
8TA-r,3nct3 STArrrijE 

DEC 23 1J 
GES: AN ESTIMATION SYSTEM IN DEVELOPMENT AT STATISTICS CAN 

- 

Elyunshik Lee, Mike Hidiroglou and Victor Estevao, Statistics Canada 
	BI8LIoTHcuE 

l-Iyunshik Lee, 11-Q R.H. Coats Bldg., Statistics Canada, Ottawa KIA 0T6 

S 

. 

KEY WORDS: Generalized regression estimator; 
model-assisted approach; design consistency; 
domains; g-weights. 

1. IntroductIon 
We are currently developing a Generalized 

Estimation System (GES) as a part of the General 
Survey Function Development at Statistics Canada. 
This initiative has also led to the earlier development 
of the Generalized Edit and Imputation System 
(GElS) and the more recent Generalized Sampling 
System (GSAM). 

The rationale for the development of general 
systems is described in several papers such as 
Outrata and Chinnappa (1989). The GES project is 
an effort to provide an estimation system that can be 
used by most of the surveys conducted at Statistics 
Canada. Many of these surveys have common fea-
tures. But, until recently, almost all surveys used 
their customized estimation systems. While this 
approach has provided the flexibility to meet specific 
requirements of each survey, many resources have 
been spent in the development and maintenance of 
these systems. The system maintenance costs have 
been significant because of the acquisition and 
upgrading of different software and hardware 
products. Also, there has been a constant need to 
train new system developers due to staff rotation on 
the projects. Also, because these systems have 
evolved over several years independently of one 
another, they tend to reflect different system 
architectures and methodologies. The development 
of generalized systems such as GES is a concerted 
effort to reduce these costs and to standardize 
development strategies and methodologies. 

An important benefit of this development is that 
it has provided its with a focal point for discussion of 
existing methodologies. When we set out to develop 
the GES we were well aware of the complex nature 
of estimation theory. Several estimation software 
packages have been developed elsewhere using 
different approaches to the methodology framework. 
These include LINWEIGHT (Bethlehem and Keller, 
1987), PC-CARP (Sdmell et al., 1988), SUDAAN 
(Shah et aL, 1989), ISSA (Rojas and Aliaga, 1993) 
and others. We decided to adopt a framework based 
on the theory of the generalized regression estimator 
(SArndal, Swensson and Wretman, 1992). This has  

allowed us to classify and use a large family of 
estimator functions through the specification of a 
general regression model. The theory permits us to 
use auxiliary information to improve on the efficiency 
of the estimators while achieving consistency with the 
known auxiliary totals. The use of auxiliary data is 
particularly important because of its availability in 
many surveys. We characterize a generalized 
regression estimator through the concepts of model 
level, model groups, model auxiliary variables and 
model variance. This provides us with a structure 
that includes many traditional estimators such as the 
combined and separate Horvitz-Thompson and ratio 
estimators, post-stratified estimators as well as more 
complex estimators such as raking ratio. 

Currently, GES produces point estimates and 
associated estimates of reliability (standard error and 
cv) for domain size or domain totals, ratios and 
means of variables of interest. A domain can be 
defined as any subpopulation of the survey 
population. Variance estimation is currently based on 
the model-assisted approach using a Taylor linear 
approximation for non-linear parameters such as a 
ratio. This approach is design consistent. The 
methodology behind the system is described in more 
detail in Section 2: GES Methodology. 

The GES is currently being developed as a 
microcomputer application. We are using the SAS 
System to develop the source code, create the GES 
selection menus and carry out data base 
management. The menus provide a simple user 
interface to the GES. The most recent version 
(GES2.2) runs under SAS 6.08 for Windows and 
needs the products SAS/BASE, FSP and IML. More 
information concerning the system structure and 
hardware and software requirements is given in 
Section 3: GES Structure and Environment. 

