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GMM ENHANCEMENTS IN THE PRESENCE OF
EXTRA INFORMATION ABOUT THE COVARIANCE OF THE
MOMENT CONDITION GENERATING ZERO FUNCTIONS

A.C. Singh and H.J. Mante!'
ABSTRACT

For the problem of estimating (first order) parameters of a semiparametric model, it is shown that
the optimality of a commonly used method known as the generalized method of moments (GMM)
developed in the econometrics literature by Hansen (1982) can be justified by the optimality of the
method of estimating functions (MEF) developed in the statistics literature by Godambe (1960) and
Godambe and Thompson (1989). Although the GMM framework has several appealing features,
it does not always lead to the optimal estimator in a general sense as obtained by MEF when extra
information about covariance of moment condition generating zero functions becomes available.
In this paper, with the aid of MEF, we consider enhancements to the GMM framework so that it does
give rise to an optimal estimator (asymptotically equivalent to MEF) when extra covariance
information is present, while preserving the essential features of GMM. Moreover, for testing model
fit a new test is proposed which recovers degrees of freedom lost (due to estimation of model
parameters) with the usual GMM test. The new test is expected to be sensitive to model departures
in directions in which the difference between the old and new estimating functions is not zero in
expectation. A simple example along with simulation results is presented to compare both old and
new methods in the context of estimation and testing.

Key Words: Estimating Functions; Minimum chi-square estimation; Moment conditions; Test of
model fit.

' A.C. Singh and Harold Mantel, Household Survey Methods D1v1510n Statistics Canada, 16"
floor, R.H. Coats Building, Ottawa, Ontario, K1A 0T6.
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AMELIORATION DE LA METHODE GENERALISEE DES MOMENTS EN
PRESENCE DE DONNEES SUPPLEMENTAIRES SUR LA COVARIANCE DES

| FONCTIONS ZERO GENERATRICES DE MOMENTS

A.C. Singh et H.J. Mantel®
RESUME

Concernant le probleme de I'estimation des paramétres (de premier ordre) d’'un modele semi-
paramétrique, on montre que I’optimalité d’une méthode courante connue sous le nom de méthode
généralisée des moments (MGM) élaborée dans les travaux d’économétrie par Hansen (1982) peut
étre justifiée par 1’optimalité de la méthode des fonctions d’estimation (MFE) €élaborée dans la
littérature statistique par Godambe (1960) et par Godambe et Thompson (1989). Le cadre général
de la MGM a plusieurs aspects intéressants, mais il ne mene pas toujours a I’estimateur optimal dans
un sens général - comme c’est le cas avec la MFE - en présence de données supplémentaires sur la
covariance des conditions des moments générant des fonctions nulles. Dans le présent article, a I’aide
de 1a MFE, nous considérons les améliorations apportées au cadre général de la MGM de sorte qu’il
permette d’arriver a un estimateur optimal (asymptotiquement €quivalant a la MFE) quand on
dispose de données supplémentaires sur la covariance, tout en préservant les aspects essentiels de
la MGM. EnToutre, pour tester le modele d’ajustement, on propose un nouveau test qui récupere les
degrés de liberté perdus (en raison de I’estimation des paramétres de modele) avec le test de la MGM
habituel. Le nouveau test devrait étre sensible aux départs de modeéle dans des directions ou la
différence entre les fonctions d’estimation anciennes et nouvelles n’est pas nulle en espérance. Un
exemple simgle est présenté avec les résultats de la simulation pour comparer les anciennes et les
nouvelles méthodes dans le contexte des tests et de I’estimation.

Mots clés : fonctions d’estimation, estimation du chi carré minimum, conditions des moments, test
d’ajustement de modele.

2 A.C. Singh et Harold Mantel, Division des méthodes d’enquétes des ménages, Statistique
Canada, 161eme étage, Immeuble R.H. Coats, Ottawa, Ontario, K1A 0T6.
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1. INTRODUCTION

In econometrics, a popular and intriguing method of estimation for semiparametric model
parameters is the generalized method of moments (GMM) introduced by Hansen (1982). GMM uses
a minimum y>-type criterion as an optimality criterion which is a scalar function whose gradient
gives an estimating function that can be solved to obtain the GMM estimator. In GMM we start with
a given set of (linearly independent) moment conditions, chosen from substantive considerations,
which are generated as linear combinations of elementary zero functions and have approximate
normal distributions. Note that zero functions are simply functions of data and parameters with zero
mean, and thus moment conditions are themselves zero functions, but not elementary. Next a ¥-type
statistic is constructed and then minimized to obtain the estimator. GMM is optimal in the linear
class of estimating functions generated by the given set of moment conditions. However, since the
choice of moment conditions is not governed by optimality considerations, the GMM estimator is
optimal only in a restricted sense.

