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GMM ENHANCEMENTS IN THE PRESENCE OF 
EXTRA INFORMATION ABOUT THE CO VARIANCE OF THE 

MOMENT CONDITION GENERATING ZERO FUNCTIONS 

A.C. Singh and H.J. Mantel' 

ABSTRACT 

For the problem of estimating (first order) parameters of a semiparametric model, it is shown that 
the optimality of a commonly used method known as the generalized method of moments (GMM) 
developed in the econometrics literature by Hansen (1982) can be justified by the optimality of the 
method of estimating functions (MEF) developed in the statistics literature by Godambe (1960) and 
Godambe and Thompson (1989). Although the GMM framework has several appealing features, 
it does not always lead to the optimal estimator in a general sense as obtained by MEF when extra 
information about covariance of moment condition generating zero functions becomes available. 
In this paper, with the aid of MEF, we consider enhancements to the GMM framework so that it does 
give rise to an optimal estimator (asymptotically equivalent to MEF) when extra covariance 
information is present, while preserving the essential features of GMM. Moreover, for testing model 
fit a new test is proposed which recovers degrees of freedom lost (due to estimation of model 
parameters) with the usual GMM test. The new test is expected to be sensitive to model departures 
in directions in which the difference between the old and new estimating functions is not zero in 
expectation. A simple example along with simulation results is presented to compare both old and 
new methods in the context of estimation and testing. 

Key Words: Estimating Functions; Minimum chi-square estimation; Moment conditions; Test of 
model fit. 

A.C. Singh and Harold Mantel, Household Survey Methods Division, Statistics Canada, 16 
floor, R.H. Coats Building, Ottawa, Ontario, K1A 0T6. 



AMELIORATION DE LA METHODE GENERALISEE DES MOMENTS EN 
PRESE$CE DE DONNEES SUPPLEMENTAIRES SUR LA CO VARIANCE DES 

FONCTIONS ZERO GENERATIIcEs DE MOMENTS 

A.C. Singh et H.J. Mante1 2  

RÉSUMÉ 

Concernant le problème de l'estimation des paramètres (de premier ordre) d'un modèle semi-
parametriqud, on montre que l'optimalité d'une méthode courante connue sous le nom de méthode 
generaliséc s moments (MGM) élaborée dans les travaux d'économétrie par Hansen (1982) peut 
être justifiée par l'optimalité de Ia méthode des fonctions d'estimation (MFE) élaborée dans la 
littérature st tistique par Godambe (1960) et par Godambe et Thompson (1989). Le cadre général 
de la MGM a plusieurs aspects intéressants, mais ii ne mène pas toujours a I'estimateur optimal dans 
un sens géné al - comme c'est le cas avec la MFE - en presence de données supplémentaires sur la 
covariance d s conditions des moments génerant des fonctions nulles. Dans le present article, a l'aide 
de Ia MFE, n us considérons les ameliorations apportées au cadre général de la MGM de sorte qu'il 
permette d'rriver a un estimateur optimal (asymptotiquement équivalant a Ia MFE) quand on 
dispose de dnnées supplémentaires sur la covariance, tout en préservant les aspects essentiels de 
la MGM. Enoutre, pour tester le modèle d'ajustement, on propose un nouveau test qui récupère les 
degrés de libfrte perdus (en raison de l'estimation des paramètres de modèle) avec le test de la MGM 
habituel. Le nouveau test devrait ëtre sensible aux departs de modèle dans des directions oü la 
difference enre les fonctions d'estimation anciennes et nouvelles n'est pas nulle en espérance. Un 
exemple simple est présenté avec les résultats de Ia simulation pour comparer les anciennes et les 
nouvelles mthodes dans le contexte des tests et de l'estimation. 

Mots des 
	 d'estimation, estimation du chi carré minimum, conditions des moments, test 

d' ajustem 	de modèle. 

2  A.C. Sinh Ct Harold Mantel, Division des méthodes d'enquetes des ménages, Statistique 
Canada, 6ième étage, Immeuble R.H. Coats, Ottawa, Ontario, K1A 0T6. 



