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ABSTRACT 

A robust Taylor linearization variance estimator under stratified multistage sampling and 

generalized regression estimation is proposed. The robust variance estimator is obtained by 

linearizing the jackknife variance estimator. Properties of the proposed variance estimator, 

the standard linearized variance estimator, and the jackknife variance estimator are studied 

through a simulation study. All of the variance estimators performed well both uncondi-

tionally and conditionally given a measure of how far away the estimated totals of auxiliary 

variables are from the known population totals. 
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RÉSUMÉ 

On propose ici un estimateur de la variance de linéaxisation de Taylor robuste pour 

l'échantillonnage multiple stratiflé et l'estimation de regression généraiisée. L'estimateur de 

la variance robuste est obtenu par la linéarisation de l'estimateur de la variance jackknife. 

Dans une étude de simulation, on examine les propriétés de l'estimateur de la variance 

propose, de l'estimateur de la variance linéarisé ordinaire et de l'estimateur de la variance 

jackknife. Tous ces estimateurs de la variance ont donné de bons résultats, avec ou sans 

conditions, avec iine mesure de la distance qui sépare les totaux estimés pour les variables 

auxiliaires des totaux de la population connue. 



VARIANCE ESTIMATION IN STRATIFIED MULTISTAGE SAMPLING 

Wesley Yung and J.N.K. Rao 

1. Introduction 

Large-scale sample surveys often use stratified multistage designs with large numbers 

of strata, L, and relatively few primary sampling units(clusters), nh(>  2), sampled within 

each stratum. We assume that subsampling within sampled clusters is performed to ensure 

unbiased estimation of cluster totals, YhI, i = 1, ..., nh; h = 1, ..., L. 

From the specification of the survey design, basic weights whk(> 0), attached to the 

(hik)tIz element (ultimate unit), are obtained. Often these basic weights whik are subjected to 

post-stratification adjustment to ensure consistency with known totals of post-stratification 

variables. In the case of a single post-stratifier, the weights are ratio-adjusted to the known 

population counts(e.g., age-sex counts). To handle two or more post-stratifiers with known 

marginal population counts, the weights Wh1k  can be calibrated through generalized regres-

sion(see section 4), as in the Canadian Labour Force Survey(LFS). 

The LFS uses the jackknife method for estimating the variance of the generalized re-

gression estimator. This method is computer-intensive but it is known to possess good 

conditional properties, given the estimated post-stratification counts. For example, in the 

context of simple random sampling, Royall and Cumberland (1981) have shown that the 

jackknife variance estimator is approximately equal to a robust Taylor linearization variance 

estimator. 

The main purpose of this paper is to present a robust Taylor linearization variance es-

timator under stratified multistage sampling and generalized regression estimation. This 

is obtained by linearizing the jackknife variance estimator. In the case of a ratio-adjusted 

post-stratified estimator, this variance estimator is identical to Rao's (1985) variance esti-

mator. The proposed linearization variance estimator is computationally simple and can 



be implemented using software packages that employ the linearization method, such as PC 

CARP, SUDAAN or Statistic Canada's Generalized Estimation System (GES). 

Section 2 will introduce the jackknife variance estimator for the basic expansion estimator 

of the total, Y. Section 3 will present the poststratified estimator along with its jackknife 

and linearized jackknife variance estimators. These results will be extended to the case where 

there are two or more poststratification variables using the generalized regression estimator 

in section 4. Section 5 deals with variance estimation for a ratio of two totals, both of which 

have been estimated using a generalized regression estimator. Finally, results of a simulation 

study will be presented in section 6. 

2. Basic Estimator 

Using the basic weights Whik,  an unbiased estimator of the population total Y is of the 

form 

= 
	 (2.1) 
(hik)s 

where .s denotes the sample of elements and Yhik  is the value of the characteristic of interest 

associated with the sample element (hik)cs. For simplicity, we assume complete response in 

this paper. 