In statistics, on the other hand, an important and general method of estimation, known as the
method of estimating functions (MEF), was introduced by Godambe (1960) and Godambe and
Thompson (1989). The optimality criterion for MEF is an estimating-function-driven criterion,
unlike the criterion for GMM which is estimator-driven. In MEF we choose an estimating function
that minimises the MEF criterion; however, the GMM estimator directly minimises the GMM
criterion. Thus the MEF estimator of a parameter is defined indirectly as the solution of the optimal
estimating function.

In MEF we start with a given set of elementary zero functions and their covariance structure.
Then the optimal estimating function is the best linear combination of the elementary zero functions.
If the GMM moment conditions are substituted for the elementary zero functions in the MEF
framework, then the GMM and MEF estimators can be seen to be asymptotically equivalent. In
other words, MEF theory can be used to justify GMM.

We remark that the GMM framework has several appealing features, namely, (i) it does not have
the problem of choosing among possibly multiple roots of the estimating equation, (i1) it does
provide a model specification test without explicit specification of test parameters, provided that the
number of moment conditions exceeds the number of model parameters, (iii) it does not require
functional specification of the covariance of moment conditions, and (iv) it does provide an estimator
which enjoys optimality in a suitably restricted class. Now suppose extra information about the
covariance of the moment condition generating zero functions is available. Then it is known that
MEF (with moment condition generating zero functions as input for elementary zero functions)
provides an optimal estimator in a general class. Thus the GMM estimator developed in the absence
of extra covariance information may become sub-optimal.

In this paper we consider enhancements to the GMM framework so that it indeed gives rise to
an optimal estimator (asymptotically equivalent to MEF) when extra covariance information is
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present, whil¢ preserving the main features of the GMM framework. Apparently the existing GMM

literature does not offer any guidance in this respect. Note that the trivial solution of using the MEF
optimal estimating function as the sole set of moment conditions in the GMM framework 1s not
adequate as it will satisfy only the optimality requirement but not the other GMM features, since the
number of moment conditions becomes exactly equal to the number of parameters. It is shown that
if the moment conditions originally chosen in the absence of extra covariance information are

augmented (and not replaced) by the MEF optimal estimating function, then the GMM methodology

ight-forward solution to the problem mentioned above. The resulting solution, termed

estimating function, do not provide any new information for the estimation problem; however, they
are useful in the estimation problem for choosing among possibly multiple roots, and for the problem
of testing madel specification. The MCEF estimator, like GMM, will depend on the choice of
moment conditions, but it turns out that regardless of the choice of moment conditions, it remains
asymptotically equivalent to MEF.

Using MCEF we take another look at the problem of testing fit of the semiparametric model, i.e.
testing the hypothesis that the moment conditions have zero expectation. In the GMM literature this
is referred to as testing for overidentifying restrictions. When the number of linearly independent
moment conditions, m, is larger than p, the dimension of the model parameter 0, they define
implicitly the| test parameters and hence the direction of the alternative hypothesis. We introduce
an alternative form of the GMM y-test which remains valid when the MCEF estimator (or any other

root-n consist
test, and is in
’-test is just
that 1s m-p.

If a consis

statistic then t
combination
(1954).

We next ¢

estimation of

asymptoticall

ent estimator) of 0 is substituted. This test is asymptotically equivalent to the GMM
fact identical when the GMM estimator of 0 is used. The degrees of freedom of the
the number of (linearly independent) moment conditions minus the dimension of 6,

stent estimator of 0, other than the GMM estimator, is substituted in the GMM xz-

he asymptotic distribution will not be . ; instead it will be x:“,,_p plus a convex linear

&
of p independent y; variates. This is similar to the result of Chernoff and Lehmann

levelop a new test using MCEF which recovers the degrees of freedom lost due to
0. The new test essentially adds a correction term to the y’-test so that it is
v .. The new test is expected to be powerful against alternatives in the direction

where the difference between GMM and MCEF estimating functions is not zero in expectation.

