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I. Introduction 
there c\ists .1 considerable body of rcscarch on 

area estimation using cross-sectional survey data 
iii conjunction with supplementary data obtained from 
ensus and administrative sources. A good collection 
ii papers on this topic can be found in Platek, Rao, 
Siirndal and Singh (1987). For large areas (or 
domains) direct estimators (i.e. estimators based only 
in sample data from the area of interest) are often 

used; however, indirect estimators, in which strength 
is borrowed from similar areas via a model containing 
auxiliary variables from the supplementary data, are 
often used for small areas. For repeated surveys it 
may also he beneficial to borrow strength over time; 
.ce Pfcffcrmann and Burck (1990) and Singh and 
\'lantel (1991). Direct small area estimators, though 
approximately) unbiased, are not reliable because of 

high variance. Indirect small area estimators are 
mae reliable, though they may be somewhat biased. 

A common problem in the application of small 
irca techniques is that the individual small area 
estimates within a larger area do not add up to the 
direct estimator for the larger area. This problem can 
he resolved by bcnchmarking of the small area 
estimators with respect to the direct estimator for the 
larger area. This is desirable for at least three 
reasons: (i) the usual direct estimator for the larger 
area is approximately unbiased, whereas the 
aggregated small area estimators may be substantially 
biased, (ii) henchniarking gives rise to some 
robustification in that the average of the bcnchmarked 
inall area estimators has good bias and variance 

properties, (iii) there will he internal consistency 
between published estimates for the larger area and 
the total of estimates of the individual small areas 
within it. 

Three methods for benchmarking are proposed in 
the literature: (i) Battese, Harter and Fuller (1988) 
distribute the difference between the direct large area 
estimator and the sum of the small area estimators in 
l)roportion to the mean squared error (MSE) of each 
small area estimator. (ii) Pfeffermann and Barnard 
(1991) distribute the difference optimally' using the 
Itill MSE matrix of the small area estimators. This 
method has an advantage for time series methods in  

that it can he built in as pail of the Katman filter 
algorithm (giving as a byproduct an estimate of the 
MSE matrix of the henchmarked estimators); sec 
Pfeffermann and Burck (1990). (iii) Rao and 
Choudhry (19931 distribute the difference in 
proportion to the small area estimates, i.e. a simple 
ratio (or raking) adjustment is mai.k. 

In this paper we perform an empirical 'study using 
a synthetid population based on data from Statistics 
Canada's Survey of Employment, Payroll, and Hours 
(SEPH) to compare the effect of henchxnarking on 
various small area estimators. In patticular, we 
compare, in a repeated sampling framework, the loss 
in efficiency due to henchmarking to the gain in 
efficiency due to "borrowing strength. Two types of 
indirect small area estimators are synthetic (in which 
small areas are assumed to be like a larger area) and 
composite (convex combinations of direct and 
synthetic estimators). For sniall area estimation we 
consider three types of composite estimators where 
the weights for the convex combination can he either 

optimal (i.e. based on a correctly specified model), 
pseudo-optimal (i.e. based on an incorrect model), 

or (iii) based on some other working convention such 
as the one for sample size dependent weights. 

2. Domain Estimation Methods 
Let the vector of small area population totals, Y, 

a = 1, ... A, be denoted by . Here we define briefly 

some well known small area estimators which we will 
use in our simulation study. Rao (1986), Särndal and 
Hidiroglou (1989) and Pfeffcrmann and Burck (1990) 
also contain a good survey of various small area 
estimators. 

2.1. Direct Estimators 
2. 1. 1 Expansion estimator 

This method of estimation is defined by 
EXP. =  Ew1 y1  where s0  is the portion of the 
sample falling in small area a, and w1  is the survey 
weight for unit i. For stratified simple random 
sampling, which we use in our simulation study, we 
have 

= Ek(Nk/nk)EI€Yi , 	(2.1) 

where s denotes the set of n, sample units falling in 
the small area a and Aratuni k a rid n. Nk  item ml c 
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1c51)CCt tvelv the sample and l)0l)ul 1 0fl Si/cs for the 
kth stratum. The abovc estimator is often unreliable 
l'ccause the random sample size n may be small in 
expectation and could have high variability. 
Conditional on the realized sample size n, EXPa  is 
biased; however, unconditionally, it is unbiased for Y. 

