
Catalogue 11-509E Occasional

11-509E (1991) c.3

Human Activity and the Environment 1991

Statistics Statistique Canada Canada

1

Data in Many Forms

Statistics Canada disseminates data in a variety of forms. In addition to publications, both standard and special tabulations are offered on computer print-outs, microfiche and microfilm, and magnetic tapes. Maps and other geographic reference materials are available for some types of data. Direct access to aggregated information is possible though **CANSIM**, Statistics Canada's machine-readable data base and retrieval system.

How to Obtain More Information

Inquiries about this publication and related statistics or services should be directed to:

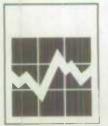
Environment and Natural Resources Section Environment and Wealth Accounts Division

Statistics Canada, Ottawa, K1A 0T6, (Telephone: 951-3765, Facsimile number: 951-9031) or to the Statistics Canada reference centres in:

St. John's	772-4073	Winnipeg	983-4020
Halifax	426-5331	Regina	780-5405
Montreal	283-5725	Edmonton	495-3027
Ottawa	951-8116	Calgary	292-6717
Toronto	973-6586	Vancouver	666-3691

Toll-free access is provided in all provinces and territories, for users who reside outside the local dialing area of any of the regional reference centres.

Newfoundland and Labrador	1-800-563-4255
Nova Scotia, New Brunswick and Prince Edward Island Quebec	1-800-565-7192 1-800-361-2831
Ontario	1-800-263-1136
Manitoba	1-800-542-3404
Saskatchewan	1-800-667-7164
Alberta	1-800-282-3907
Southern Alberta	1-800-472-9708
British Columbia (South and Central)	1-800-663-1551
Yukon and Northern B.C. (area	
served by NorthwesTel Inc.)	Zenith 0-8913
Northwest Territories (area served	
by NorthwesTel Inc.)	Call collect 403-495-2011


How to Order Publications

This and other Statistics Canada publications may be purchased from local authorized agents and other community bookstores, though the local Statistics Canada offices, or by mail order to Publication Sales, Statistics Canada, Ottawa, K1A 0T6.

Telephone: (613) 951-7277 Facsimile Number: (613) 951-1584 National toll-free order line: 1-800-267-6677

or

Toronto (credit card only): 973-8018

Statistics Canada Environment and Wealth Accounts Division System of National Accounts

Human Activity and the Environment 1991

CANADA CANADA

MAY 2 6 2008

LIBRARY BIBLIOTHÉQUE

Published by authority of the Minister responsible for Statistics Canada

Minister of Industry,
 Science and Technology, 1991

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from Chief, Author Services, Publications Division, Statistics Canada, Ottawa, Ontario, Canada K1A 0T6.

September 1991

Price: Canada: \$35.00 United States: US\$42.00 Other Countries: US\$49.00

Catalogue 11-509E

ISBN 0-660-14173-0

Ottawa

Version française de cette publication disponible sur demande

Technical Information

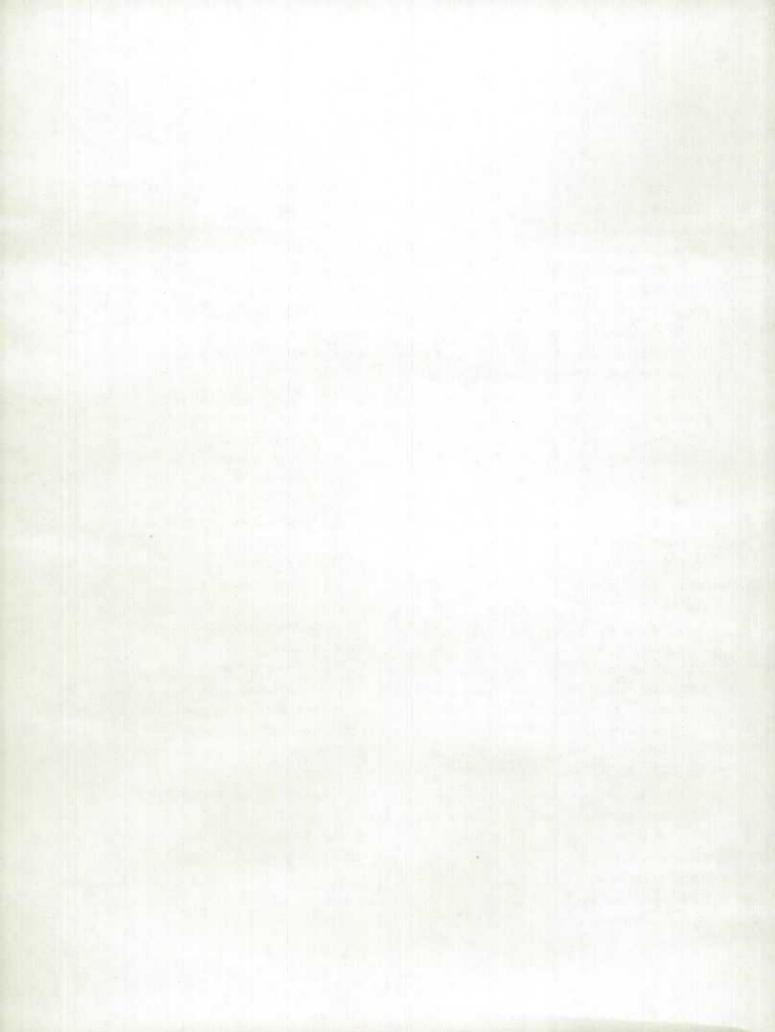
ymbols and Abbreviations	Prefixes of the l	Internat	ional System of Units
The following standard symbols are used in Statistics	prefix		Multiplication Factor
Canada publications:	peta	10 ¹⁵	1 000 000 000 000 000
figures not available	tera	10 ¹²	1 000 000 000 000
figures not appropriate or not applicable	giga	10 ⁹ 10 ⁶	1 000 000 000
- nil or zero	mega kilo	10 ³	1 000 000
	hecto	10 ²	100
amount too small to be expressed	deca	10 ¹	1(
^p preliminary figures	deci	10	0.
r revised figures	centi	10-2	0.0
revised lightes	milli	10-3	0.00
x confidential to meet secrecy requirements of the	micro	10-6	0.00000
Statistics Act	nano	10 ⁻⁹	0.0000000
	pico	10-12	0.0000000000

Energy Conversion Factors

1 barrel = .15891 cubic metres 1 ton = .9071847 metric tonnes

Fuel type	Natural unit	Conversion factor
		terajoules
Coal: Anthracite	kilotonnes	29.53
Imported bituminous	kilotonnes	29.99
Canadian bituminous	kilotonnes	23.81
Sub-bituminous	kilotonnes	19.76
Lignite	kilotonnes	15.35
Coke	kilotonnes	28.83
Coke oven gas	gigalitres	18.61
Propane	megalitres	25.53
Butane	megalitres	28.62
Ethane	megalitres	18.36
Crude oil	megalitres	38.51
Still gas	megalitres	41.73
Motor gasoline	megalitres	34.66
Kerosene	megalitres	37.68
Diesel	megalitres	38.68
Light fuel oil	megalitres	38.68
Heavy fuel oil	megalitres	41.73
Petroleum coke	megalitres	42.38
Aviation gasoline	megalitres	33.52
Aviation turbo fuel	megalitres	35.93
Natural gas	gigalitres	37.97
Electricity	gigawatt hours	3.6
Steam	kilotonnes	2.75
Solid wood wastes	kilotonnes	18.00
Spent pulping liquor	kilotonnes	14.00

Abbreviations


1986\$	1986 constant dollars
°C	degrees Celsius
cm	centimetre
ha	hectare
hr	hour
kg	kilogram
km	kilometre
km ²	square kilometres
kPa	kilopascals
1	litre
m	metre
m ³	cubic metre
MCM	million cubic metres
mg	milligram
mm	millimetre
ng	nanogram
nec	not elsewhere classified
ppb	parts per billion
ppm	parts per million
SIC	Standard Industrial Classification
t	metric tonne
TAC	Total Allowable Catch
μg	microgram

Human Activity and the Environment

Table of Contents

1.	Pre	face			1
	1.1	Introd	uction and Highlights		2
2.	Pop	ulation			5
	2.1	Popul	ation Conditions		5
		2.1.1	Population and Population		
			Density		6
	2.2	Popul	ation Processes	-	11
		2.2.1	Fertility, Mortality and		
			Migration		11
	2.3	Envir	onmental Benefits and Impacts of	on	
		Indivi	duals		25
		2.3.1	Environmental		
			Benefits		25
		2.3.2	Impacts of		
			Environment	-	28
	2.4	Regu	ations and Perceptions		32
		2.4.1	Regulating Processes	-	32
		2.4.2	Attitudes and		
			Perceptions	•	39
3.	Soc	io-Ecc	nomy		43
	3.1	Socio	-economic Conditions		43
		3.1.1	Industry		43
		3.1.2	Transportation and		
			Utilities		56
		3.1.3	Dwellings		73
		3.1.4	Economic Indicators	-	77
		3.1.5	Natural Resource		
			Accounting		86
	3.2	Socio	economic Processes		87
		3.2.1	Production		87
		3.2.2	Consumption		92
		3.2.3	Mitigation		100
	3.3	Enviro	onmental Impacts	3.	104
		3.3.1	Contaminants		104
		3.3.2	Agricultural		
			Contaminants		115

		3.3.3	Restructur	ing o	of L	and	da	nd '	Wa	ter	
			Systems								121
		3.3.4	Compositio	on a	nd	Ra	nge	of			
			Wildlife .								130
		3.3.5	Soil Nutrie	nts		4					132
	3.4	Waste	es and Recy	clin	g		•				138
		3.4.1	Recycling				•				139
4.		ironme	ent					u		•	141
	4.1	Enviro	onmental C	ondi	tior	IS	•		•	•	141
		4.1.1	Air Quality				•			•	142
		4.1.2	Water Qua	lity		٠				4	145
		4.1.3	Fish and W	Vildli	ife		•				147
			Habitats								159
		4.1.5	Protected	Land	d						162
		4.1.6	Soil Quality	Y	•				•		164
		4.1.7	Agricultura	I La	nd				•		166
			Forest Lan								1 71
		4.1.9	Minerals					÷			174
	4.2	Natur	al Processe	s	•						179
		4.2.1	Natural Dis	saste	ers						179
		4.2.2	Climate .								 181
	4.3	Harve	sting and E	xtra	ctic	n					186
		4.3.1	Land								 186
		4.3.2	Fish and W	Vildli	fe						
			Harvesting								190
		4.3.3	Water Con	sum	ptio	on					206
5.	Арр	endice	es								213
	5.1	The P	opulation-E	Invir	oni	nei	nt F	roo	es	S	
		Frame	ework		•						213
	5.2		raphic Units								
		Analy	sis								216
	5.3	Jock I	River Enviro	onm	enta	al A	Ass	ess	me	ent:	
		A Cas	se Study .								224
6.	Inde	ex .									231

1. Preface

Human Activity and the Environment provides a statistical overview of Canada's physical environment and the interactions between people and other elements of the natural system. This source book focuses on the activities of individuals and the socioeconomic systems in consuming resources, in building and reshaping landscapes, and in generating wastes, as well as changes in the conditions of land, water, air and plants and animals.

Statistics Canada, Environment Canada, and other federal and provincial government agencies collect volumes of statistical information about human activities and the relationship between people and the natural environment. These data, however, are scattered among many separate databases and publications. The data are often not organized for integrated description or analysis of the environment. By bringing together a selection of these statistics and re-organizing them to enhance their value from an environmental perspective, this information will be accessible and useful to decision-makers, analysts, educators and members of the public who require environmental statistics.

Since the publication of the previous edition of *Human* Activity and the Environment in 1986, Statistics Canada has developed a statistical database of socioeconomic and environmental data for state of the environment reporting. This database and associated geographic information system technology has been used by numerous agencies to provide information on many of the subject areas covered in this book. Information in this publication is available in more detail from the database which is often updated and augmented with new statistics.

Acknowledgements

This publication was prepared by the Environment and Natural Resources Section of the Environment and Wealth Accounts Division, System of National Accounts Branch under the general direction of Kishori Lal, Director General, System of National Accounts, and Kirk Hamilton, Manager of the Section. The book was edited by Michael Bordt and major contributions to the report were made by the following staff:

Murray Cameron Phillip Fong Yvan Gervais Jason Siroonian Douglas Trant Hélène Trépanier

Special thanks are in order to Martin Butterfield (Australian Bureau of Statistics), to Kathy Keddy for providing much valued research, and to Peter Victor of the Advisory Committee on State of the Environment Reporting for assisting with the **Introduction and Highlights** section. The authors are also indebted to John Joisce, Bruce Mitchell, Alice Born, Craig Gaston and Ralph MacDonald of Statistics Canada, and to Susan Holtz for reviewing the manuscript and providing much-valued advice. The Advisory Committee on State of the Environment Reporting provided much advice on the structure and content of the book.

Several Divisions within Statistics Canada supplied statistics or provided other forms of assistance during the compilation process. These included the Agriculture Division, Census of Population, Demography Division, Electronic Data Dissemination Division, Industry Division, and Public Institutions Division.

We are indebted for the contributions of Environment Canada (SOE Reporting Branch, Parks and Wildlife Services, Inland Waters, National Environmental Emergencies Centre, Atmospheric and Environment Services), Agriculture Canada, The Atomic Energy Control Board, Energy Mines and Resources Canada, Fisheries and Oceans Canada, Forestry Canada, and the Canadian Museum of Nature.

1.1 Introduction and Highlights

Much has happened in the five years since Statistics Canada published the second edition of *Human Activity and the Environment*. Opinion polls show that damage to the environment has become one of the most important concerns of the public. There has been a proliferation of environmental interest groups, and many organizations in the private, public and non-profit sectors not previously involved in environmental issues have developed positions and programs on the environment.

Government has also been affected by this upsurge of interest. New environmental protection legislation has been enacted and there are embryonic attempts to integrate the environment in all government policies and plans. Advisory boards have been set up in many jurisdictions to broaden the basis on which environmental policies are made. Sustainable development has begun to compete with economic growth as the standard against which all our activities are to be evaluated.

Another important change relating to how we think about the environment is the increasing attention being given to environmental education from kindergarten to university. A better educated, more informed and more vigilant public is placing greater and greater demands on government and business to protect the environment.

The loss of species, the depletion of the ozone layer, the threat and reality of climate change, contamination of the environment with toxic wastes or the degradation of agricultural soils have generated much concern and strong emotional response. However, emotion is not enough for effective action. We need information and we need it in a form that is systematic and accessible. This is the contribution of *Human Activity and the Environment*, and the third edition is the most comprehensive and authoritative source of information for Canada on our population, our socio-economic activities, our environment and the links among them.

Using the information in *Human Activity and the Environment* to plan for the future is rather like driving a car when you can only look in the rear view mirror. Statistics, by their nature, only tell us about the past. Some of the information in *Human Activity and the Environment* is already several years old. Some is quite recent. Much of the information that we would like to have is not available at all or is not available at a national level. Nevertheless, a picture of how we interact with our environment does emerge from this book.

The Simple Equation of Human-Environment Interactions

The effect of human activity on the environment depends on how many we are, what we do, and the environmental effect of each of our activities. This relationship can be expressed as:

Effect on the environment = Population x Socio-economic activity per person x Environmental effect per unit of socio-economic activity

Trends in the items on the right hand side of this simple equation can tell us a lot about whether our effects on the environment are increasing or decreasing. At the same time, we should not lose sight of the effects on the population and on our activities of what happens to the environment. We should also be aware that our effects on the environment depends on the state of the environment, so that the same activity in two different places can have very different repercussions.

Human Activity and the Environment makes this kind of analysis possible by organizing the data into three components: population, socio-economic system and the natural environment within the Population-Environment Process Framework. Another feature of the report that makes it especially useful for understanding the links between the socio-economic system and the environment is the presentation of much of the data by drainage basin and ecozone¹. Data presented in terms of these ecologically defined regions rather than jurisdictional regions can be particularly valuable for monitoring the effect of human activities on the environment.

Population

From 1971 to 1991 the Canadian population grew from 21.6 million to an estimated 26.7 million. This fact alone should alert us to the possibility that the effect of our activities on the environment has also increased. In the only section of *Human Activity and the Environment* that includes future projections, we learn that Statistics Canada expects the Canadian population to reach 30 to 35 million in the next two or three decades. Also, with the fertility rate at or below replacement rate, immigration is expected to be a more and more important determinant of population growth in Canada.

The size of the population is one consideration; its location is another. After a long period of increasing urbanization, the proportion of Canadians living in urban areas has settled down at about 75 percent with 60 percent of the population

A drainage basin is an area of land which drains into a common river or to the ocean. An ecozone is a natural region delineated by landform, water, soil, vegetation, climate, wildlife and human factors.

Human Activity and the Environment

concentrated in 25 major metropolitan areas. Generally, the continuing growth in the population is expected to be most pronounced in western Canada although the demographic centre of gravity will remain in Ontario and Quebec.

Some of the effects of our activities on the environment are life threatening and yet between 1976 and 1981 life expectancy rose by 1.7 years for males and 1.5 years for females. Statistics Canada's population projections assume that these gains in life expectancy will continue, though at a diminishing rate.

Socio-Economic Activity per Person

In 1971 there was an average of 0.28 dwellings per person in Canada, Between 1971 and 1986 the number of dwellings grew much faster than the population, so that, in 1986, there were 0.35 dwellings per person. This is very significant from a social and environmental standpoint because vehicles, furnaces, air-conditioners, and appliances and the energy to operate them are purchased at the household level rather than that of the individual person, and all those purchases affect the environment. The construction of the dwellings themselves and the infrastructure required to service them also have environmental consequences. With the number of dwellings growing faster than the population it is conceivable that the environmental effects of socio-economic activity will continue to increase even as the population stabilizes or declines. Much depends on the efficiency of these activities, the third term in the equation.

The economic output per person has also risen dramatically. In 1986 each Canadian, on average, accounted for 44 percent more economic output than in 1971. The correspondence between economic output and environmental effect is not a simple one since much depends on which sectors have grown the most and what technologies and materials are employed. Of all the sectors of the economy, several stand out for their effects on the environment: energy, transportation, agriculture, smelting and refining, forestry and pulp and paper, and the chemical industry. A look at developments in just two of these is instructive.

Energy

Energy is the lifeblood of an economy. How energy is obtained and used and in what quantity is crucial for determining environmental effects. It is also a revealing indicator of the kind of economy we have and the quality of life it offers its members.

Between 1958 and 1989 the production and use of primary energy (from coal, crude oil, natural gas, hydroelectric, nuclear and steam) more than tripled. Although the annual rate of increase in primary energy has declined over the years, Canadians remain among the highest users of energy per person in the world.

About 75 percent of primary energy is used in final consumption. Industry is the largest single user followed

closely by transportation. Residences, farms, public administration and commerce account for the rest. The remaining 25 percent of primary energy is used in the conversion of energy from one form to another (e.g. in the generation of electricity) or in refineries and pipelines and in non-energy use (i.e. petrochemicals).

During the past thirty years, our use of all forms of primary energy, with the exception of crude oil, has increased substantially. Oil consumption peaked in 1979 at the time of the second oil price "shock", but it has been rising again since 1986. The use of natural gas has risen more than eightfold since 1958. Our greater reliance on this comparatively clean form of fossil fuel has allowed energy use to rise with a lower effect on the environment than if we had maintained our traditional reliance on coal and oil.

The other significant change in energy production has come from the introduction of electricity obtained from nuclear power. In 1989 this source of energy provided over 12 percent of Canada's electrical generating capacity (and a higher percentage of electrical energy) but only 3 percent of total primary energy from all sources. By displacing coal fired generation and its attendant emissions of acid gases and greenhouse gases, nuclear energy reduces some adverse environmental effects. However, it brings other risks associated with the actual and potential release of radiation. Evaluating tradeoffs such as these is one of the most difficult tasks in managing future human activity and its effects on the environment.

Transportation

Transportation is important in all countries, but in one as large as Canada, with its highly mobile population, transportation takes on a particular significance. In 1981 there were 10.2 million passenger cars registered, which is 0.42 cars per person (or one car for every 2.4 Canadians). By 1986 an additional 600,000 cars were registered, and the number of cars per person increased to 0.46 (or one car for every 2.2 Canadians). In 1989 the number of cars surpassed 12.8 million.

Not only has the number of cars grown faster than the population, but the distance travelled per car has also risen. From 1981 to 1988 the total number of kilometres travelled by passenger cars grew by 22 percent.

The increasing use of the car has many environmental ramifications. Most obviously, the conversion of the chemical energy contained in oil to the kinetic energy required for travel produces enormous quantities of noxious gases. The production of cars requires very considerable quantities of steel, chemicals and energy, all having significant environmental effects. Also, the use of the car is both a cause and consequence of the suburbanization of the population. This affects the environment through the conversion of agricultural to urban land and also by reducing the competitiveness of public transport.

Other significant developments in transportation in the past decade have been the increasing reliance on trucks rather than trains for moving freight, the decline in inter-city bus travel and the growth in air freight and air travel. Possibly, what will turn out to be more important for the environment than any of these changes is the rapidly rising use of electronic means of communication (such as fax, electronic mail, computer and video conferencing) as a substitute for travel.

Other Sectors

Developments in other sectors have also had environmental implications that are cause for concern. For example, in forestry, a mainstay of the Canadian economy, the area replanted has not kept pace with the area harvested, though the gap appears to have closed a little. In agriculture, expenditures on pesticides more than quadrupled between 1970 and 1985 and the area under monoculture continued to rise².

Probable and proven reserves of several important metals have declined steadily as measured by reserve life (i.e., known reserves divided by annual extraction). Crude oil reserves have declined in absolute terms, whereas those of natural gas have increased. However, even natural gas shows a decline in reserve life since increases in consumption have run ahead of discoveries. It is difficult to reconcile trends such as these with notions of sustainable development unless one believes that substitutes will always be available whenever they are needed.

Environmental Effect per Unit of Socioeconomic Activity

Fortunately, there is a brighter side to the relationship between human activity and the environment. Most of the efforts to protect the environment have been directed at reducing the third component of the simple equation: the environmental effect per unit of socio-economic activity, and these efforts have met with some success.

One example of these successes is the increasing efficiency of motor vehicles. The average number of litres per 100 kilometres of car travel declined from 16.5 in 1980 to 12.0 in 1988. Electrical utilities have started to promote energy conservation to reduce the need for additional capacity. Recycling has been introduced in the residential, commercial and institutional, and industrial sectors, and although trend data are not available, there are indications that these programs are resulting in less waste being sent to landfills. Other encouraging signs can be found in the reduction of some pesticides and other contaminants in birds' eggs as a result of deliberate efforts to eliminate their use. The control of several air pollutants has met with some success so that air quality in 11 major urban centres across the country is generally good. One indication that these gains have not been obtained easily or cheaply is that governments continue to extend the scope of environmental legislation, and government expenditures on environmental protection rose from \$3.9 billion in 1984-85 to \$6.4 billion in 1989-90. Even allowing for inflation, this represents a significant increase in the commitment of public funds to protect the environment.

Conclusion

Unfortunately, even a book as rich in information as this one has serious omissions. Inevitably, the statistical record lags our understanding of what we should be keeping statistics on. The new initiatives in resource accounting described in *Human Activity and the Environment* will give us a better understanding of the resource base of the economy, but it will be some time before we have a set of accounts that provide the historical record that we need for analyzing the changing dependence of the economy on natural resources.

Other issues, such as the greenhouse effect and the spread of the zebra mussel in the Great Lakes, which are addressed for the first time in this edition of *Human Activity and the Environment*, remind us that even as we struggle to cope with the old problems, new and more troubling ones may be around the corner. As human demands on the environment grow, these new problems can be expected to increase in frequency and severity. Furthermore, these newly recognized problems are not often local problems that can be solved within a single jurisdiction. Many cross national boundaries and require international cooperation if they are to be remedied.

Environmental problems at all levels are more likely to be solved if we work from a common and reliable source of information. Whether solutions to our environmental problems can always be found through increases in efficiency and substitution or whether the scale of our activities must also be reduced remains unclear, but the information in *Human Activity and the Environment* is a good place to start looking for the answer.

Monoculture is the practice of planting the same crop, year after year, a practice that can reduce the long term productivity of the soil.

2. Population

Ninety percent of Canada's 26.5 million people are concentrated in 8.5 percent of its land area. Although Canada may seem to be a land of limitless space and resources, many of its pressing social, economic and environmental issues have been influenced by the growth, composition and distribution of its population.

The size and distribution of the population are major factors in determining the magnitude and location of the impacts of human activities on the environment. As people concentrate in one area, their effects are multiplied. Concentrations of population imply greater pressures on the surroundings to absorb wastes and to provide clean air, water and other amenities.

In highly populated areas, issues tend to concern the creation of wastes, major restructuring activities (roads, buildings, harbours), major changes in land-use, and exposure to pollutants. In less densely populated areas, concerns such as infrastructure (resource projects, roads, transmission lines and pipelines) and the impacts of agricultural practices and resource exploitation are more prominent.

It is crucial to take into account the distribution and density of the human population when analysing environmental issues. The quality of the environment has a direct effect on the quality of human life. Understanding the population distribution is necessary for quantifying the degree of human exposure to potentially unsafe levels of air and water pollutants and to other toxins.

As well as being exposed to adverse environmental conditions, people are the cause of many changes in the environment. The actions of individuals are responsible for much of the waste and air emissions generated.

Most concentrations of population are surrounded by agricultural lands, have facilities for power generation and water intake, and are linked by transportation networks — all have implications for environmental quality.

Population

This section provides information on the conditions and trends of population and population change as they influence the environment. One important aspect of this is the presentation of statistics by drainage basin and ecozone³. The growth of population in a drainage basin will have implications for the water quality of downstream rivers. Similarly, changes in an ecozone imply changes in the interactions between human activities and terrestrial concerns. Many environmental quality issues are better analysed by these natural units.

2.1 Population Conditions

Since the first post-Confederation Census in 1871, the Canadian population has grown from 3.7 million persons to 26.5 million⁴ in 1990. Over these years, the distribution of the Canadian population has also radically changed. This section presents statistics on population and population density by ecozone and drainage basin.

An ecozone is a natural region delineated by landform, water, soil, vegetation, climate, wildlife and human factors.

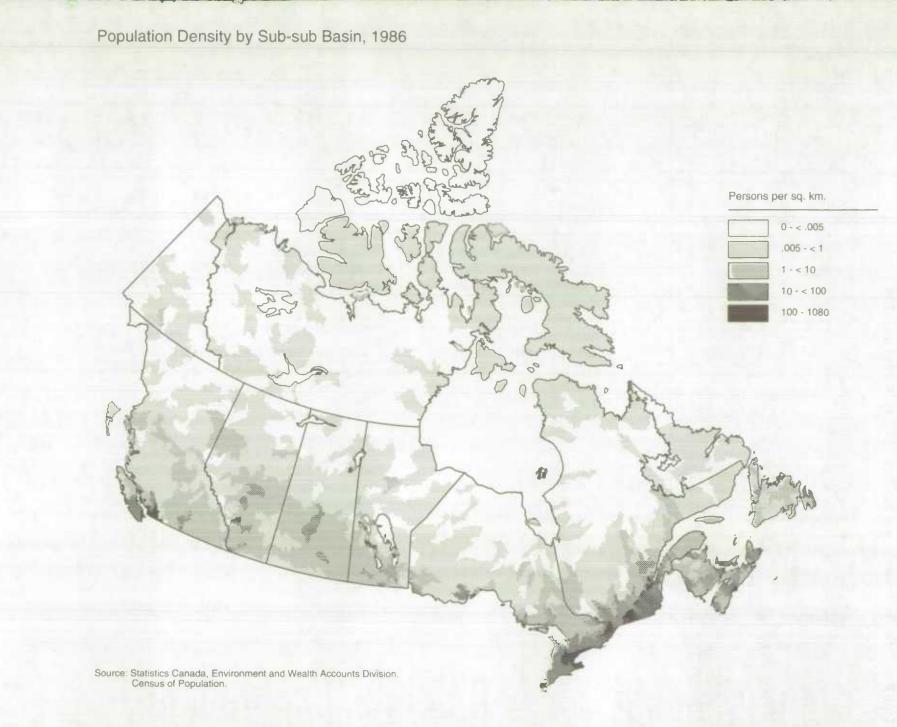
Drainage basins and ecozones are explained in more detail in the Appendix (Geographic Units for Environmental Analysis).

4. Statistics Canada postcensal estimate.

^{3.} A drainage basin is an area of land which drains into a common river or to the ocean. A major drainage basin includes all the rivers which drain to the ocean. A sub-drainage basin is the catchment area around a river which drains to the ocean. A sub-sub drainage basin is the catchment area of a tributary of one of these rivers.

2.1.1 Population and Population Density

If Canada's 26.5 million people were evenly distributed over its 9.8 million square kilometres, the population density would be 2.6 persons per square kilometre. In reality, most of Canada's land area is sparsely populated. In some highly populated areas, the population density is over 1,000 persons per square kilometre.



The population of Canada continues to grow and this growth is most pronounced in the West. At the national level, the population increased by 17.6 percent from 1971 to 1986 (Table 2.1.1.1). But the growth rates are decreasing. Canada's population grew by 6.6 percent between 1971 and 1976 and only 4.2 percent between 1981 and 1986.

The Atlantic provinces, in general, experienced continued declines in population growth. The rate of growth of Quebec's population fell by half between 1976-1981 and 1981-1986. After a decline in 1976-1981, Ontario's growth in population increased during the 1981 to 1986 period. The Prairie provinces have been characterized by dramatic swings in population change since 1971. Alberta, British Columbia and Northwest Territories experienced population growth well above national average. After increases in the 1971-1981 period, the Yukon has seen a slow-down since 1981.

The 1986 population density shown on Map 2.1.1.1 highlights the 12 sub-sub drainage basins with a density greater than 100 persons per square kilometre. The highest densities are found in the basins containing the following cities: Toronto (1080 persons per square kilometre), Montréal (628), Hamilton (396), Québec (264), Halifax (231) and Vancouver (220).

Densities at the ecozone level (Table 2.1.1.2) are highest in the Mixed-Wood Plain of Ontario and Quebec. The highest percentage increases between 1971 and 1986 occurred in the less populated areas such as the Southern Arctic in Quebec, the Boreal Plain in Yukon and the Taiga Plain in Alberta. The 1986 population densities by ecozone are presented in Map 2.1.1.2.

Map: 2.1.1.1

Human Activity and the Environment

Total Population by Province and Territory, 1971, 1976, 1981 and 1986

		Total pope	lation	Change					
Province/Territory	1971	1976	1981	19861	1971/76	1976/81	1981/86	1971/86	
		perso	ns			perce	nt		
Newfoundland	522 104	557 725	567 681	568 349	6.8	1.8	0.1	8.9	
Prince Edward Island	111 641	118 229	122 506	126 646	5.9	3.6	3.4	13.4	
Nova Scotia	788 960	828 571	847 442	873 199	5.0	2.3	3.0	10.7	
New Brunswick	634 557	677 250	696 403	710 422	6.7	2.8	2.0	12.0	
Quebec	6 027 764	6 234 445	6 438 403	6 540 276	3.4	3.3	1.6	8.5	
Ontario	7 703 106	8 264 465	8 625 107	9 113 515	7.3	4.4	5.7	18.3	
Manitoba	988 247	1 021 506	1 026 241	1 071 232	3.4	0.5	4.4	8.4	
Saskatchewan	926 242	921 323	968 313	1 010 198	- 0.5	5.1	4.3	9.1	
Alberta	1 627 874	1 838 037	2 237 724	2 375 278	12.9	21.7	6.1	45.9	
British Columbia	2 184 621	2 466 608	2 744 467	2 889 207	12.9	11.3	5.3	32.3	
Yukon	18 388	21 836	23 153	23 504	18.8	6.0	1.5	27.8	
Northwest Territories	34 807	42 609	45 741	52 238	22.4	7.4	14.2	50.1	
Canada	21 568 311	22 992 604	24 343 181	25 354 064	6.6	5.9	4.2	17.6	

Source:

Statistics Canada. Census of Population.

Note: 1 Includes data for incompletely enumerated Indian reserves and Indian settlements.

Table: 2.1.1.2

Population by Ecozone, 1971 and 1986

		Popula	ation	Change	Den	Percent	
Provincial/Territorial Ecozone	Araa	1971	1986	Change 1971-1986	1971	1986	change 1971-1986
	km²		persons		person	s / km²	percan
Newfoundland							
Taiga Shield	207 441	24 185	22 7 25	-1 460	0.117	0.110	- 6.0
Boreal Shield	130 317	496 230	542 860	46 640	3.808	4.166	9.4
Southern Arctic	51 311	1 690	2 760	1 070	0.033	0.054	63.4
Arctic Cordillera	10 124						
Total	399 193	522 105	568 350	46 245	1.308	1.424	8.9
Prince Edward Island							
Atlantic Maritime	5 660	111 640	126 645	15 005	19.725	22.376	13.4
Total	5 660	111 640	126 645	15 005	19.725	22.376	13.4
Nova Scotia							
Atlantic Maritime	55 490	788 960	873 175	84 215	14.218	15.736	10.7
Total	55 490	788 960	873 175	84 215	14.218	15.736	10.7
New Brunswick							
Atlantic Maritime	73 440	634 560	709 440	74 885	8.640	9.660	11.8
Total	73 440	634 555	709 440	74 885	8.640	9.660	11.8
Quebec							
Taiga Shield	539 794	11 210	9 515	-1 690	0.021	0.018	- 15.1
Boreal Shield	643 159	991 165	1 127 365	136 200	1.541	1.753	13.7
Hudson Bay Plain	26 311	1 595	2 405	810	0.061	0.091	50.7
Mixed-Wood Plain	55 385	4 756 820	5 126 470	369 645	85.886	92.560	7.8
Atlantic Maritime	28 838	264 905	262 395	-2 510	9.186	9.099	· 0.9
Southern Arctic	138 223	185	2 460	2 275	0.001	0.018	1 222.(
Northern Arctic	67 105	1 645	1 850	205	0.025	0.028	12.6
Arctic Cordillera	7 535	235		- 230	0.031		- 100.0
Total	1 506 350	6 027 765	6 532 460	504 695	4.002	4.337	8.4
Ontario							
Boreat Shield	614 964	865 740	878 295	12 565	1.408	1.428	1.8
Hudson Bay Plain	268 924	5 825	2 390	-3 430	0.022	0.009	- 58.9
Mixed-Wood Plain	96 427	6 831 545	8 221 005	1 389 460	70.847	85.257	20.3
Total	980 315	7 703 105	9 101 695	1 398 590	7.858	9.284	18.2

Population by Ecozone, 1971 and 1986

		Popul	Population		Den	Percent	
Provincial/Territorial Ecozone	Area	1971	1986	Change 1971-1986	1971	1986	change 1971-1986
	km²		persons		person	s / km²	percen
Manitoba							
Boreal Plain	96 559	56 590	54 255	-2 330	0.586	0.562	- 4.1
Prairie	74 005	843 945	919 435	75 495	11.404	12.424	8.9
Taiga Shield	103 672	900	1 220	315	0.009	0.012	35.2
Boreal Shield	244 367	83 385	85 680	2 290			
	93 726	3 425		- 995	0.341	0.351	2.7
Hudson Bay Plain Southern Arctic		3 425	2 430	- 995	0.037	0 026	- 29.1
Total	1 884 614 212	988 250	1 063 015	74 770	1.609	1.731	7.0
	014212	000 2.50			1.000	1.701	6.0
Saskatchewan							
Boreal Plain	211 330	41 825	47 985	6 155	0.198	0.227	14.7
Prairie	285 333	875 925	950 780	74 855	3.070	3.332	8.5
Taiga Shield	55 605	2 875	2 240	- 630	0.052	0.040	- 22.1
Boreal Shield	85 478	5 610	8 605	2 995	0.066	0.101	53.0
Total	637 746	926 240	1 009 610	83 375	1.452	1.452	9.0
Alberta							
Montane Cordille/a	43 504	24 990	35 930	10 935	0.574	0.826	43.6
Boreal Plain	363 280	253 685	369 815	116 125	0.698	1.018	45.8
Taiga Plain	83 683	385	830	450	0.005	0.010	116.1
Prairie	162 542	1 347 685	1 958 235	610 555	8.291	12.048	45.3
Taiga Shield	8 182	1 120	1 020	- 105	0.137	0.124	- 9.5
Total	661 191	1 627 875	2 365 825	737 950	2.462	3.578	45.3
British Columbia							
Boreal Cordillera	120 607	1 600	2 270	670	0.013	0.019	41.9
Pacific Mantime	282 594	1 657 815	2 165 300	507 490	5.866	7.662	30.6
Montane Cordillera	389 734	481 475	658 965	177 485	1.235	1.691	36.5
Boreal Plain	115 319	43 240	56 495	13 260	0.375	0.490	30.3
Taiga Plain	39 545	495	335	- 155	0.012	0.008	- 32.3
Total	947 800	2 184 620	2 883 365	698 745	2.305	3.042	32.0
	847 000	2 104 020	2 003 303	080745	2.300	3.042	32.1
Yukon							
Tundra Cordillera	174 893	215	295	75	0.001	0.002	36.1
Boreal Cordillera	259 506	17 620	21 920	4 300	0.068	0.084	24.4
Boreal Plain	32 518	555	1 295	740	0.017	0.040	133.6
Taiga Plain	16 534						
Total	483 450	18 390	23 505	5 115	0.038	0.049	27.6
Northwest Territories							
Tundra Cordillera	107 453	130	240	105	0.001	0.002	83.1
Boreal Plain	1 826						
Taiga Plain	444 446	14 380	18 035	3 660	0.032	0.041	25.5
Taiga Shield	470 308	7 905	14 430	6 525	0.017	0.031	82.6
Hudson Bay Plain	3 121					0.001	02.0
Southern Arctic	737 058	5 270	7 910	2 640	0.007	0.011	50.1
Northern Arctic	1 359 619	6 105	9 900	3 800	0.004	0.007	62.2
Arctic Cordillera	242 597	1 025	1 720	700	0.004	0.007	68.1
Total	3 366 429	34 805	52 240	17 430	0.010	0.016	50.1
Canada Total	9 731 276	21 568 310	25 309 330	3 741 020	2.216	2.601	17.3
Econome							
Ecozone	100.100	1 000 000	4.071.000	471 500	14.000	10.000	
Atlantic Maritime	183 428	1 800 065	1 971 660	171 590	11.014	12.064	9.5
Mixed-Wood Plain	151 812	11 588 370	13 347 475	1 759 105	76.334	87.921	15.2
Borea Shield	1 718 285	2 442 130	2 642 815	200 685	1.421	1.538	8.2
Prairie	521 880	3 067 555	3 828 455	760 900	5.878	7.336	24.8
Boreal Plain	820 833	395 895	529 840	133 945	0.482	0.645	33.6
Montane Cordillera	433 238	506 470	694 890	188 420	1.169	1.604	37.2
Pacific Maritime	282 594	1 657 810	2 165 295	507 485	5.866	7.662	30.6
Boreai Cordillera	380 113	19 220	24 190	4 970	0.051	0.064	25.9
Tundra Cordillera	282 346	345	535	190	0.001	0.002	53.8
Taiga Plain	584 208	15 255	19 205	3 950	0.026	0.033	25.9
Taiga Shield	1 385 003	48 205	51 150	2 950	0.035	0.037	6.1
Hudson Bay Plain	392 082	10 840	7 220	-3615	0.028	0.016	- 33.4
Southern Arctic	928 475	7 145	13 130	5 985	0.008	0.014	83.7
Northern Arctic	1 426 724	7 750	11 750	4 005	0.005	0.008	51.7
Arctic Cordillera	260 256	1 255	1 720	465	0.005	0.008	37.1
Canada Total	9 731 276	21 568 310	25 309 330	3 741 020	2.216		

Source

Statistics Canada. Environment and Wealth Accounts Division. Original data provided by Statistics Canada, Census of Population.

Note:

The area figures for ecozones and the Canada total do not include the areas of a number of large freshwater bodies located on ecosystem boundaries. The total area of Canada including these is 9 970 610.

10

2.2 Population Processes

If current trends continue, Canada will experience very low population growth rates over the next 20 years. Because of longer life expectancy and decreased fertility, the average age of the population will be substantially higher than it is today. It will be a major challenge to develop a socio-economic system that can adapt to this unprecedented situation.

Although Canada's population has been increasing, the rate of growth has been slowing down. Over the past 90 years, annual growth rates have varied between 0.8 percent in the early 1980s to highs of 3 percent in the early 1900s and 2.8 percent in the early 1950s. The recent decline in growth may be attributed to lower immigration levels and a declining birth rate. A likely future scenario is that by the year 2011, population growth will slow even further, the average age of the population will increase substantially and immigration will become an increasingly larger component of population growth. Projections of total population for the year 2011 vary from 29.3 million to 32.1 million persons.

The movement of population is one of the ways by which societies adjust to an increasing population, changing economic conditions and to the discovery of new natural resources. In the last century almost the entire population was concentrated in one area of southern Ontario and southern Quebec. After the linking of east with west upon completion of the Trans-Canada Railway in 1887, the west and central provinces developed from isolated farm towns to diverse economic regions with large urban centres. This growth in population has resulted in massive changes to the existing natural environment. Millions of hectares of native grassland and forests were transformed into cultivated agricultural land. Wetlands were drained or filled and river systems were modified to meet immediate human needs. The greatest impacts took place in urbanizing centres as buildings, pavement and parks with exotic flora replaced existing ecosystems.

2.2.1 Fertility, Mortality and Migration

In 1960, the Canadian population stood at 17.7 million, the fertility rate was 3.9 children per woman and 7.6 percent of the population was over 65 years of age. In 1989, the population had grown by almost 9 million persons, the fertility rate had dropped to 1.7 children per woman and 11.2 percent of the population was over 65. Scenarios for the year 2021 range in population from 29.4 million to 34.7 million.

Past Trends

The rate of growth of the Canadian population reached its lowest point of 0.7 percent per year in 1985 (Table 2.2.1.1, Figure 2.2.1.2). Since that year, the rate has been slowly increasing. In 1989 the rate of growth was 1.3 percent. This was the result of more births and higher immigration than in the previous year.

In 1936, the fertility rate was 2.7 children per woman. It slowly increased to reach almost 4 during the baby-boom period of 1946-1960. In 1962 the fertility rate started a decreasing trend that stabilized at around 1.67 in 1980. There was a minor turnaround in births in 1989. The number of births in 1989 (392 thousand) was the highest since 1965.

Although life expectancy has been following a slow and gradual increasing trend, a considerably greater increase occurred between 1976 and 1981. Male and female life expectancies increased by 1.7 and 1.5 years, respectively. This increase for males was almost double the gain of the previous fifteen-year period. As a result, the difference between male and female life expectancies narrowed slightly.

Immigration, in the past, has accounted for one-quarter to one-half of Canada's population growth. In the years between 1985 and 1989, increasing immigration and decreasing emigration resulted in a net immigration of over 100 thousand persons per year (Table 2.2.1.1, Figure 2.2.1.1).

Between 1871 and 1971, the proportion of the Canadian population living in urban areas increased from 19 percent to 76 percent. After 1971, the proportion of urban population stabilized at around 75 percent (Figure 2.2.1.4). In 1986, almost 60 percent of Canada's population lived in 25 major

Fertility, Mortality and Migration

metropolitan areas, which occupied approximately seventenths of one percent of the land area. The five most populous metropolitan areas in 1986 were Toronto, Montreal, Vancouver, Ottawa-Hull and Edmonton. Together they accounted for 37 percent of the total population (Table 2.2.1.2).

Of Canada's 1033 sub-sub drainage basins, 256 are unpopulated. Between 1971 and 1986, 195 basins decreased in population, 100 showed no change and 404 increased in population (Map 2.2.1.2, Table 2.2.1.3).

Population Projections and Assumptions

Statistics Canada's population projections for Canada, the provinces and the territories suggest that the demographic pattern emerging by the year 2000 could be marked by:

- · a slowdown in population growth;
- a gradual aging of the population at first, followed by substantial acceleration by 2015 as the baby-boom cohorts reach retirement age;
- an increasing role played by immigration in the dynamics of Canada's population growth; and
- a preponderance of internal migration in the provincial distribution of the population.

Methodology

The general method used is the regional cohort component approach. After the analysis of previous trends in each component of population growth — fertility, mortality and migration (internal and international) — the parameters are applied to their corresponding base year (1989 estimates) to obtain an estimate of the future population. Four series of projections have been selected (Figure 2.2.1.5, Tables 2.2.1.4 and 2.2.1.5).

Assumptions

Fertility. Although the fertility rate in Canada has now reached its lowest level at 1.67 children per woman, births continue to be the most important demographic factor influencing population growth and age structure. The following three assumptions were selected and are summarized in Figure 2.2.1.3:

- Low assumption: The total fertility rate continues to decline from 1.67 births per woman in 1989 to 1.2 by 2011.
- Medium assumption: The total fertility rate remains constant at the level observed in 1989, at 1.67.
- High assumption: The total fertility rate remains constant at 1.67 births per woman up to 1991, then increases gradually to the replacement level of 2.1 by 2011.

Mortality. A single mortality rate has been selected in line with the assumption adopted by most industrialized countries, namely that current gains in life expectancy will continue, but at a gradually diminishing pace. The projected gains over the 22-year period from 1989 to 2011 are 3.5 years for males and 3.2 years for females.

Immigration and Emigration. Immigration is expected to play an increasing role as a major component of demographic growth in Canada during the coming decades. With fertility below the replacement level, and the prospect of negative natural increase at the turn of the century, the maintenance of a stable population size will depend largely on immigration. Recent annual levels of immigration ranged from 150,000 to 160,000, a substantial increase when compared to the level of 84,000 in 1985. Two immigration assumptions have been developed:

- A high assumption whereby annual levels would increase gradually to reach 200,000 by 1994.
- A low assumption of 140,000 immigrants per year reached by 1991.

Emigration is not as well documented as immigration, and therefore not as well understood. Estimates based on indirect data show that the emigration has fluctuated between 40,000 and 60,000 per year since the mid-seventies (Table 2.2.1.1). The emigration assumption has been set at 0.25 percent of the Canadian population.

In the recent past, the geographic distribution of immigrants and emigrants has not changed significantly from year to year. The average distribution for each province/territory for the period 1985 to 1987 has been assumed to remain the same for the projection period.

Internal Migration. Internal migration is the most unstable component of population growth in Canada. Being the most difficult to predict, internal migration is responsible for the greatest source of error in forecasting provincial population growth (Table 2.2.1.6). Three interprovincial migration assumptions were used:

- Migration focused on Ontario: This scenario reflects a population flow towards Ontario as the major province of attraction. This condition has prevailed since 1981, as it did before 1971.
- Long-term trends scenario: This scenario reflects the long-term trend in interprovincial migration observed since the 1960s. It falls somewhere between the other two scenarios. This is the high growth scenario for the Atlantic provinces. It is a medium assumption for all the Central and Western provinces, except Manitoba.
- Westward migration: This is based on the possibility that the migration associated with the economic boom in the West in the 1970s will recur, and that the migrant population will partially resume the flow to Alberta and British Columbia. The latter province is already experiencing large gains in population as a result of internal migration.

Human Activity and the Environment

Projection Results

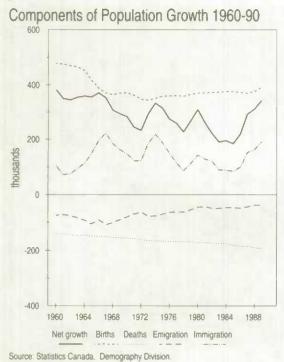
A total of 18 projections were developed using all possible combinations of the three fertility, the two international migration, and the three internal migration scenarios. From these, one projection was selected as the continuation of current trends (Projection 3). The other scenarios are intended to reflect possible deviations from current trends.

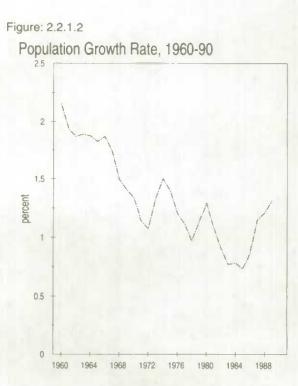
At the national level, Projection 1 is a low-growth scenario. Projections 2 and 3 are medium-growth scenarios, whereas Projection 4 yields much higher growth. All four projected population totals for Canada and their assumptions are found in Table 2.2.1.4.

Whichever projection is considered, Canada's population will likely grow at a slower pace than in the past, and the increase in the average age of the population will accelerate. Considering the internal migration assumptions, only minor changes in the distribution of population among the provinces and territories are expected by 2011.

The rationale of these assumptions and details on methodology can be obtained from Statistics Canada, *Population Projections for Canada, Provinces and Territories* 1989-2011. Catalogue 91-520.

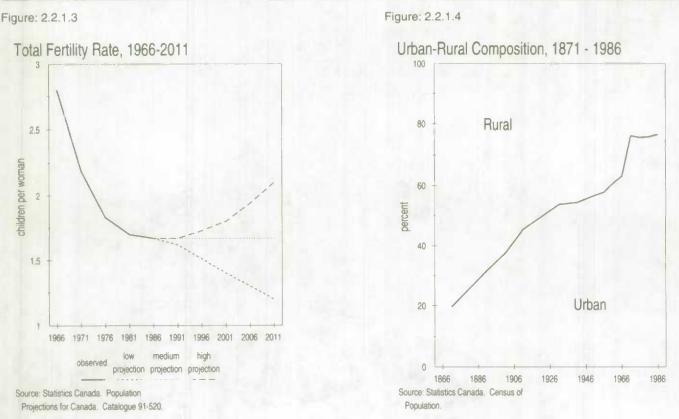
Components of Population Growth, 1960-1991

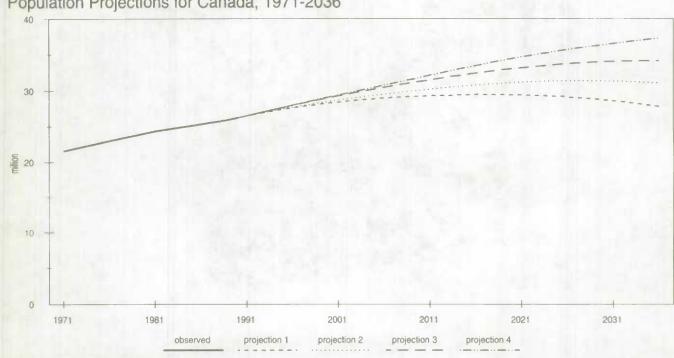

	Tetel	Annual tota	I growth			No.	Bir	ths		Life expectancy		Population
Year	Total Population	Number	Rate	Immigration	Emigration	Net migration	Number	Rate	Deaths	Male	Female	aged 65 and over
	thousands	thousands	percent		thousands		thousands	births per woman	thousands	уе	ars	percent of population
1960	17 710.0	362.0	2.2	104.1	75.6	43.1	478.6	3.90	139.7			7.6
1961	18 092.0	350.0	1.9	71.7	72.3	15.3	475.7	3.85	141.0	68.3	74.2	7.6
1962	16 442.0	345.0	1.9	74.6	76.7	19.0	469.7	3.77	143.7			7.6
1963	18 787.0	355.0	1.9	93.2	83.6	36.6	465.8	3.68	147.4			7.6
1964	19 142.0	359.0	1.9	112.6	92.4	52.0	452.9	3.52	145.9			7.7
1965	19 501.0	356.0	1.8	146.8	105.3	86.3	418.6	3.16	148.9			7.7
1966	19 857.0	371.0	1.9	194.7	91.5	133.2	367.7	2.82	149.9	68.8	75.2	7.7
1967	20 228.0	353.0	1.7	222.9	108.5	132.4	370.9	2.60	150.3			7.7
1968	20 581.0	307.0	1.5	184.0	100.0	95.9	364.3	2.46	153.2			7.8
1969	20 888.0	294.0	1.4	161.5	90.1	78.9	369.7	2.41	154.5			7.9
1970	21 182.0	283.0	1.3	147.7	81.0	67.0	372.0	2.34	156.0			8.0
1971	21 465.0	244.6	1.1	121.9	70.1	39.7	362.2	2.19	157.3	69.3	76.4	8.1
1972	21 709.6	232.8	1.1	122.0	63.2	47.9	347.3	2.02	162.4	69.4	76.5	8.2
1973	21 942.4	292.9	1.3	184.2	78.5	112.5	344.3	1.94	164.0	69.5	76.7	8.3
1974	22 235.3	333.4	1.5	218.5	78.1	149.5	350.7	1.89	166.8	89.7	77.0	8.4
1975	22 568.7	315.2	1.4	187.9	70.7	122.3	359.3	1.87	166.4	69.9	77.3	8.5
1976	22 883.9	274.5	1.2	149.4	64.4	81.7	360.0	1.82	167.2	70.2	77.5	8.7
1977	23 158.4	259.0	1.1	114.9	61.4	65.1	361.4	1.80	167.5	70.5	78.0	8.9
1978	23 417.4	227.1	1.0	86.3	63.5	36.4	358.9	1.75	168.2	70.9	78.3	9.1
1979	23 644.5	267.4	1.1	112.1	54.7	69.5	366.1	1.76	168.2	71.1	78.6	9.3
1980	23 911.9	309.4	1.3	143.1	45.2	110.2	370.7	1.74	171.5	71.5	78.8	9.5
1981	24 221.3	262.1	1.1	128.6	43.7	61.7	371.4	1.70	171.0	71.9	79.0	9.7
1982	24 483.4	222.3	0.9	121.1	49.4	23.6	373.1	1.69	174.4	72.2	79.3	9.9
1983	24 705.7	190.1	0.8	89.2	50.1	- 8.6	373.7	1.68	175.0	72.6	79.5	10.0
1984	24 895.8	194.6	0.8	88.2	46.8	- 6.7	377.0	1.68	175.7	72.7	79.5	
1985	25 090.4	183.6	0.8	84.3	46.9	- 10.8	375.7	1.67	175.7			10.2
1986	25 274.0	218.9	0.9	99.2	40.9	30.2	372.9	1.66	181.3	73.0 73.0	79.8	10.4
1987	25 492.9	292.9	1.1	152.1	49.0	109.5	369.7	1.65	184.2		79.7	10.6
1988	25 785.8	311.5	1.2	161.9	37.2	124.7	376.8	1.65	190.0	73.4	80.2	10.9
1989	26 097.3	355.0	1.4	192.0	36.3	153.7	391.9		190.0	/3.4		11.1
1990 ¹	26 452.3	380.4	1.4	212.2	37.6	174.6	399.3		191.0			11.2
19911	26 832.7	300.4	1.49	212.2	37.0	174.0	399.3			**		
1991	20 002.1								**	**	••	


Source:

Statistics Canada. Report on the Demographic Situation in Canada, Catalogue 91-209. Quarterly Estimates, Catalogue 91-002.

Note: ¹ Preliminary data.

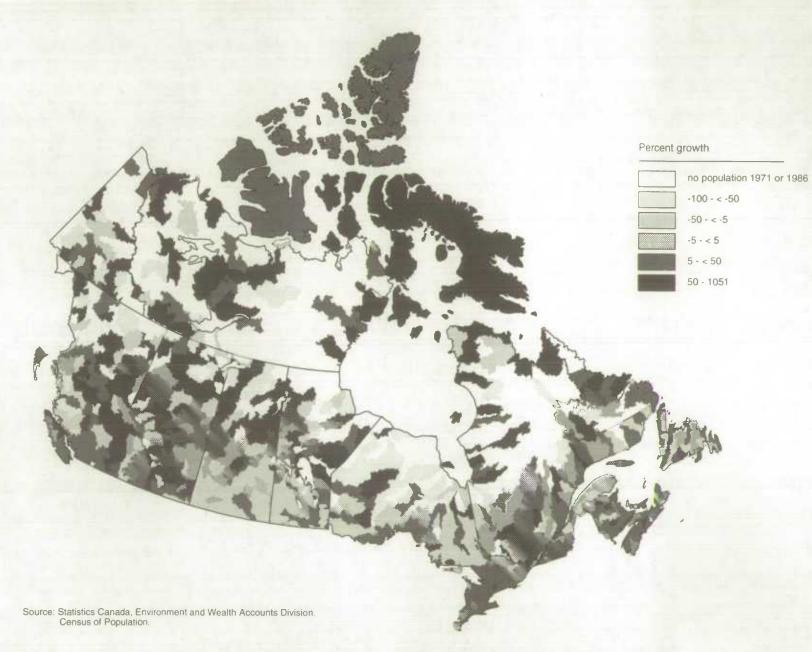

Figure: 2.2.1.1



Source: Statistics Canada. Demography Division.

Human Activity and the Environment

Figure: 2.2.1.5



Population Projections for Canada, 1971-2036

Source: Statistics Canada. Population

Projections for Canada. Catalogue 91-520.

Population of Major Census Metropolitan Areas, 1981 and 1986

		Popula	tion	Dens	iity	Population Change 1981-1986
Rank Census Metropolitan Area	Area 1986	19811	1986	1981	1986	
	km²	perso	ns	person	/km²	percen
1 Toronto, Ontario	5 614	3 130 390	3 427 170	557.6	610.5	9.5
2 Montréal, Quebec	3 509	2 862 285	2 921 355	815.8	832.6	2.1
3 Vancouver, British Columbia	2 786	1 268 180	1 380 730	455.2	495.5	8.9
4 Ottawa-Hull, OntQue.	5 138	743 820	819 265	144.8	159.4	10.1
5 Edmonton, Alberta	11 397	740 880	785 465	65.0	68.9	6.0
6 Calgary, Alberta	5 056	625 970	671 325	123.8	132.8	7.5
7 Winnipeg, Manitoba	3 295	592 060	625 305	179.7	189.8	5.6
8 Québec, Quebec	3 150	583 820	603 265	185.3	191.5	3.3
9 Hamilton, Ontario	1 358	542 095	557 030	399.0	410.0	2.8
10 St. Catharines-Niagara, Ontario	1 400	342 645	343 255	244.8	245.2	0.2
11 London, Ontario	2 105	326 815	342 305	155.3	162.6	4.7
12 Kitchener, Ontario	824	287 800	311 195	349.4	377.8	8.1
13 Halifax, Nova Scotia	2 508	277 730	295 990	110.7	118.0	6.0
14 Victoria, British Columbia	1 951	241 450	255 545	123.8	131.0	5.8
15 Windsor, Ontario	862	250 885	253 985	291.2	294.8	1.3
16 Oshawa, Ontario	894	186 445	203 540	208.5	227.6	9.2
17 Saskatoon, Saskatchewan	4 749	175 055	200 665	36.9	42.3	14.6
18 Regina, Saskatchewan	3 422	173 225	186 520	50.6	54.5	7.7
19 St. John's, Newfoundland	1 130	154 835	161 900	137.0	143.3	4.6
20 Chicoutimi-Jonquière, Quebec	1 723	158 230	158 465	91.8	92.0	0.3
21 Sudbury, Ontario	2 612	156 120	148 875	59.8	57.0	- 4.0
22 Sherbrooke, Quebec	916	125 180	129 960	136.7	141.9	3.4
23 Trois-Rivières, Quebec	872	125 345	128 885	143.8	147.8	2.1
24 Thunder Bay, Ontario	2 203	121 945	122 215	55.4	55.5	0.3
25 Saint John, New Brunswick	2 905	121 010	121 265	41.7	41.7	0.2
Total Major CMAs	72 378	14 314 230	15 155 495	197.8	209.4	5.1
Canada	9 848 015	24 343 180	25 309 330	2.5	2.6	4.1
Major CMAs as a percentage of Canada	0.7	58.8	59.9			

Source: Statistics Canada. Canada's Population From Ocean to Ocean. Catalogue 98-120.

Note: ¹ Based on the 1986 area.

Rural-Urban Population by Drainage Sub-basin, 1971 and 1986

		otal		ural		ban lation	Urban popul as a percen of total	
Provincial/Territorial Sub-basin	1971	1986	1971	1986	1971	1986	1971	1986
	-		per	sons			percent	
Canada	21 568 310	25 309 335	5 157 530	5 957 245	16 410 780	19 352 090	76.1	76.5
Newfoundland								
Romaine		-						
Natashquan								
Little Mecatina and Strait of Belle Isle North Newfoundland	1 975	2 340	1 975	2 340				
South Newfoundland	196 775 297 165	203 760 335 850	94 600 120 430	102 175 119 265	102 175 176 730	101 585 216 585	51.9	49.9
North Labrador	1 690	2 440	1 690	2 440	176 730	210 303	59.5	64.5
Churchill	20 735	19 500	840	2 940	19 890	16 560	95.9	84.9
Naskaupi and Central Labrador	1 1 10	1 470	1 110	1 470		-	-	-
Eagle and South Labrador	2 6 5 5	2 990	2 655	2 985				
Total	522 105	568 350	223 300	233 620	298 800	334 730	57.2	58.9
Prince Edward Island								
Prince Edward Island	111 640	126 645	68 860	78 355	42 780	48 290	38.3	38.1
Total	111 640	126 645	68 860	78 355	42 785	48 285	38.3	38.1
Nova Scotla								
Bay of Fundy	254 015	303 095	148 465	185 795	105 545	117 300	41.6	38.7
Southeast Atlantic Ocean	364 940	403 970	130 595	147 240	234 345	256 730	64.2	63.6
Cape Breton Island	170 005	166 115	62 495	69 015	107 515	97 105	63.2	58.5
Total	788 960	873 175	341 560	402 050	447 400	471 130	56.7	54.0
New Brunswick								
Saint John and South Bay of Fundy	323 190	353 965	120 050	159 965	203 135	194 005	62.9	54.8
Gull of St. Lawrence and North Bay of Fundy North Gaspé Peninsula	311 370	355 475	153 360	199 175	158 010	158 300	50.7	44.0
Total	634 555	709 440	273 410	359 140	361 145	350 300	56.9	49.4
Quebec								
Saint John	42 140	39 350	27 870	31 860	14 270	7 490	33.9	19.0
Cascapedia and Gulf of St. Lawrence	97 195	92 835	57 690	62 025	39 500	30 810	40.6	33.2
Upper Ottawa	61 660	59 160	27 570	29 680	34 085	29 485	55.3	49.8
Coulonge and Central Ottawa	35 285	45 535	15 005	17 115	20 285	28 420	57.5	62.4
Gatineau and Lower Ottawa	326 250	377 485	98 320	141 890	227 930	235 595	69.9	62.4
Upper St. Lawrence	66 905	71 770	19 570	22 865	47 335	48 900	70.7	68.1
St-Maurice Central St. Lawrence	177 990 3 640 245	176 890 3 943 865	13 775 405 735	30 805	164 220	146 085	92.3	82.6
Lower St Lawrence	942 630	1 055 110	272 390	524 425 321 790	3 234 510 670 245	3 419 445 733 320	88.9	86.7
North Gaspé Peninsula	142 940	141 880	63 415	69 025	79 520	72 855	71,1 55.6	69.5 51.3
Saguenay	269 210	287 300	75 285	87 930	193 925	199 370	72.0	69.4
Betsiamiles	15 705	14 895	10 400	9 675	5 300	5 225	33.8	35.1
Manicouagan and Outardes	23 515	20 160	4 615	4 150	18 900	16 010	80.4	79.4
Moisie and St. Lawrence Estuary	45 870	53 825	5 710	8 920	40 160	44 900	87.5	83.4
Romaine and Gulf of St. Lawrence	4 980	5 370	1 980	2 255	3 000	3 1 1 5	60.2	58.0
Natashquan and Gulf of St. Lawrence	16 765	18 040	15 665	16 470	1 100	1 575	6.6	8.7
Petit Mecatina	4 110	4 195	4 110	4 200		•	-	•
Nottaway	29 490	29 410	5 940	6 185	23 550	23 225	79.9	79.0
Broadback and Rupert	2 400	3 525	2 400	3 520				•
Eastmain Fort George and Sakami	305 1 780	360 3 545	305	360 3 540		-		
Great Whale and Southeast Hudson Bay	985	1 045	985	1 045				
Little Whale and East Hudson Bay		60		60				
Northeast Hudson Bay	795	2 190	795	2 190				
West Ungava Bay	960	1 490	955	1 4 90				
Leaf	600	245	600	245				
Koksoak	675	1 065	680	1 065				-
Caniapiskau	3 980	1 070	705	795	3 270	260	82.2	25.8
East Ungava Bay	230	385	235	385				-
Abitibi and North French Hamicanaw	26 400 45 780	24 030 56 375	17 630 14 410	15 530 21 970	8 770 31 370	8 495 34 405	33.2	35.4
Total	6 027 760	6 532 460	1 166 520	1 443 465	4 861 245	5 088 995	68.5 80.6	61.0 77.9
Ontario								
Nipigon and Northwest Lake Superior	126 640	134 425	14 690	22 345	111 955	112 080	88.4	83.4
Northeast Lake Superior	44 445	41 945	8 610	13 385	35 835	28 560	80.6	68.1
North Lake Huron	266 240	262 390	55 370	46 770	210 870	215 625	79.2	82.2
Wanipitai and French	93 510	86 960	33 680	30 870	59 830	56 085	64.0	64.5
East Georgian Bay	323 630	441 470	144 100	186 185	179 530	255 290	55.5	57.6
East Lake Huron	220 050	262 300	127 965	138 710	92 080	123 590	41.8	47.1

Rural-Urban Population by Drainage Sub-basin, 1971 and 1986

	Tot		Ru		Urb		Urban popula as a percenti of total	
Provincial/Territorial Sub-basin	1971	1986	1971	1986	1971	1986	1971	1986
			pers	ons			percent	
North Lake Erie	1 523 635	1 705 470	386 790	376 115	1 137 055	1 329 355	74.6	77.9
Lake Ontario	3 976 860	4 867 885	281 045	455 310	3 695 820	4 412 575	92.9	90.6
Montréal and Upper Ottawa	62 190	62 445	21 270	21 100	40 925	41 345	65.8	66.2
Macawaska, Petawawa and Central Ottawa	208 690	242 775	59 505	79 925	149 185	162 845	71.5	67.1
Rideau and Lower Ottawa	493 000	621 605	102 945	125 530	390 050	496 075	79.1	79.8
Upper St. Lawrence	173 130	187 305	57 270	66 260	115 650	121 045	66.9	64.6
	170 100	107 000	01 2.0					
Hayes Nisksibi and Central Hudson Bay	150	265	150	265				
	2 510	305	2 5 1 0	310				
Seven Winisk	860	1 055	860	1 055				
	000	1 000						
Ekwan	1 140	490	1 135	490				
Attawapiskat			1 630	1 050				
Upper Albany	1 630	1 050		1 030				
Lower Albany	1 105	0	1 105	0.005	C 41E	7 055	65.7	70.2
Kenogami	9 755	10 045	3 345	2 995	6 415	7 055		
Kwataboahegaa	2 545	1 325	1 220	225	1 325	1 100	52.1	82.8
Moose	67 730	66 765	14 170	18 525	53 565	48 235	79.1	72.2
Abitibi	29 475	29 285	9 665	10 825	19 805	16 455	67.2	63.0
Harricanaw	865	595	865	600	-		-	
Upper Winnipeg	46 155	43 575	15 965	18 010	30 190	25 560	65.4	58.7
English	26 160	28 745	12 810	14 195	13 350	14 545	51.0	50.6
East Lake Winnipeg	810	1 210	810	1 210				
Total	7 703 105	9 101 695	1 359 480	1 632 270	6 343 630	7 469 420	82.4	82.1
Manitoba								
Hayes	4 580	7 645	4 580	7 650				
Nisksibi and Central Hudson Bay					-			
Sevem					•			
Qu'Appelle		· ·						
Saskatchewan	21 980	21 785	7 045	8 025	14 935	13 760	67.9	63.3
Lake Winnipegosis and Lake Manitoba	82 480	73 765	65 545	54 510	16 930	19 250	20.5	26.
Assiniboine	245 635	240 840	54 850	51 470	190 780	189 375	77.7	78.0
Souris	18 270	16 460	15 460	12 335	2810	4 125	15.4	25.1
Red	534 605	628 355	105 490	114 665	429 310	513 695	80.3	81.4
Winnipeg	13 590	11 540	10 275	8 4 4 5	3 315	3 090	24.4	26.0
East Lake Winnipeg	3 095	4 065	3 095	4 060	-			
West Lake Winnipeg	25 250	23 140	20 975	18 925	4 275	4 215	16.9	18.
Rat and Grass	23 315	18 950	3 300	2 480	20 015	16 470	65.8	86.
	6 935	8 765	6 935	7 540		1 225		14.
Nelson	700	1 000	700	1 000				
Reindeer Lake		5 275	1 795	3 635	2 895	1 645	61.7	31.
Central Churchill	4 690				1 170	1045	40.1	51.
Lower Churchill and West Hudson Bay	2 925	1 215	1 750	1 215	1170		44.0.1	
Seal and West Hudson Bay		220		220				
Nuettin Lake		-	-					
Kazan Total	988 245	1 063 015	301 600	296 165	686 445	766 850	69.5	72.
TOTEL	2900 2 93	1003015	301 000	230 100				
Saskatchewan	0.05	600	830	620				
Upper South Saskatchewan	835	620	030	020				
Red Deer	20.045	42 620	19 550	21 485	17 300	22 050	46.9	50.
Central North Saskatchewan	36 845	43 530			1 600	3 815	25.4	43.
Battle	7 095	8 810	5 290	4 990			44.2	49.
Lower North Saskatchewan	97 980	101 370	54 685	51 150	43 300	50 220	69.2	77.
Lower South Saskatchewan	222 235	274 260	68 355	62 755	153 880	211 505		
Qu'Appelie	297 570	326 130	101 955	67 325	195 610	238 805	65.7	73.
Saskatchewan	49 595	50 190	34 870	30 630	14 725	19 555	29.7	39.
Lake Winnipegosis and Lake Manitoba	21 375	19 995	18 350	16 790	3 025	3 210	14.1	16.
Assiniboine	83 375	76 720	51 360	41 975	32 015	34 750	38.4	45.
Souris	65 890	60 430	43 340	34 630	22 545	25 795	34.2	42.
Beaver	18 120	19 925	14 685	15 950	3 435	3 975	19.0	20.
Upper Churchill	5 025	6 495	3 895	3 840	1 130	2 650	22.5	40.
Upper Central Churchill	4 205	7 375	4 205	4 680	-	2 6 9 5		36.
Reindeer Lake	600	1 340	600	1 340				
Central Churchill	495	875	500	875				
Nueltin Lake	-				-			
Kazan								
Lower Central Athabasca		25		25				
Lower Athabasca								
	770	1 660	765	1 660				
Erand due Do	110	1000						7.
Fond du Lac	0.600	000	705	85	1 865	155	70.8	
Athabasca Laxe	2 630	220	765	65	1 865	155	70.8	1.
	2 630	220 9 645	765 - 11 605	65 8 640	1 865	1 005	70.8	71.

Rural-Urban Population by Drainage Sub-basin, 1971 and 1986

		otal		Iral		lation	Urban popu as a perce of tota	ntage
Provincial/Territorial Sub-basin	1971	1986	1971	1986	1971	1986	1971	1986
			pers	sons			percer	It
Alberta								
Upper South Saskatchewan	151 785	197 470	51 295	55 055	100 480	142 415	66.2	72.1
Bow	452 225	724 190	31 545	36 645	420 675	687 550	93.0	94.9
Red Deer	123 385	172 860	75 645	79 210	47 735	93 650	38.7	54.2
Upper North Saskatchewan	209 260	282 815	26 880	34 940	182 380	247 875	87.2	87.6
Central North Saskatchewan	404 110	593 080	78 810	96 985	325 300	496 100	80.5	83.6
Battle	82 600	99 665	49 425	49 335	33 175	50 335	40.2	50.5
Lower North Saskatchewan	8 765	8 460	7 270	6 735	1 490	1 725	17.0	20.4
Lower South Saskatchewan	260	215	260	215			-	-
Beaver Upper Churchill	24 900	31 385	12 610	14 875	12 290	16 510	49.4	52.6
Upper Athabasca	22 950	35 685	6 715	7 850	10.000	07.000	-	
Pembina and Central Athabasca	43 615	53 710	30 360	34 240	16 230 13 255	27 830	70.7	78.0
ower Central Athabasca	16 210	43 630	7 575	7 990		19 470	30.4	36.3
ower Athabasca	10 210		1 3/5		8 640	35 640	53.3	81.7
	17.405	2 555	10 5 4 5	300		2 260	-	88.3
Jpper Peace	17 425	19 330	12 510	12 665	4 915	6 660	28.2	34.5
Smoky	40 935	62 250	21 185	23 940	19 750	38 310	48.2	61.5
Central Peace	15 420	19 405	8 220	10 980	7 200	8 425	46.7	43.4
ower Central Peace	7 400	11 840	5 785	8 840	1 615	3 000	21.8	25.4
Lower Peace and Lake Claire	565	1 095	565	1 095				
Athabasca Lake	1 180	1 0 1 5	50	1 015	1 125		95.4	-
Slave	30	15	25	15			-	-
Jpper Hay	1 370	2 045	1 370	2 045			-	-
Buffalo	0	0	0	0			-	-
faltson and Southeast Great Slave Lake		-		-				-
West Great Slave Lake				-	-		-	-
Fort Nelson		-		~	-		-	
Petitot				-				-
Missouri	3 495	3 095	3 500	3 095	-			-
otal	1 627 875	2 365 825	431 620	488 065	1 196 255	1 877 755	73.5	79.4
ritish Columbia								
Villiston Lake	4 000	7.080	0.045					
	4 865	7 980	2 045	2 610	2 815	5 370	57.9	67.3
Jpper Peace	38 765	50 305	17 040	24 330	21 730	25 970	56.0	51.6
moky						-		
Jpper Hay	495	325	495	325				-
Vest Great Slave Lake	-	-					-	-
Alsek	-	-						-
Taku and North Pacific Ocean	30	20	30	20				-
Stikine	555	685	555	685			-	
lass and North Central Pacific Ocean	3 315	2 665	3 315	2 665	-			-
Skeena	49 235	57 575	16 255	20 590	32 980	36 980	67.0	64.2
Sardner Canal and Central Pacific Ocean	17 870	15 845	4 705	5 095	13 170	10 750	73.7	67.8
Inight Inlet and South Pacific Ocean	164 315	194 520	29 295	26 255	135 015	168 265	82.2	86.5
/ancouver island	381 795	517 380	112 385	130 405	269 410	386 980	70.6	74.8
lechako	59 010	74 260	15 000	20 335	44 005	53 920	74.6	72.6
Jpper Fraser	35 895	55 000	25 555	30 455	10 335	24 540	28.8	44.6
hompson	99 840	136 225	44 675	59 380	55 170	76 845	55.3	56.4
raser	1 065 995	1 414 525	150 435	128 445	915 565	1 286 080	85.9	90.9
Columbia	252 975	343 600	102 130	138 030	150 840	205 570	59.6	59.8
ueen Charlotte Islands	4 350	5 480	4 350	5 480				-
Skagit	520		520	-				
Jpper Yukon	310	530	310	530				
Ipper Liard	1 245	1 585	160	1 580	1 080		87.0	
Central Liard	155	55	155	55	1 000		07.0	-
ort Nelson	3 090	4 815	800	1 085	0.000	0.700		-
Petitot	0 000	4010	000	1 005	2 290	3 730	74.1	77.5
tal	2 184 620	2 883 370	530 215	598 365	1 654 405	2 285 005	75 7	70.0
		2 000 010	500 215	390 303	1 034 403	2 205 005	75.7	79.2
ikon								
lisek	375	525	375	525				
Jpper Yukon	12 935	17 920	1 720	2 720	11 220	15 200	86.7	84.8
elly	1 090	995	1 095	995				04.0
Ipper Central Yukon	375	115	375	110	_			-
tewart	975	895	970	895				
entral Yukon	1 300	1 375	1 300	1 370				
orcupine	215	230	215	230				
anana		115	210	115				
lpper Liard	1 120	1 340	1 120	1 340				-
entral Liard	1120	1000	. 120	1.340				-
etitot						-	-	-
eel and Northwest Arctic Ocean	-			-		-		-
tal	18 385	22 505	7.470	0.007				
A CONTRACT	10 303	23 505	7 175	8 305	11 220	15 195	61.0	64.

Rural-Urban Population by Drainage Sub-basin, 1971 and 1986

		otal		ural		ban Ilation	Urban population as a percentage of total	
Provincial/Territorial Sub-basin	1971	1986	1971	1986	1971	1986	1971	1986
			per	8008			percer	t
Northwest Territories								
Seal and West Hudson Bay								
Nueltin Lake								
Upper Thelon								
Dubawnt Lake								
Kazan								
Lower Thelon	1 015	1 305	1 0 1 5	1 305				
Northwest Central Hudson Bay	1 380	2 770	1 375	2 770				
Northwest Hudson Bay	245	430	240	435				
Southampton Island	595	900	590	900				
Fond du Lac			-					
Slave	3 000	2 925	630	485	2 365	2 440	78.9	83.4
Hay	1 120	2 660		100	1 120	2 560	100.0	96.3
Buffalo	2 160	1 740	285	180	1 880	1 555	86.9	69.6
Taltson and Southeast Great Slave Lake	220	275	220	275			00.0	00.0
Ayimer Lake and MacKay Lake								
Yellowknite and Northeast Slave Lake	7 285	13 395	1 165	2 470	6 120	10 925	84.0	81.6
Marian	190	465	190	465	0 16.0	10 325	04.0	01.0
West Great Slave Lake	625	580	100	175	625	405	100.0	69.6
Petitot	-				01.0	400	100.0	09.0
Lower Liard	615	950	610	945				
Upper Mackenzia	590	795	595	795				
Upper Central Mackenzie	745	985	750	985				
Central Mackenzie	150	175	155	175				
Great Bear	675	1 055	675	1 050				
Lower Central Mackenzie	300	625	300	625		-		
Lower Mackenzie	3 095	4 060	430	670	2 670	3 390	86.2	83.5
Peel and Northwest Arctic Ocean	1 335	1 520	1 335	1 525	2010	3 380	00.2	63.5
Anderson and West Arctic Ocean	660	980	660	980				
Amundsen Gulf	95	190	95	190				
Coppermine	640	925	635	925				
Coronation Gulf and Dease Strait		80		80				
Back and Queen Maud Gulf	155		155					
Gulf of Boothia	1 250	2 090	1 250	2 090				
Arctic Islands	6 670	10 365	4 625	7 425	2 050	2 940	30.7	28.4
Total	34 805	52 240	17 980	28 025	16 830	24 210	48.3	46.3
Caneda	21 568 315	25 309 330	5 157 530	5 957 240	16 410 785	19 352 090	76.1	76.5

Source:

Statistics Canada. Environment and Wealth Accounts Division. Data were derived from the Census of Population.

Note:

¹The figures have been subjected to a confidentiality procedure known as *random rounding* to prevent the possibility of associating small figures with any identifiable individual. ² See the appendix for hydrological classification codes and area figures for these sub-basins.

Components of Population Projections for Canada, Selected Years

	Tetal	5 year gi	rowth			Blad	Pastilia	Life exp	ectancy	Population
Year	Total Population	Number	Rate	Immigration	Emigration	Net migration	Fertility rate	Male	Female	aged 65 and over
							births per			percent of
	thousands	thousands	percent		thousands		woman	yea	ars	population
Observed										
1986	25 274.0			99.2	49.0	30.2	1.66	73.0	79.7	10.6
Projection 1										
1991	26 499.1	1 124.4	4.2	150.0	66.4	83.6	3.90			11.9
1996	27 623.5	802.5	2.9	140.0	69.7	70.3	3.85	75.1	82.2	13.0
2001	28 426.0	541.3	1.9	140.0	72.1	67.9	3.77			14.0
2006	28 967.3	329.8	1.1	140.0	73.9	66.1	3.68			15.1
2011	29 297.1	145.1	0.5	140.0	75.0	65.0	3.52	77.2	84.0	16.8
2016	29 442.2	- 45.2	- 0.2	140.0	75.7	64.3	3.16			19.0
2021	29 397.0	- 281.8	- 1.0	140.0	75.8	64.2	2.82			21.7
2026	29 115.2	- 538.6	- 1.8	140.0	75.4	64.6	2.60			24.7
2031	28 576.6	- 780.1	- 2.7	140.0	74.2	65.8	2.46			27.3
2036	27 796.5	**		140.0	72.5	67.5	2.41		••	28.6
Projection 2										
1991	26 501.2	1 206.7	4.6	150.0	66.4	83.6	3.90			11.9
1996	27 707.9	984.5	3.6	140.0	69.8	70.2	3.85	75.1	82.2	13.0
2001	28 692.4	814.4	2.8	140.0	72.5	67.5	3.77			13.9
2006	29 506.8	691.9	2.3	140.0	74.8	65.2	3.68			14.8
2011	30 198.7	572.4	1.9	140.0	76.8	63.2	3.52	77.2	84.0	16.3
2016	30 771.1	399.2	1.3	140.0	78.5	61.5	3.16			18.7
2021	31 170.3	185.9	0.6	140.0	79.7	60.3	2.82			18.4
2026	31 356.2	- 41.2	- 0.1	140.0	80.4	59.6	2.60			
2031	31 315.0	- 247.1	- 0.8	140.0	80.6	59.4	2.46			
2036	31 067.9			140.0	80.1	59.9	2.41			
Projection 3										
1991	26 511.2	1 456.4	5.5	180.0	66.4	113.6	3.90			11.9
1996	27 967.6	1 316.6	4.7	200.0	70.6	129.4	3.85	75.1	82.2	12.8
2001	29 284.2	1 162.3	4.0	200.0	74.3	125.7	3.77			13.4
2006	30 44 6.5	1 046.8	3.4	200.0	77.6	122.4	3.68			14.1
2011	31 493.3	929.3	3.0	200.0	80.6	119.4	3.52	77.2	84.0	15.2
2016	32 422.6	756.7	2.3	200.0	83.3	116.7	3.16			
2021	33 179.3	545.8	1.6	200.0	85.6	114.4	2.82			
2026	33 725.1	319.7	0.9	200.0	87.2	112.8	2.60			
2031	34 044.8	109.0	0.3	200.0	88.3	111.7	2.46			
2036	34 153.8						2.41		••	
Projection 4										
1991	26 511.2	1 478.4	5.6	180.0	66.4	113.6	3.90			11.9
1996	27 989.6	1 407.7	5.0	200.0	70.4	129.6	3.85	75.1	82.2	12.8
2001	29 397.3	1 341.8	4.6	200.0	74.1	125.9	3.77			13.4
2006	30 739.1	1 369.0	4.5	200.0	77.5	122.5	3.68			13.9
2011	32 108.1	1 362.9	4.2	200.0	81.1	118.9	3.52	77.2	84.0	14.9
2016	33 471.0	1 205.3	3.6	200.0	84.6	115.4	3.16			
2021	34 676.3	1 023.8	3.0	200.0	87.8	112.2	2.82			
2026	35 700.1	859.3	2.4	200.0	90.5	109.5	2.60			
2031	36 559.4	744.9	2.0	200.0	92.7	107.3	2.46			
2036	37 304.3						2.41			

Source: Statistics Canada. Population Projections for Canada, Provinces and Territories, 1989-2011. Catalogue 91-520.

Total Population Projections for Canada, 1991-2036

Year	Projection 1	Projection 2	Projection 3	Projection 4
		thousand	S	
1991	26 499.1	26 501.2	26 511.2	26 511.2
1992	26 757.7	26 767.1	26 807.5	26 607.5
1993	26 993.9	27 015.3	27 101.7	27 103.0
1994	27 217.2	27 255.0	27 393.3	27 398.7
1995	27 427.0	27 485.9	27 681.9	27 694.2
1996	27 623.5	27 707.9	27 967.6	27 989.6
1997	27 807.4	27 921.2	28 245.6	28 280.3
1998	27 979.5	28 126.1	28 516.2	28 566.7
1999	28 139.8	28 322.6	28 779.1	28 847.8
2000	28 288.5	28 511.1	29 034,9	29 124.3
2001	28 426.0	28 692.4	29 284.2	29 397.3
2002	28 552.9	28 867.1	29 527.5	29 666.6
2003	28 670.6	29 035.8	29 765,4	29 934.8
2004	28 778.8	29 198.4	29 997.6	30 202.5
2005	28 877.5	29 355.2	30 224.4	30 470,4
2006	28 967.3	29 506.8	30 446.5	30 739.1
2007	29 049.0	29 653.7	30 664.0	31 008.9
2006	29 122.9	29 796.3	30 877.4	31 280.6
2009	29 188.6	29 934.5	31 086.8	31 554.0
2010	29 246.5	30 068.7	31 292.1	31 829.7
2011	29 297.1	30 198.7	31 493.3	32 108.1
2012	29 339.7	30 324.3	31 690.3	32 388.6
2013	29 297.1	30 445.6	31 882.9	32 668.4
2014	29 404.6	30 560.5	32 069.3	32 942.1
2015	29 427.0	30 669.1	32 249.2	33 209.7
2016	29 442.2	30 771.1	32 422.6	33 471.0
2017	29 449.9	30 866.2	32 589.1	33 725.8
2018	29 449.6	30 953.9	32 748.3	33 974.0
2019	29 441.0	31 034.1	32 900.0	34 215.2
2020	29 423.6	31 106.3	33 043.6	34 449.4
2021	29 397.0	31 170.3	33 179.3	34 676.3
2022	29 360.8	31 225.5	33 306.3	34 895.7
2023	29 314.7	31 271.8	33 424.5	35 107.7
2024	29 258.5	31 309.1	33 533.8	35 312.3
2025	29 192.0	31 337.2	33 633.9	35 509.7
2026	29 115.2	31 356.2	33 725.1	35 700.1
2027	29 028.1	31 365.9	33 807.0	35 883.6
2028	28 930.5	31 366.5	33 879.9	36 061.1
2029	28 822.7	31 358.2	33 943.7	36 232.5
2030	28 704.6	31 341.0	33 998.6	36 398.5
2031	28 576.6	31 315.0	34 044.8	36 559.4
2032	28 438.8	31 281.1	34 082.5	36 715.9
2033	28 291.5	31 239.0	34 112.0	36 868.2
2034	28 135.1	31 189.2	34 133.5	37 016.9
2035	27 969.9	31 132.0	34 147.3	37 162.1
2036	27 796.5	31 067.9	34 153.8	37 304.3

Source:

Statistics Canada. Demography Division. Population Projections for Canada, Provinces and Territories 1989-2011. Catalogue 91-520.

Population Projections for Canada, Provinces and Territories, 1991-2011

Year	Canada	Nfld.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Yukon	N.W.T
							thousands						
Projection 1													
1991	26 757.6	574.7	132.9	894.6	726.1	6 777.9	9 814.6	1 086.2	998.4	2 493.4	3 177.7	25.7	55.4
1996	27 807.5	573.3	134.5	911.7	730.7	6 918.4	10 282.2	1 104.6	1 020.2	2 673.9	3 370.6	29.0	58.
2001	28 552.7	566.4	134.4	920.6	727.5	6 988.6	10 633.9	1 115.7	1 038.2	2819.1	3 515.8	31.7	60.8
2006	29 048.8	555.9	133.5	920.9	719.2	7 012.9	10 887.0	1 122.0	1 051.1	2 931.4	3 618.0	33.3	63.6
2011	29 339.7	543.0	132.2	914.9	707.1	6 996.1	11 062.3	1 125.2	1 060.6	3 014.7	3 683.0	34.1	66.5
Percent change	9.6	- 5.5	- 0.5	2.3	- 2.6	3.2	12.7	3.6	6.2	20.9	15.9	32.7	20.0
Projection 2													
1991	26 767.1	575.0	133.1	895.4	726.8	6 785.0	9 825.3	1 087.7	997.2	2 486.1	3 174.2	25.6	55.3
1996	27 921.1	576.6	137.3	922.6	740.1	7 022.7	10 430.1	1 123.5	998.6	2 558.0	3 320.7	26.8	61.9
2001	28 867.1	579.7	140.4	945.1	749.3	7 210.1	10 958.3	1 156.6	998.4	2 604.7	3 428.7	27.8	68.0
2006	29 653.6	578.8	142.8	961.8	754.2	7 357.2	11 407.7	1 186.6	998.3	2 647.4	3 516.2	28.4	74.1
2011	30 324.5	576.6	145.1	973.8	755.9	7 467.4	11 794.9	1 215.7	1 000.8	2 692.3	3 592.3	29.0	80.3
Percent change	13.3	0.3	9.0	8.8	4.0	10.1	20.0	11.8	0.4	8.3	13.2	13.3	44.9
Projection 3													
1991	26 807.5	575.0	133.0	895.6	726.6	6 792.0	9 831.8	1 088.7	1 000.0	2 499.2	3 184.3	25.8	55.5
1996	28 245.7	576.4	135.5	919.6	735.6	7 052.7	10 427.7	1 123.3	1 031.6	2 726.2	3 428.5	29.4	59.3
2001	29 527.4	574.7	136.9	939.3	740.0	7 286.1	10 953.0	1 156.7	1 063.8	2 936.1	3 645.4	32.7	62.3
2006	30 664.0	571.0	138.0	953.6	741.3	7 495.7	11 419.1	1 189.6	1 094.5	3 125.6	3 833.7	34.9	67.0
2011	31 690.2	566.1	139.0	963.8	740.6	7 684.3	11 843.2	1 223.7	1 124.6	3 298.7	3 997.8	36.6	71.8
Percent change	18.2	- 1.5	4.5	7.6	1.9	13.1	20.5	12.4	12.5	32.0	25.5	41.9	29.4
Projection 4													
1991	26 807.6	575.6	133.3	896.7	727.6	6 793.6	9 834.4	1 090.7	1 002.1	2 495.2	3 177.3	25.6	55.5
1996	28 280.3	587.7	140.0	938.3	756.0	7 097.4	10 480.0	1 152.7	1 060.7	2 636.4	3 346.5	26.6	58.0
2001	29 934.6	601.2	147.3	987.0	788.9	7 456.6	11 193.0	1 229.9	1 136.6	2 785.7	3 519.8	27.8	60.4
2006	31 008.8	609.9	151.7	1 016.8	808.8	7 701.6	11 649.1	1 279.6	1 185.6	2 882.2	3 631.4	28.8	63.3
2011	32 388.4	621.0	157.1	1 053.0	832.2	8 028.4	12 230.5	1 341.6	1 245.5	3 005.1	3 776.5	30.2	67.
Percent change	20.8	7.9	17.9	17.4	14.4	18.2	24.4	23.0	24.3	20.4	18.9	18.0	21.3

Source: Statistics Canada. Demography Division. Population Projection for Canada, Provinces and Territories 1989-2011. Catalogue 91-520.

2.3 Environmental Benefits and Impacts on Individuals

"If there were no fresh air or clean water; if the temperature were too hot or too cold we could not live. Our environment is truly for life!"

> Environment Canada. 1990. What We Can Do for Our Environment.

A clean environment is essential to human well-being. People, animals and plants are dependent on the water, air, and land and on the other resources it provides.

This section provides available statistics on the interactions between individuals and the environment. These consist of both the benefits people receive from the environment and some of the negative impacts associated with the environment. New information in this area consists of the results of the Environment Canada survey of *The Importance of Wildlife to Canadians*, and Statistics Canada's survey on domestic travel.

How exposure to the natural environment sustains health and the quality of life is not well known. Some aspects of the negative impacts of environment, for example, losses from natural disasters, are well documented. Others, such as effect of pollution and other synthetic chemicals are currently the subject of extensive research:

"Systematic testing of chemicals used for pharmaceutical purposes, for example, began only after the thalidomide crisis of the 1950s. And scientists have only begun to understand the links between some chemicals and cancer. The same is true for respiratory, intestinal, cardiovascular, neurological and behavioural disorders or impacts on immune systems or the physiology of reproduction. In addition, statistics relating occupational or environmental agents to symptoms of illness or to disease are virtually non-existent."⁵

This section presents statistics on causes of death and incidents of contaminants in food. The precise role of environmental factors in human health are not well understood and a detailed discussion is beyond the scope of this publication.

2.3.1 Environmental Benefits

One direct economic benefit of wildlife is estimated to be \$6.1 billion per year in personal expenditures. In 1987, noncommercial wildlife-related activities accounted for 159 thousand jobs, \$3.7 billion of personal income and \$2.5 billion in government revenues from taxes.

