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Gurupdesh S. Pandher 
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Household Survey Methods Division, Methodology Branch 
Statistics Canada, Ottawa, K1A 0T6 

Abstract 

In a survey re-engineering context, the most efficient sample design and estimation 
strategy holds the promise of offering the largest reduction in the sample size (and survey 
costs) for any given level of desired precision. The redesign methodology developed in 
this paper is directed towards identifying an efficient sample design for surveys of skewed 
populations (eg. business, agricultural, and institutional populations) under the 
generalized regression estimator. 

A scheme called the "Transfer Algorithm" is proposed to find an optimal 
partitioning of the skewed population into the take-all and sampled groups. The criterion 
for constructing these groups is based directly on the design variance of the regression 
estimator under a flexible range of sample selection designs (eg. SRS, pps, generalized 
pps). The Transfer Algorithm is then iteratively integrated with a sample size 
determination step. The combined procedure identifies the globally minimal sample size 
and population allocation required to meet the precision constraint under the desired 
sample design. 

Desirable mathematical properties of the Transfer Algorithm such as existence 
and optimal ity of solution are established. An equivalence result is obtained allowing the 
solution to be alternatively determined in terms of simple quantities computable directly 
from the population auxiliary data. The optimality of the combined procedure is also 
established. The theoretical results are reported in Theorems 1 to 4. The completed 
methodology is illustrated using Ontario provincial data from the Local Government 
Finance Survey and a graphical representation of the combined methodology is given. 
Using total provincial expenditures as the control variable, a 52% reduction in the sample 
size was achieved at a precision of 2% coefficient of variation. 



Méthodologie optimale de remaniement du plan d'échantillonnage 
des enquêtes a populations asymétriques 

suivant l'estimateur par regression généralisé, 
avec application au remaniement de l'Enquata sur lea finances 

des administrations locales 
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Division des méthodes d'enquêtes sociales 
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Résumé 

Lorsqu'il faut remanier une enquête, la meilleure stratdgie 
déchantillonnage et d'estimation eat celle qui permet de réduire au 
maximum la taille de l'échantillon (et donc lea coüts denquête) 
tout en garantissant le degre de precision souhaité. La méthodologie 
combinée présentée dans le document s'attaque au problème gui se 
pose & qui veut trouver la taille minimale de l'échantillon. Elle 
permet de determiner la taille optimale de la population et la 
meilleure repartition de léchantillon entre lea unites des groupes 
sà tirage complet* et céchantillonnés* que lou retrouve souvent 
dana lea enqu&tes a populations asymétriques (p.  ex., lea 
populations d'entreprises, d'exploitations agricoles et 
d'étab].issements institutionnels). 

Un ensemble de règles appelé ralgorithme de transfert eat 
propose pour un cloisonnement optimal de la population asymétrique 
entre les groupes a tirage complet et échantillonnés. Le critère 
utilisé pour construire ces groupes eat fondé directement sur la 
variance de plan de lestimateur par regression suivant une gamme 
variable de plans déchantillonnage (p. ex., AS, échantillonnage 
PPT, échantillonnage stratifié). L'algorithme de transfert eat 
ensuite intégré itérativement a un pas de determination de la taille 
de léchantillon pour produire une methodologie combinée gui permet 
de connaItre la taille minimale de léchantillon global, le 
cloisonnement optimal de la population et la repartition optimale de 
léchantillon compte tenu du degré de precision exigé par le plan 
d' échantillonnage retenu. 

Las propriétés mathématiques souhaitables de l'algorithxne de 
transfert, notanunent l'existence et l'optimalité de la solution, 
sont établies. Un résultat d'équivalence permet aussi d'exprimer la 
solution en quantités simples calculables directement a partir des 
données auxiliaires de population. L'optimalité de la procedure 
combinée de remaniement du plan d'écharitil].onnage eat également 
établie. Ces résultats théoriques sont démontrés dana les théorèmes 
1 a 4. La méthodologie eat illustrée par lea dorinées provinciales 
tirées de l'Enquête sur les finances des administrations locales; la 
méthodologie combinée eat représentée graphiquement. 



Surveys of Skewed Populations: Optimal Sample Redesign Under the 
Generalized Regression Estimator 

with Application to the Local Government Finance Survey 

Gurupdesh S. Pandher * 

1. INTRODUCTION 

In many survey situations additional information is available on all population units before 
the survey is undertaken. This auxiliary information is frequently useful in devising a more efficient 
sample design and estimation strategy. In a survey redesign context, the most opttmal strategy holds 
the promise of offering the largest reduction in survey costs by requiring the lowest sample size 
necessary to meet the desired precision constraint on the estimates. In repeat surveys of skewed 
populations, an efficient sample design and estimation strategy may be realized by exploiting a) the 

correlation structure between the size-related auxiliary information x (eg. population of municipality, 

employees in a firm, farm acreage) and the survey variables y (eg. municipality expenditures, value 
of shipments, farm yield) and b) the variance relationship between the survey variables and the 
auxiliary size information. 

In this paper, a comprehensive sample redesign methodology is developed for skewed 
populations with the ultimate objective of bringing about maximal reductions in the current sample 
size while ensuring a desired level of precision for the generalized regression estimator (GREG) of 
the population total. This work was motivated by the redesign of the Local Government Finance 
Survey (LGFS) conducted by Statistics Canada's Public Institutions Division. Financial information 
(eg. revenues, expenditures, debt, etc.) obtained from local government units is used in the 
estimation and publication of financial statistics on a provincial and national basis. Although the 
work presented in this paper is motivated by a concrete application, the sample design methodology 
devised applies generally to all surveys based on skewed populations (eg. agricultural, business, and 
institutional surveys). 

* Gurupdesh Pandher is Methodologist with Survey Analysis and Methods Development Section, Household 
Survey Methods Division, Methodology Branch, Statistics Canada, 16th Floor, Coats Building, Ottawa, 
Ontario K1A 0T6, Canada. The research reported in the paper was sponsored by Public Institutions Division. 
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In identifying an efficient new sample design, the overall methodology addresses and 
integrates the solution to three problems: 

Creation of the "Take-all" and "Sampled Groups" 
Since the variability of the survey response Yk  tends to increase with the size of the unit Xk, 

it is common in skewed populations to sample the largest x-valued units with certainty in order to 
improve the efficiency of the population estimators. The demarcation of the population into the non- 

overlapping "take-all" U6 ={1,. ,N} and "sampled" groups Ub ={1,.. . ,Nj is obtained through 

a new scheme named the "Transfer Algorithm". 

Choosing an Efficient Sample Selection Scheme 

Let p(s; X) = 06(s) pb(sb ; X)) represent the complete sample design for U6  and Ub  where 

the sample design parameter X determines the type of sample selection implemented in the sampled 

group Ub • The sample inclusion probabilities due to pb(sb ; X) may be expressed as 

kO') = b (xr / uxf). k€ Ub.  Note that the parameter X defmes a broad class of sample designs 

with simple random sampling (SRS: X =0) and probability proportional to size sampling (pps: X =2) 
as particular cases. Design optimality results (Godambe and Joshi, 1965) allow the identification of 

the most optimal value for the sample design parameter X. 

Minimal Sample Size Determination 
The third component of the overall methodology is aimed at finding the minimal sample size 

required to meet the imposed precision constraint for the estimator. 

The combined procedure developed in the paper integrates these components to enable a new 
globally minimal sample size and optimal population partitioning to be determined under a flexible 
range of sample selection strategies (eg. SRS, pps, generalized pps). 

