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A RIDGE-SHRINKAGE METHOD FOR RANGE-RESTRICTED WEIGHT CALIBRATION IN 
SURVEY SAMPLING 

J.N.K. Rao and A.C. Singh' 

ABSTRACT 

The generalized regression (GR) method is often used to adjust sampling weights to satisfy benchmark constraints (BC), 
but some of the calibrated weights may not satisfy range restrictions (RR). BC are needed in the interest of efficiency 
due to correlated auxiliary information and also to make estimates internally consistent with published population totals, 
while RR are needed to avoid extreme weights which may render domain estimates inefficient. To address this problem, 
several iterative methods that attempt to meet both RR and BC have been proposed in the literature. However, for given 
RR and BC, and a specified number of iterations, these methods may not converge even if RR are mild, e.g., restrictions 
to only nonnegative weights. This is likely to happen in practice if there is a high discrepancy between a BC and its 
estimate due to sample being not large enough, or if there are too many BC or multicollinear auxiliary variables implying 
instability in the estimated regression coefficients. A third possibility of course is if RR are too tight. For given RR, 
a natural and practical way out is to relax a few BC, i.e., make them nonbinding within specified tolerances, while 
keeping other BC as binding (i.e., with zero tolerance). An important requirement while relaxing BC is that for given 
tolerance levels, the calibration method should ensure asymptotic design consistency (ADC) like GR. Note however 
that since the extreme weight problem is due to sample being not large enough, asymptotically the problem disappears. 
This implies a possible loss in efficiency by making BC nonbinding. Therfore, in the interest of efficiency, the 
tolerances should be specified adaptively so that asymptotically they tend to zero implying, in turn, that the calibrated 
weights tend to GR weights. The RR themselves can be further relaxed if necessary to get lower tolerance levels. In 
this article, for complex surveys, we consider first Rao's (1992) modification of the ridge-regression method of 
Bardsley and Chambers (1984) so that the resulting estimator has the ADC property in spite of the presence of the ridge 
matrix which makes BC nonbinding. We then establish an important relation between the ridge (or inverse cost) matrix 
and the matrix of specified tolerances, and show that the above method can be adapted to meet BC up to specified 
tolerances while maintaining ADC. This method like GR is noniterative, and can be easily implemented. However, in 
spite of relaxing BC, the method may not meet R.R. We, therefore, propose an iterative method termed ridge-shrinkage, 
which generalizes the above ridge-regression method in a manner analogous to the generalization of the usual GR by 
calibration methods to meet RR. The proposed method is designed to force convergence for a given number of iterations 
by using a built-in tolerance specification procedure to relax BC while satisfying RR and maintaining design 
consistency. Numerical results on the relative performance of several related methods are also presented. 

Key Words: Asymptotic design consistency; Binding and nonbinding benchmark constraints; Range restrictions; Ridge 
regression; Shrinkage-minimization. 
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ssion generalisee (RG) est souvent utilisée pour ajuster les poids d'dchantillonnage afin de 
d'étalonnage (CE), mais certains des poids calibrés nsquent de ne pas satisfaire aux restrictions 
sont nécessaires pour assurer l'efficience due aux données auxiliaires corrélées et pour faire 
cordent, sur le plan interne, avec les totaux de population publiés, tandis que les RE sont 
les poids extremes qui risquent de rendre les estimations par domaine infructueuses. Pour 
isieurs méthodes itératives qui tentent de satisfaire a Ia fois aux RE et aux CE ont été proposées. 
u une CE donnée et un nombre d'itérations précis, ces méthodes risquent de ne pas converger 
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ue du plan d'échantillonnage (CAPE) comme la RG. A noter, toutefois, qu'en raison de Ia taille 
tilon, le problème de poids extreme disparalt de façon asymptotique. Cela implique une perle 
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rs des poids a RG. Les RE elles-mémes peuvent être relâchées davantage, le cas échéant, pour 
Lolérance plus bas. Dans le present article, nous considérons, pour les enquetes complexes, Ia 

Rao (1992) de Ia méthode de réduction-régression de Bardsley et Chambers (1954), de sorte 
résulte possède Ia proprieté de CAPE, malgré la presence de Ia matrice de reduction qui rend 
tablissons ensuite une importante relation entre cette matrice (ou le coCt inverse) et la matrice 
s, et nous montrons que la méthode susmentionnée peut We adaptée pour répondre aux CE 
;pécifiées, tout en maintenant Ia CAPE. Tout comme Ia RG, cette mdthode est non iterative et 
Iiquée. Toutefois, malgré le relâchement des CE, Ia méthode peur ne pas répondre aux RE. Nous 
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te. Des résultats numériques sur Ia performance relative de plusieurs méthodes connexes sont 
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1. INTRODUCTION 

