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A RIDGE-SHRINKAGE METHOD FOR RANGE-RESTRICTED WEIGHT CALIBRATION IN
SURVEY SAMPLING

J.N.K. Rao and A.C. Singh'

ABSTRACT

The generalized regression (GR) method is often used to adjust sampling weights to satisfy benchmark constraints (BC),
but some of the calibrated weights may not satisfy range restrictions (RR). BC are needed in the interest of efficiency
due to correlated auxiliary information and also to make estimates internally consistent with published population totals,
while RR are needed to avoid extreme weights which may render domain estimates inefficient. To address this problem,
several iterative methods that attempt to meet both RR and BC have been proposed in the literature. However, for given
RR and BC, and a specified number of iterations, these methods may not converge even if RR are mild, e.g., restrictions
to only nonnegative weights. This is likely to happen in practice if there is a high discrepancy between a BC and its
estimate due to sample being not large enough, or if there are too many BC or multicollinear auxiliary variables implying
instability in the estimated regression coefficients. A third possibility of course is if RR are too tight. For given RR,
a natural and practical way out is to relax a few BC, j.e., make them nonbinding within specified tolerances, while
keeping other BC as binding (i.e., with zero tolerance). An important requirement while relaxing BC is that for given
tolerance levels, the calibration method should ensure asymptotic design consistency (ADC) like GR. Note however
that since the extreme weight problem is due to sample being not large enough, asymptotically the problem disappears.
This tmplies a possible loss in efficiency by making BC nonbinding. Therfore, in the interest of efficiency, the
tolerances should be specified adaptively so that asymptotically they tend to zero implying, in turn, that the calibrated
weights tend to GR weights. The RR themselves can be further relaxed if necessary to get lower tolerance levels. In
this article, for complex surveys, we consider first Rao’s (1992) modification of the ridge-regression method of
Bardsley and Chambers (1984) so that the resulting estimator has the ADC property in spite of the presence of the ridge
matrix which makes BC nonbinding. We then establish an important relation between the ridge (or inverse cost) matrix
and the matrix of specified tolerances, and show that the above method can be adapted to meet BC up to specified
tolerances while maintaining ADC. This method like GR is noniterative, and can be easily implemented. However, in
spite of relaxing BC, the method may not meet RR. We, therefore, propose an iterative method termed ridge-shrinkage,
which generalizes the above ridge-regression method in a manner analogous to the generalization of the usual GR by
calibration methods to meet RR. The proposed method is designed to force convergence for a given number of iterations
by using a built-in tolerance specification procedure to relax BC while satisfying RR and maintaining design
consistency. Numerical results on the relative performance of several related methods are also presented.

Key Words: Asymptotic design consistency; Binding and nonbinding benchmark constraints; Range restrictions; Ridge
regression; Shrinkage-minimization.
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les poids extrémes qui risquent de rendre les estimations par domaine infructueuses. Pour
usieurs méthodes itératives qui tentent de satisfaire a la fois aux RE et aux CE ont €i€ proposées.
ou une CE donnée et un nombre d’itérations précis, ces méthodes risquent de ne pas converger
reres, comme par exemple, des restrictions a des poids non négatifs seulement. Cela risque de
s'il existe un écart élevé entre une CE et son estimation en raison de la taille insuffisante de
a trop de CE ou de variables auxiliaires multicolinéaires impliquant une instabilité dans les
on estimés. Une troisieme possibilité, bien siir, est que les RE soient trop strictes. Une fagon
chapper a une RE donnée consiste a relacher quelques CE, c.-a-d. a les rendre inactives au sein
tout en maintenant d autres CE actives (c.-a-d avec tolérance nuile). Une condition importante
es CE est que, pour des niveaux de tolérance donnés, la méthode de calibration doit assurer une
ue du plan d’échantillonnage (CAPE) comme la RG. A noter, toutefois, qu'en raison de la taille
illon, le probleme de poids extréme disparait de fagon asymptotique. Cela implique une perte
rendant les CE inactives. Par conséquent, pour des considérations d’efficience, les tolérances
e sorte qu’elles tendent asymptotiquement vers zéro, ce qui signifierait réciproquement que les
ers des poids 2 RG. Les RE elles-mémes peuvent étre relachées davantage, le cas échéant, pour
tolérance plus bas. Dans le présent article, nous considérons, pour les enquétes complexes, la
e Rao (1992) de la méthode de réduction-régression de Bardsley et Chambers (1984), de sorte
résulte posséde la propriété de CAPE, malgré la présence de la matrice de réduction qui rend
‘tablissons ensuite une importante relation entre cette matrice (ou le cofit inverse) et la matrice
es, et nous montrons que la méthode susmentionnée peut étre adaptée pour répondre aux CE
spécifiées, tout en maintenant la CAPE. Tout comme la RG, cette méthode est non itérative et
liquée. Toutefois, malgré le relachement des CE, la méthode peut ne pas répondre aux RE. Nous
sthode itérative de réduction-rétrécissement qui généralise la méthode de réduction-régression
ue a la généralisation de la RG habituelle par des méthodes de calibration pour répondre aux

