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Variance Estimation for High Income Tables 

Wel Qian' 

Abstract 

Income Statistics Division has produced high income tables for 1982-2009, using the data in the Longitudinal 

Administrative Databank (LAD). These tables involve estimation of percentiles and quantities in percentile 

groups. Until now, there has not been any statement about the quality (cvs) of the estimates produced. 

In this report, we propose a solution on how variance estimates for the variables in those high income tables 

could be obtained via Taylor linearization and the estimating equation approach. Data from P.E.I is used to 

illustrate the results obtained. 

would like to thank Xuelin Zhang, Cynthia Bocci, AbdellatifDcmnati. Ann Lim, Christian Nadeau, Wisner Jocelyn for providing 
many useful comments on the paper. 



Estimation de Ia variance pour les tableaux des hauts revenus 

Wei Qian 

Résumé 

La division de Ia statistique du revenu produit des tableaux d'information sur les personnes a hauts revenus 

couvrant Ia période 1982-2009 a partir de Ia banque de données administratives longitudinales (BDAL). La 

production de ces tableaux impliquent des estimations de quantiles ainsi que des estimations a l'intérieur de 

groupes définis par des quantiles. Jusqu'à maintenant, on ne s'est pas attardé a évaluer Ia qualité (cv) des 

estimations produites. 

Dans le rapport ci-joint, on propose une façon d'obtenir des estimateurs de variance pour les statistiques 

produites, grace a Ia méthode de Iinéarisation de Taylor et des equations d'estimation. Nous utilisons les 

données provenant de l'lle du Prince Edouard(IPE) pour fins d'iilustration. 
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Introduction 

In early 2012, Income Statistics Division (ISD) proposed publishing several "High Income Tables" through 

the Canadian Socio-Economic Information Management System (CANSIM). The estimates in the high income 

tables (also known as high income statistics) are obtained from the Longitudinal Administrative Databank 

(LAD). High income tables provide estimates on demography, income and taxation in groups defined by 

income percentiles for various levels of geography including Canada, provinces / territories, and regions (such 

as Census Metropolitan Area /Census Agglomeration (CMAICA). In this paper, the quality, more specifically 

the sampling variance, of high income statistics is of interest and a method is proposed to provide appropriate 

associated variance estimates. 

This paper is organized as follows. Section 2 gives an introduction of the LAD from which the high income 

statistics are obtained. Section 3 provides an overview of the parameters of interest and their estimators in the 

high income tables. In Section 4, linearization and re-sampling variance estimation methods are discussed, and 

linear variance estimators are derived by using a unified estimating equations approach. In Section 5, the linear 

variance estimators are evaluated, using tax data from the Ti family file (TiFF) and by comparing them to 

variance estimators obtained via the bootstrap method. in Section 6, the linear variance estimators are applied 

to the 1988 and 2009 high income tables and the coefficient of variation (CV) estimates are produced for 

selected estimates. The last section summarizes the findings and discusses future work. 

Longitudinal Administrative Databank 

High income tables are produced from data in the LAD which consists of a 20% random sample selected from 

the TI family file (TI FF). 

The T1FF is an annual cross-sectional file of all taxfilers and their families. Census families in the TIFF are 

created from personal income tax returns (TI) submitted to the Canada Revenue Agency (CRA). Both legal 

and common-law spouses are linked by the spousal Social Insurance Number (SIN) provided on their tax 

forms, or by matching by name, address, age, sex, and marital status. Children are identified through a similar 

algorithm and through supplementary files. Prior to 1993, non-filing children were identified from information 

on their parents' tax forms. Information from the Family Allowance Program was used to assist in the 

identification of children. Since 1993, information from the Child Tax Benefit Program has been used for this 

purpose. 
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The individuals on the LAD are selected using Bernoulli sampling with equal selection probability of 1/5, 

based on their SIN. Although there is no age restriction, people without a SIN can only be included in the 

family component. Once a person is selected, this individual will be on the LAD file for any subsequent year if 

he or she is on the TiFF file for that year. A unique LAD identification number allows individuals selected for 

the LAD to be linked across the years to create a longitudinal profile of each individual. 

The LAD is augmented each year with a sample of new taxfilers so that it consists of approximately 20% of 

taxfilers every year. The sample has increased from 3,227,485 persons in 1982 to 5,1 58,895 in 2009 (an 

almost 60% increase). This increase reflects increases in the Canadian population and increases in the 

incidence of tax filing as a result of the introduction of the federal sales tax credit in 1986 and the Goods and 

Services Tax credit in 1989. 

The LAD is organized into four levels of aggregation, namely the individual, spouse/parent, family, and 

child(ren) levels. The databank contains information on demographics, income, and other taxation data at the 

different levels of aggregation, with new data being added annually as the information becomes available. 

Changes in tax legislation and in the design of the Ti form itself have resulted in some variables not being 

available for all years as well as some minor definitional changes from one year to the next. 

The LAD is also linked with the Longitudinal Immigration Database (IMDB) which contains immigration 

records from 1980 to 2007. 

Why are the high income tables based on the LAD instead of the TiFF? The main reason is that high income 

tables contain longitudinal statistics on high income trends for Canadian taxfilers. The LAD is a longitudinal 

database, while the 'F 1FF is cross-sectional. Once the definition of a variable is changed, the LAD is revised 

for all reference years to maintain its longitudinal consistency; this change is not applied to previous TI FFs. 