In survey sampling, perfect auxiliary information in the form of benchmark constraints (BC) is 
commonly incorporated by means of generalized regression (GR) or raking methods of estimation. Use of 
BC is not only desirable from the efficiency perspective, but also due to the need to make estimates internally 
consistent with published population/domain totals. It is also known that regression or raking methods may 
lead to extreme calibrated weights, which may render domain estimates highly unreliable. To get around 
this problem, several methods are proposed in the literature to adjust sampling weights to meet BC while 
satisfying certain range restrictions (RR); see Huang and Fuller (1978), Deville and Särndal (1992) and Singh 
(1993). For an expository review, see Singh and MohI (1996). 

All these methods are iterative in nature and may not lead to a solution in a fixed number of iterations. 
Note that at any iteration, we can always ensure that RR are met by shrinking the weights to the boundaries 
of RR. (Some methods automatically satisfy RR after each iteration and iterations are continued to meet BC, 
while others automatically satisfy BC after each iteration and iterations are continued to meet RR.) Now if 
at the maximum number of iterations allowed, BC are not met but RR are, the process can be terminated and 
the resulting estimator will have the ADC property. However, this approach is seriously deficient in that 
there is no control on the extent of discrepancy in meeting BC. The nonconvergence problem is likely to 
happen in practice if RR are too tight, or if there is a high discrepancy between a BC and its estimate due to 
sample being not large enough, or if there are too many BC or multicollinear auxiliary variables implying 
instability in the estimated regression coefficients. One way out might be to drop some BC as suggested by 
Bankier et al. (1992) who encountered the problem of negative weights in weight calibration for census 2B 
sample because of a large number of BC at the enumeration and weighting area levels. This approach may 
seem somewhat drastic in that most BC are treated as binding (i.e., with zero tolerance) while some as 
nonbinding in the extreme sense (i.e., with infinite tolerance). A practically appealing alternative might be 
to allow most BC to be nonbinding with possibly varying tolerance except for a few binding ones based on 
subject matter considerations. 

A solution to the above problem may be motivated by drawing analogy with the problem of instability 
in regression estimates due to insufficient sample in the presence of multicollinearity or too many auxiliary 
variables in regression modelling, y = + D'(x -p) + c. A standard solution in classical statistics is to use 
ridge regression in which the least squares criterion is modified by a penalty function involving a cost matrix; 
the inverse cost matrix appears as the ridge matrix in the ridge regression estimate. It is interesting to note 
that although the resulting estimate of the regression coefficient becomes biased (but stable), the regression 
estimate of the unconditional mean p,, of the dependent variable (y) remains approximately unbiased and 
consistent. However, unlike the usual regression estimate, it does not reproduce perfectly the mean of 
the auxiliary vector (x) when y is replaced by x. This would tend to reduce the estimator's efficiency, had 
true P been known. This, however, is compensated by using a more stable estimate of 1 when it is 
unknown. 

In survey statistics, the problem of instability in OR (OR is defined by a difference-type estimator where 
the difference coefficient corresponds to the regression coefficient ) is often due to the large dimension of f 
in view of many predictors needed to satisfy multipurpose needs of the user For this case, an important and 
interesting model-based method using ridge-regression was proposed by Bardsley and Chambers (1984) to 



obtain a set of adjustd weights for the estimator. They showed that in order to satisfy RR, extreme weights 
can be avoided by 400sing the parameter in the ridge matrix appropriately. However, no guidance was 
provided on choosini  the ridge matrix to meet a desired tolerance on benchmark controls corresponding to 
the auxiliary variab es. Moreover, they did not consider the use of survey weights for a design-based 
approach. Rao (19 2) modified the above method to take account of the survey weights to ensure the 
important property o ADC. However, the problem of a suitable choice of the ridge matrix to meet specified 
tolerances on BC foi given RR was not addressed. 

