$C 2$

$15-602$ no 51
Input-output Division

breldarary $\cdots+0$ 回

Technical Series

Input-Output

 Technical SeriesThe Input-Output Division Technical Series are intended for users interested in input-output tables and related research for analysis and applications. Readers of the series are encouraged to contact the authors with comments and suggestions. A complete list of the titles that have been released appears at the back of this paper.

Papers in the series are distributed to Statistics Canada Regional Offices and Provincial Bureaus of Statistics. The series appears in the "Listing of Supplementary Documents" (11-207). A complete set is also maintained in the Statistics Canada Library and is available for consultation.

To obtain the list of titles and/or an individual paper, please contact:
Consulting and Marketing
Input-Output Division
Statistics Canada
23rd Floor, R.H. Coats Building
Ottawa, Ontario, K1A 0T6
(613) 951-3697

Statistics Canada National Accounts and Analytical Studies System of National Accounts Input-Output Division

Estimating Total Annual Hours Worked from the Canadian Labour Force Survey

By

Maryanne Webber

\# 51

AprII, 1983

Note: This paper was prepared jointly by Labour and Household Surverys Analysis Division and input/Output Division.

-

INTRODUCTION

1. This paper illustrates how total annual hours worked can be derived from a periodic household survey, in this instance the Canadian Labour Force Survey. A number of the techniques described and used in this document have been developed by the Productivity Measures of Statistics Canada. In preparing estimates of labour input for productivity measures, a number of data sources, including the Labour Force Survey, are used. Since this paper serves to show how total annual hours worked estimates can be derived solely from household survey sources, the methodology employed with a view to deriving productivity measures necessarily differs in several important respects from the techniques employed here.

An overview of the survey vehicle

2. The Labour Force Survey (LFS) is one of Canada's major sources of current employment data. The survey universe comprises the civilian, non-institutional population residing in the ten provinces. The sample includes about 55,000 dwellings selected using a stratified, multi-stage design. Interviews are conducted monthly in the selected dwellings, each of which remains in the sample for six months with one sixth of the total being replaced each month. At the first interview, socio-demographic information is collected on all household members and in this, and the subsequent five interviews, labour market information is collected on all civilian members 15 years of age and over.
3. Responses to the LFS questionnaire provide the information required to classify respondents as employed, unemployed or not in the labour force as well as providing a substantial amount of information relating to each of these categories. A respondent is classified as employed if he or she did any work in the reference week (the week prior to the interview), or if he or she had a job or business but was not at work for reasons such as vacation, illness or labour dispute.
4. From January to October, the reference week is mid-month, i.e., the week containing the 15th day. In November and December, both the reference and interview weeks are moved forward by one week. This is done to avoid the operational problems which would arise in conducting interviews in the week prior to Christmas. The November reference is, in turn, moved forward, in order to approximately equalize the between-survey periods.
5. Employed respondents are asked a number of questions on hours of work. Those who did some work in the reference week are asked:

- the number of hours they usually work per week (recorded in intervals of one hour);
- the number of extra hours, if any, they worked in the reference week (extra hours refer to hours in excess of the usual hours and are recorded in intervals of one hour);
- the number of hours, if any, they lost or took off from work in the reference week (hours lost or taken off refer to the number of hours less than the usual hours. They are recorded in intervals of one hour);
- if any time was lost, the main reason for absence (i.e. the reason accounting for most of the hours);
- the number of hours actually worked in the reference week (recorded in intervals of one hour).

6. Employed respondents who did not work in the reference week are asked the main reason for their absence and the number of hours they usually work per week. In the case of these persons who are absent all week, the reported usual weekly hours can be taken to represent the number of hours lost in the reference week. At a conceptual level, this is equivalent to the hours lost data on persons who worked at least part of the reference week.
7. Thus, the LFS provides data on usual weekly hours, actual weekly hours, extra time and time lost. The data can be generated and used in several forms including:

- intervals of hours worked or hours lost, e.g., the number of persons working 1-10 hours, 11-20 hours, etc. These intervals can be defined to suit the specific requirements of each data user;
- hours worked per employed person, i.e., the average workweek, and average hours lost per employed person or per absent person;
- total usual and total actual hours worked per week and total hours lost per week (the latter can be generated by reason for absence).

8. These data on hours of work can be cross-tabulated with other data collected by the LFS, for example, industry, occupation and class of worker (i.e., employee, self-employed, unpaid family worker). They can also be related to the full range of socio-demographic variables, that is age, sex, marital status, relationship to family head and educational attainment.
9. This paper centres on the calculation of total annual hours worked. As such, the focus is primarily on the total actual hours worked estimates and selected measures of time lost.

\cdot

10. Table 1 shows the estimates of total actual hours worked in the survey's reference week, by month, for 1975 to 1981^{1}. The annual averages, also shown in Table 1, can be taken to represent the "average week" of the year in question and one can derive an estimate of total annual hours worked simply by multiplying the annual averages by 52 . This yields the following estimates of total annual hours worked for 1975 to 1981:

Year	Annual average per week X 52
1975	17,367
1976	17,427
1977	17,738
1978	18,511
1979	19,267
1980	19,470
1981	19,691

11. The problem with this simple approach is that these estimates are based on the hours worked in only one week in each month (the reference week), and this week is not necessarily representative of the whole month. For example, public holidays are not evenly dispersed throughout the month and, labour disputes may or may not be evenly distributed. Such events have a substantial impact on the hours lost, and therefore on the total hours worked, in the week in which they occur. If such events occur disproportionately in the 12 reference weeks, compared to the other 40 weeks in the year, the simple method of estimating total annual hours worked described above could be unreliable. The balance of this paper is directed at an investigation of this problem and suggests some ways of overcoming it. Possible adjustments, which deal with the impact of time lost due to labour disputes, and time lost due to public holidays will be described.
12. To put the hours lost attributable to these two reasons in context, Table 2 provides estimates of time lost by reason for absence. These are weekly averages for each year from 1975 to 1981. The range in average hours lost per week due to labour dispute in the period under review is pronounced, owing mainly to the 1977 estimate which is markedly below the estimates obtained in other years. Given the fairly stable estimates for these other years, 1977 simply look "out of line". However, as will be shown below, estimates from an independent source substantiate the validity of this particular observation.