RE. La méthode proposée vise a forcer la convergence pour un nombre d’itérations donné a I’aide d'une procédure de
spécification de la tolérance intrinséque pour relacher les CE tout en satisfaisant aux RE et en conservant la cohérence
du plan d'échantillonnage. Des résultats numériques sur la performance relative de plusieurs méthodes connexes sont

aussi présentés.
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1. INTRODUCTION

In survey sampling, perfect auxiliary information in the form of benchmark constraints (BC) is
commonly incorporated by means of generalized regression (GR) or raking methods of estimation. Use of
BC is not only desirable from the efficiency perspective, but also due to the need to make estimates internally
consistent with published population/domain totals. It is also known that regression or raking methods may
lead to extreme calibrated weights, which may render domain estimates highly unreliable. To get around
this problem, several methods are proposed in the literature to adjust sampling weights to meet BC while
satisfying certain range restrictions (RR); see Huang and Fuller (1978), Deville and Samdal (1992) and Singh
(1993). For an expository review, see Singh and Mohl (1996).

All these methods are iterative in nature and may not lead to a solution in a fixed number of iterations.
Note that at any iteration, we can always ensure that RR are met by shrinking the weights to the boundaries
of RR. (Some methods automatically satisfy RR after each iteration and iterations are continued to meet BC,
while others automatically satisfy BC after each iteration and iterations are continued to meet RR.) Now if
at the maximum number of iterations allowed, BC are not met but RR are, the process can be terminated and
the resulting estimator will have the ADC property. However, this approach is seriously deficient in that
there is no control on the extent of discrepancy in meeting BC. The nonconvergence problem is likely to
happen in practice if RR are too tight, or if there is a high discrepancy between a BC and its estimate due to
sample being not large enough, or if there are too many BC or multicollinear auxiliary variables implying
instability in the estimated regression coefficients. One way out might be to drop some BC as suggested by
Bankier et al. (1992) who encountered the problem of negative weights in weight calibration for census 2B
sample because of a large number of BC at the enumeration and weighting area levels. This approach may
seem somewhat drastic in that most BC are treated as binding (i.e., with zero tolerance) while some as
nonbinding in the extreme sense (i.e., with infinite tolerance). A practically appealing alternative might be
to allow most BC to be nonbinding with possibly varying tolerance except for a few binding ones based on
subject matter considerations.

A solution to the above problem may be motivated by drawing analogy with the problem of instability
in regression estimates due to insufficient sample in the presence of multicollinearity or too many auxiliary
variables in regression modelling, y = o+ B'(x -p) + €. A standard solution in classical statistics is to use
ridge regression in which the least squares criterion is modified by a penalty function involving a cost matrix;
the inverse cost matrix appears as the ridge matrix in the ridge regression estimate. It is interesting to note
that although the resulting estimate of the regression coefficient becomes biased (but stable), the regression
estimate of the unconditional mean p of the dependent variable (y) remains approximately unbiased and
consistent. However, unlike the usual regression estimate, it does not reproduce perfectly the mean p_ of
the auxiliary vector (x) when y is replaced by x. This would tend to reduce the estimator’s efficiency, had
true B been known. This, however, is compensated by using a more stable estimate of B when it is
unknown.

In survey statistics, the problem of instability in GR (GR is defined by a difference-type estimator where
the difference coefficient corresponds to the regression coefficient B) is often due to the large dimension of §
in view of many predictors needed to satisfy multipurpose needs of the user For this case, an important and
interesting model-based method using ridge-regression was proposed by Bardsley and Chambers (1984) to
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obtain a set of adjusted weights for the estimator. They showed that in order to satisfy RR, extreme weights
can be avoided by choosing the parameter in the ridge matrix appropriately. However, no guidance was
provided on choosing the ridge matrix to meet a desired tolerance on benchmark controls corresponding to
the auxiliary variables. Moreover, they did not consider the use of survey weights for a design-based
approach. Rao (1992) modified the above method to take account of the survey weights to ensure the
important property of ADC. However, the problem of a suitable choice of the ridge matrix to meet specified
tolerances on BC for given RR was not addressed.