The sample design is another important element 
in the framework of the GES. The current version 
fits the estimation requirements for stratified one-
stage element or cluster design under simple random 
sampling without replacement. In the future, we plan 
to accommodate other designs. These include: 
stratified one-stage element and duster designs with 
selection proportional to size, with or without 
replacement, as well as stratified multi-stage designs. 
We are examining several possible extensions of the 
GES. In the future, additional options for variance 
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estimation will be incorporated. Extensions to the 
methodology framework regarding calibration 
estimators (Deville and Särndal, 1992), and 
additional functions such as outlier detection and 
treatment, will be induded. A discussion of future 
plans is given in Section 4: Future Development. 
Some concluding remarks are given in Section 5. 

2. GES Methodology 
2.1 PopulatIon, Sample and Model Groups 

We introduce notation to discuss the 
methodology. Let U = { 1, ..., k, ..., N) denote the 
index set for the N units of a finite population. We 
denote by s a probability sample of units drawn from U 
by a given sampling design. The inclusion 
probabilities induced by this design are denoted 

= P (k € s) and 7rkt  = P(k&fEs). We assume 
that the wk  and the rkt  are known and positive. Set 
a k = lhr k' called the sampling weigbt of the k-th 
unit. 

Let Yk  denote the value of a variable of interest, 
y, for population unit k. The population total of y is 
denoted Y=EUYk.  (IfA is aset of units, we write 
EA to denote EkEA).  Estimates of totals are 
required for the entire population and a variety of 
domains of interest; domain estimation is considered 
in Section 2.4. 

The Horvitz-Thompson estimators can often be 
improved with auxiliary information. The auxiliary 
information considered here are known totals for 
one or more auxiliary variables. The counting 
variable that counts the number of units is also 
treated as an auxiliary variable in this paper if 
necessary totals are known. These totals may be 
known for the entire population or for specified 
subpopulations. The objective is to use this 
information as efficiently as possible in the estima-
tion. 

We use the term model group to designate a 
subpopulation for which auxiliary variable totals are 
known and to which the model statement is applied. 
The model groups represent the most detailed level 
at which awciliaiy information is used. Our general 
notation for a model group is Ui,, where U c U. 
Let Xpk  be the value for the k-th unit of an auxiliary 
column vector x associated with U i,. More 
specifically, we call U, a model group if (a) the 
auxiliary value Xpk  can be observed for every unit 
k e sp  - s fl U, and (b) the group awdliary total 

x -E XPk  is known. 
A set of model groups, {U; p = 1, ...,P}, divides 

the whole population into mutually exdusive and 
exhaustive subpopulations. it is possible to have 
P - i. In this case, the entire population is the only 
model group. We assume that for every umtk € s 
the model group identity and the measurement 

(Y k' 'pk) are available. 
Many commonly used estimators can be justified 

using a linear regression of y on x that can be 
fitted within each group. Ideally, x, is a good 
predictor of the variable of interest y within the 
model group. However, the structure of x, can be as 
simple as Xpk = 1 for all k € U i,, implying that 
XP  = Eu  xpk  = N. The model groups correspond to 
post-strata (see the following section). The 
knowledge of the group counts N can considerably 
improve the precision of the estimates. The vector 

for which the model group total X is known, 
may be composed of different variables in the 
different groups, therefore the index p on x i,. 

2.2 Regression Approach: The Generalized 
Regression (GREG) Estimator 

For the p-th group, Ui,, consider the regression 
model stating that 

Yk =XJ kPp+fk for k€U 	(1) 
where E() =0, Varf(ek) =ckC, and 
Cov( e , e e) = Ofor all k # f, where the subscript 

denotes moments with respect to the model. The 
known constants c k  are determined by the variance 
structure of the underlying regression model. Here 
fip is estimated from the samples by fl 1,, defined as 
the solution of 

Es 
ax1,x$ 	

= ,c-  
Ck 	" 	 1) 	C 

This represents the system of normal equations 
when the data { (y kxPk):  k € s p  } are used to fit the 
model (1). The weights a k  in this system of equa- 
tions serve the purpose of making á, a design con-
sistent estimator of the population regression coeffi-
cient vector B 1,. The population regression vector is 
assumed to be the best fit (in the sense of 
generalized least squares) when all units inU are 
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observed. The regression fit also produces the 

residuals ek-yk-x'áP for k€s.sflU. The 
model group total 	- E 1,y k is estimated by 