The longitudinal profile of the LAD has made it an important research tool for longitudinal studies on income. 

More details about the LAD can be found in the Longitudinal Administrative Data Dictionary (Statistics 

Canada internal document, 2010). 

3. Parameter Estimation 

High income tables provide statistics on demography, income and taxation in groups defined by income 

percentiles for various levels of geography. Two sets of tables are generated for the percentiles: national level 

tables and local level tables. Statistics in the national level tables are always based on ranking taxfilers within 

the national (Canada-wide) income distribution, while statistics in the local level tables are based on ranking 



taxfilers within the income distribution of a specific geographic area (Province or CMAICA etc.). In the 

national level tables, since the percentile thresholds are based on Canada-wide, the estimation of parameters 

for provinces or CMAICAs is domain estimation. This paper insteadfocuses on the local level tables. From 

the methodology point of view, the statistics in the national level tables should be of better quality than those 

in the local ones since the national percentile estimates are less variable due to the larger sample size. 

The local level tables include six tables whose percentile thresholds are defined by different income variables. 

Table I lists the income variables defining the percentile groups. 

Table 1: Income variables defining the percentile group 

I ncone \'a riahie 

Niarket income 

After tax income 

nii' 	wi c:ipitil rains 

Total income with capita! gains 

;\ttcr tax inciiic viih caitaI aiii 

Table 2 summarizes the statistics generated for each percentile group in high income tables. The first item is 

the estimate providing information on the distribution of the income variables. The other items are the 

demographic, income and taxation characteristics. Items 1 5-20 are longitudinal characteristics, and their 

estimation depends on the sampling design of previous years. For longitudinal statistics, the associated 

variance estimation is much more complicated than that for cross-sectional statistics because of the 

dependence. In this paper, the computation is simplified by treating longitudinal indicators as cross-sectional 

ones. For large sample sizes, the variance associated with percentile estimators is very small and the estimates 

are close to the actual values. Their CVs may also provide an idea of the quality of the longitudinal statistics. 



Table 2: A summary of statistics in high income tables 

Statistics 

1 	Income threshold value 

2 	N itnihet 	Li\ i !r 

Peitént* 

4 	crc 	ne married h sex 

S 	Median age 

\ lCiLiH Lt'nIc 

S 	Share of income 

9 	Share of income, by sex 

\cWw. ;ktj1 and pr\ 111C1,11 inccinc t\c paa! 

11c 

12 	Share of federal and provincial income taxes paid 

13 	Percentage of income from wages and salaries 

14 	Pcrccidae.: 	otlic 1111i sacs and a!arie. b 

16 	Percentanc in the same qtiantile five vears ao 

17 	Percentage in top S percentiles last year 

I 	f'crcct:ti lcp c p1k cUt c 	\ c \ cit 	ic 

19 	
Percentage in top S percentiles at least once during the preceding live-year 

period 

20 	l'ciccn1'ie always in top 5 percentiles during the preceding five-year period 

For methodological purposes, these parameters may be summarized into six categories: the percentile of a 

distribution, and, within a percentile group, the mean, median, share, ratio and a function of them such as the 

product of share and ratio. The estimators for the different types of parameters in the high income tables are 

given below. 

Consider a population of size N, such that U = {1, ... , N). Let X be the income variable defining the percentile 

group and Y be another variable (demographic, income or taxation) whose quantities are of interest. Let  fp  

denote the p h  percentile of X and let Yp  denote the quantity of interest for Y in the top pth  percentile group 

defined as {i E U: x1  ~! 
}. 

Then, 
(. Yp) are the parameters of interest. Let S be the sample drawn from U 

and 
(, 

j,) be estimators for 
(, Yp). 
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Since Vp  is a parameter of the population in a percentile group, the estimation of Vp  relies on the estimation of 

the percentile 
. 

The weighted percentile estimator fp  is defined as 

X(i) 
	 if w1  > p 

= 	(x()  +X(+l)) 
	

if 	w1 = p 

X(t+l) 
	 if) 1 wj  <p 

where X(1) is the ordered values of the income variable, wi  is the sampling weight (the inverse of the selection 

probability) associated with X() and R = >E5 w. The weighted percentile estimator is consistent and its bias 

is negligible for large sample sizes. The estimate can be obtained from the SAS procedure PROC 

UNIVARIATE. Given the percentile estimate, fp  is defined below for the different types of parameters. 

Case 1. Vp is an average in the top p h  percentile group 

For both continuous income variables and categorical demography variables, many parameters in these tables 

can be expressed as an average. For example, the percentage of male in the population is the average of an 

indicator variable indicating male or not. Item 3, 7 and II in Table 2 can be expressed as an average. The 

estimator for an average is 

- --  

Vp 	EieswL!fxt2:p} 
(2) 

where I[xL ~: } = [ 

1  
0 

if x, ;~! Sp 
otherwise 

Case 2. Vp is a median in the top p h  percentile group 

The top pth percentile group is treated as a sub-population. Let S be the corresponding sub -sample such that 

S = ti: I E S, x i  a J. Let Y(i)  be the ordered values of the variable Y for sampled units in S, and W(t) be 

the sampling weight associated with the unit whosey-value ISY(j). Then, the estimator of the median of Y 

based on S is 

Y(1) 	 tf-w1  > 0.5 
NP  

= { 	

(Y(O + Y(i+1)) 	if E=1 Wj = 0.5 	 (3) 

Y(i+1) 	 if 
- 	

w3  <0.5 	t+1 w1
RP 

whereR _LESWi. 

