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in this ppei 	e conidei the vell known 1 	-1 left wi niodel br census undercuverage small area 

estimation across Canada. In general sampling variances are assumed to be known in the Fay-Herriot 

model. However in this paper we consider the case of unknown sampling variances. Direct estimators 

are available for the sampling variances. We construct sampling models for both the direct survey 

estimators of parameters of interest and the direct estimators of sampling variances. For inference we 

have considered the empirical best linear unbiased prediction (EBLUP) approach and a full hierarchical 

Bayes (HB) approach. For EBLUP approach, we obtain the EBLUP estimators and the corresponding 

MSE estimators with an extra term to account for the uncertainty associated with the estimation of the 

sampling variances (Wang and Fuller, 2003). For HB approach, we apply the Gibbs sampling method 

and obtain the HB estimators and the corresponding posterior variances (You and Chapman, 2006). In 

particular, the HB estimators are benchmarkcd to agree with direct total estimate using the 

benchmarking HB method of You, Rao and Dick (2004). Posterior mean squared error (PMSE) is used 

as a measure of uncertainty for the benchmarked HB estimators. We compare the EBLUP and HB 

estimators in the data analysis with the direct survey estimators. Model validation and model fit 

analysis are also provided. 

KEY WORDS: Benchmarking, Census undercoverage, Hierarchical Bayes, Sampling variance, Small 

area estimation. 

Yong You, Household Survey Methods Division; Peter Dick, Social Survey Methods Division, Statistics Canada, Ottawa, 
Canada, K IA 0T6. 
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Résunn. 

Dans Ia presente étude, nous examinons le modèle bien connu de Fay-lierriot pour Festimation sur 

petits domaines du sous-dénombrement au recensement dans l'ensemble du Canada. En général, dans 

le modéle de Fay-Herriot, ii est suppose que les variances d'échantillonnage sont connues. Dans Ia 

présente étude, toutefois, nous examinons le cas oU les variances d'échantillonnage sont inconnues. II 

existe des estimateurs directs pour les variances d'échantillonnage. Nous construisons des modèles 

d'echantillonnage tant pour les estimateurs par sondage directs des paramètres d'intérêt que pour les 

estimateurs directs des variances d'echantillonnage. Pour faire des inferences, nous avons examine 

l'approche empirique du meilleur prédicteur linéaire sans biais (EBLUP) et une approche hiérarchique 

bayésienne (HB) complete. Pour l'approche EBLUP, nous obtenons les estimateurs EBLUP et les 

estimateurs de l'erreur quadratique moyenne correspondants avec un terme supplémentaire permettant 

de tenir compte de l'incertitude associée a l'estimation des variances d'échantillonnage (Wang Ct 

Fuller, 2003). Pour l'approche HB, nous utilisons la méthode d'echanti!Ionnage de Gibbs pour obtenir 

les estimateurs HB et les variances a posteriori correspondantes (You et Chapman, 2006). Notamment, 

les estimateurs HB sont calés de rnanière a correspondre aux estimations directes totales calculées a 
l'aide de Ia méthode d'etalonnage HB de You, Rao et Dick (2004). L'erreur quadratique rnoyenne a 
posteriori (EQMP) sert a mesurer l'incertitude des estimateurs HB calés. Dans l'analyse des données, 

nous comparons les estimateurs EBLUP et HB avec les estimateurs par sondage directs. Nous 

présentons également une analyse de la validation du modèle et de l'ajustement du rnodèle. 

MOTS CLES: calage, sous-dénombrement au recensement, approche hiérarchique bayésienne, 

variance d'échantillonnage, estimation sur petits domaines. 
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1. Introduction 

The Census of Canada is conducted every 5 year. The last census was conducted on May 16, 2006. 

One objective of the census is to provide the Canadian Population Estimates Program with accurate 

baseline counts of the number of persons by age and sex for specified geographic areas at sub-

provincial level across Canada. The count of persons includes usual residents, immigrants and non-

permanent residents; excluded are all foreign visitors and non pennant residents without a valid permit. 

