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ABSTRACT 

This study deals with the distribution of mortality 

risks in Canada in the period 1975-77. The description is based 

on nonparametric estimates of probability densities of risks of 

death in five year age groups. These estimates are derived from 

small area, age specific mortality data after adjustment for 

sampling variability. 

Most variability in the mortality data represented 

variability in risks rather than instability in estimation from 

small populations. The variability in risks is represented in 

quantile life tables. These are collections of life tables, each 

of which is based on risk estimates at a fixed quantile of age 

specific risk distributions. 

Summary measures of the distribution of risks are 

provided by estimates of quantiles of expectation of life at 

birth and of median age at death. Interquartile ranges for life 

expectancy are estimated to be 3.2 years for males and 2.8 years 

for females. 
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1. Introduction 

This study is concerned with the statistical 

description of variability among small area, age specific 

probabilities of death q(x) in the age interval [x,x+n), 

conditional on survival to age x. In most cases, n equals five. 

The data, which are averages of annual data over the 1975-77 time 

period, comprise estimates q(x) for both sexes in each of 259 

geographic areas in Canada. The geographic units are census 

divisions (CDs) which correspond to counties or other 

subprovincial administrative units. The exact definition differs 

among provinces. 

The 259 CDs represent all regions in Canada with the 

exception of the Yukon and Northwest Territories and the most 

northerly part of Quebec (Nouveau-Quebec). Although the 

populations of many of the CD5 are large in statisticians' terms, 

they are generally smaller than demographers usually consider 

adequate for construction of life tables. Demographers often 

assume that populations of 100,000 or less provide unstable 

estimates of mortality probabilities. 

The study has two features which are not common in life 

table analysis. First, estimates of q(x) are assumed to be 

subject to variability which is analogous to sampling 

variability. Second, the observations are assumed to come from a 

population which has a heterogeneous distribution of mortality 

risks. Heterogeneity refers to differences in risk levels and 
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arises from differences among individuals (e.g., diet, life 

style, etc.). 

Each CD is treated as a sample of the Canadian 

population which is selected without regard to mortality 

conditions. Consequently, each q(x) is an average taken over 

individuals whose mortality risks are assumed to be 

heterogeneous. The sampling variance of q(x) is determined by 

variance of unobserved risks within CDs and by CD population 

size. There are marked differences in the sizes of CD 

populations. According to the 1976 census, the population totals 

of CDs in the study ranged from 1500 to 2.1 million. Thus, a 

description of the distribution of risk involves simultaneous use 

of q(x) estimates which are not equally reliable. 

The study is directed towards more fully describing 

mortality conditions within national populations. Within each age 

interval, nonparametric estimates of probability density 

functions of mortality risk are calculated. These estimates 

provide a flexible means of assessing inequality in mortality 

risks (e.g., by quantile based dispersion measures). 

As an outcome of density estimation, period life tables 

are constructed by linking the estimates of age specific risk 

that correspond to a given quantile. These are termed quantile 

life tables. This approach differs from the more conventional 

linkage of estimates of age specific risk corresponding to a 

geographically defined population. The quantile life tables are 

calculated for grouped ages (i.e., forming abridged quantile life 
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tables) . £kbridged quantile life tables serve to illustrate an 

improved description of mortality for a heterogeneous national 

population. For purposes other than illustration, quantile life 

tables by single years of age would be preferred. 

The emphasis in this article is on quantile life 

tables. A justification for basing them on CD data requires that 

allowance be made for differences in reliability among q(x). 

That is, the life tables should reflect heterogeneity in 

mortality, rather than the instability of small area estimates. A 

further requirement is that the variability among CD means be 

random, so that it is valid to describe the distribution of risks 

by a probability density. The two sections immediately following 

address these aspects of the estimation problem. Section 2 

describes the q(x) estimator and an approximation of its 

variance. In section 3, it is argued that geographic grouping of 

the data can provide a basis for estimating the distribution, of 

risks in the Canadian population as a whole. 

