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Foreword

When 1 first started investigating the variance issue NLSCY had (described in the
introduction below) I knew nothing (at least worth mentioning! ©) about the bootstrap.
As I dug deeper (and deeper and...) into the issue, [ explored the bootstrap more and
more. This paper contains all the lessons I’ve learnt (the hard way) as | made my way
through the investigation. I've made a serious attempt to make the paper self-sufficient
for those starting with the bootstrap (though it most certainly fails in the end due to the
scope of the undertaking); it contains bits of theory, how some of the theory is meant to
be applied in practical situations, ready-to-submit SAS programs to explore the bootstrap
and/or to get you started with its implementation, etc. While the paper doesn’t require
any firsthand knowledge of the bootstrap, it does assume in return that the reader is
familiar with alt the methodological steps underlying the creation of survey estimates.
With regard to the subjects treated here and there in the paper, like nonresponse and post-
stratification just to name these two, I take for granted that the reader’s knowledge on
these issues is roughly that of Statistics Canada’s Survey methods and practices (2003).

The style of writing is not formal. Actually, my natural style for writing is wordy and
personal; I like to talk to the reader and explain one thing from several perspectives. (A
former supervisor of mine once said that my favourite three words in English were “In
other words...” Read the paper and see if that person knew me well or not!) In other
words, expect redundancy and lengthy explanations throughout. For example, one
formula can be stated algebraically, explained through a paragraph and illustrated with a
numerical example. I think this will appeal to those who are just making their beginning
with the bootstrap; the experts may find the pace too slow for their own taste. But then,
it’s not with them in mind that I wrote this paper.

I don’t see this paper as static but rather as evolving over time as more people will tackle
the bootstrap with it as their companion. Consequently, any feedback, suggestions, erc.
are welcome and will be taken into consideration as further editions of this paper will be
made in the future.

An investigation of this scope couldn’t (and shouldn’t!) be undertaken by just one person.
The work I'm reporting here as greatly benefited from (too-numerous-to-count!)
discussions held in many brainstorming sessions involving the following people: Michel
Ferland, Sarah Franklin, Yves Lafortune, Scott Meyer, Michelle Simard and Marcelle
Tremblay. Many thanks to Jean-Frangois Beaumont who has kindly answered numerous
initial queries on my part regarding the bootstrap and read an earlier version of this paper.
Also, I'm very grateful to Dr Rao for reading a draft version of this paper and being so
enthusiastic about this whole endeavour, making me benefit as the review process went
along from his keen insights into the bootstrap.

I’m indebted to Sarah Franklin, Yves Lafortune and Michelle Simard for their unfailing
support throughout the time I've spent investigating and writing this. Mille merci a toi
Beatrice Chapman for the extensive reviewing and proof-reading that you’ve done of this




. paper. And my final thanks go to Owen Phillips, Yves Lafortune and Martin Provost for
agreeing to review the final version of this paper as it was turned into a Branch Working
Paper.



Abstract

The bootstrap is used in estimating variance in many
surveys at Statistics Canada. It is perceived as a versatile,
reliable and easy-to-implement approach, hence its growing
popularity. From a theoretic perspective, it's actually a
difficult and still on-going challenge to successfully adapt
the bootstrap as it makes its transition from classical
statistics, its nurturing ground, to the survey sampling
statistical context. This explains why there are several
versions of the bootstrap in the survey setting, one of which
is the Rao-Wu rescaled bootstrap. It’s the one most used at
Statistics Canada and this is why this paper focuses
exclusively on it.

But difficulties with the bootstrap are not only theoretic in
nature. The practitioner implementing the bootstrap for real
in a survey will find that the bootstrap is not as well
described for practical purposes as one may have been lead
to believe. There are indeed numerous pitfalls to avoid,
corners to cut (and others not to cut!), efc. when
implementing the bootstrap, and yet the existing literature is
hardly of any help regarding these issues. This paper
attempts to close the gap between the theory and the
practice of the bootstrap, at least the way it’s customarily
implemented at Statistics Canada. It describes the bootstrap
method at great length, provides tips and describes common
pitfalls the user needs to stay away from and encloses SAS-
based computer programs providing useful details on its
implementation.




Résumé

Le bootstrap est employé comme technique d’estimation de
la variance due a I’échantillonnage par plusieurs enquétes a
Statistique Canada. On la décrit comme une technique
versatile, fiable et facile 4 mettre en oeuvre, d’ou sa
popularité grandissante ces demiéres années. D’un point de
vue théorique, adapter le bootstrap au cadre des enquétes
statistiques, alors qu’il a été congu au départ pour la
statistique classique, représente encore aujourd’hui un défi
de taille pour les chercheurs. Cela explique pourquoi il
existe plusieurs versions du bootstrap dans le cadre des
enquétes, parmi lesquelles on trouve le Rao-Wu rescaled
bootstrap. C’est la forme de bootstrap la plus en vogue a
Statistique Canada et cet article porte exclusivement sur
cette technique.

Ceci étant dit, les difficultés qui accompagnent le bootstrap
ne sont pas que de nature théorique. En effet, le
méthodologiste qui fait face au défi d’adapter le bootstrap a
son enquéte s’apercevra qu'en dépit de sa popularité, le
bootstrap ne s’accompagne pas d’une documentation
volumineuse qui le guiderait dans sa mise en oeuvre. Il y a
de nombreux piéges a éviter, des coins a arrondir (et
d’autres qu’on ne doit pas arrondir!), efc. lorsqu’on met en
ocuvre le bootstrap, et pour ces enjeux la littérature
existante n’est guére de quelque utilité. Cet article tente de
combler le vide qui sépare la théorie de la pratique en ce qui
a trait au bootstrap, du moins de la fagon que le bootstrap
est communément mis en ceuvre a Statistique Canada. 1l
contient une description détaillée, des conseils, des piéges a
éviter ainsi que des programmes SAS qui seront utiles a
quiconque souhaitant mettre en ceuvre le bootstrap.
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1. INTRODUCTION

With the recent advent of powerful PCs the bootstrap has made its way into many
surveys at Statistics Canada, providing methodologists with a seemingly easy-to-
implement, flexible and versatile variance estimation methodology. But is it really? As it
turns out, there are quite a few pitfalls awaiting the practitioner in his/her efforts to
implement the bootstrap in a specific survey context; things can indeed get ugly when
one leaves the realm of simple surveys to undertake the bootstrap with complex and/or
longitudinal surveys.

While performing routine evaluations in the wake of cycle 5’s production on earlier-
released variance estimates for the National Longitudinal Survey of Children and Youth
(NLSCY), which are based on a bootstrap methodology, a series of weird variance
estimates were unearthed. They are the consequences of the pitfalls alluded to above of
implementing the bootstrap. To give a flavour of what was noticed, Table 1 contains one
such series of weird variance estimates; it’s about the proportion of children in the
Atlantic provinces who, back at cycle 1 of the NLSCY, had a Person Most
Knowledgeable (PMK)' who lived alone?.

Cycle Estimate (%) S.E. (%) Domain Sample DEFF
] 15,72 1.16 541 3,678 3.73
2 15.86 0.30 471 3,361 0.23
3 15.46 0.97 475 3,522 241
4 15.14 1.08 424 2,993 271
3 14.81 0.91 383 2,814 1.86

Table 1: Point and variance estimates about the proportion of children in the Atlantic provinces who at
cycle 1 had a PMK who lived alone.

In Table 1, DEFF is the design effect associated with the point estimate, which is the
ratio of the variance calculated for the NLSCY to the variance one would get under a
Simple Random Sampling design Without Replacement (SRSWOR) of comparable
sample size. It is provided in Table 1 as a means to assess just how less effective
NLSCY’s design is compared to a SRSWOR design. Also, it shows how the variance of
the NLSCY is affected over cycles by attrition compared to what we’d observe under a
SRSWOR design. Domain is the un-weighted count of children whose PMK lived alone
at cycle 1; Sample indicates the number of individuals there are in the sample from the
Atlantic provinces: S.E. is the estimated standard error associated with the point estimate,
expressed in the same units (here, percentage points).

Looking at Table 1, a few things stand out. For instance, the sampling error estimate (the
S.E. column) of 0.30 calculated for cycle 2 is plain wrong (not to mention nonsensical).

"Ia survey on children like the NLSCY', the PMK is a key element; the PMK is the one person who's in the best position to answer
questions relating to a surveyed child. More often than not the PMK is the mother.

2 A PMK was deemed to live alone if he/she had either a value of 04 (single — never married), 05 (widowed), 06 (separated) or 07
(divorced) with regard to the cycle | collected variable AMMPQO4 enquiring about the marital status of the PMK A very similar
characterization of PMK living alone can be obtained using another collected variable, namely ADMPDO6A, which enquires if the
spause of the PMK lives in the household



Furthermore, across cycles, the sampling error estimates are inconsistent: they do not
steadily increase over cycles as one would expect them to as a result of the declining
effective sample size.

In the investigation process that ensued, several issues were discovered about the
implementation of the bootstrap in the NLSCY which, compounded, have lead to the
strange estimates that were obtained. This paper describes the bootstrap most commonly-
used at Statistics Canada (the Rao-Wu rescaled bootstrap) to the practitioner who knows
little about it. It exposes both the theoretical and practical sides of the bootstrap, with
particular emphasis on computer-related issues and pitfalls to avoid when implementing
it. The bootstrap gains here from setting the record straight with regard to all the
implementation issues we’ve encountered because practitioners are bound to hear about
them one way or another (maybe from firsthand experience in their own efforts
implementing the bootstrap). And when they do, these unaddressed issues will
jeopardize in due time the coveted status the bootstrap currently enjoys with users as a
versatile, easy-to-use variance estimation method.

This paper is structured as follows. Section 2 reviews the inferential framework under
which we conduct variance estimation. Section 3 will introduce you to the principle
behind the bootstrap. Section 4 describes the aspects of the NLSCY which are relevant
for variance estimation purposes. Section 5 and those that follow describe at length the
implementation of the bootstrap.




2. A WORD ON VARIANCE ESTIMATION

Before tackling the bootstrap, it's a good thing to revisit the inferential framework we're
usually in when we conduct a survey. The best overview of the inference challenge may
very well come from Ardilly (2000)° p.25; it’s translated and adapted here (but the final
touch of humour, in italics, is his!).

8: Of interest to us (it’s the parameter we're after) but unknown,
hence...

o: Great, it's computable! But it’s plagued with uncertainty so...
v(é): Of interest to us (tells us how good ] is) but unknown, hence...
V) Great, it's computable! But it’s plagued with uncertainty so. ..

[Are you starting to see a pattern emerging here? Q]

V(V(é)): Of interest to us (tells us how good V(8) is) but unknown, hence...
17(1}(63)): Great, it's computable! But it’s plagued with uncertainty so...

and this can go on and on...

Computing algebraically V(6) is often nothing short of impossible... and V(8)?
We 'd rather leave it to God.

There are a few things worth saying about the inferential chain above. First, for surveys,
we’d like to have an estimate V() or a good approximation of it bur all we’ll ever have

to work with is one observed sample. While we’re chiefly interested in computing ¥ (8)
(and let’s admit it: we can’t usually compute much of anything further down that
inferential chain anyway) we still need to have a clue somehow if V(l} (é)) is indeed so

small (compared to ¥(6)) as to be ignored; we need such a condition to be (reasonably)

fulfilled in order to have any faith whatsoever in practice in our estimate V(d). We'll see
in later sections that the computer-based environment can get us pretty close to a suitable
answer to that question (and it may not be what you're expecting i.e., that it’s not always
that small).

Also, by focusing solely above on variance, and not on Mean Squared Error (MSE),
we’'ve assumed (implicitly at the very least) that the estimator used 6 was (nearly)
unbiased for 8. While for cross-sectional surveys this is a reasonable assumption to make
(in truth, we make that assumption because we usually lack a way to discredit it), it’s not
that clean-cut in the case of longitudinal surveys. For such surveys an issue arises with

] - e .
[he quote has been taken out from the most recent re-edition of the book.
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the Mean Squared Lrror (MSE) which is probably more conceptual than anythmg but is
worth mentioning here nonetheless. To illustrate what the issue is. suppose we're at
cycle 2 of a longitudinal survey and we intend to use cycle 2 weights to estimate a cycle 1
characteristic. (We therefore assume explicitly here that the characteristic is either static-
in-time by nature or kept fixed. In relation with Table 1 above, the characteristic Alorne is
an instance of a kept-fixed characteristic since the marital status of an individual may

change over time.) Denote by écz the cycle 2 weighted estimate of this cycle 1

characteristic and & the original estimate based on cycle | weights. This could be of
interest as a form of diagnostic on the efficiency of the c1-to-c2-nonresponse model to

keep nonresponse bias to a minimum. Suppose that 8, turns out to be quite different

from 6. Under the assumption that cycle 1’s estimate is to be favoured over that of
cycle 2’s (after all, cycle 2 has fewer respondents than cycle 1’s so there can hardly be a
gain in information in losing data), we need to compute the variance for cycle 2
accordingly. Since a cycle 2 variance estimate of any kind (let it be under bootstrap or
anything else) will hinge on the cycle 2 sample-based estimate, which is off from that of
cycle 1, variance and MSE won’t match in this case. So if one used cycle 2 to compute
the “variance” then one should actually report the computed variance plus a term for the

discrepancy between the “pivot” écz and the “most suitable” estimate éa:
MSE e = variance + (8¢, -6c)* (1

The point of all this is that a longitudinal setting may give rise to issues that are otherwise
not met in cross-sectional surveys, those for which methodologists usually owe most of
their experience.

There are two grand avenues being offered to us in getting the sought-after variance
estimate V(8) : Taylor linearization and replication methods. The former usually leads to

closed-form formulas that appear in survey sampling books. It applies to “well-behaved”
estimators like ratios and is best used with simple designs. Taylor linearization is what’s
behind Statistics Canada’s Generalized Estimation System (GES) (when an exact
derivation of the variance can’t be obtained of course). Taylor linearization will allow
you to perform variance estimation for basic estimators like totals and ratios under cluster
sampling and simple two-phase designs.

One of the shortcomings of GES as a Taylor-linearization-based tool, though, is that it
doesn’t carry out variance estimation for the median and some methodologists in the past
have turned to the bootstrap solely because of this. If you’re in that situation, then
consider using Woodruff’'s method since the only input it really needs is a variance
estimate of some weighted mean and, depending on the design used, this may be
obtainable through exact methods directly or Taylor linearization (see Annex B for
further details on Woodruff’s method — it’s an expanded version of Girard (2005)). This
would be greatly beneficial in the case of stratified SRSWOR with large sampling




fractions and nonresponse (which are typical conditions in business surveys) as it's
shown later that the bootstrap doesn’t capture all of the variance in that context.

There are a number of replication methods that are used for variance estimation, among
which are the jackknife and the bootstrap. This paper will focus (almost!) exclusively on
one of the many existing versions of the latter, the Rao-Wu rescaled bootstrap. (See
Section 3 for the “almost” part and more generally Lohr (1999) and Rust and Rao (1996)
for a complete account of other methods.)

In a few words...

- Whether it's through Taylor linearization, replication methods or whatever else, in
practice variance estimation is conducted using just one sample, the one you've observed.

- While the bootstrap (and more generally replication methods) can proved to be a
suitable choice for variance estimation in a given context, methods based on Taylor
linearization should not be discarded too quickly. Woodruff's method may supply you
with the means (!) to circumvent the limitations of Taylor’s technique in dealing with the
median.

- In a non-conventional setting (e.g., longitudinal surveys for all those methodologists
whose experience draws from cross-sectional surveys), revisit basic concepts to make
sure nothing gets missed. For example, is everything worth reporting in terms of
sampling error well captured by variance alone or is there a need for something like a
MSE?




3. THE BOOTSTRAP

This section hardly has anything new to say about the bootstrap; it rather tries to gather in
one place a series of facts about the bootstrap that are spread out in the literature, books,
oral tradition, efc. (and make them somewhat more explicit while we’'re at it).

Originally, the bootstrap was developed by Bradley Efron (in Efron (1979) and Efron
(1982) and presented in extended form in Efron and Tibshirani (1993)) in the framework
provided by independently selected observations (a.k.a. classical statistics), and as
Sédrndal et al. (1992) remarked (see page 442) this is not without causing problems to
survey samplers:

So far, the [bootstrap] technique is somewhat unexplored for survey sampling.
The bootstrap technique was originally designed for use with independent
observations, the standard assumption of traditional statistical theory. One basic
problem, not yet definitely answered, is how the technique should be correctly
modified to accommodate the special features of survey sampling, including the
nonindependence arising in sampling without replacement and other complexities
of designs and estimators.

In other words, as far as classical statistics (i.e., the nurturing ground for the bootstrap) is
concerned, just about everything goes wrong here in survey sampling.

What we call the bootstrap in the survey setting actually is a body of techniques which
are inspired from the (true) bootstrap and try to achieve the same success in surveys as it
has had in classical statistics. Many variants of it thus exist, bearing names like mirror
bootstrap and the Rao-Wu rescaled bootstrap for example. Despite the work that has
been done since the early 1990s on bridging the gap between classical statistics and
survey sampling as far as the bootstrap is concerned, we feel that Sirndal er al. (1992)'s
description of the situation is still of topical interest today and should be kept well in
mind by every survey sampler.

First, let’s describe a survey setting where the use and implementation of the bootstrap
should not cause any problem; it helps see how the bootstrap operates:

| — The observed sample s of size n is drawn according to a Simple Random Sampling
design With Replacement (SRSWR) from a population of N elements, with N/n an
integer.

2 - A pseudo-population of N elements is created by stacking N/n copies of the »
elements of the observed sample one on top of the other, thus yielding in all (M/n)*n=N
elements.

3 - Draw a large number B of samples, called replicates, each of size m and independently
from the pseudo-population using SRSWR.




4 - Form B estimates é,,oo,.l,....é,,oo,ﬁ from the B replicates in the same manner as the

basic estimate # was obtained from s. the observed sample®.

The bootstrap variance estimate computed in practice is the following approximations:

-
“

o -6) o)

M=

Vboot (é) = ﬁ %

What makes estimator (2) a reasonable one to choose? The answer lies in its
unbiasedness for the exact variance V(6) of the estimatord. To express that condition
explicitly, we need to realize that variance estimation using the bootstrap actually
involves two distinct random sampling mechanisms: the original sampling (which yields
the observed sample and provides the framework for design-based inference) and the
bootstrap per se. The unbiasedness condition on v, (6) spells out as:

EpEpon (vbnm (é)ls)‘: V(é) 3)

The inner expectation is taken with respect to the re-sampling process (ie., the
bootstrap), given the observed sample, while the outer expectation, £, is taken with

respect to the sampling design. Whenever you wonder whether the bootstrap “works™ or
“doesn’t work™ in a given inferential setting (i.e., given sampling design, estimator, efc.)
you're actually asking whether (3) holds or doesn’t hold in that situation.

This pseudo-population form of the bootstrap is intuitive: failing to have in practice the
benefit of re-sampling from the whole population (as required, by definition, for design-
based variance estimation) because values for the characteristic of interest in its non-
sampled portion are unknown to us, we form a makeshift population from what we do
know i.e., the sample.

* This instruction was written here as it’s usually told in practice to new users of the bootstrap. We'll see
later on that taken literally this can lead to serious problems.

* Some authors use B as the denominator instead of our B-1; it doesn’t usually matter which one you
choose.
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There are practical ditficulties though with this first form of the bootstrap.  First. it's
expressed solely in terms of SRSWR and cannot be easily generalized to other designs
(how to appropriately stack up the sample to create the pseudo-population when the units
have unequal weights?). Also, but to a lesser extent, N/n has to be an integer.
Nonetheless, work has been carried out in the literature to extend that form of the
bootstrap and to develop close siblings which overcome the difficulties we’ve alluded to;
see Sitter (1992) for further details.

As we mentioned in Section 2, any variance estimation method, the bootstrap included,
has to work in practice from one sample (and one only), and that’s quite a challenge
when you come to think of it. Indeed, how can we possibly hope to have something
meaningful to say about a quantity like the sampling variance using just one sample when
by definition it takes all of the possible samples to construct it? And amazingly we often
can do as much with apparently so little! Actually, the name “‘bootstrap” does capture that
eerie-feeling of getting away with something when at first there seemed to have been no
way out. Indeed, apparently the word is taken from the expression “to pull oneself up by
one's bootstraps” which is a line from a story describing how one of the characters pulled
himself out of a bad spot by using his bootstraps when there were actually no other
“conventional” way out (Efron and Tibshirani (1998) p.5.).

Even though this paper is all about the bootstrap, it’s probably good to differentiate it
here from the jackknife method since it seems the two are often mistaken one for the
other. The (delete-1) jackknife can be described as forming all possible sub-samples
from the observed sample of units obtained by removing one (sampling) unit at a time.
The remaining units in a given sub-sample are re-weighted appropriately to account for
the loss of the removed unit and an estimate is built from such a sub-sample the same
way the sample-based estimate was obtained. A key feature of the jackknife is that it
does not usually give rise to a huge sampling space as with the bootstrap so in
implementing it one can actually exhaust it. Consequently, there’s no error component
due to re-sampling in estimating variance with the jackknife since the entire re-sampling
space is used, not just a subset of it as with the bootstrap. Despite this, the bootstrap is
often preferred to the jackknife (again, see Lohr (1999) or Rust and Rao (1996) for
further discussion).

3.1 Bootstrap and with-replacement designs

The method of implementation of the bootstrap which is in vogue at Statistics Canada,
and was the one used for the NLSCY, is known as the Rao-Wu rescaled bootstrap. We
describe it here in the case of a stratified multi-stage with-replacement sampling design.

I — Within each stratum A, draw directly from the observed sample of n, Primary
Sampling Units (PSUs) some large number B of sub-samples of size n, —1, hereafter
called replicates, according to SRSWR (using SAS proc surveyselect, say).




2 — Compute the initial B bootstrap weight® for all units k according to

W??g'al :(n h l]xmullk’b ka (4)
for—

where: - w; is the design weight of unit &;
- mult; , is the multiplicity of unit k in replicate b i.e., the number of times it was
selected under the SRSWR scheme.

3- Use the set of B weights to obtain B bootstrap estimates é,,‘,,,,‘,,..., é,,o,,,‘a in the same

manner as the final estimate was obtained from the observed sample s (i.e., have the
replicates go through nonresponse and post-stratification methodologies, for instance,
should these apply to the survey under study — we’ll have more to say on what this
precisely means later on) and compute the following:
Epm a2
Vhoor = "_l_ (Bbool,b _0) ©)
B-1)5
Notes:

- You may find the use of a stratified multi-stage design as the framework to introduce
the bootstrap a bit too general for your own taste. If so, then you'll enjoy Simulation A
which is all about the bootstrap in the context of good old SRSWR (actually, Simulation
A exploits SRSWOR but the sampling fraction used there is so small that it amounts to
conducting SRSWR).

- When sampling with replacement n-/ elements from a set of n distinct identifiers
lidy,....id,} (i.e., the sample) according to Step 1 above, what is obtained as a result is a

set of n-1 survey identifiers {id('l,,...,id(',,_l)} which are (quite possibly) no longer all

distinct. Indeed, some units from the sample may be selected more than once under the
with-replacement scheme to form a given replicate. In practice, though, we prefer to
work again from a set of distinct identifiers {id(,,,...,id(”} made of the ; distinct

identifiers making the given replicate. But in order to do that and not lose all of the
information originally contained in {id(',),...,id(',,-,)} we need to keep track of each distinct
identifier's mudtiplicity. In other words, in practice instead of working from the set
{id(',)....,id(',,_”} we prefer the set of pairs {(id(,),mult(,))....,(idu),multm)} and this is
precisely what we exploit in (4).

- Strictly speaking, the rescaled bootstrap originated in Rao and Wu (1988) but the
“weight-based” presentation of it that we use, i.e., (3), is taken from Rao, Wu and Yue
(1992).

® To avoid over-crowding equations with too much notation, let’s keep the siratum subscript out of them
whenever the context allows. For example, despite the missing subscript 4 , the design weight is considered
10 be dependent upon the stratum the unit is in,



- You may find it odd (at least now that we're about to mention it! ©) that nothing is said
of Secondary Sampling Units (SSUs) that arise in two-stage sampling; the only re-
sampling we’ve described here is solely in terms of PSUs. We’ll see in Section 7.1 what
bearing SSUs have on variance estimation and what the bootstrap, when constructed the
way that we’ve just described, can (and can’t) do for us.

