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MULTIDIMENSIONAL BENCIIMARKING OF TIME SERIES BY SEGMENTED KALMAN 
FILTERING 

ABSTRACT 

Benchmarking is essentially a method of signal estimation from time series under constraints. The final 
signal estimates satisfy the regression-adjusted benchmarks in the nonbinding case, but are forced to 
exactly satisfy benchmarks in the binding case; the latter case leads to sub-optimality in the case of 
random benchmarks. It is assumed that the source of benchmark series is independent of the source of 
target time series. Typically, the process of benchmarking consists of two stages: the first stage for 
finding initial signal estimates and the second stage for constrained regression. When the number of 
benchmarks is quite large as in the case of multidimensional benchmarking, the usual method of 
constrained regression may be computationally difficult due to high dimension of matrix inversion 
involved therein. If benchmarks are independent of each other, then the technique of recursive least 
squares can be adapted to avoid matrix inversion. For dependent benchmarks, a method termed 
Segmented Kalman Filtering (SKF) is proposed which alleviates the above computational difficulty under 
very general conditions. Moreover, with SKF, it is generally easy to revise later parts of the target time 
series in light of new benchmarks without revising the earlier parts and without losing optimality, when 
the new benchmarks do not involve signals from earlier parts. This feature may be quite convenient for 
implementation in practice as it will not require computer manipulations of the full MSE matrix of signal 
estimates; the dimension of this matrix may be quite large for the multidimensional problem or for a long 
target series. In the interest of simplicity, the proposed method is illustrated using a simulated bivariate 
time series from a random walk plus noise model. It is believed that SKF provides an important 
statistical tool which may have wide applications. 

Key Words: Covariance norm; Gram-Schmidt orthogonalization; Recursive least squares; Zero functions 



ETALONNAGE MULTIDIMENSIONNEL DES SERIES CHRONOLOGIQIJES PAR 
FELTRAGE DE KALMAN SEGMENTE 

RSUW 

L'etalonnage est essentiellement une méthode d'estimation du signal a partir des series 
chronologiques sous contraintes. Dans le cas des données reperes non fermes, les estimations 
finales du signal satisfont les données repères comgées par regression; pour les données repères 
fermes, II doit toutefois y avoir satisfaction exacte, ce qui entralne une sous-optimalité des 
données repères aléatoires. On presume que la source de la série de référence est indépendante 
de la source de la série chronologique visée. En général, le processus d'etalonnage comporte 
deux étapes : d'abord, estimations initiales du signal puis, regression assujettie a une contrainte. 
Lorsque le nombre de données repères est assez élevé, comme c'est le cas avec l'étalonnage 
multidimensionnel, la méthode habituelle de regression assujettie a une contrainte peut être 
diffidile a réaiiser, au point de vue du calcul, en raison de l'ordre élevé d'inversion de matrice. 
Si les données repères sont indépendantes les unes des autres, la technique des moindres carrés 
récursifs peut alors être adaptëe pour éviter l'inversion de matrice. Pour les données reperes 
dépendantes, la méthode dite ifitrage de Kalman segmenté (FKS) est proposée; celle-ci réduit 
les problèmes de calcul précités dans des conditions t.rès générales. De plus, avec la méthode 
FKS, il est géneralement facile de reviser les parties ultérieures de la série chronologique visée 
a Ia lumière des nouvelles données repères, sans avoir a reviser les parties antérieures et sans 
perdre d'optimalité, lorsque les nouvelles données reperes ne font pas intervenir de signaux des 
parties antérieures. Cette particularité pourrait se reveler fort utile en pratique, car II ne sera pas 
nécessaire de procéder a des manipulations informatiques de la matrice complete de l'erreur 
quadratique moyenne des estimations des signaux; l'ordre de cette matrice peut &re assez élevé 
lorsqu'il s'agit de problèmes multidimensionnels ou d'une longue série chronologique. Par souci 
de simplicité, la méthode proposee est illustrée a l'aide d'une série chronologique simulée a deux 
variables, obtenue par processus de marche aléatoire avec modélisation du bruit. La méthode 
FKS apparalt comme un important outil statistique qui pourrait avoir de nombreuses applications. 

Mots des : norme de covariance, orthogonalisation de Gram-Schmidt, moindres carrés récursifs, 
fonctions zero 



1. INTRODUCTION 

The problem considered in this article is how to use infonnation in an auxiliary time series of 

benchmarks to revise a target time series { y,, 1 :5 r :5; T} in order to get more precise estimates 

of signal parameters. The signal parameters may be random or nonrandom; random signals may 

be serially independent or dependent. Typically, serially independent signals will be nonrandom 

in practice. For an example of nonrandom signals, consider a time series where the observation 

y, at time t represents the signal parameter i, except for contamination with noise , and 

possibly bias b,, i.e., the expectation 1A, of y,  is equal to i, + b,.. Thus the nonrandom signals 

are defined as expectation of y, after adjustment for bias if any. On the other hand, for random 

signal parameters, suppose Ii, is a function of parameters 9,. The 0, parameters include, in 

general, both fixed and random components, and some or all, of the random components evolve 

over time. Now the random signal parameters i, can be defined as functions of 0,-parameters. 

The benchmark series, {x3 : 1 :5 s :5 S }, provides auxiliary information about signals { i, in the 

sense that x3  is a linear function of signals plus random error. If the benchmarks x5  are 

nonrandom, then there is no random error, and thus they are necessarily binding. However, if 

x3  are random, they could be either binding or nonbinding. The case of binding but random 
benchmarks arises in practice when the benchmark series is considered sufficiently reliable and 

therefore, no smoothing is warranted. In this case the fmal signal estimates are forced to exactly 

satisfy the benchmarks even if they are random. However, in the nonbinding case, they satisfy 
the regression-adjusted benchmarks, after taking into account the sampling error in benchmarks. 

There may be several types of benchmark series. For example, if { y, } is a univariate monthly 

series, one may have annual benchmark x -series, and quarterly benchmark z -series from 

auxiliary surveys; here both x- and z - series represent two types of temporal aggregation 

constraints. If { y, } is a multivariate monthly series, one may have annual multivariate 

benchmark x -series, and monthly univariate benchmark z -series which provides information 

about the aggregate of components for each month; here the x-series represents temporal 
benchmarks across time for each component time series while the z -series represents 

contemporaneous benchmarks across component for each time. Thus, we can classify the 
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benchmarking problem as either unidiinensional or multidimensional. In the unidimensional 

case, there is only one type of benchmark constraints, whereas in the multidimensional case, 

there are two or more types. 

For simplicity, we consider only two types of benchmark series 
{ 

x ; 1 :5 s !!~ S} and 

{ Zr ; 1 :!~ r :5 R}. Suppose, we extend the original series 
{ y1  } by augmenting at the end the 

benchmark series. Thus, the extended series will Consist of the y -series segment followed by 

the x-series segment, which in turn is followed by the 2-series segment. The order of 

benchmark segments is arbitrary but, in practice, may depend on the availability of benchmark 

information. Now the problem of revising y -series via benchmarking can be thought of as a 

huge linear regression problem which will involve, in general, both fixed and random 

parameters. We can perform (stochastic) least squares to get "optimal" (in the sense of BLUE 

or BLUP, the best linear unbiased estimation or prediction, as the case may be) estimates of 

signals such that they satisfy either regression-adjusted or the original benchmarks depending on 

the nature of benchmarks. if the benchmarks are random but binding, the resulting signal 
estimates will only be subopthnal. 

