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1. Introduction

There exists a considerable body of rescarch on
amall area cstimation using cross-sectional survey data
in conjunction with supplementary data obtained from
census and administrative sources. A good collection
af papers on this topic can be found in Platek, Rao,
Sirndal and Singh (1987). For large arcas (or
domains) dircct estimators (i.e. estimators based only
on sample data from the arca of interest) are often
used; however, indirect estimators, in which strength
is borrowed from similar areas via a model containing
suxiliary variables from the supplementary data, are
often used for small arcas. For repeated surveys it
may also be bencficial to borrow strength over time;
sce Pfeffermann and Burck (1990) and Singh and
Mantel (1991). Direcct small area cstimators, though
{approximately) unbiased, arc not reliable because of
high variance. Indircct small area estimators are
more reliable, though they may be somewhat biased.

A common problem in the application of small
arca techniques is that the individual small area
¢stimates within a larger area do not add up to the
direct estimator for the larger arca. This problem can
be resolved by benchmarking of the small area
estimators with respect to the dircct estimator for the
larger arca. This is desirable for at least three
rcasons: (i) the usual direct estimator for the larger
arca is approximately unbiased, whercas the
aggregated small area cstimators may be substantially
biased, (if) benchmarking gives risc to somc
robustification in that the average of the benchmarked
small area estimators has good bias and variance
propertics, (i) there will be internal consistency
hetween published estimates for the larger area and
the tatal of estimates of the individual small areas
within it.

Three methods for benchmarking are proposed in
the literature: (i) Battese, Harter and Fuller (1988)
distribute the difference between the direct large arca
cstimator and the sum of the small area estimators in
proportion to the mean squared crror (MSE) of each
small arca estimator. (if) Pfeffermann and Barnard
(1991) distribute the difference "optimally” using the
full MSE matrix of the small arca estimators. This
method has an advantage for time serics methods in

that it can be built in as part of the Kalman filter
algorithm (giving as a byproduct an cstimate of the
MSE matrix of the benchmarked estimators); see
Pfeffermann and Burck (1990). (iii) Rao and
Choudhry _(1993) distribute the difference in
proportion [ta: the small arca cstimates, te a simplc
ratio (or rakmg) adjustment is made. -

In this Paper we perform an empirical w'sludy using
a synthetic¢ population based on data from Statistics
Canada’s Survey of Employment, Paymll, and Hours
(SEPH) to comparcthe effect, of bcnchmarkmg on
various smallaréa: estimators. ¢ ln patticular, we
compare, in a repeated sampling framcwdrk, the loss
in efficiecncy duc to benchmarking to the gain in
efficiency due to "borrowing strength”. Two types of
indirect small area estimators are synthetic (in which
small arecas arc assumed to be like a larger area) and
composite (convex combinations of direct and
synthetic estimators). For small arca estimation we
consider three types of composite estimatars where
the weights for the convex combination can be either
(/) optimal (i.e. based on a correctly specified model),
(ii) pseudo-oplimal (i.e. based on an incorrect model),
or (iif) based on some other working convention such
as the one for sample size dependent weights.

2. Domain Estimation Methods
Let the vector of small arca population totals, Y,

=1, ... A, be denoted by Y. Here we define briclly

some well known small area cstimators which we will
usc in our simulation study. Rao (1986), Sarndal and
Hidiroglou (1989) and Pfeffermann and Burck (1990)
also contain a good survey of various small arca
estimators.

2.1. Direct Estimators
2.1.1 Expansion estimator

This method of estimation is defined by
EXP = Eiesdw‘.y‘. where s, is the portion of the

sample falling in small area a, and w; is the survey
weight for unit j. For stratified simple random
sampling, which we use in our simulation study, we
have

2.n

where s,, denotes the set of n,, sample units falling in
the small arca @ and stratum k and n,, N, denote

E)(Pa i EI:(Nk/ n&)zies“y | H
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respectively the sample and population sizes for the
kth stratum. The above cstimator is often unreliable
hecause the random sample size n,, may be small in
expectation and could have high variability.
Conditional on the realized sample size n,, , EXP, is
biased; however, unconditionally, it is unbiased for Y.

2.1.2 Separate ratio estimator
If X,,, the small area total of a suitable covariate,
is known for some post-strata indexed by [, then the
efficicncy of the estimator EXP, could be improved
upon by exploiting this knowledge. We define
SRATa - Elxla chp,lalxexp,la ) (22)
wherc f'exp,, . Is the expansion cstimator for the total
of y in small arca @ by post-stratum [ In our
simulation study later we take the post-strata to be the
intersection of design strata with small areas. When
the covariate x is a constant then the cstimator, also
called post-stratified and denoted by POST,, is both
conditionally and unconditionally unbiased; however,
SRAT, would generally be slightly biased. These
estimators may also not be sufficiently reliable
because of the possibility of m,,’s being small in

expectation. If f“p 1o =0, the above estimators are
not defined. In practice, some ad hoc value such as 0
1s often chosen for ):'mla/&m‘a when Xexp.la:'o‘ In
the simulation study presented in this paper, we set

Yepial X = Yorpil Xexps

vla whenever X Loia™ 0.

