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PREFACE

Symposium 98 was the fifteenth in the series of intemational symposia on methodological issues sponsored
by Statistics Canada. Each year the symposium focuses on a particular theme. In 1998, the theme was
Longitudinal Analysis for Complex Surveys. The event was cosponsored with the Centre de recherche
mathématiques from I'Université de Montréal.

The 1998 symposium attracted over 300 people from 14 countries who met over two days, in the Simon
Goldberg Conference Centre in Ottawa to listen to experts from various statistical and government agencies
as well as representatives from the private sector. A total of 25 papers was presented by the invited speakers.
Aside from translation and formatting, the papers, as submitted by the authors, have been reproduced in these
proceedings.

The organizers of the Symposium 98 would like to acknowledge the contribution of the many people, too many
to mention individually, who helped make it a success. Over 40 people volunteered to help in the preparation
and running of the symposium, and 25 more verified the translation of papers submitted for this volume.
Naturally, the organizers would also like to thank the presenters and authors for their presentations and for
putting their presentations in written form. Finally, they would like to thank Carole Jean-Marie and Lynn
Savage for processing this manuscript.

The Proceedings of the 1999 annual symposium entitled Combining Data from Different Sources are currently
being prepared. In 2000, the symposium will be replaced by the International Conference on Establishment

Surveys, as was the case in 1993. This conference will be held in Buffalo, New York. The next Statistics
Canada symposium will be held in Ottawa in 2001.

Symposium 98 Organizing Committee

Michael Hidin @?ﬁ@w LC/@/?L(// Labillon
JSW Michaud
Donin Lomine
)bwagw Robaonts
Michol, Lalouche

Extracts from this publication may be reproduced for individual use
without permission provided the source is fully acknowledged.
However, reproduction of this publication in whole or in part for the
purposes of resale or redistribution requires written permission from
Statistics Canada.
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Proceedings of Statistics Canada Symposium 98
Longitudinal Analysis for Complex Surveys
May 1998

OPENING REMARKS

Michael Wolfson, Statistics Canada

Good moming and a very warm welcome to Symposium 98.

As a preface, let me say that I'd rather not be here! Originally, Dave Binder was slated to give these opening
remarks. The great news is that David is on his way to a full recovery from his illness.

This is the 15th in this series of methodology symposia sponsored by Statistics Canada. The program for this
year is impressive. [ am particularly pleased to note a high level of international participation, including
speakers from the United Kingdom. the U.S.A, France, Switzerland, and Israel.

This symposium originated with an invitation to participate in a workshop on the analysis of longitudinal data
and complex survey data from the Centre de recherches mathématiques (CRM) of the Université de Montréal
in March 1996. Statistics Canada subsequently suggested that we link the workshop to the symposium (bring
together the symposium and workshop ideas). Here we are. 2 years later, with the results of this good idea.

I would like to extend a very warm welcome from Statistics Canada and the City of Ottawa to our visitors, and
also to the personnel of Statistics Canada, who are very well represented in the program as well as in the
audience.

Since its start in 1984, this series of symposia has covered many survey-related topics. To name just a few, we
have dealt with statistics from small regions, administrative data and the impact of technology on surveys.

This year's topic is closely related to the topics of two of our previous symposia: Analysis of Data in Time. in
1989, and the Design and Analysis of Longitudinal Surveys, in 1992.  Among the new elements in this
symposium are questions surrounding methods for taking complex survey designs into account in the analysis,
and the software environments required for managing the complex data sets resulting from longitudinal surveys.

The general topic of Symposium 98 is very tmely for Staustics Canada, since we have recently launched several
major new longitudinal surveys, and we have created important new longitudinal data sets drawing on
administrative data. As a result, we are now in the throes of analysing these new longitudinal data -- or rather,
to put it in the positive light it deserves -- beginning to harvest the first fruits of these important data
development investments.

This recent shift in emphasis within Statistics Canada’s data collection programs -- from almost a complete
reliance on cross-sectional designs, to an increasingly important number of longitudinal surveys and
administrative data sets -- represents a fundamental maturation in the ways we think about our role as a
statistical agency.

Cross-sectional data are fine for menitoring socio-economic patterns and trends in Canadian society. And they
can provide suggestive information about possible explanations for key patterns — such as the positive
association between education and income, or between income and health.

However, it is only with longitudinal data that we can begin to have some hope of teasing out the underlying
causal stories. For example, is it low income that leads to poor health, or is it failing health that leads to



declines in income? And even leaving the difficult questions of causal inference aside, these longitudinal data
offer a much richer opportunity for description and monitoring of social processes — in particular, descriptions
of dynamics and transitions.

Historically, one major example of the new descriptive insights afforded by longitudinal data is the U.S. Panel
Study on Income Dynamics, and its early finding that, while the overall proportion of families living in poverty
did not change that much from year to year, there was considerably more movement of individual families into
and out of poverty over time.

The need to begin uncovering these kinds of dynamic patterns and underlying causal pathways has been
appreciated by our colleagues in government policy ministries. As a result, they co-operated in securing for
Statistics Canada the new funding for our three premier longitudinal surveys —

e the National Longitudinal Survey of Children and Youth (NLSCY),
e the National Population Health Survey (NPHS), and

¢ the Survey of Labour and Income dynamics (SLID),

all of which began collecting data from households in 1993 or 1994.

The NLSCY or “kiddies” survey selected cohorts of children between birth and age 15 years, and is following
them with household interviews of the parents, and the kids themselves as appropriate, every 2 years. In
addition, data are gathered from the childrens’ teachers and principals, which we have coupled with
“ecological” data on neighbourhood socio-economic characteristics from the population census.

The second major new survey, the NPHS, has a core nationally representative sample of about 17,000
individuals, including those living in institutions. They too are being followed longitudinally every two years.
In addition, all members of their household at interview time are included in the survey, and to varying degrees,
provinces have purchased substantial extra sample. Moreover, about 95% of the sample respondents have given
us permission to link the survey to their health care records, along with their health insurance numbers to
facilitate the linkage. As aresult, we are in the process of creating an extra-ordinarily rich longitudinal data
set combining both self-report and clinical descriptions of health state trajectories. Thus, we are finally able
to join, at the microdata level, the two solitudes of what I would call the vernacular and bio-medical views of
health.

The third survey, SLID, follows cohorts of about 15,000 families annually over 6 years. And every 3 years,
a new cohort 1s drawn. Thus, we have in each year a total sample of about 30,000 families, half in each of two
longitudinal cohorts. After the end of each year, individual respondents are asked in detail about their incomes
and their jobs, and are asked to reconstruct the start and end times of each job they had during the previous year.
So SLID gives income and labour market transition data with sub-annual detail over a muiti-year period.

In addition to these new surveys, the federal ministry of Human Resources Development has supported
Statistics Canada in developing administrative data sources — specifically a 10% longitudinally linked sample
of personal income tax returns starting in 1980 (the LAD). This is also valuable as a complementary source
of data on income dynamics. While the data are of excellent quality, and their marginal cost (o us is low, there
is a problem of a lack of co-variates.

I would characterise this as a “wide but thin” data set — i.e. many observations but few potential “explanatory”
variables. In contrast, the three new longitudinal surveys I just mentioned are “narrow but deep”. For example,
they have insufficient sample size to provide much in the way of sub-provincial estimates, but they do include
a wealth of covariates with which we can begin to explore the rich structure of relationships associated with the
patterns in respondents’ unfolding life course trajectones.



Also, in a precedent-setting initiative with the Manitoba Ministry of Health and the University of Manitoba, we
have created a linked file drawing together person-level longitudinal Manitoba health care administrative
records, socio-economic data from the 1986 population census, and disability data from the Health and Activity
Limitations Survey.

Moreover, with the major improvements we are making in our business register, and new surveys such as the
Workplace Employee Survey (WES), we will also have a growing base of longitudinal data on businesses.
WES is the first panel survey at Statistics Canada where data about employees and employers will be gathered
both jointly and on a longitudinal basis. This will allow us to study the “pit face™ of the labour market -
bringing together at long last the supply and demand curves that everyone sees on the first day of Econ 101,
but which until now could only be studied in isolation, at least at the micro level. In terms of contemporary
labour market issues, WES has been designed to shed light on such questions as the interaction of profitability
and the technologies adopted by the employer, and the wages and skills of the employees.

This new wealth of data brings with it, of course, a wealth of statistical challenges — many of which are the focus
of this Symposium. For example, the data we are collecting can have very complex structures — as in the
NLSCY where we have data not only for the child (with content varying by age), and his or her parents, but also
the teacher. the school principal, and contextual data such as neighborhood characteristics and attributes of
classmates.

The software issues related to handling, processing and analyzing these data are non-trivial. They also appear
sufficiently unique to a relatively small group of statistical agency and researcher users that I would not hold
my breath for an off-the-shelf solution to emerge quickly from the private sector — notwithstanding all the recent
hype about “data warehousing™ and “data mining™.

Another challenge is inference when we have data at several levels of observation, such as children in the
context of their schools and neighborhoods. Analogous questions are arising in the health area, where recent
evidence clearly suggests that social context, over and above individual characteristics, has an influence on
longevity. But we have yet to tease out of the data better insights as to the main elements of the causal
pathways.

Yet a further challenge, one of particular interest to me, is one that I don’t see reflected in the program. This
is how to cluster individuals by the “character” of their longitudinal pathways. I am thinking here, for example.
about patients who have had heart attacks — where we already have masses of detailed longitudinal data on all
their subsequent doctor and hospital visits, as well as “upstream” data on their risk factor and socio-economic
backgrounds. I have this image of a river delta, with many different rivulets wending their way through - and
correspondingly for the cohort of cardiac patients. some wending their way through the health care system via
coronary bypass surgery, others via angioplasty, etc. The question is how best might we create a map of these
rivulets, i.e. infer the extent of structure in the subsequent treatment profiles of this group of patients?