In this paper, we ffirst establish a relation between ridge (or inverse cost) and tolerance matrices so that
for a given set of upper bounds on tolerances, the corresponding cost matrix for ridge-regression can be

specified. In particu

tolerance would lead

ar, zero tolerance would correspond to infinite cost (i.e., zero inverse cost), and infinite

to zero cost in the limit. This can be used to modify the Bardsley-Chambers method so

that BC are met within tolerances, although in this article we have not pursued model-based methods. The

above result on the
(iterative) calibration
not deemed binding.

relation between ridge and tolerance matrices enables us to modify several existing
methods via the ndge-regression idea to meet RR while relaxing those BC which are
For given RR, the tolerance levels are chosen adaptively in order to relax BC only when

necessary in the interest of efficiency and internal consistency. We can also relax RR if it is desired to get

lower tolerances. Th

¢ proposed method, termed ridge-shrinkage, starts with GR weights (corresponding to

zero tolerance) whic

h are then shrunk to meet RR. Next, at each cycle of iterations, tolerance levels for

discrepant BC (up to the specified tolerance) are raised in increments, and thus are defined adaptively.
Assuming that asymptotically GR weights meet RR, tolerance levels so defined tend to zero, and the ridge-

shrinkage method
proposed estimator ¢
residuals.

Section 2 provid

omes asymptotically equivalent to GR. Therefore, the asymptotic variance of the
be estimated using the GR formula with ridge-shrinkage residuals replacing the GR

a brief review of existing methods for the cases of binding and nonbinding BC. The

proposed method is described in Section 3 in which its asymptotic equivalence to GR is outlined. A

numerical example blased on Statistics Canada’s FAMEX data is presented in Section 4, and finally some

remarks in Section 5.

For a sample of siz
sample unit, 1< k<n
all k. The BC are give
is the p-vector of cont

2. EXISTING CALIBRATION METHODS

e n, let i, denote the initial design weight, and ¢, the final calibrated weight for the & **
Let the RR be given by lower and upper bounds [L, U] such that LA, < ¢, < Uh, for
nby X' ¢=1_, where X isthe n x p matrix of values of the p-auxiliary variables, and &,
rol totals. Assume without loss of generality that t_ > 0 for 1 < i< p. The tolerance

matrix A for BCis A=diag(s,, ..., Sp), where &, is the tolerance for the ith BC and is defined as

Note that 6, >0 i
limiting case of & = e
be defined as |x/ ¢] <

|x',c-'cx,| st l<isp. (2.1)

mplies a nonbinding constraint and 3 = 0 corresponds to a binding constraint. The
implies discarding of constraint. Also, note that if the control total 7,=0, then §, can
0, N where N is the population size ascertained from external sources.

r . T



i o e

et R S e

4
1

2.1 Nonbinding Case
We consider a modified version of the ridge regression of Bardsley and Chambers (1984) as proposed
by Rao (1992) for survey data. Suppose the inverse cost matrix is A =diag(a,, ...., k). Then consider

minimization of the objective function in the form of a penalized least squares criterion:

A"e, ) =(c-HT  e-H+Xc-1)A"' (X c-1) (2.2)

where [ = diag(h). The solution is given by
c=h+TXXTX+A) ' (tr -X'h) (2.3)

The above solution minimizes A™ provided the second derivative, I' ' + X A"' X/, is nonnegative
definite. Note that technically the cost matrix A™' need not be nonnegative for the above condition to be
satisfied, although then it loses its usual interpretability.

The estimator %;'d of the population total 1, for the study variable y is

f;‘d:=y’c'w=y/h+y'rX(X/rX+A)_] (‘!'.‘-X/h) (2.4a)

=(1-0) 1) +at), (2.4b)

where %;"is the Horvitz-Thompson (HT) estimator, f?R is the GR-estimator, and « is the shrinkage
coefficient which shrinks GR towards the HT-estimator. The corresponding expressions are
=y b=y h+y TXX'TX) (1, - X'h),
(2.5)
a='TXX'TX+A) '(t -x'h)] ' TXXTX) ' (z,-X'I]"

Thus, the ridge-regression estimator %;'d is a linear combination of HT and GR estimators. If A -0, which
implies that all the BC become binding, thenf;'d tends to GR as expected. If A -, implying that BC can
be nonbinding with unlimited tolerance, then’t;'d tends to HT as expected.

