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Preface

In recent years, there has been a growing demand within government and private sectors for
statistical tools suitable for analysing data collected periodically over time from sample surveys,
censuses and administrative sources. In view of this demand, an international symposium on
Analysis of Data in Time was organized to bring together researchers and practitioners in various
substantive fields from universities, government and other statistical agencies. It was sponsored by
Statistics Canada and the Laboratory for Research in Statistics and Probability, Carleton University
and University of Ottawa.

The symposium was held October 23-25, 1989 in the Simon Goldberg Conference Centre at
Statistics Canada, Ottawa, attended by about 325 registered participants. Several papers from well
known statisticians around the world were presented. The key note address was given by Prof.
Wayne Fuller of lowa State University. The special invited lecture by Prof. David Brillinger of
University of California at Berkeley could not be presented at the symposium due to the difficult
circumstances caused by the earthquake in California. It is nevertheless included in the proceedings
for the benefit of readers.

The present volume contains 27 papers with varying levels of theoretical and applied content. [t
is believed that the wide range of topics covered in the symposium would be very useful to both
researchers and practitioners engaged in various fields of statistics. The papers have been organized
into the following eight parts:

Part 1: Sampling on Repeated Occasions

Part 2: Time Series Analysis in the Presence of Survey Error
Ranti3s Analysis of Time Series of Counts

Part 4: Developments in the Analysis of Time Series Data
Part 5: Epidemiology

Part 6: Demography

Part 7: Econometrics

Part 8: Education

The Proceedings also includes the opening remarks given by G. Brackstone and the closing
remarks by D. Binder. The French translations of the papers were reviewed by a number of
methodologists. Our sincere appreciation goes to J. Armstrong, S.Beaulieu, J.-M. Berthelot,
J.-R Boudreau, R. Boyer, M. Brodeur, M. Bureau, P. Daoust, P. David, J. Denis, J. Dufour, J. Dumais,
S. Giroux, M. Joncas, M. Lachance, D. Lalande, E. Langlet, Y. Leblond, J. Lynch, S. Perron, C. Morin,
C. Poirier, G. Sampson, P. St-Martin, A. Théberge, M. Thibeault, and J. Tourigny. It is also our great
pleasure to thank Judy Clarke, Carole.Jean-Marie, Christine Larabie, Carmen Lacroix and
Pat Pariseau for their efficient manuseript processing and especially Judy for coordinating the
production work.

The organization of the symposium was supported by many persons at Statistics Canada,
especially J. Mayda and J. Morabito. We would also like to thank D. Binder, G. Brackstone, D. Drew,
J. Kovar, J N K. Rao, and M.P. Singh for their encouragement and consultation. Finally, our
appreciation must be offered to the speakers for making the symposium a great success.

A.C. Singh

P. Whitridge

Ottawa, Ontario Canada Organizing and Editorial Committee
October 1990 Symposium '89
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Proceedings of the Statistics Canada
Symposium on Analysis of Data in Time
October 1989

INTRODUCTION
G.J. Brackstone®

On behalf of Statistics Canada may | welcome you to Symposium 89. This symposium is sponsored jointly by
Statistics Canada and the Laboratory for Research in Statistics and Probability of Carleton University and the
University of Ottawa. [t is very encouraging to see such a large crowd here this morning. It shows that either
we have picked a very pertinent topic and designed an attractive program, or our Organizing Committee has
undertaken a very successful marketing effort, or both.

The theme of this Symposium is the Analysis of Data in Time. This title, of course, has a certain ambiguity
about it, at least in English. Those of you who have come here to learn how you can speed up your analysis, or
ensure that it meets deadlines, may be in for disappointment because that is not the sense in which we have
interpreted this year's theme. It is with the collection, processing, and especially the analysis of data in the
time dimension that we shall be concerned.

In keeping with this theme let me say that this Symposium is the sixth realization in the time series of
methodology symposia at Statisties Canada. Previous symposium topics from 1984 to 1988 have been: Analysis
of Survey Data (1984) - where we focussed on cross-sectional analysis of data from complex surveys; Small Area
Statistics (1985) - which resulted in a published book; Missing Data in Surveys (1986) - a smaller symposium but
with some top-notch speakers on this problem area for statistical agencies; Statistical Uses of Administrative
Data (1987) - where we had a really international set of speakers on both statistical and privacy aspects of this
topic; and then last year, The Impact of High Technology on Survey Taking - where we explored the synergy
between survey methodology and informaties.

For enthusiasts, I'll leave the question of whether this symposia time series is a random or non-random
realization. For those who specialize in prediction, 1 leave the challenge to predict the topic for next year's
symposium before it is announced later in the week.

At Statistics Canada we believe that these symposia have many benefits - otherwise we wouldn't persist with
them. They provide the opportunity for theoreticians and practitioners to come together to discuss a topie of
real and practical importance to statistical agencies. They serve, we hope, to generate interest among
statisticians outside statistical agencies in applications of importance to statistical agencies. They provide a
focus and deadline for both our staff and statisticians outside to complete relevant research work, and to
cxhibit it for peer review. And for our own staff, they provide the opportunity to listen to some of the world's
foremost statisticians without having to get travel approval.

The choice of this year's topic, the Anaiysis of Data in Time, is to my mind both timely and appropriate. It
provides a forum for the exchange of ideas between theorists and practitioners and between statisticians from
universities and those from governments and other agencies. Despite important developments in time series
theory and methods, and notwithstanding the availability of data generated by repeated experiments, regular
surveys, censuses and administrative files, there are time series methods with well known and worthwhiie
features which, far from being in routine use, are almost never used in government agency programs.

There are perhaps three main factors which have brought about this situation:

First, these methods often involve rather complex calculations and data handling, and a fairly heavy load of
computations;

Second, practitioners, especially those carrying out the investigations, may be unfamiliar with the current
theory;

And third, there are undeniable weaknesses and deficiencies in the theory -- it does not cover all the situations
faced by practitioners.

The first of these causes: computational complexity, while not to be dismissed outright is not so important an
issue today and is likely to be even less important in the future. But the other two causes: lack of familiarity
with theory on the part of practitioners, and shortcomings in theory, will persist unless we do something about
them. And that is why we are having this Symposium. It is one of the ways in which we try to bridge the gap
between theory and practice, between theoreticians and practitioners.

G.J. Brackstone, Informatics and Methodology Field, Statistics Canada, Ottawa, Ontario K1A OT6



To flourish, the community of theoreticians needs real and important problems on which to work. Practitioners
can offer this. Much of a practitioner's work is concerned with the tailoring and implementation of theory for
specific applications, in the course of which limitations of existing theory may be discovered, thus providing
further challenges for the theorist.

Now | want to say a few words about why this topic is important to Statistics Canada, as well as to other
statistical agencies. Almost all the data we publish are time series. There are not many statisties for which
one could say that the only interest is in its value today. People want to know how things are changing, and
that means time series - whether we call them that or not. So what are the trends that make this Symposium's
theme particularly important?

L.ike everyone else we are suffering resource constraints. We therefore want to extract the maximum
information out of existing data without additional costly data collection. Bringing the time dimension into the
analysis ecan help in this regard.

As our primary source of data, the design of surveys has to be optimized. More attention to the time dimension
in both the design and estimation stages of surveys whose data will be used to monitor change may yield
significant benefits.

Another prime concern is user understanding and interpretation of data we publish. Some of the least
understood aspects of our data are time-related. I refer to seasonal adjustment and to revision practices that
incorporate later data into series published earlier in preliminary form. We believe there is progress to make, if
not in simplifying such procedures, at least in explaining them, and in ensuring that they result in consistent
data sets.

Finally, there is the growing interest in longitudinal data at the micro-level - that is, information about how
individuals (persons, businesses, farms, ete.) are changing, rather than only how the aggregate measures are
changing. Here again time series inethods can help.

These are some of the issues we are facing today that make the theme of this Symposium an important one for
us.

The program looks to me like a very interesting one with a good mixture of theory and practice in a variety of
fields ineluding demography, econometries, education and epidemiology. | hope that each of you will benefit
from this Symposium, and that at least some of you will be inspired to pursue further the development or
application of theory in this area. I hope also that some interest may be generated in more collaborative work
between university and government statisticians.

Thank you all for supporting this Symposium and | wish you an interesting and productive three days.
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Proceedings of the Statistics Canada
Symposium on Analysis of Data in Time
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ANALYSIS OF REPEATED SURVEYS

Wayne A. Fuller!

ABSTRACT
KEY WORDS: Survey sampling, least squares, measurement error, gross change.

Repeated surveys in which a portion of the units are observed at more than one time point and
some units are not observed at some time points are of primary interest. Least squares
estimation for such surveys 1is reviewed. Included {n the discussion are estimation
procedures, modified so that existing estimates are not revised when new data become
available. . Also considered are techniques for the estimation of longitudinal parameters,
such as gross change tables. Estimation for a repeated survey of land use conducted by the
U. S. Soil Conservation Service is described. The effects of measurement error on gross
change estimates 1s illustrated and it is shown that a survey design that estimates the
parameters of measurement error process can be very efficient.

1. INTRODUCTION

There is considerable interest in the analysis of surveys that are repeated in time.
Evidence of this interest are the recently published proceedings of a conference on panel
surveys edited by Kasprzyk, Duncan, Kalton and Singh (1989), sessions at the last two
meetings of the International Statistical Institute, and this conference. Smith and Holt
(1989) at the 1989 ISI session in Paris call this a "resurgence of interest in the design and
analysis of longitudinal studies." They note that researchers in areas such as sociology and
health have long conducted panel surveys and cohort studies. They cite, as an example,
Lazarsfeld and Fiske (1938). An example in a health related area is Garcia, Battese, and
Brewer (1975).

Official agencies conduct many surveys, such as labor force surveys, on a regular basis. The
output of such surveys 1s usually a sequence of reports, such as those on current employment
and unemployment. Typically, very few statistics on the behavior of individual units over
time have been reported from repeated official surveys. An example of a survey designed to
produce longitudinal estimates is the U.S. Survey of Income and Program Participation. See
Kasprzyk and McMillen (1987). While information on private surveys is less complete than
that on government surveys, it seems that the most common use of repeated private surveys is
also to produce a sequence of reports for points in time. However, the demand for
longitudinal analysis has increased for both public and private data providers.

The complex issues associated with repeated surveys are brought into focus when one attempts
to develop a taxonomy for such studies. Duncan and Kalton (1987) list some seven objectives
of surveys repeated over time. These are:
A. To provide estimates of population parameters at distinct time points.
B. ‘To provide estimates of population parameters summed across time.
C. To measure net change at the aggregate level.
D. To measure components of change including
1) pgross change
ii) change for an individual
iii) wvariability for an individual
E. To aggregate individual data over time.
F. To measure the frequency, timing and duration of events.
G. To accumulate information on rare populations.
While not mentioned explicitly, several of these objectives implicitly include the estimation
of the parameters of subject matter models.

Duncan and Kalton also define four kinds of surveys. Thelr definitions were: (1) repeated
survey, in which no attempt is made to guarantee that particular elements appear in more than
one sample; (2) the pure panel survey, in which the same elements are observed at every point
in time; (3) the rotating panel survey, in which there is a fixed pattern under which

1Depnrtment of Statistics, Iowa State University, Ames, Jowa, 50011.



elements are observed for a fixed number of times and then rotated out of the sample; and (4)
the split panel survey, in which a pure panel survey is combined with a repeated survey or a
rotating panel survey. Duncan and Kalton present a table in which they outline how the
different kinds of surveys are appropriate for the different kinds of objectives.

An institution conducting a repeated survey faces all of the usual survey problems, but the

problems are magnified. Nonresponse is always a concern, but it is more difficult to
maintain cooperation over a period of time. Response error is always present, but repeated
surveys encounter problems of "conditioning" associated with repeated interviews. Also,
response errors introduce {inconsistencies into data collected over time. The quality

repetition of a survey requires maintaining consistent field, processing, and estimation
procedures over time. Also data management problems increase for repeated surveys. Finally,
the changing composition of units, such as families, over time complicates estimation and
analysis.

We shall examine only a few issues associated with repeated surveys. Our discussion is
motivated by a large scale survey conducted by the U.S. Soil Conservation Service with the
cooperation of Iowa State University, In Section 2 we review some of the estimation
techniques applicable for repeated surveys., This discussion is continued in Section 3 with
more emphasis on estimation of longitudinal parameters in panel surveys. In Section 4 we
briefly describe the estimation procedures used in the U.S. Soil Conservation Service
study. Section 5 contains a short description of the effects of measurement error on gross
change estimates,

2. ESTIMATION

In this section we outline generalized least squares estimation for surveys with only a
subset of elements observed at successive times. Generalized least squares was the procedure
first considered by authors studying estimation for surveys repeated in time. Beginning with
Jessen (1942), who was influenced by Cochran (1942), authors considered the

construction of minimum variance weights for a set of unbiased estimators available at each
point in time of the survey.

Jessen (1942) investigated the special case of sampling on two occasions with unequal numbers

of observations, and studied the optimal allocation of units to overlapping and
nonoverlapping sample groups. Patterson (1950) considered sampling on T occasions under
several schemes of partial replacement of units. The simplest such sampling plan required
the replacement of a fixed proportion of sampling units on each successive sampling
occasion. Also, Patterson (1950) assumed that for a given i, the differences x(ti)

x{(t), =1, 2, ..., followed a first-order autoregressive process, where x(ti) was the
value of the i-th population unit at time t , and x(t) was the corresponding finite
population mean. Under the resulting error model, he developed optimal estimators of the
fixed x(t) wvalues and of the differences x(t) - x(t-1) . He also considered the optimal

estimation of x(t) wunder generalizations of the partial replacement plan, optimal sample
size selection, and estimation with nonautoregressive errors.

Least squares procedures were considered further by Eckler (1955), Gurney and Daly (1965) and
Jones (1980). Composite estimation was a name given to certain types of estimators. See Rao
and Graham (1964), Graham (1973), and Wolter (1979). Battese, Hasabelnaby and Fuller (1989)
describe the application of the least squares procedure to the farm survey conducted by the
U.S. Department of Agriculture,

It seems fair to say that the parameters under consideration by these authors were means or

totals at specific time points. That is, longitudinal parameters, such as the fraction of
individuals in a particular class at both time 1 and time 2, were not explicitly
considered by these authors. However, as we shall see, the least squares method extends to

such parameters.

Linear least squares has the desirable feature that estimators for a number of
characteristics are internally consistent. That is, the least squares estimator of Y

plus the least squares estimator of Z is the least squares estimator of Y + Z . However,
if different vectors of observations are used to construct different estimates, the internal
consistency is destroyed.

In many applied surveys it is not possible to compute the optimum least squares estimators

for all points in time, First, all available information can not be used in the
estimation, That 1is, it is not possible to incorporate all data from the surveys of
preceding times into a least squares analysis for the current time. Often the number of

variables exceeds the number of observations. Second, the releasing organization may be

-6 -



restricted in the number of times they revise previous estimates. This second point has been
discussed by Smith and Holt (1989).

To illustrate these estimation problems, we have constructed a small example. The example
two-way table for classification at two points in time, as observed in a very large sample,
is given in Table 1. We have given names to this table, letting the first category be
employed and letting the second category be unemployed. We shall assume that the population
is constant over time, If there are births and deaths, then the table would need to be
increased to a 3 X 3 table. Let us assume that we are interested in estimating the change in
level from one period to the next. Let us also assume that we are interested in the gross
change table which involves estimating the interior cells of the table. 1In the 2 X 2 table
it is only necessary to estimate the (1, 1) cell and the marginal proportions to define all
cells of the table.

Table 1. Hypothetical proportions for two points in time

TIME 2
TIME 1 Employed Unemployed Total
Employed 0.91 0.02 0.93
Unemployed 0.03 0.04 0.07
Total 0.94 0.06 1.00

We assume a two period study in which an equal number of elements are ohserved at each of the
two times. We assume that one-half of the elements observed at the first tlme are also
observed at the second time. That is, of the elements observed at the second time, one-half
were observed at the first time and one-half are new to the sample. We take as our vector of
observations the proportion of elements in category 1 in the one-half of the sample that is
not observed the second time [denoted by P(E.1)], the proportion of elements in category 1
at time 1 in the remalning half of the sample [denoted by P(E.2)], the elements that are in
category 1 at both time 1 and time 2 for the portion of the sample that is observed at both
time periods (denoted by P(EE)], the proportion of the elements in category 1 at time 2 for
the elements that are observed at both times [denoted by P(.E2)], and the proportion of
elements in category 1 at time 2 for the portion of the sample that is observed only at time
2 [denoted by P(.E3)]. We shall place arguments in parenthesis when the expressions appear
in the text and place the arguments as subscripts in the displays.

We assume simple random sampling. Then, because the statistics are sample proportions, it is
easy to write down the covariance matrix of the vector of five estimates. A multiple of that
covariance matrix is given in Table 2. To obtain the covariance matrix for a sample of
size n at each time period, divide every entry in the table by n and multiply by two. In
Table 3 we give the variance of alternative estimation procedures. In the first column is
the variance of the procedure that uses as the estimator of the first period proportion only
the elements appearing in the first period sample. To estimate the fraction appearing in
category 1 (employed) both at time 1 and time 2, the simple procedure uses only the overlap

Table 2. Covariance matrix of the vector of sample proportions,
two time points and fifty percent overlap in sample.
(Foxr a sample of size n multiply entries by 2 and
divide by n .)

Pg.1 Pp.2 PgE P p2 P E3
0.0651 0 0 0 0

0 0.0651 0.0637 0.0358 0

0 0.0637 0.0819 0.0546 0

0 0.0358 0.0546 0.0564 0

0 0 0 0 0.0564




elements, and to estimate the number in the first category at time t , it uses only the
sample observed at time 2. Thus, if we have a sample of 200 elements at each time period,
the first period sample of 200 elements is used to estimate the first probability. The 100
elements observed at both time 1 and time 2 are used to estimate the elements staying in
category 1, and the 200 elements observed at time 2 are used to estimate the time 2
proportion.

Table 3. Variance of alternative estimation procedures (For
a sample of size n at each period, multiply entries
by 2 and divide by o0 .)

Procedure
Parameter Simple Restricted GLS Full GLS
Pg 0.0326 0.0326 0.0294
Peg 0.0819 0.0397 0.0374
P g 0.0278 0.0258 0.0255
Pee/P g 0.0290 0.0229 0.0220
P g - Pgp 0.0429 0.0367 0.0353

The last column is the variance of the best linear unbiased estimators constructed using

generalized least squares. The estimators are constructed from the vector of five basic
statistics and the covariance matrix of that vector. This estimator is of the form

p = -1 -1

g- xvintevily (1)

where V 1is given in Table 2, g = (PE - ' P,

EE

<
1

S O

2 o =

- o <

S = O

© = ©

and Y 1is the five-dimensional vector of direct estimates,

P P B P

Y = (Pp v Pg o Py P g

JE3)

The second column of Table 3 gives the variance of the restricted least squares estimators,
where the restriction is that the estimator for the first period must be the estimator
obtained from the initial sample. This would be the appropriate procedure if the agency
never made a revision in the once published estimates. For example, the Bureau of Labor
Statistics in the United States does not revise the unemployment statistics. Once released,
they are the official estimates. Of course, the United States unemployment statistics are
based on a more complicated sample and are based on a survey that is conducted over a longer
period of time.

To describe the restricted generalized least squares estimator of Table 3, let the model be

Y=X8+ e,

where X is a fixed n x k matrix and



E{ee’'}) = V

The generalized least squares estimator of f , with some elements of g restricted to be
certain liner combinations of Y can be constructed as follows. Consider the Lagrangian

b
x-xp Vi xp - 25 A0 - g
je=1

where I(i) is a fixed row vector and b is the number of restrictions. The solution to
this minimization problem is defined by

xvix B vy
I 0 A E

where A’ = (AI,AZ,...,Ab), rr = (F',ré,...,ré) and g’ - (gl,gz,...,gb).

If we veplace g by the linear combination GY , the equation becomes

xv 1x |20 Ji] xvl
- N ..
r 4] A G
This equation defines the restricted estimator of # as a linear function of Y . Ilence the

variance of the estimator of B 1is the upper k x k portion of

This is-not the only way to compute the restricted generalized least squares estimator. An
alternative estimator of level and change that leaves the previous estimator unchanged is the
composite estimator. See, for example, Wolter (1979).

Several points are illustrated by this small example. First, with a correlation of 0,591
between employment at the two time periods, the improvement in the current estimate of
unemployment from using generalized least squares is modest, about 10%8. On the other hand,

there is a very large improvement in the variance of the estimate of P(EE) from using
generalized least squares. The variance of the generalized least squares estimator is about
45% of the variance of the simple estimator. The second important point is that the use of
restricted generalized least squares to estimate P(EE) and P(.E) produces estimates that
are nearly as efficient as full generalized least squares. There is about a one percent loss
for the estimate of P(.E) and about a six percent loss for the estimate of P(EE)

3. LONGITUDINAL ESTIMATORS
Recall that our definition of a pure panel survey is one in which the same elements are
observed at every time point of data collection. The pure panel survey is possible for

observations of certain physical units, such as plots of land. 1In the case of surveys of
human populations, the pure panel must be classed as a figment of the statistician’s
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bmapianrien.  In ohe resl oworld, a fraction of the respondents {rom the {iret time ave always
unavailable at the second time. Good reviews of procedures for missing data are given by
Lepkowski (1989) and Little and Su (1989). Also see Little and Rubin (1987), Kalton (1983),

and Madow et al. (1983).

We have described the rotating panel survey in which the design calls for some elements to
leave the study and some elements to enter the study at every time point at which the study
is conducted. In this type of survey we might say that we have planned nonresponse for those
elements that are rotated out of the sample. Thus, estimation in the presence of nonresponse
and estimation for rotating panel surveys are related problems.

Given that one does not obtain data from every respondent at every point in time of a
repeated survey, one is faced with a choice among methods of handling planned and unplanned
nonresponse. There are two simple, and common, procedures. If the interest is in following
individuals over time, then very often the investigator retains in the study only those
individuals that responded every time. A welghting procedure may be used to adjust the data
using characteristics of the initial respondents and (or) external auxiliary data. This
procedure is often used in special one-time studies of a specific population. In such
situations the report on the study is released only after the entire study is completed.

The second common type of estimation procedure is to construct estimates for each time period
using the data that are available for that time period. This procedure is often used if the
survey is repeated regularly, the results are released after each survey, no revisions are

made in the releases, and no longitudinal estimates are produced. One-period-at-a-time
estimatlon has the advantage of being very easy to compute at time t because no information
from the previous period i{s used in calculating the current estimators. It generally gives

good estimates (not optimal) of the current value, but rather poor estimates of change.

In fact, one might use both of these procedures in a single survey. The Survey of Income and
Program Participation (SIPP) conductd by the U.S. Bureau of the Census is a panel survey with
a rotating time- of-interview with a four month recall period. The Census Bureau provides a
set of weights at each time of the survey that can be used to construct estimates for that
point in time using all individuals that respond at that time point. They also provide (a)
the sample of individuals that responded all eight times for the period 1984-85 with weights
for these individuals, (b) the sample of individuals that resonded all four times in 1984
with an appropriate weight and (c) the sample of individuals that responded all four times in
1985 and an appropriate weight.

We outline an estimation procedure for a panel survey with nonresponse where the analysis is
conducted at the end of the survey. It is assumed that a reasonable fraction of the units
respond at all time points of the survey and that longitudinal analysis is of interest. The
computational procedure consists of constructing weights for the units with complete response
records, Information from respondents with incomplete records constitutes a form of
auxiliary information.

The first step in the analysis is to pick a few variables that are very important to the
study. The number of variables that can be used will depend upon the sample size, The
covariance structure of the vector of estimates composed of the simple estimates for each of
these variables for each type of response pattern for each point in time where the estimate

is appropriate, is computed. The covariance structure is a function of the response-
nonresponse pattern. There are different definitions of simple estimators. For simple
random sampling, simple estimators are simple means. For stratified samples, one might

define the original vector to include estimates for each stratum. Alternatively, the simple
estimator for a stratified sample might weight the responses in each stratum for
nonresponse. The vector Y wused in (1) is an example of a vector of simple estimates.

Given the vector of simple estimators and the estimated covariance matrix of the vector,
improved estimators for each of the time periods 1is constructed by generalized least
squares, For example, if we had a panel study with three time points, there are seven
response patterns, These are XXX, OXX, XOX, XXO, X00, 0X0, 00X, where X denotes response
and 0 denotes nonresponse. If we choose two variables of interest, the vector of simple
estimates will contain 12 x 2 = 24 estimates because there are 12 group-response times
associated with the seven response patterns. In this example, pgeneralized least squares
would be used to produce six estimates, the estimates for the two variables for each of the
three time periods,

The generalized least squares estimator for the selected charcteristics become control
variables for a next stage of estimation. Using regression weighting methods, weights are
constructed for the individuals that responded all times. The weights are constructed so
that the peneralized least squares estimates for each time period are reproduced by the
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weighted sample of 100% respondents. That is, the time estimates for the chosen variables
are used as controls,

The efficiency of this procedure depends upon the correlation between the chosen control
variables and the analysis variable. If a control variable is also the analysis variable,
the procedure will be very efficient. 1t is less than fully efficient only because a limited
amount of information is used in the generalized least squares procedure.

The strong advantage of this procedure is that it produces a single tabulation data set that
can be used to construct internally consistent estimates for all reporting times and for all
gross change tables.

The variance of the procedure can be computed by analogy to the procedures used for double
sampling. Let Y be the characteristic of interest. For simplicity, assume a simple random
sample at each time. We write the model to be used in estimation as

Yi - opy (X.1 o ﬂx)ﬂ & e
B, = E{X} ,
e, ~ Ind(0 02)
i ' e
Let By be the generalized least squares estimator of B - Then our estimator for the mean
of Y 1is

By =¥+ (px - X)e ,

where (y, x) 1is the mean vector for the elements observed at every time period, and

¢ - hat 1is the vector of regression coefficients obtained in the regression of Y(i) on X(i)
using the set of complete observations. Let m be the number of complete observatiouns.
Then the variance of the estimator is, approximately

Vipy) - m‘loe2 + o'V(pxxa i

- -
where V(px) is the covariance matrix of By

The least squares estimator we have described will perform well in most situations. However,
it is possible for the estimator to produce negative estimates for quantities known to be
non-negative. This 1is because the estimator is linear and it is possible for some of the
weights to be negative. Procedures have been developed to aveid this problem. See Huang and
Fuller (1978).

4. THE U.S. NATIONAL RESOURCE INVENTORY

The Iowa State Statistical Laboratory cooperates with the U.S. Soil Conservation Service on a
large survey of land use in the United States. The survey was conducted in 1958, 1967, 1975,
1977, 1982, and 1987. A survey is currently being planned for 1992.

The survey collects data on seoil charcteristics, land use and land cover, potential for
converting land not used for crops to cropland, soil and water erosion, and conservation
practices. The data are collected by employees of the Soil Conservation Service. Iowa State
University has responsibility for sample design and for estimation.

The sample is a stratified sample of the non federal area of 49 states (all except Alaska)
and Puerto Rico. The sampling units are areas of land called segments. The segments vary in
size from 40 acres to 640 acres. Data are collected for the entire segment on items such as
urban land and water area. Detailed data on soil properties and land use are collected at a
random sample of points within the segment. Generally, there are three points per segment,
but 40 acre segments contain two points and the samples in two states contain one point per
segment. Some data, such as total land area and area in roads, is collected on a census
basis external to the sample survey.
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In 1982 the sample contained about 350,000 segments and nearly one million points. The 1987
sample was composed of about 100,000 segments. The majority of the 1987 sample segments were
a subsample of the 1982 segments. However, about 1500 new segments were selected in areas of
rapid urban growth. Data were collected on about 280,000 points in 1987.

For the first time in 1987, it was decided that longitudinal data analysis would be performed
for the period 1982-1987., Also for the first time, it was decided that the data were to be
made available to the state Soil Conservation Service staff so that they could perform their
own analyses.

In 1987, the field personnel were provided with a preprinted work sheet containing the 1982
information for the segment. They entered the information for 1987 on the basis of field
observation and aerial photography. Field personnel were permitted to change the 1982 data
if they found it to be incorrect. Edit and checking procedures were applied throughout the
processing operation.

The sample was designed to produce reasonable estimates for units called Major Land Resource
Areas. These areas are defined on the basis of soil and cover characteristics. There are
about 180 Major Land Resources Areas in the study area. Also the acreage estimates for any
county were to be consistent with the total acreage of that county. There are about 3100
counties in the sample. Because the sample must provide consistent acreage estimates for
both counties and Major Land Resource Areas, the basic tabulation unit is the portion of a
Major Land Resource Area within the county. There are 5530 of these units, which we called
MLRAC's.

The design of the sample is a simple form of a panel survey in that the 1987 sample is nearly
a subsample of the 1982 sample. It was decided to use as the control variables from the 1982
study, the 1982 acres of 14 major land uses such as cropland, rangeland, forestland, and
urban land. In addition, the external information, such as 1987 area in roads, and the
segment informatlon, such as 1987 area in urban land, is auxiliary information similar to
that obtained from incomplete observations.

Table 4 is a condensed version of an estimation table for one of the states in the survey.
It contains only four uses instead of the 14 actually employed in the estimation. The
entries in the right column are the 1982 estimates. The entries in the last row for urban
land and roads are from the segment data and the external sources, respectively. The vector
of six entries, (the first four entries of the last column, 1987 urban land, and 1987 roads)
is a vector of totals corresponding to the vector of estimated means, p(x) - hat of Section
3.

The internal estimates of the table are essentially least squares estimates that satisfy the
six control totals. In the actual estimation scheme it was necessary to use imputation
methods when, for example, a change 1is reported in the segment data, but there is no
corresponding change in the point data.

Table 4. Illustration of estimation procedure

1987
1982 Cropland Other Urban Roads TOTAL
Cropland 26,243 179 13 6 26,441
Other 771 7,114 6 2 7,893
Urban 0 0 623 0 623
Roads 17 4 0 1,038 1,059
1987 TOTAL 27,031 7,297 642 1,046 36,016

The design produced large variances for the directly estimated change in small uses such as
urban land, farmsteads, and small water bodies. Therefore, a small area estimation scheme
was used to construct estimates of change for the major land resource areas within
counties. We used a computer program for small area estimation that we have developed at
Iowa State University. The theory for the small area estimation procedure is decribed in
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Fuller (1986). Estimated changes in five small land uses for each of the 5,500 MLRAC's were
constructed with the small area program. This procedure is essentially an allocation program
in that the sum of the MLRAC estimates is the state estimate. Estimates for the entries in
Table 4 (with 14 categories) were constructed for each MLRAC. In this estimation, the small
area MLRAC estimates, the external estimate for roads, and the state marginals for cropland
were used as controls. The final step in the estimation procedure was the assignment of
weights to the point data such that the weighted point data give the estimates of Table 4 for
each MLRAC.

To summarize, the final product of the estimation procedure 1s a tabulation data set of
points that permits estimation of complete two-way tables of 1982-1987 land use for any
identifiable area designation. The estimates are consistent with previous estimates for
major land use categories for the states and are consistent with data from sources outside of
the point sample.

Generally speaking, it is not possible to obtain good variance estimates from the tabulation
sample, although segment and stratum identification are given in the data set. Variance
estimates computed with the point data for principal uses, such as cropland, will be too
large because of the control on the larger 1982 sample.

5. MEASUREMENT ERROR

Measurement error can have a very large impact on the analysis of data over time. This
impact may be moderate in the case of simple means reported at a sequence of times. However,
in gross change estimation and in regression estimation, measurement etrror can be extremely
important.

To illustrate the magnitude of measurement error bias in estimators of gross change, let us
return to the simple example of Table 1. If the data were collected by a procedure such as
that of the U.S. Census Bureau, the work of Chua and Fuller (1987) demonstrates that the
interior cells of the two way table will be seriously biased. Also see Abowd and Zellner
(1985) and Poterba and Summers (1985). Under the Chua-Fuller model, the respounse error at
the two points in time is assumed to be independent. Also it is assumed that, at each time,

Plresponse = Eltrue =E} =1-a+ aPE g

P{response = Ulcrue = E} = aP ,
Plresponse = Ultrue = U) = 1 - a + aP, ,
P{response = E|true = U) = aP_ ,

where a 1is the parameter of the response mechanism. Under this model the expected value
for the' proportion unemployed at any point iIn time is the true proportion. A conslstent
estimator of P(EE) under the Chua-Fuller model is

A ~

- 24 4 2
"EE - (1 o Q) (PEE H PEPE[I - (1 - C1) ]) '

where P(EE) , P(E.) and P(.E) are the direct estimators and a 1is a parameter of the
response mechanism. Also see Battese and Fuller (1973). On the basis of the U.S.
reinterview data, a value of a = 0.10 1is not unreasonable. For our example, we have

Tep < (0.90)'2{0.91 - 0.93(0.94)(0.19))

- 0.9184
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pomding two-way table of proportions adjusted for response error is

0.9184 0.0116

0.0216 0.0484

In this example, the bias in the direct estimator of P(EE) is 0.0084. Chua and Fuller
estimate the bias to be about 0.0168 in the three way table that includes the not-in-the-

labor-force category. Table 5 contains a comparison of alternative estimation procedures
for P(EE) . A sample of 10,000 is assumed. The first three procedures are those of
Table 3. The last three are the three estimators adjusted for measurement error bias. In

the variance calculations, a 1is assumed to have a standard error of 0.0l. The estimators
of P(E.) and P(.E) are

Table 5. Mean square error of alternative estimators for a sample of 10,000 at each time and
50% overlap (Mean square error of measurement error adjusted GLS = 100.)

Procedure
Ordinary Measurement Error
Parameter Simple Rest. GLS  Full GLS Simple Rest. GLS  Full GLS|
Py 111 111 100 111 111 100
P 111 101 100 111 101 100
Ppp 1071 967 961 250 106 100
not changed by the adjustment for measurement error bias. In this example the squared bias

in the ordinary estimator of  P(EE) is about nine times the variance of the generalized
least squares estimator. Thus the measurement error bias dominates the mean square error of
the estimator of P(EE)

These results have serious implications for survey design. To illustrate this, we return to
the gross change problem. Assume that our objective is to estimate the probability that a
person will remain employed for two periods, E(BEy) . We assume that it is possible to
conduct independent reinterviews for each point in time, and that interviews at two points in
time are independent. We assume that the only interview procedures permitted are:

AL Interview and reinterview at one of the times,

B. Interview at time one and interview at time two.
We assume that the response error is unbiased and that a simple two-class (employed and
unemployed) model is appropriate. We also assume that the probabilities of correct respouse
depend only on the current class of the respondent.

Let the ‘response probabilities be defined in terms of a and let
-2
il = 14 = @)

Let 0(ij) denote the ij-th element of the 2 x 2 matrix of probabilities observed in the
reiuterview study. That is, #(ij) is the probability that an individual responds i on the
first lonterview and j on the reinterview. For this simple model we can obtain explicit
expressions for the estimators. We have

and



where

1 11 12 11 21

6(ij) , are the estimates from the reinterview study and ﬁ(ij) are the estlmates from the
interviews conducted at the two time periods.

In constructing the estimator, the reinterview study is used only to estimate the measurement
etror parameter, In fact, the reinterview study could be used in a generalized least squares

procedure to improve the estimates of P(11) , P(1.) , and P(.1) . Under the assumption
that all interviews are of equal cost, it can be demonstrated that about one fourth of the
resources should be used for the reinterview study. The relative efficiency of the

measurement error procedure to the direct biased procedure is given in Table 6.

Table 6. MSE efficiency of MEM to direct

Sample size, n

500 1,000 5,000 10,000

MSE divect/MSE MEM 0.87 1.13 3.22 5.84

1n small samples the direct procedure has a smaller mean square error because of the smaller
variance. Recall that ouly three fourths of the observatlons furnish information on P(EE) =
P(11) . However, for samples greater than 750, the squared blas dominates the mean square
error of the direct procedure and the consistent measurement error procedure has a smaller
mean square error. Thls small example demonstrates the efflcacy of surveys containing a
component to estimate the parameters of the measurement process.
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UNIQUE FEATURES AND PROBLEMS OF ROLLING SAMPLES

L. Kish?

[ am grateful for this opportunity to explain the chief features of rolling samples and the purposes they are
meant to serve. First, let me attempt a definition of rolling samples: A combined (joint) design of F separate
periodie samples, each a probability sample of the entire population, designed so that the cumulation of the F
periods yields a detailed census of the whole population; also intermediate cumulations should yield details
intermediate between 1 and F periods. We may appreciate that definition by looking at examples and counter-
examples. We shall also examine possible variations that would satisfy the definition and the conflicting needs
that rolling samples can be aimed to meet.

Imagine a weekly national sample, each with epsem selection rates of 1/520, and so designed that in 520 weeks
they are "roiled over" the entire population and the cumulation yields a complete census of the population
averaged over ten years. Each year would yield national and local samples with selection rates of 52/520 =
1/10. The design would combine weekly national samples with an averaged decennial complete census, and with
sample censuses of ten percent each year.

I use the words "would" and "might", because the design does not yet exist anywhere as far as [ know. 1 am bold
to coin this definition, as I first used it in 1981 in a published report to a committee of the U.S. Congress [Kish
1981]. Earlier | described such plans with the title "Rotating samples instead of censuses" [Kish 1979]. But
the name "rotating samples” met objections, because of its confusion with the well known partially overlapping
samples that are widely used for labor surveys. By ccining the new name "rolling samples” I intend to avoid
needless confusions with other designs. By coining descriptive names for my methods I also hope to advance
understanding. Furthermore, they also help to avoid having the authors' names attached to their methods; an
annoying practice, which leads to needless antagonism about priorities.

The labor force surveys now in use, such as the CPS in the USA and the CLFS in Canada, differ from rolling
samples In important ways. First, the labor force surveys typically have considerable overlaps, which hinder
and delay cumulations. Second, they are confined to primary sampling areas, so that eumulations fail to cover
the national population area. Third, they may not be large enough in size to cumulate to a complete census.
Fourth, the methods tend to yield less complete coverage than the census.

Nonoverlapping samples are sometimes ecalled "multiround” surveys and are used to cumulate data that depend
on short periods of recatl. In developing countries they have been used to collect demographic data, such as
birth and death rates. The 52 weekly nonoverlapping samples of 1000 households of the HIS of the NCHS may
be a good example. However it is also too small and too confined to PSU's to qualify now as a rolling sample,
which would yield a detailed national census.

At the August 1989 meeting of the ASA, a statewise alternation between years of complete censuses was
advanced, with the faise tag of "rolling samples". [ asked the authors to avoid this needless confusion.
Furthermore, I hope that the idea has little chance of success. It would confound yeariy and statewide
variation, so as to confuse both temporal and spatial comparisons. As such it would contradict the efforts of
the UN for decennial collection dates. We may forego further ecriticisms here, but only use it as a
counterexample to rolling samples.

We now must review, ever so briefly, the chief alternatives to rolling samples for providing the detailed
information needed for small domains, which is one prineipal aim of cumuiating rolling samples, the other being
to provide overall population estimates at frequent (weekly, yearly) intervals. Publicity today favors detailed
population counts for administrative areas, but details for other domains, for "eross domains" (like age and
social classes) may be as important in the long run.

First and foremost we must put the decennial censuses of population, housing, agriculture, industry and others,
which humankind has been spreading over the earth's face in the last two centuries, and especially in the last
two generations with the help of the United Nations. In addition to the detailed data for small domains,
censuses sometimes may also obtain better coverage due to concentrated publicity and the national "ceremony"
connected with the census. The Chinese census of 1982 is a good example. The concentrated efforts of the
census may also yield lower unit costs than surveys; but at 2.6 billions, the US census of 1990 will cost $10 per
capita or $30 per household. However,rolling samples are being proposed here chiefly because decennial

censuses lack timeliness: from collection to use the census data are typically from about 1 to 14 years old [ Kish
1981].

More frequent censuses, quinquennial or yearly, have also been proposed. But quinquennial may not be frequent

" L. Kish, Research Scientist & Prof Emeritus, Inst. for Social Research, University of Michigan, Ann Arbor,

M1 48106.
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enough, and yearly censuses would be too costly. Sample censuses of 1 or 10 percent have been proposed, but
the former may be too small and the latter too costly. In two countries at least, quinquennial censuses of 10
percent had half of the cost of a complete census and one also suffered from inereased noncoverage. The 1
percent microcensus of West Germany and the 1/2000 samples of China provide some yearly data. Canada had
10 parcent census in 1985. I doubt that these efforts will provide generally the needs for data that are both
timely and detailed. To paraphrase Lincoln: "You cannot poll all the people, all of the time".

That stolen phrase leads us to registers or administrative records as a method for collecting data, which can be
both timely and detailed. Outstanding examples are the population registers of the nordic countries: Sweden,
Norway, Denmark, and Finland, and perhaps a few others. In a few cases they have replaced or may replace
censuses with data from registers, Their completeness is based on cooperation, motivation, and literacy. In
other situations their coverage, quality, and updating are far from adequate. | expect further growth in their
quality, their spread and their use, but not that such registers will replace censuses either soom or completely,
because their contents are likely to be limited to a few basic variables, too few for modern census needs. To
paraphrase Lincoln again: "You cannot poll all the people, all the time, about everything”.

What about synthetic and raking estimators that would give us timely and detailed estimates based on censuses,
plus registers, plus surveys? [ am optimistic about progress with those methods, but not about their replacing
data collections by censuses or by rolling samples.

Now we must discuss briefly three problems facing cumulated rolling samples: their costs, their coverage, and
their bases in averaging over changing populations. These averages must cover both population changes over
time and individual changes of location In space.

Averaging variations over time must overcome mental blocks based on the tradition and practice for both
censuses and surveys. | have made several efforts to overcome those blocks with arguments based on statistical
inference and philosophy, and we need more theoretical, methodological, and empirical work. The sum of
repeated surveys over an enture time interval can lead to better statistical inference than a single,
concentrated one-shot survey. Probability selection of time segments from an entire interval permits
statistical inference from the sample to an average condition over the interval. On the contrary, inference
from a "typical" time segment from one-shot survey to the entire interval demands judgment, assumptions,
models about the nature of variation, or lack of variation, over the entire interval. The choice of a single time
segment is exposed to the risks of seasonal, cyclical, secular, and catastrophic variations, known or unknown,
The sum of repeated surveys relies on averaging out the variations over the repeated surveys [ Kish, 1965,
12.5D]. Sampling and cumulating over time should be preferable on statistical, methodological grounds to
accepting any arbitrarily chosen "typical" period. It is paradoxical that judgmental selection is still accepted
and practiced in the time dimension, whilst we refuse to tolerate judgmental selection of spatial segments in
probability sampling [Kish, 1979, 1981, 1983, 1986].

A less formidable but annoying problem for rolling samples is caused by changes of location (of people,
households etc) so that the same units can fall into two or even more periodic samples. These moves are ruled
out by the arbitrary census date, though their application is costly, arbitrary and faulty. They also occur in
one-shot surveys. But they will occur by the thousands in cumulated rolling samples. However for the random
selections of area segments of probability samples they cause no bias. We only need to understand and explain.

The problems of cost for a complete rolling census seem formidable compared to the costs of most periodic
surveys alone. But the contrasts are less formidable in smaller countries, because sampling fractions are
greater in smaller countries. For example, monthly labor force surveys of 80,000 households need only f=1/1000
in a giant country of 80 million households; but they need f=1/100 in a country of 8 million households, and
those would cumulate without overlaps to a complete census in the 120 months of ten years. We shall discuss
the overlaps soon. Furthermore the cost per interview for a rolling sample is bound to be higher than for the
current samples confined to primary sampling areas. However the travel cost would not Increase nearly as
much as would be suggested by small areas of PSU's on the maps of the national territory. The large majority
of the sample and the population in each country are concentrated in a relatively small number of "self-
representing areas".

However, for allowable cost we must add to the costs of labor force surveys, also the costs of the decennial and
perhaps quinquennial censuses, because the rolling samples presume to do the work of both. It may be true that
census workers are generally poorly paid but the costs of recruiting and training for only a few days work may
be relatively high.

The question of relatively good coverage by some censuses compared with sample surveys, as mentioned earlier,
is too technical and specific for brief treatment here. It is likely that with special efforts, the coverage in
sample surveys may be improved. For example, the USCB is endeavoring to check and improve the 1990 Census
with a special sample survey of 150,000 households.

For periodie labor force surveys, and for some others also, considerable overlaps are often used for two chief
reasons. The most important reason is less often mentioned: the later interviews cost less than the first,
especially when they are done by telephone. Though the ratios of their total costs are not overwhelming, they
demand consideration in any comparison. Better known in formulas are the reasons based on the correlations
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found in reinterviews; these reduce variances modestly for current estimates, and even more for estimating net
(or macro-) changes between periods. However those correlations are weak for many survey variables, for
example for measures of unemployment. They are further weakened by response errors and by moving rates
that approach 0.2 between years.

Thus correlations are lower when the overiaps are for segments rather than persons; but such overlaps are
simpler to handle, are cheaper, and not subject to the biases of panels of persons. On the other hand, a panel of
persons would have higher correlations and aiso permit the analysis of individual changes, i.e., micro echanges, or
gross changes. Because of this conflict some surveys have done both: covered the same segments and elso
followed the moving individuals for panels.

The size and nature of the overlapping sample needs technical studies; these studies should be multipurpose
because the correlations will vary greatly between variables. My informal advice is for overlaps that would be
1/3 or less of the cumulated nonoverlapping portion. Also the overlap could be a panel of individuals followed
for many periods, to permit dynamic analysis of individual changes, now missing from labor force surveys. The
overlaps over many periods would reduce variances of net changes for all those pairs of periods. 1 proposed the
name split panel designs (SPD) for such designs [Kish 1982, 1986, 1987].

The basic design calls for F periodic surveys for frequent (weekly or monthly or yearly) population estimates
designed for cumulating the F samples for small domain estimates over the entire interval. Within that
definition a great deal of flexibility may be encouraged, and some examples now follow. First, improved
estimates for domains (provinces) may be designed both with larger sampling fractions and with longer
cumulations. With quarterly estimates instead of monthly, and tripled sampling rates, the sample base would be
increased by a factor of nine, for example.

Periodic symmetrical samples (weekly or monthly or quarterly) may be the simplest and best, but departures
from that may be tolerated, and perhaps compensated with weights. Furthermore, to the basic contents of the
surveys, additional variables may be added as needed.

Although the emphasis has been on the two extremes — single surveys for timeliness and complete cumulations
over the entire interval (ten years?) for small domains — intermediate cumulations for major domains
(provinces?) and for minor domains (districts?) would be often desirable and feasible. At this point we must add
that whereas a complete 100 percent census was indicated or impiied, the basic idea can also include large
fractions (10 percent) as the census targeted over the interval; particularly where decennial censuses are also
collected. Similarly the "population" in the definition is clearly meant to include many populations along with a
national count of persons.

The sizes and weights of periodic samples should be considered together, and a great deal of flexibility is
advisable. Methodological research can make solid contributions. Here and now, we assume similar sampling
fractions for all periods, and only consider different weights for each of 10 years, with a total weight of 10 over
the entire 10 years. For the national sample and for highly fluctuating variables (e.g. infectious diseases) the
last year may carry the full weight of 10. On the contrary, for total populations of small domains, each of the
ten years may have a unit weight of 1. However many variables and for large domains an intermediate moving
average may be better than either extreme, for example (100, 90, 80, 65, 50, 40, 30, 20, 15, 10)/50.

Finally, | wish to add a quote (Kish, 1986) that concerns rolling samples as well as other periodic (or other
repeated) sample surveys. "Fifth, statistical strategy should dictate less frequent reporting especially for small
but non-negligible domains. Too often such domains either remain unreported, or they are reported with unduly
large errors or at too great a cost, or both. As prime examples consider the vast but underpopulated areas with
small populations which appear in many countries and for which provineial authorities demand separate reports.
Other examples come from demographie, ethnic, occupation groups, etc., for which separate data are needed.
Instead of the usual rigid practice prevailing now, it would be preferable to report at, to cumulate for, and to
design for longer periods for these smaller domains. The tables for these statisties should indicate the different
designs used for those statistics."”
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ABSTRACT

We discuss frame and sample maintenance issues that arise in recurring surveys. A new system is
described that meets four objectives. Through time, it maintains (1) the geographical balance of
a sample; (2) the sample size; (3) the unbiased character of estimators; and (4) the lack of
distortion in estimated trends. The system is based upon the Peano key, which creates a fractal,
space-filling curve. An example of the new system is presented using a mnational survey of
establishments in the United States conducted by the A. C. Nielsen Company.

1. INTRODUCTION

We are concerned with recurring surveys conducted over time and the maintenance they require.
Let U, denote a survey universe at time t, with t = 0 denoting the inception of a new survey. We
assume a probability sample of units of Uy has been selected, and thus that it is feasible to
construct unbiased (or at least consistent) estimators of the population total and other parameters
of interest. As time goes by, we assume the universe is surveyed repeatedly at regular intervals
of time, in part to track the "level"” of the population, and in part to measure its "trends." A
panel or a rotation sampling design is usually employed for thils purpose (see, e.g., Rao and Graham
(1964) and Wolter (1979) and the references cited by those authors). In all such surveys of people
or their institutions, which is all we concern ourselves with here, the composition of the universe
changes with time as births, deaths, and other changes occur to the status of the units. The
survey frame, the sampling design, and the schemes for observing or collecting the survey data must
be maintained for such change; otherwise, the sample may become excessively biased and cease to
be representative of the universe.

The types of maintenance issues that arise in recurring surveys depend in part on the kind of
universe under study, in part on the choice of sampling unit, and in part on the interplay between
the sampling unit and the universe elemental units. We shall summarize briefly the issues that
arise in four different situations:

(&) establishment surveys with establishment as the sampling unit;

(il) establishment surveys with company or some similar cluster of establishments as
the sampling unit;

(iii) surveys of people or households with the address or housing unit as the sampling
unit; and

(iv) surveys of people or households with the household or family as the sawpling unit.