Well, that can perhaps be a challenge for a future symposium. For now, you already have a rich tableau of
stimulating statistical issues. I wish you all well in these discussions. 1 am sure that we in Statistics Canada will
benefit from the intellectual discourse, and I trust that everyone will be able to conclude the symposium having
gained useful new insights and ideas.
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CYCLE 2 AND BEYOND: PREPARING AND STORING
LONGITUDINAL DATA OF THE NATIONAL POPULATION
HEALTH SURVEY

Peter Fobes and Leslie Geran'

ABSTRACT

The National Population Health Survey (NPHS) is a family of surveys with multiple objectives,
one of which is to provide information on a panel of people who will be followed over time to
reflect the dynamic process of health and illness. Data for the first cycle of the NPHS - Households
Survey were collected from June 1994 to June 1995. and were released in September 1995. Data
for the second cycle were collected from June 1996 10 August 1997.  One of the primary outputs
for the second cycle is a longitudinal master file. This paper will describe six major strategies that
were developed to process the longitudinal master file.

KEY WORDS: Longitudinal surveys; Data processing; Health surveys: Relational databases,
Metadata storage.

1. INTRODUCTION

Statistics Canada's National Population Health Survey (NPHS) is a family of surveys with multiple
objectives, one of which is to provide information on a panel of people who will be questioned every two
years for up to twenty years to reflect the dynamic process of health and illness. Data for two cycles of the
NPHS have been collected and processed. This paper describes how the longitudinal data were prepared
and stored in order to facilitate longitudinal analysis, and discusses the processing problems unique to the
processing of longitudinal survey data.

1.1 Objectives of the Survey

The NPHS was created to fill a data gap identified by the National Task Force on Health
Information in 1991. The NPHS is designed “to be flexible, and to produce valid, reliable and timely data
. to be responsive to changing requirements, interests and policies”. The survey has several broad
objectives. The NPHS provides measures of the level, trend and distribution of the health status of the
population. It also provides information on a panel of people who will be followed over time to reflect the
dynamic process of health and iliness. Provinces, territories and other clients are permitted to supplement
the survey with content or sample. NPHS survey data can be enriched by linking to administrative data
such as vital statistics and health services utilisation.

Turning these objectives into sets of data to fill the information gap require that both cross-
sectional and longitudinal data be collected, processed and stored. The need 1o provide both cross-sectional
and longitudinal data in a limely manner was a major force behind how the processing of the longitudinal
data evolved.

! Peter Fobes (fobepet@statcan.ca) System Development Division and Leslie Geran (gerales @statcan.ca),
Health Statistics Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6
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1.2 Survey Design

The original household sample consisted of a core sample of approximately 22,000 households in
10 provinces to ensure reliable estimates by sex and broad age groups. "In all provinces but Quebec, the
Labour Force Survey (LFS) design of a multi-stage stratified sample of dwellings selected within clusters
was used to draw the sample. In Quebec, the sample was drawn from the sample design of the 1992 - 1993
health survey organised by Santé Quebec. The design of the Enquéte sociale et de santé (ESS) is a two-
stage design similar to that of the LFS.

During collection, when a dwelling was identified as being in-scope, the basic demographic data
(name, date of birth, age, sex, and marital status) for each household member was entered into a roster.
Every member of the household was asked to complete a short general questionnaire, and one member of
the household was selected to answer an in-depth health questionnaire. The longitudinal panel is defined as
every selected household member who had completed at least the general questionnaire in Cycle 1: 17,276
respondents.

Sample collection is carried out in four collection periods per cycle, in June, August, November
and February. A small fifth collection period in the following June is used to convert non-response from
the previous collection periods. In Cycle 1, the collection lasting from June 1994 to June 1995, the
collection period was two weeks long. In Cycle 2 (June 1996 to June 1997) and beyond. collection periods
are approximately six weeks long. LFS interviewers trained in NPHS concepts use laptop computers to
collect the data with a computer-assisted interviewing (CAI) questionnaire.

The longitudinal panel was augmented in both Cycle 1 and Cycle 2 by sample buy-ins by provinces
wishing to obtain more reliable sub-provincial estimates. In Cycle 3, the core sample will be augmented to
ensure cross-sectional representativity.

1.3 Survey Content

There are four major parts to the survey content each cycle. First, core questions are asked every
cycle. In the General questionnaire, there are sections on socio-demographic questions such as country of
birth, level of education, labour force activity, and income. The General questionnaire also has a few
health-related questions such as two-week disability, activity restrictions, and chronic conditions. In the
Health questionnaire, core content includes height and weight, smoking, alcohol consumption, injuries,
physical activities, drug consumption, mental health, and social support.

Second, every cycle has focus content. In Cycle 1, baseline data on work and life stressors were
collected. In Cycle 2, access to selected health care services such as physical check-ups, dental care, blood
pressure checks, flu shots, and women'’s health concerns were featured. In Cycle 3, family health history
and self-care questions will be featured. Focus content may be repeated in future cycles.

Third, clients may buy content. Health Canada bought large sets of questions on smoking behaviour in
both Cycle 1 and Cycle 2. Several provinces also bought questions on mental health and coping
behaviours.

Fourth, in Cycle 2 and beyond, sets of probing questions are asked. Selected data from previous cycles
are part of the sample file, and these data are available when the computer generates the CAI questionnaire.
Respondents who give answers inconsistent with responses from the previous cycle are asked probing
questions to resolve the inconsistency. The answers to the probing questions are used to edit the
longitudinal data. In this respect, longitudinal processing starts with questionnaire design.

2. PROCESSING STEPS

Preparing the longitudinal data followed the same steps as the cross-sectional data, because the Cycle 2
data would also appear on a cross-sectional data file. Additional steps were needed to create a longitudinal
file. The Cycle | master file was combined with the Cycle 2 file, but we found that some of the processes
had to be repeated in order to have valid, consistent longitudinal data (see Graph I: Processing Steps).

' Separate designs were used for surveys of the institutionalised population and for the population of the
two territories. These surveys will not be further discussed in this paper, but the broad approaches outlined
below were used to create longitudinal files for these populations.
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For the cross-sectional processing of every NPHS cycle, data are collected using computer-assisting
interviewing. Sample files are sent electronically to the regional offices, and the cases are assigned (o
interviewers. Interviewers contact and interview respondents, and send completed questionnaire files back
to head office via the regional office. At head office, the data files are examined for completeness, and a
preliminary response code is assigned. Long answers that require coding are stripped off the files and sent
for coding. Interviewer notes are examined for any important data that could not be entered into the CAI
questionnaire.

Next, the reformat stage standardises answer codes sets from the different software packages that make
up the CAl application. Reformat sets the flow of the questionnaire, which may have changed as a result of
critical updates. Reformat also generates a final response code, updates any non-critical updates such as
the re-coding of other specify answers, and adds the coding for the long answers, such as the standard
occupational classification (SOC).

The editing stage resolves any inconsistencies between answers. Very few edits are needed because
the CAI program includes range checks and logical references to previous answers.

Next, derived variables are created which use the answers of one or many collected variables to create
a new variable. For example, from the responses to questions on a respondent’s height and weight, a new
variable called body mass index is calculated. This is a ratio of a person’s height to weight, and is used to
estimate whether or not a person weighs an appropriate amount.

The final step to create a master data file is to drop any intermediate processing variables, and add
sample weights.

After the Cycle 2 derived variable program had been run, all of the variables were ready to create
cross-sectional master files. Additional steps were needed to create a longitudinal file. The Cycle 1 master
file was combined with the Cycle 2 file, but we found that some of the processes had to be repeated in
order to have valid, consistent longitudinal data. We developed and implemented strategies to resolve six
major longitudinal processing issues.

Graph 1: Processing Steps

r Collection I

[— Flefolrmat ]

[ Edits ]

[ Derived variables |

File Cross-sectional Longitudinal
documentation file creation file creation

Longitudinal
processing
6 major strategies
were developed

2.1 Naming Convention

The first issue was how to refer to questions, variables and concepts over time. Some sort of
naming convention was needed to distinguish 1he variables created from the same questions from different
cycles. We created a naming convention where each position within the 8 character variable name gives
information about the variable (current statistical software packages limit the length of a variable name to 8
characters). Characters one and two are an acronym of the section heading on the questionnaire. The third
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character denotes whether the variable is core content or a buy-in question. The fourth character is for the
cycle. The fifth character describes how the data are obtained — collected, derived or grouped. Characters
six, seven and eight are reserved for the question number or variable name. For example, HWC6DBMI
refers to a variable in the height weight section, core content, from Cycle 2 (1996). The variable is derived,
and the name is BMI (body mass index).

Each Cycle 2 variable was named using this convention, and the variables from Cycle 1 were re-
named. The processing programs use the re-named variables.

2.2 Coding

The second issue was how to code long answers to questions when the classification systems
change over lime. We do not want to artificially introduce change in a coded variable because of a change
in the classification system. Five major sets of classification systems are used to code long answers
collected in the NPHS. Causes of activity limitations are coded with the International Classification of
Diseases (9™ revision). Drugs are coded with the Canadian Anatomical Therapeutic Chemical (ATC)
Classification System. Labour force variables are coded using the Standard Occupational Classification
(1980) and the Standard Industrial Classification (1980). Geographic variables use the Postal Code
Conversion File (PCCF) to link to the 1991 Census geography. All of these classification systems are
currently under revision.

For Cycle 2 and beyond, we decided to adopt a strategy that the same classification systems be used
throughout all cycles. When a new classification system is adopted, historical data will be re-coded. For
example, the drug coding system changed between Cycle 1 and Cycle 2. All of the Cycle | long answers
for drugs were re-coded, and the answers placed on the longitudinal file. If time, space, and budgets allow,
long answer variables may be coded using more than one classification system. If re-coding is not done,
the differences between classification systems must be noted in the documentation. For example, the urban
/ rural geographic variable in Cycle 1 was based on an LFS sample design indicator, not census geography.
The documentation warns that changes in estimates calculated at the urban / rural level may be as a result
of the change in definition and not due to respondents who moved.