Moreover, we have for the ridge weights ¢ ™,

XeM=X"h+X'TXX'TX+ A)"! (t,-X'h)
(2.6)
=1 - AX'TX+A)\(x,-X'h)

It follows that if A = 0, the corresponding BC 1, is exactly satisfied by ¢ ™. For A >0, the 1, is not treated
as perfect auxiliary information. As A -, the corresponding control total T, is automatically discarded.

This can be seen as follows. Assuming all A >0, we can write ¢ " as

c=p+T-A'XT"+XA'X)'] XA (r -X'h) 2.7)



Now, denoting X, Ajt_without the /throw as X , A, and T

i e and letting A ~, (2.7) reduces to

e =h+T[I-Ap X', (T +X A X' )" X,

-1
@ o A(D (T.\'(n qu i)

i

(2.8)

= ' -1
=h+TX, (X', TX,+A,) (1,

U]

O8N X-(l) h)

which proves the result. If some & =0, the above proof still goes though if we initially set A equal to a
small positive value g, and then take the limit in (2.8) as g~ 0.

The ADC of 'E;" follows easily by arguments similar to those used for ffR under the asymptotic
framework of Isaki and Fuller (1982). Specifically, let B, , denote (X’TX+A)"'X'T'y and assume A,
random and chosen adaptively such that A, /N = O (1), then find tends in probability to a limut, B, ,say,
and

ey i+ (5 -Xh) (2.9)

and the RHS is ADC for 7, under the assumption of ADC of y’h and X 'h. We remark that the only
difference between 'ETIR and 'E;'d is that B, is replaced by PB,,. The predictors 7,-X'h are unaltered even
though t_are not perfectly satisfied. This is the reason why ADC of 'E(jk 1s maintained in ridge-regression.
Note that if &, /N = ¢ (1), then the ridge regression estimator will be equivalent to the GR-estimator.

Clearly, the behaviour of ¢ depend on A. In particular, for A, sufficiently large, all c-weights should
behave well, i.e., should be free from extremes. Bardsley and Chambers (1984) consider A =A I, and use
a graphical tool (ridge trace as A varies) to find a suitable value of A so that c-weights behave well. Thus, A
is chosen adaptively. |A more satisfactory solution would be to set tolerances &, ‘s on BC and then find the
corresponding A thaF meets these tolerances. A method to achieve this is presented in Section 3.

Finally, we note tli1at Bankier et al.’s (1992) method of discarding some BC while the remaining BC are
perfectly satisfied, is gasily seen as a special case of the ridge-regression method when some A, ‘s tend to «
while others are set j 0.

2.2 Binding Case

Suppose all the BC are binding so that 8, =0 for all /. As mentioned in the introduction, there exist
several iterative methads whose aim is to meet BC for a given set of RR. We will briefly describe only three
methods which consist of GR-like steps in iteration. The proposed ridge method to meet RR and BC can be
applied to any of thesé three methods, although it is the first method which is considered in detail here.

2.2.1 Shrinkage-Minimization (SM)
This method was L
exactly of a GR-step for a suitable chi-square distance. Let ¢ be the final weights obtained at iteration

roposed by Singh (1993); see also Singh and Mohl (1996). Each iteration consists

v. These weights satisfy BC by construction. If they satisfy RR, we stop. If not, they are shrunk to ¢*

to meet RR. Then treating ¢ * as initial weights for the next iteration, we minimize the chi-square distance.

SM . (V}*y2 (v)e
e 1 S )=Em (Ce-¢ ) /Ckv , (2.10)
subject to BC. Since|each iteration is like GR (except that the distance function varies from iteration is

iteration), it follows easily from section 2.1 how this can be converted into a ridge-regression to allow

|




nonbinding BC. In fact, this is what is done in the proposed ridge-shrinkage method described in Section
3. The above minimization step at iteration (v + 1) leads to weights ¢“*" given by

M= 4T X(X'T X)) (2, - X ¢™), (2.1

where T’ = diag(¢™"). These weights satisfy BC but RR may not be satisfied. If RR are satisfied, we stop.
If not, then we perform the shrinkage step for iteration v + 2 to get the initial weights ¢*"*. It is defined
as follows. Let [L,U],L<1<U denote the lower and upper bounds specified by RR which the calibrated
weights ¢ must satsfy, ie.,