In this work, we use the words "establishment" and "company" in a generic sense. An establishment
may be a retail store, a manufacturing plant, a school, a hospital, a golf course, or any other
similar, single-location entity, while the corresponding company would be the corporate, legal
entity that owns the retail store, or the school district, and so on. In some cases, of course,
the establishment and company will be synonymous, e.g., a single, independent grocery store.

For case (i), the main universe dynamics include

. establishments arising from new construction

. reclassified establishments from some out-of-scope category to an in-scope category
. reclassified establishments from onme in-scope category to another in-scope category
. reclassified establishments from an in-scope category to an out-of-scope category

. conversion of a structure from residential use to commercial use

. conversion of a structure from commercial use to residential use

¥ Kirk M. Wolter, Vice President, A.C. Nielsen, Northbrook, Illinois, 60062
*  Rachel M. Harter, A.C. Nielsen, Northbrook, Iitinois, 60062
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demolition of an existing establishment
establishment that moves in and out of vacancy status

changes in the configuration of an establishment, e.g., division into two or more
establishments.

Case (ii) is far more complicated than case (1), principally because sampling units are now

clusters

of elemental units. All of the issues from case (i) apply to single-establishment

companies. For multi-establishment companies, we face the following additional dynamics:

mergers wherein two companies combine to form a new successor company

acquisitions wherein one company Is acquired by another, with the acquiring company as
the sole successor company

joint ventures wherein two companies collaborate to form a new company that may be a
subsidiary to both the parent companies

divestitures wherein a company spins off a new and independent company

divestitures where a company sells parts of itself to another acquiring company.

In a sense, case (iii) is very similar to case (i) in respect to the kinds of universe dynamics

that may

Note how

Finally,
universe

arise:

housing units arising from new construction

reclassified housing units from some out-of-scope category to an in-scope category
reclassified housing units from one in-scope category to another

reclassified housing units from an in-scope category to an out-of-scope category
conversions from residential to commercial

conversions from commercial to residential

demolition of an existing housing unit

reconfigurations of existing structures, e.g., reconfigurations of apartments within a
small multiunit structure.

closely these issues match those for case (i).

case (iv) is very similar to case (ii) in terms of the composition and complexity of
change. Maintenance issues include:

marriage, wherein a new successor family is created, possibly from whole predecessor
families or from part families

mew members move into an existing family, either eliminating another family or part of
a family

divorce, wherein successor families may be created from one predecessor family

family members move away, either to join another existing family or to establish a new
family

births of family members
deaths of family members

a whole family moves, thus requiring tracing and perhaps altering field-work assignments.

To handle the universe dynamics listed above, properly reflecting them in the sample, so that
sample representativeness is retained over time, the survey organization must design and adopt
an explicit system of maintenance. We define a sample maintenance system to be a sampling design
and a universe updating methodology, possibly speciflied in the form of simple rules, that permit
the statistician to achieve known, nonzero probabilities of inclusion for each of the elemental
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units in the population for each time period in the recurring survey, or failing that, to weight
the survey data properly so as to achieve unbiased or consistent estimators of the population
parameters of interest. From cases (i) through (iv) above, it is clear that a maintenance system
must perform at least four functions:

. give new elemental units a known, nonzero probability of selection
. account properly for elemental units that may no longer exist in a substantive sense
. not give elemental units multiple chances of selection into the sample; otherwise, If

multiple changes are given, the system must appropriately record this information so that
adjustments may be made in the estimation procedures

. appropriately update the universe frame so as to facilitate and control the above
activities,

A general and necessary rule of thumb for any sample maintenance system is that the system, or
the rules that define the system, must treat symmetrically universe changes both within and
outside of the sample. If a proposed maintenance rule violates this rule of thumb, then there
is risk of bias in estimators of totals and other universe parameters to be estimated. For
example, consider two rules that might be used for case (ii) for sampling new companies created
as the result of a divestiture. One possibility is to declare the new companies part of the
sample if their predecessor companies were part of the sample, and otherwise, if their predecessors
were not part of the sample, to subject the new companies to a new round of sampling. This rule
is seen to give the new companies multiple probabilities of selection, and thus may result in
biased estimation unless appropriate adjustments are made in the estimation procedure. (The
adjustments we have i{n mind are related to the multiplicity rules studied by Monroe Sirken (1970)
and others.) A second possibility is to declare the new companies part of the sample if and only
if their predecessor companies were part of the sample. Because this second rule treats
symmetrically the universe changes both within and outside of the sample, it is seen to result in
unbiased estimation for the survey parameters of interest.

In designing a sample maintenance system, the statistician must be guided not only by the
statistical properties of the resulting estimators, but also by the cost, feasibility, and customer
acceptance of alternative rules. Some rules may require additional data collection, thus entailing
additional cost that must be planned from the inception of a new recurring survey. Certain
applications may actually require that additional data be collected retrospectively. This may be
impractical, or at the very least, may entail considerable nonsampling error, thus risking bias.
Some rules may well be feasible and cost-effective, yet may not satisfy the requirements of the
customers or users of the survey data.

Finally, we note that this problem of maintenance is neither new nor newly recognized; for example,
maintenance systems have been in place for years in many of the major recurring surveys at
Statistics Canada, the United States Bureau of the Census, and the A. C. Nielsen Company.
Nevertheless, there is remarkably little literature on this subject. For brief discussions of some
maintenance issues, see Wolter et al (1976) for case (ii), Hanson (1978) for case (iii), and Ernst
(1989) for case (iv).

In the balance of this article, we focus on case (i), where the establishment is both the sampling
and elemental unit. This is the case we face in our establishment surveys at the A. C. Nielsen
Company. Section 2 describes one of our major surveys, the Scantrack survey, and the specific
maintenance issues we face in that survey. We also describe some of the key objectives we had in
designing a new maintenance system for this survey.

The new maintenance system is based upon a parameter known in mathematics as the Peano key, which
creates a fractal, space-filling curve. The Peano key is defined in Section 3, where we also
provide several graphical displays for illustration purposes. We close the article in Section 4
by describing the rules that implement our new maintenance system,

2. THE SCANTRACK SURVEY

The Nielsen companies provide information from several marketing surveys. The media surveys,
such as Nielsen Television Index and Nielsen Station Index, are based on samples of elther housing
units or households. Surveys for the packaged goods industry, including Nielsen Food Index,
Nielsen Drug Index, and Nielsen Scantrack United States (NSUS), are based on samples of stores,
The Single Source service, which ties together consumer purchasing behavior with household
television viewing and retail marketing support, is based on both household and store samples.
Although sample maintenance is an important issue to each of these surveys, the present discussion
will focus on our Scantrack sample of grocery supermarkets which is the basis for the NSUS service.
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The Scantrack sawple includes 3,000 supermarkets, stratified by 50 metropolitan markets and a
remaining United States stratum. Within a market, the sample is further stratified by major
chain organizations. The frame is ordered geographically, and a systematic sample is selected
within each stratum to achieve proper soclo-economic representation. This sample is also
representative of store age, store size, and other factors associated with item sales. Although
a peographically ordered systematic sample is exceedingly simple and straightforward, the choice
of this sample design is justified based on years of experience, as well as the results of
empirical studies i{n which various sample designs were tested on universe data.

Stores in the Scantrack sample are equipped with electronic scanners at the checkout, which read
bar codes on packaged goods. Bar codes are called universal product codes or UPC's. When the item
is scanned, the transaction is entered into the store’'s computer where the UPC is matched with the
item's price. Each week, the sample stores provide us with total sales movement and price data
for every item that is scanned in the store. Since a supermarket typically carries over 10,000
UPC’'s, we receive and process over 30 million observations per week.

In addition to scanner data, we obtain data on promotion conditions for the items in each of the
sample stores, including whether an item was featured in a newspaper advertisement, store display,
or store coupon. If an item was featured, we also know the type of newspaper advertisement used
and the location of the display within the store.

NSUS reports include estimated sales totals for individual items and aggregates of items for each
market and the total United States. A ratlo estimator is used, with all-commodity volume as the
auxiliary variable. All-commodity volume, or ACV, refers to total sales of all items in a store,
usually on an annual basis. ACV tends to be highly correlated with sales of individual items.
In addition, the NSUS reports include estimates of sales and sales rates by promotion condition
and estimates of year-to-year sales trends.

Continuous maintenance is necessary for the Scantrack sample because the national supermarket
universe of approximately 30,500 stores is not static. In a recent 12-month period, approximately
2,200 new supermarkets opened, and 2,450 existing stores went out of business. Another 170 stores
were reclassified during the year. Reclassification can result from any of a number of changes.
Some smaller grocery stores enter the Scantrack universe when their ACV's surpass the $2-million-
per-year threshold which defines a supermarket. A store might change name or location, or be
expanded through remodeling. Some stores change to an extended or economy format, such as a
superstore, warehouse store, or other nontraditional supermarket. In 1979, about 3,800 extended
and economy stores accounted for 17% of total supermarket sales. By 1988, the number of extended
and economy stores had grown to over 9,000, and they accounted for almost 50% of all supermarket
sales (Progressive Grocer 1989). Sometimes, individual stores or entire chains are acquired by
another organization, affecting stratum definitions.

In addition to universe changes, missing or faulty data situations arise that require substitution
of sample stores. Some selected sample stores do not scan, and some that do have incompatible
scanning equipment. If a store is consistently unable to provide us with usable data, it must be
dropped from the sample. Sometimes a request for a sample change within an organization comes from
the chain itself. Occasionally, a retailer simply refuses to cooperate.

The principal objectives of our maintenance system for the Scantrack sample are: (1) the sample
should maintain geographic balance through time, (2) the system should maintain the sample size
through time, (3) the sample should adhere to principles of probability sampling so as to avoid
bias in estimators of total sales, and (4) sample changes should not disturb excessively estimates
of year-tb-year trends.

Geographic balance is a proxy for socio-economic balance. Because different neighborhoods have
different purchasing patterns, geographical balance {s important to achlieving an efficient sample
design (i.e., low sampling variability) over a wide range of products. Furthermore, geographic
balance is an important factor in our customers’' perception of an appropriate sample.

A sample size decrease would adversely affect the standard errors of the estimators, and a sample
size increase would adversely affect our costs. Neither outcome is desirable. Furthermore,
contracts with chain organizations specify sample sizes and cooperation payments, and any changes
would have to be renegotiated. This too is undesirable.

All applications involving Scantrack data require efficient, unbiased estimators of total sales.
Manufacturers and retailers need such data for everyday business decisions, such as how much to

produce, how much to ship, how much to keep in inventory, and how to allocate store shelf space.

Clients also require reliable year-to-year trend information for managing their businesses,
Trend estimates help manufacturers assess the overall health of their businesses. Both
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manufacturers and retailers benefit from knowing the longer-term performances of all major brands
in all product categories.

We describe the maintenance system that has been developed to meet these objectives in scctian 4,
But first, we describe a new geographic ordering scheme in section 3.

3. PEANO KEYS

The Peano key is_a parameter that defines a certain fractal, space-filling curve. It provides
a wapping from IR to R* such that points in RS or spatial objects can be arranged in a unigue
order (Peano order) on a list. In the application we have in mind, the spatial objects are
sampling units, and the space R2 is represented by earth’'s geographic coordinate system,

We obtain the Peano key by interleaving bits. See Peano (1908), Laurini (1987), and Saalfeld,
Fifield, Broome, and Meixler (1988). Let X = Xi...X3XpX] and Y = Yp...Y3¥pY; represent the
longitude and latitude of an arbitrary point in k-digit binary forwm. Then, the corresponding
Peano key is P = X Yp...XqY3X)Y9X 1Y), Also see figure 1 for an example for the case k = 4. Note
how simple it is to calculate the value of P.

Ficure 1. CReEATING THE Peano KeEy BY BrT INTERLEAVING

LATITUDE LONGITUDE

vedy TEW g N ¥ A=A NI RL

Given k-digit (for any finite k) latitude and longitude coordinates, the spatial "point®
represented by the value of P ls actually a square in R2. As k increases, the slzes of the
squares decrease. In fact, as k tends to infinity, the value of P will tend to represent a
specific point in R2.

The space-filling curve created by the values of the Peano key, P, is in the shape of a recursive
N. Figure 2 jllustrates the N-curve, using a grid of 1024 points, This fipure displays the
self-similarity feature of fractal ilmages.

The N-curve passes once and ouly once through each point in space, points being defined as squares
whose size is determined by the number of digits carried in the latitude and longitude coordinates.
the order of points ou the curve (Peano order) is largely preserving of geographic contiguity.
Thus, Peano order facilitates proximity searches. Peano order involves a few geographic
discontinuities, such as the jump from point 516 to point 517 in figure 2, as does any mapping
tron R? to ML,

In the specific application we envision here, economic establishments are arranged on a list In
Peano order by means of their latitude and longitude coordinates. T[Probability samples of the
establishments may be drawn systematically from the ordered list. Because the earth's coordinate
system is stable, there is no ambiguity in determining the list position of new establishments.
Thus, they may e subjected to sampling too.

To illustrate this application, see figure 3 which displays a chain of retail establishments in
tlie United States. Each establishment is described by a double-letter code. This code in natural

lexicographlc order signifies the Peano order of the establishmeuts,

In the next section, we describe a sample maintenance system that is based upon the establishments’
Peano order.
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Figure 2. Peano Order Based on 1024 Points

%\g ;

Figure 3. Chain of Retail Establishments in Peano Order

-2
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4. RULES FOR MAINTAINING THE SAMPLE
We describe a system for maintaining samples of retail stores, taking proper account of births,

deaths, scanning conversions, and other changes iu the status of the retail store universe. As
stated earlier, we developed the system for applications at the A. C. Nielsen Compauy.
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We consider a given and arbitrary sampling stratum, say of size N, and assume the universe of
stores in the stratum is arranged in Peano order. For example, a stratum might include all stores
in a given metropolitan market, such as Vancouver or Montreal. Ordering by Peano key values will
turn out to be especially well-suited to the maintenance system that follows. Other ordering
schemes may be considered for this work so long as they are stable across time and effectively map
R? to R! in such fashion as to preserve geographic contiguity and to assign all birth stores a
unique position in the ordering.

We assume an original sample is selected systematically with equal probability from the ordered
list of stores at time t = O, Let Uij denote the j-th store in the i-th possible systematic
sample, for i =1, ..., kand j =1, .. ny, where k is the sampling interval and n; is the size
of the i-th possible sample. If N = nk + r, r < k, then r samples will be of size n; = n + 1 and
k - r samples of size n. In what follows, we shall also use the subscript "i" to represent the
sample actually selected.

Let Py; denote the Peano key value associated with Uj;. Let Py and Py denote the smallest and
larges% possible Peano key values within the market under study. Thus,
PL < Pll < P21 < R 4 Pkl < P12 A Pij S Pknk < PU.

Note that we are assuming each store possesses a unique geographic location and thus a unique
Peano key value.

Let Y,;; denote the value of some characteristic of Uij at time t. A standard, unbiased estimator
of the population total, Y., is

A n,
Y. =k "y . )
ti jl tij

while the ratio estimator is given by

A A

where the X-variable is a measure of size and Xt and xti are analogous to Yt and Yt respect-

T
ively.

Define N Peano key sepments, S;j4, by partitioning the range [Py, Py] at the N store values Py,.
We let §i; - (Pij, Pi+1, ), where it will be understood that Pk+1, represents Pl, +1- A special
definition is néeded for the final segment. We define S = [P, ,.", Py] U [P, Pyj) so that the
entire Peano range [Py, Py] is covered by the N segments. This shecial definition, which treats
the Peano range as if it were on a circle, is needed later to guarantee that all store births are
given a nonzero probability of selection. Alternative segmentation schemes may be used without
defeating the statistical properties of the maintenance system.

Our maintenance scheme is based upon the Peano key segments. The basic idea is to view the
systematic selection process as applying to the segments, with subsampling of stores within the
selected segments. Thus, as a formal matter, the segment is the primary sampling unit (PSU),
not the store. Of course, as of the time of initial sample selection, there is, by construction,
only one store per segment,

4.1 Birth Sampling

At a future point in time, say t’', one or more new stores may open for business. Each new store
will be assigned its unique Peano key value, and this value will be an element of one and only one
Peano key segment. The Peanc key permits us to automatically place new stores In their correct
and unique positions on the ordered universe list.

The simplest possible rule for sampling births is the following:
Rule 1. A birth store is selected into the sample if and only if its Peano key value is
an element of a selected Peano key segment. Birth stores whose Peano key values are elements
of nonselected segments are themselves not selected.

Given this rule, a birth store is selected with probability 1/k. This occurs because its segment,

which is unique, is selected with probability 1/k. Unfortunately, Rule 1 does not provide good
control of the sample size over time.
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To control the sample size, we advocate some form of subsampling within PSU's. Let Ui41- Uij2'
o UijB-- denote the stores in segment S{;- The original store is now labeled Ujj1, whereas
Uij2' Uij§g . UijBij are the birth stores in Peano order. The number, Bij - 1, ol births in

any given segment will be 0, 1, or 2 in most applications. Then, we may subsample as described
in the following alternative rule.

Rule 1A. A birth store will be subjected to subsampling if and only if its Peano key value
is an element of a selected Peano key segment. Associate with Usis1s Uii2s ---, Ujip,. the

i i i
probabilities Pijls Pij2s «--» PijB- , where py:p > 0 and = Pijp = 1. Now choose one 5F the
stores according to this probabi11t§jmeasure. gubsampling is independent from one selected
segment to the next. Birth stores whose Peano key values are elements of nonselected
sepments are themselves not selected.

The probabilities in Rule 1A may be equal or unequal. If unequal, they may be defined in
proportion to some preliminary measure of size, or defined so as to accelerate or retard the
replacement of the sample,

We observe that our principal maintenance objectives are well-satisfied by Rule 1A, First, the
rule maintains geographic balance over time because there is always one unit selected from each
of the originally selected segwents, which themselves were geographically balanced by virtue of
the systematic sampling design. Second, the rule malntains a constant sample size over time
because there is always one and only one store selected from each of the originally selected
segments. Third, the rule is in accord with strict principles of probability sampling, whereby
probabilities of inclusion are known and nonzero, and thus unbiased estimators of population totals
are available. Finally, by appropriate choice of the Pijp, we may control distortion in year-
to-year trends.

The unconditional probabilities of selection are given by

-1
Tijb = K Pijb

for b =1, ..., Bis. That is, m;;p is equal to the probability of selecting the PSU times the
conditional probability of selecting the store, given the selected PSU.

Let Yg/3p denote the value of the unit Uiip, and let Yerii4 denote the total for the (i,j)-th PSU.
Then, the unbiased estimator of the population total Y.+ is given by

A n

Y - Ei y

L4 r 3 / "" L}
gl jJul t'ijb ijb

where Yerijb is the value of the single unit selected from the (1,j)-th selected segment, with
variance

N = B, 2 H By
Var{¥ , ) =+ T (k ¥ ,... -Y )+ k = = o’ . ) (1)
el Tk 0 e T e 1 ju1 B
wvhere
2 oowr o Jeap .
t'ij b1 ijb pijb t'ij+

The first term on the right side of (1) is the variance due to the sampling of segments. This is
the original variance in the sense that it is the variance expression that applied at the time of
original sample selection. The second term on the right side is the variance due to subsampling
within segments. Note that ”%'i' vanishes for any segment in which birth subsampling has not
occurred. Note also that the subsampling scheme achieves its minimum variance when, for each given
i and j, the probabilities Pijp are defined to be proportional to Yusjip. In this case, the within
component of variance vanishes. For any real application, however, this proportionality condition
will be satisfied only approximately.

As usual, a first-order Taylor series approximation may be used to discover the variance of the
ratio estimator. See Wolter (1986) for appropriate techniques to estimate the variance of both
the unbiased estimator, Y¢rj, and the ratio estimator, YRets-

As time passes, it will be necessary to periodically update the sample to reflect additional

births and other changes in the universe. It may be desirable to schedule the updating at regular
intervals of time, so as to facilitate management of the work. I will refer to these intervals
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as update cycles. Such cycles may occur monthly, bimonthly, quarterly, or at whatever interval
makes sense in a particular application. Factors to consider in establishing the frequency of the
updating cycles include cost of the updating process; desired accuracy of the estimators of level
and trend; and perceptions of the customers or users of the data.

Generally speaking, more frequent updating will cost more, achieve greater accuracy, and be
perceived better by customers than less frequent updating.

For an update cycle at any future time t', Rules 1 or 1A may be used to maintain the sample.
New stores are always placed automatically in their correct segment, by their Peano key values,
and the subscript b reflects this order at each cycle. To explicitly reflect these ideas, we
should have further subscripted the U's, B's, p’s, and n's by time, but we avoided doing so as a
notational convenience. The expressions for the estimators of total, Yeei and Ygee g, and their
variances remain valid for each t’

4.2 Updating for Deaths

Rules for maintaining a sample over time must obey an important general principle. They must
treat equally both selected and nonselected units. In the case of deaths, this principle implies
that all deaths, both those in and out of the sample, must be handled in the same fashion in any
sample updating process. If this principle is not followed, the resulting estimators will be
biased, and the bias may accumulate over time.

In what follows, we describe procedures for death updating that follow this essential principle.
There are two cases to consider: (i) deaths are not known on a universe basis, (ii) deaths are
known on a universe basis.

For case (i), we suggest Rule 2.

Rule 2. All deaths in the sample will be known. They should remain in the sample but be
set to zero (i.e., y = 0) at the time of an update cycle.

This rule permits unbiased estimation of the universe population totals. Deaths cause the
estimator variances to increase, and estimators of variance will properly reflect this increase,
provided the deaths are retained in the sample with zero values,

For case (ii), we suggest Rule 3.

Rule 3. Remove all deaths from the universe at the time of the next update cycle. Subject
only the remaining live cases to sampling, including births.

Rule 3 will cause the store count Bj; to change in segments where deaths have occurred, unless
births exactly offset deaths. In facé, the B's and p’s will necessarily change in segments where
there are deaths and no births. As a consequence, a replacement store will necessarily be selected
within a given segment whenever the sample store from the segment has died, and a replacement
store may be selected even when the sample store is alive and well.

Two additional issues must be addressed in handling deaths. The first issue concerns the
coordination of birth and death updating. Store births and deaths will occur naturally at
irregular intervals, depending upon business conditions and population growth. In some time
periods, neither births nor deaths will occur. In other time periods, births may occur but not
deaths, of vice versa. While in other periods, both deaths and births will occur. In theory, it
would be possible to employ different update cycles for grocery store births and deaths. For
example, one might update bimonthly for both births and deaths, but in alternating months. This
approach may have advantage in leveling the work load over time. On the other hand, alternating
cycles may tend to defeat the ability of the sample to properly measure trends, creating a sawtooth
pattern in the store time series as first births are introduced, then deaths dropped, then births,
deaths, and so on. On balance, we recommend coincident sample updating for births and deaths so
as to preserve trends.

The second issue concerns the handling of deaths during the period from their actual occurrence
until the next update cycle. This issue arises only if the frequency of the updating process is
less than that of the data-collection process. If the two processes are coincident, then there
are no new problems. 1If updating is the less frequent, then there are two alternatives:

a) drop the deaths from the sample as soon as they are known to us (to be more precise
statistically, this means the deaths are included in the sample with a value of zero)

b) continue the deaths in the sample by imputing for them until the time of the next update
cycle.
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Alternative a) is the simplest, cleanest way of proceeding. Aside from the problem of births, it
is unbiased and permits correct variance estimators. Because of the birth problem, however, this
alternative may have a negative effect on the ability of the sample to properly measure trends.
As deaths occur during the first weeks of an update cycle, one can imagine a slight decline in
the store time series, not because of fundamental change in economic conditions, but simply because
the sample reflects deaths and not births. Alternative b) provides a short-term fix to the problem
of properly measuring trends. The essential notion here is that by imputing for deaths, we
implicitly make a correction for any births that have occurred since the last update cycle. This
fix is not particularly elegant, and it is difficult to frame a rigorous, unassailable technical
justification for {t. On the other hand, history has shown that populations of economic
establishments tend to be stable in the short run. Deaths are often assoclated with or are
compensated by births, with the net size of the population remaining approximately level in the
short run. The United States Bureau of the Census has used this alternative in its wholesale
trade survey, with quarterly update cycles and monthly data collection. See Wolter et al (1976).

4.3 Scanning Conversions

In this final subsection, we present sample maintenance rules for handling stores that convert
from nonscanning to scanning, and vice versa. Of course, this particular type of universe dynamic
does not arise in surveys that utilize other data collection technologies.

First, we treat conversions to scanning. There are two principal cases to consider: (1) scanning
status is known for all stores prior to sampling; (ii) scanning status 1s not known prior to
sampling, but is observed after sampling for the selected stores only.

Case (i) is relatively easy to handle. Here is a natural rule:

Rule 4. Do not subject nonscanning stores to sampling. Sample only from the subuniverse
of scanning stores. As a given nonscanning store converts to scanning, then treat it as a
birth, subjecting it to birth sampling. Prior to conversion, nonscanning stores shall be
represented in the universe by utilizing imputation or other missing data techniques.

Given this rule and the prior data (i.e., scanning status) it assumes, the entire survey budget
may be allocated to the sample of scanning stores. None of the sample resources need be committed
to nonscanning stores. Unfortunately, this desirable property does not hold for case (ii).

To address case (ii), some additional notation is needed. Let A denote the set of scanning stores
and B the set of nonscanning stores, where A U B spans the entire universe. Set s denote the
selected sample of stores, and let Sp = s NA and sg = s N B,

By assumption, sp and sg are not observed until after initial field work is completed. Obviously,
all of these sets vary with time, but we suppress explicit time subscripts to simplify the
notation.

Sample s, should be maintained by rules presented elsewhere in this paper for births and deaths.
New rules are required to handle sp. Here 1s an illustrative rule that treats the stores in sp
as nonrespondents.

Rule 5. At time t, impute for store Uy;;, € sp the value §tijb = Xtijb YAt / Xpp. where
Xgijh is the value of an auxiliary variable for store Ujjp, yp: is the 'sample s, total for
the” estimation variable, and xp, is the corresponding 1otal for the auxiliary variable.
Alternatively, isputation may occur by means of substitution, hot deck/matching, or other
means. Now, act as if the data set is complete, applying standard estimators of the survey
paramcters of interest. At the time Uj;y, converts to scanning, it shall be deleted from sp
and joined to s,, and the estimation shall still be performed by mecans of the standard
estimators applied to the completed data set.

Given Rule 5, the effective sample size is reduced because of imputation variance associated with
the y¢;i,. Substitution maintains a larger effective sample size than the other rules, but is
clearly the most expensive to implement. All rules require limited field work on a continuous
basis to monitor the scanning status of Uijb € sg.

As an alternative to missing data techniques, we may observe the nonscanning stores using an
alternative mode of data collection. Depending upon the data to be collected, this could involve
a store audit or an interview conducted with store personnel by telephone, mail, or in person.
This alternative would likely be more accurate than the imputation-based methods, yet additional
cost and time may be involved, as well as burden associated with the management and control of
two data collection methodologies.

Finally, we treat conversions of sample stores from scanning to nonscanning. Such conversions
are likely to be relatively small in number and are treated here only for completeness.
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Let Ujsp € sy, i.e., 1 is a scanning store in the sample. Note that Uj;p, may be either a store
that has scanned since being selected into the sample, or a store that converted to scanning after
originally entering the sample as a nonscanner under Rule 5.

Rule 6. At the time Uj;:y converts to nonscanning, it shall be deleted from sp, joined to
sg, and subsequently handled by missing data techniques, as in Rule 5. Standard formulae
shall be applied to the completed data set. To simplify processing and field work, the
method selected shall be identical to the method selected to handle conversions from
nonscanning to scanning.

In the bizarre instance in which a store flip-flops repeatedly between scanning and nonscanning,
one may handle the store by sequentially applying Rule 5 or 6, as the case may be, each time
updating the sets s, and sg.
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MARGINAL AND APPROXIMATE CONDITIONAL LIKELIHOODS
FOR SAMPLING ON SUCCESSIVE OCCASIONS

D.R. Bellhouse'

SUMMARY

Marginal and approximate conditional likelihoods are given for the correlation parameters in a normal linear
regression model with correlated errors, both under a fixed regression parameter assumption and under a
random coefficients regression model. These likelihoods may be evaluated using stale space models. This
general likelihood approach is applied to obtain marginal and conditional likelihoods for the
correlation parameters in sampling on successive occasions under both simple random sampling on each occasion
and more complex surveys.

KEY WORDS: Likelihood inference, Sampling in time, ARMA models, State space models.

I. INTRODUCTION

Marginal likelihoods were introduced as a general method for eliminating nuisance parameters from the
liketihood function (Fraser, 1967; Kalbfleisch and Sprott, 1970). Cox and Reid (1987) introduced approximate
conditional likelihoods which also address this problem. They argued that the approximate conditional
likelihood was preferable to the profile likelihood obtained by replacing the nuisance parameters in the
likelihood by their maximum likelihood estimates when the parameters of interest are given. Bellhouse (1990)
established the equivalence of marginal and approximate conditional likelihoods for correlation parameters
under a normal model. Following on the work of Cox and Reid, Cruddas et al. (1989) obtained an approximate
conditional likelihood for the correlation parameter in several short series of autoregressive processes of order
one with common variance and autocorrelation parameters. Bascd on a simulation study, Cruddas et al. (1989)
showed that the estimate based on the approximate conditional likelihood has a much smalier bias and better

coverage properties of the confidence interval than the maximum likelihood estimate from the profile
likelihood.

A situation similar to the one studied by Cruddas et al, (1989) appears in sampling on successive occasions in
sample surveys. In order to reduce the response burden, individuals in a survey are retained in the sample for
relatively short periods of time. For any occasion on which the survey is carried out, the sample consists of
some individuals who have been previously surveyed on some past occasion or oceasions, and some who are new
to the survey for the first time. The sample measurements on an individual are usually modelled by an
autoregressive moving average process (ARMA); see Binder and Hidiroglou (1988) for a review of the application
of time series models to sampling on successive occasions. Moreover, because of the response burden, the
observed time series for an individual is short. If the model means on each occasion are assumed to be
different, then the dimension of the parameter space increases with time so that the maximum likelihood
estimates of the parameters can be biased and inconsistent. Consequently, it is of interest to obtain marginal
and approximate conditional likelihoods under ARMA models.

The marginal and approximate conditional likelihoods for the correlation parameters in a normal model are
obtained in section 2. The general results of section 2 are illustrated in section 3 by applying the results to

sampling on successive occasions assuming simple random sampling. In section 4, several methods are given to
apply these likelihood methoeds to complex surveys.

2. MARGINAL AND APPROXIMATE CONDITIONAL LIKELIiHOODS FOR
CORRELATION PARAMETERS UNDER A NORMAL MODEL
For the linear model
y=Xg+ ¢ (1

with error vector e ~ N(O,ozn), where 0 is the correlation matrix, the log-likelihood for 8, o and @ is given
by

1(8,0%,8) = ~(m lna + (Inla1)/2 + (y-X&) "o L(y-Xs)/20")} @)

' D.R. Bellhouse, Department of Statistical and Actuarial Sciences, University of Western Ontario, London,

Ontario, Canada N6A 5B9.
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The vector of observations y is of dimension m x 1 and the vector of regression coefficients 8 is p x 1  so
that X is m x p. For a given value of 2,

8= (XTn'lX)XTn'Iy
and

t T -1 T

S = yay -y n'l

x (x"a" 1)1 xTa"1y (3
are jointly sufficient for 8 and o',

A marginal likelihood for 2 is obtained by making a transformation of the data y to the sufficient statistics g8

and s’ and the ancillary statistic

a=al/?

(v - x (o771 xTalyy/s,
1/2

the marginal distribution of the ancillary a times the product of the differentials dai, i=1, .., M. See

1, g~l/2,-1/2

where @~ isthe m x m dimensional matrix such that o~ . The marginal likelihood of 2 s

Kalbfleisch and Sprott (1970, egs. 6 and 10) for a general discussion and a general expression for ndai.

Bellhouse (1978) and, later independently Tunnicliffe Wilson (1989), showed that the marginal likelihood for g
under the normal model is given by.
172 |xTn_1X|1/25m'p }-1 )

Iy(2) = { 10 (4)

Note that (3) is proportional to the maximum likelihood estimate of ¢’ given @ and that s° (XTQ'IX)_1 is
proportional to the estimated variance-covariance matrix of the maximum likelihood estimate of 8 given a.
Then (4) can be written as

O I/
lest var(g)i
3 (5)
Mg 172

Ly (2) =

To obtain an approximate conditional likelihood, it is first necessary to transform the parameters to achieve
parameter orthogonality between the parameters of interest and the nuisance parameters, which now may
depend on the parameters of interest. Sets of parameters are orthogonal if the associated information matrix is
block diagonal, with each block as the information matrix for each parameter set. The conditional likelihood is
related to the distribution of the data y conditional on the maximum likelihood estimate of the nuisance

parameters for fixed values of the parameters of interest. The approximate conditional likelihood is obtained
by applying two approximations to this conditional distribution. See Cox and Reid (1987, section 4.1) for a
diseussion of the derivation. For example, let 0 be the vector of parameters of interest and let a, possibly
depending on o, be the vector of nuisance parameters orthogonal to 0. The full likelihood of the data for
parameters @ and A is denoted by L(0,A) and the profile likelihood for o, L(e,f\) is the likelihood with a
replaced by its maximum likelihood estimate. The approximate conditional likeiihood for 0 is

L(e,a) | I(o,n) 1172,

where I(O,;\) is the observed information matrix for A at a fixed value of 0. See Cox and Reid (1987, eq. 10).

Following Cruddas et al. (1989), Bellhouse (1990) suggested, for model (1), the parameter transformation
A = lIno + (lnial)/(2m) leaving 8 the same. The log-likelihood under the new parameterization is denoted
by [(8,1,2) and can be obtained from (2). If the entries of @ are functions of a parameter ¢, then the

nuisance parameters A and B are each orthogonal to g, i.e.

1 E[aﬁ(s,x,a) =6
m

ELED

and

1 E{az(e,x,n) ] =0
m L

3038

when each entry of @ is a continuous and differentiable function of 9. Moreover, in this case the approximate
conditional likelihood for 2, Lc(n) is the same as the marginal likelihod LM(Q), given by (4) or (5). See
Bellhouse (1990) for details.
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The marginal and approximate conditional likelihod in (4) or (5) can be evaluated at any Q using state space
models in the approach of Harvey and Phillips (1979). For any given 2, once the recursions to estimate g and
o are complete, the value of s’ and |2l 172 can be calculated from Harvey and Phillips (1979), egs. 5.6 and
6.6, and 4.3 respectively). It is then necessary only to obtain XTQ_IX and its determinant. The value of XTD-IX
may be obtained from the final step in the recursive equations of Harvey and Phillips (1979, eq. 3.4).

Suppose in model (1) that g is a random vector modelled by 8 = Wé + u, where W isa p x q matrix of
known values, § isa q X 1 vector of parameters, and u ~ N(0, er), independent of e. Under the composite
model y = XW§ + Xu + e, the log-likelihood for a,fz,r,Yz, and « = Uz/Y;, denoted by I(G,K,Y!,r,ﬂ), is
given by (2), with 2 replaced by «Q + XI‘XT and Xg replaced by XWs. Likewise, the marginal likelihood,

denoted by I_M(K,[',ﬂ), is given by (4) and (3), with X replaced by XW and Q replaced by «a + XrXT. This
yields

lM(.c,r,n) = {1ea + XrXTI 1/Zl()(\rl) T(m + XI‘XT) "xwr 1/ng'q} '1, (8)
where

IE yT(xn + XrXT)'ly

-y ea + xexD) Theweom) Teen + xex") ") L o) Teea + xex™) =1y

Now the dimension of @ may be large in comparison to I'; this can be the case in sampling on successive
occasions. As an alternate approach, one could take the likelihood implied by (2), multiply it by the distribution
for 8, and integrate over 8 to obtain the likelihood for the parameters under the random model. This will
yield matrices of the same dimension as T.

3. SIMPLE RANDOM SAMPLING ON SUCCESSIVE OCCASIONS
3.1 Rotation Sampling

Consider a finite population of N units which has been sampled on k occasions by one-level rotation sampling.
Let Yy denote the measurement on the jR population unit taken on the ttR occasion, j=1, ..., N and t=1,
.., k. To begin with, it is assumed that any two units, say j and .]'I are independent, but that the same unit

across time is correlated. In particular, assume that for any j,

hi 2
(yu, 'ij’ sany 'ykJ) N N(Utu nk)o (7

where nk isa k x k correlation matrix and where 1 is the 1 x k veetor of fixed means (ul, o e uk)T.

The notation of Bellhouse (1989) is used to describe the sampling scheme. On any occasion, C rotation groups are
sampled. Rotation group r, denoted by Gr’ consists of m. sample units, r = 1, 2, ..., k + ¢ - 1. On oceasion

t, the sample consists of the units in Gt’ Gt+1’ R (¢ so that the total sample size on ocecasion

t+c-1*
H, N =M +m gt M1t Each rotation group is chosen by simple random sampling without

replacement from previously unchosen units in the population. The total sample size over all k occasions is

m=n1+n2+...+nk.

Suppose Gr first appears in the sample on occasion u and last appears on occasion v; U is either 1 or r and v is
either r + ¢ -1 or k. The total number of occasions on which a unit in Gr is present in the sample is

b=v+1-u Lety -

WE -v , De the sample means or elementary estimates for Gr on occasions
b .

u, u+ 1, «.,, v - 1, v respectively. Then under model (7), the contribution of Gr to the log likelihood in (2)
is
= {bnr Ino + (nr/2) ln(lnrl) +

Inxle-tx + (n_ - 1) tr(aZls )1/(2q), (®
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uyr T M Yurl,r T Puslr e Yeole T Mver Yy
the b x b matrix of sums of squares and cross products of observations within the rotation group, and where

where xl is the 1 x b vector (¥ - uv), where Sr is
q. isthe b x b correlation matrix on the observations on a single unit within the rotation group. By the
independence assumption, the full log likelihood is obtained by summing (8) over all rotation groups.
~ ~2
Given @, or equivalently Bla e U expressions for the maximum likelihood estimates u and o , for y
2 i - -~
and o respectively, may be found. Likewise, V(u), the estimated variance-covariance matrix of may be
obtained. This is illustrated for a first-order autoregressive process in section 3.2. Then the marginal

likelihood for the parameters in B1s eeey 9 1 is given by (4) with the expressions in (4) given by

k+C-~

k+c-1
= 0 R
r=1

172
1l r

IxTn'1X|1/2 = V(;)/sk,

. k+c-1 ~T _1~

s = ¢ {(nxe ‘x + (n - 1) tr(e.
el rrir Ty r r

1
st (9

and p = k, where X, is X, with the u's in X, replaced by their maximum likelihood estimates.

3.2 First-Order Autogressive Processes

Consider an autoregressive model which allows independence between different units but correlation within a
unit over time. In particular, assume the first-order autoregressive model

ytj = Mt +¢ (yt-l,,j - “t-l) + Etj’ (10)

where €is " N(O,oz) for t =1, .., k and j =1, ..., N, and where the ¢'s are mutually independent.
Model (9), essentially Patterson's (1950) model, is a special case of (7). As in section 3.1, the vector of
regression parameters 8 = (ul, S uk)T. When the data vector y contains the measurements on each unit
grouped by all the occasions on which it was sampled as in the rotation sampling description of seetion 3.1, the

correlation matrix 0, now a function of ¢, can be written as a direct sum of matrices, each of which are the
correlation matrices of a first-order autoregressive process.

The following notation, similar to Patterson (1950), is used to denote various sample sizes, means and sums of
squares and cross produets (corrected for the appropriate mean) for oceasion t:

my = the proportion of units on occasion t that are matched with units from the previous occasion (t-1);
n, = the ﬁumber of units sampled on occasion t;

W & the mean of the units on occasion t that are matched with units from the previous oecasion (t-1);
Yp = the mean of the units on occasion t that are unmatched with units from the previous occasion (t-1);
I E the mean of all the units on oceasion t;

X, = the mean of the units on occasion t that are matched with units from the following oceasion (t+l);

syy;: = the sum of squares among units on occasion t which are matched with units
from the previous oceasion (t-1);

syy: = the sum of squares among units on occasion t which are unmatehed with units
from the previous occasion (t-1);

sxx;: = the sum of squares among units on occasion t which are matched with units from the following
occasion (t+1);
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The sum of squares among all the units on occasion t;

sxyé

the sum of cross products for measurements on sample units from occasion t matched with sample
units from t-1.

SYY,

Under the special case of model (10), and after much algebra, it may be shown that (8) summed over all rotation
groups r, the log-likelihood for the data reduces to

l(ul. ceis uk,oz,o) = -m lno + (d/2)1In(1-0 z) - {A(u,9) + B(s)}/(20 z), (11)

where d is the distinet number of units sampled (irrespective of the number of occasions on which a unit is
sampled) and m is the total sample size (nl + ot nk). Further in (11),

Alu,) = (1-0 )"l(yl - Ul)
k -1 -1 2 L 2
+ tEZ [“tnt{yt -y - «a(xt_1 = ”t-l)} + (1 - n‘)nt(l -0 )(,vt - ut) ] (12)
and
2 k 2 ' ' | 2 "
B(e) = (1-0 ) syy; + tEZ {o SXXy_ - 20 sxy, + syy, + (l-0 ) syyt}. (13)

1, and o = {A(;, ¢) + B(e)}/m,

where A(;,o) is (12) with u replaced with its maximum likelihood estimate and where G is a symmetrie

For any given value of ¢ the maximum likelihood estimatoris u = G~
k x k band matrix of bandwidth 3 and z isa k x | vector. The nonzero entries of G are

Gpp = TNy * (1 - nt)nt(l - q‘::) + "t+1nt+1°z’ fort =1, ..., k (14)
and

9t,t+1 aIELILISEL D for t = 1, ..., k-1, (15)

where TS Tkl S 0. The entries of z are
- - -1 2 -1 -
zg = mng(Fy - 0% ) + (1o mdngdi(L - o) = m g By - oK), (16)

for t = 1, ..., k, where TS kel T 0 and Sl'll = yl. The vector of estimated means u is unbiased for u
1 -
under model (10) and its variance-covariance matrixis o G l. 1t follows from (4) or (5) that the marginal and

approximate conditional likelihood for ¢ is

ol =i |
(A(3,0) + B(s)}(MK)/2g/1/2

(17)

3.3 Random Model Means

The discussion in section 3.1 and 3.2 has ignored the possibility of a relationship between the means for each
occasion. The means for each occasion are the ultimate quantity of interest, and much information may be lost
if the relationship between the means over time is ignored. Blight and Scott (1973), for example, note that the
survey means on successive occasions are often correlated and assume, in addition to (10), that

ut 5l = Q(Ut i 5) k1 uta (18)

2
where u, =~ N{O,y ) and where the u's are mutually independent. Model asumptions such as (18) can be

t
incorporated in the estimation procedures in at least two ways.

The first method is to use the full likelihood approach. Under the mode! defined by (10) and (18), the log-
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likelihood for the data becomes

2

L(E,y 40,6,k) = -m Iny + (k/2) Inc + (d/2) In(1l - 0 ) + (1/2) In(l - & )
- {A(uy0) + B(0) + C(0,6,x) - 2(ux) D(e,6,) + (u x) E(s,0,x)}/2y ). (19)

12 and E(0,0,x) = k - 2(k-1)6 + (k-2)¢

In (19), C(o.6,k) = 2 (&L - F 1)z, B(o,6,x) = (1 - ¢) v'F
1\), where the 1 x k vector “T = (1, 1-¢, 1-¢, ..., 1-6, 1), where the matrix G is given

+ x(1l - oluTF"
by (14) and (15), and where 2 is given by (16). The matrix F in (19) is a symmetric k x k band matrix of
bandwidth 3, whose diagonal entries are 9ey * (1 + ¢l) for t = 2, ..., k-1 and 9y + x for t = 1 or k,
and whose nonzero off-diagonal entries are gt’“1 +¢c for t =1, ..., k-1. On setting the derivatives of
(19) with respect to ¢ and vy equal to 0, the maximum likelihood estimates of these parameters, given ¢, ¢
and «, may be easily found. Upon derivation of the variance of E under the composite model (10) and (18), and
on using (6), L.M(o,¢.»<), the marginal and approximate conditional likelihood, although a complicated function

of 2, ¢ and «x, may be easily expressed. Since the total number of parameters is small the maximum likelihood
estimate and the maximum marginal likelihood estimate are both consistent and asymptotically unbiased, and
will likely be close in value. Exact likelihoods, though they may be complicated expressions, may be obtained
when (10) and (18) are replaced by general stationary autoregressive-moving average models. Likewise, the
associated marginal and approximate conditional likelihoods may be derived.

The second approach is a two-step procedure. Under the fixed regression parameter model, the marginal or
approximate conditional likelihood has a very simple form, given by (4) or (5). In the context of sampling on
successive occasions with a first-order autoregressive model and simple random sampling, the marginal and
approximate conditional likelihood is given by (17). Moreover, the value of the marginal likelihood for any given
vaiue of the parameters of 0 may be easily obtained on a direct application of the state-space model approach
given by Harvey and Phillips (1979). Once the random coefficient model is used, for example the model of
Blight and Scott (1973) in sampling on successive occasions, both the likelihood (full, marginal or approximate
conditional) and the state-space modelis to apply the approach in this context, become much more complicated.
In addition, model identification, for example (18) or a higher order process, is not straightforward. In view of
the desire for simplicity, with perhaps only a small loss in efficiency, the following scheme may be suggested
for the estimation of the parameters in @ by using the marginal or conditional likelihood approach conditional
on the occasion means Hys wees uk(or conditional on 8 in the regression context). As the number of occasions

k increases, so will the number of model parameters increase. In situations in which there are relatively short
time series on individual units as in the case of sampling on successive occasions, the maximum likelihood
estimates of the parameters in @ may be biased and inconsistent. However, as Cruddas et al. (1989) have
shown empirically for an autoregressive process of order one, the use of the marginal or approximate
conditional likelihood to estimate the correlation parameters corrects this problem. Once estimates of the

parameters of 0 have been obtained then estimates By enes My of i sees My may be obtained by the
methods outlined by Harvey and Phillips (1979). Now, for example, under model (10) and (18) with the process in
(18) replaced by a general ARMA process, the variance-covariance matrix of ;1. o0 ;’k is given by ch-l +
yzr. If ch_l is small compared to yzr, which may be the case when the sample sizes for the elementary
surveys estimates are large, then ;1, 00 ;k may be used with little loss in efficiency as the data to identify
the process and estimate the parameters in I. Revised estimates of uy may be obtained using the estimated
process.

4. COMPLEX SURVEYS

There are several ways in which one may proceed to analyze time series data from complex surveys. Each
method that can be put forward will depend upon the sample information that is available.

If data are available at the micro level, then variance-covariance matrices based on the complex design can be
computed for the elementary estimates for each rotation group. For the situation in which Hps wees My @re

treated as fixed, a pseudo marginal likelihood is given by (4) and (9) with X, and S’r replaced by their complex

survey counterparts. A similar approach is taken, for example, by Roberts, Rao and Kumar (1987) in logistic
regression analysis for complex surveys: obtain a likelihood or a set of likelihood equations and replace the
usual statistics by their complex survey counterparts. For random model means, one option is to proceed with
the fixed means analysis as the first step in the two-step estimation procedure described in section 3.3.
Another option is to obtain the marginal likelihood under the random means model, for example the likelihood in
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(19) and the marginal likelihood that may be derived from it. Then the statistics in this marginal likelihood are
replaced by their complex surveys counterparts to obtain a pseudo marginal likelihood.

In many cases the data at the micro level will not be available. The estimation procedure then depends upon
the data that are available. Two scenarios are considered here; many more could be formulated. In the first
scenario, the sample covariances or correlations are not available, while in the second, they are.

Suppose that only the elementary estimates and their design effects are available. Let S't - be the estimate

s
from rotation group Gr on occasion t based on a sample of size m.. Let defft  be the design effect
. 2 - s
associated with Yi gt If o /mr is the variance of ¥t , under simple random sampling, then on appealing to
1] ,
the Central Limit Theorem,

172

Gy, - up)/(getty )2 = N0y /m ) (20)

approximately. The modelling may proceed by assuming, within Gr‘ an ARMA-type process such as

i/2 _ )1/2

(S't’r. = “t)/(defft,r) = @(S’t_l,r - "t-l)/(defft-l.r +e

t (21)

where €t has constant variance. This may be easily cast into the framework of model (1), where the data

vector y contains data of the form }t /(deff )1/2, where 8 is (g, Moy eery w )T, and where X
N t,r 1* 72 k

contains entries of the form 1/(defft-1,r)1/2' The marginal likelihood, obtained as a special case of (5) or
(6), may be evaluated using the state space models of Harvey and Phillips (1979) as noted in sectlon 2. Marginal
and approximate conditional likelihood estimation is desirable under the model given by (20) and (21). The
estimate of ¢ in this case is based on the variation between elementary estimates within each rotation group;
the variation within elementary estimates is not available. The length of time a rotation group remains in the
sample is short so that the problems of bias and inconsistency in the maximum likelihood estimates will be
applicable here.

If model (21) is combined with, for example, model (10), then the two-step procedure, as outlined in section 3.3
may be used to estimate the autoregressive parameter in (10).

