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ABSTRACT 

Microsimulation models allow one to study the behavior of a large population over time. At 
Statistics Canada, health characteristics and risk factors are being added to a demographic and 
labor force model of the Canadian population. This paper describes a method for obtaining 
multivariate transition probabilities between states for use in advancing individuals in simulated 
time. The lack of longitudinal data means that these probabilities must be derived from 
cross-sectional data. The use of transition probabilities by the microsimulation model has the 
effect of producing smoother, more realistic, logically possible life histories. The probabilities 
are constrained to maintain consistency with the cross-sectional distributions. The constraints on 
the probabilities may be expressed as those of the transportation problem in network flow theory. 
The objective function in this special type of linear program is chosen to discourage 
unrealistically large or frequent changes of state across time. Canada Health Survey data were 
used to generate multivariate transition probability arrays for smoking, blood pressuie, 
cholesterol, and body mass index, all thought to be important risk factors for coronary heart 
disease. 

1. INTRODUCTION 

This paper describes techniques for enabling a dynamic microsimulation model which 

relies on cross-sectional source data to nevertheless produce realistically smooth simulated 

longitudinal microdata. A microsimulation model consists of a set of algorithms and a computer 

program which simulate microdata. The algorithms are based on probabilistic or deterministic 

submodels, and/or on observed distributions of real data. The microsimulation model generates 

a sample of simulated units which represent some conceptual population of units. These units 

might, for example, be people, households, or business firms. We shall refer to them as 

"individuals". The sample of individuals is used to make inferences about the population. 
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Microsimulation models are particularly useful for posing and answering questions of a "what if' 

nature. To distinguish the data used in the construction of a microsimulation model from the 

data generated by such a model, we shall refer to the former as "source data" and to the latter as 

the "simulated data" or "sample data". 

Since the 1960's, microsimulation models have been used for the analysis of public 

policy (for evaluating social security or other government social programs, income tax, etc.) and 

in the fields of demography, economics, energy, health, etc. For a useful, broad collection of 

papers concerning microsimulation, see Orcutt, Merz, and Quinke (1986). 

A dynamic microsimulation model ages a sample of individuals across time, simulating 

multivariate data (such as marital status, employment status, education, consumption of 

manufactured goods, and health status) which describe them during each time period. There 

exist many panel and other surveys which can provide source data which are both multivariate 

and longitudinal, but the need of a microsimulation model for such data often cannot be fully 

met. Hoschka (1986, p.  49) lists "missing variables" and "cross section instead of panel 

surveys" as being among the most common shortcomings of microsimulation model source data. 

By their very nature, longitudinal data require a long period of time to be collected, and it is not 

always possible to foresee what combinations of variables will be needed, so that alternate 

strategies are needed. Indeed, the ability to produce unforeseen combinations of (admittedly 

synthetic) variables is one of the strengths of microsimulation. 

Assume that for each variable of interest, a finite number of outcomes (or classes, or 

states) have been defined. From longitudinal age-specific source microdata, it is possible to 
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estimate the distribution of a variable at a given age t, and to estimate transition probabilities for 

an individual moving from a certain state at age t to a certain state at age ti- 1. These probabilities 

can be used by the microsimulation model as it ages the sample. 

In the absence of longitudinal source data, analysts often use cross-sectional data, treating 

the age-specific source data gathered at one point in time as if it were data describing one group 

of individuals across time. Elandt-Johnson (1980) examines the relationship between 

cross-sectional and longitudinal data in survival analysis, concluding that "if there is a 

relationship between a characteristic and age for an individual, it cannot be uniquely estimated 

from population cross-sectional data, unless its functional contribution to the hazard rate is 

determined...Longitudinal studies are necessary to obtain more reliable information." 

Transition probabilities cannot in general be deduced from cross-sectional data (a 

deficiency which also occurs with longitudinal data which are collected, but not linked, across 

time). However, if a microsimulation model ignores transitions and generates data 

independently for each age, the characteristics of a simulated individual may vary unrealistically 

across time, even though the distribution of the sample matches the source data disthbution at 

each age. 

For example, suppose that cross-sectional source data were used to estimate at each age 

the distribution of a variable describing an individual's smoking habit (classed as "Never 

Smoker", "Current Smoker", or "Former Smoker"). If the microsimulation model generates an 

individual's smoking habit independently for each age, the resulting simulated smoking history 

may have unrealistically frequent changes of state, and it may exhibit a logically impossible 
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transition (such as from being a current smoker to being a never smoker). Ideally, a 

microsimulation model would use an array of multivariate transition probabilities to move an 

individual from one age to the next. 

In the absence of multivariate source data, analysts may "synthetically" link different data 

files (enhancing the data for one individual by appending data from another, similar, individual), 

and they may resort to assuming independence of separate variables. In the latter case, 

multivariate transition probabilities are simply products of univariate transition probabilities, so 

they are easily calculated and require relatively little computer storage space. On the other hand, 

if the variables are not independent and their joint distribution is available, then the number of 

combinations of variables and states can become prohibitively large. Orcutt (1986, p.  19) 

describes the storage problem: 

"Even an extremely modest microanalytic model of an economy 
involving persons embedded within families would result in substantially 
more than ten endogenous variables per family ... And, even if only ten 
values were permitted for each variable, the number of cells needed to 
classify families without loss of information would be ten billion. The 
full matrix of transition probabilities would then have ten billion squared 
elements!" 

It may therefore be necessary to assume that small groups of variables are independent of other 

small groups of variables. 

Krupp (1986, p. 36) discusses the computational demands made by microsimulation 

models: 

"If one assumes that a simulation is based on 20,000 households, that 
updating a characteristic of a household or producing a behavioral 
change requires an average of about 20 operations at the programming 
language level, and that for every household approximately 100 socially 
relevant characteristics are considered, then the simulation for one year 
demands 20 million operations at the programming language level. A 
simulation over ten years requires 200 million operations and over fifty 
years one billion." 



Other problems that arise as the number of variables and/or states increases are the usual 

statistical ones of small sample sizes, and the loss of observations due to missing data ("item 

nonresponse"). 

This paper describes procedures for obtaining multivariate transition probability arrays 

from cross-sectional multivariate data (or from unlinked longitudinal data) in order to smoothe 

the longitudinal behavior of the simulated individuals. The examples provided utilize data for 

four variables having 5, 3, 3, and 4 states, respectively, so that there are 180 frequencies at each 

age group, and 180 x 180 = 32,400 transition probabilities from one age group to the next. 

Across the 12 age groups, there are therefore 356,400 transition probabilities. Given multivariate 

data for two adjacent age groups, an array of multivariate transition frequencies (and the 

corresponding array of transition probabilities) is obtained using linear programming (LP) 

methods. These transition frequencies are made consistent with the cross-sectional multivariate 

source data, and conditions which are innate to the particular variables are also imposed; these, 

plus the nonnegativity of the frequencies, form the constraints of the linear program. The linear 

program's objective function is chosen so that transitions to "nearby" states are favored over 

transitions to "distant" states (which is reasonable if the time interval between the two age groups 

is relatively small). 

The approach here is from a smoothing rather than an estimation point of view because of 

the very large number of degrees of freedom available for determining transition frequencies 

given relatively few marginal sums. Our approach is analogous to that used in smoothing 

ordinary univariate time series data, for which there are many possible smoothing algorithms 

(see, e.g., Dagum (1985), Cleveland and Kleiner (1975), Vefleman and Hoaglin (1981, Chapter 

6), and Cleveland (1985, pp.  167-178)); the choice of an algorithm and the parameter values 



thereof is often made heuristically, in order to obtain the desired quality and degree of 

smoothing. It is in that spirit that procedures are proposed here for generating realistically 

smooth longitudinal microdata. 

The use of LP methods to generate 4 x 4 transition frequency matrices - with the reverse 

objective of maximizing mobility by favoring transitions to distant states - is described in Meyer 

(1978). The estimation of a 2 x 2 transition matrix in the context of generalized linear models is 

discussed in McCullagh and Nelder (1983, PP.  175-177). 

Problems of estimation using observed transition frequencies (called "gross flows" in the 

context of labor force panel data) were addressed in a 1984 conference devoted to that topic (see 

U.S. Dept. of Commerce and U.S. Dept. of Labor (1985)). 