In this paper, we first establish a relation between ridge (or inverse cost) and tolerance matrices so that 
for a given set of uFper bounds on tolerances, the corresponding cost matrix for ridge-regression can be 
specified. In particu ar, zero tolerance would correspond to infinite cost (i.e., zero inverse cost), and infinite 
tolerance would lead o zero cost in the limit. This can be used to modify the Bardsley-Chambers method so 
that BC are met with n tolerances, although in this article we have not pursued model-based methods. The 
above result on the relation between ridge and tolerance matrices enables us to modify several existing 
(iterative) calibration methods via the ridge-regression idea to meet RR while relaxing those BC which are 
not deemed binding, For given RR, the tolerance levels are chosen adaptively in order to relax BC only when 
necessary in the inter st of efficiency and internal consistency. We can also relax RR if it is desired to get 
lower tolerances. The proposed method, termed ridge-shrinkage, starts with (JR weights (corresponding to 
zero tolerance) whicn are then shrunk to meet RR. Next, at each cycle of iterations, tolerance levels for 
discrepant BC (up tp the specified tolerance) are raised in increments, and thus are defined adaptively. 
Assuming that asymtotically GR weights meet RR, tolerance levels so defined tend to zero, and the ridge-
shrinkage method b4omes asymptotically equivalent to GR. Therefore, the asymptotic variance of the 
proposed estimator can be estimated using the (JR formula with ridge-shrinkage residuals replacing the (JR 
residuals. 

Section 2 provid4 a brief review of existing methods for the cases of binding and nonbinding BC. The 
proposed method is 1escnbed in Section 3 in which its asymptotic equivalence to GR is outlined. A 
numerical example bised on Statistics Canada's FAMEX data is presented in Section 4, and finally some 
remarks in Section 5.1 

2. EXISTING CALIBRATION METHODS 

For a sample of si.e n, let hk  denote the initial design weight, and Ck  the final calibrated weight for the k th 

sample unit, 1 :~ k :~ n, Let the RR be given by lower and upper bounds [L, U] such that L h k -e. C k S Uh for 
all k. The BC are givei by X' c = 	where X is the n x p matrix of values of the p-auxiliary variables, and 
is the p-vector of contol totals. Assume without loss of generality that T,,  ~! 0 for 1 !~, I _,~ p. The tolerance 
matrix i for BC is A= diag(51, ..., ö,,), where ö, is the tolerance for the ith BC and is defined as 

I xc-rj 	81 t,, I ~ i!~ p. 	 (2.1) 

Note that 5 ,  > 0 iplies a nonbinding constraint and 5, = 0 corresponds to a binding constraint. The 
limiting case of 5, = mplies discarding of constraint. Also, note that if the control total t, = 0, then 5, can 
be defined as Ix ,  cj ~ 5, N where N is the population size ascertained from external sources. 

-2- 



2.1 Nonbinding Case 
We consider a modified version of the ridge regression of Bardsley and Chambers (1984) as proposed 

by Rao (1992) for survey data. Suppose the inverse cost matrix is A = diag( .......?.,,). Then consider 
minimization of the objective function in the form of a penalized least squares criterion: 

A(c h) = (c - h)T(c- h) + (Xc - r)'A' (X"c -t) 	 (2.2) 

where F = diag(h). The solution is given by 

ctw=h+rx(x'rx+A)(Tx/h) 	 (23) 

The above solution minimizes L"1  provided the second derivative, F +XA' X', is nonnegative 
definite. Note that technically the cost matrix A' need not be nonnegative for the above condition to be 
satisfied, although then it loses its usual interpretability. 

The estimator id  of the population total 'rb, for the study variable y is 

."• =y'c=y'h +yTX(X1 FX+A) - ' ('r-X1 h) 	 (2.4a) 

(2.4b) 

where 'Fis  the Horvitz-Thompson (HT) estimator, T 
R  is the GR-estimator, and a is the shrinkage 

coefficient which shrinks OR towards the HT-estimator. The corresponding expressions are 

y GR = 'h +y 'FX(X' UX)' (t - X'h), 	
(2.5) 

a = [y'rx(x'rx+ A) - '(t,-x'h)] [yTx(x'rx)'(T -X'h)]' 

Thus, the ridge-regression estimator rY is a linear combination of HT and OR estimators. If X,-. 0, which 
implies that all the BC become binding, thenë" tends to OR as expected. If A , -. 00, implying that BC can 
be nonbinding with unlimited tolerance, then" tends to HT as expected. 