The interest in benchmarking has a long history; for an early reference, see Stone et al.(1942). 

For the problem under consideration, the main papers are among others due to Denton (1971), 

Hilliner and Trabelsi (1987), and Cholette and Dagum (1994). The paper of Hilimer and 

Trabelsi represents a milestone in the benchmarking literature in that unlike the traditional 
numerical approach it develops a proper statistical framework. For the umdimensional 
benchmarking problem under the assumption that the source of benchmark information is 

independent of the source of the target y -series, they proposed a two-stage procedure: (i) initial 

signal estimation under a model which treats signal parameters either as serially dependent (e.g., 

in the case of ARIMA or structural modelling) or independent (e.g., in the case of seasonal 

adjustment via X1l-ARIMA modelling), (ii) adjustment (or smoothing) of initial signal estimates 

to satisfy benchmarks via constrained regression. Section 2 provides a review of existing 
benchmarking methods. 
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Although the existing methods can be adapted to deal with the multidimensional problem, there 

are mainly two concerns regarding the computational complexity that may arise: (i) The matrix 

inversion involved in each of the two stages may be computationally prohibitive (especially in 

the case of multidimensional benchmarking) in view of its high dimension, the dimension being 

the number of signal parameters for the first stage, and the number of benchmarks for the 

second stage, (ii) With a very long target series f y } or with many component series in the 

multidimensional case, size of the mean square matrix (MSE) of signal estimates may be too 

large for computer manipulations. Section 3 gives a heuristic motivation for addressing these 

two concerns. 

We propose a method termed Segmented Kalman Filtering (SKF) which makes an attempt to 

alleviate the concerns raised above for existing methods, and is applicable under general 

conditions. Section 4 contains theoretical considerations underlying the proposed method of 

SKF. The SKF method is described in Section 5, and as a simple illustration, a numerical 

example based on simulated data from a bivariate random walk plus noise model is given in 

Section 6. The final Section 7 contains concluding remarks. 

2. REVIEW OF EXISTING METhODS 

As mentioned in the introduction, the existing methods consider only the unidimensional 

benchmarking problem and use, in general, a two stage solution to the benchmarking problem: 

(i) Initial signal estimation, to be denoted by {i }, and (ii) Adjusting { i } to get the final 
signal estimates, denoted by { }, such that the benchmarks are satisfied. Now given { 

the benchmarking problem is simply that of constrained regression. We have 

= ,j+ô, 	. —(O,) 	 (2.1a) 

	

x =L'q+e, e—(O,1 e , 	 (2.Ib) 

where & and e are orthogonal in the sense of being uncorrelated. The optimal (in the sense of 

BLUE) j is given by 
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= 	+9L'(LIIL' +L)'(X-Lj) 	 (2.2) 

if the benchmarks are nonrandom, then E. = 0. If they are random but binding, then the 

(suboptimal) j is obtained by setting Ee  to 0. However, for the random but nonbinding case, 

can not be set to 0, and the benchmarks are not exactly satisfied. The amount of adjustment 

in L depends on its MSE L 9 L' relative to the MSE E. of benchmarks. In other words, 

the benchmarked signal estimates { } satisfy the regression-adjusted benchmarks and not the 

original benchmarks. 

Now, depending on the nature of the initial signal estimation, the benchmarking problem can be 

classified into two types. 

2.1 Serially Independent Signals 

Here, the model for the initial signal estimation treats signals as serially independent; nonrandom 

in particular. For example, using the Xl l-ARIMA method of seasonal adjustment, the signal 

series may be defined as the expectation of the seasonally adjusted y -series. The corresponding 

MSE matrix 9 may be obtained approximately using (sampling) design or modelling 

considerations. Then the benchmarlcing problem essentially reduces to that of constrained 

regression as mentioned above. This sort of regression approach was taken by Cholette and 

Dagum (1994) who also allowed for bias and autocorrelation in the survey estimates represented 

by the y -series. There is an alternative but equivalent way of viewing this constrained 
regression approach in terms of a minimization problem where the distance, 

q - ij), is minimized subject to benchmark constraints. A practical interpretation 

of this is that the initial estimate series {, } is perturbed only a little to satisfy the benchmarks 
while preserving relevant characteristics of the series. This is somewhat similar to the 
traditional method of Denton (1971) which is a numerical procedure based on distance 

minimization. Cholette and Dagum made an important observation that the commonly used 

Denton-type method can be obtained as a special case of the regression approach using a suitable 

working MSE matrix for Q. In contrast to the above semiparametric approach, one can also 
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use a parametric approach based on, for example the method of maximum likelihood, to get 

from 	, see, e.g., Mian and Laniel (1993) under the assumptions of normality and constant 

multiplicative bias. 

2.2 Serially Dependent Signals 

The assumption of dependent signals is useful when the series itself does not represent signals, 

but contains them as random unobserved components (e.g., trend, seasonal etc.). The objective 

is to estimate signal components under benchmark constraints. This will, in general, give rise 

to more efficient and smoother signal estimates than those for the independent signal case. 

Often ARUvIA or basic structural modelling (BSM) are used for modelling {y g  }. Hilimer and 

Trabelsi (1987) used ARtMA to estimate { } and to specify the corresponding MSE matrix 
U. As shown by Bell (1984), this can be rendered into a problem of signal estimation via state 
space modelling. This gives the initial signal estimates for the first stage, which are adjusted 

in the second stage via constrained regression to satisfy benchmarks. Alternatively, Durbin and 

Quenneville (1996) used BSM to estimate { j } and their MSE matrix. They allowed for more 

general nonstationary time series, heteroscedasticity in survey errors, bias in survey estimates, 

and the nonlinear case where the basic model is multiplicative in components but the benchmarks 

are additive in components; for a discussion, see Singh (1995a). Another alternative was 

proposed by Chen, Cholette and Dagum (1995) which uses a non-parametric approach for 

estimating initial signals and their MSE matrix. 

3. HEURISTIC MOTIVATION 

In this section we address the two main concerns regarding the computational complexity of the 

existing benchmarking methods as stated in the introduction. 

For the first concern, namely, that of the possibility of high dimensionality in matrix inversion 

at each of the two stages, consider first the problem at the second stage. For this problem it 
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seems natural to propose processing of constrained regression into substages via subset 

regression on benchmarks; in particular, processing benchmarks piecewise, i.e., one at a time. 

The basic idea is to transform the auxiliary information in benchmarks into zero functions (i.e., 

functions which are zero in expectation), and then to orthogonalize them (e.g., by the Gram-

Schmidt method) in the sense that they become uncorrelated. Note that at any given substage 

of constrained regression, the benchmarked signal estimates are simply regression estimates, i.e., 

are obtained as a residual after regressing (or projecting) on the subset of predictors (in the form 

of zero functions constructed from benchmarks). It follows that the adjusted signal estimates 

at each substage satisfy the subset of (regression-adjusted) benchmarks involved at that stage and 

that they continue to satisfy the benchmarks used in earlier substages due to the orthogonalization 

of the corresponding zero functions. This important property, namely, that the benchmark-

adjusted signal estimates at any substage do not disturb the benchmarks used in earlier substages, 

provided benchmarks are suitably orthogonalized, is key to the proposed method of piecewise 

processing of benchmarks. 