2.1.3 Combined ratio estimator
An alternative to the separate ratio estimator is the
combined ratio estimator,

CRAT, = X,EXP (X, 23)

When the covariate x; is a constant then the estimator
will be denoted by HAJEK,. CRAT, would generally

be slightly biased. If Xexp’a=0 then the above

estimators are not defincd. In practice, some ad hoc

value such as 0 is often chosen for EXP / X L]

'S

Xap‘a =0. In our simulation study presented later, we

set EXPa/}? = f'explfcxp whenever Xm’a=0.

exp,a

when
o Whe

2.1.4 Generalized regression estimator (GREG)

In this method a linecar regression model is
assumed Lo relate the individual level variate values y;
to a vector of covariates x,. These covariates would
need to be known for cach sampled umit and domain
totals would also be required. The sample data can

be used to estimate the regression parameter and a
synthetic estimator of the domain totals is then
constructed. However, there may be some local lack
of fit of the global regression model and this is
accounted for by a direct estimate of the domain sum
of residuals from the regression. The estimator is

GREG, - x]f + N,e, (2.4)

where = (T (xx /(v )" (Z,(xp) (v ),
e=é_ IN

o T . ;

2= Can H Negos' 1€, = Yy =% B , x, is the domain a
total of the covariate vectors x,, v, are pre-specified
regression weights and =, is the survey weight for unit

i. This version of generalized regression estimation,
with a synthetic B, was proposed by Sarndal and
Hidiroglou (1989). When the sample size in domain
ais 0 we take €,=0.

when the regression model accounts for a large
proportion of the variability in y.

Ea would be relatively stable

2.2 Composite Estimators
2.2.1 Sample size dependent estimator

If the observed sample size in small arca a is
small then we may consider a convex combination of

a direct estimator and a synthetic estimator (e.g. xarﬁ
of (24)). Using sample size dependent weights, we
have

SED = TYUR JRLE ) R 1 E(26)

b r i d
where A,=1 if N, >N, and A, =(N /N,
otherwise, and d is assigned some suitable value such
as lor2.

2.2.2 Empirical best linear unbiased estimator (EBLUP)

An alternative to sample size dependent
smoothing of small area estimators is to use the
empirical Bayes approach of Fay and Herriot (1979)
or the more general best lincar unbiased predictor
(BLUP) approach (see e.g. Battese, Harter, and Fuller
(1988), and Pfeffermann and Barnard (1991)). It is

assumed that Y= Fg +y where the v s arc small

area effects and F is a matrix of regressors. The
model for the small area estimators is then

Y., =Fg +v+g where €, is an observation error

term. The BLUP under this model is

BLUP = AY, +(I-A)F§ (2.6)
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where A=V(V+W)' Vand W are, respectively, the
MSE matrices of fdir and Fg, and & is the

generalized least squares estimate of g . The mean

squared error of BLUP is given by V- V(V+W)'V.
The variance components V and W would need to be
cstimated, a survey based estimate would be used for
V and then W would be cstimated conditional on the
estimated V using Henderson’s method; more details
arc given in Scction 3. When V and W are replaced
by estimates the resulting cstimator is termed
empirical BLUP or EBLUP. When the model for the
direct estimators is correctly specified the resulting
estimator would be called optimal, otherwise it would
be called pseudo-optimal.

23 Benchmarking

It is sometimes desirable that small domain
estimators should add up to direct estimators for
certain larger domains containing them. One simple
possibility, presented by Rao and Choudhry (1993) is
to make a ratio adjustments within cach larger area.
We will indicate this ratio adjusted constrained
estimator by the prefix CR_ (e.g CR_EBLUP for the
adjustied EBLUP). A second approach, following
Pleftermann and Barnard (1991), and which we will
indicate by the prefix CD , is based on the MSE
(dispersion) matrix for the small area estimators. If

the constraint is expressed as LTY=¢, with ¢ a

fixed, known constant, then the minimum MSE linear
unbiased estimator is

P+TL(LTL)Y'(¢-LTY) 2

where T = MSE(Y) . The third approach, suggested

by Battese, Harter and Fuller (1983), and denoted by
the prefix CV_, is given by (2.7) with the off diagonal
clements of T set to zero.