One way of measuring the benefits of the environment to people is their willingness to pay for the services it provides. In 1987, Statistics Canada performed a household survey for the Canadian Wildlife Service of Environment Canada on the importance of wildlife to Canadians⁶ The survey measured the economic impact of wildlife-related activities and the economic value people place on these activities. These are reported in terms of consumptive (recreational hunting) and non-consumptive (birdwatching, hiking, and camping) activities.

Environment Canada estimated that, in 1987, wildlife-related activities accounted for expenditures of \$5.1 billion (Tables 2.3.1.2 and 2.3.1.4, Figures 2.3.1.1, 2.3.1.2). Participants were also asked to estimate the additional amount they would pay for the enjoyment they receive from wildlife through activities such as bird watching and hunting. This **net economic value** came to another \$1 billion (Table 2.3.1.3). The **direct benefits of wildlife** were taken to be the sum of these values, of \$6.1 billion. This was further estimated to account for \$6.5 billion of the country's Gross Domestic Product, 159 thousand jobs, \$3.7 billion of personal income, and \$2.5 billion of government revenue from taxes.

Table 2.3.1.1 details the frequency of outdoor recreational activity. Of the 166 million domestic trips (of 80 kilometres or more) made in 1986, one-quarter were for outdoor recreation and enjoyment of nature.

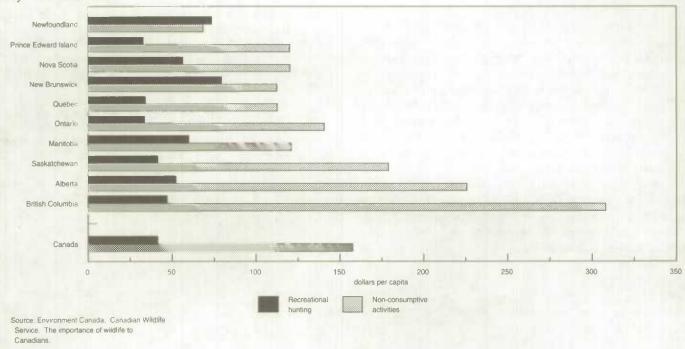
^{5.} Environment Canada. 1986. From cradle to grave: a management approach to chemicals. Catalogue EN40-342/1986E.

Environment Canada. 1990. The Importance of Wildlife to Canadians: The Economic Significance of Wildlife-related Recreational Activities. Catalogue CW 66-103/2-1990E.

Figure: 2.3.1.1

Table: 2.3.1.1

Selected Activities of Canadian Travellers, 1986


		and the second s
Activity	Person- trips ¹	Percent of all trips
	thousands	percent
Visit zoo, museum or natural display	5 775	3.5
Visit national, provincial or regional park	7 948	4.8
Swimming	12 185	7.3
Other water sports	6 431	3.9
Hunting or fishing	7 506	4.5
Cross-country skiing	1 062	0.6
Downhill skiing	2 1 4 2	1.3
Other activities	123 131	74.1
Total	166 180	100.0

Source:

Statistics Canada. Domestic Travel, Canadians Travelling in Canada. Catalogue 87-504. Note: 1 Trips of over 80 km. in length. Wildlife-related Expenditures, 1987 Accommodation Transportation Food Equipment Other items Natural preservation Wildlife orgs. 0 200 400 600 800 1000 1200 1400 million dollars Recreational Non-consumptive hunting activities Source: Environment Canada. Canadian Wildlife Service. The importance of wildlife to Canadians. Catalogue CW 66-103/2-1990E

Figure: 2.3.1.2

Wildlife-related Expenditures per capita, by Province, 1987

Distribution of Wildlife-related Expenditure, 1987

Category of expenditure	Recreational hunting	Non-consumptive and other activities	All wildlife-related recreational activities
		million dollars	
Accommodation	59	254	314
Transportation	269	606	875
Food	135	347	483
Equipment	419	872	1 292
Other tems	177	594	771
Natursi area preservation		1 292	1 292
Wildlife organizations		73	73
Total	1 060	4 039	5 099

Source:

Environment Canada. 1990. The Importance of Wildlife to Canadians: The Economic Significance of Wildlife-related Recreational Activities. Catalogue CW 66-103/2-1990E.

Table: 2.3.1.3

Net Economic Value by Wildlife-related Activity, 1987

	Average value per part		
Aclivity	Daily	Yearly	Annual value for all participants
	dollars		million dollars
Hunting			
Large mammals	17.0	200.9	208.9
Small mammals	7.7	92.6	657.0
Waterlowi	15.6	167.2	83.1
Other birds	10.1	106.8	91.7
All hunting	15.8	268.3	451.7
Primary non-consumptive trips	7.2	121.7	535.6
Total			987.4

Source:

Environment Canada. 1990. The Importance of Wildlife to Canadians: The Economic Significance of Wildlife-related Recreational Activities. Catalogue CW 66-103/2-1990E

Table: 2.3.1.4

Wildlife-related Expenditures by Province, 1987

		Total expenditures		Expenditures per capita1					
Province	Recreational hunting	Non-consumptive and other activities	All wildlife-related recreational activities	Recreational hunting	Non-consumptive and other activities	All wiidlife-related recreational activities			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	E	million dollars			dollars per capita				
Newfoundland	42	39	81	73.7	68.6	142.4			
Prince Edward Island	4	15	19	33.0	120.2	153.2			
Nova Scotia	50	106	155	56.5	120.3	176.8			
New Brunswick	57	80	137	79.5	112.5	192.1			
Quebec	225	744	969	34.2	112.8	147.0			
Ontario	314	1 305	1 619	33.9	140.7	174.6			
Maniloba	65	131	195	60.0	121.0	181.0			
Saskatchewan	42	182	224	41.7	179.0	220.7			
Alberta	125	537	661	52.4	225.6	277.8			
British Columbia	137	901	1 039	47.0	308.1	355.0			
Canada	1 061	4 039	5 099	41.4	157.6	199.0			

Source:

Environment Canada. 1990. The Importance of Wildlife to Canadians: The Economic Significance of Wildlife-related Recreational Activities. Catalogue CW 66-103/2-1990E. Note:

Based on Statistics Canada estimates of 1987 population.

2.3.2 Impacts of Environment

Between 1951 and 1989, the crude death rate decreased from 1,802 to 1,458 deaths per 100,000 population. As well as declining, the mix of causes of death has undergone considerable change. Over this period, the average age of the population has increased, the population has nearly doubled and the environment has undergone many changes. The death rates from lung cancer and respiratory diseases has grown much faster than other causes. The influence of environmental factors on these death rates is currently being debated.

In 1984 there were 9,857 cases of foodborne disease in Canada and 178 cases of waterborne disease. Of the foodborne cases, 5,682 were attributed to microbiological causes and 82 to chemicals. Many of these cases of illness can be associated with environmental factors.

The negative impacts of the environment may either be independent of human effects (the climate, natural disasters, etc.) or the result of human activities (poor water or air quality, exposure to contaminants, etc.). Many of the associations between human health and environmental factors, such as the accumulation of toxins in human tissues, are not well understood. In the tables presented in this section, statistics are given for broad categories of causes of death and cases of foodborne diseases.

Causes of Death

Leading causes of death have changed gradually in rank over the years from 1951 through 1989, however, mortality rates for these causes have often changed substantially (Table 2.3.2.1 and Figure 2.3.2.1).

For both males and females, declines in mortality rates were very marked in diseases of the circulatory system, though these diseases remain as the first leading cause of death. Cancer mortality rates, while remaining in second rank, increased during this period for males and more recently for females. Mortality due to accidents and adverse effects remained in third rank for males, followed closely by respiratory diseases. For females, respiratory disease mortality returned to third rank during the 1980s, in part, due to decreasing rates for accidents and adverse effects. Rates for both sexes for perinatal mortality and for infective and parasitic diseases declined, as did their prominence as leading causes; they were supplanted by diseases of the nervous system and of the genito-urinary system.

Table 2.3.2.2 contains the standardized death rates, by selected causes and sex for Canada and the provinces for 1986. Rates above the national average occur in Quebec, Eastern Canada and the territories.

Contaminants in Food

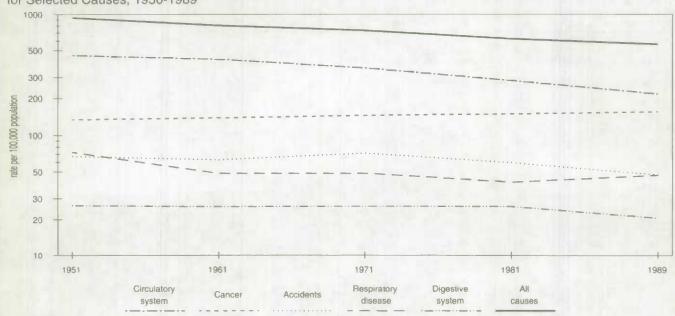
Health and Welfare Canada⁷ reported over 9,800 cases of foodborne disease in Canada in 1984 (Tables 2.3.2.3 and 2.3.2.4). These were cases reported to local health authorities and tend to be caused by short-term exposure to bacteria and chemicals.

Health and Welfare Canada, Health Protection Branch. 1988. Foodborne and Waterborne Disease in Canada, Annual Summaries 1983, 1984. Catalogue H40-11/1984E.

Table: 2.3.2.1

Age-adjusted Death Rates for Leading Causes of Death, Canada, Selected Years

	1951		1961		1971		1981		1989	
Cause of death	rate	rank	rate	rank	rate	rank	rate	rank	rate	rank
					per 100,000 pc	pulation				
Male										
Diseases of the circulatory system	512.4	(1)	500.7	(1)	448.8	(1)	359.8	(1)	277.4	(1)
Cancer	138.7	(2)	157.6	(2)	173.1	(2)	181.4	(2)	191.2	(2)
Accidents and adverse effects	97.8	(3)	93.3	(3)	101.6	(3)	87.2	(3)	68.2	(3)
Respiratory diseases	81.6	(4)	60.4	(4)	67.2	(4)	59.0	(4)	63.9	(4)
Diseases of the digestive system	30.7	(8)	31.0	(5)	32.8	(5)	32.7	(5)	25.8	(5)
Endocrine diseases	13.4		13.2		17.3	(7)	14.3	(6)	16.0	(6)
Diseases of the nervous system	15.0		10.8		9.4		10.4	(7)	16.0	(7)
Diseases of the genito-urinary system	43.4	(6)	23.5	(7)	13.5	(8)	10.0	(8)	10.2	(8)
Infective and parasitic diseases	45.3	(5)	14.5	(8)	6.8		4.0		9.5	
Causes of perinatal mortality	34.3	(7)	27.4	(6)	18.4	(6)	7.9		6.1	•
All other causes	79.3	***	58.1		44.3		38.1		37.6	
All causes	1 057.6		963.1	-	914.8		798.9		715.8	
Female										
Diseases of the circulatory system	396.3	(1)	343.0	(1)	267.5	(1)	203.2	(1)	157.7	(1)
Cancer	129.2	(2)	120.0	(2)	117.2	(2)	116.6	(2)	120.1	(2)
Respiratory diseases	63.5	(3)	37.0	(3)	30.2	(4)	23.2	(4)	29.9	(3)
Accidents and advarse effects	36.3	(4)	32.7	(4)	40.5	(3)	32.0	(3)	26.3	(4)
Diseases of the digestive system	21.8	(8)	20.4	(5)	19.0	(5)	18.8	(5)	15.5	(5)
Endocnne diseases	19.2		17.1	(7)	16.8	(6)	13.0	(6)	12.6	(6)
Diseases of the nervous system	12.3		8.5		7.0		7.3	(7)	11.3	(7)
Diseases of the genito-urinary system	26.7	(6)	12.6	(8)	6.8		5.9		8.2	(8)
Congenital anomalies	11.7		11.0	•	8.7	(8)	6.4	(8)	5.5	
Causes of perinatal mortality	24.8	(7)	20.4	(6)	13.0	(7)	5.9		4.5	4
Infective and parasitic diseases	33.3	(5)	8.7		4.6		2.6		3.3	
All other causes	37.9		18.0		12.8		15.2		18.4	
All causes	813.0		649.4		544.1		450.1		411.3	


Source:

Statistics Canada. Canadian Centre for Health Information.

Note:

* : Does not rank among top eight causes.

Figure: 2.3.2.1

Trends in Age-adjusted Death Rates

for Selected Causes, 1950-1989

Source: Statistics Canada. Canadian Centre for Health Information.

Impacts of Environment

Table: 2.3.2.2

Standardized¹ Death Rates, by Selected Causes and Sex, Canada and Provinces, 1986

Cause	Canada	Nfld.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Yukon	N.W.T
				_		per 100,000 population							
Total all causes - Male	690.1	694.0	745.8	739.8	723.5	752.9	675.9	690.1	653.6	655.6	621.4	833.0	891.
All malignant neoplasms	176.2	163.0	177.8	186.6	178.9	204.6	172.4	174.0	152.9	152.3	155.7	150.3	210.
Intestine, except rectum	17.3	20.8	14.2	21.9	21.0	17.5	19.2	14.1	9.8	16.1	13.4	2.5	35.
Lung(incl. trachea and bronchus)	57.3	52.1	62.0	63.7	63.4	73.7	54.0	57.9	47.1	39.3	47.2	47.0	60.
Breast	0.2	0.3	0.0	0.5	0.5	0.2	0.1	0.1	0.1	0.2	0.1	2.8	1.:
All other malignant neoplasms	101.4	89.8	101.5	100.5	93.9	113.2	99.1	101.8	95.9	96.7	95.0	98.0	112.
Diabetes mellitus	11.3	14.3	3.8	11.7	10.2	14.3	11.4	13.2	10.8	7.5	7.7	1.9	0.
Diseases of the heart	219.6	248.9	269.1	251.6	259.4	236.3	222.1	208.9	198.6	197.0	182.9	300.3	196.
Ischaemic heart disease	182.4	206.5	226.6	201.5	200.9	188.1	194.1	169.9	163.6	152.7	153.2	264.3	137.
All other heart diseases	37.2	42.4	42.5	50.1	58.5	48.1	28.0	39.0	35.1	44.3	29.7	36.0	58.
Cerebrovascular disease	39.5	50.8	53.5	39.2	30.0	40.4	39.5	43.7	35.8	39.6	36.9	16.6	64.
Atherosclerosis	7.5	2.2	10.8	7.9	5.1	8.4	8.6	4.6	8.0	7.4	5.5	3.4	2.
Respiratory diseases	59.5	53.2	56.2	67.2	63.8	66.7	56.8	61.3	58.8	58.6	51.6	45.6	99.
(excl. intectious and parasitic diseases)													
Pneumonia and influenza	21.7	16.0	14.4	24.8	18.1	19.4	22.1	24.7	25.4	23.4	21.2	21.6	23.
Bronchitis, emphysema and asthma	9,9	7.0	9.3	6.8	11.7	14.9	8.1	6.1	9.7	10.3	8.5	13.7	14.
(excl. acute bronchitis)													
All other respiratory diseases	27.9	30.2	32.5	35.6	34.0	32.3	26.7	30.5	23.8	24.9	21.9	10.3	61.0
Chronic liver disease and cirrhosis	10.3	7.1	6.8	7.2	6.2	10.7	11.1	11.0	8.9	9.2	10.0	12.1	3.9
Congenital anomalies	6.4	4.7	11.0	5.6	7.1	6.2	6.2	7.1	6.8	8.0	6.0	15.2	4.1
Causes of perinatal mortality excl. stillbirths	6.4	8.0	3.5	7.9	6.5	7.2	6.0	6.1	8.5	4.9	6.0	22.7	13.0
All accidents and adverse effects	69.9	48.3	88.6	65.4	78.6	73.5	55.8	73.9	89.5	90.3	81.6	169.3	183.
All other causes	83.5	93.5	86.7	89.5	77.8	84.8	85.8	86.5	75.4	80.8	77.4	95.5	113.
Total all causes - Female	486.9	528.9	489.5	502.1	487.8	501.0	489.4	483.1	452.6	479.2	454.5	567.4	608.
All malignant neoplasms	131.3	127.1	148.5	140.4	129.7	136.0	132.0	132.7	120.2	124.1	125.9	146.1	162.3
Intestine, except rectum	16.3	20.9	18.0	19.0	18.3	17.3	16.3	14.6	13.9	15.2	14.5	27.1	12.1
Lung(incl. trachea and bronchus)	20.8	14.3	26.8	24.0	18.7	20.0	21.3	20.2	17.5	16.8	25.0	3.3	76.4
Breast	27.6	21.8	30.8	27.2	28.9	27.3	28.9	30.6	24.5	26.4	25.4	36.2	1.9
All other malignant neoplasms	66.7	70,1	74.8	70.2	63.8	71.4	65.5	67.4	64.3	65.8	61.0	79.6	71.
Diabetes mellitus	11.4	19.2	12.7	11.3	12.2	14.9	11.0	9.7	7.8	9.6	7.9	2.7	1.1
Diseases of the heart	145.4	179.4	149.3	158.9	152.0	153.1	148.3	141.8	124.1	134.8	125.5	184.0	99.6
Ischaemic heart disease	112.9	139.5	103.8	112.6	107.7	111.2	124.4	105.5	91.6	94.9	98.2	94.2	89.5
All other heart diseases	32.6	40.0	45.5	46.3	44.3	41.9	23.9	36.3	32.5	40.0	27.3	94.2 89.8	30.1
Cerebrovascular disease	44.9	57.3											
			46.0	37.9	47.8	45.1	45.3	42.8	41.9	48.2	43.0	28.7	42.
Atheroscierosis	8.2	3.9	7.0	9.0	3.5	7.8	10.4	5.3	6.3	7.0	5.8	5.0	3.8
Respiratory diseases	33.8	33.1	33.0	40.5	32.1	31.4	32.9	35.5	41.5	34.9	35.1	60.5	50.0
(excl. infectious and parasilic diseases)	10.0	477.0											
Pneumonia and influenza	17.3	17.6	7.9	20.7	13.4	14.0	17.4	21.6	28.2	17.4	18.1	30.0	23.
Bronchitis, emphysema and asthma (excl. acute bronchitis)	4.6	1.4	9.7	4.7	5.0	5.6	3.9	4.0	4.2	5.1	4.8	18.3	0.1
All other respiratory diseases	11.9	14.2	15.4	15.1	13.7	11.8	11.5	9.9	11.2	12.4	12.2	12.2	26.0
Chronic liver disease and cirrhosis	4.6	4.0	6.8	2.7	4.7	3.9	4.9	5.3	4.8	4.B	5.8	0.4	0.1
Congenital anomalies	5.7	8.0	4.4	6.6	5.0	5.5	5.6	6.3	6.3	5.8	5.5	12.9	2.3
Causes of perinatal mortality excl. stillbirths	4.8	4.4	1.7	4.8	4.1	5.2	4.2	4.2	4.2	4.3	5.2	6.4	10.9
All accidents and adverse effects	28.4	15.9	22.6	18.4	25.2	29.3	25.1	29.9	31.5	36.2	32.8	63.1	127.0
All other causes	68.5	76.5	57.4	71.6	71.4	68.8	69.8	69.7	64.1	69.5	62.1	57.5	108.2

Source:

Statistics Canada, Mortality, Summary List of Causes. Catalogue 84-206

Note:

Rates are age-standardized using the 1971 population for Canada.

Table: 2.3.2.3

Cases of Foodborne Disease, 1982, 1983 and 1984

Etiology	1982	1983	1984	1982	1983	1984
		number			percent	
Known causes						
Microbiological	3 554	2 297	5 592	48.13	38.57	56.73
Parasitic	59			0.80		
Animal	33	3	6	0.45	0.05	0.06
Plant	11	67	2	0.15	1.13	0.02
Chemical	103	36	82	1.39	0.60	0.83
metal	9	2	2	0.12	0.03	0.02
solvents	5		5	0.07		0.05
cleaning solution	24		1	0.33		0.01
drug	1	1	•	0.01	0.02	I I I I I I I I I I I I I I I I I I I
penicillin	1			0.01		
monosodium glutamate			7		The second s	0.07
rancid compounds	19	12	24	0.26	0.20	0.24
other chemicals	13	6	11	0.18	0.10	0.11
extraneous matter	31	15	32	0.42	0.25	0.32
Total: known causes	3 760	2 403	5 682	50.92	40.35	57.64
Unknown causes						
probably microbiological	1 068	1 293	1 220	14.46	21.71	12.38
probably animal	- 4	1	13	0.05	0.02	0.13
probably plant	4	3	1	0.05	0.05	0.01
probably chemical	55	67	50	0.74	1.13	0.51
probably chemical or microbiological	1			0.01		
other	2 492	2 188	2 891	33.75	36.74	29.33
Total: unknown causes	3 624	3 552	4 175	49.08	59.65	42.36
Total	7 384	5 955	9 857	100.00	100.00	100.00

Source:

Health and Welfare Canada, Health Protection Branch. 1988. Foodborne and Waterborne Disease in Canada. Catalogue H40-11/1984E.

Table: 2.3.2.4

Regional Distribution of Cases of Foodborne Disease, 1983 and 1984

	Cases		Percentage of all cases		Frequenc	,
Province	1983	1984	1983	1984	1983	1984
	number		percent		cases/100,000 pc	pulation
Newfoundland	101	135	1.7	1.4	17.5	23.3
Prince Edward Island						
Nova Scotia	23	112	0.4	1.1	2.7	12.9
New Brunswick		51		0.5	-	7.1
Quebec	726	900	12.2	9.1	11.1	13.7
Ontario	3 186	4 589	53.5	46.6	36.1	51.3
Manitoba	143	146	2.4	1.5	13.7	13.8
Saskatchewan	798	154	13.4	1.6	80.4	15.3
Alberta	495	228	8.3	2.3	21.0	9.7
British Columbia	482	813	8.1	8.2	17.1	28.3
Yukon		21		0.2		96.3
Northwest Territories	1	8	0.0	0.1	2.1	16.2
More than one province	design the state of the	2 700		27.4		
Canada	5 955	9 857	100.0	100.0	23.9	39.2

Source:

Health and Welfare Canada, Health Protection Branch. 1988. Foodborne and Waterborne Disease in Canada. Catalogue H40-11/1984E.

Note:

¹ Based on 1986 Census Division data.

2.4 Regulations and Perceptions

Over the past 10 years, there has been an increasing concern about the quality of the environment by individuals, government and non-governmental organizations. Most polls show heightened awareness of environmental issues, increased optimism about the possibility of improving the environment and changes in the behaviour of individuals to modify their impact on the environment. There has been a proliferation of environmental interest groups and a great deal of new environmental legislation has been enacted.

Changes in opinion on the environment have stimulated legislation, regulations and non-governmental activities to improve, conserve and protect the environment and the natural resource base. Furthermore, they have been instrumental in the adoption of more environmentallyconscious behaviour among many Canadians.

2.4.1 Regulating Processes

Canada's federal and provincial governments maintain hundreds of laws relating to the environment. These range from the comprehensive Canadian Environmental Protection Act to provisions in the municipal acts of most provinces.

Legislation Relating to the Environment

The legislative process provides an important means through which members of society can collectively take action to improve, conserve and protect the quality of the environment and the natural resource base.

The **Canadian Environmental Protection Act**, proclaimed in 1988 consolidates the Environmental Contaminants Act, the Canada Water Act, the Clean Air Act, the Ocean Dumping

Control Act, and some sections of the Department of Environment Act (1979). The new act upgrades the penalties for a breach of the toxic chemical provisions. The Minister is now endowed with powers to recall chemicals and products which he or she deems to be unsafe.

Table 2.4.1.1 provides a listing of laws related to the environment enacted by the federal, provincial or territorial governments of Canada. The titles of acts shown in the table are those shown in the latest *Table of Public Statutes* published by each government. This table complements the one shown in Appendix 8 to the 1986 edition of *Human Activity and the Environment*. To avoid repetition of outdated acts shown in that edition, acts have only been included in this edition where they have been subject to legislative action other than total repeal since 1983. Several laws related to land use planning had been excluded from the previous listing. Since these laws frequently have a significant role in environmental management, they were included in this table.

In this table, laws have been listed under up to three separate subjects. For example the Highway Traffic Act of Prince Edward Island includes provisions relating to noise levels, littering, solid waste, air pollution and smoke emissions. Where four or more subjects are covered by an Act it is classified as "General".

Enforcement of Legislation

No comprehensive statistics exist for the enforcement of the wide range of laws shown in Table 2.4.1.1. To illustrate the extent of activity being undertaken by Federal agencies Tables 2.4.1.2 through 2.4.1.6 present information obtained from Environment Canada, the Atomic Energy Control Board and Fisheries and Oceans Canada, the federal agencies most directly concerned with environmental protection.

A range of actions can be undertaken in respect to enforcing the Environmental Protection Act (Table 2.4.1.2). The reference period is the latest for which information has been compiled by Environment Canada. It should be noted that dates refer to when the specified actions were undertaken. Thus the convictions recorded in this period may refer to offences committed in previous periods.

International Environment Programs

Canada participates in the activities of several intergovernmental and non-governmental international organizations with environmental responsibilities⁸:

8. Statistics Canada. 1990. Canada Year Book. Catalogue 11-402E.

UNEP

Canada is a member of the United Nations Environmental Programme, established to deal with global and regional environmental issues. In 1987, one of UNEP's successes was in coordinating the signing of the Montreal Protocol on substances depleting the ozone layer.

WMO

The World Meteorological Organization deals with hydrology, climatology, and meteorology. Canada is involved in the WMO/UNEP intergovernmental panel on climate change, and the working group on the accidental release of hazardous materials.

ECE

Under the UN Economic Commission for Europe, Canada participates in the Executive body of the 1979 Convention on Long Range Transboundary Air Pollution and the committee on water problems. In 1985, Canada signed the protocol to the 1979 convention calling for the reduction of sulphur emissions by 30 percent by 1993. Another protocol on the control of nitrogen oxide emissions was signed in 1988.

UNESCO

Canada plays an important role in three UNESCO (United Nations Educational, Scientific and Cultural Organization) projects: the International Hydrological Program, Man and the Biosphere Program and the World Heritage Convention.

IMO

Canada is a contracting party to the International Maritime Organization's International Convention for the Prevention of Pollution from Ships and to the Convention on the Prevention of Wastes and Other Matter.

WHO

Through the National Water Research Institute, Canada participates in the World Health Organization's global monitoring of water pollution.

OECD

Canada participates in the Environment Committee of the Organization for Economic Cooperation and Development. In 1985 and 1991, the OECD published its State of the Environment Report which provides an overview of environmental conditions in OECD member countries.

IUCN

The International Union for Conservation of Nature and Natural Resources comprises 61 state governments, 128 government agencies and 383 non-governmental organizations in its membership. Its mandate is to promote international cooperation in the conservation and management of natural resources. It is also a technical advisor to the Convention on International Trade in Endangered Species (CITES) and the World Heritage and Wetlands Conventions.

Table: 2.4.1.1

Federal and Provincial Environmental Legislation

Subject	Jurisdiction	Legislation (Code ¹)
General	Federal	Canadian Environment Protection Act (1988); Canadian Environment Week Act (E11); Environmental Contaminants Act (E12) Income Tax Act ² : Northern Pipeline Act (N26)
	Newfoundland	Environmental Assessment Act (1980); Municipalities Act (1979)
	Prince Edward Island	Environmental Protection Act (E9); Public Health Act (P30)
	New Brunswick	Clean Environment Act (C6); Emergency Measures Act (1978); Health Act (H2); Mining Act (M14)
	Nova Scotia	Environmental Assessment Act (c149); Environmental Protection Act (c150); Health Act (c195); Municipal Act (c295); Trails Act (c476
	Quebec	Cities and Towns Act (C19); Environment Quality Act (Q2); Railways Act (C14)
	Ontario	Environmental Assessment Act (c140); Environmental Protection Act (c141); Municipal Act (c302); Planning Act (1983)
	Manitoba	Environment Act (E125); Municipal Act (M225); Planning Act (P80); Public Health Act (P210)
	Saskatchewan	Environmental Assessment Act (E10.1); Environmental Management and Protection Act (E10.2); Northern Municipalities Act (N5.1) Pollution (By Livestock) Control Act (P16.1); Public Health Act (P37); Urban Municipalities Act (U10)
	Alberta	Hydro and Electric Energy Act (H13); Land Surface Conservation and Reclamation Act (L17); Public Health Act (P27.1); Public Lands Act (P30)
	British Columbia	Environment Management Act (1981); Waste Management Act (1982)
	Northwest Territories	Area Development Act (A5); Cities Towns and Villages Act (1987); Commissioner's Land Act (C6); Hamlets Act (1987); Municipal Ac (M15); Public Health Act (P10)
and Federal	Federal	Indian Act (I5); National Capital Act (N4); National Housing Act (N11); National Parks Act (N14); Northwest Territories Act (N27) Prairie Farms Rehabilitation Act (P17); Railway Act (R3); Territorial Lands Act (T7); Yukon Act (Y2)
	Newfoundland	Crown Lands Act (c71); Development Areas (Land) Act (c95); Land Development Act (c197); Wildemess and Ecological Reserves Ac (1970)
	Prince Edward Island	Municipalities Act (M13); National Park Act (N1); Planning Act (P6); Recreation Development Act (R8)
New Brunsw	New Brunswick	Agricultural Rehabilitation and Development Act (A6); Community Planning Act (C12); Ecological Reserves Act (1975); Marshland Reclamation Act (M5); Parks Act (1982); Weed Control Act (W7)
	Nova Scotia	Agriculture and Marketing Act (c6); Beaches Act (c32); Crown Lands Act (c114); Planning Act (c346); Provincial Parks Act (c371)
	Quebec	Agriculture Abuses Act (A2); Ecological Reserves Act (R26); Land Use Planning and Development Act (A19.1); Lands in the Public Domain Act (T8.1); Parks Act (P9); Preservation of Agricultural Land (P41.1)
	Ontario	Aggregate Resources Act (1989): Conservation Authonities Act (c85); Mining Act (c268): Niagara Escarpment Planning and Development Act (c316); Provincial Parks Act (c401); Public Lands Act (c413); Shoreline Property Assistance Act (c471); Week Control Act (1988)
	Manitoba	Conservation Districts Act (C175); Crown Lands Act (C340); Mines Act (M160); Noxious Weeds Act (N110); Provincial Park Lands Ac (P20); Surface Rights Act (S235)
	Saskatchewan	Construction and Development Act (C27); Critical Wildlife Habitat Act (C47.1); Noxious Weeds Act (N9.1); Parks Act (P1.1); Planning and Development Act (P13.1); Provincial Lands Act (P31); Regional Parks Act (R9.1); Rural Municipalities Act (R26.1)
	Alberta	Agricultural Service Board Act (A11); Drainage Districts Act (D39); Planning Act (P9); Provincial Parks Act (P22); Public Lands Act (P30); Soil Conservation Act (S19.1); Special Areas Act (S20); Surface Rights Act (S27.1); Wildemess Areas, Ecological Reserves etc Act (W8)
	British Columbia	Agricultural Land Commission Act (c9); Coal Act (c51); Islands Trust Act (c208); Land Act (c214); Minerals Act (c259); Mines Act (1980); Municipal Act (c290); Park (Regional) Act (c310); Park Act (c309); Range Act (c355); Soil Conservation Act (c391); Weed Control Act (c432)
	Yukon	Municipal Act (c119); Parks Act (c126)
	Northwest Territories	Territorial Parks Act (T5)
Vater	Federal	Arctic Waters Pollution Prevention Act (A12); Canada Shipping Act (S9); Canada Water Act (C11); Fisheries Act (F14); Navigable Waters Protection Act (N22); Northern Inland Waters Act (N25); Railway Act (R3); Territorial Lands Act (T7)
	Newfoundland	Aquaculture Act (1987)
	Prince Edward Island	Municipalities Act (M13); Water and Sewerage Act (W2)
	New Brunswick	Aquaculture Act (1988); Clean Water Act (1989); Pesticides Control Act (P8)
	Nova Scotia	Aquaculture Act (c18); Towns Act (c472); Village Service Act (c493); Water Act (c500); Well Drilling Act (c502)
	Quebec	Mining Act (M13); Watercourses Act (R13)
	Ontario	Conservation Authonities Act (c85); Drainage Act (c126); Ontario Water Resources Act (c361); Public Utilities Act (c423); Water Transfer Control Act (1989)
	Manitoba	Fisherman's Assistance and Polluters Liability Act (F100); Rivers and Streams Act (R160); Water Resources Administration Act (W70); Water Rights Act (W80)
	Saskatchewan	Construction and Development Act (C27); Water Corporation Act (W4.1); Water Resources Management Act (W7)
	Alberta	Agricultural Chemicals Act (A6); Clean Water Act (C13); Drainage Districts Act (D39); Water Resources (W5.1)
	British Columbia	Fisheries Act (c137): Health Act (c161): Water Act (c429)
	Yukon	Municipal Act (c119)

(continued)

Federal and Provincial Environmental Legislation

Subject	Jurisdiction	Legislation
Air	Federal	Clean Air Act (C32); Non-smokers Health Act (1988)
	Prince Edward Island	Highway Traffic Act (H5)
	Nova Scotia	Motor Vehicle Act (c293)
	Quebec	Protection of Non-Smokers etc Act (P38.01)
	Ontario	Farm Practices Protection Act (1988); Highway Traffic Act (c198)
	Saskatchewan	Clean Air Act (C12.1)
	Alberta	Clean Air Act (C12)
	British Columbia	Motor Vehicle Act (c288); Weather Modification Act (c431)
Hazardous Waste	Federal	Feeds Act (F9); Fertilizers Act (F10); Food and Drugs Act (F27); Hazardous Products Act (H3); Pest Control Products Act (P1) Pesticides Residue Compensation Act (P10); Radiation Emitting Devices Act (R1); Transportation of Dangerous Goods Act (T19)
	Newtoundland	Aquaculture Act (1987); Dangerous Goods Transportation Act (1982); Fire Prevention Act (c131); Pesticides Control Act (198 Radiation Health and Safety Act (1977)
	Prince Edward Island	Dangerous Goods Transportation Act (D3); Fire Prevention Act (F11); Pesticides Control Act (P4)
	New Brunswick	Apiary Inspection Act (A9); Aquaculture Act (1988); Fire Prevention Act (F13); Injurious Insect and Pest Act (I9); Pesticides Cont Act (P8); Pipeline Act (1976); Radiological Health Protection Act (1987); Transportation of Dangerous Goods Act (1988)
	Nova Scotia	Dangerous Goods & Hazardous Wastes Management Act (c118); Dangerous Goods Transportation Act (c119); Pest Control Produc (Nova Scotia) Act (c341); Pipeline Act (c345)
	Quebec	Bees Act (A1): Explosives Act (E22)
	Ontario	Bees Act (c42); Energy Act (c139); Gasoline Handling Act (c185); Health Protection and Promotion Act (1983); Highway Traffic A (c198); Pesticides Act (c376)
	Manitoba	Dangerous Goods Handling and Transportation Act (D12); Industrial Minerals Drilling Act (I20); Pesticides and Fertilizer Control / (P40)
	Saskatchewan	Dangerous Goods Transportation Act (D1.2); Fire Prevention Act (F15); Pest Control Products (Saskatchewan) Act (P8); Radiat Health and Safety act (R1.1); Rural Municipalities Act (R26.1)
	Alberta	Agricultural Chemicals Act (A6); Hazardous Chemicals Act (H3); Pipeline Act (P8); Radiation Protection Act (R2); Special Was Management Corporation Act (S21.5); Transportation of Dangerous Goods (T6.5)
	British Columbia	Health Act (c161); Motor Vehicle Act (c288); Pesticide Control Act (c322); Petroleum and Natural Gas Act (c323); Pipelines Act (c32
	Yukon	Dangerous Goods Transportation Act (c39)
	Northwest Territories	Fire Prevention Act (F5); Transport of Dangerous Goods Act (1982)
Noise	Federal	Aeronautics Act (A2)
	Newtoundland	Highway Traffic Act (c152)
	Prince Edward Island	Highway Traffic Act (H5)
	New Brunswick	Agricultural Operations Practices Act (1986); All Terrain Vehicle Act (1985); Motor Vehicle Act (M17)
	Nova Scotia	Motor Vehicle Act (c293)
	Quebec	Highway Safaty Code (C24.2)
	Ontario	Farm Practices Protection Act (1988); Highway Traffic Act (c198); Motorised Snow Vehicles Act (c301)
	Manitoba	Highway Traffic Act (H60); Snowmobile Act (S150)
	Alberta	Highway Traffic Act (H7)
	British Columbia	Motor Vehicle Act (c288)
	Yukon	Motor Vehicles Act (c118); Noise Prevention Act (c121)
	Northwest Territories	Vehicles Act (V2)
Solid Waste	Federal	Indian Act (15)
	Newfoundland	Highway Traffic Act (c152); Quarry Materials Act (1976); Waste Material Disposal Act (1973)
	Prince Edward Island	Automobile Junkyards Act (A25); Highway Traffic Act (H5); Municipalities Act (M13); Roads Act (R15); Unsightly Property Act (U5)
	New Brunswick	Agricultural Operations Practices Act (1986); Beverage Containers Act (1977); Highway Act (H5); Motor Vehicle Act (M17); Unsigt Premises Act (U2)
	Nova Scotia	Minaral Resources Act (c286); Motor Vehicle Act (c293); Public Highways Act (c371); Towns Act (c472); Viltage Service Act (c493)
	Quebec	Highway Satety Code (C24.2): Mining Act (M13)
	Ontario	Aggregate Resources Act (1989); Farm Practices Protection Act (1988); Mining Act (c268); Public Lands Act (c413)
	Manitoba	Highway Traffic Act (H60); Mines Act (M160); Rivers and Streams Act (R160)
	Saskatchewan	Highway Traffic Act (H3.1); Highways and Transportation Act (H3); Litter Control Act (L22); Rural Municipalities Act (R26.1)
	Alberta	Beverage Container Act (B4); Litter Act (L19)
	British Columbia	Municipal Act (c290); Park Act (c309); Soil Conservation Act (c391); Water Act (c429)
	Yukon	Motor Vehicles Act (c118); Municipal Act (c119)

(continued)

Federal and Provincial Environmental Legislation

Subject	Jurisdiction	Legislation
Energy	Federal	Canada Petroleum Resources Act (1986); Motor Vehicle Fuel Consumption Standards Act (M9); Motor Vehicle Safety Act (M10) National Energy Board Act (N7); Oil Substitution and Conservation Act (O8); Oil and Gas Production and Conservation Act (O7)
	Newfoundland	Petroleum and Natural Gas Act (c294)
	New Brunswick	Oil and Natural Gas Act (1976)
	Nova Scotla	Energy and Mineral Resources Conservation Act (c147): Petroleum Resources Act (c342)
	Quebec	Energy Conservation Act (E1.1); Mining Act (M13)
	Ontario	Energy Efficiency Act (1988); Public Utilities Act (c423)
	Manitoba	Mines Act (M160)
	Saskatchewan	Oil and Gas Conservation Act (O3)
	Alberta	Coal Conservation Act (C14): Energy Resources Conservation Act (E11): Gas Resources Preservation Act (G3.1); Hydro and Electri Energy Act (H13): Oil Sands Conservation Act (O5.5); Oil and Gas Conservation Act (O5)
	British Columbia	Coal Act (c51); Geothermal Resources Act (1982); Petroleum and Natural Gas Act (c323)
	Yukon	Energy Conservation Assistance Act (c55)
Wildlife	Federal	National Wildlife Week (W10); Northwest Territories Act (N27); Yukon Act (Y2)
	Newfoundland	Wild Life Act (400); Wildemess and Ecological Reserves Act (1970)
	Prince Edward Island	Fish and Game Protection Act (F12); Forests Management Act (F14); Natural Areas Protection Act (N2)
	New Brunswick	Endangered Species Act (1974); Fish and Wildlife Act (1980); Irish Moss Act (I15)
	Nova Scotia	Agriculture and Marketing Act (c6): Crown Lands Act (c114); Provincial Parks Act (c371); Wildlife Act (c504)
	Quebec	Conservation and Development of Wildlife Act (c61.1); Ecological Reserves Act (R26); Hunting and Fishing Rights Act (D13.1)
	Ontario	Endangered Species Act (c138); Game and Fish Act (c182)
	Manitoba	Ecological Reserves Act (E5); Hentage Resources Act (H39.1); Manitoba Habitat Hentage Act (H3); Provincial Park Lands Act (P20 Wild Rice Act (W140); Wildlife Act (W130)
	Saskatchewan	Critical Wildlife Habitat Act (C47.1); Wildlife Act (W13.1)
	Alberta	Agricultural Pests Act (A8.1); Provincial Parks Act (P22); Wildemess Areas, Ecological Reserves etc Act (W8); Wildlife Act (W9.1)
	British Columbia	Creston Valley Wildlife Act (c82); Ecological Reserves Act (c101); Park Act (c309); Wildlife Act (1981)
	Yukon	Wildlife Act (c126)
	Northwest Territories	Wildlife Act (1978)
Fish	Federal	Coastal Fisheries Protection Act (C33); Fisheries Act (F14)
	New Brunswick	Fish and Wildlife Act (1980)
	Nova Scotia	Fishenes Act (c173)
	Quebec	Commercial Fisheries and Aquaculture (P9.01); Conservation and Development of Wildlife Act (c61.1)
	Manitoba	Fisheries Act (F90); Fisherman's Assistance and Polluters Liability Act (F100)
	British Columbia	Fisheries Act (c137)
Forest	Federal	Forestry Research and Development Act (F30); Territorial Lands Act (T7)
	Newfoundland	Plant Protection Act (1978)
	Prince Edward Island	Fire Prevention Act (F11); Forests Management Act (F14)
	New Brunswick	Crown Lands and Forests Act (C38): Forest Fires Act (F20); Injurious Insect and Pest Act (I9); Plant Diseases Act (P9)
	Nova Scotia	Crown Lands Act (c114); Forest Enhancement Act (c178); Forests Act (c179)
	Quebec	Forests Act (F4.1); Plant Protection Act (P39); Preservation of Agricultural Land (P41.1); Tree Protection Act (P37)
	Ontario	Crown Timber Act (c109); Forest Fires Prevention Act (c173); Plant Diseases Act (c380)
	Manitoba	Dutch Elm Disease Act (D107); Fires Prevention Act (F8); Forests Act (F150)
	Saskatchewan	Forests Act (F19); Prairie and Forest Fires Act (P22)
	Alberta	Forest Reserves Act (F15); Forest and Prairie Protection Act (F14); Forests Act (F16)
	British Columbia	Forest Act (c140)
	The second secon	
	Yukon	Forest Protection Act (c71)

Source:

Federal and provincial tables of public statutes.

Notes: ¹ Codes in parentheses refer to the chapter number in the statutes. Some statutes arrange acts in order of enactment. These are represented by the lefter "c" plus a number indicating the sequence. Other statutes arrange acts in alphabetic order. These are designated with the letter first letter of the title of the act followed by a sequence number.

² The Income Tax Act is not in sequence in the statutes.

Table: 2.4.1.2

Enforcement Action by Environment Canada, April to September 1990

		Environment Canada Region						
Act/Type of action	Atlantic	Quebec	Ontario	Western and Northern	Pacific and Yukon	Canada		
			number	of actions				
Environment Protection Act								
Inspection	271	188	263	209	379	1 310		
Investigation	14		15	3		32		
Warning	8	6	13	6	5	38		
Direction	2					2		
Prosecution	1	1			2			
Conviction	1	1			2	4		
Fisheries Act'								
Inspection	324	68		44	126	562		
Investigation	5		1	6	9	21		
Warning	5			6		11		
Direction	2					2		
Prosecution	1	1				2		
Conviction					2	2		
Total								
Inspection	595	256	263	253	505	1 872		
Investigation	19	0	16	9	9	53		
Warning	13	6	13	12	5	49		
Direction	4	0	0	0	0	4		
Prosecution	2	2	0	0	2	6		
Conviction	1	1	0	0	4	6		

Source:

Environment Canada. Conservation and Protection.

Notes:

¹ Sections of Fisheries Act administered by Environment Canada. The enforcement actions were taken between April 1, 1990 and September 30, 1990.

Table: 2.4.1.3

Convictions Following Prosecution by Environment Canada, 1988-1990

	Environment Canada Region								
Act/Date of offence	Atlantic	Quebec	Ontario	Western and Northern	Pacific and Yukon	Canada			
			number	of offences					
Environment Protection Act									
April 1, 1988 to September 30, 1988									
October 1, 1988 to March 31, 1989					4				
April 1, 1989 to September 30, 1989				and the second second	3	3			
October 1, 1989 to March 31, 1990									
April 1, 1990 to September 30, 1990	1				-	1			
Fisheries Act'									
April 1, 1988 to September 30, 1988	5				2	7			
October 1, 1988 to March 31, 1989	2					2			
April 1, 1989 to September 30, 1989	2			1	4	7			
October 1, 1989 to March 31, 1990	1					1			
April 1, 1990 to September 30, 1990					1	1			

Source:

Environment Canada. Conservation and Protection. Notes:

¹ Sections of the Fisheries Act administered by Environment Canada.

Table: 2.4.1.4

Convictions for Environmental Offences, Atomic Energy Control Board, 1988

			Region			
Date of Offence	Atlantic	Quebec	Ontario	Western and Northern	Pacific and Yukon	Canada
	number of offences					
April 1, 1988 to September 30, 1988			-	1		1
October 1, 1988 to March 31, 1989						-
April 1, 1989 to September 30, 1989	2			1		3
October 1, 1989 to March 31, 1990				2		2
April 1, 1990 to September 30, 1990			1			1

Source:

Atomic Energy Control Board. Legal Services. Notes:

Offences against sections of the Atomic Energy Control Act.

Table: 2.4.1.5

Penalties Imposed for Convictions Under Selected Legislation, April 1988 to September 1990

Result	Atomic Energy Control Act	Fisheries Act ¹	Environment Protection Act	Total
-		number of offences		
Fine less than \$1000	1	2	2	5
Fine \$1000 - \$4999	3	2	2	7
Fine \$5000 - \$9999	3	6	5	14
Fine \$10000 or more		7		7
Total	7	17	9	33

Source:

Environment Canada. Conservation and Protection. Atomic Energy Control Board. Legal Services. Notes: ¹ Sections of Fisheries Act administered by Environment Canada

Table: 2.4.1.6

Commercial Violations Detected by Fisheries and Oceans Canada, 1989

	Most common		Second most common		Third most common	
Region ¹	Offence	Number	Offence	Number	Offence	Number
Pacific	Illegal possession of fish	391	Licence offences	375	Fishing in close times	303
Scotia-Fundy	Groundfish licence offences	52	Undersize scallops	37	Untagged lobster traps	35
Gulf of St. Lawrence	Fishing in close times	114	Undersize lobsters	49	Licence offences	36
Newfoundland	Illegal fishing methods	45	Fishing in close times	37	Undersize crabs	25
Quebec	Undersize lobsters	29	Fishing contaminated area	28	Undersize crabs	19

Source:

Fisheries and Oceans Canada. Fish Habitat Management Branch. Note:

1 Regions as defined by Fisheries and Oceans Canada.

2.4.2 Attitudes and Perceptions

Canadians have been making personal sacrifices for a cleaner environment and a majority would be willing to pay for improved energy efficiency and waste reduction. A majority also approve of mandatory recycling. Many have already been making measurable changes in their lifestyles: eighteen percent of all households in Canada have programmable thermostats; 84 percent have thermal windows and 27 percent (with showers) have water-saver shower heads. Twenty two percent of those with gardens engage in composting; 52 percent with gardens never use pesticides.

In 1981-2, 70 percent of the respondents to a CROP⁹ poll, believed that the level of pollution had increased in Canada; 38 percent responded that it had increased in their neighbourhood. In 1990, according to an Angus Reid poll¹⁰ on the same subject, 33 percent of the respondents believed that the overall environment had deteriorated over the past year. The same poll indicated that 44 percent believed that the environment would improve over the next 10 years and 57 percent thought it would improve over the next 30 years (Tables 2.4.2.1 and 2.4.2.3). A majority believed that Canadians in general, the government and industry and business had shown an increased concern for the environment (Table 2.4.2.2).

Table: 2.4.2.1

Perceptions of Environmental Quality, 1990

Question	Past year	Next 10 years	Next 30 years
The second reaction	percent agreeing		
The environment has gotten/will get better:	29	44	57
The environment has gotten/will get worse:	33	31	26
The environment has stayed/will stay the same:	36	23	8

Source

Angus Reid poll, reported in Montreal Gazette. October 15, 1990.

9. Centre de recherche sur l'opinion publique.

10. Montreal Gazette. Oct. 15, 1990. p. A1.

According to a Gallup poll¹¹, the proportion of shoppers purchasing environmentally friendly products increased from 46 percent in January, 1990 to 71 percent in January 1991.

Table: 2.4.2.2

Perception of Environmental Concern, 1990

Question		percent agreeing
Over the past year who has shown	Government:	53
increased concern for the environment?	Industry and business:	54
	Canadian consumers:	81
	You personally:	86

Source:

Angus Reid poll, reported in Montreal Gazette. October 15, 1990.

Table: 2.4.2.3

Changes in Environmental Behaviour, 1989-90

	Time of survey			
Question	July 1989	Sept 1990		
	percent as	preeing		
Over the past year, have you avoided taking your car to work for the sake of				
the environment?	37	43		
Have you given money to clean up the environment?	32	37		
Do you go out of your way to seek biodegradable products?	51	74		

Source

Angus Reid poll reported in Montreal Gazette. October 15, 1990.

The same poll indicated that 48 percent of Canadians lived in a community with a "blue box" recycling programme. Seventy eight percent of those living in Ontario had access to such a programme while only 20 percent in Atlantic Canada did.

Mandatory recycling of newspapers, cans and bottles was seen as beneficial by 80 percent of the respondents. Other actions meeting with high approval were:

Action	Percent approval
reduced product packaging	75
banning of plastic foam cups	75
banning of aerosol spray cans	73
banning of disposable diapers	70

A December 1990 poll by Decima Research¹² provided evidence that Canadians were making sacrifices for a cleaner environment and a majority would be willing to pay for

11. Toronto Star. January 15, 1991. p. A19.

12. Ottawa Citizen. April 14, 1991.

improved energy efficiency. Seventy-five percent of respondents said they would pay \$25 to replace an inefficient shower head. Respondents also reported they would approve of penalty charges for plastic bags (65 percent) and garbage collection (57 percent).

According to the Canadian Wildlife Service survey, The Importance of Wildlife to Canadians,13 Canadians spend over \$5 billion annually on wildlife-related activities. Over \$73 million of this is in contributions to wildlife organizations. According to the survey, Canadians would be willing to pay an additional \$1 billion to protect their access to these activities.

Although the quality of the environment is seen as important to most people, how many people really make compromises in their lifestyles to have less of an impact? Often, the adoption of lower-impact lifestyles are motivated by economic concerns. If the price of gas rises, people drive smaller and more efficient cars. People buy more energy-efficient shower fittings and better insulation in response to the cost of energy. Other actions such as recycling, composting, the use of recycled products and limiting the use of pesticides demonstrate a conscious effort to lead a lower-impact lifestyle.

Households and the Environment Survey

More Efficient Equipment

Householders are generally aware of many steps they can take to reduce the household's impact on the environment. Some of these steps are simple, requiring only a change in the brand of product selected from the supermarket shelf. Others require a greater effort - avoiding the use of pesticides on a lawn may demand digging out the weeds by hand. In September 1990, Statistics Canada conducted a pilot survey that inquired about some of these actions.

Table: 2.4.2.4

Households with	1 Energy	Efficient	Fittings.	Canada,	1990
-----------------	----------	-----------	-----------	---------	------

	Percentage of households which:1					
Type of fitting	Have fitting	Do not have fitting				
	Percent total h	nouseholds				
Programmable thermostat	17.8	81.0				
Double glazed or other						
thermally efficient windows	84.0	14.0				
	Percent households with	at least one shower2				
Low flow showerheads	27.2	66.3				
Source:						

Statistics Canada, Environment and Wealth Accounts Division

Notes

¹ Totals do not add to 100 percent because of non-response. ² Four percent of households reported no shower.

According to the survey, only 18 percent of households used programmable thermostats (Table 2.4.2.4); there was no

13. Environment Canada. Op.cit.

significant difference between provinces.

According to the survey, 84 percent of Canadian households had storm windows or multi-pane windows. Only half the houses in British Columbia had such windows. This may be an effect of the milder climate in British Columbia. The amount of energy saved by installing this equipment may not justify the expense.

Of households with a shower, 27 percent reported having a water-saver shower head. These shower heads have been recently promoted as saving significant amounts of energy by reducing the amount of hot water required to shower.

Pesticides and Composting

Two-thirds of all households in Canada have a yard or garden. The survey collected information on the use of pesticides and whether the household had a compost bin or heap.

Legislation strictly controls the commercial use and disposal of pesticides. Households also contribute pesticides to the contaminant load in local wildlife and water. Forty three percent of Canadian households with yards or gardens apply pesticides. Provincial averages range from 50 percent in Ontario and the Prairie Provinces to 27 percent in the Atlantic Provinces. There is also a potential problem in the disposal of unused household pesticides and pesticide containers (Table 2.4.2.5).

Composting is an efficient method of returning organic matter to the soil as well as providing some plant nutrients without the resource use required for artificial fertilizers. Perhaps the greatest value of composting is that it reduces the load on public waste handling systems. As much as one third of household waste is organic matter which can be composted. Of all households with yards or gardens, 22 percent have facilities for composting. Provincial averages range from 52 percent in British Columbia to 10 percent in Quebec (Table 2.4.2.5).

Domestic Water Supplies

In Canada, 83 percent of households are supplied with water by their municipality. The extent to which households have water filters can be taken as a measure of lack of satisfaction with the quality of treatments applied to that water. This also applies to some extent to the purchase of bottled water for drinking. In Canada, 10.5 percent of households who obtain their water from the municipality have water filters; 23.4 percent buy bottled water (Table 2.4.2.6).

Table: 2.4.2.5

Households Which Use Pesticides and Composting, 1990

			Percent of households with yard or garden1					
	Percent all hour	seholds	Apply pestici	des	Have compost bi	in/heap		
Province/Region	no yard	with yard	yes	no	yes	no		
			percent					
Atlantic Provinces	22.2	77.8	26.9	68.1	15.9	83.9		
Quebec	44.3	55.7	36.9	60.2	9.8	89.8		
Ontario	31.4	68.6	49.4	45.9	24.0	75.7		
Prairie Provinces	23.7	76.3	50.4	45.9	20.1	79.0		
British Columbia	32.8	67.2	38.0	55.2	52.0	47.8		
Canada	32.9	67.1	43.3	51.8	22.9	76.7		

Notes: ¹ Totals do not add to 100 percent because of non-response.

Statistics Canada. Environment and Wealth Accounts Division.

Table: 2.4.2.6

Households with Water Filters or Buying Bottled Water, 1990

	Percent of total household Water supplied by:	81	Percent of household on mur	nicipal supply1
Province/Region	Municipality	Other	Have filter	Buy water
		percent		
Atlantic Provinces	58.0	41.3	7.9	10.9
Quebec	88.1	11.4	8.1	44.1
Ontario	83.1	14.9	12.1	19.4
Prairie Provinces	82.8	16.4	9.8	12.8
British Columbia	87.2	10.7	12.5	8.2
Canada	82.8	15.8	10.5	23.4

Source:

Statistics Canada. Environment and Wealth Accounts Division.

Notes: ¹ Totals do not add to 100 percent because of non-response.

Human Activity and the Environment

3. Socio-Economy

Canada's economy is characterized by a reliance on energy and natural resources. Exports are dominated by raw and semifinished goods. Because of the availability of energy, water, land and mineral resources, Canada is competitive in industrial sectors using these resources intensively. Extraction, harvesting, energy generation, transportation and primary transformation are generally more stressful to the environment than services and secondary manufacturing industries.

Agriculture, forestry, manufacturing, mining, fishing, transportation and construction are essential to the maintenance of a strong economy and high standard of living in Canada. Yet concentrating these activities in small geographic areas, and extending them into sensitive natural areas, has effects on the environment and risks their longterm sustainability.

This section provides statistics on socio-economic conditions and processes. Conditions represent the stock of man-made goods and the state of the economy. Processes cause changes in these conditions.

Understanding the **conditions** provides a perspective of the relative magnitude of the various economic activities and provides a background for assessing their relative impacts. The conditions are measured in terms of economic value, importance in terms of employment and the quantity of infrastructure.

Information on the **processes** (production, consumption, and mitigation efforts) provides insight into the potential for growth and change of these economic activities.

Wastes are discussed in a separate section rather than being grouped with environmental impacts. The generation of wastes does not necessarily have a direct effect on the environment. Wastes can be treated and recycled to minimize their impact. Therefore, wastes are considered an output of the socio-economic system.

Statistics Canada

3.1 Socio-economic Conditions

An understanding of the relationships between economic development and the environment is crucial to making environmental decisions. Economic decisions often have unintended effects on people and the environment. Environmental decisions often have economic side-effects.

An overview of the activities and infrastructure associated with industry, transportation, utilities and dwellings is presented in this section. As well economic indicators and resource accounting provide linkages between socioeconomic conditions and the environment.

3.1.1 Industry

Using the input-output tables of the System of National Accounts, it is possible to track the energy-intensity, resource-intensity and contaminant-intensity of the sectors of the Canadian economy.

To help understand the interactions between economic activity and the environment it is helpful to group the activities according to the types of effect they have. Both the 1978 and 1986 editions of *Human Activity and the Environment* classified manufacturing industries into those with high, medium or low stress on air or water. This concept has been extended to take into account a wider variety of economic activities and impacts.

To simplify the long-term tracking of potential impacts, efficiencies, and mitigation efforts, Statistics Canada has developed an input-output based classification of economic activities. This classification is based on the categories used in the input-output tables of Statistics Canada **System of National Accounts**. These tables focus on the commodity transactions of all economic activities, showing the total input and output of commodities. In addition, the system provides

Industry

a measure of the value added by sector, the flow of commodities to final demand sectors¹⁴ and the cost of primary inputs to industries. These tables are used to measure the Gross Domestic Product (GDP) of Canada.¹⁵

With this input-output information, one can assess the value of the inputs and outputs to each industry group. Currently, only value data are available but research is being undertaken to supplement this with physical quantity data in the future.

The input-output tables portray the structure of the Canadian economy in a categorization of commodities and industries. To determine impacts, these commodities were classified into raw natural resources, processed natural resources, energy commodities, potential contaminants and other commodities (Table 3.1.1.1):

- Raw natural resources are commodities extracted from the ground or harvested from the land or water.
- **Energy** commodities are generally consumed as fuel. The non-energy uses of these commodities (for example, the use of petroleum for chemicals and plastics) have been removed in the following tables.
- Potential contaminants are commodities about which there is a concern about toxic or hazardous properties. Many contaminants of interest cannot be disaggregated in the input-output tables. However, the following items are available:

Potential contaminant	Reason for inclusion
Radioactive substances, asbestos, lead, sodium cyanide	hazardous substances
Coal tar	contains carcinogenic polynuclear aromatic hydrocarbons
Refrigeration equipment	contain CFCs, believed to contribute to the depletion of the ozone layer
Transformers	contain carcinogenic PCBs
Batteries	contain toxic heavy metals mercury and cadmium
Benzene, toluene, and xylene; carbon tetrachloride; tnchloroethylene; perchloroethylene	hazardous substances
Vinylchloride monomer	carcinogenic
Sodium cyanide	toxic
Fluorinated halogen hydrocarbons	include CFCs and halogenated solvents

See the **Contaminants** section for more details on these and other substances.

Other Commodities include processed goods, services, and all other inputs.

The consumption of water is an extension of this method beyond the input-output tables. Industries take in, recirculate and discharge large amounts of water. In doing so, they risk altering the water by lowering the water table or contaminating water returned to the environment. The amount consumed is the difference between water intake and discharge; this is the actual amount incorporated into a product or released as steam¹⁶. By analyzing the relative value (or quantity, as in the case of water) of the commodities used by each industry, we can determine the degree of dependence on each of these commodity classes. For grouping the industries according to these values, the following categories are used:

- Harvesting and Extracting industries extract raw materials from the environment (agriculture, fishing and trapping, logging and forestry, mining, crude petroleum and natural gas, and quarry and sand pit industries).
- Resource-Intensive Industries are primary transformers of raw natural resources, for example, metal smelting, food production, pulp and paper and wood industries. Raw natural resources for this analysis exclude energy resources. An industry is considered to have a high resource intensity if **raw resources** make up 6 percent or more of the total value of its inputs.
- Energy-Intensive Industries are major consumers of electricity or fuel. Among the most intensive energy consuming industries are: electrical power systems, nonferrous smelting and refining, cement industry, utility industries and pulp and paper industries. An industry is considered to have a high energy intensity if energy commodities comprise 6 percent or more of the total value of its inputs.
- Contaminant-Intensive Industries have a high level of consumption of the potential contaminants (identified above). They include: commercial refrigeration equipment, battery industry, plastic and synthetic resin industry, industrial chemicals industry and non-ferrous While not all the potential smelting and refining. contaminants consumed will become wastes or environmental contaminants, it is useful to identify the consumers of these commodities. An industry is considered to be a high contaminant intensive industry if 0.25 percent or more of its input costs are potential contaminants¹⁷

^{14.} Commodities purchased by the end-user.

See Statistics Canada. 1989. A User Guide to the Canadian System of National Accounts. Catalogue 13-589E.

^{16.} The water consumption data were derived from information provided by the Inland Waters Directorate, Environment Canada.

^{17.} This may appear to be a small proportion but the list of potential contaminants is so limited that most industries use none at all.

• Water-Intensive Industries include: non-metallic mineral industries, concrete products, crude petroleum and natural gas, plastic products, ready-mix concrete, motor vehicle parts and pulp and paper industries. An industry is considered to have a high water intensity if greater than 15 percent of its total water intake is consumed.

The division of the industries into high, medium and low impact classes is a way of simplifying the complex distribution of intensities. The high classification represents about the top twenty percent of the industries in each category.

For each industry, the value of total inputs, and proportion of input in each of the above interaction classes are detailed in Table 3.1.1.2. This table also summarizes the classification of industries into high, medium and low impact levels. Table 3.1.1.3 provides SIC (Standard Industrial Classification) codes for the high impact industries.

The economic importance of resource-intensive and energyintensive industries declined between 1961 and 1987 (Tables 3.1.1.4 and 3.1.1.5, Figures 3.1.1.1 and 3.1.1.2).

In 1986, 22 percent of Canada's manufacturing employment was in the high resource-intensity class; 11 percent was in the high energy-intensity class; 22 percent was in the high contaminant-intensity class and 7 percent was in high water-intensity industries (Table 3.1.1.6). Similarly, 22 percent of manufacturing establishments¹⁸ were classified as high resource-intensity and 2.4 percent were classified as high energy-intensity (Table 3.1.1.7). Since many industries are classified in more than one category, these numbers are not additive.

Distribution of Manufacturing

The 1986 Census of Manufactures is the most recent source of detailed data on the complete manufacturing sector. The Environment and Wealth Accounts Division's Manufacturing Database allows the aggregation of manufacturing data by geographic units appropriate for environmental analysis. This database has been used to create Tables 3.3.1.6 and 3.3.1.7 as well as the maps presented in the **Production** section.

An establishment is a reporting unit for the Census of Manufactures. It is the smallest unit capable of reporting certain specified input and output data; usually a plant or mill.

Commodities Used for Impact Classification

		Na	tural Resource Commodities		
1	Cattle and calves	22	Wool in grease	48	Crude mineral n.e.s.
2	Sheep and lambs	24	Logs and bolts	49	Sand and gravel
3	Hogs	25	Poles, pit props fence-posts etc.	50	Stone, crude
4	Poultry	26	Pulpwood	63	Animal materials for drugs and perfume
5	Other live animals	27	Other crude wood materials	245	Coal tar
7	Wheat, unmilled	28	Custom forestry	397	Lubricating oils and greases
8	Barley, oats, rye, corn, grain, n.e.s.	29	Fish landings	398	Benzene, toluene and xylene
9	Milk, whole, fluid, unprocessed	30	Hunting and trapping products	400	Naphtha
10	Eggs in the shell	32	Gold and alloys in primary form	401	Asphalt and coal oils, n.e.s.
11	Honey and beeswax	33	Radio-active ores and concentrates	402	Petrochemical feed stock
12	Nuts, edible, not shelled	34	Iron ores and concentrates	403	Fertilizers
13	Fruits, fresh, excluding tropical	35	Bauxite and alumina	516	ice
14	Vegetables, fresh	36	Metal ores and concentrates n.e.s.	549	Water and other utilities
15	Hay, forage, and straw	41	Sulphur, crude and refined	588	Cotton raw and semi-processed
16	Seeds excluding oil and seed grades	42	Asbestos, unmanufactured, crude and fibrous	589	Natural rubber and allied gums
17	Nursery stock and related materials	43	Gypsum	590	Sugar, raw
18	Oil seeds, nuts and kemets	44	Salt	591	Cocoa beans, unroasted
19	Hops including lupulin	45	Peatmoss	592	Green coffee
20	Tobacco, raw	46	Clay and other crude refractory materials	593	Tropical fruit
21	Mink skins, ranch undressed	47	Natural abrasives and industrial diamonds		
			Energy Commodities		
37	Coal	394	Aviation gasoline	399	Butane, propane and other tiquid petroleum ga
38	Crude mineral oils	395	Motor gasoline	546	Electric power
39	Natural gas	396	Fuel oil	548	Coke
		Poter	ntial Contaminant Commodities		
33	Radio-active ores and concentrates	355	Refrigerators, freezers and combination domestic	439	Carbon tetrachloride
42	Asbestos, unmanufactured, crude and fibrous	367	Transformers and converters excl. telephone	440	Vinylchloride monomer
245	Coal tar	369	Batteries	441	Trichloroethylene
255	Lead, primary forms	388	Asbestos products	442	Perchloroethylene
267	Lead and lead alloy products cast, rolled and extruded	398	Benzene, toluene and xytene	443	Fluorinated halogen hydrocarbons
326	Refrigeration and air conditioning equipment, excluding household	430	Sodium cyanide		

Source: Statistics Canada. Environment and Wealth Accounts Division.

Note:

See the text for an explanation of the definitions used in this table.

Industry Impact Classification, 1984

		Inputs ¹			Impact class					
					Potential				Potential	
	Title	Total inputs	Raw resource	Energy	contam- inant	Other	Raw resource	Energy	contam- inant	Water
	110	thousand		Lindigy						
		dollars		percent	of total					
	Harvesting and Extraction									
1	Agricultural & Related Services Industries	23 782 214	24.1	6.0	0.0	69.9	High	High	Low	
2	Fishing & Trapping Industries	949 959	3.0	13.3	0.0	83.7	Med	High	Low	
3	Logging & Forestry Industries	6 049 599	18.1	3.8	0.0	78.2	High	Med	Low	
4	Gold Mines	1 005 995	0.3	5.4	0.8	93.7	Low	Med	High	Lon
5	Other Metal Mines Iron Mines	4 574 107 1 457 375	0.9	6.8 12.9	0.1	92.3 86.4	Low	High High	Med	Lo
6	Asbestos Mines	374 891	0.3	12.5	0.0	88.0	Low	High	Low	Lo
8	Non-metal Mines excl. Coal & Asbestos	1 193 076	0.5	9.6	0.0	90.9	Low	High	Low	Lo
9	Salt Mines	201 710	0.7	6.6	0.0	93.1	Low	High	Low	Me
10	Coal Mines	1 577 067	0.7	6.0	0.0	93.3	Low	High	Low	Lo
11	Crude Petroleum & Natural Gas	28 661 447	0.1	1.5	0.0	98.4	Low	Low	Low	Hig
12	Quany & Sand Pit Industries	792 882	2.8	7.6	0.0	89.6	Med	High	Low	
	Manufacturing									
13	Service Related to Mineral Extraction	4 385 667	0.6	6.4	0.0	93.0	Low	High	Low	
14	Meat & Meat Products (excl. Poultry)	8 350 428	50.3	0.8	0.0	48.9	High	Low	Low	Мө
15	Poultry Products industry	1 469 294	56.5	1.2	0.0	42.3	High	Low	Low	Lo
16	Fish Products Industry	1 772 328	34.3	1.9	0.0	63.8	High	Low	Low	Lo
17	Fruit and Vegetable Industries	2 377 051	12.1	1.7	0.0	86.2	High	Low	Low	Hig
18	Dairy Products Industries	6 123 106	48.0	1.3	0.0	50.7	High	Low	Low	Me
19	Feed Industry	2 711 413	23.4	1.6	0.0	75.0	High	Low	Low	Lou
20	Vegetable Oil Milis (excl. Com Oil)	958 958	70.8	1.3	0.0	27.9 98.3	High Low	Low	Low	Lo
21 22	Biscuit Industry Bread & Other Bakery Products Industries	567 350 1 446 078	0.3	2.5	0.0	98.3	Low	Med	Low	Hig
23	Cane & Beet Sugar Industry	562 854	45.2	3.5	0.0	51.9	High	Med	Low	Lo
24	Misc. Food Products Industries	6 279 177	19.7	1.4	0.0	78.9	High	Low	Low	Lo
25	Soft Drink Industry	1 790 232	0.6	1.3	0.0	98.2	Low	Low	Low	Hig
26	Distillery Products Industry	833 733	3.7	2.7	0.0	93.7	Med	Med	Low	
27	Brewery Products Industry	1 925 907	1.0	1.7	0.0	97.3	Med	Low	Low	Hig
28	Wine Industry	235 937	8.9	1.0	0.0	90.1	High	Low	Low	Hig
29	Tobacco Products Industries	1 641 344	20.9	0.5	0.0	78.5	High	Low	Low	
30	Rubber Products Industries	2 720 714	5.0	2.2	0.0	92.7	Med	Med	Med	Hig
31	Plastic Products Industries	3 589 864	0.2	1.9	0.1	97.8	Low	Low	Med	Hig
32	Leather Tanneries	216 347	0.4	2.1	0.0	97.6	Low	Med	Low	
33	Footwear Industry	898 995	0.3	0.8	0.0	98.9	Low	Low	Low	
34	Misc Leather & Allied Products Industries	221 992	0.2	0.9	0.0	98.9	Low	Low	Low	
35	Man-made Fibre Yam & Woven Cloth	2 067 846	5.2 0.2	3.4	0.0	91.5 97.5	Med Low	Med Med	Low	Me
36 37	Wool Yam & Woven Cloth Industry	307 126 378 717	0.2	1.4	0.0	97.5	Low	Low	Low	ING
38	Broad Knitted Fabric Industry Misc. Textile Products Industries	1 714 853	1.5	1.4	0.0	97.1	Med	Low	Med	Me
39	Contract Textile Dyeing & Finishing	161 535	2.8	6.8	0.0	90.4	Med	High	Low	Me
40	Carpet, Mat & Rug Industry	701 449	0,1	2.4	0.0	97.6	Low	Med	Low	Me
41	Clothing Industries excl. Hosiery	5 080 341	2.7	0.6	0.0	96.6	Med	Low	Med	
42	Hosiery Industry	275 792	0.1	1.7	0.0	98.2	Low	Low	Low	
43	Sawmills, Planing & Shingle Mills	6 458 841	42.9	3.1	0.0	54.1	High	Med	Low	Lo
44	Veneer and Plywood Industries	809 480	22.6	2.9	0.0	74.5	High	Med	Low	
45	Sash, Door & Other Millwork Industries	1 777 078	0.4	1.3	0.0	98.3	Low	Low	Med	
46	Wooden Box & Coffin Industries	232 052	1.4	1.8	0.0	96.8	Med	Low	Low	
47	Other Wood Industries	819 129	13.3	3.9 1.2	0.0	82.8 98.7	Low	Med	Low	
48 49	Household Furniture Industries Office Furniture Industries	1 391 456 701 922	0.1	1.2	0.0	96.7	Low	Low	Low	
49 50	Other Furniture & Fixture Industries	959 916	0.2	1.1	0.0	98.6	Low	Low	Med	
51	Pulp & Paper Industries	13 318 456	12.0	14.6	0.1	77.1	High	High	Med	Hig
52	Asphalt Roofing Industry	360 803	26.6	2.6	0.4	70.3	High	Med	High	
53	Paper Box & Bag Industries	2 256 883	0.6	1.1	0.0	98.3	Low	Low	Low	
54	Other Converted Paper Products Industries	1 809 126	1.1	1.3	0.1	97.4	Med	Low	Med	Hig
55	Printing & Publishing Industries	8 058 984	0.2	0.7	0.0	99.1	Low	Low	Med	
56	Platemaking, Typesetting & Bindery	823 181	0.6	0.9	0.1	98.4	Low	Low	Med	
57	Primary Steel Industries	7 554 414	10.1	12.6	0.0	77.4	High	High	Low	Me
58	Steel Pipe & Tube Industry	1 153 140	0.1	1.8	0.0	98.0	Low	Low	Med	Me
59	Iron Foundries	763 387	4.7	4.5	0.0	90.8	Med	Med	Med	Lo
80	Non-terrous Smelting & Refining Industry	7 505 560	52.2	27.6	3.7	39.1	High	High	High	Me
61	Aluminum Rolling Casting, Extruding	1 427 290	0.2	2.2	0.0	97.6	Low	Med	Low	Me
62	Copper Rolling Casting & Extruding	490 486	0.3	2.4	0.0	97.3	Low	Med Med	Med	Hig
63 64	Other Metal Rolling, Casting etc. Power Boiler & Struct. Metal Industry	798 018 2 050 380	0.4	2.4	1.7	95.4 98.7	Low	Low	High Med	Lo
65	Ornamental & Arch. Metal Products industry	1 101 087	0.6	1.1	0.0	98.2	Low	Low	Low	LU
66	Stamped, Pressed & Coated Metals	3 800 098	16.7	1.2	0.0	82.1	High	Low	Med	Me
67	Wire and Wire Products Industries	1 600 624	0.3	2.0	0.0	97.7	Low	Low	Med	Me

Industry Impact Classification, 1984

		inputs ¹					Impact class			
	Title	Total	Raw		Potential contam-		Raw		Potential contam-	
	inte	inputs	resource	Energy	inant	Other	resource	Energy	inant	Water
		thousand dollars		percent	of total					
68	Hardware, Tool & Cutlery Industries	1 188 187	0.3	1.3	0.0	98.4	Low	Low	Low	
69	Heating Equipment Industry	361 404	0.1	0.9	1.1	97.8	Low	Low	High	
70	Machine Shops Industry	843 007	0.3	1.4	0.0	98.3	Low	Low	Med	
71	Other Metal Fabricating Industries	1 466 989	0.3	2.1	0.0	97.6	Low	Med	Med	
72	Agriculture implement Industry	1 043 761	0.4	1.4	0.2	98.0	Low	Low	Med	
73	Commercial Refrigeration Equipment	409 913	0.2	0.8	17.5	81.5	Low	Low	High	
74	Other Machinery & Equipment Industries	5 728 586	0.3	1.0	0.1	98.6	Low	Low	Med	
75 76	Aircraft & Aircraft Parts Industry Motor Vehicle Industry	2 444 498 21 441 816	0.1	1.1	0.0	98.9	Low	Low	Low	Low
77	Truck, Bus Body & Trailer Industry	1 029 012	0.1	0.4	2.2 0.9	97.3 98.2	Low	Low	High High	Med
78	Motor Vehicle Parts & Accessories	11 650 235	0.4	1.1	0.3	98.3	Low	Low	High	High
79	Railroad Rolling Stock Industry	1 025 869	0.4	1.7	0.3	97.6	Low	Low	High	Med
80	Shipbuilding and Repair Industry	1 083 017	0.3	1,1	0.0	98.5	Low	Low	Med	Low
81	Misc. Transportation Equipment industries	452 408	0.3	1.1	0.6	98.0	Low	Low	High	
82	Small Electrical Appliance Industry	577 509	0.2	0.8	0.3	98.7	Low	Low	High	
83	Major Appliances (Electric & Non-Electric)	957 034	0.3	0.9	5.9	92.9	Low	Low	High	
84	Record Players, Radio & TV Receiver	483 299	0.0	0.2	0.0	99.7	Low	Low	Low	
85	Electronic Equipment Industries	4 369 519	0.1	0.7	1.0	98.2	Low	Low	High	
86	Office, Store & Business Machines	2 086 502	0.0	0.5	0.0	99.5	Low	Low	Low	
87	Communications, Energy Wire & Cable	1 240 128	0.1	1.4	0.1	98.4	Low	Low	Med	
88	Battery Industry	334 503	0.2	1.4	12.7	85.7	Low	Low	High	
89	Other Electrical & Electronic Products	2 979 873	0.4	1.9	3.5	94.2	Low	Low	High	
90 91	Clay Products Industry Cement Industry	200 539 697 914	3.4	12.0	0.0	84.6	Med	High	Low	
92	Concrete Products Industry	672 026	4.4	15.7	0.0	79.9	Med	High	Low	High
93	Ready-mix Concrete Industry	1 098 172	15.2	3.4	0.0	90.0	High	Med	Low	High
94	Glass & Glass Products Industries	1 251 542	2.7	5.0	0.0	81.3 92.3	High	Med	Low	High
95	Non-metallic Mineral Products n.e.c.	1 478 943	8.5	9.4	0.3	81.8	High	High	Low High	Med High
96	Refined Petroleum & Coal Products	23 793 326	6.2	4.2	0.0	15.7	High	Med	Med	Med
97	Industrial Chemicals Industries n.e.c.	6 738 446	32.9	9.0	3.7	56.8	High	High	High	Med
98	Plastic & Synthetic Resin Industry	1 916 633	1.4	4.2	5.2	89.2	Med	Med	High	Med
99	Pharmaceutical & Medicine Industry	1 985 875	1.4	0.7	0.0	97.9	Med	Low	Low	Med
100	Paint and Varnish Industry	1 113 636	4.7	0.9	1.9	92.5	Med	Low	High	Med
101	Soap & Cleaning Compounds Industry	1 359 532	0.2	1.0	0.0	98.8	Low	Low	Med	Med
102	Toilet Preparations Industry	916 580	0.3	0.6	0.1	99.0	Low	Low	Med	
103	Chemical & Chemical Products n.e.c.	3 966 989	11.1	4.0	1.7	83.2	High	Med	High	High
104	Jewellery & Precious Metal Industry	636 115	34.5	0.6	0.0	64.9	High	Low	Med	
105	Sporting Goods & Toy Industries	977 205	0.2	1.1	0.0	98.7	Low	Low	Med	
106	Sign and Display Industry	467 583	0.2	1.4	2.6	95.8	Low	Low	High	••
107	Floor Tile, Linoleum, Coated Fabric Other Manufacturing Industries n.e.c.	194 878	0.6	2.0	0.3	97.0	Low	Med	High	
100		2 835 504	0.8	1.0	0.3	98.0	Low	Low	High	
	Construction, Services and other Industries									
109	Repair Construction	9 617 600	2.4		0.4					
110	Residential Construction	18 772 299	1.3	1.1	0.1	96.4	Med	Low	Med	
111	Non-residential Building Construction	11 799 200	1.0	0.8	0.8	97.3 97.4	Med	Low	High High	**
112	Road, Highway & Airstrip Construction	3 324 481	11.8	7.8	0.0	80.3	High	High	Med	**
113	Gas & Oil Facility Construction	7 955 025	0.4	1.5	0.0	98.1	Low	Low	Low	••
114	Dams & Irrigation Projects	3 522 337	0.3	0.9	0.0	98.8	Low	Low	Med	
115	Railway & Telephone Telegraph Construction	1 753 101	1.8	0.5	0.2	97.4	Med	Low	Med	
116	Other Engineering Construction	4 970 676	1.4	0.2	0.1	98.2	Med	Low	Med	
117	Construction, Other Activities	330 138	0.5	8.3	0.1	91.0	Low	High	Med	
118	Air Transport & Services Incidental	5 473 593	0.2	16.1	0.0	83.6	Low	High	Low	
119	Railway Transport & Related Services	6 615 415	0.9	8.6	0.1	90.0	Low	High	Med	
120	Water Transport & Related Services	3 060 857	0.8	9.8	0.0	89.4	Low	High	Med	**
121	Truck Transport Industries	9 720 694	0.7	10.4	0.3	88.6	Low	High	High	
122	Urban Transit System Industry	987 930	2.4	12.8	0.8	84.0	Med	High	High	
123 124	Interurban & Rural Transit Systems Taxicab Industry	323 692	0.9	9.8	0.6	88.6	Low	High	High	**
125	Other Transport & Services to Transport	928 704 2 678 473	0.5	12.8	0.2	86.6	Low	High	Med	**
126	Highway & Bridge Maintenance Industry	136 824	1.2 5.5	7.6 9.6	0.0	91.2	Med	High	Low	**
127	Pipeline Transport Industries	2 940 849	0.2	10.6	0.0	84.8 89.2	Med	High High	Low	**
128	Storage and Warehousing Industries	1 022 227	0.7	5.0	0.0	94.3	Low	Med	Low	
129	Telecommunication Broadcasting Industry	2 424 904	0.1	1.2	0.0	98.7	Low	Low	Low	
130	Telecommunication Carriers & Other	10 476 432	0.2	1.3	0.0	98.5	Low	Low	Low	
131	Postal Service Industry	2 362 967	0.0	1.0	0.0	99.0	Low	Low	Low	
132	Electric Power Systems Industry	14 283 387	1.3	43.2	1.3	86.3	Med	High	High	
133	Gas Distribution Systems Industry	1 699 866	0.1	2.3	0.0	97.6	Low	Med	Low	
134	Other Utility Industries n.e.c.	575 563	1.8	15.1	0.0	83.2	Med	High	Low	
135	Wholesale Trade Industries	28 350 058	0.6	3.3	0.0	96.1	Low	Med	Med	
136	Retail Trade Industries	35 792 904	1.4	3.7	0.0	94.6	Med	Med	Med	
137	Banks, Credit Union & Other Deposit Institutions	9 031 153	0.1	0.9	0.0	99.0	Low	Low	Low	

Industry

Industry Impact Classification, 1984

	Inputs'						Impact class			
	Title	Total inputs	Raw resource	Energy	Potential contam- inant	Other	Raw resource	Energy	Potential contam- inant	Water
		thousand dollars		percent	of total		1			
138	Trust, Other Finance & Real Estate	35 003 951	1.3	3.9	0.0	94.9	Med	Med	Low	
139	Insurance Industries	6 264 846	0.1	0.5	0.0	99.4	Low	Low	Low	**
140	Government Royalties on Natural Resources	6 445 699	0.0	0.0	0.0	100.0	Low	Low	Low	
141	Owner Occupied Dwellings	32 231 900	0.0	0.0	0.0	100.0	Low	Low	Low	
142	Other Business Service Industries	7 163 263	0.0	1.2	0.0	98.8	Low	Low	Low	
143	Professional Business Services	9 548 481	0.1	0.5	0.0	99.5	Low	Low	Low	
144	Advertising Services	1 141 573	0.4	2.2	0.0	97.4	Low	Med	Low	
145	Educational Service Industries	1 223 290	1.5	3.4	0.0	95.1	Med	Med	Low	
146	Hospitals	259 845	0.5	5.1	0.0	95.0	Low	Med	Low	
147	Other Health Services	10 110 098	0.3	1.5	0.0	98.3	Low	Low	Low	
148	Accommodation & Food Service Industry	16 592 958	2.1	3.5	0.0	94.4	Med	Med	Low	
149	Motion Picture & Video Industries	1 057 817	0.2	1.3	0.0	98.5	Low	Low	Low	
150	Other Amusement & Recreational Services	3 486 606	0.3	2.5	0.0	97.3	Low	Med	Low	
151	Laundries & Cleaners	1 173 454	1.8	7.2	0.4	90.6	Med	High	High	
152	Other Personal Services	2 996 903	0.4	2.0	0.0	97.6	Low	Low	Low	
153	Photographers	342 962	1.1	5.4	0.0	93.6	Med	Med	Low	
154	Misc. Service Industries	5 763 966	0.1	3.1	0.0	96.8	Low	Med	Low	
155	Operating Supplies ²	12 141 183	0.4	0.0	2.7	96.9	Low	Low	High	
156	Office Supplies ²	4 035 443	0.0	0.0	0.0	100.0	Low	Low	Low	
157	Cateteria Supplies ²	1 661 452	7.5	0.0	0.0	92.5	High	Low	Low	
158	Laboratory Supplies ²	1 269 782	0.5	0.0	1.2	98.3	Low	Low	High	
159	Travel & Entertainment ²	7 904 958	0.1	7.8	0.1	92.0	Low	High	Med	
160	Advertising & Promotion ²	6 769 118	0.0	0.0	0.0	100.0	Low	Low	Low	
161	Transportation Margins ²	13 627 506	0.0	0.0	0.0	100.0	Low	Low	Low	
	All industries	705 055 251	5.2	5.9	0.3	88.5				

Source:

Statistics Canada. Environment and Wealth Accounts Division. Original data provided by Input-Output Division.

Note:

See the text for an explanation of the categories used.

¹ The figures have been adjusted for self-generated energy and non-energy uses of energy commodities. Therefore the total for some industries may not total to 100.

² These are fictive categories used for classifying groups of commodities where the precise commodity content is unknown.

Industries by Impact Class¹

	Resource-Intensive Industries			Energy-Intensive Industries					
Code ²	Industry	SIC (1980) Code ² Industry		Industry	SIC (1980)				
20	Vegetable Oil Mills (excl. Com Oil)	106	132	Electric Power Systems Industry	491				
15	Poultry Products Industry	1012	60	Non-ferrous Smelting & Refining Industry	295				
60	Non-terrous Smelting & Retining Industry	295	118	Air Transport & Services Incidental	451,452				
14	Meat & Meat Products (excl. Poultry)	1011	91	Cement Industry	352				
18	Dairy Products Industries	104	134	Other Utility Industries n.e.c.	499				
23	Cane & Beet Sugar Industry	1081	51	Pulp & Paper Industries	271				
43	Sawmills, Planing & Shingle Mills	251	2	Fishing & Trapping Industries	031-033				
104	Jewellery & Precious Metal Industry	392	6	Iron Mines	0617				
16	Fish Products Industry	102	122	Urban Transit System Industry	4571				
97	Industrial Chemicals Industries n.e.c.3	371	124	Taxicab Industry	4581				
52	Asphalt Roofing Industry	272	57	Primary Steel Industries	291				
1	Agricultural & Related Services Industry	011-23	7	Asbestos Mines	0621				
19	Feed Industry	1053	90	Clay Products Industry	351				
44	Veneer and Plywood Industries	252	127	Pipeline Transport Industries	461				
29	Tobacco Products Industries	121,122	121	Truck Transport Industries	456				
24	Misc. Food Products Industries	109.1051,1052,1082,1083	123	Interurban & Rural Transit Systems	4572				
3	Logging & Forestry Industries	0411,0412,0511	120	Water Transport & Related Services	454,455				
66	Stamped, Pressed & Coated Metals	304	126	Highway & Bridge Maintenance Industry	4591				
93	Ready-mix Concrete Industry	355	8	Non-metal Mines excl. Coal & Asbestos	0622-0624,0629				
47	Other Wood Industries	259	95	Non-metallic Mineral Products n.e.c.	357-359				
17	Fruit and Vegetable Industries	103	97	Industrial Chemicals Industries n.e.c.	371				
51	Pulp & Paper Industries	271	119	Railway Transport & Related Services	453				
112	Road, Highway & Airstrip Construction	401-449	117	Construction, Other Activities	401-449				
103	Chemical & Chemical Products n.e.c.	372,379	112	Road, Highway & Airstrip Construction	401-449				
57	Primary Steel Industries	291	12	Quarry & Sand Pit Industries	081.082				
28	Wine Industry	114	125	Other Transport & Services to Transport	4573-4575,4589,4592,4599,996				
95	Non-metallic Mineral Products n.e.c.	357-359	151	Laundries & Cleaners	972				
92	Concrete Products Industry	354	39	Contract Textile Dyeing & Finishing	1992				
96	Refined Petroleum & Coal Products	361,369	5	Other Metal Mines	0612-0615.0619				
			9	Salt Mines	0625				
			13	Service Related to Mineral Extraction	091.092				
			1	Agricultural & Related Services Industry	011-23				
			10	Coal Mines	063				

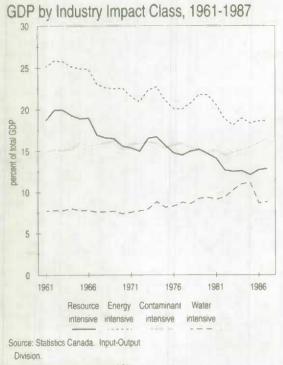
	Contaminant-intensive Industries			Water-intensive Industries					
Code ²	Industry	SIC (1980)	Code ²	Industry	SIC (1980)				
73	Commercial Refrigeration Equipment	312	95	Non-metallic Mineral Products n.e.c.	357-359				
88	Battery Industry	3391	92	Concrete Products Industry	354				
83	Major Appliances (Electric & Non-electric)	332	11	Crude Petroleum & Natural Gas	071				
98	Plastic & Synthetic Resin Industry	373	31	Plastic Products Industries	161-169				
97	Industrial Chemicals Industries n.e.c.	371	93	Ready-mix Concrete Industry	355				
60	Non-ferrous Smelting & Refining Industry	295	78	Motor Vehicle Parts & Accessories	325				
89	Other Elect. & Electronic Products	333,337,3392-3399	51	Pulp & Paper Industries	271				
155	Operating Supplies	Fictive	54	Other Converted Paper Products Industries	279				
106	Sign and Display Industry	397	28	Wine Industry	114				
76	Motor Vehicle Industry	323	22	Bread & Other Bakery Products Industry	1072				
100	Paint and Vamish Industry	375	25	Soft Drink Industry	111				
103	Chemical & Chemical Products n.e.c.	372,379	30	Rubber Products Industries	151-159				
63	Other Metal Rolling, Casting etc.	299	17	Fruit and Vegetable Industries	103				
132	Electric Power Systems Industry	491	103	Chemical & Chemical Products n.e.c.	372.379				
158	Laboratory Supplies	Fictive	91	Cement Industry	352				
69	Heating Equipment Industry	307	62	Copper Rolling Casting & Extruding	297				
85	Electronic Equipment Industries	335	27	Brewery Products Industry	113				
77	Truck, Bus Body & Trailer Industry	324							
122	Urban Transil System Industry	4571							
4	Gold Mines	0611							
111	Non-residential Building Construction	401-449							
123	Interurban & Rural Transit Systems	4572							
81	Misc. Transportation Equipment Industry	328,329							
110	Residential Construction	401-449							
151	Laundries & Cleaners	972							
52	Asphalt Roofing Industry	272							
107	Floor Tile, Linoleum, Coated Fabric	3993							
79	Railroad Rolling Stock Industry	326							
95	Non-metallic Mineral Products n.e.c.	357-359							
82	Small Electrical Appliance Industry	33t							
78	Motor Vehicle Parts & Accessories	325							
108	Other Manufacturing Industries n.e.c.	391,3991,3992,3994,3999							
121	Truck Transport Industries	456							

Source: Statistics Canada. Environment and Wealth Accounts Division.

Notes:
¹ See the text for a description of derivation of these classes.
² Codes refer to the listing in Table 3.3.1.1.
³ Not elsewhere classified.