Case 3. Vp IS a ratio in the top th percentile group 

Some statistics may be expressed as a ratio of the totals (average) of two variables. In Table 2, the estimator of 

the percentages of income from wages and salaries in the pthl  percentile group is defined as 
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- iswi1(x0:p)Yi 
Vp 

- LEswtItx4pxi 
(4) 

where Y is the wage and salaries and X is the income variable. 

The estimator of the percentage of married by sex, can also be expressed as a ratio as 

- LEs wj(x1  ~ ,} 
i (person i is married and male(female)) 

Vp 
- 	 EIES wL J(xL  ;~! }i{person i is male (female)) 

where flperson  I is married and male(female)) = 	
1 	if i is married and male(female) and 

	

0 	otherwise  

!(person I is male(female)} = { 
1 	if i is male(female) 
0 	otherwise 

Longitudinal statistics are also treated as ratios. For example, the estimator of the percentage in top 5 

percentiles at least once during the preceding five-year period (Item 19) is 

- 	
wl(x ~ 

,) 
I{in top 5% at least once during the preceding 5 year period)  LES  

Vp 
- 	 LES wifx 1  ~! fp llf person i filed during the preceding 5 year period) 

The longitudinal indicator in the numerator depends on the 5"  percentile estimates of the last five years. In the 

case of large sample sizes, those 5 th  percentile estimates are very close to the actual 5th  percentile. Therefore, 

the longitudinal indicators are treated as fixed and the above estimator becomes a ratio of two indicator 

variables. 

Case 4. Vp  is a share in the top tb  percentile group 

The share of a percentile group reflects the degree of income inequality in a population. It is defined as the 

ratio of total income (or tax) for the persons in the percentile group over that for all persons in the population. 

The estimator is given as 

-.  

= 	E€swy 	
(5) Vp  

Case 5. Vp  is a product of share and ratio 

The estimators of some parameters may not be as simple as the above cases, but they can be expressed as a 

function of them. For example, for men in a percentile group, the income share, Yp  can be viewed as a product 

of share f (S)  and ratio 

- income of men in a percentile group 
- 

Vp 	income of all 

- income of all in a percentile group income of men in a percentile group 
- 	 income of all 	 income of all in percentile group 
- (S) 	(R) 
—VP XYp 

12 



Accordingly, the estimator is defined as 
pp  = p(S) x 	 (6) 

where 	and 	are given as Case 3 and yand &(S)  are given in Case 4. 

4. Variance Estimation 

High income tables are intended to provide information about all Canadian taxfllers. The T1FF, serving as the 

sampling frame, is based on the TI forms collected by the CRA. After 1992, the TIFF provides a very good 

coverage of the target population. In addition, most of the values on the TIFF are reported by the taxfilers or 

are derived from the reported values; only a very small portion is imputed. Therefore, non-response errors and 

measurement errors should be negligible. In this paper, only the sampling variance of high income statistics is 

considered and the associated variance or CV estimates are presented. 

Two types of variance estimation methods are usually considered for household surveys: re-sampling and 

linearization. Bootstrap and jackknife are the two most popular re-sampling methods used for household 

surveys at Statistics Canada. The jackknife niethod is often used for surveys with multi-stage clustering 

design such as the Labour Force Survey (LFS). In this study, the jackknife is ruled out because it performs 

poorly for estimating the variance of non-smooth estimators such as sample percentiles. Bootstrap variance 

estimators are commonly used in household surveys, such as Survey of Labour and Income Dynamics (SLID). 

The advantage of the bootstrap method is that, 1) it works well for non-smooth estimators under simple 

sampling designs, and 2) it is easy to implement. It is not necessary to develop formulas for the different 

estimators. The bootstrap algorithm for Bernoulli sampling is very simple. The disadvantage of the bootstrap 

is the time and computational resources required. As stated previously, the LAD sample size now is more than 

5 million records. Running the estimation process repeatedly on the LAD for all geography levels would take a 

tremendous amount of time. For example, for Ontario, more than 3 weeks was required to produce all local 

level tables. However, the bootstrap provides a tool to verify other variance estimators for some smaller 

domains; moreover, the bootstrap may be preferable for analytical purposes as the analysts can use the 

bootstrap samples to generate replicates of test statistics and then produce confidence interval estimates. 

On the other hand, linearization methods have long been used in surveys and the theory is well developed. 

Standard variance estimation methods from textbooks can be used only for linear estimator, such as the 

Horvit.z-Thompson (HT) estimator (see Särndal et al., 1991). For a smooth nonlinear estimator, 

Taylor linearization permits the nonlinear estimator to be approximated by a Hi' total estimator for a new 

variable - linear variable. Then, the variance of the nonlinear estimator may be approximated by the variance 

13 



of an HI total estimator which, in turn, can be estimated by the standard methods. For example, suppose 6 is a 

non-linear "smooth" estimator and Z is the associated linear variable. Then, 

V(d) 	V(tESwlzL), 	 (7) 

where S is the sample and zi is the value for the linearized variable attached to unit i. The problem with the 

linearization method is that a linear variable must be found for each estimator and the linearization method is 

not easily generalized. For example, if a quantity in a low percentile group is of interest, the formula for 

variance estimation developed for the top percentile group cannot be reused. However, the linearization 

method does not require replication therefore the computation is fast. In addition, it provides consistent 

variance estimates. The linearization variance estimation method is discussed below. 

