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ABACT 

• 	DNAs genetic code can be represented as an alphabetic sequence composed of the 

four letters A, C, S, and T, which represent the four types of nucleotides - 

• adenylic, cytidylic, guanylic, and thymidylic acid - of which DNA is composed. 

Now that these sequences have been identified for many genes and are available 

in computer-readable form, scientists can analyze these data and search for pat-

terns in an attempt to learn more about the regulatory functions of the gene. 

One area of study is that of the frequency of occurrence of specific nucleotide 

subsequences (e.g., ACAC) within part or all of a nucleotide sequence. This 

paper derives the probability distributionof the frequency of occurrence of a 

subsequence within a nucleotide sequence, under the hypothesis that the four 

• nucleotides occur at random and with equal probability. This thstribution is 

nontrivial because different subsequences have different "overlap capability.' 

For examole, the subsequence AAAA can occur up to 17 times in a sequence of 

length 20 (which would happen if the sequence were composed solely of ASs), but 

the subsequence ACGT cannot occur more than S times in a sequence of length 20. 

Thus, the frequency distributions are different for each type of overlap 

capability. It is of interest to assess and compare the degree of nonrandomness 

for different subsequences or among different portions of a sequence; the ex-

istence and degree of nonrandomness may be related to the type and degree of 

functionality of a nucleotide (sub)sequerice. Using the frequency distributions 

provided here, exact significance tests of the hypothesis of randomness can be 

performed. An approximate test is also described for use with long sequences; 

this can be used to test a more general null hypothesis of nucliotides occurring 

with unequal probabilities. 

1. INTRODUCTION. 
Genes are long, double-stranded, helical molecules of DNA. Each of the two 

strands contains a sequence of r,ucleotides - typically between 1,500 and 15,000 

is 	of them - and the two strands are loosely bound together by hydrogen bonds. 	A 
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nucleotide in DNA is identified according to whIch of four nitrogenous bases it 

contains: a purine base, adenine (A) or guanine (8), or a pyrimidine bass 

cytostn. (C) or thymine (1). There is a one-to-one correspondence between 

nucleotides on opposite strands; an A, 8, C, or T.on one strand is weakly bonded 

to its complement, 1, C, 8, or A, respectively, on the other. DNA's so-called 

"genetic code" can thus be represented as a single alphabetic sequence composed 

of these four letters. It is by means of this code that the gene controls the 

formation of other substances in the cell (see, e.g., Guyton (1969)). Also, 

certain sequences of nucleotides form oricogenic genes which can initiate some 

forms of cancer. 
Relatively recent advances in biochemistry have made it possible to deter-

mine the nucleotide sequences for large numbers of genes, and for intergersic 

material, which also consists of nucleotide sequences. Such data are now 

available in computer-readable form, so it is possible to look for and analyze 

patterns within sequences using statistical and statistical computing tech-

niques. Scientists are now able to use pattern recognition algorithms to "learn 

more about the regulatory nature of the various genetic functional domains, and 

more about what it is that is recognized within those domains by the cellular 

hardware..." (Sadler, Waterman, and Smith (1993)). Weir (1985) provides a use-

ful survey of new problems of statistical analysis which have arisen following 

advances in molecular genetics. 

One area of study is that of the frequency of occurrence of specific short 

nucleotide subsequences (e.g., ACAC) within part or all of a nucleotide se-

quence. Maizel et al. (1981) concluded that, among the computer programs being 

widely used for nucleic acid analysis, "Most frequently used are programs that 

search for occurrences of short subsequences that are used by enzymes as signals 

to recognize, modify, and express nucleic acids, that determine the frequency 

and locations of short strings of nucleotides, and that translate nucleic acid 

sequences into amino acid sequences or complementary polynucleotide strands." 

Some examples of papers which deal with the analysis of subsequence frequencies 

ares Aquadro and Greenberg (1983), Gentleman at ci. (1984), Grantham et al. 

(1981), Harr, Haggetrom, and Gustafeson (1983), Korn and Queen (1984), Nussinov 

(1984), Sadler it al. (1983), Smith and Burke (1983), Smith, Waterman, and 

Sadler (1983), Queen and Korn (1980), and Vass and Wilson (1984). 

It is of interest to assess and compare the degree of nonrandomness for 

different subsequences or among different portions of a sequence; the existence 

and degree of rsonrandomness may be related to the type and degree of func- 
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tionality of a nucleotide (sub)sequence. Orgel and Crick (1980) classified the 

DNA of higher organisms as falling into two classes, one specific and the other 

comparatively nonspecific. Regarding the latter, they noted that "there is a 

large amount of evidence which suggests, but does not prove, that much DNA in 

higher organisms is little better than junk." Vass and Wilson (1984) describe 

statistical tests for detecting nonrandom arrangements on a nucleotide strand. 

These tests "may be especially useful in the analysis of patterns in DNA se-

quences which may partly reflect the structure and function of the genes in 

which they are part." Shukia and Srivastava (198) developed a test for sequence 

randomness based on the frequency of occurrence of a particular subsequence at 

two positions which are a fixed number of bases apart. They reasoned that 'low 

probability of chance occurrence calls for further exloration ... of ... possible 

structural or functional significance, ... (wnereas, it tnere 15) a nign 

probability of chance occurrence, then one has to exercise some caution before 

attaching any structural or functional role to that kind of ... repeat.' 

Gentleman et al. (1984) gave two examples of how the occurrence of a subse-

quence in unexpectedly large numbers may provide information about structure or 

function: (1) This phenomenon may reflect the fact that that segment of DNA was 

originally formed by replication of smaller segments. Such replication might be 

exact initially, but might be altered with time. But in regions of the sequence 

where retention of function is necessary, exact repeats would be expected to oc-

cur. (2) A break in DNA usually occurs at different positions, from 3 to 10 

nucleotides apart, on the two strands. When this happens, a gap is created on 

each strand opposite remaining nucleotides on the other strand. On each strand, 

to fill this gap, nucleotides complementary to their counterparts on the other 

strand are added, thus duplicating the subsequence on the other side of the 

break. The break itself is filled in. The occurrence of repeated subsequences 

may therefore identify locations where an insert has been introduced into the 

DNA sequence. 
Relatively little is know about the specific functionality of DNA. The at-

tempt to identify of nucleotide (sub)sequences of greater or lesser randomness 

is based in part on the concept that a higher degree of functionality may be in-

dicated by a lower degree of randomness. The complementarity of the two strands 

of DNA permits each strand to act as a template on cell division to form two 

identical double stranded structures. As DNA reproduces itself, chance muta- 

tions may occur, so that DNA is subjict to the forces of natural selection and 

evolution. 	Thus, a particular configuration in DNA that exists now may have 
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been favored by natural selection. (For further discussion of genetic evolu-

tion, see Doolittle and Sapienza (1980), Orgel and Crick (1980), and Forbes and 

Shadbolt-Forbes (1988).) 

This paper derives the probability distribution of the frequency of occur-

rence of a subsequence within a nucleotide sequence, under the hypothesis that 

the four nucleatides occur at random and with equal probability. A general al-

gorithm is provided for calculating this probability dárstribution, which depends 

on the sequence length, the subsequence length, and a property of the subse-

quence which will be termed "overlap capability'. Explicit formulas are given 

for all subsequences of length 2-8. Access to these distributions permits the 

use of exact significance tests of the hypothesis of randomness. An approximate 

test is also provided for use when the sequence is long. The observed sig-

nificance level of such tests measures the extent of the data's departure from 

the hypothesis, i.e., the degree of nonrandomriess. 