1. INTRODUCTION 

In econometrics, a popular and intriguing method of estimation for semiparametric model 
parameters is the generalized method of moments (GMM) introduced by Hansen (1982). 0MM uses 
a minimum 2-type criterion as an optimality criterion which is a scalar function whose gradient 
gives an estimating function that can be solved to obtain the GMM estimator. In GMM we start with 
a given set of (linearly independent) moment conditions, chosen from substantive considerations, 
which are generated as linear combinations of elementary zero functions and have approximate 
normal distributions. Note that zero functions are simply functions of data and parameters with zero 
mean, and thus moment conditions are themselves zero functions, but not elementary. Next a i-type 
statistic is constructed and then minimized to obtain the estimator. 0MM is optimal in the linear 
class of estimating functions generated by the given set of moment conditions. However, since the 
choice of moment conditions is not governed by optimal ity considerations, the 0MM estimator is 
optimal only in a restricted sense. 

In statistics, on the other hand, an important and general method of estimation, known as the 
method of estimating functions (MEF), was introduced by Godambe (1960) and Godambe and 
Thompson (1989). The optimality criterion for MEF is an estimating- function-dri ven criterion, 
unlike the criterion for 0MM which is estimator-driven. In MEF we choose an estimating function 
that minimises the MEF criterion; however, the 0MM estimator directly minimises the 0MM 
criterion. Thus the MEF estimator of a parameter is defined indirectly as the solution of the optimal 
estimating function. 

In MEF we start with a given set of elementary zero functions and their covariance structure. 
Then the optimal estimating function is the best linear combination of the elementary zero functions. 
If the 0MM moment conditions are substituted for the elementary zero functions in the MEF 
framework, then the 0MM and MEF estimators can be seen to be asymptotically equivalent. In 
other words, MEF theory can be used to justify 0MM. 

We remark that the 0MM framework has several appealing features, namely, (i) it does not have 
the problem of choosing among possibly multiple roots of the estimating equation, (ii) it does 
provide a model specification test without explicit specification of test parameters, provided that the 
number of moment conditions exceeds the number of model parameters, (iii) it does not require 
functional specification of the covariance of moment conditions, and (iv) it does provide an estimator 
which enjoys optimality in a suitably restricted class. Now suppose extra information about the 
covariance of the moment condition generating zero functions is available. Then it is known that 
MEF (with moment condition generating zero functions as input for elementary zero functions) 
provides an optimal estimator in a general class. Thus the GMM estimator developed in the absence 
of extra covariance information may become sub-optimal. 

In this paper we consider enhancements to the 0MM framework so that it indeed gives rise to 
an optimal estimator (asymptotically equivalent to MEF) when extra covariance information is 
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present, whil4 preserving the main features of the GMM framework. Apparently the existing 0MM 
literature does not offer any guidance in this respect. Note that the trivial solution of using the MEF 
optimal estiniating function as the sole set of moment conditions in the GMM framework is not 
adequate as it will satisfy only the optimality requirement but not the other 0MM features, since the 
number of m ment conditions becomes exactly equal to the number of parameters. It is shown that 
if the mome it conditions originally chosen in the absence of extra covariance information are 
augmented (aid not replaced) by the MEF optimal estimating function, then the 0MM methodology 
provides a str ight-forward solution to the problem mentioned above. The resulting solution, termed 
the minimu chi-square estimating function (MCEF) method, combines the strengths of both the 
0MM and M F methodologies. 

In MCE , as expected, the original set of moment conditions, in the presence of the optimal 
estimating fu ction, do not provide any new information for the estimation problem; however, they 
are useful in t e estimation problem for choosing among possibly multiple roots, and for the problem 
of testing m del specification. The MCEF estimator, like 0MM, will depend on the choice of 
moment con itions, but it turns out that regardless of the choice of moment conditions, it remains 
asymptotically equivalent to MEF. 