As stated previously, the sampling design for the LAD is very simple: Bernoulli sampling with the selection 

probability of 0.2. As a result, the variance formula given by (7) can be simplified as 

	

v(0) 4L€uz, 	 (8) 

where U is the population. In the case where the number of individuals in the population is not available (the 

population counts in some small geographies may not be provided), the variance estimator is then given by 

	

17(0) = 20Les 2,, 	 (9) 
where 2 i  is a proper estimator of z• since zi  may involve some unknown finite population quantities. 

Binder (1983) introduced a unified estimating equations approach for estimating finite population parameters. 

The estimating equations approach assumes that the finite population is a sample from a superpopulation 

model and the sample is a subsample of the finite population. Any finite population parameter B can be viewed 

as a solution of "census" estimating equations: 

U(8) = l u(e,yi) = 0. 
iEU 

The estimator 0 can be found by solving the corresponding weighted estimating equations: 

17(0) = >wt u(6y1 ) = 0, 
tES 

where 11(6) is the HI total estimator of U(0). Under regularity conditions, 0 is a consistent estimator of 0. 

For more details on the derivation of linear variables, see the appendix. For the case where B is a parameter 

vector, u is a vector of the same dimension as 6. 

Suppose 00  is the true value of 6. Taylor linearization around 0 0  leads to 

(U(0) - U(e)) (E[u(y.Y)]l 	- E[u(y,Y)]lo0) 	
[3E[u(O; )]

16=80 I. 	ao 	(e—e). 
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where the expectation is under the superpopulation model. The conditions for the approximation are discussed 

in Randles (1982) and Shao and Rao (1994). Suppose that 0 is a parameter vector. Then, 

1 

 FoE[u(o; 
)]1 

ao 

Therefore, the variance of 6 is 

V(d) V(wu) 
i€S 

—v 	fltkl 
- k.1E1JI 	.j _ 

i)uu 	 (10) 

whereu 
1 roE[u(O 

[ 	
;Y)11 	

U(60,y). Since u may involve unknown quantities, they can be replaced = - 

by the proper estimate ü. As a result, the variance estimator becomes 

t7() (11) 
Irk 11 

Given the formula in (9), the variance estimator in (11) becomes 

= 20ü2T 

'ES 

Thus, it remains to find u, u and ü. 

High income statistics involve the estimation of percentiles (non-smooth statistics) and quantities in the top 
th 

percentile group. The application of estimating equations approach to non-smooth statistics is discussed in 

Binder and Kovacevic (1995) and Osier (2009). 

Let u, = (U1,, u21)T be estimating functions for (, y) where fp  is the ptul  percentile of the income variable 

X and Yp is the quantity of interest for variable Y in the top th  percentile group defined by fp . In this study, X 

and Y are different variables, while both reference papers only discussed the case where X and Y are the same. 

This difference leads to the estimation of their conditional distributions for which a nonparametric method in 

Borkowfet al. (1996) is used. 

Assume that X is a nonnegative continuous variable 2. For, the p1h  percentile of the variable X, and its 

estimator , the estimating equation and linear variable are 

Uji = ifx1 :5 fP 1 - p, 

u j i 	[i[x) — p], 	and f 1  

(') 

2 Some individuals may have negative income values. Since we only consider estimating the parameters in the top 
percentile groups, setting these negative values to zero has little impact. 
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=
[![x :5 

) - 

where fil i  needs the estimation off(e) - the probability density function of X at 

Two possible methods can be used for the estimation of the density function for complex survey data. 

Francisco and Fuller (1991) use the density estimator 

f(x)= 
h 1  + n 2  

where 

,52 

= mse1Y' Wi1'(Xi ~ X}—P1  } 
LES 

Za/2 is the 100 (i - )-th percentile from the standard normal distribution, and h1  and h2  are found by 

solving 

jnf—V wJi(x :5- x - h1) 
- p1 15 _Za/2S} h 1  1Z.I 

. 	 LES  

and inf 
(1

1 
 w[I(x !~ x + h2} 

- p1 ~! h 2  jN 
' 	 iES 	I .  

Lohr and Buskirk (1999) propose a weighted kernel density estimator such that 

where h is the bandwidth and 

f(x) =>Wjcbh(x_x), 
iES 

1 	/ t 2  
h(t) = h f e P2h2 

is the standard normal density rescaled by the bandwidth. The bandwidth is obtained by 
1 

h = 0.79Qn, 

where is the sample interquartile range (IQR). Note that the kernel density estimation is very sensitive to the 

choice of bandwidth, especially at the tail of the distribution. 

In this paper, the method proposed by Francisco and Fuller (1991) is used. As suggested by Rao and Wu 

(1987), a is set to 0.05. Using the data from selected small domains, the variance estimates are shown to be 

very similar to the bootstrap variance estimates. 

For a different variable Y and its corresponding quantity Yp  and estimator PP 1  estimating functions and 

associated linearized variables are presented below for the different cases. More details on the derivation of 

the linear variables for Case 1 is provided in the appendix, using an approach similar to that given in Binder 

and Kovacevic (1995). 
16 



Case 1. Vp  is an average in the top p1h  percentile group 

The mean estimator j2,, is used not only for continuous income variables but also for categorical demography 

variables. For example, to estimate the percentage of male, we only need to create a variable indicating male 

or not, the percentage of male is the average of the indicator variable. The estimating function for Vp  is 

U21 = if; ~!: p}(yj Yp) 

and the associated linearized variable is 

	

N(i—p) {O'p - E[YI]) ('(Xp} - 	 + 	- Vp)). 

