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MULTIDIMENSIONAL BENCHMARKING OF TIME SERIES BY SEGMENTED KALMAN
FILTERING

ABSTRACT

Benchmarking is essentially a method of signal estimation from time series under constraints. The final
signal estimates satisfy the regression-adjusted benchmarks in the nonbinding case, but are forced to
exactly satisfy benchmarks in the binding case; the latter case leads to sub-optimality in the case of
random benchmarks. It is assumed that the source of benchmark series is independent of the source of
target time series. Typically, the process of benchmarking consists of two stages: the first stage for
finding initial signal estimates and the second stage for constrained regression. When the number of
benchmarks is quite large as in the case of multidimensional benchmarking, the usual method of
constrained regression may be computationally difficult due to high dimension of matrix inversion
involved therein. If benchmarks are independent of each other, then the technique of recursive least
squares can be adapted to avoid matrix inversion. For dependent benchmarks, a method termed
Segmented Kalman Filtering (SKF) is proposed which alleviates the above computational difficulty under
very general conditions. Moreover, with SKF, it is generally easy to revise later parts of the target time
series in light of new benchmarks without revising the earlier parts and without losing optimality, when
the new benchmarks do not involve signals from earlier parts. This feature may be quite convenient for
implementation in practice as it will not require computer manipulations of the full MSE matrix of signal
estimates; the dimension of this matrix may be quite large for the multidimensional problem or for a long
target series. In the interest of simplicity, the proposed methcd is illustrated using a simulated bivariate
time series from a random walk plus noise model. It is believed that SKF provides an important
statistical tool which may have wide applications.

Key Words: Covariance norm; Gram-Schmidt orthogonalization; Recursive least squares; Zero functions



ETALONNAGE MULTIDIMENSIONNEL DES SERIES CHRONOLOGIQUES PAR
FILTRAGE DE KALMAN SEGMENTE

RESUME

L’étalonnage est essentiellement une méthode d’estimation du signal a partir des séries
chronologiques sous contraintes. Dans le cas des données reperes non fermes, les estimations
finales du signal satisfont les données reperes corrigées par régression; pour les données reperes
fermes, il doit toutefois y avoir satisfaction exacte, ce qui entraine une sous-optimalité des
données reperes aléatoires. On présume que la source de la série de référence est indépendante
de la source de la série chronologique visée. En général, le processus d’étalonnage comporte
deux étapes : d’abord, estimations initiales du signal puis, régression assujettie a une contrainte.
Lorsque le nombre de données reperes est assez élevé, comme c’est le cas avec 1'étalonnage
multidimensionnel, la méthode habituelle de régression assujettic a une contrainte peut étre
difficile a réaliser, au point de vue du calcul, en raison de I’ordre élevé d’inversion de matrice.
Si les données reperes sont indépendantes les unes des autres, la technique des moindres carrés
récursifs peut alors étre adaptée pour éviter ’inversion de matrice. Pour les données reperes
dépendantes, la méthode dite filtrage de Kalman segmenté (FKS) est proposée; celle-ci réduit
les probieémes de calcul précités dans des conditions trés générales. De plus, avec la méthode
FKS, il est généralement facile de réviser les parties ultérieures de la série chronologique visée
a la lumiere des nouvelles données reperes, sans avoir a réviser les parties antérieures et sans
perdre d’optimalité, lorsque les nouvelles données reperes ne font pas intervenir de signaux des
parties antérieures. Cette particularité pourrait se révéler fort utile en pratique, car il ne sera pas
nécessaire de procéder a des manipulations informatiques de la matrice compléte de 1’erreur
quadratique moyenne des estimations des signaux; 1’ordre de cette matrice peut étre assez élevé
lorsqu’il s’agit de problémes multidimensionnels ou d’une longue série chronologique. Par souci
de simplicité, 1a méthode proposée est illustrée a 1’aide d’une série chronologique simulée 2 deux
variables, obtenue par processus de marche aléatoire avec modélisation du bruit. La méthode
FKS apparait comme un important outil statistique qui pourrait avoir de nombreuses applications.

Mots clés : norme de covariance, orthogonalisation de Gram-Schmidt, moindres carrés récursifs,
fonctions zéro



1. INTRODUCTION

The problem considered in this article is how to use information in an auxiliary time series of
benchmarks to revise a target time series {y,, 1<t <T} in order to get more precise estimates
of signal parameters. The signal parameters may be random or nonrandom; random signals may
be serially independent or dependent. Typically, serially independent signals will be nonrandom
in practice. For an example of nonrandom signals, consider a time series where the observation
y, at time  represents the signal parameter 7, except for contamination with noise ¢, and
possibly bias b, i.e., the expectation p, of y,, is equal to 5, + b,.. Thus the nonrandom signals
are defined as expectation of y, after adjustment for bias if any. On the other hand, for random
signal parameters, suppose g, is a function of parameters 4,. The 6, parameters include, in
general, both fixed and random components, and some or all of the random components evolve
over time. Now the random signal parameters 7, can be defined as functions of 6,-parameters.
The benchmark series, {x,:1 <5< S}, provides auxiliary information about signals {#,} in the
sense that x, is a linear function of signals plus random error. If the benchmarks x are
nonrandom, then there is no random error, and thus they are necessarily binding. However, if
x, are random, they could be either binding or nonbinding. The case of binding but random
benchmarks arises in practice when the benchmark series is considered sufficiently reliable and
therefore, no smoothing is warranted. In this case the final signal estimates are forced to exactly
satisfy the benchmarks even if they are random. However, in the nonbinding case, they satisfy
the regression-adjusted benchmarks, after taking into account the sampling error in benchmarks.

There may be several types of benchmark series. For example, if {y,} is a univariate monthly
series, one may have annual benchmark x-series, and quarterly benchmark z-series from
auxiliary surveys; here both x- and z- series represent two types of temporal aggregation
constraints. If {y } is a multivariate monthly series, one may have annual multivariate
benchmark x-series, and monthly univariate benchmark z-series which provides information
about the aggregate of components for each month; here the x-series represents temporal
benchmarks across time for each component time serics while the z-series represents

contemporaneous benchmarks across component for each time. Thus, we can classify the
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benchmarking problem as either unidimensional or multidimensional. In the unidimensional
case, there is only one type of benchmark constraints, whereas in the muiltidimensional case,

there are two or more types.

| For simplicity, we consider only two types of benchmark series {x, ;1 <s<S} and
{z,;1=r<R}. Suppose, we extend the original series {y, } by augmenting at the end the
benchmark series. Thus, the extended series will consist of the y-series segment followed by
the x-series segment, which in turn is followed by the z-series segment. The order of
benchmark segments is arbitrary but, in practice, may depend on the availability of benchmark
information. Now the problem of revising y-series via benchmarking can be thought of as a
huge linear regression problem which will involve, in general, both fixed and random
parameters. We can perform (stochastic) least squares to get "optimal" (in the sense of BLUE
or BLUP, the best linear unbiased estimation or prediction, as the case may be) estimates of
signals such that they satisfy either regression-adjusted or the original benchmarks depending on
the nature of benchmarks. If the benchmarks are random but binding, the resulting signal
estimates will only be suboptimal.