Unfortunately, not all persons are correctly enumerated by the census. The census data needs to be 

adjusted for undercoverage in order to properly represent the demographic picture on census day. Two 

errors that occur in the census are undercoverage - exclusion of eligible persons - and overcoverage - 

erroneous inclusion of persons. The direct net undercoverage estimates are obtained by subtracting the 

overcoverage estimates from the direct undercoverage estimates. 

The main coverage study conducted by Statistics Canada is a survey called Reverse Record Check 

(RRC). The RRC is a sample survey, with a sample size of 60,000 persons, that estimates the net 

number of persons missed by the census. This estimate is the combined total of the two types of 

coverage errors, the gross number of persons niissed by the census and the gross number of persons 

erroneously included in the final census count. Once these estimates are adjusted for the coverage 

errors of persons living in collective dwellings, the final net number of people missed by the census can 

be produced. The RRC sample size produces reliable direct estimates for large areas, such as provinces, 

and for large domains, such as broad age - sex combinations at the national level. However, the 

Population Estimates Program requires estimates of missed persons for single year of age for both 

sexes for each province and territory - over 2,000 estimates. Clearly the direct survey estimate would 

result in estimates having either unacceptably high standard errors due to insufficient sample in the 

small domain or having no estimate at all due to no sample in the domain. In addition, estimates have 

to be produced for the 288 Census Divisions and 4 different types of marital status. Altogether over 2.5 

million estimates have to be created. 

The methodology used to generate these estimates has essentially been in place since 1991. One 

component of the procedure is to use the basic small area estimation model, such as the well known 

Fay and Herriot (1979), to obtain model-based undercoverage estimates (e.g., Dick, 1995). However 

some modifications have been made to this basic model that needs to be evaluated. Specifically, the 
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usual basic area model assumes that the sampling variances are known. The census undercoverage 

model has to smooth the observed sampling variances before they can be used in the model. The 

smoothing of the sampling variance requires external variables or models such as the generalized 

variance function (GVF) method (e.g., Bell and Otto, 1995; Dick, 1995; Dick and You, 2003). Another 

drawback to the current methodology concerns the constraints that are imposed on the final estimates. 

Again the impact of this approach is to underestimate the mean squared error (MSE) using the 

empirical best linear unbiased prediction (EBLUP) approach if a final benchmarking step is imposed on 

the EBLUP estimates. Hierarchical Bayes (HB) approach has been studied extensively in recent years 

in small area estimation to account for complex models (e.g., Rao, 2003). The HB approach also has 

been used for census undercoverage estimation (e.g., You and Rao, 2002; You and Dick, 2004). The 

proper comparison of these two approaches is addressed in this paper. The chosen method is to adjust 

the model fit into a hierarchical Bayes framework. With this approach we can use the methods 

developed recently for evaluating the HB model and observe if the measures of uncertainty are 

comparable. 

An advantage of the HB approach is that it is relatively straightforward and the inferences about the 

area level parameters are exact in the sense that the posterior means and posterior variances are 

computed exactly, unlike the EBLUP approach where approximation is needed when estimating the 

MSE. The 1-lB approach will automatically take into account the uncertainties associated with 

unknown parameters. However, it does require the specification of prior distributions. Fortunately the 

census provides a case in which specifying the model is, again, relatively straightforward. The main 

purpose of this paper is to illustrate both the EBLUP and HB inference methods using the Fay-Herriot 

type model with sampling variances modeled by the direct estimates for the census undercoverage 

estimation, and to provide a HB benchmarking method for the marginal constrains. The paper is 

organised as follows. Section 2 presents the small area model considered for the census undercoverage 

estimation and inference methods. We provide formulas for both the EBLUP and HB methods. In 

Section 3 we present data analysis results based on the year 2001 census undercoverage data at 

provincial level age-sex domains and some related model diagnostics. And finally in section 4, we offer 

some concluding remarks on the EBLUP and HB methods. 
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2. Model Specification and Inference 

2.1 Small area model 

Let y j  denote the direct survey estimator of the i-th small area parameter of interest 0.. The sampling 

model fory, can be expressed as 

y 1 =91 +e, i=l,...,m, 	 (1) 

where e 1  is the sampling error associated with the direct estimator y j  with E(e1  I 9 = 0), that is, the 

direct survey estimator y j  is design-unbiased for the small area parameter 0.. The sampling variance 

of Yj  is V(e, I 0,) = o. The sampling variance is usually assumed to be known in the model, but it 

may be unknown. The unknown parameter of interest 0, is assumed to be related to area level auxiliary 

variable x, through a linking function g with random area effects v, as g(0,) = x/3 + v1 , i = 

where 8is a vector of unknown regression parameters, and the v, 's are uncorrelated with 