- You may wonder why, in Step 1, we picked n;, — 1 PSUs with replacement and not, say,
n, —2 ? The paragraph here is too narrow to contain the beautiful argument behind that

one choice so we refer you to the box From Efron’s bootstrap to Rao-Wu bootstrap,
below, to get the full story on this.

- And while we're at it. how does one come to even propose that the bootstrap weights
should take the form (4) to begin with? In short, the bootstrap weights precisely take that
form so that the bootstrap variance estimate of the mean coincides with the usual exact
variance estimate. Here again, you’ll have to refer to the box From Efron’s bootstrap to
Rao-Wu bootstrap, below, to learn more on this.
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Before digging any further into the bootstrap let’s illustrate all this with a SAS-supported
example — all figures and estimates quoted in Simulation A below are taken from the
SAS code provided in Program A. The SAS code may actually help you “see” what the
bootstrap is all about.

| Simulation A

A population of 10,000 units is created with a normal variable of interest ¥
randomly generated. The population mean, y, is 49.85981 and the idea here is to

estimate it using the usual Horvitz-Thompson estimator y using an observed
sample of size 100 drawn from the population under SRSWOR:

Ve
izkesﬂ-k
o N

where 7, is the (first-order) inclusion probability of the K™ unit.

The (exact) variance of that estimator is calculated to be (see for instance Result
3.3.2, in Sdrndal et al. (1992) on page 68):

"

S;
“L = (1-100/ IOOOO)B—M;—'(%(())—IQ =3.843195

Viy)=Q-u/N)

n 1
An approximation of that variance was obtained by a Monte Carlo simulation
where 10,000 samples were drawn and the empirical variance of the ensuing

estimates Oy 1,.... Oy 10000 Calculated; we obtained:

Vae (V) = 3.837265

Of course, a Monte Carlo approximation really is useful when, contrarily to our
setting, the exact variance is nor known beforehand (i.e., cannot be computed
from a formula, which would have been the case had we been interested here, say,
in the median instead of the mean). But even then the Monte Carlo estimates tell
us, as a whole, something valuable about the estimator used: the histogram we
plot from them approximates the sampling distribution of the estimator. For
reasons that will become apparent later we didn’t plot the Monte-Carlo estimates

directly but rather the differences or errors (éMC‘, -#), for i=1,..,10,000, between
each Monte-Carlo estimate and the true mean.
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Graph 1: Sampling distribution of the estimator of the mean obtained through a Monte Carlo
simulation.

An unbiased estimator of that variance using the observed sample s can be used to
get an estimate of the variance:

m 52 |
V(y)=(1-n/N)==(1 —100/10,000)% =3.774235
n

Bootstrapping this sample with one set of 1,000 replicates we get, using (5):

Vooor () = 3.722582

More precisely, 1,000 sub-samples (i.e., the replicates), each of size 99, were first
drawn under SRSWR from the observed sample. Afterwards, bootstrap weights
were assigned to units according to (4) and the ensuing bootstrap-weighted means
were computed for each of the 1,000 replicates in order to compute (5).

It’s interesting to draw the histogram (using the same scale as the one above
depicting Monte Carlo estimates) of the bootstrap estimates:
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Graph 2: Sampling distribution of the estimator of the mean obtained under bootstrap.

As with the Monte Carlo histogram, differences rather than the estimates
themselves were plotted. It’s important to note that the differences here with the
bootstrap are taken between the bootstrap estimates and the sample-based
estimate of the mean (and not the true mean). This is because the bootstrap
estimates are distributed about the sample-based estimate “the same way” as the
Monte Carlo estimates are distributed about the true mean; consequently, to make
distributions directly comparable, differences must be computed accordingly.

It's quite striking how the two histograms are alike. This is actually no accident because
both the Monte Carlo simulation, as it’s used here, and the bootstrap work to approximate

the (exact) sampling distribution of the estimator of the error y-¥. (That distribution of
errors and the sampling distribution of the original estimator y of y are just a translation
factor away from one another. We paraphrase this by saying that while the original
sampling has the population value in its sight, the bootstrap rather has the sample-based
estimate in its sight. So, our discussion above can be summarized as follows: both
sampling processes behave the same way with regard to their respective targets.) So, the
bootstrap does not get to estimate the exact sampling variance just because it’s conceived
to “track it” but rather because it works to match the whole sampling distribution of the
estimator of the error -3 . And once that match has (reasonably) been achieved, any

characteristic of the sampling distribution can then at once be estimated from the
bootstrap distribution whether it’s a given moment, its median, its inter-quartile range,
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ete. Of course, in practice, we're merely interested only in its variance. The point is that
the bootstrap does not estimate the sampling variance per se but provide the means for us
to estimate it as a by-product of its efforts estimating the whole sampling distribution.

Furthermore, as Rao and Wu (1988) observe (see page 232, below equation 2.6), in the
case of the mean, the variance estimate under bootstrap (not its Monte Carlo
approximation) is the usual variance estimate. (Actually, this is where condition (3)
described above comes from.) In other words, if we had the benefit of computing the
bootstrap variance estimate from all possible replicates (and not just rely on a Monte
Carlo approximation using B of them as we always do in practice), then the numerical
value would be that of the usual variance estimate. So our Monte Carole bootstrap
variance approximation, obtained from bootstrapping an observed sample, gets closer and
closer, with the increasing number of replicates used, to the usual sample-based estimate
of variance, not to the exact one. It goes to the exact variance only when we further take
expectation with respect to the sampling design (ie, by averaging the bootstrap
approximations obtained, arising from bootstrapping a large number of observed
samples).

This is as good a place as any to address the following issue that may have come up to
your mind: How do we get from Efron’s bootstrap to Rao-Wu rescaled bootstrap? In
other words, where do the bootstrap weights given by (4) come from anyway? If you feel
like learning about the genesis of the Rao-Wu rescaled bootstrap then the next box is for
you; otherwise you can skip it without compromising the sequel.

| From Efron’s bootstrap to Rao-Wu’s bootstrap

To help introduce Rao-Wu rescaled bootstrap we’ll follow very closely the
presentation given in sections 2, 2.1 and 2.2 of Rao and Wu (1988) and provide
additional details as we go along.

Let’s consider a sample s which was obtained from a stratified design with an
unequal probability selection of n, (>1) PSUs with replacement within strata and
that we’re interested in estimating the variance of the usual estimator of the
population mean. Suppose the sample in stratum 4 is the set s, = {y(,‘)|k =l,..., 0y }

(The index notation used to describe s, is to remind the reader that the values y,,,

need not be all distinct due to the with-replacement feature of the design.) An
unbiased estimator of the mean for stratum 4 is then

1 < Y(k)
= _ k=1 P

Yh N,
where p,, is the probability of selection of unit (4).

The estimator for the overall mean is
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I
W= Z Wiyn
h=l1

where W, is the weight assigned to the stratum & with Y W, =1.
h

Adapting equations 2.9.7 and 2.9.9 from Sérndal ef al. (1992) to our situation we
find that an unbiased estimator of the variance of 3, in stratum / is given by:

iy

b4 2
l o (k) ] l n,,[y(“ - ‘ ny MJ

V@) =Va| — S =
. Nu by | N3 nap =03 Py 74 131 Py

Let's now see what we get by bootstrapping the sample. For starters, Efron’s
bootstrap requires that we perform simple random sampling of size nj with
replacement from s, within each stratum and independently across strata; this

ny,

yields within stratum A the set of PSUs {;;} which is customarily called a

e
replicate (or a bootstrap sample). Again, due to the with-replacement feature of
the bootstrap this time, any given y-value y, of s, may be chosen more than

once in a replicate; this is reflected here by the asterisk “*”. (In other words, it
may very well be that y, =y] =y, for some k and j; # j,.) Then form the
bootstrap estimator é,,‘,, from the replicate drawn the same way the estimator y,

was built from the sample s, ; by doing so we get:

. T
Zh 2 Yk
- k=)

E., (éb h)_ Egpswrn| =
) ' Nh"hpj

— )

Nunppiiy

Indeed. under SRSWR an estimator of the total of a variable ».Y ,. in the

1ES)

“population” s, of size n, is Y 7 , the latter being built from a SRSWR
IESSRSWR
sample of size n,. (Be vigilant here: n, is both the population size and the
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sample size in our SRSWR design, so whencever it enters a formula make sure vou
know if it’s as the “sample size” or as the “population size™.)

(Note: E., is the expectation with respect to the bootstrap in stratum A and is the

notation used in Rao-Wu (1988); it corresponds, by definition of the bootstrap, to
the expectation taken with respect to SRSWR in stratum 4.)

We now need to evaluate the (exact) variance with respect to the bootstrap
sampling of #, within a given stratum A, V.,,(H,,‘,,) and see if we get exactly

I}h(:};h)or not.
To this end, let’s rewrite our bootstrap estimator in terms of Sarndal er al.

(1992)’s notation in their Section 3.3.2 with the intent of using their equation
(3.3.23) later on:

n y;
T L]
A =1 My P ] &5, 1 .
gb‘h=!_'_"_1_=__._ a3,
Ny Nympiap; N

What their equation (3.3.23) says in terms of our context and =, is:

Vsrswr (Zos 5
n;, nh
where
ny
5 1 -
hY & i 1 Z(Z,- "z)
np=1ig

To see that, you need to make the following equivalences between their notation
and ours: U =s,, m=n,, N =n,. This yields

. 1 1 ny =15,
VerOp ) =—5 Verswr (Zos) =—5 —
h & N;% os Ng n, n,

Explicitly,

2
nh(y(k)—thM}
A 1 ny =1e=t\ Piky Bri=1 Py ng—1 ~ .
VerOp) =—5 = ==L —7,6,)
N;, n, ny(ny —1) n

22




The bootstrap variance estimate in stratum A thus differs from the corresponding
standard variance estimate of the estimator of the mean under unequal probability
with replacement sampling computed earlier, ¥, (7, ), simply by the multiplicative

n, —1
factor —2

Bp
The journey up to here has been somewhat treacherous so let’s summarize our

findings so far. We’ve noticed that the expectation and variance under bootstrap
of 8,, were:

Evy, (éb.h )= Espswr (éb,h )= Vh

Vep (éb,h) = "’;1; 1 V()

where, again, V,(7,) is the estimate of the variance under the (original) sampling
design.

What does it all mean? It means that while Efron’s bootstrap leads to a (point-)
bootstrap estimator which is unbiased for the estimated mean within any given
stratum A (which is a desirable feature), it doesn’t quite yield the usual variance
estimate. So what would? We need to rescale the bootstrap estimator so it would
fit both criteria above. But how? We can first propose an alternative estimator of

the form a#,, for some a yet to be determined. While this fix would allow us to
retrieve the variance estimate with the proper choice of «, it would also lead to a
bootstrap estimator biased for y. Indeed, E.(a&,,,h)at} unless we make the

getting-us-nowhere choice a =1.

What if we propose instead an alternative estimator of the form 5,,_,, =aéb.h +p

for suitable constants @and g? lts expectation and variance with respect to the
bootstrap would be respectively:

E'h(aéb,h +ﬁ)= ay, + 8

X S s L
V‘h(agb,h +,B)=a‘ nZ ViPn)
h

The latter equation forces our choice for a:

ny

V‘h(aéb,h +ﬁ)= Valn) e a= 8=
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Consequently, in order to get a bootstrap estimator in stratum /4 which is unbiased
for y, we need to choose # as:

A n La _ n -
E-(aeb,h+ﬂ)=,/n h ly,,+ﬂ=y,.c>ﬂ={l— - ,}yh
h~ h ~—

So, the grand conclusion we’ve reached here is this: a linear function 6,, of

Efron’s bootstrap estimator in stratum 4 which is unbiased for ¥, and whose
variance under bootstrap sampling is the usual sampling variance estimate is:

~ n, - n - n - _
Oy p = b Opp +|1- . Vo =Vp t E (91:,}, —)’h)
n,, —1 nh "1 n,, —1

To keep the derivation of Rao-Wu bootstrap as close as possible to Efron’s we’ve
restricted ourselves here to re-sampling of size n, from the sample in stratum 4 of

size n,. If we allow from the beginning the re-sampling to yield bootstrap
samples of arbitrary size m,, in stratum 4 then we’ll end up proposing as the Rao-
Wu rescaled bootstrap estimator:

—_~ n ~ m L . m A m
Oy = B Opn+|1- - Y =¥Ypt e (gb,h-yh)
nh—l nh—l nh—]

*
m; y}
5 =1 MpP
where: 6, , =2—L
Nh

This is precisely the estimator obtained by Rao and Wu (1988); see their equation
(2.4).

Now, this being said, how do we get something like (4)? In other words, if we
chose to write the estimator y, in the following form:

W
2. Y Wik
L e

Yn= N,

for some “weights” w,, , then what would be the ensuing weights w,,,, , for the

corresponding bootstrap estimator 8, ,? To answer that, we first need to express

Rao-Wu rescaled bootstrap estimator in terms of the units of the sample itself,
rather than in terms of the units in the bootstrap sample as it’s currently in. The
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trick is that the latter may contain several “copies” of any given sampled unit. We
achieve that transition without losing information by introducing bootstrap
multiplicities mulr, (k) which simply count how many times a given sampled unit
was selected by the bootstrap:

L]

Y o yymulty (k)

ébh=j=]mhpj = &=l MpPk
Then,
iy ny, nh ny
2 WY D WY LYk Y
8., =l My | k=1 My k=1
bh = + -
) Nh nh "l Nh N,,

& m m, n
O P = TR h = mult
Z.lym (k)[ \/nh .| \/nh “1m, )

Ny

This suggests to define the bootstrap weights wy,, ), when m, are taken with
replacement from the »;, sampled units as

my my ny
wbaal,(k) = W(k) 1- e g | _””l[f(k)
ny, =1 ny, —1 my

In the (important) special case resulting from the choice of m, =n, -1 the
expression of the bootstrap weights can be seen to simplify to (4).

What values should you take for m,? Why m, =n, —1 above all other choices?
There’s no completely satisfactory answer to this riddle; let’s nonetheless explore
some avenues. The choice m,, = n, —1 sure leads to the simplest of all forms for

the bootstrap weights since the term |- !;Z:_h— vanishes for that choice of m.
h
Actually there’s more to it: m, =n, —1 is then the only choice of m, which
results in zero weights for units not selected in the replicate. A choice of
m;, >n, —1 will lead to negative weights for those units which are not selected in
the replicate. Even though this doesn’t invalidate in any way the resulting
bootstrap, it’s an annoyance to have negative weights. Any given choice of
m,, <n, - 1sure presents the advantage of leading to replicates smaller in size (i.c..
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the number of units they would contain) over the choice m, =n; —1 though
improvements on bootstrap performance appear dubious to us. Preston and

Chipperfield (2002) describe a bootstrap which hinges on the choice m), = "% y
simulations we’ve performed with the Rao-Wu rescaled bootstrap has not yielded
any noticeable advantage from choosing m), = "% over m;, =n, —-1. While there

doesn’t seem to be any real gain in bootstrap performance resulting from a choice
of m<n-1 we suspect such a choice to lead to greater instability in the variance
estimates as m gets smaller but this we didn’t explore. Rao and Wu (1988)
initially built a theoretic case in favour of mj, =n, -3 from matching the third
moment of the bootstrap distribution with the corresponding moment of the
sampling distribution but this choice didn’t translate into any performance gain
when scrutinized under simulations.

If we redo this exercise all over again but this time for a without-replacement
design then we’ll recover equation 4.2 from Rao and Wu (1988) as the chosen
rescaled bootstrap estimator in this case.
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In Simulation A, B=1,000 was used and this happens to be the number of replicates
NLSCY uses also. There are surveys whose bootstrap relies on 500, and there are
specific settings where one could get away with variance estimation just fine using as
little as 250 replicates. The generally accepted rule is that you should consider having as
many replicates as your computer system will allow: the bootstrap should not freeze all
resources nor take forever to run. You'll find in Section 9.1 heuristic results on the
stability of variance estimates as a function of the number of replicates that may be of
some assistance; but in the end the number of replicates to use in a given setting is a call
the practitioner has to make. In the meantime, here’s a trick some like to use:




553
52
5.1
Variance 5
estimate 49
4.8
4.7
4.6 T

T

§ &

2 g

Number of replicates

Since the discussion so far has hinged on simulations, a word of warning is in order.
Since in a simulation framework the value of the population parameter we’re after, 6. is

known, it’s quite tempting to substitute this value for the estimate @ in (5) and thus
compute instead

2
Vggor (é)=LZB:(ébool.b —9) (7

After all, why resort to the sample-based estimate § when we can actually do “better”
and use the true value @ instead? Tempting as it is, it’s wrong. Indeed, rearranging (7)

will show the difference arising from using € instead of 6 in the variance computation:

1 & T |
vl (6)= = bz-:l(g"”' ,—6+6-0)
| . . ! B . B .
=——1 Y Broors =0 + 206 -0)3 Gpours -0 + 3. (- 6)°
B-1]4a k=1 b=1

B . A
Z(gbool,b "9)
=

-1 B

~ Vi (6) 4206 -6) = 2 (-0y (8)

Consequently.,
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EpEppor Wi (B)s)=V +0+¥ =20 1!

(The rightmost term of (8) is a constant with respect with the inner-expectation i.e., it’s
independent of the replication process, so all that remains is the expectation taken with
respect to the design and this is by definition the sampling variance.)

So. with the alternate approximation (7) which uses & directly, you end up calculating
the variance twice! Therefore, the point that was made right after Simulation A is all the
more important: the bootstrap, as a re-sampling method, hinges on the observed sample
and not on the population directly as the usual survey sampling procedure does. In other
words, bootstrap estimates vary about the sample estimate the same way the sample
estimates vary about the true value; therefore, if the bootstrap estimates are compared
directly to the true value, then the variability of the bootstrap estimates assessed in such a
way involves “double counting”.
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3.2 Bootstrap and without-replacement designs

In Simulation A above, the sampling fraction of 100/10,000=1% was deemed low enough
to conduct the bootstrap there ignoring the without-replacement nature of the initial
SRSWOR design used. It’s as good a time as any to talk about the bootstrap in the case
where the sampling fraction in a stratum /4 is too large to ignore; this topic in the context
of complex surveys is the main focus of Mach et al. (to appear). (Actually, it’s instructive




to keep in mind while reading this the issues they raise in their conclusion and see to
what extent the points covered here and there in this paper address them.) One proceeds
as above except that the following bootstrap weight is calculated instead of (4) in a given
replicate b and stratum h:

w{f;,;iniﬁal =[l_m+ﬁ(

. ]mult,‘ b }w,‘ 9
ny -1 4
Note: You get (9) from Rao and Wu (1988)’s equation 4.1 the same way we've obtained

(4) in the box From Efron’s bootstrap to Rao-Wu bootstrap, above, from their equation
24.

The bootstrap weight obtained through (9) contains a factor which is a function of the
sampling fraction £, in stratum A which allows us to recover for a total (or a mean) the
finite population correction factor (fpc) 1- f, that distinguishes its variance estimator
under SRSWOR from that obtained under SRSWR. In other words, if in the context of
SRSWOR we compute in parallel bootstrap variance estimates using (4) and (9) with
ever growing sampling fractions, then we’ll see the two variance estimates drift further
and further apart. This is what Simulation C illustrates.

Simulation C

In Program C you'll find the code for a limited simulation that shows how
bootstrap variance estimates based on (4) and (9) differ when the sampling
fraction is no longer negligible; it was used to obtain the figures of Table 2. The
idea here is to address an ambiguous statement often heard about the bootstrap
and large sampling fractions; it goes something like this: “The bootstrap doesn’t
work when the sampling fraction is large.” This is true only if by “bootstrap” we
mean the one which does not integrate the finite population correction factor i.e.,
the bootstrap implemented using (4). But then, when the design is with
replacement this is not the form of the bootstrap one should be using! If one uses
in such situations the bootstrap defined by the weights (9) (as one should) then the
bootstrap does work for large sampling fractions. This simulation is used to show
that each form of the bootstrap “tracks down™ correctly the variance with respect
to the design it was built for: with-replacement bootstrap goes with SRSWR and
without-replacement bootstrap goes with SRSWOR. It's when people start to
carelessly mix with-replacement bootstrap and without-replacement designs that
things go awry; if it backfires, then don’t blame it on the (with-replacement)
bootstrap.

For each of the SRSWOR and SRSWR designs, the exact variance, its usual
unbiased estimator and the corresponding bootstrap variance approximation (with
or without the finite population correction factor, accordingly) are calculated.
BS NO FPC is the variance approximation obtained using (4) and BS_FPC is the
variance approximation obtained using (9).
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SRSWOR SRSWR
n f (%) Exact Estimated BS FPC Exact Estimated BS NO FPC
100 1 3.8432 3.7742 3.8567 3.8820 3.8124 3.8956
500 S 0.7376 0.7067 0.7157 0.7764 0.7439 0.7533
1,000 10 0.3494 0.3532 0.3499 0.3882 0.3925 0.3888
2,000 20 0.1553 0.1507 0.1514 0.1941 0.1883 0.1892
3,000 30 0.0906 0.0913 0.0919 0.1294 0.1304 0.1313
4,000 40 0.0582 0.0568 0.0507 0.0971 0.0946 0.0845
5,000 50 0.0388 0.0389 0.0394 0.0776 0.0778 0.0788

Table 2: Bootstrap variance approximations (9) and (5) as a function of the sampling fraction.

We know from the exact variance formulas that the variance of the Horvitz-
Thompson estimator of the mean under SRSWR is 100x(1/ f —1)"' % greater than
that under SRSWOR. Indeed,

) e

VsrswoR (m=(l—n/N)—:— (10)
. 482

Vs;zswk(ﬂ)=—nL (11

The relative difference between the two is computed to be:

100 x|V, 1)-V 7
relative difference = Vswwn (&) suswor (i) =100x(N/n-1)"" (12)

Vsrswor (H)

So, with a sampling fraction f of 25%, the variance under SRSWR is 30% larger
than that under SRSWOR; it gets to 100% when the sampling fraction f is 50%.
Our simulation’s findings agree (as they should!) with these results which stem
from the theory of survey sampling. The simulation does show that in presence of
large sampling fractions the bootstrap conducted from (4) still is on track (and
doesn’t go awry as some have been lead to believe) provided you're working
from a SRSWR design. But if you're in fact dealing with SRSWOR, as it’s
usually the case, then you have to switch to (9) to conduct your bootstrap;
otherwise you’'ll be estimating variance as if you were under SRSWR, not
SRSWOR.

It’s important to note a peculiar feature of the bootstrap weights obtained through (9)
which may have repercussions on just how appropriate a variance estimate obtained using
them will be in practice. Going back to (4), we notice that if a unit k& is not selected in a
given replicate (i.e., its multiplicity term is 0) then its corresponding bootstrap weight is 0
as we expect it to be (we expect units not selected by the bootstrap to form a given
replicate not to contribute to the (replicate) point-estimate). But the same doesn’t arise in
(9): units with a multiplicity term of 0 will inherit a non-zero bootstrap weight; it will

actually be equal to »v,{f’,f""'””’ = [l -Jl= £ ]“'k . Even though this weight is usually not big
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in itself (you can actually show it’s smaller than 1 in the case of SRSWOR), there are
often many non-selected-in-the-replicate units out there so that the whole contribution of
non-selected units is non-negligible. So, all the units in the observed sample get to
contribute in each of the replicates, regardless of whether they were selected in the
replicate or not. This has an impact on how we conduct domain estimation. Usually, we
expect that for a given domain and replicate, only the units that we’ve selected in the
replicate and belong to the domain would contribute. But here, we get a contribution
from two classes of units: units belonging to the domain, regardless of whether they were
selected in the replicate or not. But these units belonging to the domain have had their
“total” weight shared with everyone. So, are these two contributions enough to recover
all that is due for the domain? Quite possibly, but still the user has to be on the lookout
for anything fishy in the estimates that could point out to specific issues with the “shared”
weights.

If the without-replacement scheme is not (stratified) SRSWOR than things get quite
difficult. We don’t cover here those cases because we didn’t experiment them at all —
this was not required for the NLSCY; we refer the reader directly to the sources, e.g.. Rao
and Wu (1988), Sitter (1992), for available options.

At this point we’ve seen how basically the bootstrap operates; it remains to see how it’s
implemented in real survey situations. The NLSCY will serve here to illustrate many key
features of the bootstrap implementation; it is briefly introduced in the next section.
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In a few words...