[^0]13. As for hours lost due to holidays, Table 2 shows very large annual fluctuations. This is attributable to the fact that the number of public holidays falling in reference weeks varies from year to year. The discussion below will address the question of how to obtain an estimate of annual hours worked which reasonably reflects time lost due to public holidays throughout the entire year, whether or not they happen to fall in a survey reference week.

An overview of the approach
14. Recognizing that the LFS produces total actual hours worked estimates for only 12 of the 52 weeks of the year, the solution might appear to be to estimate hours worked in the remaining 40 weeks through interpolation and adjustment and to derive annual hours worked by aggregating over these 40 weeks and adding in the 12 observations from the LFS. To some extent, this is in fact the approach taken but with the adjustment for labour disputes being performed on a monthly basis.
15. The overall technique, which is described in more detail subsequently, proceeds in essentially five stages.
(1) The estimates of actual hours worked in the LFS reference weeks are inflated by adding back in hours lost due to selected holidays and hours lost due to labour disputes.
(2) The estimates from Stage (1) are used to create estimates for the remaining 40 weeks by interpolation.
(3) The holiday adjustment is applied to the estimates for the 40 weeks derived from Stage (2).
(4) The 12 LFS estimates, with the impact of selected holidays removed, are grouped with the other 40 estimates.
(5) The 52 LFS and interpolated estimates are aggregated to form 12 monthly estimates. The monthly estimates reflect a combination of actual hours worked and hours lost due to labour disputes.
(6) Monthly estimates of hours lost due to labour disputes, which are obtained from Labour Canada, are subtracted from the monthly estimates obtained in Stage (5). At this point, the process has generated monthly estimates of actual hours worked, that is, estimates from which hours lost from all sources have been removed.
(7) Annual aggregate hours worked estimates are obtained simply by aggregating over the 12 monthly estimates.

The application of these steps to 1981 data is illustrated in Table 5.

Public holidays

16. In most years, two national public holidays will fall in the LFS reference weeks. These are Thanksgiving and Remembrance Day. In some cases, holidays in the reference week result in up to 50 million hours lost. In such months, hours worked in the reference week are clearly not typical of the rest of the month. On the other hand, a number of important public holidays never fall in the reference week. For months containing holidays outside the reference week, the LFS estimate of total hours worked in the reference week will exceed the true weekly average for the month.
17. It should be noted that LFS estimates show some time lost due to public holidays in each and every reference week. This can be attributed to the fact that there are many provincial holidays, local holidays, and feast holidays of specific religious groups spread throughout the year. Because the holidays are so widely dispersed through time, it is not unreasonable to assume that the reference week data will be sufficiently representative of the other weeks in the month. What is of concern here are those holidays which have a discernible impact at the national level. These are generally "national" public holidays, but there are a few regional holidays, celebrated in one or more of the most populous provinces, which can have an impact at the national level.
18. Data from the Pay Research Bureau ${ }^{2}$ make it possible to divide important public holidays into three broad groups in terms of the proportion of employees granted the day off:

Major holidays: \quad| New Year's Day |
| :--- |
| Good Friday (July 1) |
| Canada Day |
| |
| Labour Day (first Monday in September) |
| Thanksgiving Day (generally second Monday in October) |
| |
| Chrismas Day |