This study was motivated by the need of the POHEM health microsimulation model (see 

Wolfson (1989)), which is being developed at Statistics Canada, to produce plausibly smooth 

simulated data. An existing model (see Wolfson (1989a, pp.  30-34)) already generates and ages 

over time a sample of individuals to whom are assigned demographic and labour force 

characteristics typical of Canada. Individual health histories, health risk factor exposures, and 

medical costs are now being added to the model. The ultimate goals in building this model are to 

be able to evaluate and compare different health policies, develop indices of the state of health of 

the Canadian population, and identify needs for better and more health data. 

Section 2 below describes the techniques used to obtain transition probabilities, examines 

the statistical deficiencies of cross-sectional data, and considers the effect of unobserved 

heterogeneity in mortality rates. Section 3 gives examples using real data from the Canada 
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Health Survey. Section 4 considers computational efficiency and discusses the possibility of 

rephrasing the linear programming problem in two alternative mathematical forms (as a network 

flow problem and as a transportation problem). 

2. THE SMOOTHING TECHNIQUE 

2.1 Definition of Terms 

Suppose that there are k variables of interest (k ~t 1), for which multinomial data are 

available as follows: For each variable, a finite set of mutually exclusive, exhaustive possible 

outcomes (states) has been defined, and cross-classified frequencies of occurrence of each 

outcome combination have been observed for n, individuals of age t and for n, + individuals of 

age t+l. If the data are cross-sectional, these two groups of individuals are disjoint, and n, 1  may 

even be larger than n (which cannot occur in a closed population). It will be assumed here that 

the observed proportions of individuals in each state at age t and at age t+l are representative of 

those which would have been observed for one cohort of individuals at two adjacent ages. 

The array of transition frequencies between age t and age t+l (and the corresponding 

array of transition probabilities) is 2k-dimensional. For notational simplicity, k will be assumed 

to be equal to 2, without loss of generality. Suppose, then, that the number of states for Var. 1 is 

and the number of states for Var. 2 is s2 . Let be the number of individuals who were 

observed to be in the bivariate state (i 1 , i2) at age t, and let v be the observed number of 

individuals in state (i1 ,j2) at age t+1. (Here i 1  and f label the state for Var. 1, and i2  and 12  label 

the state for Var. 2; i  and  j1 = 1, ...,s 1  ; i2  and j2 = I, ...,s2 ). Then n, = u.. and n,. 1  = v.. (where 



the dot notation signifies summation over the indicated subscript). Ordinarily, p, # n1 + 1 this 

occurs in a closed population because of losses due to mortality, and in cross-sectional data 

because the two groups contain different individuals. 

For the time being, assume that there is no mortality between the two ages, and rescale 

the observed frequencies (for either or both ages) so that the number (n) of individuals 

represented at each age is the same: Multiply the u's by a constant C and the v 2 's by C 
41+1 

For example, multiply each observed frequency at age t by C = 	in which case the frequencies 

at age t+l remain unchanged. Since the two sets of rescaled frequencies now have a common 

sum, the quantities I uj and {v 2} can be treated as the marginal sums {x1 . .} and{x. •J.2" 

respectively, of the array {x 11 ,112 } of unknown transition frequencies which are to be determined 

using LP methods. As discussed below, the resulting transition probabilities are invariant to the 

choice of the scale factor C. The assumptions implicit in performing such rescaling are 

discussed in Section 2.2. 

The transition frequency x 12  is the unknown number of individuals who made the 

transition from state (i 1 , i2) at age t to state (j1,f2)  at age t+1. The overall sum of the transition 

frequencies is x.... = Cn, = n. The transition probability p12  is the probability of an individual 

being in state (j , J2) at age t+ 1, conditional on having been in state (i 1 , i2) at age t: 

xi1iiLj2  
= Xì 1j.. 

M. 

(The word 'probabiIity is used informally throughout the discussion here, and may instead be 

interpreted as 'proportion', in which case, the mortality rates discussed in section 2.2 are 

estimates of mortality rates.) The goal is to obtain reasonable values for the p 122 's (or 
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equivalently for the x41,, 2 's) for use in generating microsimulated data. 

Using standard linear programming techniques, values {x 1 } are determined so as to 

minimize an objective function, which is a weighted sum of the x 11 ,. 12 's, subject to the following 

three types of constraints: (i) The frequencies must be non-negative: 

x4... >0 	Vi i 	1 j2 	 (2); 112/1)2 - 	 I' 2 j1 ' 

(ii) The marginal sums of the input multinomial data must be maintained: 

=x. 	 Vj 1 ,j2  

and 
	

(3); 

Xj311j=X2.. 	 Vi1,i2 

and (iii) Relationships innate to the variables must be maintained (e.g., that the number of 

transitions from being a current smoker to being a never smoker is zero). 

The weights for the objective function are chosen here to favor stability by discouraging 

transitions to distant states, assuming that the concept of "distance't between states is meaningful. 

With the state labels suitably ordered, a reasonable choice for the weight w,Ih  for xj ,ijj, might 

be a measure of the distance between the state (1,12)  at age t and the state (A,j2) at age t+1, such 

as I i1—i1  I + I i2 —j2  I or (i1  J1)2+  (i2 —j2)2  

There remains the question of which variables to use: the transition frequencies or the 

transition probabilities. That is, the result of minimizing 

Z=1111w, 	 (4) 
I 	2 it 12 

is in general different from the result of minimizing 
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== 	 (5) 
'1 '2 Il J2 	 ' 	Jj J2 

w I211J  

(where w 	= 	). Using fixed weights on the frequencies tends to give more weight to the 
12 •  

more populous states, while using fixed weights on the probabilities tends to weight all 

transitions more equally, regardless of the proportion of individuals actually in those states. 

Comparisons of results using the two approaches are given in Section 3. In either case, the 

problem is formulated using frequencies as the variables. The marginal sums are then integers, 

and the solutions - the numbers of people making transitions - are then also integers (see 

Section 4). 

Meyer (1978) maximized mobility by applying fixed weights to frequencies rather than to 

transition probabilities. 

The LP method applied to the same observed data with two different choices of the 

rescaling factor C will yield the same array of transition probabilities (but not of transition 

frequencies) in both cases. If {x 1,,12 } are the transition frequencies resulting from a choice of 

C = C 1 , then it is straightforward to show that the transition frequencies resulting from an 

alternative choice of C = C2  are I 1 ,_,112} . Both transition frequency arrays have the same 

transition probabilities. 

2.2 The Missing Mortality Variable 

It is instructive to interpret mortality as an additional variable for which two states - Alive 

and Dead - are defined at any given time. (Dead is an absorbing state; persons who are dead 
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remain "forever" in the same multivariate state, and age for them is interpreted as the number of 

years since birth.) Viewed the other way around - as a life table to which variables representing 

other means of transition than dying have been added - the transition frequencies are similar to 

entries in a multistate life table (see, e.g., Rogers (1980)). In longitudinal data for a closed 

population, the numbers of individuals Alive and Dead are known at any given time, and 

transition frequencies between the two states are known; in cross-sectional data, the number 

Alive, but not the number Dead, is known, and no transition frequencies are known. 

To illustrate this, assume, first, that the population is closed, and let Var. 1 be an ordinary 

variable with 3 states, and Var. 2 be Mortality (with Alive as state 1 and Dead as state 2). Then 

n is the number still alive at age t plus the number who died before age t, and n, = n, I = n, so 

that no rescaling is necessary. Therefore, u1  = x,.. and v,2  = x. . . Because Dead is an 

absorbing state, some transition frequencies are identically zero : x 1121  =0 (for all i1 ,j1 ), and 

= X 1 211 2 = 0 (for 1 1  # jr). Therefore, certain other transition frequencies can be deduced from 

the observed marginal sums. For example x111112 , which is the number of individuals who were 

alive and in state i 1  at age t and dead (and therefore still in state i) at age t+1, can be written as 

xiilii2  =x. . 1 2 - x112.. 	 (6). 

Also, the number who died during the age interval [t,t+l) is x. 1  .. —x. .. , which is equal to 

x ... 2 —x.2 ... From these quantities, the overall mortality rate q, and the "state-specific" mortality 

rates q, j, can be calculated: 

(x.,.. —.x ... 1 ) 	(x ... 2 —x.2 ..) 

x.I.. 	 x.I.. 
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and 	 (x. i2 - x12 ..) 
q,11 = 
	

(8). 

The overall mortality rate is the probability of dying in [t,t+1), conditional on surviving to age t. 

The state-specific mortality rate for state i3  is the probability of dying in [t,t+1), conditional on 

surviving to age t and being in state il  at age t. The overall mortality rate is the weighted average 

- with the x 1  . .' s as weights - of the state-specific mortality rates. 