Gross Domestic Product by Impact Class, 1961-1987

			Contribution to GDP				Proporti	on of GDP1	
Year	Resource intensive industries	Energy- intensive industries	Contaminant- intensive industries	Water- intensive industries	All business sector industnes	Resource- intensive industries	Energy- intensive industries	Contaminant- intensive industries	Water- intensive industries
			million dollars				pe	rcent	
1961	5 788	7 775	4 607	2 384	30 919	18.72	25.15	14.90	7.71
1962	6 681	8 655	5 075	2 603	33 487	19.95	25.85	15.16	7.77
1963	7 185	9 272	5 428	2 807	36 008	19.95	25.75	15.08	7.79
1964	7 584	9 871	5 973	3 143	39 277	19.31	25.13	15.21	8.00
1965	8 203	10 797	6 954	3 371	43 361	18.92	24.90	16.04	7.78
1966	9 172	11 982	7 521	3 757	48 258	19.01	24.83	15.59	7.79
1967	8 625	11 722	8 068	3 859	50 913	16.94	23.02	15.85	7.58
1968	9 135	12 454	8 781	4 222	55 041	16.60	22.83	15.95	7.67
1969	9 940	13 543	9811	4 624	60 160	18.52	22.51	16.31	7.89
1970	9 897	14 339	9 665	4 683	63 489	15.59	22.58	15.22	7.38
1971	10 684	14 969	11 012	5 263	69 429	15.39	21.56	15.86	7.58
1972	11 609	16 215	12 310	6 005	77 464	14.99	20.93	15.89	7.75
1973	15 329	20 683	14 940	7 385	92 588	16.56	22.34	16.14	7.98
1974	18 560	25 204	17 711	9818	110 915	16.73	22.72	15.97	8.85
1975	19 828	26 653	19 390	10 319	126 231	15.71	21.11	15.36	8.17
1976	21 258	28 940	22 758	11 985	143 831	14.78	20.12	15.82	8.33
1977	22 992	31 746	25 203	13 919	158 361	14.52	20.05	15.91	8.79
1978	26 485	36 698	27 282	15 253	176 601	15.00	20.78	15.45	8.64
1979	31 205	44 792	31 318	19 003	205 359	15.20	21.81	15.25	9.25
1980	34 091	50 6 1 9	34 241	21 814	232 556	14.66	21.77	14.72	9.38
1981	36 965	53 897	39 738	23 924	261 666	14.13	20.60	15.19	9.14
1982	34 267	50 880	38 974	25 457	269 832	12.70	18.86	14.44	9.43
1983	38 906	53 444	43 811	30 426	294 767	12.52	18.13	14.86	10.32
1984	41 194	62 034	49 657	36 010	326 817	12.60	18.98	15.19	11.02
1985	42 618	64 550	54 655	39 248	351 836	12.11	18.35	15.53	11.16
1986	48 894	68 607	58 991	32 014	368 535	12.72	18.62	16.01	8.69
1987	52 057	75 512	66 637	35 831	404 569	12.87	18.66	16.47	8.86


Source:

Statistics Canada. Input-Output Division.

Note:

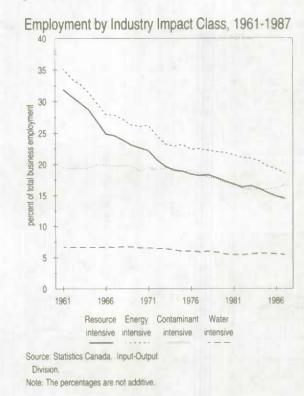

Since some industries occur in more than one impact class, these percentages are not additive.

Figure: 3.1.1.1

Note: The percentages are not additive.

Employment in the Business Sector by Impact Class, 1961-1987

			Employment	Proportion of total employment ¹					
Year	Resource- intensive industries	Energy- intensive industries	Contaminant- intensive Industries	Water- intensive industries	All business sector industries	Resource- intensive industries	Energy- intensive industries	Contaminant- intensive industries	Water intensive industries
			persons				pe	rcent	
1961	1 222 670	1 347 581	744 434	255 093	3 829 859.76	31.9	35.2	19.4	6.7
1962	1 217 926	1 330 099	764 015	261 669	3 955 207.78	30.8	33.6	19.3	6.6
1963	1 210 668	1 331 371	785 861	267 102	4 066 910.61	29.8	32.7	19.3	6.6
1964	1 219 166	1 332 801	821 753	282 041	4 244 640.78	28.7	31.4	19.4	6.6
1965	1 206 696	1 335 441	898 810	295 329	4 501 493.98	26.8	29.7	20.0	6.6
1966	1 172 698	1 318 353	934 623	313 454	4 715 892.08	24.9	28.0	19.8	6.6
1967	1 179 269	1 337 302	943 852	316 615	4 795 743.86	24.6	27.9	19.7	6.6
1968	1 150 225	1 308 937	952 668	322 183	4 818 131.66	23.9	27.2	19.8	6.7
1969	1 147 541	1 307 179	980 694	331 376	4 975 447.00	23.1	26.3	19.7	6.7
1970	1 127 919	1 298 983	942 011	324 313	4 986 229.98	22.6	26.1	18.9	6.5
1971	1 131 076	1 335 672	991 476	332 338	5 097 610.79	22.2	26.2	19.4	6.5
1972	1 101 304	1 305 649	1 013 766	342 707	5 321 646.95	20.7	24.5	19.0	6.4
1973	1 111 105	1 312 118	1 097 536	359 765	5 650 432.50	19.7	23.2	19.4	6.4
1974	1 128 722	1 360 775	1 146 332	367 179	5 943 484.72	19.0	22.9	19.3	6.2
1975	1 133 986	1 391 364	1 130 832	355 898	6 015 120.45	18.9	23.1	18.8	5.9
1976	1 124 826	1 367 507	1 158 917	367 510	6 108 419.75	18.4	22.4	19.0	6.0
1977	1 132 606	1 401 528	1 155 372	365 828	6 238 317.76	18.2	22.5	18.5	5.9
1978	1 167 325	1 419 110	1 143 263	380 526	6 383 773.14	18.3	22.2	17.9	6.0
1979	1 187 395	1 464 086	1 179 467	386 095	6 662 443.04	17.8	22.0	17.7	5.8
1980	1 180 789	1 495 813	1 159 635	378 322	6 838 845.89	17.3	21.9	17.0	5.5
1981	1 181 238	1 515 247	1 194 098	382 174	7 042 589.00	16.8	21.5	17.0	5.4
1982	1 108 708	1 431 392	1 093 782	366 248	6 798 940.00	16.3	21.1	16.1	5.4
1983	1 117 370	1 414 992	1 080 893	371 759	6 760 717.00	16.5	20.9	16.0	5.5
1984	1 115 797	1 422 653	1 110 766	393 845	6 941 797.00	16.1	20.5	16.0	5.7
1985	1 123 673	1 431 890	1 166 842	408 610	7 299 661.00	15.4	19.6	16.0	5.6
1986	1 108 080	1 436 243	1 213 261	414 086	7 475 122.00	14.8	19.2	16.2	5.5
1987	1 116 061	1 432 034	1 285 409	418 738	7 725 108.00	14.4	18.5	16.6	5.4

Source: Statistics Canada. Input-Output Division.

Note: Persons employed in the non-business sector and government sector are not included. ¹ Since some industries occur in more than one impact class, these percentages are not additive.

Table: 3.1.1.6

Manufacturing Employment by Ecozone and Impact Class, 1986

				Impact	class				Total
	High con	taminant	High e	Tergy	High re:	source	High	water	manufacturing empioyment
Province / Ecozone	number ¹	percent ²	number	percent	number	percent	number	percent	number
Newfoundland									
Taiga Shield	С	22			D	61	8	13	E
Boreal Shield	2 7 3 9	17	2 632	16	13 615	81	1 238	8	16 796
Total	2 739	16	2 632	16	13 645	81	1 238	7	16 796
Prince Edward Island									
Atlantic Maritime	F	3	A	0	2 393	70	F	A	3 402
Total	F	3	A	0	2 393	70	F	4	3 402
Nova Scotia									
Atlantic Maritime	9 642	28	4 328	13	16 527	48	3 203	9	34 462
Total	9 642	28	4 328	13	16 527	48	3 203	9	34 462
New Brunswick									
Atlantic Maritime	8 009	26	6 6 1 5	22	19 582	64	2 657	9	30 516
Totai	8 009	26	6 615	22	19 582	64	2 657	9	30 516
Quebec									
Taiga Shield	D	62			E	96	С	34	E
Boreal Shield	25 224	51	22 455	48	37 030	75	2 622	5	49 108
Mixed-Wood Plain	88 769	21	37 887	9	89 467	21	29 882	7	425 164
Atlantic Maritime	1 263	14	н	8	6 636	73	н	6	9 122
Total	115 256	24	60 342	12	133 133	28	32 504	7	483 394
Ontario	1.1.2								
Boreal Shield	28 308	63	24 524	54	35 751	79	1 385	3	45 043

	Impect class								
	High cont	taminant	High e	nergy	High re:	Source	High	water	manufacturing employment
Province / Ecozone	number ¹	percent ²	number	percent	number	percent	number	percent	number
Mixed-Wood Plain	159 831 188 139	19 21	55 651 80 175	7	163 183 198 934	19	59 723	7	842 141
	100 138	12	80 175	4	196 934	22	61 108	7	887 184
Manitoba									
Hudson Bay Plain	н	67	н	67	1 000	89	E	5	1 118
Prairie	6 232	10	2 995	3	10 591	22	4 182	8	47 582
Boreal Shreld	н	35	н	35	1 537	62	G	8	2 488
Total	6 232	12	2 995	6	13 128	26	4 182	8	51 186
Saskatchewan									
Boreal Plain	A	0			G	91			G
Prairie	2 866	16	1 373	8	7 069	37	2 440	13	18 448
Total	2 866	16	1 373	7	7 069	38	2 440	13	18 448
Alberta									
Montane Cordillara	F	14	G	35	G	60	G	39	
Boreal Plain	1 743	30	1 512	23	4 563	74	H	39	H 6 286
Prairie	11 466	18	5 576	9	22 162	35	7 256	10	
Total	13 209	19	7 088	10	26 725	38	7 256	10	63 397 69 683
British Columbia									
Boreal Cordillera	D	100							
Pacific Maritime	22 973	100 25		10	D	100		1	0
Montane Cordiliera		30	15 107	16	45 538	49	6 788	7	93 153
Boreal Plain	9 673	30	6 293	19	26 094	80	1 839	5	32 841
Taiga Plain				*	1 223	86	E	5	1 421
Total	32 646	26	21 400	17	A 72 870	100	8 627	. 7	A 127 215
Yukon									
Boreal Cordillern							-		E
Total	•		*	-		-	-		E
Northwest Territories									
Taiga Plain					A	13			F
Teiga Shield			• •						F
Southern Arclic									A
Northern Arctic			1000						D
Total	-				A	6		-	F
Canada	378 844	22	186 950	11	504 006	29	123 369	7	1 722 631
Ecozone									
Allantic Maritime	19 020	25	11 706	15	45 138	58	6 568	8	77 502
Mixed-Wood Plain	248 600	20	92 777	7	252 650	20	89 033	7	1 267 305
Boreal Shield	57 106	50	50 486	45	87 879	78	5 444	5	113 328
Preirie	18 933	15	8 3 19	6	39 539	31	12 830	10	129 115
Boreal Plain	1 639	23	1 252	17	5 621	77	H	6	7 271
Montane Cordillera	9 778	29	6 553	20	26 539	79	2 064	6	33 385
Pacific Maritime	22 944	25	15 107	16	45 509	49	6 786	7	93 124
Boreel Cordillera	D	26	0	0	D	26	0	0	F
Tundra Cordillera									
Taiga Plain	0	0	0	0	с	16	0	0	F
Taiga Shield	D	20	0	0	E	38	D	11	G
Hudson Bay Plain	н	67	H	67	H	89	E	5	1 118
Southern Arctic	0	0	0	0	0	0	0	0	A
Northern Arctic	0	0	0	0	0	0	0	0	D
Arctic Cordillera									0

Source:

Statistics Canada. Environment and Wealth Accounts Division. Industry Division.

Note:

The following codes are used to maintain the confidentiality of cells with small values: A = 0 - 4; B = 5 - 9; C = 10 - 19; D = 20 - 49; E = 50 - 99; F = 100 - 199; G = 200 - 499; H = 500 - 999. The values for calls with these values have been added to the nearest province or ecozone.

¹ Total employment in the high impact category. See the text for a definition of these categories.

² Percentege of total employment of the ecozone in this category.

-

Manufacturing Establishments by Ecozone and Impact Class, 1986

				Impact C					Tota
	High conta	High contaminant		High energy High resource			High w	ater	establishment
Province / Ecozone	numbert	percent ²	number	percent	number	percent	number	percent	number
Newfoundland					10.00				
Taiga Shield	1	16.7	0	0.0	3	50.0	1	16.7	6
Boreal Shield	31	5.8	12	3.6	179	56.0	27	8.7	316
Total	32	9.9	12	3.7	182	56.5	28	8.7	322
Prince Edward Island									
Atlantic Maritime	14	9.9	1	0.7	75	53.2	9	6.4	141
Total	14	9.9	1	0.7	75	53.2	9	6.4	141
Nova Scotia									
Atlantic Maritime	80	9.8	24	2.9	319	39.1	81	9.9	815
Total	80	9.8	24	2.9	319	39.1	81	9.9	815
New Brunswick									
Atlantic Maritime	81	11.6	26	3.7	295	41.6	72	10.3	703
Total	81	11.6	26	3.7	295	41.6	72	10.3	703
Quebec									
Taiga Shield	1	33.3	0	0.0	2	66.7	- 1	33.3	3
Boreal Shield	108	10.4	40	3.9	348	33.6	112	10.8	1 035
Mixed-Wood Plain	1 208	12.4	251	2.6	1 664	17.0	584	6.0	9 751
Atlantic Maritime	19	6.9	5	1.8	133	48.5	23	8.4	274
Total	1 336	12.1	296	2.7	2 147	19.4	720	6.5	11 063
Ontario									
Boreal Shield	113	15.0	42	5.6	307	40.8	67	8.9	753
Mixed-Wood Plain	2 080	13.5	299	1.9	2 682	17.4	904	5.9	15 383
Total	2 193	13.6	341	2.1	2 989	18.5	971	6.0	16 136
Manitoba									
Hudson Bay Plain	3	11.1	3	11.1	12	44.4	4	14.8	27
Prairie	119	10.0	21	1.8	238	19.9	82	6.9	1 195
Boreal Shield	5	8.3	3	5.0	30	50.0	10	16.7	60
Total	127	9.9	27	2.1	280	21.8	96	7.5	1 282
Saskatchewan									
Boreal Plain	1	6.3	0	0.0	10	62.5	0	0.0	16
Prairie Total	73 74	8.8 8.7	22 22	2.6 2.6	216 226	26.0 26.7	104 104	12.5 12.3	831 847
Alberta Montarie Cordillera	6	15.4	4	10.3	17	43.6	8	20.5	39
Boreal Plain	23	9.7	5	2.1	105	44.3	29	12.2	237
Prairie	282	11.4	68	2.8	546	22.1	212	8.6	2 470
Total	311	11.3	77	2.8	668	24.3	249	9.1	2 746
British Columbia						-			
Boreal Cordillera	1	100.0	0	0.0	1	100.0	0	0.0	1
Pacific Maritime	427	12.8	74	2.2	854	25.5	216	6.5	3 3 3 9
Montane Cordillera	89	9.9	21	2.3	407	45.4	100	11.2	896
Boreal Plain	0	0.0	0	0.0	23	52.3	8	18.2	44
Taiga Plain	0	0.0	0	0.0	2	100.0	0	0.0	2
Total	517	12.1	95	2.2	1 287	30.1	324	7.6	4 282
Yukon									
Boreal Cordillera	0	0.0	0	0.0	0	0.0	0	0.0	15
Total	0	0.0	0	0.0	0	0.0	0	0.0	15
Northwest Territories									
Taiga Plain	0	0.0	0	0.0	1	11.1	0	0.0	9
Taiga Shield	0	0.0	0	0.0	0	0.0	0	0.0	10
Southern Arctic	0	0.0	0	0.0	0	0.0	0	0.0	1
Northern Arctic Total	0	0.0 0.0	0	0.0 0.0	0	0.0 4.3	0	0.0	3
		-							
Canada	4 765	12.4	921	2.4	8 469	22.1	2 654	6.9	38 375
Ecozone		-							
Atlantic Maritime	194	10.0	56	2.9	822	42.5	185	9.6	1 933
Mixed-Wood Plain	3 288	13.1	550	2.2	4 346	17.3	1 488	5.9	25 134
Boreal Shield	257	11.9	97	4.5	864	39.9	216	10.0	2 164
	474	10.5	111	2.5	1 000	22.2	398	8.9	4 4 96
Prairie Remel Piein	0.4	0.4	C	4 7	100	ARE	37	105	0.0.2
Prairie Boreal Plain Montane Cordillera	24 95	8.1 10.2	5 25	1.7	138 424	46.5 45.3	37 108	12.5 11.6	297

				Impact C	lass				
	High cont	aminant	High e	nergy	High res	source	High v	vater	Total establishments
Province / Ecozone	number ¹	percent ²	number	percent	number	percent	number	percent	number
Pacific Maritime	427	12.8	74	2.2	854	25.6	216	6.5	3 339
Boreal Cordillera	1	6.3	0	0.0	1	6.3	0	0.0	16
Tundra Cordillera									
Taiga Plain	0	0.0	0	0.0	3	27.3	0	0.0	11
Taiga Shield	2	10.5	0	0.0	5	26.3	2	10.5	19
Hudson Bay Plain	3	11.1	3	11.1	12	44.4	4	14.8	27
Southern Arctic	0	0.0	0	0.0	0	0.0	0	0.0	1
Northern Arctic	0	0.0	0	0.0	0	0.0	0	0.0	3
Arctic Cordillera									

Source:

Statistics Canada. Environment and Wealth Accounts Division. Industry Division.

Notes:

¹ Total number of establishments in high impact category. See the text for a definition of these categories. ² Percentage of total establishments of ecozone in this category.

3.1.2 Transportation and Utilities

In 1989, there were over 12.7 million passenger cars in Canada. This amounts to one for every 2 persons or 1.3 cars per household. The transportation sector generates 66 percent of the carbon monoxide, 62 percent of the nitrogen oxides, and 42 percent of the hydrocarbons polluting the air. Power plants are responsible for 20 percent of sulphur dioxide emissions and 18 percent of nitrogen oxide emissions.

Transportation, power generation and the movement of oil and gas affect the environment through construction (roads, airports and pipelines) and the generation of pollutants. These activities are also major consumers of natural resources such as oil and gas. Iron and other metals, asphalt, sand and gravel are consumed in the construction of equipment, roads and pipelines.

Transportation

In a country as large as Canada, the transportation of people and goods is an essential component of the development, welfare and integrity of the nation. Many of the most significant events in Canadian history have been connected with opening new territories and linking communities with roads, canals and railroads. Today, because of the vast distances between population centres, transportation is still an important element of daily life in all parts of the country.

The consumption of natural resources, disruption of land and the generation of wastes associated with road, rail, water and air transportation have focused attention on this sector as one with a high potential for improvement.

In 1990, the transportation sector constituted 4.4 percent of GDP. This figure represents more than 22 billion (constant 1986) dollars (Table 3.1.2.1). The transportation sector employs close to 5 percent of the labour force. This accounts for over 470 thousand jobs. Another 200 thousand jobs are in the manufacture and servicing of transportation equipment (Table 3.1.2.2).

In 1989, transportation consumed 21 percent of Canada's total energy. Most of this energy was derived from the combustion of fossil fuels. In the combustion of fossil fuels, a variety of wastes are emitted. The transportation sector alone produces 66 percent of all carbon monoxide emissions, 62 percent of nitrogen oxides, and 6 percent of all particulates. Another source of potential environmental problems emanating from transportation is the possibility of spills of

contaminants from trains, trucks and ships.

Table: 3.1.2.1

Transportation Economic indicators

			Transportation
		Value of	and storage
		transportation	sector as a
		and storage	proportion of
Year	Total GDP	sector	total GDP
	miltion 198	36 dollars	percent
1961	121 795	6 930	5.69
1971	209 077	12 619	6.04
1981	320 322	17 076	5.33
1986	368 535	20 254	5.50
1990	419 320	22 485	5.36

Source:

Statistics Canada. System of National Accounts.

Table: 3.1.2.2

Employment in Transportation, 1983-1990

Employment i transportatio equipmer	Transportation	Total employment	Year
	thousands		
16	441	8 582	1983
17	448	8 654	984
18	452	8 995	1985
18	451	9 178	1986
20	455	9 946	1987
21	461	10 107	1988
22	471	10 339	1989
20	473	10 188	1990

Source:

Statistics Canada. Employment, Earnings and Hours. Catalogue 72-002.

The construction of roads, rail lines and airports has a direct impact by radically changing the land use. The indirect effects of this construction are much greater than the initial restructuring. Improved accessibility stimulates a wide variety of human activities such as mining, forestry, construction of settlements, recreation. In the last century, the economic development of western Canada was stimulated by the completion of the Trans-Canada Railway. In recent years, this development has been directed north in search of hydroelectric power, petroleum, natural gas, timber, and minerals.

The automobile has come to be regarded as necessary to maintaining one's lifestyle. In 1986, over 84 percent of households reported expenditures on the operation of private motor vehicles. The average expenditure for all households reporting was \$4,982. In contrast, only 63.6 percent reported expenditures on local and commuter transportation (including

19. Table 3.2.2.5 in the Consumption section.

taxis), with an average of \$557.¹⁹ The passenger car now accounts for four-fifths of all intercity passenger travel.²⁰

Transportation Activities

One significant trend in transportation is the increasing energy efficiency of road transportation. Most modes of transportation showed an increase in the number of vehicles and in the number of miles travelled. However, because of increases in fuel efficiency, the amount of fuel consumed was nearly constant between 1980 and 1988 for passenger cars and lower for rail and trucking.

Fuel Consumption. One positive outcome of the increases in fuel prices has been that this has provided an incentive to develop more fuel-efficient technology. In 1980, the average car required 16.5 litres of gasoline to travel 100 kilometres. By 1988, automobiles averaged 12 litres to travel the same distance. The fuel consumption ratios for most modes of transport have declined within the past ten years. These figures are derived from the Statistics Canada Fuel Consumption Survey, conducted annually between 1979 and 1989.

Passenger cars accounted for most of the fuel consumption in transportation. In 1988, over 27 billion litres of fuel were consumed by personal use passenger cars. This accounts for more than half of all energy consumed by transportation (Table 3.1.2.3). Statistics on the sale of gasoline for motive purposes are presented in Table 3.1.2.6.

Urban transport can be seen adopting cleaner fuels such as natural gas and propane (Table 3.1.2.11).

Table: 3.1.2.3

Fuel and Energy	Use in Transportation, 1988	3
------------------------	-----------------------------	---

Mode of transport	Fuel consumed	Energy consumed
	billion litres	petajoules
Private use passenger cars	27.4	950.8
Trucking	4.9	189.6
Air	3.8	136.4
Rail	2.3	89.0
Marine	1.3	54.2
Bus and urban		
transit'	0.7	27.1
Others	6.3	392.3
Total	46.7	1 839.4

Source

Statistics Canada. Environment and Waaith Accounts Division.

Note:

¹ This figure does not include small amounts of natural gas and electric power consumed. See the detailed tables for more information.

Personal Use Passenger Cars. Total distance driven by personal use passenger cars increased by 22 percent between 1980 and 1988. During the same period, the total amount of fuel consumed dropped by 11 percent. Although the total distance per vehicle increased by 6 percent, the average amount of fuel consumed per vehicle decreased by 22 percent (Table 3.1.2.5 and Figures 3.1.2.1 through 3.1.2.4).

Passenger Bus and Urban Transit. Fare passenger-trips²¹ on urban transit increased from 1.3 billion in 1980 to over 1.5 billion in 1988. This growth lags both the growth of the economy and the growth of the population. During the same period, inter-city bus passenger-trips decreased from 33 million to 18 million (Table 3.1.2.11).

Inter-city Rail. Table 3.1.2.7 provides details on freight and passengers carried and fuel consumption in the rail industry. Note that this does not include urban transit companies. In 1987, freight carried amounted to 267 billion tonne-kilometres²², total distance travelled amounted to 7.9 billion car-kilometres.²³ Also in 1987, 23.7 million passenger-trips were taken for a total distance of 2.7 million passenger-kilometres.

The total amount of fuel consumed in 1987 was 2.3 billion litres of fuel, primarily diesel fuel. Between 1986 and 1987 the fuel consumption ratio improved from 30.4 litres per 100 car-kilometres to 28.6.

Trucking. The movement of freight by the trucking industry has steadily increased over the past decade. In 1988, intercity for-hire trucking establishments moved an estimated 57.9 billion tonne-kilometres of freight (Table 3.1.2.4). These figures cover only trucking companies (for-hire trucking) and do not include the activities of trucks operated by other establishments (private trucking) or owner-operators.

21. A passenger-trip is one trip for one passenger.

22. A tonne-kilometre is one tonne of goods carried one kilometre.

23. A car-kilometre is one rail car travelling for one kilometre.

20. Statistics Canada. Canada Year Book 1990. Catalogue 11-402E.

Table: 3.1.2.4 Intercity Freight Movement by For-hire Truckers

r	Freight carried	annual percent change
	million	
	tonne-	
	kilometres	
8	36 399	
9	42 388	16.5
0	41 734	+ 1.5
1	39 779	- 4.7
2	37 910	- 4.7
3	41 920	10.6
4	43 624	4.1
5	43 723	0.2
6	48 930	11.9
7	57 320	17.1
8	57 888	1.0

Source:

Statistics Canada. For-hire Trucking Survey. Catalogue 53-224. Statistics Canada. Trucking in Canada. Catalogue 53-222.

Gains in fuel efficiency and adoption of alternative fuels can also be seen in the trucking industry. For-hire trucking establishments showed a decrease from 58 litres per 100 kilometres in 1980 to 52 litres per 100 kilometres in 1988.

The figures shown in Table 3.1.2.9 represent adjustments to the standard values reported for the for-hire establishments. The under-reporting of fuel consumed by owner-operators has been estimated to be over 1.7 billion litres in 1988. The adjustments were made by estimating the value of fuel consumed by owner-operators. These independent truckers are not covered by the Statistics Canada For-Hire Trucking Survey²⁴.

The amount of propane and natural gas consumed in the trucking industry has increased from 72.8 million litres to 82.9. This still represents a small proportion of total fuel consumption.

Air Transport. In 1989, Canadian Level I air carriers flew a total of 723 thousand hours carrying passengers on 22.4 million trips and 443 million kilograms of goods. This activity consumed 3.8 billion litres of turbo fuel or 5.3 thousand litres of fuel per hour flown (Table 3.1.2.15, Figure 3.1.2.5). This represents a slight decrease from 1981.

Airplanes generate air pollutants in the populated areas near airports. The World Health Organization²⁵ estimates that each takeoff and landing of a wide-body jet generates 2 kg. of particulates, 3 kg. of SO₂, 30 kg of nitrogen oxides, 19 kg. of hydrocarbons and 74 kg. of carbon monoxide. During the period April to June 1989, a total of over 527 thousand aircraft movements (departures plus arrivals for major scheduled

services) were recorded at Canadian airports. This represents an increase of 58 thousand movements (12 percent) over the corresponding period for the previous year. Half the aircraft movements were accounted for by the top 10 airports (Table 3.1.2.14).

Marine Transport. The amount of cargo handled at Canadian ports decreased by 7 percent between 1988 and 1989. This indicates the general decline in the marine shipping industry evident in both international and domestic shipping. Much of this decline has been attributed to the poor wheat harvest in 1988²⁶. In 1989, almost 58 thousand vessels entered Canadian ports. About half of these vessels were engaged in domestic shipping. Five ports (Vancouver, Sept-Îles/Pointe-Noire, Port-Cartier, Montréal/Contrecoeur, and Halifax) accounted for 40 percent of all shipping activity.

Table 3.1.2.16 provides a summary of vessels, fuel consumption and passengers and vehicles carried by Canadian-domiciled carriers.

Transportation Infrastructure

Vehicles. In 1989, 16.7 million road vehicles were registered. Almost 74 percent of vehicles were passenger automobiles, another 23 percent were trucks and truck trailers. The remaining 3 percent were buses, motorcycles, mopeds and other road vehicles (Table 3.1.2.12, Figure 3.1.2.5). For some provinces, this category included ambulances, hearses and fire trucks.

Between 1980 and 1989, the number of passenger automobile registrations increased from 10.3 million to 12.7 million. This represents an annual average increase of 2.5 percent per year. The statistics on vehicle registrations were obtained from the 12 provincial and territorial governments, each of which has its own distinct registration system and definitions. For these reasons, inter-provincial comparisons are difficult and the categories used in the tables often contain variations.

The average distance travelled per vehicle has increased for most modes of transport. Personal use passenger cars, in 1988, travelled on average 17,224 kilometres, an increase of over 900 kilometres from 1980. Figures for the fuel consumption and distance travelled for personal-use passenger cars are derived from the Statistics Canada Fuel Consumption Survey. The number of cars estimated from this survey differs from the number derived from motor vehicle registrations (Table 3.1.2.5) because of differences in definitions and methods.

Roads and Highways. The total length of roads and highways is difficult to measure because of changes in jurisdiction. For example, if a road is transferred from provincial to municipal responsibility, this would appear as a decrease in the total length of federal, provincial and territorial

Davies, G. R. 1991. Owner operators in inter-city for-hire trucking, 1976-1988. [in] Canadian Transportation Research Forum. Quebec City. May 28-31, 1991.

World Health Organization. 1982. Rapid Assessment of Air, Water, and Land Pollution. WHO Offset Publication NO. 62. Geneva.

^{26.} Statistics Canada. Shipping in Canada. Catalogue 54-205.

roads. In 1988/89, Canada's roadways totalled over 879 thousand 2-lane equivalent kilometres (Table 3.1.2.8).

Airports. The number of total active airports decreased between 1980 and 1990 because of declines in smaller (less than 914 metres) airports (Table 3.1.2.13). Between 1980 and 1990, 226 small airports were either abandoned or upgraded to larger airports. The numbers in all other classes increased, including an addition of 8 large airports (more than 2134 metres).

Rail Track. Although the amount of freight carried by rail is increasing, length of track operated by rail companies has decreased by more than 4,500 kilometres since 1982. In 1987, the total length of track operated reached 94,184 kilometres (Table 3.1.2.10).

Many lines have been found to be unprofitable and are being abandoned. As rail lines are abandoned in rural areas, many of these rights of way revert to a more natural state and promote the re-establishment of habitats and corridors for the movement of wildlife. Note that in 1982, a change in coverage to include lines operated under trackage rights, makes data incomparable to the period before that year.

The number of rail vehicles (locomotives, freight cars and passenger cars) has decreased substantially since the early 1980s This reflects an increase in efficiency in terms of larger freight cars, more powerful locomotives and more effective routing.

Utilities

The utilities discussed in this section comprise the generation of electrical power and the movement of commodities by pipeline or transmission lines.

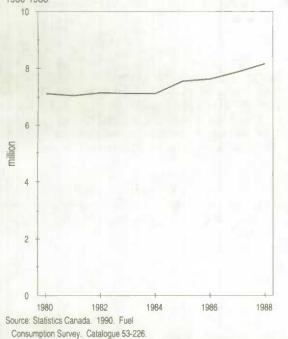
Power Generation

To satisfy Canada's demand for energy, hundreds of power generation plants, dams and hydroelectric stations have been constructed. Thermal generating plants burn fossil fuels and release contaminants into the atmosphere. The emission of substances such as sulphur dioxide from electric generation stations is a major source of environmental stress. Hydro plants dam up rivers and in the process, change settlements, wildlife habitats and hydrologic cycles.

In 1989, about 57 percent of Canada's electrical generation capacity was in hydro facilities. Another 30 percent was in thermal power generation equipment. The remaining 12 percent of Canada's power generating capacity was in nuclear power generation facilities (Table 3.1.2.17)

For thermal power generation, coal burning facilities dominated, comprising 61 percent of all facilities. Another 23 percent burned oil, 13 percent used natural gas and the remaining 3 percent was derived from other fuels (Table 3.1.2.18, Figure 3.1.2.7).

The total generation capacity of all power generating plants in


1989 was 102 gigawatts. This represented a small increase (less than 1 percent) over the previous year. These figures represent generation capacity and not production or consumption of energy. Plants do not always run at full capacity and a large portion of the power produced is sold in the United States.

Pipelines

Canada's resources are rarely located near the consumers. Large networks of pipelines and transmission lines have been built to facilitate the movement of water, gas and electricity. Much of the pipeline network travels through rural and unpopulated areas. In addition to the disturbance caused during construction, pipelines impede the movement of wildlife.

In total, there are over 34 thousand kilometres of oil pipeline and 226 thousand kilometres of natural gas pipeline across Canada (Tables 3.1.2.19 through 3.1.2.21, Figure 3.1.2.8)

Personal Use Passenger Cars Operated, 1980-1988

Figure: 3.1.2.3

Total Fuel Consumed,

Personal Use Passenger Cars, 1980-1988

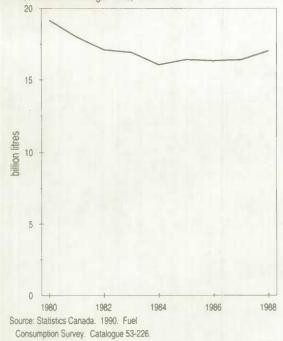
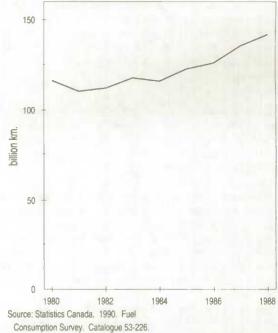



Figure: 3.1.2.2

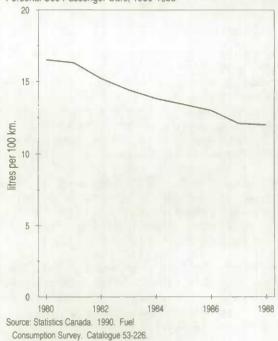
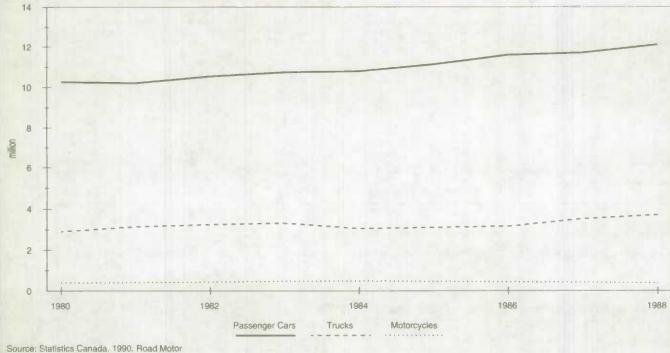
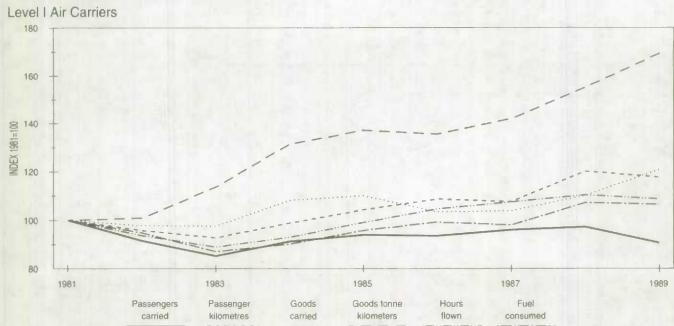

Total Distance Driven,

Figure: 3.1.2.4


Fuel Consumption Ratio, Personal Use Passenger Cars, 1980-1988

Human Activity and the Environment

Figure: 3.1.2.5



Vehicles: Registrations 1988. Cat. 53-219.

Figure: 3.1.2.6

Airline Annual Statistics, 1981-1989

Source: Statistics Canada, Aviation, Catalogue 51-004.

Note: See Table 3.1.2.15 for definitions.

Personal Use Passenger Cars and Fuel Consumption Estimates, 1980-88

Year	Estimated number of cars operated	number of cars Distance Total fuel travelled		travelled	Fuel consumption per vehicle	Fue consumption ratio	
And I State	thousands	million kilometres	million litres	kilometres	litres	litres per 100 kilometres	
1980	7 128	116 350	19 160	16 322	2 688	16.5	
1981	7 055	110 515	17 998	15 664	2 551	16.3	
1982	7 158	112 275	t7 093	15 686	2 388	15.2	
1983	7 134	117 812	16 910	16 515	2 371	14.4	
1984	7 128	116 081	16 049	16 284	2 251	13.8	
1985	7 553	122 676	16 408	16 242	2 172	13.4	
1986	7 625	125 981	16 326	16 522	2 141	13.0	
1987	7 867	135 657	16 399	17 244	2 085	12.1	
1988	8 157	141 790	17 020	17 383	2 087	12.0	
Average annual percent change							
1980-1988	1.70	2.50	- 1.47	0.79	- 3.12	- 3.90	

Source:

Statistics Canada. 1990. Fuel Consumption Survey - Passenger Cars. Catalogue 53-226. Notes:

These data are based on a survey of between 1800 (in 1985) and 333 (in 1988) detailed monthly fuel-consumption diaries. See Table 3.1.2.12 for information on motor vehicle registrations.

Table: 3.1.2.6

Gross Sales of Gasoline for Motive Purposes, 1985-1989

Province	1985	1986	1987	1988	1989	Per capita 1989
				-		
			million litres			litres
Newfoundland	552	550	558	587	604	1 052
Prince Edward Island	169	171	171	180	181	1 386
Nova Scotia	1 066	1 069	1 085	1 119	1 128	1 263
New Brunswick	937	935	969	1 000	976	1 353
Quebec	6 688	6 666	6 755	6 997	7 181	1 071
Ontario	11 837	12 007	12 245	12 685	12 971	1 362
Manitoba	1 471	1 466	1 464	1 492	1 492	1 361
Saskatchewan	1 863	1 858	1 816	1 802	1 684	1 649
Alberta	4 312	4 312	4 362	4 306	4 285	1 767
British Columbia	3 653	3 705	3 678	3 750	3 7 5 5	1 246
Yukon	56	57	61	65	65	2 570
Northwest Territories	50	34	52	43	54	1 030
Canada	32 654	32 830	33 215	34 025	34 375	1 317

Source:

Statistics Canada. 1990. Road Motor Vehicles Fuel Sales Catalogue 53-218.

Rail in Canada, Traffic Statistics, 1961-1988

Fue	E	Treat		Passenger		ht	Freig	
consumption ratio	Fuel ¹ consumption	Total Car-km	Car-km	Passenger-km	Passengers	fear Tonne-km Car-km Passenge	Year	
titres/100 car kn	million litres		millions		thousands	ns	millio	
27.2	1 561	5 735	502	3 155	18 784	5 233	96 108	1961
27.5	1 578	5 742	478	3 249	19 258	5 264	99 186	1962
27.5	1 655	6 0 1 6	460	3 331	20 636	5 556	110 660	1963
27.4	1 805	6 596	497	4 315	22 915	6 099	124 146	1964
27.3	1 847	6 659	493	4 287	24 616	6 166	127 296	1965
27.0	1 878	6 963	445	4 164	23 195	6 518	138 840	1966
28.9	1 952	6 743	485	5 046	24 638	6 258	137 384	1967
29.0	1 904	6 570	390	4 110	19 953	6 180	138 844	1968
28.	1 904	6 635	350	3 759	18 864	6 285	140 830	1969
28.0	2 002	7 161	309	3 657	23 849	6 852	160 750	1970
28.	2 122	7 449	272	3 518	24 119	7 177	173 094	1971
29.3	2 242	7 688	246	3 288	23 012	7 442	180 536	1972
29.4	2 268	7 707	207	2 573	19 822	7 500	190 906	1973
30.	2 433	8 095	237	3 023	24 134	7 858	202 433	1974
30.1	2 334	7 767	225	2 930	23 571	7 542	197 216	1975
30.3	2 336	7 721	216	2 942	23 636	7 505	202 223	1976
31.0	2 4 1 6	7 789	210	2 966	23 862	7 579	212 416	1977
31.1	2 433	7 817	197	3 974	23 933	7 620	215 352	1978
31.3	2 5 17	8 032	195	3 175	23 708	7 837	233 829	1979
30.	2 484	8 245	189	3 280	22 964	8 056	234 972	1980
29.1	2 398	8 190	186	3 278	24 331	8 004	234 374	1961
29.	2 108	7 131	252	2 639	21 346	6 879	219 418	1982
28.	2 142	7 579	233	2 932	21 199	7 346	225 380	1983
27.	2 268	8 146	234	2 915	21 864	7 912	253 971	1984
29.	2 284	7 727	248	3 040	22 937	7 479	242 121	1985
30.	2 328	7 654	241	2 831	22 991	7 413	244 784	1986
28.	2 317	8 114	221	2 709	23 701	7 893	267 784	1987
28.	2 243	7 992	235	2 989	26 708	7 757	271 045	1988

Source

Statistics Canada. Rail in Canada. Catalogue 52-216.

Note: ' Primarily (97 to 100 percent) diesel fuel.

Table: 3.1.2.8

Highway System Length, 1985-1989

Jurisdiction/ Year	Canada	Nfld	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta	B.C.	Yukon	N.W.T.
						kilometre	s (2-lane equiv	valent)1					
Federal ²													
1985	13 837												
1987/88	14 177												
1988/89	14 735												
Provincial/Territorial													
1985	267 979	8 748	4 905	23 281	17 400	59 680	24 341	19 840	23 912	37 002	41 829	4 727	2 314
1987/88	277 286	8 401	4 9 1 6	23 405	17 450	59 895	24 292	20 318	25 973	38 337	47 182	4 803	2 3 1 4
1988/69	277 268	8 401	4 920	23 458	17 920	60 644	24 391	20 426	26 208	37 847	45 883	4 960	2 210
Municipal													
1985	579 652	3 483	184	2 243	2 700	48 000	141 295	64 500	165 600	132 349	18 697	261	340
1987/88	583 091	3 483	322	2 275	2 700	48 000	141 577	64 500	168 765	131 128	19 709	277	355
1988/89	587 527	3 483	322	2 282	2 700	48 000	144 170	64 500	168 117	133 355	19 965	278	355
Total													
1985	861 468	12 231	5 089	25 524	20 100	107 680	165 636	84 340	189 512	169 351	80 526	4 988	2 654
1987/88	874 554	11 884	5 238	25 680	20 150	107 895	165 869	84 818	194 738	169 465	66 891	5 080	2 669
1988/89	879 530	11 884	5 242	25 740	20 620	108 644	168 561	84 926	194 325	171 202	65 848	5 238	2 565

Source:

Roads and Transportation Association of Canada. 1990. Canada's Roadway Infrastructure: Selected Facts and Figures. Ottawa, Canada.

Notes:

One kilometre of 4-lane highway would be counted as two kilometres of 2-lane equivalent.
 Includes roads under Canadian Parks Servica, Department of Indian and Northern Development, the National Capital Commission and Public Works Canada.

For-hire and Private Trucking Fuel Consumption, 1980-1988

Establishment type	1980	1981	1982	1983	1984	1985	1986	1987	1988
For-hire trucking ¹									
Number of establishments	4 722	4 541	4 947	4 583	5 22 1	6 270	6 2 1 1	6 729	5 867
Vehicles (owned and leased) operated by the firms	61 471	57 852	54 280	52 187	53 670	57 987	56 377	57 337	55 034
Total distance travelled (million km.)	5 173.2	4 995.8	4 598.9	4 621.5	5 319.2	5 645.8	5 936.6	6 558.8	6 847.3
Distance travelled by firm vehicles (million km.)	3 509.7	3 416.1	3 056.8	3 025.6	3 371.7	3 740.0	3 718.8	3 785.1	3 921.3
Estimated distance travelled by owner-operators (million km.)	1 663.5	1 579.7	1 542.2	1 596.0	1 947.5	1 905.8	2 217.8	2 773.7	2 926.1
Average kilometres per vehicle	84 156.1	86 355.7	84 726.2	88 557.4	99 108.7	97 362.6	105 301.8	114 389.9	124 420.0
Fuel purchased by firms (million litres)	2 019.7	1 883.7	1 715.9	1 622.6	1 822.1	2 029.4	1 959.6	1 975.2	2 045.3
Gasoline purchased by firms (million litres)	447.8	330.6	218.3	177.5	172.7	162.2	129.0	104.5	85.1
Diesel purchased by firms (million litres)	1 572.0	1 553.2	1 469.2	1 431.5	1 632.0	1 845.4	1 812.5	1 854.0	1 943.8
Propane purchased by firms (million litres)			28.4	13.6	17.4	21.8	18.1	16.7	16.4
Natural gas purchased by firms (million litres)									
Estimated fuel used by owner-operators (million litres)	957.3	871.1	865.7	855.9	1 052.4	1 034.2	1 168.6	1 447.4	1 526.2
Estimated total fuel used (million litres)	2 977.0	2 754.9	2 581.5	2 478.5	2 874.5	3 063.6	3 128.2	3 422.7	3 571.5
Fuel consumption ratio (I/100 km.)	57.55	55.14	56.13	53.63	54.04	54.26	52.69	52.18	52.16
Private Trucking ²									
Number of establishments			5 524	4 672	2 954	3 183	2 676	2 320	2 487
Vehicles (owned and leased) operated by the firms			91 843	103 391	113 729	113 541	134 979	99 781	104 581
Total distance travelled (million km.)			4 476.9	4 928.4	3 692.1				
Distance travelled by firm vehicles (million km.)			4 470.9			3 891.0	4 155.9	3 366.4	3 415.8
Distance travelled by owner-operators (million km.)			9 205.3 191.6	4 717.2 211.2	3 458.2 233.9	3 589.5	3 905.6	3 097.3	3 142.9
Average kilometres per vehicle			48 745.0	47 667.6	32 464.3	301.5 34 270.0	250.3 30 789.0	269.1 33 737.4	272.9
Fuel purchased by firms (million litres)			1 666.5	1 726.0	1 410.2	1 438.4	1 486.4	1 261.9	1 244.7
Gasoline purchased by firms (million litres)			765.4	753.5	487.5	430.6	495.0	328.1	326.1
Diesel purchased by firms (million litres)	**		856.6	915.7	B60.4	936.8	903.5	855.7	852.1
Propane purchased by firms (million litres)			44.5	56.9	62.3	66.4	78.3	70.3	61.4
Natural gas purchased by firms (million litres)			44.5	8.00					
Estimated fuel purchased by owner-operators (million litres)	**		100 5		-	4.6	9.5	7.8	5.1
Estimated total fuel purchased (million litres)			103.5	118.3	131.0	159.8	121.0	125.7	128.1
Fuel consumption ratio (I/100 km.)	**		1 770.0	1 844.3	1 541.2	1 598.2	1 607.4	1 387.6	1 372.7
Poel consumption ratio (i/ too km.)			39.54	37.42	41.74	41.07	38.88	41.22	40.19
Combined operations									
Number of establishments			10 471.0	9 255.0	8 175.0	9 453.0	8 887.0	9 049.0	8 354.0
Vehicles (owned and leased) operated by the firms			146 123.0	155 578.0	167 399.0	171 528.0	191 356.0	157 118.0	159 615.0
Total distance travelled (million km.)		**	9 075.8	9 549.9	9 011.3	9 536.8	10 092.5	9 925.1	10 263.2
Distance travelled by firm vehicles (million km.)	••		7 342.0	7 742.8	6 829.9	7 329.5	7 624.4	6 882.4	7 064.2
Estimated distance travelled by owner-operators (million km.)			1 733.8	1 807.2	2 181.4	2 207.3	2 488.1	3 042.7	3 199.0
Average kilometres per vehicle			62 110.8	61 383.6	53 831.3	55 599.1	52 741.9	63 169.9	84 299.5
Fuel purchased by firms (million litres)			3 382.3	3 348.6	3 232.3	3 467.8	3 446.0	3 237.1	3 290.0
Gasoline purchased by firms (million litres)			983.7	931.0	660.2	592.9	624.0	432.6	411.1
Diesel purchased by firms (million litres)			2 325.8	2 347.1	2 492.4	2 782.2	2 716.0	2 709.7	2 795.9
Propane purchased by firms (million litres)			72.8	70.5	79.7	88.2	96.4	87.0	77.8
Natural gas purchased by firms (million litres)			0.0	0.0	0.0	4.6	9.5	7.8	5.1
Estimated fuel purchased by owner-operators (million litres)			969.1	974.2	1 183.4	1 194.0	1 289.6	1 573.1	1 654.2
Estimated total fuel purchased (million litres)			4 351.5	4 322.8	4 415.8	4 661.8	4 735.6	4 810.2	4 944.2
Fuel consumption ratio (I/100 km.)			47.95	45.26	49.00	48.88	46.92	48.46	48.17

Sources:

Statistics Canada. Motor Carriers—Freight and Household Goods Movers. Catalogue 53-222. Statistics Canada. Trucking in Canada. Catalogue 53-222. Statistics Canada. Road Transport Service Bulletin. Catalogue 53-006. Davies, G. R., 1991. Owner operators in inter-city for-hire trucking, 1978-1988. [In] Canadian Transportation Research Forum. Québec City. May 28-31, 1991.

Notes:

¹ "For-hire" trucking refers to trucking companies.
 ² "Private" trucking refers to non-trucking companies which operate trucks.

Rail In Canada, Infrastructure, Vehicles and Track Length, 1957-1988

		Equipment		t another of the state
Year	Locomotives	Fraight cars	Passenger cars	Length of track operated
		units		kilometres
1957	4 821	197 907	5 942	95 087
1958	4 823	196 893	5 733	95 444
1959	4 720	194 512	5 456	95 565
1960	3 752	191 553	5 1 1 9	95 242
961	3 547	186 387	4 737	94 580
1962	3 497	185 169	4 378	94 543
1963	3 385	181 719	4 172	94 144
964	3 304	179 854	3 985	93 713
1965	3 323	182 090	3 638	93 647
966	3 329	185 964	3 660	93 134
1967	3 3 1 1	188 770	3 444	93 824
1968	3 294	188 254	2 999	94 381
1969	3 316	188 269	2 942	95 114
1970	3 417	188 737	2 801	95 943
1971	3 463	187 306	2 516	96 073
1972	3 812	186 541	2 383	96 600
1973	3 762	186 653	2 175	96 936
1974	3 884	190 892	2 056	96 939
1975	3 977	193 197	1 936	96 612
1976	4 008	193 401	1 855	96 299
1977	4 035	187 183	1 753	94 987
1978	4 071	182 138	1 544	94 085
1979	4 082	180 089	1 596	94 051
1980	4 167	179 139	1 580	93 361
1981	4 154	179 105	1 405	92 413
19821	3 900	155 897	1 304	98 92
1983	3 783	149 432	1 337	99 444
1984	3 699	142 407	1 326	97 387
1985	3 509	130 185	1 286	95 670
1986	3 897	129 509	1 295	93 544
1987	3 855	121 679	926	94 184
1988	3 836	134 156	1 233	91 365

Source: Statistics Canada, Railway Transport. Part 1 (Comparative Summary Statistics). Catalogue 52-207. Statistics Canada, Railway Transport. Part 3 (Equipment, Track and Fuel Statistics). Catalogue 52-207. Statistics Canada, 1988. Rail in Canada. Catalogue 52-218.

'The figuras for total length of rail operated for 1982-1987 include lines operated under lease, contract, trackage rights or jointly owned. The figures for 1981 and before do not include lines operated under trackage rights.

Passenger Bus and Urban Transit, 1980-1988

	1980	1981	1982	1983	1984	1985	1986	1987	1988
Inter-city bus:									
Establishments	34	31	32	33	38	48	34	35	22
Vehicles	1 805	1 704	1 683	1 526	1 558	1 538	1 417	1 429	1 308
Distance run ('000 km.)	203 119	185 014	197 838	194 388	182 773	173 613	174 717	170 953	157 052
Fare passengers carried ('000)	33 282	29 585	31 187	32 032	27 834	26 943	22 871	22 686	18 262
Fuel consumed:									
Gasoline ('000 litres)	1 848	1 313	1 341	1 253	1 272	1 457	1 398	956	670
Diesel ('000 litres)	87 615	81 445	85 665	82 279	78 929	79 895	76 775	75 283	73 190
Others ('000 litres)			9	28				1 780	
Fuel cost (\$'000)	15 729	19 478	22 576	22 940	29 787	31 965	29 582	27 753	26 868
Kilometres per vehicle	112 531	108 576	117 551	127 384	117 312	112 882	123 300	119 631	
Litres ³ per 100 km	44.0	44.7	44.0	43.0	43.9	46.9	44.7	45.6	120 070 47
Urben Transit:									
Establishments	69	69	73	77	73	84	70	77	73
Vehicles	12 670	12 856	13 318	13 233	13212	13 496	13 032	13 481	13 379
Distance run ('000 km.)	656 245	698 858	712 436	565 588	691 373	725 991	757 748	695 785	749 934
Fare passengers carried ('000)	1 307 199	1 368 870	1 333 121	1 382 908	1 413 676	1 448 275	1 522 160	1 469 245	1 514 979
Fuel consumed:			1 000 121	1 002 000	1 410 070	1 440 275	1 322 100	1 409 240	1 514 513
Gasoline ('000 litres)	6 873	5 846	5 408	3 689	3 607	5 933	4 069	2 973	2 897
Diesel ('000 litres)	236 058	301 871	252 917	201 241	301 628	315 303	312 086	307 887	360 764
Propane ('000 litres)		49	253	327	580	632	976	978	395
Natural gas ('000 m ³)						1 697	1 854	1 312	1 475
Electric power ('000 kWh)	636 957	644 349	677 724	660 495	653 588	569 848	825 710	574 040	577 175
Fuel cost (\$'000)	71 336	99 287	107 401	113 508	139 294	136 457	113 487	113 933	12 130
Kilometres per vehicle	51 795	54 360	53 494	42 741	52 329	53 793	58 145	51 612	56 053
Litres ³ per 100 km				42 141	52 323	55755	30 143	51012	50 050
Other passenger bus:									
Establishments	717	765	844	904	779	000	070	1 000	
Vehicles	21 761	21 646	22 773			986	856	1 032	556
Distance run ('000 km.)	421 033	471 986	478 011	22 598 470 888	21 679 483 437	23 562	24 210	25 892	24 345
Fare passengers carried ('000)1			4/6011			522 767	504 128	553 945	541 509
Fuel consumed:							***		
Gasoline ('000 litres)	183 900	191 186	187 705	174 293	173 583	175 488	154 299	144 930	121 204
Diesel ('000 litres)	21 173	37 122	39 842	36 600	40 361	56 228	84 034	85 312	95 412
Propane ('000 litres)	21110	01 122	39 042	6 556	9 460	19 853	26 759	33 152	35 199
Fuel cost (\$'000)	50 617	68 523	90 899	95 863	96 621	110 094			
							109 393	107 940	102 239
Kilometres per vehicle	19 348	21 805	20 990	20 838	22 300	22 187	20 823	21 394	22 243
Litres ³ per 100 km	48.7	48.4	47.6	46.2	46.2	48.1	52.6	47.5	47
Total motor carrier industry:									
Establishments	820	865	949	1 014	890	1 118	960	1 144	651
Vehicles	36 236	36 206	37 774	37 357	36 449	38 596	38 659	40 802	39 032
Distance run ('000 km.)	1 280 397	1 355 858	1 388 285	1 230 865	1 357 583	1 422 371	1 436 593	1 420 683	1 448 494
Fare passengers carried ('000) ²	1 340 482	1 398 455	1 364 308	1 414 940	1 441 510	1 475 218	1 545 030	1 491 931	1 533 241
Fuel consumed:									
Gasoline ('000 litres)	192 620	198 346	194 454	179 235	178 462	182 878	159 766	148 858	124 771
Diesel ('000 litres)	344 845	420 438	378 425	320 120	420 918	451 425	472 895	468 482	529 365
Propane ('000 litres)	0	49	262	6 911	10 041	20 485	27 735	35 910	35 594
Natural gas ('000 m3)						1 697	1 854	1 312	1 475
Electric power ('000 kWh)	636 957	644 349	677 724	660 495	653 588	569 848	625 710	574 040	577 175
Fuel cost (\$'000)	137 683	187 288	220 876	232 311	265 702	278 515	252 462	249 626	141 238
Kilometres per vehicle	35 335	37 448	38 752	32 949	37 246	36 853	37 161	34 819	37 110
the second per second s	00 000	0,	00102	00 043	01 6-10	00 000	01 101	01010	31 110

Source:

Statistics Canada. 1989. Passenger Bus and Urban Transit Statistics 1987. Catalogue 53-215.

Notes:

Passenger statistics are not collected for school bus and other passenger bus establishments.

²Excludes passengers carried by school bus establishments.

Altres per 100 km has not been calculated since a large portion of the energy consumed in urban transit is electricity. In 1988, the coverage of the passenger bus and urban transit surveys was reduced to all carriers earning \$250,000 or more, compared to carriers earning \$100,000 or more for the previous reference period.

Road Motor Vehicle Registrations, Canada, 1980-1989

											Average annuai
Vehicle type	1980	1981	1982	1983	1984 ¹	1985	1986	1987	1988	1989	change 1980-89
					thousa	nds					percent
Road motor vehicle registrations											
Passenger automobiles	10 256	10 199	10 530	10 732	10 781	11 118	11 586	11 686	12 086	12 811	2.5
Trucks and truck tractors1	2 903	3 138	3 239	3 308	3 047	3 095	3 156	3 517	3 706	3 396	1.8
School buses	24	26	26	28	25	26	28	30	29	30	2.4
Other buses	28	28	28	29	27	28	29	29	31	33	1.7
Motorcycles	389	407	431	466	470	453	430	414	370	348	- 1.2
Registered mopeds	68	39	42	43	37	35	35	34	31	30	- 8.6
Other road motor vehicles	. 50	14	14	14	20	64	72	83	84	72	4.1
Total, road motor vehicle											
registrations	13 717	13 851	14 311	14 621	14 406	14 819	15 336	15 794	16 336	16 720	2.2
Percent Annual Change		0.98	3.32	2.17	- 1.46	2.86	3.49	2.98	3.43	2.35	
Off-road vehicles:											
Snowmobiles	476	509	451	400	425	455	488	532	546	600	2.6
Others (tractors, construction											
equipment etc.)	197	162	191	222	208	295	365	375	407	392	7.9
Total off-road vehicles	673	671	641	622	633	751	853	907	952	992	4.4
All vehicles	14 390	14 523	14 952	15 243	15 039	15 569	16 189	16 701	17 289	17 712	2.3
Vehicles per capita	2.36	2.37	2.33	2.30	2.31	2.26	2.18	2.18	2.13	2.04	

Source: Statistics Canada. Road Motor Vehicles: Registrations 1989. Catalogue 53-219. Note:

' The total number of trucks and truck tractors registered decreased in 1984 due to a change in reporting requirements for Ontario.

Table: 3.1.2.13

Airports and Heliports, 1980 and 1990

				Active airports					
			Length of long	jest runway 1990			Abandoned		
Province area		Less than 914 metres	914 to 1524 metres	1525 to 2134 metres	More than 2134 metres	Total active airports 1990	Total active airports 1980	airports and heliports	Active heliports
	km ²								
Newfoundland	66	17	8	3	4	32	25	5	3
Prince Edward Island	13	2	2	0	2	6	4	0	C
Nova Scolia	42	8	5	3	4	20	17	0	2
New Brunswick	60	12	21	3	3	39	29	7	1
Quebec	255	40	56	29	7	132	141	42	54
Ontario	270	85	88	22	8	203	186	21	93
Manitoba	123	54	42	9	3	108	103	12	4
Saskatchewan	157	88	52	13	3	156	163	15	1
Alberta	304	84	104	27	4	219	223	26	26
British Columbia	246	44	69	34	6	153	164	34	119
Yukon	54	8	12	12	1	33	45	51	8
Northwest Territories	152	15	45	26	2	88	101	16	1
Canada: 1990	1 743	457	504	181	47	1 189		229	312
Canada 1980		683	351	128	39		1 201	78	109

Source:

Energy, Mines and Resources. Canada Centre for Mapping. 1990. Canada Flight Supplement.

Note: ¹ Based on square of runway length.

Airports Ranked by Number of Movements, April-June 1988-1989

			Total move	ements	Percent	Percent Canada tot	
Rank April-June 1989	Airport	Province	April-June 1988	April-June 1989	change April-June 1968-89	movements April-June 1989	
t	Lester B. Pearson International	Ont.	66 222	75 267	13.7	14	
2	Vancouver International	B.C.	49 056	50 383	2.7	9	
3	Montreal/Dorval International	Que.	29 306	30 192	3.0		
4	Calgary International	Alta.	21 158	25 572	20.9	4	
5	Ottawa International	Ont.	16 843	16 952	0.6		
6	Halifax International	N.S.	14 210	16 501		5	
7	Winnipeg International	Man.	13 636	15 450	16.1 13.3	1.000	
8	Edmonton Municipal	Alta.	6 244	9 989	13.3		
9	Victoria International	B.C.	11 087	9 510	- 14.2		
tõ	Edmonton International	Alta.	8 779	8 649	- 1.5		
11	Québec	Que.	5 481	7 976	45.6		
12	Vancouver-Sea Plane Base	B.C.	4 798	7 168	49.4	1	
13	Montréal/Mirabel International	Que.	6 201			1	
14	Thunder Bay	Ont.		6 690	7.9	t	
15	Nanaimo		5 453	6 564	20.4	1	
		B.C.	6 024	6 078	0.9	1	
16	Victoria-Inner Harbour	B.C.	5 292	5 594	5.7	1	
17	Saskatoon	Sask.	4 515	4 986	10.4	(
18	St. John's	Nfld.	4 166	4 965	19.2	(
19	Prince Rupert	B.C.	4 912	4 764	- 3.0	C	
20	London	Ont.	4 492	4 68 t	4.2	C	
21	Regina	Sask.	3 886	4 629	19.1	(
22	Sudbury	Ont.	4 305	4 524	5.1	C	
23	Sioux Lookout	Ont.	2 336	4 060	73.8	C	
24	Inuvik	N.W.T.	3 021	4 018	33.0	C	
25	Windsor	Ont.	3 672	3 891	6.0	0	
26	Moncton	N.B.	2 905	3 875	33.4	0	
27	Timmins	Ont.	2 384	3 845	61.3	0	
28	Saint John	N.B.	3 185	3 806	19.5	0	
29	Kelowna	B.C.	4 229	3 518	- 16.8	C	
30	North Bay	Ont.	3 396	3 508	3.3	0	
31	Sault Ste. Marie	Ont.	2 9 1 4	3 492	19.8	0	
32	Fredericton	N.B.	1 401	3 259	132.6	0	
33	Campbell River	B.C.	3 630	3 232	- 11.0	0	
34	Yellowknife	N.W.T.	2 336	3 2 1 1	37.5	0	
35	Red Lake	Ont.	1 928	3 176	64.7	0	
36	Lethbridge	Alta.	1 806	3 048	68.8	0	
37	Thompson	Man.	3 470	3 038	- 12.4	0	
38	Toronto Island	Ont.	4 070	2 987	- 26.6		
39	Deer Lake	Nfid.	2 282	2 782	~ 20.0	0	
40	Nanaimo-Harbour	B.C.	2 168	2 632	21.9	0	
41	Prince George	8.C.	2 316	2 507	8.2	0	
42	Hamilton	Ont.	1 671	2 495			
43	Sydney	N.S.	2 047	2 389	49.3 16.7	0	
44	Kamloops	B.C.	2 318	2 376		0	
45	Gander International	Nfld.	1 809	2 376	2.5	C	
46	Penticton	0.C.			31.t	0	
47	Val D'or	Que.	1 942	2 296	18.3	0	
47	Charlottetown	P.E.1.	t 949	2 239	14.9	0	
40			1 931	2 137	10.7	0	
	Sept-Res	Que.	1 568	2 134	36.1	0	
50	Grande-Prairie Others	Alta.	1 726 113 519	1 968 126 084	14.0	0	
	001013		113 519	120 084	11.1	23	
	Totai		479 995	537 462	12.0	100.	

Source: Statistics Canada. Air Carrier Traffic at Canadian Airports. Catalogue 51-005.

Notes:

Figures refer to total arriving plus departing flights for scheduled services and major charter services.

Airlines, Annual Statistics, Level I Air Carriers¹ 1981-1989

Fuel consumption ratio	Turbo fuel consumed	Hours	Goods tonne- kilometres	Kilograms of goods carried	Passenger- kilometres	Passengers carried	Year
litres per	million lines	thousands	millions	millions	millions	thousands	
hour	million litres	thousands	munons	TRAINCETS	Thinkorts	II KOUSKI IUS	
5 424.5	3 607	665	853	367	45 204	24 785	1981
5 490.0	3 420	623	661	358	43 296	22 694	1982
5 302.3	3 139	592	969	358	41 933	21 115	1983
5 261.8	3 252	618	1 120	397	44 666	22 628	1984
5 242.7	3 455	859	1 169	403	47 170	23 281	1985
5 142.5	3 579	696	1 155	379	49 124	23 188	1986
4 944.9	3 536	715	1 210	381	48 628	23 799	1987
5 268.7	3 867	734	1 323	404	54 279	24 097	1988
5 314.6	3 842	723	1 445	443	53 178	22 482	1989
			Index 1981=100				
100	100	100	100	100	100	100	1981
101	95	94	101	98	96	92	1982
98	87	89	114	98	93	85	1983
97	90	93	131	108	99	91	1984
97	96	99	137	110	104	94	1985
95	99	105	136	103	109	94	1986
91	98	108	142	104	108	96	1987
97	107	110	155	110	120	97	1988
98	107	109	169	121	118	91	1989

Source:

Statistics Canada. Aviation. Catalogue 51-004.

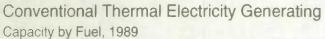
Notes:

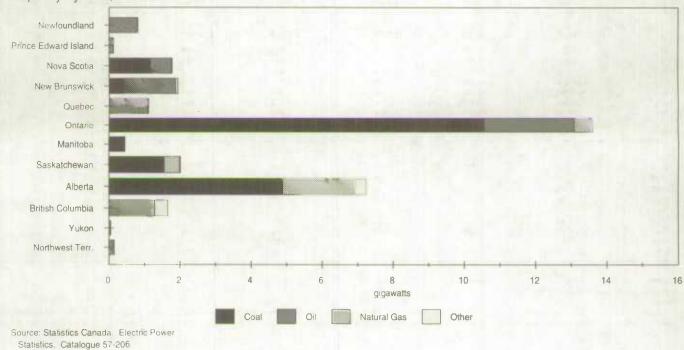
1 From 1981 to 1986, Level Lincluded Air Canada, CP Air, Eastern Provincial Nordair, Quebecair, Pacific Western and Wardair. In 1987 Level Lincluded Air BC, Air Canada, Canadian Pacific Airlines, Quebecair, Pacific Western and Wardair. In 1988, Air Canada, Canadian Airlines International and Wardair are included in Level I. Commencing January 1990, Level I Air Carriers Include Air Canada and Canadian Airlines International Ltd.

Table: 3.1.2.16

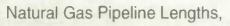
Marine Transport, Canadian Domiciled Carriers, 1986-1988

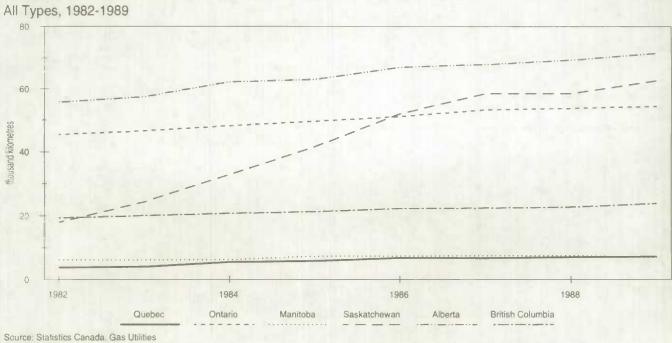
Year	Number of carriers	Number of vessels operated	Fuel and lubricating oil consumed ¹	Passengers carried	Number of vehicles carried
			million litres	thousands	
1985	312	1 451	1 277	27 405	9 312
1986	296	1 843	t 220	30 715	10 406
1987	303	2 001	1 258	31 689	10 907
1988	241	2 538	1 294	30 811	11 942


Source:


Statistics Canada, 1989. Surface and Marine Transport. Catalogue 50-002. Statistics Canada. Shipping in Canada 1989. Catalogue 54-205.

Notes:


¹ Primarily fuel oil, includes small amounts of gasoline, lubricating oil and other fuel.


Figure: 3.1.2.7

Transportation and Distribution Systems. Catalogue 57-205.

Electrical Power Generation Capacity by Province and Type, 1989

			Method of generation			
			Internal		Combustion	CULTURE OF
Province	Steam	Nuclear	combustion	Hydro	turbine	All Type
			megawat	its		
Newfoundland	560		79	6 656	170	7 46
Prince Edward Island	70		11		40	12
Nova Scotia	1 569	680	2	386	205	2 84
New Brunswick	1 871		16	903	48	2 83
Quebec	628	685	118	26 529	363	28 32
Ontario	13 081	11 238	12	7 796	504	32 63
Manitoba	431		17	3 641		4 08
Saskatchewan	1 852		4	836	155	2 84
Alberta	6 744		36	734	464	7 97
British Columbia	1 399		104	10 849	151	12 50
Yukon		-	45	82		12
Northwest Territories			124	53	19	19
Canada: 1989	28 203	12 603	568	58 465	2 121	101 96
Canada: 1988	27 839	12 593	534	57 936	2 152	101 05
Percent of total: 1989	27.66	12.36	0.56	57.34	2.08	100.0
Percent of total: 1988	27.55	12.46	0.53	57.33	2.13	100.0
			number of p	lants		
Newfoundland	6		48	37	6	9
Prince Edward Island	1		1		1	
Nova Scotia	9	1	1	36	3	5
New Brunswick	14		3	13	2	3
Quebec	4	- 1	26	96	2	12
Ontario	23	4	3	119	12	16
Manitoba	5		14	13		3
Saskatchewan	8		5	7	3	2
Alberta	27	-	34	15	9	8
British Columbia	23		20	47	3	9.
Yukon			15	5	-	2
Northwest Territories			57	5	1	6
Canada: 1989	120	6	227	393	42	78
Canada: 1988	118	6	227	390	41	78
Percent of total 1989	15.23	0.76	28.81	49.87	5.33	100.0
Percent of total: 1988	15.09	0.77	29.03	49.87	5.24	100.0

Source: Statistics Canada. Electric Power Statistics. Catalogue 57-206.

Table: 3.1.2.18

Conventional Thermal Electricity Generating Capacity by Principal Fuel, 1989

Province	Coal	Oil	Natural gas	Other	Total
			megawatts		
Newfoundland	1.3	802.3		5.0	808.6
Prince Edward Island	and the second	122.1	and the second		122.1
Nova Scotia	1 182.3	594.2		18.8	1 775.3
New Brunswick	417.5	1 455.4		62.4	1 935.3
Quebec	3.2	1 092.5	7.5	5.4	1 108.6
Ontario	10 553.0	2 526.9	445.1	71.7	13 596.7
Manitoba	404.0	17.4	4.0	22.8	448.2
Saskatchewan	1 531.3	24.4	432.6	22.3	2 010.6
Alberta	4 861.4	15.2	2 031.4	336.0	7 244.0
British Columbia	6.6	244.2	1 032.7	370.2	1 653.7
Yukon	1.0	43.7			44.7
Northwest Territories		124.3	19.5		143.8
Canada	18 941.6	7 062.6	3 972.8	914.6	30 891.6
Percent of total	61.32	22.86	12.86	2.96	100.00

Source:

Statistics Canada. Electric Power Statistics. Catalogue 57-206.

Crude Oil Pipeline Lengths by Type and Province, 1989

		Type of li	18		Pumping
Province	Gathering'	Trunk	Product	Total	stations
		kilometre	15		number
Quebec		347.8	253.6	601.4	5
Ontario	72.1	1 489.4	1 957.8	3 519.3	35
Manitoba	230.9	1 775.2	311.9	2 318.0	16
Saskatchewan	2 920.4	3 917.1	1 363.0	8 200.5	40
Alberta	6 572.0	9 494.5	1 117.6	17 184.1	142
British Columbia	492.9	1 649.5	55.9	2 198.3	15
Yukon			88.9	88.9	1
Northwest Territories		752.1		752.1	3
Canada 1989	10 288.3	19 425.6	5 148.7	34 862.6	257
Canada 1988	9 137.5	19 482.7	5 107.6	33 727.8	247
Canada 1987	9 060.9	19 895.8	4 820.4	33 777.1	249
Canada 1986	8 873.0	19 024.3	4 964.2	32 881.5	247
Canada 1985	8 629.7	18 488.4	4 948.3	32 066.4	236
Canada 1984	8 104.7	18 777.3	5 012.2	31 894.2	223

Source:

Statistics Canada. Oil Pipe Line Transport. Catalogue 55-201.

Notes:

¹Excludes producers' gathering lines.

Table: 3.1.2.20

Natural Gas Pipeline¹ Lengths by Type and Province, 1989

		Type of	line		Compressor	Prime
Province	Gathering	Transmission	Product	Total	stations	movers
		kilome	tres		numb	er
Quebec		1 122.8	6 073.6	7 196.4	2	4
Ontario	944.7	11 440.5	41 972.3	54 357.5	56	136
Manitoba		3 075.1	3 847.2	6 922.3	7	21
Saskatchewan	398.0	14 364.3	47 867.0	62 629.3	38	96
Alberta	2 928.9	25 238.5	43 288.4	71 455.8	89	178
British Columbia	2 181.2	6 313.3	15 406.3	23 900.8	41	105
Yukon						
Northwest Territories	50.6			50.6		-
Canada	6 503.4	61 554.5	158 454.8	226 512.7	233	540

Source:

Statistics Canada. Gas Utilities. Catalogue 57-205.

Notes: 'Total natural gas industries excluding Alberta cooperatives.

Table: 3.1.2.21

Natural Gas Pipeline¹ Lengths by Province, 1982-1989

Province	1982	1983	1984	1985	1986	1987	1988	1989
				kilome	tres			
New Brunswick	189	189	189	169	189	189		
Quebec	3 791	3 999	5 464	5 814	6 817	6 761	7 052	7 196
Ontario	45 4 18	46 542	48 232	49 631	51 097	53 268	53 772	54 358
Manitoba	6 1 3 0	6 152	6 227	7 329	7 423	7 487	7 555	6 922
Saskatchewan	17 965	24 390	32 859	41 594	52 009	58 453	58 453	62 629
Alberta	55 704	57 448	62 253	63 051	66 946	67 858	69 313	71 456
British Columbia	19 335	20 045	20779	21 353	22 329	22 461	22 769	23 901
Yukon and Northwest Territories	55	55	55	55	51	51	51	51
Canade	148 587	158 819	176 058	189 016	206 860	216 526	218 964	226 513

Source:

Statistics Canada. Gas Utilities Transportation and Distribution Systems. Catalogue 57-205.

Notes:

* Excludes gathering pipelines of the upstream producing industry

2

3.1.3 Dwellings

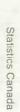
Between 1971 and 1986 Canada's population increased by 17 percent. The number of dwellings increased by 49 percent. The purchase of major appliances, vehicles and household equipment occur at the household level, as does energy consumption and waste generation.

The number and density of private dwellings are better indicators than numbers of people of resource consumption and some environmental impacts. The construction of dwellings and purchases of vehicles, appliances and energy in the residential sector are all driven by the number of households rather than simply the number of people. For example, a household will usually have a set of major appliances such as a stove, washing machine and refrigerator and an automobile regardless of the number of people in it.

Between 1971 and 1986, the count of private occupied dwellings increased by almost 3 million. These increases were mainly in the Mixed-Wood Plain of Ontario and Quebec. Large proportional increases occurred in some sparsely-populated regions — the Boreal Shield of Quebec, the Boreal Cordillera of the Yukon and the Taiga Shield in the Northwest Territories showed increases of 65 percent and higher. Table 3.1.3.2 presents the number of dwellings by ecozone during census years from 1971 to 1986. Comparing this to Table 2.1.1.2 in the **Population Conditions** section highlights the changing demography of Canada. The population increased by only 17 percent over the same period. The number of persons per dwelling decreased from 3.6 in 1971 to 2.8 in 1986 (Table 3.1.3.1).

Table: 3.1.3.1 Persons per Dweiling 1971-1986

1 01 00110	por	Detterin	.8.	1911	1000	
						-


Year	Population	Dwellings	Persons per dwelling
	thousa	nds	
1971	21 568	6 044	3.6
1976	22 993	7 166	3.2
1961	24 343	8 281	2.9
1986	25 354	8 992	2.8

Source:

Statistics Canada. Census of Population.

The distribution of dwelling density in Canada is shown in Map 3.1.3.1. The categories used in this map define classes of human disturbance:

- No Dwellings: no dwellings within the area
- Greater than 0 but fewer than 1 dwelling per 10 square kilometres: This is a low density with minimal infrastructure and potential for impact
- Greater than .1 but less than one dwelling per square kilometre: Low density representing sparsely populated rural areas.
- One or more dwelling per square kilometre: This category ranges from moderately populated rural areas to urban centres. A substantial amount of infrastructure: roads, sewers, commercial centres, community facilities, is required to support this level of density.

Dwelling Density by Sub-sub Basin, 1986 Dwellings per sq. km. 0 - .004 0.004 - < 0.1 0.1 - < 1 > 1 00 11 and the Source: Statistics Canada, Environment and Wealth Accounts Division.

Dwellings by Ecozone, 1971-1986

			Total occupied p	private dwellings		Dwelling density	Change
Province / Ecozone	Area	1971	1976	1981'	1986	1986	1971-80
	km ²	1.1.2				dwellings/km ²	percen
Newfoundiand							
Taiga Shield	207 441	4 790	6 475	6 735	6 065	0.03	26.5
Boreal Shield	130 317	105 345	124 765	141 180	152 445	1.17	44.7
Southern Arctic	51 311	315	430	505	575	0.01	80.70
Arche Cordiliera	10 124						
Total	399 193	110 455	131 665	148 420	159 080	0.40	44.0
Prince Edward Island							
Atlantic Mantime	5 660	27 885	32 930	37 660	40 695	7.19	45.94
Total	5 660	27 880	32 930	37 660	40 695	7.19	45.94
Nova Scotia							
Allantic Maritime	55 490	207 540	243 095	273 195	295 780	5.33	42.52
Total	55 490	207 535	243 095	273 190	295 780	5.33	42.52
New Brunswick							
Atlantic Maritime	73 440	157 650	190 435	214 895	231 680	3.15	46.96
Total	73 440	157 655	190 435	214 900	231 680	3.15	46.96
Quebec							
Taiga Shield	539 794	2 360	4 200	4 560	2 430	0.00	3.01
Boreal Shield	643 159	223 740	282 770	340 955	368 150	0.57	64.54
Hudson Bay Plain	26 311	355	270	275	400	0.02	12.71
Mixed-Wood Plain	55 385	1 321 375	1 542 110	1 750 365	1 900 755	34.32	43.65
Atlantic Maritime	28 838	56 675	64 325	76 070	84 580	2.93	49.24
Southern Arctic	138 223	30	40	340	460	0.00	1 334.37
Northern Arctic	67 105	270	335	235	335	0.00	23.33
Arctic Cordiliera	7 535	35	50	0	0	0.00	- 100.00
Total	1 506 350	1 604 840	1 894 110	2 172 810	2 357 105	1.56	46.87
Ontario							
Boreal Shield	614 964	230 920	263 225	291 745	305 490	0.50	32.28
Hudson Bay Plain	268 924	1 070	955	1 135	595	0.00	- 44.53
Mixed-Wood Plain	96 427	1 993 580	2 370 440	2 676 880	2 915 650	30.24	46.25
Total	980 315	2 225 565	2 634 620	2 969 755	3 221 725	3.29	44.78
Manitoba							
Boreal Plain	96 559	14 780	15 980	17 135	17 445	0.18	18.06
Prairie	74 005	252 355	288 275	316 900	338 430	4.57	34.11
Taiga Shield	103 672	130	95	200	235	0.00	84.50
Boreal Shield	244 367	20 355	22 975	23 235	25 555	0.10	25.52
Hudson Bay Plain	93 726	750	685	510	675	0.01	- 10.37
Southern Arctic Total	1 884 614 212	288 380	328 000	357 980	382 345	0.62	32.59
	014 212	200 300	320 000	337 800	302 343	0.02	32.31
Saskatchewan Boreal Plain	211 330	10 315	11 340	13 165	14 060	0.07	36.34
	285 333	255 390	277 745	316 960	341 745	1.20	30.34
Prairie Taiga Shield	55 605	255 350	715	970	430	0.01	- 35.65
Boreal Shield	85 478	1 195	1 350	1 620		0.01	
Total	637 746	267 575	291 155	332 715	2 030 358 265	0.56	69.54 33.89
Alberte							
Alberta Montago Contillera	40 504	7 000	0.040	11 455	10.005	0.00	00.44
Montane Cordillera	43 504	7 220	9 340	11 455 108 050	12 235	0.28	69.44
Boreal Plain	363 280	65 620	78 505		118 225	0.33	80.17
Taiga Plain Praine	83 683 162 542	105 391 500	105	200	200	0.00	94.06
			487 090	638 285	705 200		80.13
Taiga Shield Total	8 182 661 191	195 464 635	240 575 280	215 758 210	270 836 130	0.03 1.26	39.90 79.95
British Columbia							
	120 607	360	515	650	760	0.01	110.80
Boreal Cordillera							
	282 594	519 915	629 980	750.660	020 990	2.93	1378 667
Boreal Cordillera	282 594 389 734		629 980 185 340	750 660 228 210	828 990 238 425	2.93	59.45 74.95
Boreal Cordillera Pacific Maritime		519 915 138 285 10 885	629 980 185 340 12 325		238 425 18 835	0.61 0.16	74.95
Boreal Cordillera Pacific Maritime Montarie Cordillera	389 734	138 285	185 340	228 210	238 425	0.61	74.95

Dwellings by Ecozone, 1971-1986

			Total occupied p	orivate dwellings		Dwelling	
Province / Ecozone	Area	1971	1976	19811	1986	density 1986	Change 1971-86
	km ²					dwellings/km ²	percen
Yukon							
Tundra Cordillera	174 893	45	50	75	95	0.00	125.58
Boreai Cordillera	259 506	4 880	6 035	7 120	7 445	0.03	52.66
Boreal Plain	32 518	175	405	390	435	0.01	144.89
Taiga Plain	16 534	110	400	050	100	0.01	144.05
Total	483 450	5 095	6 495	7 590	7 975	0.02	56.46
Northwest Territories					1.1.2		
Tundra Cordillera	107 453	25	50	70	75	0.00	181.48
Boreal Plain	1 826						
Taiga Plain	444 446	3 290	4 320	4 440	5 160	0.01	56.67
Taiga Shield	470 308	1 845	2 825	3 645	4 355	0.01	136.19
Hudson Bay Plain	3 121		5				
Southern Arctic	737 058	965	1 165	1 435	1 605	0.00	66.05
Northern Arctic	1 359 619	1 250	1 435	1 665	2 255	0.00	80.70
Arctic Cordillera	242 597	195	230	280	320	0.00	63.78
Total	3 366 429	7 575	10 015	11 530	13 775	0.00	81.81
Ecozone				The second			
Atlantic Maritime	163 428	449 745	530 765	601 820	652 740	3.99	45.13
Mixed-Wood Plain	151 812	3 314 950	3 912 555	4 427 245	4 816 400	31.73	45.29
Boreal Shield	1 718 285	581 560	695 090	798 735	853 665	0.50	46.7
Prairie	521 880	899 250	1 053 110	1 272 145	1 385 380	2.65	54.00
Boreal Plain	820 833	101 775	118 555	155 760	169 005	0.21	66.0
Montarie Cordillera	433 238	143 505	194 680	239 670	250 660	0.58	74.6
Pacific Maritime	282 594	519 915	629 980	750 660	828 990	2.93	59.4
Boreal Cordiliera	380 113	5 235	6 550	7 775	8 205	0.02	56.60
Tundra Cordiliera	282 346	70	100	140	175	0.00	147.14
Taiga Plain	584 208	3 510	4 545	4 795	5 460	0.01	55.51
Taiga Shield	1 385 002	9 995	14 545	16 325	13 795	0.01	38.03
Hudson Bay Plain	392 082	2 175	1 915	1 920	1 665	0.00	- 23.40
Southern Arctic	928 475	1 315	1 635	2 285	2 635	0.00	100.46
Northern Arctic	1 426 724	1 520	1 765	1 900	2 590	0.00	70.51
Arctic Cordillera	260 256	235	280	285	325	0.00	38.36
Canada Total	9 731 276	6 034 765	7 166 090	8 281 450	8 991 670	0.92	49.00

Source: Statistics Canada, Environment and Wealth Accounts Division. Original data provided by Statistics Canada, Census of Population.

Notes: ¹ The 1981 figures have been revised from the previous edition. Values may also be different since ecozone boundaries have been revised.

3.1.4 Economic Indicators

In 1989, crude and fabricated materials accounted for approximately 65 percent of merchandise exports, whereas end products comprised 60 percent of merchandise imports.

Economic indicators such as employment, Gross Domestic Product, international trade and prices are used to measure past economic activity and to predict future economic performance. These indicators, when focused upon the primary industries (agriculture, fishing and trapping, forestry, mining) provide a perspective of the magnitude and performance of these environmentally significant industries. This section discusses these traditional economic indicators from a natural resource point of view.

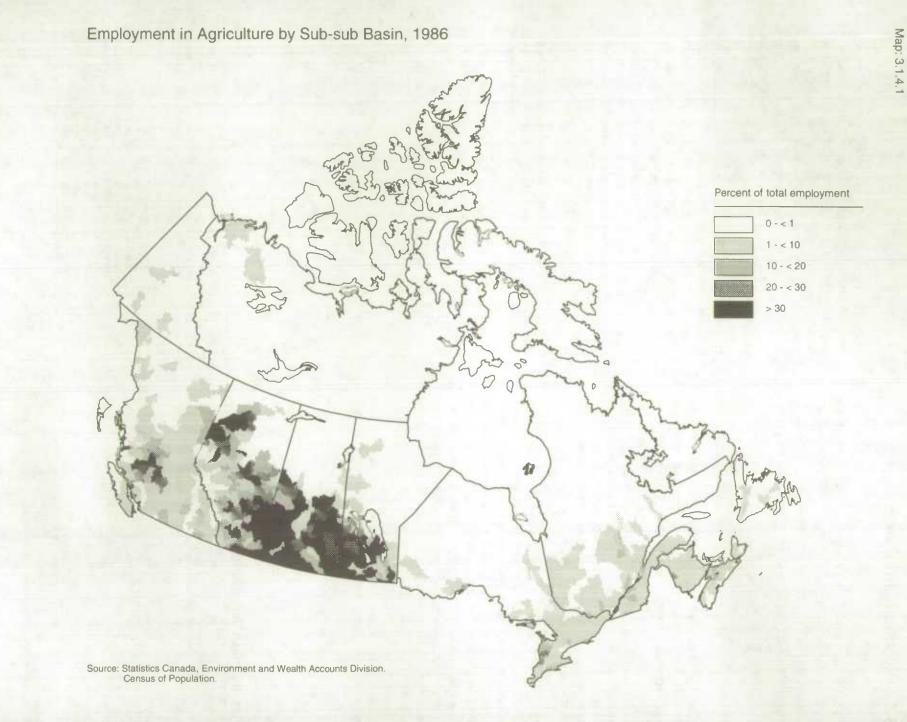
The level of employment in primary sector industries (Table 3.1.4.3) is an indirect indicator of the rate of resource exploitation as well as the geographic concentration of primary industries. A high proportion of a regional population employed in one industry creates a vulnerable economy. Changes in world prices, weather, quality of the stock and condition of the environment can have severe consequences for these regional economies (Table 3.1.4.1, Figures 3.1.4.1 and 3.1.4.2).

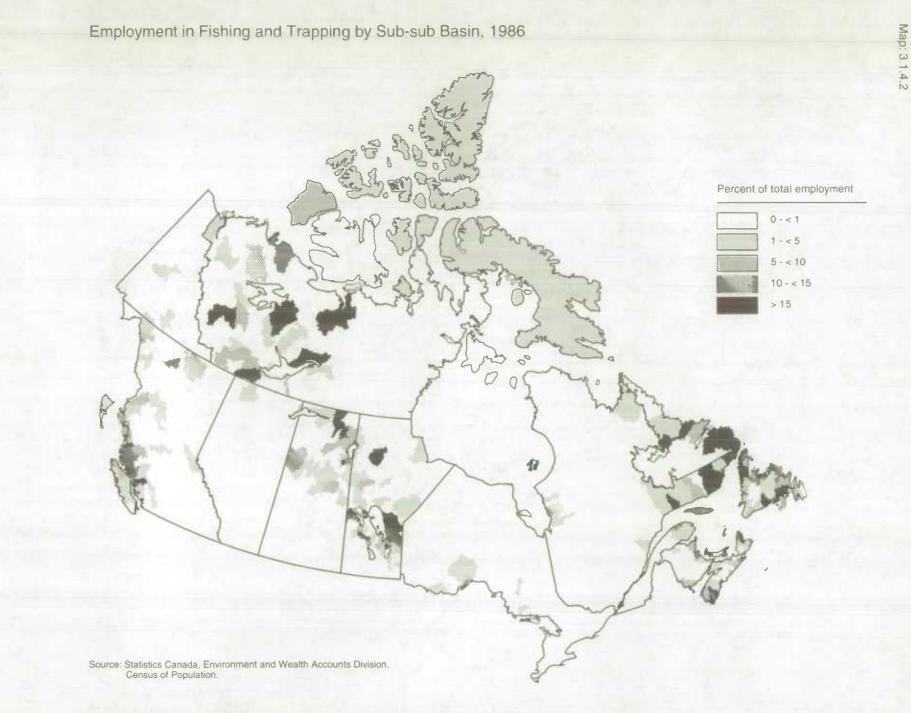
Maps 3.1.4.1 to 3.1.4.4, show the proportion of total employment in primary sector industries by sub-sub drainage

basin. The maps indicate the concentration of employment in primary industries (agriculture, fishing, mining and forestry) by sub-sub basin and not the number of persons employed. These maps indicate the reliance on agriculture in the Prairie Provinces; fishing in the Atlantic Provinces; logging and forestry in northern Ontario, northern Quebec and British Columbia; and mining and quarrying in central Ontario and central Alberta.

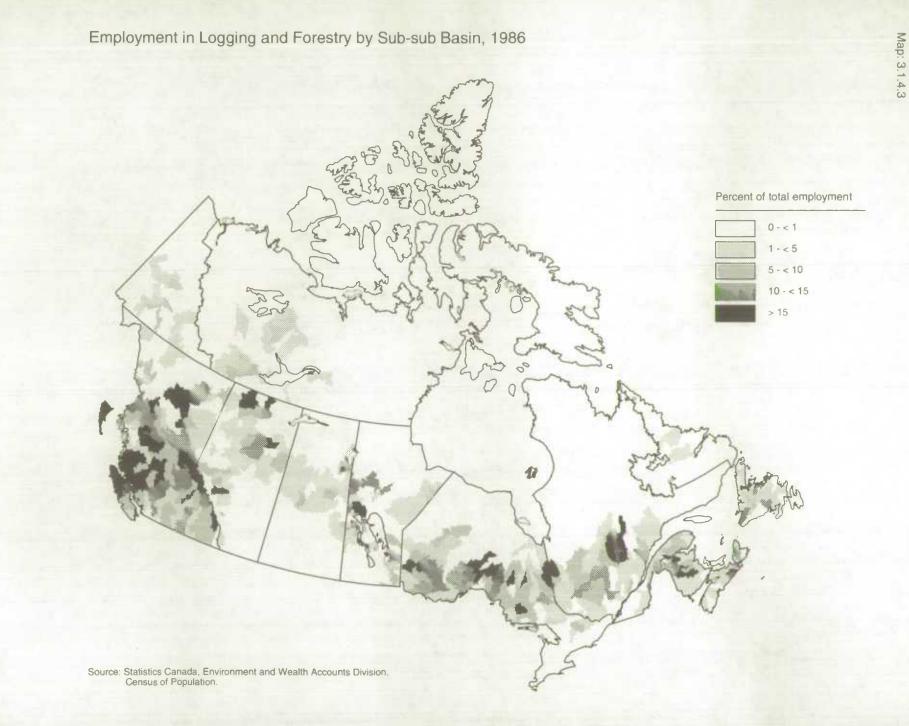
The Balance of Payments current account summarizes Canadian international trade. Canadian commodity exports consist of a higher proportion of crude and fabricated materials than end products (Table 3.1.4.4, Figure 3.1.4.3). End products comprise the majority of imports (Table 3.1.4.5, Figure 3.1.4.4). The merchandise balance, exports less imports, has historically been a surplus. However, this surplus has not been large enough in recent years to offset the deficit of the non-merchandise balance, resulting in a net deficit position (Figure 3.1.4.6).

GDP (Gross Domestic Product) is a widely-quoted indicator of the nation's economic performance. The level of production in the primary sector has increased over the period. However, the rate of growth in the primary sector has been outpaced by other industries, notably service sector industries. Primary sector industries accounted for 12.2 percent of GDP in 1961 compared to 6.8 percent in 1990 (Table 3.1.4.2, Figure 3.1.4.5).