For the second scenario, suppose that the survey estimates of the mean, say ;t' are available for each
occasion t = 1, ..., k. Also, the matrix, say S, of variances and covariances of the surveys estimates is
available. In this situation a pseudo marginai likelihood can be obtained from (6). As in Binder and Dick (1989),

among several others, the j'/t's may be modelled by

J_/t T Myt gy, (22)
where e, is the survey error at time t with variance-covariance matrix estimated by S. The means on each
ocecasion, e for occasion t, follow an ARMA process. Since this is a special case of the random coefficients
regression model, the appropriate marginal likelihood may be obtained through (6). Since S is available, an
estimate of q, the correlation matrix of the survey error, may be easily obtained. An estimate of « = u'/y',
may also be obtained. From assumptions which lead to the marginal likelihood in (6), it is necessary to assume
that ey in (22) is a stationary random variable. Then an estimate of o is the average of the dlagonal
elementsin S. If y' is the variance of the u's then the variation between }t, T ENY: e K provides an
estimate of o° + y’. From these two estimates, an estimate of x may be obtained. Under model (22), X in
(6) is the k x k identity matrix, while W isa k x 1 column vector of 1's. Then the pseudo marginal
likelihood for T (pseudo since « and @ have been replaced by their estimates) is given by (6) with the
appropriate substitutions. If k, the number of occasions, is relatively large in comparison to the number of
parameters in I, then the marginal and approximate conditional likelihood estimates should be similar to the
maximum likelihood estimator. For ease of computation, it seems that the full likelihood approach using the
state space models as outlined by Binder and Dick (1989, section 3) appears to be the simplest approach to use

in this situation,
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5. DISCUSSION
Marginal and approximate conditional likelihood techniques can be applied in a variety of situations for
sampling on successive occasions. Sinece marginal likelihood methods show substantial improvements over
maximum likelihood estimation when the number of nuisance parameters is large, use of these likelihood
techniques may be recommended for use in the fixed means model such as (7) or in the random means model
using a two-step estimation procedure as outlined in section 3.3. State space models may be easily applied in
these situations to evaluate the marginal likelihood. In other situations where the number of nuisance
parameters is small, such as the random means model outlined in (22), the use of the full likelihood is preferred.
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A TIME SERIES MODEL FOR ESTIMATING HOUSING PRICE INDEXES
ADJUSTED FOR CIHANGES IN QUALITY

D. Pfeffermann, L. Burck, and S. Ben-Tuvia'
ABSTRACT

The estimation of housing price indexes is based on the sale prices of homes sold in successive time periods. As
such, the transactions recorded are not under control and they usually include homes of different quality in
different time periods. The common approach to adjust for quality changes (e.g. in the computation of
automobile price indexes) is to regress the sale prices against variables measuring quality. However, the
housing price indexes are required separately for numerous cells with only few or even no transactions being
recorded in many of these cells at the time that the indexes are calculated. In order to deal with this problem
we propose the use of a dynamic linear model which accounts for the time series relationships between the cell
regression coefficients and allows for eontemporary correlations between coefficients operating in neighbouring
cells. Modifications to ensure the robustness of the model and control its performance in periods of accelerated
inflation are proposed. Empirical results illustrating the performance of the model in comparison to models
which postulate fixed regression coefficients are presented using data on home prices in the city of Jerusalem
for the years 1982-1989.

KEY WORDS: liedonic Regression, Laspeyres Index, Robust Prediction, State Space Model.
1. INTRODUCTION

The consumer price index (CPI) is one of the most important and widely used economic series. [t constitutes a
major indicator of economic developments and often serves as a basis for salary and wage contracts as well as
contracts in capital markets. Another important use of the CPI is to serve as a deflator for converting
statistical series expressed in current prices to the same series expressed in constant prices of a given period.

Ideally, the CPI is intended to measure the effect of price changes on the budget required by consumers to
maintain a given level of consumption. In practice, the index measures the percentage change over time in the
expenditure required to consume a fixed "basket" of commodities and services. The itemns included in the
basket and their relative weights are determined periodically on the basis of a family expenditure survey so that
the basket represents the average consumption of the population to which the index refers.

In the present study we confine the discussion to the Laspeyres price index which is the index in common use.
Denoting by Pko and Qko the price and quantity of an item k in a base period and by Pkt the corresponding price

of the same item in time period t, the Laspeyres index for time t is defined as

©

Mty (1.1)

B k

Prmi@p /£ P L
kt “ko g B

= Q=
tk kkoko

where the summation is over all the items ineluded in the basket and wk = pko Qko / i Pko Qko‘ Written in

this manner, the index can be viewed as a weighted average of the price indexes Rkt = (Pkt/Pko) of the goods

and services included in the basket with the weights representing the relative expenditures of the corresponding
items in the base period. ltem k may itself be an aggregate of a number of sub-items in which case the index
Rkt is again computed as a Laspeyres index of the sub-items composing the item k. This method is usually

applied over several levels of aggregation, depending on the good or service under consideration.

In order to assure that the index reflects only changes in prices of the goods and services and not other changes,
it is imperative that the prices recorded in successive time periods will refer to the same or equivalent items.
However, this requirement is frequently problematie. Some food and wear items are seasonal and are not
available in every time period. Among durable goods new models come out which have different qualities from
the models introduced in previous periods. This last is a perennial problem in calculating annual price indexes
for road vehicles.

When computing housing price indexes (HPI), the changes in quality between adjacent time periods arise from

the fact that the transactions performed in any two periods are not under control and they usually involve

different types of housing. In Israel, where our empirical data come from, this problem is of particular concern

because the aggregate HPI is a weighted average of HPI's computed in small cells classified by geographie units

' D. Pfeffermann, Hebrew University, Jerusalem, Israel 91905, L.Burck, Central Bureau of Statistics,
Jerusalem, Israel 91130, S. Ben-Tuvia, Central Bureau of Statistics, Jerusalem, [srael 91130
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(towns) and the home size (number of rooms). With time intervals of only one month, the actual number of
transactions carried out and processed in time can be very low in many of these cells giving rise to large
differences in quality.

As an illustration, we show below the monthly means of age and floor area of 2 room apartments in the city of
Jerusalem for the months of July 1987 - June 1989. The number of transactions which these means are based on
ranges from 5 to 69. (The numbers are particularly small in the last 3 months because most of the transactions
are usually recorded only within 3 months after the HPI is first calculated and published.)
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The problem of quality changes in the computation of price indexes has many facets and it had been widely
diseussed in the literature. See for example the books by Hofsten (1952) and Griliches (1971}, (Both books share
thie same title - "Price Indexes and Quality Change"). Most of the studies in this area focus however on the
computation of aggregate price indexes for durable goods so that the emphasis is on the ways by whieh to
account for technical improvements and the addition of new features and not on changes in quality caused by
small sample sizes. As Griliches notes, "most of the workers in this area, including myself, tried to get as large
a cross section in any year as possible, not worrying too much about the overall comparability of any two eross
seetions" (Grilieches, 1971, p. 7).

In the present article we consider this different aspect of the quality change problem namely, the change
implied by the use of small samples which are not under control. We focus our attention to the computation of
housing price indexes based on actual sale prices which prompted this study. In Israel (as in many other
ecountries), the HPI is a major component of the CPI with a weight of about 15 percent. In addition, the HPI
serves as an important economic indicator and is used for the linkage of contracts in construction and house
rentals.

It should be emphasized that the use of actual sale prices (often referred to in the literature as the "Home
Purchase Approach') is only one alternative for the computation of the HPL. In faet, there are at least four
different such approaches with different countries adopting different methods at different times. Thus, while
the Bureau of Labour Statisties in the U.S. used the home purchase approach until 1983 when it adopted a
“Rental Equivalence Approach", the practice in New Zealand was to change from the rental equivalence
approach to the home purchase approach. Castles (1987) provides an excellent review of the alternative
approaches and summarizes the practices in over 130 countries.

Although we study the problem in the context of housing price indexes, the approach outlined in the present
article can be applied after certain modifications to other price indexes of similar nature, e.g. the computation
of price indexes of used cars. Furthermore, the model we use is a regression model with stochastic coefficients
that can vary cross-sectionally and over time. Such a model has a large variety of applications in statistical
and econometric studies.

The content of the article is as follows: in the next section we review the Hedonie regression approach for the
adjustment of quality changes and describe its application in [srael pointing out the problems underlying its use.
In section 3 we define the proposed model and discuss its properties. Estimation of the model parameters is
considered in section 4. A modification to ensure the robustness of the model and control its performance in
periods of accelerated inflation is proposed in section 5. Section 6 contains empirical results illustrating the
important features of the model. We conclude the article with an outline for further analysis in section 7.

This article is of an expository nature and as such, the technical details have been reduced to the minimum
necessary, The missing mathematical derivations can be obtained from the authors,

2. QUALITY ADJUSTMENT USING HEDONIC REGRESSIONS

The common procedure to adjust for changes in quality is by use of "hedonice” regression as originated from the
works of Court (1939), Stone (1956), and Adelman and Griliches (1961). (The first and the third studies deal with
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the computation of automobile price indexes. The second study considers price indexes in the national
accounts.)

The hedonic regression approach has two variants. In the first variant, the transaction costs corresponding to a
given time period are regressed against quality measure variables {(QMV). Using the estimated coefficients, a
'mean transaction cost' is estimated for each of the time periods by computing the fitted regression values at
fixed 'average' values of the QMV. Calculating ratios of these means yields the desired indexes. In the second
variant, the transaction costs of several time periods are regressed against the QMV and time dummy variables
with the coefficients of the latter being interpreted as estimates of the pure price change. (The regression
coefficients of the other variables are assumed fixed over the time periods considered.)

The rationale underlying the two approaches is that 'most' of the transaction cost variation can be explained by
a relatively small number of QMV (referred to as "characteristies" in the hedonic context) with the other,
omitted aspects of quality assumed to be uncorrelated with the included ones. The first variant allows the
regression coefficients to vary over time whereas under the second variant the weights of the QMV are held
fixed, postulating therefore that any change in the average prices between successive time periods is
encompassed in the coefficients of the time dummy variables. Assuming that the separate regression equations
used for the first variant include intercept terms, it can easily be seen that the combined model holding over
the various time periods includes the model used under the second variant as a special case. The theoretical
aspects of the use of these two approaches are discussed in Griliches (1971). (See also the discussion at the end
of this section).

In Israel, the Central Bureau of Statistics (CBS) adopted a modified version of the second variant for the
computation of the HPIl's. Three QMV are used in the regression: Floor area (in square meters), Age (in years)
and District (defined by one or two dummy variables depending on the size of the city).

The computations consist of three stages:

Stage 1: For each cell defined by city and number of rooms, with sufficient data, a multiplicative regression
model is estimated every three months using the data available for the most recent six month period. The
regression equation has the form
" (1) (2)
Log Ytkj =g +a log Ftkj +ap, log Atkj +ayg Dtkj +ap, Dtkj + gk(t) * ek 2.1)

(1) (2)
thj® Atkj’ Dtkj and Dtkj are the

corresponding floor area, age and the two district indicator variables (only one indicator variable is considered
2
tkj)'

where Ytkj is the cost of the j-th transaction in cell k during month t, F

in the small cities) and Etkj is a random disturbance assumed to have constant variance o’z = E(e

The time funection g'((t) is piecewise linear and it is defined for t=1 ... 6 as follows (t=6 represents the most
recent month with data).
t if ¢ < 0 ift<a
gk(t)=xklt1 + xk2t2 3 tl = B t2 = (2.2)
3.5 otherwise t-3.5 otherwise

The model defined by (2.1) and (2.2) is estimated using ordinary least squares (OLS) yielding preliminary
estimates (Xkl’ Agp) With estimated variances {v (xkl), v (xkz)}.

Stage 2: In stage 2 the estimates (kkl’ J\KZ) are "shrinked" towards a common mean calculated from

estimators obtained for neighbouring cells. The neighbouring cells used for the shrinkage process are all the
cells pertaining to the same city if sufficient data is available or the cells pertaining to a group of citles
otherwise. The shrinkage is carried out by considering the A -coefficients operating in a given group of cells as
exchangeable independent random variables such that

BOL M= as B, - aw) (e, - B = a,b,=1,2 (2.3)
ki ° i ¢ Ik B 0 otherwise

The modified, shrinked estimates are the empirical extended least square estimates (Pfeffermann and Nathan,
1981) defined as

Aka(e) 3 GK ‘ea (1 - GK) Aa(e) 3 xa(e) = i Gy xKa/é GK (2.4)
where GK = 6§ / {6(_2i +V (;Ka)}. The variances 5§ are estimated using the iterative procedure proposed by

Pfeffermann and Nathan (1981) which is applied to ail the cell estimates of all the groups, so that only one
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variance estimate is used in every quarter for each of the two A coefficicnts. The y-coelficients of cells with
insufficient data to allow the computation of the OLS estimators are estimated by the corresponding means
xa(e) , a=1,2. For notational convenience we use below the symbols AKa(e) for all the cells regardless of data
availability.

Stage 3: Using the model defined by (2.1) and (2.2), an HPI is estimated for each of the cells for a time span of
3 months. The index represents the average price increase between month 2 (the mid-point of the first quarter)
and month 5 (the mid-point of the second quarter) and it is calculated as

RK.S/Z = Yo /Yop. = exp {1.5 agqle) + 1.5 xKZ(e)}

where QtK- is the predicted (fitted) price at time t for given average values of the QMV. Notice that as a result
of the use of a multiplicative relationship and the assumption of fixed coefficients during the six month period,
the ratio ﬁK,5/2 is independent of the choice of the average values ?f the QMV. Another noteworthy point is
that under the assumption of normality for the error terms, the ratio Rk,S/Z is biased as an estimator of R

k,5/2
= {E (YSK-) ik (sz_)} but the bias was found to have a negligible effect on the estimated MSE of the

estimators and hence is ignored when constructing the index.

Having calculated the cell indexes, they are aggregated to form higher level indexes using appropriate cost
weights obtained from the most recent family expenditure survey. Monthly indexes are calculated by
interpolation using the corresponding changes in the index of "Inputs in Residential Building" as benchmarks.
The monthly indexes are then incorporated in the CPI,

Due to late registry of some of the transactions and administrative delays in processing, data pertaining to a
given month may become available up to three months later. Using the delayed data, the HPI is revised after 3
months, concurrent with the computation of the new HPI. However, the revised HPI, although more stable, is
only of limited use.

DISCUSSION: The method described above has some clear shortcomings. The assumption that the marginal
effects of the QMV remain fixed throughout a six month period and that the price changes are reflected solely
in the time function goes against much of the index number literature and is at best a crude approximation. [t
implies under the multiplicative relationship (2.1) that the ratio between the expected prices of homes of
different fixed qualities remains constant throughout the time period of six months. The housing market is an
unstable market determined by negotiations between sellers and buyers which are affected by the concurrent
state of the economy and as such, it seems much more appropriate to let the coefficients of the QMYV to change
over time. (The instability of econometric relationships is often argued in the literature, see for example the
discussion in Cooley and Prescott, 1976). The particular choice of the time function although based on some
empirical evidence in a particular year is clearly not flexible enough to account for the month to month changes
in the prices of homes and not general enough to hold simultaneously in all the time periods and for all the
different types of housing. Another limitation of the current procedure is the interpolation of the monthly
indexes which is done in a rather ad-hoe manner.

The obvious reason for the use of this particular method by the CBS is the lack of sufficient data, even for the
larger cells at the tlme that the HPI is calculated. While an attempt is made to borrow information from
neighbouring cells, this does not solve the other problems listed above. [t seems that a major source of
information not exploited in the current procedure is the time series properties of the data. As it stands, data
prior to the six months period under consideration are ignored when computing the current indexes despite the
fact that these data pertain to the same cells and measure the same phenomenon. The model presented in the
next scction accounts for both the time serie and the cross-sectional relationships between the regression
coefficients. By borrowing information from the past, the estimation of the indexes can be carried out on a
monthly basis without the need to impose constant coefficients for the QMYV or postulate a deterministic time
function to represent the price changes which are the major limitations of the current procedure.

3. REGRESSION WITH COEFFICIENTS THAT VARY CROSS-SECTIONALLY AND OVER TIME

In what fellows we denote by !tk the (ntk x 1) vector of observations on the dependent variable (logs of

transaction costs in our case) pertaining to cell (domain) k at time t, k=1.. K, t=1, 2, .... We assume that
!tk is nonempty although as will become evident in section 4, having no observations in some of the cells at

certain times causes no methodological difficulties. Let th represent the corresponding model (design) matrix
of explanatory variables (QMV in our case). The regression model in cell k is defined as

_ X N vy . 2
Yer = Lotk Ytk * Xex ek * e ¢ Eleg) =0, Elegy st = o Tnex 3.1)

where !ntk and lntk are correspondingly the unit vector and identity matrix of order My e The notable feature

of equation (3.1) is that the coefficients Yik and Btk are allowed to vary cross-sectionally and over time. The
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following equations specify the variation of the coefficients over time,

. ) ) 2 2
Yek = Ye-l,k *St-lk t Mtk 5 E(ngd =0, E(n )" =60

2 62 (3.2)

E(n etk = &

=.0, E(

Stk = Se-1,k * stk stk)

Bek = Bt-1,k * Matid E(Mgrid = O E(ngey g = g0 Egey Mipid = g8,

It is assumed also that Ntk is uncorrelated with (nytk’ rJBtk) and that all the serial correlations are equal to
zero.

The implication of equations (3.2) is that they define a local approximation to a linear trend for the intercept
term and a random walk model for the other coefficients. Since the explanatory variables are usually
correlated, the changes in the values of the various coefficients may likewise be correlated which is
accomodated by allowing for a general V-C matrix AB (allowing in particular different residual variances for

difference coefficients) and a general covariance vector 8§Y'

A simple way to account for the cross-sectional relationships between the regression coelficients is by allowing
for non-zero correlations between the corresponding residual terms of the equations (3.2). However, even with
a small number of cells, one has to impose a certain structure on these correlations if the number of unknown
model parameters is to be kept at a manageable level. One possibility which seems particularly useful in the
case of a small number of cells is to assume constant correlations between the residual terms operating in
different cells. Denoting Dt':k = (nytk' Netks DBtk)’ this assumption can be formulated as

E(gtk Dltv.) = AQ, ki (3.3)

2

where A is diagonal with 63, Gs and the diagonal elements of A on the main diagonal and @ is another diagonal

g
matrix with all its elements being inside the interval (-1,1). The diagonal elements of @ define the correlations
between residual terms pertaining to different cells.

Another possibility applicable in the case where a "distance" can be measured between the various cells {(like in
the present study where the cells are defined by the number of rooms) is to postulate that the correlations
between the residual terms decay as the distance between the cells increases. This assumption can be
formulated as

E(nyy i) = aff(k,e); kie (3.9

where f(k,2) is a monotonic decreasing function of the distances D(k,2). Equation (3.3) is an obvious special
case of (3.4).

DISCUSSION: The use of stochastic regression ecoefficients to account for time and/or cross-sectional
variation of the regression coefficients is common in the statistical and econometric literature. Johnson (1977,
1980) provides an annotated bibliography of over 150 articles which consider models of this kind. Qur mode!
extends on previous models by postulating local linear trends for the intercept coefficients and by imposing a
structure on the cross-sectional correlations. Cooley and Prescott (1976) and LaMotte and McWhorter (1977)
assume that all the regression coefficients in their model follow a random walk, Rosenberg (1973a) assumes
autoregressive relationships where as Hsiao (1974) and Swamy and Mehta (1977) assuine that the coefficient
realizations can be factorized into a common mean and independent error components which account for the
time and the cross-sectional variation. For a review of these and the many other studies on regression with
stochastic coefficients see the discussions in Rosenberg (1973b), Maddala (1977, Chapter 7), Dielman (1983) and
Pfeffermann and Smith (1985).

The reasons for permitting the regression coefficients to vary over time have already been discussed at the end
of section 2. The random walk model implies that the coefficients drift gradually away from their initial value
with no inherent tendency to return to a mean value. This kind of model appeals to us as being appropriate for
fitting the home purchase costs. It has the further advantage of being parsimonious in terms of the number of
unknown parameters which is very important in view of the already large number of parameters included In the
equations (3.1) - (3.3).

The particular choice of the model for the intercept term was dictated by the relatively bigh monthly inflation
rates in Israel, fluctuating around 1.5 percent in the last two years. This means that we would expect the log of
the prices of given homes (the dependent variable in our model) to grow approximately linearly over time which,
for fixed values of the other regression coefficients would imply an approximately linear trend for the intercept
term as defined by the first two equations of (3.2).

The mode! defined by (3.1) - (3.3) overcomes the limitations of the CBS procedure discussed at the end of

section 2. The weights assigned to the various QMV are no longer fixed over time and the deterministic time
funetion (2.2) is replaced by a more flexible and time adapting trend function. The estimators derived for any
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given cell are strengthened by borrowing information from both neighbouring cells and from past data. The
amount of information borrowed is determined by the nearness of the vectors of coefficients (cross-sectionally
and over time) as detected by the estimators of the model variances and covariances (see section 4 for details).

4. MODEL ESTIMATION

4.1 Model Representation in State Space Form

In what follows we use the following notation: we define a = (“1" YéK) to represent the vector of

K
. . - Y, S i
observations at time t of length ny = kil ik and £y = (Etl EtK) to represent the corresponding vector of
residuals, Let Ztk = [lntk’ Qntk’ th] where Qntk is the null vector of length Ny, and let Zt be the block

diagonal matrix with Ztk comprising the k-th block. The matrix Zt is of order ntx(me) where m denotes the

o . . s [N ] 3
number of columns in each of the matrices Ztk‘ Define a4 y= (YtK’ StK’ f_itk) to represent the regression

coefficients corresponding to cell k and let ap = (gtl' . '?tK) .

Using the above notation, the set by equations defined by (3.1) can be written compactly as

Ye=Zyap rep s Elegd =0, Eepey') = 1y (4.1)
- D4 200 L 20
where Ly = Diag [ollntl oKlntKl'
Let T* B é’% 0
6 In_2 be a block diagonal matrix of order mxm where Im 2 is the identity matrix of order
w -

(m-2) and define T=IKGT* where @ denotes the kronecker product.

The system of equations defined by (3.2) and (3.3) can be written compactly as

ay = T“t-l +ng 3 B (nt) =0 E (Ttﬁ) = A 4.2)

where gi E (nil...gik) and A = [Akz’ k,2 = 1 ... K| with

63 0 BGY
~ oy o 2 | _ _
Mk T Elnge M) = | 0 sy 0" | and A, = E(ng ng) = ap, ke .
BGY 9 AB

(The matrices Akk and by, are of order mXm).

L

Equations (4.1) and (4.2) conform to the classical state-space model formulation — Harvey, 1984 with (4.1)
representing the observations equation and (4.2) the system equation. The advantage of restructuring the model
in a state space form is that the vectors @, can be estimated then most conveniently by use of the Kalman

filter. We describe the basic steps of the filter in the next section.
4.2 Model Estimation by Means of the Kalman Filter

In this section we assume that the V-C matrices ):t and A are known. Estimation of the unknown elements of

these matrices is considered in Section 4.3. The Kalman filter consists of a set of recursive equations which
define how to update current and past estimators of the system state vectors (the model regression coefficients
ay in our case) and how to predict future vectors every time that new data become available. In addition, the

filter provides the V-C matrices of the various estimators and predictors. The theary of the Kalman filter is
developed in numerous publications, (see e.g. Anderson and Moore, 1979 and Meinhold and Singpurwalia, 1983),
and so we only present here the basic equations.

Let e be the best linear unbiased predictor (blup) of a1 based on all the data observed up to time (t-1). Since

gl =% lEn ~Ee-)
CT ay_y) isthe V-C matrix of the prediction errors at time (t-1), Peito1 = TPy {T'+4 is the V-C

%1 is blup for S 1'%l T T°.‘t—1 is the blup of ay at time (t-1). Furthermore, if P
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matrix of the prediction errors (;tl A gt). (Follows straightforwardly from 4.2).

When a new vector of observations becomes available, the predictor of a4 and the V-C matrix Pt-l are updated
according to the formulae = = 1

ap = oprer t Preer Lfe (g - Yeppo)

Py = (I-P

tit-1 2t Fe Zt) tit-1 (=)
where ?tlt~1 = Zt ;tlt—l is the blup of !t at time (t-1) so that ey = (!t - itlt—l) is the vector of

innovations with V-C matrix Ft = (Zt P D

¢)

The new data observed at time t can be used also for the updating (smoothing) of past estimators. Denoting by
t* the most recent month with observations, the smoothing is carried out using the equations.

tit-1 it

AR

~

=ap + P T Pt+llt(°t+l|t* - Tay)
1

Pijgw = Py + PeT'P t+11t) PraitP

tt* - P

t+1lt(Pt+1|t* s t=2, 3, ... tF (4.4)

where Pt T the V-C matrix of the prediction errors (gtlt* - gt). Notice that Tpwiph = Opa and

pt* [t = Pt* which defines the starting values for the smoothing equations.

When applying the model for the estimation of the HPI in a given month t, one needs to estimate the vectors ay
and a1 In order to estimate the variance of the estimated index it is necessary to estiinate the covariance
matrix between the estimators ét and §t-1|t' The covariance matrix has the following form,

~ ~ ] N l
Elay = apdlop gpp - 2pp) = {1 - Py ZtFt LRy (4.5)

4.3 Estimation of the V-C matrices and Initialization of the Filter

The actual application of the Kalman Filter requires the estimation of the unknown elements of the matrices Ly
and A and the initialization of the filter, that is, the estimation of the vector o _ and the corresponding vV-C
matrix PcJ of the estimation errors. In this section we describe briefly the estimation methods used in the
present study.

The unknown model parameters have been estimated using maximum likelihood theory. Assuming a normal
distribution for the residual terms €4 and n, and a diffuse prior distribution for ays the log likelihood function
for the observations ‘!3 oens !t conditional on !l and !2 can be formulated as

1

L(») = constant -% (log IFtl + ey Ft ~,L) (4.6}

LU o B |

t=3

where A contains the unknown model variances and covariances written in a vector form. The expression (4.6)
follows by using the prediction error decomposition, see Schweppe (1965) and Harvey (1981) for details. For
given matrices Et and A, the innovations e, and the V-C matrices Ft are obtained by application of the Kalman
filter equations (4.3).

The computation of the likelihood funetion requires the initialization of the Kalman filter which was carried out
using the approach proposed by Harvey and Phillips (1979). By this approach, the assumption of a diffuse prior

for %9 is actualized by initializing the filter at time t=0 with 4y = 0 and P0 = NxI where N is a large (finite

number and [ is the identity matrix of the appropriate order.

Maximization of the likelihood function (4.6) was implemented using the method of scoring with a variable step
length. Let 5(0) define initial estimates of the unknown elements in A. The method of scoring consists of

solving iteratively the set of equations

X(i) = é(i—l) & r1 {H{(i_l)l}_lg[ﬁ“_l)] 4.7)

where 5(1_1) is the estimator of ) as obtained in the (i-1)th iteraction, Hé(i-l)l is the information matrix
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evaluated at li—l and 9[5(1—1) ] is the gradient of the log likelihood evaluated at N1 The coefficient T is
the variable step length introduced to guarantee that Llé(i)l Bl Ll&(i-l)] in every iteration. The value of r

was determined by a grid search procedure. The formulae for the k-th element of the gradiant vector and the
kl-th element of the information matrix are given in Watson and Engle (1983).

Having estimated the model variances and covariances, they can be substituted for the true parameters in the
Kalman filter equations (4.3) - (4.5) to yield the estimators of the regression coefficients and the V-C matrices.
Notice that the estimated V-C matrices ignore the extra variability induced by the need to estimate the
unknown elements contained in A\. Ansley and Kohn (1986) propose correction factors of order 1/t* to account
for this extra variation in state space modelling.

A computer program which implements the methods described in this section for the estimation of the Kalman
filter has been written using the procedure PROC-IML of the SAS system.

5. MODIFICATIONS TO PROTECT AGAINST MODEL BREAKDOWNS
5.1 Description of the problem and proposed modifications

The use of a model for calculating the HP! is inevitable in view of the quality change problem. It raises the
question however of how to protect against possible model breakdowns. Testing the model every time that new
data become available is not practical, requiring instead the development of a "built-in mechanism" which will
secure the robustness of the indexes when the model fails to hold.

This problem is of particular concern in months where the prices show an unexpected jump. In Israel, for
example, the currency is occasionallly devaluated in rates of up to 10 percent. While the devaluations are
usually accompanied by striet price policies which attempt to freeze the old prices, these policies have little
effect on home purchase prices which are determined by direet negotiations between buyers and sellers and
hence are not under control. On the other hand, the model proposed in section (3) uses past relationships
between prices and qualities to strenghten the estimation of current relationships and as such, it will adjust
itself to such sudden changes only after a certain lag.

In order to deal with this problem we propose to modify the regression estimators derived in the various time
periods so that they satisfy certain linear constraints obtained by equating aggregate means of the raw data
with their expected values under the model. More precisely, we propose to augment the model equations (3.1)
by linear constraints of the form

i=1,2+++1(t)
t=1---T (5.1)

z w(])z Y

(i '
z ntk XtkBek) = I We T Vi

i)
W (Mpergi + 1

Where the coefficients [Ntk)} are fixed weights standardized to satisfy ENey t(:k) = 1. It is important to

emphasize that the constraints (5.1) do not represent external mformatnon about possible values of the
regression coefficients. Rather, they serve as a control system to guarantee that the model estimators adjust
themselves more rapidly to sudden changes in the behavior of the regression coefficients. As such, the
variances of the modified regression estimators are slightly larger than the variances of the optimal estimators
under the model. Obviously, when no such changes occur and the variances of the aggregate means are
sufficiently small, one would expect the constraints to be satisfied approximately without imposing them
explicitly. lIdeally, one would like to incorporate several separate constraints in each time period but it is
imperative that the variances of the corresponding aggregate means will be small enough to ensure that the
modifications are indeed necessary and do not interfere with the random fluetuation of the raw data.

Examples of aggregate means which can be used in the case of the home purchase data include i) averaging
separately over all the data included in cells with a large number of transactions, ii) averaging separately over
combined cells of a given number of rooms, iii) averaging over cells with different number of rooms, e.g. over
all the data pertaining to a given city. Notice that in view of the correlations between the regression
coefficients operating in the various cells, a constraint applied to a sub-set of the cells will modify the
regression estimates of all the cells. Battese, Harter and Fuller (1988) propose a similar kind of modification in
the context of small area estimation.

9.2 Robust Estimation Using the Augmented Equations
In section 5.1 we proposed to amend the model equations (3.1) by imposing the set of constraints (5.1) thereby

securing the robustness of the regression estimators against sudden drifts in the values of the coefficients.
Computationally, this could be implemented most conveniently by augmenting the vectors Y of equation (4.1)

by the sealars éwék)z Yt . [i=1,2---I(t) indexes the number of constraints in time t], aug’menting the
matrices Zt by the corresponding row vectors (wéi) rl1tlzt1 cee ( )1;,“( tK) and setting the respective

variances of the residual terms to zero. The augmented set of equatlons, together with (4.2), form a pseudo
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state-pace model which could be estimated using the Kalman filter equations (4.3). Notice that the pseudo V-C

matrix Eép) of the augmented residual vector is no longer positive definite (the last I(t) rows and columns of

Zép) consist of zeroes) but this does not imply computational difficulties.

The drawback of applying the Kalman filter to the pseudo model is that the V-C matrices of the regression
estimators fail to aceount for the actual variability of the aggregate means of the raw data. Although it was
argued in section 5.1 that this variability could be ignored when the means are based on sufficiently large
numbers of transactions, a better and more robust procedure would be to amend the formula for the updating

of the V-C matrix Pt (equation 4.3) so that the variances and covariances of the random variables lz(wgll)g Yth
. 3 A
will be taken into account. Let !E )and Z'(:A) represent the augmented Y vector and Z matrix at time t and

denote by IéA) the actual V-C matrix of the residual terms [!(A) - ZEA)‘ftI’ The matrix ng) is of order
lnt + I(t)] with Iy in the first Ny rows and columns and the variances and covariances of the means

zw(')z Y among themselves and with the vector Y, in the remaining rows and eolumns. Denoting by ;(A)
k tk j tk] ~t -t-1
(A

the robust predictor of ap_q 88 obtained at time (t-1) using the pseudo model and by Pt_{ the actual V-C

matrix of the errors (gﬁi - (-’t—l)’ the modified state estimator at time t is obtained as

;EA) = T;(A{ #1_P)

p i - 288 (5.2)

where Pt(ill\%-l - (Tpt(:‘{ T' + A) and Ft(-_P) = [Z(A)P(A) A)!

B " il + T.ép)l. (Compare with 4.3). It can be

(
Z¢
shown that the actual V-C matrix P&A) of the errors ((}tA) - gt) satisfies the recursive equation

P£A) = [I - KEP)ZgA)I P ? i = KEP)IEEA) - 2{P (P’ (5.3)

(R)
tt- (AL

Ll
where Kép) = Pgll\l):-l Zt(:A) (F£p)) ! is the pseudo Kalman gain. The first expression on the right hand side of
(5.3) corresponds to the usual updating formula of the Kalman filter [compare with (4.3)]. The second
expression is a correction factor which accounts for the actual variances and covariances of the means

(1) . . g .
£ Wik g Ytkj’ not taken into account in the first expression.

The amended Kalman filter defined by the equations (5.2) and (5.3) produces the robust predictors ;gA) instead

of the optimal model dependent predictors but uses the correct V-C matrices under the model. Thus, this filter
can be used for the routine estimation of the vectors of coefficients and when the model holds it will give
similar results to those obtained under the optimal filter. In periods where the model fails to hold, the updating

formula (5.3) could be incorrect (depending on the particular model failures) but the predictors ééA) will

nonetheless satisfy the linear constraints (5.1). The smoothing equations (4.4) and the V-C matrix in (4.5) can be
modified to the case of using the robust predictors in a similar way.

6. EMPIRICAL RESULTS

[n order to confirm and illustrate the appropriateness of the model to the home purchase prices in [srael, we
fitted the model separately to the five cells in the city of Jerusalem using the data observed for the
transactions performed during the period September 1982 - June 1988. The cells are defined by the number of
rooms - ranging from 1 to 5. For time and other technical reasons we have not yet run the model incorporating
simultaneously data from different cells so that the model uses only the time series relationships between the
cell regression coefficients as defined by the equation (3.2). Since we only used data from one cell in each run
we have also not incorporated the modifications discussed in section 5. A comprehensive computer program
which fits the full model defined by the equations (3.1) - {(3.3) using the estimation methods deseribed In section
4 and incorporating the modifications of section 5 is now in a test process and will be available to interested
readers upon request. (The raw data may likewise be provided).

The models fitted to the five cells were found to be generally consistent in terms of the significance of the

model variance estimators. Thus, except for the case of 5 room apartments, the variance 62 of the slope
coefficient was found to be insignificant, implying in turn a random walk model for the intercept coefficient
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since the initial slope coefficient was set to zero. For § room apartments, 65 = 4:10—4 which is very low

although significant at the 0.5 percent level. Likewise, except for the case of 4 room apartments, the variances
of the intercept and the other four QMV defined by the equation {2.1) were all found to be highly significant
supporting our initial conjecture that the regression coefficients change stochastically over time. In the case of
4 room apartments floor, the variance of the intercept coefficient is again highly significant and the variance
of the floor area slope coefficient is significant at the 10 percent level but the remaining variance estimators
are not significant.

(In section 3, we suggested that in view of the relatively high and approximately constant monthly inflation
rates in Israel, the intercept coefficients could be growing linearly. The discussion assumed however that the
other coefficients are constant over time which is clearly not the case. It seems also that the HPI is much more
variable compared to the overall consumer price index.)

In the remainder of this section we show several graphs illustrating the performance of the model in the case of
2 room apartments. The restriction to 2 room apartments is merely for space reasons and the results obtained
for the other cells are generally very similar. We use the following definitions

Y:j - the log of the sale price of apartment j in month t, j=1.. “Nys telnler -0
Xpio the QMV corresponding to apartment j in month t. The QMV are the intercept and the four variables
J specified by equation {2.1) [excluding the time function gz(t)]
é(gLS - the OLS estimators of the QMV coefficients based on the transactions performed during month t.
gi - the filtered estimators of the QMV coefficients based on the transactions performed up to and
including month t (equation 4.3)

g: - the smoothed estimators based on all the transactions performed in all the months (equation 4.4)
T pt-1 = T;i-l - the predicted values of the QMV coefficients one step ahead

_oguk il | g T
etj = (Ytj - )~(tj c_xt) the residual observed for transaction j in month t

Dt nt 2 : )
m, = jﬁl etj/nt and mse, = ng etj/nt - the monthly means and MSE's of the residuals

- oy = N — . g g .

ot " (Ytj )—(tj 9t|t—1) the prediction error associated with transaction (tj)

ng nt

2 L
m,= ¢ e../n and mse_ = I e_.. - the monthly means and MSE's of the prediction errors.
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Figures 3 and 4 plot the monthly means of the residuals and the prediction errors for the months of July 87 -
June 89. Figures 5 and 6 plot the corresponding MSE's. Notice that the last 12 months' data were not used for
the estimation of the model variances. As could be expected, the prediction errors are more variable than the
residuals but there is nothing in the four Figures to indicate systematic model failures and the results obtained
for the months of July 87 - June 88 (the data for these months were used in the estimation process) are similar
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to the results obtamed for the other 12 months. Notice that since practically all the QMV coefficients follow a
random walk model, Stit-l " uF _1%° that, for example, the relatively large negative residual mean observed

for the month of November 1987 is reflected by a large negative prediction error mean in the month of
December 1987.
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Figures 7 and 8 show the monthly estimators of the intercept and the floor area coefficient as obtained by
ordinary least squares using only the data for the corresponding months, by using the filtered estimators and by
using the smoothed estimators. As can be seen the filtered and the smoothed estimators are generally very
similar (they are obviously much more apart in the first months not shown in the plots) and they vary only
slightly form one month to the other. The OLS estimator on the other hand exhibits a large month to month
variation and in the months of July 87 - October 87 the area coefficient estimators came out even negative.

Figure T TR LeTrecYrY mdten pid(.}, PILETIRE (1% A BOOTRIS (8} ITOWIOAL Foauie R0 en AMNA CORPPITEMMT DAL QU8 (), PILTOEED [4) 4 BMOOTREN 1) ASTIMATORR
PH P BOMM APARTENTY FIM ANLT 4) 1O AW 8 FOR } BOUM APAITMLNTE PR VLY BF 1D Suni 89
0.7
5.4 & } .
5.2 0.5 N . -
0.4 S ' A . o
5.0 : “al- ,//"
\ 0.3 t YN R e
4.8 \ 0.2 ? . v .
B
4.6 -/,.“\ e 0.1 -
Tt ' . 0.0 |=— :
Y b 0 c S -0.1 /
4.2 [ > . ] /
i I 0.2
w0 » I:\:/ J \‘; -0.3 /
' 0.4
3.8 .
EN Y f, -0.$
) [ 220
3 A=ttt B e e el B e ] e e e e o S I A et =l B B 8
Jul  sep  wou jen  mar  sey  Jul wep  nov  jen  aer  may Jul  mep  nov  Jan  mer way  Jul sep nov  Jen  sar  may

The instability of the OLS estimators is further illustarated in the followiing table 1 where we compare the
variances of the OLS and the smoothed estimators for the months of April and May, 1989. As could be
expected, the smoothed estimators which use the data of all the months have in all cases much smaller

variances.

Table 1: Variances of OLS and Smoothed Estimators of the Regression Coefficients

Month  Estimator Intercept Floor Area  Age Distriet 1 District 2
April 89 OLS 174 .064 .006 .011 .011
Smoothed .068 .025 .0002 .002 L0017
May 89 OLS 471 .142 .0021 .011 .010
Smoothed .093 .033 .0003 .002 .0013

The small month to month variation of the filtered and smoothed estimators could suggest that the regression
equations are practically fixed over time. We already mentioned that the variances of the residual terms of
the regression coefficients came out highly significant indicating that a model which permits the regression to
change over time is more appropriate. In order to further illustrate this point, we compare in figures 9 and 10
the means and MSE's of the prediction errors as obtained by using the filtered estimators {(same as in figures 4
and 6) and by using aggregate OLS estimators based on all the data up to and including time t. The plots in
these figures are illuminating and they reveal that fixing the regression coefficients over time results in large
and increasing prediction biases which translate into increasing prediction MSE's.
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The most important question concerning the goodness of fit of the model is its peformance in estimating the
HPI's. In order to partially answer this question we computed two sets of statisties: i) Monthly

"coefficients of determination" (RZ) defined as

e

n
2 t ' Eyal2 7 12
Rt @il {jil [ytj - e’(p()ftj E‘t)] / jz (Ytj - Yt) }

where Yt is the mean of the sale prices in month t - the results are plotted in Figure 11, and ii) Ratios of the

monthly means of the raw data, R:l t-1 = Yt/‘?t»l and of the monthly means of the corresponding fitted values
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As can be seen from Figure 11, the R2 statisties are in most cases above 0.4 which is quite high with this kind of
data. Figure 12 reveals a close correspondance between the monthly ratios of the raw data and the ratios of
the fitted values. It should be emphasized that these ratios are not estimates of the HPI since they are not
necessarily based on prices of homes of similar qualities. However, the fact that the ratios of the fitted values
came out so close to the ratios of the original data is very encouraging.

7. CONCLUDING REMARKS

The results of this study indicate that regression relationships within small cells can be estimated efficiently by
modelling the variation of the regression coefficients over time. Obviously, further tests are needed to
ascertain the suitability of the model. We are already in the process of applying the full model defined by the
equations (3.1)-(3.3) incorporating also the robustness modifications suggested in section 5. Comparing the
results of the present article with the results obtained for the full model, with and without the modifications,
will provide additional insight as to the performance of the model and the effectiveness of the modifications. It
is planned also to test the goodness of fit of the model in predicting the sale prices of homes registered after
the publication of the index. The registration dates have not been coded in our current working files whleh is
why this test procedure has not been applied so far.
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ANALYSIS OF SEASONAL ARIMA MODELS FROM SURVEY DATA
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ABSTRACT

A commonly used model for the analysis of time series models is the seasonal ARIMA model. lowever, the
survey errors of the input data are usually ignored in the analysis. We show, through the use of state-space
models with partially improper initial conditions, how to estimate the unknown parameters of this model using
maximum likelihood methods. As well, the survey estimates can be smoothed using an empirical Bayes
framework. We apply these techniques to an unemployment series from the Labour Force Survey.

1. INTRODUCTION

It is common practice to analyze data from surveys where similar data items are collected on repeated
occasions, using time series analysis methods. Most standard methods for these analyses assume the data are
either observed without error or have independent measurement errors. However, in the analysis of repeated
survey data, when there are overlapping sampling units between occasions, the survey errors can be correlated
over time.

A commonly used model in the analysis of time series is the seasonal integrated autoregressive-moving average
(ARIMA) regression model, which we discuss in this paper. We show how to incorporate the (possibly correlated)
survey errors into the analysis. In particular, we consider the case where the survey (design) error can be
assumed to be an ARMA process up to a multiplicative constant,

When such a model for the behaviour of the population characteristics is assumed, the minimum mean squared
error, or, equivalently, the Bayes linear estimator for the characteristic at a point in time can be derived. This
estimator incorporates the mode! structure which the classical estimators, such as the minimum variance linear
unbiased estimators, ignore. When the model parameters are estimated from the survey data, the estimators
are empirical Bayes.

Blight and Scott (1973), Scott and Smith (1974), Scott, Smith and Jones (1977), Jones (1980) and others
considered the implications of certain stochastic models for the population means over time. In Binder and
Dick (1989), these results were generalized using state space models and Kalman filters. In this paper, we
extend the framework to include the model where differencing of the original series of the population means
yields an ARMA model. We use the modified Kalman filter approach given by Kohn and Ansley (1986). To
estimate the unknown parameters, we maximize the marginal likelihood function using the method of scoring.
This approach can also handle missing data routinely. We also show how the survey estimates can be smoothed
to incorporate the model features using empirical Bayes methods. Confidence intervals for these smoothed
values are also given, using the method described by Ansley and Kohn (1986).

An example of this model is described in Section 5 using unemployment data from the Canadian Labour Force
Survey. This example shows the implications on the estimates of the model parameters when the survey errors
are taken into account. We also derive a smoothed estimate of the underlying process under the model
assumptions.

2. THE MODEIL

Suppose we have a series of point estimates from a repeated survey of a population characteristic, given by
yl, yz, cees YT We assume that _yt can be decomposed into three components, so that

- 1
Yp = Xy + 8, ey, (2.1)

where xéy is a deterministic regression term, et is a population parameter following a time series model, and e,

is the survey error, assumed to have zero expectation.

We first describe an integrated seasonal autoregressive-moving average model for (et}. We let B be the

backshift operator; v = 1-B and = l—BS, where S is the seasonal period. We define the following polynomial

functions:
A -l o A,

MA) = 1 -y . .

. D.A. Binder, Business Survey Methods Division and J.P. Dick, Social Survey Methods Division, Statistics Canada,
Tunney's Pasture, Ottawa, Ontario, Canada K1A 0T6
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@A) = 1 - ulA - azAZ - e - upAp,
v(A) = 1 - VIA - v2A2 - e - VQAO,
and
4 q
Ay =1 - g8,A - 8,A° - ... - R
8(A) B) 8, qu

The seasonal ARIMA (p,d,q)(P,U,Q)s model for {6} is given by

A(8%)a(8)vvle, = u(B%)a(B)e,, 2.2)
where the st'S are independent N(O,oz). We define a(B) = x(BS)a(B), a (p+sP)-degree polynomial;
a(B) = vdvg, a (d+sD)-degree polynomial; b(B) = \)(BS)B(B). a (g+sQ)-degree polynomial;
A(B) = a(B)a(B), a (p+d+sP+sD)-degree polynomial; uy = A(B)et, an ARMA (p+sP,q+sQ) process.

Therefore, alternative representations of (2.2) are

a(B)A(B)et = b(B)st. (2.3)

(2.4)
A(B)et = b(B)et,
and

a(B)uy = b(B)e,, (2.5)

We now consider the survey errors (et) of expression (2.1). It will be assumed that the sample sizes of the

repeated survey are sufficiently large that the errors for the survey estimates can be approximated by a
multivariate normal distribution. In the simplest case, where the surveys are non-overlapping and the sampling
fractions are small, the et's can be assumed to be independent. In a rotating panel survey, the survey errors

are usually correlated. In this case, since the correlations between survey ocecasions are zero after panels have
been rotated out, a pure moving average process can be used to desecribe the survey error process.

Alternatively, if a random sample of units are replaced on each survey occasion, a pure autoregressive process
may best describe the process. More complicated models are also possible. For example, in a two-stage design,
some of the first stage units may be replaced randomly on each occasion and the second stage units may have a
rotating panel design. This might be represented by an autoregressive-moving average process.

In this paper, we assume that the survey error process is given by

et = ktu)t, (2.6)
where (wt} is an ARMA (m,n) process, given by
¢(B)uy = ¥(B)n, (2.7
and
o(B) = 1 - 6B - 0,8° - .. - ¢ 8",
and
v(B) = 1 - B - v,8° - ... -y 8",

The nt's are independent N(O,rz). The factor kt has been included in (2.6) to allow for non-homogeneous

variances, even when the autocorrelation function is homogeneous in time.

In the model just deseribed we assume that r2, the kt's and the coefficients of ¢(B) and of ¢(B) can be
estimated directly from the survey data, using design-based methods. However, in general, the other
parameters are unknown. This includes vy, 02, and the coefficients of 1 (A), a(A), v(A) and of 8(A). The Xy 's is

the regression term are assumed known.
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3. STATE SPACE FORMULATION OF THE MODEL
3.1 General Formulation

The model desecribed in Section 2 can be formulated as a state space model with partially improper priors. This
has a number of advantages. It permits, through use of a modified Kalman fiiter, calculation of a marginai
likelihood funetion, which can be maximized to estimate unknown parameters. It also accommodates smoothing
of the original survey estimates, by removing the estimates of survey error from the data.

In the state space model, two processes occur simuitaneously. The first process, the observation system, details
how the observations depend on the current state of the process parameters. The second process, the transition
system, details how the parameters evolve over time.

For the state space models we consider here, the observation equation is written as
= 1
Yy h LN (3.1a)

and the transition equation is

z, = th-l + th, (3.1b)

where zy is an (r«1) state vector and ht is a fixed (r=1) vector. In the transition equation, F is a fixed (rxr)
transition matrix, G is a fixed (r<m) matrix and the r,t's are independent normal vectors with mean zero and
covariance U.
The final requirement to complete the specification of the state space process is the initial conditions for 2y
In this paper, we shall use the improper prior formulation given in Kohn and Ansley (1986). In general, we
assume that z, has a partially diffuse r-variate normal distribution with mean m(0|0) = 0 and covariance
matrix V(0|0), where

vV(010) = ';VI(U;U) + VO((];G) (3.2)
for large x.
We denote the conditional mean of zy given the observations up to and including time t' bym{t|t'), and the

conditional variance by V(t|t'}), where

Vitit') = ch(tIt') + VU(tIt'). (3.3)

Recursive formulae for the cases where t=t' and t=t'+1 are given in Kohn and Ansley (1986). They refer to
this as the modified Kalman filter.

Since the model for (yt) given by (2.1) contains survey errors {et) an estimate of the components without
survey error, given by

Yy (smoothed) = Xy + 8y (3.4)

is often of interest. When the right hand side of (3.4) can be expressed as gézt, for some g't, then it is possible
to obtain the conditional mean and variance of the linear combination gi,_zt given all the data, using the
modified Kalman filter. To do this, the recursions are applied up to time t to obtain m(t|t) and V(t|t). Then
the state vector 2, is augmented by the state Zg il " 9,2, and m(t{t) and V(t|t) are also appropriately
41, rel T zt,r+1' After these
modifications, the modified Kalman filter can be used as before sc that the last component of m(T|T) gives the

augmented. The matrix F in (3.1b) is modified to add the equation z

conditional expectation of g,'czt, given all the data, Yir Yoo eoe Ypo As well, the last diagonal component of
V(tit) gives the conditional variance. This procedure can be generalized to include any number of smoothed

estimates and their conditional covariances.

