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JACKKNIFE VARIANCE ESTIMATION UNDER TWO-PHASE SAMPLING: 
AN EMPIRICAL INVESTIGATION 

Diana M. Stukel and Phillip S. Kott' 

The jackknife variance estimator has been shown to have desirable properties when used with smooth 
estimators based on stratified multi-stage designs. However, its use in the context of two-phase sampling 
is relatively unexplored. This paper focuses on a particular two-phase design: at the first phase, a 
stratified one-stage take-all cluster sample is drawn using simple random sampling with replacement. The 
sampled first phase units are restratified, and second phase units are drawn using stratified simple random 
sampling without replacement. Kott (1995) has suggested that under this design, the jackknife variance 
will behave reasonably well for the "reweighted expansion estimator", but not for the more commonly 
used "double expansion estimator". In this paper, we also discuss simple poststratified versions of these 
estimators and their corresponding jackknife variances; poststratified estimators are appealing since it is 
common for many surveys to benchmark their final weights to known external control totals. We give 
the results of a simulation study in which we investigate the fmite sample frequentist properties of all of 
the point estimators given above, as well as their corresponding jackknife variance estimators. The 
parameters of interest considered are population totals and ratios. 

KEY WORDS: Double Expansion Estimator, Poststratification, Reweighted Expansion Estimator, 
Stratification 
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ESTIMATION DE LA VARIANCE SELON LA METHODE JACKKNIFE DANS UN 
ECHArcFILLONNAGE A DEUX DEGRES: 

EruDE EMPIRIQUE 
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RÉSUMÉ 

On sait que I' estimateur de la variance jackknife presente des propriétés intéressantes lorsqu 'on l'utilise 
avec des estimateurs continus dans un plan d'echantillonnage stratiflé a plusieurs degrés. Toutefois, on 
connait relativement peu de choses sur son utilisation dans un plan d'echantillonnage a deux degrés. Le 
present document examine un plan d'échantillonnage a deux degrés particulier en premier lieu, on crée 
un échantilon stratiflé a un degre par simple tirage au sort non exhaustif de grappes completes. Les 
unites prélevées lors de Ia premiere étape subissent une restratification, puis on procêde a un second 
echantillonnage aléatoire simple stratiflé, mais exhaustif celui-là. Kott (1995) croit qu'avec un tel plan 
d'échantillonnage, l'estimation de la variance selon La méthode jackknife donnera raisonnablement de bons 
résultats pour 4c1'estimateur avec facteur d'extension repondéré*, mais pas pour id'estirnateur avec facteur 
d'extension double*, d'usage plus couranc. Le document traite aussi des simples variantes des estimateurs 
obtenues par stratification a posteriori et de La variance correspondante selon la méthode jackknife; les 
estimateurs de stratification a posteriori sont attrayants, car dans maintes enquêtes, ii est frequent 
d'aligner les poids fmals sur des totalisations de contrôle indépendantes connues. Les auteurs presentent 
les résultats d'une simulation qui les a aides a examiner les proprietes frequentistes de l'échantillon fmi 
compose des estimateurs ponctuels mentionnés plus haut, et des estimateurs jackknife de Ia variance 
correspondants. Les parametres d'intérêt considérés sont des totaux et des ratios de La population. 

MOTS CLES : estimateur a facteur d'extension double, stratification a posteriori, estimateur a facteur 
d'extension repondéré, stratification. 
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1. INTRODUCTION 

Krewski and Rao (1981) and Rao and Wu (1985) explore the design based properties of the 

jackknife variance estimator under a stratified multi-stage design using with replacement sampling at the 

first stage. Their results, although fairly general, cannot be directly applied to multi-phase sampling 

designs. 

In this paper, we consider a specific two-phase design: at the first phase, primary sampling units 

(PSUs) are drawn within each first phase stratum using Simple Random Sampling (SRS) with replacement 

(WR). Then, all units within the sampled PSUs are selected, resulting in a one-stage take-all cluster 

design. At the second phase, the entire first phase sample is restratified, and second phase units are drawn 

according to SRS without replacement (WOR) from each of the second phase strata. Several surveys at 

Statistics Canada use designs very similar to this one, such as the International Adult Literacy Survey on 

the social side, and the Quarterly Retail Commodity Survey on the business side. 