Using MEF we take another look at the problem of testing fit of the semiparametric model, i.e. 
testing the h othesis that the moment conditions have zero expectation. In the 0MM literature this 
is referred to s testing for overidentifying restrictions. When the number of linearly independent 
moment con itions, m, is larger than p, the dimension of the model parameter 9, they define 
implicitly the test parameters and hence the direction of the alternative hypothesis. We introduce 
an alternative orm of the GMM i-test which remains valid when the MCEF estimator (or any other 
root-n consist nt estimator) of 9 is substituted. This test is asymptotically equivalent to the 0MM 
test, and is in fact identical when the 0MM estimator of 9 is used. The degrees of freedom of the 
i-test is just the number of (linearly independent) moment conditions minus the dimension of 0, 
that is rn-p. 

If a cons 
statistic then 
combination 
(1954). 

We next 
estimation c 
asymptotica] 
where the di 

Section 2 
Section 3 
tests. A s 

nt estimator of 0, other than the 0MM estimator, is substituted in the 0MM f-
asymptotic distribution will not be instead it will be X.  plus a convex linear 
p independentvariates. This is similar to the result of Chernoff and Lehmann 

welop a new test using MCEF which recovers the degrees of freedom lost due to 
0. The new test essentially adds a correction term to the f-test so that it is 

x. The new test is expected to be powerful against alternatives in the direction 
:rence between 0MM and MCEF estimating functions is not zero in expectation. 
)ntains a brief review of 0MM and MEF as well as a justification of GMM via MEF. 
nts the proposed enhancement of the GMM method, i.e. MCEF, and also the new 
example and some simulation results are given in Section 4. 
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2. GMM AND MEF: A REVIEW 

2.1. GMM. Consider a semiparametric model specified by an rn-vector of (linearly independent) 
moment conditions p(y,O) and its (nonsingular) covariance matrix V(0), where y is an n-vector of 
observations and 0 is a p-vector of model parameters. Thejth moment condition q (y,0) is a sum 
of n elementary moment (or orthogonality) conditions 

•) (y,O) 	 (2.1) 

i he obsci 	iuii c flldV be cotTeldied in general. In the GMM framework, the functional form of 
the covariance matrix of the vector of v-functions is not assumed to be known. The matrix V(0)is 
replaced by a consistent estimate (for large n) using sample moments of the v-functions. Thus 
(MM requires very few assumptions and can be applied in various practical situations. As 
riientioned in the introduction, it has several appealing features; see Davidson and MacKinnon (1993, 
ch. 17) for a good review. It should he noted that the moment conditions could also have the 
property of being conditional zero functions. Now the GMM estimator, ÔGMM,  is obtained by 
n11111mi71fle the y2 -criterion 

	

0) = (p(y,0)T  V , (ôo  ) -' cp(Y,O) 	 (2.2) 

where V( 0 ) is a consistent estimator of V(0) obtained from in-functions evaluated at 80 , an initial 
consistent estimate of 0. The estimator ô 0  can be obtained by initially setting V=1 in (2.2); this can 
he updated iteratively. The GMM estimating function is then 

	

tc,0) = (ap/ao)Tv;1(ô0)q(y,o) 
	 (2.3) 

1 I lie estimating equation isfiy,O)=O. 
[he -criterion in (2.2) is an estimator-driven criterion, in the sense that the estimator is chosen 
i nimize this criterion. Under very general conditions the minimum of (0) exists and is unique. 

urthermore, êGMM  is essentially invariant to scale transformations of the p. To see this, note that 
we replace (p by A (0)(p then (2.3) becomes 

1(0) a(p +  A(0) (p 
) 

T  (A(ôO)v(ô0)A T(ô1A(9)p 	 (2.4) 1 Haoao 

and this is asymptotically equivalent to (2.3) since ç/n and -0 are o(l). Exact invariance can be 
achieved if ê0  in (2.2) is replaced by 0, which is referred to as the continuous updating method in 
the GMM literature. 