The interest in benchmarking has a long history; for an early reference, see Stone et al.(1942).
For the problem under consideration, the main papers are among others due to Denton (1971),
Hillmer and Trabelsi (1987), and Cholette and Dagum (1994). The paper of Hillmer and
Trabelsi represents a milestone in the benchmarking literature in that unlike the traditional
numerical approach it develops a proper statistical framework. For the unidimensional
benchmarking problem under the assumption that the source of benchmark information is
independent of the source of the target y-series, they proposed a two-stage procedure: (i) initial
signal estimation under a model which treats signal parameters either as serially dependent (e.g.,
in the case of ARIMA or structural modelling) or independent (e.g., in the case of seasonal
adjustment via X11-ARIMA modelling), (ii) adjustment (or smoothing) of initial signal estimates
to satisfy benchmarks via constrained regression. Section 2 provides a review of existing
benchmarking methods.



Although the existing methods can be adapted to deal with the multidimensional problem, there
are mainly two concerns regarding the computational complexity that may arise: (i) The matrix
inversion involved in each of the two stages may be computationally prohibitive (especially in
the case of multidimensional benchmarking) in view of its high dimension, the dimension being
the number of signal parameters for the first stage, and the number of benchmarks for the
second stage, (ii) With a very long target series {y,} or with many component series in the
multidimensional case, size of the mean square matrix (MSE) of signal estimates may be too
large for computer manipulations. Section 3 gives a heuristic motivation for addressing these

two concems.

We propose a method termed Segmented Kalman Filtering (SKF) which makes an attempt to
alleviate the concemns raised above for existing methods, and is applicable under general
conditions. Section 4 contains theoretical considerations underlying the proposed method of
SKF. The SKF method is described in Section 5, and as a simple illustration, a numerical
example based on simulated data from a bivariate random walk plus noise model is given in

Section 6. The final Section 7 contains concluding remarks.

2. REVIEW OF EXISTING METHODS

As mentioned in the introduction, the existing methods consider only the unidimensional
benchmarking problem and use, in general, a two stage solution to the benchmarking problem:
(i) Initial signal estimation, to be denoted by {7, }, and (ii) Adjusting {7, } to get the final
signal estimates, denoted by {#,}, such that the benchmarks are satisfied. Now given {7, },
the benchmarking problem is simply that of constrained regression. We have

7 =7+8, §~(0,2) (2.1a)
x=Ln+e, e~(0,LX), (2.1b)

where & and e are orthogonal in the sense of being uncorrelated. The optimal (in the sense of
BLUE) % is given by



=% +QL(LRL' +Z)"(x-L7) 2.2)

If the benchmarks are nonrandom, then X, = O. If they are random but binding, then the
(suboptimal) 7 is obtained by setting X, to O. However, for the random but nonbinding case,
I, can not be set to O, and the benchmarks are not exactly satisfied. The amount of adjustment
in Ly depends onits MSE LQ L’ relative to the MSE I, of benchmarks. In other words,
the benchmarked signal estimates {4} satisfy the regression-adjusted benchmarks and not the
original benchmarks.

Now, depending on the nature of the initial signal estimation, the benchmarking problem can be
classified into two types.

2.1 Serially Independent Signals

Here, the model for the initial signal estimation treats signals as serially independent; nonrandom
in particular. For example, using the X11-ARIMA method of seasonal adjustment, the signal
series may be defined as the expectation of the seasonally adjusted y-series. The corresponding
MSE matrix @ may be obtained approximately using (sampling) design or modelling
considerations. Then the benchmarking problem essentially reduces to that of constrained
regression as mentioned above. This sort of regression approach was taken by Cholette and
Dagum (1994) who also allowed for bias and autocorrelation in the survey estimates represented
by the y-series. There is an alternative but equivalent way of viewing this constrained
regression approach in terms of a minimization problem where the distance,
(n - 7)Y Q' y -9),is minimized subject to benchmark constraints. A practical interpretation
of this is that the initial estimate series {5, } is perturbed only a little to satisfy the benchmarks
while preserving relevant characteristics of the series. This is somewhat similar to the
traditional method of Denton (1971) which is a numerical procedure based on distance
minimization. Cholette and Dagum made an important observation that the commonly used
Denton-type method can be obtained as a special case of the regression approach using a suitable
working MSE matrix for €. In contrast to the above semiparametric approach, one can also
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use a parametric approach based on, for example the method of maximum likelihood, to get 7,
from ﬁ: , see, e.g., Mian and Laniel (1993) under the assumptions of normality and constant

multiplicative bias.
2.2 Serially Dependent Signals

The assumption of dependent signals is useful when the series itself does not represent signals,
but contains them as random unobserved components (e.2., trend, seasonal etc.). The objective
is to estimate signal components under benchmark constraints. This will, in general, give rise

to more efficient and smoother signal estimates than those for the independent signal case.

Often ARIMA or basic structural modelling (BSM) are used for modelling {y,}. Hillmer and
Trabelsi (1987) used ARIMA to estimate {7, } and to specify the corresponding MSE matrix
Q. As shown by Bell (1984), this can be rendered into a problem of signal estimation via state
space modelling. This gives the initial signal estimates for the first stage, which are adjusted
in the second stage via constrained regression to satisfy benchmarks. Alternatively, Durbin and
Quenneville (1996) used BSM to estimate {7, } and their MSE matrix. They allowed for more
general nonstationary time series, heteroscedasticity in survey errors, bias in survey estimates,
and the nonlinear case where the basic model is multiplicative in components but the benchmarks
are additive in components; for a discussion, see Singh (1995a). Another alternative was
proposed by Chen, Cholette and Dagum (1995) which uses a non-parametric approach for
estimating initial signals and their MSE matrix.

3. HEURISTIC MOTIVATION

In this section we address the two main concerns regarding the computational complexity of the

existing benchmarking methods as stated in the introduction.

For the first concern, namely, that of the possibility of high dimensionality in matrix inversion

at each of the two stages, consider first the problem at the second stage. For this problem it

3



seems natural to propose processing of constrained regression into substages via subset
regression on benchmarks; in particular, processing benchmarks piecewise, i.e., one at a time.
The basic idea is to transform the auxiliary information in benchmarks into zero functions (i.e.,
functions which are zero in expectation), and then to orthogonalize them (e.g., by the Gram-
Schmidt method) in the sense that they become uncorrelated. Note that at any given substage
of constrained regression, the benchmarked signal estimates are simply regression estimates, i.e.,
are obtained as a residual after regressing (or projecting) on the subset of predictors (in the form
of zero functions constructed from benchmarks). It follows that the adjusted signal estimates
at each substage satisfy the subset of (regression-adjusted) benchmarks involved at that stage and
that they continue to satisfy the benchmarks used in earlier substages due to the orthogonalization
of the corresponding zero functions. This important property, namely, that the benchmark-
adjusted signal estimates at any substage do not disturb the benchmarks used in earlier substages,
provided benchmarks are suitably orthogonalized, is key to the proposed method of piecewise
processing of benchmarks.