It is common practice to sample clusters without replacement. However, at the stage of 

variance estimation, the calculations are greatly simplified by treating the sample as if the 

clusters are sampled with replacement. This approximation generally leads to overestimation 

of the variance of k, but the relative bias is likely to be small if the first-stage sampling 

fractions are small. 

An estimator of the variance of Y is simply given by 

	

L 	1 nh 

v(') = E (7'4 - rh) 2  = v(rhl), 	 (2.2) 
flh(flh - 

	

h=1 	 ) i=1 

where Thi = >k(flhWhik)Yhik, and rh = 	Zi  rh.  The operator notation v(rh) denotes that 
nh 

v(') depends only on the rhl's. 



To introduce the jackknife method, we need the estimator Y(gj ) for each (gj) obtained 

from the sample after omitting the data from the the jtF  sampled cluster in the gth  stratum 

(j = 1 ..., n9 ; g = 1, ...L). It is simply obtained from (2.1) by letting Wgjk = 0, changing 

Wgik(i 0 j) to flg Wgik/(flg  - 1) and retaining the original weights Whik for h g, i.e., 

I o n 	if(hi)=(gj) 

Whik(gj) = 	(nh—i) Whk if h = g and i j 
I, Wjj- 	if hg 

These jackknife weights, Whjk(gj),  are calculated for each cluster (gj) and 

Y(gj) = : i: Whjk(gj)Yhik. 
(hik)u 

The jackknife variance estimator is then given by 

1 n  
vj(') = 	

flg  - 	 - 	
(2.3) 

g=1 flg 

The variance estimator (2.3) is applicable to general statistics, say = g('), by simply 

replacing Y(gj ) and Y with 0(g)  g(i"9i)) and 9 respectively. In the linear case, 9 = Y, the 

jackknife variance estimator is identical to the customary variance estimator (2.2). 

3. Post-Stratified Estimator 

Suppose the population is partitioned into C poststrata with known population counts 

c = 1, ..., C. We will use the prescript c to denote post-strata. An estimator of M is 

given by 

ck = 	 ( 3.1) 
(hik)a 

where cs is the sample of elements belonging to the c-th post-stratum. Similarly, an estimator 

of the post-stratum total Y is 

c '  = E Whjkyhjk. 	 (3.2) 
(hik)s 
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Using the estimators Y and M, we obtain a post-stratified estimator of the total Y as 

YPS = >2 	Y. 	 (3.3) 

We can rewrite (3.3) as 

= >2 >2 cWhikl/hik 	 (3.4) 
C (hik)ca 

where cWhik = wh1k(M/M) is the ratio-adjusted weight for (hik)s. If Yhik  is the indicator 

variable for a post-stratum, say c, then 	M, thus ensuring consistency with known 

totals, M. 

The customary Taylor linearization variance estimator is given by (2.2) with rjj changed 

to 

rhi = >2 >2(nhwhik) cehik, 
C ko 

where eh1k = Yhik - Y/Jcf for the kt" element in the (hi)th cluster belonging to C S, i.e., 

VL(Y5) = 
	 (3.5) 

Rao (1985) proposed a robust linearization variance estimator using the ratio-adjusted 

weights whk: 

VR(Y 8 ) = v(r) 
	

(3.6) 

where 

= >2 >2(nh Cwhk) ehk. 
C kcs 

Turning to the jackknife method, we need to recalculate the post-stratification weights 

cWhik each time a cluster (gj) is deleted. This is done by using the jackknife weights Whjk(gj) 

in (3.1) to get c Jct(g,) and then using cwhik(gj) = ( C M1M(9 ))whk(gj) to get 

= E >2 cWhlk(gj)Yhik. 
C (hik)cs 

The jackknife variance estimator is then cbtained as 

1 Tlg 
flg - >

i: 	- c'] 2 . 	 (3.7) 
g1 	72 



By linearizing the jackknife variance estimator (3.7), we obtain a robust variance estima-

tor which is identical to Rao's robust variance estimator (3.6). In the important special case 

of nh = 2 clusters per stratum, (3.6) and (3.7) are in fact asymptotically equal to higher 

order terms, as the number of strata L increases. Proofs of these results will be given in W. 