2p+(Xp_1p)Ap, where Jtpr  - E1 akxPk is 
the Horvitz-Thompson estimator of the known 
auxiliary group total X i,. (In this paper, estimators 
identified by a hat and the subscript w signifies the 
Horvitz-Thompson estimator). The total weight 
given to the k-th unit is the product of the two 
weights, a k  (design derived) and g k (auxiliary data 
derived). That is, the sum of the Horvitz-Thompson 

estimator kp W - E S akYk and a regression 

adjustment 	(' 
-..t W  )'á 1,. To obtain the 

estimator of the entire population total, sum over 
groups, that is 

P 

LOREG = E 	 (2) 
p - I 

Note that the above estimator may be written as a 
weighted linear sum as 

ES a kkYk  (3) 

where Wk  -a kgi, and 

gk - 
/ 	I 	 I 

$akx PkxPkI c k) XpkfCk 

The g will be referred to as the g-weight. 
The regression residuals e k are needed for 

computing the estimate of the variance of 

P( 9GREG) or P for short. This variance estimator, 
is given by 

-E E AI.kekste) 
(5)  

kEs lEs Ir kt 	W k 
where A kt rkt ffkrt, Wkk 

The theoretical justification for g-weighting the 
residuals in the variance estimator (5) is given in 
Särndal, Swensson and Wretman (1989). Although 

(5) defines P as a double sum, it is reduced to a 
single sum in many practical cases. For example, 
consider a STSRSWOR design with stratum sampl- 

ing 	n h/Nh 3  - 
is a SRSWOR sample drawn from the h-th stratum, 
h -1, ...,H. In this case, (5) becomes 

fh E )  N  
h-I 	n h 'h 	b1  

where Fh  -Ege/n. As another example, for 
SRSWOR, we have 

f/-N 2  !:L E. (9e)2 	
(6) 

This is the case when the ck in the model's variance 

structure, Var(k) =CkC, satisfy Ck =Axk for all 
k and for some constant column vector A. For 
example, for the homoscedastic variance structure, 

Varf(rk)-a2  for all k, we have E 59e-0 and 
thus, (6) if the regression model contains an inter-
cept term. A standard measure of precision used in 
survey organizations is the coefficient of variation, 
abbreviated as cv. For the GREG estimator (2), the 

cvis calculated as 
Post-stratification is a special case of the GREG 

estimator. It is commonly used in large-scale surveys, 
mainly to increase the efficiency of the estimators on 
a conditional basis. However, comparisons based on 
the unconditional distribution suggest that the 
post-stratified estimator has a very slight advantage 
over simple N 5 . 

The traditional post-stratified estimator is 
derived from a model that is the special case of (1) 
such that x p k = 1 for all k € Ui,. That is, the model is 

Yk 'pk for kEU 	(7) 
2 where E(ck)  '-0, Vare(ek)=o p  a n d 

Cove  ( C k e) 0 for k *. The model groups are 
called post-strata in this case. The required auxiliary 
information is the post-strata countsN - E li  Xpk 

for p 1, ...,P. The estimator (2) takes the form 
P 

= 	Npis  
p - i 

where 5 -./ft with 9 E 5  a. 

The variance estimator for kposn  is obtained 
from expression (5) by setting for p  1, ...,P, 
e =YkYs  fork€s. The g-weights are 

- 	for all k€s. 

23 CalibratIon Approaci 
An alternative procedure to the regression 

approach, for accounting for auxiliary data is to find 
new weights wk that are as dose as possible to the 
original weights 0k•  These new weights are subject to 
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the constraint E. WkX pk a X, for p -1, ...,P. We 
require the weights w k  to reproduce X, group by 
group, in such a way that the weighted .x-total over 
the sample gives the known group total Xi,. 

An advantage of this approach over the 
regression approach is that: (a) it permits to find new 
weights that are non-negative and bounded by a 
lower and an upper limit and (b) a wider class of 
estimators can be obtained. 