A null hypothesis of equiprobable occurrence of the different nucleotides 

is reasonable in the context of the present DNA structures having evolved from a 

"primordial soup "  or 'base pool" containing equal quantities of each base. This 

is discussed by Sege and Saxberg (1982), who provide a statistical test for the 

simultaneous comparison of several nucleotide subsequences. Their "null 

hypothesis which one seeks to reject" is that the observed data came by chance 

selection from a base pool with specified relative frequencies of A, C, G, and 

T. They describe three alternatives for choosing the four null probabilities: 

"(1) The abstract nucleotide pool is unlimited and therefore the 

distribution of nucleotides is effectively equal 	(2) the se- 

quences are drawn from a pool comprised of the nucleotide 

distribution typical of the species or (3) the nucleotide pool 

for the class of sequences examined is well represented by the 

total distribution of nucleotidis in the sequences themselves." 

Sege and Saxberg then discuss the conditions under which each choice is ap- 

propriate 

"The virtual pool selected will be a function of the question 

posed by the experimenter and the level of information desired. 

Clearly the most readily interpreted virtual pools are the even 

virtual pool ('frequencies = 0.2) and the 'species/organism' 

virtual pool (average frequencies of bases for the 

species/organism). These virtual pools should serve as stan-

dards unless the investigator has sufficient reason to warrant 
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another type (e.g.., experimental virtual pool). When a non-

standard virtual pool is used, its just1fictiOfl and the meaning 

of the resulting (significance levels) must be carefully con-

sidered.' 

The exact distributions provided In this paper can be used to test the first of 

Sege and Saxbergs alternatives, and the approximate test can be used to test 

any of the three alternatives. - 

A model in which the four types of nucleotides occur independently has been 

assumed by some researchers (e.g., those cited in Biggns and Cannings (1987, p. 

21)), and hypothesized by others. In the latter case, the hypothesis has been 

accepted in numerous situations, particularly in the analysis of relatively 

short (sub)sequences. Garden (1980) fitted Narkov chain models to three DNA/RNA 

sequences, finding that rlarkov models of order three, two, and zero fitted best. 

(In RNA, the pyrimidine uracil appears instead of thymine.) The zeroth-order 

model fitted a gene of length 1632. Fuchs (1980) speculated that the length of 

the sequence is directly related to the order, citing Gardens further results 

for subsequences to support this. Fuchs noted that "the majority of the 

500-nucleotide segments were fitted well by a model of order zero or one, as cx-

pected for short sequences." He recommended two types of supplementary 

analyses: detection of anomalous regions in a sequence, and analysis of devia-

tions between the observed and expected frequencies of nucleotide subsequences. 

Section 2 below defines the concept of "overlap capability", a property of 

a subsequence which complicates the probability function for the frequency of 

occurrence of the subsequence. Section 3 derives the expectation and variance 

of this random variable. The probability function - which is different for each 

type of overlap capability - is derived in Section 4 (with further details in 

the Appendix). Section 5 provides examples, using a human genome sequence, of 

the use of the probability function in exact and approximate significance tests 

of randomness. 

2. DEFINITION OF OVERLAP CAPABILITY. 

Assume that the four nucleotides whi:h make up a subsequence occur indepen-

dently and with equal probability, so that the probability p of the occurrence 

of a subsequence of length L Is (1/4). Let the random variable X be the 

frequency of occurrence of a nucleotide subsequence of length L within a 

nucleotide sequence of length M. A subsequence "occurs at position i" if it is 

found to begin at position i. Then n • M-L+l is the maximum value achievable by 

X. Let flx;L,l1,Q) be the probability function of X. This depends not only on 
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the scalars L and M, but also on the vector Q, which represents the overlap 

capability" of the specific subsequence. As a simpl, example, the subsequence 

AAAA can occur between 0 and 17 times within a sequence of length 20. The 

subsequence ACAC cannot occur more than 9 times i.n a sequence of length 20 

because it has less overlap capability. The subsequence ACGT has no overlap 

capability except in the trivial case when it is superimposed on itself, so it 

cannot occur more than S times. Thus, f(x;L,M,Q) caonot be treated as a bino-

mial distribution involving independent trials. 

Define overlap capability as follows: Let S be a given subsequence and S , 

SL, ... ISL 
be letters representing its L nucleotides from left to right. 	Then 

represent the overlap capability Q of S as a binary sequence 0 19 	such 

that 04 1 if it is possible for the subsequence's first i letters to overlap its 

last i letters, and Q0 otherwise (for ial,...,L). Specifically, Q=l if 

for k1,...,i 9  and Q0 otherwise (for il,...,L). Obviously, Q LZ1 

because a subsequence can always overlap its entire self. For example, the 

subsequence ACAC has overlap capability 0,1,0 1 1, and the subsequence AAAC has 

overlap capability 0,0,00. Clearly, many subsequences can have the same over-

lap capability. On the other hand, not all : possible binary sequences of 

length L yield possible Q's, due to interrelationships among the elements of Q; 

for example, no subsequence can have overlap capability 1,0,1,1 (because 03 1 

implies that all elements of S are the same, but QfO implies the existence of 

some inequalities among them). For L*2 to L8, for example, there are, respec-

tively, only 2 9  3, 4 9  6, 8, 10, and 13 possible overlap capabilities. An al-

gorithm that can be used to test a binary sequence to determine if it is a 

possible overlap capability is given in Guibas and Odlyzko (1981). An algorithm 

to generate all possible overlap capabilties given L is described in Gentleman 

and Mullin (1987). 

The above model can be described in the terminology of Markov chains. 

Feller (1950, p. 376, Problem 1) descib.d a special case of this situation (for 

L2 and a two-litter alphabet) as a four-state, first-order Markov process. 

That approach generalizes here to an a 1 -state, (L-1)-order Markov process (where 

a is the number of letters in the genetic alphabet). Then in particular, the 

transition probability of the occurrence of 8, given that S occurred L-k posi-

tions before, is for kxl,..,,L-1 (where 
p (l/ a )L). (This is easily 

further generalized to the case of letters having unequal probabilities.) 

Overlap capability enters into the discussion by Biggins and Canriings 

(1987) of restriction enzymes which cut DNA sequences whenever certain specific 
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subsequences occur. If one of these subsequences overlaps itself or another of 

the recognizable subsequences, the cut occurs only at the site of the u carlierh 

occurrence. For other examples of analyses incorporating the concept of overlap 

capability, see Shukla and Srivastava (198) and Karlin and Dit (1987). 

fl 

0 



3. DERIVATION OF EXPECTATION AND VARIANCE 

The expectation of X is, perhaps counterintuitively, independent of the 

subsequence's overlap capability (a). The variance depends on U and, as would 

be expected, is larger for subsequences with a "higher degree" of overlap 

capability. For example, if the sequence length M20 and the subsequence 

length L:4, then for the subsequences AAAA, ACAC, and ACCT, E(X).07 and V(X) 

is .11, .07, and .06, respectively. 