For the orthogonalization of benchmark information mentioned above, it will be convenient in
practice if it can be implemented recursively, i.e., using only estimates of the model parameters
(denoted by 6,) for the current time 7 to orthogonalize new benchmarks with respect to the old
ones. Note that a recursive processing is necessarily piecewise, but not vice-versa. If
benchmarks are serially independent, then one can adapt the technique of recursive least squares.
However, for the general case of dependent benchmarks, one can borrow ideas from the Kalman
Filter (KF) orthogonalization in the state space framework, see also Odell and Lewis (1971) for
a related discussion. In particular, the two conditions, independence (or orthogonality) of new
benchmarks at time ¢ of the old ones conditional on the 0§, -parameters, and the Markovian
dependence of future 6 -parameters on the current and past parameters, are required. These two
conditions are not very restrictive and are met by commonly used time series models. Both
conditions can often be realized in practice by suitably enlarging the parameter (or the state)
vector. Thus, it would be possible to use a KF-type algorithm on segments of the benchmark

series, e.g., first on the x-segment and then on the z-segment.



The problem of high dimension in matrix inversion at the first stage (due to a large number of
signal parameters) can also be dealt with in a similar manner, i.e., by using a state space

framework for the target y-series, and then a KF for obtaining initial signal estimates.

For addressing the second concern, we consider the possibility of revising later parts of the time
series in light of new benchmarks without revising the earlier parts and without losing
optimality, when the new benchmarks do not involve signals from earlier parts. Having this
feature will not only reduce the size of the MSE matrix of signal estimates, but also will be quite
convenient from practical considerations. The reason for this is that when the new y-senes and
benchmark information become available, one will have the flexibility of deciding whether or
not the full y-series should be revised. Moreover, the signal estimates corresponding to the
earlier parts of the y-series will generally be not affected much by the new benchmarks. If the
y-series can also be cast in the state space framework in addition to the benchmark series, then
one does not lose optimality of the revised later part of the series when the earlier part is not
revised in light of new benchmarks. Notice that the state space framework of y-series generally
implies that the signal parameters are random and that they evolve over time. However, it can
also encompass independent or nonrandom but time-varying signal parameters as a limiting case

by letting the variance of the corresponding error in the transition equation go to infinity.

In the following, we assume that for a time period of interest (to be denoted by 1 <z <T), the
y-series augmented with benchmarks x- and z- series is given. In particular, this may contain
only the later part of the original y-series and only the new benchmark series as discussed
above.

4. PIECEWISE AND RECURSIVE PROCESSING: THEORETICAL CONSIDERATIONS

In this section, we consider conditions for piecewise and recursive processing of information in
target and benchmark series using the theory of zero functions (see, Rao, 1968). Note that zero
functions (also known as elementary estimating functions) are simply functions which are zero

in expectation, and are, in general, functions of both data and parameters. It will be seen that
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converting new pieces of information in target and benchmark series into parameter-free
orthogonal zero functions gives rise to innovations which, in turn, can be conveniently used for
piecewise updating of estimates. It is known for special types of regression that a recursive (and
hence piecewise) procedure can be applied. For example, in the case of independent
observations, recursive least squares can be used, and in the case of dependent observations cast
in the state space framework, the Kalman Filter (KF) provides the recursive processing of data
to get optimal estimates.

For the general regression problem we shall first consider conditions required for piecewise

processing of information in data.

4.1 Piecewise Processing for General Regression

Consider a general regression problem with a p-vector of fixed parameters 8, for i = 1,...,n
y, = x{ B +¢, 4.1)

where the n-vector € ~(0,T), and is uncorrelated with the n X pmatrix X of observations on
the predictors. The least squares estimate, 8 = (X'T'X)"'X/T"y, can be obtained
alternatively by piecewise regression on parameter-free orthogonal zero functions created from
the y-observations. Letting B” denote the initial estimate of 8 based on the first p y-values,
(e.08” = X' ¥, say), it follows that B can be obtained by regressing 8” on the (7 -p) zero
functions g, = y,,, - P’,, g .. AR -x, B | that is, as a residual after projecting on
the (n -p) predictors (in the form of zero functions) under the covariance norm. The functions
&:s---8,_, are parameter-free, and can be orthogonalized via Gram-Schmidt to get innovations

2" ....8.,. Now B can be obtained in a piecewise manner as follows:

BY - cov(B”,gHV(g N g,
B? - Cov(B?, 8. Vg, N &, 4.2)

3(2)
3(3)



and so on until 87" which equals 8.

We remark that if 8 contains some random parameters, then for the corresponding stochastic
least squares version (see, for example, Singh, 1995a), an analogous piecewise procedure can
be easily defined. We also remark that in the context of our extended time series for the
benchmarking problem, the above piecewise processing of information in the benchmark segment
to get signal estimates {,} from the initial estimates {7} (which correspond to B™y will not
disturb the benchmark constraints processed earlier on. This follows from the basic principle
of regression estimation (viewed as an orthogonal projection on predictor zero functions under
the covariance norm) that the regression estimate of a predictor zero function itself is exactly

Zer1o.

Next we consider under what conditions, the above piecewise procedure for finding B can be
made recursive, i.e., for the regression problem (4.1), letting ¢ denote the current time, we
want to create an innovation from y, by using only the most recent estimate 3" (representing
a condensed form of past data) and not the full past data y,,...,y,_,. The resulting innovation
will, in turn, give B”. This is similar to the KF algorithm for state space models where
although B, in general, varies with ¢ but is connected over time through a Markovian relation
to allow recursive updating. In the next subsection, we consider a sufficient set of conditions
provided by the state space regression model for recursive processing of information. This is
accomplished through a brief introduction to KF via zero functions. A simple state space

framework in terms of random walk plus noise model will be used for this purpose.

4.2 Recursive Processing for State Space Regression Models

Suppose the regression model is specified in terms of two equations (measurement and transition
equations of the state space setup) for the random walk plus noise model as follows: for

l<r<T,

My ™ 0t+61’ € ~ mv(oya%) (433)



6, = 6.+ &~ WN(O,0}), (4.3b)
where WN signifies white noise, ¢,’s and £,’s are orthogonal and £, is also orthogonal to 4,_,.
The first equation (4.3a) implies the independence (or orthogonality) of new information from
the past conditional on the (random) state parameter §,, and the second equation (4.3b) implies
Markovian dependence between the §-parameters. Note that the §-parameters are random and
vary with 7. Alternatively, the usual single equation representation of the regression model

(4.3) in terms of the current parameter 8., is given by, for 1<7<T,

T

y, = 6,- ,EIE,, te€, 4.4

where the corresponding covariance structure can be appropriately specified. For other
parameters, 6,, similar equations can be defined.

Now, at 7 = 1, the best estimate (i.e., BLUP) 91“ of 6, is y, because we have only one piece
of information in the form of zero function g, = y, - 0,. Atz = 2, we get another zero function
y,~6,. It can be made parameter-free by replacing 6, by 92“ =y,, where 52“ denotes an
estimate of 6, based on information available at 7=1. Therefore g, = y,-y,. Similarly, we
have g, = y,-¥,,..., &y = ¥~ as we get more information. We will show that because of
the state space framework, {g,:2 <7<T} can be orthogonalized recursively to get innovations.