21.2 Separate ratio estimator 
If Xi,,, the small area total of a suitable covariate, 

is known for some post-strata indexed by 1, then the 
efficiency of the estimator EXP, could be improved 
upon by exploiting this knowledge. We define 

SRATa = E1 x10  }'exp,iaPcpja' 	
2.2) 

where kis the expansion estimator for the total 
of y in small area a by post-stratum 1. In our 
simulation study later we take the post-strata to be the 
intersection of design strata with small areas. When 
the covariate x is a constant then the estimator, also 
called post-stratified and denoted by POST a  is both 
conditionally and unconditionally unbiased; however, 
SRATa  would generally be slightly biased. These 
estimators may also not be sufficiently reliable 
because of the possibility of ,i's being small in 

expectation. IfXexpja
the above estimators are 

not defined. In practice, some ad hoc value such as 0 

is often chosen for 'expja'Xexp,ia  when Xexpia  =0. In 
the simulation study presented in this paper, we set 

be used to estimate the regression parameter and a 
synthetic estimator of the domain totals is then 
constructed. However, there may be some local lack 
of fit of the global regression model and this is 
accounted for by a direct estimate of the domain sum 
of residuals from the regression. The estimator is 

GREG a = x + Na  'a 	(2.4) 

-w where 3 = (L3 (x1 x T)/(v1 t 1 )) (L5 (x 1y1 )/(v1 1t 1 )), 

e. =?.Pa e = yl. - x. 13 , x, is the domain a 
total of the covariate vectors x 1 , v are pre-specified 
regression weights and wi  is the survey weight for unit 
i. This version of generalized regression estimation, 

with a synthetic 13 , was proposed by Sdrndal and 
Hidiroglou (1989). When the sample size in domain 

a is 0 we take ea  = o 	would be relatively stable 
when the regression model accounts for a large 
proportion of the variability in y. 

2.2 Composite Estimators 
2.2.1 Sample size dependent estimator 

If the observed sample size in small area a is 
small then we may consider a convex combination of 

a direct estimator and a synthetic estimator (e.g. XaT  

of (2.4)). Using sample size dependent weights, we 
have 

SSD4= 	 (2.5) 

I 

2'expJa/expJO = £ 7 IXexpj  whenever 	= 0. 

21.3 Combined ratio estimator 
An alternative to the separate ratio estimator is the 

combined ratio estimator, 

CRAT 0  = XaEXP0/Xexp,a 	(2.3) 

When the covariate xi  is a constant then the estimator 
will be denoted by HAJEKG . CRAT0  would generally 

he slightly biased. If Xexpa  = 0 then the above 
estimators are not defmcd. In practice, some ad hoc 

value such as 0 is often chosen for E) 4/ o  when 

Xexp ,a  = 0. In our simulation study presented later, we 

set E) a I pa  = 'expIexp whenever = 0. 

2.1,4 Generalized regression estimator (GREG) 
In this method a linear regression model is 

assumed to relate the individual level variate values y 1  
to a vector of covariates x. These covariates would 
need to be known for each sampled unit and domain 
otals would also be required. The sample data can  

where X a = 1 if 1~- N0  and X. 	 Na  =(P ,a / 
)d 

e  
otherwise, and d is assigned some suitable value such 
as 1 or 2. 