Assuming that the minimum of f(0) is unique, the consistency of ÔGMM  follows from (2.3) since 
the estimating function is o(n) by a suitable law of large numbers. Furthermore, from the 
asymptotic normality of p  under a central limit theorem, we get 
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-0 N(O, I E(a91aO)TV,'(0)E(a(p1aO)J 
- I ) 

	
(2.5) 

where, in the as ptotic covariance, F can be dropped for estimation purposes. 
The asympt 	optimality of ÔGMM  is analogous to that of MLE by noting that the i-criterion 

(2.2) is the kernel f the approximate likelihood of 0 obtained from the asymptotic normality of p 
under local al ;ives. The optimality, however, is in a restricted class because the construction 
of moment conditins ((p)  from the elementary moment conditions (w)  is not based on optima1it 
considerations but is simply obtained as sample moments of Mi-functions. Now, an asymptotically 
optimal test of the serriparametric model, H ( , Ejii(v. 0)1 = 0, can he obtained as a score test (ci Cox 
and Hinkley, 1974 1  ch. 9), which rejects H,, il 

Q( o = OMM 	x11 ',ci 	 (2.( 

where 	is the pper a-point of the 	distribution, and Q(u) denotes a quadratic form uTY.h1?. 

E being the covari nce of a random vector U; if E is singular, then a g-inverse is used. Note that 
since the number of moment conditions is larger than the dimension p of the model parameter 0, 
the rn-p test par eters (, say) under H. are specified implicitly. This feature is convenient in 
practice because it may be difficult in general to specify -parameters in a closed form. 

Given that the model is accepted, a confidence set for 0 can be constructed as 

(0: 	
- 	

::~ Xp.a) 	 (2.7) 

2.2. MEF. In M F the semiparametric model is specified by an n-vector h of elementary zero 
functions and its 

( 
onsingular) covariance matrix Vh(0). 

The optimal e timating function g is Ah s here the p Y matrix 1(0) minimizes (in the pm ti ii 
order of non-ne2a 	definite matrices) 

	

[E(aAh1aO) _ ' V A 'h(0) E(aAhiöo)] 
	

(2.) 

The above 	is called the Godambe Information criterion in analogy with the relation of the 
score function 	the Fisher Information matrix. Unlike GMM, the above optimization criterion 
is estimating-f 	on-driven since optimization is achieved by an estinlating function. 

The score- 	optimal estimating function g is given by 

g(y,0) = _E(ahI00)TV(0)h(y ,0) . 	 (2.9) 

More generally h uld be a conditional zero function, in which case both the variance V in (2.7) and 
the optimal A w id be conditional, see e.g. Singh and Rao (1998). A solution of the optimal 
estimating equati g(y,0) =0 exists in general but it need not be unique; a method to handle the 
problem of choosi g among multiple roots is developed in Singh and Mantel (1998). Under mild 
regularity conditi the equation g(y,0) = 0 has a consistent and asymptotically normal solution, 

MEF Its asympto ic distribution is given by 
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OMEF 0 N(0, JE(ahlao)T v (0)E(ah1ae)} ). 	
(2.10) 

The asymptotic covariance matrix of ÔMEF  is smallest in the class of all estimators derived from 
linear estimating functions of the form Ah. This is a natural analogue of the MLE optimality 
criterion when the class is restricted. 

To test model fit, the model is first extended to specify explicitly a set of r test parameters 4 (=& 
under H0). Then the optimal estimating functions g0(y,0.) and g(y,9,) for (0,) are found. An 
optimal test for H0  is given by 

Q(g0 ,g)0  	 (2.11) 

where Q(u, u2 ) is defined as Q(u) with u denoting the stacked column vector of (u 1 , u 2 ). This can 
be interpreted as a score-type test by considering the asymptotic likelihood of g0  and g under local 
alternatives to H0 . If the model fits then a confidence set for 0 is obtained as 

10: Q(g) 	g 	 (2.12) 

2.3. Comparison of GMM and MEF. The main difference between MEF and GMM is that the 
elementary zero functions used in MEF could be more elementary than the elementary moment 
conditions used in GMM. In other words, elementary moment conditions can be generated as linear 
combinations of the underlying elementrary zero functions. Thus the optimality of the MEF can be 
more general than that of the GMM, depending on the level at which the elementary zero functions 
are defined, which depends on the level at which the covariance structure is available. 