A distance measure must be specified to quantify 
the distance between the new weights wk  and old 
weights 0k•  Several possible distance measures are 
considered in Deville and Sarndal (1992). Two 
commonly used distance functions arc: 

The Generalized Least Squares (GLS) distance 
function 

F(wk/ak) (wk/ak - 1) 2 /2, 
The Raking Ratio (RR) distance function 

Wk Wk 	Wk Wk F - =_log - ---+1 
Ck 	a 	a k  ak 

The use of the GLS distance function leads to 
the generalized regression estimator 	Thus, 
the calibration approach is more general than the 
regression approach. 

Computer software exists for this purpose. For 
example, the program CALMAR (Deville, Sarndal 
and Sautory, 1993), solves the calibration equations 
by Newton's method and calculates the new weights. 
Other programs serving a similar purpose are 
M- WEIGHT by Huang and Puller (1978) and 
BASCULA (Gottgens et al., 1991). The g-weights 
resulting from the output of these programs can 
easily be incorporated into GES. 

Calibration theory can be applied to known 
marginals of a frequency table in any number of 
dimensions. A family of distance functions leads to 
generalized raking ratio estimnator& When the RR 
distance function is used, we obtain the raking ratio 
or iterative proportional fitting estimators (Deming 
and Stephan, 1940; Brackstone and Rao, 1979). 

2.4 EstimatIng Domain Totals 
Domains are subpopulations for which point 

estimates of totals, means or other parameters are 
required, with the corresponding precision measures. 
Domains are not to be confused with model groups 
or with strata. These are also subpopulations but 
serve different purposes. Denote lys (d) = s (1 U(d) 
the part of the sample s that falls in a domain U (4) . 

Except in rare and controlled situations, such as 
when U(d)  is identical to a stratum, the size OfS(d) 
will be random. 

The y-values observed within the domain are 
fy:k (d)1 Often, this information can be 
supplemented with auxiliary information to produce 
estimates with better precision. Here we consider 
estimation of the following kind. Suppose that x k  is 
an auxiliary vector whose total is known for specified 
model groups of the population U. We use the data 

{(Yk,Xc) :k 	to estimate the domain total 
(d) E (d)k A standard device in domain 

estimation is to introduce a domain variable, denoted 
Y(d)' whose value for the k-th unit is 

Yk ifkEU(d) 
Y(d)k 

oif k1U(d) 	
(8) 

The domain total Y( d)  can then be written as 
the total over the entire population U of the domain 
variabley(d).Thatis,  '(d) Euy(d)k. 

To obtain the GREG estimator of (d)'  the 
following design-based procedure given in Estevao, 
Hidiroglou and Sarndal (1992) can be used. A supply 
of g-weigbts gk  is first computed according to (4) for 
each model group, p  =1, ..., P. The weights a kgk are 
then applied to observed the yk-values in the 
domain. We obtain the estimator 

9 (d)GREG E=1 Es a k gky (d) 	(9) 
Note that the g-weights are functions of auxiliary 

totals at model group; this may be at a level coarser 
than the domain leveL 

We turn now to variance estimation. The vari-
ance estimator corresponding to the point estimator 
(9), ((d)oR)  is denoted 	for short. It 
is calculated as 

(d) =EE [~kt

]( 	
())[ts(d)t) (10) 

where  e(d)k . y(d)k_xPká(d)P for kEs. Here 

(d)p is obtained from the normal equations 

ES P 
a kxp irzpk

A(d)P =E
SP 

 akxPky(d)k (11) 

assuming a regression model between Y(d)k aDdz 
cimi12r to (1). 

Three different types of residuals enter into the 
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computation of (10). The first two types occur for 
sample units k belonging to intersecting model 
groups; the third type occurs for sample units k 
belonging to nonintersecting model groups. More 
specifically, for k Es -sflU, we have 

lYk 1pk 6(d)p if k € U(d), U(d)flU#; 

e(d)k lXpká(d)p ifk IU(d), u(d)fluP*; 1 0 	 ifU(d)flUp= 

The calculation of 	is simplified since 
is zero for all k in nonintersecting model groups. 