Estimation of the distribution of risks is in two 

stages: (1) section 4 describes adjustment of observations for 

sampling variability by a linear empirical Bayes procedure, and 

(2) smooth nonparametric estimates of the probability density of 

risks, by age, are obtained in section 5. Section 6 provides 

selected illustrative results for two male age groups. Section 7 

presents results derived from selected quantile life tables. 

Finally, concluding remarks are presented in section 8. 



2. Sampling Variability 

Ascribing 'sampling' variance to estimates of mortality 

probabilities may be controversial, if death registration is 

complete and census undercoverage is negligible. In that case, 

mortality rates might be regarded as exact values. This view 

makes no allowance for nonrepeating and essentially unpredictable 

factors influencing a population's mortality in a given time 

period (e.g., extremes of weather, etc.). Brillinger (1986) 

provides a rigorous basis for describing 'natural variability', 

and applies one model to the mortality of the Canadian female 

population, 1926-82. A variety of alternative models are 

presented in the discussants' comments following Brillinger's 

paper. 

Observed values q(o)j for the j'th CD are represented 

following Chiang (1972) as (using actuarial notation): 

q(x)j = D(x)/ ( I 	+ (n-a(x)) D(x) 	I I n 

= 	 (1) 

where, nD(x)j are average annual deaths in the interval 1975-77 

to those aged x to x+n, P(x) is the 1976 census population, and 

a(x) represents average years lived in the age interval by a 

person who died in the interval. The denominator in Eqn. 1 is an 

estimate of the annual population exposed to risk. In the 

remainder of the paper, K(x) will be treated as if it were the 

true value. 

The counts of deaths by age and CD were obtained from 

special tabulations provided by Health Division, Statistics 
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Canada. Population counts were obtained from the 1976 Census 

database. Note that population counts have been randomly rounded 

to multiples of five, as required for public use census 

tabulations. 

For age groups [0,1) and :1,5), a(x) was derived from 

abridged male and female life tables for Canada, 1975-77 (Nagnur, 

1986) . For all other age groups, a(x) was assumed to take the 

value 2.5 (i.e., assuming a uniform distribution of deaths). The 

latter represents a first approximation. Other, more 

sophisticated, approximations are available (see, for example, 

Keyfitz and Frauenthal (1975)), but the appropriateness of these 

methods applied to small populations that are subject to 

substantial migration can not be readily evaluated. Consequently, 

only a first approximation is employed in this study, a strategy 

advocated by Hoem and Jensen (1982) and others. 

Hereafter the subscript n, denoting the width of the 

age interval, is dropped and notation representing dependence on 

age is eliminated to simplify expressions. All subsequent 

analysis applies independently to each age interval. 

A statistical model of the variability of qj can be 

expressed in the following terms. Let Qjj  be a Bernoulli random 

variable representing possible mortality outcomes for the i'th 

individual in the j'th CD in the appropriate age interval. Qj 

takes the value 1 (representing a death) with probability qjj  and 

the value 0 with probability l-q1. Thus, qjj represents a 

personal risk of death. 



The expected count of deaths in the j'th CD is given by 

the sum (over i) Of personal risks The observed count (i.e., D) 

corresponds to the sum of realizations qjj (taking value 1 if the 

person died and 0 otherwise) of the random variable Q13-  so that 

Eqn. 1 provides an estimator of average risk. The true variance 

of the observed count (assuming independent risks) is given by: 

Var(D1j) = 	q1  (1 - qjj)' 	 (2a) 

which may be rewritten as: 

Var(D) = K1  q.j (1-q.) - 	(qjj - g.j)2, 	(2b) 

where q.j is the average of personal risks. Eqn. 2b shows that a 

binomial variance of D gives the maximum variance among all 

distributions of Kj personal risks with the average q•j•  The 

accuracy of the binomial approximation may be improved by 

reducing the width of age intervals, as long as Kj remains large. 

The result depends on all qjj  becoming small in the limit. Note, 

however, that the assumption of independent risks may be too 

strong. 