[^1]```
Major-minor holidays*: Victoria Day (generally the Monday closest to May 24)
 Boxing Day
Minor holidays: Easter Monday
 St-Jean Baptiste (June 24)
 August Civic Holiday (first Monday in August)
 Remembrance Day
```

* These can be considered as roughly half-way between major and minor holidays in terms of their impact on hours.

From 1975 to 1982, 20 of the 96 reference weeks contained one of these holidays where the holidays concerned have been Good Friday, Easter Monday, Thanksgiving Day or Remembrance Day. The mid-month location of the reference week precludes the remaining holidays from ever falling in a reference week.
19. Table 3 shows actual hours worked in those reference weeks containing holidays (Column 1) with the hours lost through labour disputes added back in as outlined in paragraph 15 . Column 2 shows hours lost due to public holiday, as estimated by the LFS> Column 3 is the sum of Columns 1 and 2 and is intended to represent the hours that would have been worked had there been no holiday. Column 4 represents the impact of the holiday, in terms of the ratio of hours worked to the hours that would have been worked had there been no holiday. These holiday adjustment ratios are summarized below:

Ratio of Hours Worked to Hours that would have been Worked had Reference Week not Contained a Holiday, 1975-1981

Reference week containing:

|  | Good <br> Friday | Easter <br> Monday | Thanksgiving <br> Day | Remembrance <br> Day |
| :--- | :--- | :--- | :--- | :--- |
| 1975 |  |  | .8948 | .9505 |
| 1976 | .8810 | .9541 | .8728 | .9448 |
| 1977 |  | .8816 | .9405 |  |
| 1978 |  | .9566 | .8804 | .9937 |
| 1979 | .8734 |  | .8800 | .9707 |
| 1980 |  | .8718 | .9441 |  |
| 1981 |  |  | .9437 |  |

The ratios shown above refer to two major holidays (Good Friday and Thanksgiving Day) and two minor holidays (Easter Monday and Remembrance Day). Among the major holidays, the ratios range from a high of .8948 to a low of .8718 . Thus, Good Friday and Thanksgiving Day are essentially similar in terms of their impact on hours worked. The importance of particular holidays can rise or fall but there is no strong indication of trend changes in the limited number of available observations.
20. Among the ratios for minor holidays, there are two outliers - Remembrance Day in 1978 and 1979 - but the remaining ratios range narrowly from .9573 to 9405 . Remembrance Day differs from other holidays in that, when it falls on a normal day of rest, a large proportion of employees are not granted another day (e.g. the following Monday) off in lieu. In 1978, Remembrance Day fell on a Saturday, i.e., the last day of reference week and the LFS estimate of hours lost due to holiday was 2.3 million, compared to a mean of 19.3 million in the three preceding years. In 1979, Remembrance Day fell on a Sunday and the number of hours lost rose to 11.4 million. One can safely assume that most of these hours were lost by persons granted the Monday off. In the absence of information to the contrary, the 1979 ratio could be considered appropriate when Remembrance Day falls on a weekend.
21. To summarize the presentation on the impact of holidays:

- the two major holidays have a similar impact on reference week hours, which is to reduce them to about .88 (the mean) of the level they would have reached had there been no holiday;
- with the exception of Remembrance Day which falls on a weekend, the two minor holidays have a similar impact on reference week hours, which is to reduce them to about, 95 of the level they would have otherwise reached;
- when Remembrance Day falls on a weekend, the impact is smaller. The hours worked represent about .97 of the level they would have otherwise reached;
- the above ratios have been fairly stable during the period under review.

22. A holiday adjustment can be executed by following these steps.
(The full process is illustrated in Table 5):
23. Add the hours lost due to labour disputes back into the actual hours worked estimates (Column 2 of Table 5).
24. Add the hours lost due to holidays back into the actual hours worked estimates (Column 5 of Table 5).
25. Interpolate weekly hours worked estimates for weeks between reference weeks using a simple linear interpolation (Column 6).
26. Adjust the interpolated hours in non-reference weeks containing important holidays. These holidays are identified by type in Column 7. The adjustment factor for nonreference weeks containing major holidays is 88 (i.e., the adjustment factor is based on the observed effect of major holidays falling in the reference week). For minor holidays, a factor of .95 is used. For major-minor holidays, the impact is assumed to be half-way between that of a major and a minor holiday and, accordingly, a factor of .92 is used.
27. Where the reference week contains a holiday, there is no need to apply and adjustment factor to the estimated hours worked for that week. In Column 9, which contains "total hours worked adjusted for holidays", the Column 3 estimate can be used since this reflect the observed impact of the holiday.
28. Column 9 represents weekly hours levels adjusted for holidays but not for labour disputes.

## Labour disputes

23. Labour Canada, another department of the federal government, publishes a wide selection of statistics relating to work stoppages. The information is obtained from administrative rather than household survey sources. One of the series pertains to person-days lost through work stoppages calculated by month. Table 4 provides a comparison of the labour Canada and LFS data on time lost due to labour disputes. The Labour Canada person-day figures have been multiplied by 8 (Column 2 of Table 4) to obtain estimated in terms of hours lost. (The assumption of an 8 hour working day is, admittedly, somewhat arbitrary. However, the 40 hour/5 day week is still the most frequently occurting work schedule in Canada, particularly in industries which are highly unionized ${ }^{3}$ ). One would expect the administrative data to be roughly four times larger than the LFS estimates, since the former refer to the full month and the latter to one week within the month. (The average month contains 4.3 weeks).