2.3 Longitudinal Edits

The third issue we needed to address was how to handle inconsistent answers from different cycles.
We needed a longitudinal editing strategy. Upon examining the data, we found two types of
inconsistencies. Type | inconsistencies were variables that could be regarded as constants, for example,
date of birth and sex. Cycle 2 birth dates were different from Cycle | birth dates for some respondents. In
many cases, the month and the day of the birth was changed from a non-response (“Don’t know” or
“Refusal”) to a valid response. In 55 cases, the change in birth date was large enough to create a large
change in the age at interview. In many of these cases, an interviewer note confirmed that the Cycle 2
response was a correction. We decided to accept the Cycle 2 response, and we changed the Cycle 1 data to
be consistent with the Cycle 2 date of birth. The age at Cycle 1 interview was re-calculated using the Cycle
2 birth date, and the skip patterns of the Cycle 1 variables were changed. Some derived variables were re-
calculated, for example, the age at immigration and the age when the respondent started smoking. We
expect the number of these inconsistencies to be reduced over time, since they appear to be Cycle I input
errors or recall errors by respondents.

Type 2 inconsistencies did not have a major impact on questionnaire flow. We examined pairs of
variables such as the Cycle 1 and Cycle 2 responses to the questions “ever smoked”, “ever had a
mammogram”, and “ever drank alcohol”. A surprising amount of inconsistency was found in some of the
variables. For example, 194 women who said they had had a mammogram in Cycle | said they had never
had one in Cycle 2. About half of these women said they had had the mammogram two or more years
before the Cycle 1 interview. It was difficult design an edit for these inconsistencies, since the inclination
was 1o believe the most recent answer or edit variables based upon probing questions, which were absent
for these questions. In addition, having only two cycles of data to compare gave little to base an edit. After
consultation with several analysts, it was determined that these inconsistencies are of analylic interest to
researchers, who should decide for themselves how to interpret the inconsistency. In Cycle 3, some of
these inconsistencies will be probed.



2.4 Longitudinal Derived Variables

The fourth issue was what kind of variables should be derived from the longitudinal data and placed on
the data file. Many change variables could be calculated, but the analysts we consulted wanted to calculate
their own variables. We created only four longitudinal derived variables for the Cycle 1 / Cycle 2
longitudinal file, and these were for two reasons. Not all variables can be put on the master file for
confidentiality reasons. For example, a change in residence variable was created from the addresses that do
not appear on the file. We also created a longitudinal variable if the calculation was difficult for the
analyst. For example, we created a variable for the number of days between Cycle 1 and Cycle 2
interviews. This saves the researcher from creating dates from six month, day and year variables.

2.5 Linking to Administrative Data

The fifth issue was what type of administrative data should be put on the file. Records for
respondents who died before the Cycle 2 interview are included in the longitudinal file. The Cycle 2 data
have been filled with “not stated” codes, except for the variables concerning the death of the respondent.
Preliminary status codes for death are assigned to records when the NPHS respondent relations team
receives post office returns marked “deceased” or when, during data collection, interviewers talk to
relatives of the deceased and try to obtain a date of death. These records, along with the records of
respondents who were not traced in Cycle 2, are linked (o administrative records for confirmation.

Statistics Canada collects provincial mortality records and combines them to produce a yearly
national file, but the national file lags behind the survey data, and deaths occurring in the later part of the
data collection period cannot be confirmed in time to put the results on the longitudinal file. We decided
that for Cycle 2 and beyond, the preliminary death status codes will be put on the longitudinal file, and
confirmed data will be added in future cycles, as the administrative records are made available. When a
match is made, the date of death and a code for the cause of death are copied to the longitudinal file.

The longitudinal data may be linked to other administrative data (for example, doctor visits) in
future cycles, although for confidentiality reasons these data might be placed on a secure file other than the
master file.

2.6 Data storage and retrieval

The sixth issue we faced was how to design a data storage and retrieval system that could handle a
large amount of data and documentation, and could be easily used by a variety of analysts. Three major
factors influenced how the NPHS longitudinal data could be stored and retrieved. First, the survey content
changes greatly from cycle to cycle. Not every variable appears in every cycle.

Second, there are many variables. For the Cycle 1 / Cycle 2 longitudinal file there are
approximately 2300 variables. Most analysts are interested in only a subset of variables such as mental
health or chronic conditions. 1t is important for the users to be able to easily choose the variables of interest
(including the appropriate sample weight), select a population and create a subset of the longitudinal file for
their particular analysis needs.

Third, the technical capabilities of our analysts and the computer resources available to our
analysts vary greatly. For example, some analysts have access to large and powerful hardware and
sophisticated analysis software such as SAS, while others may only have access to spreadsheets such as
Excel. In addition, not all analysts are familiar with relational database concepts. We do use a relational
database to store our data dictionary. The data dictionary is used to create frequency and record layout
reports for information products such as public-use files and sharing files. The analysts, however, do not
need to manipulate the data dictionary database in order to read the reports, although they would need to
manipulate the data database to do analysis.

For storing the longitudinal data file, we are considering several options. Option 1 is storing the
data as one big flat file, with each cycle of data concatenated to the previous cycles. This how we are
storing our file of Cycle 1 and Cycle 2 longitudinal data. It was relatively easy for us to construct, and
analysts are very familiar with this type of data storage. The users manually browse the record layout report
and content report to locate the variables they are interested in and then use software such as SAS or SPSS
to load the data file and select the variables and population of interest. With Cycle 3 and beyond, however,
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the size of the file would become unwieldy. Without some type of retrieval software, even the simple task
of finding a variable on a record layout would be onerous.

Option 2 is storing the data as a set of time series, but not all variables appear in every cycle.
Many blanks would appear in the time series, and this is not an efficient use of space. This method would
be more appropriate for a longitudinal survey whose content does not change throughout the life of the
survey.

Option 3 is storing the longitudinal file as a series of relation database tables linked by a common
key. We have developed a prototype with the Cycle 1 and Cycle 2 data using Microsoft ACCESS, but
other database run time systems could be used such as FoxPro. Users would need to understand the
database schema and use structured query language (SQL) to retrieve records from the file. In addition, the
data dictionary itself could be released to the users to facilitate locating variables and file contents. Again,
not all users have the time or resources to understand the schema, so we would like to present the relational
database appear as a big flat file.

A data retrieval system developed at Statistics Canada does this. We are prototyping software
called the Information Retrieval and Mela-information Administrator system (IRMA). IRMA is a generic
software program that handles large amounts of data. For the NPHS application, IRMA binds the data
dictionary to the longitudinal file with a point-and-click interface that allows the user to do two major
operations: to quickly view a frequency with selection criteria, and to create a subset of records with these
criteria.

IRMA requires a Windows operating system, and both the data dictionary and the data must be
stored in relational tables. IRMA is written in C++. It creates SQL requests through the point-and-click
interface and these requests are passed to the database using the open database connectivity (ODBC)
protocol. “Query 4” is an example of a data request using IRMA.

System vptions include data suppression rules and random rounding w guard survey data confidentiality.
B National Population Health Survey - [Query 4]

4 File Quely Seach View Options Window Help User Language 3 |15’|_j
S (el P (IO & D | W[ [E(aS[ 71O
Variables Values
=@ #~ Cycle 2 Longitudinal data ~NAl
g| ¥ Sex (" All except the ones selected below:
Z) _|Response pattern = DAILY
£| ~Age - grouped - Cycle 1 [ OCCASIONALLY
2] |Age - grouped - Cycle 2 RANOT AT ALL

§| ~/Smoker-Cyclel = [ NOT APPLICABLE
Z| ~/Smaoker - Cycle 2 L _/DON'T KNOW
_iAsthma - Cycle 1 _|REFUSAL
.'_j Aslhma - Cycle 2 @ NOT STATED
s | e Age - grouped - Cycle 1 |Smoker- Cycle 1 |/Smoker - Cycle 2 |Count |Weight
i 12 TO 14 YEARS NOTATALL Al ______.__.._,JTO'G' Total
2 115 TO 19 YEARS T
Description
|At the prcsent tlme do  you smoke cigarettes daily, occasionally or not at all? I
ek Rl 22 ["4546MBFree [ 164831 |  INUM, |

3. CONCLUSION

For the first NPHS longitudinal file, the motto was “keep it simple”. The simplest possible data model
was used. All data for all respondents are on one square file. Few longitudinal edits were done, and few
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longitudinal derived variables were created. In database terms, the file structure is highly de-normalised.
Processing efforts were directed into creating a file that would be easy for the analysts to understand and
use, instead of trying to determine what the analysts want to do. A naming convention was created, and
classification systems were changed if necessary. For the few longitudinal edits that were done, all Cycle |
and Cycle 2 variables were reviewed to make sure that the changes did not introduce any errors in the flow
of the questionnaire. The data file structure selected, a flat file, is familiar to most analysts.

For Cycle 3, processing the longitudinal file may become more complicated if imputation for non-response
is done. The processing team is much better able to meet that challenge now that the groundwork for
“keeping it simple” has been set.
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NATIONAL LONGITUDINAL SURVEY
OF CHILDREN AND YOUTH:
CONFIDENTIALITY AND REMOTE ACCESS

Jean Pignal'

ABSTRACT

In 1994, Statistics Canada introduced a new longitudinal social survey that collects information from
about 23.000 children spread over 13,500 households. The objective of the National Longitudinal
Survey of Children and Youth is to measure the development and well being of children until they
reach adulthood. To this end, the survey gathers together information about the child, parents,
neighbourhood as well as family and school environment. As a consequence, the data collected for
each child, is provided by several respondents, from parents to teachers, a situation which contributes
to an increased disclosure risk. In order to reach a balance between confidentiality and the analytical
value of released data, the survey produces three different microdata files with more or less
information. The master file that contains all the information is only available by means of remote
access. Hence, researchers do not have direct access to the data, but send their request in the form of
software programs that are submitted by Statistics Canada staff. The results are then vetted for
confidentiality and sent back to the researchers. The presentation will be devoted to the various
disclosure nisks of such a survey and to the tools used to reduce those risks.