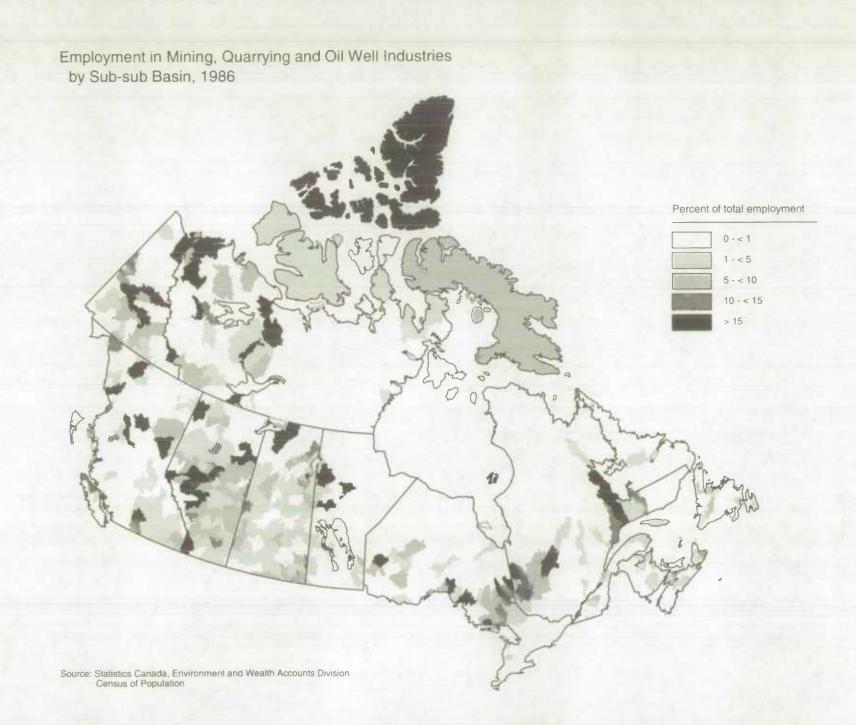

Table: 3.1.4.1


Raw Resource Commodity Price Index, 1981-1990

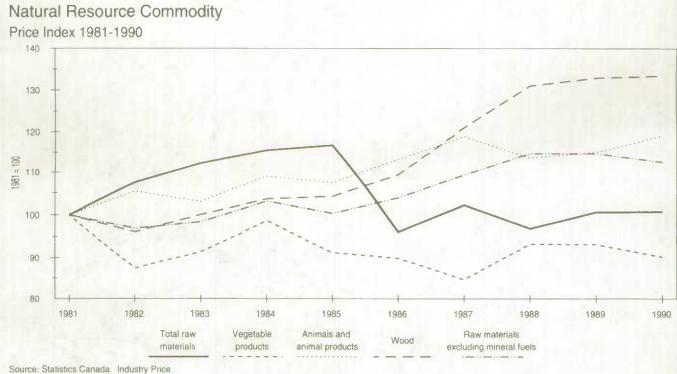
		Commodity										
Year	Raw materials price index total	Vegelable products	Animal and animal products	Wood	Ferrous materials	Non-terrous metals	Non-metal minerals	Mineral fuels	Raw materials excluding mineral luels			
1981	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			
1982	107.5	87.5	105.4	96.2	96.9	88.5	111.6	120.3	97.0			
1983	112.2	91.5	103.0	100.1	98.4	92.3	114.8	128.8	98.5			
1984	115.5	98.8	109.0	103.6	107.7	91.6	118.5	130.7	103.1			
1985	t16.6	91.3	107.4	104.2	109.5	86.4	124.4	136.8	100.4			
1986	96.2	89.9	113.2	109.3	110.3	89.6	127.8	86.8	103.9			
1987	102.3	84.7	119.0	121.1	108.8	102.3	127.8	93.7	109.3			
1988	97.0	93.4	113.6	131.1	110.8	121.9	131.4	75.6	114.7			
1989	100.7	93.3	115.0	133.0	106.3	118.7	133.5	83.7	114.7			
1990	100.8	90.2	119.2	133.5	100.0	104.0	133.6	86.6	112.5			

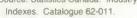

Source:

Statistics Canada. Industry Price Indexes. Catalogue 62-011.



Human Activity and the Environment




Human Activity and the Environment

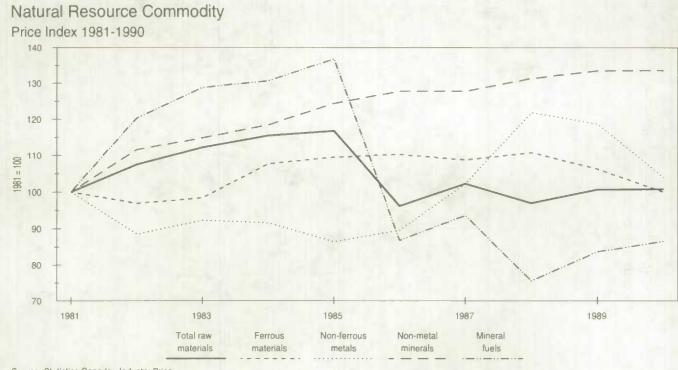

Human Activ ty and the Environment

Figure: 3.1.4.1

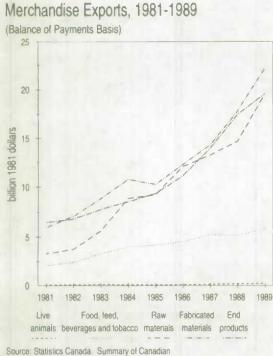


Figure: 3.1.4.2

Source: Statistics Canada. Industry Price Indexes. Catalogue 62-011.

Figure: 3.1.4.3

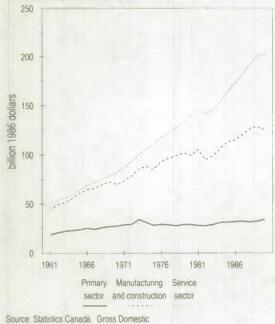
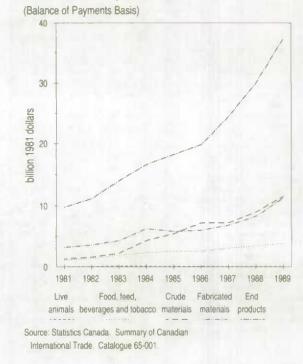
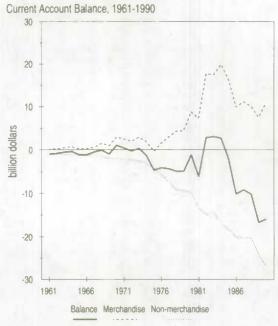


Figure: 3.1.4.5

Gross Domestic Product by Sector,


at Factor Cost, 1961-1990

Product by Industry. Catalogue 15-001.


Figure: 3.1.4.4

Merchandise Imports, 1981-1989

Figure: 3.1.4.6

Balance of International Payments

Source: Statistics Canada. Summary of Canadian International Trade. Catalogue 65-001.

Gross Domestic Product at Factor Cost by Industry, Selected Years

Industry	1961	1966	1971	1976	1981	1986	1990	1961	1966	1971	1976	1981	1986	1990
			mil	lion 1986 dol	lars						percent			
Business Sector	121 794.8	171 161.0	209 077.5	269 291.4	320 322.4	368 535.2	419 320.0	77.9	79.0	78.3	79.4	80.7	81.6	82.2
Agriculture and related services industries	6 389.9	9 557.6	9 381.0	9 780.1	9 627.3	11 056.7	11 201.5	4.1	4.4	3.5	2.9	2.5	2.4	2.2
Fishing and trapping industries	772.3	820.8	725.3	610.2	834.1	980.2	1 109.3	0.5	0.4	0.3	0.2	0.2	0.2	0.2
Logging and foresty industries	1 547.3	1 828.6	1 764.4	1 871.8	2 195.1	2 691.0	2 525.8	1.0	0.8	0.7	0.6	0.6	0.6	0.5
Mining, quarrying and oil well industries	10 283.3	13 297.4	17 026.5	17 176.9	15 306.8	17 502.2	19 655.3	6.6	6.1	6.4	5.1	3.9	3.9	3.9
Mining industries	3 611.2	4 118.4	4 758.2	4 890.5	4 100.1	5 158.0	6 227.3	2.3	1.9	1.8	1.4	1.0	1.1	1.2
Gold mines	1 973.2	1 438.2	793,4	457.3	391.0	880.6	1 519.5	1.3	0.7	0.3	0.1	0.1	0.2	0.3
Other metal mines	2 528.4	2 396.7	2 492.2	2 621.8	1 752.4	2 346.5	2 522.0	1.6	t.t	0.9	0.8	0.4	0.5	0.5
Iron mines	248.9	551.4	820.6	819.1	761.3	452.7	465.4	0.2	0.3	0.3	0.2	0.2	0.1	0.1
Asbestos mines	245.6	297.0	322.6	285.0	199.3	102.0	101.3	0.2	0.1	0.1	0.1	0.1	0.0	0.0
Non-metal mines exc. coal and asbestos	40.5	163.3	259.2	321.7	468.6	485.4	532.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Salt mines	22.0	36.1	53.7	69.5	90.3	135.6	138.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coal mines	160.7	167.1	234.2	213.9	409.3	755.3	948.7	0.1	0.1	0.1	0.1	0.1	0.2	0.2
Crude petroleum & natural gas industries	7 014.1	11 261.8	18 028.4	16 058.9	8 622.9	9 762.6	11 426.8	4.5	5.2	6.8	4.7	2.2	2.2	2.2
Quarry and sand pit industries	226.0	424.5	460.9	441.0	460.7	643.7	602.6	0.1	0.2	0.2	0.1	0.1	0.1	0.1
Service related to mineral extraction	526.1	651.0	661.1	1 024.0	2 344.4	1 937.9	1 398.6	0.3	0.3	0.2	0.3	0.6	0.4	0.3
Manufacturing industrias	31 126.5	47 685.6	56 668.3	69 978.5	77 895.0	86 789.3	91 268.4	19.9	22.0	21.2	20.6	19.6	19.2	17.9
Construction industries	13 808.7	16 985.0	17 317.5	22 998.3	27 158.5	28 081.9	33 695.3	8.8	7.8	6.5	6.8	6.8	6.2	6.6
Transportation and storage industries	6 930.0	9 609.3	12 619.5	14 608.6	17 076.4	20 253.9	22 484.7	4.4	4.4	4.7	4.3	4.3	4.5	4.4
Communication industries	1 911.1	2 870.8	4 347.4	7 377.4	11 128.1	13 247.9	18 860.4	1.2	1.3	1.6	2.2	2.8	2.9	3.7
Other utility industries	2 968.5	4 415.6	6 707.5	9 975.0	12 651.9	15 198.0	15 777.7	1.9	2.0	2.5	2.9	3.2	3.4	3.1
Electric power systems industry	2 559.2	3 741.6	5 624.5	8 475.7	10 875.9	13 165.8	13 246.8	1.6	1.7	2.1	2.5	2.7	2.9	2.6
Gas distribution systems industry	423.7	686.3	1 074.5	1 349.4	1 519.9	1 653.0	1 758.7	0.3	0.3	0.4	0.4	0.4	0.4	0.3
Other utility industries n.e.c.	13.6	30.9	72.3	192.9	280.5	379.2	772.2	0.0	0.0	0.0	0.1	0.1	0.1	0.2
Wholesale trade industries	5 965.6	8 912.5	11 526.5	14 876.5	17 952.7	23 312.0	27 272.0	3.8	4.1	4.3	4.4	4.5	5.2	5.3
Retail trade industries	10 906.9	14 759.3	18 195.2	23 497.4	24 156.7	28 269.4	31 213.6	7.0	6.8	6.8	6.9	6.1	6.3	6.t
Finance, insurance & real estate industries	21 446.0	27 095.8	34 443.2	45 422.1	58 075.2	69 033.7	80 213.4	13.7	12.5	12.9	13.4	14.6	15.3	15.7
Community, business, personal service ind.	12 777.9	18 033.0	22 868.6	33 647.1	45 640.8	52 119.0	64 042.6	8.2	8.3	8.6	9.9	11.5	11.5	12.6
Non-business sector	36 226.5	45 986.7	59 823.4	71 350.3	77 080.4	83 304.1	90 604.3	23.2	21.2	22.4	21.0	19.4	18.4	17.8
Total economy	156 427.6	216 770.4	267 059.6	339 251.3	397 089.7	451 839.3	509 924.3	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Source:

Statistics Canada. Gross Domestic Product by Industry. Catalogue 15-001.

Table: 3.1.4.3

Employment in Primary Sector Industries, 1986

				Employment				Propo	ortion of all ind	ustries	
Province/Territory	All industries	Total primary sector	Agriculture	Fishing, trapping	Forestry, logging	Mining, quarrying, oil wells	Total primary sector	Agriculture	Fishing. trapping	Forestry, logging	Mining, quarrying, oil wells
			perso	ns					percent		
Newfoundland	237 960	20 830	1 490	10 990	4 020	4 330	8.8	0.6	4.6	1.7	1.8
Prince Edward Island	62 560	9 810	5 745	3 550	420	100	15.7	9.2	5.7	0.7	0.2
Nova Scotia	408 695	30 450	9 265	9 050	5 675	6 460	7.5	2.3	2.2	1.4	1.6
New Brunswick	319 200	25 155	8 110	4 315	8 750	3 980	7.9	2.5	1.4	2.7	1.2
Quebec	3 089 530	131 740	78 470	3 870	26 530	22 875	4.3	2.5	0.1	0.9	0.7
Ontario	4 877 015	189 100	137 660	2 540	17 105	31 795	3.9	2.8	0.1	0.4	0.7
Manitoba	535 275	51 760	44 380	995	1 590	4 795	9.7	8.3	0.2	0.3	0.9
Saskatchewan	495 090	105 945	91 655	250	1 575	12 460	21.4	18.5	0.1	0.3	2.5
Alberta	1 280 035	172 045	86 195	260	3 835	79 755	13.4	6.9	0.0	0.3	6.2
British Columbia	1 440 875	105 555	39 140	7 990	39 640	18 790	7.3	2.7	0.6	2.8	1.3
Yukon	13 730	1 125	95	35	135	860	8.2	0.7	0.2	1.0	6.3
Northwest Territories	23 545	2 530	55	230	125	2 115	10.7	0.2	1.0	0.5	9.0
Canada	12 783 510	846 045	504 255	44 075	109 410	188 300	6.6	3.9	0.3	0.9	1.5

Source:

Statistics Canada. Census of Population.

Merchandise Exports, 1981 - 1989

Year	Total	Live animals	Food, leed beverages and tobacco	Crude materials	Fabricated materials	End products	Live animals	Food, feed beverages and tobacco	Crude materiais	Fabricated materials	End
			billion 19	81 dollars					percent		
1981	17.78	0.07	2.06	3.29	5.96	6.49	0.38	11.58	18.51	33.53	36.52
1982	20.12	0.09	2.37	3.74	7.10	6.80	0.42	11.80	18.59	35.29	33.82
1983	25.55	0.14	3.30	5.63	6.85	7.79	0.56	12.90	22.05	34.66	30.49
1984	31.45	0.09	3.98	8.87	10.74	8.55	0.27	12.67	28.21	34.15	27.19
1985	32.14	0.09	4.15	9.22	10.23	9.35	0.27	12.92	28.70	31.83	29.09
1986	37.75	0.11	4.51	12.04	12.26	11.09	0.29	11.94	31.90	32.47	29.38
1987	44.94	0.12	5.23	13.24	14.29	13.92	0.26	11.63	29.45	31.80	30.98
1988	53.90	0.17	5.15	14.67	17.84	17.46	0.32	9.55	27.22	33.10	32.40
1989	64.87	0.22	5.83	19.54	22.18	19.55	0.34	8.99	30.12	34.19	30.14

Source:

Statistics Canada. Summary of Canadian International Trade. Catalogue 65-001.

Note:

Exports are calculated on a Balance of Payments basis.

Amounts do not sum to total due to the exclusion of Balance of Payments Adjustments and the exclusion of Special Trade Transactions.

Current dollar export figures were deflated using the current weighted Paasche price index for exports (1961 = 100)

Table: 3.1.4.5

Merchandise Imports, 1981 - 1989

Year	Totat	Live animals	Food, leed beverages and tobacco	Crude materials	Fabricated materials	End products	Live animals	Food, leed beverages and tobacco	Crude materials	Fabricated materials	End products
			billion 11	981 dollars					percent		
1961	15.31	0.04	1.12	1.32	3.21	9.78	0.26	7.30	6.63	20.93	63.87
1962	17.64	0.04	1.38	1.61	3.59	11.13	0.25	7.84	9.12	20.38	63.13
1963	22.24	0.13	1.94	2.25	4.28	14.01	0.60	8.70	10.12	19.24	63.00
1984	28.91	0.09	2.37	4.31	6.25	16.55	0.32	8.19	14.92	21.63	57.26
1985	31.24	0.07	2.60	5.44	5.82	18.18	0.23	8.32	17.41	18.64	58.20
1986	33.86	0.10	2.58	7.22	6.00	19.79	0.29	7.62	21.32	17.72	58.45
1987	40.20	0.05	3.07	7.26	6.83	24.48	0.11	7.65	18.05	16.99	60.90
1988	48.37	0.07	3.45	8.98	8.32	30.00	0.14	7.14	18.56	17.21	62.03
1989	61.28	0.06	3.84	11.49	11.25	37.23	0.10	6.27	18.75	18.35	80.76

Source:

Statistics Canada. Summary of Canadian International Trade. Catalogue 65-001.

Note:

Imports are calculated on a Balance of Payments basis. Amounts do not sum to total due to the exclusion of Balance of Payments Adjustments and the exclusion of Special Trade Transactions.

Current dollar import ligures were deflated using the current weighted Paasche price index for imports (1981 = 100).

3.1.5 Natural Resource Accounting

...figuring profits from logging rarely takes full account of the losses in future revenue incurred through the degradation of the forest. Similar incomplete accounting occurs in the exploitation of other resources, especially the resources that are not capitalised in enterprise or national accounts: air, water and soil. In all countries, rich or poor, economic development must take full account in its measurement of growth of the improvement or deterioration in the stock of natural resources.

World Commission on Environment and Development, 1987.

There is a growing recognition of the need to bring the environment into economics, that this is required to improve both environmental policy and economic policy. This is the motivation for a new project on natural resource and environmental accounting at Statistics Canada.

The Gross Domestic Product, or GDP, is probably the most important economic indicator used by ministries of finance, politicians, bankers and journalists worldwide. It measures the total of all incomes (wages, salaries and profits) generated in the production of goods and services in a given year. GDP is used primarily to measure economic growth changes in growth rates have important implications for other economic phenomena such as inflation and unemployment.

While GDP is widely interpreted as a measure of welfare, this is incorrect; GDP is simply the measure of total economic activity in the accounting period. Because of this narrow focus, GDP has been subject to criticism from environmental analysts and theorists, notably that it measures the "goods" but not the "bads" associated with production, and that there is no way to determine from the GDP accounts whether an economy is evolving sustainably.

An obvious example of this sort of problem is the industrial plant whose wages, salaries and profits are measured in GDP, but for which the damages caused by its pollution emissions (to buildings, fisheries or tourism for instance) are not measured in GDP. Another example is the depletion of non-renewable resources, where the drawing down of resource stocks is not treated as capital consumption in the standard GDP accounts.

The concept of *sustainable development*, implicitly integrating environmental and economic concerns as presented in the report of the World Commission on Environment and Development, has given new impetus to attempts to supplement the System of National Accounts (of which GDP forms a part) with information on the state and quality of the environment and the natural resource base. Recent suggestions in the literature attempt to bring the environment into the national accounts through deductions from GDP for various aspects of environmental degradation. The different deductions proposed have included the value of pollution abatement and control expenditures, the value of environmental damage in the accounting period, and the depletion of natural resources. Other proposals include a new definition of "sustainable" income from resource exploitation, which would change the existing measure of GDP.

Natural resource accounting complements these approaches by constructing a time series of resource stock and flow accounts, for both living and non-living resources, in physical quantities and values. Valuation of resources is most straightforward where a market price for the resource exists. Imputation of values for non-market resources is more problematic and often intractable; for instance some assets, such as the ozone layer, have no substitutes. Limiting the value accounts to marketable resources would still measure some of the effects of environmental degradation, since the extent and quality of living resources will vary with environmental quality.

Natural resource accounts can have a simple structure. For a non-renewable resource the closing stock of resource should equal the opening stock, less extraction, plus discoveries, plus or minus revisions (which represent changes in stock estimates). For a renewable resource extraction would be replaced by harvest and discoveries by net growth in this accounting structure. Resource accounts for living resources may also include negative entries for damage from environmental deterioration.

The natural resource accounting project at Statistics Canada will have at least three benefits: (i) it will provide a coherent and comprehensive accounting of Canada's resource status within a national accounting framework; (ii) it will expand the data base on which environmental and economic policy-making depends, making tradeoffs in dollar values explicit; and (iii) it will provide a limited measurement of sustainability by tracking the value of both human-made and natural assets over time. The last point implies expanding the concept of *wealth* in the national accounts - this is important because wealth, in economics, represents the potential for future income.

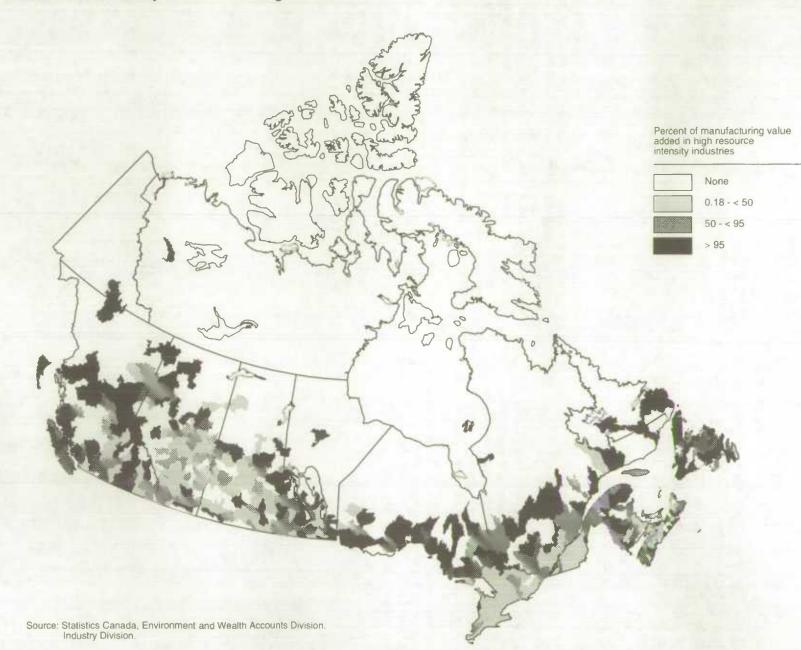
There is no international consensus on how to deal with these issues. Both the United Nations and the World Bank are carrying out research programmes on environment and national accounting. It is likely that different approaches will be pursued experimentally by different countries, through "satellite accounts" to the National Accounts that, while not fully integrated with the accounts, provide explicit links to them. Statistics Canada is a major participant in this international effort.

3.2 Socio-economic Processes

Many environmental impacts are the unintended results of socio-economic processes. The consumption of goods drives a process of production. Production, in turn, consumes resources, generates wastes and restructures the environment. When we buy a car, we have little idea of the amount of steel and energy consumed in the process. We are never told how much waste has been generated in producing one car.

The nature and extent of the economic processes change over time, and consumer preferences and priorities also change. The proliferation of *green* products over the past few years is evidence of of an increased awareness of environmental concerns by producers and consumers.

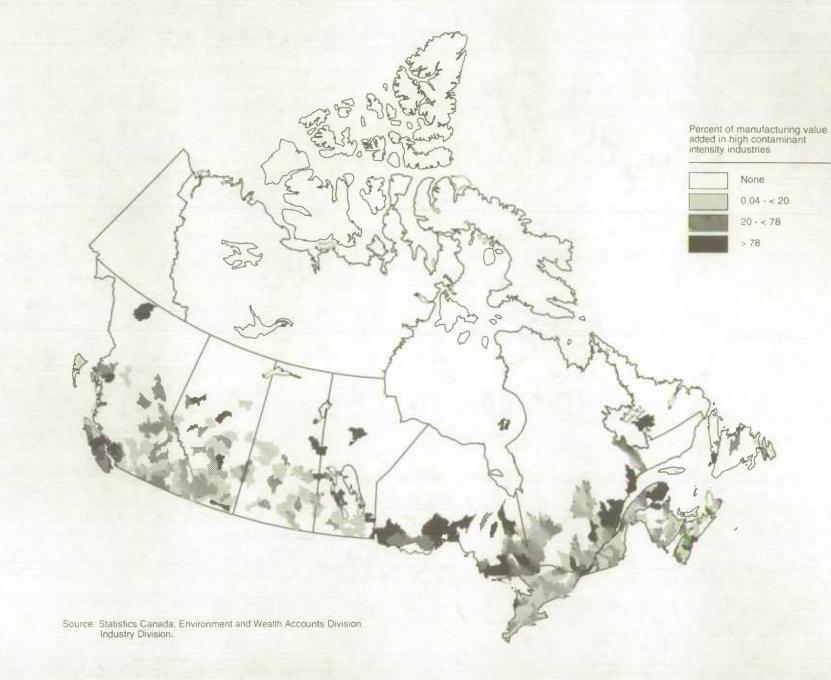
This section provides an overview of the **production** and **consumption** by industries, the consumption by households and the efforts of governments and industry to mitigate the detrimental impacts of these processes.

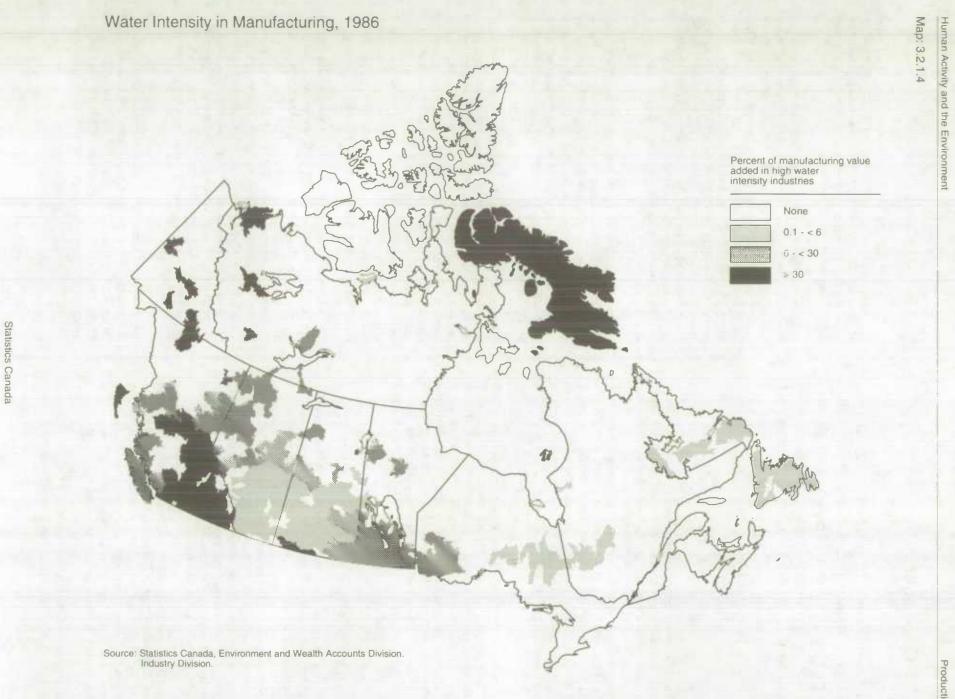

3.2.1 Production

The greatest economic dependence on energy-intensive, resource-intensive, contaminant-intensive and water-intensive industries occurs outside of urbanindustrialized centres.

One indicator of the level of production of a given industry is its total value added. This is measured by gross output less purchased commodity inputs (raw materials, fuel, etc.) and contract work by others. The industrial impact classification presented in the **Industry** section is used here to provide an overview of where in Canada the high impact industries predominate. In the following maps, the total value added of manufacturing in a sub-sub basin is compared to the value added of high impact industries in that basin.

Maps 3.2.1.1 through 3.2.1.4 illustrate the economic importance of resource-intensive, energy-intensive, contaminant-intensive and water-intensive industries by subsub drainage basin. Note that this is not an indication of the *magnitude* of the impacts; for example, there are areas of north-western Ontario with a higher dependence on contaminant-intensive industries than southern Ontario. Tables 3.1.1.6 and 3.1.1.7, in the **Industry** section show that southern Ontario had a much larger number of these industries.




Map: 3.2.1.2

Human Activity and the Environment

Production Map: 3.2.1.3

Contaminant Intensity in Manufacturing, 1986

91

Production

3.2.2 Consumption

Although Canadians are still the highest users of energy in the world, demand per capita has been slowing down. The economy is also becoming less dependent on energy-intensive industries. Total primary energy demand per unit Real GDP decreased by 13 percent between 1958 and 1989.

Energy is a key factor in economic development and is directly related to important environmental concerns such as the greenhouse effect and the risks associated with nuclear power. In the past, sources of energy such as coal, hydropower, electricity, petroleum and nuclear power provided the energy necessary to power human inventions and promote economic growth. As a result, human activities changed drastically as did the relationship between the human species and its environment. This section explores some of the facts and issues related to energy, human activities and the environment.

Household consumption of durable and non-durable goods drives a major proportion of industrial production. What people buy, such as gasoline or pesticides, may have a direct effect on the environment. The impacts of some other commodities are less direct. The demand for cars, creates a demand for steel and energy. This in turn, creates a demand for iron ore, fossil fuels and hydro power. This section provides a summary of the levels of consumption of some selected commodities.

Energy Production and Consumption

The energy sector plays an important role in the Canadian economy. Between 1983 and 1987, this sector represented an average of 8 percent of Canada's Gross Domestic Product (GDP), 19 percent of gross investment, 12 percent of gross export income, and 4 percent of employment. Canada produces more energy than it consumes (production exceeded consumption by more than 25 percent from 1985 to 1989). The Canadian energy production itself requires large amounts of energy. This contributes to the high level of energy consumption in Canada.

Until 1974, energy demand in Canada increased by more than 6 percent per year (Table 3.2.2.2, Figures 3.2.2.1 and 3.2.2.5). The growth in demand slowed drastically for the following ten years (0.3 percent per year). Then it resumed a higher growth rate from 1984 to 1989 (about 3.7 percent per year). Several factors contributed to these movements.

The increase in population explains part of the primary energy demand growth. Per capita primary energy demand (Table

3.2.2.4, Figure 3.2.2.2) has been expanding at lower rates (4.3 percent per year for 1958 to 1974, -0.8 percent for 1974-84 and 2.7 percent for 1984-89) than total demand. The gradual slowing down of population growth in the future may reduce energy demand in the future.

In addition to the growth in energy demand because of an increasing population, energy demand also changes according to the efficiency and mix of energy-intensive industries. Constant Price Gross Domestic Product (Real GDP) increased more rapidly (2.7 times) than total primary energy demand (2.2 times) between 1958 and 1989. Thus, total primary energy demand per Real GDP was 13 percent lower in 1989 than in 1958 (Table 3.2.2.4, Figure 3.2.2.3). There was a large increase in this ratio up to 1974 followed by a steep decline up to 1986 before it stabilized. This change in trend coincided with the dramatic increase in energy prices.

The drop in primary energy demand per dollar of Real GDP suggests that Canadians used energy more efficiently. It also reflects the gradual decline of the relative contribution of the energy-intensive industries as described in the **Industry** section. Thus, Canadians consumed less energy per unit of Real GDP because industries produced a lower proportion of energy-intensive goods.

Conversion to secondary energy (mostly electricity), consumption by energy producer and non-energy use (e.g., natural gas used for plastics) has been increasing to represent more than 25 percent of total primary energy demand since 1985 (Table 3.2.2.2). Final energy consumption by industry and transportation increased at a rapid rate after the important drop during the 1981-82 recession (Figure 3.2.2.5). Residential and farm consumption was stable from 1978 to 1989, while the number of dwellings increased considerably. This suggests that better home insulation may have reduced energy demand.

The sources of energy determine to some extent the impact of energy consumption. Fossil fuels, for example, produce carbon dioxide (CO_2) when burned to produce energy. CO_2 emissions from fossil fuel consumption have been closely tied to primary energy demand (Figure 3.2.2.7). The relative decline of crude oil and coal as sources of energy (Table 3.2.2.3, Figure 3.2.2.6) has helped to lower CO_2 emissions from fossil fuels per unit of energy consumed (Table 3.2.2.4). Although natural gas consumption increased, it generates relatively less CO_2 than oil and coal. As a result, CO_2 emissions from fossil fuels per capita was stable from mid-1970s to 1989.

The interplay of population, economic growth, energy prices, and changes in energy intensity will determine future demand for primary energy. The effect of this demand on the environment will depend on these factors as well as the growth of alternative sources of power such as nuclear and solar energy.

Household Consumption

Data shown in Table 3.2.2.5 are derived from the Statistics Canada Family Expenditures Survey, conducted in 1986. The expenditures selected for the table include the major components (food, household operation, clothing, etc.) and selected items, relevant because of:

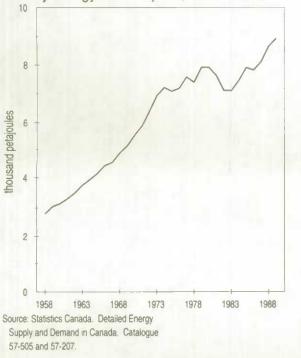
- energy consumption (gasoline, electricity, appliances, vehicles)
- resource consumption (automobiles, paper products, water)
- contaminant generation (paints, chemicals, pesticides, batteries)
- waste generation (fuel, paper products, disposable products)
- disturbance of wildlife (recreational vehicles, motorboats, snowmobiles)
- appreciation of wildlife and outdoor activities (campgrounds, recreation services, sporting and athletic equipment).

The 1990 Statistics Canada *Survey of Households and the Environment* provides detail on some specific consumer items, such as the use of disposable diapers. An estimated 10.6 percent of household using diapers for children never use disposable diapers. Table 3.2.2.1 below provides more detail on this question.

Table: 3.2.2.1

Consumption of Disposable Diapers for Children, 1990

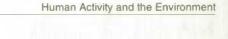
	Number of households	Percent of diaper users
	thousands	percent
Total Households using diapers	862.1	100.0
Always use disposables	523.1	60.7
Mostly use disposables	74.9	8.7
Sometimes use disposables	173.1	20.1
Never use disposables	91.0	10.6
Total households not using		
diapers	8 763.9	
Households with children less than 4		
years old not in diapers	249.6	
Households without children < 4 years old	8 428.5	
Not stated	85.8	


Source:

Statistics Canada Environment and Wealth Accounts Division.

Consumption

Figure: 3.2.2.1


Primary Energy Consumption, 1958-1989

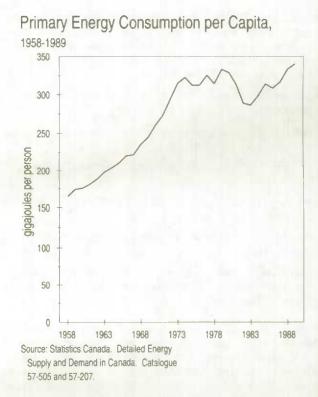


Figure: 3.2.2.3

Primary Energy Consumption per Dollar Real GDP, 1958-1989

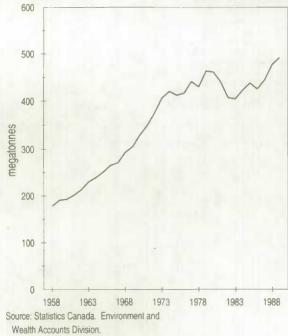


Figure: 3.2.2.4

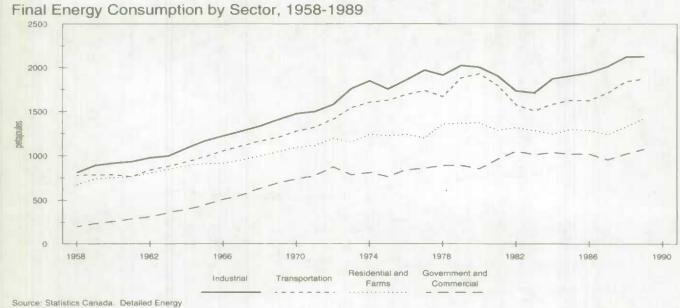
Figure: 3.2.2.2

Carbon Dioxide Emissions from Fossil Fuels, 1958-1989

Consumption of Primary Energy, 1958-1989

						Final enargy consum	ption	
	Conversion to secondary energy	Producer consumption	Non-energy use	Industrial	Transportation	Residential and agriculture	Public administration, commerce and others	Total
					petajoules			
1958	23	196	18	808	776	674	197	2 455
1959	50	218	18	892	783	739	236	2 651
1960	59	231	22	917	786	753	261	2 717
1961	130	232	19	934	764	764	288	2 751
1962	135	273	19	978	838	805	311	2 932
1963	196	289	20	997	882	846	359	3 064
1964	139	318	21	1 085	932	889	396	3 301
1965	89	356	25	1 166	990	913	449	3 5 18
1966	154	381	29	1 223	1 054	915	507	3 700
1967	73	407	28	1 277	1 108	955	559	3 899
1968	141	441	29	1 335	1 165	996	634	4 130
1969	141	479	. 34	1 406	1 208	1 044	694	4 353
1970	217	539	34	1 474	1 275	1 093	739	4 581
1971	408	570	23	1 499	1 319	1 113	775	4 706
1972	607	621	20	1 575	1 413	1 193	874	5 055
1973	843	675	32	1 757	1 541	1 154	785	5 237
1974	927	657	39	1 846	1 601	1 240	810	5 498
1975	873	679	33	1 753	1 624	1 226	764	5 367
1976	743	671	49	1 856	1 691	1 240	842	5 630
19771	977	702	57	1 970	1 737	1 202	860	5 769
1978 ¹	615	470	476	1 912	1 667	1 359	892	5 830
1979	839	401	516	2 024	1 880	1 369	892	6 166
1980	824	398	530	2 004	1 928	1 371	853	6 157
1981	764	364	532	1 903	1 794	1 288	964	5 949
1982	626	345	458	1 733	1 574	1 318	1 050	5 675
1983	722	328	502	1 709	1 507	1 284	1 014	5 515
1984	817	343	558	1 871	1 584	1 245	1 036	5 736
1985	719	726	615	1 904	1 625	1 297	1 020	5 847
1986	607	760	609	1 940	1 622	1 285	1 021	5 887
1987	723	816	664	2 012	1 709	1 240	957	5 918
1988	809	850	677	2 122	1 839	1 326	1 021	8 309
1989	833	911	677	2 128	1 871	1 425	1 076	6 499
1903	833	311	0//	2120	10/1	1 425	1076	0 483

Source:


Statistics Canada. Detailed Energy Supply and Demand in Canada. Catalogue 57-505 and 57-207.

Statistics Canada. Quarterly Report on Energy Supply-Demand in Canada. Catalogue 57-003.

Note:

There is a break in the time series between 1977 and 1978. This break affected mostly estimates for conversion to secondary energy, producer consumption and non-energy use.

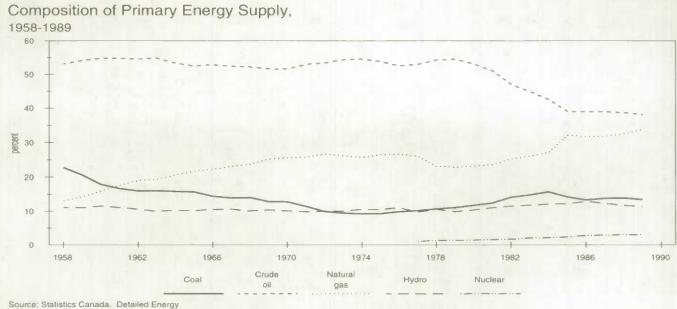
Figure: 3.2.2.5

Supply and Demand in Canada. Catalogue

57-505 and 57-003.

Sources of Primary Energy, 1958-1989

		Crude	Natural				
	Coal	oil	gas1	Hydro	Nuclear	Steam	Total
				petajoules			
1958	637	1 490	366	312			2 806
1959	625	1 644	433	334			3 037
1960	559	1 715	497	362			3 134
1961	548	1 803	579	364			3 294
1962	557	1 903	662	370			3 491
1963	598	2 050	721	371			3 740
1964	621	2 092	809	405			3 926
1965	648	2 168	895	421			4 131
1966	635	2 328	982	464			4 408
1967	629	2 372	1 045	479			4 524
1968	683	2 544	1 160	490			4 878
1969	660	2 654	1 294	533			5 141
1970	708	2 860	1 418	559			5 545
1971	673	3 119	1 518	579			5 890
1972	635	3 425	1 711	641			6 411
1973	654	3 771	1818	695			6 937
1974	665	3 931	1 851	762			7 209
1975	658	3 806	1 873	744			7 081
1976	709	3 770	1 912	792			7 183
1977	770	4 01 1	1 974	737	83		7 574
1978	789	4 011	1710	780	98		7 388
1979	876	4 310	1 811	781	107	24	7 910
1980	928	4 196	1 831	817	118	20	7 910
1981	948	3 887	1 798	841	121	30	7 625
1982	1 002	3 332	1 791	820	116	44	7 106
1983	1 048	3 183	1 847	838	146	37	7 098
1984	1 167	3 170	2 016	901	157	36	7 448
1985	1 122	3 077	2 532	962	183	24	7 900
1986	1 040	3 038	2 481	1 009	222	28	7 817
1987	1 118	3 155	2 574	1 001	234	23	8 105
1988	1 200	3 339	2 810	1 015	263	13	8 640
1989	1 198	3 402	3 026	1 011	266	21	8 923


Source:

Statistics Canada. Detailed Energy Supply and Demand in Canada. Catalogue 57-505 and 57-207. Statistics Canada. Quarterly Report on Energy Supply-Demand in Canada. Catalogue 57-003. Statistics Canada. Electric Power Statistics, Volume II. Catalogue 57-202.

Note:

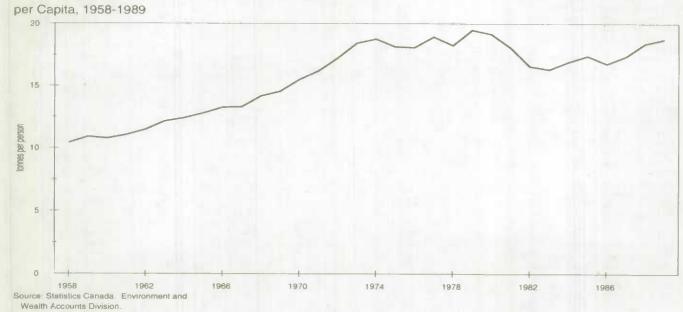
¹ Natural Gas includes propane, butane and ethane.

Figure: 3.2.2.6

Source: Statistics Canada. Detailed Energy Supply and Demand in Canada. Catalogue 57-505 and 57-003.

Energy Indicators, 1958-1989

CO ₂ emissions per unit o primary energy	CO ₂ emissions per \$ of real GDP	CO ₂ emissions per capita	Primary energy demand per \$ of real GDP	Primary energy demand per capita	CO ₂ emissions by fossil fuels	Real GDP in 1986\$	Population	Primary energy demand	
kilotonne: per petajoule	kilograms per 1986\$	tonnes per capita	megajoules per 1986\$	gigajoules per capita	megatonnes	billions	thousands	petajoules	
63.4	1.16	10.4	18.3	164.3	177.8	153.4	17 080	2 806	1958
62.7	1.19	10.9	19.0	173.7	190.5	159.5	17 483	3 0 3 7	1959
61.4	1.17	10.8	19.1	175.4	192.4	164.1	17 870	3 134	1960
61.1	1.19	11.0	19.5	180.6	201.4	169.3	18 238	3 294	1961
61.0	1.18	11.5	19.3	187.9	213.1	181.3	18 583	3 491	1962
61.4	1.21	12.1	19.6	197.6	229.8	190.7	18 931	3 740	1963
60.9	1.18	12.4	19.3	203.5	239.1	203.4	19 291	3 926	1964
60.8	1.16	12.8	19.1	210.3	251.0	216.8	19 644	4 131	1965
60.1	1.14	13.2	19.0	220.2	265.1	231.5	20 015	4 408	1966
59.8	1.14	13.3	19.0	222.0	270.8	238.3	20 378	4 524	1967
60.1	1.17	14.2	19.4	235.6	293.1	251.1	20 701	4 878	1968
59.3	1.15	14.5	19.4	244.8	305.1	264.5	21 001	5 141	1969
59.4	1.21	15.5	20.4	260.4	329.7	271.4	21 297	5 545	1970
59.3	1.22	16.2	20.5	273.1	349.0	287.0	21 568	5 890	1971
58.6	1.24	17.2	21.1	294.1	375.8	303.4	21 801	6 4 1 1	1972
58.6	1.24	18.4	21.2	314.7	406.4	326.8	22 043	6 937	1973
58.	1.23	18.8	21.1	322.3	419.9	341.2	22 364	7 209	1974
	1.18	18.1	20.2	312.0	411.8	350.1	22 697	7 081	1975
58.2	1.18	18.1	19.3	312.4	416.1	371.7	22 993	7 183	1976
57.9		19.0	19.7	325.4	441.0	385.1	23 273	7 574	1977
58.2	1.15			314.1	429.6	402.7	23 517	7 388	1978
58.2	1.07	18.3	18.3	333.1	463.0	418.3	23 747	7 910	1979
58.5	1.11	19.5	18.9	329.0	461.1	424.5	24 042	7 910	1980
58.3	1.09	19.2	18.6			424.5	24 342	7 625	1981
57.7	1.00	18.1	17.3	313.3	440.2		24 542	7 106	1982
57.3	0.96	16.6	16.7	289.0	407.2	426.0	24 583	7 098	1982
56.8	0.92	16.3	16.2	286.4	404.1	439.4			
56.7	0.90	16.9	15.9	298.2	422.6	467.2	24 978	7 448	1984
55.4	0.89	17.4	16.1	313.9	437.8	489.4	25 165	7 900	1985
54.4	0.84	16.8	15.5	308.3	425.1	505.7	25 353	7 817	1986
54.9	0.85	17.4	15.4	316.4	444.9	526.1	25 617	8 105	1987
55.2	0.87	18.4	15.7	333.5	476.6	549.2	25 909	8 640	1988
55.1	0.87	18.7	15.8	340.3	491.4	565.7	26 223	8 923	1989


Source:

Statistics Canada, Environment and Wealth Accounts Division. Note:

CO2 emissions are calculated with the following factors applied to energy demand in petajoules: 25*44/12000 for coal, 18.5*44/12000 for crude oil and 13.6*44/12000 for natural gas

Figure: 3.2.2.7

Selected Household Expenditures, 1986

	Average	Percent-	Estimated	Average ³	Total ⁴	Percent o
Expenditure item	family ¹	age reporting	number of families ²	per family reporting	expend- iture	total curren consumption
Apenditore item	Taring	roporting	Turring a	reporting		
	dallara	namoni	thousands	dollars	dollars	percen
	dollars	percent	thousands			
Food	5 013	100.0	8 849	5 013	44 362	19.3
Sheiter	5 680	99.7	8 823	5 697	50 264	21.9
Maintenance	369	44.9	3 973	822	3 265	1.4
Replacement of heating and air conditioning equipment	22	1.8	159	1 222	195	0.1
Replacement of built-in appliances	2	0.3	27	667	18	0.0
Caulking and weather stripping Materials	2 130	0.9 34.9	80 3 088	222 372	18 1 150	0.0
Painting (interior and exterior)	34	25.4	2 248	134	301	0.1
Replacement of heating and air conditioning equipment	3	0.7	62	429	27	0.0
Replacement of built-in appliances (materials)	3	0.6	53	500	27	0.0
Caulking and weather stripping	4	7.0	619	57	35	0.0
Water	91	48.3	4 274	188	805	0.4
Fuel oil and other liquid fuel	156	19.1	1 690	817	1 381	0.6
Piped gas	227	33.4	2 956	680	2 009	0.9
Bottled gas	9	16.3	1 442	55	80	0.0
Fuel wood	31	13.8	1 221	225	274	0.1
Other fuel and heating costs	2	4.9	434	41	18	0.0
Electricity	575	86.1	7 619	668	5 088	2.2
Owned Vacation Home	101	7.4	655	1 365	894	0.4
Water and Fuel	5	2.0	177	250	44	0.0
Electricity	16	5.1	451	314	142	0.1
Campgrounds	14	11.2	991	125	124	0.1
Rented vacation homes	22	4.0	354	550	195	0.1
Household Operation	1 525	99.9	8 841	1 527	13 495	5.9
Cleaning supplies	230	98.4	8 708	234	2 035	0.9
Detergent and soap	110	98.0	8 672	112	973	0.4
Cleaning and polishing preparations	59	95.8	8 478	62	522	0.2
Chemical specialities	61	95.2	8 425	64	540	0.2
Bleach	14	81.6	7 221	17	124	0.1
Fabric softeners	24	74.6	6 602 5 734	32	212 97	0.1
Disinfectants and deodorizers	231	64.8 99.4	8 796	232	2 044	0.9
Paper, plastic and foil household supplies	28	85.8	7 593	33	248	0.1
Paper towels Facial and bathroom tissue	80	97.5	8 628	82	708	0.3
Plastic garbage bags	25	80.2	7 097	31	221	0.1
Other plastic supplies	11	50.0	4 425	22	97	0.0
Foil supplies	16	81.7	7 230	20	142	0.1
Horticultural goods and services	115	73.2	6 478	157	1 018	0.4
Seeds	7	33.4	2 956	21	62	0.0
Nursery and greenhouse stock	30	39.7	3 513	76	265	0.1
Potted plants, cut flowers, etc	30	45.4	4 018	66	265	0.1
Herbicides, insecticides and rodenticides	8	33.2	2 938	24	71	0.0
Fertilizers, soil and soil conditioners	14	41.4	3 664	34	124	0.1
Horticultural services and snow removal	27	14.8	1 310	182	239	0.1
Other household supplies	53	95.4	8 4 4 2	56	469	0.2
Dry-cell batteries	15	65.3	5 779	23	133	0.1
Household furnishings and equipment	1 278	93.9	8 310	1 361	11 309	4.9
Air conditioning and refrigeration	61	12.5	1 106	488	540	0.2
Appliances for cooking and warming food	100	36.6	3 239	273	885	0.4
Electric appliances for food preparation	8	11.2	991	71	71	0.0
Appliances for laundry	60	18.0	1 593	333	531	0.2
Other electric equipment and appliances	53	24.9	2 203	213	469	0.2
Portable electric lamps	17	15.7	1 389	108	150	0.1
Home and workshop tools and equipment	59	32.9	2 911	179	522	0.2
Lawn, garden and snow removal tools	70	32.2	2 849	217	619	0.3
Lawn and garden tractors and tillers	22	1.8	159	1 222	195	0.1
Power lawn-mowers	19	6.4	566	297	168	0.1
Snow blowers	14	1.9	168	737 54	124 133	0.1
Other lawn and garden tools	15	27.8	2 460	54	133	0.1
Clothing	2 215	99.5	8 805	2 226	19 601 628	8.5
Dry-cleaning service	71	73.1	6 489	97	020	0.0
Transportation	4 656	98.2	8 690	4 741	41 203	17.5
Private transportation	4 235	85.0	7 522	4 982	37 477	16.3
Purchase of private automobiles and trucks	1 953	28.2	2 4 9 6	6 9 2 6	17 283	7.5

Selected Household Expenditures, 1986

	Average	Percent-	Estimated	Average ³	Total ⁴	Percent c
Expenditure item	per family ¹	age reporting	number of families ²	per family reporting	expend- iture	total currer consumption
	i airmy	toporting	Terrine o	roporting		consumption
	dollars	percent	thousands	dollars	million	percer
Operation of automobiles and trucks	2 162	84.1	7 442	2 571	19 132	8.
Automotive fuels	991	80.4	7 1 1 5	1 233	8 770	3.
Tires	84	33.3	2 947	252	743	0.
Batteries	14	17.8	1 575	79	124	0.
Maintenance and repair	333	74.0	6 549	450	2 947	1.
Oil changes and lubrication	55	59.3	5 248	93	487	0.
Tune-ups	53	39.3	3 478	135	469	0.
Public transportation	421	75.6	6 690	557	3 726	1.
Local and commuter transportation	162	63.6	5 628	255	1 434	0.
Street car, city bus and subway	95	44.9	3 973	212	841	0.
Commuter bus and train	10	6.7	593	149	88	0.
Local laxi service	33	34.7	3 071	95	292	0.
Other local transportation	13	8.3	734	157	115	0.
Inter-city transportation	259	42.3	3 743	612	2 292	1.
Air	211	21.8	1 929	968	1 867	0.
Rail	13	7.4	655	176	115	0.1
Highway bus	14	12.6	1 115	111	124	0.1
Other passenger transportation	9	10.3	911	87	80	0.0
Other inter-city transportation	4	11.2	991	36	35	0.1
Health Care	648	95.9	8 487	676	5 734	2.1
Personal Care	679	99.8	8 832	680	6 009	2.1
Toilet preparations and cosmetics	264	98.9	8 752	267	2 336	1.1
Toilet and other personal soap	31	93.0	8 230	33	274	0.1
Disposable razors and razor blades	15	66.6	5 894	23	133	0.
Disposable diapers	33	9.8	867	337	292	0.1
Personal care electric equipment	12	27.3	2 416	44	106	0.1
Recreation	1 771	95.9	8 487	1 847	15 672	6.1
Sporting and athletic equipment	103	44.5	3 938	231	911	0.4
Downhill skiing	16	5.0	442	320	142	0.1
Cross-country skiing	5	3.9	345	128	44	0.0
Fishing	13	17.0	1 504	76	115	0.1
Sleighs, toboggans and childrens vehicles	5	9.9	876	51	44	0.0
Tents, back packs, sleeping bags	8	8.8	779	91	71	0,1
Other camping equipment	5	8.4	743	60	44	0.1
Supplies and parts for recreational equipment	12	17.8	1 575	67	106	0.1
Rental, maintenance and repairs	3 305	4.5	398	67	27	0,1
Recreation vehicles and outboard motors		36.1	3 195	845	2 699	1.3
Bicycles Travel trailers	25 24	14.1	1 248 71	177 3 000	221	0.1
Tent trailers	4	0.6	53	667	212 35	0.
Motorcycles	26	2.9	257	897	230	0.1
Snowmobiles	18	1.6	142	1 125	159	0.
Motor homes	21	0.3	27	7 000	186	0.
Truck campers	10	0.3	27	3 333	88	0.0
Boats (including canoes)	27	1.8	159	1 500	239	0.
Other recreational vehicles	29	2.3	204	1 261	257	0.
Outboard motors	13	1.2	106	1 083	115	0.
Fuels	25	15.5	1 372	161	221	0.
Home entertainment equipment and services	388	76.2	6 7 4 3	509	3 434	1.5
Recreation services	630	88.9	7 867	709	5 575	2.4
Skiing memberships	5	1.9	168	263	44	0.0
Skiing fees	13	9.4	832	138	115	0.1
Reading materials and other printed matter	205	92.6	8 195	221	1 614	0.
Newspapers	82	80.9	7 159	101	726	0.3
Magazines and periodicals	51	68.1	6 026	75	451	0.2
Education	296	44.1	3 903	671	2 619	1.1
Tobacco products and alcoholic beverages	1 128	89.2	7 894	1 265	9 982	4.3
Miscellaneous	899	94.5	8 363	951	7 956	3.5

Source:

Statistics Canada. Family Expenditures In Canada, 1986. Catalogue 62-255.

Notes:

¹ This is the average of all families including those who reported no expenditures in this category.
 ² The 1986 Family Expenditures survey samples 10 356 families. The figuras above are based on an estimated 8,849,370 families for Canada.
 ³ This is the average of those families reporting expenditures for this category.

⁴ Total expenditures for Canada.

⁵ Current consumption includes all expenditures except: personal taxes, security, gifts and contributions.

3.2.3 Mitigation

In 1989-90, all levels of government spent 6.5 billion dollars on water purification, pollution control, sewage collection and water purification. Another 12.6 billion dollars was spent on resource conservation and the development of resource industries. Total government revenues from natural resources and taxes on resources amounted to 14.5 billion dollars.

There are efforts at many levels of society to limit the negative impacts of human activities on the environment and to control the depletion of natural resources. Governments, nongovernmental organizations, industries and individuals have all changed their behaviour in response to the growing concern over the environment and natural resources. One way of measuring the level of activity by governments is through expenditures on environment and natural resource programmes.

Expenditures on Construction

In 1990, a total of 3 billion dollars was spent on waterworks and sewage systems. Another 560 million dollars was spent on dams and irrigation (Table 3.2.3.1). These data are derived from a survey of organizations and individuals paying for work done. Contractors performing the work are also surveyed.

Table: 3.2.3.1

Value of Selected Construction Work Purchased, 1985-1990

Type of Structure	1985	1986	1987	1988	1989	1990			
	million current doilars								
Waterworks and sewage systems									
Tile drains, drainage ditches, storm sewers	490.9	601.4	834.9	936.6	990.0	1 062.7			
Water mains, hydrants and services	774.5	589.8	654.6	752.8	816.6	900.6			
Sewage systems, disposal plants and connections	799.9	739.4	584.6	512.1	648.0	778.4			
Water pumping stations and filtration plants	395.0	395.9	209.0	251.3	260.6	297.7			
Water storage tanks	20.9	50.8	20.9	24.5	26.8	29.8			
Total	2 481.2	2 377.3	2 304.0	2 477.3	2 742.0	3 069.2			
Dams and irrigation									
Dams and reservoirs	74.4	122.9	100.3	150.9	191.9	230.3			
Irrigation and land reclamation projects	208.1	119.8	207.1	247.1	300.4	329.3			
Total	282.5	242.7	307.4	398.0	492.3	559.6			
Total construction work	67 983.2	71 700.6	81 971.5	90 715.1	95 196.8	105 987.4			

Source:

Statistics Canada. Construction in Canada. Catalogue 64-201.

Note:

The ligures in this table are the result of information received from organizations and individuals paying for work done and on information received from contractors performing the work. Of the total value of construction shown, about 89.4 percent was reported. The remainder is estimated.

Government Finance Relevant to the Environment

Expenditures

In 1990, total government expenditures on functions related to the environment (water purification, sewage disposal, pollution control and waste collection) amounted to almost 6.5 billion dollars. Another 12.6 billion dollars were spent on resource conservation and industrial development related to the environment (Table 3.2.3.2).

Revenue

In 1990, government revenues derived from the exploitation of natural resources and from taxes levied on the use of resources amounted to 14.5 billion dollars (Table 3.2.3.3).

Government Expenditure on Environment and Resources, 1984-1990

	1984-85	1985-86	1986-87	1987-88	1988-89	1989-901	1990-911	1991-921		
	million current dollars									
All Government										
Environment										
Water purification / supply	1 436.4	1 487.4	1 624.5	1 820.8						
wage collection and disposal	962.8	949.4	1 096.2	1 164.2						
P stution control	190.4	209.5	244.4	261.8						
Garbage and waste collection	514.4	564.4	628.7	714.5						
Other	830.6	983.8	693.4	626.9						
Total environment	3 934.6	4 194.4	4 287.2	4 588.3	5 508.7	6 482.9	7 023.3			
Resource conservation and industr	tial development									
A inculture	3 762.1	4 916.1	5 142.1	6 365.9						
sh and game	823.8	746.4	635.1	579.2						
Forests	1 010.3	1 181.8	1 283.4	1 848.1						
Mines	193.1	236.8	203.0	200.5						
Oil and gas	5 143.4	3 763.8	2 633.9	1 722.4						
Tourism	242.7	311.3	302.8	348.1						
Trade and industry	2 303.9	2 432.1	2 706.2	2 483.9						
Water	46.8	52.7	12.7	11.3						
Other	1 653.0	1 625.4	1 671.7	1 590.2						
Total resource conservation	15 179.0	15 266.3	14 590.9	15 149.7	13 990.4	12 598.5	11 606.4			
Total expenditures	209 243.2	223 960.2	233 709.0	251 129.8	265 107.7	287 944.0		2.0		
Federal										
Environment										
Water purification / supply										
Sewage collection etc.	13.0	2.3								
Pollution control	58.6	55.9	62.0	62.3	81.1		119.4	110.1		
arbage and waste collection	50.0	55.9	02.0	02.0	01.1		119.4	110.1		
ther	419.7	363.9	383.7	435.7	442.9	590.0	587.7	536.7		
Total environment	491.3	422.1	445.7	498.0	530.0	590.0	707.1	646.8		
		Then I	440.1	400.0	000.9	330.0	rora	040.0		
Resource conservation and industr		0.407.0	0.000.4	4 700 0	0.044.0	0.054.0	0.054.0	200.0		
Agriculture Fish and game	2 226.4 594.7	2 427.3 510.0	3 238.4 388.3	4 720.9 328.4	3 614.2	3 354.0	2 851.2	239.2		
					393.5	336.0	415.1	374.0		
Forests	163.6	199.9	224.7 54.5	660.2	311.8	298.0	223.4	201.3		
Mines	37.3	50.1		60.2 648.8	76.5	183.0	155.9	129.3		
I and gas	5 909.8	2 893.5	1 040.5		690.8	351.0	299.8	342.4		
Tourism	64.0	62.0	43.0	50.0	43.0	39.0	32.5	32.0		
Tade and industry	1 314.0	1 306.0	1 374.0	1 584.0	1 700.0	1 791.0	1 585.7	1 598.0		
V/ater	6.2	5.8	5.8	5.3	5.3	8.0	6.3	9.2		
Cither	612.6	622.7	703.0	650.5	707.8	650.0	560.1	665.9		
Total resource conservation Total expenditures	10 929.0 115 039.0	8 077.0 116 911.0	7 072.0 120 826.0	8 708.0 130 720.0	7 542.0 136 334.0	7 010.0 149 320.0	6 130.0 159 285.0	5 691.4 168 062.0		
Provincial				1						
Environment	000.4	694.2	765.1	727.0						
V/ater purification / supply	660.1	034.2	705.1	757.2						
ewage collection etc.			-							
Follution control	148.8	170.6	209.4	228.2			**			
Garbage and waste collection			-	-						
Other	386.0	567.4	242.2	314.7	4 700 0					
Total environment	1 195.0	1 432.2	1 216.8	1 300.1	1 702.0	1 643.6	1 848.0	**		
Resource conservation and industr										
Agriculture	1 825.7	2 672.7	2 081.8	1 864.6						
Fish and game	230.2	237.6	249.8	256.8						
Forests	903.5	1 050.0	1 111.7	1 245.7						
Mines	156.2	197.1	162.0	155.5						
Cill and gas	1 256.2	1 242.5	1 633.2	1 102.3						
ourism	180.4	234.5	252.8	291.0						
"rade and industry	989.0	1 068.0	1 207.3	777.8						
Water	46.7	52.7	12.6	12.3						
Mher	849.7	912.2	878.7	804.7						
Total resource conservation	6 437.6	7 667.3	7 589.9	6 510.7	7 581.0	6 843.7	6 867.8			

Mitigation

Government Expenditure on Environment and Resources, 1984-1990

	1984-85	1985-86	1986-87	1987-88	1988-89	1989-901	1990-91 ¹	1991-92	
		million current dollars							
Local									
Environment									
Water purification / supply	1 248.0	1 353.1	1 519.0	1 678.2	1 732.4	2 198.7	2 271.5		
Sewage collection etc.	965.0	992.9	1 138.9	1 208.6	1 305.3	1 701.8	1 937.5		
Pollution control									
Garbage and waste collection	514.4	564.4	628.7	714.5	796.0	921.4	1 065.3		
Other	43.4	70.1	76.9	87.9	113.6	104.4	97.7		
Total environment	2 770.9	2 980.4	3 363.5	3 689.2	3 952.3	4 948.4	5 731.9		
Resource conservation and industr	iai development								
Agriculture		145.0	184.9	170.1	140.9	158.4	176.9		
Fish and game				-	-				
Forests			-	-			**		
Mines			-						
Oil and gas	-						**		
Tourism	-	16.5	10.4	9.4	15.8	19.1	19.1		
Trade and industry	126.0	142.5	189.8	193.9	172.1	182.5	184.9		
Water									
Other	269.1	136.0	147.3	196.2	175.5	231.1	236.5		
Totai resource conservation	395.1	440.0	532.5	569.5	504.2	591.1	617.4		
Totai expenditures	39 289.7	41 883.5	44 417.8	47 704.0	50 776.1	55 317.4	59 593.5		

Notes: ¹ Estimates. Source: Statistics Canada. Public Institutions Division.

Table: 3.2.3.3

Government Gross Revenue from Natural Resources and Selected Taxes

	1984-85	1985-86	1986-87	1987-88	1988-894	1989-904	1990-914	1991-924
				million curr	ent dollars			
All Government								
Selected taxes								
Petroleum and natural gas faxes1	6 140.0	3 489.0	467.0	- 14.0	111.0			-
Consumption of motive fuel	3 584.5	4 033.9	4 776.4	6 500.6	6 730.8	7 274.5	8 165.3	
Total selected taxes	9 724.5	7 522.9	5 243.4	6 486.6	6 841.8	7 274.5	8 165.3	
Natural resource revenue	76.7	87.4	97.1	120.3				
Fish and game	356.9	381.3	429.9	806.9				
Forests	307.5	273.7	373.3	237.0				
	7 156.4	6 774.5	3 094.7	4 133.5				
Oil and gas ² Water power	280.7	333.7	365.1	370.6				
Other	91.6	73.7	77.0	59.3	**			
Total natural resource revenue	8 269.9	7 924.2	4 437.2	5 727.7	5 329.5	5 587.9	6 041.1	
Water sales ³	1 088.7	1 162.1	1 255.6	1 354.9	1 409.4	1 536.2		
	19 083.1	16 609.2	10 469.1	13 583.2	13 580.7	14 400.6		4+
Total selected revenue Total revenue all sources	167 241.0	179 378.9	191 102.1	216 199.4	233 732.8	253 076.3		4-
Federal government								
Selected taxes					110.0			
Petroleum and natural gas taxes!	6 140.0	3 489.0	467.0	- 14.0	111.0			
Consumption of motive fuel	404.6	770.0	1 491.4	2 671.0	2 542.2	3 110.0	2 975.0	3 395.0
Total selected taxes	6 544.6	4 259.0	1 958.4	2 657.0	2 653.2	3 110.0	2 975.0	3 395.0
Natural resource revenue								
Fish and game	9.3	15.3	20.4	27.0	26.7			
Forests			0.1		0.1			
Mines	3.0	1.7	1.0	5.3	14.8		100	
Oil and gas ²	148.1	195.8	21.7	6.6	1.3			
Other	20.7	11.4	11.7	11.7	11.6	45.0	70.0	75.0
Total natural resource revenue	181.0	224.1	54.9	52.7	54.5	45.0	70.0	75.0
Total selected revenue	8 725.5	4 483.1	2 013.3	2 709.7	2 707.7	3 155.0	3 045.0	3 470.0
Total revenue ali sources	78 055.0	83 060.0	90 145.0	103 089.0	109 505.0	116 896.0	126 894.0	137 654.0
Provincial government								
Selected taxes								
Consumption motive fuel	3 180.0	3 264.0	3 285.0	3 830.0	4 188.8	4 164.5	4 610.3	
Total selected taxes	3 180.0	3 264.0	3 285.0	3 830.0	4 188.8	4 164.5	4 610.3	
Natural resource revenue								
Fish and game	67.4	72.1	76.7	93.3				
-	356.9	381.3	429.9	806.9				
Forests	304.5	272.0	372.2	231.7				
Mines		6 578.7	3 072.6	4 125.6	**		**	
Oil and gas ²	7 008.3	333.7	365.1	370.5				
Water Power	280.7	62.2	65.3	47.7				
Other	71.0							
Total natural resource revenue	8 088.6	7 700.1	4 381.6	5 675.7	5 273.5	5 524.9	5 991.1	4.
Total selected revenue	11 268.7	10 964.1	7 666.8	9 505.6	9 462.3	9 689.4	10 601.4	47
Total revenue all sources	91 086.7	97 574.9	100 744.7	112 592.2	123 092.0	132 837.4	142 489.7	
Local government								
Selected taxes								
Natural resource revenue								
Water sales	1 088 7	1 162.1	1 255.6	1 360.4	1 446.5	1 552.8	1 642.9	
Total selected revenue	1 088.7	1 162.1	1 255.6	1 360.4	1 446.5	1 552.8	1 642.9	
Total revenue all sources	38 906.0	41 052.4			51 333.6	530 539.7	57 737.4	

Source: Statistics Canada. Public Institutions Division.

Notes: Prodral government only. * Excludes petroleum and natural gas taxes. * Sales by local government only. * Estimate.

3.3 Environmental Impacts

Most human activities have some effect on the environment. Whether these impacts are considered major or minor is largely a question of our understanding of the relationships between the stresses and the responses. Twenty five years ago, PCBs, DDT, fertilizers, smoking tobacco and cholesterol were considered harmless, if not outright beneficial.

Households, vehicles, industries and offices generate wastes and pollutants which, if untreated, enter the air, rivers, land and living organisms. In the pursuit of increased agricultural production, the natural nutrients in the soil are being depleted and being replaced by chemical fertilizers. Agriculture, forestry and other changes in land-use often replace the natural land cover and promote erosion and permanent changes in the hydrological cycle. Demands for electrical power, water for irrigation and municipal use have led to the development of dams and other water diversions. In the process, human settlements and wildlife habitats are displaced. Fishing, trapping and the introduction of exotic species exert pressures on native fish and wildlife.

3.3.1 Contaminants

"Toxic materials abound — oil spilling into the oceans at 10 times the rate of natural seeps, lead being deposited on soils and in waterways at 100 times the prehistoric levels, cadmium being released into the environment at 40 times the natural rates, radioactive materials contaminating soils at many sites, and the acidity of precipitation over millions of square kilometres is increasing 10-fold."

> World Resources Institute and the United Nations Environment Program. 1990. *World Resources* 1990-91. Oxford University Press. New York.

Although many pollutants, such as lead and sulphur dioxide, exist in nature, they are now generated in great volumes and at high concentrations. Often, these pollutants reach levels that are hazardous to the health of humans and other living organisms.

Other contaminants are newly-created substances that have never existed in nature. The long-term effects of these substances are often not well understood before they are released into to the environment. Table 3.3.1.11 provides a summary of some toxins and their known health effects.

Together with monitoring the levels of these contaminants in the environment, it is also important to investigate their sources. Understanding the relative contributions of various human activities to the quantities of pollutants is an essential step in reducing the impacts of these activities.

Spills and Emergencies

NATES (National Trends in Emergencies System) is a data system to enable Environment Canada and other participating government agencies to store and analyse information on oil spills and other environmental emergencies. Spill information for NATES is provided by several federal and provincial regulatory agencies. Fluctuations in reporting give the annual figures a high degree of variability. The summaries provided account for most, but not all, of the recorded spill events (Tables 3.3.1.1, 3.3.1.4 and 3.3.1.5).

Table: 3.3.1.1 Spills Reported in Canada, 1980-1987

Tota	Number where		
amoun	amount	Total	
spilled	is known	spills	Year
thousand			
metric			
tonnes		number	
134	2 982	3 302	1980
159	2 315	2712	1981
144	2 047	2 266	1982
106	2 037	2 236	1983
359	2 498	2 790	1984
262	3 106	3 596	1985
771	3 857	4 213	1986
1 427	3 888	4 2 1 4	1987

Source:

Environment Canada, National Environmental Emergency Centre. Conservation and Protection.

Acid Deposition

Acid precipitation is a major environmental problem in Eastern Canada, and in other industrialized nations. It is created when rain combines with the oxides of nitrogen and sulphur, produced primarily by metal smelting, transportation and thermal power generation. The Canadian Air and Precipitation Monitoring Network, at Environment Canada, measures acid rain deposition at sites across Canada. Map 3.3.1.1 was developed from long term annual averages.

The effect of acid rain is not fully explained by science. Acid rain has significant impacts on ecological stability. Natural plant, fish and animal communities undergo increasing stress when the inherent acid buffering capacity of the environment is no longer able to neutralize increasing acidity.

Humans are able to protect themselves from some of the direct effects of acid rain. For example, agricultural land that is acidified can be neutralized with the addition of limes or other buffering agents. However, other effects such as human health effects, the erosion of buildings, and the loss of mature trees are more difficult to overcome. Acid precipitation has been identified as a factor in human health. It dissolves aluminum and other toxins. This may result in contaminated water supplies. Acid precipitation has also been associated with breathing and respiratory problems in humans.²⁷

Human exposure to acid rain varies considerably geographically. The high deposition rates occur around urban areas in southern Ontario and Quebec (Map 3.3.1.1). Population trends by deposition class demonstrate that an increasing number of people in Eastern Canada are being exposed to the highest levels of acid deposition. Table 3.3.1.6 shows a 15.4 percent increase from 1971 to 1986. Almost 80 percent of Eastern Canadians lived in the most stressed areas.

Air Emissions

Most air emissions are generated in Ontario, British Columbia, Quebec and Alberta (Table 3.3.1.9). This measure highlights the importance of these provinces in adding to the total pollutant load. In terms of pollutant emitted per unit surface area, the Maritimes and Ontario are highest. On a per capita basis, Alberta, British Columbia, the Northwest Territories and Saskatchewan ranked highest.

Sulphur dioxide

In 1985, about 70 percent of sulphur dioxide emissions were from industrial and manufacturing process mostly from Ontario, Alberta, Manitoba, Quebec, and British Columbia. In provinces where industrial activity is less dominant, fuel combustion was the dominant source of sulphur dioxide emissions.

Total sulphur dioxide emissions (Table 3.3.1.8, Figure 3.3.1.2) decreased from 1955 to 1985. This reduction was a result of increased use of control devices for industries in compliance with government legislation.

Nitrogen Oxide

Transportation activity was the major contributor to nitrogen oxide emissions in all provinces except Alberta where natural gas power generation was the primary source. In the Atlantic provinces, thermal power generation was the top contributor.

Total nitrogen oxide emissions tripled between 1955 and 1985 (Table 3.3.1.7, Figure 3.3.1.1). The transportation sector accounts for 60 percent of total emissions largely because of automobile use.

Nebel, Bernard, J. 1987. Environmental Science. Prentice-Hall Inc. Engelwood Cliffs, New Jersey.

Carbon Monoxide

Transportation sources contributed a large portion of carbon monoxide emissions. The highest levels occurred in the more urbanized provinces of Ontario, British Columbia and Quebec.

Total Hydrocarbons

Ontario and British Columbia accounted for close to half the total hydrocarbon emissions in 1985. The transportation sector contributed almost half of the Canadian total.

Greenhouse Gases

According to the World Resources Institute, Canada ranks 12th in total contributions of greenhouse gases — carbon dioxide, methane and CFCs, and first in contributions per capita (Table 3.3.1.10). These gases are known to absorb the sun's heat and the levels of these gases have been increasing rapidly over the past 40 years.

Table 3.3.1.2 provides WRI estimates of the sources of gross additions of carbon dioxide, methane and CFCs. Table 3.3.1.3 is an estimate of the net greenhouse heating effect of these emissions.

Table: 3.3.1.2

Greenhouse Gas Emissions, Canada, 1987

Source	Amount
Anthropogenic additions	
to the carbon dioxide	thousand tonnes
figx	of carbon
Cement	1 700
Solid	26 000
Liquid	52 000
Gas	29 000
Flaring	1 400
Anthropogenic additions	thousand tonnes
to the methane flux	of methane
Solid waste	1 700
Livestock	760
Hard coals	150
Pipeline leakage	7 800
CFC use per capita	0.8
Source:	

World Resources Institute. Op.cit.

Note:

Data were estimated for Canada, 1987

Table: 3.3.1.3 Net Additions to Greenhouse Heating, Canada, 1987

Source	Net annual atmospheric increase	Equivalent Carbon Dioxide heating effect
	thousand	onnes
Carbon dioxide emissions		
Fossil fuels and cement Annual land use change	48 000	48 000
Methane Emissions	1 700	33 000
CFC Use	20.7	36 000
Net total atmospheric increase		117 000

World Resources Institute. Op.cit.

The Great Lakes

A recent report by Environment Canada²⁸ concludes that the concentrations of toxins in the open waters of the Great Lakes water Quality Agreement between Canada and the United States. Areas near harbours, bays and connecting channels may exceed levels specified in the objectives. Map 3.3.1.2 identifies these 42 Areas of Concern. The report further concludes that the amounts of toxins deposited in the bottom sediments of the lakes are still entering the food web although the rates of additional deposits have decreased.

Since the increased regulation of organochlorine pesticides and PCBs, the levels of contaminants in Great Lakes fish decreased from the extremely high levels of the 1970s and stabilized at a lower level. Toxin levels in wildlife have remained constant since the early 1980s. This indicates a continuing input of toxins into the lakes from air pollution, seepage from hazardous waste sites and the transfer of contaminants from tributaries (Table 3.3.1.12). These sources are not yet regulated.

The report further concludes:

- Some fisheries, closed because of toxic contaminants in the early 1970s, such as the walleye fishery in Lakes Erie and St. Clair, have been reopened.
- Fish consumption advisories have been issued in 36 of 42 highly contaminated Areas of Concern.
- Municipal drinking water, drawn from the Great Lakes, may contain minute quantities of organochlorines but these amounts rarely exceed guidelines for Canadian drinking water guality.
- Species of bottom-dwelling fish, such as the brown bullhead and white sucker exhibit liver tumours that can be associated with toxic chemicals.

 Environment Canada, Fisheries and Oceans Canada, and Health and Welfare Canada. 1991. Toxic Chemicals in the Great Lakes and Associated Effects. Catalogue EN-94/1990E.

- Two mammal and eight bird species, all fish-eating species, have been identified as experiencing reproductive and other problems attributable to chemical contaminants²⁹
- Two bird populations, the cormorant and ring-billed gull, are growing at a rate believed to be outside the range of variation normally recorded for vertebrate species (20 to 40-fold greater than any population recorded historically). This indicates a serious alteration of the Great Lakes ecosystem.
- The population of bald eagles has increased but the lack of suitable habitat makes a recovery to historical levels doubtful.
- Birth defects, at levels up to 87 times the normal, have been recorded in 10 species of birds in the Great Lakes basin. Snapping turtles from the shores of Lakes Ontario and Erie have higher numbers of unhatched eggs and deformed embryos than those from inland populations.
- The rates of human cancer and adverse reproductive outcomes are no higher in the Great Lakes basin than in other highly industrialized areas of Canada. Individuals consuming large quantities of contaminated fish and wildlife have greater exposure to several persistent pollutants.

Critical Pollutants in the Great Lakes

Out of the 200 chemicals identified as existing in the Great Lakes basin, eleven have been identified as critical pollutants. The following review of these pollutants is excerpted from *Toxic Chemicals in the Great Lakes and Associated Effects*:

Chlorinated Organic Chemicals

PCBs are a group of chemicals used in electrical and hydraulic equipment, lubricants and in many other fluids because they are chemically stable and heat resistant. They are carcinogenic, persistent and ubiquitous in the environment. PCBs will continue to cycle through the environment although they are no longer manufactured and new uses are restricted. It has been estimated that there are more PCBs still in use than have been released into the environment to date. PCBs are found in higher concentrations in top predator fish from the Great Lakes. They are suspected to delay neurobehavioural development in infants.

Mirex is an extremely persistent insecticide. In sunlight, it breaks down slowly to photomirex. Both mirex and photomirex are toxic. Although mirex was never used in the Great Lakes basin for agriculture, it is present in the Lake Ontario food web because of industrial releases into the Niagara and Oswego rivers during its manufacture. All uses in Canada were banned in 1978, as was its use as an insecticide in the United States. Since the 1970s, the levels

29. Son Table 4.1.3.15 in the Fish and Wildlife section.

of mirex have decreased in lake trout and coho salmon; levels in herring gull eggs during the same period have not decreased appreciably. Mirex has also been identified in the tissues of people living in the Great Lakes basin. Exposure to mirex at levels currently found in Great Lakes fish is not a threat to human health if fish advisories are followed.

HCB (Hexachlorobenzene) is a persistent chemical that was originally manufactured as a fungicide for cereal crops. Its use was restricted in Canada in 1971. It is also generated as a by-product in the manufacture of pesticides, and it can be formed during the combustion of substances containing chlorine. This compound is ubiquitous and is found in the tissues of fish, wildlife and humans from the Great Lakes basin. Current levels of hexachlorobenzene are not a threat to health.

Dieldrin is a persistent toxic chemical that was used mainly as a soil insecticide. It is no longer manufactured in Canada or the United States, and its use is now restricted to applications for termite control. Levels of dieldrin in the environment have not decreased as much as levels of other pesticides. Dieldrin continues to enter the aquatic environment as leachate. Current levels of dieldrin in fish from the Great Lakes are not a hazard to human health.

DDT was introduced into North America in 1946 as an insecticide. Its use was restricted in Canada in 1974 and suspended in 1985. In 1989, the last permitted use was banned. The levels of this chemical and its principal metabolite,³⁰ DDE, have decreased significantly although concentrations in wildlife and fish have now equilibrated. DDT is still used elsewhere in the hemisphere and may be entering the Great Lakes through atmospheric transportation and deposition. DDE is stored in the fatty tissues of fish, birds and mammals, including humans. DDE was identified as the cause of eggshell thinning in many birds and has since been found to disrupt endocrine hormone metabolism and to change the activity of liver enzymes. Current levels of DDT/DDE in Great Lakes fish are not a hazard to human health.

Dioxin (2,3,7,8-TCDD) (2,3,7,8-tetrachlorodibenzo-p-dioxin) is the most toxic member of a group of chemicals known as polychlorinated-dibenzo-p-dioxins (PCDDs). It is highly persistent and bioaccumulates³¹. Dioxins enter the environment as the by-products of industrial processes. The most significant sources are pulp and paper mills using chlorine in the bleaching process and chlorophenoxyl herbicide production. Dioxins are released as the result of combustion processes in incinerators and motor vehicles using leaded fuel. As a result, dioxins are ubiquitous in the environment and are found in human tissues.

2,3,7,8-TCDF (2,3,7,8-tetrachlorodibenzofuran) is a

^{30.} A metabolite is a product of the chemical breakdown of another chemical.

^{31.} Bloaccumulation is the accumulation higher and higher concentrations of a contaminant in the tissues of an organism over time.

polychlorinated dibenzofuran (PCDF). PCDFs are structurally and chemically similar to PCDDs. They are not produced intentionally and result from some of the same industrial processes listed for PCDDs. In general, 2,3,7,8-TCDF is ten times less toxic than 2,3,7,8-TCDD, but has similar toxicological properties. It also tends to bioaccumulate.

Toxaphene is a contact insecticide that consists of a complex mixture of chlorinated camphenes. It was widely used in the United States on cotton crops until the late 1970s. Between the late 1970s and the early 1980s, the use of toxaphene ceased almost completely and its manufacture was banned in the United States in 1982. Toxaphene exposure from average fish consumption is not a hazard to health.

Polynuclear Aromatic Hydrocarbons

Benzo(a)pyrene (B[a]P) is one of several polynuclear aromatic hydrocarbons (PAHs) that are formed by the incomplete combustion of fossil fuels, wood and tobacco, the incineration of garbage, as well as in steel and coke production and coal liquification and gasification. B[a]P is present at high levels in sediments of specific industrialized areas within the Great Lakes basin. The presence of B[a]P is associated with a high incidence of liver tumours in fish.

Toxic Metals

Mercury is a non-essential natural element and is a ubiquitous contaminant in air, water and food. Food is the major source of human exposure to mercury. Fish and seafood are major contributors to human intake because of the propensity for organic mercury to bioaccumulate. In the past, mercury was widely used as a slimicide in the pulp and paper industry and formerly in the manufacture of chlorine and caustic soda (chlor-alkali process) and was subsequently discharged to the water. Because of several documented episodes of serious mercury toxicity, government actions led to the substitution of mercury in these processes. Reductions in industrial releases of mercury have resulted in a decrease in mercury levels in fish and the restoration of some commercial fisheries in the Great Lakes. Methyl mercury has been cited as the possible cause of neurological disease in some native communities which consume large amounts of fish. It is also a neurotoxin and a developmental toxin in animals.

Alkylated lead compounds (e.g., tetraethyl lead) are produced mainly as lead additives for gasoline. Single acute doses of tetrethyl lead are at least 20 times more toxic than equivalent doses of inorganic forms of lead. Levels of alkylated lead in the environment have decreased since 1981 and will continue to decrease as it is phased out of gasoline. The presence of alkylated lead in the terrestrial environment, especially in urban areas, has been associated with adverse effects in children. Alkylated lead in the waters of the Great Lakes should not pose any risk to human health, provided fish guidelines are followed.

Spills Reported¹ in Pacific and Yukon Region, 1984-1988

	Class of spill	
Major	Medium	Minor
1	1	14
2	13	113
6	37	395
17	117	1 787
0	1	3
4	32	710
26	169	2 3 1 2
	1 2 6 17 0 4	Major Medium 1 1 2 13 6 37 17 117 0 1 4 32

Source:

Environment Canada. Environmental Protection Service. Pacific Region.

Note:

¹ Spills reported to the regional office are not necessarily reported to the NATES (National Trends in Emergencies) system.

Table: 3.3.1.5

Spills Reported in the Atlantic Region, 1974-1985

Province / Ecozone	1974	1975	t976	1977	1978	1979	1980	1981	1982	1983	1984	1985
Not specified or marine spills	19	16	16	21	10	22	13	21	8	10	14	9
Newfoundland												
Taiga Shield	7	5	4	10	10	11	2	6	10	3	6	8
Boreal Shield	41	73	69	59	72	40	13	21	29	27	16	37
Southern Arctic	1		-	2		2	1	-	- 1	1		
Prince Edward Island												
Atlantic Maritime	3	2	5	4	5	1	3	2	12	1	8	4
Nova Scotia												
Atlantic Maritime	47	60	56	14	29	17	28	30	19	22	25	39
New Brunswick												
Atlantic Maritime	10	37	35	31	31	23	17	24	19	29	18	33
Total	128	193	185	141	157	116	77	104	97	93	87	130

Source:

Environment Canada. National Environmental Emergency Centre. Conservation and Protection.

Table: 3.3.1.6

Population Exposure to Sulphate Deposition from Acid Rain, Eastern Canada, 1971 and 1986

			Populat	tion				Change	
Provinca		1971			1986			1981-1986	
	iow exposure	medium exposure	high exposure	low exposure	medium exposure	high exposure	low exposure	medium exposure	high exposure
		persons			persons			percent	
Newtoundland	21 125	500 980		22 175	546 175		5.0	9.0	
Prince Edward Island		111 640			126 650			13.4	
Nova Scotia		788 960			873 175			10.7	
New Brunswick		634 555	-		709 445			11.8	
Quebec	8 225	773 760	5 245 035	7 575	797 305	5 727 575	- 7.9	3.0	9.2
Ontario	10 390	590 860	7 102 575	8 420	575 965	8 517 310	- 19.0	- 2.5	19.9
Eastern Canada Total	39 740	3 400 780	12 347 615	38 170	3 628 715	14 244 885	- 4.0	6.7	15.4
As a percentage of Eastern Canada	0.3	21.5	78.2	0.2	20.3	79.5			

Source:

Statistics Canada. Environment and Wealth Accounts Division. Census of Population. Environment Canada. Canadian Air and Precipitation Monitoring Network.

Note:

Low exposure : < 3 kg dry sulphate deposition / hectare

Medium exposure . 3-8 kg dry sulphate deposition / hectare

High exposure : > 8 kg dry sulphate deposition / hectare

Sulphate Deposition from Acid Rain, Eastern Canada, 1984

Source: Statistics Canada, Environment and Wealth Accounts Division. Environment Canada, Canadian Air and Precipitation Monitoring Network, 1984.

Trends in Emissions¹ of Nitrogen Oxides (NO₂)

Sector	1955		19	1965		1976		0	1985	
	kilotonnes	percent								
Transportation	330	51.56	510	60.00	980	61.25	1 075	61.43	1 175	62.33
Non-utility fuel combustion ²	230	35.94	250	29.41	350	21.87	335	19.14	250	13.26
Power plants	10	1.56	55	6.47	215	13.44	260	14.86	345	18.30
Other ³	70	10.94	35	4.12	55	3.44	80	4.57	115	6.10
Total	640	100.00	850	100.00	1 600	100.00	1 750	100.00	1 885	100.00

Source: Environ: Notes:

Environment Canada, Regulatory Affairs and Program Integration Branch, Environmental Protection.

*Emission coefficients were applied to basic data except for major stationary sources such as non-ferrous smelters and some power plants, for which actual emission data were used. ?Includes fuel combustion from residential, industrial, and commercial sources.

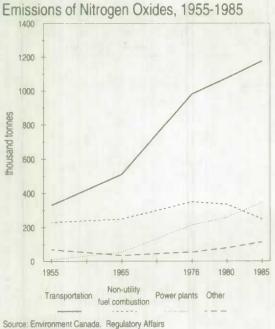
³includes sources such as tar sands operations, kraft pulping, and incineration but does not include forest fires.

Table: 3.3.1.8

Trends in Emissions¹ of Sulphur Dioxide (SO₂)

								-		
Sector	195	i5	196	5	197	6	198		198	15
	kilotonnes	percent	kilotonnes	percent	kilotonnes	percent	kilotonnes	percent	kilotonnes	percen
Non-ferrous smelting2	2 865	63.18	3 835	58.19	2 595	48.82	2 085	44.98	1 800	48.78
Power plants	55	1.21	260	3.95	610	9.26	770	11.68	740	20.05
Non-utility fuel combustion ³	1 000	22.05	1 130	17.15	880	13.35	610	9.26	280	7.59
Transportation	80	1.76	50	0.76	115	1.75	135	2.05	95	2.57
Iron ore processing	110	2.43	155	2.35	165	2.50	160	2.43	130	3.52
Other ⁴	425	9.37	1 160	17.60	950	14.42	870	13.20	650	17.62
Total	4 535	100.00	6 590	100.00	5 315	100.00	4 635	100.00	3 690	100.00

Source: Environ: Notes:


Environment Canada, Regulatory Affairs and Program Integration Branch, Environmental Protection.

¹Emission coefficients were applied to basic data except for major stationary sources such as non-ferrous smelters and some power plants, for which actual emission data were used. ²Includes copper, nickel, aluminum, lead and zinc production.

³Includes fuel combustion from residential, industrial, and commercial sources

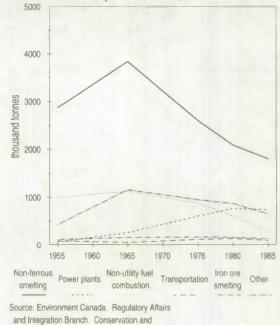

Includes sources such as natural gas processing, tar sands operations, chemical pulping, and incineration.