To derive the expectation and variance of X, assume that M'L, and define 

indicator variables Y 1 , Y2 ,...,Y (where n:M-L+1) such that V1 if 

the subsequence S occurs at position i, and Y.0 otherwise (for i:1,...,n). 

n 
Then X 	Y , so that 

' 

L 
E(X) 	E(Y.). Since E:(V) 	() 	 p, E(X) = np, independent of 

i1 	1 	 1 

Q, and 

V(X) 	= Cov(Y.,Y.) 	E(V1v) - 	: E(Y 1 ) 5' E(Y) 
11 jl 	i1 J1 	i1 	Jl 

2 2  E(YYJ) - np 	 (1). 
i:1 jl 

To obtain V(X), it is necessary to take account of the fact that the V's 

are not in general independent of each other; covariances between V's which 

are "near neighbors" depend on U. To determine these covariances, quantities 

of the form E(V.Y 	) must be calculated. 	This is just the probability 

that the subsequence occurs at both position i and position i+k. If 

0± 	i 	L-k kmin(L-1,n-1), then E(VY. 	) 	Q 	
(1/4)L+k 	

L-k p0 	
(1/4)k• 

If min(L-1,n-1)' k<  n, U is irrelevant and E(Y i  . i+k 
Y 	) 	

(/4) 2L 	2 

n n 
There are n terms among the n in 	E(V V.) such that ij. 

i:1 j1 	' 3 

Also, if n> 1 there are 2(rm-k) terms such that j:i+k or ij+k (for 

k:1 ,...,rnin(L-1 ,n-1)). 	If n? L, there are 2 	k = (n-L)(n-L+1) reman1ng 

terms which do not depend on U. Thus, 

S 

I 

S 

. 



S 	 miii 
(L-1 

fl 	n 	 n-i) 

Z 	E(YY.) 	np + p2 (n-L)(n-L+1) + 2p 	(n_k)QLk (1/4) k , 
i1 j:l 	 k: 

so Eqn. (1) becomes 
- 	 mm 

(L-1, 

- 	 2 	
n-i) 

V(X) 	np(l-np) + p (n-L)(n-L+1) + 2p 	(n_k)QLk (1/4) k 	(2). 
k: 1 

On the right hand side of Eqn. (2) and of the previous equation, the second 

term equals zero if nL, and the third term equals zero if n1. If L:1, the 

third term in Eqn. (2) equals zero, and V(X) reduces, as it should, to the 

variance np(1-p) of a binomial random variable. 

The formulas for E(X) and v(X) cn be generalized as follows for an 

arbitrary number a of letters in the alphabet, occurring independently with 

5 

	

	probabilities p19P2'"'a (which sum to 1). Suppose the subsequence S 

consists of L letters with respective probabilities p. ,p. ,  .... p. . Let 
'l 	'2 

k 
TI p 	be the product of the probabilities of the first k letters in S. 

1< 	 J m 	in 
:1 	L 

In particular, P L 
	T 

2 	
Pr(S) 

m
. 

may be generalized by substituting P L 

Then E(X) = nPL, and Eqns. (1) and (2) 

for p, and P k 
 for 

The contribution of Q to V(X) in Eqn. (2) motivates the following proce-

dure for ranking subsequences in order of their degree of overlap capability: 

Let Q be the binary number constructed from the L elements of Q in reverse 

order. 	Then subsequence S 1  with overlap capability a 1  has greater overlap 

capability than subsequence S2  with overlap capability Q 2  if  

Thus, for example, the following subsequences are listed in increasing order 

of overlap capability: ACCTT, ACGTA, ACCAC, AACAA, ACACA, AAAAA (for which Q 

5 = 10000, 10001, 10010, 10011, 10101, 11111, respectively). Using this ranking 

procedure, then for fixed L and n>1, v(X) increases with the degree of over- 

lap capability. 
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Examination of Eqn. (2) shows that for n>L, the maximum value or v(x) 
(achieved when all elements of Q are equal to 1), is greater than the variance 

np(1-.p) of a binomial random variable, and the ninimum V(X) (achieved when all 

elements of Q except Q are equal to 0) is less than np(1-p). As n 

L -1 
V(X)-np(1-p) —i 2np Z(4 k p) if Qi,l,...,l, and V-(X)-np(1-p) .- 

k-i 
_2(L_i)npL if Q:O,O,...,O,i. Thus, the difference between the maximum and 

L-1 	k 
minimum variance approaches 2np F  4 	as ii 	For example, these three 

ki 
limiting quantities are equal, respectively, to .023n, -.00781n, and .0313ri 

for L:2, and to .00266n, -.0000916n, and .00256n for 

4. DERIVATION OF THE PROBABILITY FUNCTION 

Using combinatorial theory, an algebraic formula can be derived for the 

probability generating function of X. This requires an appropriate applica-

tion, as described in the Appendix, of the combinatorial techniques in Goulden 

and Jackson (1983, Section 2.8.). From the probability generating function, 

an algebraic formula for f(x;L,M,Q), recursive in x and P4, can be obtained as 

shown below. A separate formula involving parameters L and H is required for 

each U. 

The probability generating function P(u,v) for f(x;L,M,Q) is 

P(u,v) = :t f f(x;L ,M,U)UHvx 
P4:0 x:O 

1-(v-1)h(u/4) 	 (3). 
[1-(v-1 )h(u/4)](iu)(u/4)L(vl) 

This formula involves the "prefix polynomial" h(x), defined as 

L- 1 
h(x) = F= 

1 xL_k 
k

(Note that h(p) is the 

probabilities described in Section 2.) 	In 

three times, can be generalized to be the 

the alphabet. This also holds for Eqns. (4 

um of the L-1 transition 

Eqn. (3), the "4", which appears 

number of equiprobable letters of 

), (5), and (8) below. 

. 

. 

4 

. 
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f(x;L,M,Q) is the coefficient of u Mx  in Eqn. (3). 	To obtain a 

formula for f, write the denominator of the right hand side of Eqn. (3) as 

1-D, where 

- 	0 = u - ( u/4)L + (u/4)Lv - (1-u+uv-v)h(u/4) 	- 	(4) 

1 

	

	
Then multiply both sides of Eqn. (3) by 1-0 and isolate P(u,v) on the left 

hand side to obtain 

f(x;L,M,Q)uMvX = 1-(v-1)h(u/4) + 	f(x;L,M,Q)uMvX 	(5) 
M0 x0 	 M0 x:O 

If 0 is written as 

L 	1 
0 	C ju 1 V 

i1 j=O 

so that C. 	is the coefficient of uv 	in Eqn. (A), then the coefficient 
M x ij 

i w 	of u V n Eqn. (5) is 

L 	1 
f(x;L,M,Q) f(x-j;L,M-i,Q) 	 (6). T jO 

This is obtained by applying the following boundary conditions: 

f(O;L,M,Q) = I if ft'L; 

f(x;L,M,Q) = 0 if ML and x)0 	 (7). 

The following general formulas for C., obtained by expanding and rear-

ranging terms in Eqn. (A), can thus be used in Eqn. (6) to obtain a formula 

for f(x;L,M,Q): 

For 01, define C 3  (i=1,...,L;j0,1) as follows: 

C10  

. 	c11 

	

L,0 	
(4Q1 
	

L 	
(8). 

	

CL1 	(1-4Q1)/4 	_CL,0 

4, 
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Also, if L> 2, then for k:1 to 1-2: 

C L - k,0 : (40 	-Q 
k+1 k 

c 	: (Q 4Q 	)/4L-k 
L-k,1 	k 	k+l 	'L-k,0 

Eqn. (6) is applicable for M:L,..., 	and x:0,...,M-L+1. 	If x:O, then terms 

involving the argument x-1 are equal to zero. Table 1 provides formulas for 

f(x;L,M,Q) for all possible Q's for 1:2 to L:8. 

Using the subsequence ACA as an example, so that L:3 and Q:1,0,1, the 

C's are obtained as follows: 
iJ 

1 

C :13 

C :: 
3/43 

C31 = _3/43 	 S 
20  : _1/42 

/42 

Therefore, from Eqn. (6), 

f(x;L,M,Q) = f(x;L,M-1,Q) - f(x;L,M-2,Q)/16 + 3f(x;L,M-3,0)/64 

+ f(x_1;L,M-2,Q)/16 - 3f(x-1;L,M-3,Q)/64 

as in Table 1. 