Section 2 ¢

Section 3 pre
tests. A simp

contains a brief review of GMM and MEF as well as a justification of GMM via MEF.
sents the proposed enhancement of the GMM method, i.e. MCEF, and also the new
e example and some simulation results are given in Section 4.




2. GMM AND MEF: A REVIEW

2.1. GMM. Consider a semiparametric model specified by an m-vector of (linearly independent)
moment conditions @(y,8) and its (nonsingular) covariance matrix V (6), where y is an n-vector of
observations and  is a p-vector of model parameters. The jth moment condition ¢ (3,6) is a sum

of n elementary moment (or orthogonality) conditions v (y,.0):
p,(r.0) = Z;’:leo" 0). 2.1)

The observaiions v, may be correlated in general. In the GMM framework, the functional form of
the covariance matrix of the vector of y-functions is not assumed to be known. The matrix V (6)is
replaced by a consistent estimate (for large n) using sample moments of the y-functions. Thus
GMM requires very few assumptions and can be applied in various practical situations. As
mentioned in the introduction, it has several appealing features; see Davidson and MacKinnon (1993,
¢h. 17) for a good review. It should be noted that the moment conditions could also have the
property of being conditional zero functions. Now the GMM estimator, @GMM, is obtained by

. - .. 9 . .
munImizing the Y o-criterion

$3(0) = 9.0V (B) " 0(.0) 2.2)

where V w('éo) is a consistent estimator of V(p(G) obtained from y-functions evaluated at @0, an initial
consistent estimate of 8. The estimator @O can be obtained by initially setting V =7 in (2.2); this can
be updated iteratively. The GMM estimating function is then

1(3.8) = (39/00)7V, " (8) 0(.6) (2.3)

ad the estimating equation is f{y,8)=0.

The y*-criterion in (2.2) is an estimator-driven criterion, in the sense that the estimator is chosen
to isinimize this criterion. Under very general conditions the minimum of y*(0) exists and is unique.
Furthermore, @GMM is essentially invariant to scale transformations of the ¢. To see this, note that

if we replace ¢ by 4(8)¢ then (2.3) becomes

39 , 3A(8)

! T
,1(9)89 : (p) (A(@o)V‘p(@O)AT(@O))‘!A(O)q) (2.4)

and this 1s asymptotically equivalent to (2.3) since ¢/n and @n-e are o (1). Exact invariance can be
achieved if @0 in (2.2) is replaced by 6, which is referred to as the continuous updating method in
the GMM literature.

Assuming that the minimum of ¥*(8) is unique, the consistency of ﬁGMM follows from (2.3) since
the estimating function is o (n) by a suitable law of large numbers. Furthermore, from the
asymptotic normality of ¢ under a central limit theorem, we get
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R =8 =¥ (0, {E(awfae)Tv;,‘(e)E(acp/ae)} B ) (2.5)

where, in the asymptotic covariance, E can be dropped for estimation purposes.

The asymptoti¢ optimality of (] is analogous to that of MLE by noting that the y*-criterion

GMM
(2.2) is the kernel of the approximate likelihood of 6 obtained from the asymptotic normality of ¢

under local alternatives. The optimality, however, is in a restricted class because the construction

of moment conditi
considerations but
optimal test of the §
and Hinkley, 1974

2 .
where y;,_, , is the
Z being the covart
since the number m

ns (@) from the elementary moment conditions (y) is not based on optimality
s simply obtained as sample moments of y-functions. Now, an asymptotically
emiparametric model, H,:E,[y(».0)] = 0. can be obtained as a score test (c/. Cox

ch. 9), which rejects H,, if
Q((‘p.)e:éGMM = XJ:n 5.a (2.()'

pper a-point of the xf,,,p distribution, and Q(x) denotes a quadratic form "% 1,

Ence of a random vector u; if X is singular, then a g-inverse is used. Note that

of moment conditions is larger than the dimension p of the model parameter 0.

the m-p test paranlleters (&, say) under H, are specified implicitly. This feature is convenient in

practice because it
Given that the

2.2. MEF. In ME

may be difficult in general to specify &-parameters in a closed form.

model is accepted, a confidence set for 6 can be constructed as

(0:0(0) - 0(9)yy . <¥pu) Q.7

'F the semiparametric model is specified by an n-vector & of elementary zero

functions and its (nonsingular) covariance matrix V,(8).