In the special case where s is drawn by 
SRSWOR, then (10) becomes 

2 i-j-  - (9ke(d))2 
(4) 	 n - i 

when E5ge(4 ) = 0, as is the case when the Ck  in 

the model's variance structure satisfies c - A1x k  for 
all k. 

The design-based coefficient of variation is 
computed in a manner completely analogous to (8), 

namely, CV(d) 'y/ 2'(d)GREG. 
Several remarks are in order. 
Computational principle. The computations for a 

domain mimic the computations carried out for the 
entire population. To get the point estimator and the 
variance estimator for the domain U(d) ,  just repeat 
the calculations made for the entire population, 
replacing Yk  by Y(d)k  for k Es. This implies that 
(3) turns into (9) for point estimation. For variance 
estimation, replacing y k by Y (d ) k for k Es, 
automatically implies replacing e k  by e 4) k and (7) 
will turn into (10). In other words, the computation 
of the domain estimator (9) and the corresponding 
variance estimator (10) is handled formally by 
replacing they-variable by the domain variable y ( d  )• 
Computational simplicity is thereby gained. 

Nature of the normal equations. The normal 
equations (ii) correspond formally to the fit of the 
regression of the domain-specific dependent variable 
Y(d) on the predictor x i,, using the sample 
observations from the p-th group. This fit may be 
mediocre because Y(d

) 
is not a natural dependent 

variable: it equals the y-variable inside the domain 
but is always equal to zero outside. But here we are 
not primarily interested in the goodness of the fit at 
the domain level. Instead the primary objective is to  

work with g-weights that (I) yield additive domain 
estimates (see Remark (d) below), and (ii) remain 
unchanged from one domain to another, which has 
computational advantages and allows calculation of 
other domain estimates than those officially reported 
by the organization. For alternative domain 
estimators, see Sarndal, Swensson and Wretman 
(1992, pp.  408413). 

Design consistency. The reason why the approach 
adopted here yields close estimates for domains 
hinges on the property of design consistency. It is 
known that 'kGREG given by (2) is a design consist- 
ent estimator of the entire population total Y. This 
implies loosely speaking that no matter what the 
configuration of finite population values (y e , -.-'YN), 

will be near Y with a high probability when 
the sample size is large. This property holds in 
particular for the domain-specific vector 

(Y(d)1'"-'Y(d)N). So, 2d)GPEG  given by (9) is a 
design consistent estimator of the domain total 
Y( d). Similarly for variance estimation, V given by 
(7) is a design consistent variance estimator. It 
follows that if the formula t' is calculated on the 
domain-specific vector ((d)1..y(d)N) which 
gives the result j(4)  in (10), then we have a design 
consistent variance estimator for 1( d ) GREG- 

Additivity property. Suppose that we seek to 
estimate the total for each of D domains 
d 1, ..., D, forming a mutually exclusive and 
exhaustive partition of U. Then 

'GREG = E1 (d)GREG where 1'GREG  and 

d)GREG are given by (3) and (9), respectively. This 
says that the sum of the domain estimates is equal to 
the estimate made for the entire population. This 
additivity property is built into the estimates because 
it is often required by users of official statistics. It 

follows easily that since 	Y(d)k =Yk' for all 
keU. 

3. GES Structure and Environment 
The structure of the GES reflects the 

methodological components of generalized 
regression estimation. There are three main 
functions in the GES: (1) calculate sample design 
weights, (2) calculate g-weights and (3) calculate 
domain estimates. These must be carried out in that 
order. The user selects options and provides inputs 
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to each function. They can be changed within a given 
function and rerun the function and subsequent ones. 
This allows the user to experiment with different 
estimators. 

To use the GES, a survey application must be 
first defined. Many of these can be defined but each 
survey application must be associated with a sample 
design. For each application, the user defines one or 
more time periods of survey data. This is useful for 
periodic surveys. But, at any given time, the 
estimation can be carried out with the available 
survey data in the specific period. 

The GES has several user friendly features for 
browsing output files, modifying input files and 
selecting files and variables. Online Help is available 
for assistance in the use of the system. 

