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Hierarchical Bayes Small Area Estimation for the 
Canadian Community Health Survey 

QianM.ZhouandYongYou' 

University of Waterloo and Statistics Canada 

ABSTRACT 

In this paper we consider small area health estimation for the Canadian Community Health Survey 

(CCHS) using a hierarchical Bayes approach. We use cross-sectional area level models including the 

Fay-Hemot model (Fay and Herriot, 1979) and the model of You and Chapman (You and Chapman, 

2006) for sampling variance modeling. In particular, we evaluate different spatial linking models and 

present a hierarchical Bayes spatial model for analysis of the health data. The proposed hierarchical 

Bayes spatial model extends the Fay-Hemot model by capturing both the geographically unstructured 

heterogeneity and spatial correlation effects among areas for local smoothing. The proposed models are 

implemented using Gibbs sampling approach for fully Bayesian inference. We apply the proposed 

models to the analysis of Cycle 1.1 of CCHS data and make comparison among the HB model-based 

estimates and direct design-based estimates. Our results have shown that the HB model-based estimates 

perform much better than the direct estimates in terms of CV reduction. In addition, the proposed area 

level spatial models have smaller CVs than the Fay-Herriot model, particularly for the areas with three 

or more neighbours. Our model has shown that more neighbouring areas can offer more information in 

the spatial models, and therefore can lead to greater CV reduction over the Fay-Hemot model. 

Key Words: Cross-sectional model, Disease rate, Gibbs sampling, Sampling variance, Small area, 

Spatial model. 

'Corresponding author: Yong You, yongyou(ästatcan.ca. 
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L'estimation bayésienne hiérarchique pour de petits domaines dans 

I'Enquête sur la sante dans les collectivités canadiennes 

Qian M. Zhou and Yong You' 

University of Waterloo and Statistique Canada 

Résu nit' 

Dans cet article, nous examinons les estimations sur la sante pour de petits domaines dans l'Enquete 

sur Ia sante dans les collectivités canadiennes (ESCC) en utilisant l'approche bayésienne hiérarchique. 

Nous utilisons les modèles transversaux au niveau des domaines dont le modèle de Fay-Hemot (Fay et 

Herriot, 1979) ainsi que le modèle de You et Chapman (You et Chapman, 2006) pour Ia modélisation 

de Ia variance d'échantillonnage. Nous évaluons en particulier différents modèles de couplage spatial et 

présentons des modèles spatiaux bayésiens pour l'analyse des données sur Ia sante. Le modèle spatial 

bayésien hierarchique que nous proposons élargit le modèle de Fay-Herriot en saisissant les effets de 

l'hétérogénéité non structurée géographiquement et de Ia correlation spatiale entre les domaines en vue 

d'un lissage local. Les modèles proposes sont mis en cuvre a l'aide de la méthode d'échantillonnage 

de Gibbs pour obtenir une inference entièrement bayésienne. Nous appliquons les modèles proposes a 
l'analyse du Cycle 1.1 des données de I'ESCC et comparons les estimations fondées sur le modèle HB 

aux estimations directes fondées sur le plan. Nos résultats ont montré que les estimations fondées sur le 

modèle HB fonctionnent mieux que les estimations directes en ce qui a trait a la reduction du 

coefficient de variation (c.v.). De plus, les modèles spatiaux au niveau des domaines qui sont proposes 

ont des c.v. plus faibles que le modèle de Fay-Herriot, particulièrement pour les domaines avec trois 

voisins ou plus. Notre modèle a permis de démontrer que davantage de domaines voisins peuveilt 

ennchir l'information des modèles spatiaux et ainsi mener a une plus grande reduction des c.v. que le 

modèle de Fay-Hemot. 

MOTS CLES : modèle transversal, taux de maladie, échantillonnage de Gibbs, variance 

d'échantillonnage, petit domaine, modèle spatial. 

'Corresponding author: Yong You, yongyou(statcan.ca . 
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1. INTRODUCTION 

The Canadian Community Health Survey (CCHS) is a federal survey conducted by Statistics Canada. 

The primary objective of CCHS is to provide timely and reliable estimates of health determinants, 

health status and health system utilization across Canada. It is a cross-sectional survey which operates 

on a two-year collection cycle. The first year of the survey cycle "x. 1" targets individuals aged 12 or 

older who are living in private dwellings, and it is a general population health survey of a large sample 

(130,000 persons) designed to provide reliable estimates at the health region, provincial and national 

levels. The second year of the survey cycle "x.2" has a smaller sample (30,000 persons) allocated based 

on provincial sample buy-ins and is designed to provide provincial and national level results on specific 

focused health topics. Although national and provincial estimates are very important, there is an 

increasing demand for health data at lower levels of geography voiced by a number of provinces 

including British Columbia, Prince Edward Island, Quebec and others. Cycle 1.1 of the CCHS 

collected data corresponding to 136 health regions in the 10 provinces and three territories. It primarily 

used two sampling frame. The first one, used as the primary frame, was based on the area frame 

designed for the Canadian Labour Force Survey, and within the area frame, a multistage stratified 

j cluster design was used to sample dwellings. The second frame consists of a list of telephone numbers. 