Figure: 3.3.1.1

and Integration Branch. Conservation and Protection. Figure: 3.3.1.2

Emissions of Sulphur Dioxide, 1955-1985

Statistics Canada

Protection

Air Emissions by Province, 1985

Sector	Canada	Nfld.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Yukon	N.W.T
							tonr	185					
Total Particulate Matter													
Industrial	909 706	101 318	195	46 657	51 270	154 320	97 540	33 006	69 378	138 707	210 573	6 742	454
Stationary fuel combustion	374 725	15 536	6 583	15 206	24 234	77 564	84 235	9 268	39 421	44 410	58 268	0	2 273
Transportation	110 533	2 127	441	3 682	2 282	16 177	40 812	5 704	7 923	15 186	15 338	171	749
Incineration	38 096	100	36	379	785	6 590	5 407	181	449	1 827	22 342	0	E
Miscellaneous	273 350	4 110	913	6 222	11 781	55 250	54 714	5 814	8 806	18 593	107 054	93	341
Total	1 706 410	123 191	8 168	72 146	90 352	309 841	282 708	53 973	125 977	218 723	413 575	7 006	3 823
Sulphur Dioxide					_								
	0.570.040	0.770		44.000	00.044		077.070		0.000				
Industrial Stationary fuel combustion	2 572 912 1 015 665	2 778 38 349	1 345	11 889	20 341	569 318	977 978	459 720	8 378	446 621	75 548	341	(
Transportation	94 546	2 234	345	155 161		90 349	429 986	6 375	73 781	87 411	17 348	0	1 427
Miscellaneous	1 745	2 2 34	5	3 361 36	1 771	32 314 734	31 631 402	3 026 43	3 361	4 548	11 930	30	311
									46	115	305	0	3
Total	3 684 868	43 381	1 690	170 447	137 711	692 715	1 439 998	469 164	85 566	538 695	105 131	371	1 741
Nitrogen Oxides													
Industrial	88 931	1 320	0	1 585	2 647	6 860	38 154	572	857	26 243	10 693	0	0
Stationary fuel combustion	589 659	8 953	618	27 618	13 489	34 246	168 155	7 622	61 316	222 404	45 238	0	3 732
Transportation	1 242 617	24 502	5 312	47 914	29 053	192 759	376 344	76 147	95 617	197 060	195 783	2 126	10 284
Incineration	7 440	68	19	136	170	1 851	2 160	146	156	471	2 263	0	10
Miscellaneous	16 797	295	48	404	928	4 160	317	202	355	1 055	9 033	0	22
Total	1 945 444	35 138	5 997	77 657	46 287	239 876	585 130	84 689	158 301	447 233	263 010	2 126	14 048
Carbon Monoxide			-										
Industrial	774 849	0	0	443	5 556	198 797	455 793	1 238	8 844	28 986	75 292	0	c
Stationary fuel combustion	1 255 552	51 592	26 303	35 493	32 676	237 391	212 054	14 375	65 972	86 751	492 945	0	8 782
Transportation	7 140 724	128 456	34 686	235 427	187 454	1 159 360	2 341 057	401 498	544 175	1 079 518	1 015 811	13 282	22 893
Incineration	429 433	757	313	3 739	8 945	77 800	39 060	1 199	4 258	19 357	274 005	0	22 050
Miscellaneous	1 147 214	17 091	2 932	23 654	53 160	241 155	194 756	12 790	20 872	61 988	518 774	42	1 292
Total	10 747 772	197 896	64 234	298 756	287 791		3 242 720	431 000	644 121	1 276 600	2 376 827	13 324	
TOGET	10/4///2	197 090	04 204	296 7 36	207 791	1914 303	3 242 720	431 000	044 121	1 276 600	2 3/6 82/	13 324	32 975
Totai Hydrocarbons													
Industrial	577 580	70	5	20 304	5 731	59 906	131 455	1 712	41 723	177 212	139 462	0	351
Stationary fuel combustion	219 765	9 075	4 578	5 447	5 524	41 584	39 234	3 034	3 424	44 480	63 385	0	1 658
Transportation	959 105	19 653	4 587	33 117	25 209	160 044	330 870	51 941	62 642	127 428	141 989	1 625	2 903
Incineration	43 257	74	29	334	741	14 628	4 428	124	378	1 692	20 829	0	2
Miscellaneous	510 436	9 0 9 5	2 423	14 675	16 138	121 849	169 755	16 578	16 289	41 413	101 818	403	697
Total	2 310 143	37 967	11 622	73 877	53 343	398 011	675 742	73 389	124 456	392 225	467 483	2 0 2 8	5 611
Volatile Organic Compounds			1.1										
Industrial	258 090	49	5	4 426	2 842	50 727	114 172	1 599	4 196	63 256	16 818	0	193
Stationary fuel combustion	164 068	8 954	4 522	5 057	5 402	40 692	36 578	2 644	3 010	8 506	47 132	0	1 570
Transportation	870 215	17 815	4 148	29 988	22 782	144 624	298 939	47 029	56 806	115 420	128 542	1 471	2 650
Incineration	19 369	32	12	139	301	7 587	298 939	47 029	157	692	8 349	0	2 650
Miscellaneous	486 032	8 649	2 349	14 064	14 735	115 560	169 600	16 273	15 753	39 818	8 349	403	664
Total	1 797 969	35 499	11 036	53 674	46 062	359 190	621 333	67 601	79 922	227 692	289 004	1 874	5 078

Source: Environment Canada, Regulatory Affairs and Program Integration Branch, Canadian Emissions Inventory of Common Air Contaminants (1985). Report EPS 5/AP/3, March 1990.

The Greenhouse Index, 1987

		Gi	eenhouse gases				Metric
Country	Greenhouse index rank	Carbon dioxide	Methane	CFCs1	Total	Percent of total	tons per capita
		carbo	n dioxide heating equivale	nt (million tonnes)			
United States	1	540	t30	350	1 020	17.3	4.2
U.S.S.R.	2	450	60	180	690	11.7	2.5
Brazil	3	560	28	16	604	10.2	4.3
China	4	260	90	32	382	6.5	0.3
India	5	130	98	1	229	3.9	0.3
Germany	6	118	10	95	223	3.8	3.4
Japan	7	110	12	100	222	3.8	1.8
United Kingdom	8	69	14	71	154	2.6	2.7
Indonesia	9	110	19	9	139	2.3	0.8
France	10	41	13	69	123	2.1	2.2
Italy	11	45	6	71	122	2.1	2.1
Canada	12	48	33	36	117	2.0	4.5
Mexico	13	49	20	9	78	1.3	0.9
Myanmar	14	68	9	0	77	1.3	2.0
Poland	15	56	7	13	76	1.3	2.0
Spain	16	21	4	48	73	1.2	1.8
World		3 700	800	1 400	5 900		

Source:

World Resources Institute. 1990. World Resources 1990-91. Oxford University Press. New York.

Notes:

1 Chlorofluorocarbons

Table: 3.3.1.11

Examples of Toxic, Synthetic Organic Compounds

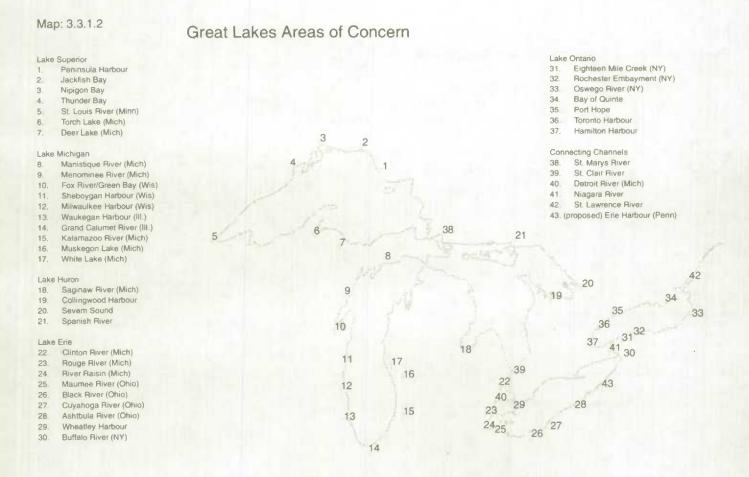
				Known he	aith effects			
Chemical	Causes mutations	Carcino- genic	Birth defects	Causes still- births	Causes nervous disorders	Liver disease	Kidney disease	Lun diseas
Benzene	V	~	v	V	-	_	-	_
dichlorobenzene	V	-	-	v -	~	v .	-	-
HCB (hexachlorobenzene)	V	~	~	~	4	-	-	-
Chloroform		4	v	~	-	V	_	-
Carbon tetrachloride		4	~	1	4	~	4	-
Ethylene								
chloroethylene (vinyl chloride)	4	V	-	_	v .	4	-	
dichloroethylene	v	V	_	V	4	~	~	
tetrachioroethylene	-	4	—	_	V	V	V	-
trichloroethylene	v .	~		_	~	V	-	-
Heptachlor	4	4	utions -	4	~	4	-	-
PCBs (polychlorinated biphenyls)	v	4	V	v	4	~		_
Dioxiri (Tetrachlorodibenzo dioxin)	v	V	~	~	4	V	-	-
Toluene	4			~	~		-	-
chiorotoluenes	4	4	-	-		-	-	-
Xylene	_	_	~	~	V	_	_	

Source:

Nebel, Bemard, J. 1987. Environmental Science. Prentice-Hall Inc. Engelwood Cliffs, New Jersey.

Estimated Chemical Loads to the Great Lakes, 1988

	Chemical											
		PCBs		DDT	Benz	o(a)pyrene	L	ead				
Lake basin	Total	Attributable to atmospheric deposition	Total	Attributable to atmospheric deposition	Total	Attributable to atmospheric deposition	Total	Attributable to atmospheric deposition				
	kg/year	percent	kg/year	percent	kg/year	percent	tonnes/year	percent				
Superior	606	90	92	97	72	96	241	97				
Michigan	685	58	65	98	208	86	543	99				
Huron	636	63	92	97	290	80	430	94				
Erie	2 520	7	319	22	122	79	567	39				
Ontario	2 540	6	111	32	155	72	426	50				
Total	6 987	24	679	51	847	81	2 207	73				


Source:

Environment Canada, Department of Fisheries and Oceans, Health and Welfare Canada. 1991. Toxic Chemicals in the Great Lakes and Associated Effects: Synopsis. Catalogue En. 37-94/1990E. [originally published in] International Joint Commission. 1988. Mass Balancing of Toxic Chemicals in the Great Lakes; the Role of Atmospheric Deposition, by W. Strachan and S. Eisenreich:

Notes:

Data to carry out mass balance were sufficient only for these four chemicals and mirex; even for these there is a great deal of uncertainty.

The upper lakes: Superior, Michigan and Huron receive a significant fraction of their PCBs, DDT and lead directly from the atmosphere. Compared to the lower lakes, lhey have a larger surface area and fewer local contaminant sources. In absolute terms, total PCB inputs to the lower lakes are four times higher than the upper lakes due to local sources.

Source: The Great Lakes Reporter, Jan/Feb 1991.

3.3.2 Agricultural Contaminants

Between 1971 and 1986, pesticide application increased almost five-fold. Fertilizer application grew by 15 percent between 1980 and 1985.

Historically, the application of fertilizers and pesticides has been considered an essential means of increasing agricultural production. Only within the past decade has it been realized that these practices may be doing much harm. Continual fertilizer application upsets natural nutrient balances, making it increasingly difficult to re-establish the equilibrium found in natural systems.

The same holds true for pesticides. Pesticides are applied to kill specific pests. During pesticide applications many other organisms are killed incidentally. Many of these organisms are beneficial to soil stability and structure, or to plant communities. Some help to control other insects that may become pests without their natural predators. Over time many pests become resistant to some pesticide types so more complex and more powerful pesticides are required. Recently, some farmers have been adopting low-input technologies that promote crop rotation, mixed agriculture and natural pest controls instead of manufactured chemicals.

The value of pesticide applied on farmland increased more than five-fold between 1970 and 1985 (Table 3.3.2.1). The most significant increases in pesticide application rates occurred in the Prairie Provinces where pesticide inputs have increased ten-fold (Map 3.3.2.1). However, application rates per hectare of cultivated land were still much lower in the Prairie Provinces than in Ontario and Quebec where application rates ranged as high as 19 dollars per hectare.

Pesticide expense data are not the best indicators of toxicity changes in soil. Many factors other than pesticide cost influence the environmental impacts of pesticides. These include the time of year they are applied, rainfall at the time, toxic life of the pesticide, method of application, and many others. At best, pesticide expense data serve only as general indicators of potential environmental impact.

The Census of Agriculture measured farm fertilizer use in both the 1981 and 1986 censuses. On a national scale, agricultural fertilizer application increased from 3.5 million lonnes in 1980 to over 4.0 million by 1985 (Table 3.3.2.2). Regionally, Eastern Canada showed declines in absolute tonnages applied, with Newfoundland showing the largest drop of more than 24 percent. Western Canada experienced the largest increase. Saskatchewan led all other provinces with a rise of 62 percent in quantity of fertilizer.

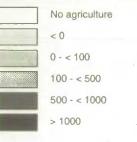
Interpreting fertilizer tonnage changes has to be done with some caution. Nutrient content of commercial fertilizer materials is highly variable and ranges from a low of 30 percent to well over 95 percent depending on the compound applied. Local knowledge of fertilizer types is essential in assessing potential environmental stresses.

Agricultural Pesticide Expenditures and Densities by Sub-basin, 1970 and 1985

	Agricultural p	esticide expenditures			icultural pesticide ctare cultivated la	
Provincial Sub-basin	1970	1985	Change 1970-1985	1970	1985	Chang 1970-198
	thousand constant 197	percent	dollars/he	ectare	percent	
Newfoundland						
North Newtoundland	22.1	16.6	- 24.7	11.69	5.71	- 51.1
South Newfoundland	23.2	27.0	16.3	4.61	4.40	- 4.1
Total	45.3	43.6	- 3.7	6.54	4.82	- 26.3
Prince Edward Island						
Prince Edward Island	909.7	2 801.3	207.9	4.73	15.41	225.
Total	909.7	2 801.3	207.9	4.73	15.41	225.
Nova Scotla						
Bay of Fundy	622.9	1 248.4	100.4	5.21	9.92	90.3
Southeast Atlantic Ocean	23.5	50.3	113.7	1.58	3.62	128.
Cape Breton Island Total	12.1 658.6	16.9 1 315.6	39.8 99.8	1.22 4.56	1.71	40.
	030.0	(315.0	33.0	4.30	8.79	92.1
New Brunswick						
Saint John and South Bay of Fundy	824.6	1 940.8	135.4	6.72	17.44	159.0
Gulf of St. Lawrence and North Bay of Fundy	270.9	227.3	- 16.1	4.70	4.57	- 2.
Total	1 095.5	2 168.1	97.9	6.07	13.47	121.
Quebec						
Saint John	33.0	37.0	12.0	0.74	1.18	58.
Cascapedia and Gulf of St. Lawrence	34.4	58.5	70.3	0.63	1.36	116.
Upper Ottawa	19.8	54.9	177.1	0.30	1.16	288.
Coulonge and Central Ottawa	41.0	112.6	174.7	0.92	2.91	215.0
Gatineau and Lower Ottawa	190.9	336.7	76.4	1.37	3.09	125.3
Upper St. Lawrence	104.4	491.1	370.2	1.96	9.60	389.0
St-Maurice	26.8	31.6	17.9	2.80	5.80	107.3
Central St. Lawrence	3 619.1	9 444.9	161.0	3.27	9.70	196.
Lower St Lawrence	695.4	1 629.2	134.3	1.14	3.35	193.
North Gaspé Peninsula	88.2	184.3	109.1	0.60	1.60	166.9
Saguenay	96.0	265.2	176.4	0.65	2.16	229.3
Betsiamites Manicouagan and Outardes	0.9 3.7	3.5 11.3	288.2 203.3	0.48	2.41 16.88	397.1 197.(
Natashquan and Gulf of St. Lawrence	0.0	0.3	3 270.0	0.02	0.83	4 596.2
Nottaway	0.8	0.8	5.3	0.19	0.18	- 2.
Abitibi and North French	7.0	10.2	44.9	0.20	0.37	86.0
Harricanaw	3.9	9.4	144.6	0.21	0.50	136.
Total	4 965.2	12 681.7	155.4	2.00	6.11	205.
Ontario						
Nipigon and Northwest Lake Superior	11.8	32.6	176.1	0.65	2.09	222.
Northeast Lake Superior	1.0	2.3	133.9	0.74	2.06	177.3
North Lake Huron	34.9	58.8	68.7	0.71	1.32	85.
Wanipitai and French	13.8	29.2	111.4	0.41	1.09	167.4
East Georgian Bay	1 427.2	3 153.8	121.0	4.74	11.27	137.
East Lake Huron	2 113.8	8 132.0	284.7	2.51	10.32	311.
North Lake Erie	9 513.0	28 164.8	196.1	6.43	19.04	196.0
Lake Ontario Montréal and Upper Ottawa	3 500.3 11.8	7 381.9 112.4	110.9 851.8	4.75 0.23	10.96	130.0
Madawaska, Petawawa and Central Ottawa	161.7	348.1	115.3	1.02	2.05	153.3
Rideau and Lower Ottawa	775.3	1 933.1	149.3	2.13	6.29	195.3
Upper St. Lawrence	191.4	540.8	182.5	1.43	4.94	248.
Moose	6.7	10.2	54.0	1.09	1.95	78.
Abitibi	4.0	6.6	64.1	0.38	0.52	39.0
Upper Winnipeg	6.9	44.2	538.4	0.25	1.42	458.
English	0.7	4.6	601.8	0.09	0.72	693.
Total	17 774.3	49 955.5	181.1	4.21	12.58	198.
Manitoba						
Saskatchewan	3.4	133.1	3 768.1	0.16	4.85	2 841.3
Lake Winnipegosis and Lake Manitoba	908.0	8 747.5	863.4	0.73	6.64	810.
Assiniboine	795.6	9 224.1	1 059.3	0.61	6.67	995.3
Souris	328.6	3 388.8	931.3	0.55	5.46	885.
Red	1 520.8	16 185.8	964.3	0.95	9.80	931.
	10.0	A A A A				
Winnipeg West Lake Winnipeg	18.3 141.5	260.7 1 453.5	1 326.8 926.9	0.42	5.55 5.66	1 223.1 914.1

Agricultural Pesticide Expenditures and Densities by Sub-basin, 1970 and 1985

	Agricultural	pesticide expendituras		Agricultural pesticide per hectare cultivated land			
Provincial Sub-basin	1970	1985	Change 1970-1985	1970	1985	Change 1970-1985	
	thousand constant 19	71 dollars	percent	dollars/hectare		percent	
Saskatchewan							
Upper South Saskatchewan	10.5	45.6	334.7	0.35	2.37	584.5	
Central North Saskatchewan	207.5	3 577.8	1 624.6	0.33	4.77	1 342.1	
Battle	84.2	1 4 1 4 . 1	1 579.7	0.37	5.68	1 445.5	
Lower North Saskatchewan	748.8	11 179.6	1 393.0	0.29	4.07	1 300.5	
Lower South Saskatchewan	1 115.0	13 837.8	1 141.1	0.31	3.62	1 059.0	
Qu'Appelle	1 240.5	17 317.2	1 295.9	0.24	3.23	1 232.3	
Saskalchewan	879.5	8 030.1	813.0	0.82	7.39	798.9	
Lake Winnipegosis and Lake Manitoba	220.7	3 675.5	1 565.2	0.41	5.77	1 308.2	
Assiniboine	645.3	9 768.2	1 413.7	0.37	5.21	1 325.0	
Souris	453.6	6 216.3	1 270.5	0.22	2.92	1 203.5	
Beaver	65.9	1 142.3	1 633.6	0.24	3.50	1 377.1	
Missouri	163.6	1 922.3	1 075.4	0.22	2.23	904.7	
Total	5 835.1	78 126.8	1 238.9	0.31	3.93	1 151.2	
Alberta							
Upper South Saskatchewan	1 090.1	8 586.3	687.7	0.57	3.92	582.5	
Bow	517.0	3 551.7	586.9	0.70	4.80	590.7	
Red Deer	1 151.0	11 459.7	895.6	0.53	4.85	816.0	
Upper North Saskatchewan	138.9	936.1	573.8	0.41	2.51	513.0	
Central North Saskatchewan	696.2	8 562.3	1 129.8	0.43	5.05	1 077.9	
Battle	600.5	9 697.0	1 514.8	0.39	5.98	1 424.2	
Lower North Saskatchewan	114.5	1 621.5	1 315.6	0.26	2.75	976.1	
Lower North Saskatchewan	7.7	42.9	457.0	0.32	1.76	445.2	
	30.8	446.0	1 350.1	0.16	1.89	1 054.8	
Beaver	11.8	45.6	287.3	0.28	0.77	173.0	
Upper Athabasca	194.3	1 780.4	816.2	0.28	2.55	680.8	
Pembina and Central Athabasca	27.5	263.9	859.1	0.33	2.05	721.0	
Lower Central Athabasca	134.7	1 888.2	1 302.0	0.28	3.18	1 054.1	
Upper Peace	139.7	2 358.1	1 147.1	0.32	3.46	972.6	
Smoky	48.3	1 001.1	1 974.3	0.19	2.64	1 264.4	
Central Peace	48.3	210.1	3 362.0	0.19	2.31	1 221.8	
Lower Central Peace			665.4	0.26		651.1	
Missouri Total	48.5 5 007.1	371.1 52 821.9	954.9	0.44	1.93 4.17	838.9	
British Columbia							
Willistor Lake	0.0	2.6		0.00	0.49		
Upper Peace	98.8	917.7	828.8	0.33	2.35	605.4	
Skeena	8.7	9.4	8.4	0.49	0.42	- 13.8	
	0.0	9.4	1 025.0	0.02	0.15	- 13.8 574.2	
Gardner Canal and Central Pacific Ocean	0.3	3.4	891.2	0.19	1.01	427.5	
Knight Inlet and South Pacific Ocean	111.2	203.9	891.2	5.88	8.20	427.5	
Vancouver Island	7,9		69.4	0.26	0.21	- 16.4	
Nechako		13.3					
Upper Fraser	11.5	24.1	110.2	0.31	0.41	35.7	
Thompson	46.5	137.0	194.4	0.71	1.51	112.1	
Fraser	744.6	2 003.7	169.1	7.33	18.92	158.2	
Columbia	1 289.0	1.821.8	41.3	12.90	20.30	57 4	
Fort Nelson Total	0.0 2 318.6	4.6 5 141.9	45 930.0 121.8	0.48	2.61 6.00	449.1	
TVIDI							
Canada	42 325.7	244 449.9	477.5	0.99	5.40	446.4	


Sources: Statistics Canada, Environment and Weelth Accounts Division. Agriculture Division.

Note:

Farm input price indices were used to obtain 1971 constant dollar expenditures.

Commercial Agricultural Fertilizer Application by Sub-basin, 1980 and 1985

	Comm	arcial fertilizer a	pplied		Area fertilized		Fertilizer	r per hectare	fertilized
Provincial Sub-basin	1980	1985	Change 1980-1985	1980	1985	Change 1980-1985	1980	1985	Change 1980-1985
	tonn	88	percent	hecta	7 0 5	percent	tonnes/he	ectare	percent
Newfoundland									
North Newtoundland	819	739	- 9.7	851	1 382	62.4	0.96	0.54	- 44.4
South Newfoundland	2 164	1 522	- 29.6	3 562	3 375	- 5.2	0.61	0.45	- 25.7
Total	2 983	2 262	- 24.2	4 413	4 757	7.8	0.68	0.48	- 29.7
Prince Edward Island								0.54	
Prince Edward Island	55 477	57 606	3.8	107 442	113 297	5.5	0.52	0.51	- 1.5
Total	55 477	57 606	3.8	107 442	113 297	5.5	0.52	0.51	- 1.5
Nova Scotia									
Bay of Fundy	28 259	24 993	- 11.6	74 577	71 900	- 3.6	0.38	0.35	- 8.3
Southeast Atlantic Ocean	2 990	2 260	- 24.4	8 476	7 4 1 5	- 12.5	0.35	0.30	- 13.6
Cape Breton Island	2 238	1 946	- 13.0	5 484	5 728	4.4	0.41	0.34	· 16.7
Total	33 487	29 199	- 12.8	68 537	85 043	- 3.9	0.38	0.34	- 9.2
New Brunswick									
Saint John and South Bay of Fundy	43 588	38 490	- 11.7	55 243	61 766	11.8	0.79	0.62	- 21.0
Gull of St. Lawrence and North Bay of Fundy	8 955	9 454	5.6	20 753	22 282	7.4	0.43	0.42	- 1.7
Total	52 543	47 944	- 8.8	75 997	84 048	10.6	0.69	0.57	• 17.5
Quebec									
Saint John	4 310	2 610	- 39.4	13 623	13 471	- 1.1	0.32	0.19	- 38.7
Cascapedia and Gulf of St. Lawrence	7 663	4 783	- 37.8	22 845	19 394	- 15.1	0.34	0.25	- 26.8
Upper Ottawa	4 522	2 848	- 37.0	12 369	11 819	- 4.4	0.37	0.24	- 34.1
Coulonge and Central Ottawa	3 414	3 186	- 6.7	8 687	9 862	13.5	0.39	0.32	- 17.8
Gatineau and Lower Ottawa	15 408	13 282	- 13.8	34 145	40 724	19.3	0.45	0.33	- 27.7
Upper St. Lawrence	18 648	22 100	18.5	35 273	42 008	19.1	0.53	0.53	· 0.5
St-Maurice	1 632	941	- 42.3	2 104	2 264	7.6	0.78	0.42	- 46.4
Central St. Lawrence	286 854	309 089	7.8	602 932	684 182	13.5	0.48	0.45	- 5.(
Lower St Lawrence	85 593	69 043	- 19.3	247 604	248 623	0.4	0.35	0.28	- 19.7
North Gaspé Peninsula	16 309	12 560	- 23.0	67 746	60 460	- 10.8	0.24	0.21	- 13.7
Saguenay	13 388	11 997	- 10.4	48 833	42 403	- 9.5	0.29	0.28	- 1.0
Betsiamites	65	54 282	- 17.5	157 512	407 501	159.7	0.42	0.13	- 00.
Manicousgan and Outardes	314 126	202	- 10.1	151	70	- 53.7	0.83	1.34	60.4
Natashquan and Gulf of St. Lawrence	314	162	- 42.1	1 335	837	- 37.3	0.24	0.22	. 7.7
Nottaway Abitibi and North French	1 922	2 061	7.3	5 119	8 691	69.8	0.38	0.24	- 36.6
Harricanaw	1 162	814	- 29.9	3 965	3 517	- 11.3	0.29	0.23	- 21.0
Total	461 644	455 908	- 1.2	1 105 400	1 189 233	7.6	0.42	0.38	- 8.2
Ontario									
Nipigon and Northwest Lake Superior	2 699	2 146	- 20.5	11 196	10 105	- 9.7	0.24	0.21	- 11.9
Northeast Lake Superior	69	94	36.8	287	398	38.5	0.24	0.24	- 1.2
North Lake Huron	3 598	3 083	- 14.3	14 823	14 738	- 0.6	0.24	0.21	- 13.8
Wanipital and French	2 909	2 150	- 26.1	12 251	11 531	- 5.9	0.24	0.19	- 21.5
East Georgian Bay	64 609	55 272	- 14.5	159 841	156 869	- 1.9	0.40	0.35	- 12.8
East Lake Huron	177 332	182 462	2.9	535 885	549 657	2.6	0.33	0.33	0.;
North Lake Erie	507 604	482 691	- 4.9	1 137 743	1 154 771	1.5	0.45	0.42	- 6.3
Lake Ontario	129 656	117 850	- 9.1	362 765	377 066	3.9	0.36	0.31	- 12.5
Montréal and Upper Ottawa	5 208	4 492	- 13.8	27 384	25 789	- 5.8	0.19	0.17	- 8.4
Madawaska, Petawawa and Central Ottawa	12 253	10 276	- 16.1	39 612	40 859	3.1	0.31	0.25	- 18.1
Rideau and Lower Ottawa	55 161	58 408	5.9	164 509	181 301 47 436	10.2	0.34	0.32	6.1
Upper St. Lawrence	14 613 711	16 906 852	15.7	43 648 2 698	2 586	8.7	0.33	0.36	2.
Abitibi	B46	709	- 16.2	4 398	3 758	- 14.6	0.19	0.19	- 1.5
Upper Winnipeg	1 831	1 570	- 14.2	13 419	11 783	- t2.2	0.14	0.13	- 2.3
English	413	477	15.6	3 143	2 479	- 21.1	0.13	0.19	46.6
Totai	979 512	939 239	- 4.1	2 533 823	2 591 126	2.3	0.39	0.36	- 6.3
Manitobe									
Saskatchewan	1 662	2 465	48.3	13 288	16 170	21.7	0.13	0.15	21.9
Lake Winnipegosis and Lake Manitoba	109 241	133 162	21.9	718 932	859 036	19.5	0.15	0.16	2.0
Assiniboine	121 093	148 593	22.7	750 260	917 614	22.3	0.16	0.16	0.3
Souris	43 184	54 225	25.6	334 152	400 060	19.7	0.13	0.14	4.:
Red	248 459	270 191	8.7	1 248 127	1 359 810	8.9	0.20	0.20	- 0.3
Winnipeg	2 169	4 176	92.5	14 817	21 583	45.7	0.15	0.19	32.
West Lake Winnipeg	17 102	24 898	45.6	116 878	152 100	30.1	0.15	0.16	11.3
Total	542 890	637 710	17.5	3 196 455	3 726 374	16.6	0.17	0.17	0.1

Commercial Agricultural Fertilizer Application by Sub-basin, 1980 and 1985

	Comr	mercial fertilizer a	pplied		Area fertilized		Fertilize	r per hectare	fertilized
Provincial Sub-basin	1980	1985	Change 1980-1985	1980	1985	Change 1980-1985	1980	1985	Change 1980-1985
	tor	ines	percent	hect	ares	percent	tonnes/h	ectare	percent
Saskatchewan									
Upper South Saskatchewan	91	267	193.2	2 110	4 490	112.8	0.04	0.06	37.8
Central North Saskatchewan	37 436	60 649	62.0	354 264	487 737	37.7	0.11	0.12	17.7
Battle	15 670	21 051	34.3	149 057	183 508	23.1	0.11	0.12	9.1
Lower North Saskatchewan	82 471	131 449	59.4	954 190	1 335 429	40.0	0.09	0.10	13.9
Lower South Saskatchewan	83 415	127 076	52.3	934 552	1 398 075	49.6	0.09	0.09	1.8
Qu'Appelle	87 713	151 236	72.4	979 333	1 612 603	64.7	0.09	0.09	4.7
Saskatchewan	88 677	114 970	29.6	634 468	786 899	24.0	0.14	0.15	4.5
Lake Winnipegosis and Lake Manitoba	26 636	48 498	82.1	259 097	383 481	48.0	0.10	0.13	4.5
Assiniboine	56 740	135 744	139.2	660 760	1 138 872	72.4	0.09	0.12	38.8
Souris	42 675	50 700	18.8	427 717	542 927	26.9	0.10	0.09	- 6.4
Beaver	16 139	29 264	81.3	115 560	178 402	54.4	0.14	0.16	17.5
Missouri	3 458	4 858	40.5	54 744	72 608	32.6	0.06	0.07	5.9
Total	541 121	875 761	61.8	5 525 853	8 125 031	47.0	0.10	0.11	10.1
Alberta									
Upper South Saskatchewan	123 862	143 969	16.4	010.040	1.000.004	27.4	0.45		
Bow	52 951	64 202		810 942	1 032 881		0.15	0.14	- 8,6
Red Deer			21.2	348 754	402 575	15.4	0.15	0.16	5.0
	150 524	188 758	25.4	1 104 488	1 333 660	20.7	0.14	0.14	3.9
Upper North Saskatchewan	20 547	23 005	12.0	136 738	156 642	14.6	0.15	0.15	- 2.3
Central North Saskatchewan	117 025	146 196	24.9	902 479	1 081 975	19.9	0.13	0.14	4.2
Battle	110 510	142 905	29.3	954 410	1 123 910	17.8	0.12	0.13	9.8
Lower North Saskatchewan	11 272	22 907	103.2	131 892	227 259	72.3	0.09	0.10	17.9
Lower South Saskatchewan	69	231	234.5	1 221	1 822	49.2	0.06	0.13	124.2
Beaver	10 204	11 817	15.8	71 459	82 067	14.8	0.14	0.14	0.8
Upper Athabasca	2 577	3 607	40.0	17 784	23 484	32.1	0.14	0.15	6.0
Pembina and Central Athabasca	35 696	43 358	21.5	231 687	281 137	21.3	0.15	0.15	0.1
Lower Central Athabasca	5 066	7 184	41.8	37 654	52 245	38.7	0.13	0.14	2.2
Upper Peace	28 142	39 198	39.3	241 978	346 688	43.3	0.12	0.11	- 2.8
Smoky	40 994	51 407	25.4	309 501	398 624	28.8	0.13	0.13	- 2.6
Central Peace	18 150	24 192	33.3	142 436	204 688	43.7	0.13	0.12	- 7.2
Lower Central Peace	2 455	4 299	75.1	21 548	47 487	120.4	0.11	0.09	- 20.5
Missouri	4 365	6 156	41.0	40 201	57 731	43.6	0.11	0.11	- 1.8
Total	734 209	923 392	25.8	5 505 173	6 854 875	24.5	0.13	0.13	1.0
British Columbia									
Williston Lake	238	218	- 8.3	1 197	1 445	20.6	0.20	0.15	- 24.0
Upper Peace	22 785	20 870	- 8.4	148 698	159 662	7.4	0.15	0.13	- 14.7
Skeena	1 555	1 178	- 24.2	12 156	8 711	- 28.3	0.13	0.13	- 14.7
Gardner Canal and Central Pacific Ocean	42	51	22.1	226	278	23.3	0.19	0.18	- 0.9
Knight Inlet and South Pacific Ocean	322	228	- 29.2	1 066	1 115	4.6	0.30	0.18	- 32.3
Vancouver Island	7 685	6 647	- 13.5	14 764	13 805	- 6.5	0.52	0.20	- 32.3
Nechako	4 206	3 983	- 13.3	27 027	30 694	- 6.5	0.52	0.48	
Upper Fraser	4 343	3 649	- 18.0	27 844	24 413	- 12.3	0.16		- 16.6
Thompson	7 605	6 283	- 17.4	27 644		- 12.3		0.15	- 4.2
Fraser	33 321				28 861		0.28	0.22	- 21.5
Columbia		28 047	- 15.8	56 528	58 301	3.1	0.59	0.48	- 18.4
	14 713	12 230	- 16.9	45 147	46 272	2.5	0.33	0.26	- 18.9
Oueen Charlotte Islands	6	8	38.3	5	26	441.7	1.24	0.32	- 74.5
Fort Nelson Total	2 96 823	76 83 470	3 695.0	40	601	1 402.1	0.05	0.13	152.6
	50 823	63 4/U	- 13.8	362 104	374 185	3.3	0.27	0.22	- 16.6
Canada	3 500 689	4 052 491	15.8	18 505 196	23 147 970	25.1	0.19	0.18	- 7.5

Source: Statistics Canada. Environment and Wealth Accounts Division. Agriculture Division.

Note: Declines in fertilizar tonnages may not reflect actual declines in the nutrients going onto the land.

3.3.3 Restructuring of Land and Water Systems

In 1986, 75 percent of Canada's crops were grown using methods that promote soil erosion.

The restructuring of land and water systems describes the environmental impacts associated with physical restructuring. This section focuses on erosion, an agent of restructuring of the land and on the downstream areas of the drainage basin receiving the silt.

In natural forest and grassland ecosystems, most rain falls on vegetation then infiltrates the soil. Continuous natural vegetative cover prevents water from running off by intercepting and holding precipitation around plants' root and stem systems. If the land's natural vegetation cover is removed, water runs off much faster and soil moisture levels decline. Increased rates of overland flow take away, much of the valuable top-soil. Not only is the soil washed away, but so are essential plant nutrients. Ultimately these eroded materials enter river systems and are carried away often destroying fish habitat, filling reservoirs, plugging water intakes and silting harbours further downstream.

Both soil particles and excess nutrients contribute to problems such as siltation and eutrophication³² further downstream. Soil degradation also increases production costs for the farmer. Nutrients lost by erosion must be replenished with additional fertilizer. Degraded soils also require additional tillage and irrigation, increasing farmer input costs. Product quality and quantities also decline on degraded soils. Agriculture Canada estimates that land degradation costs Canadian farmers over one billion dollars annually.

As a result of the lowered moisture retention of the soil, streams and rivers which are fed from the eroding land area have higher flow rates in the spring and lower rates in the summer. This raises the risk of added erosion of riverbanks during times of high flow and increased concentration of contaminants during times of low flow.

Monoculture cropping systems are inherently unstable, being susceptible to widespread outbreaks of insects, disease, weeds, and micro-nutrient imbalances.

In 1986, 75 percent of crops were grown in monoculture cropping systems. This amounts to 32.5 million hectares of

tilled land either in a close-row or wide-row type monoculture (Table 3.3.3.1). Close-row monocultures are mostly rotations between wheat, oats, barley, rye and oilseeds. These crops have similar effects in terms of erosion, nutrient loss and pest species.

Wide-row monocultures consist of rotations among the following crops: corn, beans, potatoes, soybeans, sugar beets and tobacco. For the most part, these crops are grown with wide spacing between the rows making erosion by water a greater risk than for either close-row or forage crops. Monoculture crops are grown without a soil conditioning forage crop in the rotation.

Provincial programs to encourage crop rotation have been introduced recently and their impacts will be assessed when the 1991 Agricultural Census results are released.

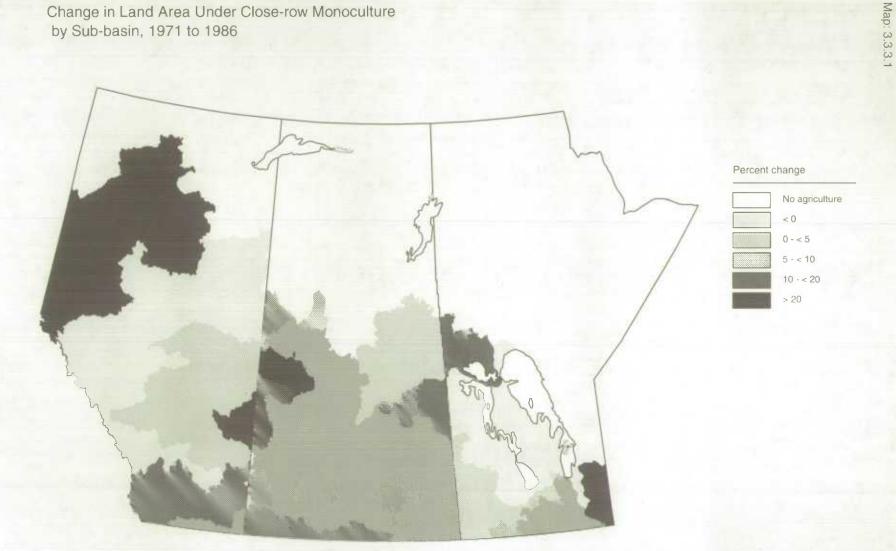
On a national scale wide-row monoculturing practices have increased by more than 68 percent going from 680,000 hectares in 1971 to over 1,147,000 hectares by 1986 (Table 3.3.3.1). Close-row monoculture grew more slowly but the total land area it occupied was almost thirty times that devoted to wide-row monoculture.

Map 3.3.3.1 highlights areas of the prairie provinces where significant changes have occurred in monoculture land area. Map 3.3.3.2 shows concentrations of close-row monoculture as a proportion of tilled land. Map 3.3.3.3 looks at the spread of wide-row monoculture in eastern Canada. Northern basins, where the area under monoculture is small, show the greatest changes. Map 3.3.3.4 indicates which tilled land is under the most intense wide-row monoculture activity.

Map 3.3.3.5 indicates areas at risk of water erosion and Map 3.3.3.6 shows areas at risk of wind erosion. More detailed information on erosion risk is now becoming available at Agriculture Canada's Land Resource Research Institute.

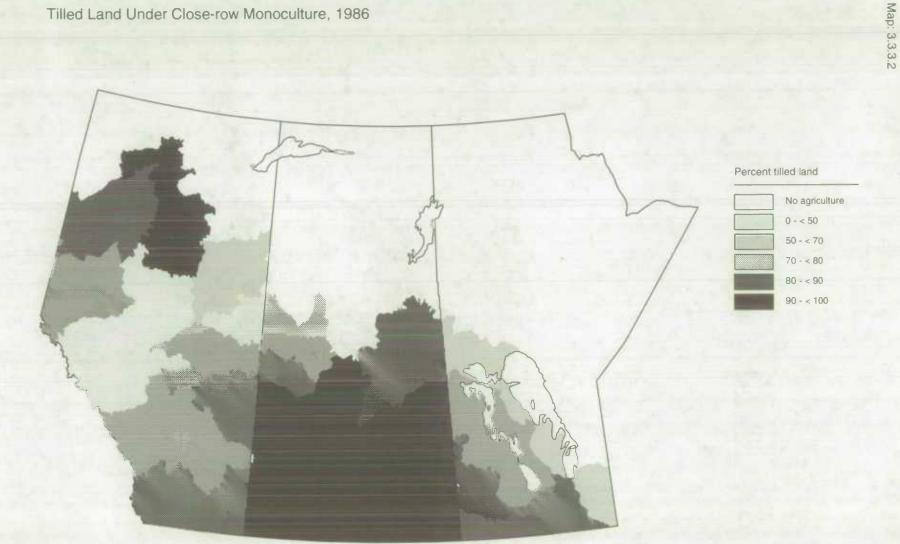
^{32.} Eutrophication is the nutrient enrichment of a body of water. This leads to excessive growth of algae which, in turn, depletes the oxygen in the water as the dead algae are consumed by decomposers.

Cropping Practice Changes, by Sub-Basin, 1971 and 1986


	Clos	se-row monoculture area	1	Wi	de-row monoculture are	8
Provincial Sub-basin	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986
	hectar	98	percent	hecta	hectares	
Newfoundland						
North Newfoundland	29	67	133.8	106	29	- 72.4
South Newfoundland	72	97	34.B	121	3	- 97.5
Total	101	164	63.1	227	32	- 85.8
Prince Edward Island						
Prince Edward Island	24 781	28 492	15.0	4 437	7 032	58.5
Total	24 781	28 492	15.0	4 437	7 032	58.5
Nova Scotia						
Bay of Fundy	4 695	4 104	- 12.6	1 060	1 247	17.7
Southeast Atlantic Ocean	238	154	- 35.3	9	12	27.9
Cape Breton Island	94	105	11.2	8	12	42.9
Total	5 027	4 362	- 13.2	1 077	1 271	18.0
New Brunswick						
Saint John and South Bay of Fundy	6 222	4 875	- 21.7	15 442	10 499	- 32.0
Gulf of St. Lawrence and North Bay of Fundy	4 180	3 785	- 9.5	301	352	16.6
Total	10 402	8 659	- 16.8	15 743	10 851	- 31.1
Quebec		1. S. 1.				
Saint John	1 261	1 071	- 15.1	50	127	152.6
Cascapedia and Gulf of St. Lawrence	1 467	1 481	1.0	62	286	361.3
Upper Ottawa	1 103	1 210	9.7	208	40	- 80.5
Coulonge and Central Ottawa	1 185	662	- 44.1	961	1 061	10.4
Gatineau and Lower Ottawa	3 360	2 326	- 30.8	1 388	2 473	78.2
Upper St. Lawrence	1 190	1 539	29.3	1 436	17 133	1 093.4
SI-Maurice	367	265	- 27.8	174	38	- 78.2
Central St. Lawrence	32 487	49 577	52.6 51.3	38 087 2 240	155 180 5 330	307.4 137.9
Lower St Lawrence	12 216 4 076	18 478 4 084	0.2	170	247	45.6
Nonh Gaspé Peninsula Saguenay	4 733	4 668	- 1.4	659	1 618	145.6
Betsiamites	112	61	- 45.7	0	0	
Manicouagan and Outardes	204	96	- 52.9	68	0	- 100.0
Natashguan and Gulf of St. Lawrence	74	2	- 96.7	8	7	- 19.0
Abilibi and North French	650	631	- 3.0	0	130	
Harricanaw	569	362	- 36.5	23	95	312.3
Total	65 054	86 514	33.0	45 534	183 766	303.6
Ontario						
Nipigon and Northwest Lake Superior	531	515	- 3.0	31	0	- 100.0
Northeast Lake Superior	32	52	62.0	0	0	
North Lake Huron	1 463	890	- 39.2	202	174	- 13.9
Wanipitai and French	1 957	755	- 61.4	3	212	6 440.0
East Georgian Bay	34 145	26 003	- 23.8	17 520	20 703	18.2
East Lake Huron	59 300	61 959	4.5	68 754	155 921	126.8
North Lake Erie	116 097	82 139	- 29.3	463 584	655 989	41.5
Lake Ontario	69 204	42 248	- 39.0	28 680	54 768	91.0
Montréal and Upper Ottawa	2 6 1 3	8 209	214.1	2	63	3 129.2
Madawaska, Petawawa and Central Ottawa	3 925	5 168	31.6	3 699	3 320	- 10.2
Rideau and Lower Ottawa	6 566	10 885	65.B	14 938	24 199	62.0
Upper St. Lawrence	2 724	2 763	1.4	3 345	8 599	157.1
Moose	141	440	212.4	2	. 10	459.5
Abitibi	313	437	39.7 487.4	16 0	85	427.5
Upper Winnipeg	564 501	3 314 513	2.3	0	2 75	
English Totai	300 077	246 288	- 17.9	600 776	924 139	53.8
84						
Manitoba Saskatchewan	14 964	17 417	16.4	11	0	- 100.0
	939 100	902 717	- 3.9	1 198	1 988	65.9
Lake Winnipegosis and Lake Manitoba	1 134 710	1 163 810	2.6	1 040	1 431	37.5
		519 781	1.7	189	330	74.3
Assiniboine	511 226					
Souris	511 235					
Souris Red	1 266 111	1 349 701	6.6	1 797	5 250	192.1
Souris						

Cropping Practice Changes, by Sub-Basin, 1971 and 1986

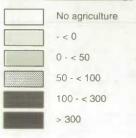
	CI	ose-row monoculture area	a	W	ide-row monoculture are	a	
Provincial Sub-basin	1971	1966	Change 1971-1986	1971	1986	Change 1971-1986	
	hect	ares	percent	hect	ares	percent	
Saskatchewan							
Upper South Saskatchewan	27 933	18 952	- 32.2	0	0		
Central North Saskatchewan	515 096	621 338	20.6	1	0	100.0	
Battle	202 599					- 100.0	
		228 235	12.7	0	0		
Lower North Saskatchewan	2 317 800	2 484 745	7.2	19	0	- 100.0	
Lower South Saskatchewan	3 241 487	3 451 393	6.5	92	231	151.5	
Qu'Appelle	4 743 165	5 007 020	5.6	105	181	71.8	
Saskatchewan	939 214	940 613	0.1	32	1	- 97.4	
Lake Winnipegosis and Lake Manitoba	467 991	538 017	15.0	8	0	- 100.0	
Assiniboine	1 589 844	1 707 872	7.4	9	115	1 195.5	
Souris	1 848 106	1 968 606	6.5	4	123	3 345.5	
Beaver	184 473	206 163	11.8	2	0	- 100.0	
Missouri	629 522	749 981	19.1	0	0		
Total	16 707 232	17 922 935	7.3	271	651	140.4	
Alberta							
Upper South Saskatchewan	1 549 147	1 797 829	16.1	3 084	3 004	· 2.6	
Bow	527 028	513 058	- 2.7	1 718	2 929	70.5	
Red Deer	1 570 316	1 646 968	4.9	401	503	25.8	
Upper North Saskatchewan	135 708	97 718	· 28.0	98	204	109.1	
Central North Saskatchewan	1 182 874	1 185 164	0.2	698	361	- 48.3	
Battle	1 170 511	1 205 376	3.0	22	176	689.1	
Lower North Saskatchewan	338 492	457 475	35.2	0	0		
Beaver	87 903	87 376	- 0.6	0	0		
Upper Athabasca	12 096	8 755	- 27.6	0	0		
Pembina and Central Athabasca	308 744	219 864	- 28.8	ő	26		
Lower Central Alhabasca	59 187	55 091	- 6.9	0	0		
Upper Peace	361 951	445 116	23.0	0	0		
Smoky	385 662	475 847	23.4	39	0	- 100.0	
Central Peace	176 552	293 194	66.1	2	0	- 100.0	
Lower Central Peace	25 885	80 681	211.7	2	18		
Missouri	148 154	160 231	8.2	0	0		
Total	8 040 210	8 729 743	8.6	6 063	7 220	19.1	
British Columbia							
Williston Lake	448	1 078	140.3	0	0		
Upper Peace	193 576	184 723	- 4.6	6	0	- 100.0	
Skeena	315	326	3.4	40	12	- 68.8	
Vancouver Island	223	167	- 25.0	247	374	- 00.0	
Nechako	761	3 269	329.7	297	574	275.0	
	679	2 114	211.5				
Upper Fraser				24	1	- 96.6	
Thompson	1 725	2 873	66.6	100	561	459.7	
Fraser	2 479	1 307	- 47.3	1 257	2 051	63.2	
Columbia	9 448	5 940	- 37.1	379	643	69.9	
Fort Nelson	0	668		0	0		
Total	209 653	202 464	- 3.4	2 055	3 648	77.5	
Canada	29 408 312	31 361 754	6.6	680 421	1 147 750	68.7	


Source: Statistics Cronida, Environment aud Wealth Accounts Oblighter, Agriculture Division.

Change in Land Area Under Close-row Monoculture by Sub-basin, 1971 to 1986

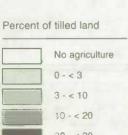
Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division. Note: Close-row monoculture is most prevalent in the prairie provinces.

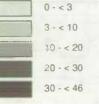
Statistics Canada



Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division. Note: Close-row monoculture is most prevalent in the prairie provinces.

Change In Land Area Under Wide-row Monoculture by Sub-basin, 1971 to 1986





126

Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division. Note: Wide-row monoculture is most prevalent in eastern Canada.

1-10

Source: Statistics Canada. Environment and Wealth Accounts Division. Agriculture Division. Note: Wide-row monoculture is most prevalent in Eastern Canada.

And and

127

Restructuring of Land and Water Systems

129

Human Activity and the Environment

3.3.4 Composition and Range of Wildlife

The zebra mussel and purple loosestrife are only two of the many non-native species that are causing difficulties for native ecosystems. Expensive efforts are underway to control these rapidly growing populations.

Changes in Species Composition

Either on purpose or incidentally, people have introduced species into natural ecosystems. Introduction of non-native species into an ecosytem can have great detrimental effects on the environment by displacing native flora and fauna. The introduced species has no natural predators and therefore is limited only by the resources available. Two such species are the zebra mussel (*Dreissena polymorpha*), a mollusc, and the purple loosestrife (*Lythrum salicaria*), a plant. Both are causing extensive damage to local ecosystems.

The Zebra Mussel

The first Canadian zebra mussel was discovered in Lake St. Clair in 1988. Free-floating mussel larvae were likely released from the ballast of a European transoceanic ship. The zebra mussel has dispersed rapidly to all five Great Lakes (Map 3.3.4.1). They attach to boat hulls, engines, fish cages, waterfowl and wildlife. Thus, the potential to spread throughout inland waters is immense.

Zebra mussels rapidly induce changes in the local aquatic ecosystem. They filter phytoplankton and other suspended material out of the water. Thus, large quantities of phytoplankton are not available for zooplankton, and subsequently, to larval fish. This could lead to declining populations of commercially valuable species such as walleye, bass, lake trout and perch. Bottom feeding species, carp, whitefish, and crayfish, could increase because of the concentration of nutrients from mussel biomass on the lake bottom. The zebra mussel reproduces rapidly and has no natural predators in its new habitat.

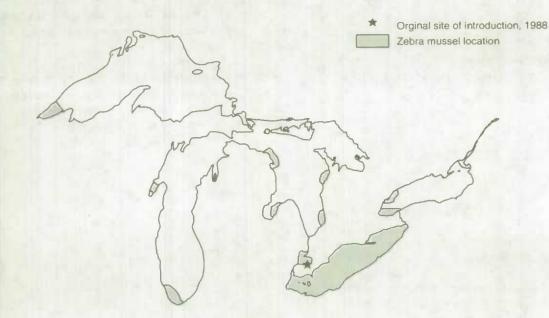
Many water-treatment plants and utilities have reported up to 50 percent reductions in pumping capability and occasional shutdowns due to zebra mussel encrustment. Millions of dollars have been spent trying to remove and control zebra mussels.

The Purple Loosestrife

The purple loosestrife is an exotic plant species from Europe that is rapidly invading wetlands across North America. It displaces native plant communities and promotes the drying of wetlands, resulting in the loss of food and shelter for waterfowl, furbearers and other aquatic wildlife. In lowland pastures, the purple loosestrife, which is not palatable to livestock, displaces existing feed crops.

This plant arrived accidentally in a ship's ballast and in livestock bedding and forage. It was also intentionally imported as seeds or rootstalks for cultivation. Since the early 1800s, the purple loosestrife has spread to all provinces in Canada (Map 3.3.4.2). Its cultivation has also been promoted by apiculturists as a honey plant and by nurseries as an ornamental plant.³³

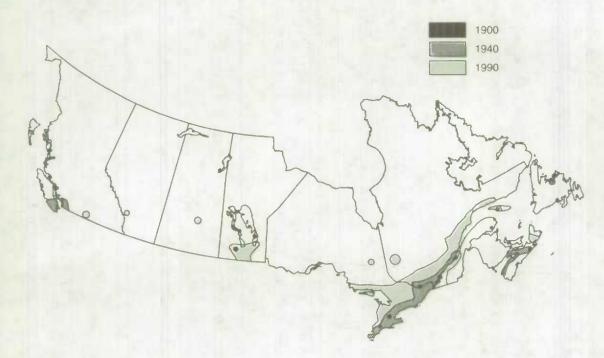
Purple loosestrife reproduces prolifically by producing millions of small seeds that are readily dispersed and by sprouting from stem and root fragments. Control efforts directed towards preventing the establishment of new populations and preventing the spread of existing ones are urgently needed.


Keddy, C. J. 1988. A review of Lythrum salicaria (purple loosestrile), ecology and management: The urgency for management in Ontario. Report prepared for the Ontario Heritage Foundation, Toronto, Ontario.

Thompson, D. Q., R. L. Stuckey and E. B. Thompson. 1987. Spread, impact and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U.S. Fish and Wildlife Service, Washington. Fish and Wildlife Research.

Human Activity and the Environment

Map: 3.3.4.1


Zebra Mussels in the Great Lakes, 1990

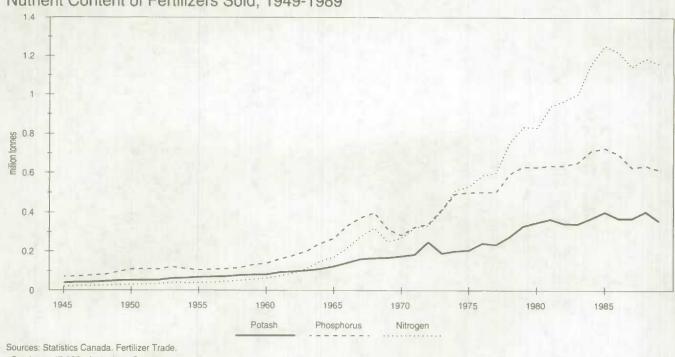
Source: Ontario Ministry of Natural Resources, Fisheries Branch.

Map: 3.3.4.2

Range of Purple Loosestrife, 1900, 1940 and 1990

Source: Keddy, C.J. 1988. Op cit. Thompson, D.Q. Op. cit.

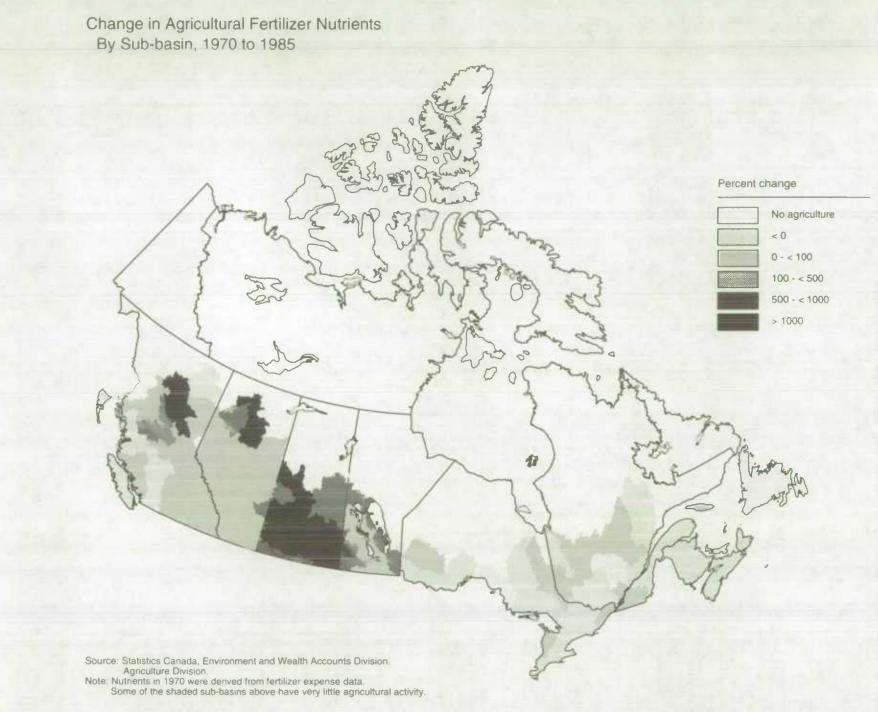
3.3.5 Soil Nutrients


In some areas of Canada, the amount of nutrients applied to agricultural land has increased thirty-fold. There is a diminishing rate of return to fertilizer application. The net effect is to damage the natural self-sustaining nutrient equilibrium of the soil for a small gain in crop yield.

In some agricultural areas, the application of fertilizer nutrients has increased by 3000 percent between 1970 and 1985. This trend indicates an increasing reliance on artificial nutrients to support agricultural activity.

The nutrient content of fertilizer has been increasing steadily as technology develops more concentrated, more easily applied fertilizer products. Fertilizer nutrient content has gone from just over 20 percent in the 1920s to over 50 percent by

Figure: 3.3.5.1



Nutrient Content of Fertilizers Sold, 1949-1989

the 1980s (Figure 3.3.5.1, Table 3.3.5.2). The largest percentage increases in nutrient application between 1970 and 1985 were in the Prairie Provinces, where fertilizers were being applied to land which previously had not been fertilized (Map 3.3.5.1).

In 1986, approximately 514 thousand tonnes of nitrogen and 264 thousand tonnes of phosphorus were generated in the form of farm animal manures (Table 3.3.5.1). A large proportion of these nutrients are also applied to the soil.

Catalogue 47-207. Agriculture Canada, Farm Policy Development Branch.

133

Map: 3.3.5.1

Human Activity and the Environment

Nitrogen and Phosphorus Content of Animal Manures Produced on Farms, 1971 - 1986

	Nitro	gen from agricultural animal manures		Phosphorus from agricultural animal manures			
Provincial Sub-basin	1971	1986	Change 1971-1986	1971	1986	Change 1971-198	
	tonnes		percent	tonnes		percen	
Newfoundland							
North Newfoundland	191.3	351.5	83.8	85.7	186.9	118.1	
South Newfoundland	816.3	744.3	- 8.8	365.2	392.8	7.5	
Total	1 007.6	1 095.8	8.8	450.9	579.7	28.6	
Prince Edward Island							
Prince Edward Island Total	5 007.4 5 007.4	4 714.7 4 714.7	- 5.8 - 5.8	2 575.0 2 575.0	2 504.3 2 504.3	- 2.1 - 2.1	
vova Scotia							
Bay of Fundy	6 145.4	6 322.1	2.9	2 897.6	3 301.9	14.0	
Southeast Atlantic Ocean	1 156.7	899.3	- 22.2	543.6	471.0	- 13.4	
Cape Breton Island	609.5	443.4	- 27.2	283.2	223.5	- 21.1	
fotal	7 911.6	7 664.8	- 3.1	3 724.4	3 996.5	7.:	
New Brunswick							
Saint John and South Bay of Fundy	3 770.1	4 051.6	7.5	1 770.6	2 096.6	18.4	
Gulf of St. Lawrence and North Bay of Fundy	2 344.3	1 981.7	- 15.5	1 102.5	1 018.0	- 7.3	
Total	6 114.4	6 033.2	- 1.3	2 873.1	3 114.6	8.4	
Quebec							
Saint John	1 595.8	980.4	- 38.6	761.0	479.7	- 37.0	
Cascapedia and Gulf of St. Lawrence	1 945.8	1 243.5	- 36.1	924.5	602.7	- 34.1	
Upper Ottawa	1 663.7	1 204.8	- 27.6	790.2	581.6	- 26.4	
Coulonge and Central Ottawa	1 735.4	1 452.5	- 16.3	823.1	700.4	- 14.9	
Gatineau and Lower Ottawa	5 208.4	3 722.0	- 28.5	2 455.1	1 807.6	- 26.4	
Upper St. Lawrence	1 944.8	1 493.6	- 23.2 - 46.3	910.6	755.8	- 17.0	
St-Maurice Central St. Lawrence	282.9 53 060.9	151.8 51 865.4	- 40.3	132.6 24 894.5	74.5 27 771.8	- 43.8 11.0	
Lower St Lawrence	31 665.1	30 562.2	- 3.5	15 392.9	16 289.0	5.4	
North Gaspé Peninsula	4 731.5	3 039.1	- 35.8	2 294.4	1 479.5	- 35.5	
Saguenay	5 506.2	3 552.0	- 35.5	2 617.5	1 740.0	- 33.9	
Betsiamites	51.5	40.2	- 21.9	24.5	19.8	- 19.3	
Manicouagan and Outardes	14.7	14.8	1.0	6.5	7.0	8.3	
Natashquan and Gulł of St. Lawrence	1.1	0.0	- 100.0	0.5	0.0	- 100.0	
Nottaway	45.0	45.6	1.3	20.6	22.1	7.0	
Abitibi and North French	106.8	117.9	10.4	51.0	57.1	11.(
Harricanaw	994.5	798.7	- 19.7	475.7	385.6	- 18.9	
Total	110 554.0	100 284.5	- 9.3	52 575.2	52 774.2	0.4	
Ontario							
Nipigon and Northwest Lake Superior	532.1	426.4	- 19.9	230.5	215.7	- 6.4	
Northeast Lake Superior	31.3	26.2	- 16.3	12.8	13.0	1.5	
North Lake Huron Wanipitai and French	1 609.9 B47.0	1 367.3 683.1	- 15.1 - 19.3	713.4 371.2	692.5 348.5	- 2.9	
East Georgian Bay	12 487.1	8 819.2	- 19.3	5 623.5	4 596.2	- 18.3	
East Lake Huron	36 977.1	32 411.6	- 12.3	16 857.1	17 487.1	3.1	
North Lake Erie	49 721.3	44 626.6	- 10.2	23 172.5	24 556.6	6.0	
Lake Ontario	29 024.6	22 296.2	- 23.2	12 745.6	11 652.6	- 8.6	
Montréal and Upper Ottawe	1 151.7	1 022.6	- 11.2	509.6	522.9	2.0	
Madawaska, Petawawa and Central Ottawa	5 529.2	4 331.4	- 21.7	2 427.1	2 202.7	- 9.2	
Rideau and Lower Ottawa	11 565.5	8 862.5	- 23.4	5 062.1	4 563.8	- 9.8	
Upper St. Lawrence	4 802.7	3 478.8	- 27.6	2 075.0	1 787.5	- 13.9	
Moose	157.6	128.7	- 18.4	68.4	65.9	- 3.1	
Abitibi	256.3	228.0	- 11.0	112.4	116.0	3.2	
Upper Winnipeg	789.8	700.2	- 11.3	345.5	354.8	2.0	
English Total	113.7 155 596.8	121.9 129 530.7	7.2 - 16.8	50.6 70 377.4	65.7 69 241.3	29.9	
Manitoba			and the firmed				
Saskatchewan	13 996.5	13 333.0	- 4.7	8 941.7	6 581.2	- 5.2	
Lake Winnipegosis and Lake Manitoba	11 288.6	9 792.1	- 13.3	5 627.2	4 955.6	- 11.9	
Assiniboine	4 685.2	3 798.3	- 18.9	2 309.0	1 879.3	- 18.0	
Souris	16 715.7	15 717.9	- 6.0	8 351.4	8 468.3	-1.4	
Red	627.0	- 610.8	- 2.6	300.1	331.0	10.:	
Winnipeg	2 781.1	2 547.0	- 8.4	1 369.2	1 305.0	- 4.7	
Total	50 094.1	45 799.3	- 8.6	24 898.5	23 520.5	- 5.5	

Soil Nutrients

Nitrogen and Phosphorus Content of Animal Manures Produced on Farms, 1971 - 1986

		ogen from agricultural animal manures		Phosphorus from agricultural animal manures			
Provincial Sub-basin	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986	
	tonnes		percent	tonnes		percen	
Saskatchewan							
Upper South Saskatchewan	133.5	28.5	- 78.7	64.3	13.5	- 78.9	
Central North Saskatchewan	5 165.1	3 939.7	- 23.7	2 504.7	1 907.6	- 23.8	
Battle	1 542.1	893.3	- 42.1	748.3	432.6	- 42.2	
Lower North Saskatchewan	11 931.1	8 399.0	- 92.1	5 859.6	4 136.7	- 92.4	
Lower South Saskatchewan	15 703.1	12 682.6	- 19.2	7 700.1	6 270.5	- 18.6	
Qu'Appelle	19 689.3	13 503.5	- 19.2	9 559.3	6 557.2	- 31.4	
Saskatchewan	4 425.2	2 371.9	- 46.4	2 315.4	1 221.0	- 47.3	
Lake Winnipegoals and Lake Manitoba	2 468.1	2 149.3	- 12.9	1 217.0	1 049.6	- 47.3	
Assiniboine	9 488.8	6 448.0	- 32.0	4 584.7	3 170.8	- 30.6	
Souris	10 238.6	6 692.5	- 34.6	4 967.4	3 203.5	- 35.5	
Beaver	3 014.7	3 018.1	0,1	1 455.4	1 449.4	- 0.4	
Upper Churchill	3.6	3.2	- 11.3	1.7	1.6	- 3.5	
Missouri	5 575.9	3 911.9	- 29.8	2 670.0	1 870.1	- 30.0	
Total	89 379.0	64 041.6	- 28.3	43 647.9	31 284.1	- 28.3	
Alberta							
Upper South Saskatchewan	22 500.6	22 080.1	- 1.9	11 125.5	11 108.4	- 0.2	
Bow	11 866.9	9 090.0	- 23.4	5 786.1	4 438.9	- 23.3	
Red Deer	30 360.3	30 054.8	- 1.0	15 117.5	15 113.4	0.0	
Upper North Saskatchewan	5 246.2	5 920.4	12.8	2 614.4	2 896.5	10.6	
Central North Saskatchewan	18 703.6	15 869.5	- 15.2	9 401.6	7 985.6	+ 15.1	
Battle	17 363.6	16 283.2	- 6.2	8 706.3	8 148.1	- 6.4	
Lower North Saskatchewan	4 251.8	4 471.0	5.2	2 075.0	2 199.1	6.0	
Lower South Saskatchewan	98.2	67.6	- 31.2	47.6	32.6	- 31.5	
Beaver	2 592.6	3 058.0	16.0	1 306.4	1 521.4	16.5	
Upper Athabasca	722.2	997.1	38.1	361.4	481.2	- 33.1	
Pembina and Central Athabasca	7 471.1	10 100.6	35.2	3 812.7	5 050.1	32.5	
Lower Central Athabasca	1 034.4	1 255.9	21.4	516.8	815.1	19.0	
Upper Peace	1 442.9	1 555.2	7.8	735.1	757.5	3.1	
Smoky	2 484.5	2 663.6	7.2	1 262.5	1 306.1	3.5	
Central Peace	822.6	759.6	- 7.7	427.6	373.0	- 12.6	
Lower Central Peace	190.6	165.5	- 13.2	99.8	80.3	- 19.6	
Missouri	1 998.6	1 564.0	.21.7	975.0	777.5	- 20.3	
Total	129 150.7	125 956.0	- 2.5	64 371.3	62 884.6	- 2.3	
British Columbia							
Williston Lake	19.5	48.3	148.4	8.9	22.3	149.8	
Upper Peace	1 279.3	2 722.6	112.8	611.1	1 284.7	110.2	
Skeena	571.7	523.2	- 8.5	270.7	248.0	- 8.4	
Gardner Canal and Central Pacific Ocean	134.1	120.2	- 10.4	62.7	56.1	- 10.5	
Knight Inlet and South Pacific Ocean	135.6	146.7	8.2	63.0	68.6	8.8	
Vancouver Island	1 420.0	1 749.6	23.2	643.2	884.5	37.5	
Nechako	728.1	1 232.7	69.3	345.5	584.1	69.0	
Upper Fraser	1 186.9	1 431.2	20.6	561.0	677.6	20.6	
Thompson	4 716.3	5 021.9	6.5	2 252.5	2 412.3	7.1	
Fraser	11 199.7	11 531.0	3.0	4 924.4	5 870.7	19.2	
Columbia	3 827.5	3 830.3	0.1	1 819.4	1 830.8	0.6	
Total	25 218.6	28 357.6	12.4	11 562.2	13 939.6	20.6	
Canada	580 034.0	513 478.4	- 11.5	277 056.0	263 839.3	- 4.8	

Source: Statistics Canada. Environment and Wealth Accounts Division. Agriculture Division.

Note: Nutrient lonnages were derived from livestock population data.

Nitrogen and Phosphorus Content of Commercial Fertilizer Applied on Farmland, 1970 and 1985

-					
1971	1986	Change 1971-1986	1971	1986	Change 1971-198
tonnes		percent	tonnes		percen
75	83	10.96	107	89	- 16.76
140	170	21.96		181	- 9.58
214	253	18.13	308	270	- 12.08
3 342 3 342					51.34 51.34
2 115	3.886	83.77	2 858	3 202	15.2
					6.6
					41.5
2 455	4 540	84.91	3 318	3 846	15.9
2 332	5.003	114.54	2 605	E 045	39.96
					78.17
2 782	6 232	124.01	4 300	6 284	46.14
	· · · · · · · · · · · · · · · · · · ·		·		
140	436	212 46	246	386	55.9
					81.65
					160.76
					103.59
					103.94
					319.8
					- 2.5
10 305	51 629	401.03	18 293	45 733	150.01
3 656	11 533	215.47	6 490	10 216	57.42
674	2 0 9 8	211.20	1 197	1 658	55.29
402	2 004	398.97	713	1 775	148.98
					66.00
					69.60
					140.14
					198.95
					106.13
16 779	76 156	353.86	29 787	67 457	126.40
309	438	41.86	178	281	57.52
44	19	- 56.42	26	12	- 51.60
487	630	29.33	281	403	43.65
	439			281	47.01
					51.82
					88.77
					47.71
100			000		88.43
					153.50
					81.75
					124.78
126		5.88	72		17.60
89	145	63.67	51	93	81.79
234	321	36.90	135	205	52.05
45	98	119.18	26	62	143.45
132 917	191 867	44.35	76 629	122 859	60.33
92	869	841.93	87	390	346.35
		643.47			252.31
					422.56
1 827	19 122	946.85	1 729	8 579	396.07
	00 000	000 00	44.000	40.00.00	
12 523	95 281	660.85	11 856	42 745	280.54
12 523 127 1 032	95 281 1 472 8 781	660.85 1 057.02 750.97	11 856 120 977	42 745 681 3 939	280.54 448.03 302.06
	agr 1971 tonnes 75 140 214 3 342 3 342 3 342 2 115 207 134 2 332 450 2 782 140 219 91 303 543 439 80 10 305 3 656 674 402 3 35 3656 674 402 3 35 343 35 443 33 16 779 309 44 33 16 779 309 44 33 16 779 309 44 33 16 779 309 <td>tonnes 75 83 140 170 214 253 3 342 7 763 3 342 7 763 2 115 3 886 207 351 134 303. 2 455 4 540 2 32 5 003 450 1 229 2 782 6 232 140 436 219 796 91 476 130 532 543 2 219 439 3 691 80 157 10 305 51 629 3 666 11 533 674 2 098 402 2 004 3 16 5 30 44 19 467 630 332 439 309 438 44 19 467 630 332 439 <</td> <td>Change 1971 Change 1971-1986 Lonnes percent 75 83 10.96 140 170 21.96 214 25.3 18.13 3.342 7.763 132.30 2.115 3.866 63.77 2.07 351 70.10 134 303. 125.84 2.455 4.540 84.81 2.322 5.003 114.54 2.322 5.003 114.54 2.322 5.003 114.54 2.322 5.003 114.54 2.332 5.003 114.54 2.332 5.003 114.54 3.00 5.22 124.01 2.455 4.540 84.91 130 5.32 208.00 310 5.32 208.07 30 5.152 401.03 3.651 140 2.09 2.12.0 440 5.0 2.24.81 <td>agroultural tentilizer Change 1971 1986 Change 1971 1971 Onnes tonnes percent tonnes 75 83 0.96 1071 140 170 21.96 200 214 253 18.13 308 3 342 7.763 132.30 6 320 2 115 3 886 63.77 2 856 207 351 70.10 2.79 134 303. 125.84 1318 2 455 4 540 8491 3 318 2 455 4 540 1229 173.10 450 1229 173.10 696 2 782 6 232 124.01 4 300 140 436 212.46 246 2 19 796 264.03 388 91 476 422.58 164 129 796 264.03 388 91 76 95.34 143 10 305 51 629</td><td>agroutural tertitizer Change agroutural tertitizer 1971 1966 1971 1971 1966 tonnes percent tonnes tonnes 75 83 10.96 1077 89 140 170 21.96 2000 181 214 223 6.320 9.965 270 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.856 3.292 2.215 3.846 84.91 3.181 3.866 2.207 3.342 7.763 132.20 6.320 9.965 2.415 3.866 84.97 2.868 3.292 2.207 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.868 3.292 206 124 4.303 114.54 3.965 5.045 2.32 5.003 114.54 3.965 5.045 2.3</td></td>	tonnes 75 83 140 170 214 253 3 342 7 763 3 342 7 763 2 115 3 886 207 351 134 303. 2 455 4 540 2 32 5 003 450 1 229 2 782 6 232 140 436 219 796 91 476 130 532 543 2 219 439 3 691 80 157 10 305 51 629 3 666 11 533 674 2 098 402 2 004 3 16 5 30 44 19 467 630 332 439 309 438 44 19 467 630 332 439 <	Change 1971 Change 1971-1986 Lonnes percent 75 83 10.96 140 170 21.96 214 25.3 18.13 3.342 7.763 132.30 2.115 3.866 63.77 2.07 351 70.10 134 303. 125.84 2.455 4.540 84.81 2.322 5.003 114.54 2.322 5.003 114.54 2.322 5.003 114.54 2.322 5.003 114.54 2.332 5.003 114.54 2.332 5.003 114.54 3.00 5.22 124.01 2.455 4.540 84.91 130 5.32 208.00 310 5.32 208.07 30 5.152 401.03 3.651 140 2.09 2.12.0 440 5.0 2.24.81 <td>agroultural tentilizer Change 1971 1986 Change 1971 1971 Onnes tonnes percent tonnes 75 83 0.96 1071 140 170 21.96 200 214 253 18.13 308 3 342 7.763 132.30 6 320 2 115 3 886 63.77 2 856 207 351 70.10 2.79 134 303. 125.84 1318 2 455 4 540 8491 3 318 2 455 4 540 1229 173.10 450 1229 173.10 696 2 782 6 232 124.01 4 300 140 436 212.46 246 2 19 796 264.03 388 91 476 422.58 164 129 796 264.03 388 91 76 95.34 143 10 305 51 629</td> <td>agroutural tertitizer Change agroutural tertitizer 1971 1966 1971 1971 1966 tonnes percent tonnes tonnes 75 83 10.96 1077 89 140 170 21.96 2000 181 214 223 6.320 9.965 270 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.856 3.292 2.215 3.846 84.91 3.181 3.866 2.207 3.342 7.763 132.20 6.320 9.965 2.415 3.866 84.97 2.868 3.292 2.207 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.868 3.292 206 124 4.303 114.54 3.965 5.045 2.32 5.003 114.54 3.965 5.045 2.3</td>	agroultural tentilizer Change 1971 1986 Change 1971 1971 Onnes tonnes percent tonnes 75 83 0.96 1071 140 170 21.96 200 214 253 18.13 308 3 342 7.763 132.30 6 320 2 115 3 886 63.77 2 856 207 351 70.10 2.79 134 303. 125.84 1318 2 455 4 540 8491 3 318 2 455 4 540 1229 173.10 450 1229 173.10 696 2 782 6 232 124.01 4 300 140 436 212.46 246 2 19 796 264.03 388 91 476 422.58 164 129 796 264.03 388 91 76 95.34 143 10 305 51 629	agroutural tertitizer Change agroutural tertitizer 1971 1966 1971 1971 1966 tonnes percent tonnes tonnes 75 83 10.96 1077 89 140 170 21.96 2000 181 214 223 6.320 9.965 270 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.856 3.292 2.215 3.846 84.91 3.181 3.866 2.207 3.342 7.763 132.20 6.320 9.965 2.415 3.866 84.97 2.868 3.292 2.207 3.342 7.763 132.20 6.320 9.965 2.115 3.866 83.77 2.868 3.292 206 124 4.303 114.54 3.965 5.045 2.32 5.003 114.54 3.965 5.045 2.3

Nitrogen and Phosphorus Content of Commercial Fertilizer Applied on Farmland, 1970 and 1985

	-	en from commercial ricultural fertilizer		Phosphorus from commercial agricultural fertilizer			
			Change			Change	
Provincial Sub-basin	1971	1986	1971-1986	1971	1986	1971-1986	
	tonnes		percent	tonnes		percent	
Saskatchewan							
Upper South Saskatchewan	14	89	559.56	28	56	102.58	
Central North Saskatchewan	1 026	20 31 1	1 879.44	2 085	12 674	507.97	
Battle	523	7 050	1 246.80	1 064	4 399	313.66	
Lower North Saskatchewan	1 796	44 021	2 350.84	3 649	27 470	652.76	
Lower South Saskatchewan	1 453	42 556	2 828.92	2 952	26 557	799.60	
Qu'Appelle	1 371	50 647	3 595.13	2 785	31 606	1 034.94	
Saskatchewan	2 664	38 502	1 345.36	5 412	24 027	343.93	
Lake Winnipegosis and Lake Manitoba	824	16 241	1 870.83	1 674	10 135	505.33	
Assiniboine	1 531	45 459	2 869.00	3 111	28 368	811.91	
Souns	592	16 979	2 766.90	1 203	10 595	780.55	
Beaver	411	9 800	2 285.97	835	6 116	632.84	
Missouri	93	1 627	1 644.40	189	1 015	435.78	
Total	12 298	293 282	2 284.77	24 987	183 018	632.47	
Alberta					_		
Upper South Saskatchewan	8 935	51 136	472.33	7 066	25 197	256.60	
Bow	5 722	22 804	298.51	4 525	11 236	148.30	
Red Deer	13 397	67 045	400.44	10 595	33 035	211.81	
Upper North Saskalchewan	1 936	8 171	321.97	1 531	4 026	162.92	
Central North Saskatchewan	7 988	51 927	550.09	6 317	25 586	305.05	
Battle	6 375	50 758	696.19	5 042	25 010	396.08	
Lower North Saskatchewan	534	8 136	1 422.46	423	4 009	848.60	
Lower South Saskatchewan	1	62	6 621.85	1	40	4 088.19	
Beaver	505	4 197	730.92	399	2 068	417.72	
Upper Athabasca	190	1 281	575.06	150	631	320.61	
Pembina and Central Athabasca	2 644	15 400	482.56	2 091	7 588	262.98	
Lower Central Athabasca	2 126	2 552	20.05	1 681	1 257	- 25.21	
Upper Peace	2 559	13 923	444.04	2 024	6 860	238.97	
Smoky	664	18 259	2 649.15	525	8 997	1 612.92	
Central Peace	0	8 593		0	4 234		
Lower Central Peace	48	1 526	3 075.79	38	752	1 878.74	
Missour	258	2 187	748.10	204	1 077	428.43	
Total	53 882	327 978	508.69	42 611	161 606	279.26	
British Columbia							
Williston Lake	0	58		0	30		
Upper Peace	933	5 557	495.64	816	2 836	247.70	
Skeena	92	314	242.15	80	160	99.73	
Gardner Canal and Central Pacific Ocean	6	14	127.76	5	7	32.95	
Knight inlet and South Pacific Ocean	10	61	530.31	8	31	267.93	
Vancouver Island	793	1 770	123.17	693	903	30.27	
Nechako	96	1 061	1 003.40	84	541	544.09	
Upper Fraser	191	972	408.33	167	496	196.73	
Thompson	409	1 673	309.30	357	854	1 38.92	
Fraser	3 399	7 468	119.74	2 972	3 812	28.27	
Columbia	1 292	3 279	153.67	1 130	1 662	47.08	
Total	7 221	22 225	207.80	8 314	11 333	79.49	
Canada	258 560	1 155 178	346.77	219 821	667 126	203.49	

Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division. Notes:

Nutrient tonnages for 1971 were derived from lertilizer expense data. Figures may not add to totals due to rounding.

3.4 Wastes and Recycling

In the past, the population and its associated industrial activities were sparse so that municipal garbage, industrial wastes, and mine tailings did not constitute major problems. Over the years, the amount, concentration and composition of wastes have changed so that in most populated areas, the disposal of waste is a major problem. Now, cities such as Toronto are seeking innovative means of disposing of growing mountains of garbage.

000

In natural ecosystems, most materials are recycled. The complex web of producers, consumers and detritus feeders assure that organic materials are converted back to their original form. Modern human societies produce materials which cannot be easily converted — what is not consumed becomes trash.

Until the 1960s, most municipal waste was discarded in open dumps and burned. Many municipalities, in reaction to complaints of air pollution and vermin associated with these dumps, began burying trash underground and covering it with earth. This was known as "sanitary landfill". When a site was filled with trash and covered over, it would then be used for parks or buildings.

Along with the relatively innocuous household wastes of paper, glass and food scraps, municipal wastes also contain pesticides, solvents, paints, petroleum and other toxic compounds. These compounds can easily leach into the groundwater and render it unfit for drinking. Another consequence of sanitary landfill is the generation of methane gas from the decomposition of organic wastes. The gas is dangerous to breathe and flammable.

To deal with mounting volumes of waste, reducing waste, reusing materials and recycling have been proposed as principles for households and businesses. Paper can be repulped and made into new paper, cardboard and other products such as paper towels and cellulose insulation. Glass can be crushed, remelted and made into new containers and construction materials. Metals can also be remelted and reused. Textiles can be shredded and processed into new textile products.

Despite the apparent virtues of recycling, the cost of recycling is usually higher than disposing the materials. Separating materials is expensive and the market for recycled products is limited. Recycled paper is of lower quality but more expensive than virgin paper.

Thirty years ago many containers were returnable and few items were packaged in plastic. Since that time, it has been considered more sanitary and simpler to distribute beverages and milk in non-returnable glass, plastic or paper containers. These containers, together with other packaging, now constitute a large portion of municipal wastes. Returning to reusable containers would reduce the amount of municipal waste and litter.

Composting also reduces the amount of waste treated at the municipal level. Furthermore, by composting food wastes, leaves and lawn clippings, the nutrients are returned to the soil. This has also been proposed³⁴ as a means for reusing the sludge generated by sewage treatment plants.

There are no recent national-level data on the generation and disposal of wastes. Statistics Canada is conducting surveys of municipalities and waste management firms to better determine the quantity, composition and disposal methods of wastes. As well, these surveys will provide much-needed information on recycling activities of municipalities and industries.

The federal government is committed to reducing its own 1988 level of solid wastes output by 50 percent by the year 2000. Many ways of doing this are being explored. Largescale recycling programmes for fine paper are now in place in many departments. Other recycling programmes may be considered. Purchasing practices will be reviewed to ensure that goods using excessive packaging are no longer purchased.

34. Nebel, Bernard, J. 1987. Environmental Science, Second Edition. Prentice-Hall. Englewood Cliffs, New Jersey.

3.4.1 Recycling

Thirty one percent of Canadian households seek out recycled paper products when shopping. Ten percent use special disposal depots for household chemicals and wastes. Twenty one percent reported regularly taking their own shopping bag to the grocery store.

Household Activities

The 1990 Statistics Canada Survey of Households and the Environment posed questions on the use of recycled paper products, the use of facilities for recycling used household chemicals, and the use of recycled and plastic shopping bags.

Thirty one percent of households responded that they sought out recycled paper products at the grocery store. The provincial rates varied from 18.7 percent in Quebec to 40.2 percent in Ontario. Across Canada, 10 percent of households reported they used special disposal depots for households chemicals or paints. If disposed in general purpose landfills, such chemicals could contaminate land or groundwater.

Reusing shopping bags and other containers reduces resource consumption and reduces one source of household waste. According to the survey, 21 percent of households regularly bring their own bags to the store.

Table: 3.4.1.1

Household Recycling Activities by Province, 1990

				Percentage of hou	seholds which1:		
	Estimated number of	Buy recycled paper towels etc		Use disposal for household ch		Take own bag to store	
Province / Region	households	yes	no	yes	no	yes	no
	thousands			perce	ent		
Atlantic Provinces							
Newfoundland	173.4	23.0	62.0				
Prince Edward Island	45.0	33.6	55.3			11.6	88.4
Nova Scotia	318.0	38.5	47.5			14.7	84.9
New Brunswick	246.8	35.0	53.6			16.4	82.9
Total	782.9	33.7	53.2	2.4	96.1	12.5	87.1
Quebec	2 534.1	18.7	71.7	7.5	90.5	20.6	79.0
Ontario	3 479.5	40.2	46.0	9.7	86.1	22.6	74.6
Prairie Provinces							
Manitoba	387.9	28.3	60.1	7.8	89.4	15.0	84.8
Saskatchewan	358.4	30.3	58.5	9.5	87.7	10.1	89.4
Alberta	868.8	28.8	60.4	25.5	72.5	15.6	83.9
Total	1 614.7	28.9	60.0	17.8	79.9	14.4	85.2
British Columbia	1 213.6	32.0	58.0	10.9	86.8	29.7	67.9
Canada	9 625.5	31.1	57.2	10.0	87.1	20.8	77.7

Source

Statistics Canada. Environment and Wealth Accounts Division.

Note:

¹ Totals do not add to 100 percent because of non-response.

4. Environment

It is necessary for us to understand the ecological principles and the environmental implications of various actions if we are to make rational value decisions.

Bernard J. Nebel. Op. cit..

Within the past two centuries, the impacts of human activities have grown from occasional localized problems to the point where human-made pollutants are found at the depths of the oceans and in the ice of the Antarctic. The result of economic development and population growth has been to change the quality of the land, air, water and the health of plants, animals and people.

Agricultural activities can remove the natural land cover, alter the nutrient content and hydrology of the soil, promote erosion and introduce substances such as fertilizers and pesticides. In high concentrations, these substances are toxic to wildlife and people.

Industries power plants and motor vehicles generate air and water pollutants and solid wastes. These pollutants sometimes reach concentrations toxic to humans and wildlife.

Natural areas on land are physically altered by agriculture, urbanization, forestry, transportation networks, pipelines and mining activities. Together with increased contaminants, harvesting, and the introduction of exotic species, these factors have contributed to the extinction and loss of habitat for uncountable animal and plant species.

A major part of Canada's economy is sustained by its wealth of natural resources. Mining and petroleum production extract non-renewable resources. Agriculture, forestry, fisheries, hunting and trapping activities harvest renewable resources. The sustainability of these extraction and harvesting rates are currently the subject of analysis.

Over the past three decades there has been considerable progress in understanding and measuring these impacts. Protecting the environment through changing attitudes, legislation and improved technology has become accepted as essential to maintaining a sustainable economy. This section provides statistics on environmental conditions, natural processes, and extraction of resources and services.

4.1 Environmental Conditions

Monitoring the state of the air, water, land and living organisms contributes to our understanding of the ways in which human activities are altering natural ecosystems.

000

Monitoring the quality of the environment is an integral part of understanding the impacts of human activities. Changes in human activities are often initiated by perceived changes in quality of the air, water, land or living resources. In the late 1950s and early 1960s investigations into the reproductive failure and eggshell thinning of birds led to the discovery of the dangers of DDT and a consequent ban of the pesticide in Canada in 1970 and in the United States in 1972. The peregrine falcon populations, once near extinction as a result of exposure to DDT, are recovering in some regions.

Since the early 1960s incidents such as this have led to the creation of large-scale programs for monitoring contaminants in the air, water, wildlife and food. Research into changing lake and forest ecosystems in the late 1970s led to the understanding of the sources and effects of acid rain. Legislation was enacted to reduce emissions and subsequently emissions and ambient levels decreased.

Contaminants are not the only priority for monitoring. Statistics on land use, the quality of soils, resource exploitation, habitats and fish and wildlife quality contribute to understanding the ways in which human activities are altering natural systems.

4.1.1 Air Quality

Emissions and levels of sulphur dioxide have decreased within the past 10 years. The levels of nitrogen dioxide, carbon monoxide and particulates exceed maximum acceptable levels in some cities.

Not all contaminants emitted into the air alter the quality of the ambient air. Climatic, chemical and physical factors confound the relationship between emissions and air quality. Emissions, for example, may be transported to regions distant from the original source. This section focuses on the ambient air quality.

Air quality standards set objectives for the protection of human health and the environment. The three levels of quality used by Environment Canada are:

- maximum desirable level defines the long-term goal for air quality and provides a basis for an antidegradation policy for the unpolluted parts of the country;
- maximum acceptable level is intended to provide adequate protection against adverse effects on soil, water, vegetation, materials, animals, visibility, personal comfort and human health;
- maximum tolerable level denotes concentrations of air contaminants where action is required to protect the health of the general population.

Table 4.1.1.1 illustrates the air quality standards for pollutants and their effects.

Air quality in the 11 selected urban centres is usually good. For sulphur dioxide, nitrogen dioxide, and carbon monoxide, average concentrations are below the maximum desirable level. Maximum readings for these pollutants peak in the fair range (Figures 4.1.1.1 through 4.1.1.6 and Table 4.1.1.2).

One pollutant that is being more carefully monitored in recent years is ozone. Ozone (O_3) is formed as a result of a series of photochemical reactions in the air that are energized by temperature and sunlight in a stagnant air mass. Ozone levels in the fair range cause injury to some species of vegetation. Ozone levels in the poor range decrease the performance of people exercising heavily. All eleven cities for which readings are available have five-year composite average 1 hour readings in the fair range. Maximum readings extended into the poor range (Figure 4.1.1.6). Montreal and Toronto have measurements that peaked over the maximum tolerable level. This level affects some people with chronic pulmonary disease.

Total suspended particulates **(TSP)** is the most easily perceived form of air pollution. This pollutant reduces visibility, soils materials, and irritates the respiratory tract. All but one city, Hamilton, have averages in the good range. Hamilton's average reading is above the maximum tolerable level. This causes increased sensitivity in people with asthma and bronchitis.

Table: 4.1.1.1

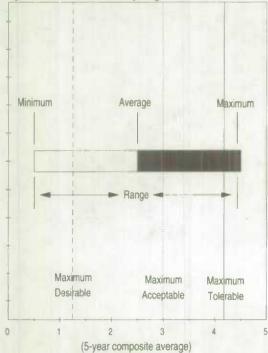
Pollutants and their Effects

Air Quality Standards		Carbon Monoxide (1 hr. 8 hr)	Nitrogen Dioxide (1 hr)	Ozone (1 hr)	Sulphur Dioxide (1 hr, 24 hr)	Suspended Particulates (24 hr)
(very poor range)	{	increasing cardiovascular symptoms in non-smokers with heart disease, some visual impairment	increasing sensitivity of people with asthma and bronchitis	light exercise produces effect in some people with chronic pulmonary disease	increasing sensitivity of people with asthma and bronchitis	increasing sensitivity of people with asthma and bronchitis
Maximum Tolerable						
		increasing cardiovaScular	odour and atmospheric	decreasing performance	odorous, increasing	visibility decrease,
(poor range)	ĺ	symptoms in smokers with heart disease	discoloration, increasing bronchial reactivity in asthmatics	by some people exercising heavily	vegetation damage and sensitivity	soiling evident
Maximum Acceptable						
	ſ	no detectable	odorous	increasing injury to	increasing injury to	decreasing visibility
(fair range)	{	impairment but blood chemistry changing		some species of vegetation	some species of vegetation	
Maximum Desirable (good range)	{	no effect	no effect	no effect	no effect	no effect

Source:

Environment Canada, Regulatory Affairs and Program Integration Branch, Environmental Protection. 1990. National Urban Air Quality Trends, 1978 to 1987. May 1990.