The remainder of this paper will concern itself with 

subsequent stages of analysis, under the assumption that the 

binomial approximation is adequate. Then, the approximation to 

the sampling variance of qj is q(1-q)/K1. Note that differences 

among K (i.e., sample size) contribute to differences in 

reliability among q1, and that is the basis for describing the 

variance component as 'sampling variance'. 
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3. interpreting CD Mortality Differentials 

The construction of regional life tables and the 

presentation of mortality data in atlases can give the impression 

that it is appropriate to treat geographically distinct 

populations as if they were closed to migration or as if 

mortality differentials somehow depend directly on region. But, 

since the geographic boundaries of CDs are determined without 

reference to mortality conditions, differences among qj  do not 

represent systematic differences among CD populations. 

Even where some mortality risk factors are clearly 

associated with geography, it does not necessarily follow that 

geography provides an important basis for stratifying the 

population at risk (i.e., forming subpopulations with relatively 

homogeneous risks). To the extent that the risk factors involve 

personal habits or life style, they can be expected to vary 

substantially within CD populations. 

One illustration of the issue is the case of malignant 

cutaneous melanoma. Cumulative exposure to the sun is a risk 

factor in some skin cancers, and purely geographic factors such 

as altitude and climate may be directly relevant. However, 

overriding influences in the case of melanoma involve individual 

sensitivity and interinittency of exposure. Consequently, 

homogeneous risk strata could be more accurately represented in 

terms of occupation (indoor workers at greater risk than outdoor 

workers), sensitivity (fair skin, tendency to burn, etc.), and 
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socioeconomic status (recreational tanning, winter vacations, 

etc.), than solely in terms of geography (Elwood et al. (1985)). 

The characteristics of individuals, whose membership 

in one CD population rather than another is the outcome of 

arbitrary grouping, are a source of non-systematic variability 

among estimates of average risk. The grouping may correspond to a 

random partition of the Canadian population. Then, the 

distribution of CD averages will reflect the distribution of 

risks of typical individuals in the national population. That is, 

a probability density is an appropriate description of the 

distribution of CD averages, since the source of variability has 

a frequency interpretation. 

4. Linear Empirical Bayes Adjustment for Sampling Variability 

Linear empirical Bayes procedures (LEB) may be used to 

estimate vectors of random means. A simple form of LEB procedure 

can be represented as estimation of a random parameter vector 0 

by regression on a vector of observed data y (Robbins, 1983). The 

goal is to minimize E( ø(y)-ø )2,  where 0(y) is a linear function 

of y estimating 0. In the present application, LEB procedures 

involve shrinking each qj toward the centre of the distribution. 

The magnitude of shrinkage is large, if the sampling variance of 

a given qj is large (i.e., providing an adjustment for sampling 

variability). 

Shrinking estimates in the direction of their overall 

average provides a reasonable compromise between using the 

overall average to represent every CD (i.e., effectively assuming 
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that variance between CDs is due to sampling variability) or 

accepting each CD estimate without modification (i.e., 

effectively assuming that CDs represent unrelated populations). 

A variance stabilizing transformation is employed so 

that each qj will have (asymptotic) sampling variance independent 

of q. 3 . Variance stabilization is given by Anscoinbe's (1949) 

modification of the arcsin transformation: 

tj = 2 arcsin(4(Dj + 3/8)/(K1 + 3/4) ). 	(3) 

Anscombe's modification gives added stability for CDs with small 

K, but its effect is negligible for most CDs in this application. 

Similar use of an arcsin transformation applied to binomial data 

in an LEB context is found in Efron and Morris (1975). 

Variability among CD averages is represented in the 

model: 

t = t. + (tj - t.) + Uj = t. + e1, 	(4) 

where, 	tj = 2 arcsin(4q. 	. 

Note, Var(e 3 ) = v + 1/K, where l/K 	represents binomial 

(sampling) variance of Uj given the arcsin transformation and v 

represents variance in excess of sampling variance (i.e., 

variance among CD deviates (t1-t.)). Further note that 

Cov(t 1  ,t)=v. 

Estimates of t. and v are obtained iteratively. The 

estimate t. employs the inverse of the estimated variance of each 

tj as a weight: 

(t wrnj 
) / 	Wtmj , 	 ( 5) 
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where vrnj = 1/( V + 1/Kj ) with summation over m CDs. Note that 

if V were large enough the weights would be nearly equal (i.e., 

approximately independent of K). 