For the orthogonalization of benchmark information mentioned above, it will be convenient in 

practice if it can be implemented recursively, i.e., using only estimates of the model parameters 

(denoted by Or ) for the current time t to orthogonalize new benchmarks with respect to the old 

ones. Note that a recursive processing is necessarily piecewise, but not vice-versa. If 

benchmarks are serially independent, then one can adapt the technique of recursive least squares. 

However, for the general case of dependent benchmarks, one can borrow ideas from the Kalman 

Filter (1(F) orthogonalization in the state space framework, see also Odell and Lewis (1971) for 

a related discussion. In particular, the two conditions, independence (or orthogonality) of new 

benchmarks at time t of the old ones conditional on the O s -parameters, and the Markovian 

dependence of future 0-parameters on the current and past parameters, are required. These two 

conditions are not very restrictive and are met by commonly used time series models. Both 

conditions can often be realized in practice by suitably enlarging the parameter (or the state) 

vector. Thus, it would be possible to use a KF-type algorithm on segments of the benchmark 

series, e.g., first on the x -segment and then on the z -segment. 



The problem of high dimension in matrix inversion at the first stage (due to a large number of 

signal parameters) can also be dealt with in a similar manner, i.e., by using a state space 

framework for the target y -series, and then a KF for obtaining initial signal estimates. 

For addressing the second concern, we consider the possibility of revising later parts of the time 

series in light of new benchmarks without revising the earlier parts and without losing 
optimality, when the new benchmarks do not involve signals from earlier parts. Having this 

feature will not only reduce the size of the MSE matrix of signal estimates, but also will be quite 

convenient from practical considerations. The reason for this is that when the new y -series and 
benchmark information become available, one will have the flexibility of deciding whether or 

not the full y -series should be revised. Moreover, the signal estimates corresponding to the 

earlier parts of the y-series will generally be not affected much by the new benchmarks. If the 
y-series can also be cast in the state space framework in addition to the benchmark series, then 

one does not lose opthnality of the revised later part of the series when the earlier part is not 
revised in light of new benchmarks. Notice that the state space framework of y-series generally 

implies that the signal parameters are random and that they evolve over time. However, it can 
also encompass independent or nonrandom but time-varying signal parameters as a limiting case 
by letting the variance of the corresponding error in the transition equation go to infinity. 

In the following, we assume that for a time period of interest (to be denoted by 1 :5 t :5 T), the 

y -series augmented with benchmarks x - and z - series is given. In particular, this may contain 

only the later part of the original y-series and only the new benchmark series as discussed 

4. PIECEWISE AND RECURS WE PROCESSING: THEORETICAL CONSIDERATIONS 

In this section, we consider conditions for piecewise and recursive processing of information in 

target and benchmark series using the theory of zero functions (see, Rao, 1968). Note that zero 

functions (also known as elementary estimating functions) are simply functions which are zero 
in expectation, and are, in general, functions of both data and parameters. It will be seen that 



converting new pieces of information in target and benchmark series into parameter-free 

orthogonal zero functions gives rise to innovations which, in turn, can be conveniently used for 

piecewise updating of estimates. It is known for special types of regression that a recursive (and 

hence piecewise) procedure can be applied. For example, in the case of independent 

observations, recursive least squares can be used, and in the case of dependent observations cast 

in the state space framework, the Kalman Filter (KF) provides the recursive processing of data 

to get optimal estimates. 

For the general regression problem we shall first consider conditions required for piecewise 

processing of information in data. 

4.1 Piecewise Processing for General Regression 

Consider a general regression problem with a p-vector of fixed parameters fl, for i = 1 , .. , n 

y, = x ' 3+ç, 	 (4.1) 

where the n-vector € - (0, F), and is uncorrelated with the n X p matrix X of observations on 

the predictors. The least squares estimate, = (X' F' X)' I' F' y, can be obtained 

alternatively by piecewise regression on parameter-free orthogonal zero functions created from 

the y -observations. Letting " denote the initial estimate of fl based on the first p y -values, 

(i.e., " = X y,,, say), it follows that can be obtained by regressing on the (n -p) zero 

functions g 1  = yp . I -  x1,+1 
.. ,g( - )  = y, -xe' that is, as a residual after projecting on 

the (n -p) predictors (in the form of zero functions) under the covariance norm. The functions 
...... are parameter-free, and can be orthogonalized via Gram-Schmidt to get innovations 

g 1  .... g,,. Now can be obtained in a piecewise manner as follows: 

= (1) - Cov11  , g1) [V(g 1  )V g 1 *  

= (2) - Cov42  g2  )[V(g2' )]' 92* 	
(4.2) 	, 

M. 



and so on until (n-p+l) which equals . 

We remark that if # contains some random parameters, then for the corresponding stochastic 

least squares version (see, for example, Singh, 1995a), an analogous piecewise procedure can 

be easily defined. We also remark that in the context of our extended time series for the 

benchmarking problem, the above piecewise processing of information in the benchmark segment 

to get signal estimates {I,} from the initial estimates {i} (which correspond to 1))  will not 

disturb the benchmark constraints processed earlier on. This follows from the basic principle 

of regression estimation (viewed as an orthogonal projection on predictor zero functions under 
the covariance norm) that the regression estimate of a predictor zero function itself is exactly 

zero 

Next we consider under what conditions, the above piecewise procedure for fmding can be 

made recursive, i.e., for the regression problem (4.1), letting t denote the current time, we 

want to create an innovation from y by using only the most recent estimate 0  (representing 

a condensed form of past data) and not the full past data y 1 ,... , y 1 . The resulting innovation 

will, in turn, give 0 t)  This is similar to the KF algorithm for state space models where 

although P, in general, varies with t but is connected over time through a Markovian relation 
to allow recursive updating. In the next subsection, we consider a sufficient set of conditions 

provided by the state space regression model for recursive proceSsrng of information. This is 

accomplished through a brief introduction to KF via zero functions. A simple state space 

framework in terms of random walk plus noise model will be used for this purpose. 

4.2 Recursive Processing for State Space Regression Models 

Suppose the regression model is specified in terms of two equations (measurement and transition 
equations of the state space setup) for the random walk plus noise model as follows: for 

l:5t<T, 

2 y = 	+ 	- WN'(O , o) (4.3a) 



Ot = 0 + 	 - 1W(O,a), 	 (4.3b) 

where WN signifies white noise, € 's and 's are orthogonal and E ,  is also orthogonal to 0. 

The first equation (4.3a) implies the independence (or orthogonality) of new information from 

the past conditional on the (random) state parameter 0, and the second equation (4.3b) implies 

Markovian dependence between the 0 -parameters. Note that the 0 -parameters are random and 

vary with t. Alternatively, the usual single equation representation of the regression model 

(4.3) in terms of the current parameter 0, is given by, for 1 :5. t ~ T, 

T 

= t' + 
	 (4.4) 

t't+1 

where the corresponding covariance structure can be appropriately specified. For other 

parameters, O, similar equations can be defmed. 

Now, at t = 1, the best estimate (i.e., BLUP) 0 I  of 0 is y 1  because we have only one piece 

of information in the form of zero function g1 = y1 - 61 . At t = 2, we get another zero function 

- 02. It can be made parameter-free by replacing 02  by b2l, = y1 , where 0 21 , 
 denotes an 

estimate of 02  based on information available at t=l. Therefore 92 = y2 - y1 . Similarly, we 

have g3 = = v - ' 1  as we get more information. Wewill show that because of 

the state space framework, {g :2 !.- t !~g T} can be orthogonalized recursively to get innovations. 