Continue to assume that the population is closed, but now suppose that only those Alive 

at age t and those Alive at age t+1 were counted (which is exactly what happens with 

cross-sectional data). Then the observed data consist only of x 11 .. (for i1  = 1,2,3) and x. . (for 

j1 = 1,2,3). From this information alone, the overall mortality rate can be deduced (using Eqn. 

7), but the state-specific mortality rates cannot be deduced (because the counts of dead people in 

the numerator of Eqn. 8 are unknown). In fact, both n1  and n11  are unknown. Suppose that the 

data for Alive individuals were treated as observed data for Var. 1, ignoring Var. 2 (Mortality), 

and rescaled to achieve a common sum using scale factor C = We then have two sets of 

marginal sums from which transition frequencies yij, can be obtained using the LP method. 

These can be displayed as a matrix, with rows and columns representing the states of Var. 1 at 

age t and at age t+1, respectively: 

• .1 

Yii 	Y2 	Y13 	Yi. = 
x. 

Y21 	Y22 	Y23 	Y2. = 

Y31 	Y32 	Y33 	Y3. = 
x. 	

(9). 

Y.i 	Y.2 	Y.3 	Y.. = X.. .1 
U11 II 

X..11 	X •21 	X. . 31 
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The overall sum x... is the total number of individuals alive at age t+1, and the column 

sums are the numbers alive in each state at age t+l. Row sum i1  is equal to (1 —qjx111 .. , which, 

if q11  were equal to q, , would be the number of individuals alive in state i at age t who remained 

alive at age t+1 (see Eqns. 6, 7, and 8). Thus, rescaling of Alive individuals at age t is equivalent 

to removing from the Alive population at age t all of those individuals who are going to die by 

age t+1, but by applying the overall mortality rate rather than the state-specific rate. Since the 

LP method yields the same results regardless of the rescaling factor, rescaling implies the use of 

a state-independent mortality rate. 

This is what occurs when cross-sectional data are rescaled; the resulting transition 

probabilities may be interpreted as transition probabilities from age t to age t+1 for only those 

individuals who survived to age t+1, but under the assumption that all state-specific mortality 

rates are the same. A microsimulation model based on cross-sectional data can utilize these 

transition probabilities by applying them, just before advancing the sample from age t to age t+l, 

to only those individuals who have survived. Using rescaled cross-sectional data is not ideal in 

that one likely reason for defining different states of a variable is that the mortality rate is 

thought to be state-dependenL Intuitively speaking, a larger percentage of high risk individuals 

should die in {t,t+1), resulting in relatively fewer of them alive at age t+1. Assuming a uniform 

mortality rate for all states makes it appear that some high risk individuals have moved to lower 

risk states. 
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If the mortality rates for different states are in fact heterogeneous, then a more realistic 

set of transition frequencies for surviving individuals would be those obtained by replacing the 

row sums (1 - q1)x 11 .. in Eqn. 9 by (1 - q, 1)x111 .. , resulting, after application of the LP 

procedure, in the following transition frequency matrix for Var. 1: 

x11u x1121 x1131 x11.1 	= 

x2111 x2121 x2131 x21 . 1 	= 	x21 ..x2122  
x3111 x3121 x3131 x31 . 1 	= 	x31.. - x3132 	 (10). 

X.1 . 	= 	X...  x:ll 	X21 	X.131 

11 	X, .21 	X. .31 

With cross-sectional source data, the qgg1 's are unknown, and the preferred transition 

frequencies of Eqn, 10 cannot be obtained from those of Eqn. 9. A dynamic microsimulation 

model which relies on cross-sectional data can apply the techniques described here in the 

following ways: (1) Use transition probabilities derived as in Eqn. 9, recognizing that another 

approximation has been introduced in the model; (2) Use transition probabilities derived as in 

Eqn. 10, using externally-obtained estimates of state-specific mortality rates; or (3) During 

execution, at the end of each age interval, calculate transition probabilities derived as in Eqn. 10, 

using the model's own state-specific mortality rates which result from whatever algorithms the 

model uses to cause individuals to die. 

Examples of the effects of using option 1 - assuming a uniform mortality rate in the 

presence of heterogeneous mortality rates - are given in Vaupel and Yashin (1985). They point 



15 

out that because of heterogeneity, selection will occur and the surviving population will differ 

from the original population. More research is needed, they say, on the "key question of how to 

tell when a population is sufficiently heterogeneous that selection matters." 

Option 3 is possible, but requires a large amount of computing in addition to that already 

used by the microsimulation model. It is also not facilitative to the tinkering which is sometimes 

needed to solve the LP problem (see Section 4). Also, option 3 is only feasible in "cross-section 

models" (which age complete cross-sections of the sample across time), not in "longitudinal 

simulation models" (in which one individual is aged at a time). (See Hain and Helberger (1986) 

for a discussion of cross-section versus longitudinal simulation models.) 

3. EXAMPLES 

The input data used to demonstrate the smoothing technique are from the 1978179 

Canada Health Survey (CHS). This was a multistage stratified household survey of 31,668 

individuals. For details of the CHS, see Statistics Canada and National Health and Welfare 

(1981). 

For each sex, and for each of 12 age groups (15-19, 20-24, 25-29, ..., 65-69, and 70+), 

cross-classified frequencies were obtained for the following variables and classes: 
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Var. 1: Body Mass Index 
() 

<20 
[20,25] 
(25,27] 
(27,30] 
>30 

Var. 2: Serum Cholesterol 
()
dL 

!!~200 
(200,240] 
>240  

Var. 3: Diastolic Blood Pressure (mmHg) 

<90 
[90,105) 
~!105 

Var. 4: Smoking Habit 
Never Smoker 
1-20 cigarettes/day 
>20 cigarettes/day 
Former Smoker 

Frequencies were calculated using the survey weights. 

These four variables are risk factors which can be used to help predict coronary heart 

disease (CHD). The transition probabilities derived here are to be used in a health 

microsimulation model being developed by Wolfson (1989); a sub-model, constructed by 

Wolfson and Birkett (1989), simulates the onset and progression of coronary heart disease. The 

CHD sub-model was inspired by the CHD microsimulation model developed using U.S. data by 

Weinstein et al. (1987). The choice of body mass index as a risk factor here is based on 

recommendations and suggested classifications in National Health and Welfare (1988); 

Weinstein's model uses relative weight rather than body mass index. 

Transitions involving the smoking variable have certain innate constraints. 	The 

probability of becoming a former smoker immediately after being a never smoker is zero (for a 

short age increment during which it is assumed that only one transition occurs). The probability 

of becoming a never smoker after being in any of the other three smoking categories is zero. 

And it may be reasonable to assume that the probability of quitting smoking is less than or equal 
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to the probability of resuming smoking. The appropriate elements of the transition probability 

array must therefore obey certain equations or inequalities. The LP approach can maintain such 

relationships by imposing them as additional constraints. (See further discussion in Section 4.) 

Table I contains the cross-classified frequencies of the four variables for males between 

two adjacent age groups: ages 30-34 and 35-39. These data are from the Canada Health Survey; 

they have been weighted to represent the overall Canadian population. There were 162 and 129 

survey responses for these four variables in the two age groups, respectively. 

Table 2 gives a one-variable example (k=1) of the LP procedure results. Transition 

frequencies and probabilities for males from age group 30-34 to age group 35-39 were calculated 

using the marginal distributions from Table 1 of just the Smoking Habit variable. The four 

smoking states were ordered as they might occur for one individual across time - from never 

smoker to lighter smoker (1-20 cigarettes) to heavier smoker (> 20 cigarettes) to former smoker. 

The LP procedure was applied using different combinations of weights (wij  =1 i - j I or (i f)2) 

and objective functions (z from Eqn. 4 or z' from Eqn. 5). In all four cases, the (1,4), (2,1), (3,1), 

and (4,1) elements of the transition matrices (involving transitions from never smoker to former 

smoker, and from lighter smoker, heavier smoker, and former smoker to never smoker) were 

constrained to be zero, but no inequality constraints were imposed for quitting smoking relative 

to resuming smoking. 

