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1. INTRODUCTION 
In recent years, several papers have been written 

on variance estimation for data with imputed values. 
Different methods such as multiple imputation 
(Rubin, 1977;1987), the two-phase approach for ratio 
imputation (Rao, 1990), the model assisted approach 
for regression imputation (Sarndal, 1990) and the 
jackknife method (Rao, 1992; Rao and Shao, 1992; 
Rao and Sitter 1992) have been proposed. All of these 
methods are used under the assumption that only one 
imputation method is used for all missing values. 
However, it is not uncommon to encounter surveys 
that make use of two or more imputation methods. 

One reason for using two or more imputation 
methods is that they differ with respect to the auxiliary 
information that they require, and the more extensive 
information needed for a better method may not be 
available for all units requiring imputation. More 
reliable imputed values may thus be obtained for units 
with missing values for which there is good auxiliary 
information (known values of strong covariates); 
lacking such information, other missing values may 
have to be imputed by a much more elementary 
method, for example, by the respondent mean. 

In this paper, we consider estimation of the 
variance of survey estimates computed from data sets 
containing values imputed by more than one method. 
For handling this type of variance estimation problem, 
we need a suitable tool and we consider the jackknife 
to be such a tool. Jackknife variance estimation for a 
data set with one method of single imputation was  

experimented in Kovar and Chen (1992). We show in 
this paper how the technique can be adapted to the 
case where more than one imputation method is used 
in the same data set. We concentrate on the case of 
two imputation wethods, namely, ratio imputation 
using for example previous period values of the same 
units when available, and respondent mean imputation 
for the remaining units requiring imputation. Our 
study was motivated by the fact that some surveys 
conducted at Statistics Canada use this type of 
imputation. 

In the following section, the jackknife variance 
estimator is described first for respondent mean 
imputation, and then for ratio imputation. In section 
3, the technique is extended to the case where both of 
these imputation methods are used in the same data 
set. Then in section 4, a simulation study is presented. 
Finally conclusions are given in section 5. 

2. BACKGROUND 
Let U = { 1 ..... k . .... N) be the index set of the 

population, and s a simple random sample without 
replacement (SRSWOR) of size n drawn from U. Let 
also r of size nz and o of size I be respectively the sets 
of respondents and nonrespondents. Therefore, 
s - r u o. The variable of interest is denoted byy and 
we assume that y, > 0 for all k € U. The population 
mean of y is y - ( 1 / N ) LI k and we are interested 
in finding an estimator of Yu  and a corresponding 
variance estimator when imputation is used for 
nonrespondent values. 

it is assumed that the response mechanism is 
uniform, that is, units respond according to 
independent Bernoulli trials. Units such that k': o are 
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S imputed by a specified single value imputation method. 
Let the imputed value be denoted by 9k . The data 
after imputation are given by {y.,, :k E s), where 

(9k

Yk 	if kcr 
Y.k if kro-s-r 	

(2.1) 

Then, the usual point estimator for y u  calculated 
from the completed data set is 

- 	1 	1 
Y., 3 Y.k(,Yk 0 Yk). 	(2.2)  

where 9 (fl is the re-imputed value based on the 
reduced response set, r(j)  - r - { f). 

If a nonrespondent is deleted, that is, when j € o, 

then the imputed values are unchanged. So if k € o. 

then Y*(J) = y - k  given by (2.1) for all k' j.  In 
summary, we have 

( Y it 	if k€r 

Yft(J) = i 9(j) if keo and jer 	(2.7) 

\ 9 	if kro and j€o 

Direct application of the jackknife variance 
estimation technique to the data set after imputation, 

'•& :k c s). would lead to the variance estimator 

(.,(j)- 	
)2 

 (2.3) y  
I" 

n-i 	- 	- 2 
1 NJ {Y(J)Y. S ) 	 ( 2.4)  

Note that while point estimation is always performed 
using the original imputed values, the re-imputed 
values are used only for variance estimation. An 
auxiliary file is not needed to store them. 