At time t=1, the BLUP of 02  is the sum of the BLUPs of 01  and , i.e. 0211 =  0 111 + 

In view of the Markovian relation (4.3b), the error 2  does not depend on the past 81  and 

therefore, E211 = 0, implying 0211 = &. Next consider t = 2. The first innovation from y 2 , 

denoted by 9 2' can be set equal to g2 = y2  02I 1  = y2  -y 1 . Now, the BLUP of 02  combines 

optimally two pieces of information, 0211  and 92' = y2 - 	 , 
available at t=2, and is given by 

022 = 	 (4.5a)211 

= 0211 + V( 211 _O2)[a+ V( 21j _O2)] 1  y2 -0211). 	 (4.5b) 
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Next, we need to orthogonalize the zero function 9 3  (= y3  -y) with 92  to get the innovation 

93  from y3 . First note that 0312 = 0212 because E 312  = 0 again using the Markovian relation 

(4.3b). Notice that 0312  is obtained in a recursive manner. Second, in view of the conditional 
independence of €3  from the past €2  and c, the innovation 3*  obtained from y3  is 
93S = y3 - 032 = Y3 - 212• Similarly, we can get innovations from the zero functions 

y - y 1 , t=4,...,T, as 

g =v-- 1  = Yt°..Ijt-L 	 (4.6) 

and, in the process, get optimal estimates b 2 l 2 ' ... I b7l T recursively as 

+ V( 	- 0) [o' + V(1_1 - 0) ]_1 (Y - 	, t = 2,..., T. 	(4.7) 

The equation (4.7) is known as the filtering equation of KF. The variance term V(&1 111  - 0) is 
also computed in a recursive manner. The fmal estimate is termed the smoothed estimate 
of 0 based on all the y-observations. Similarly, smoothed estimates Of I T  for t = 1 , . . . , T- 1 

can be obtained by regressing (already computed) on the innovations t: ,.. • , g. 

It can be seen from the above brief introduction of KF in terms of a simple state space model 
that for recursive processing of the benchmarks in the second stage, we need to cast each 
benchmark segment into the state space framework. In other words, we need the two 
conditions: the independence of benchmarks conditional on state parameters (suitably chosen), 
and Markovian dependence between the state parameters over time. We can then create 
innovations (via orthogonalization) from the benchmarks using the signal estimates 	obtained 
from y -series only. Note that for obtaining the signal estimates 	, information in the target 
y-series can be processed recursively via KF if y-series also follows a state space model. Now, 
the desired (benchmarked) signal estimates I are automatically obtained after running KF over 
benchmark segments of the extended time series where j is used for the initialization of KF. 
This is the basic principle underlying the proposed method of segmented KF given in the next 
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section. Note that for the piecewise recursive processing via a state space model it is assumed 

that the underlying covariance structure is suitably specified from the sampling design and 

model (either true or working) considerations. 

5. SEGMENTED KALMAN FiLTER: The Proposed Method 

Consider the (multivariate) target series {y1 : 1 2!9 t :5 T} and the two benchmark series 

{x: 1 :5 s :5 S} and {z:  1 :5 r :5 R I. Suppose all the three segments of the extended time series 

can be cast in the state space framework as follows (cf: Harvey, 1989, ch. 3): 

y-segment (1 :5t<T) 

x-segment (1 :5s:5S) 

z-segment (1 :5r:5R) 

= F' O 	+ 	y , 
j - (0 1  F) (5.1a) 

0' = '' 0' 	+ 	, '-'1 	1 -1 - (0, A) (5. 1 b) 

x 
= F: o + 

x 
- (0 1  1) (5.2a) 

01, = G 	0 	+ 	, - (0, A) (5.2b) 

z,. = F, 0 	+ E, - (0, F) (5.3a) 
= G, 0 	+ - (0, A) (5.3b) 

The model errors E 's and 's are assumed to satisfy the usual orthogonality conditions. The 

signal of interest q, is a linear function of components of the state vector 0 for 1 :!5 t :!g T, and 

therefore, its estimate iand the corresponding MSE matrix can be obtained from those for 

0'-parameters. Also, the complete signal vector q = (, ,. ..,i-)' over the T time points is 

assumed to be a subset of the state vector 01, for each s and 0 for each r. Thus, signal 

estimates j, IT.S tIT,S,R 
and their MSE matrices can be obtained respectively from those of 0 

and O,  parameters. The notation % for example, signifies smoothed (or BLUP) estimates 

of 77, after information in T y-observations, S x-benchmarks, and R z-benchmarks is 

utilized. 
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The proposed method of SKF consists of the following steps. Each step corresponds to 

processing a segment of the extended time series. 

Step I (KF for the y-segment) 
This step is without benchmarks and one can use the usual KF (and smoother) to get smoothed 

estimates of {O: 1 :5 t :5 T} and the corresponding MSE matrix P'. These, in turn give the 

signal estimates { TL to be denoted by (1),  and their MSE matrix 9(•  Note that if the y - 

series is not cast in the state space set-up, then this step of KF will not be needed. Instead, the 

signal estimates and their MSE matrix are obtained either through a general regression model 
or a working model based on subject-matter considerations. 

Step H (KF for the x-segment) 
This KF is different from the usual KF in that 1)  and if" obtained from Step I are used for 

initialization of that part of the 0- vector which contains the is-parameters. If there are some 

additional parameters they may be initialized in the usual way. Then, the KF is run as usual to 

get the estimate rsis  and its MSE P1 . This gives rise to e and Note that unlike Step 

I, there is no need of Kalman smoothing because the complete n-vector is contained in each o: 
by construction and therefore 2) = and its MSE matrix fl can be obtained from 

CYSIS and  PSX1s . 
Also, note that if the x -benchmarks are independent (which may be true in the 

case of annual x-benchmarks for monthly y-series), then 8 will be simply the complete signal 

vector I in which case it does not evolve over s, i.e., the transition equation (5.2b) becomes 

the trivial one, namely, 0 = O, with zero error. 

Step ifi (KF for the z-segment) 

This is similar to Step II except that (2),  if) is used for initialization of the il - part of the state 
vector 8. The required signal estimates 3) = {TsR} and its MSE matrix 11 (3)  can be 

obtained from RlR  and "RR 

Remark 5.1 If more y-data are expected in future, as is usually the case, then it is better to 

include all Or-parameters, and not just the signal parameters, in each of 9 and O parameters. 
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This way when the new observation series becomes available, one can use the current estimate 
of 0. as input for KF initialization for the next step (IV). Similarly, for the new benchmarks, 
we will have Steps V, VI, and so on. The fmal signal estimates can always be obtained from 

the final 8'-estimates. 

Remark 5.2 If both x- and z -benchmarks are treated as binding, then clearly they must be 
made compatible with each other. For instance, for a multidimensional problem if x - 
benchmarks are annual and z - benchmarks are monthly, then the annual totals of z -benchmarks 
should agree with x -benchmarks. Also, whenever random benchmarks are treated as fixed, the 
MSE matrix of the resulting signal estimates should be adjusted for variability of the random 
benchmarks. This can be done along the lines of Pfeffennann and Burck (1990). 

Remark 5.3 The above procedure for SKF assumes that the hyperparameters (i.e., parameters 
of design matrices F, transition matrices G, and MSE matrices F and A) are given in advance. 