The formulas thus derived for f(x;L,M.Q) are recursive; f(x;L,M,Q) 

depends in general on f(x;L,M-i,Q) and f(x-1;L,M-i,Q) for i:1,...,L. (The 

proof of this follows from Eqn. (3) and from the fact that no term of the 

prefix polynomial h(u/4) can be of degree greater than L-1.) Thus, a computer 

program to calculate numeric values of f(x;L,M,Q) for x : 0 to an upper limit 

J needs to store an L by J-L array of probabilities. Alternatively, a recur- 5 
sive programming language such as Pascal or Algol can be used. 	In either 

S 
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case, initialization is performed using the boundary conditions of Eqn. (7). 

A Fortran program to compute f(x;L,M,Q), E(X), and V(X) given L, M, and the 

subsequence is available from the authors. 

- 	Eqn. (6) is valid for the binomial distribution (i.e., for L1 and 	1) 

if C10  = J and C 	 = J, yielding the recursion fcñmula
1,1  

if 	
f(x;L,M,Q) = 3f(x;L,M-1,Q)/4 + f(x-1;L,M-1,Q)/4 	(9). 

Note from Eqn. (8) that if L) 1, the only case in which C 10 = I and C11  = 

is when UL-1 1, in which case U 1  0 2 L-2 
...:Q 1, so that all remaining C .'s 

in Eqn. (6) are nonzero. 

Table 2 shows values of f(x;4,20,Q) for the three subsequences AAAA, 

ACAC, and ACGT, chosen to represent subsequences having "high", "medium", and 

"low" degrees of overlap capability, respectively. 

. 

. 
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5. EXAMPLES OF THE USE OF THE PROBABILITY FUNCTION 

IN EXACT AND APPROXIMATE SIGNIFICANCE TESTS. 

The 	availability 	of 	formulas for 	F(x;L.,M,Q) 	makes it possible to perform 

exact significance tests of the hypothesis of randomness, and the 	formulas 	for 

E(X) 	and V(X) 	provide the needed quantities for an approximate test. 	
As an ex- 

ample, an 	825-nucleotidelOflg 	sequence 	obtained 	from 	Georgetown 	University 

Medical 	Centers 	Nucleic 	Sequence Database and shown in Table 3 will be used. 

It 	is described in Dayhoff at al. 	(1983) 	as a 	'Middle 	repetitive 	(Alu 	family) 

genome 	fragment 	- 	human 	(length 825)." This intergenic material was one of 	14 

sequences examined in Gentleman at al. 	(1984). 

The 	subsequence 	CC 	occurs 	67 	times in this genome fragment. 	Under the 

hypothesis, the frequency of its occurrence in a sequence of length 825 	has 	an 

expected 	value 	of 	51.50 and a variance of 67.57. 	Table 4 shows probabilities 

and cumulative probabilities for frequencies from 30 through 70. 	(The 	complete 

range is from 0 through 824.) 	Using these probabilities, the significance level 

for an exact test of the 	hypothesis 	can ..be 	calculated 	as 	the 	sum 	of 	the 

probabilities 	for 	frequencies 	267, 	plus 	the 	sum 	of 	the probabilities for 

frequencies <36 	(these being all 	frequencies with 	probabilities 	less 	than 	or 

equal 	to Pr(67)). 	Thus, 	the significance level 	= .039 + .028 = .067. 

By identifying frequencies as clos, as possible to the .025 and .975 points 

of 	this discrete distribution, 	a 95% confidence interval 	is obtained; 	
its lower 

bound is between 35 and 36, and its upper bound is between 67 and 69. 

The 	usual 	approximate 	Chi-square goodness-of-fit test has sometimes been 

used to compare observed and expected subsequence 	frequencies. 	(For 	example, 

Smith 	it 	al. 	(1983) 	used 	this 	test 	with expected frequencies based on the 

overall sequence base composition.) The goodness-of-fit 	test 	sums 	the 	scaled 

squared differences between observed and expected frequencies. 	The two observed 

frequencies in the present example are 67 (the number of occurrences of CC) 	and 

757 	(the 	number 	of 	occurrences 	of 	other 	subsequences of length two). 	The 

resulting test statistic value is 4.976, so the approximate 	significance 	level 

for 	this 	test 	would normally be calculated as Pr('X1)4.976) 	= .0257, which is 

considerably smaller than the exact value of 	.0670. 	However, 	the 	goodness-of- 

fit 	test is Inappropriate here, due to differences, which remain even as n—', 

between f(x;L,M,Q) 	and the binomial distribution 	(as shown in Sections 3 and 4); 

when there are only two observed frequencies, the goodness-of-fit test statistic 

is equivalent to the square of a standardized observed bir'omiai(n,P) 	frequency. 

An 	appropriate approximate test statistic can be obtained by standardizing 
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the observed frequency of a subsequence using the correct variance (as given in 

Eqn. (2)), i.e., by using T' (x-np)/V(X) instead of I ( x _np)Z/ np(1_p)]. 

The central limit theorem for dependent trials can then be invoked (e.g., as in 

Feller (1950), p.  374, and in Shukia and Srivasta\Ta (1995)) and a A  approxima-

tion used for sufficiently large n. In the case of the x=67 occurrences of the 

subsequence CC, T3.5556, yielding a much more accurate approximate sig-

nificance level of Pr(X 11 >3.5556) = .0594. (Note that T'can be used in the 

more general case of an a-letter alphabet with probabilities that are not neces- 
I 

sarily equal.) 

Examining a longer subsequence, the observed frequency of the subsequence 

CCCC is found to be 6. The expectation and variance of the exact distribution 

are 3.21 and 5.23, respectively. The exact significance level is .153, and the 

approximate significance level using T is .223. (The approximate significance 

level using T would be .119.) In this case, the approximate test is not ac-

curate; the Chi-square approximation relies on expected frequencies being of 

about size five or larger, because f(x;L,NQ) is then more symmetric. 

This illustrates the fact that, for fixed n, the approximate test is less 

likely to be usable for a longer subsequence than for a shorter one, since E(X) 

S decreases as L increases. Fortuitously, computation of an exact significance 

level is considerably faster (and therefore cheaper) for a larger value of L 

than for a smaller one; both lower and upper tail areas are required to cal-

culate the P-value for a two-sided test, and when E(X) is relatively small, 

fewer values of #(x;L,M,Q) need to be calculated recursively before reaching the 

upper tail of the distribution. 

The sequence TTTTTT occurs twice in Table 3. The expected number of occur-

rences is .20, and the variance is .33. The significance level for the exact 

test is .042. 	Since the expected frequency is so small, an approximate test 

would not be used. 	(If it were, the resulting significance level would be 

.00181 for TO and .00006 for I.) 

As a final example, consider the subsequences TTSTTT and AAACAA, which oc- 

• 	cur six and five times, respectively. These subsequences are inverse comple- 

• 	ments of each other; each consists of the complementary nucleotides of the 

other, in reverse order. Each occurs much more often than would be expected; 

the respective exact significance levels are .12x10' and .31x10. Perusal of 

the locations of occurrence of these subsequences reveals that all six occur-

rences of TTGTTT are close together (beginning in positions 773, 778, 785, 7B9, 

and 797) , and that four of the five occurrences of AAACAA are close together (in 
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positioni 3, 361, 37, and 387). 	The two clusters of subsequences occur 

slightly more than 400 nucleotides apart in the overall sequence. This suggests 

the possibility that the sequence has a looped superstructure, stabilized by the 

bonding together of two regions which are about 400 nucleotides apart. 