Moreover, we have for the ridge weights c rid 

X'c"=X'h+XTX(XFX+ A)'(T 1 -X'h) 

=Vx - A(X'fX+ A)r 1  -X'h) 
	 (2.6) 

• ,: 	It follows that if X, = 0, the corresponding BC 'ri, is exactly satisfied by c rid•  For A>O, the 'ti,  is not treated 
as perfect auxiliary information. As X,— , the corresponding control total 'ri,  is automatically discarded. 
This can be seen as follows. Assuming all ).,>0, we can write c rid  as 

c rid.  h + ['[I- A'x'(r +XA'X')'] XA'('r  -X'h) 	 (2.7) 

-3- 



Now, denoting X, Air  without the ith row as X, A 1  and 	and letting , — o°. (2.7) reduces to 

= h + IT[!- AX'( , ) (r'+ 	-X h) .(i) 	(i 
(2.8) 

=h + FX(I) (X'(i) fX )(& +A(,) )( X( - X( h) 

which proves the reult. If some A., = 0, the above proof still goes though if we initially set A., equal to a 
small positive value 	and then take the limit in (2.8) as c, 0. 	

GR The ADC of 	follows easily by arguments similar to those used for T under the asymptotic 
framework of Isaki and Fuller (1982). Specifically, let Pr,d  denote (X'rX+A)X'ry and assume A., 
random and chosen aiaptively such that A., IN = O(l). then Dr,j  tends in probability to a limit, Pr,d  ,say. 
and 

	

r,d.
'h+P'r,d(Tx_X'h) 	 (2.9) 

and the RHS is AIX for T under the assumption of ADC of y 'h and X'Ii. We remark that the only 
difference between and fld  is that DGR  is replaced by Pr,d  The predictors i-X'h are unaltered even 
though r  are not pertectly satisfied. This is the reason why ADC of T is maintained in ridge-regression. 
Note that if A., IN = ( I), then the ridge regression estimator will be equivalent to the GR-estimator. 

Clearly, the beha'iour of c rid  depend on A. In particular, for A., sufficiently large, all c-weights should 
behave well, i.e., shoild be free from extremes. Bardsley and Chambers (1984) consider A = A. I, and use 
a graphical tool (ridge trace as A. varies) to find a suitable value of A. so that c-weights behave well. Thus, A. 
is chosen adaptively. IA  more satisfactory solution would be to set tolerances ö, 's on BC and then find the 
corresponding A that  meets these tolerances. A method to achieve this is presented in Section 3. 

Finally,we note t at Bankier et al.'s (1992) method of discarding some BC while the remaining BC are 
perfectly satisfied, isasily seen as a special case of the ridge-regression method when some A., 's tend to 
while others are set a 0. 

2.2 Binding Case 
Suppose all the B C are binding so that ö, =0 for all i. As mentioned in the introduction, there exist 

several iterative methcds whose aim is to meet BC for a given set of RR. We will briefly describe only three 
methods which consis$ of GR-like steps in iteration. The proposed ridge method to meet RR and BC can be 
applied to any of these three methods, although it is the first method which is considered in detail here. 

2.2.1 Shrinkage-Minmization (SM) 
This method was roposed by Singh (1993); see also Singh and MohI (1996). Each iteration consists 

exactly of a GR-step I or a suitable chi-square distance. Let c" be the final weights obtained at iteration 
v. These weights sati fy BC by construction. If they satisfy RR, we stop. If not, they are shrunk to c 
to meet RR. Then trea ing c 	as initial weights for the next iteration, we minimize the chi-square distance. 

SM (v) 1(c,c) =kes (ck - Ck ')2/c(')' 	 (2.10) 

subject to BC. Sinceeach iteration is like GR (except that the distance function varies from iteration is 
iteration), it follows asily from section 2.1 how this can be converted into a ridge-regression to allow 

-4- 



nonbinding BC. In fact, this is what is done in the proposed ridge-shrinkage method described in Section 
3. The above minimization step at iteration (v+ 1) leads to weights c 1" 	given by 

C "  = 	+ rx(x'r'x) - ' (r - X'c'), 	 (2.11) 

where F, = diag(c'). These weights satisfy BC but RR may not be satisfied. If RR are satisfied, we stop. 
If not, then we perform the shrinkage step for iteration v + 2 to get the initial weights c . It is defined 
as follows. Let [L, U],L< I<U denote the lower and upper bounds specified by RR which the calibrated 
weights c must satisfy, i.e., 

Lhk !~ck s Ulk,l ~ kgn. 	 (2.12) 

Now, to speed convergence, the weights c 	are shrunk more than necessary. For this purpose, two 
parameters a and il are defined, 0 < a < r < 1 (e.g., a = 2/3 and ri = 9/10.) Let L '= aL + (I - a) 1, 
U' = aU+ 0 - a) 1, and Li" =11 L + (1 - i) 1, U" = riU+ (1 - ii) 1. Then, we shrink C weights that are 
outside the interval [Lhk, Uhk] and also those which are inside but near the boundary, to points further inside 
the interval. Specially, 

(v+1). (v+i) 
Ck 	=L'hk  if c 	~ L"h; 

U'hk I.c i c (V+i)  
(V + I) 

Ck 	otherwise. 