3. Simulation Study

The methods described in Section 2 were
compared cmpirically by means of a Monte Carlo
simulation from a synthetic pscudo-population based
on data from Statistics Canada’s Survey of
Employment, Payroll and Hours (SEPH). The SEPH
sample is currently stratificd by 1980 three digit
standard industrial classification  (SIC3)  within
province and four size classes; however, under a
proposed redesign of the survey the sample will no
longer be controlled at the SIC3 level, but rather at
some aggregation of SIC3s such as SIC2.  An

objective ol the research reported in this paper 18 (0
investigate methods for estimation at the SIC3 by
province level after the redesign. Because the sample
will no longer be controlled at the SIC3 level this is a
domain estimation problem. Larger cstablishments,
and those with a complex structure, are subject to
higher sampling rates so that direct estimales at the
SIC3 level arc satisfactory. However, for smaller
establishments (size strata 1 and 2) of simple structure
(in what is called the non-integrated portion of the
frame, NIP) small domain estimation techniques could
be necessary for production of SIC3 by province level
cstimates. A covariate which can be used for these
units is PD7 data which records monthly income tax
payroll deductions submitted to Revenue Canada.

To construct the pscudo-population used in our
study, we took sample data from the province of
Ontario for SIC1=3 (industrial manufacturing and
products) and the NIP portion of size classes 1 and 2.
Variables included were the SIC3 code, the number of
employees, the 3 month average PD7 remittance, the
size classification, and the survey weight. We used
this data to fit the model

y"jkz x,’j‘(B +v,'+5‘j+e“k)

where y;, is the number of employees for the kth unit
in the jth SIC3 in the ith SIC2, x is the 3 month
average PD7 remittance plus 500, g is fixed, and
v, &, and € are independent random componcenls.
Using the survey weights as replicate weights, we
expanded the pseudo-population, which had 995
distinct units, to 24,074 units. The pseudo-population
contained 42 SIC3s (small arcas) in 9 SIC2s (e
fabricatcd metal products industries, non-mectallic
mineral products industries).  The small arca
population sizes varied from 26 to 14,236 units. We
generated new numbers of employees from the fitted
model, except that the estimated variance componcents
were scaled down to reduce the problem of zeros in
the data. We simulated sampling from this pseudo-
population using stratified simple random sampling by
size class and SIC2. The sample size for cach stratum
was taken to match the total SIC2 by size class in the
SEPH sample, though the sampling fractions at the
SIC3 level would differ from the SEPH sample. The
expected sample size within small arcas varied from
1.10 to 142.16 and averaged 23.69.

3.1 Estimation methods used in the study

All of the gencral estimation methods described
in Section 2 were included in the study, with some
particular features as described here. Since SIC3s are
entirely contained in the corresponding SIC2, cach






SIC3 crossed at most (wo of the design strala
corresponding to the two size strata within the SIC2.

The estimators EXP, POST, SRAT, HAJEK and
POST arc exactly as described in Scction 2.

The remaining unbenchmarked estimators were
applied separately within cach size stratum and all
further discussion of them in this subsection should be
taken as being within size classes.

For the GREG estimator, the paramcter p has
two components, one corresponding to a constant
term, and the second corresponding to x;, the PD7
remittance plus 1000 (to avoid the problem of 0
remittances). All sample data within the SIC1 were

used in the estimation of B and v; was taken (o be x;.
Two samplc size dependent estimators are
considered, both with d=2 and with the synthetic part

being xarﬁ, where P is defined as in Section 2.4.
The first, which we denote by SSD, has the estimator
POST as the direct part; the second, denoted by
SSD*, has GREG as the dircct part. The estimator
SSD* was proposed by Sarndal and Hidiroglou (1989).

There arc four versions of the EBLUP cstimator
considered, based on two direct estimators, POST and
GREG, and two different models. Both models take
the matrix F as including a column of 1's and a
column of x,’s, the small area totals of x;, where x; is
as for the GREG estimator. They differ in how they

model the small area effects, v,. In the first we

model them as va=x:ﬂ(vk+Ea) where x, is the
domain @ total of x;, v, is a random effect that is

common to all SIC3s within the same SIC2 &, and §,

is a random effect for SIC3 a. It was assumed that

v k”(O,of), [y (0,02) , and all random effects and

the observation errors €, are independent. The

standard variance estimator for simple random
sampling without replacement was used for the entries

of V (which is diagonal, estimation of B for GREG
was ignored in estimation of V). When the observed
sample size in an SIC3 was 1 a synthetic estimator of
the design variance based on data from the
corresponding SIC2 was used, and when the observed
sample size was 0 the MSE was taken as infinity.
Taking the estimated V as the truc value, the variance

components oi and oi were then estimated using
Henderson’s method. We will denote the estimator
based on this model and POST by EBLUP2 and the

astimator based on GREG by EBLUP2*. In the

. 2
seeond madel we assume the variance component ¢

to be zero. The estimator based on POST and this
second model will be denoted by EBLUPI, and that
based on GREG will be denoted by EBLUPT*. Note
that the cstimators EBLUP2 and EBLUP2* are
optimal, in the sense that they arc based on a
correctly specified model, while EBLUP1 and
EBLUP1* are pseudo-optimal.