The optimal e

order of non-negat
|

The above criterio

score function and

timating function g is 4/ where the p>xpn matrix A(0) minimizes (in the partial

ve definite matrices)
[E@4h/06)' V (6) E(0:4h/0)] 8)

is called the Godambe Information criterion in analogy with the relation of the
the Fisher Information matrix. Unlike GMM, the above optimization criterion

is estimating-function-driven since optimization is achieved by an estimating function.

The score-type

More generally / c¢
the optimal 4 wo

optimal estimating function g is given by
g(y,8) = -E(3h/08)"V, (8) h(y.0). (2.9)

puld be a conditional zero function, in which case both the variance V in (2.7) and
Id be conditional, see e.g. Singh and Rao (1998). A solution of the optimal

estimating equatioln £(».8) =0 exists in general but it need not be unique; a method to handle the

problem of choosing among multiple roots is developed in Singh and Mantel (1998). Under mild

regularity conditi

o}xs the equation g(v.0) =0 has a consistent and asymptotically normal solution,

@MEF. Its asympt01ic distribution is given by
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Oy 6 = N(O, {E(ah/ae)Tv ] (e>E(ah/ae)} u ) (2.10)

The asymptotic covariance matrix of @MEF is smallest in the class of all estimators derived from
linear estimating functions of the form 4A. This is a natural analogue of the MLE optimality
criterion when the class is restricted.

To test model fit, the model is first extended to specify explicitly a set of r test parameters & (=&,
under Hy). Then the optimal estimating functions g,(».6.5) and g(v,6.,5) for (6,8) are found. An
optimal test for H, is given by

Q(ge’ gg)e:@m,gr% 2 Xlz.n (2 1 ])

where Q(u,, u,)is defined as Q(u) with u denoting the stacked column vector of (u,.,). This can
be interpreted as a score-type test by considering the asymptotic likelihood of g; and g, under local
alternatives to H,. If the model fits then a confidence set for 8 is obtained as

(8: 0(8)y.e, < Xpa)- (2.12)

2.3. Comparison of GMM and MEF. The main difference between MEF and GMM is that the
elementary zero functions used in MEF could be more elementary than the elementary moment
conditions used in GMM. In other words, elementary moment conditions can be generated as linear
combinations of the underlying elementrary zero functions. Thus the optimality of the MEF can be
more general than that of the GMM, depending on the level at which the elementary zero functions
are defined, which depends on the level at which the covariance structure is available.

If the moment conditions used in GMM are treated as elementary zero functions then MEF and
GMM are asymptotically equivalent. To see this, note that (d¢/06)/n - E(Sy/d8) = o,(1) by a weak law
of large numbers, and thus iteratively evaluating the GMM estimating function f(y,0) in (2.3) is
asymptotically equivalent to solving the MEF estimating function g(y,6)in (2.9) when h=¢.
However, if we take the moment condition generating zero functions as elementary zero functions,
assuming that the extra covariance information is present, then GMM can be improved via MEF
since the MEF optimality is in a wider class of estimating functions.

Thus MEF provides a general and flexible method of constructing optimal estimating functions,
whose optimality depends on the choice of elementary zero functions and their covariance structure
used as input. This is the main strength of MEF, and can be used to strengthen the GMM.

The GMM approach, on the other hand, can be used to overcome some of the problems of MEF.
First of all, GMM provides a readily available test of model fit in the *-statistic (2.2) evaluated at @GMM
which has an asymptotic xf,,_p distribution under the null hypothesis that E(y)=0. Thus in the GMM
approach it is not necessary to explicitly define the &-parameters to construct a test of model fit.
Secondly, the GMM estimation, involving the minimization of a y’-statistic, does not have the
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potential problem of choosing among multiple roots that the MEF estimation, which involves solving

an estimating equation, has.
The minimum §* estimating function (MCEF) method that we propose here modifies GMM so
that the GMM estimator becomes asymptotically equivalent to the MEF estimator while preserving

the essential GMM framework with its corresponding benefits.

3. MCEF: THE PROPOSED GMM ENHANCEMENT

Suppose extra {nformation about the covariance matrix V,(8) of moment condition generating

zero functions A is available. Let g(y,0) denote the optimal estimating function which gives rise to @MEF

as the (unrestricted) optimal estimator. Now consider the semiparametric model in which ¢ is

augmented with g,

ie.,

@
m.-—[g} ~ (0,V, (8). 3.1

The proposed GMM enhancement consists of applying the GMM methodology to the model (3.1).