The jackknife variance estimator of y., is then 

V -0 - f)(:,(f)- 
_)2 (2.8) 

with 

if the 	finite 	population 	correction 	(fpc) 
- J, [= n / N is ignored, where 

	

- 	fly.5 - y.i 
= 	

- i 	
(2.5) 

where 

s(j)- s- {j) 

y(f) 
Fl 

The variance estimators L? NJ and VNJ are 
heavily biased and called "naive" since they do not 
iccount for the fact that the completed data set 
iicludes imputed values. These imputed values are 
reated as if they were true observations (see Rao, 
1992). Rao and Shao (1992) proposed a jackknife 
variance estimator that corrects this problem by 
modifying the imputed values when the deleted unit, 
y.,. is a respondent. The modification reflects the 
fact that after deletion of the respondent, the response 
set is reduced by one unit and imputation should be 
performed using data from this reduced response set. 
That is, for the purpose of the variance estimation, 
re-imputation should be carried out when a 
rcpndent is deleted, as described in the following. 

IF a respondent j c r is deleted, the data set after 
Fe 	 I-. ei'efl by 

Alternatively, we can use 

V2J -(1 - J);!: :(J)- 
_r)2. 

(2.9) 
JES 

where 
r 	1 	—r 

	

y., - 	- 	y.,(j). 
j(S 

In some cases, V , and V , are equivalent. However, 
in general, they are different and V is more 
conservative (see Wolter, 1985, p.172). We have noted 
in our simulation study that 1' 1 1 and V 2.1  produce 
very close results. Following Rao, (1992) and Rao and 
Shao, (1992), we choose in this paper to work with 
V. 

2.1 Mean Imputation 

The mean imputation method imputes Yr,  the 

mean of the responding units, for every missing value. if krr(j) 
(2.6) 

if 	k € 0 
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When the jackknife technique is applied with this 
method, y ( j) in (2.7) is given by 

( 

y ,1 	if 

Y(j) - Yr(J) if k e o and jcr 	(2.10) 

'r 	if keo and jeo 

where y r (j)(my-y,)/(m-l) isthe mean of 
the responding units after deletion of the jt ii unit. 
We then obtain the jackknife variance estimator for 
mean imputation from (2.8) with 

((YrY1) -r 	- 	I 	 if jer 
Y.s(J) - Y.5 - ( m-  

\ 	0 	if jEc. 

2.2 Ratio Imputation 

When auxiliary information is available for all units 
ins ratio imputation is often used. In this case, the data 
after imputation are given by 

( Y 	
if kcr 

Y. = 1 Yr 	 (2.12) 
I =-X 	if k€o. 

Xr 

where x. is the sample mean of the auxiliary variable 
xfor the respondents. The mean of the completed data 
set is given by y., - X5Yr/Xr. 

When the jackknife technique is applied, the data 
set after re-imputation is given by 

( 

Yk 	if kEr 

I Yr(J) 
I - 	X if k€o and jcr 

Xr(I) 	 (2.13) 

Yr -x i 	if keo and jo 
\ X,- 

where Xr(J) - ( mxr - x,)/(m - 1) is the mean of 
the x values of the responding units after deletion of 
unit j from the response set. Again, we obtain the 
jackknife variance estimator from equation (2.8) 
where the values Y( i) given in (2.13) are used for 
the calculation of y (1). 

3. MORE THAN ONE IMPUTATION METHOD 
When more than one imputation method is used 

for the 	uiie dita set, the idet 44 rii&.li!viug the 

imputed values when a respondent is deleted can still 
be applied. However, special attention is required in 
carrying out the modification, as explained in what 
follows. 

We consider the case of two imputation methods; 
ratio imputation for nonresponding units with 
auxiliary information and mean imputation for 
nonresponding units without that information. 

The response set is divided into two parts; r 1  

where auxiliary information is available and r 2  where 
it is not. Let their sizes be m 1  and m 2  respectively. 
Similarly, the nonresponse set is divided: o of size 

with auxiliary information and 02 of size 12 

without it. 
The imputed values are then given by 

(Yr 1  
j =—x 	if k€0 1  

X,.  