Random digit dialing methodology is used in some of the health regions for cost reasons. The phone 

numbers are selected using simple random sampling approach. More details of the design are provided 

in Béland (2002) and Hidiroglou, M. A., Singh, A. and Hamel (2007). In this paper, we are interested 

in estimating the disease rate for local health regions within provinces, in particular, the disease rate for 
; 	the 20 health regions in BC province, from the data collected in Cycle 1.1. 

Direct estimates, based only on the domain-specific sample data, usually provide reliable estimates of 

the parameter of interest for large areas such as provinces and nations. However, due to cost or other 

- reasons, it is seldom possible to have a large enough overall sample size to support adequate direct 

estimates for all the smaller areas of interest. In particular, for small areas such as local health regions 

and age-sex domains, direct estimators are likely to yield large standard errors. It is necessary to use 

indirect estimates that borrow strength by using values of the variable of interest from related areas, 

thus increasing the "effective" sample sizes. These values are brought into the estimation process 
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through an explicit model that provides a link to related areas through the use of supplementary 

information such as census counts or administrative records; see Rao (2003) for more discussion on 

model-based methods. There are two broad classifications for these models: area level models and unit 

level models. Area level models are based on area direct survey estimators and unit level models are 

based on individual observations in areas. This paper we focus on area level models. 

Area level models such as the Fay-Herriot model (Fay and Herriot, 1979) have been widely used to 

obtain reliable model-based estimators for small areas. However, in the Fay-Hemot model, several 

strong assumptions have been made. For example, the sampling variances are assumed to be known, 

but this assumption is rarely met in practice. You and Chapman (2006) considered the situation where 

the sampling variances are unknown and estimated individually by direct estimators. Another strong 

assumption is that the Fay-Herriot model assumes that the area-specific random effects in the linking 

model are independent and identically distributed. However, in some applications prior knowledge may 

indicate that geographically close areas tend to have similar values for variables of interest, indicating 

the existence of locally spatially structured variation. Thus, it may be more realistic to construct spatial 

models on the area-specific effects to capture the correlation among them. 

The objective of this paper is to obtain reliable model-based estimate for the disease rate at health 

regions level within provinces, in section 2, we propose several area level models which relax the 

strong assumptions described above based on the basic Fay - Herriot model by incorporating spatial 

structure on the area-specific effects, and/or assuming the sampling variances unknown. In section 3, 

we obtain the Hierarchical Bayes estimators of the parameter of interest and the posterior variances 

through the Gibbs sampling method. In section 4, through the data analysis of Cycle 1.1 of CCHS, we 

compare the performance of the direct design-based estimates with the model-based estimates, and 

moreover, compare the proposed models with the basic Fay-Herriot model to investigate the effects of 

incorporating spatial structure on the area-specific effects. Finally in section 5, we offer some 

conclusions and discussions. 
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2. SMALL AREA ESTIMATION MODELS 

2.1. Fay-Herriot Model 

Let 8,, the area parameter of interest, denote the underling rate of certain disease for the ith area or 

health region, where i = •, m, and m is the total number of areas. A basic area level model assumes 

that the 8i  is related to area-specific auxiliary data x = (x 11 , ... , x1 )' through a linear model 

O =x 1 '6+v, 

where fi =(fl1...fl)' is the p x I vector of regression coefficients, and the v 1 's are area-specific 

random effects assumed to be independent and identically distributed (iid) with E( v,) = 0 and var( v,) = 

cr'. The assumption of normality may also be included. This model is referred to as a linking model 

for 8,. 