(2.13) 

The above shrinkage step of iteration (v + 2) is followed by the minimization step with distance function 
A',(c,c ') analogous to (2.10), to get c If RR are satisfied, we stop; else iterations are continued 
until the maximum number VmaxOf  iterations is reached. Clearly, there may not be convergence within Vmax 
of iterations if the RR are too tight, or if there are too many BC or if there is multicollinearity in the variables 
defining BC. 

Using suitable regularity conditions, the SM-estimator, TY '= EkE ykc M,  can be shown to be 
asymptotically equivalent to the GR-estimator. This result is analogous to the Deville-Särndal's (1992) result 
on the asymptotic equivalence of a family of calibration estimators to GR. It follows that Tism is ADC and 
its asymptotic variance can be estimated from the familiar expression for GR. 

2.2.2. Modified Huang-Fuller Method (or SMCS) 
This is a slightly modified version of the method of Huang and Fuller (1978), and was termed as the 

Scaled Modified Chi-square (SMCS) method in Singh (1993). In SMCS, at iteration (v + I), a chi-square-
type distance function is minimized subject to BC. It is given by 

SMCS lvi 

	

IXv+ i (c,/:)= 	(c_h)2/q hk, 	 (2.14) 

(VI  where q, is a scaling factor designed such that the h-weights for those units that tend to disobey RR are 
adjusted only a little. This is accomplished by making q k smaller for the next iteration. Note that, unlike 
SM, at each iteration v the SMCS-estimator is not like the usual GR because of the scaling factor. However, 
it does satisfy BC at each iteration, and iterations are continued until RR are met or v ;! Vm  The form of 
c-weights at iteration (v + 1) is given by 

-5- 



C(r: = h + FX(X'F,,X) - ' (r - X'h), 	 (2.15) 

where F, = diag(q, 	I :~ k !~ n). Again, a solution may not exist for a specified 'max 
As before, the est natorKS from the SMCS method is asymptotically equivalent to the GR-estimator. 

2.2.3. Truncated L4near Method (or MCS-r) 
This method is d+  to Deville and Sarndal (1992), and was termed as the restricted Modified Chi-square 

(MCS-r) method in Sigh (1993). Unlike the previous two methods, here distance function does not change 
from iteration to jtertion; and at each iteration RR are satisfied, but iterations are continued to meet BC. 
In MCS -r, the distane function to be minimized subject to BC is given by 

AMCS-jr (c, h) = 	kEs (ck - hk) 2/hk  if L hk  !~ C :~ Uhf ; 	otherwise. 	 (2.16) 

With the initial weights, c 0 =h,f0 =diag(h) and letting F=diag(h)) where h=h k  if 

Lhk  :~ 	:~ Uhf ; 0 o herwise, the c-weights at iteration (v+ 1) are 

C "  = c' + 0 X(X' FV X) (v - x' ct'), 	 (2.17) 
(v+l) provided ck 	IS 1 

may be. 
Note that the e 

the term f0  and the 
is asymptotically e 

EL hk, Uhk]. If outside, it is truncated at the left or the right boundary as the case 

sion (2.17) for c-weights is somewhat similar to that for OR-weights except for 
of truncation. However, as was shown by Deville and Särndal, the MCS-r estimator 
lent to the OR-estimator. 

THE PROPOSED METHOD OF RIDGE-SHRINKAGE 

As mentioned in 
of ridge-regression 
version of OR. Befc 
between the toleran 
each iteration of the  

ction 2.2.1, the proposed method combines in a fairly straightforward way the idea 
th each of the iterations of the SM method because each SM iteration is simply a 
we describe the proposed ridge-shrinkage (RS) method, we need to establish a link 
matrix A = diag(,) and the inverse cost matrix A = diag(?.,) which will be used at 

method. 