If the moment conditions used in GMM are treated as elementary zero functions then MEF and 
GMM are asymptotically equivalent. To see this, note that (&p/89)/n - E(aw/aO) = o( I) by a weak law 
of large numbers, and thus iteratively evaluating the GMM estimating function f(y,O) in (2.3) is 
asymptotically equivalent to solving the MEF estimating function g(y,0)in (2.9) when h=p. 
However, if we take the moment condition generating zero functions as elementary zero functions, 
assuming that the extra covariance information is present, then 0MM can be improved via MEF 
since the MEF optimality is in a wider class of estimating functions. 

Thus MEF provides a general and flexible method of constructing optimal estimating functions, 
whose optimality depends on the choice of elementary zero functions and their covariance structure 
used as input. This is the main strength of MEF, and can be used to strengthen the GMM. 

The 0MM approach, on the other hand, can be used to overcome some of the problems of MEF. 
First of all, 0MM provides a readily available test of model fit in the i-statistic (2.2) evaluated at GMM 

which has an asymptotic distribution under the null hypothesis that E()=O. Thus in the 0MM 
approach it is not necessary to explicitly define the a-parameters to construct a test of model fit. 
Secondly, the 0MM estimation, involving the minimization of a i-statistic, does not have the 
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potential problem o f choosing among multiple roots that the MEF estimation, which involves solving 
an estimating equa ion, has. 

The minimum estimating function (MCEF) method that we propose here modifies GMM so 
that the 0MM estir iator becomes asymptotically equivalent to the MEF estimator while preserving 
the essential GMM framework with its corresponding benefits. 

3. MCEF: THE PROPOSED GMM ENHANCEMENT 

Suppose extra information about the covariance matrix V h(0) of moment condition generating 
zero functions h is ajvailable. Let g(y, 0) denote the optimal estimating function which gives rise to ÔMEF  
as the (unrestrictel) optimal estimator. Now consider the semiparametric model in which sp is 
augmented with g,i.e., 

:=[j - (0,V(0)). 	 (3.1) 

The proposed GM41 enhancement consists of applying the GMM methodology to the model (3.1). 
3.1. Estimation, the  proposed estimator, ÔMCEF,  is defined by minimizing 

x (0) = 9(0) V (ô0) (0) 
	

(3.2) 

where ô0  is an intial consistent estimator of 0. Note that in (3.2), we have used a generalized 
inverse of the ma4ix V( 0 ) because it need not be of full rank. In the following we assume, for 
simplicity, that Vô0 ) has full rank, i.e. m+p. The estimating function is given by 

f(y,0) = (ap/a0)V ( (0). 	 (3.3) 9. 

The estimator 0M, 
	is not only asymptotically equivalent to MEF'  but it shares all the important 

features of ÔGMM To show the equivalence, observe that we can write f,(y, 0) as (here write 
(p = MTh, -E(ah/a 

MT(ah/ao) )'(MTV,M  M T G - MT h 

GTv(ah/ao) 	GTM GTV I G 	GTV I /I  

MTG 
T 

MT V h M MTG ' M"h 
- GTVLG 	GTM GTVLG 	GTVh 	

(3,4) 

using a law of larg numbers for linear combinations of ah,aoT.  Now since p  has expected value 
0, it belongs with robahility 1 to the column space of its covariance matrix. Noting also that the 
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left most matrix of(3.4) is equal to a part of that same covariance matrix, we see that (3.4) simplifies 
to GTVh  which is the MEF estimating function g(y.9) It follows that êMCEF  is asymptotically 
equivalent to MEF  Moreover, one can construct several êMCEF,  depending on the choice of M in 
p =MTh, which will all be asymptotically equivalent to 

3.2. Testing. First we construct a i-test, which is asymptotically equivalent to  XG MM such that any 
root n-consistent estimate of 0 can be used in evaluating the test statistic. The construction follows 
easily from that of the score test. We transform the moment conditions 9 as 

= 
(Bq~  (m-p)xl 
 f pxl 

where C is an m x m nonsingular transformation matrix, andfis the GMM estimating function for 
0. It follows that if I denotes the asymptotic loglikelihood based on p,  thenfcan be viewed as the 

score function l and Bç as l ( denoting the test parameters) where, e.g, 10  denotes the partial 
derivative of! with respect to 9. Thus, the score test for H 0 : E()=O is given by 