At time =1, the BLUP of 0, is the sum of the BLUPs of 6, and £,, i.e. 8, =8, +§,,.

In view of the Markovian relation (4.3b), the error £, does not depend on the past 6, and
therefore, §2|1 = 0, implying @2“ = 9”1. Next consider 7 = 2. The first innovation from y,,
denoted by g’ can be set equal to g, = y,~0,, = y,-y,. Now, the BLUP of §, combines
optimally two pieces of information, 6, , and g’ =y,-6,),, available at 7=2, and is given by

92|2 - 92“ - C"V(azn _Bz’yz_azu) [V(yz—am)]" 0’2—92“), (4.52)

= by, + Vibyy, 6 [0+ VB, ~0)1" 0,8, (4.5b)
10



Next, we need to orthogonalize the zero function g, (= y,-,) with g, to get the innovation
g: from y,. First note that 6,, = ,, because £,, = 0 again using the Markovian relation
(4.3b). Notice that 6, is obtained in a recursive manner. Second, in view of the conditional
independence of ¢, from the past ¢, and ¢, the innovation g;° obtained from y, is

& =Y;-8,, =y;-0,, Similarly, we can get innovations from the zero functions

Y-y, t=4,...T,as
& =yr_9t|t-l =yz—ar—l|x-}. (4.6)

and, in the process, get optimal estimates 8, ,,...,8, recursively as

nr

B = B+ V(B

t)e £)e-1

-6) [0} + VB, -0 ©,-8,,.), 1=2,...,T. @.7)
The equation (4.7) is known as the filtering equation of KF. The variance term V( 9”,_1 -8,) is
also computed in a recursive manner. The final estimate 9m is termed the smoothed estimate
of 6, based on all the y-observations. Similarly, smoothed estimates 9”, fort =1,...,T-1
can be obtained by regressing 6

HE

(already computed) on the innovations g.,,...,&r -

It can be seen from the above brief introduction of KF in terms of a simple state space model
that for recursive processing of the benchmarks in the second stage, we need to cast each
benchmark segment into the state space framework. In other words, we need the two
conditions: the independence of benchmarks conditional on state parameters (suitably chosen),
and Markovian dependence between the state parameters over time. We can then create
innovations (via orthogonalization) from the benchmarks using the signal estimates y  obtained
from y-series only. Note that for obtaining the signal estimates # , information in the target
y-series can be processed recursively via KF if y-series also follows a state space model. Now,
the desired (benchmarked) signal estimates % are automatically obtained after running KF over
benchmark segments of the extended time series where 7 is used for the initialization of KF.
This is the basic principle underlying the proposed method of segmented KF given in the next

L



section. Note that for the piecewise recursive processing via a state space model it is assumed
that the underlying covariance structure is suitably specified from the sampling design and

model (either true or working) considerations.

5. SEGMENTED KALMAN FILTER: The Proposed Method
Consider the (multivariate) target series {y: 1<r<T} and the two benchmark series

{x: 1=5<S} and {z: 1 =r<R}. Suppose all the three segments of the extended time series
can be cast in the state space framework as follows (cf: Harvey, 1989, ch. 3):

y-segment (1<t<T)

y=F0 + ¢, ¢ ~ O, T) (5.1a)
0 = G’ 0, + &I, £/ ~ (0, A)) (5.1b)

x-segment (1<s5s<3S)
=l R e« WL B (5.22)
=G 8&.,+& & 00 (5.2b)

z-segment (1 <r<R)
% =&+ €~ 10 Ty (5.32)
=G0y v &~ 00 (5.3b)

The model errors ¢ ’s and £’s are assumed to satisfy the usual orthogonality conditions. The
signal of interest %, is a linear function of components of the state vector # for 1<7<T, and
therefore, its estimate #,, and the corresponding MSE matrix can be obtained from those for
@ -parameters. Also, the complete signal vector 5 = (%},...,n7)’ over the T time points is
assumed to be a subset of the state vector 6 for each s and 6 for each r. Thus, signal
estimates 4, ;¢ , i), 1.5 and their MSE matrices can be obtained respectively from those of 6
and 6, parameters. The notation 4, ., for example, signifies smoothed (or BLUP) estimates
of 7, after information in 7 y-observations, S x-benchmarks, and R z-benchmarks is
utilized.

12



The proposed method of SKF consists of the following steps. Each step corresponds to

processing a segment of the extended time series.

Step I (KF for the y-segment)
This step is without benchmarks and one can use the usual KF (and smoother) to get smoothed

estimates of {#;: 1 <r <7} and the corresponding MSE matrix P>. These, in turn give the
signal estimates {f, .}, to be denoted by #?, and their MSE matrix 2. Note that if the y-
series is not cast in the state space set-up, then this step of KF will not be needed. Instead, the
signal estimates and their MSE matrix are obtained either through a general regression model

or a working model based on subject-matter considerations.

Step II (KF for the x-segment)
This KF is different from the usual KF in that #' and Q" obtained from Step I are used for

initialization of that part of the ;- vector which contains the »-parameters. If there are some
additional parameters they may be initialized in the usual way. Then, the KF is run as usual to
get the estimate #; ; and its MSE Pgs. This gives rise to #® and 2% . Note that unlike Step
I, there is no need of Kalman smoothing because the complete 3-vector is contained in each 6,
by construction and therefore §? = {§,,¢} and its MSE matrix 2% can be obtained from
#5s and Pgs. Also, note that if the x-benchmarks are independent (which may be true in the
case of annual x -benchmarks for monthly y-series), then @ will be simply the complete signal
vector 7 in which case it does not evolve over s, i.e., the transition equation (5.2b) becomes

the trivial one, namely, 8, = 8, with zero error.

Step IT (KF for the z-segment)
This is similar to Step II except that (#?, Q®) is used for initialization of the - part of the state

vector 6;. The required signal estimates #'¥ = {,z5,; and its MSE matrix 2° can be
obtained from 8%, and Pgg.

Remark 5.1 If more y-data are expected in future, as is usually the case, then it is better to

include all #”-parameters, and not just the signal parameters, in each of §; and 6> parameters.
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This way when the new observation series becomes available, one can use the current estimate
of @7 as input for KF initialization for the next step (IV). Similarly, for the new benchmarks,
we will have Steps V, VI, and so on. The final signal estimates can always be obtained from
the final 07-estimates.

Remark 5.2 If both x- and z-benchmarks are treated as binding, then clearly they must be
made compatible with each other. For instance, for a multidimensional problem if x-
benchmarks are annual and z - benchmarks are monthly, then the annual totals of z -benchmarks
should agree with x-benchmarks. Also, whenever random benchmarks are treated as fixed, the
MSE matrix of the resulting signal estimates should be adjusted for variability of the random
benchmarks. This can be done along the lines of Pfeffermann and Burck (1990).

