). then the set of distinct medians 
generated from all replicate will he small: the set is very discrete (as opposed to 
being 'continuous"). As a result, the histogram of the bootstrap replicates will 
look little like the (continuous) distribution of medians obtained under a Monte 
Carlo simulation. 

In Program F you'll find the SAS code which estimates the median in the case of 
weighted data using interpolation. 

Simulation F 

As usual, a population of 10,000 was generated and the variable of interest is 
normally distributed. We're interested in estimating its median using a SRSWOR 

. 
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sample of size 100 and estimating the variance of the estimator using the 
bootstrap. 

The Monte Carlo approximation of the (exact) variance of the median is 
calculated to be (look in the Output window for the summary statistics yielded by 
the proc univariale): 

V,(median)= 6.0203 

We can check that result with the following classical result (see Dudewicz and 
Mishra (1988) p. 374) which states that for a normal variable the following 
approximation stands: 

V(median) Ir  V(mean) 

We find: 

(median) = 6.0369 

The Monte Carlo approximation of the sampling distribution of the median 
estimator is provided in Graph 12. 
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Graph 12: Sampling distribution of the median estimator as depicted through a Monte Cark 
simulation. 
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The bootstrap approximation of the sampling distribution of the median estimator 
relying on SAS procedures to compute the (bootstrap-)weighted medians is: 
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Graph 13: Sampling distribution of the median estimator as depicted by the bootstrap using SAS 
proc summaly. 

The distribution is very discrete. Using now the linear interpolation, the same 
1,000 replicates yield a more continuous approximation of the distribution: 
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Graph 14: Sampling distribution of the median estimator as depicted by the bootstrap using 
interpol;tton 

But either '. iy the coniputed bootstrap variance is 

VBS (median) = 9.68 

Using a different sample (i.e., seed value of 4 instead of a seed value of i in the 
corresponding proc surveyselect) yields: 

v 95  (median) = 4.61 

In other words, with a sample size of 100 under SRSWOR the variance estimates 
for the median are all over the place. But this ought not to be a surprise since in 
Table 10 we already had established that the CV of the variance estimator for the 
median in this was about 47%. 

Translating that into a 95% confidence interval about the (approximate) exact 
variance, we get: (6.0203 ± 2 x 0.47 x 6.0203) = (0.36,11.68). Nothing to write home 
about, especially for a sample size of 100! 

We reiterate at this point that it's not the bootstrap that necessarily has problems in the 
case of the median. Indeed, a parameter which strongly-depends on the entire 
distribution of the estimator will prove difficult to estimate whenever sample sizes are not 
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at least of moderate size. The median is one such example and it is expected that other 
percentiles of the distribution are in fact behaving worse; take for instance the 90th 
percentile which is in a scarcely populated area of the distribution and probably less 
robust to changes in the depicted distribution (obtained as you depict the distribution 
bootstrapping one sample or another) than the median. An alternative to the bootstrap for 
a survey that solely needs it to take care of the median is Woodruff's method which is 
described in Annex B. Actually, whenever possible the median should be avoided 
altogether in favor of the better-behaved mean. Yes in the case of strongly skewed 
distribution there's hardly any escaping the median. But then, in practice distributions 
may appear more skewed than they really are because the survey data contains severe 
outliers that have gone undetected and thus unaddressed. This is likely to appear, for 
instance, in a survey where data collection allows income to be captured hourly, daily, 
weekly, monthly or annually. Errors like a misplaced decimal in a reported figure or a 
correct figure but reported over the wrong period will cause outlying values. 

9.3 The mean bootstrap 

To address small domains (or deal with confidentiality issues), a variant of the bootstrap 
called the mean boots/rap has recently emerged ('mean" in the sense of "averaging", not 
"nasty", though... (9). The idea behind the mean bootstrap is the following. As we've 
seen the usual bootstrap only allows integer multiplicities; there are therefore only two 
types of outcome for a unit: either it enters a given replicate, i.e.. its multiplicity is an 
integer >0, or it doesn't enter the replicate i.e., its multiplicity is 0. For small domains, for 
instance, each time the latter outcome happens the domain gets deprived of a critical 
representation in the replicate. The idea is to offer to the unit more "choices" as to its 
multiplicity; under mean bootstrap the multiplicity is allowed to be a (positive) rational 
number. So, instead of being either chosen or not, the multiplicity under mean bootstrap 
can be 1/2, 1/3, 1/4, etc. To implement the mean bootstrap resulting in B replicates being 
created, one actually constitutes under the usual bootstrap M*B  so-called auxiliary 
replicates. M is some not-too-large a number, say 10 to fix ideas. One forms each of the 
final B replicate by averaging the multiplicities over the corresponding M auxiliary 
replicates. One can readily see the appeal of the mean bootstrap: in order for the final 
multiplicity (i.e., the averaged one) to be 0 for a given unit, one needs to find that the 
given unit was chosen in none of the Mauxiliary replicates, which is a quite rare event. 

The problem with the mean bootstrap at this point in time is that instead of providing us 
with a solution closer to the nurturing ground of the traditional bootstrap we're making a 
step further into the unknown. And we currently have our hands pretty full with 
unknowns concerning the bootstrap in relation to survey sampling as it is! Actually, as 
these words were written, it appears that whatever gains there'd be in using the mean 
bootstrap are out-weighted by its (many) shortcomings. There's talk that the mean 
bootstrap leads to moderate to severe bias in many inferential contexts. The interested 
reader should seek further information on the mean bootstrap before tackling it. 

. 
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9.4 Unequal weights 
	 L71 

NLSCY, as other surveys feeding from the LFS. has to deal with a stratified multi-stage 
design involving, as we've seen above, largely unequal weights. 

Nonresponse occurring over successive cycles may have other impacts on the variance 
than those already described. Indeed, a stratified design of (homogeneous) PSUs, as is 
the case of stratified multi-stage designs, combines two poles in terms of efficiency: 
stratification tends to reduce the variance while homogeneous PSUs work to increase it 
(all other things being equal of course). With nonresponse, the PSU may become over 
time less homogeneous. Therefore the stratification may benefit from this and contribute 
to a non-increasing variance over cycles (i.e., as stratification moves from an originally 
inefficient methodology to a... less inefficient one!). This is merely a hypothesis to be 
kept in mind, and tested if needed, rather than a fact at this point and time. 

Also, unequal weights contribute to making the variance unstable, especially in the 
(common) situation where all analyses are carried out with one-size-fits-all set of weights 
(both sample-based and bootstrap). Indeed, two highly correlated variables of interest 
may have significantly different sample-based estimates, but also bootstrap estimates, 
because the units for which they don't concur have the larger weights. Furthermore, a 
given variable, static over time, may see its estimated variance not increase over time 
simply because the tails of the bootstrap distribution of estimates exist thanks to 
contributing units having the larger/smaller weights. As those units are lost to 
nonresponse, the one-size-fits-all methodology for nonresponse may not compensate 
adequately for this one loss (though it's expected to work well "on average" i.e., for all 
variables) and therefore the tails may simply vanish (or appear reduced in importance as 
cycles go by). As a consequence, what used to be an extreme (bootstrap) estimate at a 
given cycle may altogether disappear and never reappear in subsequent cycles. With the 
ensuing distribution getting tighter about the (unaffected-by-the-losses) mean the 
estimated variance does not increase as it's expected to. 

. 
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9.5 CV Extraction Module 

In a survey like the NLSCY, support to users of the data is part of the mandate of its 
methodologists. One of these tasks is to guide users on how to integrate bootstrap weights 
into their analysis. The CV Extraction Module (CVEM) was born from the need from 
users to obtain approximations to variance for an estimate of a proportion in a timely 
fashion; this is one of the many uses made of bootstrap weights. In the past, users have 
relied on CV look-up tables which provided some variance approximations by making 
various simplifying assumptions about the actual sampling design. An approximation to 
the bootstrap variance, rather than the full-blown calculation of it, may become handy to 
users who are in exploration mode for their analysis it allows delineating which analysis 
can statistically be supported from those jeopardized by sample sizes too small to carry 
them out. 