E(v1 ) = 0 and V(v 1 ) = o, where o is unknown. Normality of v, is also assumed in applications. If 

the linking function g is a non-linear function, then the sampling model and the linking model are 

unmatched in the sense that they cannot be combined directly to produce a linear mixed effects model 

for small area estimation (You and Rao, 2002). 

The Fay-Herriot model (Fay and Herriot, 1979) is a special case of the general area level model. In the 

Fay-Herriot model, the linking function is given as g(01 )=0, and the sampling variance cr i  is 

replaced by a smoothed estimator ö i  and then treated as known in the model. The Fay-Herriot model 

assumes that the sampling variances o are known in the model. This is a very strong assumption. 

Usually external variables and models are needed to obtain a smoothed estimate of a, and then the 

smoothed estimate is treated as known in the Fay-Herriot model. In practice, the sampling variances 

cr, are usually unknown and are estimated directly by unbiased estimators s. The estimators S,2  are 

independent of the direct survey estimators y,. Following Rivest and Vandal (2002) and Wang and 

Fuller (2003), we also assume that d 1 s 	where d- n 1  —1 and n is the sanìple size for the I- 
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th area. For example, suppose we have n observations from small area I and these observations are iid 

NcL1 ,a 2 ). Let y be the sample mean of the n observations. Then y N(/1 1 ,o) and 

cr = c 2  /n. Then we can obtain an estimator of a as 5,2 =52 /n, where 52  is the sample 

variance of the n i  observations. Also v and s are independent and (n 1  —l)s, - In this ni 

paper, we consider the following area level model specification for the census undercoverage 

estimation: 

• Sampling model for y,.: y i  = Oi + e, where V(e,) = a, and cr, unknown. 

• Sampling model for s2:  (n 1  - l)s 

• Linking model for 0: 0 = xI3 + v1 , where V(v 1 ) = cr, /1 and o unknown. 

Normal distribution is also assumed for sampling error e j  and model error v1 . 

Let c1  denote the census count for the i-th small area (domain), rn 1  denote the missed persons by the 

census. We define the census undercoverage ratio as O i  = m, Ic,. Let ñi, be the direct estimator of rn j . 

Then the direct estimator of 0, is given by 0, = th, I c,. We then apply the proposed model with 

unknown sampling variances to the census undercoverage ratio estimation by letting yl = di and 

Oi = rn, / c,. In the following sections, we consider the empirical best linear unbiased prediction 

(EBLUP) approach and the hierarchical Bayes (HB) approach to obtain model-based estimators of 0. 

2.2 EBLUP approach 

In this section we consider the EBLUP method to estimate 0. Combining the sampling model for y 

and the linking model for 0,, we obtain the model 

Y _X1fl+V1  -1- es, 	 (2) 

which is a mixed effects linear model. By assuming a 2  and U2  to be known in the model, we can 

obtain the best linear unbiased prediction (BLUP) estimator of 0. as 

Oi  = riyi  +(l—y1 )x,'fi, 	 (3) 
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where y = o /(o + a) and 

--I 

/3 _[a 
+ 
axx 	[(a2 + a)x1.Y1]. 	 (4) 

To estimate the variance component o, we have to assume ci,2  to be known in the model. Replacing 

c- 2  by its estimate s, we use the Fay-Herriot iterative (FHI) method (Fay and 1-lerriot, 1979) to 

estimatea. The FHI method is evaluated and preferred by Datta, Rao and Smith (2005). The Fl-IL 

method is as follows: starting with a °  = 0, solve iteratively, 

= 	+ 	1 2(a)  1n - p - h(a)] 
h.(a 	) 

constraining 	.2(a+1) ~ 0, where h(a) = 	- x'fl) 2  /(s, + a) and 

h'. (of) = —(y1  — x1 ' fi) 2  /(s,2  + a 2 ) 2  

/3 is given by (4). Convergence of the iteration is rapid. The FHI method does not require normality 

and like the simple moment estimator leads to consistent estimators as m —+ oo (Rao, 2003). The 

asymptotic variance of the FHI estimator oj was obtained by Datta, Rao and Smith (2005) as 

m 	i 	1 2  
V(a)=2m[2 +s)J 

Replacing o 2  and a,2  by ó and s in (3), we obtain the EBLUP estimator of O as 

	

. =) 1 y 1  +(1—j2 1 )x 1 '/3, 	 (5) 

where j2  =ó/(d+s). 