In practice, they are usually estimated by MLE under normality. The log-likelihood can be 

easily modified to include auxiliary information from benchmarks via additional innovations (or 
orthogonalized zero functions) obtained from benchmarks as follows: 

log-likelihood = const - (1/2)[ E log v + E 3  log : + Er log v,] 

, - (1/2)[ E (g 	+ E, (g3*x )2 
/ V3x + 

where g * 's and v's represent innovations and their MSE respectively for y-, x- and z-

segments. 

Remark 5.4 To implement SKF in practice, suitable modelling of the target and benchmark 
series is required. In the context of survey sampling, if the observations and benchmarks 
represent design-consistent estimates, then a design-based version of SKF (denote by d-SKF) can 
be easily defmed under a working model to obtain design-consistent benchmarked estimates 
provided all the zero functions appearing in benchmarked estimates are design-consistent 
estimates of zero. The resulting estimates are robust in that they remain design-consistent even 
if the working model assumptions are not correct. (However, finding a suitable estimate of the 
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corresponding MSE matrix may not be easy in general.) The working model may be chosen, 

for instance, to correspond to the Denton-type distance minimization method (see the example 
in Subsection 6.1.1) such that important characteristics (growth rates, for example) of the target 

series are approximately preserved. An important application of d-SKF may be in the area of 

benchmarking seasonally adjusted component series in a multidimensional problem where both 

the contemporaneous and temporal benchmarks are treated as binding, assuming of course their 

compatibility. The contemporaneous benchmarks, in practice, can be obtained by first 

benchmarking (via d-SKF) the seasonally-adjusted aggregate series (over components) with 

respect to the aggregate temporal benchmarks, thus ensuring their compatibility with temporal 
benchmarks. This type of hierarchical approach for ensuring compatibility may be particularly 

useful when there are many dimensions in the benchmarking problem. 

Remark 5.5 It should be emphasized, as mentioned in the introduction, that the order of 

processing of benchmark segments is arbitrarily chosen. 

6. iLLUSTRATION 

For illustrating SKF, we simulated a five year long bivariate monthly series following a random 

walk plus noise model given by, for j =1, 2 

	

= 
	 N(O,a) 

	 (6.la) 

	

o;t = 	+;, 	 N(O,or). 	 (6.lb) 

The signal 	, in general, is a function of o; in this example 71j, equals 0. The two 

components y 1  and y21  were made correlated by introducing the correlation p(e, c) which 

was set as .25. The values of a , , a and were set at 

4 x 10, 16 x 10, .625 X 10 and 2.5 X 10 respectively which give rise to signal-noise variance 

ratio as .156 for each j. The starting values for OJ were set at 500 and 800 for] = 1,2 

respectively. For each component j, the five annual benchmarks were obtained from the 

generated (true) signals , thus making the benchmarks nonrandom, x j, = 0, for 
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s=l,...,5. 

The monthly benchmarks were allowed to be either serially independent or dependent. For the 
independent case, the aggregates of (true) monthly signals over the two components were used 
as monthly benchmarks, z, = + r, for r = 1,... ,60. Thus these monthly benchmarks 
become nonrandom. For the dependent case, a noise series following AR(l) with p = .8 and 
o2 = 100 was added to the monthly aggregates of signals; the last 60 values out of a total of 300 
generated values for the noise series were used in the interest of achieving stationarity. The 
resulting benchmarks were treated as nonbinding for the example considered. Tables 1 and 2 
show the generated y -series for the first two years as well as the annual {x} and monthly 

benchmarks {Zjr} 

6.1 Nonrandom Annual and Monthly Benchmarks 

6.1.1. Serially Independent Signals 

Although the true signals are serially dependent, we first treat them as nonrandom and use the 
limiting case of state space modelling (when the error variance in the transition equation tends 
to infinity) for signal estimation for the first step of SKF. The underlying regression model is 
equivalent to a Denton-type method corresponding to minimization of the distance function 

E 1  [(fl - 	
if 6 ] 2  subject to benchmarks, 	 (6.2) 

where qj, = 	and i.y,, denote first differences, and a. o provides differential weights for 

the distance over different components j = 1,2; these weights do not appear for the 
unidimensional problem. The above minimization problem approximately preserves the rate of 
growth in the y-seiies after benchmarking. 

The regression model is chosen in a manner somewhat similar to the one suggested by Cholette 
and Dagum (1994), with the working covanance structure corresponding to (6.2): 

16 



2 at t = 1, 	y,1 ='IjI + cfl , E, - (0, cr,), 
(6.3) 

fort ;2t 2, 	Ly .  = 	. +b 	& — (0,ry.j), fl  it 	jt' 	.1: 

with a. tending to infinity, implying that the first observation is discarded in estimating the 

signals. However, first differences of the nonrandom signals are estimated by the corresponding 

first differences of the y -seiies, that is 

ft=YftYf1' t;~t2. 	 (6.4) 

The signal estimate for t=1 jj,  is obtained after the first annual benchmark (Xfl ) becomes 

available. The reason for this is that xj,  can be represeni:ed as 

12 	 12 

	

xl=nft=71fl+E(l2-t+l)nJ(, 	 (6.5) 
r=1 	 r=2 

which implies 

12 

	

= [x31-E(l2-t+l)]/12. 	 (6.6) 

Using (6.4), (6.6) and the covariance structure given by (6.3) we obtain the signal estimates 

= and their MSE matrix fl)•  This completes Step I of SKF except that variance 

components a12  need to be specified. They are estimated from the observation and benchmark 

series by a simple method of moments (not shown here) as .3006 and .3096 respectively for 

j = 1,2. 

Now, for higher steps of SKF, we need to specify hyperparameters of state space models for the 

benchmark segments. However, since all the benchmarks are nonrandom, state space models 

for benchmark series become trivial as in the case of recursive least squares, i.e., errors in the 

transition equations (5.2b) and (5.3b) become zero so that: 

OX  = 8, s=1,...,S 	 (6.7) 

= O, r=1,...,R 	 (6.8) 
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where 8 = 	= (p11, 721;  n 12  p22' 13 n;•••; 1T' fl2r) . For higher steps of SKF we consider 

the four scenarios regarding the availability of benchmarks: (i) annual benchmarks for the first 

year, (ii) annual and monthly benchmarks for the first year, (iii) annual benchmarks for the first 

two years but monthly only for the first year, (iv) annual and monthly benchmarks for the first 

two years. 

Step II of SKF, in this example, will coincide with Step I because the first annual benchmark 

was already used in Step I. However, in general, this is not the case and Step U can be 

described as follows when the annual benchmark x,, becomes available. The observation 

equation (5.2a) is x3  = F 01, with the matrix F = I HX I o] with O and 0, defmed 

as zero matrices of order 2 x 24(s-1) and 2 x (2T-24s) respectively, and HX  denotes a 

2x24 matrix 

Hx 	[1 0 1 ... 0 
= I 

L° 10 ' 

The initial estimate V is obtained from Step I as = 	
= 	 7 ) with MSE 

P02 = The BLUP, Ox Io  of 8 is r. with the MSE Pilo  = P. When the benchmark x1  

becomes available, the innovation g t , at s=l, is x1  - F C)' with MSE 

(3 = E(g g ') = F 'o Ft'. Now the BLUP of O is 

.-.-1 x' 	x 	x x* 
I1 = 
	+ PF'(.yj  g 1 	= 00 +K1 g1 	 (6.9) 

with MSE P = (I - K F) P . This completes Step II which gives rise to jP and (Z 2 . 