- The distribution of all bootstrap estimates matches (up to a translation factor) the
sampling distribution of the estimator. We can avoid talking about that translation factor
if we express ourselves in terms of errors rather than estimates: the distribution of errors
of the bootstrap with respect to the sample-based estimate matches that of the distribution
of errors of the estimator with respect to the population parameter of interest. From this
fundamental correspondence follows the equivalence of any corresponding moments. for
example, one of which is the sought-after variance of the estimator.

- The Rao-Wu rescaled bootstrap is attractive to survey samplers because, among other
things, there’s a weight-based form to it (see Rao, Wu and Yue (1992), first paragraph of
Section 3.3).

- Rao-Wu rescaled bootstrap is designed in such a way as to yield a bootstrap estimate
which coincides with the usual variance estimate in the case of a mean.

- Use the form of the bootstrap that suits best the design, depending on whether the latter
is with or without replacement.

- Rao-Wu rescaled bootstrap must be implemented with care in SAS depending on
whether the sampling fraction is negligible or not. Furthermore, when the weights (9) are
computed, extra care must be taken to ensure that the SAS file driving the computations
contains a record for everyone sampled.

- The set of all possible replicates that can be drawn is usually so huge that only B of
them can be investigated in practice. Consequently, the variance estimate we get in
practice should rather be described as a Monte Carlo approximation of the bootstrap
variance estimate.

- Use as many replicates B as possible without monopolizing all resources of a PC. There
is usually little benefit from drawing more than one thousand replicates.

- Considerable savings can be made in terms of storage space of the bootstrap files if the
precision needed about the weights is scrutinized (i.e., 8 bytes is overkill) and the files
are compressed within SAS as they’re outputted to their storage locations.
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4. OVERVIEW OF THE NLSCY

In this section we briefly discuss aspects of the National Longitudinal Survey of Children
and Youth (NLSCY) which are of particular importance for variance estimation. The
idea here is not to become an expert of the NLSCY but rather to get a feel for the
methodological context that give the issues addressed here all their flavor.

Two aspects of the NLSCY drive its variance methodology: it’s a longitudinal survey and
it’s based on the LFS. (If you have little interest in longitudinal or LFS supplement
surveys then you may want to skim through this section and just read the summary at the
end.) Some of the earlier work done in relation with variance estimation and the
NLSCY can be gathered from Laflamme (2002). A more complete account of the LFS as
far as NLSCY is concerned can be obtained from Chapter 5 of NLSCY’s Cycle 6
UserGuide.

The NLSCY has existed since 1994. Over the years, it gave birth to several cohorts, one
of which was born when the survey itself was first introduced. Throughout the life of a
NLSCY cohort (some cohorts have a shorter life span than others), a new cycle of
collection is undertaken every two years; as these words are written, the original cohort is
in the field for its seventh cycle. A new cohort, called an Early Childhood Development
cohort (ECD) is freshly introduced at each cycle. It starts up with a sample of 0-1 year-
olds taken from some of the LFS rotation groups which cover the age period of interest.

While the NLSCY has drawn babies at one point in its history from the Birth Registry, it
chiefly obtained for its still-active cohorts its children from the rotating samples of the
LFS. Thus the focus here is on parts of the LFS design that are relevant to the NLSCY
and leave issues specifically related to the Birth Registry out. Furthermore, only
generalities about the LFS are presented; exceptions to what is presented here exist and
the reader is referred to LFS’ documentation for an exhaustive description of the LFS
design.

The LFS is based on a stratified two-stage design. Within LFS strata, which are
geographic areas, clusters of households are formed and we can think of these as city
blocks. The clusters are assigned randomly to one of 6 entities called a rotation group.
Each rotation group is assigned to 2 months: Rotation 1 is associated to January and July;
Rotation 2 is associated to February and July; and so on. At any given time the LFS
sample is made of households from all 6 rotation groups. Each month a sub-sample of
households, taken under a systematic selection scheme from the rotation group associated
to the month, enters the LFS and will remain in the survey for 6 months; it replaces a sub-
sample of households which are due out, now that their 6-month period has come to an
end. For example, in July of a given year, the sub-sample taken from Rotation 1 which
has entered the LFS back in January is due to exit and is to be replaced by a sub-sample
taken from Rotation I. A given rotation group thus contributes a sub-sample to the LFS
every six months. When a given rotation group is exhausted, which may take 2 to 4
vears. it’s replaced by a fresh cluster from which upcoming sub-samples will now be
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taken. Each rotation group indexed by the date it's rotating in is thus a PSU for the
NLSCY and these are the units we’ll re-sample in NLSCY to carry out the bootstrap.

The following diagram illustrates all this in 3 steps. The large rectangle is a stratum and
the 6 upward rectangles are the selected clusters; they’re numbered from 1 to 6. Each has
a light-gray top portion representing its contribution to the first sample that has rotated in.
The darker-gray portion below it represents the part of the clusters that rotates in as the
corresponding light-gray portion rotates out, and so on.

. Light-grey rotates out while. ..

LFS stratum A

Diagram 1: Illustrating how a sub-sample of rotation group 1 enters a LFS stratum in
January, remains for six months before exiting only to be replaced by another sub-sample
from rotation group 1.

Since the NLSCY is interested in sampling 0-1 year-olds, which is a rare domain of the
LFS, a large number of rotation groups must be surveyed; depending on the cycle and the
province of residence, NLSCY typically uses from 12 to 15 rotation groups. Why not
more? Two reasons: 1) there are not that many other rotation groups which cover a given
reference period of 0-1 year-olds; 2) as exciting and important the NLSCY is, it’s not the
sole survey resting on the LFS so overlap must be controlled, and thus rotation groups
left entirely for others to use.

While the sub-samples of any six successive months are independent one from another,
this is not true when more than six are visited: two sub-samples will unavoidably have
come from the same rotation group. So, as a result of sampling more than 6 successive-
in-time PSUs, there’s dependence among the PSUs taken from a same rotation period at
an interval of 6 months. This inner-cluster dependence of sub-samples is not documented
in the NLSCY and presumably has gone unnoticed. The Youth In Transition Survey
(YITS) was aware of it and actually revised LFS design weights to account for it. In
upcoming months we’ll investigate whether we should adjust the LFS weights in a
similar fashion. We already know that often a sub-sample taken from a cluster yields no
eligible kids for the NLSCY so pairs of dependent sub-samples may not exist at all. In
other words, given NLSCY s target population is rare with respect to the LFS, are there
enough “opportunities” in the contributing sub-samples for the dependence to manifest
itself? This will require further investigation. In the short note Beaumont (2000) you’ll
find a way to account for the inner-cluster dependence into the weights; this is what YITS
has relied on for its LFS-based weighting strategy.




The weight of a household as inherited from the LFS is passed on to the children. Within
NLSCY the adjustments such as nonresponse and post-stratification are child-based. One
important feature of the LFS which has important repercussions in NLSCY is its unequal
weights. LFS is by no stretch of the imagination close to relying on a self-weighted
design. Since the LFS stratification has a very strong geographical component, the
distribution of the LFS weights of the households entering the NLSCY at cycle 1 were
plotted in PEI and Ontario. Notice just how the scales involved with these two
distributions are different.  Having to deal in variance estimation with such hugely
dissimilar weights is bound to have repercussions in the whole (point and variance)
estimation process. We can certainly expect variance estimates to be unstable i.e., vary a
lot when inferential circumstances are quite similar, more than they’d be under an equal
weights design for instance.
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Graph 4: Distribution of LFS weights in cycle 1 of the NLSCY in Prince-Edward-Island
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Graph 5: Distribution of LFS weights in cycle 1 of the NLSCY in Ontario

In the NLSCY there exist two types of longitudinal inferences depending on who is
considered a respondent at a given cycle. One approach is to consider a kid a
(longitudinal) respondent if and only if the kid was a respondent to all previous cycles:
the kid is not allowed to have known one episode of nonresponse. This is called the
funnel approach. On the other hand we allow to some extent episodes of pasi
nonresponse; this is called the swiss-cheese approach. (If you think of the “holes” in the
file such episodic nonresponse creates, then you’ll see where the terminology used comes
from.)

The NLSCY also supports, as other longitudinal surveys often do, some cross-sectional
analyses. When a cross-sectional analysis is made using a longitudinal cohort, several
samples are usually involved. For example, assume there’s interest in some common
characteristic of 0-5 year-olds at cycle 3 of the NLSCY. To infer on that cross-sectional
population we rely on samples taken from 3 different cycles. Indeed, the 4-5 year-olds at
cycle 3 entered the NLSCY as 0-1 year-olds back at cyclel; the 2-3 year-olds at cycle 3
were actually introduced as 0-1 year-olds in cycle 2; the 0-1 year-olds at cycle 3 were just
introduced (i.e., cycle 3). To simplify, assume that a given group of 0-1 year-olds
entering the NLSCY (i.e., at a given cycle) is the result of looking for 0-1 year-olds in 15
of the rotation groups of the LFS covering the reference period. Therefore, to get our
cross-sectional sample of 0-5 year-olds at cycle 3, in all 45 rotation groups were probed.
The question is: should the variance methodology hinge on all 45 rotation groups? How?
We can decide to work as if we had just one sample responsible of getting us the 0-5
year-olds provided we see that sample as having been stratified by age group: 0-1 / 2-3 /
4-5. It then becomes clear what to make of all 45 groups: we need to only consider that
for a given stratum we sampled from 15 rotation groups.




NLSCY being a longitudinal survey we need to have bootstrap replicates at every cycle
of a cohort’s lite. What is used in the NLSCY is what some call coordinated bootstrap: a
set of bootstrap replicates is chosen once when the cohort is born and these are used at
every subsequent cycle; a new set of replicates is not drawn at each cycle. (This topic,
among others, is discussed in Roberts ef al. (2001)) To renew the resampling at each
cycle would only introduce further instability in the variance estimates.

One last thing worth describing in details is the faith of out-of-scope units with regard to
the bootstrap. In the NLSCY there are essentially two ways for a selected unit to be out-
of-scope. First, a household selected from the LFS can be out-of-scope for the NLSCY if
it has no eligible children to provide to the NLSCY. Since the NLSCY targets a rare
population from LFS’ standpoint, such out-of-scope units are very common. Second,
should a child die or leave the country after entering the NLSCY's sample then he or she
will become cross-sectionally out-of-scope, though longitudinally such children remain
in-scope for the entire life of the cohort they’re in. Either way, out-of-scope units are
dealt with in NLSCY’s weighting using the theory of domain estimation (see Sarndal er
al. (1992) section 14.7, especially item i) of sub-section 14.7.2 for further details). So,
for example, while a household from the LFS having no eligible child can be seen as
being out-of-scope for the NLSCY, it’s actually treated in NLSCY’s weighting as not
belonging to the domain of children targeted by the NLSCY. One implication of this is
that the LFS-weight assigned to these out-of-scope households is “lost” and not
redistributed among the in-scope ones.

In the sequel we won’t mention explicitly again out-of-scope units though what to do
with them with regard to the bootstrap will be implicit from the exposé on domain
¢stimation.

In a few words...

- Upon closer look, there’s nothing truly specific to the NLSCY in this section: all of it is
relevant to any given survey, longitudinal or not, LFS-based or not. The example of the
NLSCY is used here merely to illustrate how some issues “come to life” in a given
survey context; you may ignore some (or all!) of the specificities if you want — the paper
is about the bootstrap after all, not the NLSCY!

- The longitudinal component of the NLSCY has brought the need for coordinated
bootstrap which avoids introducing additional noise in variance estimation by using the
same set of replicates through all cycles of a cohort.

- A survey which rests upon a sampling design with greatly unequal weights will be
facing issues with stability of its estimates (point and variance); what would have
required few units and/or few replicates will all of a sudden require much more.

- The treatment of out-of-scope units in the NLSCY is carried out using the theory of
domain estimation.




5. INITIATING THE BOOTSTRAP
5.1 Multiplicities

Before computing bootstrap weights, we need to create the B replicates themselves.
With the advent of SAS proc surveyselect this is a walk in the park; this is much
appreciated by those who have attempted implementing in SAS a procedure of their own
that performs with-replacement sampling. The abundant use of proc surveyselect in the
SAS simulations accompanying this document should prove to be more than enough to
get you well-acquainted with its syntax.

To carry out the bootstrap, we first need an observed sample: this is illustrated by the
SAS code below which draws a sample of 100 units from a SRSWOR design:

proc surveyselect data=population method=srs seed=1 n=100
out=observed_sample;
run,

Note: If you're not familiar with the concept of a seed, let’s simply say that specifying a
value for it is a way to recover time after time, run after run, the same results. (If you're
writing a document like this one and you haven’t set a value for the seed. then you can
kiss consistency goodbye because users won’t be able to reproduce (and/or check) your
results.)

We then need to draw with replacement some large number B of sub-samples from an
observed sample, each of size n-1 (which is 99 in our example). This would typically be
carried out using a SAS code similar to, choosing to draw B=1,000 replicates:

proc surveyselect data=observed_sample method=urs seed=2 n=99
rep=1000 out=multiplicities;
run;

As a result of performing with-replacement (i.e., method=urs) with proc surveyselect,
you’ll get a file of multiplicities. It describes a given replicate by listing all units that
were chosen at least once along with the number of times each unit was chosen (i.e., the
multiplicity). The sum of the multiplicities within a given replicate and stratum ought to
give the number of units you’ve sampled with replacement in that stratum (i.e., ny-1). In
the example above, summing within a given replicate the variable NumberHits found in
the proc surveyselect output file multiplicities will yield 99.

The first step in carrying out the bootstrap for a real survey thus appears benign enough:
we just need to repeatedly sample with-replacement ny-1 units within each stratum from
the observed sample. But taking the NLSCY as an example we’ll show how things can
get messy pretty quickly if one is not careful. As mentioned above already, in the
NLSCY the PSU is the LFS rotation group indexed by the date it rotated in. Also, the
number of PSUs in a LFS stratum that are visited for NLSCY s sampling purposes often
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exceed 12, while the exact number depend on cycle and province. But the important
point here is this: not all these PSUs have eligible kids to provide to the NLSCY; many
are actually empty in this regard i.e., do not yield any 0-1 year-olds. Though these
selected but empty PSUs have no bearing on the weighting of the NLSCY (since they can
be ignored altogether as if NLSCY’s population simply was a domain of the LFS). they
have to be accounted for in the variance calculation. Indeed, we have to pay a price for
“wasting” some of our sample size the way we do trying to find members of our target
population within the LFS. So, out of 12 selected PSUs in a stratum, say only 5 turned
up to be non-empty; we must then re-sample from all 12 PSUs not just the 5 non-empty
ones. You may wonder at this point if it really matters whether we re-sample from the
whole set of 12 PSUs (by taking 11) or are the 5 enough (and hence choose 4)? Free of
NLSCY s jargon the question here is this: when the sample you use actually is a subset of
a sample that was drawn from some design i.e., a domain of the main survey, can you
bootstrap it directly or do you rather need to bootstrap the main sample?

If you do wonder whether it matters or not, then you're actually asking what the
distribution of the multiplicities within a replicate and stratum looks like (and does it
depend or not on the sample we bootstrapped from). Other distribution-related questions
are: How likely is a given unit not selected at all to form a replicate? If we sample with
replacement 99 units out of a sample of 100, will we often encounter a unit that has been
selected say more than 10 times? If you're curious about these issues (or you can never
say no to an exercise in combinatorics!) then Computational Tip#6 is for you; otherwise,
then you can skim through it but pay close attention to the paragraph that follows it where
the lesson learned in the tip is restated.




So, when facing the issue of re-sampling from a stratum with 12 PSUs, of which only 5
are non-empty, Computational Tip #6 tells us that we need to re-sample the 12 PSUs to
have any chance of getting the variance estimation right. More generally, all PSUs that
were consuited for the sampling of the NLSCY, regardless of whether they had
something interesting or not for the survey, have to be accounted for in the variance.
This means taking them into account to obtain the proper set multiplicities.
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5.2 Bootstrap weights

Once the file of multiplicities is obtained, at cycle 1 of a longitudinal survey like the
NLSCY there’s no other choice but to initiate the bootstrap using the design weights
inherited from the LFS using (4). So, the preliminary (i.e., before adjustment due to
nonresponse) 5" bootstrap weight of unit k at cycle | is computed as:

— n
WE’;;”""“I =( b l)xmul[k‘b XM-’/‘ (15)

ny, —

Then comes the nonresponse ad) ustment’ to the 5" bootstrap weight of unit k by going
through the Response Homogeneous Group (RHG) it was put in:

Clamitiad
By j.b

Clnr _ _ Clinitial r+nre RHG
Wep =Wip B Z Cl nitial (I6)
Wb
reRHG

It's when we reach cycle 2 (or any subsequent one) of a longitudinal survey that things
can get messy pretty quickly if we don’t make the proper turn at the crossroads. (In what
follows we’ll ground the discussion on cycle 2 vs. cycle 1 to simplify the exposé but the
reasoning applies to a cycle i+ that follows any cycle i)

’ Nonresponse and posi-stratification in the context of the bootstrap will be discussed later. Nonresponse is
anly mentioned here because it's the factor in the NLSCY leading to cycle 2s set of units being a subset of
ovala s, :



To properly conduct the bootstrap at cycle 2. the bootstrap file constructed for cyvcle 1 has
to contain the following information: identification, design weight, RHG affiliation, all B
“basic” bootstrap weights, all B nonresponse adjustments, post-strata affiliation and all B
post-stratification adjustments. Only with such a file at hand can we start up the
bootstrap at cycle 2 where we left things up last time around i.e., at cycle 1. If the cycles
of a longitudinal survey were occurring closely in time, then this would be so natural to
do that we’d have a hard time justifying why we’re even talking about it! But in reality a
lot of time elapses between successive cycles (in the case of the NLSCY two years go by
in-between cycles) and maintaining such files with their huge number variables is an
annoyance at best, one that many would be glad to go along without. So, what one often
finds in practice is a bootstrap file. at a given cycle, containing only the B final bootstrap
weights (along with identifiers, RHG and post-strata affiliations of course but none of the
intermediate adjustments). This saves storage space. The proponents of that approach
don’t see the need to pursue the bootstrap cycle 2 from cycle 1's bootstrap weights: cycle
1 sample weights, as “start-up” weights, will do just fine. The rationale here is that since
the sample based weights used to jump-start the bootstrap already encompass the
nonresponse adjustment needed to go from cycles | to 2, then nothing is lost... right?
Wrong.

The remainder of this section is to show why (and how) the above rationale is wrong: you
can’t use the survey (or sample, if you prefer) weights at a given cycle and think that the
cumulative nonresponse adjustments they contain will suffice to capture the variance
these adjustments have introduced so far in the estimator. There’s no way around it: you
need to pursue the bootstrap from the very beginning until the end, no matter how
cumbersome that may be. (This does not literally mean that you need to process the
bootstrap from the beginning of a longitudinal cohort for every cycle. Indeed. the file(s)
about the latest cycle may very well do provided you took care to store in them all the
required information to carry the bootstrap forward.)

The discussion which follows hinges on one principle: whatever way you choose to
conduct your estimation (ie., obtaining sample weights), you must be sure that the
methodology you've actually implemented will allow for the variance to be captured
when replicated. Often, implementation shortcuts, like carrying forward estimation from
the latest cycle, will work just for the sample weights: shortcut or not, the final weight is
the same. This is a first-order moment criterion (i.e., estimates to be obtained from those
sample weights will be, on average, what they ought to be) but not a second-order one:
estimated variance under shortcut or no-shortcut need not be equal. And this is what
matters for variance estimation.

At cycle 2, ignoring for the moment incentives to post-stratify to focus solely on
nonresponse, the weight for the sample s certainly can be computed in any of two ways:

wi®* = w, x(CI’s nonresponse adjustment)x (C2’s nonresponse adjustment) (17)

i.e., start all the way from the LFS; or we could use the shortcut that we've already done
some of this work for cycle 1’s purpose:
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wi ™ = wi ™ x (C2’s nonresponse adjustment) (18)
where: w( " =w, x(C1’s nonresponse adjustment).

It seems pointless to make the distinction between the two ways of computing a weight at
cycle 2 i.e., proceeding according to either (17) or (18); it actually is pointless here in the
case of the sample, because we’re dealing solely with point-estimation and not variance
estimation. In other words, both approaches are equivalent as long as all we're interested
in the end is getting the same point-estimate. But for the purpose of calculating bootstrap
weights to capture adequately the variance introduced by the adjustment the two are not
equivalent.

With many cycles under the survey’s belt the advantage of the shortcut computation (18)
over (17) becomes obvious. Now, remember we're told with the bootstrap we have to
“replicate” what was done with the sample. Can we use here also the shortcut of starting
our computations at cycle 2 from the sample-based weight obtained after cycle 1? (This is
the trap we alluded to in the footnote 4 about item 4 of the implementation of the
bootstrap.) The answer is a big “no”! Why? While it’s true that cycle 1 sample-based
weight does include the “first-order moment effect” of cycle 1’s nonresponse through the
adjustment it was exposed to, it doesn’t capture what is required to evaluate the second-
order moment of the adjustment. And there’s no other way to capture that than to go all
the way back to the LFS weight and have each replicate go successively through each
wave of nonresponse. (Of course, if in cycle 1 bootstrap weights file all intermediate
weights were kept one can start from that file but, as we’ve mentioned already, one often
throws them away due to the resulting size of the file.)

Let’s now see what the bootstrap weights would look like depending on whether they
were obtained trying to replicate the long-form (17) or the shortcut (18).

After wave | of nonresponse we have:

nh :
X - U)—]xmuh}b
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The notation n, ,, is used to make clear that the units from a given RHG need not come

from the same stratum.

After wave 2 of nonresponse, starting “‘from the ground up” as we should, we get
(17boot) which is the bootstrap counterpart of equation (17):
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Observe that in (17boot) the starting point of the bootstrap weight for cycle 2 is the
replicate-dependent bootstrap weight of cycle 1 (adjusted for Cl’s nonresponse):
different replicates yield different starting points. This is the key to capturing the
variance this adjustment has introduced in the overall picture. Let’s see what we’d have
instead if we initiated the bootstrap using C1’s sample-based weight (adjusted for C1’s
nonresponse).

After wave 2, the shortcut-form for the bootstrap weights builds on the (sample-based)
weight of the latest wave and leads to:

Clar . hij)

Wi x————xmult
n rewavel "\RHG Rpepy —
wflz,,nr,:honcul N Wfl’” ¥ h l xmultk y X (J) (leOOt)
| -y ; i
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Note: The notation used here for RHGs is admittedly clumsy; there’s a dependency on
the cycle that ought to be acknowledged somehow in the last few equations and instead
“RHG” is used throughout here as a generic term. This was intentional. Indeed, since
knowing what the RHGs really are is totally secondary to the issue here. we preferred to
keep things “conceptually” simple by not cluttering up equations with additional notation.

Observe that contrarily to the long-form (17boot), the cycle-2-start-up weight wg " in

(18boot) is the same for all replicates. In other words, with this shortcut- form, whatever
effect cycle 1's nonresponse may have had on the estimates is captured solely through the
effect it had on the sample (i.e., first-order or “average” effect), not on each of the
replicates (i.e., second-order). This is a crucial difference with (17boot).

Again, one may proceed this way because he/she feels that keeping all the (relevant)
intermediate bootstrap information is just a waste of space and (processing) time. Failing
to have that information, one tries to compensate by supplying instead sample-based
information but this is far from being enough.

Here are two additional ways (other than the main one given above on first-/second-
order-moments considerations) to see why the shortcut is inappropriate for variance
calculations; just pick the one that you find more telling.

To further help compare the two algebraic expressions for the bootstrap weight we get
after wave 2, we’ll consider a particular case by assuming that wave 2 of nonresponse is
actually a ghost: no nonresponse at cycle 2 has actually occurred. After two waves of
collection we're left with those respondents of wave 1; therefore, as far as weighting is
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concerned wave 2 never has occurred. In this case we still have two choices on how to
conduct our bootstrap for wave 2: start from the design weight (i.e., from ground up) or
from wave 1’s nonresponse adjusted weight (i.e., shortcut). If the two approaches were
equivalent, we should be indifferent to which one we pick in this special case.