[^2]24. Table 4 shows that, on an annual average basis, the LFS estimate represents from $20 \%$ to $26 \%$ of the Labour Canada figure converted to hours. On the whole, the agreement is remarkably good. It was noted earlier that hours lost per week in 1977, as measured by the LFS, appeared to be "out of line" with the estimates of other years. The Labour Canada data indicate that 1977 was in fact an exceptional year in terms of time lost due to labour disputes:

| Year | Person-days lost in |
| :---: | ---: |
|  |  |
| 1975 | $10,908,810$ |
| 1976 | $11,609,890$ |
| 1978 | $3,307,880$ |
| 1979 | $7,392,820$ |
| 1980 | $7,834,230$ |
| 1981 | $8,975,390$ |
|  | $8,878,490$ |

Source: Strikes and Lockouts in Canada, 1981, Labour Canada. (Canadian Government Publishing Centre, Supply and Services Canada), Ottawa.

While the LFS annual averages appear to adequately reflect time lost due to labour disputes, it can be seen from Table 4 that this does not always apply to the monthly data. LFS hours lost due to labour disputes can represent any-where from 9.4\% (November 1979) to 37.3\% (November 1976) of Labour Canada's person-day figure converted to hours. This variation is evidence that the occurrence of labour disputes is not evenly distributed throughout the month. However, the average degree of consistency can be taken as evidence of the reliability of the LFS estimates of the time lost due to labour disputes which occur during the reference week. Some confidence can, therefore, be placed in the step in which hours lost due to labour disputes are added back into the actual hours worked estimated before the application of the holiday adjustment.
25. After the interpolation of hours worked in non-reference weeks and after the adjustment for time lost due to public holidays have been effected, the Labour Canada based estimates of hours lost due to labour disputes are subtracted from the estimated hours worked. It may be noted that, if the Labour Canada data were not available, the Survey estimate of hours lost due to labour disputes could be used in this last step.

## Effect of the adjustments

26. The procedure described above has also been applied to the data for 1976 through 1980 to derive annual hours worked estimates for all of these years. The impact of the adjustments on total annual hours worked is summarized in Table 6. It can be seen that the adjustments raise the estimated hours worked in three years, by 63 to 274 million hours, and lower them in the remaining three years, by 112 to 284 million hours. In percentage terms, the adjusted values represent from -1.0 to +1.5 of the simple "average week" based values (Column 1 of Table 6). There are many assumptions and approximations built into the adjustment procedures and there are also sampling and nonsampling errors in the original data being adjusted. For some purposes, the unadjusted survey results could be preferred on the grounds that the impact of adjustment is too slight, given the errors inherent in the original data and nature of the adjustment procedure. On the other hand, for the data user interested in measures of year-to-year changes in aggregate annual hours worked, the adjustments have a substantial impact as displayed in Table 6. Whether or not the adjustments increase the accuracy of the resulting statistics remains to be determined. The obvious standard of comparison would be the aggregate annual hours worked estimates produced by Statistics Canada for the purposes of measuring productivity. However, those estimates exclude a substantial number of very specific industries and the time had not been available to generate LFS based measures of hours worked with the same coverage in order to carry out a valid comparison.
27. The adjustments may also have more impact on disaggregated data, for example, industry - or occupation-specific estimates of total annual hours worked. The adjustment procedure described above was applied to four different industries, using 1981 data. The holiday adjustment factors, for the four industries in question, are as follows:

## Major holidays Minor holidays Major-minor holidays

| Manufacturing | .85 | .96 | .91 |
| :--- | :---: | :---: | :---: |
| Construction | .87 | .95 | .91 |
| Trade | .88 | .96 | .92 |
| Public Administration | .84 | .88 | .86 |

Labour Canada data show that the percentage of estimated working time lost through work stoppages in 1981 ranged from .03 in construction, to .04 in trade, to .38 in public administration and to .89 in manufacturing. In spite of the range in the holiday adjustment factors, and the even greater range in the industry-specific time lost due to labour disputes statistics, the impact of the adjustment was quite uniform by industry as shown in Table 7.

## Other limitations of the data

28. There are other limitations of the LFS as a source of aggregate annual hours worked estimates which should be recognized. These include the occurrence of absences for more than one reason in a single reference week, assumptions regarding the distribution through time of absences due to reasons other than holiday or labour dispute, and problems with industry-specific estimates in the case of persons with more than one job in the reference week.

## 1. Multiple absences

Whether the respondent was absent from work for part of the reference or all of that week, only one reason can be recorded. In the event that the respondent was absent for more than one reason, the interviewers are instructed to enter the total hours lost for all reasons and specify as a reason the one which accounted for the largest number of hours of lost time. When neither holidays nor labour disputes are involved, the occurrence of more than one absence for more than one reason poses no problem for the present purposes. However, when one of the reasons is holiday or labour dispute, the consequences are potentially more serious. For example, when the occurrence of a holiday in a reference week prompts a significant number of persons to take all or part of the balance of the week as vacation (annual leave) two results can be anticipated. First, when the vacation time is larger than the holiday time, the occurrence of the holiday will go undetected among the affected respondents since all of the time lost will be attributed to the vacation. Secondly, under these circumstances, the time lost due to vacation in the reference week will probably not be representative of time lost for this reason in the remaining weeks of the month.