A CVEM was introduced in the NLSCY at cycle 4. and it may very well have been a 
first at that time for a survey at Statistics Canada. It takes the form in the NLSCY of an 
Excel spreadsheet with various pre-defined domains of interest as the rows and domain 
descriptor and various statistics about them as columns. In other words, the CVEM has 
in store a variance approximation that was calculated for a wide range of domains and 
proportions of interest. The user gets to probe the database of variance approximations 
by using a tool which extracts the relevant information for the request made. In the 
simplest of all cases, all pre-conputed estimates are stored in an Excel table and the user 
probes its content using Excel autofilters. 

The snapshot below is taken from NLSCY's CVEM for cycle 6. An autofilter used on 
each column creates a pull-down menu which contains the different values (and 
combinations of them) admitted by the column: in this example the user chose 'Atlantic" 
from the column "PROVINCE". Once that choice is finalized by left-clicking on it, the 
table screens out automatically all domains whose geographic component is not 
Atlantic". One can refine further the selection by using, if needed, the autofilters on the 

other columns. 
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The Longitudinal Survey of immigrants to Canada provided its users with an even more 
user-friendly (and fancier) tool which is an extension of NLSCY's CVEM, their version 
is now what people have in mind when they speak of a "CVEM". It uses a Visual Basic 
for Applications (VBA) supported interface which extracts from several Excel databases 
the information corresponding to what was captured in the fields used by the user to 
define his/her request. The VBA-based CVEM was introduced mainly because the LSIC 
had many more domains to cover and these outgrew the storage capacities of a single 
Excel spreadsheet; several now had to be used and the concept of auto-filters, at the heart 
of NLSCY's CVEM, was extended to a multi-sheet environment with the help of VBA. 

The first generation of CVEM in the NLSCY produced an approximate variance for a 
domain of interest for a characteristic assumed to be held by p% of people by randomly 
generating first such a characteristic for the sample and computing its variance estimate 
using the 1.000 bootstrap weights. To avoid having this variance estimate depend on this 
one specific realization, 100 such characteristics were independently generated and the 
ensuing variance estimates averaged out to fomi the CVEM variance approximation. In 
other words, the approximation to the variance for p in a domain D, A 	(p), 
computed by the CVEM is: 

A CVE (p) = R 	 - k )2 1 
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S where: 

Y. WJIJP 
- JED(S 	sample-based estimate for p in D using the kth  generated 
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1WJ 'kj,p 

Ô(D) = jEDr'b 	 b bootstrap estimate for p in D using the kth  generated 
b,p,k 	1 ,(bs) 

j€Db 

characteristic 

In the case of the NLSCY. all the domains considered turn out to be direct sums of post- 
strata. As a consequence, the denominator of the estimate 0b,p,k  is not random with 

respect to the bootstrap. Indeed, for all replicates, it's equal to the sum of the post-strata 
totals which make the domain D. 

Before we go any further, a word of caution has to be said about the CVEM. By 
randomly generating in such a way characteristics of interest in the sample. we construct 
variance approximations under the assumption that the characteristic of interest and the 
design weight are independent. This is a very strong assumption to make, one that users 
should keep well in mind when exploiting the CVEM. Indeed, a real dichotomous 
characteristic seldom can be assumed to be independent of the weights: in the case of the 
NLSCY, any dichotomous characteristic related in one way or another with geography is 
bound to be correlated with the weights. The approximate variance computed above can 
only be accurate if the design is self-weighted as with SRSWOR for example; any 
departure from that scenario will compromise the reliability of the approximation to the 
variance calculated this way. 

The main disadvantage with this first generation is the incredible amount of computer 
resources it takes to run. For example, to build in a timely fashion the CVEM inside the 
tight production window of the NLSCY at cycle 5, several computers were used (through 
SAS connect) to get the job done. 

By the time cycle 6 of the NLSCY had arrived a simplification in the computation of the 
approximate variances was made which opened the way to a significant reduction in 
computing time in building the CVEM. To reveal it, let's first permute the summations 
signs in A v? 	p): 

000 	1ioo 	s.p.k )2] 

() 



In the bracket now is the averae of the square term over the randomly generated 
characteristics. But this is simply taking the expectation with respect to a Bernoulli 
random process. 

100 

	

)2 EBEJJ(O 	(D))2 
s,p 

where 	and 	are functions of the random Bernoulli variable I,., whose 100 

realizations have yielded us {0P)k }° and {ô' 	respectively. In the case of the 
NLSCY things are even simpler because all domains considered are direct sum of post-
strata. This means that the denominator of a proportion is a known total and thus does 
not vary from one replicate to another, hence there is no need to repeatedly calculate it. 

We can work out the expectation under the Bernoulli process to find: 
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The approximate variance then becomes: 
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Computationally, this is much less-intensive than the previous form since each term is 
computed once, not one hundred times; at cycle 6 it took just a few minutes of running 
time on a single computer to gather the variance estimates required by the CVEM. 

Computational time can he reduced even more if one exploits the following link: 

. 
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Indeed, the average taken over the replicates used is an attempt to evaluate the 
expectation with respect to the Binomial process responsible for the multiplicities 
imbedded in the bootstrap weights (see Computational Tip #6). Unfortunately, in order 
to carry out the algebra involved in computing explicitly this expectation one has to make 
some simplit'ing assumptions which, in the end, we don't feel are worth the effort (and 
whatever little further gain in computing time there is to make). 

9.6 Diagnostics on variance 

Non-increasing variance estimates over cycles about a static-over-time characteristic in a 
longitudinal survey certainly is perplexing - but what increase would actually be 
sensible? It's tempting to assume that the design effect (DEFF) should remain roughly 
constant over cycles; it sure would be convenient! But this is not a valid assumption in 
general. If it were true, it would mean that the loss of sample size over cycles due to 
nonresponse (and other contributing factors) affects the variance of a complex survey the 
same way it does a survey relying on a SRSWOR design. This is a very strong 
assumption that has no reason to hold in general. 

As we saw earlier, knowing the reliability of a variance estimate is useful information to 
take into account in practice. For instance, we've established that in the simplest of all 
cases, variance estimates of the median were much less reliable than those for the mean. 
Unstable variance estimates may also explain (to some extent) the bizarre non-increasing 
variance estimates. But then, how can we build a case about unstable variance estimates 
when in practice we only have the benefit of one observed sample? (Surely we have the 
benefit of taking several sets of bootstrap replicates but as we argued before the error due 
to re-sampling is not the one at fault here, at least not in magnitude.) 

We propose a way to help assess in any given situation just how stable the bootstrap 
variance estimates are; it comes from the framework ot' the Coefficient of Variation 
Extraction Module (CVEM) described above. Recall that originally the CVEM involved 
generating 100 Bernoulli variables with probability of a success p and obtaining for each 
of these a bootstrap variance estimate for a domain of interest D. The variances were 
averaged out and reported in the CVEM as an approximation to the bootstrap variance 
estimate we'd get for a (survey) variable of interest of estimated proportion p. The idea 
here would be to take the variance of these variances and see ilit's large or not. And 100 
generated variables is probably overkill; 5 or 10 could very well be enough to give you a 
good idea of the instability in the variance estimates that you have to deal with. 

If you want to avoid simulating Bernoulli variables altogether, then you'll have to 
corn pute: 

. 
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which is at best messy; this computation may not be worth its while compared to the 
effort of approximating it using a few simulated Bernoulli variables. 

In a few words... 

- Variance estimates are not as stable with regard to the sampling design as one would 
think (and wish!). 

- Variance estimation for the median is noticeably trickier than that for the mean, for 
example. 

- The CVEM depends on a very strong assumption, one that should not be taken lightly. 

- Possible diagnostics on variance are hard to come by; yet, with the advent of computers 
(and thus simulations) surely more options will become available. 

S 
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A few fiflLl words... 