By replacing all unknown quantities above replaced by proper estimators, the above formula becomes 

1 
U2i = N(l - p)

[?p 
- [I1) (I(xcp) - 	 + 	- 

A nonparametric method is used to estimate [I] , the conditional expected value of Y given X at 
. 
The 

nonparametric estimator (Nadaraya-Watson kernel estimator with the normal kernel and the same bandwidth h 

for ch)  is given by 

E[YIx] 
- 

- EIESWLYIIPh(X — xi) 

Note that if Y and X are the same variable, then z[Yx] = x. 

Case 2. Vp  is a median in the top p th  percentile group 

Assume that Y is a continuous nonnegative variable. Denote fx(x) and F(x) as the marginal density and 

cumulative distribution function (CDF) of X and fy(y)  and F(x) as the marginal density and CDF of Y. 

Denote F 1y (xIy) as the conditional CDF of X given Y = y and Fy1x(ylx) the conditional CDF of Y given 

x =  X. 

The estimating function for Vp  the median of Y in the top p h  percentile group is 

= ifx1  ~! )[i(y < y) - 0.5], 

and the associated linearized variable is 

U2 = L1...Fxty(iy)1fy(Y) 
f[0.5 - Fy1x (yp Jt p )](ifx ~ ) - p) + if; ~ 4)[i[y ~ y,} - 

where fy(y), F1y(xIy) and  Fy1x(ylx)  have all been defined previously. After replacing all the population 

quantities by their estimates, the formula becomes 

= 	1 	
- 0.51(1{x 15 	- p) + if; =-~ )[ify 5  p) - 

[i 
- 61y(Iy)]fy(y) 

where 	K and 	are the estimators of Fiy, fy  and Fyix  respectively. 

For the estimation of the conditional distribution Fxiy,  one can follow Borkowfet al. (1997), 
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F1(eIy) = P(x c rIy = y) 

= P(F(X) 15  PIF'v(Y) = 

which leads to 

- tES WJfrX(XI) ~ p, 	
- &)I ~ Z 1 6) FY 

- 

ES wi 1 (l' 'Y (Yi) —F'Y(YP) I  <Za/28} 

where 82 = 2-8  Fy- (Pp )(1 
-

and Za/2 is the too (i - )-th percentile from the standard normal 

distribution. Similarly, the conditional CDF Fyix(yI)  is given by 

- 

- wi[(y) ~ Ø?), I(x) - I :5  Zcx/2 8*} 

- p1 :5 z 2 ) 

where 2 = 0•8(1 - p)/n. 

Using the approach used by Francisco and Fuller (1991), the marginal density estimator for h(y) is given by 

ELESWJ[JFY(YL) - 	 ~ Z/} 
R(v —v max 'mm) 

where 	= max (ye : I E S, 	(yt) - TY-QP ) !!~ z12 S} and Ym 1 71  = mm n {y: I E S, 	(y) - 

za /26}. Hence, 

- LswmI[(x) > 	- &)I ~ Z18} 
[i - 	

- 	 R(Ymax  Ymn) 

Case 3. Yp  is a ratio in the top p th  percentile group 

Within a percentile group, the proportion of income total from wages and salary is a ratio. Let Y be the 

variable in the numerator and Z be the variable in the denominator in this ratio, the estimating function and 

linear variable for the ratio are 

/12m = J[x m  ~! p)(y - ypZj ), 

1 
{(E[YI ] 

 - Ypp) (1{xic.cp) - 	 + 	- ypzm )} and 
= E[ZI(X ~ 

1 
= 

[zi(x ~ 	j 
{(E[Y] 

- jpp) 	- 	 + '(.}(Ym - 

where E[Zi(X ~! )j 
- 

- 	 EIwE  

Case 4. yp  is a share for the top th  percentile group 

The estimating function and linear variable for the share are 

= [if; ~!)Yp]yt 

p2i = -1- [E[Y](Ifx :5p) — p)+(i(xm ~!! p)yp )yi}, 	and Py  
18 



= —{E[YIp](i[x1 ~ ) - p) + (i{x ~ } - EL 

where Py  = 1/9 Es WiY1. 

Case 5. Vp  is a product of share and ratio 

When Vp  is a product of a ratio (as defined in Case 3) and a share (as defined in Case 4) such that Vp = 

the estimating function and linear variable are 

(S) (S) 	(R) (R) 
P21 = Y P21 + VP P21 

P~ i (5)). (R) (R). + 	and =  

..(S).(S). 	.(R)...(R). 
P21 = Vp P2i + V P21 

	

(R) 	(R). (S) 	(S). 

	

where p 2 , 	, and p 21  have been previously given for a ratio in Case 3 and 2t 	, and p 	for a 

share in Case 4. 

A special case: Vp  is the count in the top p th  percentile group 

The count in the top pth  percentile group where Vp = N(1 
- 

p) and Pp  = R(1 
- p) is a special case of 

parameter of interest. The variance of j is 

	

= (1— p) 2 V(R) = (1— p)2V 
( 

wi) = (1—p) 2  y 	= 4N(1 - p)2. 