To estimate a total in this context, it is common to use the Double Expansion Estimator (or it * - 

Estimator, in the parlance of Sarndal, Swensson and Wretman (1992)). For this estimator, each of the 

subsampled units is multiplied by the product of its inverse sampling rates at each phase and then 

summed. Although the Double Expansion Estimator is more easily located in text books, an estimator 

that is more commonly used in practice is the Reweighted Expansion Estimator, especially when unit 

nonresponse it treated as a second phase of sampling. (See Rao and Shao (1992)). Although both of these 

estimators behave well from the standpoint of point estimation, Kott (1995) has suggested that under the 

above design, the jackknife variance will behave reasonably well for the Reweighted Expansion Estimator 

but not for the Double Expansion Estimator. The investigation of that conjecture for estimating totals and 

ratios is the focus of this paper. 

The organization of this paper is as follows: Section 2 introduces all of the point estimators and 

Section 3 gives their corresponding jackknife variance estimators. In Section 4, the results of a simulation 

study are given, in which the finite sample properties of the point estimators and their corresponding 

jackknife variance estimators are investigated. Finally, in Section 5, some concluding remarks are made. 



2. THE POINT ESTIMATORS 

In survey sampling, one is often interested in estimating parameters of a fmite population, such 

as totals and ratios of some characteristic. In this section, for the sake of simplicity, we confine ourselves 

to the case of totals, since all the estimators considered can be easily extended to the case of ratios. 

However, we revisit the case of ratios in the Monte Carlo simulation study in Section 4. Therefore, 

suppose the parameter of interest is the population total, T = 	y1 , where y is the value of interest for 
ieU 

unit i and U is the set of all finite population units. Suppose, further, that the two-phase design 

described in the introduction is assumed. 

If the entire first phase sample is available, one could use a Full First Phase Estimator (FFPE) 

given here in terms of two-phase notation as: 

G 

tl = z g'l i€S 

(1) 

where g(=1,...,G) is the index for the second phase strata, Sg  is the set of sampled first phase units that 

fall in second phase stratum g, and w1  is the first phase weight for sampled unit i. 

On the other hand, if only second phase units are available, one could use the Double Expansion 

Estimator (DEE) or it -estimator, given by: 

= E 
	

(2) 
g=i 

where s9 is the set of sampled second phase units in second phase stratum g, M is the number of 

sampled first phase units in second phase stratum g, and m1  is the number of sampled second phase units 

in second phase stratum g. Thus, Mg  / ing  is the second phase inverse sampling rate within second phase 

stratum g. 



Kott (1995) has suggested that, in terms of jackknife variance estimation, a better choice of 

estimator to use would be the Reweighted Expansion Estimator (REE), given by: 

G 	E 

	

g 	 * = E (E w1 	
m 	

= L L4 W1gY1 	 (3) 
g=l i€; 	E Mg Wi 	

g'l 1E51  

m 

where 
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 , 

- 

Wjg  = W 	1ES. 	 (4) 
Ew1  
iES 

It is the formulation on the right hand side of equation (3), in terms of w, that gives the Reweighted 

Expansion Estimator its name. Notice that the second phase inverse inclusion probabilities, M8  / mg  

cancel out, so that this formulation is reminiscent of a "reweighting" within classes that one would use 

if one had unit nonresponse and were treating it as a second phase of sampling. 

Since it is common for many household and business surveys to benchmark their final weights 

to known external control totals, it is of interest to consider a simple poststratified version of the 

Reweighted Expansion Estimator (SP-REE) as well as a simple poststratified version of the Double 

Expansion Estimator (SP-DEE). The former is given by: 

t0F) = (N/!)E E Wj;)j 

p 	g i€s,, 

	

where R. = 	w 
g i€s 

and where p is the index for the poststrata (different from g which is the index for second phase strata). 

Here, N represents the known external count for poststratum p. In addition, Spg  represents that part of 

the second phase sample which falls into poststratum p and second phase stratum g, and w is given 

in equation (4). The Simple Poststratified Double Expansion Estimator is given by: 
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t2(SP) = 	(NIr;) 	, 	
(6) 

	

p 	g tES 2  

where Np =5Wjg  
S iE3 

and where w ig  = w (Mg /mg ); i E Sg • Note that if poststrata are defmed to be the same as second phase 

strata, then t2 (SP) = t3 (SP). Finally, a simple poststratified version of the Full First Phase Estimator (SP -

FFPE) is given by: 

	

t1 (SP) = 	(N,z;*) E w.1 

p 	 EESJ, 	 (7) ** where N = 	w. 
eS, 

and where S,, represents that part of the first phase sample which falls into poststratum p. 