## 2. Absence for other reasons

In the technique for estimating annual aggregate hours worked presented in this paper, reasons for absence other than holidays or labour disputes are assumed to be uniformly distributed throughout the month. For absences due to illness or family responsibilities there is little reason to question the validity of this assumption. For other absences due to factors such as starting or leaving a job during the reference week, working short time, etc., at least the possibility exists that the absences may be concentrated in particular weeks of the month. The comment made above regarding possible
interactions between holidays and vacations illustrates the point. In addition, time lost due to starting or losing a job mid-week may be more prevalent during weeks at the beginning or end of a month. Unfortunately no data exist which could be used to assess the extent to which this in fact occurs.

## 3. Multiple job holding

In the LFS, persons holding two or more jobs in the reference week are identified and the hours worked at the 'main job' and 'other job' are measured separately. (The 'main job' is the one at which the respondent usually works the most hours). When measuring aggregate annual hours worked for all employed persons, the occurrence of multiple job holding poses no problems. However, when these hours are estimated by industry, the fact that the LFS identifies only the industry of the 'main job' makes it difficult to correctly attribute the hours worked in the 'other jobs' to the appropriate industry. Since, in Canada, multiple job holders constitute something in the order of $3 \%$ of all employed persons, this is not a trivial problem. However, a special survey conducted as a supplement to the LFS should provided some measures of the industrial distributions of 'main' and 'other' jobs leading to the potential for at least crude adjustments for this problem.

## Alternative approaches

29. The techniques used in this paper to estimate total annual hours worked are based fundamentally on LFS data although two additional independent sources are brought to bear on the process, namely, information on the coverage of holidays, and time lost due to labour disputes.
30. It is possible, of course, to base the annual hours worked estimates even more completely on household survey sources. In the case of holidays, what might be described as "common knowledge" concerning their occurrence, combined with the information on hours lost derived from the LFS when a holiday coincides with the reference week, could form a reasonable basis for the holiday adjustment. With respect to the adjustment for hours lost due to labour disputes, the average consistency between the LFS estimates and those from administrative sources, suggests that an acceptably sound adjustment can be performed. This would be accomplished by estimating hours lost due to labour disputes for the entire year (calculated as the average of the twelve observations times 52) and deducting this from the aggregate of the monthly hours worked estimates.

## Conclusion

31. In a complex, multi-faceted statistical system, using household and establishment surveys as well as administrative sources,it is clearly inadvisable to place total reliance on household surveys for estimating total annual hours worked. It is for that reason - as mentioned in the introduction - that the Productivity measures of Statistics Canada uses an optimal combination of data series. Nevertheless, as this paper has shown, it is possible to generate plausible aggregate estimates from household surveys alone.

TABLE 1. Total Actual Hours Worked in Reference Week, by Month, 1975-1981

|  | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 332,136 | 329,984 | 321,624 | 328,808 | 352,529 | 365,062 | 373,487 |
| February | 320,870 | 329,078 | 330,692 | 338,911 | 353,101 | 363,587 | 377,013 |
| March | 322,401 | 328,558 | 330,568 | 341,360 | 358,396 | 364,498 | 377,835 |
| April | 333,223 | 299,513 | 324.515 | 350,316 | 344,899 | 375,592 | 333,880 |
| May | 353,589 | 357. 243 | 360,366 | 372,336 | 385,312 | 391,566 | 404,492 |
| June | 359,781 | 363,001 | 368,996 | 380,526 | 396,407 | 400,731 | 415,620 |
| July | 315,601 | 330,330 | 336,092 | 351,584 | 346,462 | 356,265 | 369,168 |
| August | 332,178 | 345,798 | 351,059 | 362,194 | 375,765 | 375,414 | 385,797 |
| September | 356,655 | 356.999 | 364.677 | 374,026 | 392,072 | 395,353 | 405.291 |
| October | 315,329 | 306,229 | 322,980 | 333,627 | 390,139 | 349.430 | 347,809 |
| November | 330,559 | 330,043 | 337,662 | 369,582 | 372,974 | 369,321 | 370,548 |
| December | 344,518 | 344,886 | 344,052 | 368.590 | 378,138 | 386,267 | 383,113 |
| Annual average | 333,987 | 335,139 | 341.107 | 355,988 | 370,516 | 374,424 | 378,671 |

## .

TABLE 2. Total Hours Lost Per Week by Reason for Absence, 1975-1981.


- These estimates represent the average of the number of hours lost in the 12 relerence weeks of each year

TABLE 3. Reference Weeks Containing Important Holidays, 1975 to 1982


TABLE 4. Comparison of Labour Canada and LFS Data on Time Lost Through Labour disputes, 1975-1981

|  | Person-days lost in month (Labour Canada) | Person-days lost converted to hours (X 8) | Hours lost in reference | Column 3 as $\%$ of column 2 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | '000 | '000 | \% |
| 1975 |  |  |  |  |
| January | 409,800 | 3,278 | 728 | 22.2 |
| February | 361,050 | 2,888 | 606 | 21.0 |
| March | 479,530 | 3,836 | 1,016 | 26.5 |
| April | 559,230 | 4,474 | 931 | 20.8 |
| May | 692,430 | 5,539 | 1,371 | 24.8 |
| June | 804,660 | 6,437 | 1,820 | 28.3 |
| July | 1,237,580 | 9,901 | 2,383 | 24.1 |