3.2 Model for o

Harvey and Phillips (1979) described a method to put the ARIMA model (2.4) into the state space form given by

(3.1). The dimension of 2, is r = max(p+d+sP+sD, g+sQ). By augmenting A = (Al’ voey A or

t p+d+sP+sD)
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b = (bl’ Cay bq+sQ) with zeroes to have dimension r, the ARIMA model may be written in the form given by

(3.1), where hE = (1, 0, ..., 0), GE = (1, LITIRERE -br_l) and

where Ir—l is the (r-1) x(r-1) identity inatrix and 0' is a row vector of zeroes.

In this formulation, the state vector z, = (th. . Bl Zrt)' is defined as

Z., = A.8 + A. + A

it itt-1 mtay = o rBt-(r-1+1)
= b]._let - biet_l = .9 F br-lst—(r-i)’ (3.5)
fori=2, 3, ..., r andz]t = By.

To complete the specification for (Gt}, initial conditions for 2 are required. These are given in Ansley and

Kohn (1985), a summary of which is provided here.

From expression (2.5), (Ut) is an ARMA process. We define

i

9_ = (80’ e_li e ey e_s)ls
where S = max(0, p+sP+d+sD-1). We let

t

(uo, U 12 oees u_R) 3

u

where R = max(0, p+sP-1). Finally, we let
w_ = (B-R-I’ B pipr s e_S)',
when S > R,

Now, Uu_ is assumed to be a stationary ARMA process, so that ils covariance matrix can be derived from

expression (2.5). [t is assumed that w_ is N(0, «I) and is independent of u_. Since (u_', w_ ') is a linear
combination of 6 , the covariance matrix for 0 can be derived. Using the form of expression (3.5) for Zy the
initial covariance matrix can be computed. Note that when both d and D are zero, so that no differencing takes

place in the model, then w_ is the null vector and we have u_ = 6_
3.3 Model for the Observed Data

[n Section 2 we assumed that et = kt Wy where wy is an ARMA(m,n) model. Therefore, from the discussion in

Section 3.3, it is clear that e, can be represented in state space form, with ht = (k,y D, ..., 0)', and

t ¢

-l 1
e, = htzt'

The regression component can be similarly represented. We let Z5 =Y the regression coefficients, assumed to

have mean zero and covariance «[. The transition equation is simply Ziyl T %

Since we can represent each of the components of 7 in expression (2.1) by a state space model, it
straightforward to combine the individual models into an overall model, by extending the state vector to inciude
the state vectors from the individual components. The observation equation is then the sum of the three

individual components.
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4. BESTIMATION OF THE STATE SPACE MODEL
4.1 Estimation of the Parameters

The unknown parameters of this model are cz. and the coefficients of x(A), «(A)}, v(A) and 8(A). We
performed the iterations on log(oz), rather than 02, to avoid problems with negative values. Note that the
regression coefficients, vy, are included as parameters of the state vector. The model for the vector of

observations y = (‘yl’ You cens yT)' given in Section 3 is equivalent to

y =M+ g, (4.1)

where n is j-variate N(O, <[}, ¢ is T-variate N(O, W), andMisa T « j matrix.

Kohn and Ansley (1986) recommended maximizing the limit of Kj/Z times the likelihood function for the data,
as « tends to infinity. It can be shown that the limit of the likclihood function is equivalent to the marginal
likelihood function of y - Mfd, where f is the maximum likelihood estimate of n when M and W are known,
Tunnicliffe-Wilson (1989) has shown that the Jacobian of transformation from the data y to (&, y - MA) does
not depend on the model parameters of W whenever M is known. As well, the derivative of the transformation
from y to @ is M. Ansley and Kohn (1985) has shown that M does not depend on the unknown parameters. By using
the modified Kalman filter, the computations for the marginal likelihood function are straightforward.

The procedure we employed computes both the marginal likelihood function and its first derivatives with
respect to the unknown parameters. This involves taking first derivatives of the initial conditions and of

m(t|t') and the components of V(t[t') for t=t' and t=t'+1l. All the computations were done using PROC
IMIL, in SAS.

The likelihood function was maximized using a modification of the method of scoring. This modification
allowed for varying step sizes. On each iteration, the likelihood function was computed at the previous step
size, as well as at this step size multiplied and divided by a predetermined constant. (We used 1.1 as the
factor.) The next step size was that which maximized the likelihood function among the three points. Each
time a check was made to determine whether the parameters were in range. This was done by checking for
positive semi-definiteness of the initial covariance matrix of the state vector. If it was out of range, the step
size was divided again by the constant and the procedure repeated.

To obtain the estimated variance matrix for the estimated parameters, the inverse of the Fisher information
was used. This is readily computed since the first derivatives of the likelihood function are available.

4.2 [Estimation of the Smoothed Values

Smoothed values for the estimates can be obtained by zeroing out that component of the state vector which
corresponds to the survey error. However, this still leaves open the question of how to estimate its variance.
To derive the standard error of the smoothed estimate it is necessary to account for the fact that the unknown
parameters have been estimated (rom the data, particularly when the data series is short; see

Jones (1979),

To obtain the variance of g‘zt, it is sufficient to derive the variance z; - m(T|T), where m(T|T) is the
estimate of m(T|T) at the estimated parameter values. This is because the state vector has been augmented to

inciude g'Zt. Now,

2o - m(TIT) = [z; - m(TIT)]

& (m(TIT) - m(TITY]. (4.2)

The first component of the right hand side of (4.2) has conditional variance V(T[T) = VO(TlT), assuming that
Vl(TlT) = 0. The second component of (4.2) represents a bias term and is independent of the first term, since
it depends only on the data y. By taking a Taylor series expansion of the second term around the true

parameter values and ignoring higher terms, we have the second component of (4.2) is

-arﬁ(TlT)l,

—3'5———— (‘t - ¢)s (4-3)

m(TIT) - m(™'7) = |
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where ¢ is the vector of unknown parameters and ¢ is its estimate. Therefore, the variance of (4.2) is
approximately

Var(z; - nTin] = Vo(TIT)

[ am(TIT)
ad

+

g J2mET)) (4.4)

where V. is the covariance matrix for the unknown parameters. Expression (4.4) is estimated by using the
estimated parameter values. This is the same approach as that given by Ansley and Kohn (1986).

5. LABOUR FORCE SURVEY DATA

To demonstrate this procedure, we took data from the Canadian Labour Force Survey (LFS). The LFS is a
monthly rotating panel survey. Each panel, which contains one-sixth of the selected households, remains in the
sample for six consecutive months: the sample design is a stratified multi-stage design. The primary sampling
units are rotated out after approximately two years.

The data were the estimated monthly number of unemployed from January 1977 to December 1986 in Nova
Scotia and the subprovincial area within Nova Scotia corresponding to Cape Breton Island. This province was
chosen because the sampling errors were moderate compared to the larger provinces and because subprovincial
data were available. The logarithm of the Nova Scotia data is displayed on Graph la while the logarithm of the
Cape Breton Island data is shown on Graph 2a. The models were fitted to this transformed series.

Lee (1987) estimated the autocorrelations for Nova Scotia survey error process up to a lag of eleven. Using
these autocorrelations, we used the method of moments to estimate the coefficients of <2, ¢(B) and 4(B)
given in (2.7). A good fit was found using an ARMA(3,6) model. The estimated parameters were 0 = 0.2575,

4y = -0.358,¢:3 = -0.6041, vy = -0.1847, by = -0.5873, ¥y = 0.3496¢, by = 0.0647, Vg = 0.0982,
Vg = 0.0347, and rz = (0.7246. The kt's of (2.6) were the estimated standard errors of the estimates, derived

by taking a Taylor series approximation for the logarithms.2

A series of models were fitted to the data where no sampling error was assumed; that is, all the k,'s were
taken as zero. These models were then refitted using the assumed structure for the survey error. We compared
the estimated parameter values. As well in the case where the survey error structure is assumed to be non-
zero, we computed smoothed values for the survey estimates and compared their standard errors with the
standard errors of the original series.

Initially the model selected for the Nova Scotia series incorporating the survey error, was a seasonal ARIMA
(1,1,0)(0,0,1)12) with a deterministic regression term to account for the seasonality. The 12 regression

variables included a linear term and a dummy variable for each of the first 11 months. The dummy variable for
a reference month took the value 1 for the reference month, -1 for December and 0 for the other months. Note
that an intercept term is not estimable because the first differences of the data are fitted. The estimated
parameters for this model were highly unstable so it was decided to drop the seasonal moving average
component from the model. This left as the model an ARIMA (1,1,0) with a deterministic regression term.
The same model was used to for the Nova Scotia data ignoring the sampling error and for the Cape Breton
Island data.

The parameter estimates for both Nova Scotia and Cape Breton Island are displayed in Table 1. We display the
estimates which do not take into account the survey error component in the "Without Sampling Error" columns.
The estimates from both models for Cape Breton lsland, especially for the regression estimates, are very
similar. Note that the AR component also has a similar estimates and that the 'With Sample Error' model has
reduced the variance substantialy. The column headed by "I'-value' displays the test statistics for assuming a
true value of zero for the parameter. Note that the significance level for the regression estimates is fairly
close in every case. However, the model 'Without Sampling Error' indicates a strong significance level
(t = -2.85) for the AR(1) component while the model incorporating the survey error process shows no need to
include the AR component in the model (t = -0.68). This result leads to accepting a regression model for the
unemployment series in Cape Breton Island for the model with the survey process incorporated. If the survey
error is ignored, then the model would include a term relating the previous month's estimate to the current
month's.

The results for Nova Scotia have some similarities to the Cape Breton Island results. The regression estimates
for both the 'With error' and 'Without error' models are fairly close. Note that the significance level for the
regression estimates in the 'With error' model are much smaller than in the 'Without error' model. The variance
reduction for the 'With error' model relative to the 'Without error' model is far larger than the variance
reduction between the same two models for the Cape Breton Island data. However, the most interesting result
is in the AR component. Both models show that the AR component is significant for each model. The
estimates, however, are entirely different. The 'Without error’ model gives as an estimate of a = -0.296. The
'With error’ model estimates a = 0.862. Clearly, the intrepretations that would be made are different.
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Intuitively, after removing the trend and the monthly effects, it would be expected that the previous month's
estimate would have a positive correlation with the current month. This is exactly what happens in the 'With
error' model. [t would seem that the negative AR component estimated for the model 'Without error' is picking
up some of survey error process; thus leading to a misleading intrepretation to the data.

Graph l1a shows the smoothed estimates calculated from the model incorporating survey errors superimposed on
the original data points for Nova Scotia. Graph 2a shows similar smoothed estimates for Cape Breton Island.
The observed values minus the smoothed estimates for the Nova Scotia series are displayed in Graph 1b. From
this graph it can be seen that the recession of 1981 is having a large impact. Prior to 1981 the smoothed
estimates tend to be higher than the original values while after 1981 the smoothed estimates tend to be lower
than the original values. The observed minus the smoothed estimator from Cape Breton Island are displayed in
Graph 2b. These appear to form a more random arrangement than the Nova Scotia results probably due to the
larger sampling errors associated with the Cape Breton Island data.

In summary, when the sampling error component is incorporated, the best model can differ from the case when
sampling is ignored or it can provide an entirely different interpretation to the model. The data from Cape
Breton Island displays a situation when the survey error is accounted for, where a regression model will
satisfactorily explain the data while the model ignoring the survey process requires the inclusion an AR
component. On the other hand, the Nova Scotia data required an AR component for both models, but gave
entirely different interpretations for these components. In the future more work needs to be developed on
evaluating the competing models. In particular, since the one-step ahead prediction errors can be combined
with the estimates to form a independent normal process, these predictions can be evaluated using standard
residual analysis procedures. Future work will detail the results of incorporating this analysis.
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Table I

Paramter Estimates - Unemployment Sertes 1977 -198§

Nova Scotla

Cape Breton [sland

Vithout Sampling

With Sampiing

¥ithout Sampling With Sampling

i | | | i
! | | 1 I
| Error | Error | Error | Error |
| | | | . | |
| Paramatar | Estimate T-value | Estimate T-value | Estimate T-value | Estimate T-value |
| | | | | |
| | | | | |
I | I I | |
| Alpha (1) | -0.296  -3.23 | @.862 2,08 | -0.260  -2.85 | -0.231 -0.68 |
| | | l | |
] Sigme | o.0597 - | 6.00m = ] t.toes - | .05 =l
Jmemmneeenn [+omemmmmme e Jommmemme e Joommmmmm e eI |
i | | ! I |
| Trend | ©.00427 t.00 | 0.00420 1.89 | 0.00607 0.79 | o0.00598 1.5¢ |
| Jsnuary | 0.084 3.60 | 0.048 1.93 | -t.oor  -0.23 | -0.003 a1 |
| February | 0.083 480 | 0.078 330 | 6.027 0.89 | a.028 0.97 |
| | ] | | |
{  March | 6.166  10.20 | 0.165 6.40 | 0.171 5.7 | 0.164 5.16 |
[ aprn ] 0.106 6.60 | a.lot a0 | 0.099 331 ) 0.089 319 |
| May | ¢.008 0.60 | 0.016 0.70 | -g.008  -0.28 | -0.00? 0.4 |
| ] | | | |
| June | -o104 600 | -0.088 -3.30 | -0.029  -0.% | -0.033 -1
| July | -0.016 -1.26 | -v.0l4 -0.63 | 0.082 a2n | 0.081 33
| August | -o.08 -3.60 | -0.082 -2.37 | -0.014 -0.37 | -0.009 -0.30 |
| | ] | ! I
{ September | -0.105 -6.60 | -0.105 -3.96 | -0.104 -3.51 | -0.098 -3.18 |
i October | -6.081 -4.80 | -0.071 -3.08 | -0.08¢ -2.83 | -0.089 -2.44 |
| Movember | -p.026 -1.80 | -0.02% -1.08 | -0.083  -2.10 | -0.074  -2.45 |
] | | | | |
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Graph 2a

CBl: Unemployment 1977 — 1986
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SMALL AREA ESTIMATION USING MODELS THAT COMBINE
TIME SERIES AND CROSS-SECTIONAL DATA

G.H. Choudhry! and J.N.K. Rao?

ABSTRACT

Cross-sectional and time series models with random effects and autocorrelated crrors are developed. Using
these odels, “best linear unbiased” estimators for suiall areas at each timne point are obtained. The efficiencics
of several small arca estimators are evaluated, using monthly survey estimates of unemployment for census
divisions (small areas) from the Canadian Labour Foree Survey in conjunction with monthly administrative
connts from the Unemiployment Insurance System and monthly survey estimates of population in labour force
as auxiliary variables.

1. INTRODUCTION

The demand for reliable simall arca statistics has steadily increased in recent years due to their use in formu-
lating policies aud programs, in allocation of government funds, and in regional programs. Statistics Canada
responded to user needs by undertaking a program of small areas development. Brackstone (1986) discussed
the issues arising in the developinent and provision of small arca data.

Direct small area estimators from survey data are likely to yield unacceptably large standard errors due to
siall sample sizes.  Alternative estimators that “borrow strength” from related small areas are therefore
needed to improve cfficiency. Such estimators use models, either inplicitly or explicitly, that link the small
areas through supplementary data such as recent census counts and administrative records.

Most of the rescarch on small area estimation has focused on cross-sectional data at a given point in time.
Rao (1986) hias given an account of this research. Estimators proposed in the literature include (a) synthetic
cstimators (Gonzalez, 1973; Ericksen, 1974), structure preserving estimators (SPREE), Purcell and Kish
(1980); (b) sample size dependent estimators (Drew et al. 1982; Sirndal and Hidiroglou, 1989); (¢) empirical
Bayes estimators (Fay and Herriot, 1979) aud empirical best linear unbiased predictors (EBLUP), Battese
ct al. (1988) aud Prasad and Rao (1990). The EBLUP is obtained from the best linear unbiased predictor
(BLUP) by replacing the unknown variance parameters with their estimnates, similar to the empirical Bayes
estimator obtained from the Bayes estimator.

The main purpose of this paper is to develop cross-sectional and time scries models with random cffects
and antocorrelated ervors, and to obtain EBLUP’s for small arcas at eachi point in time using these models.
Section 2 reviews the work on regression synthetic estimators and empirical Bayes estimators obtained from
cross-sectional data at a given point in time. Cross-sectional and tinie serics models are considered in Section
3, and an extension of the Fay-Herriot (1979) model is proposed. The EBLUP is obtained in Section 4.
The cfficiencies of EBLUP, relative to two synthetic estimators and a direct survey estimator are evaluated
in Section 5, using monthly survey estimates of unemployment for census divisions (small areas) from the
Canadian Labour Force Survey in conjunction with monthly administrative counts from the Unemployment
Insurance (Ul) system and monthly survey estimates of population in labour force as auxiliary variables.

2. CROSS-SECTIONAL ESTIMATORS

2.1 Regression Syuthetic Estimators

Let y, be the direct survey estimator of i-th small area mean §; at a given point in time. For simplicity, we
assuine that a single concomitant variable z; related to 8, is available; extension to two or niore concomitant
variables is straightforward. We also assume that y; is unbiased for 8;, i.c., y; = 6; + e; where the ¢,’s are the
sampling crrors with E(e;) = 0.

We assnme the following linear regression model on the 8;’s that links the sinall arcas tlirough the concomitant
data z;:
0i=ﬂ0+ﬂlmi| i=11"'aI: (21)

I G.IL. Choudhry, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario K1A 0T6
? J.N.K. Rao, Departinent of Mathematics & Statistics, Carleton University, Ottawa, Ontario {15 5B6
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wlhere ff and f#; are the regression coeflicients. A regression synthetic estimator of 8; is then given by
gi(mg) = 30 its ﬂlrh (22)

where ﬁn and 3, are the ordinary least squares estiinators of 8, and g, obtained from the combined model
yi = Py + B +e;, v =1,..., 1. Alternatively, we can use the generalized (weighted) least squares estimators
of By and /3 if the estimated covariance matrix of survey estimators y; is available,

Synthetic estimator (2.2) conld lead to large biases since it docs not give a weight to the direct survey
estintator y;. On the other hand, the empirical Bayes estimator or the EBLUP gives proper weights to the
survey estimator aud the synthetic estimator, and as a result leads to smaller biases relative to the synthetic
eshinator,

2.2 Enipirical Bayes Estimator or EBLUP

Foy wnd Herriot (1979) introduced uncertainty iuto the model (2.1) as follows:
8 = fo + Brxi + vy, (2.3)

where the v;’s are independent normal variables with mean 0 and unknown variance o2. For sampling errors,

they assumed that the ¢;'s are independent normal variables with E(e;) = 0 and Var(e;) = o?, where o2 is
known. The combined model is given by
yi=Po+ Bri+vi+ e (2.4)

The empirical Bayes cstimator of 8; is given as a weighted sum of the direct survey estimator y; and the
regression synthetic estimator Gireqy = Bo + fr1z1:

t‘((}ﬁ’y) =wiy + (1 o “’i)gl(mg)v (25)

where w; = 62/(62 + 0?), and B[) and B, are the weighted least squares estimators under the combined model,
and 4% is an estimator of 2. A simple moment estimator of 62 or a more complicated estimator, such as the
maxiunmn likelilwod estimator of 2, may be used. Fay and Herriot (1979) used (2.5) to estimate per capita
incone for siwall areas (i.e., population less than 1000) from the 1970 U.S. Census of Population and Housing,
and presented evidence that (2.5) leads to smaller average error than cither the direct survey estimator or
the synthetic estimator using the county average.

Prasad and Rao (1990) obtained an accurate estimator of the mean squared error of EBLUP (2.5) by taking
account of the nncertainty in the estimator of o2,

3. CROSS-SECTIONAL AND TIME SERIES MODELS

The methods of Section 2 use only cross-sectional data at a given point in time, and as a result do not exploit
nformation in data at other time points. Scott et al (1977), Jones (1980), Tiller {1989) and others used
timce series modelling of aggregates (e.g., overall means) from repeated survey data, and obtained improved
estimators' of aggregates at different time points. However, very little work has been reported on extending
the Fay-Herriot approach for small area estimation to time series of cross-sectional survey estimates of small
arcas in conjunction with census data and time varying supplenientary data such as administrative records.

Cronkhite(1986) developed regression synthetic estimators using pooled cross-sectional time series data, and
applied them to estimate substate arca employment and unemployment, using the Current Population Survey
(CPS) monthly survey estimmates as dependent variable and counts from the Ul system and census variables
as independent variables. The motivation for our rescarch was to obtain reliable monthly estiniates of un-
cmployment for census divistons, using Labour Force Survey cstimates of unemployment and labour force
participation rates, and administrative counts from tlie UI system. Three-year average uncinployment rates
for censns divisions are used n conjunction with other variables to produce an index which in turn is used to
allocate funds for industrial incentive.

Extensive econometric literature exists on modelling and estimating rclationships that combine time series
and eross-sectional data (for example, see Judge et al, 1980, Chapter 13), but sampling errors are seldoin
tuken into account, We now consider some of these models. For simplicity, we again consider only one
concomitant vaviable. Let 854, v and a4, respectively be the population mean, the direct survey estimate and
the concomitant variable associate with the i-th small arca at time ¢ (z =1,...,I; t =1,...,T). We have
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yil=0il+cih l=1,l, t=1\"'7Tv (31)

and, following Fay and Herriot (1979), we assume that the covariance matrix of sampling errors ey is block
diagonal with knowu blocks X;, where X; is a T x T matrix, and E{ei¢) = 0. Recent research has focused
on modelling sampling errors of aggregates. For example, Binder and Dick (1989) and Tiller (1989) proposed
autoregressive moving average (ARMA) models.

The models on 8¢, proposed in the cconometric literature, include the following:
(D i =P80+ Braig +vi + €, (32)

where the v’s are fixed small area effects and the €,’s are independent normal variables with mean 0 and
variance a2, abbreviated €;; ~juq N(O, 02).

(I it = Bo + Frxie + vi + €ir, (3.3)

where vy ~,a N(0,02), €0 ~iug N(0,02) and {vi} and {€;(} are independent. Here the v,’s are random small
arca eflects,

(II1) Gie = By + Brxae + vi + 10y + €54, (3.4)
where i ~jua N(0,00), we ~ing N(0,02), €ir ~ina N(0,0?) and {v;}, {us}, {€;¢} arc independent. Here v;’s
and u,’s are random suall area effects and random time effects respectively
(V) 8= Bo + Brzie + vi + uae, (8.5)
|
g = pui iy + ey |pl <1
where vy ~jga N(0,0%), €y ~iua N(0,0%) and {v;}, {eie} are independent. Here the v;'s are random small
arca elfects and {u;} follow an AR(1) process. The model (3.5) may be rewritten as a distributed lag model:

Oie = pbie—1 + (1 = p)Bo + Braie = Prpzi—t + (1 = p)vi + €44 (3.6)

Model IV appears to be the most realistic among the four models since the alternative form (3.6) relates
thie current population mean, 8;, to the previous period population mean, 8;.:1—1, and to the values of the
auxiltary variable for the current and previous periods, 74 and zi 11 respectively. The form (3.5) of model
IV reflects the dependence of 8;, over time for each area 1. Hencefortl, we adopt model IV in the form (3.5).

The combined model using (3.1) and (3.5) is given by

Yie = Bo + Brzic + v + (eie + uig), (3.7)
Uie = puiy + e, o] < 1,

where v; ~jua N(0,02) €5 ~jq N(0,02), and the ¢;¢'s have mean zero and known block diagonal covariance
matnx ¥ = diag(Z,,..., ).

Unfortunately, the sampling covariance matrix ¥ from the Canadian Labour Force Survey is currently not

available, so we treated the composite error wy = ey + uje as an AR(1) process: wip = pwi—y + €, with
r 2 :

€it ~ind N(0,0%), and then considered 8;, as

Oie = Bo + Bizic + ;. (3.8)

Tiller (1089) used a similar approach in the context of lubour force estimation from a sregate Lime series data
P
generated from repeated surveys. The combined model, under the above assumption, may be written as

Yie = Bo + Prazic + vi + wjy, (3.9)
Wip = pwi -y + €, p| < 1,

where v; ~a N(0,02) and €y ~jq N(0,02).
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4. EMPIRICAL BEST LINEAR UNBIASED PREDICTOR.
4.1 BLUP

Arranging the data {yi} as ¥y = (v, un, - wr) = (¥h,--.,¥1) the model (3.9) can be
expressed as a special case of the general mixed model

y=XB8+2Zv+w (4.1)

with

X &= ()(17' cey ;)
Z=1®1y, B=(5,51),

where X is a T x 2 matrix with ¢-th row given by (1,z;), 1 is the identity matrix of order I and 17 is the
t-vector of 1's. Further,

E(v)=0, Cov(v)=0’l
E(w)=0, Cov(w)=a*(I®T)=0’R (say)

aud T'is a T x T matrix with (7, j)-th element 7;; = (1 — p?)~'pl*=7L.
Henderson (1975) derived the best linear unbiased predictor (BLUP) of any linear combination of 8 and the
rindom cffects v, say 7 = k'8 + m'v, as

F=k'B+m'ZE " (y - XB)(c?/5?). (4.2)
Here, ¥ = 1®|[(02/0?)J + T] with J denoting a T x T matrix of I’s, and § = (X'E"1X)"}(X'E"1y) is the
generalized least squares estimator of 8. If T = 8, as given by (3.8), then

E =@ ) i= ;- . 18, 0 (4.3)
with 1 i the ith position, and

W'Z'E My - XB) = 1yl(0/0%)3 + T (y: - X.). (4.4)

4.2 Estimation of o

The BLUP (4.2) depends on the unknown variance ratio o2/0? and the unknown autocorrelation p. We
used the method of Pantula and Pollack (1985) to estimate the parameters o2, 62 and p. This method is an
extension of the method of fitting constants for the case p = 0 (Fuller and Battese, 1973), and the estimates
of o2, % and p are obtained as below.

Lt {€i} be the ordinary least squares residuals obtained by regressing iy on z;, with the intercept term
included. Then p is estimmated by

o T2 =
p= Z €& 41 — éi,l-i»‘Z)“ [Z €it€it — Ein1)| - (4.5)
1= =1 =1 t=1
Define
(1 (2)
‘"u) == 4 b
where
it = Yit — PYig—1, €22
= fiya, t=1
andd
2B =l f,
with
c=(1-p)[T~ (T -2)4],
fl =1 _f)z\ t=1
=l d=2
and

T
= Zf(:it-
=
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Similarly define (hy;e, héiz, hf]z,z) and (N5, h(ll,-z, h(lr':z) in terms of the elements 1 and ayy, i.e., replace y,, with

p . . . 1 2] afn . .
1 and x4 respectively in the expressions for (z;, zf-! ), zE‘ )). Let &'é be the residual sum of squares obtained

by regressing zf,l) on /1,((]2 and /"(131 without the intercept term. Also, define

T
gi =Y fizit,
=]

T i
fo,‘ = Eflh()ih fh = Zflhm-
=1 t=1

Let @G be thre residual sum of squares obtained by regressing g; on fo; and fy;, without the intercept term.
The estiates of o2 and 02 are now obtained as

G2 =[I{t-1)-2]"1¢'e (4.6)
and

6l =cN(I-2) ['a—o%I-2), (4.7)
in the case of model (3.9).

If p=1(> 2) z-variables arc included in the madel, then {€;,} are obtained by regressing y;; on 2,4,

ey Tp—yits
with the intercept term included. Similarly, (hji, h‘(ill-,), /"531)), 7=0,1,...,p— 1 are defined in terms of the
clements 1, Zyie,...,Tp_1,4, and &'é is obtained by regressing z,(:] on hl(,llz hg:Za-‘-»h;,l_);,n without the

&
intercept term, and 4'G is obtained by defining f;; = Y filji, 7 = 0,1,...,p — 1 and regressing g; on
t=1

fois frise oo, fp—1.4 without the intercept term. Finally, 6% and 62 are defined by (4.6) and (4.7) respectively,
with I{T — 1) = 2 chauged to I(T — 1) — p and T — 2 changed to I —p. . It is also possible to get maxinum
likelihiood estimates of 02, 02 and p, using the EM algorithm (see Chi and Reiusel, 1989).

Substituting the estimates 6%, 62 and p in (4.2), we get the empirical best linear unbiased predictor (EBLUP)
of 8¢, denoted by 85,
5. MEAN SQUARE ERROR OF EBLUP
Fallowing Henderson (1975), the mean square error (MSE) of BLUP, 7 = 6,q, is given by
MSE (8;) = o {k'(X'E7'X) "k + (62 /o )m'm — (6% /o? )P ' Z'E "' AZm
— 2ot (X'ETTX)IX' S Zm], (5.1)
where A = I - X(X'E7'X)"!'X'E~!. The MSE of EBLUP, 8,., involves lower order terms that take account

of the uncertainty in the estimators 6%, 62 and . We are currently developing an accurate approximation to
the MSE of EBLUP, aloug the lines of Prasad and Rao (1990) for the Fay-Herriot model,

2 2

In this paper we ignored the uncertainty in the estimators 62, 2 and p, and used (5.1) with (62, &%, 5)
substituted for (02,02, p) as an estimator of MSE of the EBLUP. This estimator underestimates the true
MSE of EBLUD, but the underestimation is not likely to be serious for our empirical study in Section 7.

The MSE of the survey estimator, y,,, of 8;¢ under the model (3.9) is given by
MSE(yi) = B(yic — 6:)* = V(wie) = o /(1 = p?). (5.2)
An cstimator of MSE (yi,) is obtained by substituting (6%, p) for (6%, p) in (5.2).

6. SYNTHETIC ESTIMATORS

If we ignore the random small area effects {v;}, and use the mnodel

Yie = fo + Biwic + w)y, (6.1)
wl = p'wl,_ +e, ptl< L,

where € ~jua N(0,0*?), we get a synthetic estimator of 8;, = 3¢ + Fraxi. It is given by
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8:1(S) = Bo(S) + Bi(S)zir, (6.2)

where JQ(S) and ﬂl(Q) are the gencralized least squares estimators of By and B; under the model (6 1):
B(S) = (X'R*T'X)7)YX'R*y), where R* is given by R with p* substituted for p. The estimator ()
is uubmsul for 6:y = fo + fr17ie + vi uder the model of interest, (3.9).

Writiug 8i(s) as a lincar function, a'y, of the observations ¥, the MSE of 8;¢(S) under the model of interest
(3.9) can be obtained. It is given by

MSE[f:(S)] = E(a'y — k'8 — m'v)?
= o%[(Z'a — m)'(Z'a — m)(0?/0?) + a'Ra), (6.3)

where k and m are given by (4.3).

Sinee 8;,(S) depends on the unknown autocorrelations p*, we estimate p* from (6.1) using the modified
Gauss-Newton method (Hartley, 1961). The MSE of the resulting estimator, é,-,(S), is estinated by substi-
tuling (62,62, ) for (02,02, p) in (6.3). This estimator will undercstimate the true MSE of é,’((S) since the
nncertainty in estimating p* is ignored.Nevertheless, the underestination is not likely to be serious for our
entpirieal study in Section 7.

Another synthetic estimator is obtained by considering the fixed effects model (3.2) ou 8, and then writing

Yie = Bo + Brxie + v; + by (6.4)
Wiy = pwi—y + &g |p| < 1,

wliere € ~ina N(0,5%) and {vi} arc fixed small area cffects. The resulting synthetic estimator of 8¢ is given
by (Chondhry and Hunter, 1987):

:(S1) = Bo(S1) + By (S1)a i + 8,(S1), (6.5)

where 3(S1) = [Bo(S1), Bi(S1), ©,(S1),...,5,(S1)] is the generalized least squares estimator given by
(WR™'W)~(W'R™'y). Here the (¢, t)-th row of W is the 1 x (I + 2) vector (1,24,0,...,0,1,0,...,0)
witl 13 the (2 +2)-th position, R is given by R with p substituted for p, and (W’ R- 1W)" isa gcnor').ll?ul
inverse of W/R™!'W. The estimator §;,(S1) is unique for any choice of generalized inverse.

Writing 9”(51) as b'y, it is seen that 9;,(51) is biased for fj; under the model of interest (3.9). Its MSE
under the model of interest (3.9) is given by

MSE[4;,(51)] = E(b'y — k'8 — m'v)?
=[(X'b-k)B]® +¢*[(2'b - m)'(Z'b — m)(¢?/c?) + b'Rb] (6.6)

Siuce the estinator é,-,(Sl) depends on the unknown autocorrelation j, we estimate p from (6.4) using the
modificd Gauss-Newton method. The MSE of the resulting estimator, 8,,(51), is estimated by replacing 8
with 8 in (6.6) and then substituting (6%, 82, p) for (a2, ¢2, p). This estimator will underestinate the true

MSE of 8;(S1) since the uncertainty in estimating g is ignored. Nevertheless, the underestiination is not
likely to be serious for our empirical study in Section 7.

7. EMPIRICAL STUDY

The efliciencies of the EBLUD, and the two synthetic estiimators and the survey estimator y;, are now evalu-
ated, using 36 months (January '83 - December '85) of survey estimates of unemployment from the Canadian
Labour Force Survey for 21 census divisions (small areas) in the province of British Columbia. The auxiliary
variibles used in the regression are monthly adiministrative counts from the Ul system and the population
in the labour force from the Labour Force Survey. Here, letting t = 1,...,36 and ¢ = 1,...,21, y; = log
(snrvey estimate of proportion of population unemployed), ;¢ = log (Unemployment Insurance beneficia-
ries/projected population 15 years and over), z9;¢ = survey estimate of labour force participation rate. The
lubour force participation rate is defined as the proportion of target proportion which is either employed
or unemployed. Although 224 is subjected to sampling errors, its cocfficient of variation (cv) is negligible
compared to the ev of y;, and hence these errors may be ignored without affecting the estimates.

Our moddl (3.9) with two concomitant variables may be writi . as
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Bo + Bizyic + By coit + vi +wiy A
pwit-1 tei, pl <1 (7.1)

Vit

Wit

i

where v; ~ug N(0,02) and € ~ing N(0,0?). The cstimated MSE of the EBLUP under (7.1) was computed
from (5.1) for each (z, ¢) by substituting the estimates (62, 42, p) and using (1, x;y, T2;) for the t-th row
of Xi. These estimales were obtained by using the method of Pantula and Pollock (1985), and are as follows:

6% = 00301, &2 =00175, ;= 0.362.

Turning to the synthetic estimator, the estimated MSE of the synthetic estimator, é.,(S), which ignores the
raudom effects {v;} 1 (7.1), is obtained for cach (¢, t) from (6.3) by substituting (&2, a2, p). Similarly, the
estimated MSE of the synthetic estimate é,;,(Sl), which treats {v,} as fixed effects in (7.1), is obtained for
cach (i, t) from (6.6) by replacing B with 3 and then substituting (62, 62, j) for (o2, o2, p). Finally, an
estimate of MSE of the survey estimate y;, is obtained from (5.2) by substituting (62, p) for (o2, p).

Denote the estimated efficiency of the EBLUP relative to the synthetic estimator é“(S) as By, =
cst MSE {é,,(S)]/ cst MSE (EBLUP), the estimated efficiency of the EBLUP relative to the synthetic es-
timator é,,(Sl) as Eyi = est MSE [8;(51)]/est MSE (EBLUP), and the efficiency of EBLUP relative to the
survey estimate yie as Eyy = est MSE(yi()/ est MSE (EBLUP). It should be noted that the MSE's of the

synthetic estimates #,(S5) and é,’,(Sl), and the survey estimate yi, are estimated under the model (7.1).

The averages of Eyyy, Eaq, and Ejyp over thirty-six months are computed as E,; = E,EI,,/.;G, Eqyi = E,Eg,-,/m,
and Ej; = EEy/36 for each siall area ¢, and these values are reported in Table 1.

It is clear from Table 1 that the EBLUP leads to large gains in average cfliciency over the survey estimator,
E3; ranging from 7.56 to 10.11, The gains in average cfficiency of the EBLUP over the synthetic estitnator
0:((S) are also substantial, E,; ranging from 2.67 to 3.56. The average cfficiency of the EBLUP over the
syuthetic estimator (3,-,(51), denoted by Ey;, ranges from 0.82 to 6.45. The over-all average cfficiency values
are as follows: By = BE);/21 = 3.02, E, = $F»;/21 = 2.50 and E, = TE,i/21 = 8.61.

Table 1. Average Monthly Efficiency of the EBLUP
Relative to the Synthetic Estimators and
the Survey Estimator, Under the Model (7.1)

Small Atea E; Ey; Ej;

1 3.56  1.14 1011
2 286 192 810
3 289 1.63 8.19
4 2.67  3.59 7.56
5 2.87  3.94 8.13
G 3.01 287 8.56
7 3.07 082 8.72
8 298 094 8.52
9 344  2.05 9.74
10 3.08 1.64 02
11 3.24  1.85 9.18
12 298  06.45 8.43
13 275 1.88 7.80
14 298 216 8.50
15 3.14 198 8.89
16 2,73 491 7.74
17 296 272 7.83
18 2.81 3.37 8.02
19 295 411 8.34
20 343 1.16 0.78
2 .14 1.44 8.94

Over-all 3.02 250 8.61

Average
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8. CONCLUDING REMARKS

The EBLUP will be derived under the generalized Fay-Herriot model given by (3.7), by first deriving the
estimates of the parameters o2, o2 and p along the lines of Pantula and Pollack (1985) and then substituting
these estimators in the BLUP to get the EBLUP. The efficicncy of the EBLUDP will be evaluated along the
lines of Scection 7 using the Canadian Labour Force Survey data and an estimate of the sampling covariance
watrix, . Work is in progress on obtaining an estimate of ¥ for the Canadian Labour Force Survey.

Accurate approximations to the mean square error of the EBLUP and their estimators will also be drived,
along the lines of Prasad and Rao (1990).
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MAPPING AGGREGATE BIRTH DATA

David R. Brillinger !

ABSTRACT

Births by census division are studied via maps for the province of Saskatchewan for the year 1986. A principal goal
of the work is to see how births are related to geography by obtaining contour maps displaying the birth phenomenon
in a smooth fashion. A hicrarchy of models for count-valued random variates are fit to the data by maximum likeli-
hood. Models include: the Poisson, the Poisson with a weekday cffect and the Poisson-lognonmal, The last mentioned
is motivated by the idea that important covariates are unavailable to include in the analysis.

KEY WORDS: Aggregate data; Contouring; Extra-Poisson variation; Locally-weighted analysis: Maps; Poisson dis-
tribution; Poisson-lognornmal distribution; Random effects; Spatial data; Unmeasured covariates,

L INTRODUCTION

The concern of this paper is data that has been aggregated over geographical regions. ‘The analysis of such data
should be "easy” because of the graphing possibilitics, cg. quantity versus geography in the manner of residual plots so
olten employed in regression analyis; however in the present case the aggregation leads to important difficulties.

The specilic data studied consists of daily births for the calendar year 1986 to wonien aged 25-29 for each of the
18 census divisions of the province of Saskatchewan. The corresponding population sizes, as determined in the 1986
Census, are also employed in order to compute rates. The reason that Saskatchewan was selected for this pilot study is
tha it is moderate sized and its boundarics and those of its census divisions are regular. (The latter was important at
the carly stages of the work because computer based maps were unavailable.) Women ages 25-29 were selected
because that was the § year age group with most births. These data were provided to the author by Statistics Canada.

The data is characterized by being aggregate, by being nonGaussian and by being nonstationary in space and
time.

It is wished to understand the relationship of births to geography, specificalty to allow spatial patterns of fertility
and possible surprises to show themselves. Therc are two aspects to the study; a locally-weighted analysis of grouped
data is developed and random effects models are set down and fit to handle extra-Poisson variation.

Itis to be emphasized that this is a preliminary report on work in progress. For example the fine structure of the
datais not taken advantage of and no measures of uncertainty of the various estimates have been provided. ‘I'he paper
focuses principally on annual totals for the 18 census divisions. The related paper Brillinger (1990) considers both
temporal and spatial aspects.

Saskatchewan has 18 census divisions. These may be seen in Figure I. That figure also provides the total
mnnbers of births to women aged 25 10 29 for 1986 and the corresponding female population sizes on Census Day, 3
June. (Actually because of Statistics Canada’s confidentiality requirements the final digits have been rounded 10 the
nearer of 2 and 7). The small population in the northern half of the province is evident. Figure 2 gives the annual
bisth rates plotted by census division. The divisions with the lowest values, .131 and .133 births per year, correspond
to the cities of Saskatoon and Regina respeetively. Figure 3 is a chloropleth map of the rates with inteusity of hatch-
Ing proportional to birth rate.

2. PATCH OR CIHHILOROPLETH MAPS

Maps of most quantitics of direct interest that assign average values 1o the wholes of counties thereby lie, lie, lie.

In these graphic words Tukey (1979) deplores the use of maps such as those of Figures 2, 3 that arc constant across
geographic divisions. Indeed examination of Figure 2, as does common knowledge, suggests that the birth
phenomenon quite likely varies smoothly across census division boundaries. One of the concerns of this work is to
develop maps with smooth variation, It is hoped that such maps will prove useful in the discovery of general modets
and will allow insightful exploratory analyses.

A second concern is with the statistical distribution of the counts themselves. A natural speciat stochastic model
to employ is the Poisson. Yet the birth process has been found to relate to tany socio-cconotic quantities, eg. diet,

1 David R, Brillinger, Statistics Department, University of California, Beskeley, CA, 94720
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lifestyle, weather, environment, weekday, holidays, age structure. TFurther the population of the province has varied
around the Census Day values throughout 1986 and lastly the women's ages range between 25 and 29. In summary it
sccms necessary to employ a more flexible model than the Poisson, a model able to handle omitted covariates. The
Poisson-lognormal will be employed in this work. As a sidcline due to the presence of the standard deviation parame-
ter in the Poisson-lugnormal, there will be a borrowing of strength that takes place in combining the data values.

3. LOCALLY-WEIGIITED ANALYSIS

In the case of nonaggregate data, locally-weighted fitting is a convenient fashion by which to estimate smoothly
varying quantities. Suppose one has a variate ¥ with probability distribution p (Y | 8) depending on the finite dimen-
sional parameter 8. Suppose one wishes an estimate of 6 particular to the location with coordinates (x,y). Suppose
the datumn Y; is available for location (x;,y;). Let Wi(x,y) be a weight dependent on the distance of (x;,y;) to (x,y).

Consider estimating 6 by maximizing the weighted loglikelihood

2 Wilkxy)logp(Yi| 6) (M
]

or (often equivalently) by solving the system of estimating cquations
Wil y) witil 6)=0 &)
'

with (¥ | 0) =0 log p/08 , the score function.

To illustrate the technique consider an elementary case, specifically take ¥ to be normal with imean p and vari-
ance 62, The locally weighted estimate of ji results from minimizing

& Wiy it - pl?

and is given by
Ry =F Wik y) Yi /3 Witx.y)
1} 1

an expression with intuitive appeal. It is to be noted that such formulas are commonly used in computer graphics as
interpolation procedures, see for example Franke (1982).

Anmong references we may mention Gilchrist (1967) concerned with "discounting”, Pelto er al. (1968), con-
cerned with teast squares, Cleveland and Kleiner (1975), who suggested the use of moving midimeans and Stone
(1977) focusing on regression. In the discussion of Stone’s paper, Brillinger (1977) suggested the form (2) for a gen-
cral distribution and justified it as a Bayes’ rule. Cleveland and Devlin (1988) develop the least squares approach it
real detail. Tibshirani and Hastie (1987) develop an equi-weighted local likelihood estimation procedure. Staniswalis
(1989) studies and implements the general p case. Advantages of the locally-weighted technique include: no "hidden”
model distribution assumption, the possibility of discerning nonaditivity, variants for resistance and influence, simiple
additivity of the observation component, and no matrix inversion (as, for example, kriging requires).

4. CONSTRUCTION OF THE WEIGHTS

The birth diata of concem in this work is aggregate (or grouped) totals over census divisions. The procedure of
the preceding section cannot therefore be employed directly. The problem is that of obtaining appropriate weights
w;i(x,y) evidencing the effect of the census division i on the location (x,y). Suppose | R;| denotes the area of
census division i. Then the naive weight function is

wi(x,y)=1] R;| for (x,y) in R;

and equal 0 otherwise. In this work functions of the essential forin
1
wi(x,y)= W (x —u ,y —v )dudv 3
i) = TR J (x—u.y-v) ©)

will be employed where W () is a kernel appropriate for the nonaggregate case as studied in Cleveland and Devlin
(1988). The formula (3) may be motivated by consideration of the Poisson point process case. Estimates will be
determined via the criteria (1) or (2) with W; replaced by w;,

The specific weights employed atr = (x,y) are
wi(r) =exp(~(1-p) | r ~r;| | %212 @
outside -F)S Vg —r;Y=dd =5991 and equal 1 inside. Here || ]| 2=x2+y?
p=do/N@r—;)S7 Y (r - ;) and t=.025, where F; =E U; and S; =var U; with U; a variate uniformly distributed
within R;. The logic is that the census divisions are approximated by ellipses with the same nican and variance-

covariance malrix. (The specific values were chosen after a bit of experimentation, in part to make the area in the ini-
tial ellipse about .95 of the division’s.)

Figure 4 displays the .50 and .99 contours of the w; (x.y) plotted for several of the census divisions. The con-
tours are scen to follow the general shapes of the census divisions.

Other weight functions constructed with similar problems in mind may be found in Tobler (1979) and Dyn and
Wahba (1982). Advaatages of the present approach, as listed for the nonaggregate case above include: the terins are
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additive and do not interact, no matrix inversion is needed, and resistance to outliers is easily built in,

Cliff and Ord (1975) Section 5.1, discusses measures of the influence of counties on each other. The concern of
this present paper is the influence of a "county" on a point location.

5. THE SIMPLE POISSON

Throughout the analysis, the female population aged 25-29 and births to its members will be considered. Let
i =1,., 18 index census division. Let N; denote the census count of the women in the i -th division. (These are the
counts for Census Day, 3 June 1986.) Let B; denote the total number of births to women aged 25-29 iu the year 1986.

Suppose that the probability distribution p () of Section 3 is that B; is Poisson with mean N The parameter jt
is o birth rate. One logic for the Poisson assumption comus from the idea that birthdays are random, see Brillinger
(1980).

With the Poisson assumption, the locally weighted estimate of the birth rate at location (x,y)is
Oy =X wi(x,y) Bi £ 3 witx,y) N; (5)
i i

These values are computed for (x,y) on a 40 by 40 grid. The corresponding contour plot is given in Figure 5. The
contours are seen to vary smoothly. This (smoothed) rate varics from .14 to .20, with the higher values in the upper
half of the province and the lower centred around the most urban part of the province.

6. TIHE POISSON WITII WEEKDAY EFFECTS

While the focus of this paper is on spatial analysis, it is usefult to briefly take some definite note of the temporal
aspects that are present. It is common knowledge that birth rates vary with the day of the week due to medical inter-
vention, see for example Miyaokoa (1989). The total number of births cannot therefore be reasonably expected to be
a homogencous Poisson. The following model seems worth considering. Let j be an indicator variable with J=1if
the measurement is for a weekday and j = 2 if the measurement is for a weekend. Let Bj; denote the corresponding
number of births in census division i. Suppose that Bjj is Poisson with mean N; exp{o+;}. B; is the weekday effect
and it will be assumed that B3 + 32 = 0 to make the model identifiable. If there is no weekday effect, then By, By =0.
Now, via locally-weighted estimation as described in Sections 3 and 4, one can obtain estimates of o and B as fuuc-
tions of loeation.

Figure 6 provides the estimate cxp{d(x .y )} obtained of the annual birth rate. It is interesting to note that, relative
to the constant Poisson model, the contours have expanded out from the urban area for the annual rate. Figure 7 pro-
vides the estimated weckday effect ﬁl(x ). In its case there is bulge to the east. The order of magnitude of the |§'s is
0 to .10 while atis order -2.0 to -1.6 .

The just preceding analysis suggests that there are basic variables that can affect birth rates and that modetling
and analysis needs to take this circumstance into account.

7. THE POISSON-LOGNORMAL

With a mwlti-dimensional explanatory variable x; in hand, a Poisson model that has B; of mean N; exp({x,0)
might do a good job of explaining the data. Examples of explanatory variables include: diet, lifestyle, weather,
environment, holidays, population change, age structure, vagaries of boundaries. In the present situation, these vari-
sibles are not at hand. The omitied variables in the model will be assumed specifically accumulated into an error vari-
able. It will be assumed that, given g, the variate B; is Poisson with mean N; M exp(€;} and that g is nonmal with
mcan 0 and variance o2, Here B is said to have a Poisson lognormal distribution. Some information on this distribu-
tion may be found in Shaban (1988).

A central difficulty, that arises in working with a Poisson-lognormal maodel, is that closed expressions do not
exist for the probabilty function. Yet it is elearly flexible for introducing effects and handling missing variables. Fol-
lowing the work of Bock and Licberman (1970) and Pierce and Sands (1975) however, one can proceed via numerical
inlegration. The probability function may be written

p )= e fivesyexpl-ver ot s

with ¢ the standard normal density, with y corresponding to B and with v corresponding 1o N, The integral is
approximated by a finite number of terms involving nodes and weights.

Figures 8 and 9 provides the result of fiting employing 61 nodes. Figure 8 again shows a dip around the urban
region as in Figures 5 and 6. The irregularities suggest that perhaps the estimation procedure converged to a local
extremum. Figure 9 is not easily described. It suggests that the estimate is fairly variable. The estimate o is scen to
be of order of magnitude .1 and so comparable to the weekday effect of Section 6.