In order for the LP procedure to obtain the results in Table 2 (and in subsequent tables), 

certain inconsistencies in the data of Table 1 had to be removed (due to the fact that the data are 

cross-sectional rather than longitudinal). These adjustments to the data are described in 

Section 4. 
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In Table 2, changing from z to z' made a difference when weights I I - j I were used, but 

made no difference when weights (I -j)2  were used. In general, the use of weights I i - j I 

permits transitions to more distant states to occur than with weights based on the squared 

distance (or on higher powers of the distance). In the four examples, the only transitions 

permitted over a distance of more than one state are from being a lighter smoker to being a 

former smoker (weights I I  - j I , objective function z, probability .08), and from never having 

smoked to being a heavier smoker (weights I i  -j I , objective function z', probability .02). In the 

latter case, however, the one-state move from never having smoked to being a lighter smoker is 

less probable than the two-state move (in fact, the one-state transition is impossible), which may 

be unrealistic. 

On the other hand, the weights I i  -j I generally result in larger diagonals. The diagonals 

of the examples using weights I i  -j I are greater than or equal to the corresponding diagonals of 

those using (I _f)2 . All four examples have probabilities of 1.00, which is probably 

unrealistically large, for the zero-state transition from former smoker to former smoker. Even so, 

this does not imply that a quitter of smoking will remain a quitter forever, as each age transition 

uses a different set of transition probabilities. In the multi-variable examples discussed below, 

the single variable transition matrices calculated from marginal sums of a multi-variable 

transition frequency array become more realistic as the number of variables increases. 

The probability of resuming smoking (the sum of elements (4,2) and (4,3)) is zero in all 

four examples, and the probability of quitting (the sum of elements (2,4) and (3,4)) is higher - 

either .08 or .07. Attempts to force the probability of quitting to be lower than the probability of 
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resuming resulted in the LP program halting in some cases because no feasible solution exists for 

these data under these constraints. The problem is caused by the use of cross-sectional data and 

by incorrect assumptions about them, not by the LP method; see further discussion in Section 4. 

It is useful to inspect the transition probabilities and to examine the effects of varying the 

parameters, as one does when smoothing time series. One can examine the various trade-offs 

among the different solutions and select the most appropriate one for the microsimulation model. 

The acceptability of a set of transition probabilities depends strongly on the particular set of data 

and on the assumptions. For example, our assumption here that transitions from never smoker to 

former smoker are impossible is perhaps overly stringent for five-year age intervals. 

Table 3 gives a two-variable example (k=2). Transition probabilities are provided for 

males from age group 30-34 to age group 35-39 for the Smoking Habit and Body Mass Index 

variables. Results are shown for objective function z and squared distance weights. In this 

example, the same additional constraints were imposed on the marginal sums of the smoking 

frequencies as in the examples of Table 2. 

The transition probability array in Table 3 is 4-dimensional. Each of the 20 matrices in 

the table provides values of p, for a fixed initial state (i 1 ,i2) . The subscripts i 1  and j1 index 

the five states of BMI, and the subscripts i2  and 12  index the four states of Smoking Habit. 

Within each matrix, one row and one column of numbers are printed in boldface and italics to 

highlight the probabilities for zero-state transitions for each of the two variables. That row and 

column intersect at the multivariate "diagonalt' representing a zero-state change in both variables 

from age 30-34 to age 35-39. The probabilities in each matrix sum to 1.0. 
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The stable nature of the probabilities is evident; of the 400 transition probabilities, only 

37 are non-zero, and there are only two instances (p = .44 and p52  = .04) of transitions in 

which both variables change. Also, there is only one instance (p3151  = .08) where a variable 

changes by more than one state. In all of the other transitions, at most one variable changes by at 

most one state. 

Some of the diagonal probabilities are forced by the data to be zero. For example, the 

CHS data contain no males of age 35-39 in the (BMJ <20,Never Smoker) category, so everyone 

in this state at age 30-34 must exit from it, and Piiii = 0, necessarily. 

Similarily, P4141  =0; everyone who had been in state (27 <BMI :!~ 30, Never Smoker) at 

age 30-34 increased his BMJ and moved to the state (BMI > 30, Never Smoker) at age 35-39. 

Meanwhile, the state (27 <BMI :!~ 30, Never Smoker) was replenished by other Never Smokers 

coming from the slimmer group of people in state (25 <BMI :!~ 27, Never Smoker). 

Table 4 provides cumulative transition probabilities from age 30-34 to age 35-39 for the 

full quadrivariate data set (k=4). Of the 32,400 transition probabilities, only the 129 shown in 

Table 4 are non-zero. The transition probability array is sparse in part because the CHS source 

data were disaggregated by age and sex and because the four variables of interest were not all 

measured for all respondents. (For example, approximately 58% of the respondents provided 

blood samples from which cholesterol measurements were obtained.) Thus, there were only 162 

males aged 30-34 (representing 60 of the 180 possible quadrivariate states) and 129 males aged 

35-39 in the data used to produce Table 4. Sparsity is also due to the type of solutions sought by 

the LP algorithm. See further discussion in Section 4. 
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All transition frequencies out of any of the 120 empty (unobserved) initial states will be 

zero. (Observed marginal frequencies of zero are not altered by the rescaling procedure, and the 

linear programming procedure preserves observed marginal frequencies). The corresponding 

transition probabilities will be undefined, which is reasonable since the transition probability is 

conditional on an event - being in that initial state - that has not been observed. 

The full quadrivariate array contains (in addition to the 129 non-zero values) 10,671 

transition probabilities equal to zero, and 21,600 undefined transition probabilities. 

A concise data structure similiar to the representation in Table 4 can be used to store the 

probabilities needed for the microsimulation model. Only the defined non-zero values are kept. 

The probabilities are stored in cumulative form to avoid repeatedly summing probabilities each 

time an individual's final State IS randomly selected (and to avoid problems of probabilities not 

adding to 1.0 due to rounding error; the last cumulative probability is set to be identically 1.0). 

(Although some of the consecutive cumulative probabilities in Table 4 appear to be identical, 

implying that the corresponding transition probabilities are zero, this is simply due to the 

displaying there of only two decimal places.) 

The initial states i 1 , i2 , i, i4  need not be stored, but are used to determine the location of the 

corresponding cumulative transition probabilities. All of the necessary information can be 

retained by storing only three of the columns of data shown in Table 4: (1) The "Address" 

column of Table 4A is a vector of length 180 (one element for each initial state) used to 

indirectly address the data in Table 4B. The address of the fitsi cumulative probability 

corresponding to initial state i, i2 , i3 , i4  is in location i4  + (13  - 1)s4  + (i2  - 1)s3s4  + (i - 1)s2.c3s4  of this 

vector (where the numbers of categories for the four variables are 
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= 5, S2  = 3, s3  =3, and s4  =4, respectively). 	An initial state for which transition 

probabilities are undefined would be assigned an address of, say, -1 (indicated in Table 4A by an 

asterisk). (2) The "Cumulative Probability" column of Table 4B contains the cumulative 

probabilities (unless they are undefined) for each initial state. In this example, this is a vector of 

length 129. Different initial states have, in general, different numbers of cumulative 

probabilities, but the search for the first cumulative probability greater than a random Unifonn 

number will never go beyond the final cumulative probability of 1.0. (3) The "State at Age t + 1" 

column of Table 4B, also of length 129, contains the corresponding final states. The values 

j1,j2,j3,j4 can be stored one per byte. (Alternatively, the index number between 1 and 180 

corresponding to j1,j2,j3,j4 can be stored.) 

Those values indicated by an asterisk in Table 4 are assigned a missing value constant 

(e.g., -1.0 or the dot notation of SAS). A microsimulation model which strictly adheres to the 

series of transition probability arrays estimated across the various age groups will never 

encounter these missing values, because no individual will enter an unobserved state. However, 

internal adjustments and tuning within the microsimulation model may create an individual in an 

unobserved state, in which case the missing value would signal that there is no Set of transition 

probabilities to move him into a new state. The microsimulation model might then generate the 

state at age H-i independent of the state at age t, using the multivariate distribution at age t+l. 

(In that case, the marginal distribution at age t+1 would also need to be stored). 

Table 5 shows three transition matrices for the Smoking Habit variable. These were 

derived, respectively, from data for one, two, and four variables, using objective function z and 

squared distance weights. The second and third matrices in the table are the transition 
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probabilities obtained from the appropriate marginal sums of 4- and 8-dimensional transition 

frequency arrays. Zero elements of the matrices in Table 5 are left blank to simplify comparison. 

(The first matrix in Table 5 also appears in Table 2B.) 

In the one-variable example, an individual can either remain in the same state or move 

"forward" to the next state. 

In the two-variable example, there is an added possibility of moving "backward" from 

being a former smoker to being a heavier smoker, which also results in a reduction from 1.0 to 

.95 of the probability of remaining a former smoker. 