So, the equivalent of (17) in this special case (sc) is:

Ny
j X#_(Ll xmult ; 5
. +nr\RHG Ap(jy —
wEIM — o x— oty , x| L (A x| (17sc)
kb k 1 kb ok}
n, - LT wave?
W, x————xmult ;
jernRHG nh(j) =
And the equivalent here of (18) is then:
(n
N wj"'"p"""' - l x mult ;
. n jer+nrRHG Mh(j) —
wfi,nr,shamul _ WEL'"’ " h ] xmult,, § X jer+nr (J (]SSC)
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wave2 =1

Let’s rewrite wi,” in (18sc) to expose the design weight w, as to make the two

expressions (17sc) and (18sc) more directly comparable:

2V,

. jer +nr "\RHG n
C2,nr shortcut = w X J = h
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Z WJ ny, —
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Comparing (17sc) and (18sc’) one notices that the nonresponse adjustment is different:
starting from the design weights the multiplicities (in 17sc) are factored in while they’re
left out in (18sc’). This means that in the shortcut the adjustment for nonresponse in a
replicate is independent of the replicate. Instead of having a nonresponse adjustment that
fluctuates from one replicate to another the shortcut uses “their average” instead.

Another way of reaching the same conclusion (which you may find more
methodologically intuitive and /ess dependent upon equations) is not to see the set of
bootstrap weights obtained through the shortcut as inadequate for our estimator but rather
find the actual estimator for which this would be an appropriate way to compute its
variance. It will then become apparent that the estimator we obtain this way is different
trom the one we’re using, hence the error. Consider

s
SYREG

3wy yp G (19)
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Here Ngus =2 I(RHG) is the known count (taken from the frame) for the RHG and
U

N is the corresponding count estimated using the observed sample s. A “hat” was not
put onto Ny, to emphasize that when calculating the variance of (19) we don’t intend to
re-compute sample after sample this component: we’ll use in all calculations the one ratio
we got using the sample we observed. Ny is not known prior to sampling but once s is

obtained we’ll regard this quantity from now on as known and we’d use it as such in
variance computations. Compare that to the estimator:

N
2 WiV ﬁRHG (20)

RHG

The “hat” in N gy, puts emphasis on the fact that we intend to re-compute this quantity
sample after sample in order to compute its variance.

Now, while both estimators have approximately the same expected value with regard to
the design, they don’t have the same variance,

The morale here is this: the shortcut-form of the weighting is not the one to replicate and.
more generally, while the bootstrap is about doing to each of the replicates what was
done with the sample. one must make sure that whatever shortcut was first used with the
sample does capture adequately the corresponding variance component when replicated.

In a few words...

- Bootstrap must be carefully investigated to ensure that the proper replication is made
i.e., variance is properly estimated through bootstrapping. This was illustrated by the
issue of whether we can just bootstrap the domain of interest of a survey (e.g., the
NLSCY) or we actually need to bootstrap the entire sample (e.g., the LFS).

- Shortcuts in creating weights must be carefully assessed. They are not appropriate for
variance computations purposes if they don't capture the second-order moment of the
intended adjustment to the weights. Indeed, shortcuts are introduced to simplify the
implementation of the weighting methodology and for that purpose they are (usually)
adequate. But this in itself does not mean that they are adequate substitutes from a
variance perspective: this is the pitfall awaiting the methodologist when using shortcuts.
In the NLSCY, we’ve come to affectionately describe the methodology of using shortcuts
with the bootstrap as “shortstrap”. So, the bottom line is: be very careful whenever you
shortstrap!
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6. DOMAIN ESTIMATION

In this short section we investigate how the theory of domain estimation is carried out
with regard to the bootstrap; we’ll try to dissipate some of the confusion there seems to
exist about the mechanics of its implementation.

We’ve already tackled one important part of this in Computational Tip #6 where we saw
that we need to bootstrap the sample not the domain, even if the domain is all we’re ever
interested in. While point-estimation will be the same either way (i.e., shortcut or no
shortcut), it remains that variance estimation requires, to some extent, the full sample.
Indeed, one consequence of re-sampling np-1 units from a “sample” of np units in the
sampled domain is that the sum of the multiplicities in any given bootstrap replicate will
be exactly np-1. If we instead resample n-1 units from », then the portion of a domain in
any given replicate will be random in size. This is the way the bootstrap will penalize you
for conducting the estimation on a domain rather than on a stratum.

Now, suppose we want to estimate a domain total

Wiy Z.Vk
keD

then the estimator to use is:

}A,[) = z Wi Vi

kesnD

In practice, this estimate will numerically match with the estimate provided by the
following:

(1) b
Yp'= Zwk.}’k

kes

. Wk lf keD
where: wy, =¢ * .
0ifkeD
Note that the estimate ¥\’ is constructed from the entire sample bur taking care first to

set the weight of units outside of D to zero. There's nothing sacred about setting the
weights of units outside of D to zero and keeping intact the corresponding y-values; we
could have actually chosen to do the opposite and set the y-values to zero instead:

7(2) _ a
Y, = ZWI:.VI:
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where: v} :{ et
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While the end result is the same both ways (i.e., you get the same numerical value either
way), none is conceptually satisfying: they involve tampering with either the weights or
the y-values. What we should compute instead is:

¥p= S weye =2 Wiyl (D)
kes

kesD

lifkeD
where: 7, (D)=1 | .
OifkegD

This form neutralizes the units outside of the domain with the help of an indicator
variable and avoids tampering of any kind with either the weights or the y-values.

The corresponding 5™ bootstrap estimate would then be constructed as:

7 = T Wy, (D)
keb

Again, all three ways to compute the estimate here are numerically equivalent for a total.
But we believe the latter form is more satisfying conceptually since 1) we don’t mess
with either the weights or the y-values in order to “neutralize” the contribution to the
estimate of units outside of the domain D: 2) it’s more easily exportable to other
estimators.
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7. NONRESPONSE AND TWO-STAGE SAMPLING

In this section we investigate the bootstrap’s capacity to capture adequately the total
variance arising from either nonresponse or a second-stage of sampling. Let’s first focus
on nonresponse. Many people take the usual motto of bootstrap “*do with the replicate all
that was done for the sample” to mean that all that is needed to fully capture the
component of variance due to nonresponse is to replicate the nonresponse adjustment.
Popular belief as it is, it’s not adequate. While there are situations where the bootstrap
appears to capture well the nonresponse contribution to variance (e.g., a negligible
sampling fraction), it’s deceptive: even in those favourable situations the bootstrap misses
one component of the total variance. It just happens that, in those situations, the
component that is missed is so small that it can legitimately be ignored.

The bootstrap’s motto never was meant for nonresponse (or a further stage of sampling
for that matter), but rather was intended for methodological processes like post-
stratification with no “randomness of its own”. While it’s true that post-stratification
involves randomness (i.e., the sample size that will materialize itself within a given post-
stratum is random), it’s entirely determined as a process once the sample has been
observed. In other words, conditionally on the observed sample, post-stratification no
longer is a random process though nonresponse (or a second stage of sampling) still is
random even when the sample is observed. Actually, the nonresponse model that you
adopt is a description of the randomness which is introduced by the nonresponse and
remains even after the sample has been observed.

7.1 Stochastically modelied nonresponse and second-stage sampling components to
variance

The reader may find odd that this sub-section puts nonresponse and a second-stage of
sampling into the same pot. Odd as it is there’s no need to treat them differently when it
comes to variance estimation. First, let’s start by saying that two grand sampling schemes
are the two-phase sampling and the two-stage sampling. To help tell one term from the
other, it is customary to over-simplify and describe two-phase sampling as sampling in
two steps the same type of units (say, individuals at both steps) while two-stage sampling
involves different types of units from one step to the other (say, hospitals in the first step
and doctors in the second step). A more substantial methodological distinction between
the two would emphasize the fact that a two-phase sampling design is about gaining
efficiency despite a poor-on-auxiliary-data frame to begin with. Indeed, ideally one
could say that had the frame been rich in information, one phase would have sufficed.
But since it’s not the case, we gain from a preliminary phase where the frame gets
enriched so that the second phase can then be “efficient”. Two-stage sampling does not
have the benefit of a frame comprising the units of interest, even one poor in content
would have been welcome! In such a case we reach the units of interest by constructing
intermediate frames from which we sample (e.g., a frame of all hospitals and within
selected hospitals a frame of all their doctors, assuming here we’re after doctors).



How does nonresponse fit into that at all? Traditionally, to help capture the variance
component due to nonresponse, the nonresponse mechanism given the observed sample is
modelled as if it operated on the sample the way a (random) sampling mechanism would.
In other words, sample first according to some design followed with an episode of
nonresponse is treated for variance purposes as if two-phases of sampling had taken
place: the first phase covers the (intentional) sampling by the methodologist and the
second phase describes the (un-intentional) sampling forced upon the methodologist by
nonresponse. (See Sections 9.8 and 15.6 of Sirndal ef al. (1992) for a detailed exposé of
the two-phase model for nonresponse.) Bottom line: mathematically, nonresponse’s
impact on variance is gauged through a two-phase sampling design.

To summarize, two-phase sampling (of which a one-phase survey facing nonresponse is
an important case) and two-stage sampling certainly are different from a methodological
perspective. But the key aspect here is that mathematically, both designs are covered
from one and the same inferential setting: the two-phase framework. The latter serves to
track the variance of a process having two phases of random sampling. (The reader may
also want to read Section 9.1 of Sirndal ef al. (1992).) Loosely speaking, the two-phase
framework allows us to consider random processes like nonresponse where given the
observables of the first phase, randomness is still at work to yield the second phase
observables (i.e., the observables of the second phase are not entirely determined now
that phase one has occurred).

In the two-phase framework. you can decomgose the total variance component into two:
one of such decomposition known as reverse” two-phase is due to Fay (1991) and can be
stated as (see equation (4) of Shao and Steel (1999)):

V,(6)= Fpﬂszyl(é2+VpﬂzEPHl(é) (20

rev srev
Vl b 2

Note: The inner expectation (respectively, variance) is an expectation (respectively, a
variance) conditional on the observables of phase 2.

At first glance, this reverse two-phase may appear quite twisted from a methodological
standpoint, not to mention nonsensical: how can phase two observables be available
before we even got phase 1's observables? While not all nonresponse models will allow
such a decomposition to take place, most will. What is merely required of the model for
the reverse approach to (mathematically) work is that a unit probability of response is
assumed to be independent of other units. In other words, as soon as a given unit is in
one sample or another it is assumed that its 77ue probability of response is the same

¥ Briefly put, this approach treats nonresponse as if the initial sampling was carried out on two sub-
populations: one of respondents and one of nonrespondents. This is obviously bogus from a
methodological perspective but then mathematically it makes no difference one way or the other.
Consequently, one picks in a given context the one mathematical formulation which is easier to work from
and as it turns out the reverse approach does wonders to account for the nonresponse component to
variance.




(though in practice different samples this unit is in may yield different estimated
probabilities of responding, but this is a separate issu¢).

Methodologically twisted as it looks, you must realize one thing: what only matters
sometimes (and it’s the case here) is the mathematics of an argument, not the way it
would look if implemented. For any given methodology, its practical implementation
and its underlying mathematics are two very separate things. In order for the
mathematical development of a methodology to be valid, it need not correspond to the
way one would actually go about implementing it in practice. So, in the end, if it’s
mathematically simpler for us to decompose a mathematical entity like variance in what
is methodologically a reverse way, then let’s by all means make progress in our variance
calculations by going full reverse! ©

The crucial fact to know about that variance decomposition (21) and the bootstrap is the
following: the bootstrap can (essentially) only act as an unbiased estimator of the first
variance component V;. (We'll see why in Example | below.) So what about the whole

of ¥,? If the sampling fraction at phase | is negligible then as it turns out ¥, can be
considered to be tiny compared to ¥, small enough to be ignored (or “unbiasedly”
estimated by 0 if you prefer); this means that the bootstrap which estimates only ¥, is
essentially unbiased for ¥, as well. For the practitioner this means that the bootstrap
performs well for a one-phase design survey dealing with nonresponse or a two-stage
survey if the sampling at first phase/stage is small. If, on the other hand, the sampling
fraction at phase | is not so small, then ¥, also becomes non-negligible. And to make
matters worse, the smaller the sampling fraction at phase 2 the larger the component V;
becomes.

For the user this spells trouble in two cases: 1) when sampling within strata involves
large sampling fractions and nonresponse occurs; 2) the survey relies on a two-stage
design with sampling at first stage involving a large sampling fraction of PSUs. When
this happens, the component to the total variance missed by the bootstrap can no longer
be neglected; there’s currently nothing in the literature on the bootstrap that can be used
to compensate: we still don't know how to bootstrap adequately in presence of
nonresponse. Our current knowledge allows us to capture only part of the total variance,
and often times this is enough.

A simple example of two-phase sampling can be investigated to help see what is going
on. The SAS code behind Example 1 is provided in Program G. The reader fluent in
French will find a thorough discussion along those lines in Haziza (2005).

| Example 1

Consider drawing in phase one of a survey a sample of size # using SRSWOR
followed at phase two by nonresponse occurring totally at random and yielding »
respondents. (Without going into the details, the latter assumption on the response
mechanism ensures that the reverse approach will work here.) In this case, one
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can show that in this context an unbiased variance estimator of the mean is the
one we usually get under SRSWOR with sample size equal to r (see Exercise 9.14
of Sarndal er al. (1992)). We can get the corresponding decomposition that suits
this situation by adapting equations 15 and 17 from Shao and Steel (1999).
Actually, they considered the case of SRSWOR with ratio imputation performed
for nonrespondents; one recovers our particular situation by noticing successively
that: 1) imputation by the mean is a special case of imputation by a ratio (set

x; =1for all i, in which case x=x, and s =s, =0); 2) imputation by the mean
within the sample amounts here to re-weighting’:

2 2
A ~ A n\s n ¥ s
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Note: E,(respectively, E;) is the expectation with regard to the response
mechanism (respectively, design) and the conditioning is done with respect to the
observed set of respondents r (respectively, observed set of sampled values s) and
similarly for the variances. (Note: The notation “r" used describes either the set
of respondents or the size of that set; the very place where “r” enters (22) should
make it clear which of the two it represents.)

In this specific example it’s easier to see the connection between the bootstrap
and the variance component ¥, we alluded to above. So, let’s say we seek using

our one-and-only observed sample s an estimate of

V()= EVp (8 (23)

Since in practice all we’ll ever have is one estimate I}D(é|r) of VD(é|r), this

implies that our best estimate of E,¥,(f]r)is indeed then just ¥ (flr). (When

you have only one observed value x of a random variable X for which you seek an
estimate of E(X), then the best you can do is estimate it by x.) Now, the

conditioning in ¥, (8lr) is there to remind us that we’re working from a given set

of respondents r; sure, we could be observing other sets under the response
mechanism but fact is, in practice, we're given thar r. This means that although
the response indicator associated to each unit is a random variable, the
conditioning that was done makes the observed response indicator a typical
survey (i.e.. fixed or non-random) variable. And the bootstrap is meant to act as a
design-based estimator of variance of a quantity made of fixed variables i.e., an

estimator of ¥, (élr) .

Using the SAS program provided in Program G, the empirical results in Table 3
below were obtained which support (at least in the case of SRSWOR and

? If this statement comes in as a surprise, then take a look at Annex A.



unitormly occurring nonresponse) the trends depicted above in terms of sampling
fractions at both phases. Note just how in Program G the nonresponse was dealt
with in each replicate. Practitioners believe that this ought to be enough to
capture the whole variance ¥, in any setting but it’s not whenever the sampling
fraction at phase 1 is non-negligible even when the weights (9) are used. Had we
not processed the nonresponse adequately in the replication program we would
have observed that the ensuing ‘“bootstrap variance estimate” doesn’t even
estimate ¥, well. So, all we accomplished in the program by feeding the

replicates through the nonresponse methodology was to keep track of ¥;: ¥, still

evades us.
i I 4 Va v, Vs
100% 0.3759 0 0.3759 0.3772
10% 80% 0.4663 0.0099 0.4762 0.4697
50% 0.8030 0.0448 0.8478 0.8613
100% 0.1219 0 0.1219 0.1213
25% 80% 0.1515 0.0101 0.1616 0.1521
50% 0.2590 0.0443 0.3032 0.2662
100% 0.0399 0 0.0399 0.0418
50% 80% 0.0490 0.0096 0.0586 0.0498
50% 0.0788 0.0395 0.1183 0.0823
100% 0.0131 0 0.0131 0.0136
75% 80% 0.0163 0.0098 0.0262 0.0164
50% 0.0261 0.0388 0.0649 0.0272

Table 3: Variance components of ¥, in equation (22) as functions of the sampling fraction at first (f) and
second (r) phases

In Table 3: observe notably that:

- if there’s no nonresponse, then the bootstrap captures well the overall variance
¥, (which is only in fact ¥, ¥, being negligible here),

- for a given f, the smaller the #, the larger the second variance component 7, ;

- the second variance component ¥, only becomes an issue (compared to V)
when the sampling fraction at first phase fis not small.

The morale of Example 1 is clear: the bootstrap’s motto does not capture the entire
nonresponse component to variance. It is therefore not enough to bootstrap the sample
and have the replicate go through the nonresponse adjustments and think you’ve captured
all of the variance you were after.

But the motto does work for post-stratification and domain estimation because contrarily
to nonresponse, the post-stratification and domain estimation we carry out are entirely
determined once the sample is drawn. Let’s consider in more details the case of post-
stratification. More precisely, let's suppose the sampling design is SRSWOR and post-
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stratification has given rise to G post-strata. In such a situation, the advocated post-
stratified estimator for the mean of a variable of interest Y is (see Sdrndal et al. (1992), on
the SI design in Section 7.6):

g
= 8| ¢

L Y (24)
YTaN

We’re not going to decompose the total variance according to the reverse approach but
rather using the direct two-phase approach this time; the latter is more natural in this case
since there’s really here just one phase of sampling. It spells out as:

Vietat (V) = Vsgswor £ post—str (s )+ §SRSWORV post-str (V|$) (25)

DIR DI
DIR
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The second component ¥V;>® is 0 because once the sample is given no randomness

remains (i.e., given s the only quantity that was random to start with, n is now a

constant.). In other words, ¥, is 0 because Vpper_srr (\"|s) is 0. For the same reasons,

E posT-sTR (;|s) simply is ¥, so that

Viora ) =V sgswor (%)

A similar reasoning will show that with domain estimation, as with post-stratification,
there’s not truly two phases of randomness: the first-phase sampling “is responsible™ for
it all. As a result, if we're interested in an estimator'® of a domain D mean like (see
Sédrndal er al. (1992), Section 10.3)

Zwa’k
Sp
Yp

AA’D =Zwk

Sp

then the bootstrap ought to capture all of its variance. (See Program H for the SAS code
which tests this.)

Now that the applicability of the bootstrap’s motto has been clarified, does it mean we
never were meant to capture the whole variance ¥, under nonresponse even when the
design is SRSWOR? Actually we could provided we “bootstrapped the right design” or
succeeded in conducting two bootstraps: one for each component of (22).

"% 1f you find puzzling that the estimator proposed is this onc regardless of whether the domain size N, is
known or not, then you may want to read Annex A.
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Let's first see what is meant by “bootstrapping the right design™ by considering the case
of SRSWOR vyielding a sample of size n followed by uniformly occurring nonresponse
which yields a set of respondents of size r. This is the framework in Example 1 above.
We saw that bootstrapping the SRSWOR design and then feeding the replicates through
the nonresponse methodology devised on the sample was not the way to go. But we have
already noticed in Example 1 that, in this case, the resulting set of respondents  could be
treated as if it had been obtained directly from a SRSWOR design yielding a sample of
size r. Having concluded that we can take advantage of it and bootstrap directly the set r
of respondents. This would imply computing the weights according to

N ‘ r ’ r r
wk,bz_r_(l— I—W+ l—ﬁmult,,k'b—rj} (26)

rather than starting with

N ’ n ' n n
Wib =';2—{]— I—W‘F l—ﬁmultnvk_bm) (27)

and have the weights go through the nonresponse adjustments as we did in Example |
above. The obvious problem with this solution is that a multi-phase framework usually
doesn’t conveniently “collapse™ into a one-phase well-known design as it was the case
here.

Another tentative solution is to have nwo bootstrap processes, one for each component of
(22). To help see how this could work, let’s re-write the second component of (22) as:

V(g")z(l_l)i+(£_L iz([_i i+(lI|_£)i
! N)r \N N)r N)r \N n)r

~

Vi V2 V1 V2

So. the second component of the variance for the mean can be captured by a bootstrap
procedure of its own because it corresponds to a SRSWOR that draws r units from the
observed sample of » units (with the drawn sample playing the role of the population
here) with the sampling fraction at phase | as an adjustment factor in front of it all. This
is implemented in Program G2. As a consequence, for the mean, to get both variance
components of (22) vou need to run Programs G (for ¥;) and G2 (for V) and add the
results. The problem with this approach is that we're totally dependent on the mean for
the decomposition of the variance (not to mention the dependence on the design
SRSWOR). While (22) tells us how the two fit into the total variance there’s no reason
for that decomposition to hold for estimators other than the mean. Indeed, one can use
Programs G and G2 for the median and show that the variance estimates obtained don’t
add up to that of the median obtained under SRSWOR of r units drawn from N.

=2y
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7.2 Replicating the nonresponse adjustment

We’ve already encountered nonresponse as the factor in a longitudinal survey like the
NLSCY which is responsible for the attrition in sample sizes observed as cycles of
collection take place.

To capture the bulk of the (total) variance attributed to the nonresponse adjustment under
a without-replacement design with small sampling fraction using the bootstrap, the best
known practices call for the replication of the adjustment''; this should yield the best
estimate possible of ¥, under the circumstances (though not, as argued above, the whole

of V,). Many surveys, NLSCY included, rest their nonresponse methodology on the

concept of Response Homogeneous Group (RHG). A RHG is, by definition, a group of
units which are deemed to have the same propensity to respond. A RHG can notably be
obtained by crossing several variables or by grouping predicted response probabilities
from a logistic regression model fit to the data at hand.

So, in concordance with the best known practices, we need to compute in each RHG the
following adjustment for each replicate b:

z Wk + z Wk
“Replicate-based” nonresponse adjustment = 15”—2-& (28)
LU/

reb

Computationally, this is quite involved; it requires evaluating two quantities for each
replicate: the numerator of the adjustment for a given replicate along with the
corresponding denominator. This is not that big of a deal in the current era of powerful
computers but for surveys whose variance methodology based on the bootstrap was
implemented a while ago this could very well have been an issue. So, it’s possible that in
order to reduce computations one computed the numerator using the sample instead of
the 8" replicate:

Sw+ > w, Zw,’,”

“Sample-assisted” nonresponse adjustment = Z£2 ey =18 (29)
2 Wi 2 W
reb reb

nr

where: w;” is the design weight adjusted for nonresponse occurring in the sample.

The latter is called “sample-assisted” because the numerator of the adjustment is now
made independent of the replicates and is determined solely by the sample. This
approximation is attractive on the grounds that the average of all adjustments for a given

'" Actually, some argue that we should replicate the entire nonresponse methodology by revisiting the RHG
construction every time (like re-estimating within each replicate the logistic model parameters). If truly
needed, then this would be very time consuming since the construction of RHGs often can’t always be
easily automated as it requires lots of specific decision making and investigation. (See Faucher ef al.
(2003) for a discussion on this.)
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RHG over all replicates should be indeed about (28). In other words, the first-order
moment of (28) is (essentially) preserved by using the less computer-intensive (29).
Also, it doesn’t require messing around with the nonrespondents. But here’s the catch:
we're after variance estimation and to be adequately captured, variance requires that an
adjustment preserves the second-order-moment, in addition to the first. So, as attractive
as it is, the adjustment (29) doesn’t preserve the second-order moment at all and for
variance this is a big “no”. In other words, there’s variability in the adjustment (to be
captured as variance) that comes from having a replicate-dependent numerator. (You
should by now have a strong feeling of déja vu: this shortcut of building the bootstrap
nonresponse adjustment (partly) on the sample is a close-cousin of the shortcut described
in Section 5 about initiating the bootstrap at a given cycle from the sample-based weight
of the previous cycle.)

To help see just how (29) is inadequate in preserving the second-order moment of the
adjustment (28), consider that we only have 5 replicates to work from and one RHG; the
following adjustments were computed according to (28) and (29):

Replicate (28) i.e., correct | (29) ie., erroneous
| 110/92 100/92
2 105/91 100/91
3 100/90 100/90
4 95/89 100/89
b 90/88 100/88

Table 4: Numerical example illustrating the difference between adjustments (28) and (29).

Observe that while the average of the 5 adjustments (over the 5 replicates) is about the
same for both adjustments (i.e., first-order moment preservation), their spread about that
common average is far from being the same (i.e., (29) fails to capture the second-order
moment of (28)).