3.1. Estimation. The proposed estimator, @MCEF, is defined by minimizing

£ ® = 020V, ) ¢.60) (3.2)

where @0 is an initial consistent estimator of 8. Note that in (3.2), we have used a generalized

inverse of the matgix Vw.(ﬁo) because it need not be of full rank. In the following we assume, for

simplicity, thatV

The estimator @MC

features of @GMM .

[@0) has full rank, i.e. m+p. The estimating function is given by

£.(3,9) = (99! /30)V," ¢ (6). (3.3)

. is not only asymptotically equivalent to By but it shares all the important
To show the eguivalence, observe that we can write f,(y,0) as (here write

¢ = MTh, -E(3h/o8) = G),

t
!

T -1

M'@h/30) \"[MV. M M'G MTh

G™V;'(6h/30) G™M G™;'G] |G"V;'h
MG \'(M™V,M MG Mh Ly
G"V,'G G™™ G™,'G| |G™V;'h '

using a law of large numbers for linear combinations of oA/ 06"T. Now since ¢, has expected value

0, it belongs with

probability 1 to the column space of its covariance matrix. Noting also that the

-




left most matrix of (3.4) is equal to a part of that same covariance matrix, we see that (3.4) simplifies
to GTV,'h which is the MEF estimating function g(»,6). It follows that @MCEF is asymptotically

equivalent to 8 Moreover, one can construct several ..., depending on the choice of M in

MEF*
¢ = MTh, which will all be asymptotically equivalent to @MEF.

3.2. Testing. First we construct a ¢ -test, which is asymptotically equivalent to xéMM such that any
root n-consistent estimate of 6 can be used in evaluating the test statistic. The construction follows
casily from that of the score test. We transform the moment conditions ¢ as

[ Bo (m-p)x1
R ( f]pxl

where C is an mxm nonsingular transformation matrix, and f is the GMM estimating function for

3.5)

8. It follows that if / denotes the asymptotic loglikelihood based on ¢, then f can be viewed as the
score function /, and B as /; (§ denoting the test parameters) where, e.g., /, denotes the partial
derivative of / with respect to 0. Thus, the score test for H,:E(y)=0 is given by

Q(Bo-EBQ|/Ny.4, 2 Ynpe (3.6)

Here E(Bg|f), similar to the conditional expectation, is the best linear predictor of B given fand
is therefore given by BE(3¢/008")f. The test (3.6) can be expressed as

Xoacer (1) := (@) ~QN)gsy . 2 Xovpa (3.7)

Note that the test statistic can be evaluated at any root n-consistent estimate of 6 without affecting
the asymptotic optimality. When it is evaluated at 6 =§GMM, we get  xiy because f=0. Thus
Tmcer(1) provides an asymptotically equivalent alternative to Yemn - Also, note that unlike the case
of testing with MEF, the above test is easy to compute because the test parameters & are not required
to be defined explicitly.

Now, it is possible to construct another test based on ¢, which recovers p d.f lost in the above
test based on ¢. This would be analogous to the ¥* goodness-of-fit test of Rao and Robson (1974)
when the raw data MLE of model parameters is used; see also Singh (1987). The reason for this is
that the elementary zero functions 4 (like the raw data in the goodness-of-fit problem) are available
for estimating 0 as an alternative to the moment conditions ¢ (which are like the grouped data). The
new test is defined in a manner similar to (3.7) as

Yaacer(2) 1= (@) ~ O V.t 2 Amer (3.8)

Note that at 6 = @MCEF it simply reduces to Q((P-)9=amcu=' As before Xi«cm:(z) can be easily justified
as a score test by using the asymptotic Guassian likelihood based on ¢ .

In view of the fact that yycer(2) recovers lost df, it seems natural to expect that
Yorcer(2) - Xarcer (1) should provide another y” test of Hy with p df This is indeed the case. To see
this, note that Q(¢,) can be written as



for a nonsingular
f.. It follows that

Now, since E(Bo

have

Thus, from (3.6) ;

Moreover,

which 1s a nonne
with p df to be d
write

Note that the last t
of the relation bef

¢V, 0. =(C.0)(C.V, CHY(C.0) (3.9)

ransformation C_ such that C_¢, defines a stacked column vector of Be, f, and

¢.) = O(Bo -EBo | £.£.) + O/ 1) (3.10)