In the four-variable example, an additional one-state backward transition is also possible, 

i.e., from being a heavier smoker to being a lighter smoker. (The third one-state backward 

transition was forbidden.) 

The possible transitions in each example are shown graphically in Figure 1. 

The three transition matrices in Table 5 differ because the corresponding elements in 

each matrix are affected by different weights in minimizing the objective function. For example, 

in the one-variable case, the frequency x22 from which diagonal element p22  was computed had 

weight zero. In the two-variable case, the corresponding frequency x 2 . 2 . was the sum of both 

diagonal and non-diagonal elements from the four-dimensional transition frequency array, so its 

weight was not zero, and similarly for the four-variable case. Thus, as the number of variables 

increases, the probability of staying in the same Smoking Habit state remains the same or 

decreases. Also, the use of additional variables allows the correlation structure among them to 

be taken into account, and Smoking Habit is apparently not independent of the other three 

variables. Overall, the use of larger numbers of variables has produced more realistic 

lower-dimensional transition matrices. 
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Figure 2 shows two synthetic life histories simulated using the multivariate distributions 

for the four variables across all 12 age groups. In Figure 2A, the 11 8-dimensional transition 

probability arrays obtained using objective function z and squared distance weights were used to 

assign states to one individual (named "Sam" for "smooth"). In Figure 213, only the distributions 

at each age were used, so that the multivariate state of this individual (named "Roy" for "rough") 

at age t is independent of his state at age t+1. The greater smoothness and continuity of Sam's 

life history is clearly noticeable. Only once does he jump from one state across an intermediate 

state to another state, while such leaps are quite frequent in Roy's life. Note that Roy twice 

experiences a forbidden transition, becoming a never smoker at age 50-54, and then becoming a 

former smoker at age 55-59. Roy's body mass index fluctuates unrealistically, as does his 

cholesterol. Sam's body mass index follows quite a believable pattern of increase to age 50-54 

and then declines, similar to his cholesterol. In smoking, he shows a plausible pattern, in general 

gradually increasing his consumption until he quits in middle age. Roy's smoking pattern is 

logically impossible. For these particular individuals, either blood pressure pattern is a plausible 

one. Note the sensible relationships among Sam's variables over time. 

4. COMPUTATIONAL CONSIDERATIONS 

The procedure used to obtain the transition frequencies has been described above as a 

linear programming one. In fact, the problem falls into a very important special class of linear 

programs, i.e., network flow problems, and a special case of these known as the transportation 

problem. The term transportation problem arose from the original interpretation as finding the 

least costly way to route materials from supply points to demand points (see Hitchcock (1941)). 

The essential constraints of a transportation problem are the imposition of known row and 
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column totals on the non-negative elements of a matrix. By choosing some convenient ordering 

for the multivariate states, one can imagine the transition frequencies to be matrix elements, with 

the row labels corresponding to the starting states and the column labels to the ending states. 

The number of individuals making a transition is clearly non-negative, and the row and column 

sums correspond to the total numbers of individuals in the initial and final states. We want to 

impose consistency with these given totals, which is precisely the transportation problem 

framework. The objective function in our problem imposes costs on various transitions. These 

are analogous to the shipping costs from one place to another in the classical application. The 

coefficients are such that transitions to "nearer" states are cheaper than those to more distant 

states. 

The recognition that our linear programming problem is a network flow problem has 

important theoretical and practical consequences. One pleasant property is that integer valued 

solutions are found. If the row and column totals are integers, the algorithms will return optimal 

solutions with integer values, so that the number of individuals making a transition is never 

fractional (see Chvatal (1983) and Lawler (1976)). Finding integer valued optimal solutions is 

difficult for a general linear program, but it is automatic with a network flow. 

Other advantages of phrasing our problem as a network flow are that network flow 

problems can be solved significantly faster and with less computer storage space than general 

linear programs. "For large scale problems, contemporary commercial linear programming 

codes require 50-200 times as much computer time and considerably more space for data storage 

than special purpose network flow algorithms." (from Bradley, Brown, and Graves (1977, p.  2)). 

The problems solved here with less than 400 nodes are not large ones by the standards of the 

field and are routinely solved by available codes. In one large application (see Barr and Turner 
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(1981)), a transportation problem with more than 20,000 constraints and 10,000,000 variables 

was solved. Microsimulation models that use the 1020  variables described by Orcutt (see 

Section 1) are still unachievable and will probably be so forever, although the kinds of 

computations thought huge by Krupp (see Section 1) are, in fact, already quite ordinary by 

contemporary standards. 

In the simplest transportation problem, all transitions are allowed, with no upper limit on 

the value of an individual frequency. In this case, providing that the row and column totals are 

consistent (i.e., have the same overall total), the problem always has a solution (i.e., is "feasible", 

in the terminology of mathematical programming). The framework does have more flexibility 

than this simple form implies, and this flexibility is needed for our problem. For example, if 

certain transitions are logically impossible, then they can be forbidden. One may also impose 

lower and upper bounds on various variables in the solution. This corresponds to restricting the 

ranges of certain transition probabilities to reflect knowledge and beliefs about what is likely. 

When additional constraints of this type are added, the problem may no longer be feasible. (As a 

simple example, if enough transitions are forbidden, it may not be possible to satisfy the demand 

at a particular node or nodes.) In our data, infeasibility was encountered in some cases and was 

always traced to the same cause: our constraints made it impossible to become a never smoker 

from any other state (which was reasonable), but the raw data, after rescaling to achieve 

consistent overall sums, had more never smokers at age t+l than at age t. The resulting 

infeasibility was not due to a problem with the method; it was a consequence of the use of 

cross-sectional data as a substitute for longitudinal data. In a sense, the rescaled data contain 

outliers (values inconsistent with the model) and must be adjusted to meet the logically necessary 

condition that the proportion of never smokers can only stay the same or decrease. 
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Certain types of constraints, in particular those requiring one probability to be at least as 

large as another probability, take one outside the pure network model. Algorithms appropriate 

for network problems with side constraints (see Kennington and Helgason (1980)) have been 

designed. We did not find it necessary to use such constraints in the present study. Our results 

were obtained using two SAS Procedures: LP for general linear programs (SAS Institute (1985, 

Chapter 5)), and NETFLOW for network flow problems (SAS Institute (1985, Chapter 6)). 

Another Procedure, TRANS (SAS Institute (1985, Chapter 7), specializes in transportation 

problems, but internal difficulties in our version, since rectified by SAS, caused us to abandon its 

use. TNETFLOW, a superior procedure for network flow problems (SAS Institute (1986)), has 

now been produced. 

In general, the transition probabilities produced by these methods are sparse, in our 

examples because we deliberately caused sparsity by our choice of weights, and due to the 

methods themselves. In particular, sparseness is characteristic of a simplex-method-based linear 

programming solution, since roughly speaking, the algorithm works with (basic feasible) 

solutions which have as many zeroes as possible. For modelling on small computers, this can be 

an advantage, reducing the storage and computation. If the source data themselves are relatively 

sparse, so that many possible multivariate states have not been observed and no information is 

available about them, it would seem premature to spend much time "tuning" the solutions, 

especially before performing a sensitivity analysis of the microsimulation model in which the 

probabilities are to be used. If desired, however, other adjustments than changing the weights 

may be made to reduce sparsity, such as judiciously imposing lower bounds on the solutions, or 

by moving to non-basic solutions. When simple objective functions are used which have small 

integer coefficients, there are often multiple vertices with the same value of the objective 
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function, i.e., the associated graph contains zero cost cycles. Systematic identification of these 

cycles would allow combinations of basic solutions to be formed with more non-zero values at 

no cost for the objective function. That is, a weighted average of two or more solutions with the 

same objective function value but with zeroes in different positions may be used, since the 

weighted average of two transition probability arrays is still a valid transition probability array. 

Figure 3A shows the observed percentages of never smokers (males only) in our Canada 

Health Survey data across the 12 age groups. Except for one large percentage at age 15-19 and 

one small one at age 50-54, the percentage across the ages is roughly linear with a negative 

slope, but it is not uniformly non-increasing. To adjust these data, we fitted a simple linear 

regression on age of the logarithm of the proportion of never smokers, omitting the 

above-mentioned two points. Fitted values on this line were substituted for observed data when 

necessary to obtain a non-increasing proportion of never smokers. The relative magnitudes of 

the proportions of individuals in the other smoking categories were maintained. 