Remark 5.3 The above procedure for SKF assumes that the hyperparameters (i.e., parameters
of design matrices F, transition matrices G, and MSE matrices I' and A) are given in advance.
In practice, they are usually estimated by MLE under normality. The log-likelihood can be
easily modified to include auxiliary information from benchmarks via additional innovations (or
orthogonalized zero functions) obtained from benchmarks as follows:

log -likelihood = const - (1/2)[¥, logv] + ¥, logv] + ¥ logv/]
- UDIT, @ + T, v + T, v

where g *’s and v’s represent innovations and their MSE respectively for y-, x- and z-

segments.

Remark 5.4 To implement SKF in practice, suitable modelling of the target and benchmark
series is required. In the context of survey sampling, if the observations and benchmarks
represent design-consistent estimates, then a design-based version of SKF (denote by d-SKF) can
be easily defined under a working model to obtain design-consistent benchmarked estimates
provided all the zero functions appearing in benchmarked estimates are design-consistent
estimates of zero. The resulting estimates are robust in that they remain design-consistent even

if the working model assumptions are not correct. (However, finding a suitable estimate of the
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corresponding MSE matrix may not be easy in general.) The working model may be chosen,
for instance, to correspond to the Denton-type distance minimization method (see the example
in Subsection 6.1.1) such that important characteristics (growth rates, for example) of the target
series are approximately preserved. An important application of d-SKF may be in the area of
benchmarking seasonally adjusted component series in a multidimensional problem where both
the contemporaneous and temporal benchmarks are treated as binding, assuming of course their
compatibility. The contemporaneous benchmarks, in practice, can be obtained by first
benchmarking (via d-SKF) the seasonally-adjusted aggregate series (over components) with
respect to the aggregate temporal benchmarks, thus ensuring their compatibility with temporal
benchmarks. This type of hierarchical approach for ensuring compatibility may be particularly

useful when there are many dimensions in the benchmarking problem.

Remark 5.5 It should be emphasized, as mentioned in the introduction, that the order of
processing of benchmark segments is arbitrarily chosen.

6. ILLUSTRATION

For illustrating SKF, we simulated a five year long bivariate monthly series following a random

walk plus noise model given by, for j =1,2

Ya = 0}': +fj}"n é’l ~ id N(O,a:fzt(y)) (6.1a)
g = 6.,,+%, 2~ N(O,5). (6.1b)

The signal 7,, in general, is a function of ; in this example 7, equals §,. The two
components y,, and y,, were made correlated by introducing the correlation p (e, , €,) which
was set as .25. The values of o2, of?) and a%?’ were set at
4x10%,16 x10°, .625 x10° and 2.5 X 10? respectively which give rise to signal-noise variance
ratio as .156 for each j . The starting values for 6, were set at 500 and 800 for j = 1,2
respectively. For each component j, the five annual benchmarks were obtained from the

generated (true) signals 7, thus making the benchmarks nonrandom, x, = ¥,5y..;) 6, for

]



s=1,...,5.

The monthly benchmarks were allowed to be either serially independent or dependent. For the
independent case, the aggregates of (true) monthly signals over the two components were used
as monthly benchmarks, z, = ¢, +@,, for r =1,...,60. Thus these monthly benchmarks
become nonrandom. For the dependent case, a noise series following AR(1) with p = .8 and
o’ = 100 was added to the monthly aggregates of signals; the last 60 values out of a total of 300
generated values for the noise series were used in the interest of achieving stationarity. The
resulting benchmarks were treated as nonbinding for the example considered. Tables 1 and 2
show the generated y-series {y,} for the first two years as well as the annual {x,} and monthly
benchmarks {z,

6.1 Nonrandom Annual and Monthly Benchmarks
6.1.1. Serially Independent Signals

Although the true signals are serially dependent, we first treat them as nonrandom and use the
limiting case of state space modelling (when the error variance in the transition equation tends
to infinity) for signal estimation for the first step of SKF. The underlying regression model is
equivalent to a Denton-type method corresponding to minimization of the distance function

Y, X, [(An, -Ay,)/y,, 0,) subject to benchmarks, 6.2)

where 7, = 6., An;, and Ay, denote first differences, and afb provides differential weights for
the distance over different components j = 1,2; these weights do not appear for the
unidimensional problem. The above minimization problem approximately preserves the rate of

growth in the y-series after benchmarking.

The regression model is chosen in a manner somewhat similar to the one suggested by Cholette

and Dagum (1994), with the working covariance structure corresponding to (6.2):
16



atr =1, y; =1 +¢ ¢ ~ (0, 5>
6.3)

fort = 27 ij; Aﬂ;,+5j,a 6j;~(030}'25yj2,t-1):

with aﬁ tending to infinity, implying that the first observation is discarded in estimating the

signals. However, first differences of the nonrandom signals are estimated by the corresponding

first differences of the y-series, that is
Afly =Yy =Y+ 122. ‘ (6.4)

The signal estimate for r=1 1, is obtained after the first annual benchmark (x,;) becomes
available. The reason for this is that x;; can be represented as

12 12
‘le = l_\:lnjx= i1 ¥ ;2(12-I+1) Aﬂj,, (6.5)
which implies
A 12 A
iy = [ - 5(12-I+I)An,-,]/12. 6.6)

Using (6.4), (6.6) and the covariance structure given by (6.3) we obtain the signal estimates
7" = {#,} and their MSE matrix Q0. This completes Step I of SKF except that variance
components orfﬁ need to be specified. They are estimated from the observation and benchmark
series by a simple method of moments (not shown here) as .3006 and .3096 respectively for
Jj=1,2.

Now, for higher steps of SKF, we need to specify hyperparameters of state space models for the
benchmark segments. However, since all the benchmarks are nonrandom, state space models
for benchmark series become trivial as in the case of recursive least squares, i.e., errors in the

transition equations (5.2b) and (5.3b) become zero so that:

0; T 0;_1, =l,...,S (6.7)
0, =6,, r=1,...,R (6.8)
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where 0; = 07 = (0,;, M55 Ny2s Mg Nizs Mass -+ 5 My Nap) - FoOT higher steps of SKF we consider
the four scenarios regarding the availability of benchmarks: (i) annual benchmarks for the first
year, (ii) annual and monthly benchmarks for the first year, (iii) annual benchmarks for the first
two years but monthly only for the first year, (iv) annual and monthly benchmarks for the first

two years.

Step II of SKF, in this example, will coincide with Step I because the first annual benchmark
was already used in Step I. However, in general, this is not the case and Step II can be
described as follows when the annual benchmark x;; becomes available. The observation
equation (5.2) is x, = ;"6 with the matrix F," = [0, | H* | 0, ] with 0, and O,, defined
as zero matrices of order 2 X24(s-1) and 2 X (27 -24s) respectively, and H* denotes a

e |10 10
e 1
The initial estimate &) is obtained from Step I as 8; =4® = (i, iy, .- ,fy7s flpy)’ With MSE
Py = Q®. The BLUP, 8], of 67 is 8 with the MSE P, = P;. When the benchmark x,

becomes available, the innovation g; , at s=1, is x, -F] 9”0, with MSE
G =E(g g ) = FI‘P{“,FI’/. Now the BLUP of 6] is

2 X 24 matrix

b, = 53+Pf;oFf/Gflgf' = 0;* 13;‘ (6.9)

11

with MSE P{ = (I-K] F)) P{;,. This completes Step II which gives rise to #* and Q.