The basic area level model also assumes that a direct survey estimator y, (usually design-unbiased) of 

the parameter of interest 0, is available whenever the area sample size n. >- 1. It is customary to 

assume that 

y,=0,+e1 , i=l,-,m 	 (2) 

where the e, 's are the sampling error associated with the direct estimator y,. We also assume that the 

e. 's are independent normal random variables with mean E(e1104) = 0 and sampling 

variance var(e110) = cr,. The model (2) is referred to as a sampling model for the direct survey 

estimator y,. Combining these two components (1) and (2) leads to the well-known area level linear 

mixed model, Fay-Hemot model (Fay & Herriot, 1979) 

y, =x,'/1+v 1 +e1 , i=1,,m 	 (3) 

In the basic Fay-Hemot model (3), the sampling variance o are usually assumed as known, which is 

a very strong assumption, but it is impractical in many cases. Generally, we can use direct sampling 

variance estiniates from the survey data, however, these direct estimates are unstable if sample sizes are 

small. Therefore, in practice, a smoothed estimator of cr, is used in the model and treated as known. In 
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You (2006, 2008), equal design effects modeling approach was applied to obtain a smooth estimator of 

sampling variances. The design effect for the ith area may be approximately written as 

deff,=-,fori=1,...,m, 
5 ri 

where s is the unbiased direct estimate of sampling variance based on the complex sampling design, 

and s, is the estimate of sampling variance based on the assumption of simple random sampling 

design. For each area, based on the assumption of a common design effect suggested in You (2006, 

2008) and Singh, You and Mantel (2005), a smoothed factor deff can be obtained by 

deff = deff, Im. Then a smoothed sampling variance estimate &,1  can be obtained by 

2  =:s 1  .deff 

Instead of plugging in the smoothed estimates of sampling variances in the model, alternatively we can 

model the sampling variance directly. In the paper by Wang and Fuller (2003) and You and Chapman 

(2006), they assume the sampling variance o 2  unknown and estimate o 2  by an unbiased direct 

estimator s?,  which are independent of the direct survey estimator y,. They also assume that 

d.s, 2 - 	where d. = n, —1, and n. is the sample size for the ith area. You and Chapman (2006) 

considered the full HB approach with the Gibbs sampling method which automatically takes into 

account the extra uncertainty associated with the estimation of a. In this paper, we consider both the 

smoothing and modeling approaches for the sampling variances. 

2.2. Spatial Linking Models 

Another strong assumption made in the basic Fay - Hemot model (3) is that the area-specific random 

effects vi  are iid normal variables capturing geographically unstructured heterogeneity among areas. 

To incorporate spatially-correlated effects in the model, Gaussian Markov random fields (MRF) 

models are the most commonly used when "neighboring" areas can be defined. In the class of MRF 

model, the conditional distribution of area-specific random effect V1  in area i, given the values of v, 's 

in all other areas j # i, depends only on the values of the neighboring areas. Thus in this model, area-

specific random effects have a locally dependent prior probability structure, their joint distribution is 
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determined (up to a normalizing constant) by these conditional distribution. Following the paper by 

Besag, York and MoIlie (1991), the spatial structure on the area-specific effects v, can be generally 

specified by a series of conditional distributions written as 

v I v 	Np 	' V 	 for i = 1, ,m 	 (4) - 

ji wi+ 	w1+ J 
where v 1  represents the values of area-specific random effects in all the areas j # i, w, are prescribed 

non-negative weights, with w4  = 0 unless i and j are neighboring areas, and w1  = wij  . The 
j=l 

common choice is w 1  = 1 if i and j are adjacent areas. Such models are also known as Gaussian 

conditional autoregressive (CAR) model. The parameter p, which takes value between -1 and 1, can 

be regarded as an autocorrelation parameter that characterizes the overall strength of spatial 

dependence between areas with nonzero weights. An important advantage of the MRF model (4) is that 

it is possible to make inference about the overall degree of spatial dependence by estimating p. 

However, interpretation of p is not straightforward. Moreover, p = 0 indicates independence between 

areas, but in this case, the MRF model (4) does not reduce to the independent linking model (1) 

because the variance is not constant across areas. Clayton and Kaldor (1987) used an alternative 

parameterization as following: 

v1  (v_1 	N[ 	w,.v 1  , 	
], 

for i = 1,•••, m 	 (5) 

Model (5) leads to ajoint distribution of v = (V,,Vm ) '  as MVN(O,crB), where B = I — pW,and I is 

an identity matrix of dimension in and W is a m x in adjacent matrix W = (w). To ensure a proper 

joint distribution, the matrix B must be positive definite, which requires that p lie in the range 

(i / A I / A1 ), where A1  and 2,,, are the minimum and maximum eigenvalues of the matrix W. If p = 0, 

the model (5) reduces to the independent linking model (I). Moreover, the model (5) has an invariant 

conditional variance, but replaces the weighted average in the model (4) by a weighted sum for the 

conditional mean. However, it seems inappropriate when areas have different numbers of neighbours. 