Lh <c,<Un,1<k<n. (2.12)

Now, to speed convergence, the weights ¢®*! are shrunk more than necessary. For this purpose, two
parameters o and 1 are defined,0<a<n<1 (eg, a=2/3 and n=9/10.) Let L'=al+(l-a)l,
U'=aU+(1-a)l,and L"=qL+(1-1)1, U”=qU+(1-n)1. Then, we shrink ¢®*" weights that are
outside the interval [LA,, Uh,] and also those which are inside but near the boundary, to points further inside
the interval. Specially,

vy _ / . {v+1) ny .
& =0 L ey T ALh;

Uh, if ¢*V2U"h,; (2.13)

1 .
et otherwise.

The above shrinkage step of iteration (v + 2) is followed by the minimization step with distance function
A, (e,¢™* 1) analogous to (2.10), to get ¢®*2). If RR are satisfied, we stop; else iterations are continued
until the maximum number v__ of iterations is reached. Clearly, there may not be convergence within Y p
of iterations if the RR are too tight, or if there are too many BC or if there is multicollinearity in the variables
defining BC.

Using suitable regularity conditions, the SM-estimator, f‘;‘”: Emyk c;w, can be shown to be
asymptotically equivalent to the GR-estimator. This result is analogous to the Deville-Sirndal’s (1992) result
on the asymptotic equivalence of a family of calibration estimators to GR. It follows that 'E‘iM is ADC and

its asymptotic variance can be estimated from the familiar expression for GR.

2.2.2. Modified Huang-Fuller Method (or SMCS)

This is a slightly modified version of the method of Huang and Fuller (1978), and was termed as the
Scaled Modified Chi-square (SMCS) method in Singh (1993). In SMCS, at iteration (v + 1), a chi-square-
type distance function is minimized subject to BC. It is given by

AT ()2 o1, S B gy, (2.14)

where q,fvl is a scaling factor designed such that the h-weights for those units that tend to disobey RR are
adjusted only a little. This is accomplished by making qu smaller for the next iteration. Note that, unlike
SM, at each iteration v the SMCS-estimator 1s not like the usual GR because of the scaling factor. However,
it does satisfy BC at each iteration, and iterations are continued until RR are metor v > v__. The form of
c-weights at iteration (v + 1) is given by



V=h+ T XXT, X" (7, -X h), (2.15)

where T’ = diag(q,fv] h,.1 <k <n). Again, a solution may not exist for a specified v_ .

As before, the estima(orfs‘,MCS from the SMCS method is asymptotically equivalent to the GR-estimator.

\
2.2.3. Truncated ﬂnear Method (or MCS-r)
This method is due to Deville and Sarndal (1992), and was termed as the restricted Modified Chi-square
(MCS-r) method in Singh (1993). Unlike the previous two methods, here distance function does not change

from iteration to iteration: and at each iteration RR are satisfied, but iterations are continued to meet BC.
In MCS-r. the distance function to be minimized subject to BC is given by

AMST (e, y=Y", (ck-hk)z/hk if Lh, <c, < Uh,; = otherwise. (2.16)

With the initial| weights, ¢©®=h I =diag(h) and letting T,=diag(h;”) where h”=h, if
Lh, < c,ﬁ” < Uh,; 0 otherwise, the c-weights at iteration (v +1) are

| " V=eW+T XXT,X)" (v, -x ¢, (2.17)

provided c*{v”) is inside [Lh,, Uh,). If outside, it is truncated at the left or the right boundary as the case
may be.

Note that the expression (2.17) for ¢*!-weights is somewhat similar to that for GR-weights except for
the term T, and the use of truncation. However, as was shown by Deville and Samdal, the MCS-r estimator
is asymptotically equivalent to the GR-estimator.

P. THE PROPOSED METHOD OF RIDGE-SHRINKAGE

As mentioned in i;ection 2.2.1, the proposed method combines in a fairly straightforward way the idea
of ridge-regression \ﬂ(ith each of the iterations of the SM method because each SM iteration is simply a
version of GR. Befot we describe the proposed ridge-shrinkage (RS) method, we need to establish a link
between the to]eranc| matrix A = diag(3,) and the inverse cost matrix A= diag(x,) which will be used at
each iteration of the RS method.