An estimate of v may take the same form as would a 

maximum likelihood estimate assuming normality with correction 

factor m/(m-1). A convenient computational form is: 

= [m/(m-1)] 	[ (tj-t) w(Jj j 2  / 	WVj 	 (6) 

where Wv3  = [1/(1 + 1/(vK))] with vj +1  a current estimate and 

vi the previous estimate. Note, E(v) = v whether the deviates 

(t-t) are normal or otherwise. Given a starting value for t., 

Eqn. 6 may be solved iteratively. Then t is estimated from Eqn. 5 

with new weights, and the cycle is repeated to convergence. 

Table 1 presents selected results of the variance 

computations. The table shows coefficients of variation (CV) and 

percentages of variance in excess of sampling variance (i.e., 

termed % Excess) for each age group. These are summary measures 

which provide a comparison of standard non-sampling deviations to 

the average and excess variance relative to sampling variance, 

respectively. CVs range between 8% and 28%, indicating that 

deviations from the average are typically substantial relative to 

the average. With the exception of ages 0-1, the % Excess values 

are all greater than 70% (i.e., indicating that most of the 

variability exhibited in the data is non-sampling variability). 

These results clearly indicate that there are important 

differences among the mortality levels exhibited in the CD data. 
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Correspondingly, the overall average is not a uniformly adequate 

indicator of risks experienced in the population. 

Standard LEB estimates of risk (q') may be obtained 

from: 

t' = 2 arcsin(fj) = t + [v / ( V + l/l()] ej i 	(7) 

where the shrinkage factor applied to ej estimates the ratio of 

Cov(t 1 t) to Var(t) (i.e., analogous to a regression slope). 

Extending the regression analogy, residual variance Var(t'-t1) 

may be expressed as Var(t) - Cov(t,t) 2/Var(t) and is 

estimated by [V / (V + 1/K1)) (1/K1). 

A number of authors (e.g., Louis (1984) and Gayer and 

O'Muircheartaigh (1987)) have expressed concern that standard LEB 

estimators shrink too far. For example, the observation that the 

sample variance - t) 2/-1 is less than v implies that the 

empirical distribution function (EDF) of t'1 will not approximate 

the EDF of t. Louis has proposed a restricted LEB estimator 

which provides an approximation of the EDF of t that minimizes 

distance from the standard LEB estimates (i.e., minimizing 

wc (t*_t)2 ): 

tj = 2 arcsin(pfj) = [WC1/(WC1+d1)] t' j  + [d2/(wC1+d1)], 	(8) 

where WC1 is an estimate of 1/Var(t'-t). 

The parameters d1 and d2 are lagrangian multipliers 

chosen so that the sample average t. = tj/m and the sample 

variance .(t* 1 _t*.)2/m_1 match t and v, respectively. Values of 

d1 for each sex and age group were obtained by a secant 

algorithm. At convergence approximate values of d1 gave sample 
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standard deviations that differed from v by less than 0.00001 

(i.e., less than 0.01% error in all cases). Parameter d 2  given d 1  

was calculated by rearrangement of Eqn. 8 and provided sample 

averages that agreed with t exactly in each case. 

The restricted LEB estimates t 	are reasonable 

estimates of risk quantiles, in as much as they are each close to 

the corresponding standard LEB estimate and agree closely with 

the estimated mean and variance of t 3 . Thus, the t provide a 

basis for approximating probability density functions of 

mortality risk given adjustment for differences in the 

reliability of qj. 

5. Risk Density Function Estimates 

Non-parametric estimation of a probability density 

function of mortality risk is intended to provide an indication 

of the characteristics of the distributions that would have to be 

accounted for in an appropriate parametric model. In that sense, 

this stage of analysis is exploratory. However, density 

estimation can also provide pseudo-likelihood location and scale 

estimates of mortality risk, and aid interpolation to equally 

spaced risk quantiles. 