While many different issues were covered here in depth, in the end a single unifying 
lesson stands out: we need to opt for methodologies that strike a proper balance between 
performance and what's required implementing them. For instance, we notice that often 
the weighting methodology used is (almost) completely driven by bias considerations at 
the expense of a sound and easy-to-implement variance methodology. A good example 
of this is the issue we covered in Section 8 about the post-stratification methodology used 
in the NLSCY. There we found that the post-strata introduced were too numerous and 
led, as cycles unfolded, to empty post-strata within some bootstrap replicates. While we 
can devise after-the-fact ad hoc solutions to deal with empty post-strata in the variance 
estimation phase of the NLSCY, it remains that it would be preferable to have a 
weighting methodology which avoids creating them in the first place. 

In retrospect, the paper provided you with a panoramic view of the Rao-Wu rescaled 
bootstrap, describing it both from a theoretical and a practical standpoint, the latter 
focusing on pitfalls to avoid and providing computer-based tips to keep in mind while 
implementing the bootstrap. We hope this paper helped bridge the gap that exists between 
the theory and the practice of the bootstrap by exposing and discussing at length the 
issues that arose in the NLSCY implementing it. 
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About the estimator for the mean for a domain 

There are two competing estimators here in our case of estimating a domain mean with 
domain size N known (see Särndal et al. (1992), particularly section 10.3: 

Yk W 	

(A2) k€s0  
Yt— 	AT 

D 

YkWk 	

(A3) V2 = - 
- 	ND= Wk 

It's quite perplexing to even think about using V 2 since it apparently ignores the fact that 
ND is known and relies instead on its estimate ND.  But we have to go over that because 
in fact 2  is a better choice than ! That would indeed most perplexing if it were true 
that Y2  ignored altogether ND  but appearances are deceptive, for: 

YkWk 	I Ykwk 
kEs0 	NDkESLI 	

=-1-K1 
ND 	ND 	ND. ND 

(A4) 

Now, given a sample s, two things can make the estimate (s) unduly large (resp. 
small): I) s contains more than its share of units with large V values i.e.. a "bad" sample 
was observed; 2) s is over-represented (resp. under-represented) by units from the 

(Al) 
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domain: there are iiiore (resp. less) units 1mm the domain than we would expect on 
average. While theres nothing that can be done about 1), 2) could have been taken into 
account in time to release a more proper estimate. Indeed, all that was needed is some 

way to quantify if we had over-/under-representation, and this is what the ratio 	in 

(A4) is all about. When we have over-representation, for example, the ratio is smaller 
than 1 and thus serves to deflate the estimate j' which got fooled into yielding a large 
estimate just because it fed 'blind!y" from more units than it should have had to work 
from. 

. 
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Annex B 

An extension of Woodruff's method for calculating sampling variability for the 
med Ian 

Claude Girard 
Senior methodologist, Statistics Canada 

ABSTRACT 

Woodruff (1952) introduced a method to construct confidence intervals for 
the median having approximately targeted level. The method, as used in the 
context of survey sampling which is the focus of this paper, is illustrated in 
standard books like Särndal et al. (1992) and Lohr (1999). 

Also known, but not well-documented, is the a-extension: the possibility to 
obtain from Woodruff's method a point estimate of sampling variability for 
the median estimate. In the case of simple designs, basic estimators like 
those for totals and means have variance estimators that can be easily 
computed. This is important for surveys for which replication methods like 	 40 
the bootstrap are counter-indicated due to, for example, high sampling 
fractions. The appeal of Woodruff's a -extension to survey practitioners 
comes from extending the range of estimators for which variance estimates 
can be computed to include the median (and to some extent other quantiles). 
Indeed, Woodruff's or -extension produces variance estimates for the median 
using nothing but what's already available to compute variance estiniates for 
the basic estimators. 

Unfortunately, the a -extension yields sampling variability estimates that are 
dependent upon the level used to initially construct the confidence interval 
from which the sampling variability estimates are derived. Furthermore, 
these estimates are rather unstable. These problems may very well deter 
practitioners from using the a-extension. Both the dependence on the 
confidence level and the instability arise from the very way Woodruff s 
method is usually implemented. We propose a modification to the 
implementation of Woodruff's method that gives rise to a a-extension free of 
the dependence on confidence levels and yields more stable sampling 
variability estimates. The approach is possibly novel from a practitioner 
point of view, while from a theoretical perspective it uses ideas already 
presented in the literature but in a way not easily seen to be of immediate use 
to the practicing statistician. 
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Woodruff's method in survey sampling 

Let's briefly describe the usual implementation of Woodruff's method; see Lohr (1999) 
and Särndal et al. (1992) for further details. 

Let Z be a characteristic for which an estimate of the median is sought for some domain 
of interest D based on a sample s of units. Here are the 5 steps used to obtain a 
confidence interval of approximate level I—a using Woodruff's method. 

I) Form a graph of the empirical cumulative distribution function (CDF), based on 
the sample, with Z values on the x-axis and probabilities ranging from 0 to I on 
the y-axis. The empirical CDF of a given value z of Z represents the (weighted) 
proportion of units in the population having a value of Z smaller than z. 

Using s, form the estimator i:) yielding the (weighted) proportion of units 
having a value of Z smaller or equal to the sample-based estimate of the median 
mad. This is simply the weighted mean 

J(
-

) 
= 	Wk I k (FflCd)  

Z Wk 

where 1  (ind) 1 if Z :!~, rnd. (Strictly speaking, we should build the estimator 
around the true median med but since it's unknown we must rely instead on its 
estimate med and carry on!) 

Obtain a variance estimate for the estimator used in 2). 	This variance 
computation should be possible under the given sampling design since it's for a 
basic estimator. 

Form the confidence interval with the desired level using the variance obtained in 
3). It can be represented on the v-axis on the graph of the CDF as in graph 1 
below. Woodruff's method is about using the empirical CDF as a projector-line 
to project this (computable) interval onto the x-axis. 

Find where the endpoints of the confidence interval intersect with the empirical 
CDF and use the corresponding x-values to define the end points of the confidence 
interval on the x-axis. 



Graph 1: An empirical CDF with characteristic of inlcrest 7 on the x-axis and probabilities on the v-axis. 
illustrating Woodruff's method as projecting the eniputahie -axk c'nlidenec intcraI onto the X-a\i5 to 
obtain the sought-after x-axis confidence interval 

Observe that sample after sample we von1 find the same weighted percentage of 
sampled y's that are below the given y-value med but rather some array of percentages 
around 0.5 as estimates of it. The idea behind Woodruff's method is this: while there's 
no intrinsic interest in measuring the spread in these estimates, it turns out that it reflects 
our incapacity sample after sample to agree on one common estimate of the median. It's 
one thing to say that these two uncertainties are manifestations of the same thing but how 
do we get the scaling right between the two? The ratio is certainly not 1-1, so what is it? 
This is where the CDF comes into play: it's slope at the median (or in a smoothed-out 
neighbourhood of it) tells us exactly what the conversion rate ought to be. 

a -extension approach 

The whole point to Woodruff's method is to transform  using the CDF an inference we 
know how to make but which has no intrinsic interest of its own (i.e., the confidence 
interval on the y-axis about 0.5) into the inference we're after i.e., one on the x-axis. In 
other words, you transform what you know about a suitable weighted mean in terms of 
sampling variability into a statement about the estimated median through the CDF. 

In some survey situations, a client may prefer to deal with point estimates of sampling 
variability rather than confidence intervals. For instance, a client may be interested in 
knowing the coefficient of variation (CV) associated with an estimate. It is known that 
Woodruff's method can he used to produce estimates of sampling variability: this is what 
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we call Woodruff's a- -extension. The current implementation of the a -extension uses 
the assumption of symmetry of Woodruff's confidence interval. 

Assume for the moment that Woodruff's confidence interval (Ll_a12,U1_a12)  obtained 
from step 5 above on the x-axis is symmetric with midpoint mid: 

(Ll_a /2 Ui_ai) = (mid ± z1_1260 
	 (B 1) 

Then simple algebra yields the following point estimate of the sampling variability after 
matching the corresponding intervals endpoints: 

- U1_a 12 - L1_a12 	 1 2 

An additional subscript for or, indicating the confidence level was added to make 
explicit the dependency of o- on the confidence level when obtained that way. In other 
words, not only does the current a -extension rests upon a dubious assumption of the 
symmetry of the Woodruff confidence interval, but also the results are confidence-level 
dependent. This would not a priori be a problem were the numerical estimates obtained 
using different confidence levels the same. But in practice they differ from one another, 
sometimes quite significantly. Indeed, the symmetry assumption is rarely met in practice 
because the empirical CDF is not a smooth projector-line (like an ideal CDF would be). 