[
3.1 Link between tJlerance and cost matrices
In the ridge appraach, it is probably easier to specify the tolerance matrix A in practice than the inverse
cost matrix A. Now, it follows from (2.6) that for the (v+ 1)st iteration of RS,

AT X+A) " (X'e™ -1)=X'c"V .1 (3.1)

For each i, 1 < i[< p, we want the ith element of the RHS of (3.1) to be less than or equal to 31, in
absolute value. To find appropriate A for the (v+ 1) iteration, we solve for A from (3.1) by setting the
RHS equal to the boundary values & t_ with appropriate signs. In other words, we set the RHS equal to V| 1,
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where

V, = diag{sgn(x;c™ -1)8,1sisp) (3.2)

v

In practice, in the interest of convergence, it would be better to modify V, somewhat; see section 4 for
details. We now have

AXTX+A) (X e™ -2)=V, 1

or
X'e™ -1)=(X'T XA, + NV 1,
or
X'e® -(I+V)r =X'T,XA,'V,1,
which implies that
AXT X)X e™ - (I+V)r )=V, . (3.3)

So, A, being diagonal, can be obtained by element-wise division of the p-vector on the RHS by the p-
vector on the LHS of (3.3). Note that A, has zero on its diagonal when 8 = 0. The above method does not
ensure nonnegative A, . This is not essential in view of the comment below (2.3). Also note that if the choice
of &, depends on the sample (thus rendering it random) then (3.3) implies that the diagonal elements of
AN are O (n'"*N '8z ). This, in wm, implies that if n'?N "5 1

X 1 xi

= o,(1), the ridge regression
estimator at the vz iteration will be asymptotically equivalent to the GR-estimator in view of the comment
below (2.9).

3.2 The RS Method

Similar to SM, each iteration of RS consists of two steps: the ridge step and the shrinkage step. It
consists of cycles of iterations, the gth cycle corresponds to a given tolerance A,. Foreach cycle g, there
1s a prescribed maximum number of iterations. For the initial cycle g = 0, the usual SM is performed except
for the reverse ordering of steps, i.e. first the minimization step and then the shrinkage step. (Note that the
minimization step can be viewed as the ridge step with all A =0). The order of steps is reversed because
of the introduction of tolerance on BC. Thus, after each iteration, RR are necessarily met. If the BC are
satisfied within the tolerance levels (for checking this, it is better not to shrink the weights more than
necessary, i.e., truncate outlying weights to the boundaries only), then we stop the iterations. Else, iterations
are continued until v__ . Denote the final SM-weight after shrinkage as ¢**". If at this point BC are not
met within tolerance, then we start the next cycle g = | with ¢*™" as the initial weights. For this cycle, the
tolerance matrix Aq with ¢ =0 is used to specify A, using equation (3.3). Each iteration v within this

cycle consists of two steps:
Step I (Ridge): Do ridge-regression on ¢* with the inverse cost matrix A , to obtain ¢! from formula

(2.3). Now, all BC are met within the prescribed tolerance. If RR are met, stop; else perform the next
step.

=



Step II (Shrinkag
if BC are met w

convergence or Vv

Similarly cycle 2 is pt
the same ¢M*
such as 1%) so that B

after cycle 1, the inve

-weigh

in cycle 1. This proc
that in the absence o

£): First truncate outlying weights to the boudaries only so that they just meet RR. Stop

(v+1)

thin tolerance. If not, shrink ¢“"" to ¢V, and then repeat steps I and II until

2V .
max

*rformed if there is no convergence after cycle 1. Note that each cycle is started with
ts for initialization. However, the tolerance levels are revised adaptively (in increments
C showing higher discrepancy are assigned higher tolerances. With qul so chosen
Prse cost matrix A, is obtained and then the iterations for cycle 2 are conducted as
ess is continued until convergence (within revised tolerances) after each cycle. Note

f convergence, the process can be terminated after reaching v__ of iterations in the

maximum allowed number of cycles g, . At this point, RR are of course met, but BC can be deemed as

satisfied with toleran
defined as ¢ /h,,
weights satisfy RR as

| [

the initial cycle itself.

probability using the

ces suitably increased. Note that from (2.5), the g-weights (g-weights are simply
k < n) for GR can be shown to be 1+ O (n "2y uniformly in k., and therefore, GR-
ymptotically. This implies that as n—~c, with high probability RS will converge after
Thus 8,=0 with high probability from which it follows that A q/N tends to zero in

One can also define ridge-versions of the other two methods, SMCS and MCS-r by introducing the
inverse cost matrix Aq in (2.15) for ridge-SMCS and in (2.17) for ridge-MCS-r. The specification of A .

from A, is quite simi

lar to (3.3) for ridge-SMCS, but somewhat different for ridge MCS-r; see Section 4.