For the benchmarked estimators the benchmark
was taken to be the estimator EXP at the SIC2 level.
Ratio adjusted benchmarking was applied to all
estimators. The two wersions of MSE adjusted
benchmarking  were  applied to  the  cstimators
EBLUP2* and EBLUP1* but not to any other
estimators because of problems with estimated MSE
matrices being singular. The MSE matrices of the
EBLUP estimators were estimated by the "naive”
estimator, i.e. V- V(V+W)'V with V and W replaced
by estimates.

32 Evaluation Measures
Suppose m simulations are performed in which m,
sets of different vectors of realized sample sizes for
SIC3s by strata are replicated m, times. The following
measures can be used for comparing performance of
different estimators. Let ¢ vary from 1 to m, and j
from 1 to m,.
(1) Absolute Relative Bias.
ARB, =
Im ™ XX (est,, - true )/ (true),|

The average of ARB, over damains a will be
denoted by AARB.
(i1) Root Mean Square Conditional Relative Bias.
RMSCRB, = {m,"
-1 2
Y.(m, Zjestija—truea)zluuea -B}\?

3.1)

(3.2a)

B = m(m,-1)"!

5 , (.2b)
¥ [Eesty, - (Zest,,)?/m, ]/ true’,

The correction term B adjusts for bias in the first
term duc to m, being finite. ARMSCRB will
denote the average of RMSCRB, over arcas a.
(iii) Mean Absolute Relative Error.
MARE, =
-1
e i Ej |wtq.a~truea |/ true,
and AMARE denotes the average of MARE, over
domains a.
(iv) Relative Root Mean Square Error.
RRMSE =
{m" lEiEj(&stv.a—tx'uea)z}m/truea

(3.3)

(3.4)






and ARRMSE as betore denotes the average over
domains.

The precision (i.e. the Monte Carlo standard error)
of cach measure depends on my, m,. 1t can be seen
that for all measures except (it), the optimal choice of
m,, m, under the restriction that my>1is my=m/2, m,
=2, since this minimizes the Monte Carlo standard
crror.  For the sccond measure, the appropriate
choice of m,, m, is less straightforward. For our
simulation study we set m, = 5000, m, =2.

3.3 Empirical Results

Figures 1 to 5 display the average evaluation
measures from the Monte Carlo simulations for most
of the cstimators included in the study.

Figurc 1 shows cvaluation measures for
unbenchmarked direct estimators. Clearly use of the
covariate has a very beneficial effect in this example,
as would be expected because of the model used to
generate the data. The estimator POST is best among
those which do not use the covariate, while SRAT and
GREG are both best among those using the covariate.

Figurc 2 shows the cffect of combining the POST
and GREG cstimators with a regression synthetic
cstimator and compares the three methods of
composile  estimation. Generally, composite
¢stimation shows some improvement in the evaluation
mcasures AMARE and ARRMSE and somc
deterioration in the bias measures (AARB and
ARMSCRB), with the EBLUPs showing a stronger
cffect than the SSDs. In this study there is very little
difference  between  the two  EBLUPs. The
performance ol the pscudo-optimal  estimators,
EBLUP1 and EBLUPI1*, is the same as that of the
optimal  estimators, EBLUP2 and EBLUP2¥
respectively; however, sce also Figure 5 and the
discussion below.

Comparing Figurc 3 to Figurc 2 we sce the effect
of benchmarking. Generally the effect of
benchmarking here is a slight improvement in the
overall bias (AARB) at the cost of some deterioration
with respect to the other evaluation measures. The
rclatively poor performance of the benchmarked
estimators is not surprising since the benchmark EXP
performs  relatively  poorly; see  Figure 4.
Benchmarking would be  expected to  improve
performance only in the case of serious model
breakdown.

Figurc 5 compares the three different methods of
benchmarking. For the estimator EBLUPL* all three
methods perform about the same. For EBLUP2#* the
ratio adjusted benchmarking method performs as well

as for EBLUPL*; however, the MSE adjusted methods
perform more poorly. A possible explanation is that,

* with the extra variance component in the model

underlying EBLUP2#*, thc cstimate of the MSE of
EBLUP2#* is of poor quality.
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