Figure 3B shows the observed percentages of female never smokers across the 12 age 

groups. These show a clearly increasing trend over time, very likely due to a cohort effect in this 

cross-sectional data: older women in the 1978 population were more likely to be never smokers 

than were younger women. This illustrates a severe conflict caused by the use of cross-sectional 

data in place of longitudinal data. If such data were casually subjected to the procedures 

described above, no solutions would be found for most age transitions. The smoothing 

procedure thus has a side benefit of providing a warning about certain types of inconsistencies in 

the input data. 



6!] 

CONCLUDING REMARKS 

The statistical concepts of heterogeneity, selection, and multistate life tables all come 

together when considering the problems introduced by using cross-sectional data in place of 

longitudinal data. More research is needed to determine how to recognize and correct for these 

problems, and more longitudinal data are needed in order to sidestep them. Manton (1985, p.  18) 

emphasizes that long-term followup data are critically needed in order to better understand 

longitudinal changes and "to help us disentangle the effects of systematic mortality selection 

from physiological aging dynamics." 

On the computing front, despite what may sometimes be insurmountably high 

requirements of microsimulation models for resources, there is optimism that further 

technological advances - such as increased processing speed, higher capacity data storage, more 

use of dedicated computers, and parallel processing - will allow microsimulation models to 

expand and improve their capabilities (see Hoschka (1986)). 
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TABLE 1 
JOINT FREQUENCY DISTRIBUTION OF VARS. 1 - 4 

A. MALES AGED 30 -34 

RMI <20 
20<-BRI <-25 
25<BMI<-27 
27<BMI<-30 
8141>30 

8741<20 	I 
20<-B74I<-25 
25<BMI<-27 
27<BMI<-30 I 
8741>30 	I 

8141<20 	I 
20<-8741(-25 I 
25<BMI<-27 
21<B741<30 I 
8147>30 	I 

DIASTOLIC<90 

	

NEVER 	1-20 	>20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

	

0 	0 	1735 	2963 

	

22196 	25283 	62111 	17218 

	

41215 	0 	0 	11465 

	

1676 	2904 	31838 	966 

	

0 	3542 	0 	8439 

DIASTO1.IC<90 

	

NEVER 	1-20 	>20 FORMER 
SMOKER CIG/DAY dIG/DAY SMOKER 

	

0 	11958 	0 	0 I 

	

23655 	10149 	28787 	24210 

	

8623 	19615 	9714 	28057 I 

	

2165 	2540 	9511 	15109 I 

	

16801 	59313 	3196 	7507 

OIASTOLIC<90 

	

NEVER 	1-20 	->20 FORMER 
SMOKER dIG/DAY dIG/DAY SMOKER 

	

0 	0 	0 	01 

	

12338 	9979 	13471 	40534 I 

	

24994 	6865 	0 	0 I 

	

0 	1113 	3512 	7071 I 

	

0 	2658 	0 	0 I  

CHOL<200 

90<-DIASTOUC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dO/DAY dO/flAY SMOKER 

I 	1773 	4381 	0 	0 I 
I 	7596 	1764 	0 	19344 
I 	1824 	0 	0 	3719 I 

	

0 	3714 	0 	0 I 
I 	0 	0 	0 	CI 

200<CNOLC-24 0 

90<-DIASTOLIC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dIG/DAY do/DAY SMOKER 

I 	0 	0 	0 	0 
I 	0 	0 	3481 	0 I 

	

0 	0 	0 	01 
I 	3719 	0 	1838 	5164 
I 	25139 	0 	1838 	0 

CHOL>240 

90<-DIASTOL.IC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dIG/DAY dIG/DAY SMOKER 

I 	0 	0 	0 	CI 
I 	0 	0 	3652 	0 I 

	

0 	0 	0 	121641 

	

0 	9641 	17964 	0 I 
I 	0 	0 	0 	01 

DIASTOL1105 

NEVER 1-20 	>20 FORMER 
SMOKER COG/DAY COG/DAY SMOKER 

0 	0 	0 	01 
0 	0 	0 	01 

I 	0 	0 	0 	01 
I 	0 	0 	0 	01 

0 	0 	0 	01 

DIAS7`OLIC>-105 

NEVER 1-20 	>20 FORMER 
SMOKER dc/DAY CIa/DAY SMOKER 

I 	0 	0 	0 	01 
I 	0 	0 	0 	CI 

0 	0 	0 	CI 
0 	0 	0 	1341 I 
0 	0 	0 	CI 

DIASTOLIC>-1 05 

NEVER 1-20 	>20 FORMER 
SMOKER CIGIDAY CIGIDAY SMOKER 

I 	0 	0 	0 	01 
I 	0 	0 	0 	CI 

0 	0 	0 	CI 
0 	0 	0 	01 

I 	0 	0 	0 	CI 



TABLE 1 (CONTINUED) 

B. MALES AGED 35-39 

BMI<20 	I 
20<-BMI<-25 I 
25<B141<-27 I 
27<BMI<30 I 
BMI>30 I 

6711<20 
20<-BMI<25 I 
25<BMI<.27 I 
27<SMI<30 
BMI>30 	I 

6711<20 
20<-EMI <-25 
25<BMI<.27 
27<BMI<-30 
BMI>30 

DIASTOLIC<90 

	

NEVER 	1-20 	>20 	FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

	

0 	632 	0 	7656 I 

	

24597 	8637 	63212 	35285 I 

	

0 	16071 	1882 	16850 I 

	

3925 	1404 	18342 	15322 I 

	

19090 	16310 	11190 	1637 I 

DIP.SIOLIC00 

	

NEVER 	1-20 	>20 	FORMER 
SMOKER dc/DAY dO/DAY SMOKER 

	

0 	1229 	0 	0 

	

8323 	18618 	10883 	46071 

	

847 	1271 	1932 	26161 I 

	

0 	0 	10507 	19765 I 

	

19596 	4231 	0 	7253 I 

DIASI'OLIC<90 

	

NEVER 	1-20 	>20 	FORMER 
SMOKER CIG/DAY dIG/DAY SMOKER 

	

0 	0 	0 	0 

	

15469 	2154 	9227 	1932 

	

2040 	2740 	7659 	26796 

	

0 	0 	8720 	1178 

	

3782 	2226 	15461 	682  

CHOL<.200 

90<-DIASTOLIC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dc/DAY dc/DAY S16)KER 

I 	0 	0 	0 	01 
I 	3001 	0 	0 	618 I 
I 	0 	0 	0 	6957 I 
I 	2307 	0 	0 	4108 
I 	1238 	0 	1905 	0 I 

200<CHOL<-240 

90<-DIASTOLIC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dc/DAY dc/DAY SMOKER 

	

0 	0 	0 	01 
I 	7377 	0 	0 	0 I 
I 	23408 	30539 	0 	0 I 
I 	4108 	0 	0 	10015 I 

	

0 	0 	0 	01 

CHOL>240 

90<-DIASTOLIC<105 

NEVER 1-20 	>20 FORMER 
SMOKER dO/DAY dc/DAY SMOKER 

	

0 	0 	0 	01 

	

0 	6890 	0 	0 I 

	

0 	644 	0 	7485 I 

	

0 	0 	0 	01 

	

0 	1387 	0 	0 I  

DIAStOL1C>..105 

NEVER 1-20 	>20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

I 	0 	0 	0 	01 
I 	0 	0 	0 	01 
I 	0 	0 	0 	CI 
I 	0 	0 	0 	CI 
I 	0 	0 	0 	CI 

DIASTOLIC>-105 

NEVER 1-20 	>20 FORMER 
SMOKER dc/DAY dc/DAY SMOKER - 

I 	0 	0 	0 	01 
0 	0 	0 	CI 

I 	0 	0 	9603 	0 I 
I 	0 	0 	0 	CI 

0 	0 	0 	CI 

DIASTOLIC>105 

NEVER 1-20 	>20 FORMER 
SMOKER dc/DAY CIa/DAY SMOKER 

I 	0 	0 	0 	01 
I 	0 	0 	0 	CI 

0 	0 	0 	4105 I 
0 	0 	0 	01 

I 	0 	0 	0 	01 



	

152,389 	3,263 	0 	0 155,652 

	

0 	111,080 	24,390 	11,661 147,131 

	

0 	0 	161.514 	0 161,514 

	

0 	0 	0 	222,417 222,417 

	

152,389 	3,263 	0 	0 

	

0 	111,080 	36,051 	0 
155,652 
147,131 

	

0 	0 	149,853 	11,661 161,514 

	

0 	0 	0 	222,417 222,417 

	

152,389 	0 	3,263 	0 155,652 

	

0 	114,343 	32,788 	0 147,131 

	

0 	0 	149,853 	11,661 161,514 

	

0 	0 	0 	222,417 222,417 

	

152,389 	3,263 	0 	0 155,652 

	

0 	111,080 	36,051 	0 147,131 

	

0 	0 	149,853 	11,661 161,514 

	

0 	0 	0 	222,417 222,417 

TABLE 2 
(A) TRANSITION FREQUENCIES FOR ONE VARIABLE CASE 

(VAR. 4; SMOKING HABIT) FOR MALES FROM AGE GROUP 30-34 TO AGE GROUP 35-39 
ELEMENTS (1,4), (2,1), (3,1), AND (4,1) ARE CONSTRAINED TO BE ZERO 

w=i-jI 	 w=(i-j:? 