10 Thus, we get confidence level dependent sampling variability estimates for the median 
since neighborhing i-values don't get projected in some consistent (read linearly) way 
onto the x-axis because of the stepwise CDF. 

Now, suppose that instead of assuming symmetry we start from the assumption that the 
empirical CDF is actually linear in some neighborhood of the median (a neighborhood 
just large enough to contain the area used to project the -axis confidence intervals onto 
the x-axis). In other words, assume that the line 

y=mx-+-b 	 (133) 

provides a good fit to the CDF in some neighborhood of the median —see graph 2 below. 
Then we can show that the standard error on the v-axis. a (the one we're able to 
compute because it's related to nothing else than some weighted mean) is related to the 
standard error on the x-axis, o- (the one we're after) through the slope in the following 
way: 

a =o 
	 (B4) 
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Indeed, since the confidence interval on the i-axis to .5-1 .96 	.0.5 - I .O6o 	is sent to 

(0.5-1.96a —b 0.5+1.96o —b 
I 	

, 	 the symmetric y-axis interval gets transformed into a 
m 	m 

symmetric interval on the x-axis. Assuming then that the latter was obtained as 
mid—l.96cr,mid+l.96o 1 ) one gets (134) by simply matching both intervals endpoints 

and solving for o.. 

In words: if the CDF was indeed locally linear about the median, then both standard 
errors of interest to us would be related to one another simply by the slope of the CDF in 
the neighborhood just considered. 

With relation (134) in mind, let's compute the slope of the projector-line which is implicit 
to the symmetry assumption. Observe that the symmetry assumption comes down to 
using a linear projector-line determined by where the endpoints of the y-axis confidence 
interval used meet the CDF: 

(L112,0.5 zl a ,2a v ) and (U I_a/2 ,0.5 + 7 I_a /2 0 y ) 

This line can be seen to have slope 

2xzI_a /2 X0, 
slope=mI_a ,2 = 

UI_a 12 —L i _ 
(B5) 

Now, feeding this into the slope-relation (134) precisely yields estimate (132). Thus, the 
assumption of symmetry boils down to assuming the CDF is linear in a neighborhood of 
the median and the fit made to the CDF corresponds to the line determined by just two 
points in the area: where the endpoints of the y-axis confidence interval meet the CDF. 
(In Graph I this is where the horizontal broken lines meet with the stepwise CDF.) The 
slope-relation (134) suggests a new approach in practice: first fit a regression line to the 
data in some neighborhood of the median and use the ensuing slope estimate to obtain a 
sampling variability estimate on the x-axis through the slope-relation. 

The idea is thus to first find a best projector-line by smoothing out the CDF. This can be 
easily done by "locally" fitting a regression line to the data or "globally" fitting a logistic 
type of curve to the entire CDF - see graphs 2 and 3. In either case the smoothing will 
rid the sampling variability estimates for the median of their initial dependence on the 
confidence level used to construct the confidence interval from which they're derived 
from. 
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Graph 2: Illustration of a linear neighborhood about the median and local regression lit of a projector-line. 
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Graph 3: Illustration of a global tit to a step CDF using a logistic-type curve. 

Preliminary findiigs 
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The a-extension was investigated for variables having a unimodal distribution using a 
(local) linear fit to the CDF in a neighborhood of the median using regression. Multi 
mode distributions are among the counterindicated distributions since they're likely to 
display nonlinear neighborhoods ahci it 1110 1110dWir this xviii liannen. Fo r instance. when 
the median is in between two modes 

For self-weighted surveys, the 99u 	1 

than both the lower 90% and 95% levels: it actually matches quite well with the 
regression-based estimate. This is because for steps of equal "depth" the further apart the 
endpoints are from one another, the more stable the slope of the line they determine will 
be. The most important gains in efficiency using the regression-based estimate were 
obtained in scenarios where the weights varied among sampled units. And depending on 
the weights of the units forming the neighborhood. the regression estimate of the slope 
can be much more reliable than the one obtained from fitting a line through the endpoints 
of the projected confidence interval as with the symmetry assumption. The range of 
probabilities used to define the linear neighborhood was, in most cases, from 0.4 to 0.6. 
At any rate, the practitioner should consult the graph of the step CDF which arises in 
his/her specific situation to help assess the proper range of probabilities to use as a 
neighborhood. Furthermore. the usual regression diagnostic tools like a measure of fit 
will help evaluate the reasonableness of the linear neighborhood assumption 
practitioner is about to make. 

Concluding remarks 

Woodruff s approach is often considered for use because of the simplicity of 
implementation. But differences between the ideal (or smooth) case and the one actuail 
faced in practice have, in the past, deterred some practitioners from using Woodruff's 
approach. The approach we described in this paper is essentially about re-establishing 
most of the winning (i.e., ideal) conditions by first smoothing out the data before 
proceeding with Woodruff's approach per Se. 

Those using the a -extension by resorting to the symmetry assumption would gain by 
considering fitting first a regression line to a neighborhood of the median. As was seen, 
considerations about symmetry actually come down to assuming some neighborhood is 
linear, with an estimate of the slope built on just two points; these are the end points of 
the confidence interval used and delineate the neighborhood considered. It only seems 
natural to consider a global fit instead, obtained by fitting first a regression line through 
the cloud in a neighborhood of the median. 

A similar gain could be obtained by smoothing the entire CDF first. For instance, many 
CDFs could be very well fitted by a logitistic type of a curve. In turn, the adjusted 
model's algebraic expression would indicate what slope value should be used to feed the 
slope relation. 

a 

. 

106 



S 	 REFERENCES 

Lohr, S. (1999). Sampling: Design and Analysis. Duxbury Press, California. 

Särndal, C-E, Swensson, B., Wretman, J. (1992). Model Assisted Survey Sampling. 
Springer-Verlag, New-York. 

Woodruff, R.S. (1952). Confidence intervals for medians and other position measures. 
Journal of the American Statistical Association 47: 635-646. 

C 
107 



SAS Companion 

This "annex" contains the SAS code that was used in the Branch Working Paper titled 
"How to avoid getting all tied up bootstrapping a survey: 
A walk-through featuring the National Longitudinal Survey of Children and Youth" 

. 
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Program A 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

data pop; 
do i=1 to 10000; 
y=abs(50+20*rannor(1)) ; 
output; 
end; 
run; 

fhe variables name is remisniscent of the notation used in 
Sarndal et al. (1992); 
proc sql; 

. 	select distinct mean(y) as true_mean, 
(1-100/10000) *var(y)  /100 as vartheor, 
var(y) as s2u 

from pop; 
quit; 

proc surveyselect data=pop method=srs n=100 rep=10000 
seed=1 
out=Monte Carlo; 
run; 

data Monte_Carlo; 
set Monte Carlo; 
designweight=10000/100; 
run; 

proc summary ciata=Monte Carlo nway; 
class replicate; 
var y; 
weight designweight; 
output out=MC estimates (drop= TYPE 	FREQ) rnean=MC mean; 
run; 

0 



painless 
way to put something (here the population's mean) into a 
macro 
variable for later use (under its name &truemean) .; 
proc sql noprint; 
select distinct mean(y) 
into :truemean 
frorr 
quit 

* 
data MC estimates 
set MC estimates; 
diffthetahattheta=.LviCmeaii&.  
label diff thetahattheta='error i.e., theta_hat minus 
theta'; 
run; 

*The midpoints statement is NOT necessary. Actually, those 
values 
were found after running the preliminary univaria• .'1hn.f 
the midpoints option. This is the way to make suis  
different 
histogr: :t s  
specify 
thevar 
statement. 
Just note that wit 
will 
provide you with statistics about everythinq your imi 
file 
contains in terms of va 

proc univariate data=MC estimates; 
var diff thetahat theta; 
histogram diff thetahat theta / mirpnts=-7.75 to 7.75 by 
0.25; 
run; 