First, an iterative scheme - called the "Transfer Algorithm" - is developed which finds an 
optimal allocation of population units between the take-all and sampled population groups in the sense 
of minimizing the variance of the generalized regression estimator. Desirable mathematical 
properties of this algorithm such as existence and optimality of solution are established. An 
equivalence result is also obtained allowing the solution to be determined in terms of simple 
quantities computable directly from the population auxiliary data. 
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The Transfer Algorithm is then synthesized iteratively with the sample size determination step 
to find the minimal sample size needed to satisfy the imposed precision constraints. It is shown that 
the combined methodology produces a sequence of sample sizes and population partitionings which 
converges to a globally optimal solution where further reduction in the sample size is not possible 
given the imposed precision constraint. The procedure is illustrated using provincial data from the 
Local Government Finance Survey in Ontario and a graphical representation of the combined 
methodology is given. 

Lavallee and Hidiroglou (1988), Hidiroglou and Srinath (1993) (subsequently denoted as 
L&H and H&S, respectively), and Glasser (1962) have proposed alternative methodologies for 
constructing the take-all and sampled groups within the context of stratified SRS design. The 
proposed approach differs from other methods in three respects. Firstly, the population demarcation 
is obtained under a flexible range of sample selection strategies (eg. SRS, pps, generalized pps). 
Secondly, the criterion for constructing the population demarcation is based on minimizing the 
variance of the GREG estimator of the total under the desired sample selection strategy (Glasser and 
L&H base their allocation on minimizing the within-stratum sum-of-squares x; H&S use the total 
regression sum-of-squares under a regression model with a compulsory intercept assuming SRS). 
Thirdly, the proposed methodology explicitly captures the size-induced heteroscedasticity present in 
skewed survey populations which has been ignored in other frameworks. 

2. SURVEY FRAMEWORK 

The model assisted survey framework is adopted for the skewed population whose auxiliary 

and survey characteristics are denoted by C, = {(x 1  ,y),... , (xN,yN)}. In this framework, underlying 

the class of generalized regression estimators for the population total (GREG) are regression models 
(Samdal et. al. 1992, p.255) which enable the estimators to exploit the correlation between the 

survey variables y and the auxiliary covariates x. Different model assumptions on the deterministic 
and stochastic components of the underlying model lead to different regression estimators for the 
population total. For example, a ratio-form heteroscedastic model 

YkI5Xk+€k, 	 (2.1) 

with the error €— (0, a) and the variance structure given by c = cx (2.2) leads to the following 

GREG estimator for tb = 	Yk 
k € U, 
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tRb = EUxkB + E(Ykxk) (2.3) 

where ,á 
= ( 

E Yk' 
) 

/ 
( 	

;i;) is the 

sample-based probability weighted estimate 
of the population regression parameter 

B = (Uyk) / (U, xk). 

It is helpful to visualize the 
population d a t a g i v e n by 

C={(x 1 ,y 1),... )(x,y,.,)) as a scatterplot 

of N points (see Figures 1 and 2). In 
skewed survey populations the variability in 

the survey response y tends to increase 

with the size (x) of the population unit. In 
the population scatter, this behaviour shows 
up as a "fanning out" pattern of points 

(xi , Y) along the population line B x as the 

value of x increases. Hence, the error 

variances O'k  are an increasing function of 

Xk. This relationship may be specified as 

h(x). A parameterized form of h(xk) 
proposed by Sarndal et. al. (1992, p.462), 
which is general, yet simple enough to be 

practically useful is h(xk) = c x, where 

'y ~tO is the heteroscedasticity parameter. 

ig.l Exanple of POpulotorl Scatterplot (X, Y) 

X 	Population Size. V - Revenues (Orta'o) 
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F'iq.2 Example of Population Residual Scotterplot (x. E:) 

X = Population Size. V = Revenues, E = V - 8.21 (Ontario) 
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Once the sample has been selected, the ultimate purpose is to estimate the population total t = t,,+ t,, 

for the survey variable y where t0  and t represent the sub-totals for the take-all and sampled 

groups, respectively. The total across both groups t = t0 + t is estimated by I = ta + tRb where 

i= t0=E U. yk since all units are sampled in the take-all group and 1 is the GREG estimator under 
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the relevant model. The anticipated variance of 1Rb  (defmed as the variance with respect to both the 

design and the model, denoted p and , respectively) is expressible as 

V(IRb) 	VP  (IRb) = E (_L - 1) a 	 (2.3) 
kU Tk 

Furthermore, ifa is given by a= cx (2.2), then design optimality (Godambe and Joshi, 1965) 

implies that the optimal sample inclusion probabilities are 7r' ('y) oc x 2 , kf Ub.  Therefore, the 

sample design Pb (Sb; X=y) in the sampled sub-population, defining the first order inclusion 

probabilities r' ('y) = b (x / E x7), kc Ub,  minimizes the anticipated variance V (1R)- 

Three methods for estimating the heteroscedasticity parameter 'y from past survey data called 
the "Least Squares Method", the "Maximum Likelihood Method", and the "Graphical Method" are 
described in Appendix A. Results from applying these methods to Local Government Finance 
Survey data are also reported. 

3. OPTIMAL DETERMINATION OF TAKE-ALL AND SAMPLED SUB-POPULATIONS 

In this section, an iterative scheme named the "Transfer Algorithm" is proposed to determine 
the optimal demarcation between the take-all and sampled sub-populations under the sample design 

p(s; X). The criterion for this construction is based on finding a population partitioning minimizing 

the estimated anticipated variance of 1Rb  An equivalence result is obtained, providing an alternative 

and simpler method of solution based entirely on auxiliary population data. Desirable mathematical 
propel-ties such as existence and optimality of solution are also established. 

3.1 The Transfer Algorithm 

The proposed scheme for constructing the take-all and sampled sub-populations, U. and Ub, 

respectively, is based on the following idea. Initially, place all population units in the sampled 

group, labelling it u° (the superscript 1 represents the iteration cycle). Hence, the take-all group 

is an empty set 	The resulting population and sample size allocation at 1=0 is given by 

N °  = 0, 	= 0, N °  =N, and 	= n0  where n0  is the current sample size. 
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In a repeat survey setting, the variances Uk  in (2.3) can be empirically modelled using the 

relation Crk = cx (2.2) where y  and c are estimated from past sample data using the methods of 

Appendix A. Using the estimated version of (2.2) in (2.3) yields the following estimator for 

V(IRb ; ): 

IR;X,N°,n)=E f_ 

	

___ - ij êx 	 (3.1) 
kcU t7k 

where the largest 1 x-valued units have been removed from 	Note that X is used here to 

parameterize the sample design to allow greater generality when X/"y. This distinction is important 

because for any given auxiliary-size variable x, different y values will hold for different target 
survey variables. 

In the iterative algorithm, we start initially with all population units placed in U ° '. Then at 

each iteration 1,0 :5 1 <n, the largest 1+1 x-valued unit X(N~ j)  is transferred from U to U and 

the difference 

Rb  ; X, N-i-i ,n -i- i) - 9' ° (1Rb  X, N-i, n-I) 	 (3.2) 

is computed. Negative values of A (1) mean that the transfer of the unit corresponding to the ordered 

value 1(NJ1)  lead to a decrease in the variance. Moreover, such transfers continue to result in a 

reduction in the variance of tRb  as long as i(l) < 0 . In general, for any iteration 1, the relationship 

between the population and sample size allocations is described by the following relations: N=N- 1, 

n 0 =n- 1, and N= n= 1. These relations hold because the overall population and sample sizes 

must remain constant (N = + N 0  and n = + n) for all iterations. 