The consequence of using (29) instead of (28) can be pretty dramatic and is best seen
from a post-stratification standpoint. Indeed, while a true post-stratification adjustment
has as its numerator some known total (from an external-to-the-survey source), (29) uses
an internal total. In other words, the RHGs were used as if they were post-strata.
Contrarily to post-stratification, the internal-to-the-sample total is not known prior to
sampling; but once the sample is drawn we can think of calibrating our respondents-only
weights to it. (Why we’d want to do that is a totally different issue!) Post-stratifying,
either to an external or an internal total, has one effect on variance: it brings it to zero for
count estimates of domains which are a (direct) sum of post-strata. Incidentally, some
people feel uneasy about reporting a zero variance under post-stratification. A zero
variance is correct in the case of the usual post-stratification because we assume the
known total to be true (i.e., there’d be no bias introduced by aiming at rhar target because
it’s assumed to be the target). Consequently. our best estimate sample after sample ought
to be that calibrated-to total, hence no variance and our claim that our post-stratified
estimator is unbiased (i.e., no overall sampling error). So, any uneasiness about zero
variance here directly spells out as concerns about the known total to be true. But it is



wrong for an internal total: what guarantees do we have that this sample-based total is
true? None, whatsoever. By forcing all the replicates to yield the sample-based estimate
of the RHG total (which can only coincide with the true total by mere luck) our estimator
becomes biased though it has zero variance.

Indeed, suppose the domain of interest coincides with the RHG (our makeshift post-
stratum). In such a case we have the following replicate-based estimate of the number of
units in the domain (which, we re-emphasize, is the RHG here):

3 w;"

D
Wk x JEeLMresp - Z wl;r (30)
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Equation (29) thus leads to a replicate-independent estimate which is equal, by
construction, to the sample-based one. In the example above, this means that the 5
replicate-based estimates would be 110,105,100.95 and 90, if (28) was used. and
100,100,100,100 and 100, if (29) was instead used. hence a reported bootstrap variance of
0 in this latter case. If the bias introduced is not properly gauged, then the estimated
variance as a stand alone estimate of the (total) sampling error becomes absurd.

This is the chief reason why the variance estimate in Table | at cycle 2 is so low; had it
not been for the usual post-stratification that was put on top of that and thus brought in
some noise, the estimated variance reported for cycle 2 would have been zero! Indeed,
the domain variable alone happened to play a very special role in the methodology of the
NLSCY: it is the one (categorical) variable behind the construction of RHGs in the
Atlantic for cycle 2!

7.3 On the construction of RHGs

While the fashionable trend is to form RHGs by grouping predicted response
probabilities arising from a logistic model fitted to the data, many surveys still rely on
chi-square detection of distortions in distributions. The latter methodology may not
sound familiar to you but the software that is often used to carry it out may ring a bell:
KnowledgeSeeker. Loosely speaking, the chi-square-based methodology identifies
variables whose distribution of values after nonresponse represents a distortion of what it
was before nonresponse occurred. For example, say men and women in a given survey
were of equal number before nonresponse only to have men dominate the set of
respondents; this is an instance of a distortion that could be detected using
KnowledgeSeeker.

The danger with such a methodology is to let the tool get out of hand by creating a huge
number of RHGs. For instance, at cycle 1 of the NLSCY, there were well over 400
RHGs. Sorting first in ascending order all the ensuing nonresponse adjustments, one can
then compute the average relative difference between two consecutive adjustments. For
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example, successive adjustments of 1.1 and 1.2 differ by 9.1%. The average relative
difference computed for cycle 1’s adjustments is 0.09%!! The huge number of RHGs,
and incidentally the limited number of units they’re bound to contain, is a contributing
factor to unstable variance estimates across cycles. Indeed, too small a RHG will present
highly variable nonresponse adjustments from one replicate to another depending on the
nonresponse composition of each replicate. This further becomes an issue when
considering that nonresponse adjustments in a longitudinal survey get compounded
across cycles, and thus RHGs are to become smaller and smaller over successive cycles.

Whether it’s through KnowledgeSecker, logistic regression or what have you,
nonresponse methodology is all about modelling. For instance, if for your cross-sectional
survey you establish two RHGs based on gender, one for each, then your nonresponse
model has one factor, gender. 1t’s customary to hear practitioners say in such a situation
that they’ve found gender to explain the occurring nonresponse. The issue with this
terminology is that it’s too emotionally charged. If explain is used as in “the set of
explanatory (dependent) variables of the model”, then there’s no harm in it. But people
get easily caught up in the terminology and lose sight of what the modelling
circumstances (or model assumptions if you prefer) were. For instance, after explaining
nonresponse through gender an estimate of age, say, was produced for which the true
total is known as the variable lies on the survey frame, and the two don’t match: “Isn’t
that embarrassing given that gender was meant to explain nonresponse and obviously it
doesn’t explain everything? There’s still some explaining to do!” The way out is simple:
nonresponse was modelled through the effect it had, in this case, on gender (and nothing
clse). Was it a bad choice of leaving all other variables out? If so then this was a bad
modelling exercise. And if not, then it’s a collateral damage: the model can only be
expected (and you knew about it all along) to correct for what it explicitly accounted for.
As far as modelling goes, you just don’t get something for nothing.

To help keep the proper perspective on the modelling exercise, here’s another point of
view. Don’t perceive nonresponse modelling as explaining nonresponse but rather as
putting to light effects it has had on your ability to recover stuff that was known (and
deemed important) prior to nonresponse. For example, before nonresponse say we were
able to get count estimates of both men and women; let’s suppose these summed to a
ratio of roughly 2:1 in favour of women: we have an estimate of women twice as large as
that of men. While these totals may not be the truc values (which they’d be if we’d had
post-stratified on gender), we may feel that the sample is the best information we’ve got
and in particular that the rough ratio of 2:1 is to be trusted (short of putting our hands on
the true totals). And then nonresponse comes and creates one big mess: the ratio in
estimates using respondents only is now 1:1, not 2:1. If we feel strongly about our earlier
estimates on gender (and more generally the distribution we obtained for gender in the
population) and about the relevance gender has in our survey, then we’ll want to rectify
this “imbalance” introduced by nonresponse. We do that by proposing a model based on
gender i.e., a meaningful way to summarize the effects nonresponse has had on gender.
Therefore, the model is simply seen as a mathematical way to acknowledge the shift in
the distribution of gender we've noticed with the advent of nonresponse. and ultimately
our intent to correct it.
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This point of view sure is attractive: it stipulates clearly what we’ve attempted to do (and
equally importantly what we didn't attempt to do), namely rectify the distortion
nonresponse has introduced in our earlier sample-based estimates of gender. Nothing
less but also nothing more. So if we’re interested in age and find dubious the results
obtained with the modelling then it’s hardly any surprise: we’ve only (and openly)
attempted to rectify the shift observed on gender. Should we have attempted to rectify
age also? Sure, if we had any reason to care about it. To drive the point: suppose on the
frame on children we have the benefit of knowing the eye color of the maternal great-
grand-mother of every child and found that its respondents-only distribution differed
from that obtained before... Why should we care?

7.4 On the estimation of “response probabilities”: the multiplication of adjustments
over cycles

Successive waves of nonresponse call for successive nonresponse models; how should
they interact with one another? This is an issue that we’ll investigate some in this sub-
section. This is more a weighting issue than a bootstrap one. But then, if the weighting
strategy is not appropriate, then replicating it for variance estimation purposes is certainly
not adequate.

What is often seen is that nonresponse modelling at cycle /+1 is carried out ignoring the
model from cycle #; in other words, all respondents of cycle i are pooled and modelling is
done to explain how a (sub-)set of these have become the respondents of cycle i+1. This
is the view that nonresponse modelling should bring you “one step back”. back into
known territory (i.e., prior to latest wave of nonresponse).

To see what is going on, consider the following setting. By the time cycle 2, say, is over,
the NLSCY has gone through two waves of nonresponse. So, starting from the design
weights, we need to factor in two nonresponse adjustments in order for those remaining
individuals at cycle 2 to represent adequately the cohort’s target population. Since the
occurring nonresponse is modelled as being the result of a random process, which is
reminiscent of a multi-phase approach, the “response probabilities” are treated just as if
they were true selection probabilities. The issue here has to do with the way by which we
estimate, or obtain, these probabilities. Suppose that at cycle 1 gender was used to form
two RHGs, men and women. The cycle | adjusted weights for nonresponse are thus
devised to take this distribution imbalance about gender into account. Suppose now we’re
at cycle 2, with further attrition going on. What is found in NLSCY amounts to the
following: pool all of cycle 2’s respondents regardless of their gender (ie., cycle 1’s
RHG) and propose an RHG model which explains the cycle |1-to-cycle 2 attrition. Form
then a weight to account for two cycles of nonresponse by simply multiplying the inverse
of the two nonresponse estimated probabilities.

But when is such a pooling justified? Proponents of this approach rely (whether they
realize it or not) on the (largely un-verifiable) assumption of independence-over-cycles of
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nonresponse factors. This issue is not explicitly addressed in the sampling books. For
instance, in Survey methods and practices, section 7.1 on Weighting one reads:

“Thus, for a two-phase sample where a unit’s probability of selection is =, at the first
phase and 7, at the second phase, a sample unit’s design weight is

ey 7 31)

T, 7

There’s an imprecision about this advice which is at the heart of this sub-issue: the
second-phase selection probability will in general be dependent upon the first-phase
result, hence the following notation reminiscent of that used in Sarndal et al. (1992):

1 1
Wy =—X
o T

(32)

But even with appropriate notation, the issue nonetheless remains: how to account
adequately in practice for the dependency of successive waves of nonresponse? A good
modelling exercise will do that, but what would a good model here look like anyway?

PPossibly the easiest way to implement such a model is to nest RHGs: a RHG at cycle 2 is
constructed, if needed, within a given RHG of cycle 1, and so on. Using our example on
sender above, this would call for nonresponse modelling at cycle 2 by gender (i.e., the
RHG of cycle 1). So, males could have a RHG at cycle 2 based on marital status (married
vs. alone, say) while women’s RHG at cycle 2 could be based on education level. But
this raises a further issue of its own: the number of groups created in such a nested
fashion may very well grow too quickly to handle as the survey goes through several
cycles of nonresponse.

Here again. the calibration point-of-view can help see the good in nesting. At cycle 1, by
forming RHGs based on gender, we essentially said that we wanted the initial distribution
of gender restored so we proceeded with the adjustments on weights of the responding
units to straighten it up. Equivalently said, we calibrated cycle |'s weights after
nonresponse onto the counts obtained before nonresponse has occurred; those (internal)
totals matter to us. Now comes a second wave of nonresponse which compromises yet
again our ability to yield the original sample-based counts on gender. Since cycle 1's
nonresponse weights were adjusted to preserve them, it seems natural to work from now
on within gender to ensure consistency. Whatever way we’ll split men into RHGs, the
sum of all cycle 2 nonresponse adjusted weights for men will match the cycle 1's target
men total. It thus appear natural from a calibration stand point that any adjustment you'd
like to make in the present must not in any way compromise all the past calibration
you've performed. And nesting is such a way (conceptually at least if not practical).

Now that you know about this imprecision, you may choose to ignore it. The
consequence is certainly more a first-order preoccupation than a second-order one. If you



intend to do so, you should conduct simulations to test under SRSWR what would be the
impact.

In a few words...

- While two-phase sampling and two-stage sampling are methodologically different, they
are mathematically the same for variance estimation purposes.

- The bootstrap captures only a portion of the total variance under a two-phase setting.
When the sampling fraction at phase one is negligible, the portion not captured by the
bootstrap is similarly negligible. As a consequence, the bootstrap “works™ for a survey
with nonresponse or one with a two-stage sampling design precisely as long as the
sampling fraction at phase one is negligible. It is not currently known how to implement
the bootstrap in order to capture the total variance under nonresponse.

- A methodology should be chosen with some consideration for variance estimation. This
would avoid creating, for example, a hopelessly large number of RHGs which is
detrimental to variance estimation (and hardly beneficial anyway for point-estimation).
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8. POST-STRATIFICATION

Post-stratification is routinely carried out in many surveys as the last methodological step
in the creation of releasable survey weights; the post-stratified weight is usually
computed as:

post __ _ nr
Wk —Wk X

T
5o (33)
LW

post—stratum

where: T is the known total of the corresponding post-stratum.

One thing should strike you if you’ve adopted the calibration point of view to
nonresponse: we’re not nesting the post-strata and the RHGs. As a result, whatever
“calibration” we performed through nonresponse is compromised by post-stratification
carried out this way. (However, the nesting issue should be minimal here since the post-
stratification factor should be close to 1.) The question naturally presents itself: can we
forget all about RHGs and post-stratification and do everything under the Sun through
calibration. The answer is yes, at least in principle. See Singh et al. (2005) for a view
along such lines. The idea is the following: you want to replace the set of design weights
by a set of final weights such that some functions are invariant (or kept fixed) under the
weights used. For example, those functions could be about yielding counts (to match at
all times known population counts) and/or totals (to match at all times earlier cycle
released estimates for some variables of interest in a longitudinal survey). But not any set
of weights satisfying the invariance condition on these functions would do. Indeed,
we're not ready to throw out our design weights for just about anything: we want to
maintain whatever feature the design has. We do that by imposing that a distance
between the optimized weights and the design weights is minimal. This way we ensure
that our design is kept well in mind in our efforts to have the weights yet satisfy
conditions not verified by the design weights themselves. (This is incidentally the same
reason Deville and Sirndal (1992) built their GREG optimization around minimizing a
distance.) The issue of calibration is not as much conceptual as computational. In order to
have some benefit, extensive optimization has to take place and this is computer-
intensive. An in-depth study of the possibilities and limitations of calibration to address
at once nonresponse and post-stratification issues is the focus of research to come.

Returning to the usual post-stratification, what is a primary concern for variance
estimation is the size of post-strata. Indeed, they must contain enough units as to make
the replicates’ (and not just the sample’s) composition of the post-strata adequate. [n
other words, post-strata must not become empty (or even close) for some replicates.

In the NLSCY the post-stratification rests upon crossing age (of the kid at cycle 1),
gender and province of residence at cycle I; there are 240 such post-strata in the NLSCY.
Table 5 below gives the post-strata composition for the original cohort of the NLSCY at
cycle 6 in terms of number of kids.  The shaded cells are those that become empty for at
least one replicate. Table 6 is expressed in terms of number of PSUs and therefore there’s



double-counting: a same PSU may (and generally will) contribute to more than just one
post-stratum, which is not the case for children (i.e., Table 5).

Sex Age NFD PEI NS NB Qc ON M8 SK AB 8C
Female 0 44 15 43 30 140 187 64 66 57 53
1 35 22 55 51 154 203 62 51 60 57
2 26 16 30 30 83 121 43 46 56 42
3 17 12 42 34 91 113 43 35 45 51
1 23 13 35 31 81 131 33 33 47 51
5 32 16 42 30 74 98 35 43 36 28
6 18 17 21 33 69 96 23 30 40 40
7 36 10 30 20 72 107 23 30 39 44
8 30 i 32 22 68 105 38 44 42 kil
9 24 24 29 23 77 88 29 38 42 40
10 36 18 30 25 78 97 28 36 38 37
" 36 14 28 23 61 87 26 30 4 31
Male 0 ar 20 49 44 142 188 58 52 70 64
1 37 22 65 24 145 168 63 62 78 55
2 23 10 35 32 112 146 41 48 54 46
3 38 13 33 40 106 131 44 51 37 34
4 25 14 41 28 85 105 23 4 43 43
5 17 13 34 35 88 112 43 5 33 42
6 24 18 30 29 64 103 38 26 40 46
7 26 L 027, 22 69 85 29 37 46 34
8 27 39 24 68 116 36 24 45 36
9 35 10 19 23 63 86 31 3 35 29
10 26 11 25 21 58 84 20 26 48 33
1 18 25 16 58 67 N 27 36 25

Table 5: Number of children within cach post-stratum.

Sex Age NFD PEI NS NB Qc ON M8 SK AB BC

Female 0 35 13 38 27 105 150 53 51 43 47
1 28 20 42 37 118 167 46 37 52 45
2 22 15 21 24 67 96 32 40 46 36
3 15 8 30 22 74 84 32 27 36 40
4 19 ] 23 23 64 101 31 29 37 42
5 26 14 34 21 62 76 26 30 27 24
6 15 16 16 24 52 75 18 25 31 28
7 27 10 20 14 51 79 19 25 27 31
8 21 5 21 16 54 73 27 30 29 22
9 17 12 20 15 55 N 23 25 27 29

10 22 12 19 18 58 66 21 28 25 28
1 27 10 20 15 46 70 14 23 28 22
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Table 6: Number of PSUs (i.e., selection units) per post-stratum.

29 16 38 34 114 151 44 41 56 49
26 18 53 33 110 134 52 48 61 44
20 10 29 28 96 111 29 39 41 41
24 10 26 28 82 108 38 36 30 28
21 12 3 26 67 80 21 32 33 36
14 10 24 28 70 89 38 40 27 35
17 13 22 23 52 79 30 21 29 38
20 i/ 22 14 50 69 21 32 36 29
19 5 27 21 48 89 22 18 Kl 30
26 9 15 14 46 62 23 23 25 21
17 14 19 14 42 59 13 16 37 20
14 8 20 10 41 47 22 20 23 21

Currently, when a post-stratum becomes empty for a given replicate, the corresponding
bootstrap weight is set to 0 for all implicated units. This patch doesn’t address the real
issue: post-strata are unstable the way in which they were designed. One solution is to
collapse some of them... but according to which of the three variables? This is both a
subject matter issue (for which sub-populations do we really need to have our weights set
out to yield known counts?) and a methodological one (which variables can really be
collapsed?). The methodological issue is not trivial; let’s first look at the current post-
stratification adjustments:
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Sex Age NFD PEI NS NB QcC ON MB SK AB BC

Female 0| 082 1.59 1.34 1.69 1.08 1.23 0.82 0.85 1.45 1.31
1 1.09 1.09 0.95 0.83 0.99 1.01 1.19 1.33 1.46 1.25
2 1.35 0.96 1.82 1.14 1.50 1.22 1.28 1.15 1.04 1.58
3| 168 1.44 0.97 1.07 1.20 1.53 1.32 1.32 1.38 1.27
4| 160 1.44 1.02 1.15 1.53 1.07 1.66 1.63 1.04 1.04
§| 091 0.98 1.02 1.05 1.23 1.20 1.06 1.04 1.50 1.63
6 1.98 0.97 1.59 1.05 1.27 1.43 1.67 1.35 1.13 1.256
7| 074 1.38 1.04 1.66 1.16 1.10 1.76 1.26 1.08 0.93
8 1.04 1.79 1.41 1.51 1.10 1.39 1.10 0.95 1.11 1.47
9 1.29 0.57 1.29 1.47 1.39 1.42 1.15 1.04 1.19 1.15

10 | 096 0.76 1.54 1.24 1.26 1.29 1.56 1.05 1.16 1.21
1 1.01 1.14 1.23 1.45 1.36 1.46 1.24 1.49 1.15 1.61

Male 0| 1.04 1.09 1.12 1.02 1.05 1.23 1.40 kil 7. 1.12 1.30
1 1.18 1.09 0.98 1.05 1.05 1.76 1.19 1.03 1.13 1.72
2 1.50 1.86 1.44 1.59 1.18 1.08 1.64 0.96 1.08 1.32
3| 0.96 1.39 1.38 0.92 1.67 1.09 0.96 0.96 1.68 1.85
4 1§27 1.10 1.18 1.57 1.30 1.45 1.87 1.20 1.36 1.28
5| 214 1.02 1.20 0.96 1.29 1.41 0.99 0.84 1.56 1.08
6 1.19 0.84 1.03 1.09 1.58 1.38 1.34 1.46 1.16 1.07
L/ 1.25 1.49 1.53 1.36 1.22 1.14 1.45 1.25 1.22 1.42
8 1.16 1.68 1.00 1.59 1.34 1.08 1.17 1.83 0.96 1.18
9 1.01 1.91 2,17 1.52 2.18 1.35 1.35 1.47 1.24 1.43

10 1.22 1.49 1.62 1.86 1.25 1.42 1.96 1.57 1.13 1.29
1 2.38 1.92 1.57 2.13 1.50 1.89 1.32 1.72 1.87 1.69

Table 7: Current post-stratification adjustments.

One cannot better illustrate the (adverse) effect of small post-strata on variance than to
draw the histogram of the 1,000 post-stratification adjustments. Here are the non-zero
bootstrap adjustments for the post-stratum of 8 year-old male kids in PEL
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Graph 6: Distribution of post-stratification adjustments within replicates for the post-stratum of 8 year-old
males in PEI

To give you a comparison point, here’s the histogram (using the same scale) of bootstrap

adjustments for a post-stratum with a similar (sample-based) adjustment but more
densely populated: 3 year-old males in Québec:
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Graph 7: Distribution of post-stratification adjustments within replicates for the post-stratum of 3 year-old
males in Québec

Another telling example is taken from 7 year-old males in PEI compared to 4 year-old

males in Ontario (again, the latter was chosen because the sample-based adjustment was
similar and is more densely populated):
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Graph 8: Distribution of post-stratification adjustments within replicates for the post-stratum of 7 year-old
males in PEI
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Graph 9: Distribution of post-stratification adjustments within replicates for the post-stratum of 7 year-old
males in Ontario
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Should we consider in the smaller province to collapse according to gender, even if that
proved to be the scenario chosen by subject-matter? The danger with any collapsing is to
blend two trends. To illustrate, look at 5 year-olds in Newfoundland. We gather from the
corresponding adjustments that female weights had to be reduced through post-
stratification in order to match known counts on females while for the boys the opposite
took place: we had to (considerably) inflate their weights to match known totals on boys.
If we pool these two sub-populations into one, then at least one of the two trends
(downward for the females and upward for the males) will be lost, if not both! What
we’d like from a methodological standpoint is to recover (as closely as possible) sub-
population totals while working at a more aggregate level. To illustrate, suppose post-
strata involving | year-olds in PEl were collapsed to form just one, there’d then be no
harm done since in both cases the trend was upward by 9% (i.e., an adjustment of 1.09).

In a few words...

- As with nonresponse, post-stratification should be implemented with considerations for
variance estimation. Tiny post-strata are detrimental to variance estimation and after-the-
fact collapsing is at best an ad hoc approach that should be avoided with proper planning
instead.




9. MISCELLANEOUS
In this section we cover other important but isolated issues relating to the bootstrap.
9.1 Stability of the variance estimates

As we pointed out already in Section 3, variance estimation using the bootstrap involves
two separate random mechanisms: the original sampling and the re-sampling. A

satisfactory variance estimator under bootstrap, v, (9) of ¥(6) should be unbiased:
Ep Epoor Voo (D)ls)=V(6) (34)

If Vioor (9) indeed satisfies (approximately) (34), then we’ll customarily say that the

bootstrap “works™ for 8. In that sense, bootstrap works for many types of estimators
which include as an important sub-class those estimators which arise from a smooth
transformation of the mean, and even works for the median (and more generally for
quantiles). But here’s the catch: in practice we don’t have the benefit of evaluating the
double expectation in (34) and we must instead rely on approximations. The question of
interest then becomes: are approximations obtained in practice “all equally reliable”? The
answer is no. There are inferential frameworks (i.e., given estimator and sampling
design) where v, (9) is very stable as in the case of the estimator of the mean and SRS.
Indeed, provided sufficient sample size and replicates are used. the estimate can almost
be confounded with the unknown value itself. And there are other settings where the

uncertainty around v, (9) cannot be as readily dismissed; this is the case of the

cstimator of the median under SRS. The measure we’ll use to gauge stability is (an
approximation under Monte Carlo of) the variance of the variance estimate; we’ll show
that under SRS the bootstrap variance estimator of the mean is much more reliable than
its counterpart for the median. It is important to stress that the instability is not due to the
re-sampling (or the bootstrap if you prefer) but rather to the nature of (design) variance
estimation in presence of the median. We’ll have more to say on this in Section 9.2.