	

L..j 	TrL 
1ES 	 IEU 

Hence, the corresponding CV estimate is given by 

O) /4R(1 - p) 2 	2 = 	= 
Vp 	R(1—p) 

5. Evaluation of the performance of variance estimators 

In this section, the variance estimators are evaluated. The linear variance estimates are compared to both the 

approximate true variance calculated from the TiFF and the bootstrap variance estimates. This evaluation is 

only done for Prince Edward Island (P.E.i.) as it yields the largest variances at the provincial level. 

Suppose 0 is the parameter of interest and & is a consistent estimator of 9. The relative bias (RB) in Table 3 is 

defined as 

RB(0) = x 100%. 

The approximate CV (ACV) of O in Table 3 is defined as 
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FAVê) 
ACV(9) =x 100%, 

where AV(ö) is computed by the formula given in (10). The true parameter values are computed from the 

TiFF. The CV estimator on the sample is defined as 

ap) = 	x 100%. 

The bootstrap CV estimate is based on 1,000 bootstrap replicates (bootstrap weights) and defined as 

JI7b (6) 
xl00%. 

The replicates were generated, using the pseudo-population approach (see Beaumont and Patak, 2012). 

Variance estimates for selected high income statistics are produced. The income variable is the total income. 
Since the parameter estimators have large sample properties, it is expected that the CVs for other provinces 

should be smaller than that for P.E.I. 

Table 3 lists the approximate CV and CV estimates generated from the linearization method and bootstrap 

method for the top 1% and 5% income group in P.E.I. Small differences are observed between the 

approximate CV and the other two CV estimates. The differences observed in the top 5% income group are 

smaller than those in the top 1% income group as the sample size in the top 5% income group is larger. CV 

estimates from two methods are very similar with largest difference being 0.8% for the product of share and 

ratio and these differences become smaller as the income group becomes larger. 

The quality of the estimates in the top 5% income group is better than that in the top 1% group. The CVs and 

RBs generally decrease from the top 1% group to the top 5%. Exceptions include the RBs for the percentages 

of male and married; however, it should be noted that both decrease when the group of records under 

consideration is expanded. 

The linearization method and bootstrap method produce very similar confidence interval (Cl) estimates. This 

implies that the asymptotic normality assumption of the estimators is satisfied. It should be noted that the 

linearization intervals may be slightly shorter than the bootstrap intervals, which is very common for those two 

methods. 

'A'] 



Table 3. Comparison of CV estimates and 95% Confidence Interval (C.l.) for linearization and Bootstraø for estimates for P.E.I (2009 
95 °/s Confidence Interval 

CV 
immillikift~ _i - 'tIon Llna Boots 

We  

IncGrp Measure Variables 	Parameter Estimate RB ACv(0) ui b() lower upper lower 	upper lower upper 

Top 1% Threshold Income 131115 130824 -0.20% 1.90% 1.80% 2.00% 125914 135734 126209 	135439 125486 135660 
CcLr.1s 1098 1099 0 20: 06.0/: 050: CLSOt 1007 1 	1 1075 	1107 1056 1098 

Mean % of Male 78.20% 80,30% . 2.70% 3.20% 3.00% 3,00% . 73.9% 86.7% 75.6% 	5 85.0% 75.57% 85,03% 
'.- oMarred 82.40% 83 50.5 1 30'. 2 80% 2 7505 290'. 7850/ 885.: 79 1.. 	879/. 79 01% 88280/ 

Income 214589 212371 1 00% 570% 460% 460% 188031 236711 193224 	231 193297 231597 
Tv  

65700 53132 -390/. 74005 5 10% 5.00% 52360 73904 55564 	70680 55301 70335 

Median Income 166331 166192 010% 300% 240% 250% 155406 175978 158700 	-.173684 158136 172947 
Tx 48666 48923 0 50 1/1; 3 60% 3 70% 3 90% 45456 52390 45567 	52279 46883 53789 

Age 53 53.5  O.9 	1 10% 1 90% 2 20 	52 55 51 5 	55 5 	52 56 
Rruin Wage n Income 59.70% 6300% 5 50% 480% 4 80% 4 90% 54 5'. 71 5% 57 1%. 	68 9% 56.43% 68.56% 
Share Income 660% 	O% 1 50% 420% 4 	______________________________ 

[OX 11.40% 11.00% -350% 6.50% 3:0. 3:/ 9.4% 12.6% 9.9% 	12.1% 983% 12.10% 
Share By Income share _______________  

Ratio by male 	0/Lt 5.30/9 • .j 7 5.0/a 5.8/o 
Top 51/ Thresnoi income 78128 -0 1054 0 9°°' 0 7575 79449 76838 	9286 762° 799 

Total Counts 5489 5445 0 80% 0 60% 0 60% 0 60% 5337 5381i° 	5509 5375 5500 
Mean of Male 69.30% 72 207/ 4 20% 1 80% 1 8014 1 707/ 56 07/ 784% 59 7% 	74 7 ,V 5983 74 	77/ 

of Married 80 00°/o 82 30% 1 40% 1 30% 1 50% .7.7, 43% 87 3% 80 	84 4% 80 40% 84 45% 
Income 119222 118776 -0.40% 240% 200% 2 10% 113092 124464 114122 	123434 113993 123622 

Tax 32280 31606 _2' -  2 90% 290% 29080 34136 afil, 	29709 33338 
Median Income 97240 97491 0.30% 1 20% 1 	105... 1 200/ 95134 99848 55389 	99593 95417 100040 