Yung's Ph.D thesis. 

4. Generalized Regression Estimator 

To handle several post-stratifiers with known marginal population counts, we can use a 

generalized regression estimator of Y by using indicator auxiliary variables to denote the 

categories of the post-stratifiers (Huang and Fuller, 1978; Deville and Särndal, 1992). 

Let Xhk  be a vector of auxiliary variables with known population totals X. The gener-

alized regression estimator of Y is then given by 

(4.1) 

where 

x = 
(hik)cs 

and h is the vector of estimated regression coefficients 

> WhXFkX 
(hik)cs 

= 

where 

A_i 
= 	Wh:kVhjk, 

(hik)s 

and 

U 
(hik)5 

with Vh 2 k = XhjkXk, and UhIk = XhjkYhjk. 
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It is readily verified that, 

Xr =X, 

thus ensuring consistency with known totals X. 

The post-stratified estimator, kp,,  is a special case of (4.1) by letting XhIk  denote the 

vector of indicator variables for the post-strata. In this case,  

('M, ..., aM)T , and I3 = (1k, ..., ci)T  with = '/ICf. Thus, 

= + 	- = 

The generalized regression estimator may be rewritten as 

= >i2 	 (4.2) 
(hik)cs 

where 

	

= wh1kahk 	 (4.3) 

is the calibrated weight with 

ahk = 1 + 4Ik A_ 1 (x - 

In the special case of kP. , we have ah1k = M/Icf for (hik)€s. 

Turning to variance estimation, the customary Taylor linearization variance estimator is 

again given by (2.2) with rhi  changed to 

rhl E(nhwhik)ehik, 

where 

	

ehk = Yhik - Xh 1 k 
	 (4.4) 

i.e. 

VL(Yr ) = 

It may be noted that the ehk  may be rewritten as 

T A—i 
Chik 	!/hik - Xh 1k.ti. 

(4.5) 

1.1 



This alternative form of ehk  may be computationally more convenient. 

For the jackknife method we need to recalculate the calibration weights W1k  each time a 

cluster (gj) is deleted. These weights are given by 

	

Whik(gj) = wh1k(9J)ah1k(9), 
	 (4.6) 

where 

ahik(gj) = 1 + X k A gij) (X  

A (93) 	whk(9 )Vhjk, 
(hik)ca 

and 

X(gj ) = E Whk(gj)Xh1k. 
(hik)cs 

Denote the resulting generalized regression estimator as 

Yr (gj) = E Wjk(gj)Yhik 
(hik)s 

= 1' gj) + (X - X( . ) )TB()  

where B(91 ) is the vector of estimated regression coefficients when the (9j)th  cluster is deleted. 

The jackknife variance estimator of Yr  is then given by 

	

vj() = 
	

flg  1 	
- 	 (47) 

Using a Taylor series expansion, we linearize the function 

f(c(gj ) ) (gj),(gj)) = Y(93 ) + (X - X (9) )T (9J)  

about the full sample estimates (i', i,  ) to obtain the linearized jackknife variance estima-

tor. In linearizing (4.7) we use the following relationships: 

( E WgjJgjk - 	i W9kY9k) , 	 (4.8) Y) = n9  - 1 \(gik)a 	 (gjk)s 

= 

	

i 	

((gik)cs 
WgikXgk - flg 	WikX9ik) , 	 (4.9) 

	

- 	 (gjk)ca 
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and 

B(92 ) B + 	- D9 ), 	 (4.10) 

where 

Cgj = 	
1

1 
(U9 - u9 ), 

flg  

with Ugj = Ek(flgwgik)ugik and 

D9 	
1 

1(V9Vg1), 
flg  - 

with V9, = k(n9w9jk)V9jk. Relationship (4.10) can be obtained using the matrix equality 

(I + PQ)' = I - F(I + QP) 1 Q. 