| August | 1,293,570 | 10,349 | 2.729 | 26.4 |
| Sepiember | 1,273,870 | 10,191 | 2,547 | 25.0 |
| Oclober | 1,277,260 | 10,218 | 2,001 | 19.6 |
| November | 1,420,520 | 11.364 | 2.749 | 24.2 |
| December | 1.099,310 | 8,794 | 1,861 | 21.2 |
| Annual avg. | - | 7,273 | 1,728 | 23.8 |
| 1976 |  |  |  |  |
| Januar | 818,960 | 6,552 | 1,497 | 22.8 |
| February | 563,750 | 4.510 | 965 | 21.4 |
| March | 448,590 | 3,589 | 825 | 23.0 |
| April | 709,760 | 5,678 | 1.294 | 22.8 |
| May | 660,510 | 5,284 | 978 | 18.5 |
| June | 1,224,180 | 9,793 | 1.931 | 19.7 |
| July | 1.270,240 | 10,162 | 2.353 | 23.2 |
| Augus! | 1,186,600 | 9,493 | 1,712 | 18.0 |
| Seplember | 1,943,860 | 15,551 | 4,366 | 28.1 |
| October | 2,035,720 | 16,286 | 3.479 | 21.4 |
| November | 498,700 | 3.990 | 1,490 | 37.3 |
| December | 249,020 | 1.992 | 464 | 23.3 |
| Annual avg. | - | 7.740 | 1,779 | 23.0 |
| 1977 |  |  |  |  |
| January | 219.000 | 1,752 | 478 | 27.3 |
| February | 175,740 | 1,406 | 395 | 28.1 |
| March | 207,270 | 1,658 | 432 | 26.1 |
| April | 329,350 | 2,635 | 658 | 25.0 |
| May | 299,940 | 2,400 | 287 | 12.0 |
| June | 307,500 | 2,460 | 470 | 19.1 |
| July | 405,760 | 3,246 | 628 | 19.4 |
| August | 345,970 | 2,768 | 582 | 21.0 |
| Sepramber | 245,070 | 1,961 | 488 | 24.9 |
| October | 178,300 | 1.426 | 411 | 28.8 |
| November | 240,850 | 1,927 | 255 | 13.2 |
| December | 353,130 | 2.825 | 658 | 23.3 |
| Annual avg. | - | 2.205 | 479 | 21.7 |
| 1978 |  |  |  |  |
| January | 375,920 | 3.007 | 637 | 21.2 |
| February | 276,860 | 2,215 | 426 | 19.2 |
| March | 402,590 | 3,221 | 952 | 29.6 |
| April | 483,020 | 3,864 | 847 | 21.9 |
| May | 503,810 | 4,030 | 1.036 | 25.7 |
| June | 670,410 | 5,363 | 1.198 | 22.3 |
| July | 974,500 | 7,796 | 1.612 | 20.7 |
| August | 1,039,290 | 8,314 | 1.416 | 17.0 |
| September | 733,880 | 6.191 | 1,385 | 22.4 |
| October | 841,670 | 6,733 | 1,079 | 16.0 |
| November | 579,760 | 4.638 | 869 | 18.7 |
| December | 471, 110 | 3.769 | 873 | 23.2 |
| Annual avg. | - | 4,929 | 1,028 | 20.8 |

TABLE 4. Comparison of Labour Canada and LFS Data on Time Los! Through Labour disputes, 1975-1981

|  | Person-days lost in month (Labour Canada) | Person-days losi converted to hours ( $X$ 8) | Hours lost in relerence | Column 3 as \% of column 2 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | '000 | '000 | \% |
| 1979 |  |  |  |  |
| January | 528,460 | 4,228 | 729 | 17.2 |
| February | 472,060 | 3,776 | 774 | 20.5 |
| March | 678,610 | 5,429 | 1,164 | 21.4 |
| April | 680,090 | 5.441 | 1,439 | 26.5 |
| May | 756,380 | 6,051 | 1,276 | 21.1 |
| June | 868,740 | 6,950 | 1,654 | 23.8 |
| July | 782, 750 | 6,262 | 1,854 | 29.6 |
| August | 899,240 | 7,194 | 1,724 | 24.0 |
| September | 416,570 | 3,333 | 685 | 20.5 |
| October | 623,140 | 4,985 | 710 | 14.2 |
| November | 673,970 | 5,392 | 508 | 9.4 |
| December | 454,220 | 3,634 | 1.044 | 28.7 |
| Annual avg. | - | 5,223 | 1,130 | 21.6 |
| 1980 |  |  |  |  |
| January | 690,170 | 5.521 | 649 | 11.8 |
| February | 1.121.750 | 8,974 | 2,357 | 26.3 |
| March | 588,050 | 4.704 | 1,038 | 22.1 |
| April | 616,250 | 4,930 | 1.086 | 22.0 |
| May | 686,650 | 5,493 | 955 | 17.4 |
| June | 817.000 | 6,536 | 1.511 | 23.1 |
| July | 1.061 .420 | 8.491 | 1,665 | 19.6 |
| August | 998,260 | 7.986 | 1.851 | 23.2 |
| September | 817.350 | 6,539 | 1.431 | 21.9 |
| October | 779,490 | 6,236 | 813 | 13.0 |
| November | 466,070 | 3,729 | 726 | 19.5 |
| December | 332,930 | 2,663 | 721 | 27.1 |
| Annual avg. | - | 5,984 | 1,234 | 20.6 |
| 1981 |  |  |  |  |
| January | 351,490 | 2,812 | 535 | 19.0 |
| February | 698,370 | 5.587 | 1.456 | 26.1 |
| March | 779,320 | 6,235 | 1,366 | 21.9 |
| April | 562, 730 | 4,502 | 1,053 | 23.4 |
| May | 457,040 | 3,656 | 794 | 21.7 |
| June | 493,570 | 3,949 | 844 | 21.4 |
| July | 1,769,910 | 14,159 | 4,387 | 31.0 |
| August | 1,685,260 | 13,482 | 4,161 | 30.9 |
| September | 684,850 | 5,479 | 1,729 | 31.6 |
| Ociober | 654,760 | 5,238 | 1.164 | 22.2 |
| November | 545,920 | 4,367 | $863$ | 19.7 |
| December | 195,270 | 1,562 | 323 | 20.7 |
| Annual avg. | - | 5.919 | 1.556 | 26.3 |

Table 5. Summary of Adjustments to LFS Data on Total Hours Worked, 1981

|  | Col 1 | Col 2 | Cot 3 | Col 4 | Col 5 | Col. 6 | Col 7 | Col. 8 | Col. 9 | Cod 10 | Col. 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LFS | Total | Hours | Column 1 | Hours | Column 3 | Interpo. | Holidays | Holiday | Total | Person- | Final |
| refer- | hours | lost to | + | losi | + | lated | by | adjust- | hours | days | adjusted |
| ence | worked | labour | Column 2 | due 10 | Column 4 | hours | type | ment | worked | tosi | hours |
| week |  | dispute |  | holiday |  | in non- |  | factors | adjusted | through | in month |
|  |  |  |  |  |  | relerence |  |  |  | labour | (Column 9. |
|  |  |  |  |  |  | week |  |  | holidays | dis. | column 10) |
|  |  |  |  |  |  |  |  |  |  | puta $\times 8$ |  |



## $\therefore-$

## $\because$

Table 5. Summary of Adjustments to LFS Data on Total Hours Worked, 1981 (continued)

|  | Col. 1 | Col. 2 | Cot 3 | Col. 4 | Col. 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LFS | Total | Hours | Column 1 | Hours | Column 3 |
| refer. | hours | lost to | + | host | + |
| ence | worked | labour | Column 2 | due to | Column 4 |
| week |  | dispute |  | holiday |  |


| Col. 6 | Col. 7 | Col. 8 | Col. 9 |  | Col. 10 |
| :--- | :--- | :--- | :--- | :--- | :--- |



Table 5. Summary of Adjustments to LFS Data on Total Hours Worked, 1981 (continued)

|  | Col. 1 | Col 2 | Col 3 | Col 4 | Cot 5 | Col. 6 | Col. 7 | Col. 8 | Col. 9 | Col. 10 | Col. 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LFS | Total hours | Hours lost to | Column 1 | Hours los! | Column 3 | Interpolated | Holidays by | Holiday adjust- | Total hours | Persondays | Final adjusted |
| ence | worked | labour | Column 2 | due to | Column 4 | hours | type | ment | worked | lost | hours |
| week |  | dispute |  | holiday |  | in non- |  | factors | adjusted | through | in month |
|  |  |  |  |  |  | reference |  |  |  | labour | (Column 9 - |
|  |  |  |  |  |  | week |  |  | holidays |  | column 10) |