In addition, the range of p will be defined differently for different models since the values of A1 and 

A. depend on the neighbourhood structure (see Best, Richardson and Thomson, 2005). Thus, an 
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alternative model is proposed by Besag, York and Mollie (1991), to add another spatially dependent 

random effect u1  in the linking model (1) as follows: 

Oi =x 1 '/3+v 1  +u,, 	 (6) 

where u 1  's follow the well known intrinsic conditional autoregressive model (Besag et al., 1991) given 

as 

u I u_ 1  N( 	,--), 	 (7) 
wi+ 	w +  

where u_, denotes the values of spatial random effects u j  's in all other areas with j # i. Model (7) is a 

special case of MRF model (4) by setting p to its maximum value 1. In the model (6), the v, 's 

represent the geographically unstructured components, and u, 's represent the spatial component of 

between-area variations. In this way, the degree of overall spatial dependence can be expressed based 

on the proportion of the total (marginal) variation in the U- + vi  captured by each component. 

In practice, it is often unclear how to choose between an unstructured model (e.g., the basic Fay-Hemot 

model) and a purely spatially structured model (e.g., intrinsic autoregressive model). For model (6), 

posterior inference about the spatial dependence is based on the proportion of the total variation in the 

sum of u 1  + v captured by each component. However, although the univariate conditional distributions 

of spatial component (7) are well defined, the corresponding joint distribution is improper (with 

undefined mean and infinite variance). Moreover, the model (6) has potential identifiability problem 

where only the sum of the random effects u, + vi  is well identified by the data (e.g., Best, Richardson 

and Thomson, 2005). 

Alternatively, we can consider another spatial parameterization studied by Leroux, Lei, and Breslow 

(1999) and MacNab (2003), which avoids the identifiability problem encountered with the MRF model 

(6). Leroux et. al. (1999) and MacNab (2003) placed the following CAR spatial model on the area-

specific random effects v = v 1 .. .  , Vm ): 

v MVN(O,(a,2)) 
	

(8) 

(a2,,%)=cyD, D=2R+(1-2)I 	 (9) 
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where o is a spatial dispersion parameter and 2 is a spatial autocorrelation parameter, 0 2 !~ 1; I is 

an identity matrix of dimension in; R, commonly known as the neighbourhood matrix, has ith diagonal 

element equal to the number of neighbors wi.  of the area i, and the off-diagonal elements in each row 

equal to -1 if the corresponding areas are neighbors and 0 otherwise. The CAR model (8) - (9) results in 

the following conditional distribution of v,: 

A 
v1 J v 	NI  

l-2+2W,+ J,,1 

The CAR model (8) - (9) becomes the intrinsic autoregressive model if A = 1. On the other hand, if 

2 = 0, the CAR model (8) - (9) reduces to the independent linking model (1) which assumes 

independence on the area-specific effects v,. It is necessary to point out that the conditional mean and 

variances of v J v_1  are weighted sums of the corresponding "global smoothing" moments from the 

basic Fay-Herriot model and "local smoothing" moments from the intrinsic autoregressive model: 

E(v1Iv_1)=  
1-2 	

xO+
2w 	x[ jvj iwi+ J 

l-2+2w, 	1-2+2w1  

1—A. 	 2w. 
Var(v1  Iv)= 	x2 + 	' 

l-2+2w, + 	 ' 1-2+2w1 , 

Thus model (8)-(9) is a balance between the independent linking model (1) and the intrinsic CAR 

model (7). The spatial correlation parameter 2 measures the extent of the spatial effects for "local 

smoothing" of the neighbouring areas. The modeling structure (9) captures both the unstructured 

heterogeneity among areas and the spatial correlation effects of the neighbouring area. 

3. HIERARCHICAL BAYES INFERENCE 

In order to estimate 9,, the parameter of interest, we apply a hierarchical Bayes (HB) approach using 

the Gibbs sampling method. Compared to other approaches such as EBLUP and empirical Bayes (EB), 

HB approach is straightforward and the inference for O. are "exact" unlike the EB or EBLUP. 

Moreover, HB approach can deal with complex small area models using Monte Carlo Markov Chain 

(MCMC) method, which overcomes the computational difficulties of multi-dimensional integrations of 

posterior quantities to a large extent. 
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Let y =(yi'•''m)'' 0 =(0i'"'m) and X 	 We first construct two HB models without 

and with spatial structure under the assumption that the sampling variance o are assumed known and 

replaced by the smoothed estimate ö. 

Model 1: Fay-Herriot model 

• 	y j  I 0, - N (01,o 2 =  o  2 j, for i = i,•• ,m; 

• 	0, I 18,cr - N(xfl,cr), for  

• Priors for the parameters (fi,o): ,r(fl) cc 1; r(o) IG(a0 ,b0 ), where a0 ,!,0  are chosen to he 

very small known constants to reflect vague knowledge on N stands for normal distribution 

and IG for inverse gamma distribution. 