£.7.) =E(Bo|f) (it is approximate because of the relation 9gp/68 = E(3¢/36)), we

Qo) = B -E(Bo | 1)) + O(f.1). (3.11)

and (3.7),
Tacer(D) = 00.) - O £)- (3.12)
Yarcer () ~Xcee(1) = QUL L) - O(F) (3.13)

sative difference of two o variables and hence provides yet another x* test of H,
enoted by xcer(3). Now, using the fact that f,-f is uncorrelated with f; we can

Tacer 3) = QU -1) + 0N - O(f)). (3.14)

erm in (3.14) vanishes at 6 = @MCEF. There is an interesting practical interpretation
ween Yoy and xycepr. Observe that from (3.7) we have

Xowms = [Q(©) ~ON]yq,__ = Kcer (1) (3.15)

and from (3.8) arJd (S

Thus, yaum (OT

Toacer (D) = [Q0) - QN + O £) - O,
=1Q@)+ (. ~Nlyuy-

MCEF

(3.16)

xf,,CEF( 1)) subtracts a correction term Q(f) from Q(¢) in order to have a x,z,,_P

distnibution; Q(¢
independent . -v
term  O(/.-g.p

(Q(.f)"'Q(f.—f))g:

Yatcer (3)-

By, CAD be shown to have a x,zn_p +2 %, © <a, <1) distribution, where X, are
iables. (see e.g. Chemoff & Lehmann 1954). Similarly yyce(2) adds a correction
10 have a .,  distribution. The sum of the two corrections i.e.

2 ) 2 2 5 g 5 . . .
ekt has a y, (:‘ZL,[a,.x,,. +(1-a)y;,1) distribution, which gives rise to the test



4. A SIMPLE EXAMPLE

We will illustrate GMM and its enhancement (i.e., MCEF) by means of a simple example based
on linear models. For each unit in the sample of size n, the response variable is y, and the covariates

are x, and z,. Now, consider two elementary moment (or orthogonality) conditions:

v, (y,.0) =x, (v, -x0) ' 4.1)

V,(y,.8) =z,(y,-x0) 4.2)
which, in turn, define the moment conditions

0,(»8) =X x(y,-x8) = X"(y-X0) (4.3)
0,(38) = X z,(y,-x,0) = Z%(y - X0) (4.4)

The elementary zero functions which generate the moment conditions are
h(y,.0) =y, -x8 (4.5)
Suppose the extra information about the covariance of # is available, and has the functional form

o’diag(x,). This, in turn, specifies the covariance of moment conditions ¢. The above moment
conditions can be motivated by postulating the underlying model (in reality, this is not known),

yl :x19+zi)\'+cl (46)

where A=0, and ¢, are uncorrelated with mean 0 and variance ozx,.
It follows that the semiparametric model for GMM is ¢-(0,V (6)) where V (6) has
(6’X x,,6°% z) on the diagonal and o°L x,z, on the offdiagonal. The semiparametric model for

g1 MR )

MEF with A as input for elementary zero functions is #~(0,V ,(8)) with V ,(8) = o’diag(x,). Note that V ,(8)
1S nxn while V o0 is only mxm (m=2 in this case). Now, the GMM optimality criterion x*(8) is

X -XO)T(XIV (0)X ) X (y - XB) (4.7)
where X_=(X, Z) and the GMM estimating function 1s
f(3.0) = ~(3x*/30)2 = X.T (y - XB) (4.8)
where ' =X.(X,TV,,(9)X_)"X,T. Thus
B = XTX) ' XITy. (4.9)

For MEF, choosing h=¢ leads to 6MEF:6(}MM’ although one would only get asymptotic

equivalence in general. However, with £ as (4.5), it is easily seen that

Si



g(,8) = X"V, (y - XD),

(4.10)
B = XV XV,
which is identica] to the generalized least squares estimator.
Now for MCEF, we define the augmented moment conditions
X! (y - XB) i
0.(y.9) = :
XV} (y - X0)

with the correspanding covariance matrix V, . The estimating function f (y,8) turns out to be

Y. X Er

0.0 A 1 e 0.
g Xy rvua (4.12)

= (0 Do, = X"V, (y-X0)

which is the same as g(,6). Thus, for this simple example, 8, =@MEF although in general the two

would only be asymptotically equivalent. Now, with ¢, /. ¢_, and /. defined for the above example,

various y’-tests of Section 3 can be constructed for testing H,: E(y) =0, j=1,...m:

For an empirical illustration of the behaviour of estimates and test procedures, we generated