The GES is being developed using the SAS 
System, version 608 for Windows 3.1. The SAS/AF 
product is used to create the GES menu windows. 
All source code is written in the SAS programming 
language using SAS data steps and procedures. The 
menu windows provide a simple user interface with 
menu bars, selection lists and point and click 
features. 

The GES is a microcomputer application. To 
run GES, a 386(SX/DX) or 486(SX/DX) 
microprocessor is needed. A 486DX processor is 
recommended for optimum performance. In 
addition, the user must have Windows 3.1 (with DOS 
5.0) running under Standard or Enhanced Mode and 
also SAS version 6.08 of the following products: 
BASE, AF, FSP and IML. 

4. Future Development 
We have desired that the GES be in a modular 

form. Each module produces an important 
component of the whole estimation process. Three 
most important ones are: (i) design weights 
calculation, (ii) g-weights calculation, and (iii) 
calculation of domain estimates (see Section 3). 
However, the current version is not as flexible as we 
intended. We are currently working to make the 
GES more flexible and modular so that the user can 
bring in his/her own design weights and/or g-weights 
into GES more easily. 

Currently GES can accept one design: stratified 
simple random sampling of clusters (the same design 
for elements is acceptable by treating elements as 
clusters). Even with this simple design, GES can 
meet the estimation needs of many business surveys. 
However, most of social surveys use more complex 
designs such as stratified multi-stage probability 
proportional to size (pps) sampling design. We are 
planning to include this design in the future. 

The GREG estimator described in Section 2 is 
general enough to include most traditional estima-
tors. However, we are planning to incorporate a 
more general calibration estimator that contains the 
GREG estimator as a special case. 

The variance estimator implemented in GES 
uses Taylor linear approximation for non-linear 
statistics. We intend to include the jackknife variance 
estimator in the GES as an option. The jackknife 
variance estimator is a general tool for variance 
estimation that can be used under very general 
condition. 

Some surveys require synthetic type of estimator 
for small domains. Domain estimates obtained by (9) 
in Section 2 can be unreliable or even undefined if 
there is no sampled unit belonging to the domain of 
interest. In the latter case, however, sometimes 
auxiliary information is available for the units in the 
domain. For this and for general small domain (or 
area) estimation purpose, we are considering to 
include a synthetic type of estimator. 

Almost all surveys use imputation for missing 
data. it is well known that the variance is under-
estimated when imputed data are treated as real 
observations. Several methods have been proposed 
to remedy this problem. These include multiple 
imputation of Rub'm (1987), model assisted approach 
of Sãrndal (1990) and jackknife method of Rao 
(1992). Some empirical studies have been conducted 
to investigate the properties of these methods (see 
Lee, Rancourt and Sarndal, 1991; Kovar and Chen, 
1992). The Rao's jackknife method can be used with 
slight modification when the jackknife variance 
estimator is available. Since the GES follows the 
model assisted approach in variance estimation, the 
Sarndal approach can be implemented in the GES. 
Thus, our future plan contains the implementation of 
these two methods. 

The outlier problem is a familiar one in sample 
surveys. Outliers are influential observations to the 
particular estimator employed. They can be detected 
and treated to reduce their influence in estimation or 
we can use a robust estimator. Robust estimation 
option is another item we are considering. Outlier 
methodologies in sample surveys have been reviewed 
in Lee (1993). 

Finally, we are also considering the inclusion of 
estimators of the population distribution function 
and quantiles. They are particularly needed when the 
income distribution is investigated. 

S. Concluding Remarks 
In this paper we have presented the principles 

behind the development of the Generalized 
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Estimation System (GES) at Statistics Canada. An 
important aspect of the GES is the use of auxiliary 
information to improve efficiency. 

The currently programmed specifications can 
handle stratified, single-stage sample designs such as 
stratified simple random sampling without 
replacement, stratified duster sampling, and strat-
ified probability-proportional-to-size (PPS) sampling. 
The system has been programmed to produce Hajek, 
ratio, simple regression, post-stratified and 
generalized regression estimators for stratified 
simple random samples of elements or (single stage) 
dusters. It is being extended to stratified probability 
proportional to size sampling, with and without 
replacement, for elements and clusters and will 
eventually handle multi-stage designs. 
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