For step Il of SKF the observation equation (5.3a) takes the form z, = F,0; with matrix F;
partitioned as F: = [0}, | H' | 0;,], where 0, and 0, are zero vectors of length 2(r-1) and
2(T-r) respectively, and H* = (1,1) . The initial estimate . is obtained from Step II as
8; = #* with MSE P; = @®. The BLUP, 8], of 8] is & with the MSE P}, = P;. Once the
benchmark z, becomes available, the innovation g;°, at r=1, is z, -F8],, with MSE
G, = E(gi"gi"') = FiP{,,F;'. Then the BLUP of 6] is

18



b, =0+ P F G'gi' =0, +Kgl (6.9)
with MSE P; = (I-K{ F)) P;,. After utilization of the first twelve monthly benchmarks
250, 2}, We Obtain D;IR and Pgz for R=12. This completes Step IIl and gives #® and Q.
Table 1(a) shows the revised y-series ( denoted by 7", 4, 4%, 5, # ) for the first two years
under the four scenarios. Observe that the earlier parts of the series are generally not affected
much by benchmarks involving signals corresponding to later parts of the series. Also note that
the second component gets more affected. This is as expected due to the high variability of the

error §, relative to 4, in the model (6.3).
6.1.2 Serially Dependent Signals

In this case, for using a state space model for the initial signal estimation for Step I of SKF, we
chose the same random walk plus noise model that was used for generating the y-series with the
same hyperparameters for illustration purposes. For initialization of KF, the observation at 7=1
for each component was used. The next steps of SKF are similar to those used in section 6.1.1.
Table 1(b) shows the revised y-series as the benchmarks become available under the four
scenarios. Notice that the series looks smoother than that for nonrandom signals. Also observe
that the earlier parts of the series are generally not affected much in light of the new
benchmarks.

6.2 Nonrandom Annual and Serially Dependent but Nonbinding Monthly Benchmarks
6.2.1 Serially Independent Signals

Here the Step I of SKF is same as that for Subsection 6.1.1. However, in Step I for the
segment of monthly benchmarks for the first year, we need to specify a state space model
because of serially dependent benchmarks. For the sake of illustration, we chose the same
model that was used for generating these benchmarks and the same hyperparameters. Now KF
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for this segment is performed, and then in Step III for the first annual benchmark, only a trivial
state space model is needed for SKF, and similarly for other steps. Table 2(a) shows the revised
y-series as the benchmarks become available under the four scenarios. Notice that as expected

the monthly aggregate series does not match the monthly nonbinding benchmarks.

6.2.2 Serially Dependent Signals

This is similar to the previous case except that the initial signals are estimated using a state space
model as in Subsection 6.1.2. The benchmarked y-series in this case is shown in Table 2(b).

Figures 1 and 2 corresponding to tables 1(a) and 2(b) respectively show graphs of revised target
series for the first two year period as benchmarks become available under different scenarios
corresponding to serially independent and dependent monthly benchmarks, the annual
benchmarks being nonrandom in all cases. Figures for tables 1(b) and 2(a) are not shown here
but are similar to those for tables 1(a) and 2(b) respectively.

7. CONCLUDING REMARKS

By approaching Kalman Filtering from the perspective of orthogonal zero functions, the method
of segmented Kalman Filtering for revising the target series was proposed which can process
benchmarks piecewise and recursively under the conditions of state space modelling for the
benchmark series. The SKF makes a single pass through each benchmark. The final signal
estimates satisfy all the benchmarks (which are regression-adjusted in the nonbinding case). The
SKF method also allows for revising only later parts of y-series in light of new benchmarks
without losing optimality, again under state space modelling assumptions for the y-series. The
proposed method encompasses Denton-type numerical methods based on distance minimization
by using a suitable working covariance matrix for the initial signal estimates. In the context of
target series obtained from repeated surveys, a design-based version of SKF was also proposed
under a working model. This should have important practical applications because it ensures
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design-consistent benchmarked signal estimates even though the working model assumptions may
not be correct. Finally, we remark that the basic idea underlying SKF is quite general and can
be used in problems of estimating linear combinations of parameters under linear constraints.
In particular, the problems of calendarization, interpolation, and forecasting can be unified with
the problem of benchmarking, see also Dagum, Cholette, and Chen (1996).
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Table 1(a).

Benchmarked y-series with nonrandom signals

(For nonrandom annual and monthly benchmarks)

i Yir iy i A\ iy iy Ya 7% Har 75 7% 5 Z,
1 402.37 44476 44476  469.22  485.04 485.68 767.51 817.80  817.80  923.19  920.48  935.42 1392.41
2 423.96  466.35 466.35 435.34 450.49 451.10 1010.97 1061.27 1061.27 939.77 937.18 951.49 1375.11
3 363.51 405.90 405.90 402.47 416.02 416.57 927.79 978.08 978.08 1032.89 1030.57 1043.37 1435.37
4 438.46  480.85 480.85 445.18 456.94 457.41 1135.68 1185.97 1185.97 1004.71 1002.70  1013.80 1449.89
5 381.17 423.56 423.56 398.26 ,406'52 406.86 1086.68 1136.98 1136.98 1033.90 1032.49 1040.29 1432.16
6 352.16  394.55 394.55 389.80 394.69 394.89 984.74 1035.04 1035.04 1119.69 1118.85 1123.47 1509.48
7 306.70 349.09 349.09 344.71 346.17 346.23 1017.41 1067.71 1067.71 1155.57 1155.33 1156.70 1500.28
8 467.40 509.79 509.79 485.18 483.51 483.44 1236.43 1286.73 1286.73 1124.47 1124.76  1123.18 1609.65
9 242,93 285.32 285.32 317.12 307.47 307.08 975.76 1026.05 1026.05 1307.54 1309.19  1300.07 1624.65
10 437.55 479.94 479.94 490.20 47796 4717.47 1164.18 1214.48 1214.48 1105.21 1107.30 1095.74 1595.41
11 320.14  362.53 362.53 400.48 379.49 378.64 1045.11  1095.40 1095.40 1206.49 1210.08 1190.26 1606.97
12 309.82 352.21 352.21 376.89 350.55 349.49 1208.99 1259.28 1259.28 1211.35 1215.86 119098 1588.24
Annual Sum  4446.17 4954.85 4954.85 4954.85 4954.85 4954.85 12561.25 13164.79 13164.79 13164.78 13164.79 13164.77 18119.62
&) ) (x,) (x,) (x,) (x;y) (x,)) (x,) (x;) (x;) ;) 18119.62
13 397.97 440.37 440.37 465.04 432,78 431.47| 1150.28 1200.58  1200.58  1152.64  1174.52 1053.83 1485.31
14 438.37 480.76 480.76 505.43 464.21 496.85 769.90 820.20 820.20 772.26 808.56 930.54 1427.40
is 343,75 386.14 386.14 410.81 359.71  329.62 1170.33  1220.63 1220.63 1172.69 121486  1088.33 i417.95
16 281.87 324.26 324.26 348.93 292,36 284.66 974.74 1025.03 1025.03 977.10 1031.47 1132.31 1416.96
17 394.79 437.18 437.18 461.85 402.02 382.90 1203.41 1253.70 1253.70 1205.77 1267.67 1175.26 1558.16
18 307.21  349.60 349.60 374.27 308.83 301.57 1165.69 1215.98 1215.98 1168.05 1239.98 1218.51 1520.08
19 326.90 369.29 369.29  393.96 325.60 329.40| 1017.88 1068.17  1068.17  1020.24 110025 1215.10 1544.50
20 262.45 304.84 304.84 329.51 258.41 262.57 1094.94 1145.24 1145.24 1097.30 1182.44 1274.19 1536.77
21 454.04 496.43 496.43 521.10 448.58 445.41 1088.90 1139.20 1139.20 1091.26 1181.15 1104.21 1549.61
22 435.35  477.74 477.74 502.41 426.71 448.39 867.53 917.82 917.82 869.89 963.30 1028.48 1476.87
23 489.41 531.80 531.80 556.47 478.82 479.67 945.65 995.95 995.95 948.01 104292  1007.24 1486.91
24 392.46 434.85 434.85 459.52 380.63 386.13 1064.15 1114.45 1114.45 1066.51 1162.30  1141.43 1527.56
Annual Sum  4524.57 5033.26 5033.26 5329.33 4578.66 4578.66 12513.40 13116.95 1311695 12541.72 13369.42 13369.43 17948.08
) (x;) (x,) ) () 17948.08