Q( Bq - E(B(p If))0  = MCEF 	
(3.6) 

Here E(B(p If) similar to the conditional expectation, is the best linear predictor of Bq givenf and 

is therefore given by BE(&p1301)J. The test (3.6) can be expressed as 

XMCEF(l) := (Q((p) Q()OÔMCEF ~ Xni-p.a 	 (3.7) 

Note that the test statistic can be evaluated at any root n-consistent estimate of 0 without affecting 
the asymptotic optimality. When it is evaluated at 0 =GMM'  we get XGMM  because f=O. Thus 

XMCEF(1) provides an asymptotically equivalent alternative to XGMM•  Also, note that unlike the case 
of testing with MEF, the above test is easy to compute because the test parameters 4 are not required 
to be defined explicitly. 

Now, it is possible to construct another test based on (p which recovers p d.f lost in the above 
test based on p. This would be analogous to the goodness-of-fit test of Rao and Robson (1974) 
when the raw data MLE of model parameters is used; see also Singh (1987). The reason for this is 
that the elementary zero functions h (like the raw data in the goodness-of-fit problem) are available 
for estimating 0 as an alternative to the moment conditions q (which are like the grouped data). The 
new test is defined in a manner similar to (3.7) as 

XMCEF(2) : = (Q(p) - Q(f,))0 	 (3.8) 

Note that at 0 = êMCEF  it simply reduces to Q((p .)0 . As before XMCEF(2)  can be easily justified 

as a score test by using the asymptotic Guassian likelihood based on p. 
In view of the fact that XMCEF(2) recovers lost d.f, it seems natural to expect that 

XMcEF(2 ) - cEF (l) should provide another test of H0  with p df This is indeed the case. To see 

this, note that Q(p) can be written as 

(3.5) 
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pVp 	(C . p . )T(C . VCJ)(C . p . )q. 	 (3.9) 

for a nonsingular 1 
	 C .  such that Cp,, defines a stacked column vector of Bp, f, and 

f. It follows thai 

Q((p • ) = Q(Bp-E(Bpff.))+Q(f,f.) 
	

(3.10) 

Now, since E(Bp f,f) = E(B( If) (it is approximate because of the relation aiae E(a(p/ao)), we 
have 

Q(cp) z Q(Bsp -E(B(p f)) + Q(fJ.). 	 (3.11) 

Thus, from (3.6) 

Moreover, 

which is a nonne 
withpd.f to bed 
write 

Note that the last 
of the relation be 

and from (3.8) ar 

XMCEF(l) = Q(p.) - Q(ff.). 	 (3.12) 

XMCEF(2 ) XMCEF(!) =  Q(f,f) - Q(f) 	 (3.13) 

ye difference of two variables and hence provides yet another x2  test of H0  
ted by XMcEF(3)•  Now, using the fact that f -f is uncorrelated withf, we can 

XMCEF(3 ) = Q(f. .f) + Q(j) - 
	 (3.14) 

in (3.14) vanishes at 0 = ÔMCEF . There is an interesting practical interpretation 

XGMM and XMCEF  Observe that from (3.7) we have 

XGMM 	[Q()_Q)1eM cEF(1)) 	 (3.15) 

(3.11), 

XMCEF(2) [Q((p) - Q(f) + Q(ff.) 
- 

Q(1)'o1 	
(3.16) 

= [Q((p)+Q(f• i)]84M 

Thus, y.MM  (or y(1)) subtracts a correction term Q(1) from Q(p) in order to have a 
distribution; Q(p 	can be shown to have a X. +E" 1 a 	(0 <a, <1) distribution, where , are

MCU 

independent -v Sables. (see e.g. Chernoff& Lehmann 1954). Similarly xCEF(2)  adds a correction 
term Q(f. -f)0=g  to have a 	distribution. The sum of the two corrections i.e. 