Model 2: Proposed area level CAR model 

• v 1 0 MVN(O,E), where E is a diagonal matrix with the ith diagonal element cr, 

• 0 I fl,o - MVN(XJC, crD t ), where D = AR +(1 - 2)1, with I, an identity matrix of 

dimension m, and R, the neighbourhood matrix; 

• Priors for the parameters (fi,2,o): r(fl) ccl; z(A) Uniform(0,1), where 0:~ 2 :!~ l; 

ir(o) - IG(a 0  , b0 ), where a0 , b0  are chosen to be very small known constants. MVN stands for 

the multivariate normal distribution. 

Note that Model 2 reduces to Model 1 when A. = 0. 

We also consider two HB models with the sampling variance o unknown and modeled by the direct 

unbiased estimator s,2 . 

Model 3: Fay-Herriot model with unknown sampling variances (You and Chapman, 2006) 

• 	Y1 I 0, , 	 - N(01 ..2)  for = 1,• m 

md 
• d1 s 	, cr 	, where d. = n, —1, for  

12 



	

Zhou and You: Small Area Estimation for CCHS 	 2007 

• 	9, 1 ,8,o -N(x )6,o),for i=1,•',rn; 

• Priors 	for the 	parameters 	(ji, o , cr, , i = 1, •, m): 	ir(/3) oc I; 	ir(cr) - IG(a 0  , 

,r(o') IG(a,,b1 ) for i =1,,m, where a,,b, (o !~ i :5 rn) are chosen to be very small known 

constants to reflect vague knowledge on o and o. 

Model 4: Proposed area level CAR model with unknown sampling variances 

• y I 	- MVN(O,E), where E is a diagonal matrix with the ith diagonal element a.?; 

md 
• d 1sa ... o 2 ' ,where d, = n, —1, for i =1,•",rn; 

• 0 I fl,o 	MVN(X/3, oD 1  ), where D = AR + (1— 2)1; 

• Pnors for the parameters 	 = i,...,m): ir(fi)cc 1; r(2)- Uniform(0,1), where 

0 :~ 2 !~ 1; r(o) - IG(a 0 ,b0 ); (1o) IG(a 1 ,b,) for i = 1, ,m, where a,,b (o ~ j ~ m) are 

chosen to be very small known constants. 

Again, note that Model 4 reduces to Model 3 when 2 = 0. 

In the HB approach, we use the posterior mean E(o, I ) 
as a point estimate of 9, and the posterior 

variance Var(O, I y) as a measure of variability. We implement Gibbs sampling method (Gelfand and 

Smith, 1990) by drawing samples 	•• 9 	!? 	 from the joint posterior distribution 

	

I 	m 	fr' 	V 	J 

p(9i  ..... Om ,fl,a) for Model 1, or drawing samples {o 	...9fl(k) A 	2( k)•} from the joint 

posterior 	distribution 	p(Oi  . . ... 9m ,ji,2,a) 	for 	Model 	2, 	or 	drawing 	samples 

2(k) 	2(k) 

	

•,9,fl,o- ,o 1  ,• 	 } 	from 	the 	joint 	posterior 	distribution 

	

,) 	for 	Model 	3, 	or 	drawing 	samples 

(k) 	(k) 2(k) 0.2(k) 	2(k) 	,.2(k) 1 	from 	the 	joint 	posterior 	distribution I,, 	 V 	'°'I 	'' 	m 	I 

, 	. , a,,) for Model 4. 

For Model 1, the full conditional distributions of (o,. •, 9,,, , fi, for the Gibbs sampler are: 

• E°m I y1,fl,aj 	NLy1y +(1—y)xfl, &y], where 	= 2 	,for i=1,•,rn; 
, 
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. N[x1x1Jx1OJ 	tx1x:J]; ~, ( 

[cr I O,j3] 	IG[ao  +-'-m, b0 + -- 
	
(o - x fl)2 I - 

It is straightforward to draw samples from these full conditional distributions. 

For Model 2, the full conditional distributions of (o, p, ,,Cr for the Gibbs sampler are: 

• [oIy,fl,2,crfl MVN(Ay+(I -A)X/3,AE), 	where 	A =(Ei  +DIo)'E 	with 

E = diag {6 12 , ... , 5} and D=2R+(I-2)I; 

• [,u I -  MVN[(X'DX)' X'DO,o(X'DX)'j; 

• [2 0"8, 0-2 	I [2R+(l-t)It' 1 2  xexP{__(o_xfl)[2R+(1_2)Io_xfl)} 

+ 	/3-(o-x) ' D(o-xfl) [ 2 a Io,I3,2 ]  IG[ao+_bo 2 

The distributions of 0, 6 and o are standard multivariate normal or inverse gamma distributions that 

can be easily sampled. However, the conditional distribution of 2 does not have a closed form. We use 

the Metropolis-Hastings algorithm within the Gibbs sampler (Chip and Greenberg, 1995) to update A. 