Urban Air Quality for Selected Pollutants, 1985-1989


	Su	annual)	ide	Ca	rbon Mono (8 hour)	oxide	Ni	trogen Diox (annual)	ide		Ozone (1 hour)		Suspe	Suspended Particulates (annual)	
City	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum	average	minimum	maximum
	pa	arts per billi	ion	р	arts per mil	lion	p	arts per billi	on	рі	arts per biili	on	microgra	ams per cul	bic meter
Halifax	10.0	5.0	14.0	3.6	2.0	7.0	6.0	5.0	7.0	62.0	50.0	80.0	24.0	13.0	35.0
Québec	3.6	1.0	6.0	3.7	2.0	5.0	24.1	12.0	38.0	63.0	40.0	110.0	42.8	32.0	55.0
Montréal	6.6	1.0	18.0	3.6	2.0	8.0	27.0	15.0	39.0	84.6	40.0	170.0	42.2	25.0	60.0
Ottawa	5.0	3.0	7.0	3.2	2.0	4.0	21.2	16.0	31.0	75.0	50.0	120.0	31.0	27.0	36.0
Toronto	4.9	1.0	10.0	4.3	2.0	13.0	26.4	18.0	33.0	93.0	40.0	130.0	56.4	47.0	74.0
Hamilton	10.1	7.0	14.0	2.5	2.0	4.0	23.2	22.0	25.0	57.5	30.0	90.0	76.2	61.0	95.0
Winnipeg	1.4	1.0	2.0	2.4	2.0	3.0	16.7	13.0	20.0	69.0	60.0	80.0	41.2	27.0	56.0
Regina	1.0	1.0	1.0	3.8	3.0	4.0	21.5	19.0	23.0	50.0	30.0	60.0	35.6	24.0	53.0
Edmonton	2.5	2.0	3.0	4.7	2.0	7.0	24.6	20.0	31.0	67.0	60.0	80.0	51.0	39.0	84.0
Calgary	3.8	2.0	5.0	5.2	3.0	9.0	27.0	17.0	36.0	64.0	50.0	70.0	61.5	34.0	85.0
Vancouver	5.9	4.0	8.0	5.3	3.0	9.0	25.5	22.0	32.0	62.5	30.0	120.0	39.8	26.0	75.0
Maximum desirable			11.0			5.0			32.0			50.0			60.0
Maximum acceptable			23.0			13.0			53.0			82.0			70.0
Maximum tolerable						17.0						153.0			

Source:

Environment Canada, Regulatory Affairs and Program Integration Branch, Environmental Protection.

Figure: 4.1.1.1

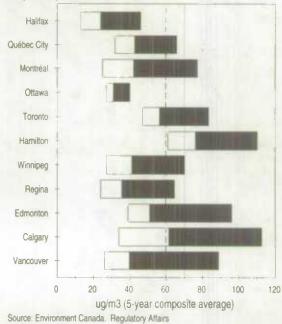
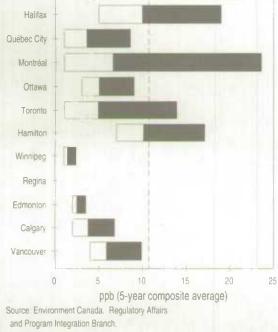


Figure: 4.1.1.2

Urban Air Quality, 1985-1989


Suspended particulates (annual)

and Program Integration Branch.

Air Quality

Figure: 4.1.1.5

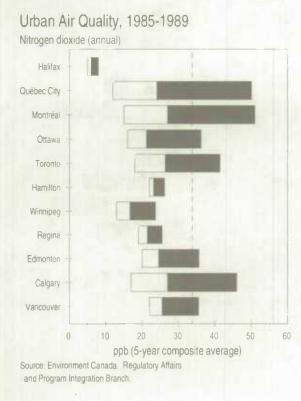
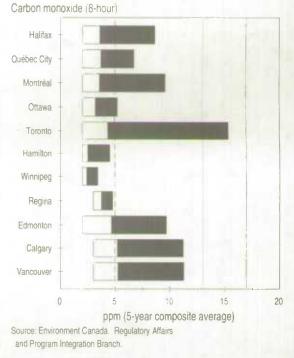
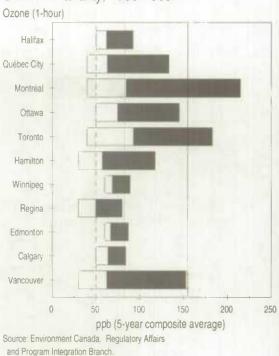




Figure: 4.1.1.4

Urban Air Quality, 1985-1989

Figure: 4.1.1.6

Urban Air Quality, 1985-1989

4.1.2 Water Quality

Much of the current concern with regard to environmental quality is focused on water because water is essential to the maintenance of human health and the health of the ecosystem.

Fresh Water Quality

All water contains many naturally occurring substances, however the disposal of wastes generated by human activities has introduced many physical, chemical, biological and synthetic compounds into our water supplies³⁵. For example, over 360 chemical compounds have been identified in the Great Lakes alone³⁶. Many of these substances are dangerous to human health and are contributing to the destruction of the aquatic ecosystems of the Great Lakes.

Water bodies have provided mankind with a convenient means of disposal for urban and industrial wastes. Establishments such as municipal sewage treatment facilities introduce BOD and TSS loadings³⁷ into the water system which contribute to the excess growth of algae in rivers and lakes. This process, known as eutrophication³⁸, results in the depletion of dissolved oxygen required for the survival of aquatic life.

Phosphorus discharges increased between 1983 (the base year) and 1989 while TSS discharges declined (Figure 4.1.2.1). Over this same period the proportion of sewage treatment facilities discharging to fresh water bodies increased from 66 percent in 1983 to 73 percent in 1989³⁹.

Pulp and paper mills also introduce chlorinated organic compounds into aquatic systems, but these discharges are not monitored on a regular basis⁴⁰. TSS and BOD discharges

from pulp and paper mills decreased by 67 percent and 50 percent, respectively, between 1970 and 1987, while over the same period, production increased by 47 percent (Figure 4.1.2.2).

The qualities of groundwater differ from those of surface water in two ways. Groundwater is almost free of suspended sediments (due to filtering through rocks and soil) and it has minimal bacterial activity (a result of the absence of organic matter and dissolved oxygen). Also, because of its inaccessibility, groundwater is protected more than surface water from pollutants. However, once polluted, groundwater contamination may go undetected until surface water is affected.

Marine Water Quality

Although the oceans have a tremendous capacity to dilute and neutralize wastes discharged into them, pollution in coastal zones can reach harmful levels. Along both the Pacific and Atlantic coasts effluents from pulp and paper mills and municipalities are contributing to the increasing pollution of our coastal zones.

BOD and TSS loadings increased on the Pacific coast (Figure 4.1.2.3) between 1983 and 1989 owing to increasing population and industrial activity. The BOD loadings for the Atlantic along with the TSS loadings for both coasts remained constant during this period. For pulp and paper mills, the BOD and TSS loadings declined from 1970 to 1987, a time when production rose (Figure 4.1.2.4). This decline can be linked to the installation and use of primary treatment systems.

^{35.} Environment Canada. 1985. Currents of Change - Final Report Inquiry on Federal Water Policy. P.H. Pearse, F. Bertrand and J.W. MacLaren.

Environment Canada. 1990. Clean Water - Life Depends on It! Fact Sheet No. 3.

^{37.} Biochemical oxygen demand (BOD) is caused by organic decomposition resulting in oxygen depletion in water while total suspended solids (TSS) includes suspended particles of non-biodegradable materials, sand, grit and fecal matter. The latter substance can result in fecal bacteria confamination.

^{38.} Eutrophication is caused by increased levels of phosphorus and nitrogen in the water body which, along with light availability and water flow rate factors, can produce excessive algal growth.

Environment Canada. 1991. A Report on Canada's Progress Towards a National Set of Environmental Indicators. The Indicators Task Force, SOE Report No. 91-1.

^{40.} Ibid.

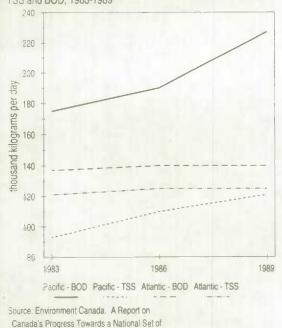
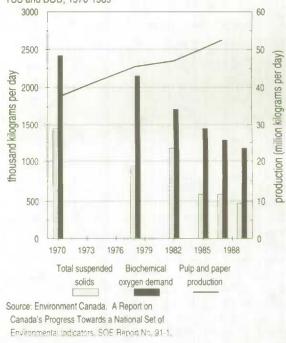
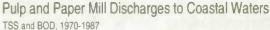

Water Quality

Figure: 4.1.2.1

Municipal Discharges to Fresh Water, BOS. TSS and Phosphorus, 1983-1989 110 :08 106 Index: 1983=100 104 102 100 98 96 1986 1989 1983 Biochemical oxygen Total suspended Phosphorus demand particulates Source: Environment Canada. A Report on Canada's Progress Towards a National Set of Environmental indicators, SOE Report No. 91-1

Figure: 4.1.2.3


Municipal Discharges to Coastal Waters, TSS and BOD, 1983-1989


Environmental Indicators, SOE Report No. 91-1

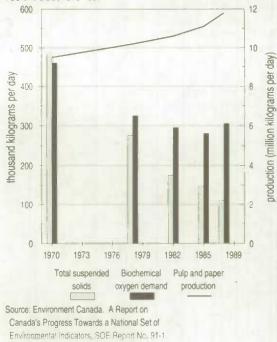


Figure: 4.1.2.4

4.1.3 Fish and Wildlife

A good indication of the impacts of human activities on the environment is the condition of living organisms. Hundreds of species are near extinction because of pressures such as the elimination of habitat, toxins in the environment and harvesting.

This section examines some wildlife quality indicators such as population change and contaminant levels. Also presented are statistics on the activity of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) in assessing the protection status of wildlife.

Wildlife Status

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) is responsible for determining the status of wildlife species. The status designations are:

extinct	species that no longer exist
extirpated	species no longer existing in a certain area
endangered	native species whose existence is threatened by human actions; extirpation or extinction a possibility
threatened	slightly at risk
vuinerable	species with declining populations, restricted range

COSEWIC completed status reports on 30 percent of the species recommended for classification (Table 4.1.3.3). The number of status reports are directly linked to the amount of funding available.

Tables 4.1.3.5 and 4.1.3.6 shows recovery efforts for some of the endangered and threatened species. In 1988, an organization for the REcovery of Nationally Endangered Wildlife (RENEW) was established. The goal of this committee, like that of COSEWIC, is to preserve endangered and threatened species from extinction and to prevent vulnerable species from becoming threatened or endangered by developing recovery plans for each designated species.

Of the 3,269 known plant species in Canada, 1,009 (31 percent) are considered rare. The highest counts of rare species occurs in British Columbia (426), followed by Ontario (355) (Table 4.1.3.4). Both provinces have many habitats unique to Canada. Both provinces are also located at the northern edges of floristic zones which extend into the United States.

In British Columbia, many rare species belonging to the Californian floristic elements in the Western Coastal Cordilleran forest reach their northern limits. Some Pacific Rim floristic elements also reach their southern limits in the province.

In Ontario, many rare species are associated with the floristically rich Carolinian Eastern Deciduous Forest that has a limited distribution in Canada and has been largely eliminated by urbanization and agriculture.

Both the Yukon and the Northwest Territories are rich in endemic species with restricted distributions. The Yukon endemics are mainly restricted to the unglaciated part of the territory. Those in the Northwest Territories are high arctic species.

Contaminant Levels in Wildlife

Since the early 1970s, there has been an ongoing program to monitor contaminants found in waterbirds around the Great Lakes region. The waterbirds were among the most contaminated in the world. Toxic chemicals dumped into the lakes enter the food web and are passed up to the top level predators, waterbirds. Within each step of the food web, increased contaminant concentrations occur in organisms.

An overview of the Great Lakes wildlife species known to be affected by contaminants is provided in Table 4.1.3.13.

Herring gulls are a good indicator species for contaminants. They are a top level predator in the food web and they reside in the region year round. The six contaminants measured were DDE, dieldrin, mirex, dioxins, HCB, and PCB. The locations of the monitored nesting sites are provided in Map 4.1.3.1.

Almost all contaminant levels in herring gull eggs have greatly decreased from the early 1970s to 1990 (Tables 4.1.3.7 through 4.1.3.12, Figures 4.1.3.1 through 4.1.3.6). The one exception is dieldrin. Contaminant levels declined most sharply between 1975 and 1980 as a result of regulations implemented in the late 1960s and early 1970s restricting the use and production of many of these contaminants. Also note that the higher levels of contamination generally occurred in the industrialized Lake Ontario and Lake Michigan.

The Whooping Crane

The whooping crane population in 1870 was estimated at 1,400. By 1941, the numbers had dwindled to 15 in Canada. Loss of marshland habitat, hunting, and egg collecting contributed to the near extinction of this species. Increased management efforts by Canadian and American wildlife agencies, the Migratory Birds Treaty in 1917, the establishment of Wood Buffalo National Park (1922) and Aransas National Wildlife Refuge (1937), and increased

public awareness on the plight of the whooping crane, resulted in a modest increased population to 43 by 1966 (Figure 4.1.3.7).

From 1966 to 1990, the population steadily increased to a total estimated at 143 in Wood Buffalo National Park. The continuing efforts, such as the egg transfer program starting in 1966, and the development of recovery programs, have brought the whooping crane back from near extinction.

The Peregrine Falcon

In 1970, only 23 breeding pairs of peregrine falcons remained in Canada. In eastern Canada, it appeared they had been virtually extirpated. The rapid decline was traced to the buildup of DDT and other pesticides in the prey of the peregrines. This resulted in the thinning of eggshells, breakage of eggs and reduced breeding success. Reintroduction programs were started in 1975 to increase peregine falcon populations. This recovery program has shown success with a breeding pair population increasing to about 300 (Table 4.1.3.15). However, two regions, southern Ontario and the Prairies, have not been as successful. This could be caused by the high levels of contaminants found in the prey in those particular regions. Table 4.1.3.14 shows prey species in the southern prairies and the Great Lakes region have the highest contaminant levels.

Breeding Bird Populations

Each Spring the Canadian Wildlife Service co-ordinates interested and knowledgeable volunteers in collecting data on breeding birds. This Breeding Bird Survey (BBS) was first conducted in Canada in 1966 with the objective of measuring trends in bird populations (especially small land birds) across North America.

The following tables report information for species showing a long-term trend, significant at the 95 percent level, in two or more regions. Although Table 4.3.1.16 shows these trends as average percent change, the small numbers of observations for some species and regions mean that these should be regarded as indicators rather than precise measures.

A summary of the changes in population by habitat type are provided in Table 4.1.3.1. Regional trends are presented in Table 4.1.3.2.

Table: 4.1.3.1

Breeding Bird Population Trends by Habitat, 1966-1989

	Population trend				
Type of habitat1	Increasing	Decreasing			
-	species × region ²				
Margins	9				
Open	5	11			
Thickets	4	3			
Wetland	6	2			
Woodland	11	2			
Total	35	18			

Source:

Environment Canada, Canadian Wildlife Service, Breeding Bird Survey Notes:

Typical habitat: in some regions and seasons may also be found in other habitats. ² Species are counted separately in each region.

Table: 4.1.3.2

Breeding Bird Population Trends by Region, 1966-1989

Population trend				
Increasing	Decreasing			
species × regi	on ¹			
6	4			
5	5			
12	3			
6	3			
3	2			
3	1			
35	18			
	Increasing species × regit 6 5 12 6 3 3 3			

Source:

Environment Canada. Canadian Wildlife Service. Breeding Bird Survey. Notes:

Species are counted separately in each region.

The most widespread change is that of the American Robin. showing a significant long term growth in each of the four regions covering southern and central Quebec, Ontario, Manitoba, Saskatchewan and Alberta (Table 4.3.1.16). Many species in the families Fringillidae (which includes sparrows and finches) and Icteridae (including grackles and cowbirds) show declines in two or three regions.

Fish Size

Figure 4.1.3.8 presents average weights of northern cod by age class. The weights of the sampled fish increased by 14 to 109 percent between the period 1962-1971 and 1982-1989.

Wildlife Status in Canada, 1990

Group'	Candidate	Status			Status ass	essment			Percent of candidate
	species	reports	no status ²	vuinerable	threatened	endangered	extirpated	extinct	species assessed
Birds ³	60	48	12	16	8	8	1	3	80
Mammels									
manne ^a	43	27	6	11	4	3	2	1	63
otheraa	39	27	15	3	2	4	2	1	70
Fish	117	67	16	32	10	3	2	4	57
Amphibians	11	3	0	2	0	1	0	0	27
Plants	500	62	2	20	22	17	1	0	12
Reptiles	27	2	0	1	0	1	0	0	7
Total	797	236	51	85	46	37	8	9	30

Sources:

Dr. Merlin Shoesmith, Chairman, Mammal Subcommittee, COSEWIC.

Dr. E. Haber, Chairman, Plant Subcommittee, COSEWIC.

Dr. Bob Campbell, Chaiman, Fish and Marine Mammals Subcommittee, COSEWIC.

Dr. Francis Cook, Chairman, Reptiles and Amphibians Subcommittee, COSEWIC.

Dr. Ross James, Chairman, Bird Subcommittee, COSEWIC.

Notes:

Insects and mollusics are not yet considered under COSEWIC.

²Species not considered vulnerable upon review of status report.

Where status reports have been prepared for one or more species populations, the species is included under the category at greatest risk.

Table: 4.1.3.4

Status of Plant Species, 1990

Province/Territory	Total number of species	Percent of national total	Number of rare species	Percent of national rare total	Number of priority rare species'	Percent of national priority rare total
Newtoundland	1 548	47.35	40	3.96	9	4.23
Prince Edward Island	1 040	31.81	6	0.59	2	0.94
Nova Scotia	1 500	45.89	45	4.46	18	8.45
New Brunswick	1 987	60.78	25	2.48	11	5.16
Quebec	2 543	77.79	106	10.51	36	16.90
Ontano	2 888	88.35	355	35.18	108	50.70
Manitoba	1 417	43.35	52	5.15	17	7.98
Saskatchewan	1 536	46.99	77	7.63	22	10.33
Alberta	1 692	51.76	125	12.39	18	8.45
British Columbia	2 000	61.18	426	42.22	42	19.72
Yukon	1 150	35.18	91	9.02	34	15.96
Northwest Territories	1 113	34.05	62	6.14	27	12.68
Canada	3 269	100.00	1 009	100.00	213	100.00

Source:

Canadian Museum of Nature. 1990. Rare Vascular Plants in Canada. Argus, George W. and Kathleen M. Pryer. Dr. J. Morton, University of Waterloo, Dr. P.M. Catling, Agriculture Canada, Cheryl McJanet, Canadian Museum of Nature (personal communication). Notes:

Priority ranks 1 and 2 based on Argus ranking system.

Fish and Wildlife

Table: 4.1.3.5

Level of Protection and Recovery Effort for Endangered Vertebrate Species¹, 1989

					Recovery	/ plan
Species or population	Killing or disturbance regulated by law	Key habitat protected	Species bred in captivity	Re-introduced successfully	begun	complete
Beluga (St. Lawrence)	v	4	v		4	
Beluga (Ungava Bay)	4				-	
Bowhead whale	v					
Eastern cougar	v		6			
Eastern wolverine	v	-	4	-		
Right whate	v	-	_			4
Sea otter	v	V	4	4	1	4
Vancouver Island marmot	V	4	4		4	
Eskimo curlew	4		-			
Greater prairie-chicken	· · · · ·		~			
Kirtland's warbler	v					4
Mountain plover	v	-	-			
Peregrine falcon, Anatum	v	*	4	v		v
Piping plover	v	4	-	-	v	
Spotted owl	v	*	-			V
Whooping crane	v	v	4	4		- v
Atlantic whitefish	v					
Aurora trout	v	V	V			v
Salish sucker						
Leatherback turtle						

Source:

Environment Canada. 1989. On the Brink, Endangered Species in Canada. J.A. Burnett, C.T. Dauphine Jr., S.H. McCrindle, and T. Mosquin.

Notes:

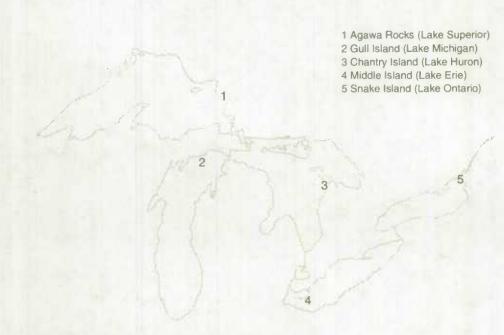
¹ Designated by COSEWIC.

Table: 4.1.3.6

Level of Protection and Recovery Effort for Threatened Vertebrate Species¹, 1989

					Recover	y pian
Species or population	Killing or disturbance regulated by law	Key habitat protected	Species bred in captivity	Re-introduced successfully	begun	complete
Beluga (Eastmain)		-				
Humpback Whale (Pacific)	4			1.12		
Maritime woodland caribou	V	v	-	-	-	
Peary caribou						
Pine marten (Newfoundland)	4		V	v	4	
Prairie long-tailed weasel						
Wood bison	v	4	V	4		~
Baird's sparrow	4			-		
Burrowing owl	v	V	V	4	4	
Ferruginous hawk	V				V	
Henslow's sparrow	V					
Loggerhead shrike	V				4	
Peregrine falcon, tundrius	v	V	4			
Roseate tem	4					
Blackfin cisco	4					
Black redhorse	4	V	-			
Copper redhorse					_	
Enos Lake sticklebacks			-			
Great Lakes deepwater sculpin	V		-			
Lake Simcoe whitefish	4	4		4		
Margined madtom						
Shorthead scuplin	4					
Shortjaw cisco	4				-	
Shortnose cisco	4					

Source:


Environment Canada. 1989. On the Brink, Endangered Species in Canada. J.A. Burnett, C.T. Dauphine Jr., S.H. McCrindle, and T. Mosquin.

Notes:

¹ Designated by COSEWIC.

Map: 4.1.3.1

Herring Gull Nesting Sites Monitored

Source: Environment Canada, Canadian Wildlife Service.

Figure: 4.1.3.1

DDE Concentrations in Great Lakes Herring Gull Eggs, 1974-1990

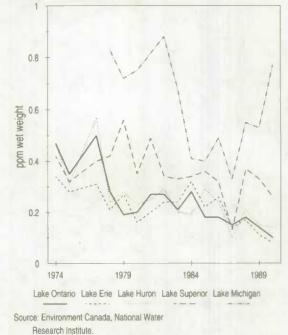
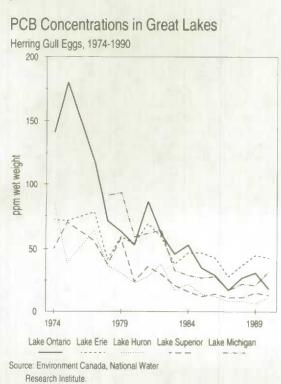



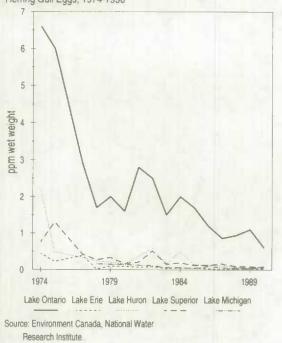
Figure: 4.1.3.2

Dieldrin Concentrations in Great Lakes Herring Gull Eggs, 1974-1990



Statistics Canada

Fish and Wildlife


Figure: 4.1.3.3

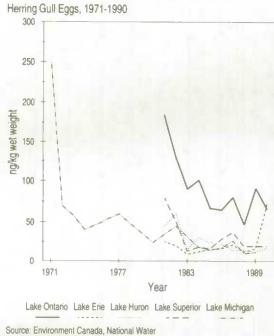
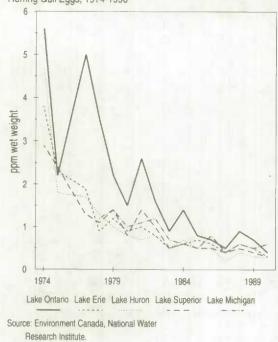


Figure: 4.1.3.5

Mirex Concentrations in Great Lakes Herring Gull Eggs, 1974-1990



Research Institute.

Figure: 4.1.3.6

Average Annual Concentrations of DDE in Herring Gull Eggs, 1974-90

Year	Lake Ontario Snake Island	Lake Erie Middle Island	Lake Huron Chantry Island	Lake Superior Agawa Rocks	Lake Michigan Gull Island
			ppm wet weight		
1974	21.4	5.6	21.0	14.2	
1975	23.6	6.9	11.9	22.0	
1976					
1977	17.0	7.4	13.3	12.0	
1978	10.4	3.0	6.1	8.5	9.7
1979	8.8	2.8	2.5	7.3	9.0
1980	7.1	2.6	2.8	3.7	8.5
1981	11.8	3.1	4.1	6.3	
1982	8.7	2.6	5.0	5.8	9.2
1983	5.1	1.7	2.2	3.2	7.9
1984	7.2	2.0	2.5	2.5	9.5
1985	7.2	2.0	2.5	3.0	9.6
1986	4.7	2.3	2.0	3.1	7.9
1987	2.9	1.7	1.0	2.2	9.2
1988	5.2	2.2	1.1	2.7	9.3
1989	5.2	2.2	0.8	2.6	8.9
1990	3.4	2.5	1.6	2.8	8.5

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Table: 4.1.3.8

Average Annual Concentration of Dieldrin in Herring Gull Eggs, 1974-90

Year	Lake Ontario Snake Island	Lake Erie Middle Island	Lake Huron Chantry Island	Lake Superior Agawa Rocks	Lake Michigan Gull Island
			ppm wet weight		
1974	0.5	0.3	0.5	0.4	
1975	0.3	0.3	0.3	0.3	
1976	**		**		
1977	0.5	0.3	0.6	0.4	
1978	0.3	0.2	0.2	0.4	0.8
1979	0.2	0.3	0.3	0.6	0.7
1980	0.2	0.2	0.2	0.3	0.8
1981	0.3	0.2	0.3	0.5	
1982	0.3	0.2	0.3	0.3	0.9
1983	0.2	0.2	0.2	0.3	0.7
1984	0.3	0.3	0.2	0.3	0.4
1985	0.2	0.2	0.3	0.4	0.4
1986	0.2	0.3	0.2	0.3	0.5
1987	0.1	0.1	0.1	0.1	0.3
1988	0.2	0.2	0.2	0.4	0.6
1989	0.1	0.1	0.1	0.3	0.5
1990	0.1	0.1	0.1	0.3	8.0

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Average Annual Concentration of Dioxin In Herring Gull Eggs, 1974-90

Year	Lake Ontario Snake Island	Lake Erie Middle Island	Lake Huron Charitry Island	Lake Superior Agawa Rocks	Lake Michigan Gull Island
			ng/kg wet weight		
1971					249
1972					70
1973					58
1974					40
1975					
1976					54
1977					60
1978					
1979					
1980					24
1981	185	25	45	79	
1982	129	20	61	51	45
1983	90	9	15	13	
1984	101	12	30	18	18
1985	67	15	24	16	14
1986	65	16	22	28	17
1987	80	21	14	37	26
1988	47	12	14	19	10
1989	91	16	12	19	11
1990	66	73	17	19	

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Table: 4.1.3.10

Average Annual Concentration of HCB in Herring Gull Eggs, 1974-90

Year	Lake Ontario Snake Island	Lake Erie Middle Island	Lake Huron Chantry Island	Lake Superior Agawa Rocks	Lake Michigar Gull Island
			ppm wet weight		
1974	0.6	0.4	0.5	0.3	
1975	0.2	0.2	0.2	0.2	
1976					
1977	0.5	0.2	0.2	0.1	
1978	0.3	0.1	0.1	0.1	0.1
1979	0.2	0.1	0.1	0.1	0.1
1980	0.1	0.1	0.1	0.1	0.1
1981	0.3	0.1	0.1	0.1	
1982	0.2	0.1	0.1	0.1	0.1
1983	0.1	0.1	0.1	0.1	0.1
1984	0.1	0.1	0.1	0.1	0.1
1985	0.1	0.1	0.1	0.1	0.1
1986	0.1	0.1	0.1	0.1	0.1
1987	0.1	0.0	0.0	0.0	0.0
1988	. 0.1	0.1	0.0	0.1	0.1
1989	0.1	0.1	0.0	0.0	0.1
1990	0.0	0.0	0.0	0.0	0.1

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Average Annual Concentrations of Mirex in Herring Gull Eggs, 1974-90

	Lake Onlario Snake Island	Lake Erie Middle Island	Lake Huron Chantry Island	Lake Superior Agawa Rocks	Lake Michigan Guli Island					
Year	Shake Island	Mildule Island	Charary Island	луана поска						
			ppm wet weight							
1974	6.60	0.44	2.20	0.76						
1975	6.00	0.22	0.48	1.30						
1976										
1977	2.90	0.39	0.33	0.42						
1978	1.70	0.02	0.24	0.27	0.16					
1979	2.00	0.10	0.20	0.33	0.15					
1980	1.60	0.09	0.16	0.17	0.14					
1981	2.80	0.07	0.35	0.20						
1982	2.50	0.08	0.58	0.51	0.11					
1983	1.50	0.04	0.16	0.15	0.06					
1984	2.00	0.05	0.49	0.19	0.06					
1985	1.70	0.05	0.14	0.12	0.04					
1986	1.20	0.03	0.13	0.12	0.09					
1987	0.86	0.01	0.11	0.16	0.06					
1988	0.94	0.03	0.07	0.09	0.04					
1989	1.10	0.03	0.05	0.09	0.04					
1990	0.60	0.03	0.10	0.06	0.08					

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Table: 4.1.3.12

Average Annual Concentration of PCB in Herring Gull Eggs, 1974-90

Year	Lake Ontario Snake Island	Lake Erie Middle Island	Lake Huron Chantry Island	Lake Superior Agawa Rocks	Lake Michigan Gull Island
			ppm wet weight		
1974	141	72	86	50	
1975	180	71	39	70	
1976					
1977	118	78	64	56	
1978	71	42	37	38	91
1979	63	59	31	58	93
1980	53	54	23	24	59
1981	86	69	28	36	
1982	61	59	38	30	64
1983	46	38	17	21	33
1984	53	47	22	16	28
1985	35	47	14	12	27
1986	29	43	12	14	28
1987	17	28	8	11	17
1988	27	37	8	11	22
1989	31	45	6	15	21
1990	18	43	11	13	32

Source:

Environment Canada, Canadian Wildlife Service, National Water Research Institute. D.V. Weseloh and R. Norstrom.

Fish and Wildlife

Table: 4.1.3.13

Species of Fish and Wildlife Known to be Affected by Contaminants in the Great Lakes

	Effect										
Species	Population decrease	Effects on reproduction	Eggshell thinning	Congenital malformations	Behavioural changes	Biochemical changes	Mortality	Alterations in recruitment			
Mink	4	v		NE	NE	NE	~	?			
Otter	4			NE	NE	NE	?	?			
Double-crested cormorant	4	~	V	4		~	?	?			
Black-crowned night-heron	v	V	~	V		1	7	?			
Baid eagle		V	V	NE		NE	NE	?			
Herring gull		v	4	V	4	V	4				
Ring-billed gull			V	V		NE	~				
Caspian tem		4		V	NE	NE		~			
Common tern		4	V	V		1					
Forster's tem		*		4	v	4					
Snapping turtle	NE	4	***	4	NE	NE	NE	NE			
Lake trout		v				~					
Brown builhead		V				V					
White sucker				V		~					

Source:

Environment Canada, Department of Fisheries and Oceans, Health and Welfare Canada. 1991. Toxic Chemicals in the Great Lakes and Associated Effects: Synopsis. Catalogue En. 37-94/1990E.

Notes: = effects documented

.. = not applicable

NE = not examined

? = suspected since population declined

Table: 4.1.3.14

Contaminants in Peregrine Falcon Prey¹ by Region, 1989

	Southern Prairies		_	Central Arctic			Great Lakes	
number ²	Prey species	Tissue	number ²	Prey species	Tissue	number ²	Prey species	Tissue
8	Red-necked grebe	eggs	6	Semipalmated plover	whole body	6/7	Black-crowned night heron	eggs
3	Killdeer	whole body	4	Dunlin	whole body	5	Killdeer	whole body
3	Eared grebe	whole body	3	Lapland longspur	whole body	5/7	Bufflehead	muscle
2	Blue-winged teal	whole body	2	Homed lark	whole body	3	Semipalmated sandpiper	whole body
2/7	Red-winged blackbird	whole body			í.			
1	Boreal			Atlantic			Rocky Mountains	
number ²	Prey species	Tissue	number ²	Prey species	Tissue	number ²	Prey species	Tissue
7	Bank swallow	whole body	4	Leach's storm petrel	eggs	4	Wester grebe	eggs
3	Northern flicker	whole body	4	Semipalmated sandpiper	whole body	2/8	American kestrel	eggs
2	American robin	whole body	4	American robin	whole body	1	American robin	whole body
2	Common grackle	whole body	1	Red-winged blackbird	whole body	1/4	Western meadowlark	whole body

Source:

Environment Canada, Canadian Wildlife Service. Contaminants in the Prey of the Peregrine Falcon in Canada. A. Baril, J.E. Elliot, J.D. Somers, G. and Erickson. CWS Technical Report Series No. 62.

Notes:

Prey specias in which contaminant levels are greater than threshold values.

²Number of contaminants from 9 samples tested over threshold unless indicated.

Peregrine Falcon Population¹, 1970-1990

Region	1970	1975	1980	1985	1990
Mantimes and Southern Quebec	0	0	1	2	10
Southern Ontario	0	9	1	0	2
Prairies	1	0	0	3	4
Mackenzie River Valley	6	5	20	45	87
Yukon	5	4	46	48	125-140
British Columbia	?	?	?	?	?
Great Slave Lake	?	?	?	?	?
Northern Ontario	?	?	?	?	?
Labrador and Ungava Coasts	11	9	10	25	55
Total	23	18	78	123	292-307

Sources:

Environment Canada, Canadian Wildlife Service. 1988. Anatum peregrine falcon recovery plan. Erickson et. al.

Geoff Halroyd, Canadian Wildlife Service, Edmonton.

Notes: 'Population of territorial breeding pairs.

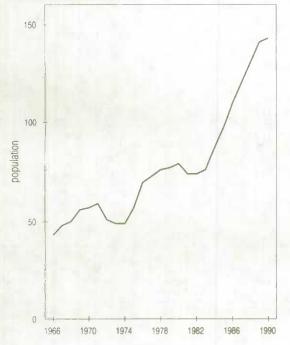
Table: 4.1.3.16

Trends in Breeding Bird Populations, 1966-1989

		Region								
Species	Habitat'	Atlantic	Central Ontario and Quebec	Southern Ontario and Quebec	Central Prairies	Southern Prairies	Southerr Britist Columbia			
				Average annual percent	change, 1966-1989 ²					
Great blue heron	Wetlands		5.8	6.5						
American bittern	Wetlands			5.0	- 8.7					
Red-tailed hawk	Open				3.1		5.8			
Killdeer	Open				- 4.3	- 2.6				
Tree swallow	Wetlands			3.6	4.2					
Black-capped chickadee	Woodland	5.4		11.9						
American robin	Margins		1.1	1.3	2.1	4.3				
Hermit thrush	Woodiand	5.2	5.2							
Cedar waxwing	Margins	8.8	3.8	5.9						
Red-eyed vireo	Woodland	5.3	1.5		2.7					
Warbling vireo	Woodland			5.8			4.1			
Yellow warbler	Thickets	4.1	***	2.8						
Common yellowthroat	Wetland		- 2.0	1.7						
Ovenbird	Woodland	1.9		5.4						
Brown-headed cowbird	Open		- 5.2	- 3.3		2.5				
Common grackle	Open	- 2.3	- 4.4	- 2.5						
Meadowlark (Eastern and Wastern)	Open			- 3.9		- 2.0				
American goldfinch	Open				2.9		- 3.6			
White-throated sparrow	Woodland	- 3.0	- 1.9							
Chipping sparrow	Margins			1.6		5.0				
Song sparrow	Thickets	- 1.5	- 3.1		- 4.1					
Lincoln's sparrow	Thickets				18.6		29.4			
Savannan sparrow	Open	- 2.8		- 1.8						

Source:

Environment Canada. Canadian Wildlife Service. Breeding Bird Survey.

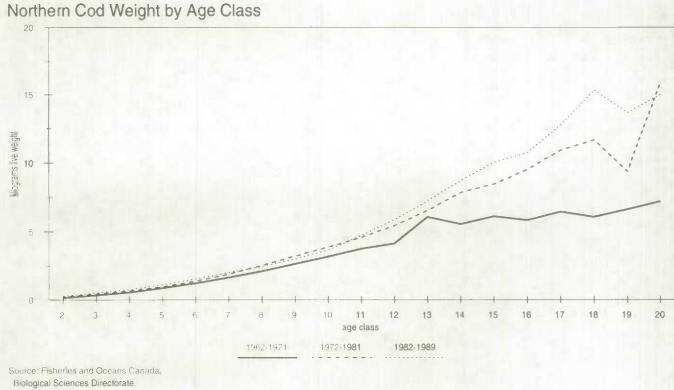

Notes:

¹ Typical habitat: in some regions and seasons may also be found in other habitats.
² See text for commentary on reliability of estimates.

Fish and Wildlife

Figure: 4.1.3.7

Whooping Crane Population, 1966-1990 Wood Buffalo National Park



Whooping Crane Population Wood Buffalo National Park Significant Events

- 1917 Migratory Birds Treaty, Migratory Birds Convention Act Canada/US Protection Agreements
- 1922 Wood Buffalo National Park created (summer breeding grounds)
- 1937 Aransas National Wildlife Refuge created (wintering grounds)
- 1966 active management activities egg transfers
- 1973 Endangered status in US
- 1978 Endangered status in Canada
- 1985 Memorandum of Understanding on the Conservation of Whooping Cranes between Canada/US
- · 1986 US Recovery Plan
- 1987 Canadian Recovery Plan

Source: Cooch, F.G. (ed.), Canadian Whooping Crane Recovery Plan, Canadian Wildlife Service, Environment Canada, 1987. Gollop, M.A., Status Report on the Whooping Crane, Grus americana. Committee on the Status of Endangered Wildlife in Canada, Canadian Wildlife Service, Environment Canada, 1978. Cooch, F.G., personal communication. C. Dauphine, personal communication.

Figure: 4.1.3.8

4.1.4 Habitats

Forests, plains, estuaries, rivers, oceans and wetland habitats are being altered by human activities. Canada holds one-quarter of the world's wetlands — 127 million hectares or one-seventh of Canada's land area is covered by bog, fen, marsh, swamp and shallow. It is estimated that one-seventh of Canada's presettlement wetlands have been converted to other uses.

A *habitat* is a place where a plant or animal usually lives. It is often characterized by a dominant plant form or physical characteristic (i.e., the forest habitat, the river habitat). An *ecosystem* is a much more complex concept. It incorporates all the interactions between the physical and biophysical environment.

This section focuses on wetlands and peatlands as a particular habitat under stress from human activities. Other habitat types such as forests, rivers, oceans, agricultural land, protected lands are discussed elsewhere in this publication. Whereas forests and agricultural lands have obvious economic benefits, wetlands — marshes, swamps and bogs — have long been considered wasteland, available for conversion to "productive" uses. It is now understood that wetlands support a rich wildlife and that they provide beneficial hydrological and water-purification functions.

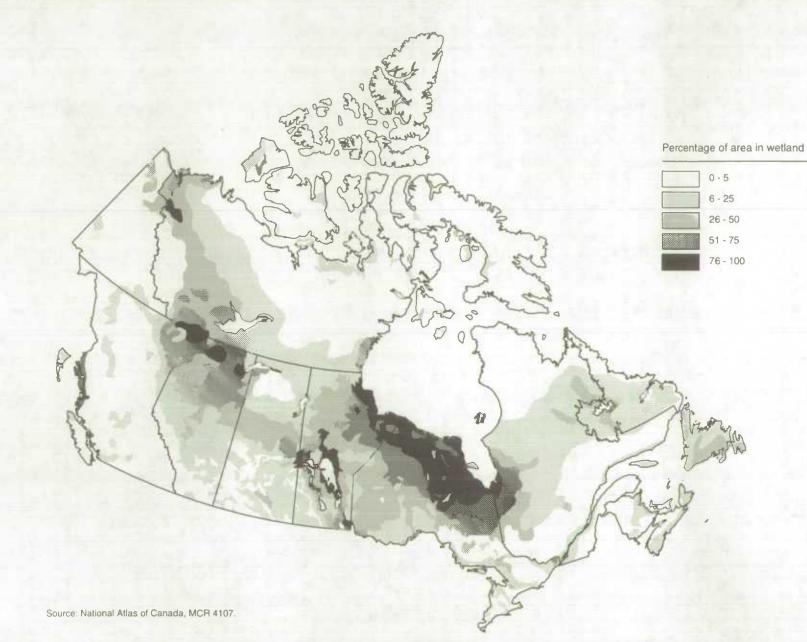
Wetlands and Peatlands

A wetland is land that is saturated with water long enough to promote wetland or aquatic processes: poorly drained soils, hydrophytic vegetation⁴¹, and other biological activities adapted to a wet environment⁴². Wetlands occupy a transitional position between water and land since they are neither solid land nor open water. Wetlands also include waterlogged soil, such as peat, where the production of plant materials has exceeded decomposition. However, not all wetlands are peatlands, therefore a thickness of 40 cm of peat has been chosen as a minimum requirement for wetlands to be classified as peatlands⁴³. Habitats

Wetlands are linked to many environmental issues including: climate change, freshwater and groundwater quality and supply, wildlife habitat, soil and water conservation, and water and air pollution. Wetlands not only provide waterfowl habitat but are also essential in supporting coastal and estuarine fishery resources, protecting shorelines from erosion, protecting watersheds from flooding and removing nutrients from wastewater and runoff.

Most wetlands at risk in Canada are either privately or provincially owned. In 1990, the federal government managed only 29 percent of Canada's wetlands⁴⁴.

Canada contains almost one-quarter of all the wetlands on earth; 14 percent of Canada, or 1,271,990 km², (127.2 million hectares), is covered by wetlands (Tables 4.1.4.1 and 4.1.4.2). Wetlands are concentrated in the central provinces and are sparsest in the north and mountainous areas. Peatlands cover 12 percent or 1,113,270 km² of Canada.


Map 4.1.4.1 was produced by the National Wetlands Working Group (NWWG) and illustrates the distribution of wetlands in Canada based upon 5 classes. The 0-5 percent range indicates that within this category up to 5 percent of the land cover can be classified as wetland. This map was based on a limited amount of provincial data, resource maps, and data provided by resource managers familiar with wetland areas. According to this group, the conversion of wetlands have been severe in areas such as the Central Prairies sloughs (70 percent converted), Atlantic salt marshes (65 percent), urban wetlands (80 to 98 percent), Pacific estuarine marshes (70 percent) and southern Ontario and St. Lawrence Valley hardwood and shoreline swamps (70 to 80 percent).

Hydrophytic vegetation are plants which grow only in water or very wet soil. Algae are hydrophytic.

Tarnocai, C. 1980. Canadian Wetland Registry. [in] Proceedings, Workshop on Canadian Wetlands. C.D.A. Rubec and F.C. Pollett [editors]. Lands Directorate, Environment Canada, Ecological Land Classification Series No. 12.

National Wetlands Working Group. 1988. Wetlands of Canada. Environment Canada, Ecological Land Classification Series No. 24.

Sustaining Wetlands Forum. 1990. Sustaining Wetlands - International Challenge for the 90s. Sustaining Wetlands Forum. Ottawa, Canada.

160

Occurrence of Wetlands¹ and Peatlands², 1986

		Peatland		Wetland
Province	Area	Land area in peatland	Area	Land area in wetland
	km²	percent	km²	percent
Newfoundland	64 290	17	67 920	18
Prince Edward Island	80	1	90	1
Nova Scotia	1 580	3	1 770	3
New Brunswick	1 200	2	5 440	8
Quebec	117 130	9	121 510	9
Ontano	225 550	25	292 410	33
Manitoba	206 640	38	224 700	41
Saskatchewan	93 090	16	96 870	17
Alberta	126 730	20	137 040	21
British Columbia	12 890	1	31 200	3
Yukon	251 110	8	277 940	9
Northwest Territories	12 980	3	15 100	3
Canada	1 113 270	12	1 271 990	14

Source

Environment Canada, Sustainable Development Branch, Canadian Wildlife Service, Conservation and Protection, National Wetlands Working Group, Canada Committee on Ecological Land Classification. Wetlands of Canada, 1988. Ecological Land Classification Series, No. 24. Notes:

' The extent and distribution of wetlands in Canada can only be estimated. Presently some provinces have completed surveys of peatlands while others are currently undertaking or planning such projects.

² Based on both ecological and land use considerations, a thickness of 40 cm of peat is the minimum requirement for wetlands to be classified as peatlands.

Table: 4.1.4.2

Estimated Wetland Area by Province, 1986

			Wetland class		Total	Percent of provincial	Percent of national	
Province	0-5%	6-25%	26-50%	51-75%	76-100%	8788	land area	wetlands
			square kil	ometres		2	per	cent
Newfoundland	580	35 960	31 380			67 920	18	5
Prince Edward Island	40					40	1	1
Nova Scotia	220	1 550				1 770	3	1
New Brunswick	1 280	2 940	1 220			5 440	8	1
Quebec	6 280	45 790	35 060	28 490	5 890	121 510	9	10
Ontario	1 050	6 840	47 950	86 340	150 230	292 410	33	23
Manitoba	380	22 250	70 890	51 840	79 340	224 700	41	18
Saskatchewan	3 980	41 700	36 950	12 710	1 530	96 870	17	8
Alberta	1 070	10 800	32 490	68 730	23 950	137 040	21	11
British Columbia	3 520	6 620	1 460	16 560	3 040	31 200	3	2
Yukon	22 410	75 200	95 480	65 210	19 640	277 940	9	22
Northwest Territories	1 980	1 850	7 640	3 630		15 100	3	1
Canada	42 790	251 500	360 520	333 510	283 620	1 271 940	14	100

Source:

Energy, Mines and Resources Canada. The National Atlas of Canada. Fifth Edition.

Environment Canada, Sustainable Development Branch, Canedian Wildlife Service, Conservation and Protection, National Wetlands Working Group, Canada Committee on Ecological Land Classification. Wetlands of Canada, 1988. Ecological Land Classification Series, No. 24.

4.1.5 Protected Land

For Canada to comply with the World Conservation Union target of protecting 10 percent of our land area from development, the land area dedicated to parks and reserves would have to double from 58 million hectares to more than 120 million.

The World Commission on Environment and Development⁴⁵ reported in 1988 that 8 percent of the world's land area was protected. The World Conservation Union suggested a global target of 10 percent for total protected area.

Canada's government protected area is currently 5.9 percent (Table 4.1.5.3). This reflects land that has been protected by legislation by some level of government. Approximately 96 percent of protected land is found under IUCN categories II and IV (national, provincial, and territorial parks, and nature reserves).

The ecozones with the greatest protected areas are the Boreal Shield, Southern Arctic, Montane Cordillera, Arctic Cordillera, and Northern Arctic which have the least conflict with human activities. The ecozones with the smallest total protected areas are the Mixed-Wood Plain and Prairies, which

45. Op.cit.

Table: 4.1.5.1

Total Protected Land by Ecozone, Selected Years

1885-1900 1901-1930 1931-1960 Ecozone 1961-1990 sites hectares percent¹ sites hectares percent1 sites hectares percent1 sites hectares percent¹ Atlantic Maritime 0 0 0.00 8 207 785 1 20 59 545 531 3.15 306 934 852 5.39 Mixed-Wood Plain 3 254 0.02 5 836 0.04 18 667 264 522 1.76 1 5 38 0.12 221 15 080 058 Boreal Shield 76 1 592 597 0.90 86 1 676 367 0.95 194 6 987 773 3.97 549 8.56 1.40 Prairie 2 20 342 0.04 10 90 0 54 0.17 45 189 698 0.36 197 744 794 Boreal Plain 0 0 0.00 2 029 327 2.41 32 2 312 058 2.75 204 2 937 124 3.49 Montane Cordillera 4 982 960 2.08 13 1 435 141 3.03 88 2 185 499 4.61 281 4 708 501 9.94 Pacific Maritime 0 0 0.00 5 197 393 0.80 50 203 455 0.82 255 2 658 703 10.71 Boreal Cordillera 0.00 591 800 3 282 890 8.68 0 0.00 0 2 1.56 13 Tundra Cordillera 0.00 1 086 664 4.10 0 0 0.00 0 0 0.00 2 3 136 490 3 136 490 5 34 3 139 960 Taiga Plain 0 0 0.00 3 5 33 3 5.33 25 Taiga Shield 0 0 0.00 1 718 800 0.52 1 718 600 0.52 14 761 207 0.55 Hudson Bay Plain 0 0 0.00 0 0 0.00 6 561 050 1.35 26 3 422 009 8.25 1 677 200 Southern Arctic 0 0 0.00 1.61 6 2 866 500 3.09 9 731 574 10.48 16 Northern Arctic 0.00 0 0.00 26 700 0.02 10 4 652 950 3.29 0 0 2 Arctic Cordillera 0 0 0.00 0 0 0.00 0 0 0.00 Δ 4 706 130 16.77 11 174 393 Canada 83 2 599 153 0.26 137 1.13 526 20 344 021 2.07 2 123 58 111 938 5 90

Source:

Environment Canada. Sustainable Development and State of Environment Branch. Protected Areas Database, 1990. Notes:

Percentage of total protected land by ecozone area.

Governments are not the only institutions protecting land. Non-government groups, such as Ducks Unlimited and the Nature Conservancy of Canada owned over 7 million hectares of land in 1983 (Table 4.1.5.2).

The rate of declaring protected land in Canada has been growing at a steady rate since the first national park, Banff, was established in 1885 (Table 4.1.5.1, Figure 4.1.5.1).

Table: 4.1.5.2

Selected Non-Government Conservation Lands in Canada, 1983

Organization	Sites	Totał area
The second second		hectares
Ducks Unlimited Canada	5 049	6 862 674
Nature Conservancy of Canada	400	32 400
British Columbia Second Century Fund	77	3 643
Island Nature Trust (P.E.I.)	10	300
Niagara Escarpment Commission, Ontario	38	190 000
Federation of Ontario Naturalists	13	530
Wildflife Habitat Canada Foundation	> 130	≠15 000
Total	> 5 700	> 7 106 547

Source:

Environment Canada, Sustainable Development and State of Environment Branch. *Conserving Canadian Ecosystems: A Systems Approach.* Rubec, C.D.A., A. Tumer, N. Chartrand, E.B. Wiken [authors]. Notes:

¹ Overlaps with many other parks

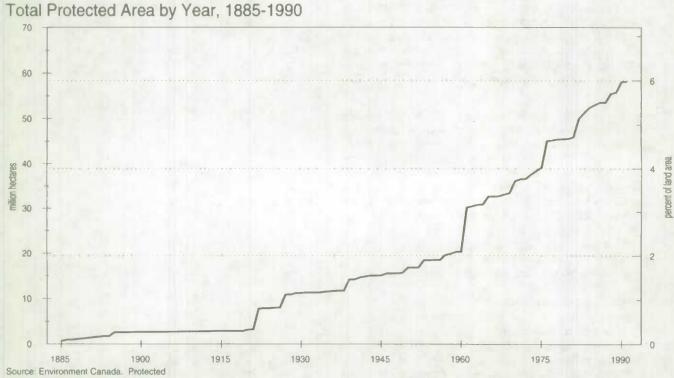
Protected Land by Ecozone, 1990

	IUCN category'										
Ecozone	<u>k</u>			113		1114		11/5	All c	ategories	Area of ecozone
	aites	hectares	sites	hectares	sites	hectares	sites	hectares	sites	hectares	percent
Atlantic Maritime	21	2 145	203	278 764	0	0	82	653 943	306	934 852	5.39
Mixed-Wood Plain	83	18 052	65	99 643	1	5	72	146 822	221	264 522	1.76
Boreal Shield	282	155 154	204	4 177 030	4	3 225	59	10 744 649	549	15 080 058	8.56
Prairie	6	7 085	131	528 032	0	0	60	209 677	197	744 794	1.40
Boreal Plain	16	68 210	133	2 327 389	0	0	55	541 525	204	2 937 124	3.49
Montane Cordillera	60	482 498	216	4 221 313	0	0	5	4 690	281	4 708 501	9.94
Pacific Maritime	65	99 972	182	2 555 591	0	0	8	3 140	255	2 658 703	10.71
Boreal Cordillera	4	1 258	7	2 689 832	0	0	2	591 800	13	3 282 890	8.68
Tundra Cordillera	0	0	2	1 086 664	0	0	0	0	2	1 086 664	4.10
Taiga Plain	1	121	24	3 139 839	0	0	0	0	25	3 139 960	5.34
Taiga Shield	1	39 000	12	3 407	0	0	1	718 800	14	761 207	0.55
Hudson Bay Plain	15	277 749	5	2 583 210	0	0	6	561 050	26	3 422 009	8.25
Southern Arctic	0	0	4	406 774	0	0	12	9 324 800	16	9 731 574	10.48
Northern Arctic	1	81 000	3	2 370 170	0	0	6	2 201 780	10	4 652 950	3.29
Arctic Cordillera	0	0	З	3 727 110	0	0	1	979 020	4	4 706 130	16.77
Canada	555	1 232 244	1 194	30 194 768	5	3 230	369	26 681 696	2 123	58 111 938	5.90

Source:

Environment Canada, Sustainable Development and State of Environment Branch. Protected Areas Database, 1990. Notes:

¹Categories I-IV of the International Union for Conservation of Nature and Natural Resources (IUCN) correlate to "reasonably well protected" land/water which excludes land uses such as logging, mining, and hunting.


²Category Lincludes ecological reserves which are legally protected natural areas with minimal human influence. Ecological reserves are established primarily for scientific research and apecies preservations.

³Category II includes national, provincial and territorial parks.

*Category III includes national monuments and landmarks.

*Category IV includes nature conservation reserves, managed nature reserves, and wildlife sanctuaries.

Figure: 4.1.5.1

Areas Database.

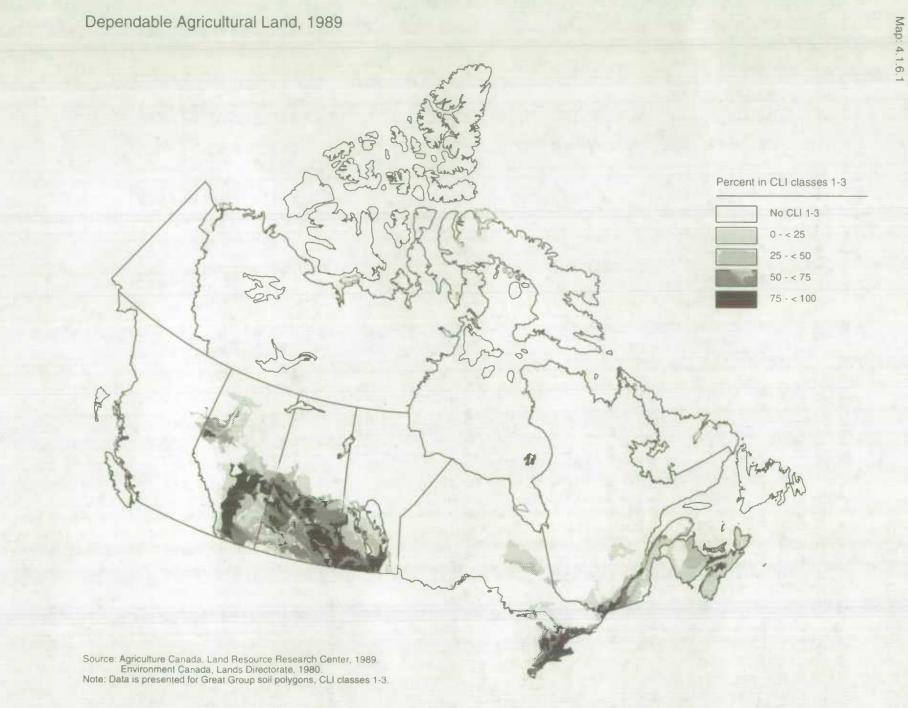
4.1.6 Soil Quality

Canada's prime agricultural land occupies an area smaller than Prince Edward Island.

Canada has a limited amount of dependable soil (Map 4.1.6.1). Canada Land Inventory (CLI) classes 1-3 represent Canada's dependable land supply. Soils in these classes have fair to high capability for agriculture. These soils, considered capable of long term crop production, occupy less than 5 percent of Canada's total land area (Table 4.1.6.1).

- **Class 1** Soils in this class have no significant limitations for crops. These deep soils are level or have very gentle slopes, are well to imperfectly drained and have a good water holding capacity. They are easily maintained in good tilth and productivity, and damage from erosion is slight. They are moderately high to high in productivity for a wide range of field crops adapted to the region.
- **Class 2** Soils in this class have moderate limitations that restrict the range of crops or require moderate conservation practices. These deep soils have a good water holding capacity, can be managed with little difficulty and are moderately high to high in productivity for fairly wide range of field crops. The moderate limitations of these soils may be from any one of a number factors including mildly adverse regional climate, moderate effects of erosion, poor soil structure or low permeability, low fertility correctable with lime, gentle to moderate slopes, or occasional overflow or wetness.
- **Class 3** Soils in this class have moderately severe limitations that restrict the range of crops or require special conservation practices. Under good management these soils are fair to moderately fair in productivity for a wide range of field crops adapted to the region. Conservation practices are more difficult to apply and maintain. Limitations arise from a combination of two of the factors described under class 2, or from one of the following:
 - moderate climatic limitations;
 - moderately severe effects of erosion;
 - an intractable soil mass of very low permeability;
 - low fertility;
 - moderate to strong slopes;
 - frequent overflow or poor drainage resulting in occasional crop damage;
 - low water holding capacity or a soil which is slow to release water;
 - stoniness sufficiently severe to seriously handicap cultivation and necessitating some clearing;
 - a restricted rooting zone;

moderate salinity.


Table: 4.1.6.1

Dependable Land, Canada Land Inventory Classes 1-3

-	Soil capability class						
	1	2	3				
	hectares						
Newfoundland	0	0	1 851				
Prince Edward Island	0	251 561	141 519				
Nova Scotia	0	166 317	982 877				
New Brunswick	0	160 528	1 151 144				
Quebec	19 556	907 106	1 277 202				
Ontario	2 156 752	2 217 667	2 908 818				
Manitoba	162 501	2 530 607	2 440 659				
Saskatchewan	999 691	5 874 448	9 424 700				
Alberta	786 527	3 837 093	6 105 329				
British Columbia	21 057	235 474	692 026				
Canada	4 146 084	16 180 801	25 126 125				

Source:

Environment Canada, Lands Directorate, 1982. Agricultural Land Use Change in Canada. Catalogue 73-1/21E.

Human Activity and the Environment

4.1.7 Agricultural Land

Almost 68 million hectares of Canada's land area was classified as farmland in 1986. Between 1971 and 1986, the number of farms decreased from 366 thousand to 293 thousand. The average farm size increased from 188 hectares to 231 hectares.

The area of farmland remained stable between 1971 and 1986, while the number of farms decreased from 366 thousand to 293 thousand (Table 4.1.7.2). Average farm size grew from 188 hectares to 231 hectares over the same period.

Summerfallowing is known to promote salinization. Between 1971 and 1986, the amount of farmland used for summerfallow decreased by almost 22 percent, from 10.8 to 8.5 million hectares.

Cropland area has increased steadily since 1901 despite the apparent stabilization of total farmland by 1931 (Table 4.1.7.1). This indicates an intensification of land use where a greater proportion of farmland is being regularly cultivated.

The decline in woodland areas on farms may also indicate a similar trend in intensifying land use on farms.

The Census of Agriculture definitions of the land classes used are:

farmland	the total area of land operated
cropland	total area seeded for harvest
woodland	includes woodlots, windbreaks and Christmas trees
summerfallow	land without a cultivated crop

Table: 4.1.7.1

Farms and Farmland, 1901-1986

		Improved tarmland						
Year	Cropland	Improved pasture	Summer- fallow	Unimproved farmland	Other land	Total Iamland	Number of farms	Average larm size
			million h	ectares			thousand	hectares
1901	8.1	0.0	0.0	13.5	4.1	25.7	511.1	50.3
1911	14.4	0.0	1.0	24.4	4.3	44.1	682.8	64.6
1921	20.2	3.1	4.8	28.4	0.5	57.0	711.1	80.2
1931	23.6	3.2	6.8	31.3	1.1	66.0	728.6	90.6
1941	22.8	3.4	9.5	33.1	1.4	70.2	732.9	95.8
1951	25.2	4.0	8.9	31.2	1.1	70.4	623.1	113.0
1961	25.3	4.1	11.4	28.0	1.0	69.8	480.9	145.1
1971	27.8	4.1	10.8	25.0	1.0	68.7	366.1	187.7
1976	28.3	4.1	10.9	24.2	0.9	68.4	338.6	202.0
1981	30.9	4.1	9.7	19.8	1.4	65.9	318.4	207.0
1986	33.2	3.6	8.5	21.8	0.7	67.8	293.1	231.3

Source:

Statistics Canada. Handbook of Agricultural Statistics. Catalogue 21-503. Statistics Canada. Agriculture Division.

Agricultural Land Use by Sub-basin, 1971 and 1986

				Average farm size				
					Proportion			
	Sub-basin			Channel	of sub-basin in			Channe
Provincial Sub-basin ¹	area	1971	1986	Change 1971-1986	in farmland 1986	1971	1986	Change 1971-1986
	kilometre ²	hecta	ires	P	ercent	hecta	ires	percen
Newfoundland								
North Newloundland	66 367	5 804	10 554	81.8	0.2	21	51	143.6
South Newloundland	46 058	19 571	26 007	32.9	0.6	26	58	128.7
Total	112 425	25 375	36 561	44.1	0.3	24	56	130.6
Prince Edward Island								
Prince Edward Island Total	5 660 5 660	313 482 313 482	272 433 272 433	+ 13.1 + 13.1	48.1 48.1	69 69	96 96	39.4 39. 4
	5 000	313 402	272 433	• 15.1	90.1	0.9	3.0	
Nova Scotia								
Bay of Fundy	20 860	379 747	319 855	- 15.8	15.3	94	103	9.6
Southeast Atlantic Ocean	23 062	103 833	63 260	- 39.1	2.7	79	79	- 0.2
Cape Breton Island Total	11 568	54 196	33 392	- 38.4	2.9	85	91	7.7
FOCEI	55 490	537 777	416 507	- 22.6	7.5	90	97	8.6
New Brunswick								
Saint John and South Bay of Fundy	34 627	370 697	284 499	- 23.3	8.2	105	124	17.3
Gulf of St. Lawrence and North Bay of Fundy Total	38 736	171 231	124 393	- 27.4	3.2	87	99	14.1
FOTAL	73 363	541 928	408 893	- 24.5	5.6	99	115	16.4
Quebec								
Saint John	7 011	121 642	95 975	- 21.1	13.7	97	138	42.5
Cascapedia and Gulf of St. Lawrence	21 809	128 790	93 599	• 27.3	4.3	79	138	74.1
Upper Ottawa	33 256	125 666	104 136	- 17.1	3.1	107	200	86.4
Coulonge and Central Ottawa	17 320	84 622	71 671	- 15.3	4.1	94	114	21.1
Gatineau and Lower Ottawa Upper St. Lawrence	45 401 955	319 815	255 568	- 20.1	5.6	94	107	14.1
SI-Maurice	44 296	66 283 22 420	61 643 11 791	- 7.0	64.5 0.3	62 70	81	31.3
Central St. Lawrence	34 539	1 719 133	1 472 273	- 14.4	42.6	64	71 74	2.0 16.5
Lower St Lawrence	37 577	1 123 790	921 333	- 18.0	24.5	65	78	20.9
North Gaspé Peninsula	13 795	289 280	209 356	- 27.6	15.2	89	131	47.0
Saguenay	87 489	248 322	216 748	- 12.7	2.5	92	130	41.0
Betsiamites	27 280	5 198	4 766	- 8.3	0.2	104	140	34.8
Manicouagan and Outardes	67 763	2 158	1 667	- 22.7	0.0	108	72	- 32.8
Natashquan and Gulf of St. Lawrence	47 282	956	673	- 8.8	0.0	9	21	134.6
Nottaway	65 559	8 195	13 306	62.4	0.2	114	242	112.6
Abitibi and North French	4 297	68 757	80 912	- 11.4	14.2	108	180	66.2
Harricanaw Totel	28 598 584 227	36 027 4 371 056	43 182 3 638 800	19.9 - 16.8	1.5 6.2	108 71	177 88	84.6 23.0
Ontenda								
Ontario Nipigon and Northwest Lake Superior	43 038	42 917	30 62 1	- 28.7	0.7	103	140	8.9
Northeast Lake Superior	40 068	2 486	2 440	- 20.7	0.1	44	113	- 8.4
North Lake Huron	34 378	163 176	132 660	- 18.7	3.9	148	140	- 5.2
Wanipilai and French	19 109	94 466	67 558	- 28.5	3.5	128	122	- 4.1
East Georgian Bay	22 254	508 690	433 169	- 14.8	19.5	68	75	9.5
East Lake Huron	14 810	1 148 400	1 025 053	- 10.7	89.2	73	82	13.1
North Lake Erie	22 944	1 813 257	1 721 611	+ 5.1	75.0	56	68	22.5
Lake Ontano	28 709	1 232 742	1 048 344	- 15.0	36.5	60	67	12.3
Montréal and Upper Ottawa	17 624	100 386	93 326	- 7.0	5.3	120	141	18.2
Madawaska, Petawawa and Central Ottawa	22 903	402 596	313 219	- 22.2	13.7	110	105	- 4,4
Rideau and Lower Ottawa Upper St. Lawrence	9 009 4 454	562 166	451 468	- 19.7	50.1	77	86	12.6
Moose	63 296	252 518 13 336	192 224 11 148	- 23.9	43.2	82	95	16.9
Ablibi	32 707	27 336	30 257	10.7	0.2	122 118	115 145	- 6.1 23.4
Upper Winnipeg	43 435	75 798	76 833	1.4	1.8	147	187	27.0
English	51 416	19 746	16 651	- 15.7	0.3	169	160	- 5.1
Total	470 153	6 460 019	5 646 582	- 12.6	12.0	68	78	13.9
Manitoba								
Saskatchewan	18 815	43 819	41 522	- 5.2	2.2	337	322	- 4.5
Lake Winnipegosis and Lake Manitoba	54 912	2 393 275	2 470 472	3.2	45.0	261	348	33.1
Assinibolne	24 874	1 905 621	1 931 633	1.4	77.7	249	313	25.7
Souris	9 040	806 679	803 351	- 0.4	88.9	297	377	26.9
Red	25 547	2 037 883	2 003 009	- 1.7	78.4	167	210	26.1
Winnipeg West Lake Winnipeg	12 973 23 910	71 650 433 440	68 848 421 391	- 3.9	5.3	129	162	25.5
Total	170 071	7 692 369	7 740 226	- 2.8 0.6	17.6 45.5	171	228	33.4 28.8
T ST LIE I	110 0/1	1 005 303	1 140 220	0.0	43.3	220	283	28.

Agricultural Land Use by Sub-basin, 1971 and 1986

			Average farm size					
Deviation Only Associate	Sub-basin	1971	1986	Change 1971-1986	Proportion of sub-basin in in farmland 1986	1971	1986	Change
Provincial Sub-basin ¹	area			19/1-1900	1986	1971	1980	1971-1986
	kilometre ²	hect	ares	p	ercent	hecta	res	percent
Saskatchewan								
Upper South Saskatchewan	920	49 230	25 090	- 49.0	27.3	535	512	- 4.3
Central North Saskatchewan	13 562	1 081 053	1 143 180	5.7	84.3	356	455	27.8
Battle	4 431	350 300	350 465	0.0	79.1	413	501	21.2
Lower North Saskatchewan	41 103	3 550 855	3 572 914	0.6	86.9	362	440	21.5
Lower South Saskatchewan	55 013	5 112 095	5 213 686	2.0	94.8	392	451	15.3
Qu'Appelle	70 192	6 625 190	6 694 158	1.0	95.4	344	412	19.7
Saskatchewan	58 186	1 290 316	1 271 774	- 1.4	21.9	233	310	32.9
Lake Winnipegosis and Lake Manitoba	18 789	777 880 2 376 787	842 472 2 361 402	8.3	44.8	231 227	306	32.8
Assiniboine	26 964 29 449	2 697 056	2 691 262	- 0.6 - 0.2	87.6 91.4	353	305	34.5 18.3
Souris Beaver	32 379	637 530	645 708	- 0.2	91.4	353	418 481	18.3
	20 506	1 779 290	1 787 240	0.4	87.2	839	961	14.6
Missouri	371 494	26 327 581	26 599 354	1.0	71.6	342	419	22.6
Total	371 434	20 327 301	20 333 334	1.0	71.0	342	418	22.0
Alberta								
Upper South Saskatchewan	45 921	3 559 909	3 819 260	7.3	83.2	500	538	7.6
Bow	25 442	1 382 546	1 315 670	- 4.8	51.7	394	400	1.5
Red Deer	49 135	4 102 515	4 061 542	- 1.0	82.7	367	389	6.2
Upper North Saskatchewan	27 964	553 432	622 894	12.6	22.3	156	180	15.9
Central North Saskatchewan	28 759	2 409 187	2 344 818	- 2.7	81.5	201	234	16.6
Battle	25 703	2 346 445	2 284 856	- 2.6	88.9	300	336	12.0
Lower North Saskatchewan	10 764	1 054 318	1 074 472	1.9	99.8	853	911	6.7
Beaver	16 973	414 533	498 781	20.3	29.4	260	339	30.4
Upper Athabasca	34 896	123 533	147 318	19.3	4.2	225	232	3.1
Pembina and Central Athabasca	41 135	976 406	1 091 892	11.8	26.5	205	239	16.8
Lower Central Athabasca	42 244	204 027	230 095	12.8	5.4	219	262	19.3
Upper Peace	17 550	788 812	871 118	10.4	49.6	299	377	26.0
Smoky	46 148	944 333	1 043 764	10.5	22.6	270	334	23.9
Central Peace	35 731	410 854	558 662	36.0	15.6	282	337	19.5
Lower Central Peace	58 730	75 282	152 717	102.9	2.6	264	395	49.4
Missouri	6 982	688 348	537 481	- 21.9	77.0	1 326	1 197	- 9.7
Total	514 076	20 034 481	20 655 340	3.1	40.2	320	358	11.9
British Columbia								
Williston Lake	72 865	5 389	16 385	204.0	0.2	449	431	- 4.0
Upper Peace	49 133	671 655	859 647	28.0	17.5	387	484	25.0
Skeena	56 521	83 607	70 608	- 15.5	1.2	296	183	- 38.1
Gardner Canal and Central Pacific Ocean	52 379	8 168	8 293	1.5	0.2	227	163	- 28.3
Knight Inlet and South Pacific Ocean	43 196	9 782	24 835	153.9	0.6	104	177	70.5
Vancouver Island	34 786	50 169	53 109	5.9	1.5	28	24	- 15.3
Nechako	46 939	134 216	189 118	40.9	4.0	256	290	13.2
Upper Fraser	65 949	143 794	151 070	5.1	2.3	187	168	- 10.2
Thompson	55 991	545 790	425 721	- 22.0	7.6	364	227	- 37.5
Fraser	63 094	320 789	300 447	- 6.3	4.8	48	49	3.5
Columbia	102 684	382 155	301 595	- 21.1	2.9	77	61	- 20.6
Queen Charlotte Islands	9 844	1 070	617	- 42.4	0.1	67	51	- 23.1
Fort Nelson	53 979	1 796	9616	435.4	0.2	163	370	126.5
Total	707 161	2 358 382	2 411 061	2.2	3.4	128	126	- 1.2
Canada		68 662 448	67 825 757	- 1.2	22.1	166	231	23.4

Source:

Statistics Canada. Environment and Wealth Accounts Division. Agriculture Division.

Notes:

¹ Includes only sub-basins where agriculture is present.

Agricultural Land Use Changes, by Sub-basin, 1971 and 1986

		Cropland area		Summerfallow area				Woodland area		
Provincial Sub-basin	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986	
	hecta	ires	percent	hecta	res	percent	hect	anes	percen	
Newfoundland										
North Newfoundland	1 034	1 942	87.9	62	173	177.9	1 556	2 795	79.	
South Newloundland	2 502	2 934	17.3	140	212	51.6	3 033	2 435	- 19.1	
Total	3 535	4 876	37.9	202	385	90.6	4 588	5 231	14.0	
Prince Edward Island										
Prince Edward Island	142 200	156 498	10.1	3717	2 647	- 28.8	85 353	61 199	- 28.3	
Total	142 200	156 498	10.1	3 717	2 647	- 28.8	85 353	61 199	- 28.	
Nova Scotia										
Bay of Fundy	82 623	93 756	13.5	2 261	3 413	50.9	199 296	146 475	- 26.	
Southeast Atlantic Ocean	9 169	9 447	3.0	181	255	41.2	69 018	37 783	- 45.3	
Cape Breton Island	6 530	6 309	- 3.4	96	242	152.7	31 291	16 541	- 47.	
Total	98 322	109 512	11.4	2 538	3 910	54.1	299 604	200 799	- 33.0	
New Brunawick										
Saint John and South Bay of Fundy	93 055	90 573	- 2.7	2 333	2 960	26.9	190 049	130 107	- 31.5	
Gulf of St. Lawrence and North Bay of Fundy	37 379	38 902	4.1	1 145	1 329	16.0	86 042	54 320	- 36.9	
Total	130 434	129 475	- 0.7	3 478	4 289	23.3	276 091	184 427	- 33.3	
Quebec										
Saint John	30 596	25 498	- 16.7	429	653	52.3	62 521	52 067	- 16.7	
Cascapedia and Gulf of St. Lawrence	37 479	33 874	- 9.6	632	593	- 6.1	61 052	41 957	- 31.3	
Upper Ottawa	44 780	37 661	- 15.9	941	837	- 11.1	28 891	32 811	12.9	
Coulonge and Central Ottawa	26 872	27 937	4.0	353	811	73.1	25 266	16 313	- 35.4	
Gatineau and Lower Ottawa	92 862	86 841	- 6.5	2 514	1 877	- 33.3	125 991	93 127	- 26.1	
Upper St. Lawrence	41 242	48 097	16.6	779	346	- 55.6	5 109	3 840	- 24.8	
St-Maunce	5 853	4 341	- 25.8	355	166	- 53.1	8 256	4 530	- 45.1	
Central St. Lawrence	827 676	857 034	3.5	15 635	13 442	- 14.0	367 953	304 026	- 17.4	
Lower St Lawrence	414 921 102 446	394 165	- 5.0 - 8.8	5 862	7 360	25.6 - 28.1	374 342	317 955	- 15.1	
North Gaspé Peninsula	91 980	93 427 94 170	2.4	2 133 2 152	2 539	- 28.1	108 852 60 856	72 229	- 33.5	
Saguenay Betsiamites	91 960	1 242	29.4	45	2 539	10.9	1 813	56 978 2 560	- 6.4 41.2	
Manicouagan and Outardes	507	684	34.8	36	177	386.7	377	325	- 13.0	
Natashguan and Gulf of St. Lawrence	344	338	- 1.5	29	25	- 11.3	131	74	- 43.5	
Notiaway	2 470	3 248	31.5	226	103	- 54.5	1 547	4 655	201.0	
Abitibi and North French	22 851	21 660	- 5.2	552	1 110	101.3	14 481	14 295	- 1.3	
Harricanaw	11 379	14 178	24.6	379	579	52.6	6 848	12 044	75.9	
Total	1 755 217	1 744 396	- 0.6	33 051	31 803	- 3.8	1 254 088	1 029 587	- 17.9	
Ontario										
Nipigon and Northwest Lake Superior	13 287	12 512	· 5.8	507	393	- 22.4	14 253	6 574	- 53.9	
Northeast Lake Superior	845	847	0.2	46	110	139.8	563	409	- 27.3	
North Lake Huron	32 879	32 352	- 1.8	1 138	1 104	- 3.0	49 461	31 111	- 37.1	
Wanipital and French	23 824	21 559	- 9.5	1 138	544	· 52.2	32 975	15 979	- 51.5	
East Georgian Bay	220 091	236 224	7.3	10 256	6 964	- 32.1	79 859	47 866	- 40.1	
East Lake Huron	571 081	669 735	17.3	10 176	8 236	- 19.0	133 186	95 544	- 28.3	
North Lake Erie	1 253 067	1 387 405	10.7	38 750	26 217	- 32.3	135 159	101 572	- 24.9	
Lake Ontario	549 304	563 368	2.6	24 558	24 707	0.6	165 246	104 002	- 37.1	
Montreal and Upper Ottawa	38 804	45 184	16.4	477	936	96.4	23 369	11 959	- 48.8	
Madawaska, Petawawa and Central Ottawa	102 066	102 945	0.9	1 282	1 908	48.8	137 669	77 894	- 43.4	
Rideau and Lower Ottawa	247 123	257 124	4.0	5 489	5 122	- 6.7	76 817	45 831	- 40.0	
Upper SI. Lawrence	92 703	89 880	- 3.0	1 462	1 747	19.5	41 239	26 344	- 36.1	
Moose	4 294	4 038	- 5.9	23	121	426.3	3 530	1 924	- 45.	
Abitibi Upper Winnipeg	7 069	8 686 21 204	22.9 19.4	225 553	178 1 801	- 20.9 225.6	7 955 22 920	5 325	- 33.1	
English	4 963	4 903	- 1.2	202	246	225.0	6 826	11 148 4 065	- 51.4	
Total	3 179 166	3 457 966	8.8	96 281	80 337	- 16.6	931 028	587 548	- 36.9	
Manitobe										
Saskatchewan	14 073	21 695	54.2	4 706	3 537	- 24.8	4 503	456	- 89.9	
Lake Winnipegosis and Lake Manitoba	862 186	1 076 038	24.8	276 585	134 707	- 51.3	172 424	49 300	- 71.4	
Assiniboine	874 698	1 134 421	29.7	371 173	182 784	- 50.8	68 919	27 834	- 59.9	
Souris	417 574	542 929	30.0	146 480	49 096	· 66.5	11 633	4 724	- 59.4	
Red	1 309 099	1 521 275	16.2	226 494	79 064	- 65.1	77 865	25 356	- 87.	
Winnipeg	31 757	37 808	19.1	5 191	6 568	26.5	6 161	2 507	- 59.3	
West Lake Winnipeg	182 147	185 168	1.7	43 891	53 457	21.8	47 066	14 240	- 69.7	
Total	3 691 734	4 519 335	22.4	1 074 520	509 213		368 572			

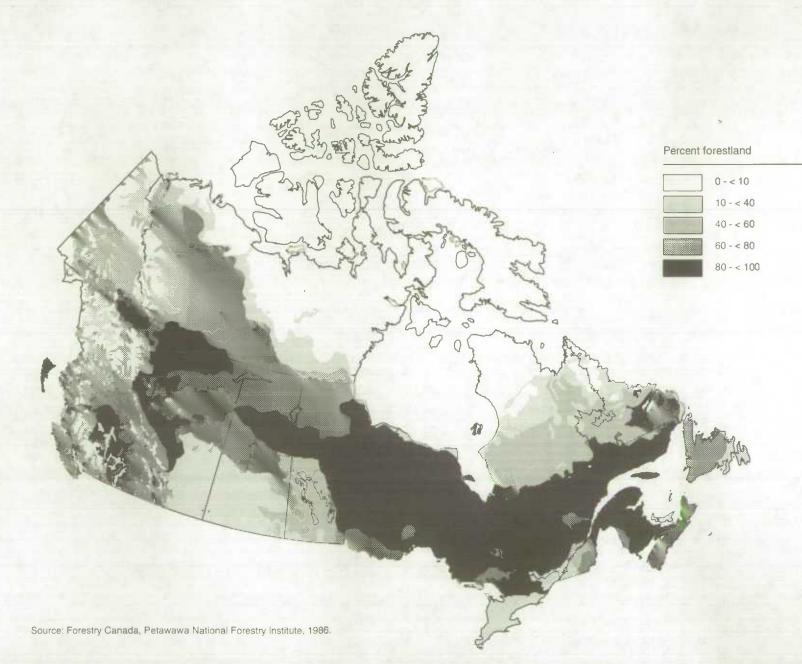
Agricultural Land Use Changes, by Sub-basin, 1971 and 1986

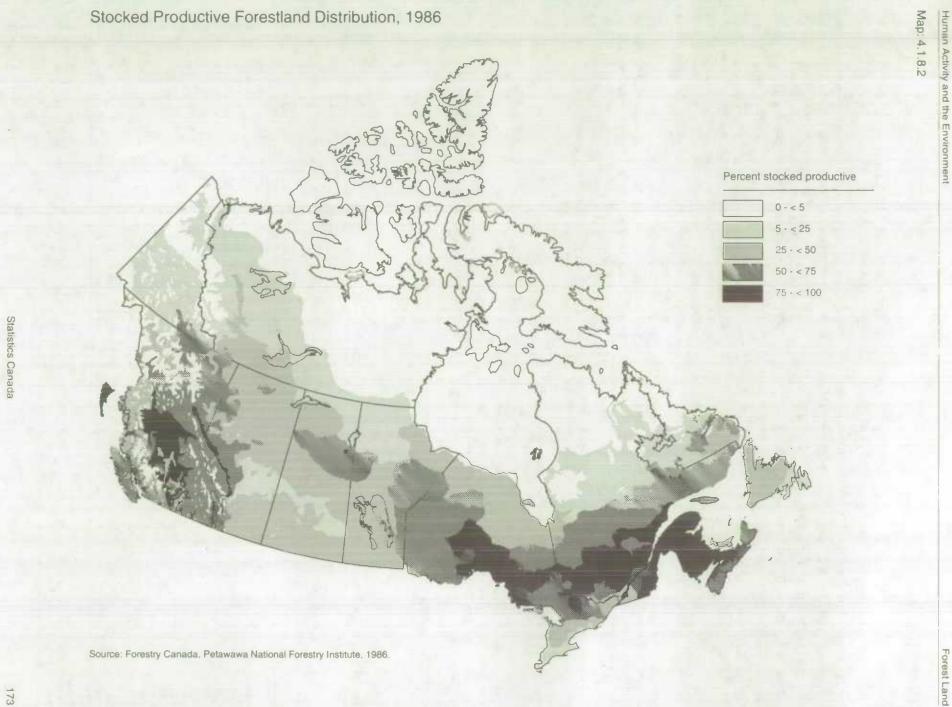
		Cropland area		Su	mmerfallow are	0			
Provincial Sub-basin	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986	1971	1986	Change 1971-1986
	hect	Bres	percent	hecta	ires	percent	hect	ares	percent
Saskatchewan									
Upper South Saskatchewan	16 393	10 000	- 39.0	12 901	9 100	- 29.5	0	0	
Central North Saskatchewan	374 976	566 502	51.1	211 240	126 378	- 40.2	32 020	13 867	- 56.7
Battle	132 023	195 040	47.7	83 373	43 931	- 47.3	3 2 1 9	1 023	- 68.2
Lower North Saskatchewan	1 520 659	1 780 274	17.1	942 034	826 983	- 12.2	55 858	21 332	- 61.8
Lower South Saskatchewan	2 063 359	2 373 594	15.0	1 364 109	1 283 139	- 5.9	31 830	10 014	- 68.5
Qu'Appelle	2 988 427	3 403 531	13.9	1 954 180	1 779 229	- 9.0	33 690	12 455	- 63.0
Saskatchewan	680 792	910 513	33.7	348 011	138 888	- 60.1	56 970	25 071	- 56.0
	322 903	476 109	47.4	182 784	119 975	- 34.4	50 591	24 152	- 52.3
Lake Winnipegosis and Lake Manitoba Assiniboine	1 115 347	1 430 716	28.3	571 116	374 991	- 34.3	75 381	28 311	- 62.4
Souris	1 262 827	1 441 558	14.2	686 716	615 788	- 10.3	15 438	4 006	- 74.0
Beaver	184 503	242 990	31.7	66 356	44 915	- 32.3	48 542	11 287	- 76.7
Missouri	401 550	494 984	23.3	278 703	298 287	7.0	814	1 176	44.4
Total	11 063 759	13 325 811	20.4	6 701 523	5 661 605	- 15.5	404 354	152 694	- 62.2
Alberta			07.0	000 000	503 105	00.5	40.000	6 004	- 42.8
Upper South Saskatchewan	1 124 743	1 547 340	37.6	638 500	507 495	- 20.5	10 293	5 884	
Bow	468 400	526 315	12.4	190 981	133 779	- 30.0	13 988	5 828	- 58.3
Red Deer	1 404 836	1 705 664	21.4	546 440	400 990	- 26.6	72 847	26 863	- 63.1
Upper North Saskatchewan	245 851	269 652	9.7	34 569	18 365	- 46.9	59 152	19 0 1 1	- 67.9
Central North Saskatchewan	1 099 863	1 279 326	16.3	357 583	228 054	- 36.2	105 869	41 150	- 61.1
Battle	974 623	1 277 688	31.1	406 189	186 957	- 54.0	58 826	24 444	- 58.4
Lower North Saskatchewan	256 569	358 136	39.6	149 197	171 147	14.7	2 353	1 120	- 52.4
Beaver	130 697	163 626	25.2	33 180	26 080	· 21.4	29 329	11 901	- 59.4
Upper Athabasca	27 230	36 702	34.8	4 817	3 448	- 28.4	20 107	7 876	- 80.8
Pembina and Central Athabasca	412 483	487 012	18.1	93 042	52 699	- 43.4	92 912	35 527	- 61.8
Lower Central Athabasca	77 918	96 097	23.3	21 755	13 515	- 37.9	21 232	8 389	- 60.5
Upper Peace	357 130	430 870	20.6	111 715	120 260	7.6	67 891	34 537	- 49.1
Smoky	431 617	513 151	18.9	119 564	115 295	- 3.6	77 089	28 780	- 62.7
Central Peace	163 494	280 072	52.6	53 655	72 248	34.7	31 485	30 695	- 2.5
Lower Central Peace	23 050	68 043	195.2	8 435	20 507	143.1	10 469	6 759	- 35.4
Missouri	103 289	122 827	18.9	66 702	52 821	- 20.8	450	59	- 86.9
Total	7 321 792	9 162 523	25.1	2 836 325	2 123 659	- 25.1	674 291	288 824	- 57.2
British Columbia	20.00		100.0	1.1.2					
Williston Lake	845	3 692	336.8	157	745	373.3	1 972	713	- 63.8
Upper Peace	209 510	261 717	24.9	62 552	66 907	7.0	83 661	40 958	- 51.0
Skeena	10 795	14 994	38.9	295	354	19.9	21 158	4 111	- 80.6
Gardner Canal and Central Pacific Ocean	354	1 692	378.3	89	5	- 94.1	365	592	62.3
Knight Inlet and South Pacific Ocean	1 161	2 343	101.8	23	68	193.0	1 003	513	- 48.8
Vancouver Island	11 175	15 177	35.8	353	340	- 3.8	15 110	9 504	- 37.1
Nechako	20 022	38 361	91.6	1 169	3 450	195.1	35 677	13 032	- 63.5
Upper Fraser	23 690	34 917	47.4	609	2 099	244.9	37 988	12 249	- 67.8
Thompson	41 569	56 531	36.0	985	2 592	163.1	63 715	31 665	- 50.3
Fraser	56 398	74 205	31.6	1 412	1 441	2.1	30 908	17 017	- 44.9
Columbia	66 744	65 564	- 1.8	2 291	2 795	22.0	49 695	23 123	- 53.5
Queen Charlotte islands	59	31	. 47.0	0	0	LL.V	407	136	- 66.7
Fort Nelson	160	1 620	913.2	15	370	2 441.4	407	904	2 111.9
Total	442 481	570 843	29.0	69 951	81 167	16.0	341 701	154 516	- 54.8
Canada	27 828 641	33 181 234	19.2	10 821 587	8 499 015	- 21.5	4 659 671	2 789 041	- 40.1

Source: Statistics Canada. Environment and Wealth Accounts Division. Agriculture Division.

4.1.8 Forest Land

Canada contains 10 percent of the world's productive forest. This forest is being harvested at a rate of over one million hectares per year. Although attempts are being made to regenerate harvested area, the resulting forests are different from the original forests. These forests contain trees of only one age and species, which create an environment where only a few other flora and fauna species can thrive.


More than half of Canada's land area is covered by forests. Forest resources provide employment for almost 900,000 Canadians. The sustainability of the forest resource is important not only to the Canadian economy but to the entire world as it represents almost one-third of the world's Boreal Forest.


Forestry Canada uses Rowe's Forest Regions⁴⁶ to define areas with homogeneous characteristics. Map 4.1.8.1 shows the extent of forestland in Canada according to these regions.

Canada's Forest Inventory defines **productive forest land** as capable of producing a merchantable stand within a reasonable length of time. **Stocked productive land** is not only productive but is stocked with growing trees. More than half of Canada's forest area is considered to be economically productive (Map 4.1.8.2).

46. Rowe, J.S. 1972. Forest Regions of Canada. Canadian Forestry Service.

172

Forest Land

4.1.9 Minerals

At current production levels, estimated reserves of conventional petroleum will be depleted within 14 years. The estimated reserve life of natural gas is 27 years. Canada's coal reserves could last another 70 years. The reserve lives for other minerals range from 20 to 30 years.

Measuring the reserves of minerals provides an estimate of how long the stock may last at current production levels. Furthermore, regions that contain established reserves are at risk of environmental stress from production.

The measurement of reserves is not straightforward. Prices and available technology determine the feasibility of exploring for minerals and extracting them. The figures in these tables represent **established reserves**, reserves recoverable under current economic conditions with present technology.

Canada has substantial reserves of minerals, petroleum and gas. Although the reserves of conventional oil are diminishing (Figure 4.1.9.1 and Table 4.1.9.2), there are many regions not yet explored. At current production levels, the existing established reserves would be depleted within 14 years. Coal and natural gas are plentiful and the reserves have been stable or growing. The estimated reserve life of is 27 years

Table: 4.1.9.1

Recoverable Reserves and Production of Coal in Canada, 1974-88

		Remaining	g recoverable reser	ves			production		
		Class of				Class of coai			
			Bitu	minous					
Year	Lignițic	Sub-bituminous	Thermal	Metallurgical	Total	Lignilic	Sub- bituminous	Bituminous	Total
				megatonne	s (million tonnes)				
1974						3.5	5.1	16.1	24.7
1975						3.5	6.0	21.3	30.8
1976		**			5 381	4.7	6.4	14.4	25.5
1977	1 921	1 979			5 358	5.5	7.9	20.4	33.8
1978	2 117	2 182	344	1 263	5 906	5.1	8.3	22.3	35.7
1979	2 117	2 182	344	1 263	5 906	5.0	9.6	25.2	39.8
1980	2 117	2 182	344	1 263	5 906	6.0	10.5	27.3	43.8
1981	2 117	2 182	344	1 263	5 906	6.8	11.6	28.7	47.1
1982	2 263	918	1 057	2 030	6 268	9.5	13.0	31.4	53.9
1983	2 263	918	1 057	2 030	6 268	7.8	14.6	31.9	54.3
1984	2 263	918	1 057	2 030	6 268	9.9	15.4	45.8	71.1
1985	2 236	871	1 553	1 918	6 578	9.7	16.9	50.1	76.7
1986	2 236	871	1 553	1 918	6 578	8.3	18.2	46.3	72.8
1987	2 236	871	1 553	1 918	6 578	10.0	18.5	48.9	77.4
1988	2 236	871	1 553	1 918	6 578	12.2	20.0	57.1	89.3

Source:

Canmet Report 87-3E. Coal Mining in Canada. Statistics Canada. Coal Mines. Catalogue 26-206.

Energy Mines and Resources. 1979. Assessment of Canada's Coal Resources and Reserves. Catalogue EP 77-5.

for natural gas (Table 4.1.9.3, Figure 4.1.9.2) and 70 years for coal (Table 4.1.9.1).

The reserves of copper, nickel, lead, zinc, molybdenum and silver have all diminished over the past decade. The reserve lives of these minerals are all between 20 and 30 years. Gold reserves have steadily increased since the early 1980s. In 1989, the estimated reserve life for gold was 11 years (Table 4.1.9.4).