(Q(_t) Q(ff 0 	has a 	(=E[a,,  ~ (l -a,),]) distribution, which gives rise to the test
MCU 

XMCEF(3)• 



4. A SIMPLE EXAMPLE 

We will illustrate 0MM and its enhancement (i.e., MCEF) by means of a simple example based 
on linear models. For each unit in the sample of size n, the response variable is y, and the covariates 
are x, and z,. Now, consider two elementary moment (or orthogonality) conditions: 

N' 1 (y,. 8) = x,(y, -x,O) 	 (4.1) 

'v,(y, 0) = z, (y, -x,0) 	 (4.2) 

which, in turn, define the moment conditions 

9 1 (y,O) = >. 1 x,(y, -x,0) = XT(y -XO) 	 (4.3) 

(p2(y,O) = E 1 z,(y, -x,0) = ZT(y-X0) 	 (4.4) 

The elementary zero functions which generate the moment conditions are 

h,(y,,0) =y,-x,O 
	

(4.5) 

Suppose the extra information about the covariance of h is available, and has the functional form 
&diag(x). This, in turn, specifies the covariance of moment conditions P. The above moment 
conditions can be motivated by postulating the underlying model (in reality, this is not known), 

y, =x,0+z,X+c 	 (4.6) 

where ?=O, and c, are uncorrelated with mean 0 and variance a2x,. 
It follows that the semiparametric model for 0MM is p-(O,V(0))  where V,(0) has 

(02E,x,,02E,z,) on the diagonal and a2E,x 1 z, on the offdiagonal. The semiparametric model for 
MEF with h as input for elementary zero functions is h -(0 1  V h(0))  with V h(9) = &diag(x,). Note that V h(8)  
is nxn while V,(0) is only mxm (m=2 in this case). Now, the GMM optimality criterion 2(0)  is 

(X(y _)))T(xTv  (0)x ) 'X(y -XD) 	 (4.7) 

where X . = (X, Z) and the 0MM estimating function is 

f(y,0) -(ax2 /ae)/2 = Xr'(y -Xe) 	 (4.8) 

where F = X (X V h(0)X.) 'X. Thus 

8GMM = (xr'x• ) - 'xry. 	 (4.9) 

For MEF, choosing h=p leads to ôMEF=OMM,  although one would only get asymptotic 
equivalence in general. However, with h as (4.5), it is easily seen that 

Kai 



g(y,O) =XT V(yXO), 
(4.10) 

MEF = (
XTVX)XTVy, 

which is identi 
	to the generalized least squares estimator. 

Now for M F, we define the augmented moment conditions 

( X'(y-XO) "1 
(p(y,O) = I 	 I 	 (4.11) 

XV(y -XO)) 

with the C 

which is the 
would only be a 
various i-tests 

For an emr 
50,000 Monte 

g covariance matrix V. The estimating function f,(y, 0) turns out to be 

XV h X. xx Y 
CXIX. XTV( 

XTX xivxJ 	 (4.12) 

= (0 I)p = XTV(ykD) 

as g(y, 0). Thus, for this simple example, ÔMCEF = ÔMEF although in general the two 
rmptotically equivalent. Now, with p ,  f, p• ,  and  f defined for the above example, 
f Section 3 can be constructed for testing H 0 : E(MI,) = 0, j 
ical illustration of the behaviour of estimates and test procedures, we generated 
irlo samples of size n (= 10) using the model 

y, = xO +zX+w1 C, c,-(0,&x,), 	 (4.13) 

where x,, z, were 1rawn independently from a Uniform (3,10). Two distributions for c, were chosen, 
one N(0, 2 X,) and other a location and scale transformedwith mean and variance (0,a 2 x,). The 
variables w, were generated in a somewhat different manner to demonstrate the difference between 
the two tests xJ and if we choose W such that 

XTW=0 ZTW=0, but XTVW 0 0, 	 (4.14) 

then the values 
such that E(p 1 ) = 

detecting these 
E(f,)*0, E(/)=( 

if test parameters 	(?.,ri) with X=0, 9#0 will define alternatives E(,)*0 to H0 , 