3.1 Link between tlerance and cost matrices 
In the ridge appnach, it is probably easier to specify the tolerance matrix A in practice than the inverse 

cost matrix A. Now it follows from (2.6) that for the (v+ 1)st iteration of RS, 

A(X'FX+ A) 1  (X'ct"' -Ti)  =X'c 	- r1 	 (3.1) 

For each i, I :~ I 
	we want the ith element of the RHS of(3.1) to be less than or equal to 8 ,  T

X,
in 

absolute value. To fi appropriate A,, for the (v+ 1)st  iteration, we solve for A,,, from (3.1) by setting the 
RHS equal to the bou [ary values 6,t,with  appropriate signs. In other words, we set the RHS equal to 



where 

= diag{sgn(x/c 	- t T,)E, ,  1 !~ I :g p} 	 (3.2) 

In practice, in the interest of convergence, it would be better to modify V somewhat; see section 4 for 
details. We now have 

A(X'FX+A)'(X'c' -'r) =VT 

or 

(X'c' - T)=(X'FXA + ])V vx 

or 

X'Ct - (1+ VV)TX =XTXA. ' VT 

which implies that 

	

A(X/FXy(XI'c( 
- (I+V)r) = V v rx . 	 (3.3) 

So, Av  being diagonal, can be obtained by element-wise division of the p-vector on the RHS by the p-
vector on the LHS of (3.3). Note that A has zero on its diagonal when 0. The above method does not 
ensure nonnegative X,. This is not essential in view of the comment below (23). Also note that if the choice 
of 5 ,  depends on the sample (thus rendering it random) then (3.3) implies that the diagonal elements of 
A/N are O(n 112N' öt). This, in turn, implies that if n Eyr = o(l) the ridge regression 
estimator at the vth iteration will be asymptotically equivalent to the GR-estimator in view of the comment 
below (2.9). 

3.2 The RS Method 

Similar to SM, each iteration of RS consists of two steps: the ridge step and the shrinkage step. It 
consists of cycles of iterations, the qth cycle corresponds to a given tolerance For each cycle q, there 
is a prescribed maximum number of iterations. For the initial cycle q = 0, the usual SM is performed except 
for the reverse ordering of steps, i.e. first the minimization step and then the shrinkage step. (Note that the 
minimization step can be viewed as the ridge step with all X, = 0). The order of steps is reversed because 
of the introduction of tolerance on BC. Thus, after each iteration, RR are necessarily met. If the BC are 
satisfied within the tolerance levels (for checking this, it is better not to shrink the weights more than 
necessary, i.e., truncate outlying weights to the boundaries only), then we stop the iterations. Else, iterations 
are continued until Vmax  Denote the final SM-weight after shrinkage as C'. If at this point BC are not 
met within tolerance, then we start the next cycle q = I with c' as the initial weights. For this cycle, the 
tolerance matrix A with q = 0 is used to specify Aq0  using equation (3.3). Each iteration v within this 
cycle consists of two steps: 

Step I (Ridge): Do ridge-regression on c 	with the inverse cost matrix Aq  to obtain c 	from formula 
(2.3). Now, all BC are met within the prescribed tolerance. If RR are met, stop; else perform the next 
step. 
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Step II (Shrinkag): First truncate outlying weights to the boudaries only so that they just meet RR. Stop 
if BC are met within tolerance. If not, shrink c' >  to and then repeat steps land 11 until 
convergence or V12! Vm  

Similarly cycle 2 is prformed if there is no convergence after cycle 1. Note that each cycle is started with 
the same c SM  -weiglts for initialization. However, the tolerance levels are revised adaptively (in increments 
such as 1%) so that B C showing higher discrepancy are assigned higher tolerances. With Aq= so  chosen 
after cycle 1, the invrse cost matrix Aq1  is obtained and then the iterations for cycle 2 are conducted as 
in cycle 1. This procss is continued until convergence (within revised tolerances) after each cycle. Note 
that in the absence or  convergence, the process can be terminated after reaching Vmax  of iterations in the 
maximum allowed ntmber of cycles qmax  At this point, RR are of course met, but BC can be deemed as 
satisfied with tolerances  suitably increased. Note that from (2.5), the g-weights (g-weights are simply 
defined as ck/hk,  I k !~ n) for GR can be shown to be I + O(n 12) uniformly in k, and therefore, GR-
weights satisfy RR 4mptotically. This implies that as n-°°, with high probability RS will converge after 
the initial cycle itself

, 
 Thus ,=O with high probability from which it follows that AqIN tends to zero in 

probability using the 1comment below (3.3). 
One can also deine ridge-versions of the other two methods, SMCS and MCS-r by introducing the 

inverse cost matrix q  in (2.15) for ridge-SMCS and in (2.17) for ridge-MCS-r. The specification of Aq  
from A q  is quite sim lar to (3.3) for ridge-SMCS, but somewhat different for ridge MCS-r; see Section 4. 