6. CONCLUDING REMARKS. 

Formulas have been provided here, and methods described for obtaining any 

others which are needed, which permit means, variances, and probabilities to be 

calculated for distributons of nucleotide subsecuence frequencies. Exact sig-

nificance tests can be performed and confidence intervals calculated, or an 

approximate test can be used, to analyze patterns of nonrandomness in nucleotide 

sequences or subsequences. This can assist scientists in learning about the 

structure and functionality of the (sub)sequences. The exact methods are espe-

cially useful when the expected subsequence frequenc, and/or the sequence length 

is so small that an apprcxmate test is not usable. On the other hand, the 

approximate test can be used for the more general case where the letters of the 

genetic alphabet have hypothesized probabilities which are not necessarily 

equal. 

Significance levels from these tests can also be used to compare two or 

more sequences, as follows: For a given subsequence S, perform the significance 

test for each sequence and compare the P-values, thus comparing the deviation of 

the sequences from a common null hypothesis. Comparison of P-values instead of 

observed frequencies permits sequences of different lengths to be compared, thus 

avoiding problems of alignment. It also permits results for subsequences having 

different lengths or overlap capabilities to be compared, since the P-value is 

standardized according to each subsequences own frequency distribution. 

In analyzing patterns within a sequence, it will be natural to repeat these 

tests for numerous subsequences, in which case the analyst should bear in mind 

the usual caveats appropriate for multiple comparisons. One possible approach, 

in the spirit of Daniel (199), would be to use a 
XL

(or half-normal or normal) 

probability plot to analyze multiple values of the approximate test statistic T 

(or its square root, or its signed square root, respectively). 

When it is appropriate to assess the degree of departure from randomness, 

these concepts and methods can also be applied to the analysis of sequences of 

amino acids in proteins, and in fields other than molecular biology, e.g., in 

time series analysis and cryptography. 

It would be useful if future research could produce a generalzatiofl of the 

frequency distribution formulas to the case of unequal probabilities for dif- 



• 	ferent alphabet letters. 
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TABLE ii Formulas for f(x;L 1 M,Q) 
for All Possible Q s for L2 to L8 

For notational brevity, 4 (x;L,P1,Q) is denoted a(N,x). 
Formulas are applicable for ML, and x0,M-L+i. 
If 	0, terms involving the argument x-1 are equal to zero. 

L-2: Q-0 1 (e.g., S-AC)  
a M,x) 	- a(12,x)/16 

aCM- ,x-1) 
x) 	

/16 
a (M-1 1  

01 1 (e.g. 	S=AA) 
ahi,x = a(M-1,x)/4 	 - 

• 3a(M-2,x)/1 
• a(N-1,x-1)/4 - 3a(M-2,x-1)/16 

I 	L3: 	
g 	S=ACC) (e.., 	

a(M-3,x)/64 
Q=00,1 	

a(M-1,x) - 
a M,x) + a(M-3,x-1)/64 

Q1 0,1 (e.g., SACA) 
aM,x) 	a(M-i x) 

- a(M-,x)/1ó + 3a(M-3 x)/64 
+a(M-2,x-1)/iá-3a(M,X-1)/64 

01 1,1 (e.TM-1  SAAA) 
aM,x) - 	 ,x)/4 

+M-2,x)/16 + 3a(M-3,x)/64 
+ a(M-i x-1)/4 

3a(M-3,x-1)/64 

L4: 
00 0,0 1 (e.g. 	S=ACGT) 
aM,x 	a(F-i,x) -a(M-4,x)/26 

+ a(M-4 1 x-1)/256 
w 	 0=0 1,0 1 (e.. SACAC) 

aM,J = a(
q
-i,x) - a(M-2,x)/16 + a(M-3,x)/16 

- a(M-4,x)/2ó 
+ a(M-2,x-1)/16 - a(M-3,x-1)/16 + a(M-4,x-1)/26 

Q-1 0,0 1 (e.o. S-ACGA) 
aM,x - a(M-i,x) 

- a(M-3,x)/64 + 3a(M-4,x)/256 
+ i(M-3,x-1)/64 - 3a(M-4,x-1)/26 

01 1,1 1 (e.q., SAAAA) 
aM,x - 3acM-1,0/4 + 3a(M-2 x)/16 

• 3a(M-3,x)/64 + 3a(M4 1 x)/26 
• aCM-i x-0/4 - 3a(M-2,x-i)/1ó 
- 3a(M-,x-1)/64 - 3a(M-4,x-1)/26 

L: 
0-0 0,0 0,1 (e.g., SACGTT) 

ahi,x a a(M-1,x) - a(M-,x)/1024 
+ a(M-,x-1)/1024 

00 1,0 0,1 (e.g., SACGAC) 
ahi,,d - 

• 	 - a(M-3,x)/64 + a(M-4,0/64 
- a(M-,x)/i024 

• 	 + a(M-3,x-1)/ó4 - a(M-4,x-1)/64 
+ a(M-,x-1)/1024 

Qi0,00,i(e.g., SACSTA) 
acJl,x - a(M-1,x) 

- a(M-4,x)/2á + 3i(M-5,x)/1024 
+ a(M-4,x-1)/26 - 3a(M-5,x-1)/1024 
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l 0,1 0,1 (..a., S-ACACA) 

- &(M-2.x)/16 + a(P1-3,x)/1ó 
- £(M-4'x)/26 
• 3a(M-,x)/1024 
• a(M-2,x1)/16 
• i(t1-40-1)/26 - 3a(M-3,x-1)/1024 

01 1,0 0,1 (e.g., SAACA) 
ar1,x 	a(M-I,x) 

- a(M-3 0/64 
+ 3a(M-4

1
0I26 + 

+ a(M-3 x-0/64 
- 3a(M-4,x1)/26 

Q4 1,1 1,1 (e.g., S=AAAAA) 
aN,x 	3a(M-i,x)/4 

3a(M-2,x)/16 
+ 3a(M-3,x)/4 
+ 3a(M-4,x)/256 + 
+ a(N-1 x-1)/4 
- 3a(M-,x-1)/16 
- 3a(M-3,x1)/4 
- 3a(M-4,x-1)/26 

3a(M-,x)/1024 

- 3a(M-,x-1)/1024 

3a(M-5,x) /1024 

- 3a(M-5,x-1)/1024 

Q0,0,0,0,0,1 (e.g., SACGTAG) 
a(M,x) 	a(M-1,x) - a(M-6,x)/4096 

+ a(M-6,x-i)/4096 

00 0,1 0,0,1 (e.g., SACGCG) 
aM,x = a(M-1,x) - a(M-3 9 x)/64 + a(M-4,x)/64 

- a(tl-ó,x)/4O96 
• a(M-3,x-1)/64 - a(M-4,,-0/64 
• a(M-6,x-1)/4096 

Q0 1,0 0,0,1 (e.g., SACCCAC) 
a(M-1,x) - a(M-4,x)/26 + a(M-5,0/256 

- a(M-6
1
0/4096 

+ a(M-40-1)/256 - a(M-5,x-1)/26 
+ i(M-6 9 -1)/4090' 

00 1,0 1,0,1 (e.g., SACACAC) 
aM,x 	a(M-1,x) - a(M-2 x)/1ó + i(M-3,x)/1ó 

- a(M-4,x)/26 + aM-,x)/256 
- a(M-6 9 0/4096 
• a(M-2,x-1)/1 - a(M-3x-1)/16 
• a(M-4,x-l)/2 	- a(M-,x-1)/256 
• i(M-60-1)/4096 