Yr 	if ko 2  

Note that here the overall respondent mean Yr IS 

imputed for k € 02. Other possibilities could be 
considered. If the units with and without auxiliary 
information are thought to be very different in their 
characteristics, then Y r might be better, unless m2 

is very small. An alternative which makes use of the 
available auxiliary information would be to impute the 
ratio estimate .v, Yr / r for k € Oz, where X. is 
the mean ofxover the combined sets 1  r 1  + o 1  This 
method was considered in Rao and Shao (1992). 
However, as mentioned earlier, our primary goal was 
to provide an appropriate variance estimator for the 
case of imputation method (3.1) which is often used 
in practice. With the imputation rule (3.1), equation 
(2.2) becomes 

- 	1 Yr 1  
L_ 0  

Xr,  
(3.2) 

-'(myr 	

- 	- 
-- 	+_I 1 X+1 2 Y 

X.
) 

The new notation introduced in these expressions is 
self-explanatory. 

As in the case of one single imputation method, 
re-imputation is used when the deleted unit is a 
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respondent. 
Therefore, when the jth unit is deleted, the 

resulting jackknifed mean is given by: 

y..(j) = 

- 	Yr 1  
my,+=—(L i0 x,)+1 2 , 	ii J€Oi 

x, I  

( 	X,1 

- yr 1  - 	- - 
mY r + i x. i +Ly r Y r 	 if J€02 

my, - y,+ 	1 1 x 0 +1 2 y,(j) 	if j€r 1  
x,(j) 

- 	Yr 1  - 
my, -  yI - + — 1 1 x 0, + 2Y 1 0) 	If i  Er 2  

(3.3) 

Then the appropriate quantity to be used in the 
jackknife variance estimator (2.8) is 

- 	1 (my,.+ A 1 ! 1 x 0  +B,1 2  
Y.(i)Y.j 	 -c i  

(3.4) 

where 

	

( ri(i) 

(n- 1) 	if j cr 
1' 	'l' 

Al =I 	- 
 if jes-r 1  

X r ,  

B 
(nj( U 	i 

	

Yr 	if fr 

' kYr 	 if JEO 

Yr ,  
- C l  (=- 	

if jcr 

x, 	 if jEo 1  
X r ,  

Yr 	 if i€Oz 

4. SIMULATION STUDY 
4.1 Simulation Set-up 

To test how well the proposed jackknife variance 
estimator works in a situation where more than one 
imputation method is used, a simulation study was 
carried out. For this purpose, artificial data were  

generated using parameters that reflect characteristics 
likely to be seen in reality. A population of size 400 
was generated as follows. First we generated the x 
values from a gamma distribution with mean 48 and 
variance 768. Then for each value x. the value Yk 

was generated from a gamma distribution with mean 
and variance d 2  x . The constant d was 

chosen in order to obtain a correlation close to 0.8 
betweenx andy. The population scatter (x • y ) then 
follows a ratio model, that is, a linear regression 
through the origin, with slope close to 1.5. 

The population was randomly divided into 2 
sub-populations U 1  and U 2  with designated 
proportions; U 1  with auxiliary values available, 
and U 2  without this information. The proportion of 
the population accounted for by U I  was set to 70 % 
for one case and 90% for the other. 

From the population, 100,000 simple random 
samples without replacement (SRSWOR) of size 100 
were drawn. The sample size was allocated 
proportionally to U I  and U 2 . so that in one case the 
breakdown was 70% and 30%, and in the other 90% 
and 10%. Note that without the proportional 
allocation, the actual breakdowns could have been 
slightly different without any significant impact on the 
results. Nonresponse was then randomly generated 
using independent Bernoulli trials with a constant 
parameter equal to 0.3 representing the probability of 
nonresponse. For units with auxiliary data available, 
ratio imputation was performed and for the others, 
missing values were imputed by the respondent mean. 
Finally, for each sample with a realized nonresponse 
set and imputed values, the jackknife variance estimate 
was calculated. 