The potash reserves of Canada amount to almost seventy five percent of world reserves. It is estimated⁴⁶ that 14,000 million tonnes of potash are accessible by conventional mining methods. Another 30,000 million tonnes, mainly in southern Saskatchewan, are believed to be available by solution mining.

The most recent appraisal of iron ore reserves indicates that there are approximately 6 billion tonnes of proven iron ore reserves remaining in Canada. At current production levels of about 40 million tonnes of iron ore per year, this reserve level is not significantly affected by production⁴⁷.

 Energy, Mines and Resources Canada. Canadian Potash 1980-2000. Working paper.

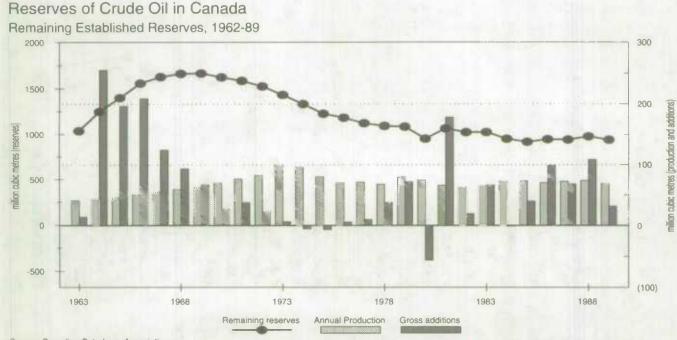
47. Energy, Mines and Resources Canada. Mineral Policy Sector.

Table: 4.1.9.2

Remaining Established Reserves of Crude Oil in Canada, 1961-89¹

Year	Remaining at beginning of year	Gross additions	Net production ²	Remaining at end of year	Net change in reserves
			housand cubic metres		
9613	584 557	113 788	35 123	863 222	78 665
9623	663 222	87 720	38 914	1 062 733	48 806
1963	1 062 733	13 944	40 758	1 035 919	-26 814
964	1 035 919	255 384	43 033	1 248 270	212 351
965	1 248 270	196 556	46 337	1 398 489	150 219
1966	1 398 489	208 887	50 224	1 557 152	158 663
1967	1 557 152	124 587	54 690	1 627 049	69 897
1968	1 627 049	93 668	59 030	1 661 687	34 638
969	1 661 687	66 636	62 516	1 665 807	4 120
970	1 665 807	26 894	69 606	1 623 095	-42 712
1971	1 623 095	37 636	76 297	1 584 434	-38 661
1972	1 584 434	22 229	82 319	1 524 344	-60 090
1973	1 524 344	6 537	99 423	1 431 458	-92 886
1974	1 431 458	-5 065	95 530	1 330 863	- 100 595
1975	1 330 863	-6 280	79 897	1 224 686	-86 177
1976	1 224 686	5 921	69 683	1 180 924	-63 762
1977	1 180 924	10 227	70 872	1 120 279	-60 645
1978	1 120 279	37 426	67 647	1 090 058	-30 221
1979	1 090 058	71 415	79 469	1 082 004	-8 054
1980	1 082 004	-56 247	74 529	951 228	- 130 776
1981	951 228	178 220	65 873	1 063 575	112 347
1982	1 063 575	19 341	61 756	1 021 133	-42 415
1983	1 021 133	66 074	64 488	1 022 719	1 586
1984	1 022 719	- 588	73 108	949 023	-73 696
1985	949 023	39 837	73 030	915 830	-33 193
1966	915 830	98 719	70 138	944 411	28 581
1987	944 411	67 943	72 192	940 162	-4 249
	944 411	108 488	73 482	975 148	-37 155
1988 1989	940 162	31 677	66 832	937 993	61 904

Source


Canadian Petroleum Association. Statistical Yearbook. Notes:

¹ Includes conventional and frontier areas.

² Preliminary estimate; corrections to previous year production included with gross additions

³ 1961 and 1962 reported as proved reserves.

Figure: 4.1.9.1

Source: Canadian Petroleum Association. Statistical Yearbook.

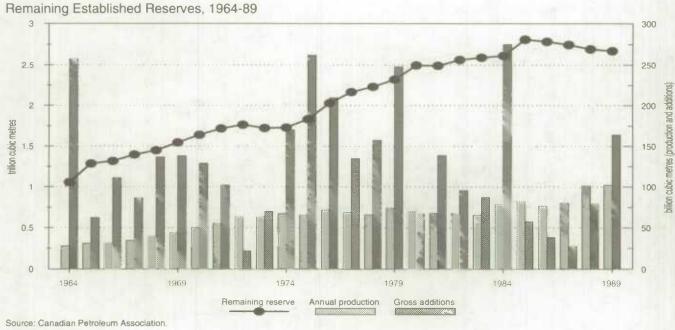
Table: 4.1.9.3

Remaining Established Reserves of Marketable Natural Gas in Canada, 1961-89¹

	Remaining at	Gross	Net	Remaining at	Net change
Year	beginning of year	additions	production ²	end of year	in reserves
		mi	illion cubic metres		
1961 ³	760 530	91 169	19 552	832 147	71 617
1962 ³	832 147	70 930	23 565	879 512	47 365
1963 ³	879 512	74 749	24 738	1 054 466	174 954
1964	1 054 466	257 146	27 654	1 283 958	229 492
1965	1 283 958	62 203	30 860	1 315 301	31 343
1966	1 315 301	110 766	31 199	1 394 868	79 567
1967	1 394 868	86 355	34 146	1 447 077	52 209
1968	1 447 077	136 443	39 335	1 544 185	97 108
1969	1 544 185	137 938	43 792	1 638 331	94 146
1970	1 638 331	128 611	50 121	1 716 821	78 490
1971	1 716 821	101 860	55 025	1 763 656	46 835
1972	1 763 656	21 822	83 486	1 721 992	-41 664
1973	1 721 992	70 228	63 539	1 728 681	6 689
1974	1 728 681	169 925	67 140	1 831 466	102 785
1975	1 831 466	261 729	65 680	2 027 515	196 049
1976	2 027 515	209 181	71 906	2 164 790	137 275
1977	2 164 790	134 970	68 918	2 230 842	66 052
1978	2 230 842	157 213	65 842	2 322 213	91 371
1979	2 322 213	247 681	73 837	2 496 057	173 844
1980	2 496 057	66 784	70 977	2 491 864	-4 193
1981	2 491 864	138 614	67 505	2 562 973	71 109
1982	2 562 973	95 498	67 421	2 591 050	28 077
1983	2 591 050	87 478	65 933	2 612 595	21 545
1984	2 612 595	275 000	79 014	2 808 581	195 986
1985	2 808 581	57 764	82 422	2 783 923	-24 658
1986	2 783 923	38 554	76 967	2 745 510	-38 413
1987	2 745 510	27 141	79 868	2 692 783	-52 727
1988	2 692 783	78 870	101 108	2 670 545	-22 238
1989	2 670 545	163 947	102 043	2 732 449	61 904

Source:

Canadian Petroleum Association. Statistical Yearbook. Notes:


Includes conventional and frontier areas.

² Preliminary estimate; corrections to previous year production included with gross additions; includes adjustments for underground storage.

Reserves of Natural Gas in Canada

3 1961-1963 reported as proved reserves.

Figure: 4.1.9.2

Source: Canadian Petroleum Associati-Statistical Yearbook.

Table: 4.1.9.4

Proven and Probable Reserves of Major Metals in Canada, 1974-1990

Metal Contained in Proven and Probable Minable Ore in Operating Mines and Deposits Committed to Production

		Copper (th	ousand tonne	98)				Nickel (th	ousand tonne	5)	
Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)	Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years
1974	17 033	836	821	17 048	21	1974	7 119	418	269	7 268	27
1975	17 048	489	734	16 803	23	1975	7 268	240	242	7 266	30
1976	16 803	562	731	16 634	23	1976	7 266	301	241	7 326	30
1977	16 634	596	759	16 471	22	1977	7 326	296	233	7 389	32
1978	16 471	28	659	15 840	24	1978	7 389	- 191	128	7 070	55
1979	15 840	1 201	636	16 405	26	1979	7 070	302	127	7 245	57
1980	16 405	1 1 4 2	716	16 831	24	1980	7 245	1 244	185	8 304	45
1981	16 831	- 294	722	15 815	22	1981	8 304	- 131	160	8 013	50
1982	15815	1 946	739	17 022	23	1982	8 013	- 343	89	7 581	85
1983	17 022	- 160	699	16 163	23	1983	7 581	- 117	125	7 339	59
1984	18 163	419	794	15 788	20	1984	7 339	57	174	7 222	42
1985	15 788	- 665	739	14 384	19	1985	7 222	- 5	170	7 047	41
1986	14 384	- 354	699	13 331	19	1986	7 047	- 179	164	6 704	41
1987	13 331	449	794	12 986	16	1987	6 704	90	189	6 605	35
1988	12 986	322	759	12 549	17	1988	6 605	- 127	199	6 279	32
1989	12 549	413	704	12 258	17	1989	6 279	49	196	6 1 3 2	31
1990	12 258		780			1990	6 1 3 2		197		

		Lead (tho	usand tonner)				Zinc (tho	usand tonnes)	
Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)	Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)
1974	9 328	276	294	9 310	32	1974	28 725	676	1 127	28 274	25
1975	9310	257	349	9 2 1 8	26	1975	28 274	864	1 055	28 083	27
1976	9218	66	256	9 0 2 8	35	1976	28 083	306	982	27 407	28
1977	9 0:28	187	281	8 934	32	1977	27 407	572	1 071	26 908	25
1978	8 9:34	297	320	8 9 1 1	28	1978	26 908	611	1 067	26 452	25
1979	8911	957	311	9 557	31	1979	26 452	3 283	1 100	28 635	26
1980	9 557	814	252	10 119	40	1980	28 635	1 685	884	29 436	33
1981	10 119	394	269	10 244	38	1981	29 436	980	911	29 505	32
1982	10 244	- 943	272	9 029	33	1982	29 505	-2 462	966	26 077	27
1983	9 029	291	272	9 048	33	1983	26 077	1 282	988	26 371	27
1984	9 048	103	264	8 887	34	1984	26 371	910	1 063	26 218	25
1985	8 887	- 807	268	8 012	30	1985	26 2 18	-1 422	1 049	23 747	23
1986	8012	- 511	334	7 167	21	1986	23 747	- 336	988	22 423	23
1987	7 167	- 113	373	6 681	18	1987	22 423	- 524	1 158	20 741	18
1988	6 681	659	351	6 989	20	1988	20 7 4 1	1 703	1 370	21 074	15
1989	6 989	221	269	6 941	26	1989	21 074	1 887	1 273	21 688	17
1990	6 94 1		224			1990	21 688		1 265		

		Molybdenum	(thousand to	nnes)				Silve	er (tonnes)		
Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)	Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)
1974	294	64	14	344	25	1974	27 377	2 542	1 332	28 587	21
1975	344	11	13	342	26	1975	28 587	514	1 235	27 866	23
1976	342	50	15	377	25	1976	27 866	3 905	1 281	30 490	24
1977	377	24	17	384	23	1977	30 4 90	- 91	1 314	29 085	22
1978	364	92	14	462	33	1978	29 085	1 580	1 267	29 398	23
1979	462	103	11	554	50	1979	29 398	3 313	1 147	31 564	28
1980	554	в	12	550	46	1980	31 564	3 120	1 070	33 614	31
1981	550	- 23	13	514	40	1981	33 614	- 331	1 129	32 154	28
1982	514	- 6	14	494	35	1982	32 154	541	1 314	31 381	24
1983	494	- 38	10	446	45	1983	31 361	1 175	1 197	31 359	26
1984	446	- 42	12	392	33	1984	31 359	1 266	1 327	31 298	24
1985	392	- 21	8	363	45	1985	31 298	-1 303	1 197	28 798	24
1986	36.3	- 6	11	346	31	1986	28 798	-1 016	1 088	26 694	25
1987	346	- 89	15	242	16	1987	26 694	341	1 375	25 660	19
1988	242	2	14	230	16	1968	25 660	3 194	1 443	27 411	19
1989	230	16	14	234	17	1989	27 411	691	1 312	26 790	20
1990	234		14			1990	26 790		1 400		

Proven and Probable Reserves of Major Metals in Canada, 1974-1990

Metal Contained in Proven and Probable Minable Ore in Operating Mines and Deposits Committed to Production

		G	old (tonnes)			
Year	Remaining reserves	Gross additions	Production	Remaining reserves	Reserve life (years)	
1974	371	54	53	372	7	
1975	372	33	51	354	7	
1976	354	94	52	396	8	
1977	396	23	53	366	7	
1978	366	97	53	410	8	
1979	410	181	51	540	11	
1980	540	278	49	770	16	
1981	770	122	50	842	17	
1982	842	58	62	838	13	
1983	838	399	70	1 167	17	
1984	1 167	118	80	1 205	15	
1985	1 205	237	84	1 358	16	
1986	1 358	238	100	1 496	15	
1987	1 496	364	112	1 748	16	
1988	1 748	201	130	1 819	14	
1989	1 819	88	159	1 748	11	
1990	1 748		164			

Source:

Energy, Mines and Resources Canada. Canadian Mineral Yearbook.

Statistics Canada. General Review of the Mineral Industries, Mines, Quarries and Oil Wells. Catalogue 26-201.

Note:

¹ Reserve data exclude metal in placer deposits; production data are adjusted to exclude production from placer operations.

Table: 4.1.9.5

Estimates of Uranium Reserves Recoverable from Mineable Ore in Canada (1973-1989)²

						Reserve type		
Net		3.4	Total remaining recoverable reserves		Probable (indicated)		Proven (measured)	
	Annual production	A ^{1,5}	A ^{1.6}	B ^{3,5}	A ^{1,5}	B ^{1.5}	A ^{1.5}	Year
			nd tonnes	thousan				
		156		14	91	4	65	1973
- 15	5	141	156	13	82	3	59	1974
4	6	145	141	17	82	11	63	1975
22	8	167	145	11	88	4	79	1976
5	8	172	167	13	94	4	78	1977
43	8	215	172	16	139	4	76	1978
15	7	230	215	25	157	4	73	1979
0	7	230	230	22	163	6	67	1980
- 32	8	198	230	12	153	2	45	1981
- 22	8	176	198	8	144	1	32	1982
16	7	192	176	41	162	0	30	1983
- 37	11	155	t 92	59	124	0	31	1984
5	11	160	155	72	119	0	41	1985
- 7	12	153	160	95	107	1	46	1986
- 5	12	148	153	94	104	1	44	1987
. 9	11	139	148	94	98	2	41	1988
- 7	9	132	139	93	87	2	45	1989

Source:

Energy Mines and Resources Canada. Uranium Resource Appraisal Group (URAG).

Notes:

¹ Price ranges within which mineable ore is assessed. Over the period since 1974, the dollar value placed on the price categories has increased. For year to year comparative purposes, the two price categories are A is less than B. Over the years 1984-1987 the price has ranged from \$C100-115/kg for Category A.

² Prior to 1983, astimates were reported in terms of uranium "Contained in Mineable Ore". Average ore processing recoveries in Caneda range from 90 to 98 per cent.

³ The price of \$100/kg U (Category A) is used by URAG for its assessment of those resources that are of economic interest in Caneda.

* Includes proven and probable reserves classified in the lowest price category (<\$C100-115/kg range over the period).

⁵ As of December 31.

6 As of January 1.

4.2 Natural Processes

Not all changes in the environment are the result of human activities. The natural cycles inherent in climatic systems and the natural fluctuations of wildlife populations provide a background from which to assess the magnitude of human-induced impacts.

This section provides information on natural disasters and climate.

4.2.1 Natural Disasters

Between 1983 and 1989, Canada experienced 7 major earthquakes, 12 major storms (including 3 tornados) and 17 major floods. Total damages from these natural disasters amounted to 40 deaths, 214 injuries and an estimated 469 million dollars in damages.

Major Storms, Floods and Earthquakes

Disasters of significance in Canada from 1983 to 1989 are presented in Table 4.2.1.1. Information on previous natural disasters is contained in the previous edition of *Human Activity and the Environment* (1986). Disasters meeting the following criteria were included in the table:

- · earthquakes of 5.0 on the Richter scale and over
- disasters requiring more than \$250,000 in Disaster Relief Assistance (DRA), and
- disasters where extensive physical and human damage occurred.

Major Storms, Floods and Earthquakes, 1983-1989

			Cause/	
Date	Location	Туре	Characteristics	Major Impacts
1983, Winter	Newfoundland	Flood	Heavy Rain	\$2.4 million in DRA1
1983. Winter	Gaspé, Quebec	Flood	High tides, severe storm	Road, bridges and property damages \$12.0 million, \$17.0 million in DRA
1983, Spring	Regina, Saskatchewan	Flood	Spring run-off	Extensive damage, \$1.1 million in DRA
1983, Spring	Montreal, Quebec	Flood	Ice jams, heavy rain	Property damages of \$4.0 million
1984, February	Western and Eastern Nfld.	Flood	Ice jams, heavy rain	Fishing boats sunk; damages of \$100,000, \$1.8 million DR
1984, Winter	Lower Fraser River, B.C.	Flood	Heavy rain, snowmelt	Roads, bridges and fish hatchery damaged (\$4.0 million), \$1.2 million DRA
1984	Manitoba	Storm	Sleet storm	\$816.000 in DRA
1984	Manitoba	Flood		\$300,000 in DRA
1985, Spring	Southern Ontario	Flood	Heavy rain, melting snow	5,600 ha land flooded, erosion; \$2.0 million in damages
1985, Spring	Hay River, N.W.T.	Flood	Ice jams, spring run-off	One injury, \$618,000 in damages; \$400,000 in DRA
1985, June 19	St. Sylvere, Quebec	Storm	Tornado	Three injuries; \$1.0 million in damages
1985, July 7	Mississauga, Ontario	Storm	Tomado	Ten injuries; \$400,000 in damages
1985, July 21	New Liskeard, Ontario	Storm	Hailstorm	\$2.0 million in damages to crops
1985, July 30	Southwestern Quebec	Storm	Wind, rain and hail storms	\$3.0 million in damages to crops, farms, utility poles downed, buildings impacted; \$70.0 million in damages
1985, November 19	Southern Manitoba	Storm	Heavy snowfall and winds	\$1.5 million for clean-up
1985, October 5 and December 23	N.W.T., Alberta, British Columbia	Earthquake	6.6 and 6.9 on the Richter Scale	Two separate quakes felt in Edmonton and Yellowknife, minor damage; 590,000 people affected
1986, June 16	Southern and Eastern Ontario	Storm	Severe hail and thunderstorm	Damages of \$4.0 million to trees, property, hydro lines
1986, Summer	Saskatchewan and Alberta	Flood	Heavy rainfall and soil moisture	One recorded death, \$28.3 million in damages to roads and crops; \$7.5 million in DRA
1986, Summer	Manitoba	Flood		\$908,000 in DRA
1986, August 2	Southern Ontario	Storm	Hailstorm	\$20.0 million in damages to crops
986. November 8	Southwestern Manitoba	Storm	Blizzard	Snowfall of 50 cm, two deaths; \$2.0 million in clean-up
1986, March 21	Central British Columbia	Earthquake	5.4 on Richter Scale	Strongly felt in Prince George, minor damage; 70.000 people affected
1987, March 17	Eastern Canada	Storm	High winds and snow storm	Eight reported deaths, traffic disrupted, schools and businesses closed
1987, Spring	Beauce Region, Québec City	Flood	Heavy rain, snowmelt	Damages \$10.0 million (flood), \$2.0 million (landslide)
1987, July 14	Montreal, Quebec	Flood	Severe thunderstorm, flash flood	Two recorded deaths, widespread property damage. Hydro lines and subways system impacted. \$20.0 million in DRA and \$94.0 million in damages
1987, July 31	Edmonton, Alberta	Storm	Tomados	200 injured and 27 reported deaths. Extensive property damage, toppled hydro lines; \$250.0 million in damages and \$22.0 million in DRA
1987, Summer	Upper Peace River District, B.C. and Alberta	Flood	Heavy rainfall	\$5.0 million in damages to roads and crops
987	Perth-Andover, N.B.	Flood	•	\$5.6 million in DRA
987	British Columbia, Yukon	Earthquake	7.6 on Richter Scale	Strongly felt in Whitehorse; 20,000 people affected
988, March 25	Northwest Territories	Earthquake	6.0 on Richter Scale	Mackenzie Region, widely felt
988, June 5	Camrae, Alberta	Storm	Storm and tomado	\$3.0 million in damages to farms and utility poles
988	Slave Lake, Alberta	Flood		\$400,000 in DRA
988	British Columbia, Yukon	Earthquake	7.6 on Richter Scale	Strongly felt in Whitehorse; 20,000 people affected
988, November 25	Southern Quebec	Earthquake	6.5 on Richter Scale	Quake strongly felt in Montreal; \$20.0 million in damages; 1.75 million people affected
1989	Northwest Territories	Flood		\$450,000 in DRA
1989, December 25	Northern Quebec	Earthquake	6.2 on Richter Scale	Quake strongly felt in Quebec by 470,000 people

Sources:

Environment Canada. Inland Waters Directorate. Water Planning and Management Branch.

Emergency Preparedness Canada.

Environment Canada. Atmospheric Environment Service.

Energy Mines and Resources Canada, Geophysics and Marine Geoscience Branch, Seismology Section, Notes:

This table updates Tables 1.3.2 (Major Earthquakes), 1.3.3 (Major Floods) and 1.3.4 (Major Storms) in Human Activity and the Environment (1986) which lists events from the 17th century. The criterion for inclusion of storms and floods here is major impact on man. In a number of cases significant storms and floods have not been listed because they caused minor damage or occurred in isolated regions.

The Richter Scale is a logarithmic scale used to measure the intensity of an earthquake.

1 Disaster relief payments are made by the Federal and Provincial Governments under the "Disaster Relief Assistance Programme" (DRA) of Emergency Preparedness Canada.

4.2.2 Climate

Canada's climate ranges from Vancouver, British Columbia with an annual average temperature of 9.8°C to Resolute, Northwest Territories with an annual average of -16.6°C. Vancouver experiences, on average, 55 days per year of freezing temperature; Resolute has 324.

Climate Profile

Canada is a land of climatic contrasts and extremes. This is evident in the variety of Canadian climatic landscapes. The climate profile presented in Tables 4.2.2.2 through 4.2.2.5 lists climate data from a selection of twenty nine weather stations across Canada⁴⁹. Data from the most populated cities and each of the climatic regions in Canada are represented. For the most part, weather stations are located at airport sites.

The tables contain monthly and annual data for: temperature (Table 4.2.2.2); "number of days with" and sunshine (Table 4.2.2.3); degree-days, humidity, wind and precipitation (Table 4.2.2.4); average frost data, climatic extremes and climate severity (Table 4.2.2.5).

The Climate Severity Index

As the term *Climate Severity Index* suggests, the CSI provides an index of the uncomfortable, depressing, confining and hazardous aspects of the Canadian climate⁵⁰. The CSI comprises the four severity factors: the Discomfort Factor; the Psychological Factor; the Hazardousness Factor; and the Mobility Factor. Each severity factor is comprised of its own sub-set of climate factors (Table 4.2.2.1) and the extreme values of these eighteen variables are combined into the CSI, which can range from 0 to 100. The CSI is a product of the four severity factors weighted as follows:

CSI = (5A + 2B + 2C + D) / 7.5

where:

A = Discomfort

- 49. See Map 5.2.0.3 in the appendix for locations
- Environment Canada. 1984. Climate Severity Index for Canadians. D.W. Phillips and R.B. Crowe. CLI-1-84. Atmospheric Environment Service, Downsview, Canada.

- B = Psychological state
- C = Hazardousness
- D = Outdoor mobility

Table 4.2.2.1 presents the weighting scheme assigned to the severity factors and their corresponding subfactors. For the weather stations listed, the CSI ranges from 16 for Penticton, B.C. to 95 for Resolute, N.W.T.

Precipitation

Whereas five percent of the earth's precipitation occurs as snow, in Canada 36 percent falls as snow. Canada's nationwide average precipitation is 535 mm, ranging from 64 mm at Eureka, N.W.T. to 6655 mm at Henderson Lake, B.C.

Climate Severity Index Factors

Severity factor	Climate factor	Description	Points
DISCOMFORT			100
Winter (70 Points)	Wind chill	Mean percentage of time in January that wind chill exceeds 1400 W/m ²	30
	Length of winter	Number of months with mean daily temperature less than 0°C	20
	Severity of winter	Mean daily temperature of coldest month	20
Summer (30 Points)	Humidex	Mean percentage of days with humidax greater than 30°C for 1 hour or more - highest 10-day total for summer	10
· ·	Length of summer	Number of months with mean daily temperature of 10°C or greater	Ę
	Warmth of summer	Mean daily maximum temperature of warmest month	5
	Dampness	Mean July wet-bulb depression	10
PSYCHOLOGICAL			100
	Darkness	Increasing darkness factor with increasing latitude	35
	Sunshine	Mean annual number of hours of bright sunshine	25
	Wet days	Annual number of days with measurable precipitation	25
	Fog	Absolute frequency (in 10 years) of number of hours with fog	15
HAZARDOUSNESS			100
	Strong winds	Mean percentage frequency of wind speed equal to or greater than 30.6 km/h - average of January and July	30
	Thunderstorms	Absolute frequency (in 10 years) of number of hours with thundar	10
	Blowing snow	Absolute frequency (in 10 years) of number of hours with blowing snow	40
	Snowfall	Mean winter snowfall (cm)	20
MOBILITY			100
	Visibility	Absolute frequency (in 10 years) of number of hours with fog, snow and rain	40
	Freezing precipitation	Absolute frequency (in 10 years) of number of hours with freezing precipitation	4(
	Snowfell	Mean winter snowfall (cm)	20

Source:

Environment Canada. Climate Severity Index for Canadians. D.W. Phillips and R.B. Crowe. CLI-1-84. Atmospheric Environment Service. Downsview, 1984.

Table: 4.2.2.2

Average Daily Temperatures by Month for Selected Weather Stations

						Average ¹	daily tempera	ature (°C)					
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Goose Bay	- 16.4	- 14.5	- 8.6	- 1.7	5.0	11.3	15.8	14.3	9.1	2.7	- 3.8	- 13.0	0.0
St. John's	- 3.9	- 4.5	- 2.3	1.2	5.4	10.9	15.5	15.3	11.6	6.9	3.4	- 1.5	4.8
Charlottetown	- 7.1	- 7.5	- 3.1	2.3	8.5	14.5	18.3	17.8	13.5	8.1	2.9	- 3.9	5.4
Halifax	- 6.0	- 6.1	- 1.6	3.3	9.2	14.8	18.2	18.1	13.8	8.6	3.4	- 2.9	6.1
Saint John	- 7.8	- 7.5	- 2.5	3.2	9.0	13.8	16.9	16.6	12.7	7.6	2.3	- 4.8	5.0
Kuujjuag	- 23.3	- 22.4	- 17.7	- 9.2	0.2	6.9	11.4	10.4	5.4	- 0.9	- 8.3	- 18.4	- 5.5
Kuujjuarapik	- 22.5	- 22.6	- 17.1	- 6.8	1.2	6.5	10.5	10.4	7.1	2.0	- 4.9	+ 15.9	- 4.3
Québec	+ 12.1	- 10.8	- 4.5	3.3	10.8	16.4	19.1	17.5	12.6	6.6	- 0.2	- 9.0	4.1
Sept-fles	- 14.0	- 12.5	- 6.6	0.0	5.9	11.7	15.2	14.1	9.3	3.6	- 2.5	- 11.0	1.1
Montréal	- 10.2	- 9.0	- 2.5	5.7	13.0	18.3	20.9	19.6	14.8	8.7	2.0	- 6.9	6.2
Ottawa	- 10.9	- 9.5	- 3.0	5.6	12.8	18.0	20.6	19.2	14.3	8.1	1.2	- 7.7	5.7
Thunder Bay	- 15.4	- 13.0	- 6.3	2.5	8.8	14.0	17.6	16.4	11.1	5.7	- 2.6	+ 11.1	2.3
Toronto	- 6.7	- 6.1	- 1.0	6.2	12.3	17.7	20.6	19.7	15.5	9.3	3.3	- 3.5	7.3
Windsor	- 4.9	- 3.8	1.2	8.1	14.2	19.7	22.2	21.3	17.4	11.1	4.4	- 1.9	9.1
The Pas	- 22.7	- 18.0	- 11.2	0.0	8.4	14.4	17.7	16.1	9.8	3.6	- 7.5	- 17.6	- 0.6
Winnipeg	- 19.3	- 15.6	- 8.2	3.4	11.3	16.8	19.6	18.3	12.4	6.1	- 4.5	- 14.0	2.2
Churchill	- 27.5	- 25.9	- 20.4	- 10.1	- 1.5	6.2	11.8	11.3	5.4	- 1.5	+ 12.1	- 22.2	- 7.2
Regina	- 17.9	- 13.6	- 7.8	3.3	11.1	15.9	18.9	17.8	11.7	5.2	- 5.1	- 12.8	2.2
Saskatoon	- 19.3	- 14.6	- 8.6	3.3	11.1	15.7	18.5	17.2	11.2	4.9	- 5.7	- 14.1	1.6
Calgary	- 11.8	- 7.3	- 4.0	3.3	9.4	13.5	16.4	15.2	10.6	5.5	- 2.7	- 7.8	3.4
Edmonton	- 15.0	- 9.6	- 5.0	4.2	11.3	15.1	17.4	16.2	11.0	5.8	- 3.7	- 10.4	3.1
Penticton	- 2.7	0.6	3.9	8.6	13.4	17.2	20.3	19.5	14.7	8.7	3.0	· 0.4	8.9
Vancouver	2.5	4.6	5.8	8.8	12.2	15.1	17.3	17.1	14.2	10.0	5.9	3.9	9.8
Prince Rupert	- 0.2	2.3	3.0	5.4	8.3	10.8	12.8	13.1	11.4	7.9	3.8	1.6	6.7
Alert	- 32.1	- 33.6	- 33.2	- 24.9	- 11.7	- 1.0	3.6	0.9	- 10.2	- 19.7	- 26.6	- 30.0	- 18.2
Inuvik	· 29.6	- 28.9	- 25.0	- 14.3	- 0.8	10.1	13.6	10.7	3.1	- 8.1	- 20.7	- 27.2	- 9.8
Yellowknite	- 28.8	- 25.1	- 18.9	- 6.9	5.0	12.9	16.3	14.1	6.7	- 1.6	- 14.1	- 24.0	- 5.4
Whitehorse	- 20.7	- 13.2	- 8.2	0.3	6.7	12.0	14.1	12.5	7.5	0.6	- 8.8	- 16.6	- 1.2
Resolute	- 32.1	- 33.2	- 31.4	- 23.1	- 10.9	- 0.6	4.1	2.4	- 5.1	- 15.1	- 24.5	- 29.3	- 16.6

Source:

Environment Canada. The Climates of Canada by David Phillips, Supply and Services Canada, Ottawa, 1990.

Environment Canada, Atmospheric Environment Service, Canadian Climate Normals, various issues. Environment Canada, Atmospheric Environment Service, Principal Station Data, various issues.

Notes:

Average, mean or normal refer to the value of the particular element averaged over the period from 1951-1980.

Annual Average "Number of Days With" and Bright Sunshine Hours for Selected Weather Stations

			Ave	rage ¹ number of	days with2:				Bright sunshine ³
Station	Winds (>63 km/h)	Hail ⁴	Thunder ⁶	Fog ⁶	Freezing temper- atures ⁷	Freezing precip- itation ⁸	Rain ⁹	Snow ¹⁰	(hours)
CARLIGHT	(>00 KHEN)	1 HOLI	Trianaer	109	010103	TOBUCT	1 10011	GROW	(110018)
Goose Bay	1.1	•	9	14	215	13	102	97	1 564.9
St. John's	23		3	124	176	38	156	88	1 497.4
Charlottetown	6		9	47	169	17	124	68	1 818.4
Halifax	3		9	122	163	19	125	64	1 885.0
Saint John	6		11	106	173	12	124	59	1 865.3
Kuunuag	4	3	3	17	256	6	70	99	1 467.2
Kuujuarapik	3		6	45	243	10	63	100	1 497.8
Québec			24	35	180	15	115	73	1 651.7
Sept-fles	9		7	51	206	8	93	72	1 990.6
Montréal	1		25	20	155	13	114	62	2 054.0
Ottawa		4	24	35	165	16	107	62	2 008.5
Thunder Bay		*	26	38	204	8	88	61	2 202.8
Toronto	•		27	35	155	10	99	47	2 045.4
Windsor	2		33	37	136	9	105	45	n/a
The Pas			23	15	209	12	65	73	2 167.5
Winnipeg	1	3	27	20	195	12	72	57	2 321.4
Churchill	11	*	7	48	258	19	58	100	1 627.9
Regina	9	1	23	29	204	14	59	58	2 331.1
Saskatoon			19	25	202	9	57	59	2 449.7
Calgary	6	3	25	22	201	5	58	62	2 314.4
Edmonton		3	22	17	185	8	70	59	2 263.7
Penticton			12	1	129	1	78	29	2 032.2
Vancouver			6	45	55	1	156	15	1 919.6
Prince Rupert	4	8	2	37	107	0	218	35	1 224.1
Alert	10	0	0	46	338	5	10	93	1 767.4
Inuvik	•		1	24	267	6	36	99	1 898.8
Yellowknile			5	21	226	13	46	82	2 276.6
Whilehorse			6	16	224	1	52	120	1 843.8
Resolute	25	0		62	324	13	20	62	1 505.1

Source:

Environment Canada. The Climates of Canada. David Phillips. Supply and Services Canada. Ottawa, 1990.

Environment Canada, Atmospheric Environment Service. Canadian Climate Normals.

Environment Canada, Atmospheric Environment Service. Principal Station Data.

Notes:

* denotes a value less than 0.5 (but not zero).

¹ Average, mean or normal refer to the value of the particular element averaged over the period from 1951-1980.

² A "day with" is counted once per day regardless of the number of individual occurrences of that phenomenon that day.

³ Bright sunshine is reported in hours and tenths.

⁴ Hall is a piece of ice with a diameter of 5mm or more.

⁵ Thunder is reported when thunder is heard or lightning or hall is seen.

⁶ Fog is a suspension of small water droplets in air that reduces the horizontal visibility at eye level to less than 1 kilometre.

⁷ Freezing temperature is a temperature below 0.0°C.

^e Freezing precipitation is rain or drizzle of any quantity, that freezes on impact.

^e Rain is a measurable amount of liquid water (rain, showers, or drizzle) equal to or greater than 0.2 mm.

¹⁰ Snow is a measurable amount of solid precipitation (snow, snow grains, ice crystals, or ice and snow pellets) equal to or greater than 0.2 cm.

Annual Degree-Days, Humidity, Wind and Precipitation for Selected Weather Stations

	De	gree-Days (°C)1		Humidity	Wind		Precipitation	
Station	Heating (<18°C)	Cooling (>18°C)	Growing (>5°C)	Vapour pressure	Average speed ²	Average rainfall	Average snowfall ³	Total
The second				kPa	km/hr	mm	cm	៣៣
Goose Bay	6 585.2	43.5	1 021.9	0.6	15.8	529.0	445.2	946.1
St. John's	4 824.4	29.1	1 196.1	0.8	24.3	1 157.3	359.4	1 513.6
Charlottetown	4 688.6	88.6	1 625.9	0.9	19.3	841.1	330.6	1 169.4
Halifax	4 424.7	88.0	1 693.8	0.9	18.2	1 223.8	271.0	1 490.6
Saint John	4 768.1	31.9	1 499.4	0.8	18.5	1 152.0	292.7	1 444.4
Kuujjuag	8 560.7	5.5	509.1	0.5	16.2	263.5	245.2	504.2
Kuujjuarapik	8 160.1	11.2	548.4	0.5	18.3	401.3	241.2	636.9
Québec	5 165.2	122.9	1 689.7	0.8	16.0	836.4	343.4	1 174.0
Sept-fles	6 154.0	10.6	1 015.6	0.7	17.3	710.7	426.9	1 124.9
Montréal	4 537.5	250.8	2 112.9	0.9	15.6	722.9	235.1	946.2
Ottawa	4 690.9	230.0	2 043.2	0.8	14.6	662.9	227.3	879.3
Thunder Bay	5 767.9	66.2	1 425.4	0.7	13.4	527.3	213.0	711.8
Toronto	4 143.8	246.0	2 126.8	0.9	15.4	637.2	131.2	761.5
Windsor	3 622.4	391.4	2 533.3	1.0	17.0	737.5	117.4	848.8
The Pas	6 831.4	72.3	1 361.2	0.6	15.4	315.0	170.0	453.7
Winnipeg	5 923.1	178.4	1 784.9	0.7	18.6	411.0	125.5	525.5
Churchill	9 189.9	14.3	554.6	0.5	22.7	221.1	195.5	402.3
Regina	5 876.6	136.5	1 677.2	0.7	20.8	287.2	115.7	384.0
Saskatoon	6 062.9	111.4	1 619.9	0.6	17.5	245.0	113.1	348.8
Calgary	5 365.0	38.1	1 387.2	0.6	16.2	300.0	152.5	423.8
Edmonton	5 483.0	69.7	1 560.4	0.6	14.1	345.6	135.7	466.1
Penticton	3 501.6	190.3	2 135.7	0.8	12.7	217.7	76.0	282.9
Vancouver	3 030.7	36.3	1 993.7	1.0	12.0	1 055.4	60.4	1 112.6
Prince Rupert	4 110.4	0.5	1 148.2	0.9	14.8	2 369.0	151.7	2 523.2
Alert	13 186.4	0.0	33.1	n/a	8.2	17.5	148.1	154.4
Inuvik	10 101.4	17.6	665.2	0.4	10.2	114.6	176.6	266.1
Yellowknife	8 529.6	28.2	1 027.1	0.5	15.5	150.2	135.4	266.7
Whitehorse	6 988.4	6.2	897.2	0.5	14.1	145.5	136.6	200.7
Resolute	12 593.8	0.0	33.0	0.3	21.5	52.7	83.8	131.4

Source:

Environment Canada. The Climates of Canada. David Phillips. Supply and Services Canada. Ottawa, 1990.

Environment Canada, Atmospheric Environment Service. Canadian Climate Normals.

Environment Canada, Atmospheric Environment Service. Principal Station Data.

Notes:

¹ Each degree of mean temperature below 18°C is counted as one heating degree-day; above 18°C, one cooling degree-day; and above 5°C, one growing degree-day.
 ² Average speed is the average of all winds and calms.
 ³ Average snow on ground is for the last day of the month.
 ⁴ Total precipitation is the total water equivalent of snowfall and rainfall.

Average Frost, Climatic Extremes and Climate Severity for Selected Weather Stations

		Average frost			Record climatic extremes	32		Clim	ate severity	3	
Station	Last frost (spring)	First frost (fall)	Frost-Free period	Wettest month (mm)	Highest temperature (°C)	Lowest temperature (°C)	Discom- fort factor	Psycho- logical factor	Hazard factor	Mobility factor	Index (CSI)
		1.51	days							-	
Goose Bay	June 1	Sept 18	104	Aug 1953 (230.1)	July 4, 1944 (37.8°)	Feb 17, 1973 (-39.4°)	49	32	32	59	58
St. John's	May 1	Oct 11	131	Dec 1909 (356.9)	July 7, 1949 (30.6°)	Feb 24, 1961 (-27.2°)	29	53	48	94	59
Charlotletown	May 16	Oct 15	151	Sept 1942 (315.0)	Aug 12, 1944 (34.4°)	Jan 18, 1982(-30.5°)	34	30	35	60	48
Halifax	May 12	Oct 15	155	Aug 1971 (387.1)	Aug 22, 1976 (34.4º)	Feb 4, 1971 (-26,1º)	31	36	25	74	47
Saint John	May 16	Oct 3	139	July 1950 (317.5)	Aug 22, 1976 (34.4º)	Feb 11, 1948 (-36.7º)	33	35	31	64	48
Kuujjuag	June 27	Sept 2	66	Aug 1978 (139.3)	July 14, 1953 (32.2°)	Jan 15, 1957 (-46.7º)	63	31	34	35	64
Kuujjuarapik	June 25	Sept 11	77	July 1953 (189.2)	Sept 1, 1930 (33.9°)	Jan 14, 1957 (-49.4°)	63	39	42	45	70
Québec	May 13	Sept 28	137	Dec 1973 (239.0)	July 30, 1959 (35.6°)	Feb 2, 1962 (-38.1º)	38	29	40	60	52
Sept-fles	May 27	Sept 19	114	Nov 1950 (252.0)	July 10, 1955 (32.2°)	Jan 21, 1950 (-43.3°)	49	23	43	51	57
Vontréa	May 3	Oct 8	157	Sept 1975 (227.6)	Aug 1, 1975 (37.8°)	Jan 15, 1957 (-37.8º)	35	25	27	47	43
Ottawa	May 7	Oct 2	147	July 1972 (186.4)	Aug 14, 1944 (37.8°)	Feb 15, 1943 (-36.1º)	37	24	21	52	44
Thunder Bay	May 30	Sept 12	104	Sept 1977 (284.2)	Aug 7, 1983 (40.3º)	Jan 30, 1951 (-41.1º)	44	16	22	33	44
Toronto	May 8	Oct 5	149	Oct 1954 (213.9)	Aug 25, 1948 (38.3°)	Jan 4, 1981 (-31.3°)	31	20	19	40	36
Vindsor	Apr 26	Oct 21	177	Sept 1981 (246.1)	July 27, 1941 (38.3 ²)	Jan 24, 1963 (-26.1º)	29	23	26	34	37
The Pas	May 27	Sept 19	114	June 1976 (169.4)	July 20, 1955 (36.7°)	Feb 18, 1966 (-49.4°)	58	11	24	28	52
Vinnipeg	May 23	Sept 22	121	July 1953 (197.4)	Aug 7, 1949 (40.6°)	Feb 18, 1966 (-45.0°)	56	9	29	26	51
Churchill	June 24	Sept 9	76	June 1960 (135.1)	July 4, 1975 (33.9°)	Feb 13, 1979 (-45.4°)	74	26	66	58	82
Regina	May 24	Sept 11	109	July 1901 (207.0)	July 5, 1937 (43.3°)	Jan 1, 1885 (-50.0°)	49	6	41	29	49
Saskatoon	May 21	Sept 16	117	June 1942 (186.4)	July 30, 1946 (40.0°)	Feb 1, 1893 (-50.0°)	47	4	23	25	42
Calgary	May 25	Sept 15	112	July 1927 (245.4)	July 25, 1933 (36.1º)	Feb 4, 1893 (-45.0°)	35	6	25	22	35
Edmonton	May 6	Sept 24	140	July 1953 (190.8)	June 3, 1970 (34.4°)	Dec 28, 1938 (-48.3°)	48	8	20	27	43
Penticion	May 8	Oct 4	148	Aug 1976 (86.1)	July 17, 1941 (40.6°)	Dec 30, 1968 (-27.2°)	13	6	19	2	16
/ancouver	Mar 31	Nov 3	216	Nov 1983 (350.8)	Aug 9, 1960 (33.3°)	Dec 29, 1968 (-17.8°)	в	31	5	31	19
Prince Rupert	May 11	Oct 15	156	Oct 1974 (728.7)	Aug 14, 1977 (28.7°)	Jan 4, 1965 (-24.4°)	17	57	9	39	34
Alert	July 14	July 19	4	Aug 1954 (67.6)	Aug 8, 1956 (20.0°)	Feb 9, 1979 (-50.0°)	85	55	33	30	84
nuvik	June 23	Aug 14	51	Aug 1969 (164.1)	June 21, 1958 (31.7º)	Feb 4, 1968 (-56.7º)	70	34	9	37	63
ellowknile	May 27	Sept 16	111	Aug 1969 (141.4)	July 9, 1964 (32.2°)	Feb 4, 1947 (-51.2°)	66	20	15	30	57
Whitehorse	June 8	Aug 30	82	Aug 1974 (103.4)	June 14, 1969 (34.4º)	Jan 31, 1947 (-52.2°)	52	19	13	18	48
Resolute	July 10	July 20	9	Aug 1981 (77.4)	July 21, 1962 (18.3°)	Jan 7, 1966 (-52.2°)	85	52	69	42	95

Notes:

Average, mean or normal refer to the value of the particular element averaged over the period from 1951-1980.

² Extremes are based on the full period of years in which observations have been made, generally to the end of 1985.

³ The Climate Severity Index describes in a single number, many of the unfavourable aspects of the Canadian climate.

Source:

Source: Environment Canada. The Climates of Canada. David Phillips. Supply and Services Canada. Ottawa, 1990. Environment Canada. Climate Seventy Index for Canadians. D.W. Phillips and R.B. Crowe. CLI-1-84. Atmospheric Environment Service. Downsview, 1984. Environment Canada, Atmospheric Environment Service. Canadian Climate Normals. Environment Canada. Atmospheric Environment Service. Principal Station Data.

4.3 Harvesting and Extraction

The harvesting and extraction of natural resources generate 6 percent of Canada's Gross Domestic Product. These natural resources sustain much of the country's manufacturing and service industry. Agricultural, forestry, fishery and mining production have generally been increasing over the past decade.

Canada's wealth of natural resources is important to maintaining our standard of living and a healthy economy. Non-renewable resources, such as fossil fuels, minerals and soil cannot be replaced. Renewable resources, such as agricultural crops, forests, fish and wildlife are living resources and can be regenerated. The concern regarding nonrenewable resources is that harvesting may exceed the natural replacement rate.

4.3.1 Land

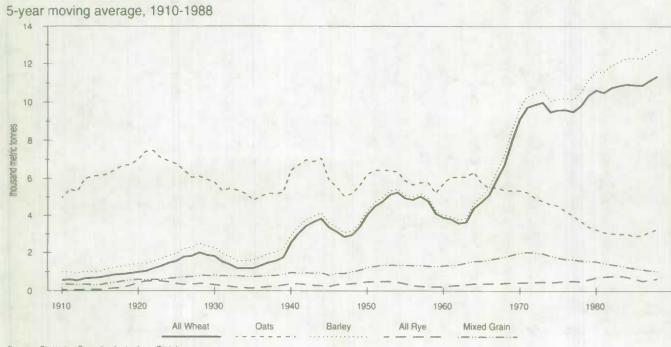
Canada's agricultural production quadrupled between 1910 and 1988. Forest production increased by 91 percent between 1955 and 1986. The production of crude oil doubled between 1961 and 1989. Natural gas production increased five-fold over the same period. Coal production tripled between 1974 and 1988.

This section focuses on the harvesting and extraction activities related to land: agriculture, forestry, minerals and energy.

Agricultural Production

Total crop production has more than quadrupled since 1910 (Figures 4.3.1.1 and 4.3.1.2). Many factors have contributed to the rise in agricultural crop production. New technologies such as mechanization, genetic research, nutrient science and irrigation have enabled the agricultural industry to be more productive than ever before. These increases in production do not come without costs to the environment. Nutrient pollution in waterways and land degradation are both direct results of higher production effort.

Forestry Production

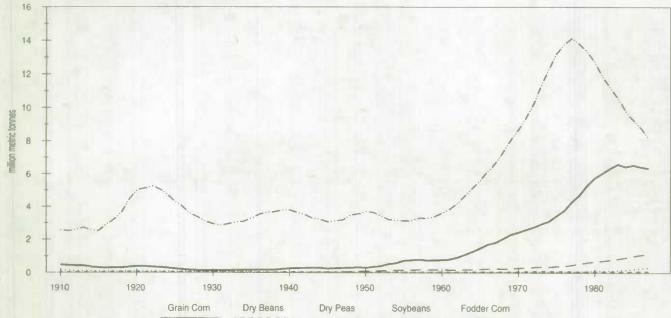

Between 1955 and 1985, total forestry production almost doubled from 88 million cubic metres to 168 cubic metres (Figure 4.3.1.4). The area replanted has not kept pace with the area harvested, although the gap appears to be narrowing (Tables 4.3.1.1 and 4.3.1.2, Figure 4.3.1.3) due to improved regeneration rates.

Minerals and Energy Production

Except for asbestos, the production of most minerals has been increasing or stable over the past 16 years (Table 4.3.1.3).

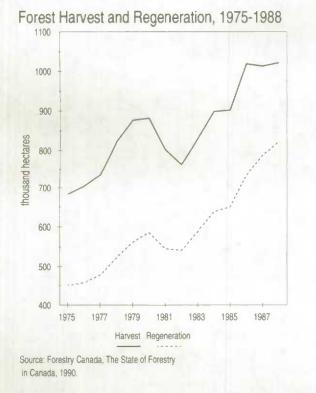
Figure: 4.3.1.1

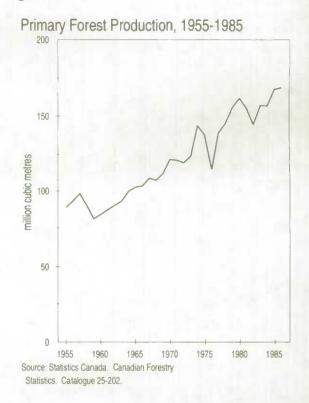
Selected Grain Crop Production



Source: Statistics Canada, Agriculture Division, 1991.

Figure: 4.3.1.2


Five-year moving average, 1910-1988



Source: Statistics Canada, Agriculture Divsion. 1991.

Land

Table: 4.3.1.1

Area of Forest Planted, by Province, 1985 to 1988

			Forest area planted		
Province	1985	1986	1987	1988	Change 1985-1988
		hectan	es		percent
Newfoundland	2 762	779	5 057	4 240	53.5
Prince Edward Island	894	530	690	960	7.4
Nova Scotia	6 584	9 137	9 865	11 480	74.4
New Brunswick	19 453	20 517	18 916	19 123	- 1.7
Quebec	39 127	58 480	76 337	99 055	153.2
Ontario	72 084	73 857	73 253	81 025	12.4
Manitoba	4 169	4 146	5 694	6 870	64.8
Saskatchewan	5 276	4 482	3 1 1 0	7 020	33.1
Alberta	9 229	14 699	13 279	18 658	102.2
British Columbia	101 442	112 891	164 044	164 860	62.5
Canada	261 020	299 518	370 245	413 291	58.3

Source:

Forestry Canada, Northern Forestry Centre.

Note:

Not all forest area planted is successfully regenerated into forest.

Areas of Forest Harvested, by Province, 1985-1988

			Forest area harvested		
Province	1985	1986	1987	1988	Change 1985-1988
		hect	ares		percent
Newfoundland	16 400	16 529	16 617	17 000	3.7
Prince Edward Island	3 200	3 400	3 900	3 900	21.9
Nova Scotia	29 778	33 250	40 750	42 000	41.0
New Brunswick	87 070	85 780	87 547	87 200	0.1
Quebec	266 180	360 000	317 000	315 000	18.3
Ontano	217 984	223 517	228 464	237 188	8.8
Manitoba	15 900	11 128	12 362	12 378	- 22.2
Saskatchewan	19 693	19 358	25 742	22 089	12.2
Alberta	33 825	38 609	39 699	40 000	18.3
British Columbia	210 397	226 464	238 969	244 000	16.0
Yukon	135	299	1 172	465	244.4
Northwest Territories	990	400	672	399	- 59.7
Canada	901 552	1 018 732	1 012 894	1 021 619	13.3

Source: Forestry Canada, Northern Forestry Centre.

Table: 4.3.1.3

Mineral Production in Canada, 1974-1990

Mercury	Lead	Iron ore	Silver	Copper	Cobalt	Cadmium	Year
thousand ky	thousand tonnes	million tonnes	thousand kg	thousand tonnes	thousand kg	thousand kg	
48:	294	47	53	821	1 564	1 241	1974
414	349	45	51	734	1 354	1 192	1975
	258	55	53	731	1 356	1 314	1976
	281	54	54	759	1 485	1 185	1977
	320	43	54	659	1 234	1 151	1978
	311	60	51	636	1 640	1 209	1979
	252	49	51	716	2 1 18	1 033	1980
	269	50	52	722	2 080	834	1981
	272	33	65	739	1 274	886	1982
	272	33	74	698	1 410	1 107	1983
	264	40	83	794	2 123	1 605	1984
	268	40	88	739	2 676	1 7 17	1985
	334	36	103	699	2 297	1 484	1986
	373	38	116	794	2 490	1 481	1987
	351	40	135	758	2 398	1 664	1988
	269	39	159	704	2 344	1711	1989
	224	36	165	780	2 291	1 643	1990
Potash (K ₂ O	Asbestos	Gold	Zinc	Uranium	Nickel	Molybdenum	
thousand tonnes	thousand tonnes	thousand kg	thousand tonnes	thousand kg	thousand tonnes	thousand tonnes	
5 480	1 644	1 331	1 127	5 124	269	14	1974
5 436	1 056	1 235	1 055	6 499	242	13	1975
4 996	1 538	1 281	982	7 554	241	15	1976
6 089	1 517	1 314	1 071	8 038	233	17	1977
6 1 1 (1 422	1 267	1 067	8 211	128	14	1978
6 705	1 493	1 147	1 100	6 530	127	11	1979
7 303	1 323	1 070	884	6 739	185	12	1980
7 147	1 122	1 129	911	7 507	160	13	1981
5 352	834	1 314	966	8 080	89	14	1982
5 929	857	1 197	988	7 140	125	10	1983
7 794	837	1 327	1 063	11 170	174	12	1984
8 694	750	1 197	1 049	10 880	170	8	1985
6 676	662	1 088	988	11 720	164	11	1986
7 399	664	1 375	1 158	12 440	189	15	1987
8 154	710	1 443	1 370	12 066	199	13	1988
7 014	701	1 312	1 273	10 995	196	14	1989
		1016	1	10 000		13	1990

Source:

Energy, Mines and Resources Canada. Canadian Mineral Yearbook. Statistics Canada. General Review of the Mineral Industries, Mines, Quarries and Oil Wells. Catalogue 26-201.

Notes:

¹ There has been no mercury production since July, 1975; mercuric chloride is recovered from SO₂ gas in B.C.

4.3.2 Fish and Wildlife Harvesting

The harvesting of wildlife, fish and furbearing mammals, is only one of many pressures on natural populations. The longterm sustainability of some species may be threatened by this as well as by pollution, climate change and the destruction of their habitats.

Fisheries

Canadian fish stocks are currently managed by establishing annual total allowable catch (TAC) quotas for most species. The concept of the TAC was applied and refined during the 1970s because of increases in fishing pressure that occurred during the 1960s⁵¹. TAC's are based on projections prepared by fishery scientists using the most recent assessment for each species. In practice, stocks vary from year to year because of the number of fish reaching maturity, changes in the growth and mortality of the fish, annual fluctuations in migration routes and losses to predation.

Data presented in this section show trends in catch of major fish species for the Atlantic and Pacific fisheries. Data are also presented for Atlantic shellfish, lobster landings and catch of freshwater fish.

For most species in the Atlantic fishery, landings peaked in the mid 1960s and early 1970s followed by close adherence to the TAC once it was implemented in the mid to late 1970s when Canada assumed responsibility for managing stocks within the 200 mile limit (Tables 4.3.2.1 through 4.3.2.4, Figures 4.3.2.1 through 4.3.2.15).

The peak in Atlantic salmon catch during the early 1970's was followed by a decline through the 1980's (Table 4.3.2.4, Figure 4.3.2.15). A new management plan implemented in 1984 is assisting the recovery of salmon stock levels in the Atlantic⁵².

The catch of shrimp increased dramatically after the mid 1960s mainly owing to the expansion of fisheries into new areas and the full exploitation of existing stocks.

Landings of scallops has remained steady. Recent increases

are the result of settling a boundary dispute with the USA concerning Georges Bank.

Snow crab catch peaked in the early 1980s and has decreased steadily since (Table 4.3.1.7, Figure 4.3.2.17).

The decline of the lobster catch in the early 1900s was due to overfishing of the lobster stock. The dip in the early 1970s was followed by a gradual increase owing to higher proportions of young lobsters reaching maturity and improved control of fishing effort (Table 4.3.2.6, Figure 4.3.2.16).

In the northeast Pacific, most landings exhibit a gradual increase after 1980. However hake landings fluctuated over the years 1984 to 1986 and continued to increase because of increased fishing effort (Tables 4.3.2.9 and 4.3.1.10, Figures 4.3.2.18 through 4.3.2.20).

In 1988, the Atlantic region accounted for 73 percent of total catch. The Pacific region accounted for 23 percent and the inland fishery, 4 percent (Table 4.3.2.11). Data on the commercial freshwater fish catch is presented in Table 4.3.2.12.

Commercial Hunting and Trapping

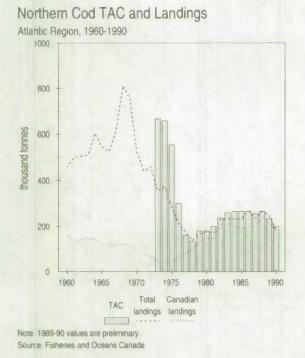
In Canada, the fur harvest has been a traditional source of livelihood since the early settlement days. Figures 4.3.2.21 through 4.3.2.23 show variation in value and numbers of beaver, marten, and muskrat pelts harvested. The changing demand for furs owing to fashion and the prevailing public attitude towards fur clothing may be seen. Table 4.3.2.13 presents provincial data for animal pelts harvested. Quebec, Ontario and Alberta are the main producers of pelts in Canada.

Department of Fisheries and Oceans, 1988. Resource Prospects for Canadas Atlantic Fisheries 1989-1993. Edited by D. Rivard, W.D. McKone and R.W. Elner. Supply and Services Canada. Ottawa, Canada.

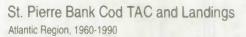
^{52.} Ibid.

Total Allowable Catch and Landings, Atlantic, 1960-1990

		Northern Co	d	9	it. Pierre Bank	Cod		Total Cod			Haddock	
Year		La	ndings		La	ndings		La	ndings		La	ndings
	TAC	Totai	Canadian	TAC	Total	Canadian	TAC	Total	Canadian	TAC	Total	Canadiar
						thousan	d tonnes					
1960		459	165		73	47		861	335		90	31
1961		498	124		84	39		943	304		97	33
1962		503	143		53	48		879	336		96	32
1963		509	149		52	33		937	336		110	38
1964		603	142		57	26		1 047	315		129	49
1965		545	118		52	30		1 097	313		240	47
1966		524	119		66	30		1 107	309		193	59
1967		612	115		63	31		1 247	283		108	54
1968		810	123		78	30		1 477	323		89	48
1969		754	116		64	25		1 270	293		66	41
1970		520	91		77	30		1 040	263		40	24
1971		440	75		62	36		927	244		43	28
1972		458	67		44	23		920	220	19	26	17
1973	666	355	44	71	53	25	937	739	178	19	23	18
1974	657	373	36	70	47	20	1 056	735	156	0	20	14
1975	554	288	42	62	35	15	924	580	152	15	27	19
1976	300	214	63	47	37	23	614	479	193	23	24	18
1977	160	173	80	32	32	29	351	418	235	23	38	26
1978	135	139	102	25	27	22	342	427	289	23	61	43
1979	180	167	131	25	33	27	463	511	369	28	52	33
1980	180	176	148	28	38	33	485	537	418	76	79	53
1981	200	171	147	30	39	31	516	555	431	84	62	56
1982	237	230	208	33	34	27	607	642	510	88	57	45
1983	260	232	214	33	38	29	657	616	504	79	54	39
1984	266	233	203	33	37	26	669	594	470	67	42	31
1985	268	231	187	41	51	33	662	609	471	35	37	30
1986	268	267	199	41	58	32	616	646	467	37	39	35
1987	258	236	200	41	58	33	571	572	463	27	26	22
1988	266	266	240	41	43	25	562	554	474	24	23	21
19891	235	249	213	35	28	28	509	533	479	20	19	10
1990 ¹	199	180	180	35	23	23	439	457	348	11	28	16


Source

Fisheries and Oceans Canada, Biological Sciences Directorate.


Note:

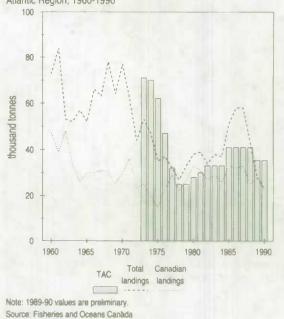
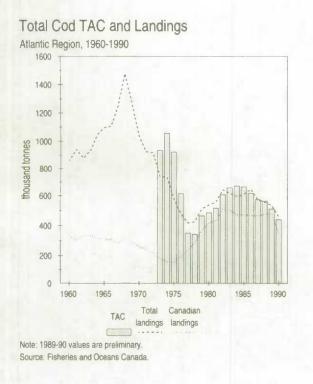
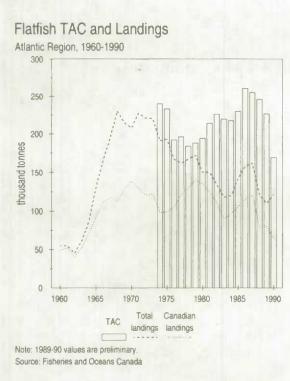

1 1989-90 figures are preliminary

Figure: 4.3.2.1

Figure: 4.3.2.2




Statistics Canada

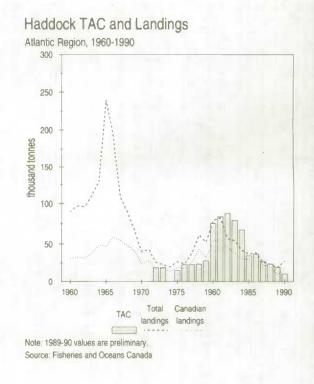

Figure: 4.3.2.3

Figure: 4.3.2.4

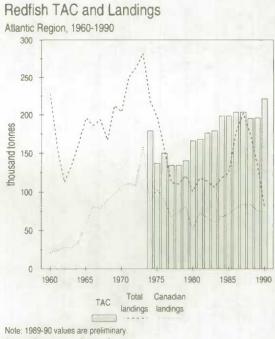


Figure: 4.3.2.5

Figure: 4.3.2.6

Source: Fisheries and Oceans Canada

Total Allowable Catch and Landings, Atlantic, 1960-1990

		Flatfish			Redfish			Herring			Capelin	
Year		La	ndings		La	ndings		La	ndings		La	ndings
	TAC	Total	Canadian	TAC	Total	Canadian	TAC	Total	Canadian	TAC	Total	Canadia
						thousand	tonnes					
1960		55	49		227	21		111	111		0	
1961		55	52		155	24		85	85		0	
1962		45	41		113	28		121	112		0	
1963		61	52		134	27		117	114		4	
1964		87	71		163	35		143	140		4	
1965		131	93		196	58		189	183		4	
1966		164	111		186	81		259	256		4	
1967		194	118		194	79		339	338		3	
1968		230	112		167	89		516	493		2	
1969		215	129		212	97		568	473		2	:
1970		208	139		204	107		551	472		3	
1971		227	129		250	111		449	397		2	
1972		221	121		263	108		309	285		68	
1973		220	122		282	159		249	214		267	
1974	240	191	98	179	218	67		246	220	258	285	1
1975	233	193	99	137	196	103		265	240	340	364	
1976	192	167	106	150	154	89		227	223	340	360	
1977	196	162	122	134	112	68		229	228	412	226	
1978	184	167	130	134	110	73		245	245	412	85	
1979	188	172	140	140	121	81		188	187	85	24	1
1980	194	150	135	166	101	51	156	176	176	51	28	1
1981	214	150	125	168	118	73	147	160	160	70	41	2
1982	226	134	110	176	114	67	110	149	149	73	42	3
1983	220	118	90	179	106	60	117	146	145	81	41	2
1984	218	120	97	199	116	87	115	134	134	82	60	4
1985	230	142	106	199	124	71	175	194	194	82	52	3
1986	260	158	115	204	177	79	175	192	192	123	83	6
1987	255	162	121	204	202	84	289	251	251	106	62	2
1988	245	121	79	195	175	84	333	272	272	128	112	8
1989'	228	110	80	196	136	76	308	215	213	131	110	8
1990'	169	121	64	221	81	74	326	247	210	101		0

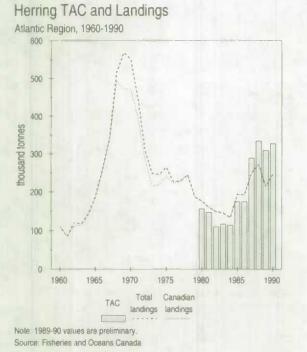
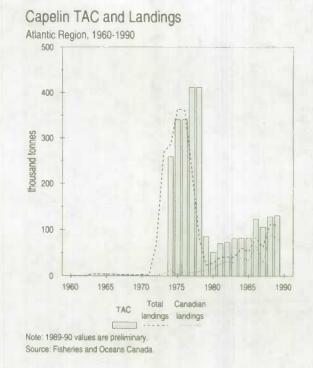
Source:

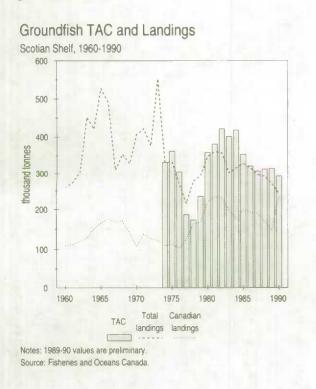
Fisheries and Oceans Canada, Biological Sciences Directorate.

Note:

1 1989-90 figures are preliminary.

Figure: 4.3.2.7


Figure: 4.3.2.8

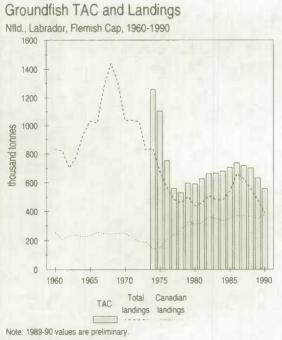

Statistics Canada

Figure: 4.3.2.9

Figure: 4.3.2.10

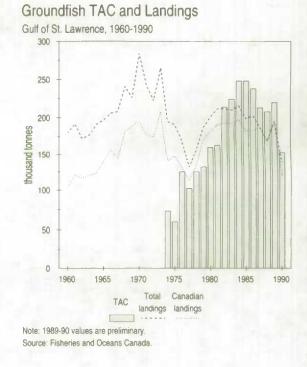
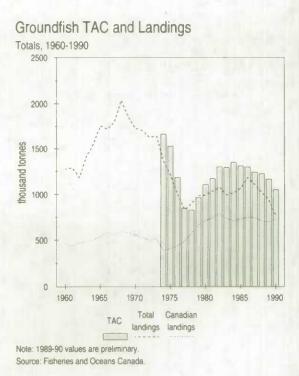


Figure: 4.3.2.11



Source: Fisheries and Oceans Canada.

.

Statistics Canada

Total Allowable Catch and Landings, Atlantic, 1960-1990

	Grou	ndfish(Scotian	Shell)		Groundfish((Gulf)	Grou	indfish(Nfld and	i Lab.)		Groundfish(T	otal)
Year		Lan	dings		La	ndings		Lan	dings		La	ndings
	TAC	Total	Canadian	TAC	Total	Canadian	TAC	Total	Canadian	TAC	Total	Canadian
-						thousand	tonnes					
1960		260	109		180	104		833	253	20	1 273	466
1961		274	112		192	120		821	207		1 287	439
1962		304	119		172	116		705	234		1 181	469
1963		452	127		177	120		781	235		1 411	482
1964		421	150		191	123		941	227		1 553	500
1965		527	165		197	140		1 032	234		1 756	536
1966		491	175		206	157		1 020	255		1 717	587
1967		311	167		208	144		1 279	248	**	1 798	559
1968		354	170		241	181		1 440	243		2 036	595
1969		329	141		226	189		1 306	251		1 861	582
1970		407	107		284	195		1 036	251		1 727	553
1971		422	137		243	178		1 038	220		1 702	535
1972		376	127		222	174		1 029	195		1 626	495
1973		552	122		265	208		826	186		1 642	515
1974	332	332	109	73	195	141	1 257	836	139	1 662	1 363	389
1975	362	333	112	60	191	148	1 104	682	148	1 526	1 206	408
1976	305	271	102	125	170	130	753	562	205	1 183	1 003	437
1977	186	216	126	102	132	113	561	483	244	848	831	483
1978	172	278	163	125	156	135	530	462	276	827	895	573
1979	235	294	167	132	187	170	596	504	327	963	985	664
1980	359	349	220	160	201	182	590	439	311	1 108	989	714
1981	381	361	234	163	212	191	627	461	318	1 170	1 035	743
1982	421	358	230	214	212	193	663	509	362	1 299	1 079	785
1983	401	302	196	224	210	192	666	482	349	1 291	994	737
1984	418	317	177	248	216	198	680	483	334	1 346	1 016	709
1985	354	329	199	248	199	183	707	540	351	1 309	1 068	733
1986	322	317	193	238	203	183	738	662	373	1 298	1 182	749
1987	3/07	297	189	213	187	187	719	626	370	1 239	1 110	746
1988	313	293	169	208	169	169	703	558	367	1 224	1 020	709
1989'	315	271	147	220	196	196	632	479	348	1 164	946	696
19901	293	242	236	153	139	120	557	386	376	1 052	787	734

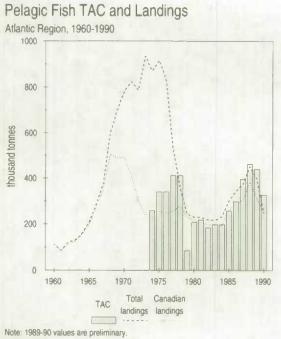
Source: Fisheries and Oceans Canada, Biological Sciences Directorate.

Note: 1 1989-90 figures are preliminary.

Total Allowable Catch and Landings, Atlantic, 1960-1990

		Pelagic Fish			Finfish ¹	
Year		Landir	Igs		Landin	gs
and the second s	TAC	Total	Canadian	TAC	Total	Canadian
			thousand to	nnes		
1960		111	111		1 384	577
1961		85	85		1 372	524
1962		121	112		1 302	581
1963		130	125		1 541	607
1964		160	155		1 713	654
1965		209	198		1 965	736
1966		285	271		2 002	858
1967		376	352		2 173	911
1968		599	506		2 635	1 101
1969		702	488		2 563	1 070
1970		784	490		2 511	1 043
1971		824	413		2 526	948
1972		787	303	13	2 413	798
1973		935	240	174	2 577	755
1974	258	871	250	1 753	2 234	639
1975	340	916	256	1 669	2 122	664
1976	340	829	248	1 313	1 832	685
1977	412	533	256	1 121	1,364	739
1978	412	357	279	1 106	1 253	852
1979	85	244	231	875	1 229	894
1980	207	230	214	1 075	1 218	928
1981	217	229	206	1 160	1 263	949
1982	183	217	1.0.0	1 243	1 297	982
1983	198	216	194	1 280	1 209	
1984	197	232				931
1985	257		192	1 312	1 248	901
		301	258	1 369	1 369	992
1986 1987	298	342	289	1 414	1 524	1 038
	395	373	304	1 449	1 483	1 051
1988	461	451	383	1 485	1 471	1 092
1989 ²	439	396	311	1 392	1 342	1 009
1990 ²	326	247	247	1 183	1 014	981

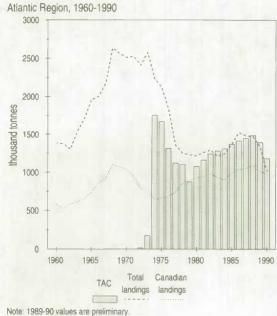
Source:


Fisheries and Oceans Canada, Biological Sciences Directorate.

Notes:

¹ Finfish does not include salmon.

² 1989-90 figures are preliminary.


Figure: 4.3.2.13

Source: Fisheries and Oceans Canada.

Figure: 4.3.2.14

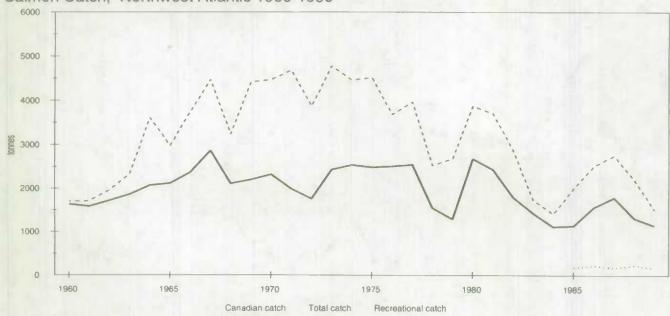
Other Finfish TAC and Landings

Source: Fisheries and Oceans Canada.

Statistics Canada

Catch of Salmon in the Northwest Atlantic, 1960 to 1990

Year	Canadian catch	Non-Canadian catch	Total catch1	Recreational catch ³
		tonnes		
1960	1 636	60	1 696	
1961	1 583	127	1 710	
1962	1 719	244	1 963	
1963	1 861	468	2 327	
1964	2 069	1 539	3 608	
1965	2 1 1 6	861	2 977	
1966	2 369	1 370	3 739	
1967	2 863	1 606	4 469	
1968	2 111	1 127	3 238	
1969	2 202	2 210	4 412	
1970	2 323	2 146	4 469	
1971	1 992	2 689	4 681	
1972	1 759	2 113	3 872	
1973	2 434	2 341	4 775	
1974	2 539	1917	4 456	
1975	2 485	2 030	4 515	
1976	2 506	1 175	3 681	
1977	2 545	1 420	3 965	
1978	1 545	984	2 529	
1979	1 287	1 395	2 682	
1980	2 680	1 194	3 874	
1961	2 437	1 264	3 701	
1982	1 798	1 077	2 875	
1983	1 424	310	1 734	
1984	1 112	297	1 409	
1985	1 133	864	1 997	
1986	1 559	960	2 519	222
1987	1 784	966	2 750	169
1988	1 311	893	2 204	222
1989 ²	1 139	364	1 503	159


Source:

Fishenes and Oceans Canada, Biological Sciences Directorate. Notes:

¹ Canada, Denmark (Greenland and Faroe Islands) and Norway.

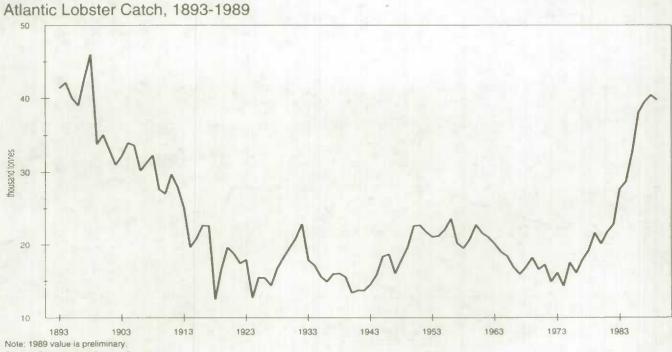
² 1989 figures are preliminary.
 ³ Recreational catch values are included in Canadian catch.

Figure: 4.3.2.15

Salmon Catch, Northwest Atlantic 1960-1990

Note: 1989 values are preliminary. Source: Fisheries and Oceans Canada.

Atlantic Lobster Catch, 1893-1989

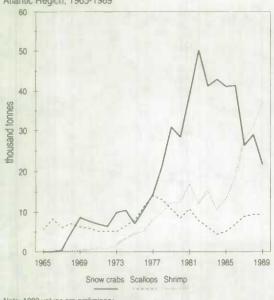

1 373 2 116 0 012 9 032 2 2662 6 010 13 823 15 075	1926 1927 1928 1929 1930 1931 1931	tonnes 15 404 14 372 16 724 18 163 19 562 20 849	1958 1959 1960 1961 1962	tonnes 19 480 20 723 22 698 21 545
2 116 0 012 9 032 2 662 6 010 3 823 5 075	1927 1928 1929 1930 1931	14 372 16 724 18 163 19 562	1959 1960 1961	20 723 22 698
0 012 9 032 2 662 6 010 3 823 55 075	1928 1929 1930 1931	16 724 18 163 19 562	1960 1961	22 698
0 012 9 032 2 662 6 010 3 823 55 075	1929 1930 1931	18 163 19 562	1961	
2 662 6 010 13 823 15 075	1930 1931	19 562	1961	21 545
6 010 13 823 15 075	1931			
6 010 13 823 15 075	1931			20 991
13 823 15 075		20 649	1963	20 095
5 075		22 837	1964	18 982
	1933	17 819	1965	18 367
13 005	1934	17 136	1966	16 870
0 973	1935	15 610	1967	15 904
2 182				16 882
				18 156
3 644				16 553
0 181				17 210
				14 867
				16 092
				14 291
				17 493
				16 082
				17 831
				19 177
				21 577
				20 088
				21 694
				22 793
				27 655
				28 681
				32 639
				38 029
				39 513
				40 392
				39 720
	1927	20 158	1909.	39720
	3 984 3 644	3 984 1937 3 644 1938 0 181 1939 1 261 1940 2 276 1941 7 654 1942 7 033 1943 9 704 1944 7 909 1945 5 064 1946 9 649 1947 0 824 1948 2 605 1949 2 565 1950 2 454 1951 5 598 1952 9 605 1953 8 739 1955 7 883 1956 2 691 1957	3 984 1937 15 936 3 644 1938 16 022 0 181 1939 15 521 1261 1940 13 373 2 276 1941 13 689 7 654 1942 13 680 7 033 1943 14 518 9 704 1944 15 851 7 909 1945 18 324 5 064 1946 18 642 9 649 1947 16 007 0 824 1948 17 855 2 605 1949 19 614 2 565 1950 22 564 2 454 1951 22 632 5 588 1952 21 708 9 605 1953 21 045 8 739 1955 22 031 9 783 1956 23 569 2 691 1957 20 158	3 984 1937 15 936 1969 3 644 1938 16 022 1970 0 181 1939 15 521 1971 1 261 1940 13 373 1972 2 276 1941 13 689 1973 7 654 1942 13 680 1974 7 033 1943 14 518 1975 9 704 1944 15 851 1976 7 033 1945 18 324 1977 5 064 1946 18 642 1978 9 649 1947 16 007 1979 0 824 1948 17 855 1980 2 605 1949 19 614 1981 2 605 1950 22 564 1982 2 454 1951 22 654 1983 9 605 1953 21 708 1983 9 605 1953 21 045 1985 9 739 1954 21 172 1986 7 399 1955 <t< td=""></t<>

Source:

Fishenes and Oceans Canada, Biological Sciences Directorate. Note:

¹ 1989 figure is preliminary.

Figure: 4.3.2.16



Source: Fisheries and Oceans Canada

Figure: 4.3.2.17

Figure: 4.3.2.18

Note: 1989 values are preliminary. Source: Fisheries and Oceans Canada.

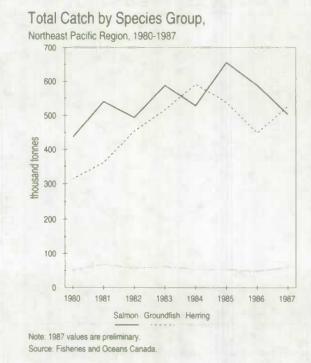
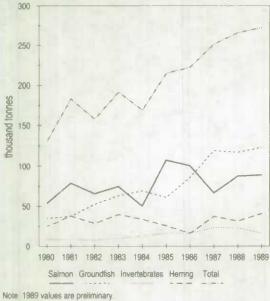
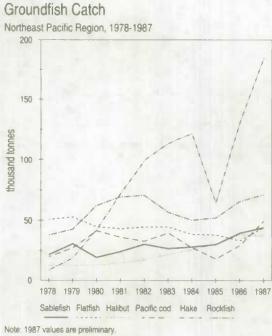



Figure: 4.3.2.19


Canadian Commercial Catch

by Species Group, Northeast Pacific, 1984-1989

Source: Fisheries and Oceans Canada.

Figure: 4.3.2.20

Source: Fisheries and Oceans Canada.

199

Total Snow Crabs, Scallops and Shrimp Landed in the Atlantic, 1965-1989

Year	Snow crab	Scallop	Shrimp
		tonnes	
1965	0	5 641	11
1966	30	8 284	95
1967	399	6 030	278
1968	4 652	7 057	271
1969	8 633	6 267	273
1970	7 677	5 894	572
1971	6 926	5 145	1 084
1972	6 360	5 173	665
1973	9 913	5 056	1 793
1974	10 456	6 517	3 3 17
1975	7 042	7 963	4 528
1976	10 743	11 394	5 037
1977	14 495	14 101	8 254
1978	21 479	13 102	9 904
1979	30 858	10 787	12 400
1980	28 359	8 491	12 394
1981	39 128	10 830	16 974
1982	50 195	7 843	12 224
1963	41 222	6 180	15 402
1984	42 875	4 395	10 644
1985	41 104	5 085	13 357
1986	41 384	6 855	18 602
1987	26 265	8 886	27 846
1988	28 949	9 367	31 214
1989 ¹	21 680	9 367	37 078

Source:

Fisheries and Oceans Canada, Biological Sciences Directorate.

Note:

¹ 1989 figures are preliminary.

Table: 4.3.2.8

Catch¹ by Species Groups in the Northeast Pacific, 1980-1987

Year	Salmon	Groundfish	Herring
		tonnes	
1980	437 033	313 686	50 740
1981	540 173	361 210	67 963
1982	494 181	454 499	57 226
1983	587 616	516 672	61 387
1984	528 375	590 959	53 348
1985	655 346	538 897	53 558
1986	588 320	449 145	48 762
1987 ²	503 707	527 015	59 047

Source:

Fisheries and Oceans Canada, Biological Sciences Directorate.

Note:

¹ Catch includes Canada, United States, Japan, the USSR and European countries.

² 1987 figures are preliminary.

Canadian Commercial Catch by Species Groups in the Northeast Pacific¹, 1980-1989

Year	Salmon	Groundfish	Invertebrates	Herring	Total
			tonnes		
1980	53 817	35 023	8 878	25 155	129 926
1981	78 840	37 602	8 347	37 960	183 137
1982	65 600	52 404	7 850	28 598	157 843
1983	74 602	63 047	9 832	39 820	191 543
1984	50 281	69 023	13 031	33 703	169 168
1985	107 361	61 056	16 384	25 787	214 736
1986	100 242	85 476	16 729	16 341	222 417
1987	66 695	119 058	23 453	37 615	251 440
1988	87 455	116 910	23 118	31 601	265 847
1989 ²	88 723	122 847	16 456	41 006	272 305

Source:

Fishenes and Oceans Canada, Biological Sciences Directorate. Note:

Includes a small amount of pelagic fish in addition to the categories shown.

² 1989 figures are preliminary.

Table: 4.3.2.10

Catch¹ of Groundfish in the Northeast Pacific, 1978-1987

Total	Rockfish	Hake	Pacific cod	Halibut	Flatfish	Sablefish	Year
			tonnes				
211 073	37 771	8 525	19 707	12 453	50 748	21 478	1978
256 607	42 587	18 713	27 191	12 784	52 748	30 633	1979
313 686	62 345	42 246	41 398	12 784	44 620	19 270	1980
361 210	69 422	71 918	36 028	14 807	43 090	24 154	1981
454 499	70 687	99 263	32 841	17 257	44 475	30 323	1982
516 872	56 725	113 376	39 619	21 730	44 624	26 683	1983
590 959	50 125	121 832	27 492	25 802	38 427	28 117	1984
538 897	52 123	64 410	18 062	30 664	38 032	30 183	1985
449 145	65 745	130 325	29 386	38 385	33 331	39 608	1986
527 015	71 388	184 964	49 354	37 383	44 128	44 109	19872

Source:

Fisheries and Oceans Canada, Biological Sciences Directorate.

Note:

Catch includes Canada, United States, Japan, the USSR and European countries.
 1987 figures are preliminary.

Nominal Catches and Landed Values of Fish by Area and Species, 1988

	Atlantic C	Udal	Pacific Co	20.01	Canada	3
Species	Quantity ¹	Value	Quantity ¹	Value	Quantity	Value
		thousand		thousand		thousand
	tonnes	dollars	tonnes	dollars	tonnes	dollars
Groundfish						
Cod	467 871	239 t99	11 014 ²	5 760	478 895	244 965
Haddock	30 954	28 288			30 954	28 288
Redlish	77 904	25 144	26 708	17 010	104 707	42 203
Hallbut	2 566	10 811	7 780	23 122	10 368	34 028
Flatfishes	73 945	36 912	5 260	4 124	79 225	41 053
Turbot	16 192	9 024	340			
Pollock	44 353	15 145	460	88 89	16 532 44 813	9 112 15 234
Hake	12 812	4 405	56 6494	8 822	69 147	13 314
Cusk	2 917	1 447			2 917	1 447
Catfish	2 283	620			2 283	620
	2 044	1 482	8 784	21 062	10 910	22 791
Other						
Total	733 841	372 477	116 995	80 077	850 751	453 055
Pelagic and other finfish						
Herring	263 252	42 164	31 601	80 564	294 853	125 687
Mackerel	23 849	6 385			23 849	6 385
Tuna	558	4 800	38	112	723	5 312
Alewite	9 040	2 710			9 040	2 710
Eel	941	3 535			941	3 535
Salmon	1 064	4 645	87 376	310 000	88 519	316 731
Skate	234	32	587	92	823	124
Smelt	1 778	1 500	1	3	1 779	1 503
Capelin	88 442	25 574			88 442	25 574
			 E OFE	0.050		
Other	1 749	7 268	5 255	2 356	7 757	9 658
Total	390 907	98 613	124 858	393 127	516 726	497 219
Shellfish						
Clams	7 495	7 796	9 516	18 481	16 955	26 154
Oysters	2 285	3 968	4 000	3 500	5 987	6 693
Scallop	77 799	85 690	88	293	77 866	85 979
Squid	318	92	1	1	319	93
Lobster	40 449	264 525			40 449	264 525
Shrimps	37 373	68 867	3 349	9 130	40 654	77 988
Crab	31 214	99 548	1 532	6 068	32 746	105 615
Other	2 616	2 603	5 029	4 750	7 691	7 483
Total	199 549	533 089	23 495	42 223	222 667	574 530
Miscellaneous items		5 237		12 798		18 171
Tetal ees fisheries	1 204 007	1 000 446	20E 240	500 005	1 600 144	6 E40 07E
Total sea fisheries Inland fisheries	1 324 297	1 009 416	265 348	528 225	1 590 144 52 000	1 542 975 91 000
Grand total	1 324 297	1 009 416	265 348	528 225	1 642 144	1 633 975

Source:

Department of Fisheries and Oceans. 1990. Canadian Fisheries - Statistical Highlights, 1988.

Notes: ¹ Quantity in tonnes, live weight. ² Includes grey cod only.

Commercial Catch¹ of Freshwater Fish, 1984-1988

Species	1984	1985	1986	1987	19882
			tonnes		
Trout ³	679	866	897	861	923
Pike	3 233	3 429	3 511	3 801	3 686
Chub ⁴	1 803	1 079	1 197	1 073	1 514
Whitefish	8 352	9 279	9 186	9 034	9 660
Perch	5 412	5 026	6 081	6 213	7 470
Waileye	7 123	7 493	7 556	6 977	8 153
Sauger	2 069	1 933	1 339	2 252	2 907
Arctic char ⁶	62	68	0	53	88
Total high value species	28 733	29 173	29 767	30 264	34 401
Sucker	1 450	1 985	2 290	1 934	2 115
Smett	7 490	11 119	8 072	11 596	9 274
Alewite ⁷	986	1 117	687	1 025	0
Carp	757	436	573	673	511
Total low value species	10 683	14 657	11 622	15 228	11 900
Other fish ^s	4 008	4 684	4 136	3 867	2 924
Total all species	43 424	48 514	45 525	49 359	49 225

Source:

Department of Fisheries and Oceans, Biological Sciences Directorate.

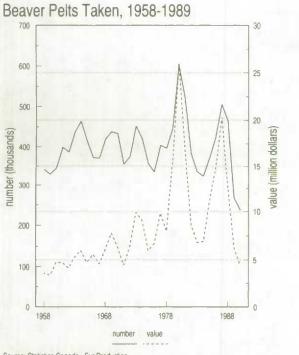
Notes: ¹ Live weight, i.e. weight of fish brought ashore.

² Preliminary ligures.

³ Includes lake and rainbow trout.

* Ciscos and lake herrings are marketed collectively as chub.

⁵ Data are for the Northwest Territories only; however, this fish is also caught commercially in Quebec and Labrador.


⁶ Over ninety-five percent of smelt caught are from Lake Erie.

⁷ Some New Brunswick and all Great Lakes alewife are caught for animal feed and are not reported here.

* Other fish include tomcod, eel, salmon, shad, while bass, sturgeon, catfish, burbot, rock bass, sunfish, splake, builhead, freshwater drum, bowfin.

Figure: 4.3.2.21

Source: Statistics Canada. Fur Production. Catalogue 23-207.

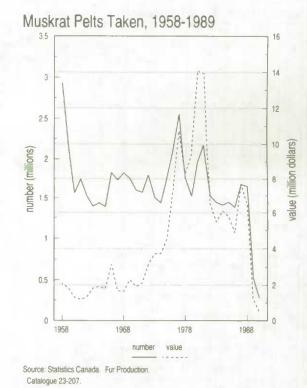
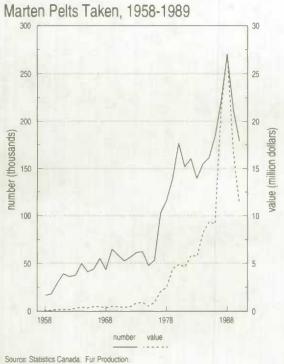



Figure: 4.3.2.23

Catalogue 23-207.

Animal Pelts Taken, 1989-90

Species	Canada	Nfld.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Yukon	N.W.T
Badger	648							55	303	290			
Black Bear	3 110			93	1 061	651	27	823	178	102	128	12	35
Grizzly Bear													
Polar Bear	379					73	9			-			297
Beaver	237 033	2 468	325	2 400	4 379	49 463	90 384	15 868	28 021	34 554	7 412	403	1 356
Cougar													
Coyote	22 536		5	406	347	2 0 2 2	1 092	2 431	5 418	10 201	577	24	13
Emine	28 841	882	21	402	625	7 174	2 704	2 462	3 229	7 555	3 171	198	418
Fisher	7 726			4	72	1 191	2 318	1 454	1 599	856	172		60
Blue Fox	98					-	93			-			
Cross or Red Fox	32 411	2719	531	678	773	10 919	6 144	3 455	4 854	1 372	202	125	641
Silver Fox	341	7	18	16		120		50	57	42			31
Arctic Fox	2 164	0				235		485	44	4			1 399
Other Foxes	1						1						
Lynx	9 793	46		2		781	526	446	385	1 807	1 230	1 749	2 823
Marten	178 833	2 438			1 993	27 739	63 446	6 991	3 916	12 004	29 242	B 241	22 823
Mink (wild)	71 234	4 348	442	1 445	1 623	12 337	16 374	11 922	10 782	4 288	2 867	367	4 439
Muskrat	280 078	3 4 1 3	4 968	14 178	9 686	78 510	95 143	13 103	30 337	21 665	3 287	361	5 427
Otter	11 685	557		218	210	2 554	5 547	1 265	728	259	293	7	47
Rabbit	-			-				-					
Raccoon	19 754		181	1 390	476	4 038	12 240	696	516	63	134		
Seal	ж		x	×	x	×							1 817
Skunk	130					72	46	-	-	12			
Squirret	80 615	639	18	1 402	165	2 164	2 061	6 343	9 995	55 221		1 908	699
Wildcat	731			347		85			192	12	95		
Wolf	2 1 1 6	25				353	391	181	10	268	79	75	734
Wolverine	492					-	9	31		40	113	206	93
Other (opossum)	27						27						
Total	990 775	17 542	6 509	22 979	21 410	200 481	298 581	68 061	100 564	150 635	49 002	13 676	43 152

Source: Statistics Canada. Fur Production, 1988-89. Catalogue 23-207.

Trapping season in most cases is the winter.

Banch-raised pelt data is not included.
 Data included with Cross and Red Fox.
 Data included with Newloundland.
 Data included with Other Foxes.

⁴ Data included with Elritish Columbia.

4.3.3 Water Consumption

Water is a necessity of life. Human activities withdraw water, transfer it to other locations, disrupt natural hydrological cycles and pollute it with man-made contaminants and silt from erosion. As a nation, Canada is rich in water. Some regions, though, are experiencing shortages of surface and groundwater.