Tax 24817 25351 
Age 50 50 0.00% 0.60% 0.60% 1.00% 49 51 49.4 	50.6 49 50 

Ratio MWage in Income 70 80% ---- 

Share Income 18.50 0/. 18.30% -1.10% 1.90% 1.60% 1.70% 17.5% 19.1% 17 7% 	18.9% 17.69% 18.86% 

2  

Share By Income share 13.60% 2.30% 2.70% 

Population Cl for : ± 1.96,Jmse(a) where mse() = ( - 
	

+ AV(). Linear Cl for 0 : 6 ± 1.96fr. Bootstrap Cl is based on 1000 bootstrap replicates (2 
- 6~0.025) , 26 -  
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Estimates and CVs for selected domains and income groups 

Tables 4 and 5 give the high income estimates (blue) and associated CVs (red) for reference years 2009 and 

1988 respectively. These CV estimates were obtained using the linearization method. 

From 1988 to 2009, the number of taxfilers has increased by 47%. In 2009, the TiFF covered approximately 

75% of the Canadian population. At the Canada level, the income threshold for the top 1% has doubled 

between 1988 and 2009. Men or married persons always comprise the majority of the highest income group. 

The share of tax paid by the top 1% group increased from 13.3% to 18.4%. 

For the top percentile groups, the CV for a median estimate was usually smaller than the corresponding mean 

estimate. The CVs for the percentages of remaining in the top 5% in last five years were all less than 5%. 

in general, estimates in both tables are of good quality. The quality of estimates usually depends on the 

number of sampled units in the group of interest. For example, large CVs (>15%) are observed in some female 

top 1% groups that are often very small. For most cases, the 2009 estimates are of better quality than the 1988 

estimates. 

Summary and future work 

In this paper, two methods for variance estimation have been considered for statistics in the high income tables: 

linearization and bootstrap. The estimates of CVs and CIs for these two methods are very close. However, in 

practice, the linearization method is employed as the computing time for the bootstrap method is extreme. 

Note that the linearization method requires the first derivative for each estimator. 

Researchers are often interested in the LAD data at the provincial level or lower. For small or medium samples, 

the bootstrap method may be preferred because of its simplicity. For complex statistics, users of the data can 

produce their variance estimates or estimate their distributions easily by using the bootstrap replicates. 

Therefore, the feasibility of providing users with bootstrap weights when the micro data are released might be 

investigated. 

The LAD contains information on individuals and families, while the high income tables only provide 

estimates on individuals. The potential of producing estimates at the family level can be investigated in the 

future. Since Poisson sampling is not efficient, areas such as the weighting strategy and the calibration on 

demographic total can be studied to improve the efficiency especially for small domain estimates. 
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Cc: Babyak, Cohn - HSMD/DMEM 
Subject: RE: CHMS sampling paper 

Bonjour Christine, 

Est-ce que tu as le numéro de référence pour le document de travail? J'aimerais envoyer 
une copie de ce document a mon client sous peu. 

Merci! 

Suzelle 

From: Gambino, Jack - HSMD/DMEM 
Sent: March-18-13 3:29 PM 
To: Cousineau, Christine - HSMD/DMEM 
Cc: Giroux, Suzelle - HSMD/DMEM; Babyak, Cohn - HSMD/DMEM 
Subject: FW: CHMS sampling paper 

Merci, Suzelle, 

Christine: Un autre Working Paper. J'ai déjà signé le formulaire. 

From: Giroux, Suzelle - HSMD/DMEM 
Sent: March 18, 2013 8:49 AM 
To: Gambino, Jack - HSMD/DMEM 
Cc: Babyak, Cohn - HSMD/DMEM 
Subject: RE: CHMS sampling paper 

Bonjour Jack, 

Here are the final versions we have updated with your comments. 

<<File: Cycle2_Sampling_Documentation_Final_Enghish_Aprihl7_Release.doCx>> 
<< File: 
Cycle2_Echantillon_Documentation_Definitive_Francais_Diffusion..Avrihl7.dOcx>> 

Let me know if everything is to your satisfaction. 

The next step will be to ask Christine Cousineau to format these two documents in a 
bilingual Branch Working Paper. Can 1 go ahead and ask her to do so? 

Thank you! 

Suzelle 

From: Gambino, Jack - HSMD/DMEM 
Sent: March-14-13 12:15 PM 
To: Giroux, Suzelle - HSMD/DMEM 
Cc: Babyak, Cohn - HSMD/DMEM 
Subject: RE: CHMS sampling paper 





I prefer electronic! 

From: Giroux, Suzelle - HSMD/DMEM 
Sent: March 14, 2013 10:59 AM 
To: Gambino, Jack - HSMD/DMEM 
Cc: Babyak, Cohn - HSMD/DMEM 
Subject: RE: CHMS sampling paper 

Thank you Jack! We will make the updates to the paper (both in English and 
French). 

Is it OK if! send you the electronic versions once the changes are made instead of 
printing another paper copy? 

Let me know! 

Thanks! 

Suzelle 

From: Gambino, Jack - HSMD/DMEM 
Sent: March-14-13 10:55 AM 
To: Giroux, Suzehle - HSMD/DMEM 
Cc: Babyak, Cohn - HSMD/DMEM 
Subject: CHMS sampling paper 

I've gone over the new working paper—very well done! I've signed the form. 