An estimator of the mean squared error (MSE) of 0, is given as 

rnse(91 ) = 9 01  + 9 11  + 	+ 29 31  + 940 	 (6) 

where 9 11 ,g 2, and 9 3 , are the terms obtained by Prasad and Rao (1990) in the MSE estimation. The 

term 91 1  = P,s,2  is the leading term, 9 2, is due to the estimation of /3 and given as 



	

921 = 	(l_ i ) 2 x i 1 ( j x i x j IJxi.  

Term g 31  = s(ó +s 3 V(â) is due to estimation of u, g 0  = —(1- 1 ) 2 b(ó) is an extra term 

due to estimation of o using the FHI method (Rao, 2003; Datta, Rao and Smith, 2005), where 

in 	., 	 m 	 in 

	

b(ó) 2{m (st + 	- (>(st + d )' ) }/{(s, + 	}3 

1=1 	 i=I 	 1=1 

Finally g 41  is a new term due to unknown a,2  in the sampling model (1). Rivest and Vandal (2002) 

and Wang and Fuller (2003) obtained the 9 41  term to account for the extra uncertainty associated with 

the estimation of o i 
2 by s. The g 4, term is given as 

4 
g41= 	-2 	23 n 1  - 1 (cr + s 1  ) 

in the data analysis section, we will compute the EBLUP and the MSE estimators and compare them 

with the HB estimators empirically. 

2.3 Hierarchical Bayes approach 

Following You and Chapman (2006), we now present the proposed model in Section 2.1, i.e., the Fay-

Hemot type model with unknown sampling variances estimated by the direct estimators s,2  in a HB 

framework as follows: 

(1) -ind N(91 ,o),I= 

d i s,Icr j2 	md 	d. = n• —1,1= 1,...,,n; 

O4/3,a 2 —md Nx'fl,a),J= l,...,m; 

Priors for the parameters: r(,8) oc 1, ,r(cr) IG(a 1  , b.), I = 1.....m, )r(o) - IG(a 0  , b0 ), where 

a ,b1  (0 :~ i s rn) are chosen to be very small known constants to reflect vague knowledge on a 12  and 

07 . IG denotes the inverse gamma distribution. 
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distributions for the Gibbs sampler are given as follows: 

[Oi Iy1,fi,a4j-N(y1yj +(l—y)xfl,y4 

• [,9 j y j ,Oj ,o- ',a']-N,((  

• [U ~ 	 d1 ±
,b I y1 ,0,fl,a] JG(a1+ 	

l 	+ 	—0)2 +d1 s

nt  
• 

 

[Cr;, i ,oi ,I3,o]-_IG(ao +!!!_,bo +i(oi _x;fl) 2 ) 

We are interested in estimating the undercoverage ratio O.  The HB estimator of 0,, based on the 

Gibbs sampler, is given as 
G 
k 

(HB = G' 	k) + (1 - (k) )x/3), 	 (7) 
k =1 

where 	= ,.2(k) /(a2(k) + cr,2 ). The posterior variance is used as the measure of uncertainty, and 

is estimated by 

V(O, ly)=G' 
G 

y, (k) 	 G (y(k)g+(ly(k))x./3(k))2Or 
k k=l 	 =l  

-(G1 G(y(k)0+(1(k));/J(k)) 
k=1 

We can obtain the HB estimator of uncercoverage count as thHB = c x OHB The measure of 

uncertainty is estimated by V(rn, I y,) = c x V(0, I y 1 ). The HB estimators of undercoverage counts 