In order to assess the performance of the jackknife 
variance estimator, the following Monte Carlo 
summary measures were calculated. Let y.,,,, be the 
point estimator for the population mean obtained 
from the m th replicate sample data after imputation 
and let V ( v.,) be the Monte Carlo variance of the 
point estimator, which is given by 
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Table 1. 
Simulation Results for the Population with Ratio 

Model 

Imputation Method 
Measure 

100% 90% 70% 0% 
Ratio Ratio Ratio Ratio 
0% 10% 30% 100% 

Mean Mean Mean Mean 

RB(%) 	-2.79 -3.48 4.77 -7.66 

VV 	12.38 12.49 15.74 25.89 

COVR(%) 	94.2 	93.9 	93.8 93.4 

- 	1 	M 	
2 

	

V(y.,) = 
	

- ;;..) 	(4.1) 

whereM - 100,000 and  
Now, let V urn  denote the jackknife variance estimate 
for the mth replicate sample. The Monte Carlo 
relative bias and variance of the jackknife variance 
estimator are given by

VG 

	

RB-100X 	ml 	- 	(4.2) 
V(y.,) 

and 

VV1(I7 ijrn V) 2 /M 1 	(4.3) 

where 

	

= 	
Jrn 

For each sample, a 95% confidence interval was also 
constructed using the normal distribution and the 
coverage of the true mean by this confidence interval 
was studied. The coverage rate (COVR) is defined by 

COVR = 100k 	 (4.4) 

where t is the number of times that the confidence 
interval covers the true mean. 

4.2 Results 

. 

. 

As shown in the table, the variance estimation 
technique appears to be well suited for cases where 
both ratio imputation and mean imputation are used 
within the same data set. It produces slight 
underestimation of the variance for all cases. Both the 
absolute RB and the variance increase with the 
proportion of mean imputation. While it was expected 
that the variance of the variance estimator would 
increase with the proportion of mean imputation, it is 
somewhat surprising to see the increasing trend of the 
absolute RB. Nonetheless, the coverage rates are quite 
good, being over 93% in all cases. 

Table 1 shows the simulation results for the 
population generated from the ratio model as 
described in section 4.1. On average, 70% (or 90%) of 
missing values were imputed by ratio imputation and 
the rest by mean imputation. Two extreme cases of 
100% ratio and 0% ratio were also included in the 
table for comparison. 

Kovar and Chen (1992) observed a positive bias 
with the jackknife technique. The difference between 
their and our jackknife variance estimators is in the 
use of the fpc, 1 - f. We incorporated it in our 
formula, whereas they did not. If in our study we had 
omitted the fpc, the relative bias would have been 
positive and in the range of 20-30%. Note that the 
sampling fraction they used was smaller so that the 
impact of the fpc was small. A more appropriate fpc 
was discussed in Rao and Sitter (1992). When the 
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sample size is largc however, it may he desirable to 	Rao, J.N.K. (1992). Jackknife Variance Estimation 
ignore the fpc in order to obtain slight overestimation 	Under Imputation for Missing Survey Data. 
rather than slight underestimation of the variance. 	Unpublished paper, Statistics Canada. 

5. CONCLUSION 
The jackknife technique seems to be an appropriate 

tool for variance estimation when more than one 
imputation method is used, at least if the response 
mechanism is uniform and a mixture of ratio and mean 
imputation is performed. In this paper, we studied only 
situations involving two imputation methods, but the 
technique can be extended to situations where three 
or more methods of imputation are used, as long as 
there is an appropriate single imputation jackknife 
variance estimator for each method. Extensions are 
also possible to cases where groups of units are deleted 
or where other methods than ratio and mean 
imputation are used in the same data set. 

Further research is needed to study the jackknife 
variance estimation technique for the case where 
nearest neighbor imputation is one of the imputation 
methods. Also, the robustness of the variance 
estimator under various violations of the basic 
assumptions needs to be investigated. 

The issue of estimating the variance in presence of 
more than one imputation method is of practical 
importance for an agency such as Statistics Canada. 
This paper can be seen as a first step to address the 
problem. 
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