8. DISCUSSION
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Locally-weighted analysis and random effect models appear to provide a flexiblc means of dealing with a broad
class of problems involving geographic data. The random effect terms have two important roles: handling omitted
clfects and borrowing strength for improved estimates of the principal paranieters. For the Poisson alone, naive totals
arce clficient, yet there exists extra-Poisson variability due to ommited variables in the present case. The approach is
computer intensive, because of the numerical integration and the maximum likelihood estimation at many points on a
prid, but proved quite mangeable on the Berkeley network of Sun 3/50's.

Much future work remains including: tools for assessing fit, uncertainty computation, weight function choice
(including chioice of T 1n (4)), analyscs for other age groups and provinces, and appropriate asymplotics. Some further
results are provided in Brillinger (1990).

Other recent papers devoted to the analysis of vital statistics rates are: Clayton and Kaldor (1987), Tsutakawa
(1988) and Manton et al. (1989). These papers are not directed at the problem of obtaining a smooth surface, which
is the concern of this work.

After the analyses were completed it was learned that the birth counts were based on 1981 census divisions,
while the population counts were based on 1986. The boundaries have not changed much, but this provides even more
reason for wanting a procedure that can handle extra-variation.
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APPENDIX

In this Appendix a few computing details are provided. The census divisions and the province boundaries are
specified as polygons. To compute the weights w; (x,y) a routine was required to check whether a given point was
inside a given polygon. To compute the mean and vartance of a random point inside a given polygon, a procedure
breaking the polygon up into triangles was required. Such routines are discussed in Preparata and Shamos (1985).
The likelihood was maximized via the Harwell FORTRAN routine va09a. For the paratlel computations the 40 by 40
gridt was broken up into 20 disjoint segments.

FIGURE LEGENDS

Figuwe 1. Births for the 18 census divisions of Suskatchewan for the year 1986 to women in the 25-29 age group and
corresponding total numbers of women in that age group on June 3 of the year. (As discussed in the text, the
final digits of counts have been rounded to the nearer of 2 and 7.)

Figure 2. Annual birth rates for the 18 eensus divisions for women aged 25 to 29.

Figure 3. The rates of Figure 2 displayed via intensity of hatching.

Figure 4. The weights, W; (x,y) applied in equations (1) or (2) computed via expression (4) for four of the census divi-
sions. They are not shown for all the divisions in the interests of elarity.

Figure 5. Expression (5) graphed for the weights of (4) with B; the count of births in census division i and &; the
corresponding population count of women aged 25-29.

Figure 6. The estimated birth rate assuming that the number of births, B, given the populationt at risk, N, is Poisson
with mean N expf{a + B} with the plus sign for weekdays and minus for weekends. Local weighted fitting is car-
tied out to obtain the estimate exp{a(x,y)}.

Figure 7. Plot of the estimated weekday cffeet fi(x ) obtained as per Figure 6. -
Figure 8. A plot comparable to Figure 6, except that now a normal error term is added to the linear predictor.

Figure 9. A plot comparable to Figure 7, except now (as in Figure 8) a normal error term has been added to the linear
predictor.
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REGRESSION MODELS FOR PARALLEL TIME SERIES OF COUNTS

Richard Burnett, Daniel Krewski and Jennifer Shedden

ABSTRACT

[ this paper, regression models for parallel time series of count data are cousidered. Tn particular, we exautine
the effects of random effects mixing processes to model the variation in response between serics, overdispersion
within eaclt series, and time dependent correlation. Estimating equations are employed to estimate botly the
regression and overdispersion paraineters.

1. INTRODUCTION

Regression wodels for count data subject to overdispersion have undergoue vigorous development in reeent
years (McCullagh & Nelder, 1983). Cox (1981) examined models with overdispersion proportional to the
varitee of the observations, while Breslow (1984), Morton (1987), Lawless (1987) and Dean & Lawless
(1989) considered negative binomial type variance structures whiclt arise as a compound Poisson distribution.
The compound Poisson-normal and Poisson-Inverse-Gaussian cases have been considered by Hinde {1982)
and Dean et al. (1989) respectively, while Brillinger & Preisler (1983) examined arbitvary compownd Poisson
distribntions. Nested randour effects models for count data have been studied by Morton (1987) using quasi-
likelihiood methods, and have been extended to the exponential family by Anderson & Hinde (1988} eniploying
full likelibood methods and the EM algorithm. Zeger et al. (1988) cousidered a similar problem, but with
random effects associated with measured covariates. Autocorelation lhias been incorporated into wodals for a
single series of count data by Zeger (1988) and Zeger & Qaqish (1988).

In this paper we focus on regression models for parallel thne series of count data. Such duta arise in the study
of the eflects of ambient air pollution on daily hospital adinission rates for respiratory illuesses (Bates and
Sizto, 1987). Since a number of hospitals arc usually examined, several tme series of the nuiber of daily
adimissions will be available for analysis. Since hospital records are maintained historvically for many years,
we consider estimation procedures which are applicable with long time series. A full likelthood approacl
to paramcter estimation usually requires nunterical integration or assnmptions concerning the magnitade of
the overdispersion (Zeger et al,, 1988). For long thme scries, nunierical integration can be cotputalionally
burdensonie. However, Zeger (1988) considered a single time series of counts and employed an estinading
cquation approach to estimating hoth regression and overdispersion paraeters. No limitations on the degree
of overdispersion are needed and the niethod does not require the use of muunerical integration. In this paper,
we extend tlis method to the case of multiple tinie series.

2. MODEL DEFINITION

Let g, denote the observation on the 1™ occasion from the ™ scries (t=1,...,0, i =1,....,N). Although

we will assnme that the observations are cqually spaced in time, missing data can be accommnadated in
the analysis. Let x5 be a (p x 1) vector of covartates with an associatod vector of regression parvanetors
B={p,... ,ﬂ,,)"hl Further, let €;¢ be a strictly positive random variable with unit expectation, aud covariance
given by -

Covlews €iute) = dpes (21)

where ¢ > 0 and [pe] < 1 vepresents the lag € =1,2...., & < max{5n;} antocorrelation. Let 3 represent the
random effect for the @™ series with unit expectation and variance 7 > 0, independent of €. Following Zeger
(1988), we assume that the conditional expectation and variance of the observations are defined by

E(yidlm, €ie) = Var(yidm, €a) =ni € Ai, (2.2)

where A, = exp (x?;[}) The conditional covariance between any two observations within the same series is
assumed to be zero. The mcan, variance and covariauce between two observations within the saue series,
given 7, are then
E (yaelni) = nidie
Var (aelni) = nidee + 9223, and (2:3))
Cov (yues yinselni) = dpent Xa e
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The nuconditional mean, variance and covariance are given by
E(yir) = Aig
Var (yie) = Mic 4+ (7 + ¢lr + 1)) A2, and (2.4)
Cov (yat, yiese) = (T 4+ S[7 + Upe) Mt Mese.
The variance-covariance matrix for the i*™ time serics is
Cov(Yi) = Ai + AiRi(a)A; = V;, (2.%)
where Y = (yir,. .. ,y,*,h.)T, Aj= diag (Aj),..., \,), a = (o7, Pty o, p1) and
Ri(a) = 7, + ¢(r + 1)8. (2.6)

Here, Jiis o (n, x 1;) matrix of ones and ; is (n; x n;) correlation matrix with entries on the ¢ diagonal
given by pe. Our objective is to estimate the regression parameters 7 and the overdispersion parameters a.

3. PARAMETER ESTIMATION

Since uo assumptions have been made concerning the distribution of the conditional observations or e
wixing random variables € and n;, a likelilood approach to cstimation is not possible. However, since the
first. two moments of the observations have been defined, estimatiug cquations for repeated mncasures data

may be used (Liang & Zeger, 1986).
Given a N'/? consistent estimate & of a, the estimate 8 of the regression vector B satisfies the cstimating
equation

U(Bla) = 3 DyB)V B, &) (Y. - M(B)) =0, (3.1)

where Dy(B) = dX /98 = A X, with A, = (A,-,,...,,\,-,,'.)T and X, = (r,,,...,:r,—,,..)-l.. The estimate 3 is
detenuined by an iterative procedure (Liang & Zeger, 1986). Given the cwrent estimate B of 3 and &'t
of o, the updated estimate U+ is given by

e - A =1 o
U+ — g 4 g (;3“",&“") U (ﬂ""]d”“) (3.2)
where
N g
H=-E@U/p)=> D/V{'D. (3.3)
=)

Momeut estimates of ¢ aud pe are determined by noting that ¢ represents overdisperion of the observations
within a given scries and pe represents the lag € autocorrelation. A consistent estimator {(ni — o0) of the

"

average conditional variance Y Val'(yulr).-)/n,- in the " scries is
t=i

"

)
b= (wie = k) /mi (3.4)
t=1
where Ay = (:xp(x:"'[?) and
", n; =
ih, = (L y..) (Z ,\,,> (3.8)
t=1 =1

is a consistent estitnator of 1;. It follows from (2.3) that a consistent estimator ¢ of ¢, as N — oo, is given by

% "-‘l [(Uu = fh‘;\u)z = 77.‘:\.'1] |

(3.0)

An estimate for pe is obtained by equating a moment estimate of the lag € autocorrelation to it’s expectation,
given 1, which is derived from (2.3), yielding
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Zx (y,, 7]./\,,) (1/‘ t—f — 7;,1\, =k ) ]
. N — (3.7)
¢ § N2 it N e

t=¢4

for € = 1,...,k The correlation parameters of an autogressive process are estimated from the je by the
Yule-Walker equations (Zeger, 1988). For a first order autoregressive process, the corrclation paramcter is
estimated by the lag one autocorrelation py.

Finally, a mowment estimate of 7 is obtained by equating the mowment estimate of the wiconditional varinnee
to it’s expectation, yielding

E iﬁ [(Uit = :\u)z — Nt (1 + 43:\1'1)]
7 _ i=l= . _ (3.8)
(#+1) ; gy

The estimation procedure is completed by updating estimates of 3, given by (3.2), and a, given by (3.6)-(3.8)
N s . -1
until convergence. The estimated covariance matrix of 8 is Cov (,6) =M (,8,&) . Note that the covarinnee

of B does not depend on thie variance of & due to the independence of the unconditional expectation A;, and
the overdispersion paramcters e,

Since only the first two moments of 7; or €, have been specified, estimates of the crvor in & are not, in
general, available. However, the focus of our analysis is on the regression parameters 8, with overdispersion

treated as a nuisance factor. We suggest a sensitivity analysis on Cov(ﬂ) with respect to the fonn of «

as o neans of selecting an appropriate overdispersion model. For example, setting v = 0 indicates that the
parallel series way be considered as a single aggregate time series. If p = 0, then the observations will not
display an autoregressive error structure. If 7 = p = 0 and ¢ > 0, then the data represent a single series of
uncorrelated overdispersed counts. Other approaches to detecting overdispersion in a single series of counts
have been discussed by Dean et al. (1989).

4. ESTIMATION FOR LONG TIME SERIES

In many applications, long time series are obtained. Our methods require the repeated inversion of the
varianee-covariance matrix Vi which, for protracted series, can be computationally burdensome. We cir-
cumnvent this problem by employing a working covariance matrix which can be algebraically inverted wlien
estimating @ by (3.2). The dispersion matrix of the vector of regression paraineter estimates is then calenlated
using the actual covariance. This approach has been employed for a single series of counts by Zeper (1988).
Consider first an approximation V; to V, whicli has the form

V, = AA + AN, (4.1)

where A, = diag {(Mp + d(r + I)\Zl)'/"' ooy (Aing + B+ 1A )2) Note that V., has the same dingonal
clements as V. Sctting G; = A 4A;, it follows from the binonsial inverse theorem for matrices {Ruo, 1973,
. 33) that

Vot =Gt [I-maaT6 (14 maT6 ) ™ (4.2)

where G = ;\lef]Kf]. For an autoregressive autocorrelation structure, ﬂi_l may be determined ex-
plicitly (Zeger 1088). The estimated covariance of the regression parameter estimates employiug the working
covariance is given by

N ~ ~ -~

Cov(@)=H"' Y DIVIV,vi'D, | 0™ (4.3)

i=)

where I = 32 D!if.'" D,. This form of the covariance does not require V, to he inverted.
=]

For very long time series, much over 100 observations, we suggest an even simpler forn for the working
covartance. Setting a = 0 leads to a working covariance given by Aj;, which is easily inverted. Further, sinee
the estimate of @ does not depend on « in this situation, joint iteration between the estimates of 8 and a is
ot required.
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5. DISCUSSION

Regression models for parallel time series of counts have been described. These models arise i studies of the
licalth effects of ambient air pollution, currently undertaken within the Health Protection Branch. Heve, the
daily munber of respiratory hospital admissions for several hospitals is associated with daily levels of ambicut
ate pollution monitored in the proximity of each hospital. Three sources of overdispersion are cousidered:
between hiospital variation in adinission rates; within liospital overdispersion; and time dependeut correlation.

Overdispersion is modeled by a randoin effects ixing processes under the assumption that given the random
effects, the conditional expectation is equal to the conditional variance. Since only the first two mwoments of
the conditional obscrvations are defined, estimating equation methods are used to estimate both the regres-
sion and overdispersion paranieters. Counsistent estimates of the parameters are obtained and a consistoeut
estimate of the variance of the regression parameters is also derived. However, estimates of the varianee of
the overdispersion parameters are not available due to the lack of further information on the higher moments.
Nonetheless, if the focus of the analysis is on the regression parameters, and overdispersion is considered as
a nisanee factor, then this limitation is not critical in practice.
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ANALYSIS OF CROSS-CLASSIFIED CATEGORICAL TIME SERIES
A.C. Singh and G.R. Roberts*
ABSTRACT

A parameter-driven framework for defining generalized linear models for time series data is proposed. The
time dependent structure of the cross-seectional parameters is specified through state space models. For this
purpose, cross-sectionally consistent estimates of model parameters are utilized. A modification of the Kalman
filter, in which the observation vector is suitably transformed, is used in defining the recursive equations for
prediction and updating. Application of the proposed method to cross-classified categorical time series of
counts is illustrated for the problem of predicting cancer mortality.

KEY WORDS: State space models; Generalized linear models; Kalman filter.
1. INTRODUCTION

The problem of modelling and projecting cross-classified categorical time series is quite common for purposes
of planning and poliey decisions. The data are generally in the form of a fairly long series of multi-way tables
of eounts based on a large number of observations collected at regular time intervals. For instance, the
Canadian cancer mortality data series represent annual counts for each provinee cross-classified by eancer site,
age and sex; see section 5 for an example. The mortality series are derived from administrative sources with a
lag of approximately two years before the data are published. The problem of timeliness has been of major
concern among users and researchers and clearly, it would be very useful to project such data series at least up
to the current year before their publication. For this purpose, the underlying nature of the data could be
considered stochastie (Brillinger, 1986) in spite of their origin from administrative sources. It is then
reasonable to assume that there is serial dependence in the series due to certain (known and unknown) common
factors. If the data were normal then various familiar time series methods could be employed, see for example
the well-known texts by Box and Jenkins (1970), Fuller (1976) and Harvey (1981). However, for non-normal such
as Poisson data arising from cancer mortality counts, alternative time series methods should be considered.

There exists considerable research work in analysing non-normal data collected over time. In particular, for
repeated categorical outcomes, Koeh, Landis, Freeman, Freeman, and Lehnen (1977) use generalized least
squares to fit non-linear models in which time is deemed as another classifying factor. The work due to
Stiratelli, Laird, and Ware (1984) describes a family of mixed models appropriate for repeated dichotomons
responses in which certain assumptions are made about covariance struetures. Zeger, Liang, and Self (1985), on
the other hand, consider logistic regression models for repeated binary observations under a simple first order
auto-regressive time dependence. Methods for modelling ordered categorical outcomes over time are
considered by Stram, Wei, and Ware (1988) in which model parameters are assumed to be specific to each
occasion or time point and are estimated by maximizing the occasion-specific likelihoods. The joint asymptotic
normality of these occasion-specific estimates is used to characlerize dependence among repeated
observations. The work of Morton (1987) and Preisler (1989) deal with fitting generalized linear models with
random effects nested within random day/time effects. The above papers, however, are not concerned with the
problem of projection considered in this article.

The time series approaches to non-normal data, can be classified into two types following Cox (1981), namely,
observation driven and parameter driven models. Some methods belonging to the former type are due to
Kalbfleiseh and Lawless (1984, 1985) and Kaufmann (1987) in which Markov models for regression (or transition
probabilities) with categorical outecomes are considered; see also Zeger and Qagish (1988) for a quasi-likelihood
approach to Markov regression models for general time series. Another method was recently proposed by Smith
and Brunsdon (1989) in which approximate normality is assumed after the multivariate additive-logistie
transformation for multinomial data is effeeted and then ARMA models are employed. Some inethods belonging
to the latter type, i.e. parameter-driven models, are due to West, Harrison, and Migon (1985) with a Bayesian
set up for dynamic extension of generalized linear models, Kitagawa (1987) for a non-normal state space
approach in which non-normal densities at each step of the Kalman filter are numerically evaluated, Zeger
(1988) with an estimating equation approach where auto-correlation is introduced via a random mixing process,
and recently Harvey and Fernandes (1989) with a non-Bayesian state space modelling although conjugate priors
are used to specify transition equations.

The above time series methods for non-normal data were developed for univariate data or unidimensional data
in the categorical case. While it may be possible to extend these methods to multivariate (or multidimensional)
data, the resulting computational requirements seem quite complex. In this article, we propose a simpler
alternative when both the number (nt) of observations at each time point and the total number (T) of time
points are reasonably large. Even if T is not large, the estimates of model parameters remain consistent (for ng
large) under fairly mild conditions. The proposed model is termed a state space generalized linear model

! A.C. Singh and G.R. Roberts, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada
K1A OTé6
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(SSGLM) in which the technique of Kalman filtering is modified to suit non-normal and non-linear modelling.
The modified Kalman filter used in SSGLM is related to the generalized Kalman filter of Zehnwirth (1988) when
the link funetion of SSGLM is identity. The condition ny large allows for linearization" of the problem in
order to employ the familiar state space linear model methods. This aspect is similar to the trans{ormation
idea of Smith and Brunsdon (1989). Also, having nt large provides consistent cross-sectional parameter
estimates which can be conveniently used to specify serial dependence among observations through the
transition equation in the state space modelling. This aspect is somewhat related to the approach used in
Stram, Wei, and Ware (1988).

Soine preliminaries including notation and motivation are first given in section 2. It is seen that the SSGLM
formulation arises almost naturally for our problem. In section 3, the proposed method SSGLM is defined within
a general set of assumptions similar to those in GLM. Some theoretical resuits are given in section 4 followed
by an illustrative numerical example on projecting cancer mortality data series in section 5. Finally, section 6
contains discussion and suggested directions for future work.

2. PRELIMINARIES

Let Ye denote the nt—vector of observations at time t, t = 1,2 ... T. If the nt observations are grouped or
cross-classified according to some covariates into m domains or groups of interest, then Y will also be used to

denote the m-vector of estimates, e.g. counts, proportions, or means. It will be assumed that the elements of
the vector Yy for the ungrouped case are independent. However, for the grouped case, they could be dependent.

In the follo;ving, both n, and T will be assumed to be large. Symbols " " and ":" will be used to denote terms

"distributed as" and "asymptotically distributed as" respectively. In the interest of a general framework, we
shall work only with the second moment assumptions, i.e. distributions will be specified in the wide sense (WS)
only. Suppose

and
Y= (¥ --es ¥7) 7OWS (1y 2), (2.1b)

where Et is assumed to be nonsingular and may vary with Mg Also, @ will not, in general, be block diagonal due
to serial dependence in the time series of vector observations )-lt’ t=1, ... T. Note that if the nt observations
are not grouped, then Iy would be a diagonal matrix due to the assumed independence of observations. The
problem of interest is to predict Ye for t>T. For this purpose, a suitable model forp as a function of a

parsimonious set of parameters 8 is required such that u's are as close as possible to y's.

First we define certain notation and terms from Linear Models (LM}, Generalized Linear Models (GLM), State
Space Linear Models (SSLM)}, and Random Coefficient Regression (RCR) models. These will be useful in
motivating the proposed method described in the next section.

2.1 WLS (Weighted Least Squares) Method from LM Theory

For the cross-section at time t, consider the linear predictor or the model Hlt: by = Ft E_)t, where Qt is a
r-vector of fixed effects (r<m for the grouped data case), and Ft is a known covariate (or incidence) matrix.
Further assumez that z, is constant i.e. does not vary with By and is approximately known for large n,. The opt-
imal estimate gt of 8t in the Gauss-Markov sense given by the WLS method is obtained as a solution of

-1
Ft Iy (‘Zt ~ Et) = 0, (2.2a)
which implies that

t Iy Hee (2.2b)

The asymptotic distribution of -§~t up to terms of order n;l as N+ is obtained under a suitable CLT as

2 Y-l -1
By * N, (gt, (Ft Iy Ft) ). (2.3)
If Cov()_lt) is known only up to a constant multiple o€ of Ly the optimal estimator (2.2b) does not change, but
the covariance (2.3) is multiplied by the factor 02, the overdispersion parameter.
2.2 IWLS (Iterative Weighted Least Squares) Method from GLM Theory

We next consider the generalization of LM theory to GLM in which Ly is allowed to vary with My in a known
manner and Bt can be a non-linear monotone differentiable function of gt, termed the inverse-link function.

The form of the variance-mean relation is motivated from an exponential family distribution which is analogous
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to the assumption of constant varianece motivated from normal distributions. Estimation of 8¢ for GLM can be
carried out by the following method.

Here as before consider t fixed. The linear predictor after transformation through the link function is specified
by the model H?t: g(gt) = Ft 04 where By is again a r-vector of fixed effeets, Ft is a known matrix of
covariates and g is the link function. Furthermore, the covariance matrix ):t (Et) of Yy is assumed 1o be a
known function of My An asymptotically optimal (in the extended Gauss-Markov sense, McCullagh, 1983)
estimate 'g't of gt is given by the solution of the following quasi-llkelihood score equation (McCullagh and

Nelder, 1989, Ch. 9):

-1
D, 5y (Y - ) =0, (2.4)

'
where Z, being a funetion of uy depends on 8, and Dt is the N Xr matrix (dgt/dgt). For the grouped case, Dt
would be a mxr matrix. The equation (2.4) can be solved by IWLS based on the Newton-Raphson procedure. For

this purpose, first an adjusted dependent variable g§1) is defined for each iteration i, i=1, 2 ... as follows.

(i) _ (i-1) \
2p 0 =g (dagdey) (- 1 -3
8, =8 R
-t =t
where Ny = g(gt), and Eﬁo) is set equal to Zt' Some ad hoc modification to ¥y may be required if DiO) is not
well defined. Now for each iteration i, a WLS estimate 9&1) is  obtained using  the working model
E (51(:1)) = 551) = th§1) along with the working covariance of g,ﬁ” given by
e{1) - (dn, /dy.) = (dn /du.)| I : (2.6)
t ) A= A A DS A o g _8(1—1)' |

#* = B

The above process is repeated until convergence. Denoting by éi the converged solution, 2y the corresponding
variable from (2.5), and Ty the corresponding matrix from (2.6), we have as n

o,
]

it
~C S | -1
Qt 4 Nl‘ (gt ’ (Dt xt Dt) 1 (2.7)
and
Zt : WS (ﬂt ' rt)s (2.8)

where (2.7) is valid under a suitable CLT. Note that the length of Z increases with n, in the ungrouped case in

which the asymptotic distribution in (2.8) should be interpreted in terms of all finite dimensional marginals of
Z;. The above equations (2.7) and (2.8) are GLM analogues of (2.3) and (2.1) respectively in the sense that

P T P e |
(Dt Zt Dt) - (Ft rt Ft) L} (2-9)
because 1 v v 1 '
Dt = (dgt/dﬂt) = (dEt/th) (dgt/dgt) = (dEt/th) Ft’ (2.10a)
and
ry! - (dyy / dny) 3" (du, / dny)- (2.10b)

Moreover, the estimate §(t: does not change in the presence of overdispersion parameter 02 i.e. when COV(-YL) is

02 L‘t (Et). The asymptotic variance of §(t: in (2.7), however, changes by a multiplicative factor of 02.

Whenever the observation Y¢ provides a consistent estimator of By (this, for example, would be the case if the
Ny observations were grouped into m cells), then an alternative one-step estimator g; can be used following the
GSK methodology of Grizzle, Starmer, and Koch (1969). In other words, iteration is stopped after only one
cycle and not continued until convergence. The estimator 9; can be shown to be asymptotically equivalent to
§E However, the estimator §<t: would be preferable from finite sample considerations since Ly (Et(;O)) may be

unstable due to presence of cells with possibly small number of observations. It may be of interest to note that
*

when H2t is a saturated model for grouped data case i.e. when r = m, then the two estimators §C 8

tandg
1
9(y)-

coincide with each other and are equal to 9§0) or FE
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2.3 FWLS (Filtered Weighted Least Squares) method from SSLM theory

We now consider the generalization of LM theory to SSLM (state space linear models) in order to allow for
serial dependence. In SSLM (see e.g. Harvey, 1981, chapter 4, and Harvey, 1984), the serial dependence is
introduced via randomly varying parameters gt, t=1, ..., T, which are connected by state space models. For
the problem considered in this article in which both r\,C and T are assumed to be large, it seems natural as well
as convenient to attempt modelling y, contemporaneously for cross-sectional behaviour and then model the
underlying parameters 84 temporally for longitudinal behaviour as in state space modelling, i.e. the model is

specified by two equations. In this subsection, estimation methods for SSLM are briefly summarized. Unlike
GLM, variance is not allowed to vary with mean, and only the identity link function is used. However, the
method proposed in the next section generalizes SSLM in the same way as GLM extends LM in order to provide
a suitable method for the problem described earlier in the introduction,

Unlike the previous two subsections, we consider both cross-sectional and longitudinal data together, i.e., the
time series of vector observations Yi» k=1, ... T. The vector Yy a8 mentioned earlier, is either a nt-vector for

ungrouped data or a m-vector for the grouped case. Two equations are used for modeclling in SSLM, see e.g.
Zehnwirth (1988). First, for cross-sectional behaviour, the measurement equation is defined as

%= B * o e

where Ft is a known matrix of covariates, gt is a r-vector of random parameters termed the state vector, and

the distribution of random errors €y UP to second moments is

=0 for t#s. (2.12)

€4l ~ wS(O,Vt), COV(Et* e l®

t %)
The covariance matrix Vt does not depend on gt and is assumed to be known for every t. Next, for longitudinal
behaviour, the transition equation is defined as

&6 ke * Bp e

where Gt is a known rxr transition matrix, and the errors gy are specified by

&y " w5(o,wt), Cov(gt, §S) = 0, s#t, and
Cov(gy, eg18 ) = 0 for all s,t; Cov(g,,0.) = O for t>s. (2.13b)

The covariance matrix wt is also assumed to be known. It may be noted that the Markov-type assumption in the

transition equation (2.13) is made for the purpose of recursive estimation and is not required for optimality
considerations.

The model defined by (2.11) and (2.13) is completely specified except for the distribution of the initial state
vector 9. Here we shall not consider the usual initialization methods as described in Harvey (1981, Ch. 4) and

Harvey~and Peters (1984), which is then followed by the optimal estimation of parameters 8y» §2’ seey 8

successively by the Kalman filter (KF). Instead, we shall first consider a reduced form of (2.11) and (2.13) into
a single equation containing only one parameter vector 81 and then a suitable method of estimating ot which

will be needed for predicting Yt for t>T. This approa.ch will be useful in relating SSLM to LM and GLM
described earlier.

Conditional on o1 the model (2.11) and {2.13) can be written as a LM for y = (yi, . )ﬁ)' as in Harvey and

et . ]
Peters (1984). Writing gl, vy ?«T-l in terms of QT and £1'S, we get
* *

y = FT gT + ET' (2.14)
where F is a known T*«r matrix of fixed values (the order T* will be mT for the grouped data case and n, + ..
+ Ny for ungrouped data), and £y is a new T*x1 error vector with mean zero and covariance matrix QT' The
matrix a7 can be completely specified in terms of the known matrices Vt’ Nt, Ft and Gt' Note that the

model (2.14) could have been written conditional on gt at any particular point in time t=1. Now gT can be

estimated optimally using WLS as in LM by the expression

~L N LR B SO [ L |
o ‘= (R )V oA (2.15)

where L stands for the longitudinal data used in estimation.
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The above expression involves inversion ofﬂT which would generally have a large dimension; therefore,

computational difficulty could arise. One can, however, easily evaluate the above WLS estimate using a KF
with a flat prior for the initial state vector because the recursive estimates so obtained are BLUPs (best linear
unbiased predictors) or MMSLUEs (minimum mean square linear unbiased estimates); see Harvey (1981, p. 105)
and Zehnwirth (1988). A suitable modification to the distribution of the initial state vector will be required if
some of the elements in the initial state are stationary, see Harvey and Peters (1984). The recursive algorithm

for KF which provides BLUP ézlt-l of gt given V1o v Yio1 and the updated prediector 5'{ given Yis e gt for
every t32, is given by b - -

P - L
Stit-1 = B¢ 8y (2.168)
L _ P P

B = Bppper * Kelyp - Fy Biypoy)s (2.16b)
Ke = Agpeg Fr (Fp Agppgfy + V)7
= " .

t: tit-1 "t YVt Ttit-1't ic (2.16¢)

I

TS SE R (2.16d)

Ap = (1= KeFed Ay (2.16e)

where At |t-1 's the unconditional error covariance matrix of @il t-1 i.e. its MSE, and At = At 't i.e. the MSE of

-1 -1

§t . It can be seen that the values of §'i and A, for starting off the KF (2.16) are §(1: and (F1 Vit Fy )
respectively where §g is the cross-sectional WLS estimate (2.2) for fixed By with Ly replaced by Vl' The matrix

Kt is the Kalman gain at time t. The above algorithm also gives recursively the wide sense distributions of
@t - gt), t=1, ... Tinthe process of computing §|T‘ That is for t=1, ... T.

«l
8y -8 - WS(0, At)' (2.17)

In analogy with the IWLS method used for caleulating QE for GLM, the above method of computing ﬁt for SSLM

by WLS via Kalman filtering will be referred to in this article as the FWLS method, in order to highlight its
relationship with the usual WLS method for LM.

The Kalman filter, in addition to providing various BLUPs, also gives a simple method of ecalculating error sum
of squares for the model (2.14) or (2.11) and (2.13) by means of the one-step ahead prediction residuals

| = EZ, t-1 and their MSEs. [t follows from the equivalence result (B.2) proved in Harvey and Peters (1984)
that for any given t=1,

wosLv ] #0oSl (T -p 1 -p
=y B 0 @5, 8=l W - G Biea B - Byl i
where for t»2,
-p _ -p . '
Ytie-1 = Fe Stie-10 Bryeor = Fe Aear Fe v W .13

and yllJIO and Bllo are set equal to Fl §§ and V1 respectively. The above result is analogous to the
equivalence of SSE from the usual least squares for LM and the sum of squares of one-step ahead prediction
residuals obtained from the recursive least squares method.

Finally, it can be easily seen from (2.16) that if the model covariance matrices Vt and wt are only specified up
to a multiplicative overdispersion parameter 0%, the estimates E'; and §|1' do not change except for the
multiplicative adjustment in their MSE by a factor of az.

In the next section, we propose SSGLM - state space generalized linear models as an extension of SSLM. Notice
that in the GLM extension to LM, the model was linearized by transforming from Xp to 2y via IWLS. Thus, it is
natural to define SSGLM by applying SSLM on the transformed series {gt} i.e. the FWLS algorithm s

administered on {gt}. In other words, both filtering and iterative steps are required in order to obtain WLS
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estimates in SSGLM. This leads to the algorithm FIWLS for the proposed method. It may be noted that this
algorithm is somewhat similar to the IWFLS (Iteratively Weighted and Filtered Least Squares) algorithm of
Zeger (1988) which was introduced for a different purpose and does not use the recursive Kalman filter. In
using FIWLS, we first need to specify the error covariance matrices vt(Et(gt)) and Nt. For large Ner the matrix

Vt can be reasonally well approximated by Vt(gt(ég)) where E:)g is a consistent estimate of 8y similar to the one
given in (2.7). As regards Nt, if we can assume that it is time-invariant i.e. Nt =W, then for T large a consistent
estimate can be constructed by using a method parallel to the one employed in RCR models of Swamy {1970).
This is described in the following subsection.

2.4 Specification of the covariance matrix Ht under the time-invariance assumption

A consistent estimate W can be defined under the assumption Nt = W when Ny and T both are large. In

regression models with random coefficients proposed in econometries for cross-sectional data, Swamy (1970)
used least squares regression estimates Bi's from several groups (or clusters) to estimate variance of the

random regression component By see also Pfeffermann and Nathan (1981). Although the problem of prediction
in time series is quite different from the problem of estimating the underlying 8 (or some function of 85 's), the
consistent cross-sectional estimates {5%, t=1, ... T} can be used in a similar manner to estimate W. In Swamy's
(1970) method, a bias corrected variance estimate is obtained. The unbiasedness property in our framework
would correspond to asymptotic unbiasedness for ny large. The estimate W can be defined as follows.

For t;2, let

A~ aC ¢

Bt = ?t - Gt ?t-l (2.20a)

R, = (T-1)"F 31 EI(3,- 8,) (8, - 8,)'] (2.200)
1 t=2 2t B8 SR T AR .

R, = (T-l)'1 XT E l8, (8, - 8,)'] (2.20¢)
2 t=2 © 1Bt By — Bl by 3

and define two estimators W and W given by

~ R T - 2
Hoe (=07 B, aay

x

"
)
1
Pl

)
x

t
x—

1Ro~R5. (2.20d)
We have E(W) = W + R +R*R,, E(W) = W (2.21)

Therefore, bias in W is given by R1+R2+R'2. Notice that the term R2 is not zero because E(@tlgt. gt-l) is not,

in general, equal to gt. The bias corrected estimate I:l of (2.20d) with suitable estimates of Ri 's is analogous to
Swamy's (1970) variance estimate. However, the bias term R1+R2+Ré would be negligible for large ny when the
mean and covariance of gt conditional on (gt, gt-l) coincide in limit with those of the asymptofic distribution.
The necessary regularity conditions for this to hold will be assumed in this article and therefore W = would be
(approximately) unbiased. ’I:hus, for l:arge ny, we can omit bias correction and use onlyﬁ to estimate W. It may
be noted that the estimate W, unlike W, is always non-negative definite which is, of course, desirable in practice.

However unless T is large, W will not be consistent for W. It will be seen later in section 4 that this kind of
misspecification of W when T is not large, does not affect the consistency of parameters estimates of the
SSGLM predictor under fairly mild conditions.

3. THE PROPOSED METHOD — SSGLM

3.1 Definition The state space generalized linear model (SSGLM) can be defined in terms of the following two

equations.
(i) Cross-sectional Behaviour: For each t=1, ..., T,
.!t N ‘_-_'t + Et’ (3.18)
ny = g(gt) = Ft Or (3.1b)

where Etlgt"wS(O,Vt(Et)), Cov(gt. Eslgt'gs) =0 fort#s,andg is a monotone differentiable link
function.
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(ii) Longitudinal Behaviour: For t=2, oo | [

8, = G

8= % fpm ¥ M (3.2)

where £y T WS(U,Nt) along with the usual conditions as given earlier by (2.14).
The two main differences between this formulation and that of SSLM given by (2.11) and (2.13) are that the

covariance matrix Vt depends on the mean vector ¥t and hence on the state vector 840 and that the link

funetion is not necessarily the identity. In fitting SSGLM to time series data, it will generally be assumed that
both ny and T are large. The choice of the design matrices Ft's can be guided by cross-sectional analyses

and that of the Gt' s by analysing the temporal pattern in the series of cross-sectional estimates {gg} The

covariance matrix Wt, if not known apriori, could be estimated by W under the assumption of time-invariance
as described in the subsection 2.4. It should also be noted that the above formulation could be obviously

extended to allow for the overdispersion parameter 02 as was the case with SSLM discussed earlier in sub-
section 2.3. For fitting SSGLM, we propose the following algorithm for estimation of model parameters.

3.2 Estimation Algorithm — FIWLS

The filtered and iterative weighted least squares (FIWLS) algorithm for estimating (or predicting) o1 consists
of two stages, each requring a series of iterative steps. B

Stage I: Linearization for state space formulation

First transform Yt to 2y for each t=1, ..., T asin(2.5). Now for ny large, an approximate SSLM
framework for {gt} series can be defined as

zZp = Fpoop + 6, (3.3a)

8y = Gy 841 * &4 (3.3b)

where 8¢ 2 WS(0, UL(8)))s £y = WS(O.M,), (3.48)
Uglag) = (dny/dug) Vy (uy) (dn /dyp) b (3.4

The error vectors §t’ t_;t satisfy the usual conditions given earlier for the definition of SSLM in the
subsection 2.3.

Stage ll: Kalman Filtering for obtaining eL
i

The BLUP Q]L. (only approximate in view of the linearization in stage l) of 6. based on Zys e 27 can be

computed in the same way as 8r was obtained from the KF given in (2.16). The appropriate modifications of

(2.16) are obtained by replacing gt, Vt and Atlt-l by gt. Ut: and Ctlt-l respectively. The KF is started

off by éli and Cl where é% is the cross-sectional WLS estimate 9 as in (2.7) for fixed 81 when U1 is substituted

1
for Ip» and C1 is (F1 Uil Fl)-l. As mentioned earlier in the introduction the GKF (Generalized Kalman
Filter) proposed by Zehnwirth (1988) for state-dependent observation variance and identity link function is
related to the above KF for the model defined by (3.3) and (3.4) in the sense that Zehnwirth uses

U(= Ee Ut(gt)) and not Ut(ég) in defining KF. This essentially amounts to approximating U by the expression

inside the expection. U would generally be computationally intractable for non-linear link function g.

However, if U were available, it should be preferable in the interest of optimality. We can also calculate the
error sum of squares for the model (3.3), analogous to the expression (2.18), as a by-product of Kalman filtering
as follows:
_ 7 ~p ' -1 °p
SSE = Dep®p < 2 i) O nen @ - ) (3.5)

where g?,o and 0110 are defined as F1 é(l: and Ul(ég) respectively and Dtlt-—l as in (2.18) with A

replaced by C and V by U. From SSE, an estimate of the overdispersion parameter 02 can be oblained as
SSE/DF where DF denotes the appropriate degrees of freedom. After fitting the model, we next consider some
methods for model checking.
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3.3 Diagnoslics

Let the data be available up to time T+T'. Suppose data for the first T (chosen arbit-rarily) points are used
for model fitting. We shall refer to diagnostics based on these points as "within sample" and those based on
time points T+l, ..., T+T' as "post sample". The following tools can be used for checking fit of the model,
see e.g. Harvey (1984), Harvey and Durbin (1986), and Harvey and Fernandes (1989).

3.3.1 Within Sample Diagnostics

(a) Let it denote the standardized one-step ahead prediction residual corresponding to the ith element of
vector Zy at time t. These residuals for each i, can be plotted against time and against Z?tlt—l and
examined for randomness.

(b) Check whether the sample variance of the residuals {rit: t=2, ..., T} foreach i is close to one. A
value greater than one indicates overdispersion relative to the model being fitted (Harvey and Fernandes,
1989).

{c) Following Harvey (1984), first a naive model is chosen as a yardstick which is defined by
2
9(yy) = 9lyy_) + 8+ 24y &y " WS(0, o71), (3.6)

where g is the link funetion defined by (3.1b) and 8 is a constant drift parameter. Next, the root mean square
of the one-step ahead prediction errors within sample for grouped data case is computed as

RMSEMy = [[3p(vy = ¥y iey) (g - Vg g/ OCT-D)-kg) 1 (3.2)

where yftlt-l is g-l(g(gt_l) + é) 3 é denotes the average of the first differences of g(zt)'s, and k0 denotes
the length of 8 in the model (3.6). Similarly, for the model of interest defined by (3.3) and (3.4), we compute

RMSEW, = (T _plyg - Yo ypp) (g - Yppp )/ (CT-1) - k)12, 3.8)

where k1 is the number of fixed parameters estimated in order to apply the linear predictor. For the

ungrouped data case, the denominators in (3.7) and (3.8) are suitably modified. If RMSEW1 is more than
RMSEWO, then clearly the model is not worth pursuing.

3.3.2 Post-sample Diagnostics

(a) Post-sample predictive tests for the grouped data case can be defined. See the next section for their
asymptotic justification when Ny and T are large. With t-step ahead predictions 2¥+ T defined below
m the subsection 3.4, a chi-square test for lack of fit of the model is given by rejecting for large values of
X (referred to a X; distribution) where for =1, =% T 7

3

P -p (3.9)
(Zrer = 2ot Oaiq Cras = Fpeart)

4=
T

(b) Cross-validation errors can be computed for both the naive model and the model of interest and examined
for the extent of improvement. For t-step ahead predictions, cross-validation errors for the grouped data
case can be defined by the root mean square of t-step ahead prediction errors for the post-sample as

T'-1

— _P I P
RMSEPq (1) = IJZO (¥T+T+j - ZT+1+jIT+j) (¥T+1+J It jiT4j

) /m(T -c+1)]? (3.10)
where QFT’+r+jIT+j are predietions for the naive model. Similarly, RMSEPl(r) for the model of interest can be

defined using the untransformed vectors y, and their predictors. The denominator in (3.10) in the case of
ungrouped data can be modified in an obvious manner.

3.4 Prediction and Smoothing

Predictions for the post sample period are needed for diagnostic purposes and if the model is deemed adequate,
then predictions for future observations and their associated MSE's (mean square error) would generally be
required. For this purpose, the updating equations of the KF are simply bypassed, and the BLUP of 8, T
periods ahead, is first obtained recursively as

"P ”P

-T+r|T GTH ~T+-11T° el
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and its MSE as CT+1|T = GT+I cT+r—1|T GT+r + NT+1 (3.12)

Note that for predicting at t>T+T', all the data up to T+T' time points should be used by refitting the model.
Now, the predictor of 2140 is obtained as

~p . ~p
Bie il F FT+r - ey B (3.13)
and the corresponding MSE is
]
EReii ™ g Craa 1T Free * Upyy - (3.14)

~p . ~C 7 ;
Here UT+T can be evaluated at §T+1|T' the t-step ahead predictor of 9T+r whenever §T+1 is not available,

For the untransformed Yy the ;fThIT is obtained as g_l(g.F;.+T IT) and the MSE for y —;‘-)ThIT is

approximately given by (dgt/dg't) DT+r|T (dgt/dg't)'.

The smoothed predictors of 8y or ¥y, for any point t<T given all the observations Yp» wes Yp can be carried
out using the algorithm given in Harvey (1981, p. 115) or a fast algorithm due to Kohn and Ansley (1989).

4. SOME THEORETICAL RESULTS

Suppose ny is large for each t so that U ( t) s do provide approximate covariance matrices for zt S
conditional on et's. The covariance matrix Nt is assumed known for propositions 4.1 and 4.2. In proposition
4.3, however, we investigate the effect of misspecified W on the estimates of 8, when T is not large i.e.

when w is unstable. The following proposition establishes the asymptotie distribution of )(2 defined earlier by
(3.10).

Proposition 4.1 Suppose the data are grouped into m-vectors Zt's which for large Ny, are asymptoticaily
normal under a suitable CLT. Then

24 2
XI o (4.1)
To see this, observe that ~C
2y - P 8 = N0, Up(e0)),
¥ 8, N (0, F, C 7
-tltl St t “tit-1 t

Thus under our model assumptions, since 2y and ZFt,It-l are uncorrelated given Byr we get

P4

3P
Zg = 2y - Np(0, D

tlt-l)’

. ~C . .

where Dtlt-l is F C“t 1 F + Ut( t). The resuit (4.1) then follows immediately.,
Now consider the grouped data situation in which the measurement equation represents a saturated model for
Vo i.e. the vector 84 contains m-parameters. Cross-sectionally, the optimal predietor of Yt is Yt itself.
Longitudinally, one could also show that by allowing for nonrandom drift parameters in the transition equation,

°L 2P -P
Yy is Ve itself. Also 24 1to1 (or Y t- 1) is equal to 2z (or‘ yt) which implies that SSE is zero. This is
given by the next proposition.

Proposition 4.2 For the grouped case, let 8, represent parameters in the saturated model for cross-sectional
behaviour and Yt represent unknown but nonrandom time varying drift parameters in modelling the
longitudinal behaviour i.e. the transition equation is given by, for t;2,

I LR TR “.2)

Then it =Yt o» (4.3a)

and ie(n) =y (4.30)
Itie-1'1t7 T v ’
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To prove this, notice that the reduced form (2.14) will now be modified to contain parameters Yos wees YT along
with 81 Then the numbelr of parameters is the same as the number of z].t's, i.e. mT. Hence the resultAét}.Sa)
follows because Yi is F (gt) for the saturated model. To derive (4.3b), first note that for given It's, 3tlt-—1
is F Gt 9% 1 Ft Yy By substituting estimates of Yt obtained by minimizing SSE of (3.5) up to time t, it

can be seen that %zlt-l is gt and hence (4.3b) follows.

Next consider the situation when the unknown Nt = W but T is not large. In this case W will not be a good
specification for W because it is unlikely to be in the proximity of W. Although the BLUP property of

estimates will no longer hold, the next proposition shows that the estimates g? and glf continue to be

consistent for large Ny. This property of robust inference about Qt is similar to the one obtained by Zeger
(1988) for regression models for time series of counts.

Proposition 4.3 Assume that the mean function is correctly specified in terms of F and Gt’ but W may be
misspecified by N when T is not large. Then, for large ny and for t:2,the asymptotlc means of the

*
distributions of G:I to1 - 9 and B'Elt et remain the same, i.e. zero, but their MSEs change to Ctlt 1 and Ct
respeclively where, for t;2

*
Ctlt-l G Ct 1 G + W, (4.4)
y K c: 1 R, 0% K.F.)
Cp = (1 - KeFy) €y g tlt 1 Ct|t j Bygs. 5, & R, UE g Coreo1(I-KeFe) (a5}
& *
and """ indicates that W is substituted for W. In (4.4) above, for t=1, Cl is the same as C1 defined earlier

ol =1
by (Fl Ul Fl) .

The proof of the above proposition can be seen as follows. Following Zehnwu'th (1988), the estlmator 9'{ can

be expressed as a linear combination of etil)t | and the estimator QE or (F U ) F U -1 Zy, e,

s (I Ay P -G

By = (I - a) B¢ t1 * A By (4.6)
where

_ i

=1 (s KtFt) Coito1 Pt Y Feo 4.7

and A corresponds to A when W is substituted for W. As nyse the consistency of elt‘ now follows easily by

induction starting with t=2, 3, ... and so on. To obtain the expression (4.4) for C write another equivalent
expression for (4.6) as

“L ap % P

Bt = %pit-1 * KelZy - Fy 8¢1ep) (4.8a)
= (1= KyFQ) Cy e 1 ey 0b 0y + Fy U7 2) (4.8b)
|t tItltItltltl Zt)y :
because of the identity
S ! (4.9)
(1< KeFe) Cpppog Py’ = Ky -

The desired resu*lts (4.4) and (4.5) follow immediately from (4.8b). 1t may be noted that when W = W, then in
view of (4.9), Ct of (4.5) reduces approximately to Ct or (l—KtFt) ctlt-l as expected.

5. APPLICATION TO CANCER MORTALITY SERIES OF COUNTS

For the purpose of illustrating SSGLM, the data on annual lung cancer mortality counts for Ontario for the
years 1970-1987 cross-classified by sex and age was analysed. Five age groups were considered: 1 = 0-44,

= 45-54, 3 = 55-64, 4 = 65-74 and 5 = 75+. The ten time series of counts are shown in Figures 1 and 2
classified by male and female. We used data for 1970-85 (i.e. 16 time points) to fit the model and the data for
the next two time points (1986, 1987) for post-sample diagnostics.

For fitting SSGLM, we first need to specify the cross-sectional behaviour at time t. There are ten groups i.e,
m=10. For the ith group, the count y. it for each i is assumed to follow a Poisson-motivated wide sense
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distribution with mean u‘.E equal to Pit Ait where Nit is the known population size. A log-linear model for
0

the rates {x. . } was considered. A row-effects model for ordinal data where row and column
refer to sex and age respectively (Agresti, 1984, p. 84) gave a reasonable fit cross-sectionally for almost all
time points. Therefore, the cross-sectional model with suitable scores for age categories was chosen as

log A].t=f1. 8y i=l, 2, .., 10 (5.1a)
where
fi] [111000 -2
- 1 0 1% @ -1
2 110010 0
. 110001 1
. 1 160 @i0a?
B = =P el e = e (5.1b)
. 101000 0
101000 0
100010 0
. 100001 0
flo] ltooooo o

There is a total of seven effects By By wees 87, one for constant, one for sex, four for age, and one for age-
sex interaction. Note that the incidence matrix Ft is time-invariant in this case. The covariance matrix

Ut(gt) is evaluated at the estimate éft as
2B e ~C,-1
Ut(fjt) N d1ag (Et) (5.2)

The form of (5.2) is easily obtained using the Poisson variance-mean relation and the log link function.

Next for specifying the longitudinal behaviour in SSGLM, the plots of éft and 8('i:t - e('i:t-l against time were
examined for each i=1, ..., 10; see figures 3 and 4. The first difference series of Sft appeared fairly

random around zero mean except for a slight drift in e(l:t series. One could regress e(i:t on e(izt-l for each i
and check for randomness in the residuals instead of the first differences. However, for the sake of illustration
and simplicity, a random walk with no drift model was chosen to represent the transition equation, i.e.

B = Gl ™ (24

Thus, the transition matrix Gt: was also assumed to be time invariant and set equal to [. The covariance of L1
was estimated by

T ~ ~ ~ ~ [
W= T_}_l zt=2(9§ - 95-1)(5’5 i 95-1) (5.4)

Aflter having specified SSGL.M, the model was fitted using the FIWLS aigorithm given earlier in subsection 3.2.
The sample standard deviations of standardized one-step ahead residuals T t's, i=l, ..., 10 are given in Table 1.