,I-IB are no longer consistent with the total of the direct survey estimates. However, the direct estimate 

of the national total is respected. Also, in order to protect possible model mis-specification and possible 

over shrinkage, we may consider to benchmark the HB estimators so that the benchmarked HB 

estimators add up to the direct total estimate. You, Rao and Dick (2004) constructed benchmarked HB 

estimators for small areas. Letdenote the benchmarked HB (BHB) estimator of rn such that 

,1rFtB  is a function of the HB estimators ,1-IB  j = 1,..., rn i.e., 	= f(,B 	2HB for some 



,fl 	 rn 	 rn 
known function f(•), and satisfies the benchmark property: 	thBHB = 	, where Y- th i  is the total 

i=I 	i1 	 i=I 

of the direct estimates. For example, a ratio BHB (RBHB) estimator can be obtained as 

7RBHB thHB >-J-1J 	
(8) 

To obtain a measure of variability associated with the BI-IB estimator 1iJ3HB,  we used the posterior 

mean squared error (PMSE), given as 

PMSE(,u:113F1B) = E[(,z1B -m) 2  I 

which is similar to the posterior variance associated with the HB estimator thHB  It can be shown 

(You, Rao and Dick, 2004) that the PMSE of 1BHB  is given by 

PMSE(,HB) = ( BHB _,HB)2 + V(m y,). 

Thus the PMSE of 1HB  is simply the sum of the posterior variance V(m 1  I y1 ) and a bias correction 

term (thBHB - ,HB )2 The PMSE is readily obtained from the posterior variance and the estimators 

,,F1B and 	The advantage of the 131-l13 estimator and the PMSE is that the benchmarking 

estimation procedure is well-defined and very easy to compute, unlike the benchmarked EB or EBLUP 

approaches (e.g., see Pfeffermann, 2006). 

3. Application to the 2001 Census Data 

We applied the proposed area level model with the estimated sampling variances to the 2001 Census 

undercoverage data for small domains across Canada; for more discussion on related data and methods, 

see Dick and You (2003). We have direct survey estimates for net undercoverage for 104 domains 

across Canada. The domains are defined as age (0-19, 20-29, 30-44, 45+) , sex (2 groups) and 

province/territory (13 groups). The model requires domain level auxiliary variables for the small area 

estimation. Previous studies have shown that the undercoverage varies by age, sex, tenure, marital 

status and immigration status. Initially 48 variables were selected. After variable selection and model 

analysis, finally the auxiliary variables in the linking model for the undercoverage ratio O were 

reduced to eight variables and an intercept term (Dick and You, 2003). The eight variables are Yukon, 

Nunavut, Male 20 to 29, Male 30 to 44, Female 20 to 29, British Columbia (BC) renters, Ontario (ON) 
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renters and Northwest Territory (NWT) renters. We have implemented both the EBLUP and HB 

estimation approaches to the data. For the HB approach, to implement the Gibbs sampling method, we 

considered L=lO parallel chains, each of length 2d=2000. For each chain, the first d=1000 iterations 

were treated as "burn-in" period and deleted from final computation. 

3.1 EBLUP and HB estimation 

In this section we present EBLUP and HB estimates. Table 1 gives both EBLUP and HB estimates with 

standard errors of the fixed effects for the variables in the model. The t-value is simply the ratio of 

estimate over standard error. The EBLUP standard error is the squared root of the MSE and the HB 

standard error is the squared root of the posterior variance. As we can see from Table 1, both EBLUP 

and HB give similar estimates for the fixed effects. The HB approach in general has slightly smaller 

standard errors than the EBLUP approach. The t-values under the HB approach are slightly larger than 

the EBLUP approach. 

Table 1: Estimation of Fixed Effects. 