The solution is also constrained by the condition Tk(X)  <1 , kE U (1 ). Note that if 

<1, then <1, i ~ k ~ n, since  X(  ~ X(1 . )  , 
• 

~ k ~ n. Let *(X),  0 ~ 1' <n, 
represent the solution to the Transfer Algorithm. Given the discussion above, the solution to the 

Transfer Algorithm under the sample design p(s; X) may be formulated as 

i $ (X) = mm { i: [r(N (X) < 1] and (1) +7(1- 1 )   (IRb ; X) - 	 (i; X)] ~: 0, 0 :5 i <} (3.3) 
1 
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The optimal population allocation to the take-all group Ua4  (1 6)  is then given by the population units 

coinciding with the 1 * ordered units transferred to the take-all auxiliary vector 

x =(x(N1.))x(N1.,l),.. . ,X(, )) ;  correspondingly the sampled group U(l') consists of the units 

corresponding to X = (X(j) , X(2)  ..... . ). It is clear from (3.3) that the solution to the Transfer 

Algorithm I (X) also depends on the sample design p(s; X) - indexed by X - in effect. 

Mathematical properties of the 
solution (3.3) of the Transfer algorithm 
such as existence and optimality are studied 
in detail in Section 4.2, however, the 
following general observations can be made 

here. Transferring a unit from U to U 

causes two opposite effects on the variance 

The reduction in the population 

size (N'=N ° - 1) has the impact of 

decreasing the 	variance, while the 
equivalent reduction in the sample size 

(n'°'=n- 1) has the reverse effect of 

increasing V()(iRb ;.). Somewhere in this 

process, a critical value I , 0 :5; 1 * 

P'ig.3 Variance of Regreasien Estimator at I (..1) 

N=PopWatlon Size. n=Current Sample Size, I=Unats Transferred 
C. 

I 
> 	 / 

Q 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100 

exists which gives the optimal breakdown {u; (1 $), 
Ub (l 

The behaviour of this system is also affected by the initial sample size (0)=  and the 

distribution of the values x, k€ U, in the population. It is also possible that for certain 

configurations, A (1) >0 holds for all 0 :5 1 <n. This means that no efficiency gains can be realized 
from transferring units as described in the proposed methodology; the optimal construction of take-all 

and sampled groups is then given by U(Os = 0 and 'b6 = U, with 1 * = 0. 

An example of the application of the Transfer Algorithm to the LGF survey population of 
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local municipalities in Ontario (with 

N=793, n=108, y=2,and X=1)is given in 

Figures3ar14. The airves arepkltedforl >8 

because in the interval 0 <1 :5 8, the first 

condition of(3.3), namely [r(N(X) < 11) is 

not satisfied. Note that in Figure 3, the 

minimum value of 10(1K,)  is achieved at 

1 * 
= 57 and in Figure 4 this point coincides 

with In Table 

C 
0 

C 

0 

0 

Fg.4 Ch*nges in Vorionce of Regreozion Etim*tor (0 1) 

(1)V('' ) (t. 1 ,N-- I n—I—I )—V()(t; iN —In—i) 

3. 1, the solution I (X) to the Transfer 	0 	tO 20 30 40 50 60 70 80 90  100 

Algorithm as defined in (3.3) and (3.18) are 

reported for 0:5X ~ 2y ('y=2). 

Table 3.1 Solution to Transfer Algorithm 1(X) for 0:5X :-<2-y (y=2) 

X l*(X) 
Definition (3.3) 

lt(X) 
Definition (3.18) 

o 64 64 

.5 60 60 

1.0 57 57 

1.5 50 50 

2.0 39 39 

2.5 50 50 

3.0 57 57 

3.5 60 60 

4.0 64 64 
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3.2 Analysis of the Transfer Algorithm 

In this Section, the Transfer Algorithm described in the previous section is analyzed. This 
is done with two questions in mind: i) does the algorithm converge to a solution? and ii) is the 
solution optimal? Furthermore, the analysis below reveals that the solution defined by (3.5) can be 
expressed equivalently in terms of quantities which are much simpler to compute. This equivalence 
result is established first before investigating the properties of the solution. 

3.2.1 Equivalence Result 

From the expression for the variance of V'(IRb ;) given in (2.3), we have after substituting 

for 7k(X) 

NO 	 1 

I' 

	

N" 	 I 

	

W(IRb ; X NO, n (0) = 
	

fri 	- 1] 	) 	 (3.4) 

	

k=i 	fl 0 	2  X 

or, equivalently, 

N-i 	 1 
N-i-i 	 + X( 	 I 	 I 

' Rb' V°(I 	X ,N-i, n-i) = 	
J1 	

X/2 	
- 1 J 1(k) + 

	j1 	- 1 	(3.5) 
k=I 	(n-I) X(k) 	 (n-I) X(l) 	J 

The subscript 1' in N °  and n 0  may be dropped since by definition N°= N ° =N- I is the population 

size of U and fl()=fl=fl_  I is the resulting sample size. Moreover, at iteration 1+1, the variance 

expression V''(IRb ;) may be written as 

N-i-I 

' Rb' 
k=i 

I 
X 

1.12 - 
(n-i-i) X(k

XJ2
) I 	' 

jI 
 

n-i-i 1.12  
X(k) 

(3.6) 

After matching common terms and some further reductions, the difference of the variances 

= V'- V 0  may be written as 



N-I-I I 	- (n - i-i) X(NI) 	2 	1 	- (n -o X(NI) I X/2 	 X/2 	 X12 	 X/2 
I N-I-I 	 N-I 	 1 

V 1 '- v= 	[ '' 	 C(k) 	
- 	 I 	 J a(,,l_,) 

(3.7) 
 

I 
k.I 	 (n-I) (n-i-i) 	X12 	 (n-I)I 

An estimator of the above expression based on (3.1) is given by 

I N-I-I 	 N-I 

	

Al2 1 	[ 	 1 
X12 I 

N-l-I 	x 	- (n - 	X(y I 	 X() 	(n - i) X(N..I) I 

	

ji I 	y-X/2 	 j 1 
X(k) 	- 	 Xq0 . (3.8) 

k=I 	 (n - i) (n-i-i) 	J 	(n-I) 	j 
where c >0 and 	0 are estimated from modelling the relationa = cxk' (2.2) using the methods 

of Appendix A. 

Expression (3.8) further reduces to 

A(l) B(l) 
(n-I) (n-l-i) 

(3.9) 

where A(l)= 42 
- (n-I) x 	and B(I)= x 2  - (n-I) x 2 . For notational convenience, in 

the remainder of the paper V will be re-defined to represent the estimator of the anticipated 

variance defined in (3.1). 

Next, note that V°'-V(O <0 in the cases i) [A(o >OandB(I) <0] and ii) 

{A(o <OandB(i) >o] and 	V+') -V° —>0 when iii) 	[A(i) =--:tOandB(l) ~!iO] and iv) 

[A(l) :!~-Oand B(1) :50]. In case i), the condition on n 0 =n-1 under which B(I) <0 is determined to 

be 

N-i 

L1 (k) 

	

(l) > k=I 	 (3.10) 
(N-I) 

Moreover, defining 

F x 12 I 

	

R(l;-y-X/2)= 	I 	 (3.11) 

	

y-?.1 2 	I 

	

X(NI) 	J 
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allows (3.10) to be written compactly as 

n° > R(l;'y-X/2). 	 (3.12) 

Similarly, the condition on n 	n-i required for A(l) >0 is obtained by solving 
N—I 

A(l)= 	x1 '2  - (n-1)x( 	>0. This yields 
-, 1 

Ar- 

k=1 	 (3.13) 

which using an analogous definition to (3.12) may be re-expressed as 

n <R(i; X/2). 	 (3.14) 

Similar conditions for n= n-i can be derived for the remaining cases ii), iii), and iv) 

mentioned above. The results are summarized in Table 3.2. 