E(( 2) = 0. This implies that YMM  or )cEF(l)  will have asymptotically no power in 
Iternatives. However, XMCEF(2)  and XMCEF(3)  will have some power because 
and therefore E(f -J) *0. Therefore, Wcan be defined as 

 

 

(XTXXTZ\ '(xTl 
xconst 	 (4.15) [l-(xzTxzTz) ZT1)) 

0 

-10- 



The constant was chosen as 	to make variance of w similar to that of x and Z. The value of the 
model parameter 0 was set at 1 and the variance 02  was chosen as 0.25. In the empirical results, a 2  

was treated as known. 
Table 1 shows that confidence intervals based on êMCEF  are shorter in average length (AL) as 

expected. The corresponding coverage probabilities (CP) are very accurate in the case of Normal 
errors (in fact, the intervals are based on the Normal distribution and therefore exact in this case), 
and slightly conservative when the errors are x.  More interesting results appear in Table 2 on 

testing. The usual MM  (or xcEF(l))  test has no power in detecting alternatives where X=O but 94. 

The third test X4CEF(3)  is powerful in detecting these alternatives, but has hardly any power against 

alternatives where ii=0.  On the other hand, the new test xc(2)  performs reasonably well for 

various alternatives. In practice, it maybe advisable to perform both tests MM  (or XMCEF(l))nd (3) 
(with a suitable control on the overall size) before drawing any conclusions. 

Table 1. Interval Estimation, n=10 
(Average Length and Coverage Probability) 

Normal Error X , 
 Error 

1-a Estimator AL CP AL CP 
MCEF 0.244 0.951 0.244 0.957 

0.95 GMM 0.248 0.951 0.248 0.955 
MCEF 0.205 0.898 0.205 0.923 

0.9 0MM 0.208 0.899 0.208 0.926 

Table 2. Testing of model-fit (Empirical Level and Power), n10 

Test Normal error XI error 
Parameter NolTilnal 2 

XMCEF( 1 ) 
2 

XMCEF(2 ) 
2 

XMCEF( 3 ) 
2 

XMCEF(') 
2 

XMcEF(2) 
2 

XMCEF( 3 ) 
Values Level 

X=0, 11=0  a=0.05 .04994 .05002 .04976 .06068 .07444 .05914 
a=0.10 .10072 .09968 .09966 .09724 .11212 .09398 

=.5,=0 a=0.05 .86954 .81806 .07384 .88440 .83142 .07410 
cz=0.10 .91824 .87852 .12968 .92420 .88674 .11920 

X=0,i1=.5 a=0.05 .04990 .54328 .63232 .05978 .52724 .64680 
u=0.10 .10008 .64878 .72538 .09388 .64772 .75600 

5,11=.5 a=0.05 .86984 .95674 .71128 .88470 .96244 .73140 
a=0.10 .91688 .97606 .79548 .92542 .97854 .81196 



5. CONCLUDING REMARKS 

It is well 
	that the optimality of the GMM estimator depends on the set of moment 

conditions which 3xe chosen from substantive considerations. Unfortunately, the GMM estimator 
may not be optim1 in a general sense although the GMM framework has several other appealing 
features. This may happen when extra information about moment condition generating zero 
functions becomeS available because it leads to optimal estimating functions via MEF. To overcome 
this limitation, a imple recipe is suggested which consists of augmenting (and not replacing)  the 
original set of moinent conditions by the optimal estimating function. The GMM estimator with the 
augmented set of noment conditions (termed MCEF) provides the necessary enhancements to the 
usual GMM in that not only the MCEF estimator becomes asymptotically equivalent to the MEF 
estimator, it also preserves the essential features of the GMM framework, namely, it provides a way 
to choose from p9ssibly multiple roots of the estimating equation, and also a readily available test 
of model-fit withcut having to specify test parameters, i.e. directions of alternatives. Moreover, with 
MCEF, one can 4onstruct a new test of model fit which recovers degrees of freedom lost due to 
estimation of mocel parameters. Limited empirical results suggest that the new test in comparison 
to the old one coi.1d have substantially more power in detecting certain alternatives. 
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