1 Jean Pignal, Special Surveys Division, Statistics Canada, Jean Talon Building, 5" floor, section DS,
Tunney's Pasture, Ottawa (Ontario) Canada, K1A 0T6

17



Fﬂ g ¥

1
'l. 1 1 ! '
L :
3 [
& 4
+

] -

1
1 ;
it
-i




Proceedings of Statistics Canada Symposium 98
Longitudinal analysis for Complex Surveys
May 1998

RECENT DEVELOPMENT OF SOFTWARE TO ANALYSE
LONGITUDINAL STUDIES: EXAMPLES FROM THE OFFICE
FOR NATIONAL STATISTICS LONGITUDINAL STUDY

Michael Rosato’

ABSTRACT

In epidemiology analysis of longitudinal data is commonly accepted as providing the most robust
measures of association between putative risk and selected outcomes such as death or cancer.
SMARTIE is a SAS application for efficien1 analysis of longitudinal data. Based on person days al
risk, it can handle multiple exits from and re-entries to risk, and derives outcome measures such as
survival rates, Standardised Mortality Ratios (SMRs) and Cancer Incidence Ratios (SIRs). Summary
data can be produced in a format easily ported to any modelling package such as Stata 5.0. We
discuss the background to its development, the overall program structure, its command language, and
finally we say something about the organisation of outputs. Findings from survival studies using the
Longitudinal Study of the Office for National Statistics (ONS) are used to demonstrate features of
SMARTIE. This study is based on one per cent of the population of England and Wales. It is
continually updated with the addition of new members and with information from birth, death and
cancer records, and from the census.

1. BACKGROUND

Longitudinal studies share common key features. A selected population is tracked over a de-limited period
of time and information on relevant exposures, and events occurring to members, are collected. This
accumulating information eventually encapsulates relevant life histories that can then be subjected to
statistical analysis. One such study is the Longitudinal Study (LS) based at the Office for National Statistics
of Great Britain. While it is described in detail elsewhere (Goldblatt, 1990 and Hattersley, 1995), it can
briefly be defined as a record linkage study integrating information collected at successive national
censuses (1971, 1981 and 1991) for a representative one per cent sample of the population of England and
Wales. This linkage also incorporates registrations of routine vital events such as birth, death and cancer.
The study originally included approximately 500,000 individuals drawn from the 1971Census. With the
addition of new members the sample is now about 850,000 individuals, and the follow-up period for
inclusion of events is currently twenty-five years. The LS is confidential, a strict ‘safe environment’ is
maintained around it, and access is very strictly controlled.

Figure one outlines the life history of a typical (if hypothetical) LS member. Born in 1955, this member
contributed to all three censuses included in the study. She had two children by her mid-twenties, migrated
shortly after the 1981 Census, and returned about five years later. She suffered the death of a spouse around
1990, registered with cancer in 1993, and finally died two years later.

The drawbacks of this approach are well known. It takes time to build up sufficient events, and the
computer analyses of large datasets can be both time-consuming and frustrating,. With SMARTIE we
directly address this problem. It is fast, easy to use, flexible and ideally suited to standard repeated analyses
of very large studies. The name itself is an acronym and, like many acronyms, its literal meaning is now

' Michael Rosato. Longitudinal Study Unit, Room B7/10, Office for National Statistics, 1 Drummond
Gate, London SW1V2QQ.

19



lost. It was commissioned by the team which manages the LS, and while written to be generally applicable
software, the specific requirements of handling LS data was a fundamental design concern.

born death: reg: death:
1955 births: exit re-entry  spouse cancer member

v v .V vV vV VYV ¥
£ T ——

1971 Census 1981 Census 1991 Census current end of
(start of study) follow-up

figure one: example of life history of hypothetical longitudinal study member

2. ORGANISATION OF THE PROGRAM

SMARTIE has two distinct parts, as shown in figure two. The first is a screen driven preparation phase,
which cleans and re-organises a dataset for analysis. Here a formal period of follow-up is allocated, and all
event occurrences are linked with corresponding dates and tested to ensure they fall within this. These are
then tested for internal consistency. Exits from and re-entries to surveillance are linked with the events of
interest, temporally ordered and tested for feasibility. Relevant ICD revisions are applied to terminal events
(for example death, cancer registration) based on date of occurrence. Output from this is a SAS dataset that
therefore comprises ordered ‘life histories’ of study members (as in figure one). A single study dataset can
spawn a number of analyses.

In this paper we concentrate on the analysis process, outlined in the lower part of figure two. The user
prepares a script (A) of SMARTIE commands. This is input to a ¢ode generator (B), which outputs a SAS
program encapsulating the required analysis (C). This is then submitted as a SAS job. It calls on a library of
pre-written macros (D), links the ‘valid" data (E) and a set of standard rates (F), generates the required
statistics and, finally, outputs results (G). This generated SAS program can remain hidden (it is possible Lo
use SMARTIE without ever seeing this code).

datasel
data preparation -< g
phase (SAS)
-H validated
dataset (E)
generating code: SAS script: SMARTIE standard rates (F)
program (B) commands (A) |
library of pre-written SAS program encapsulates required analysis (C)
SAS macros (D) *
Outputs ()
figure nvo: SMARTIE organisation




3. SMARTIE COMMANDS

This comprises twenty commands, the detail of which is presented in the SMARTIE documentation. They
were designed to be easy to use and provide facilities to customise outputs, link datasets for analysis,
include sets of standard rates, restrict data before analysis, and re-code variables within an analysis. In these
proceedings we concentrate on the overall effect of the more important of these.

The first enables the user to generate summary variables, specifically to flexibly define series of both
terminal events and population sub-groups of interest to a particular analysis. One example of each is given
betow. They comprise a command header, followed by a list of one or more SAS conditional statements,
each of which is preceded by a title naming the defined group. The list terminates with the statement
‘finish’. There are constraints to the form of this list: it is currently limited to a maximum of ninety-nine
groups; and the individual SAS conditions must be syntactically correct. However, in practice, these are not
a barrier to use. There is no requirement for logical exclusivity in these conditions so individuals can be
classified to more than one group in any analysis.

cause group section tabulation group section
group 1: lung cancer group one: social class=professional
if caused=162 then csgp=1; if (soci=0) then tbgp=1;
group two: IHD group 2: social class=non-manual
if (caused in (410411, 412, 413, 414)) if ((socl ge 0) and (socl le 2)) then thgp=2;
then csgp=2; finish
finish

In using the person years at risk method to derive estimates of a population at risk the most basic structure
is the age group-time period matrix (Lexis) through which this population ages. In SMARTIE all risk is
accumulated in days, and the program allows two possible methods of traversing this matrix. Figure three
shows analysis in terms of age ar event: study members are aged as they pass through time. In this case
passing time is measured in terms of calendar periods.

Figure four, on the other hand, shows traversal in terms of age ar entry, In this the age of the individual is
held constant as at entry, and they are aged lhrough the time dimension only. Here passing time is
measured in terms of the length of survival from first entry to risk. In analysis based on age ar entry an
additional dimension, isolating the calendar period of entry 1o risk, is required. This is necessary because
the definition of the risk period dimension used takes no account of calendar period. Its inclusion therefore
allows adjustment for calendar period of entry.

39 40 41 42 43 4 45 39 4 41 42 43 44 45
Il s ’'3 A A A
197 EET B Tur f-"'!""r'i"""T'"T'"T""
o da i B o RIS
1 H i 1 '
: ) : 3 1 ] ] 1
e O W — {4 et i S
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| T LT
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197 "3& 2 A
B o i ey L e e S
[ . N ' . ] ' ) l‘___-
T rp=y 71767 YT T rp=y 1641 7 ot
ag=y 39-40-41-42-43-44-45 ag=y 39-40-41-42-43-44-45
figure three: lexis, showing analvsis by age at death figure four: lexis. showing analysis by age at entry




The unbroken line in Figure three shows a person entering the study at the beginning of 1971 aged exactly
39 years, adding 365 days to each cell crossed (366 days for leap years). This individual finally exits at the
end of 1975 aged 43 years, after contributing 364 days to the final cell. The second broken line shows a
more complicated scenario: the individual enters the study aged 39 in 1970, contributes risk as before, but
exits the study after three years, returning sometime in 1973. SMARTIE can handle multiple exits from and
re-entries to risk. The terminal events are similarly handled, accumulated into the cells in which they occur.
These two sets of information (estimates of the population at risk and counts of the events) form the base
numbers for computing the rates. All outputs are therefore automatically adjusted for age and time period.

The two sets of commands defining these matrices are specified as in the examples below:

age groups=y 0.99*S§ age groups=y 0-5-10-15-2-25-30-35-40-45-50-55
risk periods=y 1971-1972-1973-1974-1975-1976 risk periods=y 0-1-2-3-4-5-10-15-20
entry periods=y 1971-1977*2

They take one of two forms. The first of these is a list of contiguous points specifying the boundaries of the
age groups or time periods required (for example, between the exact year 1971, 1972 and so on). If ranges
are regular however, a simpler statement of the form ‘from x to y in units of z’ (or, from exact age zero
years to exact age 99 years of age in groups of five years) can be used.

These five elements (populations sub-groups, terminal events, and the components of the age-time matrix)
form the major dimensions of any analysis. Results are cause-specific. and output as wafers defined by the
age-time matrix. Complete sets of cause-specific results are produced for each of the defined population
sub-groups. There are two forms of gutpur. The first of these is a tabular report comprising selected
groupings drawn from the data elements computed in the analysis. These items include observed events,
person years of risk, rates, expected events, indirectly standardised ratios (e.g. SMR, SIR). and associated
confidence intervals. These tabular outputs can become quite unwieldy, and while cause groups and
tabulation groups can be aggregated within the commands themselves, this is not possible for the age group
and time period dimensions. However, two sub-totalling commands are available to allow the user to
collapse the time-period matrix and re-aggregate the results: expected values are computed using the
original age group and time period specifications and then aggregated. The observed events are
aggregated, and standard rates likewise re-generated. The re-computed standardised ratios over these sub-
totals are therefore output as adjusted for the selected age group and time period dimensions.