Consider the following (general) question: if for some reason the relation ¥, <V, should
hold for two (exact) variances ¥;.¥, then would we necessarily have ¥, <V, for any two
of their estimates? To put this in the context of the NLSCY, let ¥, =¥, the variance of
an estimator at cycle 1 for a static characteristic and ¥, =¥, the corresponding variance

at cycle 2 with attrition due to nonresponse being the sole factor explaining how one gets
to cycle 2 from cycle 1. Consequently, we should have ¥, <V, since, all other things
being equal, the effective sample size at cycle 2 is smaller than that of cycle 1. The
relationship between the true variances will hold for any two variance estimates, that is
estimates obtained from possibly different samples, provided that the variance estimation
of ¥, and ¥, is a reliable enough process. This simply means that we require that the

s and the V,’s are tightly spread about ¥, andV,. respectively (and thus lay
sufficiently far away from ¥, and ¥, respectively). in order to preserve the relation

~]
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between any two variance estimates. Our concern here, with Table 1 well in mind. is:
when will we really see a variance estimate of a cycle exceed that of the previous cycle
(as it should for a static variable) as a result of occurring nonresponse?

To answer questions of this kind. we must keep in mind that there are always two forces
at work which can make the variance estimates unreliable: the sampling design and the
bootstrap (hence the two expectations in (34)). For one, the number of replicates used to
conduct the bootstrap will have an effect on how good the computed variance estimate
will be as far as replication is concerned. This is what people typically find in practice
when they notice that in a given situation not much gain in stability in the variance
estimates is achieved by using 1,000 replicates instead of 500, say. More precisely, the
variability in the variance estimates due to the bootstrap comes from which set of B
replicates (among all possible such sets) is actually used: different sets of B replicates
will yield different bootstrap variance estimates. This is the sampling framework
underlying the use of the bootstrap.

Observe that with the bootstrap, one set of B replicates will yield B estimates; these
bootstrap estimates can in turn be likened to B estimates taken directly from the sampling
distribution of the estimator. This means we can see the bootstrap as a sampling
mechanism operating from the (sampling) distribution of the estimator. In other words,
the replication acts as if the B bootstrap estimates actually were (up to a translation
factor) B observed survey estimates: the distribution of the bootstrap estimates attempts
to recreate the sampling distribution of the estimator.

Reiterating a point made earlier, if one had access in any given situation to a closed-form
expression for the variance estimate, one provided by the sampling theory, then one could
see the bootstrap method used in practice as an attempt to yield a variance estimate as
close as possible to that coveted closed-form estimate. The closed-form conceptually
corresponds to having all possible replicates. But even a variance estimate obtained from
sampling theory in the form of a closed algebraic expression would vary from sample to
sample under hypothetical repeated sampling from the population. This is simply the
(design) variance of the variance estimator itself. This component of the (overall)
variance of the variance estimates is the one we would like most to guard ourselves
against, but one for which the bootstrap has no influence on whatsoever. Indeed, recall
that the bootstrap can only attempt to provide us with an estimate “close™ to the theory-
supported variance estimate if such an estimate was actually available: the greater the
number of replicates used, the closer the bootstrap estimate gets to its closed-form
counterpart. But once the bootstrap (reasonably) achieves that, there’s nothing else it
can do about the sample-to-sample variability which is s#ll present in the variance
estimates themselves. This main component to the variability in the variance estimates
thus depends on specific features of the sampling design, like the sample size used.

In practice one can usually guard oneself against the variability arising from the bootstrap
by choosing a large enough number of replicates, as large as available time and resources
permit. But while this keeps one source of variability in the variance estimates under
control, it achieves nothing with regard to the other component which then can easily be
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forgotten. Unfortunately, the component of variance in the variance estimates arising
from the number of replicates used is usually not the dominant one. Furthermore, control
over the minor component (i.e., arising from the bootstrap) must not be mistaken as
control over both components at once.

A more visual way of saying the same thing is to represent the situation of estimating the
variance using the bootstrap in the form of a grid which describes all possible variance

estimates that can be obtained under the two random mechanisms at work.

Set of B replicates used

Observed sample 1 2 3 4 and so on...
1 4 V12 Vi3 Via
2 ‘}:1 Z 2 v 23 Z 24
3 V3 V3, Vi3 Vis
4 Viay Ve Vas Vas
and so on...

Table 8: A two-dimensional representation of all possible variance estimates arising from bootstrapping
samples.

In Table 8 there’s one line for each of the different observed samples one could have to
work from (all obtained from the same sampling design of course) and there’s one
column for each set of B replicates one could possibly draw. (Observe that it’s not the
number of replicates B that changes from one set to another but rather which units of the
observed sample get to make the B replicates.) The main entries of the Table 8 represent
the various variance estimates one would obtain under these two sampling mechanisms.

In practice, that is bootstrapping only one sample, one obtains only one entry of the two-
dimensional Table 8 above; let’s say it’s the entry (1,1): first line and first column.
Indeed, one usually has only one observed sample from which to conduct the bootstrap
using only one set of B replicates. So, in practice we want to know just how Vi1, @s an
estimate itself, is variable. But there are two ways of answering this. Indeed, we can ask
what other variance estimates we would have obtained had the set of B replicates been
different than the one actually used to compute ¥,,. These variances make the entries on

the same line as V,;. Or we can ask what other variances we would have obtained had
the observed sample been different than the one used to compute /,,. These variances

are found in the same column as V,,. (For the intellectual gymnastic of changing
samples but keeping the same set of replicates, we need to think of the bootstrap as
selecting rankings in a sample rather than labels. So a given replicate did not result in the
choice of unit labelled 2, say, but rather the second unit in the (random) ordering by
which units of the sample are listed.) The column-to-column variability in the variance
estimates is due to the bootstrapping while the line-to-line variability is due to the
sampling design.
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We can therefore liken the computation of bootstrap variance estimates on a very large
number of replicates to an attempt to provide ourselves with a variance estimate close to
the estimate we would get if a closed-form expression provided by the sampling theory
was available to us.

Closed-form variance expressions were referred to quite a few times above as the
sampling theory counterparts to the computed bootstrap variance estimates. It may help
to see this parallel if we put the closed-form variance estimation framework in a grid-
form like the one above. For that purpose, consider that the design is SRSWR and we’re
interested in estimating the variance of estimates of the mean. In such a simple setting
we have a closed-form expression for the variance estimates, it is:

V(i) =~ (35)
n

The grid in this case can be seen as the two-dimensional Table 8 above “collapsed” to
only one column: one set made of all possible replicates, since if we took all possible
replicates we’d fall back on the usual variance estimate.

Observed sample Variance estimate

) /
l v, Ssa1/
n
2 7 Sz_'/
v, = =2/
3 A 2/

= Os=3
vy s .
4 5 _S2 /

= Vs=4
Vy ="/

and so on...

Table 9: This is the two-dimensional Table 8 collapsed to just one dimension when all replicates can be
used

To help gauge the two components to variance estimation just mentioned, we’ll
repeatedly use the following result from classical statistics. But since our context is not
classical statistics but rather survey sampling. we need to keep in mind that this result is
at best heuristic in our context. Actually, the main reason a result like this is considered
here is to ground simulations. Indeed, running simulations can be hazardous, especially
in uncharted territory, due to computational errors, misunderstood assumptions, efc. It
considerably helps (and secure later findings) if one starts with simulations in simple
frameworks where outcomes can somewhat be predicted. Once a simulation is validated
this way, we can have some confidence extending it to more complex frameworks where
essentially it will sail on its own. With hindsight, you’ll find that each simulation that
was used in this paper never was solo. For example, if it was about the performance of a
little-tested estimator like the median. then it also featured a better-known estimator like
the mean to help “cross-validate it”.
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. The result is the following - see Dudewicz and Mishra (1988) p.325 (Efron and
Tibshirani (1998) get essentially to the same result, but by different means):

Result 1

Let X,,X,..,X, be M iid. variables with mean x and variance a?. The
M

R z (X, - ‘Y’)‘
sample-based variance estimate S = E'—M—— of o has a variance which is
given by
a4
pg2)=tas e’ (36)

M

where a, is the kurtosis of the distribution of the X;'s.

Note: Since there's no consensus on the definition of the kurtosis, it’s important to make

precise which one we use. For our purposes the kurtosis of the distribution of

probabilities associated to the random variable X with mean x and variance ol is

defined as:

(X —u 3

0_4

(37)

(14 =

In some books and, most importantly for the user, in SAS the kurtosis used is the kurtosis
defined by (37) minus 3. This is done so normal distributions get a kurtosis value of 0
(instead of the unremarkable value of *3” they get under our definition).

Let’s now consider the two cases of stability separately and use Result | to evaluate how
important each component is.

If the sample’s composition changes but the set of replicates used remains the same. then
we're assessing the stability of the variance estimates with regard to the sampling from
the population. (By considering the same set of replicates for each drawn sample, we're
doing as if that set provided us with an error-free estimate as far as bootstrap goes.)
Therefore, for a given set of B replicates, the stability of the bootstrap variance estimates
depend on how the characteristic of interest is distributed in the population. In this case,
we can rewrite (36) in terms of CV as:

(38)
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where o is the kurtosis of the distribution of the characteristic of interest.

| Simulation D

In Program D, one hundred samples of size 100 (500 and 1.000) were drawn from
a population of 10,000 under SRSWOR; there are two characteristics of interest:
one normally distributed (with a kurtosis of 3) and the other exponentially
distributed (with a kurtosis of 8.75). Each sample was bootstrapped using the
same set of 1,000 replicates. We’re interested in the stability under the sampling
design of variance estimates for the estimator of the mean. Tables 10 to 12 below
give the CV of various variance estimators for sample sizes of 100, 500 and
1,000.

Estimator Source Normal Exponential
Closed form Ha 25,7
Mean Heuristic ) 14.1 27.8
Bootstrap 15.6 26.5
Median Bootstrap 47.0 48.4

Table 10: Comparison of CVs obtained under a sample size ot 100.

We can see from the Table 10 that all results concur in the case of the mean;
variance estimates for the exponential variable vary more from one sample to
another than those for the normal because of its greater kurtosis. In the case of
the median we only have one source, the bootstrap. According to it, the variance
estimates for the median vary much more from one sample to another than those
for the mean for the same variable of interest.

Estimator Source Normal Exponential
Closed form 5.5 bj.3
Mean Heuristic 6.3 12.4
Bootstrap 6.6 12.1
Median Bootstrap 29.9 36.1

Table 11: Comparison of CVs obtained under a sample size of 500.

Estimator Source Normal Exponential
Closed form 4.3 7.8
Mean Heuristic 4.6 8.8
Bootstrap 6.4 97
Median Bootstrap 25 30.2

Table 12: Comparison of CVs obtained under a sample size of 1.000.

The lesson here is this: for a given sample size, variance estimates for the median are
much less stable than corresponding variance estimates for the mean. So, while the
bootstrap “works™ for both the mean and the median in the sense that the expectation of
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the bootstrap variance estimator (essentially) is the true corresponding variance, in
practice variance estimates for the two are not equally reliable.

On the other hand, if we work from the same observed sample, then the stability of
bootstrap variance estimates is now dependent on the re-sampling. By fixing the observed
sample, we can then liken the bootstrapping to sampling directly from the sampling
distribution of the estimator. The precision of the estimate of its variance is then solely
expressed in terms of the number of replicates used, say B: hence:

CV(.Az)= (39)

B

The kurtosis now entering (36) is that of the sampling distribution of the estimator: for all
practical purposes we can assume this distribution is normal and hence get the following
Cv:

g ae:nmulor = E
O htangy I = = (40)

Stability of bootstrap variance estimates in terms of the
number of replicates B
0.25
02 7
0.15 -
>
(3]
01 7 —
0.05 - —
0 1 , ' . |
0 200 400 600 800 1000 1200
Number of replicates B

Graph 10: Stability of the variance estimates as a tunction of the number of replicates used in the bootstrap.
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Graph 10 depicts something which is already well-known ot users about the bootstrap
through simulations: the largest gains in stability are provided by the first 250 replicates.
In Simulation E we illustrate the heuristic result regarding the stability in variance
estimates with respect to the bootstrapping.

| Simulation E ‘

In Program E, a population of 10.000 units was created with 2 variables of
interest: one is normally distributed and the other exponentially distributed. A
sample of 100 units is drawn under SRSWOR to play the role of an observed
sample in practice. The observed sample is bootstrapped to yield 1,000 replicates.
The bootstrapping is done 100 times. The kurtosis is assumed to be 3 (ie., a
normal sampling distribution for the estimator). (The program also expresses the
stability of the variance estimates for the mean with regard to the bootstrap in
terms of root mean-squared errors - RMSE).

Seed (sample) | Mean normal Mean exp. Median Median exp.
normal
] 49 4.7 33 3.3
2 4.1 4.4 5.3 4.7
3 4.6 4.6 ok 4.8
4 44 4.9 5.1 4.2 1
5 4.9 4.4 7.4 4.0 ]

Table 13: Stability of variance estimates under bootstrap for the mean and median in terms of CV.

The context in Simulation E allowed us to ignore the finite population correction factor in
the bootstrap. A question that arises is whether the bootstrap in the context of a non-
negligible sampling fraction is as stable as in the negligible case. It turns out that
whether or not you work with a negligible sampling fraction the same number of
replicates will buy you the same stability in the bootstrap variance estimates as
Simulation E2, below, shows.

I l

Simulation E2

Program E2 is a variant of Program E that allows for larger sampling fractions to
be processed in a timely fashion. The population made of 1,000 units was created
with the same two characteristics as in Simulation E. Sample sizes of 100, 250
and 500 were considered allowing testing the stability of the bootstrap over larger
and larger sampling fractions. The observed sample was bootstrap 100 times,
each bootstrap run using [,000 replicates.

The stability of the variance estimates is expressed in terms of CVs.
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Sampling Mean normal Mean exp
fraction
10% 4.8 4.2
25% 4.7 4.4
50% 4.6 4.3

As you can see the CV doesn’t change significantly with the sampling fraction
used in drawing the observed sample.

Now that we’ve gone to great lengths describing both random processes behind bootstrap
variance estimation in practice, we’re ready to give a more compact description of it all.

The idea here is to decompose the total variance /.e.. the variance due to all random
processes at work confounded, into its components using conditional
variance/expectation. (This trick was used above when we investigated the two-phase
framework.) We get:

V(vb (é)): Edeslgn Vboot (vb (é)ls)+ Vdcsign Ebool (vb (é)ls)

The component E ., Voo (v,,(é)|s) evaluates the contribution to the overall variance of
the fact that bootstrap involves a sampling process of its own. Indeed, given a sample s
- (v,, (é)|s) evaluates the variability we'd observe in the bootstrap variance estimate

W (9) as we go through different sets of replicates (each set containing the same given

number B of replicates). This is the column-wise variability of Table 8. Once that
variance has been calculated, we must “average it out™ over all possible samples to
relieve the dependency of the calculation performed on the specific sample that was used

in the conditioning. As we saw above the component £,V (v,,(é)|s) is usually not

the major one and actually it goes to 0 as the number of replicates increases to ultimately
reach the total number of replicates the re-sampling gave rise to.

The component Ve, Epoor (vb(é)|s) evaluates the contribution to the overall variance of

the design variance. Indeed, given a sample s £, (v,,(é)|s) first “stabilizes” the

bootstrap variance estimates with regard to re-sampling. By averaging out with respect to
the bootstrap process, we take the replicate-effect out in a way, thus revealing the
sampling design aspect before even thinking of assessing its role in the overall picture by
computing V.0, (¢). As we saw above, this is of the two the major component to the

overall variance (i.e., variance estimates usually vary more from one observed sample to
another than from one set of B replicates to another).
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9.2 Bootstrap and the median

The median is often cited as an example of a non-smooth estimator for which the
bootstrap works. But what is a smooth estimator anyway? An estimator is smooth if it
can be expressed as a function g of an estimated total whose derivative is itself a
continuous function. What’s the big fuss about smooth functions then? A big part of the
answer comes from classical statistics where the following can be shown to hold.

Result 2 (Theorem 6.3.18, Dudewicz and Mishra (1988), p.327).

Suppose that Vn(X, -0)— N(O.o-z) and that g(x) is a function for which the
derivative g’(x) exists and is continuous in some neighbourhood. Then

Jnlg(X,)-g@)—> No.[g @) o?) 1)

Into words: the transformation of a “normal-inclined” random variable yields also a
normal-inclined provided the transformation is a smooth one.

We’ve already noticed that the variance estimate under SRSWOR of the median doesn’t
enjoy the same level of stability as that of the mean. This is an important issue to keep in
mind because in practice we only have the benefit of one variance estimate. And things
can potentially get worse for other quantiles. Indeed, for most distributions the
practitioner will encounter (i.e., unimodal ones), the median will reside in a “densely”
populated neighbourhood of the distribution. This would not be true though for a
distribution with two humps, one looking like a camel’s back: the median would then be
located in a scarcely populated area. Quantiles other than the median tend to occupy
scarcely populated area of the cumulative function; think of the 95% quantile for
instance. Furthermore, Woodruff’s method hints that in order for a variance estimation
method of a quantile to be efficient, the local shape of the underlying cumulative function
must be “stable”.

To illustrate, take a normally distributed variable of interest Y. Its (discrete) cumulative
distribution is given by the broken (or blue or dark) line while the continuous (or pink or
light-coloured) line is the cumulative we’d observe if ¥ were continuous (i.e., infinite
population). See how the two lines are locally, here and there, quite apart; these
discrepancies will create instability in the inferential process for the quantiles.
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Graph 11: The cumulative function of a normally distributed variable on a discrete support.

In Program F you'll find the SAS code which estimates the median in the case of
weighted data using interpolation.

[ Simulation F

As usual, a population of 10,000 was generated and the variable of interest is
normally distributed. We're interested in estimating its median using a SRSWOR
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sample of size 100 and estimating the variance of the estimator using the
bootstrap.

The Monte Carlo approximation of the (exact) variance of the median is
calculated to be (look in the Output window for the summary statistics yielded by
the proc univariate):

V yic (median) = 6.0203
We can check that result with the following classical result (see Dudewicz and

Mishra (1988) p. 374) which states that for a normal variable the following
approximation stands:

V(median) = % V(mean)

We find:

Y Classicar (median) = 6.0369

The Monte Carlo approximation of the sampling distribution of the median
estimator is provided in Graph 12.

+200%0 7D
a
L
]

[ T T i T 1 T T T T N T T
40 41.5 43 44.5 46 47.5 49 50.5 52 53.5 55 58.5 58 59.5

ned ian

Graph 12: Sampling distribution of the median estimator as depicted through a Monte Carlo
stmulation.
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The bootstrap approximation of the sampling distribution of the median estimator
relying on SAS procedures to compute the (bootstrap-)weighted medians is:
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Graph 13: Sampling distribution of the median estimator as depicted by the bootstrap using SAS
proc summary.

The distribution is very discrete. Using now the linear interpolation, the same
1,000 replicates yield a more continuous approximation of the distribution:
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Graph 14: Sampling distribution of the median estimator as depicted by the bootstrap using
interpolation.

But cither way the computed bootstrap variance is
v gs (median) = 9.68

Using a different sample (i.e., seed value of 4 instead of a seed value of 1 in the
corresponding proc surveyselect) yields:

vgs (median) = 4.61

In other words, with a sample size of 100 under SRSWOR the variance estimates
for the median are all over the place. But this ought not to be a surprise since in
Table 10 we already had established that the CV of the variance estimator for the
median in this was about 47%.

Translating that into a 95% confidence interval about the (approximate) exact
variance, we get: (6.0203 + 2 x 0.47 x 6.0203)=(0.36,11.68) . Nothing to write home

about, especially for a sample size of 100!

We reiterate at this point that it’s not the bootstrap that necessarily has problems in the
case of the median. Indeed, a parameter which strongly-depends on the entire
distribution of the estimator will prove difficult to estimate whenever sample sizes are not
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at least of moderate size. The median is one such example and it is expected that other
percentiles of the distribution are in fact behaving worse; take for instance the 90"
percentile which is in a scarcely populated area of the distribution and probably less
robust to changes in the depicted distribution (obtained as you depict the distribution
bootstrapping one sample or another) than the median. An alternative to the bootstrap for
a survey that solely needs it to take care of the median is Woodruff’s method which is
described in Annex B. Actually, whenever possible the median should be avoided
altogether in favor of the better-behaved mean. Yes in the case of strongly skewed
distribution there’s hardly any escaping the median. But then, in practice distributions
may appear more skewed than they really are because the survey data contains severe
outliers that have gone undetected and thus unaddressed. This is likely to appear, for
instance, in a survey where data collection allows income to be captured hourly, daily,
weekly, monthly or annually. Errors like a misplaced decimal in a reported figure or a
correct figure but reported over the wrong period will cause outlying values.

9.3 The mean bootstrap

To address small domains (or deal with confidentiality issues), a variant of the bootstrap
called the mean bootstrap has recently emerged (“mean” in the sense of “averaging”, not
“nasty”, though... ©). The idea behind the mean bootstrap is the following. As we’ve
seen the usual bootstrap only allows integer multiplicities; there are therefore only two
tvpes of outcome for a unit: either it enters a given replicate, i.e.. its multiplicity is an
integer >0, or it doesn't enter the replicate i.e., its multiplicity is 0. For small domains, for
instance, each time the latter outcome happens the domain gets deprived of a critical
representation in the replicate. The idea is to offer to the unit more ““choices” as to its
multiplicity; under mean bootstrap the multiplicity is allowed to be a (positive) rational
number. So, instead of being either chosen or not, the multiplicity under mean bootstrap
can be 1/2, 1/3, 1/4, etc. To implement the mean bootstrap resulting in B replicates being
created, one actually constitutes under the usual bootstrap M*B so-called auxiliary
replicates. M is some not-too-large a number, say 10 to fix ideas. One forms each of the
final B replicate by averaging the multiplicities over the corresponding M auxiliary
replicates. One can readily see the appeal of the mean bootstrap: in order for the final
multiplicity (i.e., the averaged one) to be 0 for a given unit. one needs to find that the
given unit was chosen in none of the M auxiliary replicates, which is a quite rare event.

The problem with the mean bootstrap at this point in time is that instead of providing us
with a solution closer to the nurturing ground of the traditional bootstrap we’re making a
step further into the unknown. And we currently have our hands pretty full with
unknowns concerning the bootstrap in relation to survey sampling as it is! Actually, as
these words were written, it appears that whatever gains there’d be in using the mean
bootstrap are out-weighted by its (many) shortcomings. There’s talk that the mean
bootstrap leads to moderate to severe bias in many inferential contexts. The interested
reader should seek further information on the mean bootstrap before tackling it.
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9.4 Unequal weights

- NLSCY, as other surveys feeding from the LFS. has to deal with a stratified multi-stage
design involving, as we’ve seen above, largely unequal weights.

Nonresponse occurring over successive cycles may have other impacts on the variance
than those already described. Indeed. a stratified design of (homogeneous) PSUs, as is
the case of stratified multi-stage designs, combines two poles in terms of efficiency:
stratification tends to reduce the variance while homogeneous PSUs work to increase it
(all other things being equal of course). With nonresponse, the PSU may become over
time less homogeneous. Therefore the stratification may benefit from this and contribute
to a non-increasing variance over cycles (i.e., as stratification moves from an originally
inefficient methodology to a... less inefficient one!). This is merely a hypothesis to be
kept in mind, and tested if needed, rather than a fact at this point and time.

Also, unequal weights contribute to making the variance unstable. especially in the
(common) situation where all analyses are carried out with one-size-fits-all set of weights
(both sample-based and bootstrap). Indeed, two highly correlated variables of interest
may have significantly different sample-based estimates, but also bootstrap estimates,
because the units for which they don’t concur have the larger weights. Furthermore, a
given variable, static over time, may see its estimated variance not increase over time
simply because the tails of the bootstrap distribution of estimates exist thanks to
contributing units having the larger/smaller weights. As those units are lost to
nonresponse, the one-size-fits-all methodology for nonresponse may not compensate
adequately for this one loss (though it's expected to work well “on average” i.e., for all
variables) and therefore the tails may simply vanish (or appear reduced in importance as
cycles go by). As a consequence, what used to be an extreme (bootstrap) estimate at a
given cycle may altogether disappear and never reappear in subsequent cycles. With the
ensuing distribution getting tighter about the (unaffected-by-the-losses) mean the
estimated variance does not increase as it’s expected to.
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9.5 CV Extraction Module

In a survey like the NLSCY, support to users of the data is part of the mandate of its
methodologists. One of these tasks is to guide users on how to integrate bootstrap weights
into their analysis. The CV Extraction Module (CVEM) was born from the need from
users to obtain approximations to variance for an estimate of a proportion in a timely
fashion; this is one of the many uses made of bootstrap weights. In the past, users have
relied on CV look-up tables which provided some variance approximations by making
various simplifying assumptions about the actual sampling design. An approximation to
the bootstrap variance, rather than the full-blown calculation of it, may become handy to
users who are in exploration mode for their analysis; it allows delineating which analysis
can statistically be supported from those jeopardized by sample sizes too small to carry
them out.