01 0,0 0 9 0,1 (e.g., S-CTCA) 
•a(M-1,x) - a(M-,x)/1024 + 3a(P1-6,x)/4096 
+ (M-,1)/1024 - 3a(M-6,x-1)/4096 

Q.1 0,1 0,0,1 (e.g., S•ACAACA) 
- a(f1-3 x)/64 + a(P1-4,x)/á4 

- a(M-5,x)/1024 + a(M-6,x)/4096 
• a(M-3,x1)/64 - iUl-4,x-1)/64 
• a(M-5,-1)/lO24 - 3a(M-6,x-1)/4096 

01 1,0 0 1 0,1 (e.g., S=AAGTAA) 
aM,x 	a(M-1 x) - a(M-4,x)/256 	3a(P1-5,x)/1024 

+ 3a(tl-4,x)/4096 
+ (N-4 x-1)/26 - 3a(M5,x1)/1024 
- 3a(M4,x-1)/4096 

Q•t 1,1 1,1 1 (e.g. S.AAAAAA) 
• 
+ 3a(P1-2,x)/16 
+ 3a(M-3,x)/64 
+ /256  
+ 3a(M-,x)/1024 + 3a(M-6,x)/4096 
+ 
- 3a(1-2,x-1)/16 
- 3a(M-3,x-1)/64 
- 
- i(M-,x1)/1024 - 3&(M-6,x-1)/4096 
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Q-0 0,00,0,0,1 (e.g., S-ACGTACA) 
ahi,x - a(M-1,x) - a(M-7,x)/16384 

+ a(M-7,x-1)/16384 

QQ 0,1 0,0,0,1 (e.g., S=ACGTAC) 
aM,x 	a(l1-1,x) - a(M-4,x)/26 + a(M-5,x)/256 

- a(M-7,x)/16384 
• a(M-4,x-1)/256 - a(M-,x-1)/256 
• a(M-7,x-1)/1ó384 

0=0,1,0 0,0,0,1 (e.g., SACGTTAC) 
a(N,x = a(M-1,x) 

- a(M-5,x)/1024 + a(M-6,x)/1024 
- a(N-7,x)/1684 
+ a(M-,x-1)/1024 	a(M-6,x-1)/1024 

a(M-7,x-1)/16384 

0=1 0,0 0,0,0,1 (e.g., S=CGTC) 
ab'i,x 	a(M-1,x) - a(M-6,)/4096 + 3a(t1-7 x)/16384 

+ a(tl-á,x-1)/4096 - 3a(M-7,<-1)/1634 

01 0,0 1,0,0,1 (e.g., SAC6ACGA) 
aM,x 	a(M-1,x) 

- a(M-3,x)/64 + a(M-4,x)/64 
- a(M-6 x)/4096 
• 3a(M-,x)/1384 
• a(M-3,x-1)/64 - a(N-4,x-1)/64 
• a(M-ó,x-1)/409 - 3a(M-7,x-1)/1ó384 

0=1 0,1 0,0,0,1 (e.g., S=CAA4CA) 
a(M-1,x) 

- aM-4,x)/256 + a(M-,x)/256 
- a(M-6 0/4096 
+ 3a(M-',x)/16384 
+ a(M-4,x--0/256 - a(M-,x-1)/256 
+ a(M-6,x-1)/4096 - 3a(M-7,x-1)/16384 

0=1 0,1 0 1 1 9 0 9 1  (e.g., SACACACA) 
ahi,x 	a(M-1,x) 

- a(M-2,x)/1ó 
+ a(M-3,x)/16 
- (M-4,x)/26 + a(M-,x)/256 
- a(M-6,x)/4096 + 3a(M-7,x)/16384 
+ a(M-2,x-1)/16 
- a(M-3,x-1)/16 
• a(M-4,x-1)/256 - 
• a(M-6,x-1)/4096 - 3a(l-7,x-1)/16384 

0-1 1,0 0,0 1 0 9 1 (e.g., S-AACCCAA) 
• a(M-1,x) 
- a(M- 0/1024 
• 3a(M-

1
0/4096 + 3a(M-7,x)/16384 

• a(M-3 x-1)/1024 
- 3a(M4,x-1)/4096 - a(M-7,x-1)/16384 

0-1,1,1 0,0,0,1 (e.g., S=AAACAAA) 
• 	 a(M,x 	• a(M-1,x) 

- a(M-4 )/26 
+ 3a(M-,x)/1024 
+ 3a(M-6,x)/4096 
+ 3a(P1-7,x)/16384 
+ a(1-4 x-1)/26 
- 3a(M-,x-1)/1024 
- 3i(M-ó,x-1)/4096 - 3a(P1-7,x-1)/16384 
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01 1,1 1,1 1 1 (e.g. 	S.AAAAAAA) 

• 3a(M-2,x)/16 
• 3a(M-3,x)/64 
• 3a(M-4,x)/256 
• 3a(M-5,x)/1024 + 
• 3a(M-7,)/16384 
+ a(M-1 x-1)/4 
- 3a(M-,x-1)/16 
- 3a(N1-3,x-1)/64 
- 3a(M-4,x-1)/256 
- 3a(M-5,x-1)/1024 
- 3a(M-7,x-1)/16384 

L=8: 
Q0,0,0,0,0,O,O,1 (e.g., SAC3TGGTC) 

a(M,x) 	a(M-1,x) - a(M-8,x)/65536 
+ a(M-8,-1)/65536 

00 0,0 1,0,0,0 1 (e.g. SCGTAC6T) 
aM,x? 	a(M-,x) - abl-4,x)/256 + a(M-5,x)/256 

- a(M-8,x)/65536 
+ a(l¼1_4,x_1)/26 - a(M-5,x-1)/256 
+ a (M-8,x-1) /65536 

0=0 0,1 0,0,0,0 1 (e.g. SCTTCG) 
aM,x = a(M-I,x) - aM-5,x)/1024 	a(M-6,x)/1024 

- a(M-8,x)/65536 
+ a(M-5,x-I)/1024 - a(M-6,x-1)/1024 + a(11-8,x-1)/655:36 

0=0 1 ,0 0,0,0,0 1 (e.g. SACGTGTAC) 
= a(M-i,x) - abl-ó,x)/4096 4 a(M-7,x)/4096 
- a(M-8,x)/65536 
+ a(t1-6,x-1)/409 - a(M-7,-1)/4096 + 

0=0 1,0 0,1,0,0 1 (e.g. SACEACGAC) 
aM,x = a(P1-i,x) - ahl-3,d/64 + a(M-4,x)/64 

- a(M-6,x)/4096 + a(M-7,x)/4096 
- a(M-8,x)/65536 
• a(M-3,x-1)/64 - a('1-4,x-1)/64 
• a(M-6,x-1)/4096 - a(M-7,x-1)/4096 
• a(P1-8,x-1) /65536 

QaO 1,0 1,0,1,0 1 (e.g. SCACACAC) 
aM,x 	a(M-1,x) - aM-2 )/16 + a(M-3,x)/16 

- a(M-4,x)/256 + aM-5,x)/256 - a(M-6,x)/4096 
+ a(M-7,x)/4096 
- a(M-8,x)/65536 
• a(M-2,x-1)/16 - a(M-3 x-1)/16 
• a(M-4,-1)/256 - a(M-,x-1)/256 + a(M-6,x-1)/4096 
- (M-7,x-1)/4090 
+ a(M-8,x-1)/65536 