The goodness of fit of a simple parametric reference 

model of t*  may be assessed from the linearity or lack of 

linearity in the association between t order statistics and 

expected reference quantiles. In the present application, the 

reference cpiantiles (denoted hereafter as z) are from a beta 

density function. The beta density has the form: 
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f{z} = I Z 
b-1 (lz)t 	] / Beta(b,c), 	 (9) 

where Beta(b,c) is the beta function. Beta densities can 

accommodate a wide variety of distributional shapes and are 

suitable for modeling bounded random variables (t*  is bounded by 

zero and IT ). The parameters b and c are chosen to match t/11 and 

Silverman (1985) describes a smoothing cubic spline 

algorithm for nonparametric regression which will be used here to 

provide both smooth estimates of t and smooth estimates of first 

derivatives dt*/dz.  The algorithm minimizes the vector function: 

(1-h) (t*_t*(Z))T  W  [t*_t*(z)] + h t*( z)2 dt*( z), (10) 

where t is a vector of order statistics, t*(z)  is a vector of 

fitted values (from regression on z), t*11 represents second 

derivatives of the fitted values, and W is a diagonal matrix of 

weights. The derivatives dt*(z)/dz  estimate the ratio of the 

(known) probability of z to the probability of t*(z).  Thus, non-

linearities in the association between t and z can be 

represented by an empirical density differing from the fitted 

beta density. 

The parameter h in Eqn. 10 is a smoothing parameter 

that differentially weights local accuracy and global smoothness. 

As h approaches 1.0, the algorithm represents the relation 

between t and z as a location-scale transformation (i.e., 

linearity implies t*1(z)=0).  As h approaches 0.0, the algorithm 

implicitly includes as many parameters as there are observations 

(i.e., providing an interpolation where t*_t*( z)0). An 
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appropriate value of h can be obtained by minimizing cross-

validation errors (Silverman, 1984). 

As the fitted values are estimated quantiles, W is 

available from the inverse of estimates of t*(z)  variances: 

Var(t*(z)) = s 2  [ (p(1-p)) / (in f(t*(z))2) 1 	 (11) 

where p is an appropriate EDF estimate, in is the number of 

observations, and s 2  is a scalar (Parzen, 1979) . The probability 

ordinates f(t*(z))  are obtained from the probability ordinates of 

z divided by the corresponding estimate of dt t (z)/dz. Thus, the 

spline smoothing algorithm can be iterated, updating W each time 

from improved estimates of f(t*(z))  and s2 . Minimization of 

cross-validation errors and iterative use of Eqn. 11 led to 

values of h (for each age group) that were in the range 0.76 to 

0.99. 

Details of similar use of order statistics and model 

quantiles for nonparainetric density estimation are found in 

Bofinger (1975) and Parzen (1979). The use of spline smoothing is 

justified by the interpretation of the spline as a moving average 

(kernel) smoother with a local bandwidth proportionate to the 

local variance (Silverman, 1984). 

The estimates t*(z)  are subsequently employed to 

construct life tables. For these purposes, q*  is obtained by 

inverting the arcsin transformation (i.e., q*=( sin ( t*( Z )/2 )]2 ) 

and estimates of the probability density function of 
q*  are 

obtained by applying the Jacobian of the inverse transform to 

f(t*(z)) 
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6. illustrative Results 

In this section, intermediate results are presented 

which illustrate the analysis. Figure 1 provides a plot of q 

versus q*  for males in age groups 0-1 and 50-54. These age groups 

were chosen because the distributions were well separated, but 

not so much as to completely obscure detail (i.e., by reducing 

the resolution of the plot), corresponding plots of empirical 

density ratios are presented in Figure 2. The density ratios, 

estimated from the smooth first derivatives obtained above, 

emphasize differences that may exist between empirical mortality 

risk density functions and transformations of the fitted beta 

density functions. In that sense, the density ratios aid an 

evaluation of goodness of fit. Note that the plotted density 

ratios have been adjusted for the constant scale factor.  'r. 

A general index of the effects of shrinking and 

smoothing can be provided by the slope of a resistant line 

fitting qj  as a function of q. The slope for males aged 0-1 is 

1.33 which indicates that the dispersion of unadjusted mortality 

risks is typically 33% greater than the adjusted. The 

corresponding slope for males aged 50-54 is also 1.08. The 

maximum slope for males is 1.33 (ages 0-1), while the maximum for 

females is 1.21 (ages 35-39). The corresponding minimum values 

are 1.03 for males aged 20-24, and 1.06 for females aged 65-69. 