A CVEM was introduced in the NLSCY at cycle 4, and it may very well have been a
first at that time for a survey at Statistics Canada. It takes the form in the NLSCY of an
Excel spreadsheet with various pre-defined domains of interest as the rows and domain
descriptor and various statistics about them as columns. In other words, the CVEM has
in store a variance approximation that was calculated for a wide range of domains and
proportions of interest. The user gets to probe the database of variance approximations
by using a tool which extracts the relevant information for the request made. In the
simplest of all cases, all pre-computed estimates are stored in an Excel table and the user
probes its content using Excel autofilters.

‘The snapshot below is taken from NLSCY's CVEM for cycle 6. An autofilter used on
cach column creates a pull-down menu which contains the different values (and
combinations of them) admitted by the column: in this example the user chose “Atlantic”
from the column “PROVINCE”. Once that choice is finalized by left-clicking on it, the
table screens out automatically all domains whose geographic component is not
“Atlantic”. One can refine further the selection by using, if needed, the autofilters on the
other columns.
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The Longitudinal Survey of Immigrants to Canada provided its users with an even more
user-friendly (and fancier) tool which is an extension of NLSCY’s CVEM: their version
is now what people have in mind when they speak of a “CVEM™. It uses a Visual Basic
for Applications (VBA) supported interface which extracts from several Excel databases
the information corresponding to what was captured in the fields used by the user to
define his/her request. The VBA-based CVEM was introduced mainly because the LSIC
had many more domains to cover and these outgrew the storage capacities of a single
Excel spreadsheet; several now had to be used and the concept of auto-filters, at the heart
of NLSCY’s CVEM, was extended to a multi-sheet environment with the help of VBA.

The first generation of CVEM in the NLSCY produced an approximate variance for a
domain of interest for a characteristic assumed to be held by p% of people by randomly
generating first such a characteristic for the sample and computing its variance estimate
using the 1,000 bootstrap weights. To avoid having this variance estimate depend on this
one specific realization, 100 such characteristics were independently generated and the
ensuing variance estimates averaged out to form the CVEM variance approximation. In

other words, the approximation to the variance for p in a domain D, 4 éf,’gu L

computed by the CVEM is:

100
(D)  » (D) H(D)
AV eygy (P) _100 l:lOOO hZ'ZI( bopk -6, 7. k)
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where:

2wk p
é(D) _ JjeDns

s.pk Z W, :

sample-based estimate for p in D using the K" generated

JjeDns
characteristic
and
(bs)
) -%,\:’j Tsp
153;)/: =£ZT: p" bootstrap estimate for p in D using the K® generated
W
7
jeDrb

characteristic

In the case of the NLSCY. all the domains considered turn out to be direct sums of post-
strata. As a consequence, the denominator of the estimate é;?,’k is not random with

respect to the bootstrap. Indeed, for all replicates. it’s equal to the sum of the post-strata
totals which make the domain D.

Before we go any further, a word of caution has to be said about the CVEM. By
randomly generating in such a way characteristics of interest in the sample, we construct
variance approximations under the assumption that the characteristic of interest and the
design weight are independent. This is a very strong assumption to make, one that users
should keep well in mind when exploiting the CVEM. Indeed, a real dichotomous
characteristic seldom can be assumed to be independent of the weights: in the case of the
NLSCY, any dichotomous characteristic related in one way or another with geography is
bound to be correlated with the weights. The approximate variance computed above can
only be accurate if the design is self-weighted as with SRSWOR for example; any
departure from that scenario will compromise the reliability of the approximation to the
variance calculated this way.

The main disadvantage with this first generation is the incredible amount of computer
resources it takes to run. For example, to build in a timely fashion the CVEM inside the
tight production window of the NLSCY at cycle 5, several computers were used (through
SAS connect) to get the job done.

By the time cycle 6 of the NLSCY had arrived a simplification in the computation of the
approximate variances was made which opened the way to a significant reduction in
computing time in building the CVEM. To reveal it, let’s first permute the summations

signs in 4V D), (p):

oy LR LR i o) g2
AV gy (P) = 1000 :,Z:% WAZI( bpk ™~ s.p.k)
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In the bracket now is the average of the square term over the randomly generated
characteristics. But this is simply taking the expectation with respect to a Bernoulli
random process.

100 Z(g}fl’)’)k _g(D)k) EBERN(Q(D) e(D))

and 62 are functions of the random Bernoulli variable 7, whose 100

(D)
where 9,,' r

5(D)
s.pk
NLSCY things are even simpler because all domains considered are direct sum of post-

strata. This means that the denominator of a proportion is a known total and thus does
not vary from one replicate to another, hence there is no need to repeatedly calculate it.

N . . 100 100 )
realizations have yielded us z&,?k }k_ nd }H, respectively. In the case of the

We can work out the expectation under the Bernoulli process to find:

2
(w,,,(—w) }
D D
(Z(HH—HA ) (since Z(Hh/‘—\u) 0)

) T | k=il

1 D
Egery (9(0) -6)? =— Epgry (Z
TD k=1

= HT—z p(1— p) (since the I, ’s are independent)
D
D D
where : Tp =3 wyy = wy .
k=1 k=1

The approximate variance then becomes:

o0 P1- DS ~wi)?

1 Z k=1
1,000 & 72

AV D (p)=

Computationally, this is much less-intensive than the previous form since each term is
computed once, not one hundred times; at cycle 6 it took just a few minutes of running
time on a single computer to gather the variance estimates required by the CVEM.

Computational time can be reduced even more if one exploits the following link:
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Indeed, the average taken over the replicates used is an attempt to evaluate the
expectation with respect to the Binomial process responsible for the multiplicities
imbedded in the bootstrap weights (see Computational Tip #6). Unfortunately, in order
to carry out the algebra involved in computing explicitly this expectation one has to make
some simplifying assumptions which. in the end, we don’t feel are worth the effort (and
whatever little further gain in computing time there is to make).

9.6 Diagnostics on variance

Non-increasing variance estimates over cycles about a static-over-time characteristic in a
longitudinal survey certainly is perplexing — but what increase would actually be
sensible? It’s tempting to assume that the design effect (DEFF) should remain roughly
constant over cycles; it sure would be convenient! But this is not a valid assumption in
general. If it were true, it would mean that the loss of sample size over cycles due to
nonresponse (and other contributing factors) affects the variance of a complex survey the
same way it does a survey relying on a SRSWOR design. This is a very strong
assumption that has no reason to hold in general.

As we saw earlier, knowing the reliability of a variance estimate is useful information to
take into account in practice. For instance, we've established that in the simplest of all
cases, variance estimates of the median were much less reliable than those for the mean.
Unstable variance estimates may also explain (to some extent) the bizarre non-increasing
variance estimates. But then, how can we build a case about unstable variance estimates
when in practice we only have the benefit of one observed sample? (Surely we have the
benefit of taking several sets of bootstrap replicates but as we argued before the error due
to re-sampling is not the one at fault here, at least not in magnitude.)

variance estimates are; it comes from the framework of the Coefficient of Variation
Extraction Module (CVEM) described above. Recall that originally the CVEM involved
generating 100 Bernoulli variables with probability of a success p and obtaining for each
of these a bootstrap variance estimate for a domain of interest D. The variances were
averaged out and reported in the CVEM as an approximation to the bootstrap variance
estimate we’d get for a (survey) variable of interest of estimated proportion p. The idea
here would be to take the variance of these variances and see if it’s large or not. And 100
generated variables is probably overkill; 5 or 10 could very well be enough to give you a
good idea of the instability in the variance estimates that you have to deal with.

If you want to avoid simulating Bernoulli variables altogether, then you’ll have to
compute:
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which is at best messy; this computation may not be worth its while compared to the
effort of approximating it using a few simulated Bernoulli variables.

In a few words...

- Variance estimates are not as stable with regard to the sampling design as one would
think (and wish!).

- Variance estimation for the median is noticeably trickier than that for the mean, for
example.

- The CVEM depends on a very strong assumption, one that should not be taken lightly.

- Possible diagnostics on variance are hard to come by; yet, with the advent of computers
(and thus simulations) surely more options will become available.
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A few final words...

While many different issues were covered here in depth, in the end a single unifying
lesson stands out: we need to opt for methodologies that strike a proper balance between
performance and what’s required implementing them. For instance, we notice that often
the weighting methodology used is (almost) completely driven by bias considerations at
the expense of a sound and easy-to-implement variance methodology. A good example
of this is the issue we covered in Section 8 about the post-stratification methodology used
in the NLSCY. There we found that the post-strata introduced were too numerous and
led, as cycles unfolded, to empty post-strata within some bootstrap replicates. While we
can devise after-the-fact ad hoc solutions to deal with empty post-strata in the variance
estimation phase of the NLSCY, it remains that it would be preferable to have a
weighting methodology which avoids creating them in the first place.

In retrospect, the paper provided you with a panoramic view of the Rao-Wu rescaled
bootstrap, describing it both from a theoretical and a practical standpoint, the latter
focusing on pitfalls to avoid and providing computer-based tips to keep in mind while
implementing the bootstrap. We hope this paper helped bridge the gap that exists between
the theory and the practice of the bootstrap by exposing and discussing at length the
issues that arose in the NLSCY implementing it.
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Annex A

Imputation by the mean in a group seen as an imputation class and its relation to re-
weighting with the same group seen as a RHG

Y=Y yewe+ Ty (A1)
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About the estimator for the mean for a domain

There are two competing estimators here in our case of estimating a domain mean with
domain size N, known (see Sdrndal ef al. (1992), particularly section 10.3:

Z YiWg

k] kes) :
= A2
1 N, (A2)
Z.Vk Wi
o kes;,
Vg m—ar— (A3)
Np=Yw

kes)

It's quite perplexing to even think about using ¥, since it apparently ignores the fact that
N is known and relies instead on its estimate N,,. But we have to go over that because
in fact y,is a better choice than 3,! That would indeed most perplexing if it were true
that y, ignored altogether N, but appearances are deceptive, for:

Z)’kwk Z.Vk Wi

b Ppotes T, (Ad)
Np Np Np. Ny

'*c‘])

Now, given a sample s, two things can make the estimate ¥, (s) unduly large (resp.

small): 1) s contains more than its share of units with large ¥ values i.c., a “bad” sample
was observed; 2) s is over-represented (resp. under-represented) by units from the
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domain: there are more (resp. less) units from the domain than we would expect on
average. While there’s nothing that can be done about 1), 2) could have been taken into
account in time to release a more proper estimate. Indeed, all that was needed is some

way to quantify if we had over-/under-representation, and this is what the ratio =2 in
Np

(A4) is all about. When we have over-representation, for example, the ratio is smaller

than | and thus serves to deflate the estimate ¥, which got fooled into yielding a large

estimate just because it fed “blindly” from more units than it should have had to work
from.
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Annex B

An extension of Woodruff’s method for calculating sampling variability for the
median

Claude Girard
Senior methodologist, Statistics Canada

ABSTRACT

Woodruff (1952) introduced a method to construct confidence intervals for
the median having approximately targeted level. The method, as used in the
context of survey sampling which is the focus of this paper, is illustrated in
standard books like Sérndal et al. (1992) and Lohr (1999).

Also known, but not well-documented, is the o -extension: the possibility to
obtain from Woodruff's method a point estimate of sampling variability for
the median estimate. In the case of simple designs, basic estimators like
those for totals and means have variance estimators that can be easily
computed. This is important for surveys for which replication methods like
the bootstrap are counter-indicated due to, for example, high sampling
fractions. The appeal of Woodruff's o -extension to survey practitioners
comes from extending the range of estimators for which variance estimates
can be computed to include the median (and to some extent other quantiles).
Indeed, Woodruff's o -extension produces variance estimates for the median
using nothing but what’s already available to compute variance estimates for
the basic estimators.

Unfortunately, the o -extension yields sampling variability estimates that are
dependent upon the level used to initially construct the confidence interval
from which the sampling variability estimates are derived. Furthermore,
these estimates are rather unstable. These problems may very well deter
practitioners from using the o -extension. Both the dependence on the
confidence level and the instability arise from the very way Woodruff's
method is usually implemented. We propose a moditication to the
implementation of Woodruff’s method that gives rise to a o -extension free of
the dependence on confidence levels and yields more stable sampling
variability estimates. The approach is possibly novel from a practitioner
point of view, while from a theoretical perspective it uses ideas already
presented in the literature but in a way not easily seen to be of immediate use
to the practicing statistician.
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Let’s briefly describe the usual implementation of Woodruff's method; se¢ Lohr (1999)
and Sarndal et al. (1992) for further details.

Let Z be a characteristic for which an estimate of the median is sought for some domain
of interest D based on a sample s of units. Here are the S steps used to obtain a
confidence interval of approximate level 1-a using Woodruff’s method.

1) Form a graph of the empirical cumulative distribution function (CDF), based on
the sample, with Z values on the x-axis and probabilities ranging from 0 to 1 on
the y-axis. The empirical CDF of a given value z of Z represents the (weighted)
proportion of units in the population having a value of Z smaller than z.

2) Using s, form the estimator #(z) yielding the (weighted) proportion of units
having a value of Z smaller or equal to the sample-based estimate of the median
méd . This is simply the weighted mean

> wid, (med)

2 Wk
where I, (méd)=1if Z <meéd . (Strictly speaking, we should build the estimator
around the true median med but since it’s unknown we must rely instead on its
estimate med and carry on!)

1:“(2)=

3) Obtain a variance estimate for the estimator used in 2). This variance
computation should be possible under the given sampling design since it’s for a
basic estimator.

4) Form the confidence interval with the desired level using the variance obtained in
3). It can be represented on the y-axis on the graph of the CDF as in graph |
below. Woodruff's method is about using the empirical CDF as a projector-line
to project this (computable) interval onto the x-axis.

5) Find where the endpoints of the confidence interval intersect with the empirical

CDF and use the corresponding x-values to define the endpoints of the confidence
interval on the x-axis.
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Graph 1: An empirical CDF with characteristic of interest Z on the x-axis and probabilitics on the y-axis,
illustrating Woodruff's method as projecting the computable v-axis confidence interval onto the x-axis to
obtain the sought-after x-axis confidence interval

Observe that sample after sample we won't find the same weighted percentage of
sampled y’s that are below the given y-value méd but rather some array of percentages
around 0.5 as estimates of it. The idea behind Woodruff’s method is this: while there’s
no intrinsic interest in measuring the spread in these estimates, it turns out that it reflects
our incapacity sample after sample to agree on one common estimate of the median. It's
one thing to say that these two uncertainties are manifestations of the same thing but how
do we get the scaling right between the two? The ratio is certainly not 1-1, so what is it?
This is where the CDF comes into play: it’s slope at the median (or in a smoothed-out
neighbourhood of it) tells us exactly what the conversion rate ought to be.

o -extension approach

The whole point to Woodruff's method is to transform using the CDF an inference we
know how to make but which has no intrinsic interest of its own (i.e.. the confidence
interval on the y-axis about 0.5) into the inference we’re after i.e., one on the x-axis. In
other words, you transform what you know about a suitable weighted mean in terms of
sampling variability into a statement about the estimated median through the CDF.

In some survey situations, a client may prefer to deal with point estimates of sampling
variability rather than confidence intervals. For instance, a client may be interested in
knowing the coefficient of variation (CV) associated with an estimate. It is known that
Woodruff’s method can be used to produce estimates of sampling variability: this is what




we call Woodruff’s o -extension. The current implementation of the o -extension uses
the assumption of symmetry of Woodruftf’s confidence interval.

Assume for the moment that Woodruff's confidence interval (L,_,,,,U)_o/,) obtained
from step 5 above on the x-axis is symmetric with midpoint mid:

(Li-a/2:Uiegia) = (mid £2\_g207,) (BI)

Then simple algebra yields the following point estimate of the sampling variability after
matching the corresponding intervals endpoints:

Ul—a‘)/f B Ll—a/2 (B2)

e B 2]

Oy l-al2 ™

An additional subscript for o, indicating the confidence level was added to make
explicit the dependency of o, on the confidence level when obtained that way. In other
words, not only does the current o -extension rests upon a dubious assumption of the
symmetry of the Woodruff confidence interval, but also the results are confidence-level
dependent. This would not a priori be a problem were the numerical estimates obtained
using different confidence levels the same. But in practice they differ from one another,
sometimes quite significantly. Indeed, the symmetry assumption is rarely met in practice
because the empirical CDF is not a smooth projector-line (like an ideal CDF would be).
Thus, we get confidence level dependent sampling variability estimates for the median
since neighborhing y-values don’t get projected in some consistent (read linearly) way
onto the x-axis because of the stepwise CDF.

Now, suppose that instead of assuming symmetry we start from the assumption that the
empirical CDF is actually linear in some neighborhood of the median (a neighborhood
just large enough to contain the area used to project the y-axis confidence intervals onto
the x-axis). In other words, assume that the line

y:mx-}—b (83)

provides a good fit to the CDF in some neighborhood of the median —see graph 2 below.
Then we can show that the standard error on the y-axis. o, (the one we’re able to

compute because it’s related to nothing else than some weighted mean) is related to the
standard error on the x-axis, o, (the one we’re after) through the slope in the following

way:

o, =a,im (B4)
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Indeed, since the confidence interval on the y-axis (0.5-1.960,.0.5+1.960,) is sent to
(0.5-1.960), -b 0.5+196c, =b

. )the symmetric y-axis interval gets transformed into a
m m
symmetric interval on the x-axis. Assuming then that the latter was obtained as

(mid —1.960,,mid +1.965, ) one gets (B4) by simply matching both intervals endpoints
and solving for o, .

In words: if the CDF was indeed locally linear about the median, then both standard
errors of interest to us would be related to one another simply by the slope of the CDF in
the neighborhood just considered.

With relation (B4) in mind, let’s compute the slope of the projector-line which is implicit
to the symmetry assumption. Observe that the symmetry assumption comes down to
using a linear projector-line determined by where the endpoints of the y-axis confidence
interval used meet the CDF:

(Ll—alz’o's_zl—alzay) and (Ul—a/2’0'5+zl—a/26_v)

This line can be seen to have slope

2x Z-af?2 xX o
slope =my_y 3 =U—GL_} (BS)
—a/2 = a2

Now, feeding this into the slope-relation (B4) precisely yields estimate (B2). Thus, the
assumption of symmetry boils down to assuming the CDF is linear in a neighborhood of
the median and the fit made to the CDF corresponds to the line determined by just two
points in the area: where the endpoints of the y-axis confidence interval meet the CDF.
(In Graph 1 this is where the horizontal broken lines meet with the stepwise CDF.) The
slope-relation (B4) suggests a new approach in practice: first fit a regression line to the
data in some neighborhood of the median and use the ensuing slope estimate to obtain a
sampling variability estimate on the x-axis through the slope-relation.

The idea is thus to first find a best projector-line by smoothing out the CDF. This can be
easily done by “locally” fitting a regression line to the data or “globally™ fitting a logistic
type of curve to the entire CDF — see graphs 2 and 3. In either case the smoothing will
rid the sampling variability estimates for the median of their initial dependence on the
confidence level used to construct the confidence interval from which they're derived
from.
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Preliminary findings
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[he o -extension was investigated for variables having a unimodal distribution using a
(local) linear fit to the CDF in a neighborhood of the median using regression. Multi-
mode distributions are among the counterindicated distributions since they’re likely to
display nonlinear neighborhoods about the median: this will happen. for instance, when
the median is in between two mode

For “»\.‘“-\\CH_‘]HL'!‘. SUrveyvs. ”1( 99% ’ ii T Id beit= & TRTOE WaATIAL iy et ates

than both the lower 90% and 95% levels: it actually matches quite well with the
regression-based estimate. This is because for steps of equal “depth” the further apart the
endpoints are from one another, the more stable the slope of the line they determine will
be. The most important gains in efficiency using the regression-based estimate were
btained in scenarios where the weights varied among sampied units. And depending on
the weights of the units forming the neighborhood. the regression estimate of the slope
can be much more reliable than the one obtained from fitting a line through the endpoints
of the projected confidence interval as with the symmetry assumption. The range of
probabilities used to define the linear neighborhood was, in most cases, from 0.4 to 0.6.
At any rate, the practitioner should consult the graph of the step CDF which arises in
his/her specific situation to help assess the proper range of probabilities to use as a
ieighborhood. Furthermore. the usual regression diagnostic tools like a measure of fit
will help evaluate the reasonableness of the linear neighborhood assumption the
practitioner is about to make

Concluding remarks

Woodruff's approach is often considered for use because of the simplicity of its
implementation. But differences between the ideal (or smooth) case and the one actually
faced in practice have, in the past, deterred some practitioners from using Woodruff’s
approach. The approach we described in this paper is essentially about re-establishing
most of the winning (i.e., ideal) conditions by first smoothing out the data hefore
proceeding with Woodruft's approach per s¢

I'hose using the o -extension by resorting to the symmetry assumption would gain by
considering fitting first a regression line to a neighborhood of the median. As was seen,
considerations about symmetry actually come down to assuming some neighborhood is
linear, with an estimate of the slope butlt on just two points; these are the end points of
the confidence interval used and delineate the neighborhood considered. It only seems
natural to consider a global fit instead. obtained by fitting first a regression line through
the cloud in a neighborhood of the median.