Table 3.2 Outcomes for V')_V® < 0 and V''-V >-0 in Terms of n= n-I. 

V'-V° < 0 V""-V 	~>0 

Behaviour of A Condition on n°= n-i Behaviour of A Condition on n 0 = n-i 

andB. andB. 

A(l) >0 R(l;7-X/2) <n-I <R(1;X12) A(1) >0 n-i :5 min{R(l;x/2), R(l;-y-X/2) 
B(1)<0 (T.1) B(T) ~!t0 (T.2) 

A(i) <0 R(1;X/2) <n-i <R(l;y-XI2) A(i) :50 n-i ;~! max{R(i;X/2), R(i;'y-X12 
B(1) >0 (T.3) B(1) :!!5;0 (T.4) 

The first and second columns of Table 3.2 describes the behaviour of A(i) and B(i) leading 

to the outcomes V-V° < 0 and V' 1 -V :>0. The second and fourth columns describe the 

equivalent condition in terms of n= n-I which yield V-V'' <0 and V°-V' ~--0. Since all 

ranges for n = n-i depend on R(l; X12) and R(i ; y -X12), the solution to the Transfer Algorithm 

/ e (X) given in (3.3), along with the mathematical properties of the solution, will depend on the 
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distribution of the size measure x and the values of ^y and X. 

The behaviour of the system described in Table 3.2 also depends on the sample design 

p(s; X) employed. 	Three cases are distinguished and discussed below: a) 0 :!~ X <y 

[R(i;-y-X/2) <R(i;X/2)], b) X=y 	[R(l;'y-X12) =R(l;X/2)], and c) 	y <X :!!~ 2 y 

[R(l;y-x/2) > R(i;X/2)]. Although X >2y is also possible and mathematically defined, this 

situation is arbitrarily ruled out because it leads to 'y -X/2 <0 (this term appears as the exponent in 

An important condition required for the solution to the Transfer Algorithm I * (X) is that 

<1. It is easy to verify that T(N0(X) < 1 <4 A(l)> 0. In terms of the description for the 

Transfer Algorithm given in Table 3.2, this condition means that the solution can occur only when 

both A(l)> 0 and B(l) ~t 0 or, equivalently, when n - i satisfies condition (T.2). Using the 

implications of each case for X on the relative ordering of R (1; y -X/2) and R (1; X/2) in Table 3.2, 
the following equivalence theorem can be readily constructed from the intermediate tables. 

Theorem 1. Equivalence Theorem 

Let p(s ; X) represent the sample design in effect, defining the inclusion probabilities 

i- (X)(nO X(t 2  / Further, with  R(i;X/2)=x(  / X( and 

R(l;y-X/2)= E X(r2  i x%2  defining the critical values for n - i, the following 

equivalences hold for the Transfer Algorithm. 
a) 0:5X<-y: 

<1] and 1V('+ I ) (j'tb ; ,N-i-i , n - i - i) - V°(IRb ' X, N-i, n-a] o] " 

o [n  -  i :5 R(i;'y-X/2)] 

X, N-I-i ,n-i-i) - V ° (IRb ; X, N-i, n-I) <01 

[R(l;'y-x/2) < n - i < R(l; X/2)] 

(3. 15a) 

(3.1 6a) 
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~t 1] and 1VQ-1)(j Rb; X, N-i-i ,n - i - i) - V°(IRb' X, N-i, n - i)] ~! o] 	(3.17a) 

o [n-i ~t R(1;X12)] 

Xy: 

<1] and 	y, N-i-i ,n-i-i) - V(IRb 	, N-i, n_i)] ~!o] 	(3.15b) 

so 	[n -1 :!!~; R(1;'y12)] 

L- 1] and [V()(IRb; , N-i-i ,n-i-i) - V°(IRb' y,N-i, n_a] ~: o] 	(3.16b) 

[n-I ~!! R(1y/2)] 

'y <X :!~ 2y: 

<1] and [V(")(IRb;  X, N-i-i ,n -I - i) - V°(I 	X, N-i, n_O] Z-~ O] 	(3.15c) Rb' 

[n-i ~!t R(1;X/2)] 

	

[v 1) (iRb ; X, N-i-i , n-I-i) - V® (iRb; X,N-i, n-I) <01 	 (3. 16c) 

[R(i;x12) < n - / < R(1;7-X12)] 

> 1] and [V(1- 1 ) ('Ib;  X, N-/-i ,n-i-i) - VW(1
Rb ' X, N-i, n -I)] ~ o] 	(3.17c) '  

[n - 1 ~t R(l ; y - X/2)] 

3.2.2 Simpler Alternative Method of Solution 

The methodology of finding the optimal allocation of the population to the take-all and 
sampled groups was originally developed in terms of the behaviour of the difference 

(l) = V''(Ipb  , 'i N-/-i ,n-I-i) - V(° (IR,, y, N-i, n-i). 	(3.4) 

The equivalences established between the behaviour of V' 1  - 	 and 4(X) and the terms 

= n - i, R(i;X/2), and R(l;'y-X/2) in Theorem 1 allow the solution I (X) to be stated in a 
greatly simplified - yet equivalent - form. This result is stated in Theorem 2. It is directly obtained 

from the three components of Theorem i keeping in view that the solution / * (X) must satisfy the 

two conditions: i) Vt' )  - V' ' < 0 and V' 	- V' >-- 0 and ii) [42,.) < i] 	[A (1') > ()]. 
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Theorem 2. Equivalent Solution to Transfer Algorithm 

The solution I (X) to the Transfer Algorithm stated in (3.3) in terms of V- V'' and 

may also be equivalently expressed as 

mm{i: n-i 	R(i;'y-X/2) , 0 !~ l<n} , O:!~ X <y 

1*Ot)= 
 

min {i: n-i 	R(l;'y/2) , 0 151<n} , X=y 	 (3J8) 

min {l: n-i :5 R(l;X/2) , 0 :5l<n} 
, 'y 

N-I 	 N-I 
X12, 	).1

2 
 where R(l; 'y  -X12) = 	x 2  / 	and R(l; X/2) 	L X(k) / X(N0. 

k=1 	 k=I 

An example of how (3.18) 
can be used to find the optimal 
population allocation is illustrated in 
Figure 5 (the same Ontario data for 
the 	population 	of 	local 
municipalities is used as in Figures 
3 and 4) with y=2 and X = 1. 	In 

this 	case 	0 :5 X <y, 	and 	the 
solution 	is 	determined 	by 	the 

behaviour of functionsR(1;'y-X/2) 

and n-i (see Theorem 2). 	The 

same solution 1 = 57 is obtained as 
	0 

before. Moreover, near 1=8, the 

functions R (1; X/2) and n-i cross. 
From Table 3.2 it is clear that 

~!t iJ ' [A (I) 15 0] f o rl :5 8 

ir,) < i] 	[A (1) >0] for 1 >8. and [  

Fig.5 Use of R(I;y—X/2). R(1;/2), and (n—I) 

to Construct Optimal Take—all/Sampled Groups (Ontario) 

- R(I;y-V2) 
- R(l:/2) 
- 

20 	40 	60 	80 	'00 	120 

I (Units Transferred) 
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3.2.3 Existence and Optimality 

The issue of existence and optimality is concerned with the question of whether 1) the 
Transfer Algorithm always converge to a solution and 2) is the solution reached globally optimal? 

Note that by construction, the solution 1*  (X) guarantees local optimality in the region [0, 1 (X)]. 

The second question is concerned with the conditions required for global optimality. The solution! * (X) 

will be optimal if the conditions leading to 1 * (X) remain unchanged (stable) in the system defined 

over the remaining region (1 (X), n-i]. Stability (of conditions) in this region ensures the (global) 

optimality of 1 (X). In terms of the original formulation, these concepts may be defined as follows: 

Existence: al ,O l <n, such that V'"-V' 1 ~O and ~ 	 1. 