Variable Estimates 

EBLUP 	HB 

Standard Errors 

EBLUP 	HB 

t-values 

EBLUP 	HB 

Mean 0.0089 0.0084 0.0020 0.0019 4.43 4.42 

Yukon 0.0279 0.0291 0.0113 0.0111 2.46 2.62 

Nunavut 0.0235 0.0251 0.0116 0.0112 2.03 2.24 

Male 20 to 29 0.0848 0.0856 0.0050 0.0047 16.88 18.21 

Male 30 to 44 0.0417 0.0416 0.0046 0.0041 9.10 10.15 

Female 20 to 29 0.0429 0.0425 0.0050 0.0047 8.53 9.04 

BC Renters 0.0919 0.0946 0.0154 0.0151 5.95 6.26 

ON Renters 0.0732 0.0752 0.0151 0.0141 4.85 5.37 

NWT Renters 0.1728 0.1733 0.0261 0.0233 6.61 7.43 

Our main interest is to estimate the small domain undercoverage ratio and compare the model-based 

estimates with the direct survey estimates. Figure 1 presents the comparison of the point estimates by 

domains listed by their sample sizes from smallest (left hand side) to largest (right hand side). It is clear 

that the direct estimates tend to have more variation and more extreme values, whereas the EBLUP and 
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HB estimates are similar to each other and both lead to moderate smooth of the direct estimates. We 

also note that some direct undercoverage estimates are negative, due to the fact the overcoverage 

estimates are larger than the undercoverage estimates in those domains which usually have relatively 

small sample sizes. The EBLUP and HB methods "correct" the negative values for those small 

domains. All the model-based undercoverage estimates are positive as we expect. 

Figure 1. Comparison of Direct, EBLUP and HB Estimates. 
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To compare the standard errors, we compute the efficiency of the model-based estimates. The 

efficiency is defined as the ratio of the sampling variance to the estimated MSE or the estimated 

posterior variance. Figure 2 presents the EBLUP and HB efficiency gains over the direct estimates. It is 

clear from Figure 2 that both the EBLUP and HB estimates lead to large efficiency gains over the direct 

estimates. As the sample sizes increase, the direct estimates tend to be more reliable and the model-

based efficiency gain decreases as expected. Table 2 gives the efficiency gain of the EBLUP and HB 

estimates at the small domain level, summarized by domain sample sizes. For example, for domains 

with sample sizes less than 10, the average efficiency gain is 5.93 for EBLUP and 6.36 for HB. For 

domains with sample sizes larger than 100, the average efficiency gain is only 1.64 for EBLUP and 

1.72 for HB. Also we note that in general the HB approach has slightly larger efficiency gain than the 

EBLUP approach. 
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Figure 2. Comparison of EBLUP and HB Efficiency Gains Over Direct Estimates. 
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Table 2. EBLUP and HB Efficiency Comparison 

Sample size 

EBLUP Approach 

average 	min 	max 

HB Approach 

average 	min max 

< 10 5.93 2.88 9.26 6.36 3.60 10.19 

10 - 19 5.01 2.25 9.33 5.25 2.77 9.17 

20-49 3.73 1.67 9.62 3.84 2.01 9.57 

50-99 1.85 1.51 2.51 2.08 1.47 2.71 

~! 100 1.64 1.44 1.94 1.72 1.48 2.09 

One advantage of the HB approach is that we can easily compute the benchmarked undercoverage 

counts for domains as shown in Section 2.3. Posterior MSE is then used as measure of uncertainty for 

the benchmarkcd estimates. You and Dick (2004) obtained the BHB estimates and compared with the 

HB estimates. It is shown in You and Dick (2004) that the BHB estimates and HB estimates are very 

close to each other. The benckrnarking only makes slight change to the HB estimates and the BHB CV 

is only slightly larger than the HB CV as we hope. The results have shown that the proposed model-

based estimates do not lead to over shrinkage or under shrinkage of the direct survey estimates. 
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3.2 Bias diagnostic using regression analysis 

To evaluate the possible bias introduced by the model, we use a simple method of ordinary least 

squares regression analysis for the direct estimates and the EBLUP and HB estimates. The regression 

method is suggested by Brown, Chambers, Heady and Heasman (2001). If the model-based estimates 

are close to the true values, then the direct estimators should behave like random variables whose 

expected values correspond to the values of the model-based estimates. We plot the model-based 

estimates as X and the direct estimates as Y, and assess how close the regression line is to Y=X. In 

terms of regression, basically we fit the regression model Y = aK to the data and estimate the 

coefficient a. Less biased model-based estimates should lead to the value of a close to 1. For the 

2001 census undercoverage data, let Y be the direct undercoverage estimates, and X be the model-

based estimates. For the EBLTJP estimates, we obtain the estimated a value as 1.0010 with standard 

error 0.0291. For the HB estimates, the estimated a value is 0.9977 with standard error 0.0296. Thus 

the regression results show no difference of the fitted line from Y=X. Therefore, we conclude that the 

model-based estimates derived from the proposed model are consistent with the direct estimates with 

no extra possible bias included. The result may also indicate no evidence of any bias due to possible 

model misspecification. 