Globally, both the monitoring of water quality and water control measures have been deemed to be inadequate⁵³. Recently, the first global assessment of freshwater quality, carried out by GEMS (the Global Environmental Monitoring System), found that contamination of water resources is progressively increasing in much of the world.

As the human population increases so do water withdrawals for agriculture, industry and municipalities. These withdrawals include those from both surface water and groundwater supplies. Along with increased use comes increased effluents originating from human activities. The management of water resources, both water use and water quality, is becoming increasingly important.

Water Withdrawal and Consumption

Although the most obvious uses of water include instream activities such as fishing, shipping and hydroelectric power generation, the greatest variety of water uses are land based. These land-based uses are termed *withdrawal uses* ⁵⁴.

Water withdrawn from its source is directed into a variety of uses, recollected, and redirected back into its original source, sometimes in a more contaminated state. Often, less water is returned than originally withdrawn because of the consumptive nature of the processing that it undergoes. Regionally the highest water withdrawals in 1986 occurred in Ontario (Table 4.3.3.1).

From 1981 to 1986 gross water use in Canada increased by 5.0 percent from 53.8 billion cubic metres in 1981 to 56.5 billion cubic metres in 1986 (Table 4.3.3.2). Gross water use represents the total amount of water used during a process, which is normally equal to water intake. However some

sectors reuse the same water many times, in which case the gross water use could be equal to several times the water intake.

Gross water use is the sum of water intake plus recirculation. Table 4.3.3.3 presents gross water use by sector. The highest water use levels occur in the mining and manufacturing sectors. Table 4.3.3.4 provides a further breakdown of water use in the mining and manufacturing sectors for the years 1981 and 1986.

Groundwater

Groundwater, the saturated zone that exists below the water table, is an important renewable resource and is the sole source of water for almost a quarter of all Canadians (Table 4.3.3.5). One of the characteristics of groundwater is that it moves very slowly through water-bearing rock and soil. Therefore contaminants may not appear in the groundwater until long after they have been released.

Precipitation flows through the unsaturated zone and collects as groundwater. It is then circulated back to the surface and returned to the atmosphere by evaporation and transpiration. The length of time water spends in the groundwater portion of the hydrologic cycle can vary from a few days to more than 10,000 years. In comparison the average river requires only 2 weeks to completely replace itself.⁵⁵

In 1981, about 26 percent of Canadians relied on groundwater for domestic use (Table 4.3.3.6). Provincially reliance on groundwater ranged from 100 percent in Prince Edward Island to less than 1 percent in the Northwest Territories.⁵⁶

During 1981 over 1.4 billion cubic metres of groundwater was used in Canada. Table 4.3.3.7 shows that the municipal sector was the largest ground-water user nationally, at 31 percent, followed by the agriculture, industrial and rural sectors. Regionally, the reliance on groundwater varied by sector. In the Atlantic Region, rural users were the major consumer. In Ontario and Quebec, municipal consumption predominated. Agricultural uses were the prime consumer in in the Prairie region. In British Columbia, industrial uses ranked highest. Ontario accounts for 27 percent of the groundwater consumption in Canada.

Table 4.3.3.7 illustrates that during 1981 approximately 37.6 billion cubic metres of water was used in Canada. According to Environment Canada, ⁵⁷ 51 percent of total water use was

^{53.} World Resources Institute. Op.cit.

Environment Canada, 1990. Water Works, Fact Sheet No. 4, Supply and Services Canada. Ottawa, Canada.

Environment Canada, 1990. Ground-water — Nature's Hidden Treasure, Fact Sheet No. 5. Supply and Services Canada. Ottawa, Canada.

Environment Canada, 1986. Ground-water Use in Canada, 1981 by P.J. Hess, National Hydrology Research Institute, IWD Technical Bulletin No. 140. Inland Waters Directorate, Ottawa, Canada.

^{57.} Ibid.

for thermal power generation. Table 4.3.3.7 presents calculations of ground-water use to total water use with and without the influence of the thermal generation category (because of the large volume of water use by this category).

Owing to the great volumes of surface water used in agriculture, industry and the larger cities, the importance of groundwater may be underrated. Table 4.3.3.5 does not show that in the rural areas of the country, groundwater is of great importance.

Groundwater is an essential renewable resource in Canada. The contamination of ground water by industrial, agricultural and domestic activities is already a serious problem.

Interbasin Transfers

The wholesale restructuring of water systems affects a much larger geographic area than water withdrawal from a point source. Dams retain runoff for release when there is enough demand. Diversions, such as dykes, redirect water to where it is in demand. Both dams and dykes involve the transfer of large amounts of water between basins. In some cases, large tracts of land, including villages, hunting grounds and wildlife habitat are flooded.

Over the past 25 years Canada has become the worlds largest water diverter.⁵⁸ This change in status has occurred as a result of three large diversion projects — the Churchill Falls Project in Labrador; the Churchill-Nelson Diversion in Manitoba; and the La Grande River (James Bay Phase 1) Project in Quebec. These three projects account for two-thirds of all flow diverted in Canada (Table 4.3.3.8), with hydroelectric power generation dominating as the purpose behind most water diversions.

^{58.} Day, J.C. and F. Quinn. 1987. Dams and Diversions: Learning from Canadian Experience, [in] Proceedings of the Symposium on Interbasin Transfers of Water: Impacts and Research Needs for Canada, National Hydrology Research Centre. Saskatoon, Saskatchewan, 9-10 November, pp. 43-56.

Regional Water Withdrawal and Consumption, 1981 and 1986

			Water witho	Irawals			Decised		Percent of water
Region	Agriculture	Mining	Manufacturing	Thermal power	Municipal	Regional total	Regional change 1981-86	Water consumption	consumption to water withdrawal
			million cubic me	tres (MCM)			percent	MCM	percent
Atlantic provinces									
1981	12	86	640	1 837	307	2 682		127	4.41
1986	13	212	958	2 490	339	4 012	39.2	193	4.81
Quebec									
1981	82	107	2 319	308	1 369	4 185		416	9.94
1986	89	52	1 521	986	1 484	4 132	- 1.3	387	9.37
Ontario									
1981	148	124	4 4 1 4	14 930	1 450	21 066		715	3.39
1986	166	100	3 763	19 967	1 602	25 598	21.5	794	3.10
Prairie Provinces									
1981	2 338	197	382	1 846	579	5 342		1 981	37.08
1986	2 688	142	357	1 867	675	5 729	7.2	2 254	39.34
British Columbia ¹									
1981	545	134	2 182	360	558	3 779		653	17.28
1986	603	87	1 384	54	617	2 745	- 27.4	651	23.72
Canada									
1961	3 125	648	9 937	19 281	4 263	37 254		3 892	10.45
1986	3 559	593	7 983	25 364	4 717	42 216	13.3	4 280	10.14
Percent of Total									
1981	8.39	1.74	26.67	51.76	11.44	100.00			
1986	8.43	1.40	18,91	60.08	11.17	100.00			

Source:

Environment Canada. Inland Waters Directorate (unpublished data).

Notes:

' Sectoral data for the Yukon and Northwest Territories are included with British Columbia.

² Figures for some sectors have been extrapolated and rounded.

Table: 4.3.3.2

Water Withdrawal and Consumption by Sector, 1981 and 1986

	Water	intake	Recirc	ulation	Gross w	ater use ¹	Consu	mption	Disch	harge ²
Sector	Quantity	Change 1981-86	Quantity	Change 1981-86	Quantity	Change 1981-86	Quantity	Change 1981-86	Quantity	Change 1981-86
	MCM ³	percent	MCM	percent	МСМ	percent	MCM	percent	MCM	percent
Agriculture										
1981	3 125		0		3 125		2 4 1 2		713	
1986	3 559	13.9	0	0.0	3 559	13.9	2 752	14.1	807	13.2
Mining										
1981	648		2 792		3 440		178		470	
1986	593	- 8.5	2 038	- 27.0	2 631	- 23.5	164	- 7.9	429	- 8.7
Manufacturing										
1981	9 937		10 747		20 684		494		9 4 4 3	
1986	7 984	- 19.7	7 813	· 27.3	15 797	- 23.6	404	- 18.2	7 579	- 19.7
Thermal power generation										
1981	19 281		1 868		21 149		168	0.0	19 113	
1986	25 364	31.5	4 480	139.8	29 844	41.1	271	61.3	25 093	31.3
Municipal ⁴										
1981	4 263		0		4 610		640		3 623	
1986	4716	10.6	0	0.0	4 716	2.3	689	7.7	4 022	11.0
Total ⁵										
1981	37 254		15 407		53 008		3 892		33 362	
1986	42 216	13.3	14 331	- 7.0	56 547	6.7	4 280	10.0	37 930	13.7

Source:

Environment Canada. Inland Waters Directorate (unpublished data).

Notes:

¹ Gross water use equals new water intake plus recycled water.

² Discharge equals water intake minus consumption.

³ Millions of cubic metres.

* Excludes water supplied to Industry. Includes estimates for rural residential water use.

⁵ Data may not add due to rounding.

Water Use by Sector, 1981 and 1986

Sector	Water intake'	Recirculation ²	Gross water use ³	Consumption ⁴	Total water discharge ⁵	Use rate ⁶
	-		billion cubic metres			
Agriculture						
1981	3.1	0.0	3.1	2.4	0.7	1.0
1986	3.6	0.0	3.6	2.8	0.8	1.0
Mining						
1981	0.6	, 0.6	3.6	0.2	0.7	6.0
1986	0.6	2.0	2.6	0.2	0.4	4.3
Manufacturing						
1981	9.9	11.3	21.5	0.5	9.7	2.2
1986	8.0	7.8	15.8	0.4	7.6	2.0
Thermal power generation						
1981	19.3	1.9	21.2	0.2	19.2	1.1
1986	25.4	4.5	29.8	0.3	25.1	1.2
Municipal ^{7.8}						
1981	4.3	0.0	4.4	0.6	3.7	1.0
1986	4.7	0.0	4.7	0.7	4.0	1.0
Totel®						
1981	37.2	13.8	53.8	3.9	34.0	1.4
1986	42.3	14.3	56.5	4.4	37.9	1.3

Source:

Environment Canada. Inland Waters Directorate (unpublished data).

Notes:

¹ Amount of water withdrawn for a particular activity over a given amount of time.

² Waler used at least twice ³ Gross water use equals new water intake plus recycled watar.

Water lost during production.
 Discharge equals water intake minus consumption.

⁶ The ratio of gross water use to water intake; represents an index of recirculation.

⁷ Excludes water supplied to Industry.

⁸ Includes estimates for rural residential water use.

⁹ Data may not add due to rounding.

Water Consumption

Table: 4.3.3.4

Water Use by Industry Group for the Mining and Manufacturing Sectors, 1981 and 1986

Sector	1980 SIC Code ¹	Number of employees	Number of plants	Water intake ²	Recircu- lation ³	Gross water use ⁴	Consump- tion ⁵	Total water discharge ⁶	Use rate ³
					n	illion cubic metr	85		
Mining Sector									
Mining Industries ⁸		86 742	198	527.30	1 741.81	2 269.11	130.30	396.91	4.3
1981	6	65 734	228	507.35	1 163.77	1 671.12	121.45	385.90	3.3
Crude Petroleum and Natural Gas Industries	0	00 7 34	220	307.33	1 105.77	10/1.14	121.95	505.50	0.0
1981		8 669	53	121.01	1 050.29	1 171.30	47.92	73.09	9.7
1986	7	8 372	49	86.02	873.45	959.47	42.92	43.10	11.2
Manufacturing Sector									
Food Industries ⁹									
1981		140 976	1 273	352.12	101.52	453.64	17.08	335.04	1.0
1986	10	155 371	1 288	563.93	148.30	712.23	23.46	540.47	1.3
Beverage Industries							10.00	04.00	
1981		26 949	240	77.72	15.28	93.00	13.63	64.09	1.1
1986	11	23 138	217	62.62	106.83	169.45	12.09	50.53	2.3
Rubber Products Industry									
1981		21 623	86	27.99	59.62	87.62	3.38	24.61	3.
1986	15	21 201	86	23.31	66.69	90.00	2.35	20.96	3.
Plastic Products Industries									
1981		24 437	364	26.18	684.35	710.53	3.88	22.30	27.
1986	16	31 745	438	29.93	66.37	96.30	2.62	27.31	3.3
Primary Textile Industries									
1981		26 634	106	106.50	49.85	156.34	4.45	102.05	1.1
1986	18	20 067	123	94.85	29.70	124.55	2.08	92.77	1.3
Textile Products Industry									
1981		7 128	56	17.17	0.73	17.91	0.74	16.43	1.0
1986	19	6 329	72	12.76	11.94	24.70	1.36	11.40	1.5
Wood Industries									
1981		43 594	360	72.84	57.29	130.13	4.30	68.54	1.8
1986	25	49 051	341	56.02	7.97	63.99	1.98	54.04	1.1
Paper and Allied Products Industries		00.001	0.74	0.000.05	1 011 30	7.544.44	150.50	0 700 00	2.0
1981	07	96 331	271	2 899.35 3 028.85	4 611.76 2 979.02	7 511.11 6 007.86	159.52 199.91	2 739.83 2 828.94	2.0
1986	27	93 809	291	3 020.00	2 979.02	0 007.00	133.81	2.020.04	2.1
Primary Metal Industries ¹⁰		111 972	171	2 718.60	1 692.26	4 410.86	37.68	2 680.92	1.0
1981					1 349.86	3 068.03	42.92	1 675.26	1.0
1986	29	103 695	221	1 718.18	1 349.00	3 000.03	44.32	10/5.20	1.0
Fabricated Metal Products Industries		00 400	004	00.01	100.01	100.40	0.78	29.43	5.3
1981		30 136	324	30.21	130.21	160.42			5.5
1986	30	47 711	537	25.18	113.56	138.73	0.95	24.23	9.5
Transportation Equipment Industries ¹¹		149 876	329	108.77	72.84	181.60	2.87	105.90	1.7
1981	20			117.30	236.94	354.24	3.72	113.58	3.6
1986 Nex Metallic Minarel Products Industries	32	173 371	435	117.30	230.94	334.64	0.12	113.30	3.1
Non-Metallic Mineral Products Industries		39 270	674	82.62	530.25	612.87	14.33	68.29	7.0
1981	25		588	82.62	530.25 69.90	159.57	14.33	71.63	1.0
1986 Refined Batteleum and Cost Braduate Industries	35	38 930	BBC	09.07	09.80	108.07	10.04	/1.00	1.0
Refined Petroleum and Coal Products Industries		11 785	42	563.07	1 456.97	2 020.04	34.18	528.89	3.0
1981 1986	36	9 756	42	487.15	1 068.12	1 555.27	33.49	453.66	3.1
Chemical and Chemical Products Industries ¹²	30	9 7 50	36	-07.10	1000.12	1 300.21	55.48	400.00	0.,
1981		64 424	572	2 853.27	1 283.62	4 136.90	196.99	2 656.28	1.
1986	37	56 276	566	1 673.87	1 557.66	3 231.54	59.24	1 614.63	1.6
Mining Sector Total									
1981		95 411	251	648.31	2 792.10	3 440.41	178.22	470.00	7.0
1986		74 106	277	593.37	2 037.22	2 630.59	164.37	429.00	7.:
Manufacturing Sector Total									
1981		795 135	4 868	9 936.41	10 746.55	20 682.97	493.81	9 442.60	4.3
1986		830 450	5 235	7 983.62	7 812.86	15 796.46	404.21	7 579.41	2.

Source:

Environment Canada. Inland Waters Directorate (unpublished data).

Notes:

¹ For comparative purposes the 1981 SIC (Standard Industrial Classification) codes were aggregated to the 1986 SIC codes.

² Amount of water withdrawn for a particular activity over a given amount of time.

³ Water used at least twice.

4 Gross water use equals new water intake plus recycled water.

5 Water lost during production.

⁶ Discharge equals water intake minus consumption.

7 The ratio of gross water use to water intake; represents an index of recirculation.

* Placer gold mines surveyed in 1986 were not surveyed in 1981.

⁹ Bread and other bakery products industries surveyed in 1986 were not surveyed in 1981.

¹⁰ Aluminum roll, cast and extruding industry surveyed in 1986 was not surveyed in 1981

¹¹ Motor vehicle fabric accessories industry surveyed in 1986 was not surveyed in 1981.

¹² Printing ink manufacturers surveyed in 1986 were not surveyed in 1981.

Table: 4.3.3.5

Estimated Population Reliant on Ground Water in Canada, 1981

	Groundwater	use	Populati	on reliant
Region	Total	Proportion of national use	Total	Proportion of population reliant
	thousand cubic metres	percent	number	percent
Atlantic Provinces	153 336	10	1 116 741	50
Quebec	255 806	17	1 126 284	17
Ontario	397 769	27	1 985 279	23
Praine Provinces	341 958	23	1 377 134	33
British Columbia ¹	341 868	23	617 225	22
Canada	1 490 737	100	6 222 663	26

Source:

Environment Canada. Inland Waters Directorate, Technical Bulletin No. 140, 1986. Notes:

¹ Sectoral data for the territories are included with British Columbia.

Table: 4.3.3.6

Estimated Ground-Water Use in Canada, 1981

	Total ground-water	Regional around-water		Sector		
Region	ground-water USE	USO	Agriculture	industrial ^{1,2}	Rural	Municipal
	thousand cubic metres	percent		percent		
Atiantic Provinces	153 336	10	7	18	41	34
Quebec	255 806	17	29	11	22	36
Ontario	397 769	27	23	8	18	51
Praine Provinces	341 958	23	50	14	21	15
Britsh Columbia ³	341 868	23	19	56	7	18
Canada	1 490 737	100	28	22	19	31

Source:

Environment Canada. Inland Waters Directorate, Technical Bulletin No. 140, 1986.

Notes: ¹ includes mining, manufacturing, thermal power and fish enhancement facilities.

² Self-supplied only.

³ Sectoral data for the territories are included with British Columbia.

Table: 4.3.3.7

Estimated Water and Groundwater Use, 1981

	Total water use including th	ermal generation	Total water use excluding thermal generation			
Region	Total	Percentage from ground water	·			
	thousand cubic metres	percent	thousand cubic metres	percent		
Atlantic Provinces	2 874 100	5	1 076 970	14		
Quebec	4 239 074	5	3 931 384	6		
Ontario	21 186 855	2	6 262 545	6		
Prairie Provinces	5 373 816	8	3 555 876	10		
British Columbia ¹	3 878 942	11	3 520 762	10		
Canada	37 552 787	4	18 347 537	8		

Source:

Environment Canada. Inland Waters Directorate, Technical Bulletin No. 140, 1986.

Notes:

Sectional data for the territories are included with British Columbia.

Table: 4.3.3.8

Major Water Transfers, 1985¹

Ecozone(s)	Province	Contributing water body (code)	Receiving water body (code)	Average annual transfer rate ²	Uses	Date operational
				m ³ /sec		HILL
Mixed Wood Plain	Ontario	Lake Erie(2G)	Lake Ontario(2H)	250	navigation, hydro	1929
Boreal Shield	Newfoundland	Victoria, Whitebear, Grey and Salmon Rivers(2Y, 2Z)	Northwest Brook (Bay d'Espoir)(2Y,2Z)	185	hydro	1969
Boreal Shield to Taiga Shield	Quebec	Eastmain, Opinaca Rivers(3C,3D)	La Grande River(3C,3D)	845	hydro	1980
Boreal Shield to Mixed-Wood Plain	Ontario	Long Lake (Albany River)(4G,4H,4J)	Lake Superior(2A,2B)	42	hydro, logging	1939
Boreal Shield to Mixed-Wood Plain	Ontario	Ogoki River (Albany River)(4G,4H,4J)	Lake Nipigon(2A,2B)	113	hydro	1943
Boreal Shield	Ontario	Lake St.Joseph (Albany River)(4G,4H,4J)	Root River(5Q,5R,5S)	86	hydro	1957
Boreal Shield	Ontario	Little Abitibi River(4K,4L,4M)	Abitibi River(4K,4L,4M)	40	hydro	1963
Boreal Shield	Manitoba	Churchill River(6A,6B,6C,6D,6E)	Rat, Burntwood Rivers(5T,5U)	775	hydro	1976
Montane Cordillera to Pacific Maritime	British Columbia	Nechako River(8J,8K,8M)	Kemano River(8B,8C,8D,8F)	115	hydro	1952
Montane Cordillera	British Columbia	Bridge River(8J,8K,8M)	Seton Lake(BJ,8K,8M)	92	hydro	1959
Pacific Maritime	British Columbia	Coquitlam Lake(8M)	Buntzen Lake(8G)	28	hydro	1912
Pacific Maritima	British Columbia	Cheakamus River(8G)	Squamish River(8G)	37	hydro	1957
Taiga Shield	Newfoundland	Julian, Unknown Rivers(3N,3O,3P,3Q)	Churchill River(3N,3O,3P,3Q)	196	hydro	1971
Taiga Shield	Newtoundland	Naskaupi River(3N,3O,3P,3Q)	Churchill River(3N, 3O, 3P, 3Q)	200	hydro	1971
Taiga Shield	Newtoundland	Kanairiktok River(3N,3O,3P,3Q)	Churchill River(3N,3O,3P,3Q)	130	hydro	1971
Taiga Shield	Quebec	Canlapiscau River(3H,3J,3K,3L,3M)	La Grande River(3C,3D)	790	hydro	1983
Taiga Shield	Quebec	Lake Frégate(3C,3D)	La Grande River(3C,3D)	31	hydro	1982
Taiga Shield	Saskatchewan	Tazin Lake(7L,7M,7N,7O,7P,7Q,7R, 7S,7T,7U)	Lake Athabasca(7L,7M,7N,7O, 7P,7Q,7R,7S,7T,7U)	25	hydro	1958

Source: Day, J.C. and F. Quinn. 1987. Dams and Diversions: Learning from Canadian Experience, in Proceedings of the Symposium on Interbasin Transfer of Water. Saskatoon, Saskatchewan. November 9-10, 1987. pp. 43-56. Notes: ¹ This table updates Table 5.2.6 in Human Activity and the Environment, 1986. ² Estimates.

5. Appendices

5.1 The Population-Environment Process Framework

Any statistical activity, including collections of environmental statistics, requires a conceptual model of the structure or activity being represented. The model, or framework, may be used to simply organize a complex work into principal elements. A more sophisticated model will not only provide organizing principles but also enhance the readers understanding of the relationships between the elements.

For the purpose of environmental statistics at Statistics Canada, we require a framework which integrates our knowledge of the socio-economic system and its relationship to the environment and natural resources. A framework must be sufficiently comprehensive to include human activities, natural resources and the natural environment. It must also provide links to existing statistical frameworks, such as the National Accounts, Census and business surveys.

Existing frameworks were found to be insufficient for the purpose of organizing our work. As reported by Sheehy⁵⁹, environmental reports have been based upon some combination of the following types of organizing principles:

- Issues. Many publications are organized according to current policy issues. Therefore acid precipitation, global warming, and soil loss, for example, provide a skeleton for the report and the profusion of other environmental data is ordered according to these issues. This approach has the advantages of timeliness and topicality. What it lacks, however, is comprehensiveness and a systematic approach it may overlook important, cross-cutting problems.
- **Resource sector.** A substantial portion of the work generated from this approach classifies resource activities: agriculture, forestry, fisheries, mineral extraction and energy production. This provides information that is readily related to the benefits we take from the environment as well as many of the economic implications of environmental change (decline in productive forests and fish stocks, for instance).
- **Environmental media.** The most traditional organizational framework for environmental data divides the world into the categories of biota, land, air and water. This has the advantage of familiarity we can all relate to air that is unbreathable or water that is polluted but is weak in categorizing cross-media and biological effects.

- Environmental process. This approach is based on the measurement of the physical and biological processes fundamental to natural ecosystems and the human activities that have impacts upon them. Concentrating on environmental processes is both systematic and integrative, in the sense that all human and natural agents of change will eventually produce alterations in ecosystem operation.
- **Combination Frameworks.** Using this approach, aspects of several organizing principles are applied. This can be seen quite clearly in the *State of Environment Report for Canada*⁶⁰ which combined resource sector and environmental process approaches.

The Population-Environment Process framework is an extension of the combination approaches applied previously. The framework divides the world into three major components: **population**, the **socio-economic system** and the **natural environment**. Each of these components consist of **states**, **activities**, and **interactions** with other components. The framework incorporates the following principles:

- The **socio-economic system** is an artificial system (in Herbert Simon's phrase⁶¹) embedded in a natural environment.
- The human-created and human-controlled processes within the socio-economic system have two types of direct impact on the environment: (a) **restructuring** as a byproduct of production and consumption, and (b) **extracting**, **harvesting** and using the natural environment as processes providing necessary **resources** for the socio-economic system.
- The **natural environment** is affected by the outputs and inputs to the socio-economic system, and the state of the environment changes as a result.
- The change in the state and quality of the environment, in turn, affects the quantity and quality of resources available to the socio-economic system.

Impacts on the natural environment resulting from human activities can be viewed as **restructuring** of the environment. This can have three basic expressions: (i) **physical** restructuring results from construction of dams, roads, power lines, mines, dump sites and other changes to the natural landscape; (ii) **chemical** restructuring results from the release of pollutants and wastes into the environment; (iii) **biological**

Sheehy, G. 1989. Organizational and Spatial Frameworks for State of the Environment Reporting. Environment Canada, SOE Reporting Branch, April 1989.

Environment Canada. 1986 State of the Environment Report for Canada. 1986.

Simon, H.A. 1982. The Sciences of the Artificial, 2nd Edition. MIT Press, Cambridge Mass., 1982.

restructuring is the result of harvesting and the introduction of exotic species.

The framework therefore closes the loop — the byproducts of socio-economic activity interact in the environment to produce changes in the resources (including air, water and wilderness) on which these activities depend (See Figure 1). Activity levels, restructuring, measures of environmental state and the quality and quantity of resources available for extraction and harvest are all important to measure.

In Figure 2, a structural representation of the framework, the population appears as a stock endowed with a set of population processes (birth, death, and migration). This population draws services and non-durable goods from a set of socio-economic processes (consisting largely of production and operation) based on a capital stock of durable humanmade items.

The population also interacts directly with stocks of natural assets in the environment, in the form of breathing air, drinking water, engaging in activities such as fishing, hunting, canoeing, camping and hiking, and enjoying the aesthetics and amenities provided by the natural world. Direct use of the environment by the population inevitably leads to some restructuring, both physically and through the release of wastes.

Socio-economic processes depend on flows of resources (both living and non-living) and services from the stocks of natural assets. As byproducts of production and consumption the full range of restructuring of the natural environment occurs. Socio-economic processes depend as well on the capital stock of human-made assets.

Wastes are treated as a separate output of socio-economic processes. The generation of wastes does not necessarily have a direct environmental impact. These byproducts of production may be treated, stored or recycled to minimize their impact.

The stocks of natural assets change as a result of interactions with the population, socio-economic processes and natural processes (including growth and decline of living populations, other biological processes, and geochemical processes).

The interaction of natural processes and human-induced restructuring is the least understood portion of humanenvironment interactions. The measurement of current states and quality is a necessary input to policy questions on health, sustainability and aesthetic value. The systematic measurement of restructuring activities is required to increase our scientific understanding of environmental change — for instance, enforcing legislation concerning environmental quality will require measurement of these restructuring activities such as emissions to air and water.

The great strength of the PEP framework is the linkage it provides between disparate data sets. For example:

- There is a direct link between the framework and measures of socio-economic processes that are the subject matter of existing Statistics Canada surveys (e.g. agriculture, primary industries, manufacturing, services including transportation). Similarly, capital formation and capital stock are measured by existing surveys. Of particular interest is the investment in pollution abatement and control.
- Population state and population processes are measured in current health and demographic data.
- The natural asset component of the framework builds on existing natural resource data.
- Linkages to the System of National Accounts are quite explicit: consumption and investment (two of the flows associated with the socio-economic process component of the framework) make up a substantial portion of Gross Domestic Product; the capital stock constitutes a part of tangible assets in the National Balance Sheet. PEP suggests the desirability of measuring natural assets as another type of tangible asset within the National Balance Sheet Accounts.⁶¹

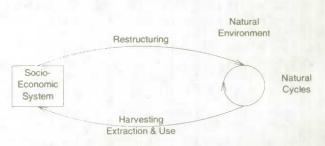


Figure 1. PEP Conceptual Framework Diagram

The purpose of including components which are not strictly "environmental" in the framework is to show how traditional environmental data (emissions, loadings in media and biota, measures of physical and biotic state) can integrate with socio-economic data to provide a more complete picture of: (i) how environmental quality may be related to socio-economic activities; and (ii) how socio-economic activities may be influenced by changing environmental quality.

From the diagram in Figure 2, three major components of PEP can be seen: stocks (represented by "barrels" in Figure 2), processes (represented by boxes) and interactions (represented by arrows). The variables relating to these components fall into four categories: states, activities, flows and restructuring. More detailed examples of the variables are provided in Table 1.

61. Statistics Canada. 1987. Financial Flows and National Balance Sheet Accounts. Catalogue 13-214.

Figure 2. Population-Environment Process Framework

Table 1

The PEP Framework: Components

Component	Variable Type	Examples
Stocks		
Population	State	Number of people. Number of households. Health status.
Capital	State	Stocks of capital for pollution abatement and control, by sector, by material controlled. Built-up area. Transportation infrastructure including energy transport.
Natural Assets	State	Quantity and quality of minerals and energy. Quantity and quality of living resources. Air quality Water quantity and quality. Amount and quality of wilderness.
Wastes	Stock	Quantity of wastes. Number of landfill sites.
Processes		
Population	Activity	Growth, migration.
Socio-economic	Activity	Outputs by sector. Production and consumption of environmentality dangerous substances. Energy consumption. Operation of transportation stock.
Natural	Activity	Rates of geochemical cycles. Natural events (storms, earthquakes, fires, pest infestations).
Interactions		
Socio-economic process with Population.	Flow	Contaminants in food and other goods.
Natural assets with Population.	Flow	Air quality in populated areas. Sport fishing and hunting. Ground water withdrawals.
Natural assets with Socio-economic processes.	Flow	Extraction of minerals and energy. Water use. Harvest of forests, fish and wildlife. Agricultural production.
Population with Natural assets.	Restructuring	Impacts of visits to wilderness and protected areas. Impacts of extracting local environmental resources (e.g. firewood).
Socio-economic processes with Natural assets.	Restructuring	Physical restructuring through development of agriculture, mines, dams, and transport infrastructure. Biological restructuring through harvesting activities.
Wastes with Natural Environment	Flow	Release of pollutant emissions and wastes, breakdown of wastes.
Socio-economic processes with Wastes	Flow	Generation of waste materials, recycling.

5.2 Geographic Units for Environmental Analysis

Data to assess the relationships between human activities and environmental conditions are usually more meaningful when organized by natural geographies rather than by administrative boundaries. These natural geographic units are physically defined, they remain consistent over long periods of time and many environmental qualities (e.g., climate or vegetation type) are uniform throughout one unit. This publication uses several natural spatial units for environmental analysis; drainage basins and ecozones are generally the most useful.

Drainage basins are water catchment areas delineated by heights of land. These are the natural units for all statistics dealing with water — for direct measures such as stream flow, water use, water quality and associated flora and fauna information. They are also useful for indirect measures of human activity as depicted by socio-economic statistics. Although activities such as water use or water pollution can be associated with specific administrative units, their impacts will generally extend to other parts of the drainage basin downstream.

Ecozones are large natural regions delineated by distinctive sets of biotic resources (flora and fauna) and physical resources (soil, bedrock, physiography, climate). Since each ecozone comprises a distinctive assemblage of biophysical characteristics, they constitute large, homogeneous geographic spaces, valuable for monitoring the impact of natural and man-made stress on the environment.

Actions to resolve environmental problems are usually undertaken by political administrations such as municipalities, provinces or countries. Therefore, environmental data by administrative units are of interest for management purposes, planning remedial measures, and assessing the effectiveness of policies. In this publication, statistics are presented by province/territory with subgroupings for ecozone and drainage basin.

Drainage Basins

The drainage basin classification presented here is consistent with the system used by the Water Survey of Canada, Environment Canada.⁶² Drainage systems can be differentiated by the natural hierarchy of stream branching. Canada is part of the North American continental hydrological system of which five basins at the apex of the hierarchy are found in Canada. These are: (i) Atlantic Ocean Basin, (ii) Hudson Bay and Ungava Bay Basin, (iii) Arctic Ocean basin, (iv) Pacific Ocean basin and (v) Gulf of Mexico Basin. The Gulf of Mexico Basin extends over a small area of Alberta and Saskatchewan.

The drainage basin classification here is a revised version of the set originally published in the 1986 edition of *Human Activity and the Environment*. In this edition, the sub-basins as defined by the Hydrological Survey are maintained (Table 5.2.0.1).

Map 5.2.0.1 provides an outline of Canada's main basins and sub-drainage basins.

Many tables in this report present statistics for major drainage areas. These are groups of drainage basins and are designed for the illustration of broad patterns at a national scale. More detailed data or user-specified geographic aggregations are available on request.

Ecozones

The ecozones presented here were delineated by Lands Directorate of Environment Canada. See Table 5.2.0.2 for a brief description of ecozone biophysical characteristics. The ecozones are show in map form in Map 5.2.0.2.

Ecological land classification is the process of identifying areas with common landform, water, soil, vegetation, climate, wildlife and human factors. These can be further developed into a hierarchical system ranging from site-specific ecosystems (e.g., ponds, woodlots and meadows) to ecological zones encompassing large portions of the earth's surface (e.g., tundra, boreal forests, grasslands, deserts).

The Canada Committee on Ecological Land Classification has proposed a seven-level hierarchy, ranging from the ecoelement, a small area with specific characteristics, to ecoprovinces and ecozones, generalized ecological units covering large areas.

Ecological areas have been mapped at the more detailed level in various parts of Canada including Alberta, Quebec, Saskatchewan, Yukon and the Northwest Territories. The ecozone classification used here was one of the first attempts at a Canada-wide approach, although several regional breakdowns of Canada dealing with specific ecosystem elements had been carried out earlier (for example, forest regions, physiographic regions, and wetland regions).

Several organizing conventions were followed by Environment Canada in delineating these ecozones. Among these is a process termed complexing, which consists of

^{62.} Environment Canada. Inland Waters Directorate, Water Resources Branch. 1986. Water Survey of Canada. Hydrometric Map Supplement.

Human Activity and the Environment

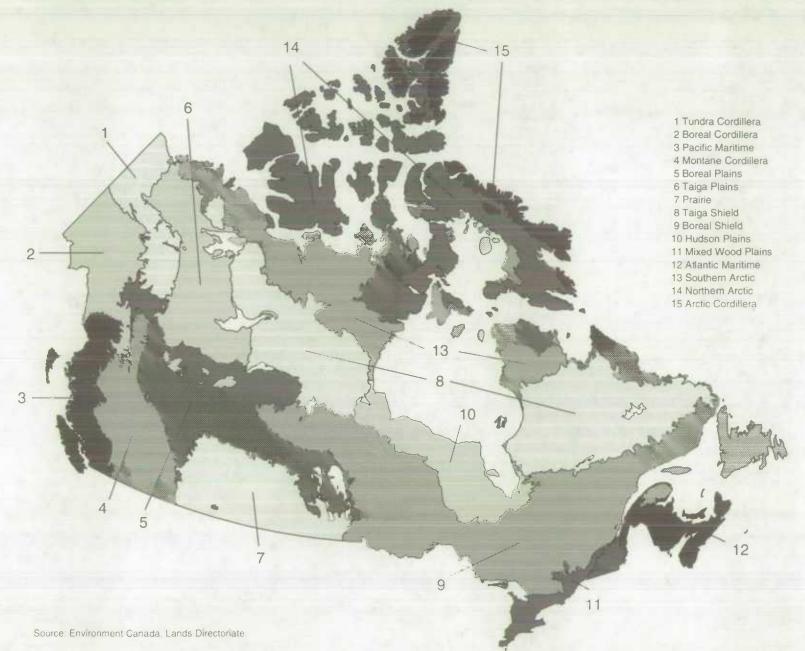
grouping small spatially proximate units that might otherwise be considered as separate entities. This facilitates examination of patterns at a broad level. The Montane Cordillera Ecozone is illustrative, being composed of many very distinct ecological entities ranging from semi-desert environments, through grasslands and forests to alpine areas.

Another convention followed in delineating boundaries was that in transition areas where classifying elements intermixed, dominant components were identified and their distribution used to assist in placing the boundary line. For example, in southeastern Ontario, a mix of boreal and hardwood forest is present on the Canadian Shield. Here, landform was deemed to have the greatest impact on activities, forest type was disregarded and the boundary of the Boreal Shield was placed to coincide with the southern limit of the Canadian Shield.

Boundary lines often imply a degree of precision in demarcation of ecozones that does not actually exist. More realistically, the boundaries should perhaps be viewed as transition zones ranging from tens to hundreds of kilometres wide depending on the ecozones involved.

The fifteen ecozones presented here are further disaggregated by provinces and territories.

Population Centres


Locations for census metropolitan areas (CMAs) and weather stations used in this publication are provided in Map 5.2.0.3.

218

Human Activity and the Environment

Ecozones of Canada

Map: 5.2.0.3

Table: 5.2.0.1

Drainage Sub-basin Names and Areas

Province	Sub-basin			Province	Sub-basin		
Code	Code	Sub-basin	Area	Code	Code	Sub-basin	Area
		Newfoundland				Ontario	
10	2V	Romaine	2 709	35	2A	Nipigon and Northwest Lake Superior	43 038
10	2W	Natashguan	6 436	35	28	Northeast Lake Superior	40 068
10	2X	Little Mecatina and Strait of Belle Isle	25 731	35	2C	North Laka Huron	34 378
10	24	North Newfoundland	66 367	35	20 2D	Wanipitai and French	
10	2Z	South Newfoundland	46 058	35	20 2E		19 109
10	3N	North Labrador	86 701	35	2E 2F	East Georgian Bay	22 254
10	30	Churchill		35		East Lake Huron	14 810
10	30		83 035		2G	North Lake Erie	22 944
10	30	Naskaupi and Central Labrador Eagle and South Labrador	35 135	35 35	2H 2J	Lake Ontario	28 709
10	312	Lakes	47 022	35	2J 2K	Montréal and Upper Ottawa	17 624
10		Total	6 527			Madawaska, Petawawa and Central Ottawa	22 903
		TOCAL	405 720	35	2L	Rideau and Lower Ottawa	9 009
		Prince Edward Island		35	2M	Upper St. Lawrence	4 454
	10		5 000	35	4A	Hayes	16 750
11	10	Prince Edward Island	5 660	35	4B	Nisksibi and Central Hudson Bay	16 975
		Total	5 660	35	4C	Sevem	89 407
				35	4D	Winisk	78 477
		Nova Scotia		35	4E	Ekwan	51 525
12	1D	Bay of Fundy	20 860	35	4F	Attawapiskat	56 098
12	1E	Southeast Atlantic Ocean	23 062	35	4G	Upper Albany	63 815
12	1F	Cape Breton Island	11 568	35	4H	Lower Albany	39 259
		Total	55 490	35	4.J	Kenogami	51 194
				35	4K	Kwataboahegaa	9 047
		New Brunswick		35	4L	Moose	63 296
13	1A	Saint John and South Bay of Fundy	34 627	35	4M	Abitibi	32 707
13	16	Gulf of St. Lawrence and North Bay of Fundy	38 736	35	4N	Harricanaw	15 894
13	20	North Gaspé Peninsula	77	35	5P	Upper Winnipeg	43 435
		Total	73 440	35	5Q	English	51 416
				35	5A	East Lake Winnipeg	21 720
		Quebec				Total	980 315
24	1A	Saint John	7 011				
24	16	Cascapédia and Gulf of St. Lawrence	21 809			Manitoba	
24	2J	Upper Ottawa	33 256	46	4A	Hayes	92 288
24	2K	Coulonge and Central Ottawa	17 320	46	48	Nisksibi and Central Hudson Bay	17 562
24	2L	Gatineau and Lower Ottawa	45 40 1	46	4C	Sevem	3 227
24	2M	Upper St. Lawrence	955	46	5J	Qu'Appelle	59
24	2N	St-Maurice	44 296	46	5K	Saskatchewan	18 815
24	20	Centrel St. Lawrence	34 539	46	5L	Lake Winnipegosis and Lake Manitoba	54 912
24	2P	Lower St. Lawrence	37 577	46	5M	Assiniboine	24 874
24	20	North Gaspé Peninsula	13 795	46	5N	Souris	9 040
24	28	Saguenay	87 489	46	50	Red	25 547
24	25	Betsiamites	27 280	46	5P	Winnipeg	12 973
24	21	Manicouagan and Aux Outardes	67 763	46	5R	East Lake Winnipeg	34 248
24	20	Moisie and St. Lawrence Estuary	39 456	46	55	West Lake Winnipeg	23 910
24	2V	Romaine and Gulf of St. Lawrence	34 260	46	53 5T	Rat and Grass	
24	2W	Natashquan and Gulf of St. Lawrence					42 413
24	2X	Little Mecatina	47 262	46	50	Nelson	49 164
24	3A		24 753	46	6D	Reindeer Lake	10 744
	3B	Nottaway	65 559	46	6E	Central Churchill	43 360
24	3B 3C	Broadback and Rupert	72 353	46	6F	Lower Churchill and West Hudson Bay	55 298
24		Eastmain	53 040	46	6G	Seal and West Hudson Bay	75 813
24	3D	Fort George and Sakami	111 606	46	6H	Nueltin Lake	19 159
24	3E	Great Whale and Southeast Hudson Bay	63 541	46	6L	Kazan	807
24	3F	Little Whale and East Hudson Bay	37 691	46		Lakes	35 738
24	3G	Northeast Hudson Bay	103 382			Total	649 950
24	ЗН	West Ungava Bay	84 552				
24	3J	Aux Feuilles	53 761				
24	ЗК	Koksoak	46 222				
24	3L	Caniapiskau	92 910				
24	ME	East Ungava Bay	104 595				
24	4M	Abitibi and North French	4 297				
24	4N	Hamicanaw	28 598				
		Total	1 506 350				

Drainage Sub-basin Names and Areas

Province Code	Sub-basin Code	Sub-basin	Area	Province Code	Sub-basin Code	Sub-basin	Area
		Saskatchewan				British Columbia	
47	5A	Upper South Saskatchewan	920	59	7E -	Williston Lake	72 865
\$7	5C	Red Deer	199	59	7F	Upper Peace	49 133
\$7	5E	Central North Saskatchewan	13 562	59	7G	Smoky	4 975
\$7	5F	Battle	4 431	59	70	Upper Hay	8 379
47	5G	Lower North Saskatchewan	41 103	59	70	West Great Slave Lake	124
47	5H	Lower South Saskatchewan	55 013	59	BA	Alsek	8 478
47	5J	Qu'Appelle	70 192	59	88	Taku and North Pacific Ocean	22 600
47	5K	Saskatchewan	58 186	59	BC	Stikine	50 728
47	5L	Lake Winnipegosis and Lake Manitoba	18 789	59	8D	Nass and North Central Pacific Ocean	30 022
47	5M	Assiniboine	26 964	59	8E	Skeena	56 521
47	5N	Souris	29 449	59	8F	Gardner Canal and Central Pacific Ocean	52 379
47	6A	Beaver	32 379	59	BG	Knight Inlet and South Pacific Ocean	43 196
47	6B	Upper Churchili	43 331	59	8H	Vancouver Island	34 786
47	6C	Upper Central Churchill	45 496	59	8.1	Nechako	46 939
47	6D	Reindeer Lake	48 425	59	8K	Upper Fraser	65 949
47	6E	Central Churchill	8 124	59	8L	Thompson	55 991
47	6H	Nueltin Lake	147	59	BM	Fraser	63 094
47	6L	Kazan	7 849	59	8N	Columbia	102 684
47	7C	Lower Central Athabasca	14 382	59	80	Queen Charlotte Islands	9 644
47	7D	Lower Athabasca	2 446	59	8P	Skagit	1 019
47	7L	Fond du Lac	63 808	59	9A	Upper Yukon	25 321
47 47	7L 7M	Athabasca Lake	27 677	59	10A	Upper Liard	20 450
47 47	70	Taltson and Southeast Great Slave Lake	4 366	59	108	Central Liard	53 988
47	11A	Missouri	20 506	59	100	Fort Nelson	53 979
47	TIA	Lakes	14 585	59	10D	Petitot	14 554
4 r		Total	652 330	35	100	Total	947 800
			032 000				547 555
	C A	Alberta	45 921	61	6G	North West Territories Seal and West Hudson Bay	491
48	5A	Upper South Saskatchewan					
48	5B	Bow	25 442	61	6H	Nueltin Lake	54 274
48	5C	Red Deer	49 135	61	6J	Upper Thelon	71 481
48	5D	Upper North Saskatchewan	27 964	61	8K	Dubawnt Lake	70 303
48	5E	Central North Saskatchewan	28 759	61	6L	Kazan	64 530
48	5F	Battle	25 703	61	6M	Lower Thelon	80 171
48	5G	Lower North Saskatchewan	10 764	61	6N	Northwest Central Hudson Bay	58 882
48	5H	Lower South Saskatchewan	129	61	60	Northwest Hudson Bay	92 210
48	6A	Beaver	16 973	61	6P	Southampton Island	61 218
48	6B	Upper Churchill	668	61	7L	Fond du Lac	5 1 1 6
48	7A	Upper Athabasca	34 896	61	7N	Slave	4 896
48	7B	Pembina and Central Athabasca	41 135	61	70	Hay	3 095
48	7C	Lower Central Athabasca	42 244	61	7P	Buffalo	18 028
48	7D	Lower Athabasca	26 7 19	61	70	Taltson and Southeast Great Slave Lake	89 349
48	7F	Upper Peace	17 550	61	7R	Aylmer Lake and MacKay Lake	27 446
48	7G	Smoky	46 148	61	75	Yellowknife and Northeast Great Slave Lake	67 306
48	7H	Central Peace	35 731	61	7T	Marian	26 306
48	7J	Lower Central Peace	58 7 30	61	70	West Great Slave Lake	28 509
48	7K	Lower Peace and Lake Claire	36 452	61	10D	Petitot	5 627
48	7M	Athabasca Lake	4 630	61	10E	Lower Liard	52 777
48	7N	Slave	11 584	61	10F	Upper Mackenzie	51 276
48	70	Upper Hay	39 721	61	10G	Upper Central Mackenzie	57 714
48	78	Buffalo	16 395	61	10H	Central Mackenzie	68 340
48	70	Taitson and Southeast Great Stave Lake	1 392	61	10.J	Great Bear	126 946
48	70	West Great Slave Lake	521	61	10K	Lower Central Mackenzie	47 658
48	100	Fort Nelson	1 206	61	10L	Lower Mackenzie	73 459
48	10D	Petitot	7 698	61	10M	Peel and Northwest Arctic Ocean	18 633
48	11A	Missouri	6 982	61	10N	Anderson and West Arctic Ocean	98 328
10	114	Totai	661 190	61	100	Amundsen Gulf	93 204
		15361	VVI (40	61	10P	Coppermine	54 708
		Yukon		61	100	Coronation Gulf and Dease Strait	131 595
80	9.4	Aisek	25 931	61	108	Back and Queen Maud Gulf	160 281
60	8A		67 084	61	105	Gulf of Boothia	164 767
60	9A	Upper Yukon					1 337 502
60	9B	Pelly	50 282	61	10T	Arctic Islands	59 894
60	90	Upper Central Yukon	44 091	61		Lakes	
60	9D	Stewart	51 882			Total	3 426 320
60	9E	Central Yukon	29 927				
60	9F	Porcupine	62 246				
60	9G	Tanana	1 993				
60	tOA	Upper Liard	38 634				
60	10B	Central Liard	19 284				
	10D	Petitot	2 366				
60	100						
60 60	10M	Peel and Northwest Arctic Ocean	89 730				
		Peel and Northwest Arctic Ocean Total	89 730 483 450				

Table: 5.2.0.2

Ecozone Biophysical Characteristics

Ecozone	Physiography	Vegetation	Soils and Surface Materials	Climate	
Atlantic Maritime	Hills and coastal plains	Mixed broadleaf and conifer stands	Acid and well weathered soils (podzołs) and soils with clay- rich sublayers (luvisols), moraine, marine bottom soils and rock debris	Cool to cold winters, mild summers, moderate to heavy precipitation	
Mixed Wood Plain	Plains, some interior hills	Mixed broadleaf and conifer stands	Temperate region soils with clay-rich sublayers (luvisols), marine bottom soils, moraine rock	Cool to cold winters, warm to hot summers, moderate precipitation	
Boreal Shield	Plains, uplands, interior hills, many lakes and streams	Conifer and broadleaf boreal stands	Acid and well weathered soils (podzols), lake bottom soils, moraine, rock	Cold winters, warm to hot summers, moderate precipitation	
Prairie	Plains, some foothills	Short and mixed grasslands, aspen parkland	Organically rich, relatively fertile grasslands soils (chemozems), moraine and lake bottom materials	Cold winters, warm to hot summers, moderate precipitation	
Borsal Plain	Plains, some foothills	Coniter and broadleat boreal stands	Temperate region soils with clay-rich sublayers (luvisols), moraine and lake bottom materials	Cold winters, warm summers, moderate precipitation	
Montane Cordillera	Mountainous highlands, interior plains	Mixed vegetation, coniter stands to sage brush	Mixed vegetation, conifer Temperate regions soils with clay rich		
Pacific Maritime	Mountainous highlands, some coastal plains	Coastal western and mountain hemlock	Acid and well- weathered soils (podzols), moraine, rock, rock debris	Mild winters, mild summers, heavy precipitation in tee areas, moist in montane areas	
Boreal Corditlera	Mountainous highlands, some hills and plains	Boreal, some alpine tundra and open woodland	Soil with minimal weathering (brunisols), moraine, rock	Cold winters, mild summers, minimal precipitation in lee areas, moist in montane areas	
Tundra Cordillera	Mountainous hightands	Alpine and arctic tundra	Soils with minimal weathering (brunisols), Irozen soils (cryosols), moraline, rock	Very cold winters, cool summers, minimal precipitation	
Taiga Plain	Plains, some foothills	Open woodland, shrublands and wetlands	Soils with minimal weathering (brunisols), acid and well- weathered soils (podzols) some frozen soils (cryosols), organic materials, moraine	Cold winters, mild to warm summers, moderate precipitation	
Taiga Shield	Plains, uplands, some interior hills, may lakes and streams	Open woodlands, some arctic tundra and lichen health	Soils with minimal weathering (brunisols), acid and well- weathered soils (podzols) some frozen soils	Cold winters, warm summers, minimal precipitation	
Hudson Bay Plain	Plains	Wetlands, Arctic tundra and some conifer stands	Organic solls, sea bottom and beach materials	Cold winters, mild summers, minimal precipitation	
Southern Arctic	Plains, some interior hills	Shrub/herb/heath Arctic tundra	Frozen soils (cryosols), moraine, rock marine bottom sediments	Cold winters, cool summers, minimal precipitation	
Northern Arctic	Ptains and hills	Herb-lichen Arctic tundra	Frozen soits (cryosols), moraine, rock marine bottom sediments	Very cold winters, cool summers, minimal precipitation	
Arctic Cordillera	Mountainous highlands	Largely non- vegetated, some shrub/herb Arctic tundra	Frozen soils (cryosols), rock, rock debris, ice	Very cold winters, cool to cold summers minimal precipitation	

Source: Environment Canada, Lands Directorate, Terrestrial Ecozones of Canada, by E. Wiken, unpublished working paper, August 1983.

Note:

This list is meant to be illustrative only and is not a comprehensive presentation of the characteristics of these areas.

5.3 Jock River Environmental Assessment: A Case Study

The Jock River is a major tributary of the Rideau River flowing from the Rideau Lakes towards the city of Ottawa (Map 5.3.0.1). The Jock River Basin has been mainly farmland since it was cleared of forests in the early 1800s. Today, while still predominantly agricultural, the Jock River basin is being urbanized as Ottawa's rural-urban fringe expands away from city's central core. The Jock River basin is shared by 4 municipalities: Goulbourn, Nepean, Rideau and Beckwith. Residents and users of the Jock River basin have been aware of water quality problems making the Jock unusable for recreational activity. Weed growth makes the river unnavigable in summer months, swimming is a thing of the past, fishing is successful only in early spring and using the river as a source of drinking water would prove hazardous.

In 1989 a group of concerned citizens formed The Friends of the Jock River committee. Preliminary results from an environmental monitoring program in the summer of 1990 showed the river to be polluted. Phosphorus levels as well as bacteria levels were well above provincial guidelines. Statistics Canada's Environment and Wealth Accounts Division, assisted this group with identifying potential environmental impacts in the Jock River Watershed. The Division operates and maintains a geographically referenced database known as the Environmental Information System (EIS). The EIS can be used to analyze environmental problems on various scales ranging from national studies to assessing local watershed concerns. The system is particularly useful for re-aggregating data to spatial units appropriate to the level of analysis. Watersheds are a good example of these spatial units, where impacts within a river system transcend traditional political boundaries, and it is essential to describe activities throughout the catchment area.

Methodology

Much of the research in this study employed Geographic Information System (GIS) technology to develop a detailed statistical profile of the river Basin. A Rideau Valley Conservation Authority watershed map was used to capture a digital picture of the river and its catchment area. This was accomplished by digitizing the watershed boundaries and creating a computer map and combining the information layers in the EIS. These information layers provide data on physiography, climate, soils, population, labour force characteristics, agricultural activity, and manufacturing establishments throughout the basin.

Jock River Hydrological Background

Annual hydrological discharge profiles provide information about the water flow characteristics of a river throughout the seasonal drainage cycle. The Jock River is characterised by low summer flow and high spring discharge. Daily Jock River discharge readings have been kept by Environment Canada since 1969. From these records the average peak discharge (110.1 cubic metres per second - March 30) is 1.310 times greater than the average low discharge (0.084 cubic metres per second - July 15). The hypothetical forested discharge curve on Figure 5.3.0.1 represents the same volume of water but shows the effects of a greater proportion of forest cover. In comparison, the Bow River in Alberta has a maximum discharge only 38 times larger than the minimum discharge. The high spring run-off volumes on the Jock River cause erosion problems along the river banks, while in contrast, the low summer flow contributes to stagnation and nutrient buildup. The flooding and low summer flow in the river can be attributed to human activities in the basin. The Jock River's discharge pattern has changed over time as vegetative cover and drainage conditions have changed.

Historical discharge records do not go back to the preagricultural era, when the basin was under natural forested cover. The removal of forested land increases the run-off rate in a river basin, because forests intercept and store much of the moisture in the trees themselves and in soils beneath the forest. Tilled land does not store water as readily as forested land because tilled land is subject to evaporation from direct sunlight and is frequently cultivated. Tilling and cultivation brings soil moisture to the surface to be evaporated. Spring snow is also not protected by tree cover so it melts and runs off more quickly under tilled conditions. Agricultural land is often artificially drained to allow earlier spring planting and moisture level control. Artificial drainage lowers soil moisture and, in turn, reduces the flow of water to the river in dry months such as August, when ground water is the major source of water for the river. In 1986, 6,890 hectares of agricultural land in the Jock river basin were artificially drained. This amounts to more than 12 percent of the river basin area, and represents a substantial alteration of natural drainage patterns.

Physiography, Climate and Soils

Agriculture Canada's Land Potential Database (LPDB) contains details on Canadian land potential. In combination with the Environmental Information System, it is possible to analyse the soil and climate properties of the basin. The Jock River Basin consists of two soil types: an Orthic Melanic Brunisol, and a Humic Gleysol. These young soils have developed under a forested environment. The brunsolic soil is the better drained of the two soils. Fertility of these soils is

generally variable, but in the Jock River basin, the fertility of these soils is moderate to high. These soils developed from glacial parent materials, primarily from glacial till and lacustrine deposits.

The basin has a climate of cold winters and warm summers with moderate precipitation throughout the year. The average minimum monthly temperature occurs in January with a temperature of -16 Celsius, and the average monthly maximum temperature occurs in July with a temperature of 26.3 Celsius. Average rainfall is 370.8 centimetres per year, the wind speed averages out at just over 3 meters per second, and the growing season length in the basin is 148 days. Given the physical properties alone, the area has only a slight chance of water erosion. However, cultivation practices and field slopes have significant local soil erosion potential.

Socio-economic Conditions

Historical data from the **EIS** was used to analyse trends that might be affecting Jock River environmental quality. The Jock River catchment area is 56,552 hectares, and in 1971, this area was divided into the following major land use categories: 65 percent agriculture, 10 percent urban / transportation, 10 percent wetlands, 15 percent forests. By 1986 the agricultural land area, had declined to 55 percent. Most of this land use change was from agricultural to urban uses (Table 5.3.0.1).

Agricultural practices in the basin have significant effect on environmental quality. Agriculture affects vegetative cover, soil quality and basic stream hydrology. These factors determine the physical and chemical inputs to the river system from run-off and ground water flow. Chemical expense data, (constant 1971 dollars) shows more than a doubling of expenditures on pesticides in the watershed over the 1971-1986 study period (Map 5.3.0.2).

Other data indicate an intensification of land use. Total cropped area increased from 12,845 hectares to 15,075 hectares by 1986. The crop output potential has therefore increased despite the decline in agricultural land area. Fertilizer application rates have doubled during the study period, going from 1600 tonnes in 1971 to 3300 tonnes in 1986. Data for 1971 were derived from fertilizer expense data.

Land management practices in the Jock River Valley were assessed using the Agricultural Practices Impact Model **APIM**. Results suggest that high stress monoculture cropping practices have been on the rise over the study period. Widerow monoculture, the practice of planting the same wide-row crops year after year, occupied 5.3 percent of total crop area in 1971, rising to 13.7 of total crop area by 1986. Wide-row monoculture is associated with high run-off and subsequent soil erosion, as well as high levels of pesticide and fertilizer inputs. The spatial correlation between fertilizers, pesticides, and wide-row monoculture is evident by comparing Maps 5.3.0.2 through 5.3.0.5, where these activities coincide.

According to Census of Population figures, the urban population has grown by 380 percent, from 2,122 in 1971 to 10,187 by 1986. Rural population has also increased from a low of 4,873 in 1971 to over 10,500 by 1986, bringing the total population in the catchment area to 20,695 (Map 5.3.0.5). This population trend will likely continue as urban development proposals for both Nepean and Goulbourn are implemented.

The Environment and Natural Resources Section has developed a set of industrial impact classes used to classify manufacturing establishments into those with a high, medium or low impact on the environment. The industrial data from the 1986 Census of Manufactures indicates that there are 9 establishments in the Jock River Basin. Most of these industries are in low environmental impact classes.⁶² Manufacturing likely has little environmental impact in the basin and stresses in the area are most likely from human settlements and agricultural activity.

Conclusions

The Jock River Basin has undergone many changes during the past two centuries. Historical statistical records show that over the last twenty years population has tripled, and that use of land, the main natural resource in the basin, has intensified significantly. Fertilizer and pesticide inputs, each of which have high environmental impact, have increased as well.

References

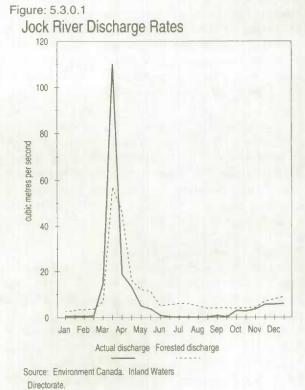
- Dumanski, J., Coote, D., Luciuk, G. and Lok, C., Soil Conservation in Canada. Journal of Soil and Water Conservation,volume 4, number 41, July-August 1986.
- Environment Canada. 1981. Historical Streamflow Summaries. Catalogue EN36-418.
- Statistics Canada. 1983. *Historical Statistics of Canada*. Second Edition. Catalogue 11-516E.
- Statistics Canada. 1986. Human Activity and the Environment. Catalogue 11-509E.

62. See the Industry section for a discussion of Industry Impact Classes.

Map: 5.3.0.1

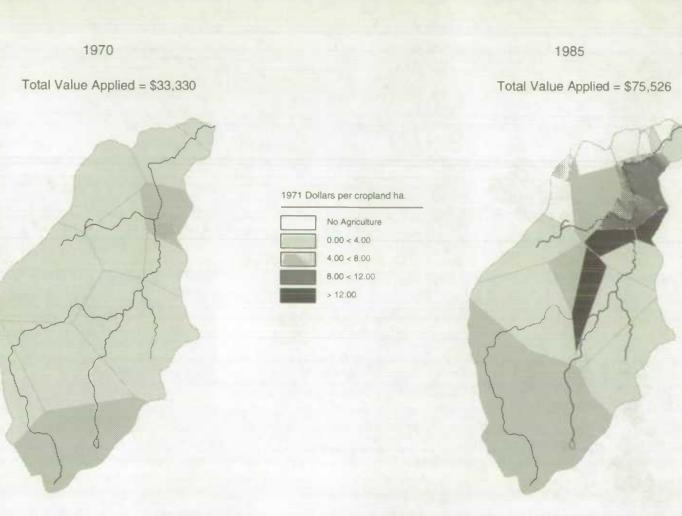
INDEX MAP - JOCK RIVER BASIN

Source: Statistics Canada, Environment and Weelth Accounts Division.


Table: 5.3.0.1

The Jock River Watershed, 1971-1986

	1971	1986	percent change
Land use			
Watershed area (ha.)	56 552.2	56 552.2	
Farmland area (ha.)	35 461.0	30 850.4	- 13.0
Cropland area (ha.)	12 845.0	15 074.9	17.4
Wide-row monoculture area (ha.)	687.0	1 819.5	164.8
Chemicals			
Chemical expenses (1971 Dollars)	33 330.0	75 526.4	126.6
Chemical expenses per hectare cropland	2.6	5.0	
Population			
Urban	2 120.0	10 185.0	380.4
Rural	4 875.0	10 510.0	115.6
Total	6 995.0	20 695.0	195.9


Source:

Statistics Canada. Environment and Wealth Accounts Division Census of Population. Census of Agriculture.

Statistics Canada

Agricultural Pesticide Application, 1970 and 1985 Jock River Basin

Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division.

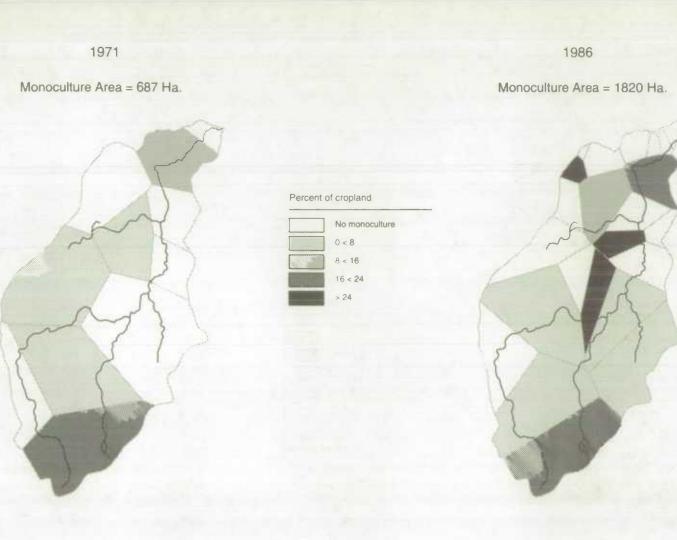
Note: All figures have been converted to constant 1971 dollars.

Map: 5.3.0.2

Jock River Environmental Assessment: A Case Study

Fertilizer Application Rates, 1970 and 1985 Jock River Basin

Statistics Canada

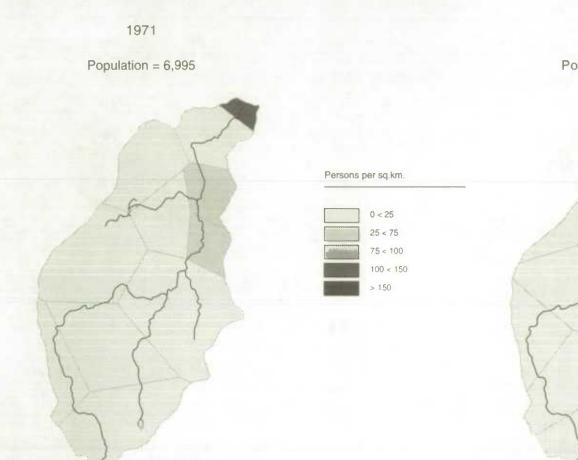

Note: Fertilizer tonnages for 1970 were estimated from fertilizer expense data.

Map: 5.3.0.3

Jock River Environmental Assessment: A Case Study

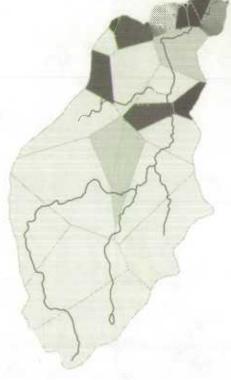
228

Wide-row Monoculture, 1971 and 1986 Jock River Basin


Human Activity and the Environment

Map: 5.3.0.4

Source: Statistics Canada, Environment and Wealth Accounts Division. Agriculture Division.


229

Population Density, 1971 and 1986 Jock River Basin

1986

Source: Statistics Canada, Environment and Wealth Accounts Division. Census of Population. Map: 5.3.0.5

6. Index

acid deposition, 105 acid precipitation, 109, 110 aged population, 14 Agricultural Practices Impact Model, 225 agriculture, 4, 115, 186, 224 agriculture - contaminants, 115 cropping practices, 122 employment, 78 fertilizers, 119 land, 141, 165 land use, 166, 167, 169 pesticides, 116 practices, 225 production, 186, 187 Agriculture Canada, 128, 129, 132, 224 air - emissions, 105, 112 legislation, 34 nitrogen dioxide emissions, 111 pollutant effects, 142 pollution, 105, 112, 142, 143, 144 quality, 141, 142, 143 sulphur dioxide emissions, 111 air quality - standards, 142 air transport, 58, 61 airlines - activity, 69 airplanes - movements, 58 pollutants, 58 airports, 59, 67 airports - activity, 68 Alberta - population, 6 alewife - commercial catch, 203 animal manure - nutrient content, 134 Aransas National Wildlife Refuge, 147 Arctic char - commercial catch, 203 asbestos, 44 Atlantic - fish landings, 191, 192, 193, 194, 195, 196, 199, 200 lobster catch, 198 salmon landings, 197 Atlantic provinces - population, 6 Atlantic Region - fish catch, 190 spills, 109 Atomic Energy Control Board, 32, 37, 38 attitudes - concern for environment, 39 environmental quality, 39 automobiles - registrations, 58

B

bald eagle, 107 Banff National Park, 162 batteries, 44 beaver - pelts taken, 190, 204 benzene, 44 bioaccumulation, 107 biochemical oxygen demand, 145, 146 birds - bird watching, 25 birth defects, 107 population trends, 148 populations, 107, 148, 157 births, 14, 11 BOD (biochemical oxygen demand), 145, 146 bottled water, 41 Breeding Bird Survey, 148 British Columbia - plant species, 147 population, 6 spills, 109 buses, 57, 67 buses - fuel consumption, 66 B[a]P (benzo[a]pyrene), 108, 113

С

cadmium, 44 Canada Larid Inventory, 164 Canadian Wildemess Charter, 162 Canadian Wildlife Service, 25, 40, 148 cancer, 107 capelin - landings, 193 carbon monoxide - concentrations, 143 emissions, 94, 97, 105, 106, 112 carbon monoxide concentrations, 144 carp - commercial catch, 203 Census Metropolitan Areas, 217 Census of Agriculture, 115 Census of Manufactures, 45 Census of Population, 5, 6, 7, 8 CFCs, 44 chemicals, 25, 151, 152 chemicals - household, 139 chlorinated organic chemicals, 107 chub - commercial catch, 203 CITES (Convention on International Trade in Endangered Species), 33 cities - population, 17 climate, 179, 180, 181, 182, 183, 184, 185, 225 climate - severity, 181, 185 Climate Severity Index, 181, 182 close-row monoculture, 121, 124, 125 coal - production, 174 reserves, 174 coal tar, 44 cod - landings, 191, 192 commercial catch - fisheries, 203 commodities - input-output, 46 composting, 40, 41, 138 construction - expenditures, 100 consumption, 43, 73, 87, 213 consumption - disposable diapers, 93 household, 92, 93, 98 consumption processes, 92 contaminants, 4, 44, 56, 104, 151, 152, 44 contaminants - agricultural, 104, 115 air, 142 consumption, 87, 90, 93 food, 28, 31 peregrine falcon, 156 wildlife, 107, 147, 156

Statistics Canada

Index

copper, 174, 177 cormorant, 107 COSEWIC (Committee on the Status of Endangered Wildlife in Canada), 147, 149, 150 CROP (Centre de recherche sur l'opinion publique), 39 cropland, 166, 167, 169 cropping practices, 122 cycle hydrologique, 121

D

dams, 100 DDE, 107, 147, 153 DDE - in herring gull eggs, 151 DDT, 107, 113 death - causes, 28, 29, 30 death rates, 28, 29, 30 deaths, 14 demographic trends, 12 diapers - disposable, 93 dieldrin, 107, 147, 153 dieldrin - in herring gull eggs, 151 dioxin, 107, 154, 147 dioxin - in herring gull eggs, 152 discharge profile, 224 diseases, 29, 30 diseases - foodbome, 28 disposable - diapers, 39, 93 drainage basin, 2, 5, 6, 216, 218, 221 drainage basin - dwellings, 74 population, 7 Ducks Unlimited, 162 dwellings, 3, 43, 73 dwellings - by drainage basin, 74 by ecozone, 75 density, 74, 75

E

earthquakes, 179, 180 eastern Canada - exposure to sulphate deposition from acid rain, 109, 110 wide-row monoculture, 126, 127 ECE (UN Economic Commission for Europe), 33 economic activity, 43 economic indicators, 77, 86 economic output, 3 ecosystem, 159 ecozone, 2, 5, 216, 219, 223 ecozone - dwellings, 75 population, 8 population density, 8, 10 Edmonton - population, 11 emigration, 11, 14 emigration - projections, 12, 22 employment, 25, 77 employment - agriculture, 78 by ecozone, 52 by impact class, 52 fisheries, 79 forestry, 80 mining, 81 resource sectors, 84 transportation, 56

endangered species, 147, 149 energy, 3, 44, 59, 92, 174 energy - carbon monoxide emissions, 97 consumption, 44, 87, 89, 92, 93, 95, 97 demand, 92, 94, 97 fuel, 56 indicators, 97 intensity, 44 legislation, 34 power generation, 71 sources, 92, 96 enforcement of legislation, 32 Environment Canada, 25, 32, 37, 105, 106, 109, 142, 145, 148, 152, 162, 164, 216 Environment Canada - Atmospheric Environment Service, 181 enforcement, 37 environmental - activities, 39 benefits, 25 conditions, 141 impacts, 25, 104 processes, 213 environmental information system, 224 environmental media, 213 **Environmental Protection Act, 32** environmental quality - perceptions, 39 environmental statistics, 141 environmentally friendly products, 39 erosion, 121, 225 erosion - water, 128 wind, 129 eutrophication, 121, 145 exotic species, 130 exports - resource commodities, 83, 85 extinct species, 147, 149 extirpated species, 147, 149 extraction, 4, 186, 213

F

Family Expenditures Survey, 98 farm land, 166 farms, 166 fertility, 11, 12, 15, 14 fertility - projections, 12 fertility rate, 11 fertility rate - projections, 22 fertilizer, 228 fertilizers, 115, 225 fertilizers - application, 119 nutrient content, 132, 133, 136 finfish - landings, 195, 196 fish - fisheries catches, 190 Great Lakes, 106 legislation, 34 pelagic, 195 weight, 158 fish and wildlife, 141, 147, 186 fish and wildlife - harvesting, 190 fish size, 148 fisheries, 186 fisheries - catches, 190 commercial catch, 203 employment, 79 Great Lakes, 106 landings, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202

violations, 38 Fisheries and Oceans Canada, 32, 37, 38, 106, 158, 190 flatfish - landings, 192, 193, 201 floods, 179, 180 fluorinated halogen hydrocarbons, 44 food - contaminants, 28, 31 forest, 172 forest - harvesting, 188 land, 141, 171 productive, 171, 173 regeneration, 186 regeneration rates, 188 regions, 171 replanting. 189 stocked, 171 Forest Inventory, 171 forestry, 4, 186 forestry - employment, 80 harvesting, 188 production, 186, 188 Forestry Canada, 171 forests - legislation, 34 freight - air transport, 69 marine transport, 69 movement, 57 frost, 185 fuel, 174 fuel - air transport, 69 consumption, 56, 62, 70 marine transport, 69 power generation, 71 sales, 62 fuel consumption, 4 fuel consumption - passenger cars, 60 Fuel Consumption Survey, 57 furans, 107

G

garbage collection, 39 GDP, 25 GDP (Gross Domestic Product), 44, 77, 86, 92, 186 GDP - by impact class, 51 resource sectors, 84 transportation, 56 GEMS (Global Environmental Monitoring System), 206 geographic units, 216 gold, 174, 177 government - expenditures, 100, 101 revenue, 25, 100 government finance - construction, 100 environment, 100, 101 government revenues - natural resources, 103 Great Lakes, 106 Great Lakes - areas of concem, 114 chemical loads, 113 herring gull sample sites, 151 greenhouse - gases, 106 greenhouse gases, 113 greenhouse gases - emissions, 106 groundfish - landings, 194, 195, 200, 201 groundwater, 145 groundwater - consumption, 206 reliance on. 206, 211 use, 211

Gulf of St. Lawrence - groundfish landings, 194, 195

H

habitats, 141, 159, 160, 161, 162 haddock - landings, 191, 192 hake - catch, 190 landings, 201 halibut - landings, 201 harvesting, 44, 186, 213 hazardous waste - disposal, 139 legislation, 34 HCB, 147, 154 HCB - in herring gull eggs, 152 health, 28 health - toxic chemicals, 113 Health and Welfare Canada, 28, 106 herring - landings, 193, 200, 201 herring gull, 147 herring gull - DDE concentrations, 151, 153 dieldrin concentrations, 151, 153 dioxin concentrations, 152, 154 HCB concentrations, 152, 154 mirex concentrations, 152, 155 PCB concentrations, 152, 155 sample sites, 151 hexachlorobenzene, 107, 147 household - consumption, 92, 93, 98 equipment, 40 expenditures, 93 household expenditures - transportation, 56 households, 73 Households and the Environment Survey, 40, 93 houses, 73 Human Activity and the Environment (1986), 2 human-environment interactions, 2 human-made assets, 214 humidity, 181, 184 hunting, 26, 27, 25 hunting and trapping - pelts taken, 190 hydro - power generation, 71 hydrocarbons - emissions, 105, 106, 112 hydrology, 224 hydrometric map, 216 hydrophytic vegetation, 159

Ι

immigration, 11, 14, 12 immigration - projections, 12, 22 IMO (International Maritime Organization), 33 imports - resource commodities, 85 industrial impact classification, 87 industrial production, 87 industry, 43, 43 industry - consumption, 46, 50 contaminant intensity, 47, 50, 87 energy intensity, 47, 50, 87, 92 impact classes, 45, 47, 50, 51, 87 resource intensity, 47, 50, 87 water intensity, 47, 50, 87 input-output, 43 input-output tables, 44 interbasin transfers, 207

Statistics Canada

Index

J

Jock River, 224, 226

L

land, 186 land - agricultural, 165 conversion, 159 legislation, 34 Land Potential Database, 224 land use, 167, 169, 225 landings - fisheries, 202 lead, 44, 108, 113, 174, 177 legislation, 4, 32 legislation - enforcement, 32, 37 environmental, 32, 34 penalties, 38 life expectancy, 11, 14 life expectancy - projections, 22 lobster - catch, 198 landings, 195 stock, 190

M

manufacturing, 225 manufacturing - contaminant intensity, 90 employment by impact class, 52 energy intensity, 89 establishments by ecozone, 53 establishments by impact class, 53 resource intensity, 88 water intensity, 91 marine transport, 58, 69 marten - pelts taken, 190, 204 mercury, 44, 108 metals - production, 177 reserves, 177 metropolitan areas - population, 17 migration, 11, 12 migration - projections, 12, 22 Migratory Birds Treaty, 147 minerals, 141, 174 minerals - production, 186, 189 reserves, 4, 174 mining, 4, 186 mining - employment, 81 mirex, 107, 147, 155 mirex - in herring gull eggs, 152 mitigation, 43, 87, 100 Mixed-Wood Plain, 73 molybdenum, 174, 177

monoculture agriculture, 4, 121, 225 Montreal - population, 11 mopeds, 67 morbidity, 28 mortality, 11, 12, 28 mortality - projections, 12 motor vehicles, 61 motorcycles, 67 Municipal Waste Survey, 138 muskrat - pelts taken, 190, 204

N

NATES (National Trends in Emergencies System), 105 National Wetlands Working Group, 159 natural - processes, 179 natural assets, 214 natural disasters, 179, 180 natural gas, 174 natural gas - pipeline distances, 70 production, 176, 186, 189 reserves, 176 natural resource accounting, 86 natural resources, 44, 186 natural resources - consumption, 56 Nature Conservancy of Canada, 162 nature reserves, 162 Newfoundland - groundfish landings, 194, 195 nitrogen - content of animal manures, 134 content of fertilizer, 136 nitrogen dioxide, 144 nitrogen dioxide - emissions, 105, 111, 112 nitrogen oxide - emissions, 105 noise - legislation, 34 northern cod - landings, 191, 192 weight, 148, 158 Northwest Territories, 73 Northwest Territories - population, 6 nuclear - energy, 92 power, 3 power generation, 71

0

OECD (Organization for Economic Cooperation and Development), 33 Ontario, 73 Ontario - plant species, 147 population density, 6 Ontario Ministry of Natural Resources, 131 organic compounds - emissions, 105, 112 Ottawa River, 224 Ottawa-Hull - population, 11 ozone, 142, 143, 144

P

Pacific - fish landings, 201 Pacific Region - fish catch, 190 packaging, 39 paper - recycled, 139 parks, 25, 162, 163

Statistics Canada

Human Activity and the Environment

particulates, 142 particulates - emissions, 105, 112 passenger bus, 57, 66 passenger cars, 3, 57, 60, 67 passengers - air transport, 69 bus. 66 marine transport, 69 rail, 65 PCB, 147, 155 PCB - in herring gull eggs, 152 PCBs, 44, 107, 113 PCDF (furan), 107 peatlands, 159 pelagic fish - landings, 195, 196 perceptions, 32 perceptions - environmental quality, 39 perch - commercial catch, 203 perchloroethylene, 44 peregrine falcon, 148 peregrine falcon - contaminants, 156 populations, 157 personal expenditures - wildlife-related, 25 pesticide - Jock River Basin, 227 pesticides, 40, 41, 115, 116, 118, 225 petroleum, 174 petroleum - production, 175, 186, 189 reserves, 175 phosphorus - content of animal manures, 134 content of fertilizer, 136 discharges to water, 145, 146 pike - commercial catch, 203 pipelines, 59 pipelines - gas, 59, 72 natural gas. 70 oil, 59, 72 plants - designations, 149 rare, 147 rare species, 149 species, 147 status, 147 plastic bags, 39 pollution - air, 105, 142 water, 105, 106, 145 polynuclear aromatic hydrocarbons, 108 population, 2, 5, 6, 14, 225 population - aged, 14 aged over 65, 22 components of growth, 14 conditions, 5 density, 5, 6 density by ecozone, 8, 10 distribution, 5, 11 drainage basin, 7 ecozone, 8, 10 exposure to acid rain, 109, 110 growth, 6, 11, 16 Jock River Basin, 230 metropolitan areas, 17 past trends, 11 processes, 11 projections, 11, 12, 13, 15, 22, 23, 24 projections by province, 24 province, 8, 24 rural, 11, 15, 18 sub-drainage basin, 18 sub-sub basin, 12 urban, 11, 15, 18 population processes, 214

population state, 214 Population-Environment Process Framework, 2, 213 power generation, 59, 70, 71 power generation - by fuel type, 71 fuel, 59 thermal, 59 Prairie Provinces - agriculture, 121 close-row monoculture, 125 population, 6 precipitation, 181, 185 prices, 77 prices - resource commodities, 77, 82 production, 43, 87, 213 production - agriculture, 186, 187 forestry, 186, 188 minerals, 186 natural gas, 186 petroleum, 186 protected land, 141, 162, 163 protected land - non-government, 162 non-governmental organizations, 162 provincial - legislation, 34 public statutes, 32 pulp and paper mills, 145, 146 purple loosestrife, 130, 131

Q

Quebec, 73 Quebec - population, 6 population density, 6

R

radioactive substances, 44 rail. 65 rail - cars, 59 fuel consumption, 63 track, 59 transport, 57, 63 railroads, 56 rainfall, 181, 183, 184 recreational activity, 25 recycled paper, 139 recycling, 4, 138, 139 recycling - blue box programme, 39 households, 139 use of recycled products, 139 redfish - landings, 192, 193 refrigeration equipment, 44 regulations, 32 RENEW (REcovery of Nationally Endangered Wildlife), 147 reservoirs, 100 resource - consumption, 44, 87, 88, 93 exports, 77, 82, 83, 85 imports, 85 resource sector, 213 resource sectors - employment, 84 GDP, 84 restructuring, 104, 213 restructuring - biological, 213 chemical, 213 expenditures, 100 physical, 213

Rideau Lakes, 224 ring-billed gull, 107 roads and highways, 56, 58 rockfish - landings, 201 rural population, 11, 15, 18

S

sablefish - landings, 201 salmon - landings, 195, 197, 200, 201 sauger - commercial catch, 203 scallop - landings, 200 Scotian Shelf - groundfish landings, 194, 195 sewage systems, 100 shellfish - landings, 199 shopping bags, 139 shower heads - water-saver, 39, 40 shrimp - catch, 190 landings, 200 silver, 174, 177 skiing, 25 smelt - commercial catch, 203 snow crab - landings, 200 snowfall, 181, 183, 184 snowmobiles, 67 socio-economic - activity, 3 conditions, 43 processes, 43, 87, 214 sodium cyanide, 44 soil. 224 soil - erosion, 225 nutrient depletion, 132, 133, 134, 136 nutrients, 104 quality, 141, 164, 165 solid waste - legislation, 34 solid wastes, 138 Southem Arctic - population density, 6 species - endangered, 150 non-native, 130 status designations, 147 threatened, 150 spills, 105 spills - Atlantic Region, 109 British Columbia, 109 St. Pierre Bank cod - landings, 191 state of the environment, 141 storms, 179, 180 sub-drainage basin - population, 18 sucker - commercial catch, 203 sulphate deposition, 109, 110 sulphur dioxide, 142, 143, 144 sulphur dioxide - emissions, 105, 111, 112 summerfallow, 166, 167, 169 sunshine, 183 Survey of Waste Management Firms, 138 suspended particulates, 142, 143 suspended solids, 145, 146 sustainable development, 86 System of National Accounts, 43, 214

T

temperature, 181, 182 thermostats - programmable, 40 threatened species, 147, 149 toluene. 44 tornados, 179, 180 Toronto - population, 11 Total Allowable Catch (TAC), 190 toxaphene, 108 toxic chemicals, 106, 151, 152 toxic chemicals - Great Lakes, 113, 114 health effects, 113 toxic metals, 108 Trans Canada Railway, 11 transformers, 44 transportation, 3, 43, 56 transportation - air transport, 58, 61, 69 airports, 59, 67 distance travelled, 58 employment, 56 fuel, 62 fuel consumption, 57 **GDP**, 56 household expenditures, 56 infrastructure, 58 marine transport, 58, 69 motor vehicles, 61 passenger bus, 57, 66 passenger cars, 57, 60 rail, 57, 59, 63, 65 roads and highways, 58 trucking, 58, 64 urban transit, 57, 66 vehicles, 58, 67 transportation activities, 57 Transportation Association of Canada, 63 travel - outdoor activities, 25 trichloroethylene, 44 trout - commercial catch, 203 trucking, 57, 58, 64 trucks, 67 TSP (total suspended particulates), 142, 143 TSS (total suspended solids), 145, 146

U

UNEP (United Nations Environmental Programme), 33 UNESCO (United Nations Educational, Scientific and Cultural Organization), 33 United Nations, 86 uranium, 174, 178 urban population, 11, 15, 18 urban transit, 57, 66 utilities, 43, 59

V

value added, 87 Vancouver - population, 11 vehicles, 58 vehicles - registrations, 61, 67 vinyl chloride monomer, 44

Human Activity and the Environment

vulnerable species, 147, 149

W

walleye - commercial catch, 203 wastes, 43, 56, 138, 139, 214 wasles - disposal, 138 generation, 93 household, 139 solid, 138 water - bottled, 40 consumption, 44, 45, 87, 91, 186, 206, 208 erosion, 121, 128 filters, 40, 41 fresh water, 145 groundwater, 145 interbasin transfers, 207, 212 legislation, 34 marine, 145 pollution, 105, 106, 145 quality, 106, 141, 145 use, 209, 210 withdrawal, 206 Water Survey of Canada, 216 waterfowl, 159 watersheds, 224 waterworks, 100 weather, 179, 180 weather stations, 217 wetlands, 159, 160, 161 whitefish - commercial catch, 203 WHO (World Health Organization), 33 whooping crane, 147, 158 wide-row, 229 wide-row monoculture, 121, 126, 127, 225 wildlife, 147 wildlife - appreciation, 93 contaminant effects, 156 disturbance, 93 exotic species, 130 Great Lakes, 107 harvesting, 190 legislation, 34 pelts taken, 204, 205 protection, 150 range, 104 species composition, 130 status, 147, 149 wildlife reserves, 162 wildlife-related activity, 27 wildlife-related expenditures, 26, 27, 40 wind, 184 wind - erosion, 129 windows - thermal, 40 WMO (World Meteorological Organization), 33 Wood Buffalo National Park, 147 woodland, 166, 167, 169 World Bank, 86 World Commission on Environment and Development, 162 World Conservation Union, 162

World Resources Institute, 104, 106, 113

xylene, 44

Yukon, 73 Yukon - population density, 6

Z

zebra mussel, 130, 131 zinc, 174, 177

Now More Than Ever, Strategic Planning Requires Reliable Trade Information..

Put Our Data To Work For You!

. . And We've Got It.

At the International Trade Division, Statistics Canada, we edit, compile and analyse data from hundreds of thousands of Customs documents each month. Available on tape, printouts, microfiche, diskettes or publications, these statistics can serve to:

- determine market shares
- identify domestic and foreign market trends
- forecast inventory and plan production
- describe merchandise trade

Do You Need A Special Report Designed To Meet Your Specific Needs? We've Got It!

If you are interested in one commodity or a certain country, you may wish a monthly, quarterly or annual report on exports/imports. We can tailor a report just for you. Data variables include:

- U.S. state of destination
- quantity shipped
- mode of transport
- HS class
- country origin/destination
- value of commodity shipped

Do You Need Comprehensive World Trade Data? We've Got It!

Our World Trade Database presents a complete matrix of country to country trade flows for 160 countries, 600 commodities and 300 industries. That's the most comprehensive database of comparable trade data available today.

Do You Need a Complete Database of Timely Trade Statistics? We've Got It!

TIERS, our new software package provides data on over 15,000 commodities for 200 countries at the most detailed level for imports and exports. It is updated monthly, just 48 hours after the data are released and allows you immediate access to quantity, value, province, year and U.S. state code variables.

To receive a free copy of the Catalogue of Products and Services available from the International Trade Division or to talk with a technical consultant about how we can help you, please contact: Trade Information Unit, International Trade Division, 9-B2 Jean Talon Building, Tunney's Pasture, Ottawa, Ontario K1A 0T6, Tel: (613) 951-9647, Fax: (613) 951-0117

PICK A TOPIC... ANY TOPIC

Now a redesigned Statistics Canada Catalogue will simplify your search for the most up-to-date or historic facts. An expanded and improved keyword index, cross-referencing, increased subject detail and listings by geographical area provide easy access to hundreds of Statistics Canada products and services.

■ Know the topic but not the "official title"? No matter how wide or narrow the topic – or how little you know about it – you'll appreciate how quickly the cross-referencing leads you to the right source.

□ You'll find sources of key statistics like consumer price indexes, import/export figures, or population characteristics down to the village level. From the most popular topics of the day like employment, income, trade and education to more detailed research studies like mineral products shipped from Canadian ports or Caribbean immigrants in urban areas... you'll find it all.

This expanded edition of the Statistics Canada Catalogue includes descriptions of our full range of services – from publications and maps to microdata files and diskettes. And, many of our electronic product listings include the name and phone number of a contact within Statistics Canada giving you a direct line to more detailed information.

As always, you'll find sections on how to get more help... on-line search techniques in libraries... discount and order information... and the locations of our Reference Centres. You'll especially appreciate that this year's Catalogue is bound in a durable, plasticized cover to withstand intensive use.

□ For ease and completeness in your information search get the Statistics Canada Catalogue (cat. # 11-204E) for \$13.95 in Canada, US\$17 in the U.S. and US\$20 in other countries. To order your copy write to Publication Sales, Statistics Canada, Ottawa, Ontario, K1A 0T6 or you can FAX your order to (613) 951-1584. For faster service using VISA or MasterCard, call toll-free:

1-800-267-6677.

I·N·F·O·M·A·T Don't start your week without it

Get a jump on your work week by making sure you have the most current economic and social information in Canada. Travelling by first class mail or courier,

SIN'FOMA

Statistics Canada's digest, Infomat, arrives at the beginning of each week to help you monitor key economic indicators and keep up with the most current data releases from Canada's national statistical agency.

> In eight fact-filled pages, Infomat highlights the findings of Statistics Canada surveys and brings them to your desk each week, often long before detailed reports are published. Throughout the year you'll get the first results of over 100 ongoing surveys and many special surveys—from manufacturing shipments to the health of Canadians or post graduate employment to part-time workers.

Each week, Infomat presents you with,

- concise summaries of fresh facts from over 100 ongoing surveys
- charts and graphs that let you instantly scan the trends
- Overview an outline of the subjects covered in each issue that you can scan in 30 seconds
- guidance on how to obtain special reports to assist you in your more detailed research.
- Current Trends and Latest Monthly Statistics sections that bring you up to date on the Consumer Price Index, Gross Domestic Product and 21 other key monthly series

Managers, analysts and researchers who are responsible for keeping up to date on changes in Canada's economic and social climate can count on Infomat — as a quick overview of the latest trends and as a weekly reminder of key indicators and data releases. Many subscribers use Infomat's highlights to add authority to their industry analyses, investment plans or corporate reports.

To order Infomat (11-002E), 50 issues annually for \$125 in Canada, US\$150 in the U.S. and US\$175 in other countries, write to Publications Sales and Service, Statistics Canada, Ottawa, Canada, K1A OT6. For faster service, use your VISA or MasterCard and call toll-free in Canada, 1-800-267-6677.

ORDER FORM

Canadä

MAIL TO: FAX TO: (613) 951-1584 Publication Sales This fax will be treated as an original order. Please do not send confirmation. (Please print) Company Company			Purchase Order Number (please enclose) Payment enclosed Bill me later (max. \$500) Charge to my: MasterCard VISA Account Number Expiry Date Signature					SA
Catalogue Number	Title		Required Issue		al Subsci Book Pri United States US\$		Oty	Total \$
Canadian customers add 7%					_	JBTOTAL	-	
might include special shipping Cheque or money order shoul	applied to the price of the publication and no and handling charges and the GST. d be made payable to the Receiver General and other countries pay total amount in US 1-800-267-667	lor Cana lunds dr	ada/Publications awn on a US b	s. Canadia bank.	in clients	ND TOTA pay in Can MasterCa Accour	adian fu	PF 03681 1991-01

Version française de ce bon de commande disponible sur demande

Human Activity and the Environment 1991

STATISTICS CANADA LIBRARY BIBLIOTHEQUE STATISTICUE CANADA

010438856

Ca Oric

Human Activity and the Environment is a collection of environmental statistics, brought together from many sources including Statistics Canada, Environment Canada and other federal and provincial government departments. The publication provides a statistical picture of Canada's physical environment while placing special emphasis on human activities and their relationships to other elements of the natural system — the air, water, soil, plants and animals.

Human Activity and the Environment will be useful as a source of pertinent statistics about the environment as well as a guide to the wide variety of environmental statistics available in Canada. Many of the statistics found in this book are available in more detail from Statistics Canada's database of environmental statistics which is frequently updated and expanded.