*The Monte Carlo variance estimate computed from the .i, 
disclosed in the output window since no table (i.e. 
dataset) was requested. Observe that this varian. 
estimate 
was already  
above.; 
proc sql; 

. 
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.:e1ect distinct var(MC mean) as varMC 
from MC estimates; 
quit; 

*Carrying out the bootstrap now.; 

proc surveyselect data=pop method=srs n=100 seed=5 
out=observed sample; 
run; 

data observed sample; 
set observed_sample; 
designweight=10000/100; 
run; 

proc sql; 
select distinct (1_100/10000)*var(y)/100 as 
var theor estimated, 
var(y) as s2s 
from observed sample; 
quit; 

proc sql noprint; 
. 	select distinct sum(designweight*y) /sum(designweight) 

into :estimatedmean 
irom observed_sample; 
quit; 

proc surveyselect data=observed_sample method=urs n=99 

rep=].0000 
seed=2 out=bootstrap replicates; 

run; 

data bootstrap replicates; 
set bootstrap_replicates; 
bootstrapweight=designweight* (100/99) *numberhits; 
run; 

proc sununary data=bootstrap replicates nway; 
class replicate; 
var y; 
weight bootstrapweight; 
output out=bootstrap estimates (drop= type 	freq) 
mean=bs me an; 
run; 

data bootstrap estimates; 

0 



3eL bootstrap et t :mats; 
diffthetabsthetahat=bsrncan - & 
label diff thetabsthetahat= 'bootst 
t- 
ru 

histoc 
by 
rui 

proc sql: 
select d: 
mean(diff thetabs theta 
f rot 

. 



. I'rogram B 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

kprogram B describes the rule of thumb mentioned in 
Computational Tip #3.; 

%let capn=10000; 
%let smalln=100; 

data pop; 
do 1=1 to &capri. 
y=50+20*rannor(1) 
output; 
end; 
run; 

kThe result e l i hn no lcu1 	i ca 	 in , ;.,:- riou  aro  qiveri 
in the 
utput window (because a "create table as" statement was 

not used) .; 
proc sql; 
select distinct (l_& srna ]ic./&ca:nj*var(y)/&srnaiLn. as 

vartheor, 
var(y) as s2u 
from pop; 
quit; 

proc surveyselect data=pop method=srs n=100 seed=1 
out=observed sample; 
run; 

data observed sample; 
set observed_sample; 
designweight=&capn./&srraLIr. 
run; 

proc sql; 
select distinct (1_& srna 1 n ./& : 	:. .)* var(y)/& : rnc1fl. as 
var theor estimated, 

. 
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var(y) as s2s 
f ron 
quit 

We 
more 
replicates with each macro cal 
%macro repete (seed,nrepl) 

%let nrep=%sysevalf(&smalln.-l) 

proc surveyselect data=observed sample method=urs n=&nrep. 
rep=&nrepl. 

seed=&seed - out=bootstrap replicates; 
run; 

data bootstrap replicates; 
set bootstrap replicates; 
bootstrapweight=designweight*(&smalln/&nrep.)*numberhjts; 
run; 

proc summary data=bootstrap replicates nway; 
class replicate; 
var y; 
weight bootstrapweight; 
output out=bootstrap estimaLes(drop= type 	freq) 
mean=bs mean; 
run; 

proc sql; 
create table temp as 
select distinct &nro;. as replicates,var(bs mean) as 
variance 
from bootstrap estimates; 
quit; 

/*The next piece ut code 	pi puts necK all 
arisinq*/ 

If &ne1. =50 LYl h nn  

data variances; 
set temp; 
run; 
%end; 
%else .dc; 

. 
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Iaa vdrinces; 
set variances temp; 
run; 

end; 

%znend; 
%repete (10, 50) 
%repete(1O,100) 
%repete(lO,250); 
%repete(10,500); 
%repete(10,750) 
%repete(10,1000) 
%repete(10,1250) 
%repete(10,1500); 
%repete(1O,1750) 
%repete(10,2000) 
%repete(10,2250); 
%repete(10,2500) 
%repete(10,2750) 
%repete(1O,3000) 

The content of the one file variances can be either 

. 	
I.otted*/ 
using graph-n-go from SAS (Solutions->Reporting->Graph-n-

a) * / 
/*or export the file to Excel and form the graph there. */ 

. 
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Program C 
	 [1 

/* 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

,/*This program is associated with Simulation C*/ 

data pop; 
do id=1 to 10000; 
y=abs (50+20*rannor(1)); 
output; 
end; 
run; 

%macro repete(samplesize); 
/*computing exact variance for SSRWR and SRSWOR - the 
results* / 
/*are displayed in the output window. 

proc sql; 
select distinct (1_&samplsize./10000)*var(y)/&sample3ize. 

as varsrswor&samplesize., 
var(y)/&samplesize. as varsrswr&samplesize. 

from pop; 
quit; 

proc surveyselect data=pop method=srs n=&samplesize. 
seed=5 out=observed sample; 

run; 

data observed_sample; 
set observed_sample; 
designweight=10000/&samp1s ::;.=..; 
run; 

/*Now computing estimated variance for SSRWR and SRSWOR - 
the results*/ 
/*are displayed in the output window.*/ 

proc sql; 
select distinct (1-&. 	/10000)*var ( y /& :rr 1 es i z . 

0 



as varsrsworestimated&: 
var(y)/&sarn[lsi:e. as 

varsrswrestimated&samplesize. 
from observed sample; 
quit; 

/*setting up the sample size required for the bootstrap.*/ 
%let nrninusl=%sysevalf(&samplesize-l); 

proc surveyselect data=observed sample method=urs 
n=&nminusl rep=1000 

seed=4 out=bootstrap replicates outall; 
run; 

/*p roce eding with the bootstrap with no finite population 
correct ion' / 
/*factor (nofpc) .*/ 
data bootstrap_weights; 
set bootstrap_replicates; 
boot s t rapweightnofpc=designweight* (&sarnplesize. /&nminusl 
*numberhits; 
f=&samplesize./10000; 
bootstrapweightfpc= 

. 	designweight* (1-sqrt (1-f) +sqrt (1- 
f) * (&sarnples 	- /&nnH nu1 ) *nurpJerhjt5) ; 
run; 

proc summary data=bootstrap_weights nway; 
class replicate; 
var y; 
weight bootstrapweight_nofpc; 
output out=bootstrapestimates_nofpc(drop_type_ freq) 
mean=bs_mean; 
run; 

proc sql; 
select distinct var(bs mean) as varbsnofpc&sarnplesi.ze. 
from bootstrap estimates_nofpc; 
quit; 

proc summary data=bootstrap weights nway; 
class replicate; 
var y; 
weight bootstrapweightfpc; 
output out=bootstrapestimates_fpc(drop_tyPe_ freq) 
mean=bs me an; 
run; 

. 
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proc sql; 
select distinct var(bs mean) as varbsfpc&srnpiesize. 
from bootstrap estimates fpc; 
quit; 

%mend; 
%repete(lOO); 
%repete(500); 
%repete(1000) 
%repete(2000); 
% repete (30 00) ; 
%repete(4000); 
%repete(5000) 

. 
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. Irograrn D 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

%let capn=10000; 
%let smalln=100; 

/*rep specifies the number of observed samples that will be 
bootst rapped. 