The full conditional distribution of 2 in the Gibbs sampler can be written as 

[Al 	h(2)f(2) 

where f(2) is a density function of the uniform distribution Uniform(O,1) given as 

f(2)ccl,where 0!!~ 2<1 

and h(2) is a function given by 

h(2) cc I [AR +(1 -A)I]' I 2 xexp - 
2a

(0 - Xfl) [AR +(1 - 2)110 - xp) 
, 

We use f(2) as the "candidate" generating density function in the Metropolis-Hastings updating step. 

To update A. from the current values of (0 ,/3,a*)),  we proceed as follows: 

Draw 2 from a uniform distribution Uniforrn(O,l) 

Compute the acceptance probability 

14 
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a(x,2 ) = min{h(2 )/ h(2),1} 

(3) Generate u from a uniform distribution Uniform(0,1), if u - a(K,2), then this candidate value 

X is accepted, i.e., 2' = 2; otherwise 2 is rejected, and set 2' = 

For Model 3, the full conditional distributions of (Oi  ..... 0m ,p,o,o,•.•,cr,) for the Gibbs sampler 

are: 

• 10 I y1,fi,a,a] N1yy1 +(l—y 1 )xfi,ciy 1 J, where yi = 22 
for  

0-v + 0•j  

[I3 I 0,ci1 	i ; 	x i J ci[x ix;)]; 

[a 
i'  y 1  , 0] IG[a1 

d. + 	+ (v —0 )2  + d1s 

J, 
where d1  = - 1, for  • 

2 

[° , i 0 ,/3] IG[a o  +--m, b0 +I(o  _xfl)2 ] 

Similarly to Model 1, it is easy to draw samples from these full conditional distributions. 

	

( 	 2' For Model 4, the full conditional distnbutions of O, /3,2, ci; , cr ,-- , o) for the Gibbs sampler are: 

• [01 y,fi,2,a2,o,...,ci2J..  MVN(Ay +(I —A)X/3,AE), 	whereA = (E + D/ a 2 )'EI 

with 	 a lit  and D=2R+(l-2)I; 

• [a I 0, 2,ci] MV N[(X'DX) 1  X'D0,a(X'DX)'j; 

• [2 0, fl,ci] I [,rn + ( 1— 2)I]' 	x exp— --- (0— xp)'  [2R + (1— 2)I0 - X/3) 
2o, 

• [ai2  ly i , Oi 	IG a, + d ' +  1 ,  bi  + 
(yi  _  0i)2 +  disj2 	

where d, = ni  —1, for 
2 	 2 	) I  

• [a,Io,fi ,2] IG[a o +bo +(0_Xfl)D(0_Xfl)]. 

Similar to the full conditionals for Model 2, the conditional distribution of 2 does not have a closed 

form. We apply the same procedure to update 2 using Metropolis-Hastings algorithm within the Gibbs 

sampler as in Model 2. 
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To implement the Gibbs sampling, we use L=5 parallel runs each with a "burn-in" length of B=2000 

and Gibbs sampling size of G=5000. For Model 2 and Model 4, in order to reduce the autocorrelation 

which results from the accept-rejection algorithm in the run, we take every 51h  iteration afler the "burn-

in" period. Therefore, for Model 1 and Model 3, we have 17=5000 samples for each run, and for Model 

2 and Model 4, n=1000 samples for each run. 

In the following section, we apply the proposed four HB models in Section 3 to estimate disease rates 

for health regions using CCHS Cycle 1.1 data. 

4. DATA ANALYSIS 

The health region-level survey of Cycle 1.1 consists of common content to meet basic health data 

requirements on an on-going basis. The questionnaire contains the information about several chronic 

health conditions, including food allergies, asthma, arthritis or rheumatism, diabetes and etc. In this 

paper, we are interested in estimating the rate of asthma in the 20 health regions of BC province. Figure 

1 shows the map of the 20 health regions in the province of British Columbia. 

Figure 1: The map of 20 health regions in the province of British Columbia. 