3. THE JACKKNIFE VARIANCE ESTIMATORS 

Following Rust (1985), the jackknife variance estimator, v, (f=1 or 2 or 3), is defined here 

as: 
H 

h1vç VJ = 
	

'¼ Jb 

(t/hj)-t1)2; f=1,2,3 	 (8) 
h=1 

where h (=1,...,JI) is the index for the first phase strata, nh  is the number of PSUs selected in stratum h 

at the first phase, and Fh  the set of sampled PSUs in stratum Ii. Finally, t(h;) is called the replicate 

estimator, and will be defined next. 

For the Reweighted Expansion Estimator (f=3), the replicate estimator is formed by recalculating 

the Reweighted Expansion Estimator, t3 , after removing the j PSU from the hth  stratum by reweighting 

to reflect the removal. That is, 

G 

Qzj) = 	( 	w,y(hj) IS  t 	 S (9) 
g=1 leS, 	E Whfj(hJ) IJ   

E€S 
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(0 if h'=h,j"=j I ______ where 	 wkJ, , (hJ) = 	W,y1  if h'h, 	j'*j 

if h'~h 

and where wh,,.( 	w.) is the first phase weight for individual I in 	PSU j' and first phase stratum hi'. 

For the Double Expansion Estimator (f=2), in defining the replicate estimator, it is not clear 

whether it is better to reweight only the first phase weights, whyj (hJ), as in Variant 1 given below, or 

both the first phase weights and the second phase weights M / m, as in Variant 2 given below. 

Variant 1 is given by: 

t2  (hj) = E 	(hj) y. 	 (10) 
g=1 jes, mg 

and Variant 2 is given by: 

G M 
t (hj) 	

. 
 Whyj (hj) y, 	 (11) 

gl ã€s 

where 

M, = M8  minus the number of selected 
first phase individuals falling in 

second phase stratum g and PSU j 

and 

= 	minus the number of selected 
second phase individuals falling in 
second phase stratum g and PSU j. 

As we shall see, neither produces a jackknife variance which tracks the true mean squared error (MSE) 

well. 
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The replicate estimator for the Full First Phase Estimator is straightforward and is given by: 

t1(hj) = E E wk ,/(h))yI . 

	 (12) 
g=1 iES 

It is also possible to define jackknife variance estimators for t 1  (SF), t2  (SP), and ç (SP) in an analogous 

way. The only noteworthy difference is that the poststratification must be recalculated after each PSU 

removal, to ensure a proper jackknife. 

4. A MONTE CARLO SIMULATION STUDY 

4.1 Design of the Study 

The main contention of this paper is that the jackknife based on the Reweighted Expansion 

Estimator should behave much better than that based on the Double Expansion Estimator. In order to see 

if this was the case, we undertook a Monte Carlo simulation study in which we investigated the finite 

sample frequentist properties of both jackknife variance estimators. 

December 1990 Canadian Labour Force Survey (LFS) sample data for the province of 

Newfoundland was used to simulate a finite population, from which repeated samples were drawn. The 

LFS is the largest ongoing household sample survey conducted by Statistics Canada. Monthly data 

relating to the labour market is collected using a complex multi-stage sampling design with several levels 

of stratification. The details of the design of the survey prior to the 1991 redesign can be found in Singh, 

Drew, Gambino and Mayda (1990). In general, provinces are stratified into "economic regions", which 

are large areas of similar economic structure; Newfoundland has four such economic regions. The 

economic regions are further substratified into lower level substrata. Now, the lowest level of 

stratification in Newfoundland yielded 45 strata, each of which contained less than 6 primary sampling 

units (PSUs), which was an insufficient number from which to sample for the purposes of the simulation. 

Thus, the 45 strata were collapsed down to 18, each containing between 6 and 18 PSUs. In collapsing 

the strata, economic regions were kept intact, as were the Census Metropolitan Areas (CMAs) of St. 

John's and Cornerbrook. 