3.3 The marginal model checking 

We assume a normal sampling model for the direct estimates y, 's and a normal linking model for the 

parameters of interest 8 's. However, as O 's are not directly observable, the normal distribution is 

often chosen as an approximation. By combining the sampling model yj 10i,  o 	N(e, , a) and the 

linking 	model 	 N(x 1 fl,o), 	we 	can 	obtain 	a 	marginal 	model 	as 

N(x/3,o +cr) to check if the normality assumption is valid. An obvious model 

checking diagnostic is a normal probability plot of the standardized residuals 

= 1 - x /1) / \Icr + ci . Computing z 1  requires point estimates of fi, cri  and o-,. We can 

simply use the direct estimates s,2 to estimate the sampling variance cri  As in the EBLUP approach, 

we use the Fay-Herriot iterative (FHI) method to estimate or 17  We denote the FHI estimator of o-  as 

'ri 



0v(FHI) Using s and dFHJ), we can obtain ,8 = fl(s +àFHz)). The standardized residuals z 

can be calculated as 2 =(y _x,8)/.Js,2 +C PHI) Figure 2 gives the normal probability plot of 

estimated residuals 2 's. The plot indicates that the normal model assumption on the sampling and 

linking models is a good approximation and reasonably valid. 

Figure 2: QQ Plot of Standardized Residuals 
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We can also use the posterior estimates of fi, o and o to compute the standardized residuals. That 

is, let i i(HB) = (y —xfl(HB))/JoHB) +aV(HB) . The normal probability plot of i(HB)  'S is similar to 

the plot of 's. An alternative is to conceptualize a series of normal probability plots, one for each 

posterior simulation of ,8, o7 and o from the Gibbs sampler, for more comprehensive analysis of 

the plots based on HB estimates. 

3.4 Posterior predictive model checking 

To check the overall fit of the proposed model, we use the method of posterior predictive distribution. 

Let Yrep  denote the replicated observation under the model. The posterior predictive distribution of 

Yrep given the observed data Y0bs  is defined as 

17 



f(Yrep I Yb5) = S f(Yrep I O)f(O  I Yobs )dG. 

In this approach, a discrepancy measure D(y, 0) that depends on the data y and the parameter e can be 

defined and the observed value D(yOb , I Yobs) compared to the posterior predictive distribution of 

D(yrep , 0 I Y) where any significant difference indicates a model failure. Gelman, Meng and Stem 

(1996) proposed the posterior predictive p-value as 

p = P(D(y rep ,0) ~: D(y0,0) 1 Ybs). 

This is a natural extension of the usual p-value in a Bayesian context. If a model fits the observed data, 

then the two values of the discrepancy measure are similar. In other words, if the given model 

adequately fits the observed data, then D(y0b,O I Y) should be near the central part of the 

histogram of the D(yrep  '0  I Ybs) values if Yrep  is generated repeatedly from the posterior predictive 

distribution. Consequently, the posterior predictive p-value is expected to be near 0.5 if the model 

adequately fits the data. Extreme p-values (near 0 or 1) suggest poor fit. 

The posterior predictive p-value can be estimated as follows: Let 0  represent a draw from the posterior 

distribution [(0 I v), and let Yep  represent a draw from f(Yrep I 0 w'). Then marginally y, is a 

sample from the posterior predictive distribution f(Yrep I Yobs) .Computing the p-value is relatively 

easy using the simulated values of 0 from the Gibbs sampler. For each simulated value 9, we can 

simulate Y;ep  from the model and compute D(yp,0*)  and D(yobs,0*).  Then the p-value is 

estimated by the proportion of times D(yep,0)  exceeds D(yobc, e*) .  