0.1 0,0 0,0,0,0 1 (e.g. SACCCCCCA) 
abi,xc - a(M-1,x) - 	M-7,x)/16384 + 3a(M-8 x)/65536 

+ a(M-7,x-1)/16384 - 3(1-8,x-1)/6556 

01 0,0 1,0,0,0 1 (e.g. S-ACGAAC9A) 
ah'i,x 

	

	a(I1-1,x) - ahl-4,x)/236 + a(M-5 )/256 
-a(N-7,x)/l6384 + 3a(M-B,x)/6553 
• a(M-4,x-1)/256 - a(tl-5,x-1)/256 
• a(M-7 x-0/16384 
- 3j(p1-6,x1)/65536 

01 01 0,0,0,0 1 (e.g. SACAGGACA) , 

a(P1-I,x) - ahl-5,x)/1024 + a(M-6,x)11024 
- a(t'1-7,x)/16384 + 3a(M-8 1 0/65536 
• a(M-5,x-1)/lO24 - a(M-6,x-1)/1024 
• a(M-7,>-1)/16384 - 3a(M-8,x-1)/65536 

01 10 0,0,0,0 1 (e.g. S4ACCCCA) , 

= a(P1-i x) - ab1-,x)/4096 + 3a(M-7,x)/16364 
+a(M-x)/65536 .  

+ a(M-6-1)/4096 - 3a(M-7,x-1)/16384 
- 3a(N-ê,x-1)/65536 

3a(M-6,x) /4096 

3a(M-6,x-l)/4096 - 

I'  

. 



Q-1 1,0 0,1,0,0 1 (e.g. SAAGAGAA) 
• 	 aM,x 	a(M-1,x) - aiM-3,x)/64 + 

- a(M-6 x)/4096 
+ 3j(M-,x)/1384 + 3a(M-8 x)/6336 
+ a(tl-3,x-1)/64 - &(1-4,x-i)/64 
+ a(M- x-0/4096 
- 3a(M-,x-1)/1384 - 3a(M-B,x-1)/65536 

Q=1,1,1 0,0,0,0 1 (e.g. 	SACGA) 
a(t1,x 	a ( M-I x) - aM-,x)/1024 

+ 3a(M-L,x)/4096 + 3a(M-7,x)/16384 
+ 3g(M-8,x)/636 
+ a(l-5 x-1)/1024 - 3a(M-6,x-1)/4096 
- 3a(P1-,x-1)/16384 - 3a(M-8,x-t)/36 

01 1,1 1,1 1 1,1 (e.g., SAAAAA) 
ah1-1,x)/4 

• 3a(M-2,x)/16 
• 3a(M-3,x)/64 
• 3a(M-4,x)/256  
• 3a(M-5,x)/1024 + 3a(M-6 x)/4096 
• 3a(M-7,0/16384 + 3a(M-6,x)/65536 
• a(M-t x-1)/4 
- 3a(M-,x-1)/16 
- 3a(M-3,x-1)/64 
- 3a(M-4,x-l)/256 
- 3a(M-,x-1)/1024 - 3a(N-6,x-1)/4096 
- 3a(M-7,x-1)/16384 
- 3a(M-B,x-1)/65536 

. 
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TABLE 21 	Va1ue of 	4(x;4,20
1
0) 	E(X), and V(X) 

for Q • 	1,1 	1,1; 	0,1,t,1; 	and 
AAAA, 

0 0 0,1 
and ACT) (e.g., icr 	ubequences 

PROBABILITY 

FREQUENCY AAAA ACAC ACGT 

0 0.9499E 00 0.9383E 00 0.9350E 00 
1 0.3772E-01 0.5723E-01 0.6366E-01 
2 0.9331E-02 0.4156E-02 0.1359E-02 
3 0.2288E-02 0.263E-03 0.9770E-05 
4 0.527E-03 0.1509E-04 0.1629E-07 
5 0.1318E-03 0.7665E-06 0.9095E-12 
6 0.3099E-04 0.3442E-07 0. 
7 0.7190E-05 0J.334E-09 0. 
8 0.1643E-05 0.4184E-10 0. 
9 0.3698E-06 0.9095E-12 0. 
10 0.8175E-07 0. 0. 
11 0.1773E-07 0. 0. 
12 0.3757E-08 0. 0. 
13 0.7749E-09 0. 0. 
14 0.1528E-09 0. 0. 
15 0.3001E-10 0. 0. 
16 0.457E-11 0. 0. 
17 0.909E-12 0. 0. 

E(X) .0641 .06641 .06641 
V(X) .1006 .07210 .06477 
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TABLE 3 Example of a Nucleotide Sequencei 
Middle repetitive (Alu family) genom. fragment - human. 

. 	Length 825. From Georgetown University Medical Centers 
Nucleic Acid Sequence Database. 

POSITION 	NUCLEOTIDES 

1- 50 CTCGAGGGAGGAGCCCGGGGCTGGGGTACGGAGGCCTCTGCCATCTTAG 
51-100 AGTAAAACAAGCAGGAGAGGCTGGGTGCGGTGGCTCATGCCTATAATCCC 
101-150 AGCACTTTAG6AGGCT3GGCGGGCAGATCCCT6AGGTCGGGAGTTCA 
151-200 GCCAGCCTGACCAACAGGGAGAAACCCCATCTTTACTAAAACTACAAAA 
201-250 TTAGCTGGGTGTGGTGGCACATGCCTGTAATCCCAGATATTCGG3AGGCT 
251-300 GAGGCAGGAGAATCGCTTGAACCTGGGAAGCAGAGGTTGCGCTGAGCCGA 
301-350 GATGGCACCATTGCCTCCAGCCTGCAACSGAGC6AACTCCETCTC 
351-400 AAAAAAACAAAAACAAAAAAATCAAAACAATCAAAAAAACAAGCAGGAGG 
401-450 GGCTCTGAGGTGCCTGCAACACCC4GGTACAATCCGTGGCCCTGAGGCCC 
451-500 ATCCGGGAGGGGTCTTTGCAGCTCTTTCAACCCCCAGCCCAGCATCC 
501-550 AAGGGCCCAGGGCAGGGAGACCTCAGCTGCCCTCAGAGCTCAGA 
531 -óOO ACAGAGGCAGAAATTAGCGGGGTGGGGCT6GGGAGGCTTCCTAGA 
601-650 AGACGTGTCTCCCGCCTTGCTGGC4CTGAGGCC7TG6GATGGGTCCTA 
651-700 CTGGGCCCCCACTGCCAGGGATGCGATCCGGCCCACTGCTGAAATCTGT 
701-750 GCTCCTGOACCCTCCCTCCTGTTCATGGGCCACAGGCTGTGAAACCCC 
751-000 GAGTCCTCCCAGGCGCAAGTTTTSTTTTGTTTTTTGTTTGTTTGCTTGT 
801-825 TTGTTTTTTGAGGTCTGCTCGTCA 
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TABLE 4: Values of f(x;2,82! a) E(X), and V(X) 
for Q • 1,1 and x3ó76 
(e.g., for Subsequence CC) 