For the Monte Carlo study, R = 4000 samples, were drawn from the Newfoundland "population" 
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(consisting of 9152 individuals), according to the following two-phase design: within each first phase 

stratum, two PSUs were selected at the first stage using simple random sampling (SRS) with replacement 

(WR), yielding a total of 36 PSUs. All households within selected first phase PSUs (as well as individuals 

within those households) were selected, resulting in a one-stage take-all cluster sample. At the second 

phase, all selected first phase units (individuals) were restratified according to five age categories (<= 

14, 15-24, 25-44, 45-64, > = 65), and second phase units (individuals) were drawn according to SRS 

without replacement (WOR) sampling within each of the five second phase strata. We varied the second 

phase sample size to take on values m8  = 5, 10, 20, and 50, yielding overall second phase sample sizes 

of m = 25,50,100, and 250. We even drew 4000 full first phase samples (mg  = M2 ), in order to 

calculate full first phase estimators for the sake of comparison. 

We considered two parameters of interest: T, the total number of employed, and T/Z, the 
9152 

employment rate. Here, T = 	y. = E y, where y. 1 if individual i was employed; 0 else, and 
IEU 	1-1 

9152 
Z 

=A 

Ez. = 	z1  where z. = 1 if individual i was in the labour force (employed or unemployed); 0 
iE(J 	i-I 

else. For each of the R = 4000 samples, we calculated the Reweighted Expansion Estimator (REE), r3 , 

given by equation (3) and the Double Expansion Estimator (DEE), t,, given by equation (2), as well as 

their poststratified counterparts, given in equations (5) and (6), respectively. For the poststratifled 

versions, we took the poststrata to be the four economic regions of Newfoundland; these economic 

regions are aggregates of first phase strata. Given that one can never improve on an estimator based on 

the full first phase sample, for the sake of comparison we also considered the full first phase sample 

estimator (FFPE), t 1 , given in equation (1), as well as its poststratified counterpart, given in equation (7). 

Note that, although all of the estimators so far have defined for totals (applicable for total number of 

employed), it is easy to define them for ratios (applicable for employment rate) by estimating both the 

numerator and denominator parts separately as totals. 

For each of the R = 4000 second phase samples, we calculated the jackknife variance 

corresponding to the Reweighted Expansion Estimator and the Double Expansion Estimator, given by 

equation (8) with f = 3 and f = 2 respectively. In the case of the Double Expansion Estimator, we 
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attempted both variants defined in equations (10) and (11). We also attempted jackknife variances for 

simple poststratified versions each of the above (SP-REE, SP-DEE (variant 1) and SP-DEE (variant 2)). 

For each of the R = 4000 first phase samples, we calculated the jackknife variance corresponding to 

the full first phase estimator, given by equation (8) with f = 1 . We also attempted the jackknife variance 

of the simple poststratified full first phase estimator (SP-FFPE). 

For all of the above estimators and their corresponding jackknife variances, a number of 

frequentist properties were investigated. These are given below, expressed only in terms of estimates of 

the total number of employed, for the sake of simplicity. 

The percent relative bias of the estimated number of employed with respect to the population value 

is estimated by: 

EM(t') - T * 100 	 (13) 
T 

where 

4000 

EM (t) = 	tr• 

is the Monte Carlo expectation of the point estimator t taken over the 4000 samples. Here t can be 

either t1 , t1  (SP), t2 , t2  (SP), r or t3(SP), and t, is the value of t for sample r. 

The percent relative bias of the jackknife variance estimator with respect to the estimated true mean 

squared error is estimated by: 

(EM(v(t1)) - MSE) * 100 
	 (14) 

MSE 

where 

4000 

EM (vJ/t)) = 400() Vjfr(t) 



and 

4O 

	

MSEm. 	 E(t -12  4000 r1 

and v(r) is the value of v(r) for sampler. 

The percent coefficient of variation of the jackknife variance with respect to the estimated true MSE 

is estimated by: 

	

4000 	 - 

(Vjir (t  ) MSE) 2  
*100, 	 (15) 

MSE 

i.e., the root mean squared error of the variance estimator divided by the estimated true MSE, expressed 

as a percentage. 

The percent coverage of a confidence interval having a nominal value or 95% is estimated by: 

4000 

4000 rn 
I)*10() 
	 (16) 

where I,. = 1 if T is inside the interval t,' ± z [v1(t - )] ' and 4 = 0 otherwise, and z = 1.96 is the 

upper cr/2 point of the standard normal distribution. 