3.3 Asymptotic Pr erties 
The RS-estimat r TY of 	is asymptotically equivalent to T if at the final cycle q0 of iterations, 

N' A.t" - o for all i. A sufficient condition for this to hold is that tolerances ö, be initialized at 0, and be 
revised adaptively as described above. The proof for the asymptotic equivalence is outlined below. First 
note that for given i 

which is analogous 
arguments used for 5 

This follows easily f 

AqO 	= , the RS-estimator TY is simply an iterative modification of r' to meet RR 
'GR 	

^

SM 	 RS'rjd 
) the modification of 	by t, . Thus it can be shown that T = T by parallel 

GR 	 . 	 r,d 	GR . 	 - iowing 	. Now it remains to show that i 	if N X, -,,O, I ~ : ~ P. 
m the expression 

'nd 
t =yh+(y' )(X' F L'X)'(r-X' h) 

+(yTX)[(X'FX +Aq0)'(X'I'X) 1 ]X 
(T-X' h) 

(3.4) 

and the fact that the 
In view of the 

for GR, using the RS 
for rY using a finite: 

For ridge-versio: 
similarly obtained.  

t term in the RHS of (3.4) is of smaller order because N' 	
-,, 

o. 
asymptotic equivalence, the asymptotic variance of T can be obtained from that 

weights rather than the GR g-weights. One can then construct confidence intervals 
ulation central limit theorem for . 

of the other two methods SMCS and MCS-r, above asymptotic properties can be 
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4. APPLICATION TO THE FAMEX DATA 

The numerical results are based on the work of Yannick Janneau completed for a M.Sc directed studies 
course in 1996 at Carleton University. He extended the numerical comparison of Singh and MohI (1996), 
based on Statistics Canada's family expenditure (FAMEX) survey data, to include ridge methods. All the 
three methods: RS, ridge-SMCS, and ridge MCS-r, were compared although full details for ridge SMCS and 
MCS-r are not given here. The tolerances were set either at 0 or at a common value of >O. This proved 
to be convenient in practice. The matrix V,,. of (3.2) was modified by replacing E, by Wa,ö, where a, = 0 
if the discrepancy (X/c" -t v

) 
is :~. yö,, and I otherwise. The parameter i, O<iji< I makes tolerances 

conservative, and helps to speed up the convergence. We used w = .9 in the example. The indicator variable 
a, treats the ith control as binding in the ridge step of the (v + I )st iteration if the discrepancy at the vth 
iteration is within tolerance. This modification is again in a conservative sense, and helps to speed up the 
convergence. Details about description of the FAMEX data, choice of BC and RR, and behaviour of existing 
calibration methods are given in Singh and Mohi (1996). 

Now, along the lines leading to the equation (3.3) for establishing the link between tolerance and the cost 
matrices, the corresponding equation for ridge SMCS can be obtained. It is very similar and given by 

= V'r, 	 (4.1) 

where r  is now diag(q" 1 h,1 s k~ n). Note that c' in the LHS of (3.3) is now replaced by Ii. 
However, for ridge MCS-r, the equation (3.3) changes somewhat, and can be obtained by using the same line 
of argument as 

A(x'r0x)' [X'c - (I+V)t] 

= Vvtx  +(x'(r0 -r)(x'r0A) -1  [X'c-(I+V)tJ, 	
(4.2) 

where F and eN'  in the LHS of(3.3) are now replaced by 170  and c N respectively, and an additional term 
is added on the RHS of(3.3). The vector k from each of(4.l) and (4.2) can be solved as before by dividing 
element-wise the p-vector on the RHS with the p-vector on the LHS. 

For the sake of illustrating the ridge methods, the three methods were applied to the 1990 FAMEX data 
for the city of Regina. Since there were only a few BC, the RR bounds [L,U] were made quite tight so that 
none of the existing calibration methods converged . For L=.5, U=2, even after 100 iterations, the % 
discrepancy in respecting the four BC were 21.64, 16.94, 75.17, and 19.61 for SM, 24.17, 18.73, 75.17, and 
21.01 for SMCS, and 97.28, -21.09, -12.42, and 2.62 for MCS-r. 