2.2.2 Empirical best linear unbi ased estimator (EBLUP) 
An alternative to sample size dependent 

smoothing of small area estimators is to use the 
empirical Bayes approach of Fay and Herriot (1979) 
or the more general best linear unbiased predictor 
(BLUP) approach (see e.g. Battese, Harter, and Fuller 
(1988), and Pfeffermann and Barnard (1991)). It is 
assumed that Y = F + M where the v 0 s are small 

area effects and F is a matrix of regressors. The 
model for the small area estimators is then 

= F + v  + where € is an observation error 

term. The BLUP under this model is 

BLUP = AYfi,  + (I—A)F 	(2.6) 
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11 crc A V V+ WI', V and W are, respect velv. the 

\ISE matrices of Ydi, and F, and 4 is the 

generalized least squares estimate of 1& . The mean 

squared error of BLUP is given by V- V(V+ W'V. 
The variance components V and W would need to be 
estimated, a survey based estimate would he used for 
V and then W would be estimated conditional on the 
estimated V using Henderson's method; more details 
are given in Section 3. When V and W are replaced 
by estimates the resulting estimator is termed 
empirical BLUP or EBLUP. When the model for the 
direct estimators is correctly specified the resulting 
estimator would he called optimal, otherwise it would 
he called pseudo-optimal. 

23 Benchmarking 
It is sometimes desirable that small domain 

estimators should add up to direct estimators for 
certain larger domains containing them. One simple 
possibility, presented by Rao and Choudhry (993) is 
to make a ratio adjustments within each larger area. 
We will indicate this ratio adjusted constrained 
estimator by the prefix CR_ (e.g. CR_EBLUP for the 
adjusted EBLUP). A second approach, following 
l'leifermann and Barnard (1991), and which we will 
indicate by the prefix CD, is based on the MSE 
dispersion) matrix for the small area estimators. If 

the constraint is expressed as L T1 = ç, with C a 

fixed, known constant, then the minimum MSE linear 
unbiased estimator is 

'+ rL(LTrL) - I( c _LTI) 	(2.7) 

where r = MSE(t). The third approach, suggested 

by Battese, 1-larter and Fuller (1988), and denoted by 
the prefix CV_, is given by (2.7) with the off diagonal 
elements of r set to zero. 

3. Simulation Study 
The methods described in Section 2 were 

compared empirically by means of a Monte Carlo 
simulation from a synthetic pseudo-population based 
on data from Statistics Canada's Survey of 
Employment, Payroll and Hours (SEPH). The SEPH 
sample is currently stratified by 1980 three digit 
standard industrial classification (SIC3) within 
province and four size classes; however, under a 
proposed redesign of I he survey the sample will no 
I nntr be controlled at the SIC3 level, but rather at 

Inc aggregation of S1C'3s such as SIC2. 	An 

hjective of the research i eported in this pajer is to 
investigate methods for estimation at the SIC3 by 
pronce level after the redesign. Because the sample 
will no longer be controlled at the SIC3 level this is a 
domain estimation problem. Larger establishments, 
and those with a complex structure, are subject to 
higher sampling rates so that direct estimates at the 
SIC3 level are satisfactory. However, for smaller 
establishments (size strata 1 and 2) of simple structure 
(in what is called the non-integrated portion of the 
frame, NIP) small domain estimation techniques could 
he necessary for production of SIC3 by province level 
estimates. A covariate which can he used for these 
units is PD7 data which records monthly income tax 
payroll deductions submitted to Revenue Canada. 

To construct the pseudo-population used in our 
study, we took sample data from the province of 
Ontario for SICI=3 (industrial manufacturing and 
products) and the NIP portion of size classes I and 2. 
Variables included were the SIC3 code, the number of 
employees, the 3 month average PD7 remittance, the 
size classification, and the survey weight. We used 
this data to fit the model 