4.2 Results of the Study 

Table 1A ahead gives the percent relative biases of the six point estimates for the total number 

of employed using equation (13), and Table lB gives the same for the employment rate. In both tables, 

all biases are less than 1 % in absolute value, except for the two poststratified second phase estimators, 

SP-REE and SP-DEE, when m g  = 10 and 5 in Table 1A. Since both of these estimators can be written 

as separate ratio estimators within poststrata, it seems reasonable that the increased (absolute) bias is due 

to the small number of second phase units within each poststratum. According to Särndal, Swensson and 

Wretman (1992), page 270, "a rule of thumb is to keep the number of groups (poststrata) sufficiently 



small so that no group sample count is less than 20". This is cl.early violated in these two cases. Even 

so, all estimators behave reasonably in terms of point estimation, as expected. 

Table 2A ahead gives the percent relative biases of the jackknife variances for the total number 

of employed using equation (14), and Table 2B gives the same for the employment rate. Focusing first 

on Table 2A, the Full First Phase Estimator's variance is almost perfectly unbiased, at 0.94%. Among 

the second phase estimators, the Reweighted Expansion Estimator clearly comes out the winner, having 

small negative biases in the variances always less than 6% in absolute value. The biases become 

increasingly negative as the second phase sample sizes diminish. Both variants of the Double Expansion 

Estimator fail miserably, with very large positive biases in the variances ranging from 46.35% to 

1997.51%! The second variant is worse than the first, but both are well beyond the realm of acceptable 

behaviour. In the case of simple poststratification, the variance of the Full First Phase Estimator exhibits 

a small positive bias of 3.3%. The poststratified version of the Reweighted Expansion Estimator still 

behaves reasonably well, exhibiting biases in the variances between 4.88% and 12.03%. However, both 

variance variants of the poststratified versions of the Double Expansion Estimator behave poorly, although 

not as poorly as in the cases without poststratification. Here, the biases in the variances range between 

22.39% and 50.03%. As before, variant 2 is worse than variant 1. 

Table 2B repeats the analysis for the ratio estimate of employment rate. The results here are 

rather curious and difficult to explain since all variances behave reasonably well, with the exception of 

variant 2 of the double expansion estimator when m g  = 5. Other than this case where the bias in the 

variance is 30.46%, all other biases are less than 9.64% in absolute value. The biases in the variances 

of the reweighted expansion estimator and its poststratified counterpart tend to mirror their earlier 

behaviour in Table 2A. That is, the former tends to have small negative biases while the latter tends to 
have small positive biases. Even more curious is the fact that, in some instance, the variances of the two 

full first phase estimators are outperformed by some of the variances of the second phase estimators 

(DEE-variant 2, SP-REE and SP-DEE-variant 1 when mg  = 50, as well as DEE-variant 1 whenm g  = 20 

and SP-DEE-variant 1 when m. = 10). Further analysis is required in order to explain the general 

behaviour of the ratio estimator. Nevertheless, Table 2A and 2B provide sufficient evidence that the 

jackknife variance of the reweighted expansion estimator is the correct one to use, since it behaves well 

in all cases, where that of the double expansion estimator fails badly at least for totals. 
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Although most studies focus on the bias of the variance estimators, it is also of secondary interest 

to look at the coefficient of variation of the variance estimators to see how stable the variance estimates 

themselves are. In Tables 3A and 3B, we investigate the coefficients of variation corresponding to the 

total number of employed and the employment rate, respectively. In equation (15), the expression under 

the square root in the numerator gives the MSE of the variance, whose component parts are the square 

of the bias of the variance and the variance of the variance. For those entries in Tables 2A and 2B where 

the bias of the variance has been determined to be exceedingly large (say larger than 20%), the 

corresponding entries in Tables 3A and 3B are not reported (indicated by a *), since it is clear that those 

entries will be excessively large. In Table 3A, the coefficients of variation corresponding to the 

Reweighted Expansion Estimator range between 46.86% and 53.42%, while those of its poststratified 

counterparts range between 50.26% and 71.03%. There seems to be a tendency for the variances to 

become more unstable as the second phase sample sizes diminish, which is not surprising. Coefficients 

of variation of the magnitude exhibited here, although large, are typical for variance estimators, and have 

been encountered in other simulation studies relating to variances. See, for example, Kovaevid, Yung 

and Pandher (1995). To that end, note that even the coefficients of variation corresponding to the Full 

First Phase Estimators are in the same range, and in fact, somewhat higher than those of the second phase 

estimators in certain cases. 