3.3 Asymptotic Properties

The RS-estlmatqr ‘C

N 0 foralli,

revised adaptively as
note that for given A
which is analogous t
arguments used for s
This follows easily fi

* of T, is asymptotically equivalent to t R if at the final cycle g, of iterations,
A sufficient condition for this to hold is that tolerances d, be initialized at 0, and be
described above. The proof for the asymptotic equivalence is outlined below. First
L=A Ay - to meet RR
o the modification of T,

GR
= ty

is simply an iterative modification of

™ Thus it can be shown that r':s

Arid g
y

the RS-estimator %RS

b 1
~GR

by T, = r by parallel

howing ryM . Now it remains to show that 7 t(’R if A= ‘lq") =0, 1si<p.

om the expression

=y h+ @' TX)X'TX ! (x,-X' h)

+'TYOX'TX +A )" -(X'TX) '|x L
(t.-X' h)
and the fact that the lhst term in the RHS of (3.4) is of smaller order because N l g 0.

In view of the abdve asymptotic equivalence, the asymptotic variance of ‘t

for GR, using the RS
for 7, using a finite

For ridge-versior
simtlarly obtained.

can be obtained from that
-weights rather than the GR g-weights. One can then construct confidence intervals

opulation central limit theorem for %;“.

s of the other two methods SMCS and MCS-r, above asymptotic properties can be



4. APPLICATION TO THE FAMEX DATA

The numerical results are based on the work of Yannick Janneau completed for a M.Sc directed studies
course in 1996 at Carleton University. He extended the numerical comparison of Singh and Mohl (1996),
based on Statistics Canada’s family expenditure (FAMEX) survey data, to include ridge methods. All the
three methods: RS, ridge-SMCS, and ridge MCS-r, were compared although full details for ridge SMCS and
MCS-r are not given here. The tolerances were set either at 0 or at a common value of 6>0. This proved
to be convenient in practice. The matrix V_ of (3.2) was modified by replacing § by ya,6, where a,=0
if the discrepancy (X,'c“’)' -1.) is <y, and | otherwise. The parameter y, 0 <y <1 makes tolerances
conservative, and helps to speed up the convergence. We used y = .9 in the example. The indicator variable
a, treats the ith control as binding in the ridge step of the (v + I)st iteration if the discrepancy at the vth
iteration is within tolerance. This modification is again in a conservative sense, and helps to speed up the
convergence. Details about description of the FAMEX data, choice of BC and RR, and behaviour of existing
calibration methods are given in Singh and Mohl (1996).

Now, along the lines leading to the equation (3.3) for establishing the link between tolerance and the cost
matrices, the corresponding equation for ridge SMCS can be obtained. It is very similar and given by

AXTX)'[X'h-(I+V)1] = V1, (4.1)

where T, is now diag(q|"'h,,1 <k<n). Note that ¢™* in the LHS of (3.3) is now replaced by &.
However, for ndge MCS-7, the equation (3.3) changes somewhat, and can be obtained by using the same line
of argument as

AX'TX ! X eW-(I+V)1]

42
= V,1, 4+ (X(T,-T)X)(X'TyX)" [X'e™-(I+V)1], e

where I, and ¢ in the LHS of (3.3) are now replaced by I’y and ¢ respectively, and an additional term
is added on the RHS of (3.3). The vector A, from each of (4.1) and (4.2) can be solved as before by dividing
element-wise the p-vector on the RHS with the p-vector on the LHS.

For the sake of illustrating the ridge methods, the three methods were applied to the 1990 FAMEX data
for the city of Regina. Since there were only a few BC, the RR bounds [L,U] were made quite tight so that
none of the existing calibration methods converged . For L=.5, U=2, even after 100 iterations, the %
discrepancy in respecting the four BC were 21.64, 16.94, 75.17, and19.61 for SM, 24.17, 18.73, 75.17, and
21.01 for SMCS, and 97.28, -21.09, -12.42, and 2.62 for MCS-r.