8 

BC Soft  



Zhou and You: Small Area Estimation for CCHS 
	

2007 

Based on the map in Figure 1, for each health region, we define the corresponding adjacent health 

regions given in following table: 

Table 1: The neighbouring areas defined for the 20 health regions 

Health Number of Health Health Region 
Region Health Region Name Regions in the Numbers in the 
Number Neighbouring Neighbouring Area Area 

1 East Kootenay 3 2, 3, 15 

2 West Kootenay-Boundary 3 1, 3, 4 

3 NorthOkanagan 5 1,2,4,5,15 

4 South Okanagan Similameen 4 2, 3, 5, 6 

5 Thompson 7 3, 4, 6, 9, 11, 12, 15 

6 Fraser Valley 5 4, 5, 7, 8, 9 

7 South Fraser Valley 4 6,8,17,19 

8 SimonFraser 5 6,7,9,17,18 

9 Coast Garibaldi 5 5, 6, 8, II, 18 

10 Central Vancouver Island 2 11,20 

11 Upper IslandlCentral Coast 4 5, 9, 10, 12 

12 Cariboo 4 5,11,13,15 

13 North West 3 12, 14, 15 

14 Peace Liard 2 13,15 

15 Northern Interior 6 1, 3, 5, 12, 13, 14 

16 Vancouver 4 17, 18, 19,20 

17 Bumaby 5 7,8, 16,18, 19 

18 North Shore 4 8, 9, 16, 17 

19 Richmond 3 7, 16, 17 

20 Capital 2 10,16 

It is necessary to point out that the two health regions "20 Capital" and "16 Vancouver" are not 

adjacent since they are separated by the ocean. However, due to the intensive connection between these 
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two areas when considering transportation, economics, tourism and other aspects, it is reasonable to 

define that they are neighbours as well. 

From the survey data of Cycle 1.1, we obtained eight variables for each health region to estimate the 

rate of asthma as follows: (1) sample size, (2) direct estimate of the number of persons who have 

asthma, (3) total population size, (4) number of persons who have asthma as one of the symptoms of 

the chronic disease, (5) number of persons who have asthma as the main symptom of the chronic 

disease, (6) number of persons who have diabetes as one of the symptoms of the chronic disease, (7) 

number of persons who have diabetes as the main symptom of the chronic disease, and (8) number of 

visits to hospitals. For each health region, the direct estimate y of the rate of asthma &i  is obtained as 

the ratio of number of people having asthma over the corresponding population size, i.e., 

= direct estimate of the number of persons who have asthma in area I 
Yi 	 total population size 

for j = l,• •, m. The six variables 3, 4, 5, 6, 7, and 8 are used as the area-specific auxiliary 

datax 1  = (x11, ... ,x6)'. 

In the literatures related to disease mapping (e.g., Mollié, 1996; Maiti, 1998; MacNab 2003), Poisson 

or Binomial distribution is usually assumed in the sampling model for the direct estimator y.. 

However, in our application, the direct estimator y, is obtained based on the complex sampling design 

used in the survey. Thus, it is more reasonable to assume normal approximation on the direct estimator 

yi. 

At first, we present the HB estimates of the rate of asthma under the Model I and 2 in which the 

sampling variances o are assumed to be known. We use the smoothed estimate Ei obtained by the 

smoothing technique in You (2008) described in Section 2. Figure 2 displays the direct estimates and 

the HB model-based estimates from Model 1 and Model 2 for the 20 health regions in the province of 

BC. The health regions appear in the x-coordinate ranked by the order of sample size with the largest 

(South Fraser Valley) on the left and the smallest (Peace Liard) on the right. Model I (Fay-Herriot 

model) and Model 2 (CAR model) give similar point estimates, and both the model-based estimates 
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lead to moderate smooth estimates compared to the direct estimates. Moreover, the direct estimates and 

two HB estimates of the disease rate are very close for some health regions with large sample sizes, but 

for some areas with smaller sample sizes, they differ to some extent. 

Figure 2: Comparison of direct and HB model-based estimates 

under the Fay-Herriot model 1 and CAR model 2 

Direct and HB estimates of the rate of asthma disease 
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Figure 3 presents the CVs of the direct and two HB model-based estimates with the health regions 

ordered by the sample sizes from the largest to the smallest. The CVs of HB estimates are obtained by 

dividing the squared root of the posterior variance by the posterior mean. As expected, the CVs of the 

direct estimates show a clear tendency of increasing as the sample size decreases, which demonstrates 

the unreliability of direct estimates in the areas with small sample sizes. However, the two model-

based estimates give smoother CVs. Moreover, the two HB model-based estimates exhibit a great 

improvement over the direct design-based estimates in terms of precision and reliability, that is, smaller 

CVs. Compared to the direct estimates, the average CV reduction of the HB estimates under Model I 

(Fay-Hemot model) is about 23.97% ranging from 13.45% to 34.48%, and the average reduction of the 