Table 3B, which gives the coefficients of variation for the variances of the estimated employment 

rates, are entry by entry higher than their counterparts in Table 3A. In addition, all estimators exhibit 

the pattern that their corresponding coefficients of variation increase, quite substantially in fact, as the 

second phase sample sizes diminish. This effect is more pronounced for the ratio estimator than it is for 

the estimator of the total. The very high coefficients of variation in the column mg  = 5 of both tables 

is not surprising, since the overall second phase sample size (25) is actually smaller than the overall 

number of PSUs drawn (36). 

Lastly, Table 4A gives the percent coverages of confidence intervals having nominal value 95% 

for the estimator of total number of employed using equation (16), and Table 4B gives the same for the 

employment rate. In both tables, the coverage corresponding to the reweighted expansion estimator and 

its poststratified counterpart appears fairly close to the full first phase analogues, except for the case of 

estimating the employment rate when m. = 5 or mg  = 10. However, all of the above coverage rates 
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exhibit a tendency to underestimate the true coverage rather severely; the coverage for the cases REE and 

SP-REE ranges from 88.1% to 92.63% for Table 4A and from 74.1% to 90.05% for Table 4B. The 

increased coverage of both variants of the double expansion estimator and their poststratified counterparts 

in Table 4A (from 90.48% to 99.50%) over the reweighted and poststratified reweighted cases is not 

surprising; the large positive biases corresponding to these entries in Table 2A indicate that the variance 

is being severely overestimated, resulting in wider intervals. The results in Table 4B present an even 

more grim picture, with severe undercoverage across the entire table. Here, the coverage barely breaks 

the 90% mark, and in the most severe cases, plummets as low as 73.7%. Certainly some improvement 

would follow in both tables from using a t-statistic based on 18 degrees of freedom (t (18) = 2.1), 

since wider intervals would be achieved. However, the use of the t-statistic is questionable in this context, 

since the independence of the numerator and denominator 	random variables in a t-statistic no longer 

holds, due to the complexity of the design. In fact, the traditional approximation to the degrees of 

freedom, given by number of replicants - number of strata = 36 - 18 = 18, is probably not very 

good. Using the ideas of Satterthwaite (1941, 1946) that the degrees of freedom can be viewed as 

2 / (CV( variance))2  in tandem with the results of Tables 3A and 3B gives a more realistic approximation 

to the degrees of freedom - that is, between 1 (corresponding to a coefficient of variation of 200.85%) 

and 9 (corresponding to a coefficient of variation of 46.86%). In conclusion, perhaps the use of 

confidence intervals should be avoided in this context, as illustrated by the results in Tables 4A and 4B. 

The results have been included here mainly as a cautionary note. 

5. SUMMARY 

The main purpose of this paper was to show that a simple jackknife variance estimator works well 

under a specific two-phase sampling strategy, provided the Reweighted Expansion Estimator is used in 

the estimation strategy and not the Double Expansion Estimator. A Monte Carlo simulation study 

supported these results, particularly for the case of estimating totals, even using small second phase 

sample sizes of magnitude 5 and 10. 
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Table 1A - Percent Relative Bias of the Point Estimates for Total Number of Employed 

ESTIMATOR m = Mg  m = 50 mg  = :20 mg =  10 m8  = 5 

R.EE - .14 -0.3 -0.29 -0.56 

DEE - 0.16 -0.01 0.03 0.115 

FFPE 0.04 - -- -- - 

SP-REE - -0.08 -0.93 -1.96 -4.44 

SP-DEE - -0.05 -0.71 -1.67 -3.98 

SP-FFPE 0.06 -- -- -- -- 

Table lB - Percent Relative Bias of the Point Estimates for Employment Rate 

ESTIMATOR mg  = M mg  = 50 mg  = 20 mg  = 10 mg  = 5 

REE -- -0.09 -0.31 -0.19 -0.26 

DEE -- -0.08 -0.27 -0.119 -0.13 

FFPE -0.09 - - -- - 

SP-R.EE - -0.28 -0.52 -0.43 -0.78 

SP-DEE -- -0.26 -0.49 -0.35 -0.67 

SP-FFPE -0.26 1 	 -- - - --  J1 
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Table 2A - Percent Relative Bias of Jackknife Variances for Total Number of Empioyed 