This leads to a robust linearization variance estimator 

VJL(Y) = v(r) 
	

(4.11) 

with 

= >(nhwk)ehik 
k 

where W1k is defined in (4.3) and ehk  is defined in (4.4). Details of the proof will be given in 

W. Yung's Ph.D thesis. It is interesting to note that (4.11) is similar to the model-assisted 

variance estimator proposed by Särndal et al. (1989) in the context of a superpopulation 

model appropriate for unistage sampling. 

The computation of the jackknife variance estimator involves the inversion of the matrix 

A (9)  for each (gj). This can be avoided by retaining the inverse for the full sample, 

and then using modified weights 

Whik(g,) 	Whik(gj)6hk(gj) 	 (4.12) 

with 

ahk(9J) = 1 + (whlk/whlk(9J)) x'hIkA'(X - X(93)). 



The resulting estimator of Y, when the (gj)-th cluster is deleted, is given by 

Yr (gj) = 	Whik(gj)Yhik 
(hik)s 

and the corresponding jackknife variance estimator is 

V;9 

Vji('r ) = 	n9  —1 	
['r(gj) - 	

( 4.13) 
g=1 	9 j=1 

It is readily seen that (4.13) is exactly equal to the customary variance estimator (4.5). 

However, an advantage of the jackknife method is that it is readily applicable to nonlinear 

statistics unlike the Taylor linearization method. An example of this is given in the next 

section. 

5. Estimation of a Ratio 

Often a ratio of two estimated totals is required. For example, in a family expenditure 

survey, one may be interested in the proportion of income spent on clothing. Let 

be a generalized regression estimator of the total amount spent on clothing, Y. Similarly, let 

2r2+(X)T 2  

be a generalized regression estimator of the total income, Z. The proportion of interest is 

0 = Y/Z, and can be estimated by 

9_Yr /Zr . 

The jackknife variance estimator is simply given by 

g 	

g l:[o o]2 	 (5.1) 

where 

9 (gj) = Yr(gj)/Zr(gj). 



Linearizing (5.1), we obtain a robust linearization variance estimator 

vJL( 0) = v(rh1 ) 

where 
1 

rhl = 	(nhwk)e1k 
Zrk 

ehk = ehlk - - 7- eh2k, 
Zr  

ehlk = Yhsk - Xh 1kBl 

- 

Chik = Zhjk - X,,iJ32. 

6. Simulation Study 

A simulation study was conducted to investigate the finite sample properties (both condi- 

tional and unconditional) of the jackknife and the linearized jackknife variance estimators for 

the poststratified estimator, Yr,. An artificial population was created with 100 design strata, 

20 clusters per strata and 2 poststrata cutting across the design strata. This was achieved 

using a method similar to the one given in Casady and Valiant (1993) and is described 

below. 

We would like a common mean within a poststratum, but different means across post- 

strata (i.e., E(yhk) = rY for(hik)cU where U denotes the population of units in the cth 

poststratum). The size of the (hi)th  cluster, say NhI,  was generated as a realization of a 

Poisson random variable with mean 20. Once the Nh i was generated, the numbers of units 

in the 2 poststrata (ie., jNh, 2 NhI) were determined using a multinomial distribution with 

parameters Nh1  and p = (0.30,0.70). 

The value of the variable of interest for the (hik)th  element was generated as 

with 

and 
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ljhik = c11  + Chil + EMU + rIEhik3Nhi 	(hik) 

where the 's are independent, standardized chi-square variates with 6 degrees of freedom, 

and c/1 = 50c, c = 1, 2. The 's induce correlation between the yh2k's  in the same cluster and 

the correlation depends on whether or not the units are in the same poststrata. This process 

was repeated 20 times in each of the 100 design strata, giving a total of 2,000 clusters. 