For step ifi of SKF the observation equation (5.3a) takes the form Zr  = F O with matrix F 

partitioned as F = [0r HZ' I O r], where O f ,. and 02r  are zero vectors of length 2(r-1) and 

2(T-r) respectively, and fiZ = ( 1, 1)'. The initial estimate 	is obtained from Step H as 
(2)  with MSE P = 0(2). The BLUP, 	of O is with the MSE P = P. Once the 

benchmark z1  becomes available, the mnovation g , at r=l, is z1  -F è, with MSE 
G1 = E(g* g S/) = 	Ff ' . Then the BLUP of Of is 



-1 z' 	z iz 
ii = 	

,-. g 1 	= O0 +Kg 1 	 (6.9) 

with MSE Pf = (I - K F) P. After utilization of Ihe first twelve monthly benchmarks 

z 1 ,...,z12  we obtain kj , and Pz  11, for R=12. This completes Step ifi and gives 	and O. 

Table 1(a) shows the revised y-series (denoted by 	, 	, 	, " ) for the first two years 

under the four scenarios. Observe that the earlier parts of the series are generally not affected 

much by benchmarks involving signals corresponding to later parts of the series. Also note that 

the second component gets more affected. This is as expected due to the high variability of the 

error O relative to ô,' in the model (6.3).21  

6.1.2 Serially Dependent Signals 

In this case, for using a state space model for the initial signal estimation for Step I of SKF, we 

chose the same random walk plus noise model that was used for generating the y -series with the 

same hyperparameters for ifiustration purposes. For initialization of KF, the observation at t=l 

for each component was used. The next steps of SKF are similar to those used in section 6.1.1. 
Table 1(b) shows the revised y -series as the benchmarks become available under the four 
scenarios. Notice that the series looks smoother than that for nonrandom signals. Also observe 

that the earlier parts of the series are generally not affected much in light of the new 

benchmarks. 

6.2 Nonrandom Annual and Serially Dependent but Nonbinding Monthly Benchmarks 

6.2.1 Serially Independent Signals 

Here the Step I of SKF is same as that for Subsection 6.1.1. However, in Step II for the 

segment of monthly benchmarks for the first year, we need to specify a state space model 
because of serially dependent benchmarks. For the sake of illustration, we chose the same 

model that was used for generating these benchmarks and the same hyperparaineters. Now KF 
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for this segment is performed, and then in Step ifi for the first annual benchmark, only a trivial 

state space model is needed for SKF, and similarly for other steps. Table 2(a) shows the revised 

y-series as the benchmarks become available under the four scenarios. Notice that as expected 

the monthly aggregate series does not match the monthly nonbinding benchmarks. 

6.2.2 Serially Dependent Signals 

This is similar to the previous case except that the initial signals are estimated using a state space 

model as in Subsection 6.1.2. The benchmarked y -series in this case is shown in Table 2(b). 

Figures 1 and 2 corresponding to tables 1(a) and 2(b) respectively show graphs of revised target 

series for the first two year period as benchmarks become available under different scenarios 

corresponding to serially independent and dependent monthly benchmarks, the annual 
benchmarks being nonrandom in all cases. Figures for tables 1(b) and 2(a) are not shown here 

but are similar to those for tables 1(a) and 2(b) respectively. 

7. CONCLUDING REMARKS 

By approaching Kahnan Filtering from the perspective of orthogonal zero functions, the method 
of segmented Kalman Filtering for revising the target series was proposed which can process 

benchmarks piecewise and recursively under the conditions of state space modelling for the 

benchmark series. The SKF makes a single pass through each benchmark. The final signal 

estimates satisfy all the benchmarks (which are regression-adjusted in the nonbinding case). The 

SKF method also allows for revising only later parts of y -series in light of new benchmarks 

without losing optimality, again under state space modelling assumptions for the y -series. The 

proposed method encompasses Denton-type numerical methods based on distance minimization 

by using a suitable working covariance matrix for the initial signal estimates. In the context of 
target series obtained from repeated surveys, a design-based version of SKF was also proposed 

under a working model. This should have important practical applications because it ensures 
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design-consistent benchmarked signal estimates even though the working model assumptions may 

not be correct. Finally, we remark that the basic idea underlying SKF is quite general and can 
be used in problems of estimating linear combinations of parameters under linear constraints. 

In particular, the problems of calendarization, interpolation, and forecasting can be unified with 

the problem of benchmarking, see also Dagum, Cholette, and Chen (1996). 
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Table 1(a). Benchmarked y-series with nonrandom signals 
(For nonrandom annual and monthly benchmarks) 

Y1r I I I )'2 I I I 
402.37 444.76 444.76 469.22 485.04 485.68 767.51 817.80 817.80 923.19 920.48 935.42 1392.41 

2 423.96 466.35 466.35 435.34 450.49 451.10 1010.97 1061.27 1061.27 939.77 937.18 951.49 1375.11 

3 363.51 405.90 405.90 402.47 416.02 416.57 927.79 978.08 978.08 1032.89 1030.57 1043.37 1435.37 

4 438.46 480.85 480.85 445.18 456.94 457.41 1135.68 1185.97 1185.97 1004.71 1002.70 1013.80 1449.89 

5 381.17 423.56 423.56 398.26 406.52 406.86 1086.68 1136,98 1136.98 1033.90 1032.49 1040.29 1432.16 

6 352.16 394.55 394.55 389.80 394.69 394.89 984.74 1035.04 1035.04 1119.69 1118.85 1123.47 1509.48 

7 306.70 349.09 349.09 344.71 346.17 346.23 1017.41 1067.71 1067.71 1155.57 1155.33 1156.70 1500.28 

8 467.40 509.79 509.79 485.18 483.51 483.44 1236.43 1286.73 1286.73 1124.47 1124.76 1123.18 1609.65 

9 242.93 285.32 285.32 317.12 307.47 307.08 975.76 1026.05 1026.05 1307.54 1309.19 1300.07 1624.65 

10 437.55 479.94 479.94 490.20 477.96 477.47 1164.18 1214.48 1214.48 1105.21 1107.30 1095.74 1595.41 

II 320.14 362.53 362.53 400.48 379.49 378.64 1045.11 1095.40 1095.40 1206.49 1210.08 1190.26 1606.97 

12 309.82 352.21 352.21 376.89 350.55 349.49 1208.99 1259.28 1259.28 1211.35 1215.86 1190.98 1588.24 

AnnualSum 4446.17 4954.85 4954.85 4954.85 4954.85 4954.85 12561.25 13164.79 13164.79 13164.78 13164.79 13164.77 18119.62 

(x11) (x 11 ) (x 11) (x 11 ) (x 11 ) (x) (x21 ) (x2 ) (x21 ) (x21) (x21 ) 18119.62 

13 397.97 440.37 440.37 465.04 432,78 431.47 1150.28 1200.58 1200.58 1152.64 1174.52 1053,83 1485.31 

14 438.37 480.76 480.76 505.43 464.21 496.85 769.90 820.20 820.20 772.26 808.56 930.54 1427.40 

15 343.75 386.14 386.14 410.81 359.71 329.62 1170.33 1220.63 1220.63 1172.69 1214.86 1088.33 1417.95 

16 281.87 324.26 324.26 348.93 292.36 284.66 974.74 1025.03 1025.03 977.10 1031.47 1132.31 1416.96 

17 394.79 437.18 437.18 461.85 402.02 382.90 1203.41 1253.70 1253.70 1205.77 1267.67 1175.26 1558.16 