%let rep=100; 

data pop; 
do i=1 to &capn.; 

income no r=abs (50+20*rannor (1) 
income exp=500*ranexp (111); 

:utput; 

run; 
NJote: The need to take the absolute value of income_nor 

will be 
explained when time comes below.; 

*The histogram option of univariate is handy - you may 
even require 
a best-fit curve to be added.; 
proc univariate data=pop; 
var income_nor income exp; 
histogram income_nor income exp; 
run; 

*Dra w ing &rep t3umples of size &smalln under SRSWOR.; 
proc surveyselect data=pop method=srs n=&smalln. seed=1 
rep=&rep. noprint 

out=observed samples; 
run; 

*For each observed sample i.e. each repetitIon, 
ce want the closed-form variance calculation.; 
proc summary data=observed samples nway; 
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replicate; 
var income nor i::crec:; 
output out=s2u(drop= type 	freq) ;dr=s2nor s2exp; 
run; 

data closed_form; 
set s2u; 
closed form nor= (l-&smalln. /&capn.) *s2nor/& sma ll n . ;  
closed form exp=(l_&smailn./&c;in.)*s2exp/&srnalln.; 
run; 

of variance est imaI 	1 	 sinq the :losed-form 
formula.; 
proc sql; 
create table stability closed form as 
select distinct 
lOO*sqrt(var(closed form nor))/mean(closed form nor) as 
cv norm, 
lOO*sqrt(var(closedformexp) )/mean(closed form exp) as 
cve x p 
from closed_form; 
quit; 

*T o  make sure we bootstrap each observed sample the so: 
way, 
we'll re-sample labels from 1 to &smalln. So, in a give 
observed sample, we're not going to refer to a unit through 
its population id but rather from its label.; 

data labels; 
do label=1 to &smallr; 
output; 
end; 
run; 

*The bootstrap calls for sampling from one unit less than 
the number 
of units sampled.; 
%let nrep=%sysevalf(&smalln.-l); 

*Bootstrapping the sample per so: urs refers to SRSWR.; 
proc surveyselect data=labels method=urs n=&nrep. seed=lO 
rep=1000 noprint 

out=bootstrap sample; 
run; 

proc sort  

L 
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run; 

	

kso far, we had our cootstrap 	1 6 Jines. It will 
be more 
convenient for what follows to have the bootstrap 
information coded 
as columns. Instead of usIr'c a Tros. v oron transpose we 
achieve that 
through the following.; 
data bootstrap_sample; 
set bootstrap sample; 
by label; 
array replicat{1000} replicatl-replicatl000 (1000*0); 

if first.label then do i=1 to 1000; 
replicat{i}=0; 

end; 
replicat (replicate) =Numberl-lits; 
if last.label; 
drop replicate i numberhits; 
run; 
*Now the file has one entry for each label from 1 to 100 
and the 1000 

'cmputLnLi fH:r 	.1JIt 	I 	..' 	:I 	I-..LC2Ot1J00 

the 
ensuing bootstrap weights. This comes from formula (9).; 
data bootstrap_sample; 
set bootstrap sample; 
array replicat{1000} replicatl-replicatl000; 
array bsw{1000} bswl-bswl000; 
do i=1 to 1000; 

sqrt(1-
& sma 1l n ./& ca pn .)*replicat(i)*(&:Ia11./&flreP.)) 

end; 
keep label bswl-bswl000; 
run; 

*Assoc iatirlg to each selected unit ot all ohserved sample 
one label from 
I to 100.; 
data observed_samples; 
set observed_samples; 
l abe l=N_&smalln.*(replicate_l) 

run; 

. 
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proc sort data=chscrvec.rrr..e.; 
by label; 
run; 

data observed samples bootstrapped; 
merqe observed_samples bootstrap ramrle; 
by 'abel; 
run; 

*There are 1000 bootscrap-weLLyhLed means to compute, 
for each 
series of weights bsw. The problem is that SAS allows onli 
one 
variable to be specified in a weight statement 
The following trick is also used in BootVar. 
of computing 
separately the 1000 numerators and denominators using two 
proc 
summaries with the b.  
interest interverten 
with regard 	E 	•. 

Warning:  
an inversion, 
the variable of interest has to be non-zero - this is wh - : 
the absolute 
value was taken above ensuring that the normal 	. 
positive.; 
proc summary dat=observed samples bootstrapped nwiy; 
class replicate; 
var bswl-bswl000; 
weight income_nor; 
output out=numerDrr.:r 
sum=numl-nurnlOOC; 
run; 

proc summary na 	)oservP. :-imr es rrot.s1.t apped nvy; 
class replicate; 
var bswl-bswlOOC; 
output out=denom:r:rr( /:.e 
sum=denoml-denoriY uH; 
run; 

data means ncr; 

S 

S 
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r replicate; 
array moy(1000) moyl-moyl000; 
array num{1000} numl-numl000; 
array denorn{1000} denoml-denoml000; 
do i=1 to 1000; 
moy(i)=num(i)/denom(i); 
end; 
keep replicate moyl-moyl000; 
run; 

Acomputing the (shortcut f:orm) ot the bootstrap variance 
for 
each observed sample.; 
data bsvariances nor; 
set means_nor; 
varbsnor=var(of moyl-moyl000); 
keep replicate varbsnor; 
run; 

ADo inq things all over with the exponentially distributed 
variable now.; 
proc summary data=observed samples_bootstrapped nway; 
:tass replicate; 
:ar bswl-bswl000; 
.:eight income exp; 
output out=numeratorexp (drop= type 	freq) 
sum=riuml-numl000; 
run; 

data means exp; 
merge numerator exp denominator; 
by replicate; 
array moy(1000} moyl-moyl000; 
array num{1000} numl-numl000; 
array denom{1000} denoml-denoml000; 
do i=]. to 1000; 
moy(i)=num(i)/denom(i); 
end; 
keep replicate moyl-moyl000; 
run; 

data bsvariancesexp; 
set means exp; 
varbsexp=var(of moyl-moyl000); 
keep replicate varbsexp; 
run; 

. 
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data bvar1anoE; 
merge bs variances nor bsva riancesexp; 
by replicate; 
run; 

proc sql; 
create table stabilitybs as 
select distinct 100*sqrt(var(varbsnor))/rnean(varbs nor) 
as cv_nor, 
100*sqrt (var(var bs exp) ) /mean(varbsexp) as cvexp 
from bsvariances; 
quit; 

%macro medianes (n); 

%do i=1 %to &n.; 

proc summary data=observed samples bootstrapped 
(keep=replicate income_nor bsw&.) nway; 
class replicate; 
var income nor; 
weight bsw&i.; 
output out=med nor &i. (drop= type _freq_) mean=mean&i. 
median=mediane&i.; 
run; 

proc summary data=observed samples bootstrapped 
(keep=replicate income exp bsw& .) nway; 
class replicate; 
var income exp; 
weight bsw&i.; 
output out=med exp &i. (drop=_type_ freq) mean=mean&i. 
median=mediane&i.; 
run; 

%end; 
%mend; 
%medianes(1000); 

*The macro generated a whole buch of output datasets that 
we need 
to have back as one file. One painless way to do so is to 
use 
a "background" SAS file. It's actually a SQL-view, called 

. 
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located in th- ibrary SASHELP. It contais a myriad of 
info 
•jri datasets that one can exploit. (Another view from the 
same library 
which is useful from time to time is vtable.) The code 
below puts 
into a list the names of all datasets of the WORK library 
which 
have MEM NOR as their first 8 characters - these are 
precisely the 
files I want to put together.; 

proc sql noprint; 
select distinct MEMNAME 
into :varlist separated by 
from sashelp.vcolumn 
where LIBNAME="WORK" and substr(MEMNAME, 1, 8)=MED NOR"; 
quit; 

*Had all the datatsets' name been simply concatenated as 
MEM NOR 1MEM NOR 2etc. this would be of little use. What 
is 
.seful is to have a blank inserted in between each name to 

In &varlist the following MEM NOR 1 MEMNOR2 MEMNOR3 and 
J Ofl. 