yjk =  x(13 +v.+ j.+€) 
where y  is the number of employees for the kth unit 
in the jth SIC3 in the ith SIC2, x is the 3 month 
average PD7 remittance plus 500, # is fixed, and 
v, , and e are independent random components. 
Using the survey weights as replicate weights, we 
expanded the pseudo-population, which had 995 
distinct units, to 24,074 units. The pseudo-population 
contained 42 SIC3s (small areas) in 9 SIC2s (e.g. 
fabricated metal products industries, non-metallic 
mineral products industries). The small area 
population sizes varied from 26 to 14,236 units. We 
generated new numbers of employees from the fitted 
model, except that the estimated variance components 
were scaled down to reduce the problem of zeros in 
the data. We simulated sampling from this pseudo-
population using stratified simple random sampling by 
size class and SIC2. The sample size for each stratum 
was taken to match the total SIC2 by size class in the 
SEPH sample, though the sampling fractions at the 
SIC3 level would differ from the SEPH sample. The 
expected sample size within small areas varied from 
1.10 to 142.16 and averaged 23.69. 

3.1 Estimation methods used in the study 
All of the general estimation methods described 

in Section 2 were included in the study, with some 
particular features as described here. Since SIC3s are 
entirely contained in the corresponding SIC2, each 
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SIt '3 crosseil at most Iwo ul I he design strata 
orresponding to the two size strata within the SIC2. 

The estimators EXP. POST, SRAT, HAJEK and 
POST are exactly as described in Section 2. 

The remaining unbenchmarked estimators were 
applied separately within each size stratum and all 
further discussion of them in this subsection should be 
taken as being within size classes. 

For the GREG estimator, the parameter 13 has 
two components, one corresponding to a constant 
term, and the second corresponding to x,, the PD7 
remittance plus 1000 (to avoid the problem of 0 
remittances). All sample data within the SIC1 were 
used in the estimation of 13 and v1  was taken to be x. 

Two sample size dependent estimators are 
considered, both with d= 2 and with the synthetic part 

being x '13 , where 	is defined as in Section 2.4. 
The first, which we denote by SSD, has the estimator 
POST as the direct part; the second, denoted by 
SSD*, has GREG as the direct part. The estimator 
SSD* was proposed by Särndal and Hidiroglou (1989). 

There are four versions of the EIILUP estimator 
considered, based on two direct estimators, POST and 
;REG, and two different models. Both models take 
he matrix F as including a column of l's and a 

C lumn of x4's, the small area totals of x1 , where xi  is 
for the GREG estimator. They differ in how they 

imidel the small area effects, v 0 . In the first we 

model them as where x is the 
domain a total of x, Vk is a random effect that is 
common to all SIC3s within the same SIC2 k, and &a 
is a random effect for SIC3 a. It was assumed that 

v k (O,a v), a (OO), and all random effects and 
the observation errors e.are independent. The 
standard variance estimator for simple random 
sampling without replacement was used for the entries 
of V (which is diagonal, estimation of 13 for GREG 
was ignored in estimation of V). When the observed 
sample size in an SIC3 was I a synthetic estimator of 
the design variance based on data from the 
corresponding SIC2 was used, and when the observed 
sample size was 0 the MSE was taken as infinity. 
Taking the estimated V as the true value, the variance 

components u and a t were then estimated using 
Henderson's method. We will denote the estimator 
hased on this model and POST by EBLUP2 and the 
stimator based on GREG by EBLUP2*.  In the 

and mode I we ,ssU mc the variance corn pane nt 

to he icro. The estirnalol hased Oil P051 JIld this 
second model will be denoted by EBLUPI, and that 
based on GREG will be denoted by EBLUP1*.  Note 
that the estimators EBLUP2 and EBLUP2* are 
optimal, in the sense that they are based on a 
correctly specified model, while EBLUP1 and 
EBLUP1* are pseudo-optimal. 

For the benchmarked estimators the benchmark 
was taken to he the estimator EXP at the SIC2 level. 
Ratio adjusted benchniarking was applied to all 
estimators. The two versions of MSE adjusted 
henchmarking were applied to the estimators 
EBLUP2* and EBLUP1*,  but not to any other 
estimators because of problems with estimated MSE 
matrices being singular. The MSE matrices of the 
EBLUP estimators were estimated by the naive" 
estimator, i.e. V- V(V+ I$' .'%' with V and W replaced 
by estimates. 