Stability: If V'-V" ~ 0, then V' 1 -V ~ O and 	< 1 for 0 ::51 <1< n. 

In Section 3.2.1, V''- V° was expressed as 

V''-V°= A(l) B(1) 
(n-I) (n-I-i) 

(3.9) 

where A (I) = x'2  - (n-I) X(J) and B (1) = 	- (n-i) x 2 . Additionally, denote IA*  to be 

the smallest value of 0 :!~ 1 <n satisfying A (I)>0; similarly, let i be the smallest value of 

0 <1 <n satisfying B(l) ;2L 0. At the solution I * (X), the following two conditions are required: 

i) V(l*_V(I ~  0 and ii) I1r2,.) < i] 	[A(ls)  >o]. Keeping (3.9) in view, this implies that at 

the solution, the condition B(i )~!!0 must also hold. Therefore, the solution to the Transfer 

Algorithm can also be stated as 

l'= max {lA ,lB } , 0:5=- 1<n. 	 (3.19) 

Further, note that because i and i are solutions to two independent systems defined over 

0 :!~ 1 < n , we can re-define existence and stability as follows: 

Existence: 3 i , 0 <i <n, such that A (Ii')  >0, and 	 (3.20) 

1 , 0 !!~ i; <n, such that B(18*) ~t0. 

Stability: 	If A(lA ) >0, then A(l) >0 for 0 :!!~ IA  <1 < n, and 	 (3.21) 

If B(13') ~ 0, then B(l) Z~ 0 for 0 !f-i, <1 < n. 
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These properties and the conditions under which they hold are now established for the three 

cases a) 0 :!~ X <y 	[R (1; y -X12) <R (1; X/2)], b) X =y = [R (1; - X12) = R (1; X/2)], and c) 

y <X :52y 	[R(i;7-X/2) >R(l;X/2)]. 

3.2.3.A Existence and Optimality of P (0 :5X <-y) 

Existence of 1 (0 < X <y) 

It follows from (3.19) above that 1 * exists if both lAS  and i exist. Recall thatX <y 

{R (1; y-X12) <R (1; X/2)}. The fact that n -1 is a decreasing function over 0 :5 1 <n means that 

theeventA(1A5 ) >0 	[n_i; <R(1A' ;X/2)] will occur beforeB(1B') >0 [n_i; <R(l; ;y-X/2)]: 

IA  <i; . 

Existence of 1; (0 :5 X <y) 

Initially (1 = 0), two outcomes are possible: i) either [A (1) :5 0] [n-i ~t R (1; X/2)] or 

ii) [A (1) >0] [n-i <R (1; X/2)]. The outcome for 1 will depend on which of these cases 

occurs. 

[A (0) :!0] [n ~!: R(0; X/2)] 

Note that n =n-i is a strictly decreasing linear function of 1 with (O I,=1. On 

the other hand, R(i; X/2) I , ~!! R(l; X12) = 1. Therefore, given the fact that 

R (1; X/2) I 1=0  = 1, there exists a l' , 0 :!!~ i <n, such that R (1 ; X/2) > n-i; (with 

A(145 )>0). 

[A(o) >0]4[n  <R(0;X/2)] 

Here, initially the function value R (0 ; X12) is above n -0 so that A (0) >0. 

Therefore, existence is satisfied at 1A = 0. 

Existence of i (0:!9X <'y) 

The proof for the existence of i is analogous to that for 1A  with A (1) andR(l; X/2) 



replaced by B(l) and R(l;'y-X12), respectively. 

Optimality of 1 (0 :!!~ X <y) 

For optimality, the conditions which lead to the solution l * must hold stable in the region 

(1 '(X), n -  i].  By 1 * = max {lA' , i } , 0 !!~; 1 <n, stability prevails if the conditions leading to 14  

and 1 in the two independent sub-systems of the Transform Algorithm (defined by A (1) and B (1), 

respectively) continue to hold in (lA' , n-i] and (1k' , n-i], respectively. 

Stability in (lA' (X), n-i] (0 :5 X <y) 

Again consider the two possible cases initially (1=0) possible. 

i) [A (0) :!~ 0] [n ~t R (0; X12)] 

We are assured of at least one solution by existence, however, the system may be 

unstable if the function R (1; X/2) crosses n 	n - l more than once in the range [0, n). 

The behaviour of the function R (1; X/2) depends on the value of A and the 

distribution of the auxiliary characteristic x in the population. For example, if X=0, then 

R (l; X/2) = N-i always lies above n-I so that A(l) >0, 0 :5 l <n with 'A'  = 0. Similarly, 

the distribution of the x-values has an effect on the shape of R(l; X/2). For example, if all x= c  ,j € U, 

are constant, then again R(l; X/2) =N- l and IA' = 0. In these situations, no crossings of 

R (l; X/2) and n - l are realized over [0, n). The more interesting non-trivial cases occur for A >0 

and non-homogeneous values of x. 

The step change in the function R (l; X/2) over consecutive values of I roughly 
parallels the idea of a slope for continuous functions. This jump may be expressed as 

N-i-i 

R(l+ 1; X12) - R(l; X/2) = 	 - _-__ - 1. 	 (3.20) 
k=1 	X(N_I_1) X(N..O 

Although the term in () of (3.20) is non-negative since (x(0 -X(Nl)) ~t0, the jump can be 

either positive or negative. However, if all negative jumps of R(I; X12) are greater than or 

equal to all jumps of n = n - l given by n (1.1)_  n = -1, 0 :5 l <n, then stability is 
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guaranteed: R (1; X12) crosses n = n-i in only one period [l,, 1, 1  + 1]. Formally, this 

condition may be expressed as 

R(1+1;X/2)-R(l;X/2) 	-1, 0:51<n. 	 (3.21) 

Solving (3.21) yields 
'Al2J2 
IX(N.l) -X(N.1..1))  ~:0, 0 :51<n, 	 (3.22) 

Hence, the inequality of (3.22) always holds ensuring unconditional stability for A(l) in 

(lAs  (X), n-i]. Note that condition (3.22) allows for ties among consecutive auxiliary values. 

ii) [A (0) >0] [n <R (0 ; X/2)] 

This is the second outcome initially possible when 1=0. It was shown earlier that in 

this case 1; = 0. Stability in this case requires that R(l; X/2) remain above no = n-I for all 

0 :51 5n, with the two curves never crossing. Again the stability condition (3.22) assures 
that this does not happen. 

Stability in (1R'(X), n-i] (0 ~ X <y) 

The proof for stability in (1 (X), n-i] is analogous to that for 1, with A (1) and 

R (1; X12) replaced by B(I) and R (1; y -X/2), respectively. The condition required for 
stability turns out to be the same as (3.22). 

3.2.3.B Existence and Optimality of 1 (X =y and 'y <X :52y) 

The proof for the existence and optimality of 1*  (X) in the remaining two cases b) 

y and c) y <X :52y is analogous to that for case a) 0 !!!5;X <-y given above and lead 
to the same results. These results follow easily from using the relevant choice of the 

functions R(1; X/2) and R(l;-y-X/2) and are not repeated again in the interest of brevity. 

The results regarding the existence and optimality of the solution delivered by the Transfer 
Algorithm proved above are summarized in the theorem below. 
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Theorem 3 Existence and Optimality of Solution to Transfer Algorithm 

The Transfer Algorithm always converges to a solution 0 :!~ 1 * (X) <n defined in 

Theorem 2. For 0 :5 X ~ 2 -y , y ~t 0, the solution / * (X) reached is optimal under the 
conditions stated below: 

X = 0 and/or y=O and/or x= c,j€ U, are constant: the solution 1 (X)= 0 is optimal. 