For L=.5, U=2, Table I shows the CV(g) (coefficient of variation of g-weights) and percentage 
discrepancy in respecting BC. Here ömin  denotes the minimum tolerance required for a given ridge method 
so that all the BC are met within tolerance. It is seen that all the three methods behave quite similarly and 
the discrepancy in respecting BC can be considerably reduced in comparison to non-ridge methods. Table 
2 shows the relative difference (RD) and relative precision (RP) in point estimates for four study variables. 
RD is defined as the ridge-calibration estimator minus the regression estimator divided by the regression 
estimator, while RP is the SE (regression estimator) divided by the SE (ridge-calibration estimator). The 
variances were computed using jackknifing, see Singh and Mohl (1996) for further explanation. It is seen 
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that all the estimates •ve higher estimated variance as compared to the usual regression estimator. This is 
expected as explained below. 

Observe that evei i if some weights are extreme (e.g., negative or very high), there may or may not be 
instability in the GR stimator depending on the study variable. Now with respect to the variables studied, 
GR does not seem to iave the instability problem because with loose bounds [.2. 5], it is known from Singh 
and Mohl (1996) that all the usual calibration methods converge fairly quickly with estimated variance 
similar to that of GR. For our example, for the sake of illustrating the ridge methods the bounds are further 
tightened to [.5, 21 so that the calibration methods no longer converge. Now since the ridge methods do not 
satisfy BC perfectly, dge-calibration estimates, although asymptotically equivalent to GR, are expected to 
have higher variances1 for finite samples whenever GR is not unstable. There is likely to be a further loss in 
efficiency if we droll a BC (i.e. increase the tolerance to oo)  as an alternative approach to get rid of the 
problem of extreme 4eights. For example, one can perhaps drop the second BC and then attempt to satisfy 
perfectly the remainng three BC in this alternative approach. However, note that the RS method also 
satisfies almost perfe4tly  these three BC and within 4% the second BC. With only three BC (i.e., when the 
second one out of 

	
is dropped), all the three non-ridge methods converge in one iteration which implies 

that GR also 	RR and the three BC. In this case, the discrepancy with respect to the dropped BC is 
-13.77%, much 
	

in magnitude than the 4% tolerance required by the ridge method RS. 

5. CONCLUDING REMARKS 

The proposed me 	of ridge-shrinkage is a simple iterative method of adjusting sampling weights to 
meet RR and BC wi 	tolerances. Each iteration involves a ridge step which modifies the usual GR- 
formula by introdi 	an inverse cost matrix A. A simple relation was established to choose A 
corresponding to a 	[ic tolerance matrix A. The RS-method, like the result of Deville and Samdal 
(1992), for other califration methods, remains asymptotically equivalent to GR if the matrix N -' A tends 
to zero in probability The condition N'A-.O is satisfied by the adaptive choice of the tolerance matrix 
A as proposed in the paper because the GR-weights meet RR with high probability for large samples in view 
of the ADC property. This shows that RS is ADC, and its asymptotic variance can be conveniently obtained 
from the variance ex ression for GR. 

The RS method g neralizes the existing shrinkage-minimization calibration method by allowing BC to 
be nonbinding while meeting RR. Some other calibration methods, namely, the Huang-Fuller and the 
truncated linear can a so be generalized in a similar way. The RS method also generalizes the existing ridge 
methods (which incl4de  the method of discarding BC as a special case) by allowing iterations to meet RR 
while satisfying BC vjiithin tolerances. Thus, it is expected to provide a useful practical calibration tool as 
it combines strengths pf various existing methods dealing with both binding and nonbinding BC under RR. 
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Table 1: CV(g) and Discrepancy in respecting BC (FAMEX-Regina City) 
(cL= .67,0=.8,i1= 9 M'= • 9 Vmax =  101 qm5=  10) 

L = 0.5, U = 2.0, #BC = 4 
Dicrepancy in respecting BC in % 

Method CV (g) 1 2 3 	 4 öm in  

RS .520 0.00 -3.88 0.00 	-0.07 3.88 

Ridge-SMCS .524 3.51 -3.51 0.00 	 0.00 3.51 

Ridge-MCS-r .589 -9.40 -5.3 0.00 	-3.59 9.40 

Table 2: 	Difference in Point Estimates and Precision Relative to Regression Estimator 

Owned Dwelling Furniture\Equipment 

Method RD RP RD RP 

RS -.070 .881 -.008 .888 
Ridge-SMCS -.062 .869 -.004 .893 

Ridge-MCS-r -.096 .893 -.033 .894 

Women's Clothing Men's Clothing 

RS -.019 .869 -.032 .899 

Ridge-SMCS -.015 .874 -.025 .902 
Ridge-MCS-r -.036 .870 -.032 .894 

Note: RD and RP denote respectively "relative difference" and "relative precision". 
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