A secondary form is the output of a standard rectangular dataset of frequencies, comprising a series of
records, each indicating a cell of the tabular report, and its associated observed events and person days of
risk. These can then be ported to other packages for further analysis. In this situation, SMARTIE also
produces the necessary control files to facilitate this with minimal effort.

The general form of this command is a list of data items required for output, as shown in the following;

outputs=T (ox, oxsul, oxsul+a+t, p)
ou=D (st)
outputs=T (ox, oxsul, oxsul+a+t, p) d(st)

The first example, T(.. ), specifies that four tabular reports are required. The first comprises observed and
expected results; the second reports observed, expected, standardised ratios and associated upper and lower
confidence intervals; the third repeats this but also includes row and column sub-totals over each of the
wafers; and the last returns the set of person years of risk. The user can therefore develop standard outputs
to suit individual needs. The second example, D(.. ), requires that a standard dataset be produced (in this
example, for further analyses in Stata). The third simply extends this idea and concatenates both into a
single command.

Formally, the outputs can be specified as follows: if the accumulated observed events (0) in population
group g at age group a in time period t are represented by d(o, g, a, t) and the person years of risk by
p(g, a, t) then the cause specific rates r can be given as



r(o, g, a, t)=d(o, g, a, t)/p(g, a, t).

The computation of expected events (e) can be determined as
e(o, g, a, t)=p(g, a, t) * [d(o, s, a, t)/p(s, a, t)]

where s is a standard group with which the comparison of rates is to be made.
Finally, the standardised ratio (sr) can be specified as

sr (0, g, 2, t)=[d(09 g, a, t)/e(()’ 2, 4, t)] *100.

Ninety five per cent confidence intervals for the standardised ratios based on d deaths are derived using the
following formulae

L=100 * EL/e, and
U=100 * EU/e

where e is 1he expected events for that cell,
EU=1.94 + d - 1.96 V(d + 0.96), and
EL=0.96 + d - 1.9602 \/(d ). if the number of deaths is less than 900, or
0.962 +d -1.96 \/(d + 0.11) if the number of deaths is greater than 900.

4. EXAMPLES

The use of SMARTIE is comprehensively detailed elsewhere (Rosato et al). The examples below draw on
recent analyses using LS data, and examine mortality patterns by the regions of England and Wales. Using
standardused mortality ratios for the period 1988-1994 were produced in SMARTIE and the results input to
a GIS system. Two cohorts were traced. Those present at the 1971 census were classified to their region of
residence in 1971, and those present at the 1981 census to their region of residence at the 1981 census.
Figure five shows the results: the darker the shading the higher the mortality. Death rates were higher in the
north of the country than in the south, regardless of which census the region of usual residence was
measured. These findings confirm the existence of a persistent north/south health divide in British society.

figure five: mortality of all men aged 40-64 by standard region of England
and Wales, all causes, 1988-1994

region in SMR region in

1971 M 120-129 1981
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I 101-110 |
1 79-100 '
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Figure six extends this analysis to examine the effects social class within selected regions. In this case
SMARTIE data was ported to Stata and directly standardised rates for social class by standard region

The same regional pattern is apparent, with higher mortality in the north of the country than in the south.
Concentrating on the social class variation within each region, we can see that the death rates rise
incrementally, uniformly lowest in the professional classes (I/II), and highest in the partly skilled and
unskilled. The death rates in every class in the two southern regions are lower than the same class in the
northern regions. The interesting figures are at the top of the slide. These measure the excess in the death
rates of men in the unskilled manual classes when compared with those in the professional classes. In the
northern regions death rates for men in classes IV/V were 80% to 90% higher than those of men in classes
/1. In the southern regions, however, with overall lower mortality, this disparity between classes is at least
as great as in the north. Lower mortality levels therefore do not necessarily lessen inequality.

figure six: selected standard regions of England&Wales,
by social class, death rates 1988-1994
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SMARTIE is now a core element in the analysis of LS data. We welcome enquiries from researchers on
both the ONS Longitudinal Study and the SMARTIE program. The unit can be contacted using the address
given for the author.
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MULTILEVEL MODELS FOR REPEATED BINARY OUTCOMES:
ATTITUDES AND VOTE OVER THE ELECTORAL CYCLE

Yang, M., Heath, A%, and Goldstein, H'.

ABSTRACT

Models for fitting longitudinal binary responses are explored using a panel study of voting
intentions. A standard repeated measures multilevel logistic model is shown inadequate due to the
presence of a substantial proportion of respondents who maintain a constant response over time. A
muluivariate binary response model is shown a better fit to the data.

KEYWORDS: Longitudinal binary data: multivariate multilevel model: political attitudes;
voting.

1. INTRODUCTION

The electoral cycle has become an established feature of voting behaviour, both in Britain and in
other European countries. After an initial ‘honeymoon’ between the new government and the electorate,
disillusion often sets in and government popularity, whether measured by opinion polls, by-elections or
midterm elections such as the European and local elections - tends to decline. In most cases, there is then
some recovery in the government’s standing in the run-up to the next general election (Miller, Tagg and
Britto, 1986; Miller and Mackie, 1973; Reif, 1984, Stray and Silver, 1983)

There are various possible explanations for this pattern. One possibility is that voters make their
mid-term decisions on rather different criteria from those they use at a general election. Thus in the mid-
term, voles at a by-election or at the European election are unlikely to lead to a change in government.
These occasions may thus be used by some voters to communicate their dissatisfaction rather than to change
the government. This point may hold with even more force for mid-term opinion polls. (Miller and Mackie,
1973, pp.265-6).

Gelman and King (1993) have provided a more detailed theory about the way in which the opinion
poli series changes in meaning as time passes. They suggest that, at the start of the campaign voters’
responses are thus based on unenlightened preferences, using on whatever information they happen to have
to hand about the candidates, and by polling day are able to base their decisions on ‘fundamental variables’.
That is, the voters learn how the candidates’ policies relate to their own ideologies. Fundamental variables
such as the voters’ ideologies thus come to acquire greater weight as the campaign progresses.

While there are important institutional differences between the American Presidential campaigns
studied by Gelman and King and the British party campaigns, similar processes may be at work here. Our
hypothesis, then, is that variables such as the voters’ ideologies will have relatively greater weight on their
actual voling decisions in general elections than they do on decisions in mid-term elections or on vote
intentions conveyed to opinion pollsters. The latter, we suspect, will be more influenced by the free
information which the voters have at hand from the mass media about current political stories and events.
Gelman and King use a series of independent random samples conducted at different stages of the campaign
in order to test their hypotheses. A more efficient method, however, for understanding change in voters’
behaviour is to use a panel study, with repeated observations on the same respondents. In the present paper

! Institute of Education, University of London
? Nuffield College, Oxford

27



we use a three-wave panel study covering a complete electoral cycle from 1983 to 1987 to illustrate the
modelling procedures. There are three important features of the structure of the two sets of data: (i) a
hierarchical structure with voters nested within constituency and years nested within a voter; (ii) repeated
dependent binary outcomes (vote or vote intention); (iii) time-dependent covariates representing voters’
ideologies and perceptions of the parties and their leaders.

To tackle the dependency problem, the arbitrary multinomial model may be considered (Cox,

1972). It fits k binary outcomes by considering the 2° possible categories, of which 2* — 1 of them can
then be fitted in the mode! with a multinomial error distribution. In our case k =3 (years) and the bottom
level of year will no longer exist after this reformulation. This model cannot easily accommodate time-
dependent covariates which are one level lower than the new multinomial response, and as Cox points out
this model gives little insight into the structure of the data (Cox, 1972: p115).

Along the same lines Zeger, Liang and Self (1985) proposed a model with a first-order auto-
correlation structure over time to take up the dependence and included time-independent covariates.
Consistent estimates based on the full EM procedure were derived. Although this approach can be extended
to accommodate time-dependent covariates with some modification to their first-order Markov model, it
does not deal with effects above the subject level, in our case the constituency effects.

To take into account the clustering and to model the contextual effects found in the data, Goldstein
(1986) proposed the multilevel model using iterative generalised least squares (IGLS) estimation. Under
normality this leads to ML estimates. For repeated responses over occasions the model can be extended
naturally by adding an additional level at the bottom of the data structure, giving three levels in all. To
extend this method to the case of a repeated binary response variable, we may use a generalised linear
model formulation (Goldstein & Rasbash, 1996). At the voter level, we can consider modelling the
probability of a positive response as a smooth, for example polynomial, function of time. Another approach
is to use a multilevel multivariate logistic model. Like any multivariate model, the dependence between the
responses can be modelled by the covariance structure at the individual level, in this case the biserial
covariance (Goldstein, 1995).

In this paper we examine two models: a standard three-level repeated measures logistic model and
a multivariate multilevel logistic model. We compare the results from these with those obtained by applying
separate two-level models to each round of the panel. For binary responses, we use the procedures known as
PQL quasi-likelihood estimation with a second-order Taylor series approximation (Breslow & Clayton,
1993; Goldstein, 1991, Goldstein & Rasbash, 1996) which have been incorporated into the program
MLn/MLwiN (Rasbash & Woodhouse, 1995).

2. THE DATA FROM THE 1983-6-7 PANEL

In this paper we use the 1983 - 86 - 87 British Election Panel Study. Respondents were
interviewed on three occasions: first in 1983 immediately after the general election, second in the autumn of
1986, and third in 1987 immediately after the general election of that year. The panel thus covers a
complete electoral cycle, with one round of interviews taking place between the two general elections, The
1983 British Election Survey was a clustered random sample with 3955 respondents interviewed in 250
constituencies (for full details see Heath er al., 1985, Appendix I). For cost reasons, the panel was based on
a subset of these respondents. Respondents in 112 of the original constituencies were selected to provide the
panel. Of the 1698 respondents selected in this way a total of 869 (52%) completed all three waves. The
two main sources of non-response were the difficulty of locating respondents who had moved between 1983
and 1987 and the refusal of located respondents to participate in an interview. (Heath er al 1991, Appendix
II). The numbers of respondents used are 1526, 1008 and 823 respectively in the three years. There is
considerable dependence between responses in the three rounds of the panel. Individuals voting for
Conservative on all three occasions made up 27.7%. Those voting for or against Conservative Party both in
1983 and 1986 made up 74.3%. Similarly the percentages for the same votes are 63.3% in 1983 and 1987,
66.2% in 1986 and 1987. Our response variable is vote or vote intention. To simplify the treatment, we
shall in our analysis dichotomise the response, contrasting Conservative votes with votes for all other
parties.