'y >0 and 0 <X :!!~ 2y : the solution 0<l*(X)  <n is optimal because 

.12 	X12 
) >0 and " y-X/2 	y-J2 \ 

X(N,1) - 	 X(NO X(NI1)) ~: 0, 0 :!~- 1 <fl 

Note that due to the ordering imposed on the population auxiliary values {x1 ,x.,, . . . ,x,,,}, 

Xn conditions (x -x( , l)) ~ 0 and (xj2  ~ 0 hold for all 0 ~ 1 <n. Graphically, this 

ensures that i) the R (1; X/2) and R (1; y-X/2) curves do not cross nO = n-i from above and ii) theR (1; X/2) 

and R(l;'y-X12) curves cross n =n-i from below only once. 

4. SAMPLE SIZE DETERMINATION & COMBINED ITERATIVE PROCEDURE 

Given a sample design p(s, X), 0 :!~; X :5 2 -y, with sample size n, the Transfer Algorithm yields an 

optimal construction of the take-all and sampled sub-populations, Ua' (1 *) and Ub  (1 S)  respectively. 

Next, an expression for finding the minimal sample size is obtained which meets the imposed 
precision constraint - expressed in terms of the coefficient of variation CV,,. The sample 
determination step is then integrated with the Transfer Algorithm to develop a combined procedure 
which allows the survey designer to find the globally minimal sample size and optimal population 
partitioning. 

4.1 Expression for New Sample Size 

Let q represent the iteration cycle for the combined procedure and flg = 	+ bq  denote the 

total minimal sample size required to satisfy the precision constraint. Given the sample design 

pq (S, X, lq*  (X , nq)), current sample size flq  and the population partitioning {u0;(l;), u;q(l; )}. the 
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precision constraint for 1R=ta  + tRb may be stated formally as 

v71i2  •q (r;X,N_lq',nq_lq') 
(4.1) 

Solving this inequality for nb  gives the following expression for the minimal sample size needed 

in the sampled group Ub(lq*)  to meet the precision constraint: 

= X(1q  , X/2) X(lq* , ' X/2) ê 
'bq = 
	lq* (nq) 	 (4.2) 

1R2  CVjpjj  + X(lq , i) ê 

where X(lq* , X12) = 	X(, X(1q  ,--XI2) = 	x >"2 , and 1R  may be estimated from past survey 

data corresponding to the period of the auxiliary information. The total new minimal sample size 
required to meet the precision constraint is then given by 

nq = na;+ n4= l;(nq)+ n 	(4.3) 

4.2 Combined Sample Redesign Methodology 

Next, note that the solution to the Transfer Algorithm I * depends on the current total sample 

size: 1 (X) 1 (X, fl)• Once the new minimal sample size n is determined, the existing 

partitioning 

{ U(l), Ub(* )} which was optimal at flq  is no longer optimal at the new minimal sample size flq* 

because I * (X , n ) 4 1 (X , flq) if ; 4 flq • Therefore, letting flq, = 	, a new population partitioning 

from the Transfer Algorithm based on l.?.i(X,nq.i),  given by {Uq,j(1q*1), Ubq, l (lq'. I )} , is required 

to optimize the construction of the take-all and sampled sub-populations. Next, applying (4.2) over 

U.1  (l) gives a new minimal sample size n1 = li(flq, i )+ 	required to achieve the desired 

precision CV. 	Proceeding in this fashion, the combined scheme produces a sequence of 
population partitioning, sample sizes, and sample allocations 

( * (X , flq) (faq  = 	bq = flq  - i), (Na = lq* 
, Nb = N- ç), 	=i; , 	, q 0, 1.... (4.4) 

with nq.l = flq  = 	+ 1bq and the initial value no  (current survey sample size). The combined 
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procedure is repeated until further reductions in the minimal sample size can no longer be achieved. 
This leads to the stopping rule 

q'= min{q:n;. i - nq ~ o}. 	 (4.5) 
q 

4.3 Optimality of Combined Iterative Scheme 

The optimality of the combined methodology yielding the sequence (4.4) under the stopping 

rule (4.5) is analyzed here. First, note that the new total sample sizes nq' =flo flbq =lq (flq)+fl q  

O:!~ q ::-:~ q * (with flqq i and n0 =n) are found iteratively by i) finding the optimal number 

1' (X, n) of the largest x(k)-valued  units to be transferred (yielding the take-all and sampled 

population allocation 
{ 

U0 (1), Ub*q(lq*) 
} 

with corresponding sample sizes aq = 1q 
(flq*)  and 

nbq = flq  - 1q  (flq)) and ii) finding the new minimum sample size b  for U:q  (1) required to satisfy 

the minimum desired coefficient of variation CV. By construction, all new resulting total sample 

sizes fl;  = i (ne) + b, 0 :!!g q :E~ q meet the pre-specified precision constraint for the estimator 

1R 	+ tRb• 

According to the stopping rule (4.5), future iterations q >0 will be realized only as long as 

a;,, <ne' or as long as the minimum precision constraint is met and further sample size reductions 

are possible. The possibility for this exists because at the new total sample size flq*,  the old 

partitioning based on lq*  (X , nq) is no longer optimal and a newpartitioning 
{ 

U0+(l), Ubq..1(lq*+1) 
} 

based on l i (flq + i ) (with nq,,=  flq ) may improve the efficiency of the estimator 1R = 	tRb• This 

assertion may be formalized as follows: 

Vq,1 (1Rb ; X, N1q,j(flq.1), q.1 1q. (q.i)) < Vq (IRb  ; X, N- lq*(flq), q+1 1q (flq)) , q= 0, 1.. 	q * 

(4.6) 

with the sample sizes defined by nq=i  =1qi(P1qi) + 

The truth of assertion (4.6) can be established using Theorem 1 (Equivalence) for the sample 

design Pq (S X,iq' (X flq)) corresponding to the three cases a) X <ay, b) X =y, and c) <X :52 y. 
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Expression (4.6) is shown to hold for case b) X =y below; extension to the other two cases is 
straightforward and is omitted to preserve space. 

Now, if flq,i<flq 	then 

q1 - < flq •• I while R (1; y/2) remains 

unchanged. Graphically, the curve nq  1 

falls to nq. - I by a constant amount as 

shown in Figure 6. At the sample size flq  

the optimal solution given by the Transfer 

Algorithm is i (y , flq) with the two curves 

R (1; y/2) and flq  - 1 crossing in the interval 

El , 1q  + 1]. Moreover, it is clear that if 

q.i < flq  then 1q. i()flq,) < 1q (7,fl), and 

t h e r e f o r eR (is ; 'y/2) ~: flq  - i; (y , flq) 

>nqP1 1q5 ('y,n);in fact 

rig.6 Impact on ().n) of Qverall Sample Size (n) Reduction 

S 

10 	 20 	 30 	 40 	 50 	 60 

1 (Units Transferred) 

R(l;y/2) > fl. 1  - 1, 1 > Iq+ i(flq. j). By (3.15b), this then leads to the desired result that 

Vq+1 (1Rb ; y , N lq. i (flq..), nq,j - 1q5+i (flq+j)) < Vq (I pj, ; 'y a ,N-  l, flq, — I) , 1 > 1qi (flqsi ) (4.7) 

Note that for the case X ='y, the other possibility [i <l(nqi)] [R(1;yI2) <flq,_l] is untenable 

because in this interval ,,(7) > 1 so that the variance of 1R  is not defined in this region. This 

establishes the truth of assertion (4.6) under all sample designs Pq (S,X=,lq (/,flq)), q=l, ...,q * 

A similar result can also be readily obtained for the other two cases, namely a) 0 !! ~ X <y and c) 

'y <X :52 'y. This leads us to state the following Theorem. 