Table 1: Estimated Standard Deviations of Standardized One-step Ahead Prediction Residuals

i 1 2 3 1 5 6 7 8 9 10
SD(r“) .76 .86 .70 .99 .50 .88 .69 .68 .99 .72

There is no indication of overdispersion because all SD(rit)'s are below one. A plot of r“:'s against time
showed no indication of misspecification. Post-sampie predictive tests for one-step and two-step ahead
projections were carried out for the last two years 1986 and 1987. The X2 values were obtained as

2 2
X1 = 9.40 : X2 =1.14 , (5.5)

which when referred to a xfo distribution were clearly insignificant. The SSE was computed as 167.5 with an

estimate of the overdispersion parameter o as 1.046. Again there seemed no indication of overdispersion. The
RMSEWI, RMSEPI(I) and RMSEPI(Z) were obtained respectively as 31.1, 28.1, and 17.6. The corresponding
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values for the naive model were 84.7, 26.4 and 56.1. The SSGLM seems to give a considerable improvement
over the naive model. It may be noted that in computing RMSEP(1), only predictions for one time point (1986)
were made using data up to 1985.

Figures 5 and 6 show sample plots of actual, cross-sectionally fitted, one-step ahead predicted (two-step for the
last point), and filtered (or updated) counts for male in the age group 65-74 and female in the age group 55-64
respectively. Table 2 gives a summary of predicted counts as well as actual counts over all the 10 groups for
1986 and 1987. The values of RMSE for predicted counts are given in the parentheses. These are not likely to
be stable because T is not large in the example under consideration.

Table 2: Predicted counts (P) vs. Actual counts (A) for Lung Cancer Mortality in Ontario

Male Female

lAge Group: 1 2 3 4 5 1 2 3 4 5
1986 P: 58 246 818 1114 799 46 143 370 424 317
(14) (38) (64) (74) (57) (14) (20) (42) (53) (55)
A: 51 242 851 1050 775 38 150 329 435 304
1987 B 99 250 823 1155 833 47 146 371 441 329
(18) (48) (83) (99) (74) (18) (25) (55) (74) (786)
A 56 256 810 1110 835 50 164 383 422 334

6. DISCUSSION

It is shown that il the number of time points and the number of observations at each time point are fairly large,
then a nonstationary and non-normal time series data under possibly mnon-linear models can be suitably
transformed for application of state space linear modelling techniques. The consistent cross-sectional

parameter estimates {QE} can be used to specify approximately the covariance matrix W of the transition
equation when T is large and Nt is assumed time-invariant. It may be noted that if the transition matrix Gt

involves some unknown parameters, they can also be estimated consistently by using Zellner's (1962) two-step
Aitken estimator introduced in the context of seemingly unrelated regression equations. It is also shown that

when T is not large, inferences about 8, remain robust to misspecification of W provided the mean function
is correctly specified.

As the Kalman filter approach (Harvey, 1984) can routinely handle missing data problems when observations are
assumed to be equi-spaced, the proposed method SSGLM can also be applied to these situations. There are
certain direetions, however, in which extensions of SSGLM could be investigated. For instance, inclusion of
seasonal effects for monthly or quarterly series as well as intervention effects in the transition equation for
SSGLM would be desirable. The present SSGLM framework can be modified to include nonstochastic seasonal or
intervention effects. However, the case of stochastic effects needs further investigation. Also for time series
arising from complex surveys, it would be important to investigate the impact of complex designs on the
inference about model parameters analogous to Rao and Scott (1984) adjustments for cross-sectional data
analysis. I[n the case of panel surveys, there is the additional problem of correlated survey errors in the
measurement equation due to overlapping umits between successive time points as considered by Binder and
Dick (1989) and Pfeffermann (1989) for ARMA modelling of survey errors in the context of state space linear
models.
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ALTERNATIVE APPROACHES TO THE ANALYSIS OF TIME SERIES COMPONENTS

W. R. Bell and M. G. Pugh!

ABSTRACT

In the time series literature of recent years one finds different approaches to the analysis of time series
ostulated to follow some type of component structure. There are aliernatives to the now familiar ARIMA
Fautoregressive— integrated—moving average) modeling approach, perhaps the most popular being the
"structural modeling" approach of Harvey and others, which uses an explicit components structure. Despite
the considerable research on these models, remarkably little work has appeared comparing results from the
alternative approaches. Questions arise regarding the comparative fit of alternative models, and the effect of
model choice on applications such as model-based seasonal adjustment and use of time series methods in
repeated survey estimation. As these are empirical questions, we attempt to address them here through
comparing results from applying such alternative models to some Census Bureau time series.

KEY WORDS: ARIMA Model; Componenis Model; AIC; Seasonal Adjustment; Repeated Survey
Estimation.

1. INTRODUCTION

The analysis of the components of time series has a long history (discussed in Nerlove, Grether, and Carvalho
1979), going back to work in astronomy, meteorology, and economics in the 17th through 19th centuries, and
to early seasonal analysis by Buys—Ballot (1847). Empirical methods of seasonal adjustment were developed
in the early part of this century leading utlimately to the development of the well—known X—11 method in
1967. As discussed in Bell and Hillmer%lg&i), these methods were developed in advance of adequate seasonal

time series models, which have only become widely available and computationally feasible in the last 20 years
or S0.

This well—established interest in time series components has had important influences on time series
modeling; in particular, it has led to two rather different approaches to modeling and model—based seasonal
adjustment. For the autoregressive—integrated—moving average (ARIMA) models (Box and Jenkins 1976),
several approaches to seasonal adjustment have been developed. The most successful of these, in our view, is
the "canonical" approach of Burman (1980) and Hillmer and Tiao (1982). In contrast, a "component
modeling” approach has developed that uses simple ARIMA models for seasonal, trend, irregular, etc.
components. This approach is exemplified in the work of Akaike (1980), Gersch and Kitagawa (1983) and
Kitagawa and Gersch (1984), and Ilarvey and Todd (1983) and Harvey (1985). Nerlove, Grether, and
Carvalho (1979) suggested a somewhat different approach that appears not to have caught on, possibly
because their ARIMA component models are too flexible to even assure that the model structure is identified

(Hotta 1989), and because their treatment of nonstationarity (by polynomial detrending) is now viewed as
inadequate.

While there has been considerable developmental work on both modeling appproaches, there is surprisingly
little literature comparing results for the two different approaches. Harvey and Todd 31983) compared the
forecast perfdrmance of their "basic structural model" (BSM) with that of ARIMA models fitted by Prothero
and Wallis (1976) to six quarterly macroeconomic time series. Their results were rather inconclusive, also
some of the ARIMA models used were of unusual form, featuring long lags in the scasonal operators. (In
fairness, Prothero and Wallis’ (1976) work was in the ecarly stages of development of seasonal ARIMA
modeling, before such refinements as exact maximum likelihood and outlier treatment were readily available.)
Expanding the BSM, Harvey (1985) developed components models to explain cyclical behavior (with
nonseasonal series) and gave some discussion of their relation to ARIMA models. Maravall (1985) observed
that the BSM could yield an overall model close to Box and Jenkins (1976) popular ARIMA (D,l,l)n(D,l,l)12

"airline model," by showing that autocorretations for the differenced series could be similar for the two
models (depending on parameter values). This raised the important possibility that the BSM and certain
ARIMA models could be about the same for some series. Carlin and Dempster (1989), in a detailed analysis
of two series, found only small differences between canonical ARIMA seasonal adjustments and those from a
fractionally—integrated—moving average (FRIMA) components model, and more major differences when
comparing the FRIMA adjustment with the X—11 adjustment used in practice for another series.

' w. r Bell, Statistical Research Division, U. S. Bureau of the Census, Washington, D.C. 20233, U.S.A.,

M. G. Pugh, Department of Biostatistics, Harvard School of Public Ilealth, 677 Huntington Avenue, Boston,
MA 02115, U.S.A.
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The literature seems to leave two important questions unanswered, namely: (1) do ARIMA or components
models provide a better fit to actual data or can available data even discriminaté between them, and (2) how
different are the results from ARIMA and components models in practical applications? The former question
is one of statistical significance, the latter one of practical significance. Both questions are largely empirical,
and an empirical investigation into them shall be the primary focus of this paper. In section 2 we describe
the specific models we shall consider in detail, and use the AIC criterion of Akaike (1973) to compare the fit
of ARIMA models and the BSM for a set of 45 seasonal time series. In general, AIC expresses a strong
preference for ARIMA models.

Section 3 considers seasonal adjustment. Bell and Hillmer (1984) noted that component modelers have
ignored the inherent uncertainty about seasonal-nonseasonal decompositions consistent with any given fitted
model. To address this we consider the range of admissible decompositions consistent with a given
components model, and present a "canonical decomposition" for component models analogous to that given
for ARIMA models by Burman (1980) and Hillmer and Tiao (1982). The canonical decomposition turns out
to be trivially simple to obtain and very easy to use in signal extraction for seasonal adjustment. However, it
also turns out to be very close to the original fitted components model for the series considered here,
suggesting that seasonal adjustments for the original and canonical components models may typically be
virtually identical. We then compare ARIMA model and BSM seasonal adjustments for two series and find
negligible differences in signal extraction point estimates and proportionally large differences in signal
exiraction variances, though the signal extraction variances all seem small in an absolute sense.

In section 4 we investigate the effects of using ARIMA versus component models in applying time series
signal extraction techniques to estimation for repeated surveys. This idea was originally suggested by Scotit
and Smith (1974) and Scott, Smith, and Jones (1977), but has seen intensive investigation more recently
following theoretical and computational developments in estimation and signal extraction for nonstationary
time series models. For the two series we consider the signal extraction point estimates using ARIMA models
and the BSM are quite close, but for one series the signa? extraction variances are quite different. Finally, in
section 5 we draw some tentative conclusions.

2. ARIMA AND COMPONENTS MODELS

Let Yt for t=1,...,n be observations on a time series, which will often be the logarithm of some original time
series. We write

Y, = X{f+2, (2.1)

where X{0is a linear regression mean function with X, the vector of regression variables at time t and P the
vector of regression parameters, and Z, is the (zero mean) stochastic part of Yt' The regression variables

used here will be to account for trend constants, calendar variation, fixed seasonal effects, and outlier effects
(Pindley, et. al. 1988). We will be interested in decompositions of Z, such as

Zy=5 +N =S + T, +1 (2.2)

where S, is a (stochastic) seasonal component, and N, a (stochastic) nonseasonal component that can be
further decomposed into a trend component T, and an irregular component L. If Y, is the logarithm of the
time series of interest, note (2.1) and (2.2) imply multiplicative decompositions for the original time series.

One approach to analyzing time series components involves modeling Zt directly, then making assumptions

that lead from this model to definitions of and models for the components. The other approach is to directly
specify models for the components, which then implies a model for Z, that can be fitted to data. We shall

consider ARIMA models as a basis for both approaches. While other models have certainly received
attention in recent years (long memory, ARCH, and nonlinear models come to mind), ARIMA and ARIMA
component models seem to have been the most popular, and so focusing attention on these two seems an
appropriate starting point.

The ARIMA models we shall use for Z, can be written in the form (c.f. Box and Jenkins 1976):

#(B)(1-B) (1-B'2)z, = o(B)(1-0,,B'2)a, (2.3)

where B is the backshift operator (BZt = Zt—l)' d > 0 (if d=0, (1—13)d =1), ¢(B) = 1—¢1B—...—¢po and
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oB) = 1—0113—...—0qu are AR and MA operators of low order (usually p, q < 3), and a, is white noise (iid
N(O,ag).) This model is for monthly seasonal data; the modifications for data with other seasonal periods

(e.g. quarterly) are obvious, and the l—B12 and 1—0121312 are removed for nonseasonal data. We could have
included a seasonal autoregressive operator in (2.3), though we rarely use these. If 015 = 1 we can "cancel"

the 1~B12 factor on both sides of (2.3) and add seasonal mean variables to )_{t (Abraham and Box 1978, Bell

1987).  ldentification, estimation, and diagnostic checking of these models proceeds with by now
well-established procedures — see Box and Jenkins (1976) for pure ARIMA models, Bell and Hillmer (1983)
and Findley et al. (1988) for models with regression terms. Estimation is by maximum likelihood where the

likelihood function is defined as the joint density of the differenced data (l—B)d(l—-1312)Yt t=d+13,...,n.

Component models specify simple ARIMA models for the components in (2.2). Harvey and Todd's (1983)
basic structural model (BSM) can be written

Zt.=st+Tt+1t

- 2
U(B)S, = ¢, ¢, -iid N(0,07)
(2.4)
2 o 2
(1-B)°T, = (1-7B)eqy, €9y - iid N(0,05)
- 2
i - iid N(0,03)
where U(B) =1+ B ... + B! sums a series over 12 consecutive months. They actually begin with T,

folowing a random walk with stochastic drift, where the drift also follows a random walk; this leads to the
(0,2,1) model for T, in (2.4) with the constraint 7> 0. While we shall not enforce this constraint, it turns out

to be easily satisfied for all our example series here. If the “stochastic” drift has zero innovation variance (i.e.
it is actually a constant) then 7 = 1 and the model for T, reduces to (1—B)'I‘t = fy + €, and we can
account for [io by adding the time trend variable t to )_(t. If a% = 0 then St becomes fixed and can be handled
with appropriate variables in )_(t analogous to what was noted when 012 = 1in the ARIMA model (2.3).

Gersch and Kitagawa (1983) (see also Kitagawa and Gersch 1984) consider models similar to (2.4), but with
T, following the model

6

(1-B)°T, = ¢ §=1,2, or 3. (2.5)
t= ot

We whall refer to (2.4) but with T, following (2.5) as the GK model. Notice that the GK model with § = 2

becomes the BSM with 7 = 0, while the BSM with 7=1 is the GK with é=1 and a trend constant. Akaike
(1980) suggestied similar models, but with St following a model that now seems unattractive.

Gersch and Kitagawa extend their model with the addition of a stationary autoregressive component. This
can be written as

Z,=S + T +1 +V,
(2.6)

(1-aB—.. —a BP)V, =

- 2
a €44 - iid N(0,0%)

41

with S, and I; as in (2.4), and T, as in (2.5). Harvey (1985) also considers such an extension to his models,
with the autoregressive parameters constrained so that \A tends to exhibit cyclical behavior. He also
considers an ARMA(2,1) formulation for V,.

Modeling procedures for these component models are more automatic than for ARIMA models and are
discussed in the references cited. Estimation is again by maximum likelihood, with the likelihood evaluated
using the Kalman filter. Since the models are nonstationary this prescats problems for initialization of the
Kalman filter that have been recently addressed by Kohn and Ansley (1986) and Bell and Hillmer (1987a).

{0 =



These approaches produce a likelihood function that is again the joint density of the differenced data, which
is now determined by the components models.

The ARIMA models for the components imply an ARIMA model for the aggregate Z,, as has been observed
by G. C. Tiao (reported in Findley 1983) and Maravall (1985). Taking (2.4) for illustration, applying

(1—B)2U(B) = (1-—B)(1—B12) to Z, gives (1—}3)25It + U(B)(l—nB)em + (l—B)(l—Blz)e&, which follows a

moving average model of order 13 whose parameters are determined by ai, ag, ag, and 7. While (2.4) is thus
equivalent to an ARIMA(0,1,13)n(0,1,0)12 model for Z,, the high regular MA order and the constraints on
the parameters make it unlikely that direct ARIMA modeling of Zt would yield such a model exactly. Thus,

there is potential for difference between the ARIMA and component model approaches, though Maravall
(1985) notes that certain parameter values for (2.4) can yield a model close to the popular
ARII\\IA(O,I,I)x(O,l,l)lz "airline model" of Box and Jenkins (1976). For nonseasonal series or series whose

scasonality is modeled as fixed through the regression function )_(;g, the ARIMA model implied by (2.4) for
Z, = T, + I, depends on (l—nB)f2t + (l—B)2It, which follows an MA(2) model whose 3 parameters are

determined by ag, ag, and 7. We could easily get exactly the same model by direct modeling of Z, as

ARIMA (0,2,2). Similar results obtain for other nonseasonal components models. While the potential for
difference between nonseasonal ARIMA and components models is difficult to judge, the potential for
ARIMA and components models to be elfectively the same seems greater in the nonseasonal than in the
seasonal case.

This discussion raises questions about how much ARIMA and components models will differ in practice, and
which will fit better when they do differ? We will make a preliminary investigation into this by comparing
the fit of ARIMA and components models on a set of time scries. As the models we wish to compare are
generally nonnested (one is not obtained by simple constraints on the parameters of the other) traditional
hypothesis tests or confidence intervals would be difficult to apply. We shall use the AIC criterion of Akaike
(1973), which is defined as

AIC = 2L + 2m

where L is the maximized log—likelihood and m is the number of parameters estimated. The model with the
smaller AIC is to be preferred. To compare two models, 1 and 2 say, we present the difference in their AIC’s,
DAIC = AICI—AIC2. A positive value of DAIC favors model 2, a negative value model 1. Judging when

there is a "significant" difference between models as measured by DAIC is not necessarily straightforward
(see Findley 1988), but users of AIC often view differences of 1 or 2 as significant. We shall use 2 as a rough

significance boundary. As a crude justification, notice that if we add a parameter to a model L cannot
decrease, so if the parameter yields no improvement in fit, L remains the same and AIC increases by 2.

We shall use AIC to compare the fit of ARIMA and components models on a set of Census Bureau seasonal
time series analyzed by Burman and Otto (1988) using ARIMA models. (Many were analyzed previously in
Hillmer, Bell, and Tiao (1983), though with fewer years of data available. We also include one series, labelled
ENM20, from the U.S. Bureau of Labor Statistics, analyzed in Bell and Hillmer 1984.) These series have the
advantage of having readily available models with careful treatment of regression terms for calendar
variation, fixed seasonal effects (occasionally), and outliers. We exclude a few series Burman and Otto (1988)
analyzed that are not published, as well as the foreign trade series they analyzed since these have undergone
significant revisions in recent years to correct some major data problems. This leaves 45 series for analysis,
listed in Bell and Pugh (1990). The series are broadly representative of the series seasonally adjusted by the
Census Bureau, but are not a random sample, so the analysis here might be best viewed as a pilot study.

For a given series we shall use the same regression terms with both ARIMA and components models, and also
will restrict comparisons to models with the same order of differencing. Comparing models with different
orders of differencing poses some problems since the likelihood functions for the two models are then based on
different (differenced) data. This restriction means that we will compare ARIMA models (2.3) with d=1 to
the BSM as in (2.4). ARIMA models with d=0 will be compared to a model as in (2.4), but with T,

following (2.5) with é=1. Models with a fixed seasonal and d=1 in the ARIMA structure will be compared to
a components model with a fixed seasonal (no stochastic S,), and with T, again following (2.5) with é=1.

The latter two cases correspond to particular cases of both the BSM and GK models. When the ARIMA
model has d=1 and a stochastic seasonal, we shall not make comparisons with the GK model that would use
(2.5) with 6=2. Since this is a special case of (2.4) with 7=0, at best this GK model would avoid one
extraneous parameter and have an AIC 2 less than that of (2.4). At worst, it can have a substantially higher

AIC than (2.4) if the maximum likelihood estimator 7 is not near 0 (though if 7 » 1 we can think of (2.4) as
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overdilferencing the GK model with §=1.)

The ARIMA models used and their AICs, the fitted BSMs and their AICs, and the AIC differences are given
in Bell and Pugh {1990). Table 1 below provides a surnmary. The results are obvious: AIC exhibits a strong
preference for ARIMA models overall, with large AIC differences (> 8) for about one halfl of the series.
DAIC’s for the t wo series for which the BSM was preferred were only —2.1 and —2.7.

Table 1: BSM versus ARIMA

# series in Order of Differencing
DAIC range (L1) (o1 10)
<=2 2 0 0
—21t02 6 Il 0
2t08 9 2 3
8 to 20 10 3 2
20 to 40 5 0 1
> 40 kY g 1]
36 6 6

(Three series appear twice in the table since they were refit with fixed seasonals after getting 012 % 1.)

In looking for possible explanations for the poor fit of the BSM we examined DAICs and corresponding blz’s,

's, etc., but found no obvious patterns. Selection bias was considered as a possible explanation, even though
the ARIMA models were selected with the usual identification approach based on autocorrelations and partial
autocorrelations, and not by searching a set of models for the model with minimum AIC. To check for
sclection bias, the BSM AICs were compared with those for the ARIMA(O,l,I)x(0,1,1)12 "airline model",

which scems a reasonable choice if one were to use a single ARIMA model. Although the BSM fit much
better than the airline model for two series (DAICs of —11.7 and —25.6), aside from this the results changed
little from those in Table 1. This is perhaps not surprising since 15 of the selected ARIMA models were
airline models, and others were not very different from the airline model. The airline model performed much
better in comparison to the selected ARIMA models than the BSM, though four series favored the selected
ARIMA model over the airline model by an AIC greater than 20, suggesting that use of any single model for
all series will occasionally lead to poor fits.

This report would not be complete without some comments on our experience fitting components models.
The results presented here were obtained using a computer program for fitting time series models with
ARIMA components and regression terms recently developed by ourselves, other members of the Time Series
Stalf of the Statistical Research Division at Census, and Steven Hillmer of the University of Kansas. We
found the components models much more difficult to fit than regular ARIMA models. For example, getting
good starting values for nonlinear iteration over the component model parameters seems important, whereas
we find getting good starting values for ARIMA model parameters not at all important. We have not
presented results for models with a fourth component as in (2.6) because we were unable to successfully fit
such models. Adding a fourth component casued the nonlinear search to go outside the stationarity region for
VL’ causing the program to crash on every series. While there are means of programming around this

problem, and while inclusion of a fourth component might improve the fits, we found these difficulties
discouraging. Though we did not make a fornal study of the numerical problems we expericnced with
components models, they seemed due to the likelihood being rather flat in certain directions in the parameter
space. Given this, we find the oft—claimed advantages of "simplicity" and "interpretability" for components
models difficult to accept.

The computational difficulties we experienced suggest a final possible explanation for our results — that there
is something wrong with our software and it is not actually maximizing the likelihood. While we have
checked our program thoroughly, and do not believe this to be the case, we cannot rule this out with
certainty. We will gladly provide our data to anyone interested in checking our results. We would be even
more interested in seeing a study done with other series to see if similar results are obtained.

3. SEASONAL ADJUSTMENT

While section 2 suggests that ARIMA models may fit a time series substantially better than components
models, there is still the question of what difference choice of a model makes in practice? Here we consider
the effect of model choice on seasonal adjustment. For a given components model, seasonal adjustment can
be done by applying a Kalman smoother to the series (see, e.g., Gersch and Kitagawa 1983). With ARIMA
models one must first make sufficient assumptions leading from simple ARIMA models for observed series to
unique component models. This is addressed by Burman (1980) and Hillmer and Tiao (1982), who consider a
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range of possible decompositions and suggest a choice leading to a unique decomposition into component
models. (The two approaches differ some for certain models that do not seem to occur often.) The
underlying assumptions are set out and discussed further by Bell and Hillmer (1984). As will be seen shortly,
we can also consider a range of decompositions for any given components model.

For Y, following (2.1) and (2.3), Burman (1980) and Hillmer and Tiao (1982) achieve a decomposition of
form (2.2) by making a partial fractions decomposition of the covariance generating function (CGF), 'yZ(B),
of Z,, yielding CGF’s 'yS(B), 'yT(B), and '71(B), and corresponding ARIMA models for the components. This
yiclds a range of admissible decompositions corresponding to T4(B) = [7S(B) = ml + [rp(B) = 7] + [1(B)

+ 7+ 72], for any 7, and 79 such that each bracketed term is > 0 for all B = X, The range reflects
inherent uncertainty about the decomposition; specifying M and T yields a particular decomposition that
can be used for seasonal adjustment. Burman (1980) and Hillmer and Tiao (1982) suggest picking the
maximum possible 7, and 7, (%, = m'i\n 'ys(eM) and o = m,i\n 'yT(el)‘)), leading to what is called the

canonical decomposition, which has several attractive properties.  Focusing in particular on the
seasonal—nonseasonal decomposition now, the components corresponding to any admissible 7, €an be written

as S, = S_Jt + v, and N, = Nt - v,, where St and Nt. are the canonical seasonal and nonseasonal, and v, is

white noise with variance MM Thus, the canonical decomposition can be viewed as removing as much

white noise as possible from the seasonal component and putting it in the nonseasonal through the irregular.
Since there is no apparent reason to include additional white noise in the seasonal, this is a good argument for

using the canonical decomposition. (Watson (1987) gives an approach that avoids assuming a particular
decornposition.)

(As an aside, we note that it is also necessary to decompose the deterministic regression effects, )_(tg, into
seasonal and nonseasonal parts. This is discussed in Bell (1984), but since there is no reason to do this
differently for ARIMA and components models we need not go into it here.)

Bell and Hillmer (1984) criticize component modelers for simply taking the component models for adjustment
as those obtained in modeling the observed series, and thus ignoring the uncertainty inherent in ihe basic
decomnposition into components. We can address this decomposition uncertainty for component models by
defining a "canonical decomposition" in an analogous way to that defined for ARIMA models — subtracting
as much white noise as possible from St and adding it to Nt through It' In Bell and Pugh (1990, Appendix

A.1) we show that the resulting canonical components model decomposition, Z, = §t + Nt = St 1T, % Tt],

has a canonical irregular It with variance ‘-7:2; = 012; + af/144, and a canonical seasonal St which follows the

model
U(B)S, = ¥B)e;, ¢y, - iid N(0,59) (3.1)

where y(B), of order 11, is given in Table 2., and 6? = .8081 af . (Bell and Pugh (1990) also discuss a

Table 2.: Coefficients ¢, for {B) = 1 — ¢, B — - — g, B!

1 11

kg kg kg

1 205555 5 100648 9 .031188
2 175919 6 .080059 10 .018953
3 148557 7 .061661 11 .008593
4 1237 8 045395

canonical trend for components models.) This is in fact the same form as the canonical seasonal model of
Burman (1980) and Hilliner and Tiao (1982), though their seasonal model will generally have a different y{(B)

and 6% (that depend on the ARIMA model). As with ARIMA models, using any other admissible

decomposition (corresponding to any valid decomposition of the covariance generating function), including
that defined by the original fitted components model, can be viewed as adding white noise to the canonical

scasonal St‘ Notice that, given a components model, the model for St in (3.1) is trivial to obtain. Also,
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signal extraction for canonical seasonal adjustment may be performed in the usual way with a Kalman
smoother using the model (3.1) for St and increasing the irregular variance to 6%.

Notice that the amount of variance removed from the components model seasonal, a%/ 144, will be small
unless a? is large relative to ag and ag. However, the opposite is true for the series considered here:

a?/(ag + ag) exceeds .07 for only two of the 45 series. This has two implications: (1) the estimated

component model typically implies a very nearly fixed seasonal, and (2) the original component model
decomnposition will often be very close to the canonical component model decomposition. In fact, for the
examples we have tried, seasonal adjustments from the original and canonical component model
decompositions have been virtually identical. Since this aspect of decomposition choice appears to make little
difference we shall not consider it further here. This is not to say choosing some other decomposition than
the canonical cannot have important effects, though we shall not consider that here either.

To examine potential differences in seasonal adjustments arising from model choice we examine seasonal
adjustments for two series: IHAPVS (value of U.S. household appliances shipped from 1/62—12/81), and
ENM20 (thousands of employed males 20 and older in nonagricultural industries from 1/65 — 8/79), a series
analyzed by Bell and Hillmer (1984). IHAPVS was one of the series which the BSM fit best (DAIC = —.7),
while the BSM fit for ENM20 was rather poor (DAIC = 13.7), though far from the worst. ENM20 was the
one series for which logarithms were not taken so an additive decomposition is used here,

Figure l.a. shows the estimated ARIMA and BSM seasonal components for IHAPVS. Close inspection is
required to detect any difference. As this is also true of the seasonal adjustments we do not present these.
Figure 1.b. shows the signal extraction standard deviations for IHAPVS expressed as coefficients of variation.
Here substantial differences appear with the ARIMA CV's being 20 percent or more higher near the end of
the serics. (Note the results for the ARIMA model are not necessarily bad.) However, the CV’s might all be
considered small: none exceed about 1.6 percent.

Figure 2.a shows the ARIMA and BSM seasonals for ENM20. Here we can see a difference: the ARIMA
seasonal evolves steadily over time while the BSM seasonal remains relatively fixed. (For ENM20 the BSM
has &% = 27 and ?f% = 16,500.) Figure 2.b portrays seasonal adjustment results for the last 5 years of the

data. While differences can be seen they may not be important since the month—to—month changes
themselves are not large, seldom exceeding .5 percent. Figure 2.c. shows even larger differences for signal
extraction standard deviations than we saw for IHAPVS. 'I‘%le BSM standard deviations rise very little at the
end of the series because an essentially fixed seasonal is being estimated. Still, the most noteworthy aspect of
Figure 2.c. may be how small the standard deviations are relative to series values of 40,000 to 50,000.

We conjecture that V.a\r(St — Qt) — 0 as 012 —+ 1 in the ARIMA model and as a? —+ 0 in the BSM, which
probably explains the small signal extraction standard deviations observed in the two examples. However, if
we decide 0,5 = 1 or a% = 0 and use a model with fixed seasonal regression effects instead, the signal
extraction variances will not be 0 since we will have error in estimating the seasonal regression parameters.
A curious aspect of these results is the apparent discontinuity between results for 0 <1 (or a% > 0) and

2
0,9 =1 (or o] =0).

4. REPEATED SURVEY ESTIMATION

Scott and Smith (1974) and Scott, Smith and Jones (1977) suggested using time series signal extraction
techniques for estimation in periodic surveys. If 5 denotes the true population quantity (the signal) and e,

the sampling error at time t, then we use signal extraction to estimate 5 in

Y, =5 +e, (4.1)
If Y, is the logarithm of the original series, then exp(st) and exp(et) are the true population quantity and
multiplicative sampling error in the original series. Any of the models discussed in section 2 can be used for
5, Binder and Dick (1989) and Bell and IHillmer (1989) use ARIMA models, while Pfefferman (1989) uses a

BSM. Generally, any regression terms in the model are also part of Sy

Mode! building for the survey estimation problem is discussed in the references cited above. A primary
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distinction between this application and what we have considered before, is that the model for e, is generally

estimated, in some fashion, using survey microdata. The sampling error model is then held fixed when
estimating the parameters of the 8 model using the time series data on Yl' Questions arise about the

sensitivity of the survey estimation results to any of the aspects of the modeling. Here we shall examine the
sensitivity of results to the choice between an ARIMA model and a BSM for 8-

We consider two time series. For the first, U.S. teenage unemployment (in 1000’s) from 1/72 to 12/83, Bell
and Hillmer (1987b) develop the following model for Y, =5 +eg:

(1-B)(1-B'%)s, = (1 - 27B)(1 - 68B'%)a, o = 4204

T am | 8. 2 _ 2 .
e, =h& (1-.6B)& =(1-3B)c, o = .8767 hi = —.0000153 Yy + 1.971 Y,

The model for s, has been reestimated, yielding slightly different parameter values than those reported in Bell

and Hillmer (1987b). With "3 = .8767, Var(ét) = 1, so hy is the (estimaled) sampling error standard

deviation, which is time—varying. The modeling of the second series, U.S. 5 or more unit housing starts, is
very similar to that for U.S. single family housing starts, also considered in Bell and Hillmer (1987b). The
sampling crrors for this series appear approximately uncorrelated over time with relative variance .00729,
which is also the approximate variance of the logged multiplicative sampling errors. The estimated ARIMA
model for the signal in the logged time series is

(1-B)(1-B'%)s, = (1 - 47B)(1 - 89B'%)a, o2 = .0215.

We used the above models in signal extraction estimation of S and then did the same with a BSM fitted for
5, with the same e, models given above. The BSM model fitted relatively well for both these series, with

DAIC = AIC(BSM) — AIC(ARIMA) = — 3.1 for teenage unemployment and DAIC = 1.8 for housing siarts.
(The appropriateness of these AICs is in some question since the e, models are not fitted with the time series

data.) Figure 3.a. shows the signal extraction point estimates for teenage unemployment using both models;
(1—1312)5,t is shown to avoid the obscuring effects of seasonality. The BSM estimates less variance in the

signal than the ARIMA model, and thus yields slightly smoother estimates. Figure 3.b. shows substantial
differences in the signal extraction variances for the two models. The two signal extraction estimates for the
housing starts series were virtually identical, and so are not shown. Figure 4 shows the signal extraction
coelficients of variation (standard deviations for the logged series) for the last half of the housing starts series
— those for the first half would be a mirror image. While there are some interesting differences in pattern,
the magritude of the differences is small.

5. CONCLUSIONS

Even the conclusions drawn in section 2 must be somewhat tentative; it would be interesting to see similar
studies with other sets of time series. Because of the limited examples considered in sections 3 and 4, the
conclusions there can only be suggestive. To summarize:

1. Data can frequently discriminate between ARIMA and components models. For the 45 series
analyzed, AI% showed a strong general preference for ARIMA models over the BSM. To the
extent that model fit is important, merely assuming the BSM provides an adequate fit could be
dangerous.

2. We found fitting components models more difficult than fitting ARIMA models. While we
would have liked to see if the addition of a stationary AR component or other cycle term could
improve the component model fits, we werc unable to fit such models due to numerical
problems.

i Signal extraction point estimates for seasonal adjustment and survey estimation using ARIMA
models and using the BSM differed little for the examples considered. Signal extraction
variances showed much larger differences, though for the seasonal adjustment examples the
variances using both models might be regarded as quite small. This last point is worth more
investigation, to see if model-based seasonal adjustment variances with canonical, or
approximately canonical, decompositions are typically very small.
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REG-ARIMA BASED PREPROCESSING FOR SEASONAL ADJUSTMENT

D.F. Findley and B.C. Monsell®

ABSTRACT

The time series staff of the Census Bureau's Statistical Research Division has developed software modules
which can be adapted to existing seasonal adjustment programs to provide pre- and postprocessing for enhanced
adjustment and quality control capabilities. The preprocessing module is a program for modeling and doing
computationally efficient "exact" maximum likelihood estimation of seasonal ARIMA models with a regression
mean function. Many regressors are built into the software, to permit the user to detect and model a variety of
common outlier and calendar effects which occur in economic data and which existing seasonal adjustment
programs either cannot treat or frequently do not handle well. The program also allows the user to include
their own regressor variables. This note presents some examples illustrating the use of the preprocessing
module.

KEY WORDS: REG-ARIMA Model; AIC.

1. INTRODUCTION

For many economic time series, establishing an appropriate seasonal adjustment procedure requires several
cycles of preadjustment and postadjustment processing. The preprocessing involves forecast extensions and
data adjustments which are performed, perhaps tentatively, before the actual seasonal adjustment moving
averages are applied to the series. Postprocessing refers to the calculation of a variety of diagnostics to
evaluate the effects on the seasonally adjusted series of the preprocessing and adjustment options which were
chosen. The main goal of postprocessing is to determine if a satisfactory adjustment has been achieved. We
have developed a new set of techniques for postprocessing, called sliding spans analysis, which is described in
Findley, Monsell, Shulman and Pugh (1990).

This note concerns preprocessing. We present four examples demonstrating the valuable role of what we shall
call REG-ARIMA (regression + ARIMA) models for determining or comnparing preadjustments. Capabilities for
identifying and estimating both typical and customized REG-ARIMA models are included in the preprocessing
module of a seasonal adjustment program, provisionally called X-12-ARIMA, which is nearing completion at the
U.S. Census Bureau, see Findley, Monsell, Otto, Bell and Pugh (1988). This program also calculatles the sliding
spans diagnostics.

2. REG-ARIMA MODELS

Many economic time series show occasional large erratic movements over a short time interval which are
preceded and followed by longer periods of reasonably stable fluctuations. Such disruptions can be caused by
external events such as strikes, extreme weather conditions, international hostilities and changes in government
policies, or they can result from internal factors such as changes in the economic classification scheme or the
sample used to define or obtain the series. Such disruptions, especially those which result in a long-lasting
change in the level of the series, compromise the reliability of seasonal adjustments obtained from X-11-
ARIMA and related procedures, and they also make it difficult to identify ARIMA models for forecasting such
series.

Frequently it is possible to inodel these disruptions adequately by means of REG-ARIMA models, which we will
now describe. Let Xy denote the series to be inodeled (often the logarithm of the observed series yt). let B
denote the backshift operator, th = X p and let Zy denote & vector of known regression variables whose

coefficient vector 8 can contain both known and unknown coefficients. The unknown coefficients will be
calculated as a subvector of the maximum Gaussian likelihood estimates of the unknown parameters of a REG
ARIMA model, meaning a time series model of the form

@(B)(xt—azt) = e(B)at, (2.1)

where ¢(B) and 8(B) are polynomials having no roots with magnitude less than one, and a, is a white noise
process uncorrelated with preceding values of Xy Our method for estimating such models is described in

Findley et al. (1988). If LN denotes the maximized value of the log-likelihood function from N observations

! Statistical Research Division, U.S. Bureau of the Census, Washington, D.C. 20233, U.S.A.
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Xpaeens Xy and if total number of coefficients estimated in $(B), o(B) and 8 is p, then Akaike's AlC
comparison statistic for the fitted model is defined as

AIC, = -2y + 2p

When two or more estimated models are being compared, the model with smaller AICN is usually preferred, see

Brockwell and Davis (1988) and Findley (1988), for example. (The theory only supports such comparisons via
AIC when the ¢(B) polynomials in all the models have the same number of roots with magnitude 1.)

We Tist below seven typical sets of regression variables which might be included in z, and which
are available in the preprocessing module of X-12-ARIMA.

1. Additive Qutlier at tg

AO(to) . 1) t=t0
€ 0, t#to
2. Level Shift at t0
LS(t:O) i L, B to
t 0, t < to.

3. Ramp Between t, and t’.1

o 4 by
Rt = (t-to)/(tl-to), to d i < t].
0 - 3 tO

4. Preadjustment Divisor for Observed Series Yy

Assuming Xy = log (-Yt) and Dt is a positive number to be divided into Yt (for example, a deflator or a user-

defined estimate of the effect of a special short term campaign to promote sales), we define

dt = 1oth
and set the corresponding regression coefficient in 8 equal to 1, to obtain
X¢ - dt = log(yt/Dt).

5. Monthly Trading Day Variables

1f MW,EJ) denotes the number of week days of type j in month t, with j=1,...,7 designating Monday,...,
Sunday respectively, then we define

(J) _ wu(d) (7) iz
MTDY = MW7 - Mg . J=1,...,6.

6. Leap Year February Variable

-.25 in a non-leap year February
LYFt = .75 in a leap year February
0 otherwise,

see Bell and Hillmer (1983) and Bell (1984).

7. Fixed Seasonal Variables

Let m be the number of periods in the year in which an observation is obtained. (Thus, m=12 for monthly
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data and m=4 for quarterly data.) Let I(‘j) be the indicator variable for the j-th period, j=1, ..., m
(For example, if m=4, then I(J) 1if )/t is the datum for the j-th quarter of some year, and I(J) =0
otherwise). Then we define

(3) o (m) _ (8 5.
FSg™l = 150 - 1570 J=ly woey m-1,

The program also includes regression variables for the effect of Easter on retail sales and for the effects of
several other U.S. holidays. Users can input their own regression variables for other special effcets or other

lunar calendar holidays that move between several solar calendar months and have an economic impact, such as
Ramadan or the Chinese New Year.

One special set of regressors we considered recently were used to estimate quarterly trading day effects.

Quartely Trading Day and Leap Year First Quater Variables

Let QN'(:J) denote the number of weekdays of type j (as in 5.) in quarter t.
We define

(3) . gu(d) (7)
qrog?) = et - awg ! Ledis B 2

The leap-year first-quarter regressor LYQIt is defined by replacing Februaries in the
definition of LYFt in 6. above with first quarters.

3. EXAMPLES

We now present some REG-ARIMA model-based analyses which utilize the variables defined in the preceding
section.

Akaike's minimum AIC procedure described above will be used when two competing models must be compared.
When model 1 is a restricted form of model 2 with fewer parameters to be estimated, this procedure has a
conventional interpretation: a test of hypotheses could be done under the null hypothesis that model 1 is
correct by assuming the chi-square asymptotie distribution of the log-likehood ratio,

ot 22 - T - o),

which leads to AIC(I) - AIC(Z) = X(z) d) - 2d. As a consequence, the condition
N N :

(1) (2)
ALCy ! - AIC 5 1

would usually be interpreted as a statistically significant difference in AIC values, favoring model 2 (rejection
of H.).
0

3.1 Change of Definition of Series.

As part of a U.S. government program to reduce the burden on firms of responding to government surveys, a law
was changed to require fewer companies to respond to the survey conducted for the Quarterly Financial Report,
beginning in the first quarter of 1982. As a result, the levels of some of the series dropped sharply in a way
that the trend estimation procedures in the X-1i-ARIMA program could not adequately follow, see Figures 1
and 2 below. An additional concern is that the post-1981 segment of the series might have a different seasonal
pattern from the pre-1982 segment because of the changed sample. To investigate this possiblitity, two
competing REG-ARIMA models were fit to these series. These contained in their regression variables a level-
shift at 1982/1 and either a single set of fixed seasonal variables for the full series (model 1) or two sets of such
variables (model 2), one set for the segment 1974/1 - 1981/4 and the other for the remainder of the series. This
means that for model 2, the coefficients for the seasonal effect before and after the level shift can be
different. Thus, if the AR and MA lags in the fitted models are the same, then model 1 is a restricted form of
model 2 obtained by requiring the two sets of fixed seasonal variables in model 2 to have identical coefficients.
The use of fixed seasonals is a device to permit us to use model comparisons to decide if the seasonal pattern of
more recent data must be estimated using only post 1981 data. Table 1 gives the AIC values for REG-ARIMA
models with these two types of regressor variables fit to the scries of Net Income from Retail Sales (NRS, see
Fig. 1) and Net Wholesale Trade Income After Taxes (NWTAT, see Fig. 2). For both comparisons, the
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difference d in the number of estimated variables is 3.

Table 1. AIC Values Testing for a Changed Seasonal Pattern.

Same Fixed Seasonals Different Fixed Seasonals
(model 1) (model 2)
NRS 1028.8 993.1
NWTAT 490 760.0

Thus, as Fig. 1 suggests, there is a significant change in the seasonal component of NRS in 1982, but not in the
seasonal component of NWTAT.

3.2 Testing for the Significance of an Indicated Effect.

For the monthly series of imports to the U.S. from the European Economic Community, IOECD, from January,
1974 through December of 1984, the trading day regression F-statistic from the X-11-ARIMA table with (6,124)
degrees of freedom has the value 6.0. This would be highly significant if the regression assumptions leading to
the F-distribution were satisfied. However, X-I1-ARIMA uses an OLS regression on the estimated irregulars
series, which is a correlated series resulting from a smoothing procedure, so a fundamental assumption is
invalid. A well-fitting REG-ARIMA model with trading day regression variables accounts for correlation. We
fit three such models to this data, each with a (0.1.1)(0.1.1)12 ARIMA structure, and with the following
regression variables:

(a) constant term, level shift in February, 1975 (model 1);
(b) constant term, level shift in February, 1975, trading day variables (model 2);
(c) constant term, level shift in February, 1975, trading day and leap year February variables (model 3).

The corresponding AlC values are AICPSI) = 2241.9, AlCr(‘Z) = 2250.1 and AIC§3) = 2252.0, so model 1 is

favored, contracting X-11-ARIMA's F-statistic. An alternative diagnostic, the smoothed periodogram of the
irregulars series given in Fig. 3, has no peaks at the trading day frequencies, which supports the conclusion of
the REG-ARIMA analyses: the series does not have a significant trading day component.

3.3 Detecting Quarterly Trading Day Effects.

It has long been assumed that, because the weekday composition of quarters is much less variable than that of
calendar months, trading day effects would not be significant with quarterly economic series. However, we
were sent some payroll series recently by Shelby Herman of the U.S. Bureau of Economie Analysis which had
such effects, in her opinion. OQur REG-ARIMA analyses confirmed her observations. For example, we fit three
REG-ARIMA models to the logarithms of the payroll series NEM (Non-electrical Machine Manufactures from
1975/1 - 1988/4), with regression effects which included

(a) no quarterly trading day or leap year effects (model 1),

(b) quarterly trading day effects (model 2), and
(c) quarterly trading day and leap year effects (model 3).

The AIC values for the corresponding models are AIC{!) = 808.8, Arc{?) = 786.4, and arc{®) - 785.0.

Models 2 and 3 are both preferred over model 1, and their estimated trading day effects are almost identical. A
graph of the trading day factors, which are antilogarithms multiplied by 100 of the trading day effects of model
3, is given in Fig. 4.

4. Comparing Subjective and REG-ARIMA Preadjustment Divisors

We have frequently been asked whether subjective preadjustment divisors (estimated by subject-matter experts)
or model based preadjustment divisors are to be preferred. REG-ARIMA model comparisons offer an objective
way to make such decisions on a case by case basis, as the following example illustrates. The unit auto sales
series UAS of Fig. 5 has a number of extreme movements that are due to sales proinotion campaigns by
automobile manufacturers. These campaigns were used to reduce large dealer inventories by offering buyers
low-interest loans or cash rebates. Such promotions increase car sales abnormally in months in which they are
in effect and cause an atypical decrease in the following month or so. By analyzing the irregulars series from
an X-11-ARIMA adjustment of UAS, an analyst obtained the adjustment divisors graphed in Fig. 6.

We were concerned that X-11-ARIMA seasonal adjustment, and therefore its estimate of the irregulars series,

would be compromised by the fluctuations arising from the promotions. In this case, the promotion effects
could not be obtained reliably from the irregulars.
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It seemned better 1o us to use the outlier identification procedures of X-12-ARIMA (see Bell, 1983) together with
some constraints suggested by the analyst to estimate the promotion effects. We fit such a REG-ARIMA
model, along with trading day, fixed seasonal, and other additive outlier effects, to the logarithms of the
observed series. For the resulting model (model 1), the estimated outlier effects are graphed in Fig. 7. The

e Wlue & this model is AICP(‘I) = 3169.4. The logarithm series adjusted for the analyst's estimate (as in 4.

of See. 1) was also fitted with a somewhat different REG-ARIMA model (model 2) whose regression variables

included trading day, fixed seasonal and different additive outliers, which in some cases contradicted the
analyst's adjustment. Even though no parameter estimation penalty was assigned for the analyst's estimates of
the promotion effect

{(we dind't know how, because the estimates were not obtained via maximum likelihood estimation), the AIC
value for this model is much larger, AICIEZ) = 3187.0 We conclude that model 1 better describes the data, and

therefore that the estimates of the promotion effects obtained via regression terms in the REG-ARIMA model
are betler than those obtained from examining the X-11-ARIMA irregulars series. Other analyses also support
this conclusion.
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ABSTRACT
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Benchmarking {s the improvement of estimates from a sub-annual survey with the help of corresponding
estimates from an annual survey. For example, estimates of monthly retall sales might be improved
using estimates from the annual survey. This article deals, first of all, with the problem posed
by the benchmarking of time serles produced by economic surveys, and then reviews the most relevant
methods for solving this problem. Next, two new statistical methods are proposed, based on a
non-linear model for sub-annual data. The benchmarked estimates are then collected by applying
weighted least squares and the raking ratio method to maintain consistency among the tables in the
series.

1. INTRODUCTION

Traditionally benchmarking has been defined as the problem of adjusting monthly or quarterly figures
derived from one source to annual values (benchmarks) obtalned via another source (see Denton 1971,
Cholette 1988a, and Monsour and Trager 1979). For example, it could be the monthly shipments of
Canadian Manufacturers which are adjusted so that they add up to the Annual Census of Manufacturers
shipments figures. Another definition of benchmarking {s the more general problem of improving
sub-annual estimates derived from one source with annual estimates obtained via a second source
(see Hillmer and Trabelsi{, 1987). This definition assumes that the annual values are subject to
error which is not the case with the first definition. For example, it could be the monthly
inventories of Canadian Retailers derived from a sample survey which are {mproved in using the end
of year inventories obtained from the annual retail trade sample survey. This second definition
of the benchmarking problem corresponds to the situation encountered with most economic time serles
at Statistics Canada and It [s the one dealt with In this paper.

The purpose of this article is fourfold. First, it formulates in detall, the benchmarking problem
as It appears for most of the Statistics Canada time series produced by large scale economic
surveys. Then, the most popular existing benchmarking methods dealing with a single time series
are presented and discussed. Since all these methods fail in some respects to solve the Statistics
Canada problem, two statistically based methods dealing with a single time series are proposed.
These two methods use a non-linear wefighted least squares approach. Finally, the benchmarking of
a table of time serfes and preliminary benchmarking are discussed.

2. PROBLEM FORMULATION

The Statistics Canada problem of improving a table of sub-annual series of estimates with annual
series of estimates from business surveys Is formulated here, describing the characteristics of
the original data and what is desired from a benchmarking procedure.

The sub-annual data is often biased due to frame coverage deficlencies. Flrst, some new businesses
have usually been in operation for & while before being included on the frame. This causes
undercoverage. Another source of undercoverage ls non-employer businesses (usually small) which
are not represented on the sub-annual frame. The last coverage deficiency s the duplication which
exists between the list of large businesses and the list of small businesses used as a frame by
sub-annual surveys. Consequently, sub-annual estimated totals are more than likely biased. Another
characteristic of the sub-annual data i{s that it i{s derived from overlapping samples. This {mplies
that sampling covariances exist between sub-annual estimates of different time periods.

In regards to the annual data, In practice they can be assumed to be unbiased since they do not
suffer much from duplication and the annual frame covers non-employer businesses and most new
businesses. Also, the annual data usually come from large overlapping samples and thus have
sampling errors associated with them.