50,000 Monte Carlo samples of size n (=10) using the model

where x,, z, were
one N0, czx,.) an

variables w, were

y,=x8+zA+wn+e, £~(0,0%x), (4.13)

drawn independently from a Uniform (3,10). Two distributions for €, were chosen,
d other a location and scale transformed y; with mean and variance (0,0°x,). The
generated in a somewhat different manner to demonstrate the difference between

the two tests Xéwrd and y5,cee(2). If we choose W such that

XW=0,ZTW=0, but XV, W=0, (4.14)

then the values of test parameters §=(k,n) with =0, n+0 will define alternatives E(y,)#0 to Hy,

such that E(¢,) =E(9,) =0. This implies that x},y., OF Xescer(1) Will have asymptotically no power in

detecting these alternatives. However, cer(2) and  yyeer(3) Will have some power because
E(/)*0, E(N) =0 and therefore E(f, -f)=0. Therefore, W can be defined as

x x7z) ' xm
| =X x const (4.15)
[ ( Z)[ZTX sz] [le]
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The constant was chosen as /84.5 to make variance of w similar to that of x and z. The value of the
model parameter 8 was set at 1 and the variance ¢ was chosen as 0.25. In the empirical results, ¢
was treated as known.

Table 1 shows that confidence intervals based on @MCEF are shorter in average length (AL) as
expected. The corresponding coverage probabilities (CP) are very accurate in the case of Normal
errors (in fact, the intervals are based on the Normal distribution and therefore exact in this case),
and slightly conservative when the errors are xf. More interesting results appear in Table 2 on
testing. The usual iy (OF Xicgr(1)) test has no power in detecting alternatives where =0 but n=0.
The third test Xi,CEF(3) is powerful in detecting these alternatives, but has hardly any power against
alternatives where n=0. On the other hand, the new test yycee(2) performs reasonably well for
various alternatives. In practice, it may be advisable to perform both tests 2y (Or Arcer(1)) and g (3)

(with a suitable control on the overall size) before drawing any conclusions.

Table 1. Interval Estimation, n=10
(Average Length and Coverage Probability)

Normal Error xf Error

-0 Estimator AL (@)= AL CP
MCEF 0244 0951 0244 0957
095  GMmMm 0248 0951 0248 0.955
MCEF 0.205 0.898 0.205 0923

09  GMm 0.208 0.899 0208 0.926

Table 2. Testing of model-fit (Empirical Level and Power), n=10

Test Normal error xf error
Nomuinal 2 2 2
Proaats Xmcee(1) Xzzvl(:EF(z) Xmcer(3) X«IzvlCEF (1) XzzvlaaF (2) Amcer(3)
Values Level
A=0,n=0 a=0.05 .04994 {05002 .04976 06068 07444 05914
a=0.10 10072 09968 09966 09724 11212 09398
A=.51=0 a=0.05 .86954 81806 07384 .88440 83142 .07410
a=0.10 91824 87852 12968 .92420 88674 11920
A=0,n=.5 o=0.05 .04990 .54328 63232 .05978 52724 64680
a=0.10 .10008 64878 72538 .09388 64772 715600
A=51m=5 a=0.05 86984 95674 71128 .88470 96244 73140
a=0.10 91688 97606 79548 92542 97854 .81196
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| 5. CONCLUDING REMARKS

It is well known that the optimality of the GMM estimator depends on the set of moment
conditions which are chosen from substantive considerations. Unfortunately, the GMM estimator
may not be optimal in a general sense although the GMM framework has several other appealing
features. This mjay happen when extra information about moment condition generating zero
functions becomed available because it leads to optimal estimating functions via MEF. To overcome
this limitation, a glimple recipe is suggested which consists of augmenting (and not replacing) the
original set of molfnem conditions by the optimal estimating function. The GMM estimator with the
augmented set of inoment conditions (termed MCEF) provides the necessary enhancements to the
usual GMM in that not only the MCEF estimator becomes asymptotically equivalent to the MEF
estimator, it also pjrcserves the essential features of the GMM framework, namely, it provides a way
to choose from passibly multiple roots of the estimating equation, and also a readily available test
of model-fit without having to specify test parameters, i.e. directions of alternatives. Moreover, with
MCEF, one can c§onstruct a new test of model fit which recovers degrees of freedom lost due to
estimation of model parameters. Limited empirical results suggest that the new test in comparison
to the old one coq!ld have substantially more power in detecting certain alternatives.
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