Theorem 4. Optimality of the Combined Sample Redesign Algorithm 

Let 	X , 1g5 ) = (,p0(s0  ; 1) pb(sb  ; X , lq )) , q = 0, 1 ,... , represent a sequence of sample 

designs where 1 (X , flq) is the solution to the Transfer Algorithm stated in Theorem 2. Each 
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sample design Pq(S X, 1q ) defines the sample inclusion probabilities lr* = 1, k€ Ucq (lq') and 

= (n - ) [x(2  I E X21 
, k e Uq(lq*) 	Then, the sequence of population 

partitioning, sample sizes, and sample allocations 

(I
*  (X, flq) , (noq = 1 	= - i), (Nat = i , N = N- ç), (a =i; , n)) , q = 0, 1,. . . (4.4) 

produced by the combined methodology, where 	is defined by (4.3) and flq=flq*  (with 

n0 =n), under the stoping rule 

q*= min{q:nq. 1 -n' ~to}. 	 (4.5) 
q 

is an optimal path in the sense that the variances Vq (1Rb;  X, N - i (nq), flq - lq* (fl)) 

0 :!~- q ~ q , reach their minimum along this path at each prevailing sample size flq  

Therefore, by construction, the final sample size n. = 	+ 	= lq  (?Zq) + 	found 

by the combined scheme under the stopping rule (4.5) is the globally minimal sample size 

respecting the pre-set precision constraint (CVM)  for the estimated total. 

The combined procedure leads to an optimal solution along the path defmed by (4.4) to a 

point where further reductions in the sample size are not possible (by reconstructing u and Ub') 

given the imposed precision constraint. 

4.4 Application of Proposed Sample Reduction Methodology 

In this section, the combined methodology is applied to data from the Local Government 
Finance Survey. The survey response y in this application is the actual revenues reported for 
sampled local government units for Ontario in 1989. The actual estimates are prepared 30 months 
after the end of the survey year from financial statements submitted by the local government units 
to the Department of Municipal Affairs (provincial). Population counts for the local government 
units from the nearest census (1991) are used as the auxiliary variable x. The population of local-

level municipalities for Ontario consists of a total of 793 units of which a sample of 108 units is 
currently taken. 
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The results of applying the combined methodology to Ontario LGFS data are reported in 
Table 4.1. The level of desired precision CV was set at 2% for the total regression estimator 

1R= 	Using the methods described in Appendix A, the best value for the heteroscedasticity 

parameter 7 was determined to be y= 2 for Ontario; the corresponding proportionality constant was 

estimated to be ê=.0825. The near optimal sample design defined by X=' (p(s; $')) was used. 

For each iteration cycle q, the combined methodology (with n0 =n) calls for the following steps: 

Apply the solution to the Transfer Algorithm given in Theorem 2 to find 4* (X , flq)• This 

leads to the population and sample allocation between the take-all and sampled sub-
populations given by 

( 	flq) (naq  = 	' q 	- 1q), 
(T*q 

 1q , Nb; = N- 4*)). 	 (4.5) 

Use expressions (4.2) and (4.3) to find the minimal sample required to achieve the desired 
precision CV under the population allocation obtained in a). This yields the minimal 
sample sizes 

(fla'q =lq'(k,flq), llb q ) 
	

(4.9) 

where ; = ç + 
Set nq. j  =n and repeat steps a) and b) above until the stoping rule (4.5) leads to q • 

Table 4.1 Application of Combined Methodology to LGF Survey Data (Ontario, 1989) 

Iteration 

(q) 

flq  lq(X 'aq bq n. 

0 108 39 j 	39 18 57 

1 57 16 16 34 50 

2 50 12 12 38 50 
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For Ontario the combined scheme stopped at iteration q = 1. The globally optimal 

population partitioning between the take-all and sampled groups is NaS = 16 and Nb = 777. The new 

minimal total sample size is n = 50 with allocations fla* = 16 and b = 34. A total sample size 

reduction of n0 - n2' = 108-50 =58 is achieved at the desired correlation coefficient (CV) of 2% for 

the regression estimator IR =ta +IRb • 

4.5 Graphical Representation of Combined Sample Size Determination Methodology 

A graphical representation of the working of the combined procedure using Ontario LGFS 

data for cycle q=0 and q= 1 is given in Figure 7. The hashed plane represents the precision 

constraint expressed as CV * 1R = 222,788 (with C1'= .02 and 	11,139,424). Initially, an 

application of the Transfer Algorithm gives l = 39. Graphically, this corresponds approximately 

to the point where the curves n0 -1 (n0 = 108) and R(1;I2) cross. Above the n0 - 1 line, lie the 
-'I12 	* square root of the estimated variances V (tRb; y , N-i, n0 -i) defined over the region 

iA  <1 <no  (1Am  is defmed in (3.19); in the case X=y, 1A  = l ). It is apparent from the graph that 

the minimum value of these variances occurs at 	= 39 (this was proved in Section 4.3). 

After determining i , a new optimal sample size no*  is found using (4.3) which satisfies 

the precision constraint. In the graph, the system moves as depicted by the first arrow from the 

point with coordinates (10' ,n0-10 , 	(iRb ;y' ,N-10  ,n0 -io )) = ( 39, 69, 98507) to the point at 

N-4,' , n1 _4*)) (39, 18, 226157), yielding a reduction in the sample 

size of n - n0 - 51 units. However, at this new point, the variance is not the minimum over the 

new sample size line defmed by n 1  - 1 (n 1  = n0t  = 57) and, therefore, further reductions in the sample 

size are still possible. In the next cycle q= 1, a new population partitioning l' (n) optimal at the 

new sample size is found using the Transfer Algorithm. In Figure 7, this is depicted by the second 

arrow, 	moving 	the 	system to the point(lj* , ni - 'is , '?"2 (IRb  ; y , N_1i* 	1i )) 

= (16, 41, 197003). In this way, the combined procedure continues to move the system along an 
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optimal sequence of decreasing sample sizes and new population and sample partitionings until the 
precision constraint (given by the plane) allows no further reductions. 

Fig.7 Graphical Depiction of Combined Sample 

Size Determination Methodology 

I 
- i 

R(1;y/2) 

4. SUMMARY & CONCLUDING REMARKS 

The most efficient sample design and estimation strategy holds the promise of offering the 
largest reduction in the sample size (and hence survey costs) for any desired level of precision in the 
estimates. This paper provides a comprehensive methodology for identifying and implementing an 
efficient sample design for recurrent surveys of skewed populations. In the context of using the 
GREG estimator to estimate the population total, the combined procedure integrates the solution to 
the following three problems: 1) identifying an efficient sample selection scheme, ii) constructing an 
efficient demarcation between the take-all and sampled population groups at a given sample size, and 
iii) determining the minimal sample size required to meet the precision constraint(s). 
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The Transfer Algorithm allows the survey designer to find an optimal allocation of population 
units between the take-all and sampled population groups in the sense of minimizing the anticipated 
variance of the regression estimator under the desired sample design. Desirable mathematical 
properties of this algorithm such as existence and optimality of solution were established and an 
equivalence result was obtained allowing the solution to be determined in terms of simple quantities 
computable directly from the population auxiliary data. 

The first two components of the overall sample design methodology were then integrated with 
a sample size determination step through an iterative scheme. This involves a) application of the 
Transfer Algorithm at the current overall sample size to create the take-all and sampled sub-
populations, b) using the precision constraint to find the required sample size in the resulting sampled 
group, and c) repeating the above two steps as long as further reductions continue to be observed 
in the overall sample size. Iteration under the stoping rule (4.5) allows convergence to a globally 
minimal sample size and optimal population partitioning under the imposed precision constraint. The 
optimality of the combined procedure was also established. The application of the procedure to the 
Local Government Survey in Ontario resulted in a 52% reduction in the total sample size for the 
GREG estimator of the total at a minimum coefficient of variation set at 2%. 