ESTIMATOR 
Mg = Mg  mg  = 50 mg  = 20 Mg  = 10 mg  = 5 

REE - -0.99 -2.51 -5.81 -5.13 

DEE - 46.35 
(Variant_1)  

68.24 78.18 86.22 

DEE - 101.59 
(Variant_2)  

278.44 654.99 1997.51 

FFPE 0.94 - - - - 

SP-REE - 4.88 6.42 12.03 9.20 

SP-DEE - 28.52 
(Variant 1)  

32.04 35.33 22.39 

SP-DEE - 33.50 
(Variant_2)  

40.62 50.03 46.41 

SP-FFPE 3.3 - - - - 

Table 2B - Percent Relative Bias of Jackknife Variances for Employment Rate 

ESTIMATOR mg  = Mg  mg  = 50 mg  = 20 mg  = 10 mg  = 5 

REE -- -3.53 -3.45 -7.09 -6.55 

DEE -- -2.46 
(Variant 1)  

-1.53 -5.21 -7.41 

DEE - -0.357 
(Variant 2)  

4.91 9.09 30.46 

FFPE 2.08 -- - -- - 

SP-REE -- 1.67 2.95 2.97 -4.25 

SF-DEE - 1.65 
(Variant 1)  

2.49 0.93 -8.74 

SP-DEE -- 2.98 
(Variant 2)  

6.59 9.64 6.60 

SP-FFPE 2.33 -- -- - -- 
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Table 3A - Percent Coefficient of Variation of Jackknife Variances for Total Number of Employed 

ESTIMATOR mg  = Mg  mg  = 50 ing  = 20 = 10 mg  = 5 

REE -- 51.33 49.30 46.86 53.42 

DEE * 

(Variant_1)  
* * * 

DEE * 

(Variant_2)  
* * * 

FFPE 56.71 -- -- -- -- 

SP-REE -- 50.26 58.26 63.82 71.03 

SP-DEE  
(Variant_1)  

SP-DEE -- * 

(Variant_2)  
* * * 

SP-FFPE 58.10 -- -- - - 

Table 3B - Percent Coefficient of Variation of Jackknife Variances for Employment Rate 

ESTIMATOR M 	Mg  mg  = 50 me  = 20 mg  = 10 mg  = 5 

REE -- 59.28 65.66 74.26 103.06 

DEE -- 59.24 
(Variant 1)  

66.16 72.89 99.10 

DEE - 60.94 
(Variant 2)  

73.20 92.71 * 

FFPE 78.42 -- -- - -- 

SP-REE -- 63.53 72.12 90.08 106.22 

SP-DEE -- 62.79 
(Vaiiant 1)  

71.15 86.48 100.59 

SP-DEE -- 47.96 
(Variant 2)  

58.92 76.75 200.85 

SP-FFPE 82.21 -- -- -- - 
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Table 4A - Percent Coverage of 95% Confidence Intervals for Total Number of Employed 

ESTIMATOR mg  = M mg  = 50 mg  = 20 mg  = 10 m = 5 

REE - 91.40 91.32 90.32 88.10 

DEE - 95.60 
(Variant 1)  

96.38 95.95 94.43 

DEE -- 97.60 
(Variant 2)  

98.98 99.50 99.10 

FFPE 89.25 -- - -- -- 

SP-REE - 92.63 91.80 91.08 89.13 

SP-DEE -- 95.12 
(Variant 1)  

94.30 93.53 90.48 

SP-DEE - 95.48 
(Variant 2)  

94.98 94.43 91.83 

SP-FFPE 91.03 -- -- -- -- 

Table 4B - Percent Coverage of 95% Confidence Intervals for Employment Rate 

ESTIMATOR M = M mg  = 50 mg  = 20 mg  = 10 Mg =  5 

REE -- 89.22 87.68 82.95 75.88 

DEE -- 89.28 
(Variant 1)  

87.60 83.30 75.25 

DEE - 89.70 
(Variant 2)  

88.55 84.55 76.25 

FFPE 89.30 -- -- -- -- 

SP-REE -- 90.05 87.78 83.20 74.10 

SP-DEE -- 90.15 
(Variant 1)  

87.75 83.15 73.70 

SP-DEE -- 90.22 
(Variant 2)  

88.10 84.33 75.35 

SP-FFPE 90.28 - -- -- -- 
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