NEVER 	1-20 	>20 	FORMER 	NEVER 	1-20 	>20 	FORMER 
SMOKER CIG/DAY CR3/DAY SMOKER 	SMOKER CR3/DAY CIG/DAY SMOKER 

NEVER SMOKER 
1-20 CIG/DAY 

Z 	>20 CIG/DAY 
FORMER SMOKER 

152,389 	114,343 	185.904 	234,078 686,714 152,389 	114,343 	185,904 	234,078 686,714 

NEVER SMOKER 
1-20 CR3/DAY 
>2OCIG/DAY 

FORMER SMOKER 

152,389 	114,343 	185,904 	234,078 686,714 152,389 	114,343 	185,904 	234,078 686,714 



TABLE 2 (CONTINUED) 
(B) TRANSiTION PR0BABILmES FOR ONE VARIABLE CASE 

(VAR. 4: SMOKING HABiT) FOR MALES FROM AGE GROUP 30-34 TO AGE GROUP 35-39 
ELEMENTS (1.4). (2,1). (3.1), AND (4,1) ARE CONSTRAINED TO BE ZERO 

w'i =Ii-jI 
	 w=(i-j)2  

NEVER 	1-20 	>20 FORMER 
	

NEVER 	1-20 	>20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

	 SMOKER dC/DAY dIG/DAY SMOKER 

NEVER SMOKER 
1-20 CIG/DAY 
>20 CIG/DAY 

FORMER SMOKER 

.98 .02 .00 .00 

.00 .75 .17 .08 

.00 .00 1.00 .00 

.00 .00 .00 .00 

.98 .02 .00 .00 

.00 .75 25 .00 

.00 .00 .93 .07 

.00 .00 .00 1.00 

	

NEVER SMOKER 	.98 	.00 	.02 	

J.07 

	 .98 	.02 	.00 	.00 

	

1-20 dIG/DAY 	.00 	.78 	.22 	 .00 	.75 	.25 	.00 
Z' 	>20 dC/DAY 	.00 	.00 	.93 	 .00 	.00 	.93

FORMER SMOKER 	.00 	.00 	.00 	 .00 	.00 	.00 	1.00 



TABLE 3 
TRANSITION PROBABILITIES FOR TWO-VARIABLE CASE 
VAR. I : BODY MASS INDEX; VAR. 4: SMOKING HABIT 
MALES FROM AGE GROUP 30-34 TO AGE GROUP 35-39 

USING WEIGHTS : wiiij, = (i1 -j1)2 +(i2 -J) 
(i1,i) = (Var. 1,Var. 4)ATAGEI (30-34) 
(j1,j2) = (Var. 1, Var. 4) AT AGE H-i (35-39) 

-4 	 NEVER SMOKER 
	

1-20 dC/DAY 
(i1  = 1) 
	

(12 =2) 

1- 	CE - 	NEVER 	1-20 	> 20 	£OR1R 
	NEVER 	1-20 	> 20 	FORMER 

t+i 	smomm dIG/DAY dIG/DAY smomm 	SMOKER dc/DAY dc/DAY SMOKER 

2Z41< 20 .00 .00 .00 .00 

BKI< 20 	20<=BMI<=25 1.00 .00 .00 .00 
25< ENEE<=27 .00 .00 .00 .00 
27< DMI.(=30 .00 .00 .00 .00 

BHI> 30 .00 .00 .00 .00 

BMI< 20 F 	.00 .00 .00 .00 
20<=NMI<25 	20<=4I<=25 1.00 .00 .00 .00 

(i=2) 	25< BMI<=27 I 	.00 .00 .00 .00 
27< 	I<=30 I 	.00 .00 .00 .00 

BMI> 30 L 	.00 .00 .00 .00 

BMI< 20 .00 .00 .00 .00 
25< 041<=27 	20<=BMI<=25 .20 .00 .00 .00 

25< BM<=27 .48 .05 .00 .00 
27< BMI<=30 .19 .00 .00 .00 

BMI> 30 .08 .00 .00 .00 

BMI< 20 .00 .00 .00 .00 
27< BMI<30 	20<=DMI<=25 .00 .00 .00 .00 
(i=4) 	25< BMI<=27 .00 .00 .00 .00 

27< B.MI<=30 .00 .00 .00 .00 

BMI> 30 1.00 .00 .00 .00 

.00 .13 .00 .00 

.00 .42 .44 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 . 00 

.00 .80 .00 .00 

.00 .20 .00 .00 

.00 .00 .00 . 00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 1.00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 1.00 .00 .00 

.00 .00 .00 .00 

.00 .00 00 .00 

BMI< 20 .00 .00 .00 .00 
DM1> 30 	20<=4MI<=25 .00 .00 .00 .00 
(i=5) 	25< DMI<=27 .00 .00 .00 .00 

27< DMI<=30 .00 .00 .00 .00 
DM1> 30 1.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .00 .00 .00 

.00 .02 .04 .00 

.00 .43 .51 .00 



TABLE 3 (CONTINUED) 

AGE 	 >20 dC/DAY 	 FORMER S14OKER  

t 	 (4=3) 	 (4=4) 

.1- 	ACE -i 	NEVER 	1-20 	> 20 	FORMER 	NEVER 	1-20 	> 20 	FORMER 

t+1 	SMOKER dc/DAY dC/DAY SMOKER 	SMOKER CIG/DAY dc/DAY SMM4OKER 

< 20 .00 .00 .00 1.00 .00 .00 .00 100 

BMI< 20 	20(BMI<25 .00 .00 .00 .00 .00 .00 .00 .00 

25< BM!<27 .00 .00 .00 .00 .00 .00 .00 .00 

27< EMI<30 .00 .00 .00 .00 .00 .00 .00 .00 

BIC> 30 .00 .00 .00 .00 .00 .00 .00 .00 

EMI< 20 .00 .00 .00 .00 .00 .00 .00 .03 

20<=BMI(=25 	20<=EMI<=25 .00 .00 .91 .00 .00 .00 .07 .61 

(i=2) 	25< BMI<=27 .00 .00 .09 .00 .00 .00 .00 .29 

27< EMt.(=30 .00 .00 .00 .00 .00 .00 .00 .00 
EM!> 30 .00 .00 .00 .00 .00 .00 .00 .00 

BMI< 20 .00 .00 .00 .00 .00 .00 .00 .00 
25< EMI.(27 	20<BMI<=25 .00 .00 .00 .00 .00 .00 .00 .00 

(i=3) 	25< BMI<=27 .00 .00 1.00 .00 .00 00 .00 1.00 

27< BMI<=30 .00 .00 .00 .00 .00 .00 .00 .00 
4I> 30 .00 .00 .00 .00 .00 .00 .00 .00 

BMI< 20 .00 .00 .00 .00 .00 .00 .00 .00 
27< BMI<=30 	20<=BMI<=25 .00 .00 .00 .00 .00 .00 .00 .00 

(i=4) 	25< BMI<=27 .00 .00 .07 .00 .00 .00 .00 .00 

27< EMX<=30 .00 .00 .56 .37 .00 .00 .00 1.00 
EM!> 30 .00 .00 .00 .00 .00 .00 00 .00 

BMI< 20 .00 .00 .00 .00 .00 .00 .00 .00 

EM!> 30 	20(=EMI<=25 .00 .00 .00 .00 .00 .00 .00 .00 

(i=5) 	25< BMI<=27 .00 .00 .00 .00 .00 .00 .00 .00 

27< BMI<=30 .00 .00 1.00 .00 .00 .00 .00 .30 
EM!> 30 .00 .00 .00 .00 .00 .00 .00 .70 



TABLE 4 
TRANSITION PROBABILITIES FOR FOUR-VARIABLE CASE, STORED IN CONCISE FORN 
DATA FOR MALES FROM AGE GROUP 30-34 (AGE t) TO AGE GROUP 35-39 (AGE t+1) 