The effect of the adjustments on the dispersion of mortality risk 

estimates is not large, an observation which is not consistent 
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with the assumption that small area mortality estimates are 

generally unstable. 

Figure 1 illustrates the effects of shrinking and 

smoothing on the qj. In age group 0-1, the upper tail (including 

seven or more possible outliers) has been drawn in substantially. 

Mote that this age group has the smallest proportion of non-

sampling variance of all age groups, as indicated by the % Excess 

values in Table 1. Consequently, this age group is more strongly 

influenced by shrinking than other age groups, as indicated by 

the resistent line slope above. 

Figure 2 provides an indication of the qualitative 

differences there might be between the true distribution of 

mortality risks and the beta density that was chosen as a 

reference distribution. For example, density ratios for males 

aged 50-54 at generally close to 1.0. Thus, for this age group, 

the beta density may provide an adequate probability model. 

Perhaps more to the point, a two parameter (i.e., mean and 

variance) model appears adequate to describe the distribution of 

mortality risks for this age group. By contrast, density ratios 

for ages 0-1 suggest mortality risks among infants that are less 

skewed and have shorter tales than would be represented in a beta 

density. This is implied by the shape of the density ratio 

function, that is by the peak in the centre (values > 1.0) and 

low values (values < 1.0) in the tails. Density ratios similar to 

males aged 0-1 (i.e., indicating a lack of fit) are more common 

among other age groups than are density ratios similar to males 
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age 50-54. This would imply that three or four parameters may be 

required to approximate the distribution of mortality risks for 

most age groups. 

The results presented here are sensitive to the 

shrinkage parameters in Eqn. 8 (i.e., d1 and d2) and to the 

choice of the smoothing parameter in Eqn. 10 (i.e., h). Thus, 

while the results may suggest that a four parameter model would 

be more appropriate tha a two parameter model, they do not 

provide a basis for significance tests (e.g., likelihood ratio 

tests). 

7. Quantile Life Tables 

Period life tables represent mortality conditions in 

terms of completed synthetic life times (e.g., forming survival 

curves from the product integral of age specific survival 

probabilities (l-q)). Quantile life tables are a generalization 

of period life tables constructed on sections through the 

smoothed age specific mortality distributions of q*•  These 

sections link corresponding quantiles of different age groups. 

The resulting survival curves can be used to assess variability 

in duration of life (i.e., life expectancy at birth, or the 

median age at death). 

Table 2 provides a comparison of previously published 

mortality probabilities (Nagnur, 1986 - termed AGGREGATE 

estimates in Table 2) with estimates employing the smoothed CD 

mortality probabilities and the empirical density functions. This 

comparison is intended to validate the life table results 
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presented here by demonstrating that the estimates are 

comparable in magnitude to more conventional estimates. Moreover, 

for most age groups, the order of MEAN, MEDIAN, and MODAL values 

clearly indicates positive skewness in the risk distributions. 

However, none of the estimates in Table 2 are strictly 

comparable as estimates of the same measure of location. In 

particular, the AGGREGATE and MEAN estimates differ in as much as 

the former may be represented as a weighted average ofqj with Kj 

as weights and the latter is related to a weighted average with 

the reciprocals of empirical variances as weights. A weighting 

scheme similar to that employed in Eqn. 5 could result in 

markedly smaller differentials among weights compared with 

differentials among population sizes. Thus, the observation that 

estimates employing CD data are frequently higher than the more 

conventional AGGREGATE estimates might imply a bias in the 

AGGREGATE estimates. Because of the differences in these 

particular estimation procedures, the issue of which estimator 

may have the greater bias is too complex to resolve here. 

Nevertheless, weighting data by population size may produce 

inappropriate results. 