Table 1(b).

Benchmarked y-series with serially dependent signals

(For nonrandom annual and monthly benchmarks)

, S Al Ay Ay Ay e Ya i & & far i 4

I 402.37  402.37  461.80 47728  479.09  480.17 76751  767.51 82596  915.15 91333 91226 | 1392.42
2 423.96  386.05 42490  410.69 41129  411.64( 101097  995.10 1047.82  964.42  963.82  963.47 | 1375.11
3 363.51 37114  414.99  409.31  409.92 41029 | 927.79 95415 1017.73 102606 1025.45  1025.08 | 1435.37
4 438.46 39468 44172 41991  420.52 42088 | 113568  1039.53 1109.23  1029.98  1020.37  1029.01 | 1449.89
5 381.17 37147 42034 399.17  399.75  400.10 [ 1086.68  1040.90 1113.94  1032.99  1032.41  1032.06 | 1432.17
6 352.16  361.48 41115  410.54  411.06  411.38| 98474  1016.85 109135  1098.94  1098.42  1098.10 | 1509.49
7 306.70 34232 391.93  388.73  389.15  389.40| 1017.41  1051.81 112626 111155 1111.13  1110.88 | 1500.28
8 467.40  393.04 44176  440.50  440.74  440.87| 1236.43  1111.87 1184.86  1169.15 1168.92  1168.78 | 1609.66
9 24293 31899 36589  390.58  390.49  390.44 | 97576 106637 1136.40  1234.08 1234.16 123421 | 1624.66
10 43755  383.69  427.61  431.65  431.02  430.64| 1164.18 110070 1166.06 116376 116439  1164.77| 1595.41
iy 320.14 34478 38420 40171  400.16  399.23 [ 1045.11  1085.20 1143.82 120526  1206.81  1207.74 | 1606.97
12 309.82 33570 368.51 37479  371.66  369.80| 1208.99  1152.07 1201.42 1213.45 121658  1218.44 [ 1588.23
Annual Sum  4446.17 440571 4954.80 4954.83  4954.83  4954.83 [ 12561.25 12382.06 13164.85 13164.79 1316479 13164.80 | 18119.66
(x,) x) ) =) (x,) (xy) (0 (x,) ) 18119.64
13 39797 37276 39594  400.47 39897 38271 115028  1089.48 1126.48  1135.25 1162.19 1102.60 | 1485.30
14 43837  401.46  417.92  421.20  421.60  420.65(  769.90 91328  940.81  947.20  989.75  1006.75 | 1427.40
s 34375  347.56 35930 36167  363.83  337.32| 117033 110177 1122.14 112678  1179.61  1080.63 [ 1417.94
16 281.87  320.82 33821  339.93 34353  32836| 97474  1057.88 107288  1076.26 113579  1088.60 | 1416.96
17 39479 36279  368.81  370.05 37473  366.43| 120341  1135.66 1146.67 1149.12  1212.88 119173 | 1558.16
18 307.21 33297  337.30 33820  343.60  333.63 | 1165.69 114757 1155.63  1157.41  1223.59  1186.45| 1520.08
19 32690  348.14 35125 35191  357.69  362.99 [ 1017.88 108253 1088.42 1089.71  1156.84  1181.51 | 1544.50
20 26245 326.85 32910  329.57 33544  339.89 109494 111331 1117.61 1118.55 118529  1196.88 | 1536.76
21 45404 40457  406.20  406.54 41222  421.13 | 1088.90 103575 1038.88  1039.56  1104.47  1128.48 [ 1549.62
22 43535  409.42 41059  410.84  416.14 43437  867.53 91842 92070  921.19  982.49 104250 | 1476.87
23 489.41  423.64 42449 42467  429.47  448.00(  945.65  925.18  926.84  927.20  982.42 103891 | 1486.90
24 39246 37622 376.83  376.96  381.38  403.15| 1064.15  1007.10 1008.31  1008.56  1054.10  1124.41 | 1527.56
Annual Sum  4524.57  4436.20 451595 4532.00 4578.60  4578.61 | 12513.40 12527.93 1266537 1269679 13369.42 13369.45 | 17948.05
(x;,) &) () ;) *xy | 17948.03




Table 2(a).

Benchmarked y-series with nonrandom signals
(For nonrandom annual and dependent but nonbinding monthly benchmarks)