A two-stage sample with two clusters from each stratum was selected as follows: clusters 

were selected by simple random sampling with replacement, independently in each stratum, 

while within each sampled cluster, 15 units were selected by simple random sampling without 

replacement (SRSWOR) or if a sampled clusters contained fewer than 15 units, all units in 

the cluster were selected. Using this procedure, a total of 10,000 independent samples were 

generated from the finite population for the simulation study. 

From each sample we calculated Y, Y,,, vL(Y), vj(,), and vJL(Y5).  We also included 

a shortcut jackknife variance estimator v( 3 ), obtained by using the full sample ratio 

adjustment, M/Jt'I, instead of M/M(9 ) when the (gj)th  cluster is deleted, i.e. 

= i 
(hik)ca C4 

The linearized version of v(,) is the same as (3.6) with r, replaced by 

* r = L1 2.... flhcWhik!Ihik. 
c 

From this, it is clear that v() should overestimate the true variance of 

The empirical mean squared error, EMSE, was calculated as 

1 	10000 
EMSE = 	> 	- Y) 2  

10000 

where Y is the known total. Table 1 reports unconditional results showing the Monte Carlo 

expectation of the variance estimators and the relative biases over the 10,000 samples. As 

11 



predicted by the theory, the jackknife and the linearized jackknife variance estimators are 

approximately equal and are good estimators of EMSE. The usual linearization variance 

estimator also appears to be a good estimator of EMSE. The shortcut jackknife variance 

estimator seriously overestimates the EMSE, reinforcing the fact that reweighting for each 

deleted replicate must be done correctly. 

Table 1 

Unconditional Relative Biases of Variance Estimators 

E(vJL) E(vj) E(v) EMSE E(VLI 
16 916 

(-0.7 
943 

(-0.4 %) 
16 943 

(-0.4 %) 
56 864 
(236 %) 

16 936 

For studying conditional performances, a measure of how far away X = ( 1 M, 2 M)T was 

from X = ( 1 M, 2M)T  was calculated for each sample. This measure of bias is given by 

B = 

Based on this bias measure, the 10,000 samples were first sorted in ascending order and 

divided into ten groups of 1,000 samples each. EMSE's and Monte Carlo expectations of 

the variance estimators were then calculated within each of the 10 groups and are given in 

Table 2. 

Table 2 

Conditional Properties of Variance Estimators 

Group E(vL) E(vJL) E(vj) E(v) EMSE 
1 17 670 17 238 17 238 56 036 17 698 
2 17 374 17 131 17 131 56 539 16 821 
3 17 290 17 128 17 128 56 823 17 266 
4 17 124 17 039 17 039 56 986 16 307 
5 16 973 16 942 16 942 56 700 17 398 
6 16 839 16 876 16 876 57 039 16 952 
7 16 785 16 883 16 884 56 916 16 080 
8 16 586 16 748 16 748 57 215 17 479 
9 16 524 16 762 16 762 57 200 16 637 
10 16 267 16 668 16 668 57 172 16 641 

12 



As we can see from Table 2, E(VL), E(vj) and E(VJL) are again approximately equal and 

appear to track the conditional EMSE. E(v) and E(VJL)  are almost identical in each of the 

10 groups, supporting the claim that they are equivalent to higher orders when 2 clusters are 

selected per stratum. The linearization variance estimator, vL(Y 3 ), also performed well in 

tracking the conditional EMSE. On the other hand, the shortcut jackknife variance estimator, 

seriously overestimates the conditional EMSE in each group, as in the unconditional 

case. 

7. Work in Progress 

The simulation study also included an optimal regression estimator, but those results are 

not reported here. The optimal estimator is approximately unbiased, conditionally given X, 

unlike the generalized regression estimator, k,,  and is more efficient than '. Results from 

the simulation study support these claims. 

Rao and Shao(1992) obtained consistent jackknife variance estimators under imputation 

for missing data, using the idea of adjusted imputed values. Rao (1993) obtained linearized 

versions of these jackknife variance estimators. However, they have considered only the 

basic estimator 1>.  We are at present extending their work to post-stratified estimators and 

generalized regression estimators. 
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