I do have some minor comments: 

2.1.4: I believe a CMA has to have a core of 50K and an overall 

population of lOOK. 
2.3.1: "households where all persons were under age 3" sounds 

strange/funny; how about "households where all in-scope persons 

were under age 3"? 
3.1.3, para. 6 (and elsewhere): the increase in efficiency was 6.6 

percentage points, not 6.6%! (you could also say 9.6% since 6.6/68.6 = 
.0962) [I realize this is another one of my losing battles on language.] 

Jack Gambino 
Director / Directeur 
Household Survey Methods I Méthodes denquêtes auprés des menages 
Statistics Canada / Statistique Canada 
R.H. Coats 16 0 
613-951-0334 I  fax 613-951-3100 
gambinostatcan.qc.ca  
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Appendix: Deriving linear variables 

Let U = (1,2, ...,N} be the index of a finite population of size N and (x,y) be the value of the variable 

vector (X, Y) attached to unit i, for I E U, where (X, Y) are two nonnegative variables and X is continuous. Let 

fp  be the 	percentile of X for the finite population and Yp  be a quantity of interest of Y for units in the sub- 

population U,, = (1: 1 E U, x ~: 	Let S be a sample selected from U under a certain design. Denote (c,, ?.) 
as the sample estimators of (, yj. 

Further, assume that [(x L , y) I i E U} is a random sample from a super-population model with joint probability 

distribution function F(x, y) and joint density function f(x, y). Define the joint empirical distribution function 

(EDF) FN  based on the finite population as 
1 v' 

FN(x,y) = L '(xx.y ~y) 
1W 

If N is unknown, the pseudo joint EDF PN based on the sample is given as 

lv PN(x,Y) 	Wl(x .~xy . 5y) 
LES 

where 'A = 1 if iSA; otherwise 'A = 0. 

Under regularity conditions and certain conditions for complex sampling design (see, Isaki and Fuller, 1982 

and Krewski and Rao, 1981), 

FN(x,y) * F(x,y) for any (x,y); 

PN(x, y) - FN(X, y) 0 for any (x, y). 

For the estimating equations approach, finite population parameters e = (,, yr,) are viewed as a solution of 

"census" estimating equations for super -population model parameters, 

U(9) = I U (0; Xi , Yi) = 0 or 
f 

 u(O;x,y)dFN 
IEU 

and the estimators O = (, j7,) can be found by solving the corresponding sample weighted estimating 

equations 

(7(9) = 	w1u(0; x 1 , y 1 ) = 0 or f u(0; x, y)dPN = 0. 
I CS 

Suppose 00  is the true parameter value, it is already known that 

O 	0, 

where "-" means convergence in probability under the design. 
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Thus, the weighted estimating equations can be decomposed as 

o = f u(§; x, y)dP, 

= f [u(&x,y) - u(Oo ;x,y)]dF + f u(Oo ;x,y)dP + R, 

where the remainder R = 	E[u(y, Y)]I.) - (0(e0 ) - E[u(60 , Y)])} . Randles (1982) and Shao 

and Rao (1993) have shown R = 	- 6I) under some regularity conditions. Thus, R is negligible for 

large samples. 

The above approximation leads to 

0-00 	
IÔE[u(9;X, )I11 f u(OO;x,y)dPN 

w1u(60 ;x i,y) 
iES 

where 

1 

F
M[u 	 —1 

'hI 	u(90;x,y). if(00;x,y) = 
- 

For the first case where 	is the pt_percentiIe  of X and Vp  is the average of Y for units in U, the top pth 

percentile group, the linear variables are derived below. 

The estimating function for (, VP) are u = (u1, u2 )T where 

Uj = '(xp) - P' 

= 	- vp). 

Then, 

ÔE[u1] OE[u1 ] 
aE[u(e; X, Y)] - 	 t3ep 	t3Yp  

- aE[u7 ] ÔE[u2 ] 
ac p 	aY 

OE[u 1 ] 	______ where 	= 	
, OE[uj] = 

t3 p 	 '3 Yp 

aE[u2] - OE ['{x~ )Y] 	
- 0  fZ  Jyf(x, y)dydx 
- 

0Sp - 	 O4p 	+ 	 +ypf( )afp 

= 
- 

 

f

OD 

yf(,,y)dy +yf(e) = (y - E[YIe])f(e). 
o 

and 	=P(x 	i — p. oyp  

In a partition matrix, 
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0  (All  
- A 21  A22  

where A ll  and A 22  are non-singular, the inverse of A is given by 

A' —( 	Aj' 	0 
t 	Al A 	A1 	A1 
\1122 "2111 	/122 

Therefore, 
1 

u = -_____ 
Nf() ['{Xsp) - PI 

1 
N(1. 

- 	

- E[YI]) ["{X~ .p) 
- 	

+ 	
- Vp)). 

By replacing the unknown (Juantities in ul and u by their proper estimates, the following formula are derived 

ii u 1  = 
- f() 	- P 

1 

= R(i - [Up - £[YII) ['(5) 
- 

P] + 1{x)(Yi - 

For the estimation ofE[YI], the non-parametric estimator (weighted Nadaraya-Watson kernel estimator) is 

E[YIx] = 	l.(x)y 
iES 

wK(—) 	 1 	 2 

where 1(x) = 	 with h = O.79niQ ( is the sample IQR) and K(t) = exp  
Ek€SwkK( h ) 	 2 
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