At the final stage, the desired sample design p(s;X,1*(X,n s)) (indexed by the design 

parameter X) may be implemented in the sampled group Ub' (1 ). 
Note that the solution I * (X , n) 

given by the Transfer Algorithm applies generally to any sample design defined in the range 

0 ~ X :!5; 2 'y; not merely at the optimal value of the design parameter X = y. The presence of X in 
the specification of first order inclusion probabilities gives rise to a wide class of generalized pps 

designs which yield the SRS (X=0) and the standard pps design (X=2) as special cases. A stratified 

design based on the transformed size-values x 2 , kE U, may be seen as an approximation to the 

optimal design (X='y). 

The proposed approach differs from existing methods for constructing the take-all and 
sampled groups in the literature in three respects. Firstly, an optimal population demarcation can 
be obtained for a flexible range of sample selection designs (eg. SRS, pps, generalized pps). 
Secondly, the criterion used to find the optimal population allocation is based directly on minimizing 
the design-based variance of the regression estimator under the desired sample design. Thirdly, the 
proposed methodology explicitly captures the size-induced heteroscedasticity evident in skewed 
survey populations. 
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APPENDIX A. ESTIMATION OF FINITE POPULATION HETEROSCEDASTICITY 
PARAMETER 'y 

This Appendix is concerned with the estimation of the heteroscedasticity parameter y  in the 

relation 

	

=C Xkflk 
	 (A.1) 

where flk  is the multiplicative error explaining the fact that all Ck 2  do not behave deterministically. 

(A.1) is a stochastic version of the relation (2.2) used in Section 2.1 to describe the heteroscedasticity 

of skewed populations. Although y is not known for the population to be sampled, in repeat surveys 

like the LGF, data from previous surveys permits estimation of -y. 

Three methods are discussed below for estimating y. No one method was used uniformly 

to determine the value of 'y in each province. Estimates from the different methods were compared. 

The stability of 'y over the observation set was also examined by excluding the largest x -valued 

observations from the data. This gave a profile of the behaviour of y over different size ranges. 
The values of the heteroscedasticity parameter finally chosen in each province also took this analysis 
into account. 

A.1 Least Squares (LS) Approach 

This LS approach involves linearizing the relationship between the variance o k  and Xk  given 

in (A. 1) and using the sample estimates of Uk  to then fit the linearized equation. First, the 

regression 

	

Ykk13k 	 (A.2) 

is fitted to obtain the estimated residuals ik =  Yk - Xk . Empirical investigations into the relationship 

between the survey variables y based on past sample data reveal that the models (A.2) and (A. 1) 

captures quiet well (R 2 = . 85) the scatter-plot phenomena - an increasing linear trend and increasing 

heteroscedasticity with 1k - between revenues (and expenditures) y and the population size x. 

Taking the natural logarithm of both sides of (A. 1) yields 

ln(a) =lnc+ylnxk+n 
	 (A.3) 
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where flk = 1(flk) is the additive error component in the linearized form of (A.1). Usingfor 

o, k€ s, in (A.3) and fitting the model gives the least squares estimate of the heteroscedasticity 

parameter . 

A.2 Maximum Likelihood Approach 

This method assumes the following normality structure for the errors in model (A.2): 

Ek  - N(O, o2 xfl 	 (A.4) 

where 02  x is the variance function completely specified upon determining 'y. The MLE for is 

given by the solution to 

cYkxkly) 

[ 	

In;1 
g(y, I3) = 	 lflXk - 	- I =0 	 (A.5) 

k=1 	 h=1 	fl J 
where 	

yi x1° 

(A.6) 

1=1 

Expression (A.5) is obtained by first solving the score functions for 02 and substituting it into the 

log-likelihood. The equation for g(y, fl) above is then obtained by differentiating the resulting 

concentrated-log likelihood function, with respect to and setting it to zero. The estimator for 

given in (A.6) follows from solving the score function for ft and using this expression in conjunction 

with the score g (y, ) enables both parameters y and j3 to be solved iteratively. A Newton-

Raphson algorithm was programmed in GAUSS to obtain estimates for and 

The assumption of normality implicit in the maximum likelihood approach is a drawback 
since the distribution of local government financial information (e.g., revenues and expenditures) 
strongly departs from normality. However, the method does yield an alternative estimation 
methodology which may be used to check and compare the results obtained under other approaches. 
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A.3 Graphical Approach 

In some provinces, due to 
small sample sizes, the estimation 
methods discussed above yielded 
suspicious and unstable estimates 
for y when the larger observations 
are sequentially dropped. This 
problem was addressed by obtaining 
some graphical insights into the 

value for y. Plots of ln(Ek2)  and 

in Xk  (see Figure 3) were examined 

to ascertain visually the slope of a 
line through the sample cluster. 
This rough estimate of the slope 
should be close to the least squares 
estimate of y if a sufficiently large 
number of points had been 
available. 
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Information about plausible values of 7 using this approach was used in addition to the 
numerical methods discussed above in provinces with small sample sizes and in cases where 

estimates of y  show instability over reduced observations. 

A.4 Application to Local Government Finance Survey Data 

The estimates of the heteroscedasticity parameter y  under the least squares (LS) and MLE 

methods (denoted jLs  and 	respectively), after excluding the rn largest x-valued observations 

(effective sample size n-rn), are reported in Table 2.1. The dependent (survey) variable y was 
defined as the revenues reported by local government units in the 1989 actual estimates; the 
independent variable x is the 1991 census count for the municipality. 
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Table A.1 Least Squares and Maximum Likelihood Estimates of 'y and Estimates of 
Proportionality Constant c 

Largest Units 
Removed (m) 

Effective 
Sample 

Size (n-rn) 

e 

0 108 1.97 2.05 .0825 

1 106 1.72 2.07 .0803 

8 100 1.90 2.14 .0853 

18 90 1.94 2.10 .0817 

28 80 2.15 2.14 .0857 

38 70 2.18 2.07 .0737 

The graph of ln(E) vs. ln(xk)  is exhibited in Figure 3. The slope of this cluster of points 

is a rough estimate of the value of y. Based on the insights given by the three methods for possible 

estimates of y, the value of the heteroscedasticity parameter was set to 'y= 2. 

A.5 Estimation of Proportionality Constant c 

For the purpose of estimating the design variance of the regression estimator given in (3.3), 

modelling of the error variances a, k€ U, is required. If the relationship betweena and the size 

value Xk  defined by (A. 1) holds well in the population, then the disturbance flk  will have a small 

influence on x and the modelled form of (A. 1) given by 

(A.7) 

will give a good empirical approximation for the error variances a. 

After the best estimate for y  has been identified, the proportionality constant c appearing 

in (A. 1) is estimated. This value is needed to facilitate the estimation of the variance V(IR)  given 
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in (3.3). Equation (A.7) suggests the following estimator for C: 

(A.8) 
fl kes 

where k=Yk/Xk  serves as the estimate for a. 

Estimates of c using the estimator (A.8) over different subsets of the Ontario data (y = 
revenues for 1989, x = 1991 census population counts) excluding them largest x-valued observations 
are given in Table 2.1. These estimates over the reduced datasets give some indication as to the 

sensitivity and stability of the estimation procedure and the behaviour of the data. The estimates ê 

for m = 1 .....38 are relatively stable. The value of ê = .0825 at m =0 was chosen for later work. 
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