A similar gain could be obtained by smoothing the entire CDF first. For instance, many
CDFs could be very well fitted by a logitistic type of a curve. In turn, the adjusted
model’s algebraic expression would indicate what slope value should be used to feed the

slope relation
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SAS Companion

This “annex” contains the SAS code that was used in the Branch Working Paper titled
“How to avoid getting all tied up bootstrapping a survey:
A walk-through featuring the National Longitudinal Survey of Children and Youth”
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Program A

Program created by; Claude Girard -
Last update; February lst 2007

i

data pop;

do i1=1 to 10000,

y=abs (50+20*rannor (1)) ;
output;

end;

run;

*The variables name is remisniscent of the notation used in

Sarndal et al. (1992);

proc sqgql;

select distinct mean(y) as true mean,
(1-100/10000) *var (y) /100 as var_ theor,
var(y) as s2u

from pop:

quit;

proc surveyselect data=pop methcd=srs n=100 rep=10000
seed=1

out=Monte Carlo;

run; B

data Monte Carlo;

set Monte Carlo;
designweight=10000/100;
run;

proc summary data=Monte Carlo nway;

class replicate;

var y;

welight designweight;

output out=MC estimates(drop= TYPE _FREQ ) mean=MC_mean;
run;
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nroc
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data

rur

proc

run;

sql

univariate
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select distinct var (MC _mean) as var_MC
trom MC_estimates;
quit;

*Carrying out the bootstrap now.;

proc surveyselect data=pop method=srs n=100 seed=5
out=observed sample;
run;

data observed sample;
set observed sample;
designweight=10000/100;
run;

proc sql;

select distinct (1-100/10000)*var(y) /100 as
var theor estimated,

var(y) as s2s

from observed sample;

quit;

proc sql noprint;

select distinct sum(designweight*y)/sum(designweight)
into :estimatedmean

from observed sample;

quit;

proc surveyselect data=observed sample method=urs n=99
rep=10000

seed=2 out=bootstrap replicates;
run;,

data bootstrap replicates;

set bootstrap replicates;
bootstrapweight=designweight* (100/99) *numberhits;
run;

proc summary data=bootstrap replicates nway;

class replicate;

var y;

weight bootstrapweight;

output out=bootstrap estimates(drop=_type__freq )
mean=bs_mean;

run;

data bootstrap estimates;
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Program B

Program created by; Claude Girard
Last update; February 1lst 2007
*/

*Program B describes the rule of thumb mentioned in
Computational Tip #3.:;

%$let capn=10000;
%let smalln=100;

data pop;

do 1i=1 to &capn.;
y=50+20*rannor(1l);
output;

end;

run;

*The result af tha calculawion af che 50Ls helow are given
in the

sutput window (because a "create table as" statement was
not used).;

proc sql;

select distinct (l-&smalln./&capn.)*var(y)/&smnalln. as
var_theor,

var(y) as s2u

from pop;

quit;

proc surveyselect data=pop method=srs n=100 seed=1
out=observed sample;
run;

data observed sample;

set observed sample;
designweight=&capn./&smalln.;
run;

proc sql;

select distinct (l-&smalln./&uarcn.)*var(y)/&zmalln. as
var theor estimated,
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quict;

sMacro




data variances;
set variances temp;
run;

tend;

$mend;
srepete(10,50) ;
srepete(10,100) ;
srepete(10,250) ;
t*repete(10,500) ;
trepete(10,750) ;
$repete(10,1000)
$repete(10,1250) ;
$repete(10,1500) ;
)
)

r’

.
14

trepete (10,1750
srepete(10,2000) ;
3 repete(10,2250) ;
3repete(10,2500) ;
$repete(10,2750) ;
trepete(10,3000)

I’

f*The content of the one file variances can be either
glotted™* /

‘*using graph-n-go from SAS (Solutions->Reporting->Graph-n
g) >/

/*or export the file to Excel and form the graph there. */



Program C
/*
Program created by; Claude Girard
Last update; February 1st 2007
il
/*This program is associated with Simulation C*/

data pop;

do id=1 to 10000;

y=abs (50+20*rannor (1)) ;
output;

end;

run;

$macro repete(samplesize);

/*Computing exact variance for SSRWR and SRSWOR - the
results*/

/*are displayed in the output window.*/

proc sgl;

select distinct (l-&samplesize./10000) *var(y)/&samplesize.
as var_srswor_é&samplesize.,
var (y)/&samplesize. as var srswr_&samplesize.

from pop;

quit;

proc surveyselect data=pop method=srs n=&samplesize.
seed=5 out=cbserved sample;
run;

data observed sample;

set observed sample;
designweight=10000/&samplasizn=. ;
run;

/*Now computing estimated variance for SSRWR and SRSWOR -
the results*/

/*are displayed in the output window.*/

proc sql;
select distinct (l1-&samglesice. /10000) *var(y) /&zamplasize.
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as var srswor_estimated_ s&samplesiia.,
var(y)/&sanplesize. as
var_srswr_estimated &samplesize.
from observed sample;
quit;

/*Setting up the sample size required for the bootstrap.*/
$let nminusl=%sysevalf (&samplesize-1);

proc surveyselect data=observed sample method=urs
n=&nminusl rep=1000

seed=4 out=bootstrap_replicates outall;
run;

/*Proceeding with the bootstrap with no finite population
correction*/
/*factor {(nofpc).*/
data bootstrap_weights;
set bootstrap_ replicates;
bootstrapweight nofpc=designweight* (&samplesize./&nminusl.)
*numberhits;
f=gsamplesize./10000;
bootstrapweight fpc=
designweight* (1-sqrt(1-f) +sqrt (1--
f)* (&samplesize. /&nminusl.) *numberhits) ;
run;

proc summary data=bootstrap weights nway;

class replicate;

var y;

weight bootstrapweight nofpc;

output out=bootstrap estimates_nofpc(drop=_type_ _freq_)
mean=bs mean;

run;

proc sql;

select distinct var(bs mean) as var_bs nofpc_é&samplesize.
from bootstrap estimates_nofpc;

quit;

proc summary data=bootstrap weights nway;

class replicate;

var y;

weight bootstrapweight fpc;

output out=bootstrap estimates fpc(drop=_type_ _freq_)
mean=bs_mean;

run;
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proc sqgl;

select distinct var(bs_mean)
from bootstrap estimates fpc;
quit;

$mend;

$repete(100) ;
$repete(500) ;
srepete (1000} ;
*repete (2000) ;
trepete(3000) ;
*repete (4000) ;
srepete (5000) ;

as

var bs fpc &samplesize.
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Program D

Program created by; Claude Girard
Last update; February 1lst 2007
a4

$let capn=10000;
$let smalln=100;

/*rep specifies the number of observed samples that will be
bootstrapped.*/

3let rep=100;

data pop;
do i=1 to &capn.;
income nor=abs (50+20*rannor(1));
income exp=500*ranexp(111);
sutput;
z=nd;
run;
*Note: The need to take the absolute value of income_nor
will be
explained when time comes below.;

*The histogram option of univariate is handy - you may
even require

a best-fit curve to be added.;

proc univariate data=pop;

var income nor income_exp;

histogram income nor income_exp;

run;

*Drawing &rep samples of size &smalln under SRSWOR.;
proc surveyselect data=pop method=srs n=&smalln. seed=1l
rep=&rep. noprint

out=observed samples;
run;

*For each observed sample i.e. each repetition,

we want the closed-form variance calculation.;
proc summary data=observed samples nway;
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claas replicake;

var income_nor income =xg;

output out= sZu(drop— type freq )} var=sZnor sl2exp;
run;

data closed_form;

set s2u;

closed form nor=(l-&smalln./&capn.)*s2nor/&smalln.;
closed form exp=(l-&smalln./&capn.)*s2exp/&smalln.;
TUn;;

*CV of variance estimates ohtained using the ¢losed-form
formula.;

proc sql;

create kable stability et@sed, form as

select distinct

100*sqrt (var(closed form nor))/mean(closed form nor) as
cv_norm,

100*sqrt (var(closed form exp))/mean(closed form exp) as
CV_exp

from closed form;

quit; =

*To make sure we bootstrap each observed sample the sam=
way,

we'll re-sample labels from 1 to &smalln. So, in a given
observed sample, we're not going to refer to a unit through
its population id but rather from its label.;

data labels;

do label=1 to &smalln.;
output;

end;

run;

*The bootstrap calls for sampling from one unit less than
the number :

of units sampled.;

%let nrep=%sysevalf(&smalln.-1);

*Bootstrapping the sample per se: urs refers to SRSWR.;
proc surveyselect data=labels method=urs n=&nrep. seed=10
rep=1000 noprint

out=bootstrap_ sample;
run;

proc sort Jdata=hootstian gamplis;
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by labek;
run;

*So far, we had our bootstrap repiicates as lines. It will
be more
convenient for what follows to have the bootstrap
information coded
as columns. Instead of using a messy Droc transpose we
achieve that
through the following.;
data bootstrap sample;
set bootstrap sample;
by label;
array replicat{1000} replicatl-replicatl000 (1000*0);
if first.label then do i=1 to 1000;
replicat{i}=0;
end;
replicat (replicate)=NumberHits;
if last.label;
drop replicate i numberhits;
run;
*Now the file has one entry for each label from 1 to 100
and the 1000

Bacotabtrap raplicabss sprasy £9 COLI0NS;
*Semputing from the multiplicibies replicarl-ranlicatl1000
the

ensuing bootstrap weights. This comes from formula (9).;

data bootstrap sample;

set bootstrap sample;

array replicat{1000} replicatl-replicatl000;

array bsw{1000} bswl-bswl000;

do i=1 to 1000;
bsw(i)=(&capn./&smalln.)*(l-sqrt(l-&smalln./&capn.)+
sqrt (1-

&smalln./&capn.)*replicat (i) * (&smalln./&nrep.));

end;

keep label bswl-bswl000;

run;

*Associating to each selected unit of all observed sample
one label from

L Be 007

data observed samples;

set observed samples;

label=_N_—&smalIn.*(replicate—l);

run;



ruan;

proc summary

ran;

Proc summary A=DDSE / ; [ I X = j 5

ran,;

data ans n
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perge numerator nof dendmicdtog;

by replicate;

array moy{1000} moyl-moyl000;

array num{1000} numl-numl000;

array denom{1000} denoml-denoml000;
do i=1 to 1000;

moy (i)=num(i)/denom(i) ;

end;

keep replicate moyl-moyl000;

run;

*Computing the (shortcut form) ot the bootstrap variance
for

zach observed sample.;

data bs variances_nor;

set means nor;

var _bs nor=var (of moyl-moyl000Q);
keep replicate var bs_nor;

run;

*Doing things all over with the exponentially distributed
variable now.;

proc summary data=observed samples bootstrapped nway;
=lass replicate;

var bswl-bswl000;

weight income_exp;

output out=numerator exp (drop=_type__freq_ )
sum=numl-numl1000;

run;

data means_exp;

merge numerator_ exp denominator;
by replicate;

array moy{1000} moyl-moyl000;
array num{1000} numl-numl000;
array denom{1000} denoml-denoml000;
do i=1 to 1000;

moy (i)=num(i) /denom(i);

end;

keep replicate moyl-moyl1000;
run;

data bs_variances_exp;

set means_exp;,

var_bs_exp=var (of moyl-moyl000);
keep replicate var bs exp;

run;



data bs variances;

merge bs_variances_nor bs _variances exp;
by replicate;

run;

proc sql;

create table stability bs as

select distinct 100*sqrt(var(var_bs_nor))/mean(var_bs_nor)
as cv_nor,

100*sqrt (var (var_bs_exp))/mean(var_bs_exp) as cv_exp

from bs variances;

quit;

$macro medianes (n);
$do 1i=1 %to &n.;

proc summary data=observed samples bootstrapped
(keep=replicate income nor bswé&:.) nway;

class replicate;

var income_nor;

weight bswé&i.;

output out=med nor_ &i.(drop= type freq ) mean=mean&i.
median=mediane&i.;

run;

proc summary data=observed samples bootstrapped
(keep=replicate income exp bswé&i.) nway;

class replicate;

var income exp;

weight bswé&i.;

output out=med exp &1. (drop= type freq ) mean=meané&i.
median=medianes&i.;

run;

%end;
$mend;
$medianes (1000) ;

*The macro generated a whole bunch of output datasets that
we need

to have back as one file. One painless way to do so is to
use

a "background"” SAS file. It's actually a SQL-view, called

v tan
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located in ths library SASHELP. It contais a myriad of
3nto

sn datasets that one can exploit. (Another view from the
same library

which is useful from time to time is vtable.) The code
below puts

into a list the names of all datasets of the WORK library
which

have MEM NOR_ as their first & characters - these are
precisely the

files I want to put together.;

proc sql noprint;

select distinct MEMNAME
into :varlist separated by
from sashelp.vcolumn

where LIBNAME="WORK" and substr (MEMNAME, 1, 8)="MED_NOR_";

quit;

' t

*Had all the datatsets' name been simply concatenated as
MEM NOR 1MEM NOR 2etc. this would be of little use. What
is

aseful is to have a blank inserted in between each name to
get

in &varlist the following MEM NOR_1 MEM NOR_2 MEM_NOR_3 an
80 on.

this is the role of "separated by" in the SQL above.;

data bs_med nor;

merge &varlist.;

by replicate;

var _bs med nor=var (of medianel-medianel000);
var_bs_mean_nor=var (of meanl-meanl000);

keep replicate var_bs med nor var_ bs mean_nor;

run;

*Getting rid now of all thosw datasats singes thay're
ussless now.;

proc datasets library=work nolist;

delete &varilist.;

quit;

proc sql noprint;

select distinct MEMNAME
into :varlist separated by
from sashelp.vcolumn

where LIBNAME="WORK" and substr(MEMNAME,1l,8)="MED EXP ";

quit;

d
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data bs_med exp;

merge &varlist.;

by replicate;

var bs med exp=var (of medianel-medianel000);
var bs mean_ exp=var(of meanl-meanl000);

keep replicate var_bs med exp var_ bs mean_ exp;
run;

proc datasets library=work;
delete &varlist.;

quit;

data bs medianes;

merge bs med nor bs med exp;
by replicate;

run;

proc sql;

create table stability medianes as

select distinct
100*sqrt(var(var bs med nor))/mean(var bs med nor) as
cv_med nor,
100*sqrt(var(var_bs mean_nor)) /mean(var_bs mean nor) as
CV_mean nor,

100*sqrt (var (var_bs_med_exp) ) /mean (var_bs med exp) as
cv_med exp,
100*sqgrt(var(var_bs mean exp))/mean(var_bs mean_exp) as
CV_mean_exp

from bs medianes;

quit;
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Program E

Program created by; Claude Girard
Last update; February 1lst 2007
x/

%let capn=10000;
%$let smalln=100;
$let seed=4;

data pop;
do i=1 to &capn.;
income nor=abs (50+20*rannor(1));
income exp=500*ranexp(111);
output;
end;
run;

proc univariate data=pop;
histogram income nor income_exp;
run;

*One sample is drawn under SREWOR and it willl be
bootstrapped several
times below.;
proc surveyselect data=pop method=srs n=&smalln.
seed=&sees. noprint

out=observed sample;
run; -

proc sql;

select distinct (1-
&smalln./&capn.) *var (income nor)/&smalln.

, (1-&smalln./&capn.) *var (income_exp)/&smalln.

into :varnor,:varexp
from observed_sample;

quit;

$let nrep=%sysevalf (&smalln.-1);



Proc surveyselect dalamcbscrved sdmple method=urs n=&nrkp.
seed=10 rep=100000 noprint

out=bootstrap sample;
run;

data bootstrap sample;

set bootstrap sample;
repetition=mod(replicate,100);

if repetition=0 then repetition=100;
bsw=(&capn./&smalln.)* (&smzlln. /& rep.) *numberhits;
run;

proc summary data=bootstrap sample nway;
class repetition replicate;
var income nor income_exp;
weight bsw;
output out=estimates bs(drop=_type freq ) mean=moy nor
moy _exp
median=med nor med exp;
run;

pProc univariate data=estimates bs;

var moy nor moy exp med nor med exp;
histogram moy nor moy exXxp med nor med exp;
run;

proc summary data=estimates bs nway;

class repetition;

var moy nor moy exp med nor med exp;

output out=variances bs(drop=_type freq ) var=;
run;

proc sql;

create table stability bs as

select distinct 100*sqrt(var (moy nor))/mean(moy nor) as
CV_mean nor,

100*sqrt (var (moy exp))/mean(moy exp) as cV_mean_exp,
100*sqrt(var(med_nor))/mean(med_nor) as cv_med nor,
100*sqgrt (var (med_exp) ) /mean (med_exp) as cv_med exp

from variances bs;

quit;

data variances bs;

set variances bs;

diff sq mean nor=(&varnor.-moy nor)**2;
difi sqg Mean_exp=(&VACeXp. —moy wdp! Y*2;
run;
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proc sql;

select distinct 100*sqgrt(mean(diff sq mean nor))/&varnor.
as rmse _nor,

100*sqrt (mean (diff sq mean exp))/&varexp. as rmse_exp,
100* (mean (moy nor)-&varnor.)/&varnor. as rb_nor,

100* (mean (moy exp)-&varexp.)/&varexp. as rb_exp

from variances bs;

quit; B
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Program E2

Program created by; Claude Girard
Last update; February 1lst 2007
i

%$let capn=1000;
$let smalln=100;

/*The seed option contrcls the set of observed samples
that*/ '

/*are being drawn.*/

%let seed=4;

data pop;
do id=1 to &capn.;
income nor=abs(50+20*rannor(1l));
income exp=500*ranexp(111};
output;
end;
run;

proc univariate data=pop;
histogram income nor income exp;
run;

*One sample is drawn under SREWOR and it will be
bootstrapped several
times belcow.:
proc surveyselect data=pop method=srs n=&smalln.
seed=&seed. noprint

out=observed sample;
run;

%let nrep=%sysevalf (&smalln.-1);
proc surveyselect data=observed sample method=urs n=&nrep.
seed=10 rep=100000 noprint

out=bootstrap outall;

run,;

/*The bootstrap welgihts Ars for naglicvitle fpo®/
data bootstrap_sample;
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s8® bheoa¥stbsan,;

repetition=mod (replicate, 100} ;

if repetition=0 then repetition=100;
designweight=&capn./&smalln.;

bsw=designweight*
(1-sgrt(1-&smalln./&capn.)+sqrt(1-
&smalln./&capn.) *(&smalln./&nrep. ) *numberhits);
run;

proc summary data=bootstrap sample nway;
class repetition replicate;

var income_nor income_exp;

weight bsw;

output out=estimates bs(drop=_type freqg ) mean=moy_nor

moy exp;
run;

proc univariate data=estimates bs;
Var moy nor moy exp;

histogram moy nor moy exp:

run;

proc summary data=estimates bs nway;

=lass repetition;

7ar mOy nor moy_exp;

putput out=variances bs(drop= type freq ) var=;
run;

proc sql;

create table stability bs as

select distinct 100*sqrt (var (moy nor))/mean(moy_nor)
Cv_mean_nor,

100*sqgrt (var (moy exp))/mean (moy_exp) as cv_mean_exp
from variances bs;

quit;

as
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Program F

Program created by; Claude Girard

1 2007

Last update; February lst 2007
*/

%let capn=10000;
¥let smalln=100;

data pop;
do i=1 to &capn.;
income nor=abs (50+20*rannor(1l));
output;
end;
run;

proc surveyselect data=pop method=srs n=&amalin. rep=10000
seed=4 out=mc;
run;

proc summary data=mc nway;

class replicate;

var income nor;

output out=mc medians(drop= type freq ) median=mediane;
run;

proc sql;

select distinct var(mediane) as MC median
from mc medians;

quit;

/*This is a Monte Carlo approximation of what the sampling
distribution */

/*looks like.*/

proc univariate data=mc medians;

var median;

histogram median;

Hun

/*Computing an approximation of the exact variance based
on*/

/*asvmptotics dxawn frei classisal Stecistice. =/




proc sql;

select distinct (constant('PI')/2)*(1-
&smalln./&capn.) *var (income nor)/&smalln. as var_median
from pop;

quit;

proc surveyselect data=pop method=srs n=&smalln. seed=4
noprint

out=sample;
run;

2let nrep=%sysevalf (&smalln.-1);

proc surveyselect data=sample method=urs n=é&nrzp. seed=10
rep=10000 noprint

out=bootstrap outall;
run;

data bootstrap;
set bootstrap:;
poids=(&capn./&smalln.)* (1-sgrt (1-&smalln./&capn.)+

sgrt (1-&smalln./&capn.) *numberhits* (&smalln./&nrep.));
run;

{*Computing the wasighusd medizas the SAS way L.e. raporring
as estimate the one observation in tne dataset whose
cumulated

weight first exceeds 50% of the total sum of weights. */
proc summary data=bootstrap nway;

class replicate;

var income nor;

weight poids;

output out=SAS medians(drop=_type_ _freg ) median=mediane;
ran);

proc sql;
select distinct var (mediane) as SAS median
from SAS medians;

quit;

/*This results in a very disorels histogram™/
proc univariate data=SAS medians;

var mediane;

histogram mediane;

run;

/*Preparing the ground for the intaipolation® /
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proc sql;

create table bootstrap?2 as

select *,poids/sum(poids) as poids_normalise
from bootstrap

group by replicate

order by replicate,income nor;

quit;

/*For some obscure reason, SQL has a hard time creating
exact */

/*fractions through its calculations. So even if the 50th
i

/*percentile is in the file, the cumulative weight

poids cumul*/

/*with show up as something liksz 0.5000000001 or
0.49999999999*/

/*instead of 0.5, hence the criterion invelving the 0.00001
below.*/

data bootstrap2;

set bootstrap?2;

by replicate income_nor;

if first.replicate then poids_cumul=poids normalise;

else poids_cumul+poids normalise;
lag_income=max(lag(income_nor},0);
lag_poids=max(lag(poids),0);
lag_cumul=max (lag (poids_ cumul),0);
median_tentative=(poids*income nor+lag poids*lag_income)/ (p
oids+lag poids);

if abs(poids cumul-0.5)<0.00001 then mediane=income_nor;
else if lag_cumul<0.5 and poids cumul>0.5 then
mediane=median_tentative;

if mediane ne .;

run;

proc sql;

select distinct var(mediane) as interpol median
from bootstrap2;

quit;

proc univariate data=bootstrap2;
var mediane;

histogram mediane;

run;
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Program G

/’ “

Program created by; Claude Girard
Last update; February 1lst 2007

S

$let capn=10000;
$let smalln=2500;
$let r=.5;

********************;

3let nombre=%sysevalf (&r.*&capn.);
data pop;

do id=1 to &capn.;
y=50+20*rannor(1l);

if id<=&nombre then resp=1;

=1se resp=0;

output;

end;

run,

proc surveyselect data=pop method=srs n=&zmalln. seed=1
out=observed sample;

ran;

$let rep=%sysevalf(&smalln.~-1);

proc surveyselect data=observed sample method=urs n=é&rep.

rep=1000
seed=2 out=bootstrap_replicates outall;
run;

data bootstrap weights;

set bootstrap_ replicates;
designweight=&capn./&smallin.;
bootstrapweight=designweight*
(1-sqrt(l-gsmalln./&capn.)+sqrt(1-

&smalln./&capn.) *(&smalln. /& =p. ) *numberhits});
run;
proc sql;

135



create table bootstrap nr

select

*,bootstrapweight*sum(bootstrapweight) /sum(bootstrapweight*
(resp=1))

as bootstrapweightnr

from bootstrap weights

group by replicate

having resp=1;

quit;

proc summary data=bootstrap nr nway;

class replicate;

var y;

weight bootstrapweightnr;

output ocut=bs estimates(drop=_type freq )
mean=bs estimate;

nun;
proc =ql;
select
(1-&smalln./&capn.) *var (y) /count (*) as vl,
(&smalln./&capn.-count (*)/&capn.) *var(y) /count (*) as
v2,

(l-count (*) /&capn.) *var (y) /count (*) as vt,
count (*) as r, mean(y) as parameter estimate

from observed sample

where resp=1;_

quit;

proc sql;

select distinct mean(bs estimate) as bs mean,
var (bs_estimate) as v_bs

from bs estimates;

quit;




Program G2

/ *

Program created by; Claude Girard
Last update; February 1lst 2007
*/

$let capn=10000;
$let smalln=5000;
$let r=.5;

-ﬂ-***********r*******;

$let nombre=%sysevalf (&r.*&capn.);
data pop;

do id=1 to &capn.;
y=50+20*rannor (1) ;

if id<=&nombre then resp=1;

zlse resp=0;

ocutput;

and;

run;

proc surveyselect data=pop method=srs n=&smalln. seed=1
out=observed sample;
run;

data respondents;
set observed sample;
where resp=1l;

run;

proc sql;

select distinct count(*),count(*)-1
into :r, :rep

from respondents;

quit;

*bootstrap des repondants;

proc surveyselect data=respondents method=urs n=é&rep.
rep=1000

seed=2 out=bootstrap replicates(drop=y resp);
run;
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data copies;

set respondents;

do replicate=1 to 1000;
output;

end;

run;

proc sort data=copies;
by replicate id;
run;

data bootstrap;

merge copies bootstrap replicates;
by replicate id;

if numberhits=. then numberhits=0;
run;

data bootstrap:;

set bootstrap:
designweight=&smalln./&r.;
bootstrapweight=designweight*
(1-sqrt{(&smalln./&capn.)*(1-

&v./&smalln.))+sqrt((&smalln./&capn.)*(1-
&r./&smalln.)) *(&r./&cep. ) *numberhits) ;
run;

proc summary data=bootstrap nway;
class replicate;

var y;

weight bootstrapweight;

output out=bs estimates (drop= type freq )

mean=bs estimate;
run;

proc sqgql;

select distinct mean(bs_estimate) as bs_mean,

var (bs_estimate) as v_bs
from bs estimates;

quit;
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Program H

Program created by; Claude Girard

]

Last update; February 1lst 200

B
%$let smalln=2500;

data pop;

do i=1 to 10000;

y=abs (50+20*rannor (1)) ;

if i<=5000 then do;
post stratum='M';
total=6000;

end;

else do;
post stratum='W';
total=4000;

end;

output;

end;

run;

proc surveyselect data=pop method=srs n=&smalln. seed=4
out=observed sample;
run;

proc sqgl;

create table var components as

select distinct ({(total/10000)*mean(y) as est,
(total/10000)**2* (1/count (*)-1/total) *var(y) as component
from observed_sample

group by post stratum;

quit;

proc sql;

select distinct sum(est) as estimate,
sum(component) as tot var_ estimated
from var components;

quit; a

$let nrep=%sysevalf (&smalln.-1);



proc surveys

run

run

proc sqgl

quit;

e
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Program I

Program created by; Claude Girard

-

Last update; February 1lst 20C7
* /
libname server "c:\";

data server.mult;
array mult{1000} multl-multl000;

do j=1 to 1000;
mult(j)=ranpoi(1,1);
end;

do i=1 to 10000;
output;

end;

run;

data server.bootstrap;
array bsw(1000} bswl-bswl000;

do j=1 to 1000;
bsw(j)=1000*ranuni (1) *constant ('PI"');
end;

do i=1 to 10000;

output;

end;

run;

data server.mult comp (compress=BINARY) ;
set server.mult;

length multl-multl1000 3.;

run;

data server.bootstrap comp (compress=BINARY);

set server.bootstrap;
lengtnh bswl-bswl000 4.;
run;
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