18 307.21 349.60 349.60 374.27 308.83 301.57 1165.69 1215.98 1215.98 1168.05 1239.98 1218.51 1520.08 

19 326.90 369.29 369.29 393.96 325.60 329.40 1017.88 1068.17 1068.17 1020.24 1100.25 1215.10 1544.50 

20 262.45 304.84 304.84 329.51 258.41 262.57 1094.94 1145.24 1145.24 1097.30 1182.44 1274.19 1536.77 

21 454.04 496.43 496.43 521.10 448.58 445.41 1088.90 1139.20 1139.20 1091.26 1181.15 1104.21 1549.61 

22 435.35 477.74 477.74 502.41 426.71 448,39 867.53 917.82 917.82 869.89 963.30 1028.48 1476.87 

23 489.41 531.80 531.80 556.47 478.82 479.67 945.65 995.95 995.95 948.01 1042.92 1007.24 1486.91 

24 392.46 434.85 434.85 459.52 380.63 386.13 1064.15 1114.45 1114.45 1066.51 1162.30 1141.43 1527.56 

AnnualSum 4524,57 5033.26 5033.26 5329.33 4578.66 4578.66 12513.40 13116.95 13116.95 12541.72 13369.42 13369.43 17948.08 

(.,) (x 1) (x 1) (x22) (x2) 17948.08 



Table 1(b). Benchmarked y-series with serially dependent signals 
(For nonrandom annual and monthly benchmarks) 

' I 	'" I I I I 	' I )'2 I I I 
402.37 402.37 461.80 477.28 479.09 480.17 767.51 767.51 825.96 915.15 913.33 912.26 1392.42 

2 423,96 386.05 424.90 410.69 411.29 411.64 1010.97 995.10 1047.82 964.42 963.82 963.47 1375.11 
3 363.51 371.14 414.99 409.31 409.92 410.29 927.79 954.15 1017.73 1026.06 1025.45 1025.08 1435.37 
4 438.46 394.68 441.72 419.91 420.52 420.88 1135.68 1039.53 1109.23 1029.98 1029.37 1029.01 1449.89 
5 381.17 371.47 420.34 399.17 399.75 400.10 1086.68 1040.90 1113.94 1032.99 1032.41 1032.06 1432.17 
6 352.16 361.48 411.15 410.54 411.06 411.38 984.74 1016.85 1091.35 1098.94 1098.42 1098.10 1509.49 
7 306.70 342.32 391.93 388.73 389.15 389.40 1017.41 1051.81 1126.26 1111.55 1111.13 1110.88 1500.28 
8 467.40 393.04 441.76 440.50 440.74 440.87 1236.43 1111.87 1184.86 1169.15 1168.92 1168.78 1609.66 
9 242.93 318.99 365.89 390.58 390,49 390.44 975.76 1066.37 1136.40 1234.08 1234.16 1234.21 1624.66 
10 437.55 383.69 427.61 431.65 431.02 430.64 1164.18 1100.70 1166.06 1163.76 1164.39 1164.77 1595.41 
11 320.14 344.78 384.20 401.71 400.16 399.23 1045.11 1085.20 1143.82 1205.26 1206.81 1207.74 1606.97 
12 309.82 335.70 368.51 374.79 371.66 369.80 1208.99 1152.07 1201.42 1213.45 1216.58 1218.44 1588.23 

AnnualSum 4446.17 4405.71 4954.80 4954.83 4954.83 4954.83 12561.25 12382.06 13164.85 13164.79 13164.79 13164.80 18119.66 

(xi,) (x 1 ) (x 11) (x 11 ) (x 1 ) (x21) (x21 ) (x21) (x21 ) 18119.64 

13 397.97 372.76 395.94 400.47 398.97 382.71 1150.28 1089.48 1126.48 1135.25 1162.19 1102.60 1485.30 
14 438.37 401.46 417.92 421.20 421.60 420.65 769.90 913.28 940.81 947.20 989.75 1006.75 1427.40 
15 343.75 347.56 359.30 361.67 363.83 337.32 1170,33 1101.77 1122.14 1126.78 1179.61 1080.63 1417.94 
16 281.87 329.82 338.21 339,93 343.53 328.36 974.74 1057.88 1072.88 1076.26 1135.79 1088.60 1416.96 
17 394.79 362.79 368.81 370.05 374.73 366.43 1203.41 1135.66 1146.67 1149.12 1212.88 1191,73 1558.16 
18 307.21 332.97 337.30 338,20 343.60 333.63 1165.69 1147.57 1155.63 1157.41 1223.59 1186.45 1520.08 
19 326.90 348.14 351.25 351.91 357.69 362.99 1017.88 1082,53 1088.42 1089.71 1156.84 1181.51 1544.50 
20 262.45 326.85 329.10 329.57 335.44 339.89 1094.94 1113.31 1117.61 1118.55 1185.29 1196.88 1536.76 
21 454.04 404.57 406.20 406.54 412.22 421.13 1088.90 1035.75 1038.88 1039.56 1104.47 1128.48 1549.62 

22 435.35 409.42 410.59 410.84 416.14 434.37 867.53 918.42 920.70 921.19 982.49 1042.50 1476.87 

23 489.41 423.64 424.49 424.67 429.47 448.00 945.65 925.18 926.84 927.20 982.42 1038.91 1486.90 

24 392,46 376.22 376.83 376.96 381,38 403.15 1064.15 1007.10 1008.31 1008.56 1054.10 1124.41 1527.56 

AnnualSum 4524.57 4436.20 4515.95 4532.00 4578.60 4578.61 12513.40 12527.93 12665.37 12696.79 13369.42 13369.45 17948.05 

(x1,) (x 1) (x,) (x2) (xv) 17948.03 



Table 2(a). Benchmarked y-series with nonrandom signals 
(For nonrandom annual and dependent but nonbinding monthly benchmarks) 

' I 	" I I 	' I I I > I I I I z 

1 402.37 444.76 444.76 470.34 486.54 486.91 767.51 817,80 817.80 920.52 918.91 934.57 1389.78 

2 423.96 466.35 466.35 435.28 450.80 451.15 1010.97 1061.27 1061.27 932.31 930.77 945.78 1365.33 

3 363.51 405.90 405.90 400.61 414.48 414.80 927.79 978.08 978.08 1013.84 1012.46 1025.89 1412.68 

4 438.46 480.85 480.85 444.21 456.25 456.53 1135.68 1185.97 1185.97 992.26 991.06 1002.72 1433.69 

5 381.17 423.56 423.56 396.79 405.25 405.45 1086.68 1136.98 1136.98 1017.65 1016.81 1025.02 1412.06 

6 352.16 394.55 394.55 389.95 394.96 395.08 984.74 1035.04 1035.04 1118.27 1117.77 1122.65 1505.98 

7 306.70 349.09 349.09 344.85 346.34 346.38 1017.41 1067.71 1067.71 1154.06 1153.91 1155.38 1496.22 

8 467.40 509.79 509.79 486.28 484.57 484.53 1236.43 1286.73 1286.73 1134.89 1135.06 1133.42 1618.09 

9 242.93 285.32 285.32 317.06 307.18 306.95 975.76 1026.05 1026.05 1308.84 1309.82 1300.28 1624.32 

10 437.55 479.94 479.94 490.84 478.31 478.02 1164.18 1214.48 1214.48 1119.24 1120.49 1108.35 1605.95 