When applying a benchmarking procedure it has to be taken Into consideration that the results from
the annual surveys come in approximately two years after the time that they are relevant. For
example, annual data for 1988 will not be released until some time in 1990, while sub-annual data
are usually avallable a few months after the time period that they are relevant. Therefore, when
the sub-annual data are to be benchmarked, there will be no annual benchmarks for some of the
sub-annual periods.

1 Normand Laniel and Kimberley Fyfe, Business Survey Methods Division, Statistics Canada,
Ottawa, Ontario K1A OT6
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There are a number of features that a benchmarking procedure should have i{n order to be used for
large scale survey estimates. First, the procedure should be simple enough so that it can be used
in an automatic fashion without too much intervention from the statisticlan. Secondly, it must
be possible to produce preliminary benchmarking factors for months for which benchmarks are not
available yet. This characteristic allows benchmarking to be performed as the sub-annual data are
produced. Otherwise discontinuities will be introduced in the sub-annual data.

The benchmarking method should be capable of fmproving the level estimates and the year-to-year
trend estimates of either flow ({.e. data that refers to an {nterval of time such as sales) or
stock (i{.e. data that refers to a point in time such as inventory) sub-annual data. Another
desirable characteristic is that the method maintains consistency between the table grand-totals,
marginal totals, and cell estlmates for the benchmarked data,

3. BENCHMARKING A SINGLE SERIES

The following sub-sections outline four potential approaches that one could use for benchmarking
a single time series of sub-annual flow or stock data. Each approach is presented with a statistical
interpretation, a brief outline of the underlying assumptions and a qualitative evaluation of the
appropriateness to the problem detailed in section 2.

3.1 Denton’s method

In his 1971 paper, Denton proposed procedures for a benchmarking approach based on Quadratic
Minimization. Each corresponds to a specific penalty function. Of these, one could be applied
to the problem of benchmarking time series as described in section 2, {f some assumptions on the
data are met. The procedure of Interest uses a penalty function in terms of proportionate first
differences between the original and benchmarked serfes. It can be presented In statistical terms
by first assuming that the sub-annual data follows the model:

restricted to the annual data:

where:
{yv:) Is a sequence of biased estimates of the sub-annual parameters (levels),
{8} i{s a sequence of fixed sub-annual patameters (true values of the levels),
{e.) 1s a sequence of uncorrelated and identically distributed errors with mean
vector and covarlance matrix (0.06%]) and,
{z;} is a sequence of annual benchmarks obtained from a census.
To find the benchmarked estimates, least squares are applied to the above restricted model.

It {s {mportant to note that Denton’s approach implies that 8,/y, follows a random walk and that

the annual data is from a census. Unfortunately, these assumptions are unlikely to be satisfied
by economic time series. Even though this method is able to handle a bias in the sub-annual data,
It does not take into account the sampling variances and covariances of the sub-annual and annual
data and, therefore, it {s not statistically efficient.

3.2 Hillmer and Trabelsi’s Method

In 1987, Hillmer and Trabels! proposed an approach to the benchmarking problem based on the
Box-Jenkins (1976) ARIMA models. They assumed that the sub-annual data follows the model:

Y =0, €, 0 =M 25 in
and the annual data follows the model:
z,-zepa, T=1,2.... m
te7
where:
{9,}) i3 a sequence of stochastic sub-annual parameters (true values of levels)
following an ARIMA model,
{y:} Is a sequence of unblased estimates of the sub-annual parameters,
(€.} is a sequence of sub-annual dependent sampling errors with mean vector and
covariance matrix (0.},),
{zr} 1s a sequence of annual unbiased estimates, and
{ar} is a sequence of annual dependent sampling errors with mean vector and
covariance matrix (0,1 )
Using the above models, they obtain the benchmarked sub-annual estimates by applying stochastie
least squares. That is, they minimize E(8,-0,)?, the mean squared error. This technique is also
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referred to In time series terminology as signal extraction, and the derivation of the solution
can be found in the paper written by Hillmer and Trabelsi.

With this method, the annual data can come from either a census or a survey using overlapping
samples. It also takes fnto account the sampling variances and covariances of the sub-annual level
estimates. Unfortunately, the approach does not accommodate biases in the sub-annual data which
is the case with economic surveys. Also, since ARIMA modelling is being used in this method, it
would be costly to implement for large scale surveys dealing with hundreds of series. Therefore
it would be best to use this type of approach for only a small number of very important econcmic
fndicators. There would also be risks of oversmoothing the data If the ARIMA models are not
properly specified.

Cholette and Dagum(1989) improved upon the Hillmer and Trabelsi approach by using an "{ntervention”
model Instead of an ARIMA model. This allows the modelling of systematic effects in the time
series but according to the authors, this improved approach still possesses the same weaknesses
as the original Hillmer and Trabelsi method.

3.3 Model on Trends

The following method was developed in an attempt to meet the benchmarking requirements of the
economic surveys. It ls based on the assumption that the sub-annual data follows the model:

]
l'—-—'—-*e, t=1.2....n

Yo 80y
and the annual data follows the model:
z,-zepa, === s@nyeenm
i
where:
{¥//y:1}) 1s a sequence of (nearly) unblased estimates of the sub-annual trends,
{6,78,.,) Is a sequence of trends of the fixed sub-annual parameters (true values),
{€,) 1s a sequence of dependent sub-annual sampling errors with mean vector and
covariance matrix (0.7 ),
{z;) is a sequence of annual unbiased estimates, and
{a;} Is a sequence of annual dependent sampling errors with mean vector and
covariance matrix (0.} ,).
Least squares theory {s applied to the above models to produce benchmarked estimates. The description

of the Gauss-Newton algorithm necessary to solve this problem {s given in the appendix and is
followed by the calculation of the covariance matrix of the benchmarked estimates.

This method can be used when the benchmarks come from efther a census or annual overlapping samples
and when the sub-annual level estimates are biased, if the relative blas is a constant. The
assumption of a constant relative bias will be verified in practice when the rate of the frame
maintenance activities is relati{vely stable. That is, when the proportion of frame coverage
deficiencies is fairly constant over time. Also the undercovered businesses have to behave like
the ones covered by the frame. These assumptions would be verified if the benchmarking procedure
were applied on a small number of years of data at a time.

There {s one technical problem with this methed. The sampling variance-covariance matrix of the
trends cannot be calculated directly and an approximation has to be used. The first-order Taylor
approximation has been tried but in some cases the resulting sampling variances and covariances
were zero or negative when they should be positive.

3.4 Model on Levels

The following method is somewhat equivalent to the previous one and was developed so that the
sampling variance-covariance matrix of the sub-annual estimates would be easier to obtain. It
assumes that the sub-annual data follows the model:

y,=af, +¢, t=1.2,..n
and the annual estimates follows the model:
z,-ZO,*a, (42 Uodotac m
(%4
where:
{y) is a sequence of biased estimates of the sub-annual levels,
a is a fixed parameter taking into account the constant relative blas,
(8,) Is a sequence of fixed sub-annual parameters (true values of levels),
{€,) 1s a sequence of dependent sub-annual sampling errors with mean vector and
covariance matrix (0.} ),
{z;} Is a sequence of unblased annual estimates, and
{a;) is a sequence of dependent annual sampling errors with mean vector and
covariance matrix (0.} ).
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Benchmarked estimates are found by applying least squares theory to the above models. The algorithm
required to solve this problem {s the same as for method 3.3.

This method can be used when the annual data come from either a census or from overlapping samples,
and when the sub-annual data has biased level estimates if the relative bias is a constant over
time.

3.5 Discussion

Amongst the methods reviewed here, the most appropriate one for benchmarking a single time series
is the new approach based on the model on levels. It has a statistical basis which allows us to
calculate confidence regions and test the goodness of fit of the benchmarked model. To test for
lack of fit one has to be careful in choosing a test since the benchmarked estimates, 8, have

quite a small number of degrees of freedom, m-1 (the number of annual observations minus one),
in comparison to the number of observations, n+m. This also suggests that we can expect to get
benchmarked estimates with a chronological pattern similar to the one observed in the sub-annual
data.

Atthispointlntime,thederivationofsamplingcovariancesbetweentwolevelestimatescorresponding
to two different time periods {s a practical Issue. Should they be directly calculated for all
pairs of time periods with an estimation computer system or modelled? From a theoretical point
of view, it i{s better to calculate these directly, since the sequence of sampling errors is
intrinsically a non-stationnary stochastic process. However, it is not evident that this is
feasible. On the other hand, no model exists which has been validated. 1In the literature, some
authors have arbitrarily tried an AR(1) stationary model (see dillmer and Trabelst, 1987). This
model does not look valid a priori. A slightly different approach has been attempted by Quenneville
and Srinath (1984) by modelling the sampling correlations between time periods by the autocorrelation
pattern of an AR(l) process. The validity of this last attempt is not clear. Thus, the question
of obtaining sampling covariances is still open.

4. BENCHMARKING A TABLE OF TIME SERIES

Most economic sub-annual surveys produce series of estimates for a number of industrial activities
within a number of geograghical regions. These are published sub-annually in the form of tables,
vhere the cells as well as the marginals and the grand totals need to be benchmarked.

If one applies a benchmarking method Independently on each cell series, each marginal series and
the grand total series, the results will be a series of benchmarked sub-annual estimates where the
sums of the cell totals are not equal to the marginal totals, and the sum of the marginal totals
are not equal to the grand total. In other words, a series of inconsistent tables will be produced.
To avoid this problem, a number of strategles can be adopted. Amongst these strategies, the first
that comes to mind {s the following simple approach. First, the cell series are independently
benchmarked. Then, the benchmarked cell totals are summed up to get the benchmarked marginal
totals and benchmarked grand totals. With this method one might get benchmarked margins and grand
totals with chronological patterns which look more noisy than if they were directly benchmarked
(this {s a problem well known in seasonal adjustment). If this is the case one would be better
to use the following method:
1) First benchmark the series of grand totals.

{1) Then, independently benchmark each series of marginal totals and then for each sub-annual
period separately adjust the benchmarked margins by a constant factor so that they add
up to the benchmarked grand totals.

{11) Finally, independently benchmark each series of cell totals and then for each sub-annual
period separately adjust the benchmarked cells using the raking ratio algorithm (also
called iterative proportional fitting, see Deming and Stephan, 1940) so that they add
up to the adjusted benchmarked margins.

This method assumes that the series of grand totals is the most important series of the table In
terms of preserving month-to-month trends, the serles of marginal totals are the second most
important and the series of cell totals are the least important. An inconvenient with this method
is that the month-to-month trends of the cells can be very much disturbed. This has been observed
in a small number of cases (see Laniel and Fyfe, 1989).

One can also think of benchmarking simultaneously the cell series with the margin series and the
grand total series. Then the problem can become very large in terms of the number of parameters
to estimate and even difficult to handle with a computer. This has been addressed by Cholette
(1988b) in the case where series are to be benchmarked with Denton’s method.

More evaluation and analysis needs to be done on these three possible approaches in order to
determine which one should be used for the problem described in section 2.

- 128 -



5. PRELIMINARY BENCHMARKING

Preliminary benchmarking is performed to avoid di{scontinuities between the sub-annual periods with
and without corresponding annual data. This is due to the fact that the annual data {s available
approximately 18 months after the end of the calendar year that it belongs to. Hence, there are
two sets of sub-annual periods without corresponding annual data. The first contains perfods for
which sub-annual estimates are available. The second set consists of the periods for which
sub-annual data will only be available at the time of the next application of the benchmarking
procedure. This is assuming that benchmarking i{s an annual event. Therefore, when the benchmarking
procedure is applied, {t should produce projected benchmarking factors which can be used to give
preliminary benchmarked data.

Two main approaches to produce preliminary benchmarking factors are:

1) Repeat the factor that was produced for the last benchmarked sub-annual period by either:
a) benchmarking up to the last sub-annual period with corresponding annual data, or
b) benchmarking up to the last sub-annual period with sub-annual data available.

2) Use a model to extrapolate the sub-annual series up to the sub-annual period where the
next application of the benchmarking procedure {s to occur. Then apply the benchmarking
procedure using the extrapolated sub-annual series to get the preliminary factors.
Simple models to do such extrapolations have been suggested by Lanfel (1986). 1t should
be verified that these models are robust enough for a large scale survey system not to
provide preliminary factors which are less reliable than a procedure that simply repeats
the last calculated benchmarking factor.

These two approaches should be investigated and evaluated. Such an evaluation might consist of
looking at revisions {n the benchmarked data from preliminary to final figures.

6. CONCLUSION

The problem of improving sub-annual survey estimates with annual survey estimates has been examined.
A new and simple procedure to benchmark a single time series has been presented. This procedure
could be implemented in a computer system which could be used in an automatic mode. The advantage
of the procedure over more traditional methods Is its statistical basis. Confidence regions can
be derived and goodness of fit of the benchmarking model can be assessed. Some issues in using
the proposed procedure for benchmarking a single time serfes have been discussed. Two major
practical questions have been pointed out: benchmarking a table of series and preliminary bench-
marking. Approaches to address these two topics have been suggested but more work remains to be
done.
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APPENDIX
1. GAUSS-NEWTON ALGORITHM

The models for the sub-annual and annual estimates of sub-sections 3.3 or 3.4 can be cast into one
model of the form:

Y,-j(/_\’.'.!yu, for s=1,..,a*+m
wvhere: Y, represents the sub-annual response when s=1,...,n and the annual response when
s=n+l,... n+m,
X, equal to (X,.....X....,)" Is a vector of dichotomic variables defined as:
| if s=k
Xue {0 if s¥k
¥ equal to (v,.....v,)" is the vector of parameters to be estimated in the combined
sub-annual and annual model,
u, is the sub-annual sampling error when s-1,...,n and the annual sampling error
when s=n+l, ... ,n+m; and
J(X,.¥) is equal to t g.:(y)X,, with g,(v) representing the sub-annual model when k=1,...,n
Y 5 Y
and the annual model when k=n+l,..., ntm.
For example, in the case of approach 3.4, we have Y= («.6,.....0,)" and

a8, if k=1,.., n
gu(y) = Zo,i/ k=n+1,.... a+m.

Both sub-annual models in 3.3 and 3.4 are non-linear {n the parameters. The linearization method
can be used In such a case to estimate the parameters which consists of approximating the non-linear

model by a linear one of the form Y.-l:"gﬂf-/v’.‘u.

where /:-I(E.'I.)' B:'Y.‘Y..v I,'(Y:o""'Y,.)‘. and J‘-[JI(E..l)]
i ay‘ - U

are inirial estimates close to the true values. In our benchmarking application we have used the
Denton method (see 3.1) to get these initial values.

The initial estimates are improved by using linear least squares in successive iterations, which
leads to the following updating matrix equation:

N A (O e

ety L SITEEE P L S L TRy e L 4,= %) oy Uty tta )’

Y,
e R P 0 1 R0l G LS

For this benchmarking application, computer rounding errors may cause the matrix J, E.'J, to look

singular and thus non-invertible. This is due to a large difference in the size of some of the
elements of J, and can be overcome by simply dividing both the sub-annual and annual series by the
average of the sub-annual levels before using the iterative algorithm. Once it has converged, the
sub-annual benchmarked estimates are then obtained by multiplying back with that average.

The above {terative process has many convergence problems which are well described with solutions
in Draper and Smith (1981). In the case of approach 3.4 these problems can be reduced by exploiting
the structure of the model. One can use the following two step procedure: 1) for fixed a, get
linear weighted least squares estimators of the 8,'s as functions of a, say 6,(a), and 11) then use
8,(a) in place of 6, in the benchmarking model and apply nonlinear WLS to get an estimate of a, say
a . This way, the dimension of the Gauss-Newton algorithm is reduced from n+1 to 1.

The expression above for Y,., assumes that annual values are observed with errors so that I, is

non-singular. However this covariance matrix will be singular, when the annual values come from
a census. In such a case, the solution can be obtained with the minimum I -seminorm g-inverse

replacing L,. That is, I, is replaced by I ,+J,J,” in the equation for L, (see Rao and Mitra, 1971).

2. VARIANCE-COVARIANCE MATRIX FOR THE ESTIMATES

Assuming that the Gauss-Newton algorithm has converged after j iterations to the estimates Y=y,
then the approximated covariance matrix is given by Var(y)=L, I L,
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TRANSFORMING FISCAL QUARTER DATA INTO CALENDAR QUARTER VALUES

P.A. Cholette!

ABSTRACT
Many quarterly surveys carried out by statistical agencies reflect the fiscal quarters of the res-
pondents, covering for instance the months from February to April, May to July, ete. This paper
proposes a method to transform such data into calendar quarter estimates, covering from January
to March, April to June, etc.

The method is essentially an adaptation of the Denton (1971) benchmarking method: A monthly
seasonal pattern {s benchmarked to be consistent with the available fiscal quarter benchmarks,
The calendar quarter estimates are then simply the appropriate calendar quarter sums of the
monthly "benchmarked" values. The Denton method is presented anew in the familiar framework of
regression analysis.

KEY WORDS: Benchmarking, Interpolation, Fiscal Quarters, Fiscal Years, Temporal Disaggregation.

1. INTRODUCTION

All the quarterly surveys conducted by Statistics Canada actually refer to the financial, i.e.
fiscal, quarters of the respondents. These quarters cover any of three consecutive months: for
example, February to April, May to July, etc.; or March to May, June to August, etc. Sometimes
those "months" do not even end on the last day of months. In some cases of course, the fiscal
quarters colncide with the calendar quarters, covering from January to March, April to June, etc.

One practice with respect to fiscal quarter data, is to assign them to the calendar quarter, which
overlaps the most. For instance if the respondents to a survey have any one of the following
fiscal quarters, December to February, January to March and February to April, their responses
are all assigned to the first quarter. The "quarterly” total of those responses thus implicitly
covers five months (December to April), instead of the first quarter. In a seasonal situation
especially, such quarterly values are obviously misleading.

This paper proposes a method to calendarize fiscal quarter data, that {s to transform them into
calendar quarter values. It is assumed (1) that the respondents in the survey have common fiscal
quarters, or at least that calendarization is performed at a level where this is the case; and
(2) that the fiscal quarters end at the end of months. Section 2 illustrates the calendarization
problem under those simplifying assumptions.

Section 3 presents the additive variant of the proposed calendarization method, which is in fact
an adaptation of the benchmarking methods of the Denton type (e.g. Denton, 1971; Helfand, Monsour
and Trager, 1977). (Benchmarking consists of adjusting a sub-annual series to annual values
obtained from another more reliable source.) Section 4 introduces a logarithmic variant of the
proposed method. Section 5 suggests an economical implementation of both variants and examines
the issue of revising the estimates. Section 6 tests the method on ten Canadian retail trade
series.

2. THE CALENDARIZATION PROBLEM

The problem of calendarizing fiscal quarter data is easily described by means of an illustration.
Figure 1 displays three years of monthly sales by the Canadian Department Stores. The figure also
displays the calendar quarter values, averaged over the three months they cover (i.e. divided by
3), and the fiscal quarter values (also divided by 3). which cover the months of February to
April, May to July, etc. Taking the fiscal quarter values as an approximations for the closest
calendar quarter (which overlaps the most) entails large and obvious “"estimation” errors,
especially for the first and the fourth calendar quarters of each year in the example.
Furthermore, the errors constitute bias: every year, the first and the third quarters are
systematically over-estimated while the second and the fourth quarters are under-estimated. In
the presence of seasonality especially, considering fiscal quarters as calendar quarters, that
is ignoring the calendarization problem, causes error and bias in the resulting quarterly series,

! Statistics Canada, Time Series Research and Analysis Division, Ottawa, Canada K1A 0T6.
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In a true calendarization situation, the monthly values of Figure 1 are obviously unknown. The
strategy proposed in this paper consists of two steps:

(1) interpolate the unknown monthly figures, from the fiscal quarter data and from an auxiliary
variable, usually in the form of a seasonal pattern; and

(2) set the calendar quarter estimates equal to the calendar quarter sums of the monthly
interpolations.
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Figure 1: Differences between the calendar quarter values (---) and the fiscal quarter values
(+++) of the Canadian monthly sales by Department Stores

3. THE ADDITIVE VARIANT OF CALENDARIZATION

This section presents the benchmarking methods of the Denton type as a linear regression model
and adapts it for calendarization purposes. Statistical agencies normally use benchmarking when,
for a socio-economic variable, sub-annual (say) measurements co-exist with annual measurements,
obtained from an other more reliable source and considered as benchmarks. In such cases, the
annual sums of the sub-annual series generally differ from the corresponding annual benchmarks.
In the Denton-type methods, benchmarking then consists of adjusting the sub-annual series, so that
(a) the annual sums of the benchmarked series conform to benchmarks and (b) the benchmarked series
is as parallel as possible to the original sub-annual series. The calendarization method proposed
basically consists of

(1) benchmarking a monthly seasonal pattern to the available fiscal quarter data, considered
as benchmarks; and

(2) of taking the calendar quarter sums of the benchmarked series.
The first step produces the estimates of the unknown monthly values, i.e. the interpolations; and
the second, the desired calendar quarter values.

3.1 The Model
As shown in Cholette and Dagum (1989), the Denton method can be seen as a regression containing
two equations:

S = I'+e, E(e)=0, E(e e') =V, (3.1a)

F = BTl +e, E(e)=0, E(ee') =V, =021, e 0, o20. (3.1b)
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In the context of fiscal gquarters, vector S of dimensions T by 1 stands for a monthly auxiliary
variable. In this paper, and without loss of generality, S takes the form of a seasonal pattern
or of a seasonal pattern plus a trading-day pattern (Young, 1965). This pattern is valid for all
the respondents at the level at which calendarization is performed. Vector F of dimension M by
l contains the fiscal quarter benchmarks, i.e. the data to be calendarized. Vector I' contains the
T unknown monthly values to be estimated.

Matrix B of dimensions M by T is a fiscal quarter sum operator. For example in the case of a flow
series with fiscal quarters covering from February to April, May to July, etc, matrix B would be
as follows:

01110 00 0O0O0OO0OO0O O
0 0 0 01 1 1 0000 OO
B - 0 0 00 0 0 01 11 0 00O ! (3.2)
Mby T

(For stock series, the two first 1's of each line are replaced by 0’'s.) Consequently, equation
(3.1b) specifies that the fiscal sums of the desired interpolated values [' are equal to the
available fiscal quarter data (except for an infinitesimally small error whose presence will soon
become obvious).

Finally the covariance matrix V, of the disturbances e - [e,, t=1,...,T] {s such that e, changes
as little as possible from month t to month t+l:

1 » » P
P, 1 »p p
v - 1 . p'
T by T ’:, ,:, : : 0,2 / (1-p%). 335
pT—l pT>2 p'l'>3 1

where p is lower but very close to 1 (0.999999) and where auz is in practice the variance of
change in § (i.e. the variance of (S5,-S,.,)). In other woxrds, this matrix specifies that the
disturbances are most autocorrelated at lag 1. (Details in Cholette and Dagum, 1989; Cholette and
Baldwin, 1989). The effect of V, in (3.1la) is to maintain the estimated interpolated values r* as
parallel as possible to the chosen seasonal pattern S. The degree of parallelism achieved depends
on the fiscal quarter benchmarks in (3.1b).

3.2 The Solution
Model (3.1) can be written

Y = XT + U, E(U)=0, E(UU")=V, (3.4)
where:
Y= [S"F ), X =[1 B ], U=[e € ], V = [v,o].
0 v,
The General Least Squares solution to (3.4) is:
T = (XVvIX)?' xv' y - [v,'+BV7PB )Y O [v's + BV, F], (3.5)
var T* = (X'VX)"' = (v, '+ B'v,B |}, (3.6)

where V,'! is known algebraically:

1 -p 0 0 0
-p 1+p2  -p 0 0
0 -p 1+p2 -p O e
vl - . . . . . / o2 (3.7)

Using matrix algebra identities, solution (3.5) can be expressed:

-

r - s+Vv, BBV, B+V]* [F-BS] =~ S+W(FBS)] - S+WR. (3.8)

Solution (3.8) requires a much smaller matrix inversion than (3.5). However, solution (3.8) would
not be relevant if the variance (3.6) is calculated, which requires the larger matrix inversion.

Contrary to (3.5), solution (3.8) also allows V,=0. Unless otherwise indicated, the rest of this
paper will assume V,=0. When V,=0, the value of o2 {mplicit in V, becomes immaterfal, because it
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cancels out; and 1-p? also cancels. Furthermore with V,~0, (3.8) has the form of Denton’'s (1971)
solution; and (3.8) is also the solution to minimizing the following constrained objective
function:

T M
L ((Ty-8y) - (T q-5e))? -2 ZXN (2T, ) =), (Ty-Sy=ey) .
t=2 m=1 TEM

As pointed by Bournay and Laroque (1979) for benchmarking, as p tending to 1, this function tends
to that minimized by Denton and others (except for the constraints) and specifies that I' preserves
the month-to-month change observed on S.

3.3 The Calendarized Values
Whether the interpolations are obtained by (3.8) or (3.5), the desired calendar quarter estimates
are simply the appropriate sums of I":

- -

# = g, B = @1, (3.9)

where N is the number of calendar quarters and where Iy is the N by N identity matrix. The
variance of C" is obtained from that of I':

var(c’) = G var(r") ¢'. (3.10)

If one i{s not interested in the monthly interpolations per se, the calendar quarter estimates may
be expressed directly in terms of the basic data F and S, by substituting (3.8) into (3.9):

»

¢ = G (S + W I[F-BS]) = ¢S = P [E-BS (3.1

The weights W of (3.8) and P of (3.11) do not depend on the data F and S. They depend only on the
length T of the serles and on the fiscal quarter pattern considered, that is on whether the
quarters end in January, April, July, etc., or in February, May, August, etc. The weights may then
be considered as known in advance and be applied to any series with same length and fiscal
pattern. As explained in section 5, this will entail important advantages for the implementation
of the method.

4. THE LOGARITHMIC VARIANT

The additive method presented in section 3 is suitable when the seasonal-trading-day pattern §
ls of the same order of magnitude as the fiscal quarter data (divided by 3). However, § is more
easily - and usually - expressed in percentages (in which case S is the product of a seasonal
pattern and of a trading-day pattern). The additive variant would then yield interpolations I
with negligible monthly sub-quarterly seasonality, in cases where the fiscal data are in millions
(say). Such interpolations would generally be insufficiently accurate to produce a satisfactory
calendarization of the fiscal quarters F.

Three options would then be available. One option would consist of multiplying the seasonal
pattern by callbration factors which evolves gradually from month to month and then of applying
the additive variant to the calibrated S. The second option would be to adapt the proportional
variant of the Denton (1971) for fiscal quarters. Such a proportional variant would indeed solve
the calibration problem by keeping I'" proportional to S; however, the weights W and P (of (3.8)
and (3.11) would then depend on the data. The third option is to adopt the logarithmic variant
now presented.

For stock serles, the logarithmic variant merely consists of applying the additive variant to the
logarithms of the fiscal quarter values, In F, and of the seasonal pattern, ln S; and of setting
the desired interpolations equal to the antilogarithm of the resulting estimates. Solution (3.8)
thus becomes:

InT" = InS + W[ InF-B 1nS ], I'* = exp(ln T (4.1)

where the weights W are those of (3.8) (with V,=0). Since the additive variant preserves the
month-to-month change of S, I'" of (4.1) preserves the month-to-month growth rate.

For flow series, solution (4.1) also preserves growth rates, but the interpolations have their
fiscal quarter products equal to the fiscal quarter benchmarks. In order to achieve equality of
sums, one successful strategy is to iterate on Iln F. Excellent starting values for 1n F'V
originate from the fiscal quarter products of S multiplied by the proportional discrepancies
between F and S (in square brackets):

o’ = I 8 [Fa/(25))] = WmFY - Zlns, [/ 2S)], ml,... M (4.2)
tem 7€M tE€Em TEM
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The first interpolations ‘) are given by (4.1) applied to ln F‘) of (4.2). For the other
fterations (k>l), the revised values for 1ln F*’  originate from the product of F*!’ and the
res{dual proportional discrepancies between F and I"*1’ ({in square brackets):

Fuu) [ F”(k'l) [Fu /( >x r"’(k'l))] s In Fh(k) - 1n Fm(k‘l) + 1n [Fw /( o r"(k-l))]' m-l,...H. (1‘3)
TE€EM 7€M

The subsequent interpolations I'"®’ (k>1) are given by (4.1) applied to ln F® of (4.3). Iteration
between (4.3) and (4.1) takes place until the equalities (3.1b) (with ¢=0) are satisfied by more
than 0.25% (say), which usually requires less then 5 iterations (K<5). An exact compliance to
(3.1b) may be obtained by multiplying the last Interpolations I"®’ by the last residual
proportional discrepancies:

B = EBF Ry /82 %) (4.4)
tem

The advantages of the logarithmic variant are the following:

(1) S may have an order of magnitude different from that of F; and

(2) the weights W of (3.8) are calculated once and for all and may be applied to any data S
and F, regardless of their particular values.
These properties combine the advantages of the proportional and of the additive variants of
Denton- type benchmarking.

5. IMPLEMENTATION

In both the additive and the logarithmic variants, the monthly interpolations are equal to the
monthly seasonal (and trading-day) pattern chosen, plus a linear combination of the discrepancies
R=F-BS between the fiscal quarter benchmarks and the corresponding sums of the seasonal pattern:

H
M- S+W[(F-BS)] = S+WR = I - S +3 W R, (5.1)
m=1

InI**® < InS+W [ InF* . B 1lnS] = 1ln S+ WR®
(5.2)
M
» lanl" ™ <« 1ns, +2 W,RY,.
m=1

where (5.1) is applicable to the additive variant and (5.2) to the logarithmic variant, and where
the weights W, , are given by (3.8) (with V,=0).

5.1 Description of the welghts

Table 1 contains the weights W, , for the three possible regular fiscal quarter patterns, where
each fiscal quarter contains three months. (Occasionally, a fiscal quarter contains more or less
than 3 months.) Table lA contalns the weights to be applied when one fiscal quarter is available,
i.e. M=1; table 1B, when two fiscal quarters are available, M=2; table 1C, M=3; and table 1D, M=4.

Column (a) of each sub-table pertains to the fiscal pattern where the quarters cover from February
to April, May to July, etc. (or May to July, August to October, etc.); column (b), to the pattern
where the quarters cover from March to May, June to August, etc.; and column (c) where the
quarters are calendar quarters. The weights in column (c) may be used to interpolate monthly
values from calendar quarters. For lack of space, column (¢) is omitted in sub-tables C and D.
However one can easily construct it from columns (b): row t of column (c) repeats row t-1 of
column (b); in fact the same relation prevails between the rows of columns (b) and (a). One
consequence of that relationship is that only columns (a) need be stored in practice.

5.2 Application when M > 4

When possible, we recommend applying the weights as a moving average of 4 fiscal quarters (M=4)
embedded in 5 calendar quarters. For the sake of illustration, assume a series starting in 1986,
which initially comprises 4 fiscal quarters covering from February to April, May to July, etc.,
embedded in 5 calendar quarters. As data become available, the series eventually comprises 11
fiscal quarters embedded in 12 calendar quarters. The weights of Table 1D (a) are then applied
8 times in the following manner.

The first time the weights apply to the 4 first fiscal data points F, (m=1l,...,4) and to 15

seasonal data polnts S, (t=l,...,15) in the interval January 86 to March 87, For instance the
additive interpolations for March and April 86 are
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Iy = Sy + 0.35173 R, - 0.02245 R, + 0.00491 R, - 0.00085 R,,
I, = S, + 0.24135 R, + 0.11225 R, - 0.02453 R, + 0.00427 R,.

where the R,'s are the discrepancies of (5.1) between F, and S,. This produces the final
interpolations for January to September 86 (and for the corresponding calendar quarters) and
preliminary estimates for January to March 87.

The second time, {.e. when the 5th fiscal quarter value becomes available, the same weights apply
to the data F and S in the interval April 86 to June 87. This produces the final estimates for
October to December 86 (and for the corresponding calendar quarters), the revised estimates for
January to March 87 and the preliminary estimates for April to June 87.

The third time, the weights apply to the data F and § in the interval July 86 to September 87,
This produces the final estimates for January to March 87, the revised estimates for April to June
87 and the preliminary estimates for July to September 87,

And so forth, Thils application of the weights, over moving intervals of five calendar quarters,
reduces the number of revisions to two; and insures that each final calendar estimate has two
fiscal benchmarks "on each side"” and is thus central in each Interval. This implementation is much
more economical than applying the method (recomputing W) on all the available data, and does not
noticeably affect the estimates.

5.3 Reliability of Preliminary Estimates

As defined, the preliminary estimates are subject to higher revisions than the (once) revised
estimates, because some of the months involved lie outside the range covered by the fiscal
benchmarks. Under the fiscal pattern of column (a) the two last months lie outside; under pattern
(b), the last month; and under pattern (c), the last three months. We therefore recommend that
the preliminary estimates not be used, especially if a turning-point (downwards or upwards) in
the business cycle is anticipated.

Statisticians not willing to tolerate the resulting production delays (or the reduced reliability)
could supply a forecast of the next fiscal quarter benchmark and apply the method to the
artificially extended series. (This tends to improve results with some seasonal adjustment
methods, Dagum, 1980.) A good starting point of such a forecast is Ff, = F,, + F,, - Fo. This
forecast is that of a degenerate ARIMA model (0,1,0)(0,1,0). This model states that the change
from one quarter to the next tends to repeat from one year to the next, which implies constant
seasonality and linear trend-cycle over the last four quarters.

5.4 Application When M < 4

When only one fiscal quarter is available, covering from February to April 86 say, the weights
of Table 1A (a) are applied. These weights simply distribute 1/3 of the discrepancy R, over the
seasonal pattern S. The i{nterpolations for the months of January to June 86 are then perfectly
parallel to S, and contain only seasonality (unless S is not only seasonal). One can show that
the calendarized values C, (n-1,2) for the first and second quarters of 86 are trivial and equal
to F,. Calendarization 1s then unlikely to succeed when only one fiscal value is available.

When the second fiscal quarter of 86 becomes available, the weights of Table 1B (a) are applied
to the data in the interval January to September 86. The interpolations are better than they were,
and non-trivial calendarized values C, (n=1,2,3) are now obtained for the first three quarters
of 86. The first and second quarter trivial estimates obtained previously are revised. Similarly,
when a third fiscal quarter of 86 becomes available, the weights of Table 1C are applied to the
data in the interval January to December 86. All estimates previously obtained are revised.
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Table 1
Weights W, , applied to the quarterly discrepancies R, to obtain
the monthly Interpolations under regular fiscal quarter patterns of columns (a), (b) and (c)

Table lA: when only one fiscal quarter is available (M=-1)

fiscal pattern: (a) (b) (c)
t\m FMA MAM JFM
N\
J 013381318 0.33333 0.33333
F 0.33333 0.33333 0.33333
M 0.33333 0.33333 0.33333
A 0.33333 0.33333 0.33333
M 0.33333 0.33333 0.33333
J ol 3B 0.33333 0.33333
Table 1B: when two fiscal quarters are available (M=2)
fiscal pattern (a) fiscal pattern (b) fiscal pattern (c)
t\m FMA M9 N MAM U’ JFM AMJ
\
J 0.40351 -0.07018 0.40351 -0.07018 0.40351 -0.07018
F 0.40351 -0.07018 0.40351 -0.07018 0.35088 -0.01754
M 0.35088 -0.01754 0.40351 -0.07018 0.24561 0.08772
A 0.24561 0.08772 0.35088 -0.01754 0.08772 0.24561
M 0.08772 0.24561 0.24561 0.08772 -0.01754 0,35088
J -0.01754 0.35088 0.08772 0.24561 -0.07018 0.40351
J -0.07018 0.40351 -0.01754 0.35088 -0.07018 0.40351
A -0.07018 0.40351 -0.07018 0.40351 -0.07018 0.40351
S -0.07018 0.40351 -0.07018 0.40351 -0.07018 0.40351
Table 1C: when three fiscal quarters are available (M=3)
fiscal pattern (a) fiscal pattern (b)
t\m FMA (A A SO MAM JJA S ON
\
J 0.40676 -0.08889 0.01546 0.40676 -0.08889 0.01546
F 0.40676 -0.08889 0.01546 0.40676 -0.08889 0.01546
M 0.35169 -0.02222 0.00386 0.40676 -0.08889 0.01546
A 0.24155 0.11111 -0.01932 0.35169 -0.02222 0.00386
M 0.07633 0.31111 -0.05411 0.24155 0.11111 -0.01932
J -0.02222 0.37778 -0.02222 0.07633 0.31111 -0.05411
J -0.05411 0.31111 0.07633 -0.02222 0.37778 -0.02222
A -0.01932 0.11111 0.24155 -0.05411 0.31111 0.07633
S 0.00386 -0.02222 0.35169 -0.01932 0.11111 0.24155
0 0.01546 -0.08883 0.40676 0.00386 -0.02222 0.35169
N 0.01546 -0.0888% 0.40676 0.01546 -0.08889 0.40676
D 0.01546 -0.08889 0.40676 0.01546 -0.08889 0.40676
Table 1D:.when four fiscal quarters or more are available (M>4)
fiscal pattern (a) fiscal pattern (b)
t\m FMA My 4 ASO N D J MAM JJ A SON D J F
N
J 0.40692 -0.08980 0.01962 -0.00341 0.40692 -0,08980 0.01962 -0.00341
F 0.40692 -0.08980 0.01962 -0.00341 0.40692 -0.08980 0.01962 -0.00341
M 0.35173 -0.02245 0.00491 -0.00085 0.40692 -0.08980 0.01962 -0.00341
A 0.24135 0.11225 -0.02453 0.00427 0.35173 -0.02245 0.00491 -0.00085
M 0.07577 0.31430 -0.06868 0.01194 0.24135 0.11225 -0.02453 0.00427
J -0.02245 0.37909 -0.02821 0.00491 0.07577 0.31430 -0.06868 0.01194
J -0.05332 0.30662 0.09689 -0.01685 -0.02245 0.37909 -0.02821 0.00491
A -0.01685 0.09689 0.30662 -0.05332 -0.05332 0.30662 0.09689 -0.01685
S 0.00491 -0.02821 0.37909 -0.02245 -0.01685 0.09689 0.30662 -0.05332
0 0.01194 -0.06868 0.31430 0.07577 0.00491 -0.02821 0.37909 -0.02245
N 0.00427 -0.02453 0.11225 0.24135 0.01194 -0.06868 0.31430 0.07577
D -0.00085 0.00491 -0,02245 0,35173 0.00427 -0.02453 0.11225 0.24135
J -0.00341 0.01962 -0.08980 0.40692 -0.00085 0.00491 -0.02245 0.35173
F -0.00341 0.01962 -0.08980 0.40692 -0.00341 0.01962 -0.08980 0.40692
M -0.00341 0.01962 -0.08980 0.40692 -0.00341 0.01962 -0.08980 0.40692
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6. EXAMPLES OF THE LOGARITHMIC VARIANT

In order to test the approach to calendarization, the logarithmic variant of section 4 is applied
to ten monthly Canadian Retall Trade series. The method is applied in a 5 calendar quarter moving
manner as described in section 5. The series, ranging from January 1986 to December 88, were
collapsed into fiscal quarter values covering February to April, May to July, etc. The monthly
values were then recovered, as interpolations, by applying the method to the fiscal quarter
benchmarks, F, and to a seasonal-trading-day pattern, S. For each series, § had been calculated
by the X-11-ARIMA seasonal adjustment method (Dagum, 1980), applied to the monthly values,
Normally, § would originate from another source.
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Figure 2: Interpolated monthly estimates and calendar quarter estimates (---) obtained from the
logarithmic variant applied to the fiscal quarter data (+++) and to the seasonal-trading-day
pattern displayed

The case of Department Stores is {llustrated in Figure 2. The interpolations I'*, adopt the month-
to-month growth rate of the seasonal pattern and exactly conform to the fiscal quarter benchmarks
F,. This conformity also hold for the calendar quarter estimates, since they are defined as the
quarterly sums of the interpolations. Note that most department stores have a fiscal year ending
in January and that the fiscal quarter pattern of the figure corresponds to that fiscal year.

Table 2 and 3 present the results for the ten series considered. Table 2A presents statistics on
the absolute percentage errors (APE) of the 36 interpolations, with respect to the true monthly
values. The low values of the means and standard deviations of the APE's show, in many cases, a
surprising degree of accuracy. This demonstrates the possibility of obtaining fairly accurate sub-
annual interpolations from a mere seasonal pattern and benchmarks. The table also displays the
standard deviations of the seasonal pattern and of the irregular component, o, and g;, estimated
by X-11-ARTMA. Not surprisingly, the accuracy (low statistics) is generally negatively correlated
with the intensity of the irregular component (measured by oy) of each series.

Table 2B presents the same statistics for the three last interpolations. Contrary to expectations
(see Section 5.3), these do not appear ostensibly less accurate than the others. This is due to
the fact that, in the fourth quarter of 1988, none of the series displayed a trend-cycle turning-
point. However the minimum APE's always differ between Table 2B and 2A, indicating that the
precision never reaches its maximum during the last three months. On the contrary, the maximum
APE's colncide for 3 of the 10 series, indicating that precision often reach it minimum during
the last three months.
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Table 2
Analysis of the absolute percent interpolation errors

Table 2A: for the 36 observations of the series

mean std. dev. min, max N oy
Groceries and Meat Stores 0.8 0.7 0.1 2.6 519 1.
Department Stores 0.8 0.7 0.1 2.3 27.6 1.6
General Merchandise Stores 2.6 1.9 0.1 7.2 18.0 3.1
General Stores 1.0 0.7 0.0 3.0 10.8 1.8
Variety Stores 2.1 25 7 0.0 12.5 29.1 2.3
New Vehicles Dealers 2.0 1.5 0L 6.8 14.1 3.6
Used Car Dealers 2.0 2.2 0.0 10.1 15.8 4.5
Service Stations 0.7 0.6 0.0 2.6 7.0 1.4
Garages 1.1 0.8 0.0 3.2 7 5) 2.6
Automotive Parts 1.9 1.5 0.1 5.7 20.5 2.8
Table 2B: for the last three months of the series
mean std dev. min. max.
Groceries and Meat Stores 1.1 0.3 0.8 1.5
Department Stores 0.5 0.3 0.3 1.0
General Merchandise Stores 2.4 0.9 1.2 3.5
General Stores 1.6 1.1 0.2 3.0
Variety Stores 204l 1.6 Ok:9 4.4
New Vehicles Dealers 3p 1 2.6 1.2 6.8
Used Car Dealers 1.9 0.9 0.6 3.0
Service Stations 1.4 0.9 0.7 2.6
Garages 1.4 gl O3 2.8
Automotive Parts 3.9 1.5 1.9 )
Table 3

Analysis and comparison of the absolute percentage calendarization errors

Table 3A: for the first 11 calendar quarters of the series, under the proposed method and when
assigning the fiscal quarters to the closest calendar quarter in brackets
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Table 3B: APE for the last quarter of each series, under the proposed method
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Table 3A presents the statistics on the APE of the calendarized values, obtained (1) by the method
proposed and (2) by assigning, without correction, the fiscal data to the quarter which overlaps
the most, in brackets. The means of the APE are from two to twenty times lower with the proposed
method. The reduction i{s especlally remarkable for some series with strong seasonality (measured
by o,), which is not surprising.

Table 3B displays the APE‘'s for the last calendar quarter estimate of the ten series, under the
proposed method. The above discussion about Table 2B remains applicable.

The results obtained here are rather encouraging for the proposed method. However, in practice,
the seasonal pattern would not be known as precisely. The results presented here may then be
interpreted as a sample of the best results that can be expected in real calendarization
situations.

7. BACKGROUND

As explained in Section 3, the calendarization method presented in this paper is an adaptation
of the benchmarking methods of the Denton type (e.g.: Denton, 1971, Helfand, Monsour and Trager,
1977). The adaptation merely consist of allowing the benchmarks to cover fiscal quarters instead
of calendar years. A seasonal-trading-day pattern is then adjusted (benchmarked) to the fiscal
quarter benchmarks. The calendarized values are then the calendar quarter sums of the benchmarked
series. Cholette and Baldwin (1989) have proposed the same strategy to calendarize fiscal year
data; and Cholette and Chhab (1989), to transform aggregates of weekly data into monthly values.
The logarithmic variant of Section 4 can be seen as an approximation of the proportional variant
of Denton (1971), which is often used in fact as an approximation to a growth rate variant (Smith,
1977).

There is a literature on temporal dis-aggregation. The method by Boot, Feibes and Lisman (1967)
coincides with the additive variant of Section 3, if the benchmarks cover calendar years and if
the seasonal pattern is quarterly and set to zero. This method is used to convert calendar year
data into non-seasonal quarterly values. Cohen, Muller and Padberg (1971) generalized the approach
to convert calendar data of any frequency into more frequent non-seasonal values.

The temporal disaggregation method proposed by Chow and Lin (1971), Bournay and Laroque (1979),
Fernandez (1981), Alba (1988) and others Interpolate between benchmarks, by using related series
in a linear regression. These methods coincide with additive variant herein, if the benchmarks
reflect calendar periods, if only one regressor with coefficient equal to 1 is considered and if
the autocorrelation coefficient of the regression residuals is set to 1.

8. CONCLUSION

This paper proposed a method to convert fiscal quarter data into calendar quarter values. The
application of the method to a few retail trade series are rather promising. More research would
be desirable, especially regarding the preliminary estimates and the use of approximative seasonal
patterns.

As expla;ned. the lack of calendarization leads to erroneous data. Yet, to our knowledge, that
problem has not drawn the attention of statisticians.
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ADIJUSTMENT FOR REPORTING-DELAY OF AIDS, AND ESTIMATION
OF THE SIZE OF THE HIV INFECTED POPULATION IN THE U.S.A.

I. B. MacNeill', Q. P. Duong?, V. K. Jandhyala® and L. Lin?

ABSTRACT

The adjustment to the diagnosed AIDS time series to account for reporting-delay is shown to be a function
satisfying certain multivariable niltiplicative functional equations. Solutions to these equations are character-
1ized for both stationary and non-stationary cases. Estimation of imitial conditions is discussed in the context
of the U.S. AIDS epidemic. A discussion is given of smoothing and short-term extrapolation of the adjusted
series. Following a review of the incubation time distribution for the HIV iofection, an integral equation is
given which relates the rates for new diagnosed AIDS cases to new HIV infections by means of the incubation
time distribution. Solutions of this equation yicld estimates of the size of the HIV infected population that
are smaller that those previously reported. The most significant feature of the HIV infeetion estimates is the
rapid increase in the rate of infection prior to 1985/86 and the equally precipitous decline after 1985/86; this
phicnomenon appears to be robust against substantial changes in incubation time distribution and estimates of
the size of the diagnosed AIDS population. A discussion is given of implications for the longer term course of
the disease.

Key Wonbs: reporting-delay adjustment; short-term extrapolation; integral equations; AIDS forecasting; HIV
mfection estination.

1. INTRODUCTION

Reports from the Surgeon General (1986) contained estimates that in 1985 between one and 1.5 million citizens
of the USA were HIV infected; these estimates were based on small samples of the general population. Difficulties
m obtaining reliable sample survey data in this area make thicse estimates highly speculative. More recently
(1989) the Surgeoun General's oflice has estimated the size of the HIV infected population to be one million;
this is a substantial reduction from thie carlicr estimates, particularly in view of the three year interval between
estimates. This paper uses estimates of the rates of progression of the HIV infection to AIDS and data regarding
the number of diagnosed cases of AIDS in the USA to obtain alternative estimates of the number with HIV
infection. A methodology is developed to account for late-reporting of AIDS data. The alternative estiniates of
this paper place the size of the HIV nfected population at levels lower than that given by the Surgeon General,

2. REPORTING DELAY

Since the AIDS epidemiic is now in a crucial pliase of its growth curve, it is important for short-term forecasting
purposes to have good information regarding the actual number of AIDS cases diagnosed cach month. However,
after au AIDS case is diagnosed in the U.S. a report of the case must pass through a burcaucratic channel before
it reaches tlie Centers for Discase Control (CDC). Tlie length of time required for a report to reach the CDC
is vartable. Reports for only a few cases for a particular nionth will be i the hands of the CDC within the
first few monthis of diagnosis. Most of the cases are reported within the 12 wmonth period following diagnosis.
However, some cases may be reported as diagnosed in a particular month as much as several years later; changes
in definition of the discase exacerbate the problem.

This late-reporting problem is illustrated by the data graphied in Figure 1. The data are taken froin the
semi-annual reports issued by the CDC dated Jannary 1987, July 1987, January 1988, July 1988 and January

! Departinent of Statistical and Actuarial Sciences and Department of Epideuiatogy and Biostatistics, The
University of Western Ontario, London, Canada NGA 5B9

2 Bureau of Managemenut Consulting, 364 Laurier Avenue W. Ottawa, Canada K1A 0S5
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Figure 1. Number of diagnosed AIDS cases reported to the CDC for selected reporting Litnes.

1989, and represent the monthly diagnosed AIDS counts reported to the CDC as of report time. Recent AIDS
counts for months in the distant past appear to be approaching close to the totality of diagnosed cases, since
all five linc-graphs lie close together, but the counts for the more recent past obviously suffer from serious
reporting-delay.

The problem addressed in the sequel is that of cstimating the total number of AIDS cases diagnosed in a
particular month given a partial listory as exemplificd in Figure 1. Approaches to dealing with the late
reporting problem include those of Morgan and Curran (1986) and Healy and Tillett (1988). We propose a
new approach.

Figure 2 is a schematic illustration of the late reporting phenomenon. We lot Di(t) represent thie number of
new dingnosed AIDS cases for time period t as reported at time {. In Figure 2, Di(l — n) is the munber

reported now ({) for 2 months ago, and Dyy (1 —n) is the number that will be reported in m months time
for the same month, The reporting-delay adjustment is

DH—m(l . ")

finym) = Dyl -n)

We seck fi(n,00) since this represents the reporting-delay adjustment that should be applied to Di(l —n) to

account for all the diagnosed cases that will eventually be reported for the (f - n)th month. However, we do
not wisli to wait until m becomes this large.