Table 3 provides estimates of average and median 

duration of life from selected quantile life tables. These 

suggest that the variability in risks experienced within the 

Canadian population is consistent with a wide range of durations 

of life. Partial verification of these results is provided by 

comparing the low tail estimates to a group within the Canadian 
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population that is known to have had high mortality in the same 

time period. The expectation of life in the Registered Indian 

population in 1976 (representing about 1% of the Canadian 

population) was 60 years for males and 66 years for females (Rowe 

and Norris, 1985) . Estimates based on quantile life tables are 

less extreme than the estimates for the Registered Indian 

population, which may indicate that the quantile estimates are 

conservative. 

Table 3 provides a perspective on recent Canadian 

mortality trends. Over the past two decades, life expectancy in 

Canada has been increasing by at least one year over each five 

year time interval. Such increases are not large in comparison to 

the quantile ranges in Table 3. As such, it is worth asking 

whether these trends result from general improvements in health 

or from improvements that are specific to a part of the 

population. That is, would risk distributions from earlier time 

periods be shifted upwards or would their upper tails be 

stretched relative to the 1976 distributions? The distinction has 

bearing on our expectations for future trends in mortality. 

Quantile life tables serve to focus attention on two 

elements of the description of mortality conditions in 

heterogeneous populations. That is, on the need to allow for 

differences among individuals of the same age, and for 

differences that might exist in the same group of individuals at 

different ages. Survival curves may be constructed by specifying 

both a distribution of risk at each age and specifying a path 
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through the succession of risk distributions. Presumably, smokers 

who stop smoking follow a different path than smokers who do not. 

Quantile life tables represent paths through the risk 

distributions that are in a sense determined at birth. 

8. Discussion 

The key firidinc is of this study might be summarized as 

follows: 

Most of the variability among small area, age specific 

mortality probabilities reflects variability in mortality risks, 

rather than instability in small area estimates. 

Differences among CD averages are large enough to be of 

importance for descriptive or policy purposes, even after 

adjustment for sampling variance and after smoothing. For 

example, recent national mortality trends represented by changes 

in life expectancy might reflect contraction in the tails of the 

risk distributions, rather than shifts at the centre. 

(C) Extreme quantile life tables provide a direct 

description of the range of mortality risk in a heterogeneous 

population by representing the best and worst synthetic life 

times that are consistent with the data. Quantile life tables 

also provide estimates of dispersion near the centre of mortality 

risk distributions. 

The interpretation of these results depends on the 

assumption that CD populations could be representative samples of 

individuals with independent risks. This view is very different 

from one which explicitly or implicitly assumes region specific 
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effects. However, it is also a view which more nearly accords 

with mortality conditions in which contagious disease plays a 

relatively minor role while life style plays a major one. 

These results might provide encouragement for further 

analysis of finely partitioned mortality data. Extensions might 

make use of partioning variables that can not be viewed as non-

systematic (e.g., marital status), in addition to use of finer 

geographic resolution. But, for the present, replication of this 

work over a number of time periods might be the most promising 

extension. 
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TABLE 1 

Summary Measures of Variability 
in Census Division Moitality, Risk 

(Arcsin Transforms t 	of qj) 

MALES FEMALES 

AGE Coefficient 	% Excess Coefficient 	% Excess 
GROUP of Variation of Variation 

0-1 14.7 50.1 16.3 50.1 
1-4 28.4 82.1 26.2 74.6 
5-9 24.8 77.8 27.5 76.1 

10-14 24.7 79.7 27.3 76.0 
15-19 23.0 91.3 25.0 81.5 
20-24 25.4 92.8 27.3 81.0 
25-29 21.4 86.7 26.0 78.7 
30-34 20.5 84.0 24.0 76.9 
35-39 19.1 82.7 20.2 73.6 
40-44 16.4 82.7 16.8 72.3 
45-49 13.7 83.5 17.6 80.7 
50-54 11.5 84.2 14.3 78.5 
55-59 11.3 87.6 13.2 81.9 
60-64 9.6 87.8 12.1 82.7 
65-69 8.7 86.7 12.5 84.9 
70-74 9.3 89.5 9.7 80.6 
75-79 9.0 88.2 10.1 75.7 
80-84 8.2 84.6 11.1 88.0 
85-89 9.2 85.0 9.1 77.7 