|  |  |  |  |  |  |  |  |  |  | pule $\times 8$ |  |


|  | thousands |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Week ending: |  |  |  |  |  |  |  |
| (1981) December |  |  |  |  |  |  |  |
| 29.5 |  |  |  |  |  |  | 385,973 |
| 6-12 | $x$ | 383,113 | 323 | 383,436 | N/A | 383,436 |  |
| 13.19 |  |  |  |  |  |  | 379,646 |
| 20-26 |  |  |  |  |  |  | 375,856 |
| (1982) January |  |  |  |  |  |  |  |
| 27.2 |  |  |  |  |  |  | 372,066 |
| 3-9 |  |  |  |  |  |  | 368,276 |
| 10.16 | $x$ | 364,265 | 220 | 364,485 | N/A | 364,485 |  |

TABLE 6. Impact of Adjusting Hours Worked Data for Hours Lost Due to Labour Disputes and Holidays


TABLE 7. Impact of Adjusting Hours Worked Data for Hours Lost Due to Labour Disputes and Holidays, 1981, Industry-Specific Data

|  | Column 1 | Column 2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Average reference week X 52 | Total annual hours, after adjustment | Column 2 column 1 | Difference as \% of column 1 |
|  | '000 | '000 | '000 | \% |
| Manufacturing | 3,911,310 | 3,939,539 | $+28,229$ | $+0.7$ |
| Construction | 1,216,527 | 1,221,394 | + 4,867 | $+0.4$ |
| Trade | 3,262,177 | 3,280,677 | + 18,500 | + 0.6 |
| Public administration | 1,311,531 | 1,316,529 | + 4,498 | + 0.4 |

## ;

# TECHNICAL SERIES/CAHIERS TECHNIQUES <br> INPUT-OUTPUT DIVISION/DIVISION DES ENTRÉES-SORTIES <br> STATISTICS CANADASTATISTIQUE CANADA 

(1)

Hoffman ef al., "User's Guide to Statistics Canada Structural Economic Models", Input-Output Divislon, Statistics Canada, Revised September 1980.
(2)

Hoffman et al., "Gulde d'utilisation des modèles économiques et structuraux de Statlstique Canada", Dlvislon des entrées-sortles, Statistlque Canada, Révislon septembre 1980.
(3)

Durand R. and Rloux R., "Estlmating Final Demand Expenditure at Factor Cost and Net of Tax Price Indices in the Canadian Input-Output Tables", Paper Presented at the Internatlonal Round Table on Taxes and the CPI, Ottawa, Input-Output Divislon, Statistics Canada, March 3, 1987.
(4)

SIddiq| Y., Murty P.S.K., Dlena J., "Highilghts of the Public Sector Market Study, 1983", Input-Output Divislon, Statistics Canada, September 1987.
(5)

Murty P.S.K., "SIze and Structure of the Public Sector Market, 1983, Sources and Methods" inputOutput Division, Statistics Canada, September 1987.
(6)

Durand R., "The Adding-Up Problem in the Computation of Aggregate Price GDP", input-Output Division, Statistics Canada, October, 1987.
(7)

Durand R. and Markle T., "Measuring the Varlability of Input-Output Structures: A Progress Report", Input-Output Division, Statistics Canada, December 1987.
(8)

Durand R. and Markle T., "On the Varlabllity of Input-Output Siructures: A Progress Report on the Constant Price Industrial Input Structures", Input-Output Division, Statistics Canada, April 1988.
(9)

Durand R. and Markle T., "Structural Change in the Canadian Economy: The Supply Side in Current Prices", Input-Output Division, Statistics Canada, July 1988.
(10)

Durand R., "Statistics Canada's Price Model: A Detalled Description of the Structure and SImulation Capacifies", Input-Output Division, Statistics Canada, August 1988.

Durand R. and Markle T., "Structural Change In the Canadlan Economy: The Supply Slde in Constant Prices", Input-Output Division, Statistlcs Canada, October 1988.
(12)

Durand R. and Markle T., "A Diversity Analysis of Structural Change Based on the Canadian InpufOufpuf Tables", Input-Output Dlvision, Statlstics Canada, January 1989.
(13)

Durand R. and Dlaz A., "Input-Output Modelling of Commodity Indirect Taxes for Macroeconomic Analysis", Input-Output Dlvislon, Statlstics Canada, January 1989.
(14)

Murty P.S.K., Généreux P.A., Leblanc D., Greenberg M., "Provinclal Sales Tax Commodity Allocation Project, 1984 Sources and Methods", Input-Output Divislon, Statistics Canada, January 1989.
(15)

Durand R., "The Balancing Process of the Reglonal Input-Output Tables", Input-Output Division, Statlstics Canada, February 1989.
(16)

Siddiqi Y., Murty P.S.K., Dlena J., "Highllghts of the Provincial Sales Tax Commodity Allocation Project, 1984", Input-Output Divislon, Statistics Canada, January 1989. Reprinted from Canadian Economlc Observer, May 1989.
(17)

Durand R., "Aggregation Formulas for Multifactor Productlvity", Input-Output Division, Statistics Canada, June 1989.

## (18-E)

Mercler P., Durand R. and Dlaz A., "Specificatlon of parameters for the Natlonal Input-Output Moder", Input-Output Division, Statistics Canada, December 1991.
(18-F)
Mercler P., Durand R. et Dlaz A., "Spécification des parametres du modèle d'entrées-sortles natlonar", Division des entrées-sorties, Statlstlque Canada, Décembre 1991.
(19-E)
Siddiqi Y., Murty P.S.K., "Commodity Indirect Taxes in the Canadlan Input-Output Accounts, 1984". Input-Output Divislon, Statistics Canada, July 6, 1989.
(19-F)
Siddiql Y., Murty P.S.K." ${ }^{\prime \prime}$ Impôts Indirects sur les blens et services dans les comptes d'entreessortles du Canada, 1984", Divislon des entrées-sortles, Statlstlque Canada, 6 Julliet 1983.
(20)

Siddiqi Y., Murty P.S.K.,"Progress Repor \#5: On the Temporal Varlabillty of the Aggregate Input Structure", Input-Output Dlvision, Statlstics Canada, September 1989.
(21)

SIddiqI Y., Murty P.S.K., "HIghilghts of Commodity Taxes for 1984", Input-Output Divislon, Statlstics Canada, Canadlan Economic Observer, September 1989.
(22)

SIddIqI Y., Murty P.S.K., "Commodify Indirect Taxes - An Inventory before the GST", Input-Output Division, StatIstics Canada, Canadlan Economic Observer, October 1989.
(23)

Murty P.S.K., Slddlqi Y., "Government Expendifures on Goods and Services and Transfor Payments In Canada, 1961-1985", Input-Output Dlvislon, Statistics Canada, December 1989.
(24)

Murty P.S.K., SIddlqI Y.," Government Expenditures on Goods and Services anf Transfer Payments In Canada 1961-1985" - Reprint from Canadlan Economic Observer May 1990, Input-Output Division, Statistics Canada.
(25)

SldalqI Y., Murty P.S.K., "Commodity Indirect Taxes in the Canadian Input-Output Accounts, 1984 1986", Input-Output Dlvislon, Statistics Canada, February 1990.
(26)