As measures of voters’ fundamental values related to the candidate's policies on nuclear defence,
unemployment (versus inflation), tax cuts (versus government spending) and privatisation (versus
nationalisation) respectively. We use four scales, left/right wing variables x,— x4 on a tweenty-one point
sclae. We have two groups of variables to reflect the more topical ‘headline’ themes to which the voters will
have been exposed over the course of the electoral cycle, namely evaluations of the political leaders
(variables xs— xq) and party images (variables x; - xo). Evaluations of the party leaders (Mrs Thatcher
and Mr Foot/Kninock) were asked on four-point scales running from very effective to ineffective. Voters'
images of the two major parties (Conservative and Labour) were on two sets of dicotomise questions: “is
the party an extreme or otherwise (coded 0 or 1)?" “is the party united or otherwise (coded 0 or 1)?"

QOur central hypothesis, then, is that the parameter estimates for variables x,—x; would be
relatively larger in the general election years of 1983 and 1987 while the estimates for variables xs- xo
would have relatively greater impact on vote intention in the mid-term election year of 1986.

3. MODELS

Model 1: three-level repeated measures model. We treat year as the repetition at level 1 (indicated
by ) nested within individuals (indicated by i), while individuals are nested within constituency J . Let

7, be the vector of indicator variables for £ =1,2,3 or 1983, 1986 and 1987 respectively, namely, z; =1
if 1=1983, zero otherwise: z2; =1 for 1=1986 and zero otherwise; z3; =1 for t=1987 and zero otherwise.

Since year is now level | our notation reflects this with 7 being the index for the first subscript. We shall use
§, 1o denote the measurement of time (1,2,3) as a continuous score. We can write a model as follows for

the probability of a positive response 7
_ 3 310 3
logit(my) = Elﬂo_, i E”'Elﬂh,t Zeij Xhaij + E: Vij Ziij + i T
= 1=lh= =

wij = uoij + uij 5ij » v ~ N(0,Q,), u; ~ NO,Q.)

o
Q.=|ow o& X nu=(°2"° )

b
cut Oy,
Ovi3 OGy23 0%3 “

where y,; are the residual terms at constituency level associated with the intercepts of years. Thus, for the
j™ constituency the marginal population mean for Conservative voting for 1983, 1986 and 1987
respectively on the logit scale is given by B, ,+vi;, By +v2; and B3+ vs; respectively. The term u;
estimates the departure on log odds of the ;" individual voter in the j™ constituency from the overall log

odds, here assumed to be a linear function of time. Thus, the variance-covariance (), is modeled as a
quadratic function of the continuous time S. The response is y,. ~ Bin(l, z;) with independent distribution

error at level | as g, (1- ) across all the three years, and as same as before we can model extra-

binomial variation by allowing a multiplier to the level error distribution.
Model 2: a multilevel multivariate logistic model. Using the same notation as in the case of the
repeated measures model (1), a general multivariate logistic model for our data may be written

3 3 10 ]
logir(z,;) = 2Bzt 2 Zﬂh_, Znij Xhatig * 2 Vi 2nij
1=l r=th=1 =1 (2)
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We make the same assumptions as for model (1), except that there is no level | varation, but at
level 2 we allow the binomial variates to covary. Namely the following variance-covariance structure
among individual voters is assumed for fitting this model:

Thij (- Il'lij)

Q =| | miy w2y (1= m)( = ma5) 25 (1= 725)

;zl;’z:g U= m)=z35) 2 13 A= )= 7r3y) 73 (1= 703)

At this level, therefore, we estimate a covariance structure in which the diagonal terms are the
binomial variances and the off -diagonal terms are biserial covariances. We may also, as before, allow three
extra-binomial variation parameters one for each of the diagonal terms only, which leaves the off-diagonal
terms being estimated freely from the data. When these binomial variances are relaxed, the off-diagonal
terms estimate just the biserial correlation coefficients between any two years pairwisely. We can elaborate
the model by forming the interaction terms between the explanatory variables and the year indicators to fit
the main effects of them in the fixed part according to equation (2). To compare the effects of the same
explanatory over the three years, the joint hypothesis tests on f, g3= 8, gsand [, 3= B, 4, using the

approximate Wald statistics are carried out.
A two-level logistic model is also fitted to the data by the election year to examine the marginal
distribution of each year, ignoring the dependency of outcomes between years.

4. RESULTS

In Table 1 we list the estimates of those models without fitting the effects of the covanates.
Comparing to the marginal model, both models (1) and (2) give close estimates to the fixed effects in the
models, and the random effects in terms of variances by year at constituency level. However model (1)
holds an entirely different assumption at voter level compared to that of model (2), fitting a quadratic
function of time span to the voter level residuals. This results a severe under-dispersion at the bottom level
of year, and non-Normal distribution to the voter level residuals, indicating a failure in accommodating the
dependency of outcomes within voter. Therefore model (1) is inadequate in this form to fit our data.

Model (2) has biserial terms at voter level to take up the dependency of outcomes between years.
The estimates of covariances may be termed as biserial correlation coefficients in our case estimated as
0.54, 0.62 and 0.6] respectively, compared to the raw proportions of the same votes 0.74, 0.63 and 0.66. As
we expected, this treatment also gives us a binomial variance at the same level for each year between voters
with the extra-binomial parameters are estimated all close to one, indicating that these biserial terms have
almost fully taken up the dependency of outcomes.

Model (2) then is fully elaborated for fitting the main effects of all covariates in order to test out
our assumption about the electoral cycle. Parameter estimates are displayed in Table 2. The joint test is
based on two linear contrasts of f, 3= £, 46 and B, g = B, 5; for testing the equality of impacts between

occasions for each variable crossing the three waves, which performs the 2’ test in the MLn program.

Results are in the last column of Table 2.

The random effects across constituencies are rather small with almost zero estimates to 1983 and
1986, from fitting the full model (2). It is not necessary to explore any random slope in this case. The
significant results are only found from two variables: score on nationasition vs privatisation xs with the
expected pattern and image on Labor Party, x)o (divided versus united) with a reversed pattern. Overall,
there is not strong evidence giving unequivocal support to the substantive theory described in the
introduction. Possibly this is because the non-election round of interviews was conducted rather too late in
the electoral cycle, being held in the autumn of 1986 less than twelve months before the June 1987 election.
By the autumn, the Conservatives had already recovered their popularity in the opinion polls and the panel
study did not therefore really capture the phase of mid-term disillusion with the government.
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Table 1 Parameter estimates, SE in brackets

Parameter Model (1) Model (2) Marginal model
Fixed effect: Intercept -0.39 (0.08) -0.42 (0.08) -0.40 (0.08)
1983, 4,
Intercept -0.77 (0.07) -0.81 (0.08) -0.75 (0.08)
1986, 4, ,
Intercept -0.30 (0.07) -0.32 (0.08) -0.22 (0.08)
1987, B, 4
Random effect:
Constituency level: Var(83) 0.35 (0.08) 0.41 (0.10) 0.38 (0.09)
Var(86) 0.20 (0.08) 0.18 (0.09) 0.14 (0.09)
Var(87) 0.19 (0.08) 0.22 (0.09) 0.13 (0.09)
Cov(83,86) 0.29 (0.07) 0.31 (0.08) N/a
Cov(83.87) 0.28 (0.07) 0.31 (0.08) N/a
Cov(86,87) 0.20 (0.07) 0.21 (0.08) N/a
Extra-binomial variance
Voter level: 1983 oluo; 2.10 (0.21) 0.96 (0.04) 0.96 (0.04)
1986 o1 0.08 (0.05) 1.00 (0.05) 0.97 (0.05)
1987 07"‘ - 0.00 (0.00) 0.98 (0.05) 0.98 (0.05)
Biserial cov(83.86) N/a 0.54 (0.03) N/a
Biserial cov(83,87) N/a 0.62 (0.04) N/a
Biserial cov(86,87) N/a 0.61 (0.04) N/a
Variance within voter 0.38 (0.01) -- =

Tab

le 2. Estimates of the main effects

from fitting model (2) and tests for equality over occasions

For analysing the repeated binary data with time dependent covariates as in our paper, the two-
level logistic model is shown to be a useful tool to provide basic information on the contextual variation and
the possible association of the covariates with the outcome, based on the marginal distribution. However it
has drawbacks of lacking efficiency where responses at some occasions are missing and of its failure to
model the dependency among the repeated responses. The three-level repeated measures logistic model
provides a straightforward and efficient way to model the full data, and enable us to perform the
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Parameter Estimate (SE) Estimate (SE) Estimate (SE) Equality test [;
1083 1986 1987
B 0.08 (0.01) 0.12 (0.02) 0.07 (0.02) 4.77
i 0.05 (0.01) 0.03 (0.01) 0.03 (0.02) 2.0
I8 0.05 (0.01) 0.07 (0.02) 0.08 (0.02) 2.30
B, 0.09 (0.01) 0.04 (0.02) 0.05 (0.02) 6.55 (p<0.05)
Bs -0.93 (0.12) -0.92 (0.13) -1.03 (0.21) 0.25
Be 0.49 (0.08) 0.46 (0.09) 0.60 (0.10) 1.24
Vi 0.91 (0.12) 0.94 (0.14) 0.95(0.17) 0.07
Bs -0.39 (0.12) -0.40 (0.15) -0.34 (0.18) 0.08
B -0.55(0.15) -0.24 (0.15) -0.60 (0.24) 2.98
Bio 0.16 (0.27) -0.10 (0.18) 0.57 (0.22) 6.03 (p<0.05)
5. CONCLUSION




approximate f test for our centre assumption. However this model fails to accommodate the dependency

of outcomes, and violates the basic assumption of independent error distribution in the binomial case.