It is casy to show that fi(n,m) satisfics the following functional equation:

Silnymy +ma) = filn,my) figm, (n +my,my) . (1)

Iteration of (1) yields

m—1

fitn,m) = [ fiss(n+4,1) .
7=0
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Adjusting the Diagnosed AIDS Series to
Account for Reporting Delay
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Figure 2. Late-reporting for diagnosed AIDS cases.

Hence, if one is given the iuitial condition fi(n,1) for all n and I, then one can obtain fi(n,m) forall I, n,
m . This would solve the non-stationary reporting-delay problem since

Diyoo(l = ) = filn,00)Di(1 = n) .

However, estimation of this initial condition places heavy demands on the availuble data,

If fi,(n.m) = fi,(n,m) for all reporting times Iy, I, then the functional equation (1) reverts to the stationary
case which is stated as follows:

flnymy +my) = fn,my)f(n +mg,me) . (2)
Again, iteration of (2) yields

m—1

fn,m) = H fin+5,1) .

i=o
Iteration of (2) also yields

m—1

f(n,6m) = H f(n +065,6) . (3)

j=0

This initinl condition is simpler and, provided that reporting efficiency lias remained relatively constant, it may
be estimated from the data given in the appendix which is graphed in Figure 1. For the data in Figure 1 (and
the appendix), the time unit is the month, with ¢ =0 and { = 0 each corresponding to December 1981. For
example, D73(21) = 264 is the nunber of diagnosed cases for September 1983 as reported in January 1988.
The only reporting dates cousidered are those from Figure 1, namely ! = 61,67,73,79,85. The last months
for which data are available are ¢ = 60 for [ =061, t = 66 for | = 67, etc. As an example of the adjustinent
ratio from the data consider 1 = 61, m =12, and n =40. Then f;;(40,12) = 264/259 = 1.0193.

The ratio fi(m,n) is the adjustment to the AIDS count for n months in the past as reported at time [ that
is required to reproduce the AIDS count for the same month that will be reported m months in the future
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(from !). Given a reporting regime with a constant efficiency, then fe1(n,6), for(n,6), fra(n,6), f+a(1,0)
will each estimate the sanme ratio. For example, f6,(35,6) = 1.014, f;:(35,6) = 1.018, f73(35,6) = 1.021 and
f79(35,0) = 1.013. Morgan and Curran (1986) provide an anal)sxs mdicating the reporting delays in the U.S.
liad not changed significantly up to 1986. Hence we let

f,m) = a\,fc{f{(n,m)} , (4)

where { ranges over those report dates for whiich fi(n,m) is computable from the available data. For example,
using the data in the appendix,

j(”ﬁG) = = {fo1(n,6) + for(n,6) + fr3(n,6) + fru(n2,6)}

1

and morce specifically, f(35,6) = 1.0161. Obviously f(n,0) =1.0.

We note from equation (3) that only the initial condition nceds to be estimated {rom the data., Hence (4) was
applied only to f(7n,6) for n = 13,14,...,060; the data are considered inadequate for n = 1,2,...,12. Then
the estimates were smoothed and (3) was used to produce f(n,00) which is graphed in Figure 3; cight terms
in (3} were required to achieve convergence; i.e. f(n,060) = f(n,00). Application of this adjustmnent to the
diagnosed AIDS series for January 1982 to December 1987 as reported January 1989 yiclds the adjusted serics
as graphed in Figure 4. Application of the adjustment to the diagnosed AIDS series for cach of the five reporting
times of Figure 1 yields five estimates of the adjusted series. A measure of the validity of the adjustment and
of the stationarity of the reporting regime is the degree to which the five adjusted curves coiucide. Figure b, iu
which the five curves are graphed, indicates the adjustment is working well.
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Figure 5. Adjusted U.S. diagnosed AIDS seties for five sclected reporting times.

By way of conuuent it can be noted that (1) and (2) are discrete cases of functional equations that generalize
the well known functional equation

flte+t2) = f(t)f(t2)
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whose solution under mild regularity condition is tlie exponential. The continuous version of (2) is the bivariate
functional equation,

f(S, t + tz) = f(S,f])f(S +t11t2)

Under mild regularity conditions MacNeill (1989) has characterized the non-trivial solutions as

f(s,t) = exp {/0 g(s+r)dm}

where the initial condition is
a
= — f(s,1
o) = gits0]

The cquation f(s,t) is called the stationary reporting-delay function. The non-stationary reporting-delay
function satisfies the following equation:

fils,ty +t2) = fils, &) fir (s + 1y, t2) .

Again, under mild conditions, the non-trivial solutions are characterized as follows:

fi(s, 1) = exp {/:g(lJr z,s + x)dr}

where the initial condition is

d
l,s) = = fi(s, g
9(l,s) atft(“nf)] L
Other functional equations exhibiting this multiplicative property are discussed by MacNeill (1989).

3. RELATIONSHIP BETWEEN DIAGNOSED CASES, INFECTIONS
AND INCUBATION TIME

Our purpose in this section is to develop equations relating the number of AIDS cases diagnosed in a certain
Jurisdiction per titme unit to the nuniber who acquired the HIV infection in prior time units. For the sake of
argument we use years as time units. We let D(k) represent the number diagnosed with AIDS in year k. Also,
we let I(j, &) represent the number infected in year j and diagnosed with AIDS in year k(k 2> j); then

k
D(k)= 3" I(j,k) .

J='76

We assume hiere, for the sake of argument, that the first infections occurred in 1976 or later. Thus, if P(j, k)
represents the proportion of the total infected in year j that is subsequently diagnosed with AIDS in year k,
and if N7} is the total number infected in year 7, then

Iy, k
PGk = ]

We let T(1) be the nuniber infected to year I; these are the quantities about which so little scemns to be kuown
and for which we can provide estimates using the following system of equations:
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D(k) = N() PG, k) k="76,77,...
7 [

=

As discussed in Section 2, substantial information is now available regarding D(k), and other estimates can be
obtained by forecasting; this time scries is discussed further in Section 4. Oue of the first studies to provide
iformation regarding P(j, k) comes from the clinical work of Brodt et al (1986), and from the aualysis of their
data by Cowell and Hoskins (1987) and Panjer (1987). More recent studies reported by Kalbfleisch and Lawless
(1988) yicld other estimates of incubation timnes. Section 5 contains a discussion of the estimation of P(j, k).
In Section 6 the methodology of this section is applied to the series for diagnosed cases and to the incubation
tine distribution to obtain estimates of the size of the HIV infected population in the USA.

Meanwlile, it can be noted that equation (5) is the discrete analogue of the following integral equation,

D(t) =/ut P(t —s)N(s)ds . (6)

Hence, if D(-) and P(-) are known, one may obtain N(:) by solving (6). This provides a powerful tool for
studying the relationships among plaasible models for the diagnosed rate function D(-), the infection rate
function N(-) and the incubation time distribution P(-).

If £(f) represents the Laplace transform of the function f(+), then equation (6) yiclds

L(D) = L(P)E(N) .

If D(+) and P(-) are known and their transforms can be obtained analytically then

L(N) = L(D)/L(P) .

The infection distribution N(-) may then be obtained by inverting its transform. As an examnple, consider the
functions

Dy(t) =R exp {—c/t} , t>0,

and

Pl(t) =F(QIW t"_lcxp{—t/ﬂ} N =il .

This choice of diagnosed rate function implies growth from zero at time ¢ = 0 to the asymptote & with the
rate of growth controlled by e. Qualitatively, such growtl is epidemiologically plausible for the time frame in

which we are presently interested.

As a concrete case with gamma distributed incubation tines consider o = 2 and g = 4, which implies a mean
incubation time of 8 years. The Laplace transforms of D(t) and P;(t) arc:

L(Dy) = 2K Ve p~ R, (2ve p)

where Ky (+) is a modified Bessel function, and

1 1,
C(Pl)—ﬁ(l’+z) 3
Then,

£V = 32RVep i eve P+ 17
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Figure 6. Rates for new diagnosed AIDS cases and new 1V infections; model 1.

70008

60080

sepce

ageee

Joceo

20000 ¢

10080

=1

a0 o

Tiune in Years

Figare 7. Rales for diagnosed AIDS cases and new NIV infections: model 2.

- 152 -



mversion of which yields

Ni(t) = Kexp {—c/t}(1 + 8ct™? — 32¢t™3 + 163 74) .
Figure 6 presents Dy(t) and Ny(t) with K = 36,000 and ¢ = 9.5.

As a sccond cxample, consider

Dy(1) :TGI;?; t" Lexp {~t/5) 310
and
Pz(t)=—1—t""cxp{~t/ﬂ) ,  t>0.

I(a) B

This choice of diagnosed rate function implies growth front zero at t = 0 to a maximum and then a decline
asymptotic with zero; the rates of growth and decline are determined by a and 8. Again such growth is
qualitatively plausible for certain epidemiological series although it might be premature to forecast the time of
the downturn in the number of diagnosed AIDS cascs; the question is discussed below in Section 7.

Solution by the Laplace transform method yields

K
2(t) = ——— t*"*“lexp {-1/8} .
2( ) F(CX o G)ﬁq_“ exp { /ﬂ}
Figure T presents D, (1) and N(t) with a =6, a = 3, 8 = 3 and ' = 699,840. The mecan incubation time
implied by this choice of parameters is 9 years.

The parameters for each of the above examples were cliosen to yield a total of approximately 80,000 AIDS cases
in the first 10 years of the epidemnic.

In the event that analytical solutions to the integral cquation (6) are not available, one may resort to numerical
techniques to obtain solutions. These methods, which are based on the equations in (5), can be tested on the
exact solutions represented in Figures 6 and 7. This has been done, and agreement to pre-determined levels of
accuracy can be attained.

4. THE NUMBER OF DIAGNOSED CASES OF AIDS

The first diaguosed cases of AIDS in the USA occurred in 1978; earlier cases may have occurred but were undi-
agnosed. The size of the epidemic increased exponentially for several years thercafter. This carly exponential
growth provoked forecasts of a calainity that would rival the Black Death, a catastrophe which decimated the
population of Europe duriug the 1300's. The expoucntial forecasts were made with the proviso that trends
present at that time would continune.

However, the growth of the number of diagnosed incidences of AIDS appcears to have departed from the ex-
ponential mode n carly 1984. Duong and MacNeill (1987) identified this departure for the Canadian data,
and Jandhyala and MacNeill (1988) have analyzed the U.S. data and have estimated carly 1984 as the date at
which the parameters of the system began to change. The methodology used to test the hypotliesis of parameter
change at unknown time is given by Cliernoff and Zacks (1964), MacNeill (1978) and Jandhyala and MacNeill
(1986). Having determined that the exponential hypothesis is no longer tenable, Duong and MacNeill (1986)
use the Akaike information criterion (AIC) to select from among a range of growth models that which best
fits the Canadian data. The AIC can be used to compare non-nested models, and brings model selection into
the inferential process. The model chosen for the Canadian data is the logistic, and it can be used to forecast
the incidence of AIDS; previous applications of this methodology suggests that, at least for the near future,
these forecasts can be expected to be reasonably accurate. At this stage in the development of the epidenic,
it is unlikely that realistic non-empirical models with the large number of parameters that they entail will be
of much use in near-term forecasting. Hence, we will rely upon the logistic for smoothing and for near-terin
forecasts of the nuuber of diagnosed AIDS cases.

The logistic function is defined as follows:

M D(0)
(0) + (M — D(0)) exp {—mkt} °’

Dit)= 5
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where D(0) is the size of the epidemic at ¢ = 0, M is the maximum size (rate) of the epidemic, k is the slope
factor, and D(t) is the rate of diagnosis at time t. This function has been fitted by non-linear least squares
to the monthly diagnosced AIDS cases as reported January, 1989 by the Centers for Disease Control (CDC);
Dccember 1981 is regarded as time ¢ = 0. The data for 1988 are not used for fitting due to scvere late-reporting
which characterizes the reporting of the AIDS cpidemic. The data prior to 1988 have been revised upwards
using the late-reporting adjustment discussed in Section 2. The logistic is used here only for very short-term
forccasting, viz, 12 months to Decemiber 1988.

Figure 8 shows the graph of the adjusted data superimposed on the fitted logistic curve.

3000

2800

Cases

1000 - /

Time in Months

Figure 8.  U.S. diagnosed AIDS series (adjusted), January 1982 to December 1987 as reported January 1989, with a logistic fit
extrapolated to December 1988.

5. INCUBATION TIMES FOR HIV INFECTIONS

A longitudinal study by Brodt et al. (1986) conducted at the University of Frankfurt followed subjects at risk
of AIDS to determine the times of progression through the various stages of the disease. The study used the
five stages of the Walter Reed Staging Mcthod to identify progress from healthy status to AIDS. The stages
are:

la (At-Risk): Healthy persons at risk for HIV infection, but testing negative.

b HIV*: Othcrwise asymptomatic persons testing HIV*,

2a (LLAS): Paticnts with HIV infection and lymphadenopathy syndrome (LAS), together with moderate
cellular immune deficiency.

2b  (ARC): Patients with HIV infection and LAS, together with severe cellular iinmune deficiency (AIDS-
related comnplex, ARC, as defined by CDC).

3 AIDS: DPatients with AIDS as defined by CDC.

The last stage is death.
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Table 1, which presents some of the main results of the study, gives the number of patients observed by
stage and by length of observation period.

Range of Stage Stage Stage Stage Stage All
Observation la 1b 2a 2b 3 Stages
Periods (At-Risk) (HIV*) (LAS) (ARC) (AIDS)
3-6 mouths 10 9 21 8 6 54
6-12 months 14 18 51 29 9 121
12-24 months 21 20 29 20 7 97
24-36 months 3 5 19 7 1 35
All Periods 48 52 120 64 23 307

Table 1. Frankfurt Study “Table 5" Data: Number of Patients Obscrved by Stage and Observation Period

n il ) 3 4 5 6
P(j,7 +n) 0.016 0.065 0.107 0.125 0.124 0.113
. n T 8 9 10 11 12
P35 +n) 0.096 0.080 0.063 0.050 0.039 0.030

Table 2. Proportion of those newly infected which will have, or will die of, AIDS 11 years later

These data have been used by Cowell and Hoskins (1987) and by Panjer (1987) to cstimate HIV progression
rates aud AIDS mortality rates. The model developed by Panjer was used to derive the estimates of P(j, j, +n)
presented in Table 2. This model implics an incubation time distribution that is approximately gamma with
a mcan of 6.3 years. Cowell and Hoskins in an analysis of the same data but with a different modcl obtain
a miean that is approximately two years longer. Kalbfleisch and Lawless (1988) lave estimmated the median
incubation time to be approximately 10 ycars. In the sequel we have used the gamma distribution with various
values of the paramcters as models for incubation time distribution. We comment later on upper bounds for
mean incubation times, and suggest that 10 years is approaching this upper bound.

6. ESTIMATES OF THE SIZE OF THE HIV INFECTED
POPULATION IN THE USA

Figure 8 contains the U.S. monthly data regarding diagnosed AIDS cases adjusted for late-reporting. The
logistic model fitted to the data and extrapolated forward to the end of 1988 is used in estimating the size
of the HIV infected populatiou. These estimates are made using as incubation tine distribution the Gamma
distribution with the various parameter sets suggested by studies discussed in Section 5. Equation {G) 1s
solved numerically and yields the cstimmates given in Table 3. Figures 9 contains the graph of D(¢), the rate
for new diagnosed AIDS (logistic fit), and N(t), the rate of new infections. For this characteristic case, the
parameters for the logistic fit are D(0) = 75.92, M = 4476.86 + 255.33 and k = 0.00001412. The incubation
tiine distrilintion assumed for Figure 9 1s gamma with a = 2, 8 = 5 for a mean incubation time of 10 vears.
The computations are repeated with the asymptote of the logistic curve increased by two standard errors.

The most striking feature of the graph of N(t), the infection rate function, is the rapid rise in the number of
new infections until 1985/8G and the equally precipitous decline during subscquent years. As noted these com-
putations have been repeated for a variety of plausible incubation time distiibutions and for larger asymptotes
for the logistic model. In all cases the infection function rises rapidly prior to 1985/86 and declines sharply
after 1986. Other factors held constant, longer average incubation times result in larger estimates of the size
of the HIV infected population; this is illustrated in Table 3.
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Figure 9. Rate of HIV infection recruitment, N (), and rate of diagnosis of AIDS, D(t).

Mean Incubation Pre-AIDS HIV infections
Tunces 1985 1988
Logistic Logistic 420 Logistic Logistic +20
8 yecars 232,500 466,800 443,300 498,400
9 years 278,800 598,600 515,100 567,500
10 ycars 329,000 657,700 590,600 638,000

Table 3. Estimates of the size of the pre-AIDS population in the USA

The above analysis suggests that the number of latent AIDS cases in the USA approximates to 600,000, which
is a large number but considerably smaller than that estimated by the Surgeon General (1989).

It can be noted that positivity requirements on the N(t) series impose upper bounds on the mean length of
the incubation tine for a particular model of the distribution. In the above formulation, for incubation time
distributions to be consistent with the apparent trend in diagnosed AIDS cases, equation (6) and positivity of
N(t) require that the mean incubation time be bounded at not much more than 10 years.

7. AIDS FORECASTS

What does the future hold regarding the number of AIDS cascs in the USA? Several scenarios may be explored
by extrapolation of N(t), the HIV infection rate function; Figure 10 contains three different extrapolations
corresponding to a mean incubation time of 10 years. Equation (6) may then be used to forecast the AIDS
series. Extrapolation A is compatible with continued logistic growth in D(t), the dingnosed AIDS case series.
Extrapolations B and C are more in keeping with the apparent internal dynamics of thie N(t) series, and suggest
a decline in the number of diagnosed AIDS cases beginning in 1990. The corresponding forecasts for D(t) based
on the three scenarios for N(t) appear in Figure 11.
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Figure 10.  New HIV infections with three scenarios for the future (A, B, C).
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Figurc 11.  New AIDS cases with three scenarios for the future (also see Figure 10).

8. DISCUSSION

The analysis given above provides estimates of the size of the HIV infected population that are lower than those
given in the Coolfont report (1986) and in the more recent reports front the Surgeon General’s office.

Several factors significantly affect the size of the estimates given in this paper. First, the longer the incubation
time, the larger is the estimate of the size of the HIV infected population. This follows because the number of
cases of AIDS observed up to the present represents a proportion of the infected population that varies inversely

with the length of time it has taken to develop these AIDS cases.
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Secoud, the pereentage of the infected population that ultimately become AIDS victins is assumed to be 100%.
If this assumption is not true, and the percentage is 100 p %, where 0 < p < 1, the estimates of the size of the
HIV infected population must be increased by the factor p~'. No adjustinent is necessary if one is interested
only in latent AIDS cases.

Third, information regarding under-reporting is largely speculative. However, if the fraction of all cascs that
are reported is f, then the estimates of the size of the HIV infected population must be increased by the factor
f='. One could speculate that the offect of under-reporting is unlikely to exceed two standard errors on the
logistic asymptote.

The most significant feature of the HIV infected estimates is that they have peaked and have declined rapidly
since 1986. Several reasons may be put forth to explain the post 1986 precipitous decline. First, the cffect of
education among the liigh risk groups lias resulted in less risky behaviour on their part. However, because of
the lengthy wean incubation time, cducation probably had a minimal impact on the shape of the N(t) function
iu the pre 1985/86 period. The second, and more plausible, explauation for the rapid growth and decline, is
a saturation cffect among those who put themselves most at risk during the period immediately prior to the
time when general awareness of the disease emerged. That is, exponential-type growth occurred at first but
after the infection spread to a large part of this group there was little room left for continued growth.

The education program and the broad dissemination of information about AIDS that occurred during the
carlier part of this decade are likely to have their greatest impact on the HIV infection rate during the next
decade. If these programs have been effective then scenario C will be more likely; if the programs have not
been effective then scenario A will be more likely.

Evidence given by Jolinston (1988), McKusick et al (1985), Martin (1987), Winkelstein ct al (1987) and others,
to the effect that among the homosexual male population in the USA, education has resulted in substantial
behavioural change. Hence, the weight of this evidence points to scenario C as the most likely. The effect of
education upon IV drug users is more problematical.

However, even if new infections were to cease immediately, AIDS will continue to be a significant epidemic
through the 1990s simuply because the number of latent cases remains relatively large.

The more encouraging news is that cffects of the rapid growth and precipitous decline in the rate of increase
of the HIV infected population in the USA prior to the late 1980’s will play themsclves out during the 1990’s
and will have a much diminished impact by the turn of the century.

The above discussion assumes no inuninent mnajor niedical discovery in the form of cures or vaccines for AIDS. It
also assumes no discovery of drugs or therapies that would lengthen the mean incubation time of HIV infection
aud/or the survival time of AIDS victims. Obviously such cures, vaccines, drugs and therapies would have a
major impact on the course of the epidemic.

The previous analysis has been predicated upon the notion that the incubation time distribution is stationary.
What would be the effect of a lengthening of the mean incubation time, perhaps through drng therapy, at some
future point? Figure 12 contains graphs of D(t) for scenarios A, B and C when the mean incubation time is
extended from 10 years to 15 years beginning in 1990, The principal effects of a lengthening of tlie incubation
times are to reduce the impact of the cpidemic in the 1990’s but to increase it in the carly part of the next
century.

It should be noted that the time from the instant of HIV infection to death from AIDS is divided into two
periods by the instant of AIDS diagnosis. The first of these periods is the incubation time, and the second
is the survival time. If AIDS diagnoses are postponcd, for whatever reason, then incubation times will be
artificially lengthened, and survival tines will be correspondingly artificially shortened. The opposite would be
the case if diagnoses are made earlicr than called for by the staging method. If the former had been the case,
perhaps due to a desire to avoid negative social effects, and if the latter were now the case, perhaps due to the
promise of improved survival from an untested AIDS drug therapy, then spurious and offsetting changes could
be noted in incubation and survival times. In fact, it is possible for actual survival tines to be shortened by an
untested, perhaps expensive, drug therapy and yet appear to be lengthened due to a larger spurious effect of
the kind noted above. The regulation of such snake-oil therapies is another argument for conducting properly
randomized clinieal trials.

9. IN CONCLUSION
If medical science is unsuccessful in discovering cures, vaccines or effective drugs/therapies, then mankind

will have to manage with AIDS as it has managed with other epidemics in the past; namely by developing
natural immunity. The childhood diseases brought by the Spanish to the New World in the 16-th century had
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Figurc 12.  New AIDS cases with three scenarios for the future (sce Figure 10) and with an increase in mean incubation time from
10 to 5 years in 1990.

devastating cffects upon the native populations of the Americas. However, today these discases have no more
impact upon their descendants than they do upon the descendants of the Spanish. Several generations have
been required to build imimunity defences in past; W.H. McNeill (1975) has estimated six generations. To the
extent that pediatric cases of the HIV infections are relatively rare, it may require more generations than usual
to build immnunity to AIDS. Meanwhile, education is the main hope for ncar-term management of the AIDS
cpideniic.
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APPENDIX
Date of CDC Report Date of CDC Report

Jan. Jul Jan. Jul Jan. Jan. Jul " Jul A
Month " s ‘es ss 89 e 80 aT 5 ss o9
Priorto'82 337 31l 352 348 381 13 889 906 936 965 084
Jan.'82) ! 50 50 18 19 54 44 954 976 1018 1057 1071
2 G4 66 68 67 68 45 794 825 871 902 920
3 58 59 59 59 62 46 880 920 961 1018 1050
4 59 58 57 56 H8 47 838 871 918 962 989
5 59 61 61 64 68 48 881 906 958 1014 1045
G 7l 71 72 74 76 49 986 1059 f123 1197 1234
7 81 84 84 85 88 50 940 999 1072 1151 1191
8 92 94 95 94 96 51 966 1048 1135 [216 1263
9 109 105 106 107 108 52 990 1068 1145 1238 1278
i0 104 106 106 106 111 53 1D35 1123 1241 1326 1382
11 118 123 12§ 125 125 51 1034 1164 1276 1396 1462
12 134 135 137 137 139 55 1017 1176 1331 1437 1497
13 170 174 172 171 180 56 982 1185 1308 1425 1494
11 149 163 151 153 161 57 894 1205 1343 1495 1597
15 200 203 207 212 216 58 761 1292 1468 1602 1706
16 212 214 216 222 229 59 373 1097 1265 1391 1464
17 211 217 219 222 225 60 43 1167 1397 1548 1627
18 257 259 260 209 263 6l 1228 1499 1707 1811
19 229 234 238 239 245 62 1164 1483 1694 1815
20 243 214 248 251 249 63 1172 1548 1799 1946
21 259 264 264 266 272 64 874 1542 1816 1927
2 245 249 257 261 261 65 523 1564 1864 2012
23 277 278 277 277 277 66 81 1532 1873 2036
24 313 318 315 318 321 67 . ) 1508 1915 2094
25 343 343 354 358 362 68 ) . 1456 1905 2085
20 368 373 381 380 389 69 . . 1374 1950 2130
20 383 385 384 397 101 70 . . T 1933 2146
28 114 424 432 431 441 71 . ! 499 1776 1974
20 454 464 469 470 474 72 3 . 58 1877 2132
30 434 447 451 456 163 T3 . . . 1765 2073
4] 484 490 4905 503 513 7 : . e 1654 2064
J2 500 507 516 517 528 75 . . ; 1763 2317
33 506 513 516 525 534 76 . 5 : 1296 2026
3 555 567 574 577 582 77 : . 2 840 2061
35 530 538 551 551 559 78 . 5 . 125 2167
36 560 568 577 589 597 79 5 . : . 1959
37 G630 650 657 G78 701 80 E 5 . . 1982
38 Gl G623 634 047 655 81 e . : . 1656
39 728 744 757 780 799 82 : . : . 1352
40 751 766 784 817 838 83 g . : . 759
11 755 770 796 815 834 84 G 5 : . 122

12 773 799 819 853 879

Table A. Five sets of data provided semi annually by the CDC beginning January 1987. These data are the
reported numbers of diagnosed AIDS cases per month as of report time.
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SMOOTHING PROCEDURES FOR SIMULATED LONGITUDINAL
MICRODATA
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ABSTRACT

Microsimuiation modeis allow one to study the behaviour of a large population over time. At
Stanstics Canada, health characteristics and risk factors are being added to a demographic and
labour force model of the Canadian population. This paper describes a method for obtaining
multivariate transition probabilities between states for use in advancing individuals in simulated
time. The lack of longiudinal data means that these probabilities must be derived from
cross-sectional data. The use of appropriate transition probabilities by the microsimulation model
has 1he effect of producing smoother, more realistic, logically possible life histories. The
probabilities are constrained to maintain consistency with the cross-scctional distributions. The
constraints on the probabilitics inay be expressed as those of the transportation problem in network
flow theory. The obyjective function in this special type of linear program is chosen to discourage
unrealistically large or frequent changes of state across time. Canada Health Survey data were used
to gencrate multivariate transition probability arrays for smoking, blood pressure, cholesterol, and
body mass index, all thought to be important risk factors for coronary heart discase.

KEY WORDS: Longitudinal Data, Microsimulation, Simulation, Smoothing

INTRODUCTION

‘This paper describes techniques for enabling a dynamic microsimulation model which relies on cross-sectional
source data to nevertheless produce realistically smooth sumulated longitudinal microdata. A microsimulation
model consists of a set of algorithins and a computer program which simulate microdata. The algorithms are
based on probabilistic or deterministic submodels, and/or on observed distributions of real data. The
microsimulation model generates a sample of simulated units which represent some conceptual population of
units, These units might, for example, be people, households, or business firms. We shall refer to them as
“inchviduals”, The sample of individuals is used to make inferences about the population. Microsimulation
models are particularly useful for posing and answering questions of a "what if" nature. To distinguish the
data used in the construction of a microsimulation modet from the data generated by such a model, we shall
refer 1o the former as "source data” and to the latter as the "simulated data” or "sample data”. For a useful,
broad collection of papers concerning microsimulation, see Orcutt, Merz, and Quinke (1986).

A dynamic microsimulation model ages a sample of individuals across time, simulating multivariate data (such
as marital status, employment status, education, consumption of manufactured goods, and health status) which
describe them during cach time period. There exist many panel and other surveys which can provide source
data which are both multivariate and longitudinal, but the need of a microsimulation model for such data often
cannot be fully met. Hoschka (1986, p. 49) lists "missing variables™ and "cross section instead of panel surveys”
as being among the most commion shortcomings of microsimulation model source data. By their very nature,
lonaitudinal data require a long period of time to be collected, and it is not always possible 1o foresee what
combinations of variables will be needed, so that alternate strategies are needed.

Assume that for each variable of interest, a finite number of outcomes (or classes, or states) have been defined.
From longitudinal age-specific source microdata, it is possible to estimate the distribution of a variablc at a
civen age (, and to estimate transition probabilities for an individual moving from a certain state at age t (0 a
certain state at age t+1. These probabilities can be used by the microsimulation model as it ages the sample.

I Analytical Studies Branch, Siatistics Canada, Onawa, Ontario K1A 0T6
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fn the absence of longitudinal source data, analysts often use cross-sectional data, treating the age-specific
source data gathered at one point in time as if it were data describing one group of individuals across time.
Transition probabilities cannot in general be deduced from cross-sectional data (a deficiency which also occurs
with longitudinal data which arc collected, but not linked, across time). However, if a microsimulation model
ignores (ransitions and generates data independently for each age, the characteristics of a simulated individual
may vary unrealistically across time, even though the distribution of the sample matches the source data
distribution at each age.

For example, suppose that cross-sectional source data were used to estimate at each age the distribution of a
variable describing an individual’s sioking habit (classed as "Never Smoker", "Current Smoker", or "Former
Smoker”). If the microsimulation model generates an individual’s smoking habit independently for each age,
the resulting simulated smoking history may have unrealistically frequent changes of state, and it may exhibit

o logically impossible transition (such as from being a current smoker to being a never smoker).

tdeally, a microsimulation model would use an array of multivariate transition probabilities to move an
individual from one age to the next. In the absence of muftivariate source data, analysts may "synthetically”
flink different data files (enhancing the data for one individual by appending data from another, similar,
individual), and they may resort to assuming independence of separate variables.

This paper describes procedures for obtaining multivariate transition probability arrays from cross-sectional
multivariatc data in order to smoothe the longitudinal behaviour of the simulated individuals. The examples
provided utitize data for four variables having S, 3, 3, and 4 states, respectively, so that there are 180 frequencices
at each age group, and 180 x 180 = 32,400 transition probabilities from one age group to the next. Across the
12 age groups, there are therefore 356,400 transition probabilities. Given multivariate data for two adjacent
age groups, an array of multivariate transition Irequencies (and the corresponding array of transition
probabilities) is obtained using linear programming (LLP) methods. These transition frequencies are made
consistent with the cross-sectional multivariate source data, and conditions which are innate to the particular
variables are also imposed; these, plus the nonncgativity of the frequencies, form the constraints of the linear
program. The linear program’s objective function is choscn so that transitions to "nearby” states are favoured
over transitions 1o “distant” states (which is reasonable if the time interval between the two age groups is
relatively small).

The approach here is from a smoothing rather than an estimation point of view because of the very large
number of degrees of freedom available for determining transition frequencies given relatively few marginal
sums. Our approach is analogous to that used in smoothing ordinary univariate time series data, for which
there are many possible simoothing algorithis; the choice of an algorithm and the parameter values thereof is
olten made heuristically, in order to obtain the desired quality and degree of smoothing. It is in that spirit that
procedures are proposed here for generating realistically smooth longitudinal microdata.
THE SMOOTHING TECHNIQUE

Suppose that there are k variables of interest (k > 1), for which multinomial data are available as follows: For
each variable, a finite set of mutually exclusive, exhaustive possible outcomes (states) has been defined, and
cross-classified frequencies of occurrence of each outcome combination have been observed for n, individuals

of age t and for n,,, individuals of age t+1. If the data are cross-sectional, these two groups of individuals

are disjoint, and », ,, may even be larger than n, (which cannot occur in a closed population).

The array of transition frequencies between age t and age t+1 (and the corresponding array of transition
probabilities) is 2k-dimensional. For notational simplicity, k will be assumed to be equal to 2, without loss
ol generality. Suppose, then, that the number of states for Var. 1 is s, , and the number of states for Var. 2 is

s; . Letw;, be the number of individuals who were observed to be in the bivariate state (i1, 1) at age t, and let

= 1672 =



v, be the observed number of individuals in state (j, j,) at age t+1. (Here j, andj, label the state for Var. 1,
]

and i, andj, label the state for Var. 2; i, and j, = 1, ...,5;5hand j; =1, ..., 5,). Thenn, =u.. and n,,, = v..(where
ihe dot notation signifies summation over the indicated subscript). Ordinarily, n, # n,,, : this occurs in a closed

population because of losses due to mortality, and in cross-sectional data because the two groups contain

different individuals.

Ior the time being, assume that there is no mortality between the two ages, and rescale the observed frequencies
(for cither or both ages) so that the number (n) of individuals represented at each age is the same: Multiply
the u;;,’s by a constant Candthe v, 'sbyC % . For example, multiply each observed frequency atage t by
(O % in which case the frequencies at age t+1 remain unchanged. Since the two sets of rescaled frequencies
now have a common sum, the quantities {n—"'t—'u,.li,} and {v;;} can be treated as the marginal sums {x-m“}
and{x.., }, respectively, of the array {x ., } of unknown transition frequencies which are to be determined
using LI methods. As discussed below, the resulting transition probabilities are invariant to the choice of the
scale factor C.

‘The transition frequency x, ; ; . is the unknown number of individuals who made the transition from state (i, 1,)

i
alage L Lo state (ji,, j) at age t+1. The overalt sum of the transition frequenciesisx.... =Cn, =n. The transition
probability p, , ; ;, is the probability of an individual being in state (j,, j,) at age t+1, conditional on having been

instate (i, 1) at age t:

__xil‘l’.ll-l
Piizjyin = X

USRS
(The word “probability” is used informally throughout the discussion here, and may instead be interpreted as
"proportion”.) The goal is to obtain reasonable values for the p;; ;. 's (or equivalently for the x;; ; ,.'s) for usc

in generating microsimulated data.

Using standard linear programming techniques, values {x; .} are determined so as to minimize an objective

function, which is a weighted sum of the x,, . 's, subject to the following three types of constraints: (i) The

il
frequencies must be non-negative; (ii) The marginal sums of the input multinomial data must be maintained,
and (iii) Relationships innate to the variables must be maintained (e.g., that the number of transitions from

being a current smoker to being a never smoker is zero).
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The weights for the objective function are chosen here to favour stability by discouraging transitions to distant
states, assuming that the concept of  “distance” between states is meaningful. With the state labels suitably
ordered, a reasonable choice for the weight Wi, fOr X, might be a measure of the distance between the

state (iy, i) at age tand the state (ji, j,) at age t+1, such as | iy — jy [ + ] iy= jo | or (i, = j,)* + (i - j)? .

‘There ieiains the question of which variables to use: the transition frequencies or the transition probabilities.
That is. the result of minimizing

2= N i

hW iy on

ighit iz

ts in gencral different from the result of minimizing

A DIPIPIPY Wi ijiia = PP z o

Wy Wiy
DR ) & INA R 1"V Y8

iy
(where w’;, . =
Yy 1']'1" i

‘The LI> method applied to the same observed data with two different choices of the rescaling factor C will
yield the same array of transition probabilities (but not of transition frequencies) in both cases. If {0, are
the iransition frequencies resulting from a choice of C = C,, thenit is straightforward to show that the transition
frequencics resulting from an aliernative choice of C =C, are ‘%Itnium} . Both transition frequency airays

have the same transition probabifities.

[t is insiructive to interpret mortality as an additional variable for which two states - Alive and Dead - are
defined at any given time. (Dead is an absorbing state; persons who are dead remain “forever” in the same
multiviriate state, and age for them is interpreted as the number of years since birth.) Viewed the other way
around - as a tife table to which variables representing other means of transition than dying have been added
- the transition frequencies are similar to entries in a multistate life table (see, e.g., Rogers (1980)). In
longitudinal data for a closed population, the numbers of individuals Alive and Dead are known at any given
time, and ransition frequencies between the two stales are known; in cross-sectional data, the nuimber Alive,
but not the number Dead, is known, and no transition frequencies are known. It can be shown that rescaling
of Alive individuals at age tis equivalent to removing from the Alive population atage tall of those individuals
who are going to die by age t+1, but by applying the overall mortality rate rather than the state-specific rate.
Since the LP method yields the same results regardiess of the rescaling factor, this rescaling implies the use
of a state-independent mortality rate.

This is what occurs when cross-sectional data are rescaled; the resulting transition probabilities may be
interpreted as transition probabilities from age t to age t+1 for only those individuals who survived to age t+1,
but under the assumption that all state-specific mortality rates are the same. Using rescaled cross-sectional
data is not ideal in that one likely reason for defining different states of a variable is that the mortality rate is
thought 10 be state-dependent. Intuitively speaking, a larger percentage of high risk individuals should dic in
(ri+1), resulting in relatively fewer of them alive at age t+1. Assuming a uniform mortality rate for all states
makes it appear that some high risk individuals have moved to lower risk states.
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EXAMPLES

The input data used to demonstrate the smoothing technique are from the 1978/79 Canada Health Survey
(CHS). This was a multistage stratified houschold survey of 31,668 individuals. For details of the CIIS, sce
Statistics Canada and National Health and Wellare (1981). For cach sex, and for cach of 12 age groups (15-19,
20-24, 25-29, ..., 65-69, and 70+), cross-classified frequencies were obtained for the following variables and
classes:

Var. | Body Mass index (%) Var. 3: Diastolic Blood Pressure (mmlig)
(1) <20 (1) <90
(i) [20,25] (i1) [90,105)
(1i1) (25,27] (iii) 2105
(iv) (27.,30]
(v) >30
Var. 2: Serum Cholesterol | 5 Var. 4: Smoking 11abit
dL
(i) <200 (i) Never Smoker
(i1) (200,240] (i1) 1-20 cigarettes/day
(111) >240 (i11) >20 cigarettes/day

(iv) Former Smoker

IFrequencies were calculated using the survey weights. These four variables are risk factors which can be used
to help predict coronary heart discase. The transition probabilitics derived here arc to be used in a health
microsimulation model being developed by Wolfson (1989); a submodel, constructed by Wolfson and Birkelt
(1989), simulates the onset and progression of coronary heart disease.

‘Transitions involving the smoking variable have certain innate constraints. The probability of becoming a
former smoker immediately after being a never smoker is zero (for a short age increment during which it is
assumned that ouly one ransition occurs). The probability of becoming a never smoker after being in any of
the other three smoking categories is zero. And it may be reasonable to assume that the probability of quitting
smoking is less than or equal to the probability of resuming smoking. The appropriate elements of the transition
probability array must therefore obey certain equations or inequalities. The LP approach can maintain such
relationships by impasing them as additional constraints.

Table 1 gives a one-variable example of the LP procedure results. Transition frequencies and probabilities
for males from age group 30-34 to age group 35-39 were calculated using the observed marginal distributions
ol just the Smoking Habit variable. The four smoking states were ordered as they might occur for one individual
across time - from never smoker to lighter smoker (1-20 cigareties) to heavier smoker (>20 cigarettes) to former
smoker. The LP procedure was applied using different combinations of weights (absolute distance or squared
distance) and objective functions (z or z'). In all four cases, the (1.4), (2,1), (3.1), and (4,1) elements of the
transitionmatrices (involving transitions from never smoker to former smoker, and from lighter smoker, hcavier
smoker, and former smoker to never smoker) were constrained to be zero, but no inequality constraints were
imposed for quitting smoking relative to resuming smoking.

In Table 1, changing from z to 2’ made a difference when absolute distance weights were used, but made no
difference when squarced distance weights were used. In general, the use of absolute distance weights permits
trzmsitions to nmore distant states to occur than with squared weights (or weights based on a more rapidly
increasing function of distance). In the four examples, the only transitions permitted over a distance of more
than one state arc from being a lighter simoker to being a former smoker (absolute distance weights, objective
[unction z, probability .08), and from never having smoked to being a heavier smoker (absolute distance
weiglits, objective function z’, probability .02). In the latter case, however, the one-state move from never
having smokedto being alighter smoker is less probable than the two-state move (in fact, the one-state transition
is impossible), which may be unrealistic.

On the other hand, absolute distance weights generally resultinlarger diagonals. The diagonals of the examples
using absolute distance weights are greater than or equal wo the corresponding diagonals of those using squared
istance weights. All four examples have probabilities of 1.00, which is probably unrealistically large, for the
zero-state transition {rom former sioker to former smoker. LEven so, this does not imply that a guitter of
smoking will remain a quitter forever, as each age transition uses a different set of transition probabilities.
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The probability of resuming smoking (the sum of elements (4,2) and (4,3)) is zero in all four examples, and
the probability of quitting (the sum of elements (2,4) and (3,4)) is higher - either .08 or .07. Attempts 1o force
the probability of quitting to be lower than the probability of resuming resulted in the LP program halting in
some cases because no feasible solution exists for these data under these constraints. The problem is caused
by the use of cross-sectional data and by incorrect assumptions about them, not by the LP method.

It is useful to inspect the transition probabilities and to examine the effects of varying the parameters, as one
does when smoothing time series. One can examine the various trade-offs among the different solutions and
select the most appropriate one for the microsimulation model. The acceptability of a set of transition
probabilities depends strongly on the particular set of data and onthe assumptions. Forexample, ourassumption
here thattransitions from never smoker to former smoker are impossible is perhaps overly stringent for five-year
age intervals.

I'igure 1 shows two synthetic life histories simulated using the multivariate distributions for the four variables
across all 12 age groups. In Figure 1A, the 11 8-dimensional transition probability arrays obtained using
objective function z and squared distance weights were used to assign states to one individual (named "Sam”
for "smooth”). InFigure 1B, only the distributions at each age were used, so that the multivariate state of this
individual (named "Roy" for "rough”) at age t is independent of his state at age t+1. The greater smoothness
and continuity of Sam’s life history is clearly noticeable. Only once does he jump from one state across an
intermediate state to another state, while such leaps are quite frequent in Roy’s life. Note that Roy twice
experiences a forbidden transition, becoming anever smoker at age 50-54, and then becoming a former smoker
at age 55-59. Roy’s body mass index fluctuates unrealistically, as does his cholesterol. Sam’s body mass
index follows quite a believable pattern of increase to age 5S0-54 and then declines, similar to his cholesterol.
In smoking, he shows a plausible pattern, in general gradually increasing his consumption until he quits in
middle age. Roy’s smoking pattern is logically impossible. Both of these individuals have reasonable blood
pressure patterns.

COMPUTATIONAL CONSIDERATIONS

The procedure used to obtain the transition frequencies has been described above as a linear programming
one. In fact, the problem fallsinto a very important special class of linear programs, i.e., network flow problems,
and a special case of these known as the transportation problem. The term transportation problem arose from
the original interpretation as finding the least costly way to route malterials from supply points to demand
points (see Hitchcock (1941)). The essential constraints of a transportation problem are the imposition of
known row and column totals on the non-negative elements of amatrix. By choosing some convenient ordering
for the multivariate states, one can imagine the transition frequencies to be matrix elements, with the row labels
corresponding to the starting states and the column labels to the ending states. The number of individuals
making a transition is clearly non-negative, and the row and column sums correspond to the total numbers of
individuals in the initial and final states. We want to impose consistency with these given totals, which is
precisely the transportation problem framework. The objective function in our problem imposes costs on
various transitions. These are analogous to the shipping costs from one place to another in the classical
application. The coefficients are such that transitions to "nearer” states are cheaper than those to more distant
stines.

‘The recognition that our linear programming problem is a network flow problem has important theoretical
and practical consequences. One pleasant property is that integer valued solutions are found. If the row and
column totals are integers, the algorithms will return optimal solutions with integer values, so that the number
of individuals making a transition is never fractional (see Lawler (1976)). Finding integer valued optimal
solutions is difficult for a general linear program, but it is automatic with a network flow.

Other advantages of phrasing our problem as a network flow are that network flow problems can be solved
orclers of magnitude faster and with less computer storage space than general linear programns. The problems
solved here with less than 400 nodes are not large ones by the standards of the ficld and are routinely solved
hy available codes. In one large application (see Barr and Turner (1981)), a transportation problem with more
than 20,000 constraints and 10,000,000 variables was solved.

In the simplest transportation problem, all transitions are allowed, with no upper limit on the value of an
individual frequency. In this case, providing that the row and column totals are consistent (i.e., have the same
overall total), the problem always has a solution (i.e., is "feasible", in the terminology of mathematical
programming). The framework does have more flexibility than this simple form implies, and this flexibility
is needed for our problem. For example, if certain transitions are logically impossible, then they can be
lorbidden. One may alsoimpose lower and upper bounds on various variables in the solution. This corresponds
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to restricting the ranges of certain transition probabilities to reflect knowledge and beliefs about what is likely.
When additional constraints of this type are added, the problem may no longer be feasible. (As a simple
example. if enough transitions are forbidden, it may not be possible to satisfy the demand at a particular node
or nodes.) In our data, infeasibility was encountered in some cases and was always traced to the same cause:
our constraints made it impossible to become a never smoker from any other state (which was reasonable),
but the raw data, after re-scaling to achieve consistent overall sums, had more never smokers at age t+1 than
at age t. ‘The resulting infeasibility was not due to a problem with the method; it was a consequence of the
usc of cross-scctional data as a substitute for longitudinal data, In a sense, the re-scaled data contain outliers
(values inconsistent with the model) and must be adjusted to meet the logically necessary condition that the
proportion of never smokers can only stay the same or decrease.

Our results were obtained using two SAS Procedures: LP for general linear progriams (SAS Institute (1985)),
and NETFLOW for network flow problems (SAS Institute (1985)). Another Procedure, TRANS (SAS Institute
(1985), speciatizes in transportation problems, but internal difficulties in our version, since rectificd by SAS,
caused us to abandon its use. TNETIFFLOW, a superior Procedure for network flow problems (SAS Institute
{1986)), has now been produced.

Iligure 2A shows the observed percentages of never smokers (inales only) in our Canada Health Survey data
across the 12 age groups. Except for one large percentage at age 15-19 and one small one at age 50-54, the
percentage across the ages is roughty linear with a negative slope, but it is not uniformly non-increasing. To
adjust these data, we fitted a simple linearregression on age of the logarithm of the propartion of never smokers,
omitting the above-mentioned two points. Fitted values on this line were substituted for observed data when
necessary to obtain anon-increasing proportion of never smokers. The relative tagnitudes of the proportions
ol individuals in the other smoking categories were maintained.

IYigure 218 shows the observed percentages of female never smokers across the 12 age groups. These show a
clearly increasing trend over time, very likely due to a cohort effect in this cross-sectional data: older women
in the 1978 population were more likely to be never smokers than were younger women. This illusirates a
severe conflict caused by the use of cross-sectional data in place of longitudinal data. If such data were
casually subjected to the procedures described above, no solutions would be found for most age transitions.
The smoothing procedure thus has a side benefit of providing a warning about certain types of inconsistencies
in the input data.

CONCLUDING REMARKS

The statistical concepts of heterogeneity, selection, and multistate life tables all come together when considering
the problems introduced by using cross-sectional data in place of longitudinal data. More research is needed
1o determine how to recognize and correct for these problems, and more longitudinal data are needed in order
to sidestep them.

On the computing front, despite what may sometimes be insurmountably high requirements of microsimulation
maodels for resources, there is optimism that further technological advances - such as increased processing
speed, higher capacity data storage, more use of dedicated computers, and parallel processing - will allow
microsimulation models to expand and improve their capabilitics (see Hoschka (1986)).

The authors wish to thank Michael Wolfson for motivating this study, the results of which will be implemented
in his POHEM health microsimulation model (see Wolfson (1989)). We also thank Monica Tomiak for her
invaluable technical assistance and programming support.
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TABLE 1

TRANSITION FREQUENCIES FOR ONE VARTABLE CASE
(VAR. 4 - SHOKING MABIT) FOR MALES FROM AGE GROUP 30-34 T0 AGE GROUP 35-39
ELEMENTS (1,4, (2.1), (3,1), AND (4,1) ARE CONSTRATNED I BE ZERO

NEVER

HEVER SHOKER |
1-20 CIG/DAY |}
Y20 CIG/DAY )
FORHER SHOKER |

NEVER SHOKER
1-20 CI6/DAY
)20 CIG/DAY
FORMER SHOKER

1-20

wij =fij|

20

FORMER
SHXER  CIG/DAY CIG/DAY SHOKER

152,383

3,263

0

0 111,00 24,30
0 161,504
0 222,417 ¢

0
0

0

01
11,661 4
04

152,389 114,343 185,904 234,078

NEVER
SHOKER  CIG/DAY CIG/DAY SHOKER

I-20

wij | i-j]

120

FORMER

152,369

0
]

0 3,23
0 114,343 32,78
0 149,853

0

0 222,417

0
11,661

152,369 114,343 185,904 234,075

155,652
147,131 2
161,514
2,417

606,714

155,652
wan 1’
161,514
.1

686,714

B. TRANSITION PROBABILITIES FOR OME VARIABLE CASE
(VAR. 4 - SMOKING HABIT) FOR MALES FROM AGE GROUP 30-34 T0 AGE GROUP 35-39
ELEMENTS (1,4), (2,10, (3,1), AND (4,1) ARE CONSTRAINED T0 BE ZERD

NEVER SHOKER
1-20 CIG/DAY
)20 CIG/DAY
FORMER SHOKER

REVER SHOKER
1-20 CI6/DAY
120 C16/DAY
FORHER SHOKER

NEVER

i i

NEVER
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