Durand R., "Growth Accounting and the Qualliy Adjustment of the Capital Stock", input-Output Divislon, Statistics Canada, February 1990.

## (27)

Durand R., Saiem M., "On a Dynamic Productivity Index Number Formula", Input-Output Division, Statistics Canada, revised verslon February 1990.
(28)

Dlaz A., "The 1989 Increase in Labour Compensatlon per Person: Was it caused by wage demands?", Input-Output Divlsion, Statistics Canada, June 1990.
(29)

Murty P.S.K., "Federal Goods and Services Tax and the Canadlan System of National Accounts" Input-Output Division, Statistics Canada, October 1990.
(30)
"Effective tax rates and net price Indexes/Les taux de taxe actuels et les Indices de prix ner", Feature Article/Etude spéclale, Canadlan Economic Observer/L'observateur économlque canadien, November 1990/Novembre 1990.
(31)

Salem M., "Documentation of Capital Input and Capital Cost tlme serles for Muitifactor Productivity Measures', Input-Output Division, Statistics Canada, reviewed and updated by R. Fortin and Y. Sabourin, December 1990.
(32)

Slddiql Y., Murty P.S.K., "Federal Sales Tax In the Canadlan Input-Output Accounts", Input-Output Division, Statistics Canada, July 1989, Draft, (Out of Print).
(33)

Murty P.S.K., "Now Paradlgm to Analyze Government Transfer Payments with speclal reference to Саладa", Input-Output Division, Statistics Canada, Draft, January 3, 1991.
(34)

Durand R., "Productlvity Analysis and the Measurement of Gross Output Net of Inter-Industry Sales", Input-Output Dlvision, Statlstics Canada, January 1991.
(35)

Murty P.S.K. and Siddiql Y., "A New Paradlgm fo Analyze Commodity Indirect Taxes and Subsidies, 1986-1989", Input-Output Division, Statistlcs Canada, Aprll 5, 1991.
(36)

Génereux P., "The Input-Output Structure of the Economles of the Yukon and Northwest Terrhorles, 1984", input-Output Dlvision, Statistics Canada, May 1991.
(37)

Généreux P.,"La structure par entrées-sortles des économiles du Yukon ef des territolres du NordOuest, 1984", Divislon des entrées-sontles, Statistlque Canada, Mal 1991.
(38)

Durand R.,"An Alternatlve to Double Deflation for Measuring Real Industry Value-Added", InputOutput Division, Statlstics Canada, June 1991.
(39)

Généreux P.,"VO Tables In constant prices: Revised defilation process and analysls of the machinery and equipment sector", Input-Output Division, Statistics Canada, September 1984. Reprint July, 1991.
(40)

Murty P.S.K. and Siddliql Y., "Government subsidles fo Industries/Les subventions gouvernementales accordées aux Industrles", Input-Output DIvislon/Division des entrées-sorties, Statistics Canada/Statistlque Canada, Reprint from Canadlan Economic Observer/Rélmprimé de l'Observateur Economique Canadlen, May 1991/Mal 1991.
(41)

Dlaz A.,"Alternatlve Concepts of Output and Productlvity", Input-Output Division, Statistics Canada, Catalogue 15-204, 1989 Issue; July 1991.
(42)

Durand R.,"Aggregatlon, Integratlon and Productlvity Analysis: An Overall Framework", Input-Output Division, Statistics Canada, Catalogue 15-204, 1989 Issue; July 1991.
(43)

Dlaz A.,"The Statistics Canada Concepts and Measures of Producthity", Input-Output Division, Statistics Canada, December 6, 1990. (Reprinted October 1991).
(44-E)
Dionne M.,"Measuring Capital Depreclatlon", Input-Output Divislon, Statistics Canada, July, 1991.
(44-F)
Dionne M.,"Mesure de la dépréciation du capitar", Division des entrées-sortles, Statistique Canada, Novembre 1991.
(45)

Murty P.S.K. and Siddiqi Y.,"Scope of Public Grants Economy In Canada", Input-Output Divislon, Statlstics Canada, December 6, 1991. (Draft).
(46)

Murty P.S.K. et Siddiql Y."Portee de l'economle des subventlons publiques au Canada", Division des entrées-sorties, Statistique Canada, le 6 décembre 1991. (Projet).
(47)

Karnall S.Gill and Larose M. "Sources and Methods of Estlmating Employment by Input-Output Industries for the years 1961 to 1988', Input-Output Dlvision, Statistlcs Canada, November 1991.
(48)

Murty P.S.K. and Siddlqi Y." Transfer Payments In Natlonal Accounts and Grants Economics", InputOutput Division, Statistics Canada, May 25, 1992.
(49)
"Interprovinclal and Internatlonal Trade Flows of Goods 1984-1988/Flux du commerce Internatlonal ef Interprovinclal des biens 1984-1988', Input-Output Divislon/Division des entrées-sorties, Statistics Canada/Statistique Canada, June 1992/ Juin 1992.
(50)

Messinger Hans." Canada's Interprovinclal Trade Flows of Goods, 1984-88/Flux du commerce Interprov/nclal des blens au Canada 1984-1988", Input-Output Divislon/Divislon des entrées-sortles, Statlstics Canada/Statistique Canada, January 1993/Janvler 1993. Forthcoming/A venir.
(51)

Webber Marlanne.,"Estimating Total Annual Hours Worked from the Canadlan Labour Force Survey", Labour and Household Surveys Analysis Dlvision and Input/Output Division, Statistics Canada, April 1983.
(52-E)
"Statistics Canada's Input-Output Model: General description, Crilical Analysis of Partially Closed Verslon and Alternative Solutlons", InputOutput Dlvision, Statistics Canada, June 1991.
(52-F)
"Le modele d'entnees-sorties de Statlstlque Canada:présentatlon generale,analyse critique de la version avec fermeture partlelle et solutions de rechange", Division des entrées-sortles, Statistique Canada, Juln 1991.

## ORDER FORM

Input-Output Division



## BON DE COMMANDE

## Division des entrées-sorties



This oroer coupon is available in English upon request
$2$


```
-
```


## 1


[^0]:    The LFS underwent a major revision in 1975. The dala used in this paper were either not collected at all, or not collected in a compatible form. prior to 1975.

[^1]:    2 The Pay Research Bureau is an arm of the federal government's Public Service Staff Relations Board. The bureau conducts surveys in private industry $t$ determine equilable wage and bencfit packages for federal public servants.

[^2]:    A special survey, conducted as a supplement to the LFS, showed that in 1981, 00.4 \% of all jobs held that year involved an 8 hour day. For further information see, "Work Schedules in 1981: Results of a Special Survey." The Labour Force. (Statistics Canada, Catalogue No. 71. 001). Ocrober 1982.