The multilevel multivariate logistic model assumes binomial error at each occasion with a biserial
covariance structure at voter level to take care of the dependence between the repeated outcomes. It has the
same advantages as the repeated measures model in terms of the efficiency from pooling all the data in one
model. The model’s predictions for the overall probability of voting show a reasonable agreement with the
raw probabilities. The estimated variance among constituencies for each year is similar to that from the
marginal models fitted to each year separately, and the same Binomial assumption holds for the lowest level
error distribution by year. The Normality assumption for higher level residuals is adequate. It is also
possible to generalise the multivariate model for the general repeated measures case with any number of
occasions, but this will involve setting up an explicit model for the autocorrelation structure, and work on
this is currently under way. This model can also readily to be extended for study the tactical voting at
constituency level.
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RANDOM EFFECTS MODELS FOR LONGITUDINAL DATA
FROM COMPLEX SAMPLES

Julia L. Bienias,' Laurel A. Beckett,' and Charles L. Owen'

ABSTRACT

Longiudinal studies with repeated observations on individuals permit better characterizations of
change and assessment of possible nsk factors. but there has been little experience applying
sophisticated models for longitudinal data to the complex survey setting. We present resulls from a
comparison of different variance estimation methods for random effects models of change in cognitive
function among older adults. The sample design is a stratified sample of people 65 and older, drawn
as part of a community-based study designed to examine risk factors for dementia. The model
summarizes the population heterogeneity in overall level and rate of change in cognitive function using
random effects for intercept and slope. We discuss an unweighted regression including covariates for
the stratification variables, a weighted regression, and bootstrapping; we also did preliminary work into
using balanced repeated replication and jackknife repeated replication.

KEY WORDS: pseudo maximum likelihood, bootstrapping, resampling, random effects

1. INTRODUCTION

Longitudinal studies are very useful, because they permit better characterizations of change and the assessment
of possible risk factors, and complex sample designs are often used for large-scale longitudinal studies for
several reasons. First, it is often important to obtain accurate descriptions of change for subgroups such as
children or minorities, and thus they may be oversampled. Second, oversampling groups at high risk may give
more power for a given cost. Finally, longitudinal studies are typically expensive to carry out; limitations on
resources may make it necessary to accomplish multiple goals with a fixed budget, and thus to design an
efficient sampling strategy. There has been little experience, however, in adapting the increasingly
sophisticated models proposed for longitudinal data to the complex sample setting.

We focus on random effects models of change (Laird & Ware, 1982) in a study of cognitive function in the
elderly. Such models can be used to characterize change directly and also summarize the heterogeneity in
overall levels and patterns of change. When the sample design has been constructed to overrepresent people
with unusually rapid or slow changes, then the analysis must adjust for the sampling design in order to describe
the source population. We compare different approaches to parameter estimation and variance estimation. The
classical sampling approach is to use pseudo-maximum likelihood estimates obtained by weighting each
person’s data in the analysis to reflect the sampling, with a sandwich estimator based on a first-order Taylor
series expansion to obtain variance estimates (Samdal, Swensson, & Wretman, 1992; Skinner, Holt, & Smith,
1989). Alternatively, we examine a bootstrap approach (Efron, 1982) and using the stratum characteristics as
covariates in the model (Korn & Graubard, 1991; also DuMouchel & Duncan, 1983). Previous studies have
examined the effects of different approaches to allowing for the effects of complex sampling designs on
estimation in linear regression (DuMouchel & Duncan, 1983; Kovar, Rao, & Wu, 1988; Krewski & Rao, 1981)
and logistic regression (Kom & Graubard, 1991; Roberts, Rao & Kumar, 1987).

! Julia L. Bienias, Rush Institute for Healthy Aging, 1645 W. Jackson Blvd., Suite 675, Chicago, IL 60612,
USA; Laurel A. Beckett, Charles L. Owen: same address
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2. THE SETTING

East Boston, Massachusetts, a geographically defined, largely working-class urban community, was one of four
sites of the Established Populations for Epidemiologic Studies in the Elderly (EPESE). A complete census
was carried out in 1982-84. Based on information obtained during an initial in-home interview, a stratified
random sample (age group (5) x sex x memory performance (4) ) was chosen for yearly follow-up. The sample
we model here contains 388 people and 1743 observations (Evans et al., 1989, also Beckett et al., 1992.)

The outcome of interest was a summary measure of cognitive function based on averaging z scores (using
population estimates of mean and standard deviation) from eight individual cognitive performance tests. This
composite measure had a more Gaussian distribution than the individual tests and minimized the floor and
ceiling problems. In addition, it should reduce error variation and effectively extend the range within which
individual differences are discriminable. Figure 1 is a plot of each person's set of measurements of this
cognitive function summary score. We considered a model using age as the only substantive fixed effect:

Y ='Xp + Zy + ¢, (1)

where Y is a vector of observations, X and Z are known covariate matrices, § is an unobservable vector of
fixed effects, and v is an unobservable vector of random effects. We assume that the parameters of y are
normally distributed person-specific random effects with variance-covariance G, € are normally distributed
within-person errors with covariance ¢,’I, and that ¥ and € are independent. The entries in G and the error

variance 0, are additional parameters to be estimated. Thus Y - N(XB. ZGZ’ +ofl), and we

denote the density function by f{y).

3. PARAMETER ESTIMATION

Suppose that the community consists of N individuals for each of whom longitudinal data Y are generated from
a multivariate normal distribution via a random effects model (1). Let g(y,0) = 8/86 log f(y), where 0 denotes
the parameters (P and variance parameters) tobe estimated. The function g is an unbiased estimating function.
and the maximum likelihood estimates (MLEs) of the parameters in 6 are given by the roots of the equations

Yo ev,9 =0. (2)

The MLEs of the coefficients § can be obtained as functions of the MLEs of the variance parameters, and both
can be calculated by the EM algorithm (Laird & Ware, 1982).

If data were available for the entire community, then the solution of the estimating equations (2) would be an
estimate of the superpopulation parameters of the model (1). When the survey community data are not
completely known, the solution of (2) defines a finite population parameter for the community (Godambe &
Thompson, 1986). Under stratified sampling, taking a weighted mean of the estimating functions for the
sampled individuals will give both an estimate of the finite population parameters and a sample-based estimate
of the superpopulation parameters. If we denote the inverse of the sampling probabilities under the stratified
design by w;,, for person i in stratum A, then the pseudo MLEs are given by the roots of:

Yo X w36 = 0, 3)

These are consistent in three different senses (Siarndal, Swensson, & Wretman, 1992). First, if all the people
in the community were known, the pseudo MLEs would be the roots of the estimating equations (2), and thus
would equal the finite population parameters, or finite population consistency. Second, if the sample size n
and the population size N were both allowed to go to infinity, while holding the design fixed. the pseudo MLEs
would converge in probability to the finite population parameters. Third, again allowing both n and N to go
to infinity, the pseudo MLEs would converge in probability to the superpopulation parameters.
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4. MODEL-BASED VARIANCE ESTIMATION

Some authors have suggested that regression coefficients can be estimated without using the sampling weights,
provided that the coefficients B, given the predictors X, the random effects y, and the residuals € do not depend
on any variables used in the stratification (DuMouchel & Duncan, 1983; Kom & Graubard, 1991). If,
however, the relationship is thought to depend on some stratification vanables, one can add these variables as

in important ways, without incurring the penalty of increased standard errors because of adjustment for unequal
sampling weights. Interpretation is complicated by the fact that no single, population-wide estimate is provided
for the effect of the primary predictors (the so-called census coefficients). Additionally, uncertainty about the
population due to clustering or weights is not accommodated.

5. VARIANCE ESTIMATION: THE BOOTSTRAP

An alternative approach to variance estimation is to use bootstrap replication techniques (Efron & Tibshirani,
1995). This and similar approaches have been applied for estimates of means and regression parameters for
univariate outcomes (Rao, Wu, & Yue, 1992; Sitter, 1992). Using the bootstrap requires careful specification
of the probability model that gives rise to the data. The model has three components: the sampling design. the
fixed parameter estimates, and the error structure. Each component needs to be replicated by the bootstrap
resampling procedure in such a way that the distribution of the bootstrap parameter estimates mimics the
sampling distribution in the original probability model. Our setting consists of a random effects model with
unknown coefficients but a normal error structure, acommunity with people divided up into strata, each person
with a vector of outcomes arising from the normal model, and a random sample without replacement in each
stratum. Our goal is to estimate the unknown superpopulation paramelers, rather than just the parameters that
are the roots of equation (3).

We begin by sampling separately from each stratum h. sampling entire cases rather than fixing the predictors
X and resampling residuals from the regression model because the observed predictors X are typical of the
stratum but may vary in the larger community. We resample with replacement a sample of size n, , rather than
n,. to compensate for the bias in standard error estimates from the association within the original community
strata (Davison & Hinkley, 1997); we do not reduce the stratum size further by the sampling fraction, because
we wanl to preserve the uncertainty associated with having the total community generated from a
superpopulation model. The weights are adjusted to reflect this smaller sample size, so that the resulting
pseudo MLEs will be consistent. The bootstrap replication is then repeated M times, giving estimates 8, at
replication m for each parameter. The sample variance v can be calculated for each parameter, and a
studentized 100(1-a)% interval calculated centered at the pseudo MLE 6:

0+ (v)y” 7 I €l

The coverage probability of this interval (4) depends on: the approximate normality of the sampling distribution
of the pseudo MLEs, the centering of the bootstrap distribution at the pseudo MLE, and the accuracy of the
sample variance of the bootstrap variance as an estimate of the sampling variance of the pseudo MLEs. The
first two assumptions can be checked empirically. If Q-Q plots of the bootstrap pseudo MLE parameter
estimates suggest nonnormality, appropnate normalizing transformations of the bootstrap estimates may be
suggested by the empirical distribution of variances estimated from each bootstrap replication, plotted against
the bootstrap point estimate (Davison & Hinkley, 1997, Ch5.2). Alternatively, bootstrap percentiles could be
used, but would require substantially larger numbers of bootstrap replications (Efron & Tibshirani, 1993). Bias
correction approaches can be used if the empirical distribution of the replicate estimates is not centered at the
full-sample pseudo MLE (Efron & Tibshirani, 1993).