This is the role of "enarted h" in the SQL above.; 
data bs med nor; 
merge &varlist 
by replicate; 
varbsrnednor=var(of medianel-medianel000); 
varbsmeannor=var(of meanl-meanl000); 
keep replicate var bs med nor varbsmeari nor; 
run; 

Ge:ting sTh ru: 	all th::J. 	 they'se 
useless now.; 
proc datasets library=work nolist; 
delete  
quit; 

proc sql noprint; 
select distinct MEMNAME 
into :varlist separated by 
from sashelp.vcolumn 
where LIBNAME="WORK" and substr(MEMNAME, 1, 8)"MEDEXP"; 
quit; 

. 
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data bsmedexp; 
merge &varlist.; 
by replicate; 
varbsmedexp=var(of medianel-medianel000); 
varbsmeanexp=var(of meanl-mearil000); 
keep replicate var bs med exp varbsmeanexp; 
run; 

proc datasets library=work; 
delete &varlist.; 
quit; 

data bsmedianes; 
merge bs med nor bsmedexp; 
by replicate; 
run; 

proc sql; 
create table stability medianes as 
select distinct 
lOO*sqrt(var(varbsmednor) )/mean(varbsmednor) as 
cv med nor 
lOO*sqrt(var(varbsmeannor) )/rnean(varbsmeannor) as 
cv mean nor,  
lOO*sqrt(var(varbsmedexp) )/mean(varbsmedexp) as 
cvmedexp, 
lOO*sqrt(var(varbsmeane xp) )/mean(varbsmeanexp) as 
cv mean exp 
from bsmedianes; 
quit; 

11 
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Program E 

Program created by; Claude Girard 

Last update; February 1st 2007 

%let capn=10000; 
%let smalln=100; 
%let seed=4; 

data pop; 
do i=l to &capn.; 

income nor=abs (50+20*rannor(1)); 
income e xp=500*ranexp (111); 

output; 
end; 
run; 

. 	proc univariate clata=pop; 
histogram income nor income exp; 
run; 

*One  sample is orawn under 	and t 4111 be 
bootstrapped several 
times below.; 
proc surveyselect data=pop method=srs n&smalln. 
seed=&seen. noprint 

out=observed sample; 
run; 

proc sql; 
select distinct (1-
&smalln./&capn.)*var(incomenor)/&srna]-]n. 
(1_&smalln./&capnj*var(incomeexp)/&smalln. 

into :varnor, :varexp 
from observed_sample; 
quit; 

%let nrep=%sysevalf(&srnalln.-1) 

C 
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proc surveyselect cai 	SeL1C 	nce rnehod=urs ri=&. 
	

. 

seed=10 rep=100000 noprint 
out=bootstrap sample; 

run; 

data bootstrap sample; 
set bootstrap sample; 
repetition=mod(replicate, 100); 
if repetition=O then repetition=100; 
bsw=(&capn./&smallnj*(&snln./&crpj*numberhits; 
run; 

proc summary data=bootstrap sample 
class repetition replicate; 
var income_nor income exp; 
weight bsw; 
output out=estimates bs (drop= type 
moyexp 

median=med nor med exp; 
run; 

nway; 

freq) mean=moy nor 

proc univariate data=estimates_bs; 
var moy nor moy exp med_nor med exp; 
histogram moy nor moy exp med_nor med exp; 
run; 

proc summary data=estimatesbs iwy; 

class repetition; 
var moy nor moy exp med_nor med exp; 
output out=variances bs (drop=_type_ _freq_) var=; 
run; 

proc sql; 
create table stabilitybs as 
select distinct 100*sqrt  (var (moy nor) ) /mean (moy nor) as 
cvme an_nor, 
100*sqrt(var(moyexp) )/mean(moyexp) as cv mean exp, 
100*sqrt (var (med_nor) )/mean (med nor) as cv med nor, 
100*sqrt(var(medexp) )/mean(medexp) as cv med exp 
from variancesbs; 
quit; 

data variance sbs; 
set variancesbs; 
diff sq mean nor=(&var 	.-moy nor) **2 ;  
dif sq mean exp=(& 	-m:v •H;:r) *2 ;  
run; 

. 
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proc sql; 
select distinct 100*sqrt  (mean(diff sq mean nor)) /&varnor. 
as rmse nor, 
].00*sqrt (mean (diff sq mean exp) )/&varexp. as rmseexp, 
100*(mean(moynor)_&varnor.)/&varnor. as rb_nor, 
100*(mean(moyexp)_&varexp.)/&varexp. as rb_exp 

from variancesbs; 
quit; 

. 

C 
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Program E2 

	 S 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

%let capn=1000; 
%let smalln=100; 

/*The seed option controls the act of observed samples 
that*/ 
/*are being  drawn.*/ 

%let seed=4; 

data pop; 
do id=1 to &capn.; 

income nor=abs (50+20*rannor(1)); 
income exp=500* ranexp(111 

output; 
end; 
run; 

proc univariate data=pop; 
histogram income_nor incoineexp; 
run; 

*One sample is drawn arider SRW3R arid it will ne 
bootstrapped several 
times below.; 
proc surveyselect data=pop method=srs n=&smalln. 
seed=&seed. noprint 

out=observed_s ample; 
run; 

%let nrep=%sysevalf(&smalln.-1) 

proc surveyselect data=observed sample method=urs n=&nrep. 
seed=10 rep=100000 noprint 

outbootst rap outall; 
run; 

/*Th e  bootstrap weic ca 	I cb Ic 
data bootstrap sample; 

S 
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S 
repetition=mod(replicaLe, 100); 
if repetition=O then repetition=100; 
designweight=&capn./&smalln.; 
bsw=designweight* 
(1-sqrt (1-&smal ln. /&capn. ) +sqrt (1-
& sma1ln./&c a cnj*(&smaiin./& ;r J*numberhits); 
run; 

proc summary data=bootstrap sample nway; 
class repetition replicate; 
var income_nor income exp; 
weight bsw; 
output out=estimates bs (drop= type 	freq) mean=moy nor 
moyexp; 
run; 

proc univariate data=estimatesbs; 
var moy nor moyexp; 
histogram moy nor moyexp; 
run; 

proc summary data=estimates bs rway; 
lass repetition; 

- 'ar moy nor moyexp; 
)utput out=variances bs(drcp= type 	freq) var=; 
run; 

proc sql; 
create table stabilitybs as 
select distinct lOO*sqrt(var(moynor))/mean(moy_nor) as 
cv mean nor, 
lOO*sqrt(var(moyexp))/mean(moy_exp) as cv mean exp 
from variancesbs; 
quit; 
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~I Program F 

I * 

Program created by; Claude Girard 

Last update; February 13t 2007 

%let capn=10000; 
%let smalln=100; 

data pop; 
do i=l to &capn.; 

income nor=abs (50+20*rannor (1)); 
output; 
end; 
run; 

proc surveyselect data=pop methnd - ss n=&'LH rep=10000 
seed=4 out=mc; 
run; 

proc summary d.-i=rn• ri;;; 
class replicate; 
var income_nor; 
output out=mc medians (drop= type _freq_) median=mediane; 
run; 

proc sql; 
select distinct var(mediane) as MC median 
from mc medians; 
quit; 

/*Thjs is a Monte Cario appLoxirat1on of what the sampling 
distribution */ 
i''looks lik e .*/ 
proc univariate data=mc medians; 
var median; 
histogram median; 
run; 

/*computing  an approximation of the exact variance based 
on*/ 

. 
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proc sql; 
:elect distinct (constant(!PIl)/2)*(l_ 
&smalln./&capn.)*var(incomenor)/&smalin. as var median 

from pop; 
quit; 

proc surveyselect data=pop method=srs n=&smalln. seed=4 

noprint 
out=s ample; 

run; 

ilet nrep=%sysevalf(&smalln.-:); 

proc surveyselect data=sample method=urs n=&nr:en. seed=lO 
rep=10000 noprint 

out=bootstrap outall; 
run; 

data bootstrap; 
set bootstrap; 
poids=(&capn. /&smalln. ) * (1-sqrt (l-&ma.i. In. /&capn. ) + 

sqrt (1-&smalln. /&(7apn. ) * numberhjts* (&smai i. /&nrep.) 
run; 

. 	C 	. 	. .. 	..,..... 	I  ..... 
s estimate the one obseLvation in the ddtaset whose 
umu la ted 

weiqht first exceeds 50% of the total sum of weights. */ 
proc summary data=bootstrap nway; 
class replicate; 
var income_nor; 
weight poids; 
output out=SAS medians (drop= type 	freq) median=mediane; 
run; 

proc sql; 
select distinct var(mediane) as SS median 
from SAS medians; 
quit; 