g Yu Ay e v Ay un Yu i ar A s iy Z
! 402.37 444776 444,76  470.24 486.54 486.91 767.51 817.80 817.80 920.52 918.91 934.57 1389.78
2 423.96 466.35 466.35 435.28 450.80 451.15 1010.97 1061.27 1061.27 932.31 930.77 945.78 1365.33
3 363.51 405.90  405.90 400.61 414.48 414.80 927.79 978.08 978.08 1013.84 1012.46  1025.89 1412.68
4 438.46 480.85 480.85 444.21 456.25 456.53 1135.68 1185.97 1185.97 992.26 991.06 1002.72 1433.69
5 381.17 423.56  423.56 396.79 405.25 405.45 1086.68 1136.98 1136.98 1017.65 1016.81  1025.02 1412.06
6 352.16 394.55  394.55 389.95 394.96 395.08 984.74 1035.04 1035.04 1118.27 1117.77  1122.65 1505.98
7 306.70 349.09 349.09 344.85 346.34  346.38 1017.41 1067.71 1067.71 1154.06 1153.91 1155.38 1496.22
8 467.40  509.79  509.79  486.28  484.57 484.53 | 1236.43 128673 128673  1134.89  1135.06 1133.42|  1618.09
9 242.93 285.32  285.32 317.06 307.18  306.95 975.76  1026.05 1026.05 1308.84 1309.82  1300.28 1624.32
10 437.55 479.94  479.94 490.84  478.31 478.02 1164.18 1214.48 1214.48 1119.24 1120.49 1108.35 1605.95
11 320.14 362.53 362.53 400.23 378.74 378.25 1045.11 1095.40 1095.40 1213.45 1215.59 1194.76 1612.50
12 309.82 352.22 352.22 378.41 351.43 350.81 1208.99 1259.28 1259.28 1239.43 1242.12  1215.95 1614.19
Annual Sum 4446.17  4954.85 4954.85 4954.85 4954.85 4954.85 12561.25 13164.79 13164.79 13164.76 13164.77 13164.77 18090.79
*x,) () (xy) x) ) () () () () 18119.64
13 397.97 440.37  440.37 466.56  433.52 432.76 1150.28 1200.58 1200.58 1180.73 1193.71 1067.37 1505.84
14 438.37 480.76  480.76 506.95 464.73  498.01 769.90 820.20 820.20 800.35 821.87 934.00 1440.59
15 343.75 386.14  386.14 412.34 359.99 327.38 1170.33 1220.63 1220.63 1200.78 1225.78 1076.42 1413.10
16 281.87 324.26 32426 350.45 292.50 283.12 974.74 1025.03 1025.03 1005.19 1037.42 1121.96 1416.67
16 394.79 437.18 437.18 463.38 402.08 382.16 1203.41 1253.70 1253.70 1233.86 1270.55 1170.98 1564.95
18 307.21 349.60  349.60 375.79 308.76 300.98 1165.69 121598 1215.98 1196.13 1238.78  1209.64 1523.49
19 326.90 369.29 369.29 395.48 325.46  330.13 1017.88 1068.17 1068.17 1048.32 1095.75  1222.65 1566.02
20 262.45 304.84 304.84 331.04 258.20 263.58 1094.94 1145.24 1145.24 1125.39 1175.86  1281.59 1557.89
21 454.04 496.43 496.43 522.63 448.34  446.61 1088.90 1139.20 1139.20 1119.35 1172.63 1112.54 1571.21
22 435.35 47774  477.74  503.93 426.39 448.99 867.53 917.82  917.82 897.97 953.34 1030.74 1491.99
23 489.41 531.80 531.80 557.99 478.45 479.27 945.65 995.95 995.95 976.10 1032.35 1004.10 1492.65
24 392.46 434.85 434.85 461.04 380.24 385.66 1064.15 1114.45 1114.45 1094.60 115138 1137.45 1531.14
Annual Sum 4524,57 5033.26 5033.26 5347.58 4578.66 4578.66 12513.40 13116.95 13116.95 12878.77 13369.42 13369.44 18075.54
%;,) @) (x,) *y) *xy) 17948.03




Table 2(b). Benchmarked y-series with serially dependent signals
(For nonrandom annual and serially dependent but nonbinding menthly benchmarks)

! Y e iy T i a4 Ya o s S a5 5 Z,
1 402.37 402.37 461.79 476.32 478.04 479.50 767.51 767.51 825.96 910.13 907.39 908.94 1389.78
2 423.96 386.05 42490 409.10 409.39 410.70 1010.97 995.10 1047.82 968.37 966.75 969.43 1365.33
3 363.51 371.14 414,99 404.59 404.85 406.32 927.79 954.15 1017.73 1003.15 1001.38 1004.45 1412.68
4 438.46 394.68 441,72 419.39 419.63 421.14 1135.68 1039.53 1109.23 1029.74 1027.95 1031.11 1433.69
5 381.17 371.47 420.34 398.84 399.08 400.50 1086.68 1040.90 1113.94 1032.63 1030.94 1033.91 1412.06
6 352.16 361.48 411.14 410.34 41058 411.78 984.74 1016.85 1091.35 1098.29 1096.82 1099.32 1505.98
i 306.70 342.32 391.93 1389.41 389.64 390.46 1017.41 1051.81 1126.26 1114.08 1112.99 1114.70 1496.22
8 467.40 393.04 441.76 443,13 44331 443.60 1236.43 1111.87 1184.86 1180.43 1179.93 1180.52 1618.09
9 242.93 318.99 365.89 388.31 388.35 387.89 975.76 1066.37 1136.40 1222.12 1222.52 1221.58 1624.32
10 437.55 383.69 427.61 434.19 433.91 432.43 1164.18 1100.70 1166.06 1173.59 1175.32 1172.36 1605.95
111 320.14 344.78 384.20 401.67 400.72 397.87 1045.11 1085.20 1143.82 1201.62 1205.36 1199.82 1612.50
12 309.82 335.70 368.50 379.48 377.24 372.55 1208.99 1152.07 1201.42 1230.69 1237.50 1228.71 1614.19
Annual Sum  4446.17 4405.71 4954.80 4954.80 4954.80 4954.80 12561.25 12382.06 13164.84 13164.84 13164.84 13164.84 ] 18090.79
(x,) @) (x,) (x,)) ) x,) () ®,) *,) 18119.64
13 397.97 372.76 39593 404,17 402,83 386.36 1150.28 1089.48 1126.48 1147.16 1174.94 1116.39 1505.84
14 438.37 401.46 417.92  424.05 424,03 421.09 769.90 913.28 940.81 955.50 996.95 1005.89 1440.59
15 343.75 347.56 359.29 363.83 365.13 338.84 1170.33 1101.77 1122.14 1132.61 1182.99 1085.36 1413.10
16 281.87 329.82 338.21 341.55 343,96 328.98 974.74 1057.88 1072.88 1080.37 1136.50 1089.51 1416.67
17 394.79 362.79 368.81 371.26 374.53 367.20 1203.41 1135.66 1146.67 1152.04 1211.83 1193.65 1564.95
18 307.21 332.97 337.29 339.09 34292 33423 1165.69 1147.57 1155.63 1159.49 1221.32 1187.76 1523.49
19 326.90 348.14 351.25 352.56  356.69 364.14 1017.88 1082.53 1088.42 1091.19 1153.76 1185.72 1566.02
20 262.45 326.85 329.09 330.05 33423 341.08 1094.94 1113.31 1117.61 1119.61 1181.72 1202.04 1557.89
21 454.04 404.57 406.19  406.89 410,92 421.59 1088.90 1035.75 1038.88 1040.32 1100.68 1131.76 1571.21
22 435.35 409.42 410.59 411.10 414.82 432.26 867.53 918.42 920.70 921.74 978.71 1035.88 1491.99
23 489.41 423.64 42449 42486 428.23 44425 945.65 925.18 926.84 927.60 978.89 1026.48 1492.65
24 392.46 376.22 376.81 377.09 380.30 398.57 1064.15 1007.10 1008.31 1008.85 1051.10 1109.01 1531.14

Annual Sum  4524.57 4436.20 451594 4546.54 4578.60 4578.60 12513.40  12527.93 12665.37 12736.48 13369.44 13369.45 | 18075.54

(x,) ) (=) () (x,) 17948.03
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