31 Evaluation Measures 
Suppose m simulations are performed in which m, 

sets of different vectors of realized sample sizes for 
SlC3s by strata are replicated in 2  times. The following 
measures can be used for comparing performance of 
different estimators. Let I vary from 1 to m, and j 
from 1 to m2 . 

Absolute Relative Bias. 
ARBa  = 	 (3.1) 

	

1m' EE(est 	uea /(Uue)a I 
The average of ARB over domains a will be 
denoted by AARB. 
Root Mean Square Conditional Relative Bias. 

RMSCRB= (m1-1 	 (3.2a) 
Ej (m l Ejest_truea )2 /true -B}' 

B = m 1 (m2 -1) -' (3.2b) 
E1 [Ej 4Oest)2 1m2 1/tme 

The correction term B adjusts for bias in the first 
term due to m2  being finite. ARMSCRB will 
denote the average of RMSCRB over areas a. 
Mean Absolute Relative Error. 

(3.3) 
m'EjIest - uueaI/uea  

and AMARE denotes the average of MARE a  over 
domains a. 
Relative Root Mean Square Error. 

RRMSE = 	 (3.4)  
(in 	 (estiva 	}/true0 
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auC .RRMsF; as l)cjore denotes the aerage 
domains. 

The precision (i.e. the Monte Carlo standard error) 
of each measure depends on in 1 , in2 . It can be seen 
that for all measures except (ii), the optimal choice of 
m 1 , in2  under the restriction that m2 > I is m 1  =m/2, m2  
=2, since this minimizes the Monte Carlo standard 
error. For the second measure, the appropriate 
choice of rn 1 , m2  is less straightforward. For our 
simulation study we set rn 1 = 5000, m, =2. 

3.3 Empirical Results 
Figures 1 to 5 display the average evaluation 

measures from the Monte Carlo simulations for most 
of the estimators included in the study. 

Figure I shows evaluation measures for 
unhenchmarked direct estimators. Clearly use of the 
covariate has a very beneficial effect in this example, 
as would be expected because of the model used to 
generate the data. The estimator POST is best among 
those which do not use the covariate, while SRAT and 
GREG are both best among those using the covariate. 

Figure 2 shows the effect of combining the POST 
and GREG estimators with a regression synthetic 
estimator and compares the three methods of 
c )mposite estimation. (icnerally, composite 
estimation shows some improvement in the evaluation 
measures AMARE and ARRMSE and some 
deterioration in the bias measures (AARB and 
ARMSCRB), with the EBLUPs showing a stronger 
effect than the SSDs. In this study there is very little 
difference between the two EBLUPS. The 
performance of the pseudo-optimal estimators, 
EBLUP1 and EBLUP1*,  is the same as that of the 
optimal estimators, EBLUP2 and EBLUP2*, 
respectively; however, see also Figure 5 and the 
discussion below. 

Comparing Figure 3 to Figure 2 we see the effect 
of benchinarking. Generally the effect of 
henchmarking here is a slight improvement in the 
overall bias (AARB) at the cost of some deterioration 
with respect to the other evaluation measures. The 
relatively poor performance of the benchmarked 
estimators is not surprising since the benchmark EXP 
performs relatively poorly; see Figure 4. 
Benchmarking would be expected to improve 
performance only in the case of serious model 
breakdown. 

Figure 5 compares the three different methods of 
hcnchniarking. For the estimator EBLUP1*  all three 
methods perform about the same. For EBLUP2* the 
r,mtio adjusted hcnchmarking method performs as well  

as br EBLUP1* ;  htieer. tile NISE adjusted 111C1110d, 

perform more poorly. A possible explanation is that, 
with the extra variance component in the model 
underlying EBLUP2*,  the estimate of the MSE of 
EBLUI)2* is of poor quality. 
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