For L=.5, U=2, Table 1 shows the CV(g) (coefficient of variation of g-weights) and percentage
discrepancy in respecting BC. Here 6 _, denotes the minimum tolerance required for a given ridge method
so that all the BC are met within tolerance. It is seen that all the three methods behave quite similarly and
the discrepancy in respecting BC can be considerably reduced in comparison to non-ridge methods. Table
2 shows the relative difference (RD) and relative precision (RP) in point estimates for four study variables.
RD is defined as the ridge-calibration estimator minus the regression estimator divided by the regression
estimator, while RP is the SE (regression estimator) divided by the SE (ridge-calibration estimator). The

variances were computed using jackknifing, see Singh and Mohl (1996) for further explanation. It is seen
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that all the estimates give higher estimated variance as compared to the usual regression estimator. This is

expected as explained below.

Observe that even if some weights are extreme (e.g., negative or very high), there may or may not be

instability in the GR-¢stimator depending on the study variable. Now with respect to the variables studied,

GR does not seem to have the instability problem because with loose bounds [.2, 5], it is known from Singh

and Mohl (1996) th

similar to that of GR.
tightened to [.5, 2] so
satisfy BC perfectly, 1
have higher variances
efficiency if we drop
problem of extreme w
perfectly the remaint
satisfies almost perfec

all the usual calibration methods converge fairly quickly with estimated variance
For our example, for the sake of illustrating the ridge methods the bounds are further
that the calibration methods no longer converge. Now since the ridge methods do not

idge-calibration estimates, although asymptotically equivalent to GR, are expected to

for finite samples whenever GR is not unstable. There is likely to be a further loss in
a BC (i.e. increase the tolerance to «) as an alternative approach to get rid of the
eights. For example, one can perhaps drop the second BC and then attempt to satisfy
ng three BC in this alternative approach. However, note that the RS method also
tly these three BC and within 4% the second BC. With only three BC (i.e., when the

second one out of four is dropped), all the three non-ridge methods converge in one iteration which implies

that GR also satisfies
-13.77%, much highe

The proposed me
meet RR and BC wi
formula by introduc
corresponding to a s

RR and the three BC. In this case, the discrepancy with respect to the dropped BC is
r in magnitude than the 4% tolerance required by the ridge method RS.

5. CONCLUDING REMARKS

thod of ridge-shrinkage is a simple iterative method of adjusting sampling weights to
thin tolerances. Each iteration involves a ndge step which modifies the usual GR-
Ing an inverse cost matrix A. A simple relation was established to choose A
pecific tolerance matrix A. The RS-method, like the result of Deville and Siarndal

(1992), for other calibration methods, remains asymptotically equivalent to GR if the matrix N "' A tends

to zero in probability
A as proposed in the p
of the ADC property.

The condition N ’1A~p0 is satisfied by the adaptive choice of the tolerance matrix
aper because the GR-weights meet RR with high probability for large samples in view
This shows that RS is ADC, and its asymptotic variance can be conveniently obtained

from the variance expression for GR.

The RS method g¢
be nonbinding while
truncated linear can a
methods (which incly
while satisfying BC w
it combines strengths

Both authors’ researc

held at Carleton Uniy

>neralizes the existing shrinkage-minimization calibration method by allowing BC to
meeting RR. Some other calibration methods, namely, the Huang-Fuller and the
so be generalized in a similar way. The RS method also generalizes the existing ridge
de the method of discarding BC as a special case) by allowing iterations to meet RR
ithin tolerances. Thus, it is expected to provide a useful practical calibration tool as
of various existing methods dealing with both binding and nonbinding BC under RR.
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Table 1: CV(g) and Discrepancy in respecting BC (FAMEX-Regina City)
(@a=.67,p=8n=9,y=9,v =10, g . =10)
L=05U=20,#BC=4

Dicrepancy in respecting BC in %

Method CV (g) 1 2 3 4 6,.i.(%)
RS 520 0.00 -3.88 0.00 -0.07 3.88
Ridge-SMCS 524 351 -3.51 0.00 0.00 3.51
Ridge-MCS-r .589 -9.40 -53 0.00 -3.59 9.40
Table 2: Difference in Point Estimates and Precision Relative to Regression Estimator
Owned Dwelling Furniture\Equipment
Method RD RP RD RP
RS -.070 .881 -.008 .888
Ridge-SMCS -.062 .869 -.004 .893
Ridge-MCS-r -.096 .893 -033 894
Women’s Clothing Men’s Clothing
RS -019 .869 -.032 .899
Ridge-SMCS -.015 .874 -025 902
Ridge-MCS-r -.036 .870 -.032 .894

Note: RD and RP denote respectively “relative difference” and “relative precision™.
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