CVs for the HB estimates under Model 2 (CAR model) is 28.9% ranging from 16.01% to 40.49%. 
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Figure 3: Comparison of direct and HB CVs under the Fay-Herriot model 1 

and CAR model 2 with the health regions sorted by sample size 
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Figure 4 also displays the CVs of the direct and HB estimates, while the health regions are sorted by 

the number of neighbouring regions from largest to smallest in order to investigate the effects of 

incorporating the spatial structure in the model. It shows that the HB estimates from the CAR Model 2 

has smaller CVs than the estimates from the basic Fay-Herriot model. In addition, the improvement of 

the CAR model over the Fay-Herriot model is larger in the areas with more neighbours. Howver, these 

two models give very close CVs in the regions with less adjacent areas. Table 2 lists the reduction of 

the CVs under the CAR model over the Fay-Herriot model across the health regions with the same 

number of neighbours. The results in Table 2 present the CV reduction of the CAR model for both 

cases of known and unknown sampling variances. For example, for known cr, (smoothed 	for 

areas with only 2 neighbours, the average CV reduction of CAR model over the Fay-Hemot model is 

only aroung 0.5%, whereas for areas with 7 neighbours, the average CV reduction for CAR model is as 

high as around 20%. The numerical results also confirm the clear trend of more CV reduction under the 

CAR model over the Fay-Herriot model as the number of neighbours increases. Thus, more 

neighbouring areas provide more information in the spatial structure to improve the precision and 

reliability of the HB estimates. 
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Figure 4: Comparison of direct and HB CVs under the Fay-Herriot model I and 

CAR model 2 with the health regions sorted by the number of neighbours 
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Table 2: The average CV reduction of CAR model over the Fay Hemot model 

The number of The average CV reduction 

neighbours cr, known 	a 
2  unknown 

7 19.2% 	20.7% 

6 13.7% 	11.0% 

5 8.9% 	8.7% 

4 6.3% 	6.0% 

3 3.7% 	3.5% 

2 0.5% 	1.8% 

We also obtained point estimates and CVs under Model 3 and Model 4. The comparison of the results 

under Model 3 and Model 4 has shown similar results with the comparison among the direct estimates 

and two HB model-based estimates under the Model I and 2. 
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5. CONCLUSION AND DISCUSSION 

In this paper we have studied the well-known Fay-Herriot model in which two strong assumptions are 

made. One is that the sampling variances cr, are assumed to be known. You (2006, 2008) used the 

smoothed variances obtained by the equal design effects modeling approach, and You and 

Chapman (2006) instead modeled the sampling variances cr i2  directly by the unbiased estimator s 2 . 

The other assumption is that the area-specific random effects are assumed independent and identically 

distributed. Various forms of Gaussian CAR model were proposed in the literature for disease mapping 

to incorporate spatially-correlated effects. According to the previous work, we propose four HB models 

which relax these two strong assumptions to investigate the effect of including the geographically 

structured distribution in the model where the sampling variances cr are replaced by the smoothed 

estimate & 2 or modeled by the direct estimator s. 

In the data analysis which aims at estimating the rate of asthma for the 20 health regions in the 

province of British Columbia, the model-based estimates achieve a great improvement over the direct 

estimates in terms of moderately smoothed point estimates and much smaller CVs. In addition, we find 

that whenever the sampling variances are assumed to be known or unknown, the proposed area level 

CAR models have smaller CVs than the Fay-Herriot model which imposes independent area-specific 

random effects. Moreover, the CV reduction of CAR model over the Fay-Herriot model is greater for 

the areas with more neighbours. 

One possible limitation of our proposed model is that the linking model for the disease rate 0, is a 

linear model with normal random effects. Since 0, takes value between 0 and I, and it is close to 0 for 

some rare disease, the linear linking model with normal random effects may lead to negative estimates 

for 0i  for some small areas in practice if the sampling variances vary substantially. You and Rao 

(2002) proposed a log-linear linking model for the Fay-Herriot model as the unmatched sampling and 

linking models as follows: 

v=fJ,+e,, i=l,",m 

1og(01 )=x'/8+v,, i=l,'•,m 

22 



Zhou and You: Small Area Estimation for CCHS 	 2007 

in future work, the proposed CAR models can be extended to the unmatched sampling and linking 

models with the sampling variance known or unknown. We will also plan to evaluate the estimation 

effects of different spatial models (e.g., Best, Richardson and Thomson, 2005) as well as the effects of 

spatial structures. We also plan to study different methods to test the overall fit of the proposed models, 

and also to assess model fit at the individual area level. For data analysis, we will produce model-based 

health status estimates based on the proposed models for health regions across Canada and evaluate the 

possibility of extending the model-based approach to lower level estimates such as age-sex doniains 

within heath regions. One way to do this is to extend the area level models to unit level model with 

spatial correlation structure between area level variations. 
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