'AR. 1 	BODY MASS INDEX; VAR. 2 : CHOLESTEROL; VAR. 3 : BLOOD PRESSURE; VAR. 4 : SMOKING HABIT 
USING WEIGHTS 

= 
0,1i31 f4) = (Var. 1,Var. 2,Var. 3,Var. 4) AT AGE t 	(30-34) 

= (Var. 1,Var. 2,Var. 3,Var. 4) AT AGE t+1 (35-39) 

Address of First Cumulative Transition Probability for Each Initial State 

State at 
Age t Address 

2131 * 
2132 a 

2133 * 
2134 * 
2211 27 
2212 31 
2213 32 
2214 35 
2221 a 

2222 * 
2223 36 
2224 a  
2231 
2232 * 
2233 * 
2234 * 
2311 37 
2312 38 
2313 41 
2314 43 
2321 * 
2322 * 
2323 46 
2324 * 
2331 a 

2332 * 
2333 * 
2331 * 
3111 4_i 
3112 * 
3113 A 

311'l 53 
312 51 
3122 
3123 A 

3124 55 
3131 1 

3132 * 
3133 A 

3134 A 

3211 56 
3212 59 
3213 61 
3214 65 

State at 
Age t Address 

3221 a 

3222 * 
3223 a 

3224 
3231 a 

3232 * 
3233 A 

3234 A 

3311 66 
3312 70 
3313 a  
3314 A 

3321 * 
3322 A 

3323 A 

3324 _73 
3331 a 

3332 
3333 a 

3331 A  

4111 75 
4112 76 
4113 78 
4114 81 
4121 * 
4122 82 
4123 * 
4124 * 
4131 a 

4132 * 
4133 * 
4134 * 
4211 83 
1212 84 
4213 85 
4214 88 
4221 89 
4222 * 
4223 90 
4224 92 
4231 * 
4232 A 

4233 a 

4234 93 

Address 

* 
* 
1 
2 
3 
5 
* 
* 
* 
* 
* 
* 

7 
* 
* 

* 

* 
A 

a 

* 

* 
* 
* 
A 

* 
* 

* 

* 
* 
9 
10 
14 
15 
20 
23 
* 
24 

UNDEFINED TRANSITION PROBABILITIES (UNOBSERVED INITIAL STATES) 



TABLE 4 (CONTINUED) 

State at 
Age t Address 

4311 * 

4312 95 
4313 96 
4311 97 
4321 * 

4322 101 
4323 103 
4324 * 

4331 * 

4332 * 

4333 * 

4334 * 

5111 * 

5112 109 
5113 * 

5114 110 
5121 * 

5122 * 

5123 * 

5124 * 

5131 * 

5132 * 

5133 * 

5134 * 

5211 112 
5212 114 
5213 121 
5214 123 
5221 124 
5222 * 

5223 127 
5221 * 

5231 * 

5232 * 

5233 * 

5234 * 

5311 * 

5312 128 
5313 * 

5311 
5321 * 

5322 * 

5323 * 

5324 
5331 * 

5332 
5333 * 

5334 * 

* UNDEFINED TRANSITION PROBABILITIES (UNOBSERVED INITIAL STATES) 



TABLE 4 (CONTINUED) 

B. Cumulative Transition Probabilities and Final States 

Address 
Cumulative 
Probability 

State at 
Age t+l 

1 1.00 1114 
2 1.00 1114 
3 .89 2111 
4 1.00 2121 
5 .17 1112 
6 1.00 2113 
7 .12 1212 
8 1.00 2212 
9 1.00 2111 
10 .41 2112 
11 .46 2113 
12 .46 2212 
13 1.00 3112 
14 1.00 2113 
15 .05 1114 
16 .33 2113 
17 .86 2114 
18 .89 2214 
19 1.00 3114 
20 .53 2121 
21 .97 2221 
22 1.00 3221 
23 1.00 3222 
24 .04 2124 
25 .58 2214 
26 1.00 3124 
27 .07 2111 
28 .57 2211 
29 .86 2221 
30 1.00 2311 
31 1.00 2212 
32 .30 2113 
33 .74 2213 
34 1.00 2214 
35 1.00 2214 
36 1.00 3233 
37 1.00 2311 
38 .08 2212 
39 .33 2312 
40 1.00 2322 
41 .80 2313 
42 1.00 3313 
43 .22 2214 
44 .27 2314 
45 1.00 3314 
46 1.00 2322 
47 .22 2111 
48 .32 3112 
49 .73 3221 
50 .86 4111 
51 .89 4121 
52 1.00 5111 
53 1.00 3114 
54 1.00 4121 
55 1.00 4124 
56 .14 3211 
57 .76 3221 
58 1.00 4221 
59 .08 3212 
60 1.00 3222 
61 .23 3113 
62 .46 3213 
63 .71 3214 
64 1.00 3313 

Address 
Cumulative 
Probability 

State at 
Age t+1 

65 1.00 3214 
66 .25 2311 
67 .67 3221 
68 .79 3311 
69 1.00 5311 
70 .46 3312 
71 .94 3313 
72 1.00 3322 
73 .71 3324 
74 1.00 3334 
75 1.00 5111 
76 .44 3112 
77 1.00 4112 
78 .67 4113 
79 .99 4114 
80 1.00 4124 
81 1.00 4114 
82 1.00 3222 
83 1.00 5211 
84 1.00 3222 
85 .42 4213 
86 .91 4214 
87 1.00 4224 
88 1.00 4214 
89 1.00 4221 
90 .51 3233 
91 1.00 4124 
92 1.00 4224 
93 .64 3334 
94 1.00 4224 
95 1.00 4313 
96 1.00 4313 
97 .24 3314 
98 .69 4214 
99 .89 4314 
100 1.00 5314 
101 .97 3222 
102 1.00 3322 
103 .38 3233 
104 .38 3313 
105 .38 3324 
106 .41 3334 
107 .69 4224 
108 1.00 4313 
109 1.00 5112 
110 .77 4114 
111 1.00 5114 
112 .87 5111 
113 1.00 5211 
114 .14 4213 
115 .40 5112 
116 .58 5113 
117 .59 5123 
118 .67 5212 
119 .97 5313 
120 1.00 5322 
121 .71 5113 
122 1.00 5214 
123 1.00 5214 
124 .01 5111 
125 .08 5121 
126 1.00 5211 
127 1.00 5123 
128 .97 5312 
129 1.00 5313 

*UNDEFINED AND ZERO-VALUED TRANSITION PROBABILITIES ARE EXCLUDED 



TABLE 5 
TRANSITION PROBABILITIES FOR SMOKING HABIT 

CALCULATED FROM ONE-, TWO-, AND FOUR-VARIABLE DATA 
(USING OBJECTIVE FUNCTION Z AND SQUARED DISTANCE WEIGHTS) 

One-Variable Example 

NEVER SMOKER 
1-20 CIG/DAY 
>20 CIG/DAY 

FORMER SMOKER 

Two-Variable Example 

NEVER 1-20 >20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

.98 .02 
.75 .25 

.93 .07 
1.00 

NEVER SMOKER 
1-20 CIG/DAY 
>20 CIG/DAY 

FORMER SMOKER 

NEVER 1-20 >20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

.98 .02 
.75 .25 

.87 .13 

.05 .95 

C. Four-Variable Example 

NEVER SMOKER 
1-20 CIG/DAY 
>20 CIG/DAY 

FORMER SMOKER 

NEVER 1-20 >20 FORMER 
SMOKER CIG/DAY CIG/DAY SMOKER 

.98 .02 
.73 .27 
.02 .80 .18 

.08 .92 



FIGURE 1 
Possible Transitions for Smoking Habit 
Calculated from One-, Two-, and Four-Variable Data 
(using objective function Z and squared distance weights) 

One-Variable Example 

Two-Variable Example 

Four-Variable Example 

N = Never Smoker 
L = Lighter Smokers (1 to 20 cigarettes per day) 
H = Heavier Smokers (more than 20 cigarettes per day) 
F = Former Smoker 
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FIGURE 2. TWO SIMULATED LIFE HISTORIES 
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FIGURE 2 (continued). 

B. ROY (Rough history) 
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FIGURE 3. PERCENTAGES OF NEVER SMOKERS 
ACROSS 12 ACE GROUPS 
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