11 320.14 362.53 362.53 400.23 378.74 378.25 1045.11 1095.40 1095.40 1213.45 1215.59 1194.76 1612.50 

12 309.82 352.22 352.22 378.41 351.43 350.81 1208.99 1259.28 1259.28 1239.43 1242.12 1215.95 1614.19 

Annual Sum 4446.17 4954.85 4954.85 4954.85 4954.85 4954.85 12561.25 13164,79 13164.79 13164.76 13164.77 13164.77 18090.79 

(x1,) (x 11) (x 11) (x 11) (x 11) (x21 ) (x21) (x21 ) (x21) 18119.64 

13 397.97 440.37 440.37 466.56 433.52 432.76 1150.28 1200.58 1200.58 1180.73 1193.71 1067.37 1505.84 

14 438.37 480.76 480.76 506.95 464.73 498.01 769.90 820.20 820.20 800.35 821.87 934.00 1440.59 

15 343.75 386.14 386.14 412.34 359.99 327.38 1170.33 1220.63 1220.63 1200.78 1225.78 1076.42 1413.10 

16 281.87 324.26 324.26 350.45 292.50 283.12 974.74 1025.03 1025.03 1005.19 1031.42 1121.96 1416.67 

17 394.79 437.18 437.18 463.38 402.08 382.16 1203.41 1253.70 1253.70 1233.86 1270.55 1170.98 1564.95 

18 307.21 349.60 349.60 375.79 308.76 300.98 1165.69 1215.98 1215.98 1196.13 1238.78 1209.64 1523.49 

19 326.90 369.29 369.29 395.48 325.46 330.13 1017.88 1068.17 1068.17 1048.32 1095.75 1222,65 1566.02 

20 262.45 304.84 304.84 331.04 258.20 263.58 1094.94 1145.24 1145.24 1125.39 1175.86 1281.59 1557.89 

21 454.04 496.43 496.43 522.63 448.34 446.61 1088.90 1139.20 1139.20 1119.35 1172.63 1112.54 1571.21 

22 435.35 477.74 477.74 503.93 426.39 448.99 867.53 917.82 917.82 897.97 953.34 1030.74 1491.99 

23 489.41 531.80 531.80 557.99 478.45 479.27 945.65 995.95 995.95 976.10 1032.35 1004.10 1492.65 

24 392.46 434.85 434.85 461.04 380.24 385.66 1064.15 1114.45 1114.45 1094.60 1151.38 1137.45 1531.14 

Annual Sum 4524.57 5033.26 5033.26 5347.58 4578.66 4578.66 12513.40 	13116.95 13116.95 12878.77 13369.42 13369.44 18075.54 

() (x12) (x 1 ) (x 2 ) (x22) 17948.03 



Table 2(b). Benchmarked y-series with serially dependent signals 
(For nonrandom annual and serially dependent but nonbinding monthly benchmarks) 

.(2) .(3) 
'lit 

.(4) 
'lit 

.(5) l l , 2a 
(i) 

'121 
(3) 

'121 
(4) 

12, 
(5)  

'lv z 
1 402,37 402.37 461.79 476,32 478.04 479.50 767.51 767.51 825.96 910.13 907.39 908.94 1389.78 

2 423,96 386.05 424.90 409.10 409.39 410.70 1010.97 995.10 1047.82 968.37 966.75 969.43 1365.33 
3 363.51 371.14 414.99 404.59 404.85 406.32 927.79 954.15 1017.73 1003.15 1001.38 1004.45 1412.68 
4 438.46 394.68 441.72 419.39 419.63 421.14 1135.68 1039.53 1109.23 1029.74 1027.95 1031.11 1433.69 
5 381.17 371.47 420.34 398.84 399.08 400.50 1086.68 1040.90 1113.94 1032.63 1030.94 1033.91 1412.06 
6 352.16 361.48 411.14 410.34 410.58 411.78 984.74 1016.85 1091.35 1098.29 1096.82 1099.32 1505.98 
7 306.70 342.32 391.93 389.41 389.64 390.46 1017.41 1051.81 1126.26 1114.08 1112.99 1114.70 1496.22 
8 467.40 393.04 441.76 443.13 443.31 443.60 1236.43 1111.87 1184.86 1180.43 1179.93 1180.52 1618.09 
9 242.93 318.99 365.89 388.31 388.35 387.89 975.76 1066.37 1136.40 1222.12 1222.52 1221.58 1624.32 
10 437.55 383.69 427.61 434.19 433.91 432.43 1164.18 1100.70 1166.06 1173.59 1175.32 1172.36 1605.95 
11 320.14 344.78 384.20 401.67 400.72 397.87 1045.11 1085.20 1143.82 1201.62 1205.36 1199.82 1612.50 
12 309.82 335.70 368.50 379.48 377.24 372.55 1208.99 1152.07 1201.42 1230.69 1237.50 1228.71 1614.19 

Annual Sum 4446.17 4405.71 4954.80 4954.80 4954.80 4954.80 12561.25 12382.06 13164.84 13164.84 13164.84 13164.84 18090.79 

(xv) (rH) (x 11 ) (x 11 ) (x 11 ) (x21 ) (x21 ) (x21 ) (x21) 18119.64 

13 397.97 372.76 395.93 404.17 402.83 386.36 1150.28 1089.48 1126.48 1147.16 1174.94 1116.39 1505.84 
14 438.37 401.46 417.92 424.05 424.03 421.09 769.90 913.28 940.81 955.50 996.95 1005.89 1440.59 
15 343.75 347.56 359.29 363.83 365.13 338.84 1170.33 1101.77 1122.14 1132.61 1182.99 1085.36 1413.10 
16 281.87 329.82 338.21 341.55 343.96 328.98 974.74 1057.88 1072.88 1080.37 1136.50 1089.51 1416.67 
17 394.79 362.79 368.81 371.26 374.53 367.20 1203.41 1135.66 1146.67 1152.04 1211.83 1193.65 1564,95 
18 307.21 332.97 337.29 339.09 342.92 334.23 1165.69 1147.57 1155.63 1159.49 1221.32 1187.76 1523.49 
19 326.90 348.14 351.25 352.56 356.69 364.14 1017.88 1082.53 1088.42 1091.19 1153.76 1185.72 1566.02 
20 262.45 326.85 329.09 330.05 334.23 341.08 1094.94 1113.31 1117.61 1119.61 1181.72 1202.04 1557.89 
21 454.04 404.57 406.19 406.89 410.92 421.59 1088.90 1035.75 1038.88 1040.32 1100.68 1131.76 1571.21 
22 435.35 409.42 410.59 411.10 414.82 432.26 867.53 918.42 920.70 921.74 978.71 1035.88 1491.99 
23 489.41 423.64 424.49 424.86 428.23 444.25 945.65 925.18 926.84 927.60 978.89 1026.48 1492.65 
24 392.46 376.22 376.81 377.09 380.30 398.57 1064.15 1007.10 1008,31 1008.85 1051.10 1109.01 1531.14 

AnnualSum 4524.57 4436.20 4515.94 4546.54 4578.60 4578.60 12513.40 12527.93 12665.37 12736.48 13369.44 13369.45 18075.54 

(x,) (x 12) (x 1
) 

(xv) (x2
) 

17948.03 
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Figure 1. 
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with nonrandom signals 
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and monthly benchmarks) 
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Figure 2. 
Benchmarked y-series 

with serially dependent signals 
(For nonrandom annual and dependent 
but nonbinding monthly benchmarks) 
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