/*Tj s  resufis in a ver' C 	itoqram/ 
proc univariate data=SAS_medians; 
var mediane; 
histogram mediane; 
run; 

/Prepar:irq 	he crcwici icr L. 
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proc sql; 
create table bootstrap2 ts 
select *,poids/sum(polds)  as poidsnormalise 
from bootstrap 
group by replicate 
order by replicate,income nor; 
gui t; 

/*For  some obscure reason, SQL has a hard time creating 
exact */ 
/*fractions through its calculations. So even if the 50th 

/*percentjle is in the file, the cumulative weight 
poidscurnul* / 
/*with show up as something like 0.5000000001 or 
0. 49999999999*/ 

/*jnstead of 0.5, hence the cril:e:inn involving the 0.00001 
below. */ 

data bootstrap2; 
set bootstrap2; 
by replicate income_nor; 
if first.replicate then poidscumul=poidsnormalise; 
else poidscumul+poidsnormalise; 
lag income=max(lag(income nor) ,0) ; 
lag poids=max (lag (poids) , 0); 
lag cumul=max (lag (poids cumul) , 0); 
median tentative=(poids*income nor+lag poids*lag income) / (p 
oids+lagpoids); 
if abs(poidscumul-0.5)<0.00001 then mediane=income nor; 
else if lag cumul<O.5 and poids cumul>O.5 then 
mediane=median tentative; 
if mediane ne .; 
run; 

proc sql; 
select distinct var(mediane) as Interpol median 
from bootstrap2; 
quit; 

proc univariata data=bootstrap2; 
var mediane; 
histogram mediane; 
run; 

. 
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Program G 

/ 

Program created by; Claude Girard 

Last update; February 1st 2007 

*1 

%let capn=10000; 
%let smalln=2500; 
%let r=.5; 

%let nombre=%sysevalf(&r.*&capn.) 
data pop; 
do id=1 to &capn.; 
y=50+20*rannor(1); 
if id<=&nombre then resp=1; 
olse resp=O; 

. 	
output, 
end; 
run; 

proc surveyselect data=pop method=srs n=&.tki±iri. seed=1 
out=observed sample; 
run; 

%let rep=%sysevalf(&smalln.-1); 

proc surveyselect data=observed sample method=urs n=&rep. 
rep=1000 

seed=2 out=bootstrap replicates outall; 
run; 

data bootstrap weights; 
set bootstrap_replicates; 
designweight&capn - /&smailsi. 
boo t s t rapweight=designweight* 
(1-sqrt (1-&smalln. /&capn. )+sqrt (1-
&srna1In./&cann.)*(&srafln. /& : o:.)*nurrtberhits); 
run; 

proc sql; 

. 

135 



create table hootstraanr 
select 
*,bootstrapweight*sum(bootstrap weight) /sum(bootstrapweight* 
(resp=l) 
as bootstrapweightnr 
from bootstrap_weights 
group by replicate 
having resp=l; 
qut; 

proc summary data=bootstrapnr nway; 
class replicate; 
var y; 
weight bootstrapweightnr; 
output out=bs estimates (drop= type 	freq) 
mean=bs estimate; 
run; 

proc sql; 
select 

(1_&smalln./&capn.)*var(y)/count(k) as vi, 
(&smalln./&capn._count(*)/&c a prl j*var(y)/count(*) as 

v2, 
(l_count(*)/&cacn.)*var(y)/count(*) as Vt, 
count(*) as r, mean(y) as parameter estimate 

from observed_sample 
where resp=l; 
gui t; 

proc sql; 
select distinct mean(bs estimate) as bsrnean, 

var(bs estimate) as v_bs 
from bsestimates; 
quit; 

fl 
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1rograrn G2 

/* 

Program created by; Claude Girard 

Last update; February 1st 2007 

%let capn=10000; 
%let smalln=5000; 
%let r=.5; 

%let nombre=% sysevalf(&r.*&capnj; 
data pop; 
do id=l to &capr:.; 
y=50+20*rannor (1); 
if id<=&nombre then resp=l; 
ise resp=O; 

w 
	 utput; 

run; 

proc surveyselect data=pop method=srs n=&srrialln. seed=1 
out=observed sample; 
run; 

data respondents; 
set observed_sample; 
where resp=1; 
run; 

proc sql; 
select distinct count(*), count(*)_l 

into :r, :rep 
from respondents; 
quit; 
*bootstrap des repondants; 

proc surveyselect data=respondents method=urs n=&rep. 
rep=l000 

seed=2 out=bootstrap replicates (drop=y resp); 
run; 

. 
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data copies; 
set respondents; 
do replicate=l to 1000; 
output; 
end; 
run; 

proc sort data=copies; 
by replicate id; 
run; 

. 

data bootstrap; 
merge copies bootstrap_replicates; 
by replicate id; 
if numberhits=. then numberhits=0; 
run; 

data bootstrap; 
set bootstrap; 
designweight=&smalln. /&r.; 
bootstrapweight=designweight* 
(1-sqrt ( (&smalln. /&capn.) * (1- 
&r./& s rr ialln.))+sqrt((&s rnaI1 n ./& : .pn.)*(l_ 
&r./&smalln.))*(&r./& : .)*numberhits) ;  
run; 

proc summary data=bootstrap nway; 
class replicate; 
var y; 
weight bootstrapweight; 
output out=bs estimates (drop= type 	freq) 
mean=bs estimate; 
run; 

proc sql; 
select distinct mean(bs estimate) as bs_mean, 

var(bs estimate) as v_bs 
from bsestimates; 
quit; 
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Uj 	 Program H 

/ 

Program created by; Claude Girard 

Last update; February 1st 2007 

%let smalln=2500; 

data pop; 
do i=]. to 10000; 
y=abs (50+20*rannor (1) 

if i<5000 then do; 
post stratum='M'; 
total=6000; 

end; 
else do; 

post stratum='W'; 
total=4000; 

end; 
:)utput; 

. 	end; 
run; 

proc surveyselect data=pop method=srs n=&IT11n. seed=4 
out=observed sample; 
run; 

proc sql; 
create table var components as 
select distinct (total/10000)*mean(y) as est, 
(total/10000)**2*(1/count(*)_1/total)*var(y) as component 
from observed_sample 
group by post stratum; 
quit; 

proc sql; 
select distinct sum(est) as estimate, 
sum(component) as tot_var_estimated 
from var_components; 
quit; 

%let nrep=%sysevalf(&smalln.-l) 
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[I proc surveyselect  
rep=1000 seed=2 
out=mult outalLi; 
run; 

data bs; 
set mult; 
bsweight=10000/& ........1-cqri i- 	./10000:- 
sqrt(1-&ca . ..../10000; riurnberh:ts L& . 	.../&; 
run; 

proc sql; 
create table bspstr 
select 	, hswe:gh 	::.. H ............... 	b1eichpstr 
from bs 
group 	,,.. 
quit; 

proc summary ciata=hs 	..: 

class replicate; 
var y; 
weight bsweiqhtipst:; 
output out=bs es;:irrci 	.i 	 eq. 
mean=bs estimate; 
run; 

proc sql; 
select distinct rnean(hsest.imat) a. avgbs 
,var(bs estimate) 	;cirbs 
from bsestimate; 
quit; 

. 

. 
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Program I 

/ 

Program created by; Claude Girard 

Last update; February 1st 2007 

libname server 

data server.mult; 
array mult{1000} multl-multl000; 

do j=1 to 1000; 
mult(j)=ranpoi(1, 1); 
end; 
do i=1 to 10000; 
output; 
end; 
run 

. 	data server.bootstrap; 
array bsw{1000} bswl-bswl000; 

do j=1 to 1000; 
bsw(j ) =1000*ranuni (1) *constant ('P1'); 
end; 
do i=]. to 10000; 
output; 
end; 
run; 

data server.multcomp(compress=BINARY); 
set server.mult; 
length multl-multl000 3.; 
run; 

data server.bootstrapcomp(compressBlNARY); 
set server.bootstrap; 
Jength bswl-bswl000 4.; 
run; 

. 
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