For the proposed HB model, the discrepancy measure used for overall fit is given by 

D(y,0) = 7!(y _0)2 /o. We computed the p-value by combining the simulated 0*  and 
v 
 from 

all 10 parallel runs. We obtained an estimated p-value equal to 0.466. Thus we have no indication of 

lack of overall model fit. 

The posterior predictive p-value model checking has been criticized for being conservative due to the 

double use of the observed data Yobs  The double use of the data can induce unnatural behaviour, as 

demonstrated by Bayarri and Berger (2000). They proposed alternative model checking p-value 
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measures, named the partial posterior predictive p-value and the conditional predictive p-value. 

However, their methods are more difficult to implement and interpret (Rao, 2003; Sinharay and Stem, 

2003). As noted in Sinharay and Stem (2003), the posterior predictive p-value is especially useful if we 

think of the current model as a plausible ending point with modifications to be made only if substantial 

lack of fit is found. 

4. Concluding Remarks and Future Work 

In this paper, we have presented model-based estimates for census undercoverage in small domains 

across Canada using both the EBLUP and HB approaches. Both the EBLUP and HB estimates improve 

the direct undercoverage estimates significantly and have achieved large efficiency gains, especially for 

domains with smaller sample sizes. The proposed model takes into account the uncertainty of 

estimating the sampling variances by modeling the sampling variances directly as in Wang and Fuller 

(2003) for EBLUP approach and You and Chapman (2006) for HB approach. The model used with 

estimated sampling variances is an extension of the well-known Fay-Herriot model. The advantage of 

the proposed model is that it does not require the smoothing of the direct estimates of the sampling 

variances. In our study, both the EBLUP and HB approaches work very well in terms of efficiency 

gains over the direct estimates. However, the EBLUP approach may lead to some underestimation of 

the MSE when area specific sample sizes are very small, as shown in You and Chapman (2003) using 

aggregated area level data obtained from the unit level crop data of Battese, Harter and Fuller (1988), 

where the sample sizes are in the range of 3-5 for each county. 

We also discussed benchmarking the HB estimates to obtain the BHB estimates so that these BHB 

estimates add up to the total of the direct estimates for the whole nation (large areas). The property of 

benchmarking is important in practice. First, it can provide consistency of the benchmarked model-

based estimates in the sense that they add up to the sum of direct survey estimates. Second, it can 

provide some protection against possible model failure. We studied the method of BHB estimation 

proposed by You, Rao and Dick (2004). It has the advantage of easy implementation for practical 

applications. For the EBLUP approach, it is more difficult to obtain the benchmarked estimates, 

particularly to obtain the MSE estimation of the benchmarked EBLUP estimators. Some resampling 

method such as bootstrap method may be needed (Pfeffermann, 2006). For the EBLUP approach, 
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Pfeffennann and Barnard (1991), Pfeffermann and Tiller (2005), and Wang, Fuller and Qu (2006) 

proposed benchmarking method for the EBLUP estimators. It will be interesting to explore the EBLUP 

benchmarking method for the census undercoverage estimation and compare it with the BHB method 

of You, Rao and Dick (2004). 

in this paper we consider both the EBLUP and HB approaches for small area census undercoverage 

estimation. The use of the HB approach enables simple computation of the posterior variance of the 

small area predictors, without the need to rely on large sample approximation for MSE estimation, 

especially when the sampling variances are estimated directly and the sample sizes and number of 

small areas are small (You and Chapman, 2003). It is also much easier to compute the benchrnarked 

HB estimates and obtain the corresponding posterior MSE than the EBLUP approach. Of course, 

application of the HB approach requires specification of prior distributions for the unknown model 

hyper-parameters. In most cases, vague proper priors or noninformative priors are used in the HB 

models; and different pnors, particularly for the variance components, may lead to different HB 

estimators in some cases, especially when the number of small areas is small. In practice, it is better to 

evaluate the sensitivity of the HB estimates to the choice of priors for publication of the HB estimates 

(You and Chapman, 2006). 

We evaluated the EBLUP and HB approaches using the 2001 census data. We will use the proposed 

model and both the EBLUP and HB approaches to produce the model-based census undercoverage 

estimates using the 2006 census data for age-sex domains across Canada once the 2006 undercoverage 

data becomes available. 
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