Coefficient of variation = 	100,[/ 

% Excess - Variance in Excess of Sanpling Variance as a Percent 
of Total Variance 	= 100 (in v)/ 	(v + 	l/I() 

t - estimated average, v 	- Non-sampling variance, 
- population size, m - 259 Census Divisions 
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Table 2 

Comparison among Location Estimates 
for Mortality Probabilities q 

AGE AGGREGATE MEAN MEDIAN MODAL 
MALE S 

0-1 0.0141 0.0149 0.0146 0.0143 
1-4 0.0032 0.0042 0.0039 0.0034 
5-9 0.0023 0.0033 0.0032 0.0029 
10-14 0.0021 0.0030 0.0028 0.0025 
15-19 0.0075 0.0092 0.0087 0.0077 
20-24 0.0093 0.0117 0.0111 0.0099 
25-29 0.0074 0.0092 0.0088 0.0081 
30-34 0.0078 0.0098 0.0095 0.0089 
35-39 0.0107 0.0123 0.0118 0.0110 
40-44 0.0164 0.0183 0.0178 0.0169 
45-49 0.0273 0.0284 0.0279 0.0270 
50-54 0.0439 0.0442 0.0437 0.0428 
55-59 0.0693 0.0694 0.0687 0.0675 
60-64 0.1053 0.1050 0.1054 0.1068 
65-69 0.1557 0.1507 0.1499 0.1486 
70-74 0.2281 0.2224 0.2219 0.2224 
75-79 0.3234 0.3179 0.3165 0.3174 
80-84 0.4508 0.4467 0.4453 0.4459 
85-89 0.5989 0.6214 0.6207 0.6131 

FEMALES 
0-1 0.0114 0.0123 0.0120 0.0115 
1-4 0.0025 0.0035 0.0033 0.0032 
5-9 0.0015 0.0024 0.0023 0.0020 

10-14 0.0013 0.0020 0.0018 0.0016 
15-19 0.0026 0.0036 0.0034 0.0030 
20-24 0.0027 0.0036 0.0034 0.0030 
25-29 0.0028 0.0036 0.0034 0.0028 
30-34 0.0038 0.0047 0.0044 0.0039 
35-39 0.0059 0.0072 0.0070 0.0067 
40-44 0.0091 0.0103 0.0101 0.0097 
45-49 0.0152 0.0151 0.0147 0.0144 
50-54 0.0218 0.0227 0.0225 0.0220 
55-59 0.0339 0.0342 0.0338 0.0330 
60-64 0.0512 0.0513 0.0511 0.0515 
65-69 0.0800 0.0795 0.0794 0.0804 
70-74 0.1267 0.1282 0.1279 0.1287 
75-79 0.2010 0.2037 0.2024 0.2010 
80-84 0.3222 0.3318 0.3324 0.3337 
85-89 0.4866 0.4965 0.4919 0.4817 

AGGREGATE - as published in Nagnur (1986) - based on the ratios 
of total deaths to total population. 

MEAN, MEDIAN, MODAL - as determined by empirical Bayes estimates 
of mortality risk and empirical probability densities. 



TABLE 3 

Quantile Estimates of Duration of Life 

Quantile Life Expectancy Median Age 
at Birth at Death 

MALES FEMALES MALES FEMALES 

1% 63.4 71.4 68.9 77.0 
5% 65.5 73.4 70.5 78.4 

10% 66.5 74.3 71.2 79.1 
25% 68.2 75.7 72.5 80.2 
50% 69.8 77.1 73.8 81.1 
75% 71.4 78.5 75.2 82.1 
90% 72.8 79.7 76.4 83.0 
95% 73.7 80.5 77.1 83.6 
99% 75.3 82.0 78.4 84.8 

MEAN 69.6 77.0 73.7 81.0 
MODAL 70.2 77.4 74.0 81.2 
AGGREGATE 70.26 77.70 73.8 81.3 

MEAN, MODAL estimates obtained from mortality probabilities in 
Table 2. 

AGGREGATE - life expectancy as published in Nagnur (1986)-
median ages at death interpolated from the published 
survivor curve. 
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