CUMULATIVE 

30 0.0010 0.0028 
31 0.0016 0.0044 
32 0.0023 0.0066 
33 0.0032 0.0098 
34 0.0044 0.0142 
35 0.0059 0.0202 
36 0.0078 0.0280 
37 0.0101 0.0381 
38 0.0128 0.0509 
39 0.0158 0.0667 
40 0.0191 0.0858 
41 0.0227 0.1085 
42 0.0265 0.1350 
43 0.0303 0.1654 
44 0.0341 0.1995 
45 0.0377 0.2372 
46 0.0409 0.2781 
47 0.0437 0.3219 
48 0.0460 0.3679 
49 0.0476 0.4154 
50 0.0484 0.4638 
51 0.0486 0.5124 
52 0.0481 0.5605 
53 0.0468 0.6074 
54 0.0450 0.6524 
55 0.0427 0.6950 
56 0.0399 0.7349 
57 0.0368 0.7717 
58 0.0335 0.8053 
59 0.0302 0.8354 
60 0.0268 0.8622 
61 0.0235 0.8857 
62 0.0204 0.9061 
63 0.0175 0.9235 
64 0.0148 0.9383 
65 0.0124 0.9507 
66 0.0103 0.9610 
67 0.0084 0.9694 
68 0.0068 0.9762 
69 0.0055 0.9816 
70 0.0043 0.9860 

E(X) 	51.50 
V(X) 	67.57 
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S APPENDIX 

Derivation of the Probability Generating Function P(u,v) 

00 

Let P(u,v) 	a 	M v x,  where 8M,x is the probability of x 

occurrences of a specified string S of length L and overlap capability Q in a 

string of length H. The approach is to develop a generating function which 

counts the x occurrences of S as a substring, and to convert the result to a 

probability generating function. The derivation here is an application of the 

material in Goulden and Jackson (1983, Section 2.8), restricted to the special 

case of one distinguished substring, and developed for an alphabet N of n 

symbols. 

Let S be a non null string of length L. A cluster of length H and index 

40 	t is a string C with a distinguished subset of members Sk l ,Sk 29 ..., S kt  

and a distinguished set of substririgs T1'12''••Tt with the following 

properties: 

Each Ti is the string 5; 

The symbol Sk i  is the first member of T; 

The subscript k1 is 1, and kt = H-L+1, that is, the first and last L 

symbols of C are distinguished substrings; 

Any consecutive pair of substrings overlap; 

Every element of C occurs in at least one Ti. 

Note that not every substring of C which is identical with S need be distin- 

guished. For example, let S = ACACAC. Then a cluster of length 12 and index 

3 is ACACACACACAC, where the distinguished substrings begin in the first, 

S third, and seventh position. There is a string identical to S which begins in 

the fifth position, but this is neither distinguished nor counted in the index 

count. 
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To introduce the overlap information, the prefix polynomial is used. A 

prefix of a string S is a non-null string P such that there exist non-null 

strings X and Y such that S = PX = YP. Let {n1;n2,...nu denote the set of 

prefix lengths in S. Then the prefix polynomial is h(x) 	5 x 1 . Note that 

this definition coincides with that given in Section 4. 

Note that any cluster C of index t can be uniquely decomposed into an 

ordered set of t-1 prefixes and a copy of S, with each prefix beginning with a 

distinguished element and terminating just before the following such element. 

For the cluster given above, the decomposition is AC,ACAC,ACACAC. Conversely, 

such an ordered collection gives rise to a unique cluster of index t by rever-

sing the above procedure. 

Let CMt  denote the number of clusters of length M and index t 

relative to the string S. The cluster generating function C(u,v) for S is 

defined by 

C(u,v) 	C 	uM V t. 
M:O t:O 

In the following, we use the fact that the generating function for an 

ordered collection of objects is given by the product of the generating func-

tions for the objects; that is, if A and B are collections of objects with 

generating functions A and B respectively, then the collection of objects 

(a,b) where a é A and b 6 B is A B. For further details see Coulden and 

Jackson (1983). 

Leaa. Let S be a string of length L with prefix polynomial h(x). Then the 

cluster generating function for S is 

C(u,v) = uL v,C1_vhu. 

Proof. As noted above, a cluster of index t can be decomposed into an ordered 

	

collection of t-1 prefixes and a copy of S. The generating function for (s} 	S 
is 	and for the prefixes is vh(u), so the generating function for 

clusters of weight t is 



. 

	

( v h( u ))t 

Summing over all values of t yields 

C(u,v) = u Lv(vh(u))t 

as required. 
I 

To obtain the generating function for the number of occurrences of S as a 

substring of all strings of length F'1 from N, it is convenient to work with 

indexed strings. An indexed string I of length M and index t (relative to a 

string of length L) is a string of length M with a distinguished subset of 

entries sk l ,sk 2 , .... Skt and a distinguished set of substrings 

with the following properties: 

Each Tiis the string 5; 

5k1  is the first entry of T. 

Note that unlike clusters, we do not require that the first or last 

strings of length L be copies of S, nor must every element occur in a distin-

guished string. Also, adjacent distinguished subsets need not overlap. 

Let dM,t denote the number of indexed strings of length H and index t 

relative to S. Then the index string generating function for S is 

D(u,v) = 	 . dM,t um Vt. 

?10 t:O 

Lea. Let S be a string of length L with cluster generating function 

C(u,v). Then the indexed string generating function for S is 

D(u,v) = (1-nu-C(u,v)) 1  

where n is the nunber of alphabet symbols. 

As with clusters, indexed sets can be uniquely decomposed into ordered collec- 

• 	tions; this time the entries will either be a single element from N or a 

cluster. 	To obtain the decomposition, work from the beginning to the end, 
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examining each character and treating it as a single entry in the ordered cal- 

lection 	until 	a 	distinguished 	element 	Sk 	is hit. 	This 	will 	be 	a beginning 

of a unique cluster, 	which 	is then 	used as an 	entry 	in 	the 	collection. 	The 

scan continues until 	the end is reached. 	Conversely, 	any ordered collection 

of single elements and clusters gives rise 	to a uniue corresponding indexed 

sequence. 	Since there are n alphabet symbols, 	the generating function for the 

set 	of 	entries 	for 	each 	position 	in 	the 	collection 	is 	ne+C(u,v), 	and 	the 

generating 	function 	for all 	collections of length w is (
nu+C( u , v ))W. 	Adding 

over all w yields the result. 

Note that the introduction of symbols between clusters in the creation of 

indexed 	sets can 	introduce extra copies of S 	(which are not distinguished 
	in 

the 	cluster). 	Also, 	there 	may 	be 	undistinguished 	copies 	of 	S 	within 	the 

clusters 	themselves. 	Let 	I 	be 	a 	string 	of 	length 	M 	from N which contains 

precisely k 	substrings 	identical 	to S. 	By 	considering 	the 	construction 	of 

indexed 	strings, 	we 	see 	that 	I 	is counted 	in D(x,y) 	precisely once 	for 	each 

subset of the k copies of S. 	That is, D(x,y) is an "at least" generating 

function for the set of strings counted by the number of copies of S which it 

contains, in the sense of the principle of inclusion and exclusion (see, for 

example, Goulden and Jackson (1983)). 

In generating function form, the principle of inclusion and exclusion 

states that if f(z) is the generating function for the number of objects which 

contain "at least" k properties (in the above sense), then the generating 

function g(z) for the number of objects with exactly k properties is given by 

g(z) = f(z-1). Therefore if fM,x  denotes the number of strings of length 

H from N which contain precisely x substrings identical to 5, and 

F 	f 	uM v X (u,v) 	, 

MO x:O H,x 

then 



-3l 

F(u,v) 	(1 _nu-C(u,v-1)Y 1 . 

There are nM possible sequences of length H, so to obtain the 

probability generating function P(u,v), replace u by u/n in F(u,v). 	In 

particular, if n = 4, then 	
1-(v-1)h(u/4) 

P(u,v) = 	- 
L (v1) 

as in Section 4. 
e 

0 
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