The assumption that the bootstrap standard deviation is a consistent estimate of the true sampling standard error

is more difficult to establish. For estimation of a mean, the bootstrap resampling procedure gives consistent
estimates of the standard error (Davison & Hinkley, 1997). Thus, the bootstrap standard deviation of the mean
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of the estimating equation (3), evaluated at a fixed parameter value, is a consistent estimate of the standard
error under sampling from the model, provided the model is correct. Bootstrap estimates of the standard error
of coefficients from linear regression have also been shown to be consistent, if the number of parameters is
small relative to the number of data points and the resampling is not subject to near-collinearity in the design
matrix. These considerations suggest that the bootstrap standard deviations should be consistent estimates of
the standard errors of the fixed-effect coefficients in the random effects models, with at most modest
adjustment for bias or nonnormality. The estimates of the variance components, however, are more likely to
have skewness and bias that would violate the assumptions of and require transformation.

6. RESULTS

The estimated model using the full sample weights is cog = -0.40 - 0.05 age - 0.04 lag - 0.003 age lag + v,
+ v,. where "cog" is the summary measure of cognitive function defined in Section 2, "age" is taken as the
difference in age from 80, "lag" is the time between the follow-up interview and baseline, ¥, is a random
variable for the individual person's intercept for the trajectory over time, and y, is a random variable for the
individual person's slope. We also have

104564 0.0168

- .
= | 0.0168 00046 |+ & = 06081 .

G

Figure 2 shows the predicted trajectories for each person, based on the model. Figure 3 shows the same
predicted values, but with the thickness of the line proportional to the sampling weight, to emphasize the
unequal probabilities of selection and their impact on the estimation; more of the community have "flat” lines
than appear in Figure 2.

Fitting a model without weights but including terms for sex, "poor vs. good” and "either intermediate vs. good"”
memory groups yields the following fit conditional on those variables as fixed effects alone and interacted
with "lag:" cog = -0.07 - 0.05 age - 0.03 lag - 0.004 age lag + v, + v,; G(1,1) = 0.3364; G(1,2) = 0.0193:
G(2,2) =0.0100; 6° = 0.1085.

The following table summarizes the variance results. The column "Weighted SRS" contains estimates from
treating the data as a simple random sample with weights (from SAS PROC MIXED®). "Design Effects”
contain the ratio of the variance estimates to those from the Weighted SRS fit. For comparison, if the
sampling weights are ignored, the estimates are: Intercept: -0.40; Age: -0.05; Lag: -0.05; Age by Lag: -
0.0003: G(1,1) = 0.4628; G(1.2) = 0.0315; G(2,2) =0.0111; 6’ = 0.1083. That is, the estimated coefficients
for the fixed effects are nearly identical. For the random components, the estimate of the variance for the
intercept effect is very similar to the estimates that take into account the sample design. However, the estimate
of the variance for the slope effect is more than twice the size when the design is ignored and the estimated
covariance between the intercept and slope components is also about twice the size. Finally, the estimated
residual variance is about 82% smaller when the design is ignored (0.1083 vs. 0.6081).

7. DISCUSSION

but may overestimate the residual variance and the variances associated with the random effects, particularly
the variance for the slope parameter. This would be expected, in turn, to lead to an increased chance of
concluding there is heterogeneity in the data even if there were none.

We additionally wish to consider other replicate methods, namely jackknife repeated replication and balanced

repeated replication (BRR; also called balanced half sample) (Wolter, 1985). In particular, we next wish to
address the issue of design consistency of these approaches, and consider under what circumstances the various
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approaches to variance estimation may differ. Other authors (e.g., Pfeffermann, Skinner, Holmes, Goldstein,
& Rasbash, 1998) have discussed hierarchical models in the context of a hierarchical sample design. Our
setting differs from these in that we have one mechanism assumed to be generating the data which is separate
from the mechanism used in sampling, as opposed to the sample design being hierarchical itself. In some
preliminary implementations of the jackknife and BRR, we saw a wide range of design effects, particularly for
the variance estimates of the variance parameters. This deserves further attention to both the theory and to
understanding circumstances under which these methods may fail, as well as discussion of the relation to
inference (e.g., see Pfeffermann, 1993).

Standard Error Design Effects
Estimates
Variance Estimation Method
Weighted SRS Model-Based Bootstrap
Fixed Intercept 0.0380 2.66 0.81
Effects
Age at Start 0.0052 .78 0.59
Lag 0.0076 4.11 1578
Age * Lag 0.0010 1.21 1.00
Random Intercept 0.0409 0.52 1.49
Effects
Slope 0.0011 3.31 0.83
Cov (Intercept, Slope) 0.0057 0.93 LSl
Residual o 0.0258 0.04 4.88
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Figure 1. Raw Data

Global Cognitive Score vs. Age

Figure 2. Fitted Model

Global Cognitive Score vs. Age

Figure 3. Model Showing Weights
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MULTILEVEL MODELING OF COMPLEX DATA STRUCTURES
WITH MULTIPLE UNIT MEMBERSHIP AND MISSING UNIT
IDENTIFICATIONS
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ABSTRACT

This paper presents a method for handling longitudinal data in which individuals belong to more
than one unit at a higher level, and also where there is missing information on the identification of
the units to which they belong. In education, for example, a student might be classified as belonging
sequentially to a particular combination of primary and secondary school, but for some students, the
identity of either the primary or secondary school may be unknown. Likewise, in a longitudinal
study, students may change school or class from one period to the next, so belonging' to more than
one higher level unit. The procedures used to model these structures are extensions of a random
effects cross-classified multilevel model.

1. INTRODUCTION

Across a wide range of disciplines, it is commonly the case that data have a complex hierarchical
structure. Subjects may be clustered not only into hierarchically ordered units (e.g., students nested within
classes, within schools), but may also belong to more than one unit at a given level of a hierarchy. In this
paper we use educational data to illustrate our ideas. For example, a student might be classified as
belonging sequentially to a particular combination of primary school and secondary school, in which case
the student will be identified by a cross classification of primary schools and secondary schools.
Alternatively, a particular student may spend a proportion of time in one school and the remaining
proportion in another school. In this case, the student has multiple membership of units at a given level of
clustering.

Goldstein (1987) and Raudenbush (1993) present the general structure of a model for handling
complex hierarchical structuring with random cross classifications. For example, assuming that we wish to
model the achievement of students taking into account both the primary and the secondary school attended
by each student, then we have a cross classified structure, which can be modeled as follows:

Yitiga) = XBigji iy 85, + 45, 05y

. . . (1]
h=L.Jdy, j,=L..J,, i=1..N

in which the score of student i, belonging to the combination of primary school jl and secondary

school j2 , is predicted by a set of fixed coefficients (Xﬂ) The random part of the model is given

i(Jya)”
by two level 2 residual terms, one for the primary school attended by the student (4 1'1 ) and one for the

secondary school attended (U j, ) and the usual level 1 residual term for each student. We note that the
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latter may be further modeled to produce complex level 1 variation (Goldstein, 1995, Chapter 3).

Rasbash and Goldstein (1994) give details of a method for estimating cross-classified models
using a simple hierarchical formulation and a set of (0,1) dummy variables for each unit of one of the cross-
classified random variables. The dummy variables are introduced as explanatory variables into the random
part of the model and the variances of the random coefficients of these dummy variables are constrained to
be equal, thus providing an estimate of the between unit variance. The method can be used to analyze a
wide variety of models with the only serious limitation being the computational demands generated by
models with a large number of cells in the cross classification. Examples of several kinds of frequently
occurring situations in which it may be appropriate to use a multilevel random cross classification model
are given by Goldstein (1995).

This paper sets out extensions of the random cross classification to the case of multiple unit
membership and also to situations in which there is incomplete information on the units to which students
belong. These procedures are all implemented in the software package MLwiN (Rasbash et al., 1998). We
first consider the case where students belong to more than one secondary school.

2. THE MULTIPLE MEMBERSHIP MODEL

Suppose that we know, for each individual, the weight 2 ij, » associated with the j2 -th

secondary school for swdent i (for example the proportion of time spent in that school) with
J,

/4 i = 1. These weights, for example, may be proportional to the length of time a student is in a
f2=l
particular school during the course of a longitudinal study. Note that we allow the possibility that for some

(perhaps most) students only one school is involved so that one of these probabilities is one and the
remainder are zero. We can now rewrite [1] as follows:

4 M @
Yicininy = XBigj iy + 45 + LU T, + €, iy
72

(2) = (2)
Z ujz ”'J2 = ”l’u
J2

¥4
W = (@

2
S 2]
r={nm,,..7;}
T %
o _{”Uz""”Nfz}

where N is the total number of students, u?is the J, X1 vector of secondary school effects and j,
indexes the primary school. Thus [2] is a 2-level model where the level 2 variation among secondary

schools is modeled using the J, sets of weights for subjecti (7 ,...7T 7,08 explanatory variables, with
T j, the Nx 1 vector of student weights for the Jo th secondary school. We have
(D) _ o2 M2y =
var(u;’)=0,,, cov(u;’'u;’)=0

(2) wr 2 [3]
Var(z ujz ”ijz ) - o-izzﬂ-ijz
J2 12

We note also that for any fixed or random part explanatory variables defined at the school level the
value of this variable will be that of the school to which a student belongs at the occasion of measurement.
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3. THE MISSING IDENTIFICATION MODEL

Just as proportions or probabilities other than (0,1) are used to indicate multiple unit membership, this
also provides the basis of a method for handling missing unit identification information in complex
hierarchical models. For example, in the case of model (1) we may have complete information about the
secondary school attended by each student, but incomplete information about the primary school from
which they came. Nevertheless, knowing the locality of the secondary school they currently attend, we
may have a reasonable basis for assigning probabilities for attendance at one or more identifiable primary
schools.

Suppose now that T B is the weight associated with membership of primary school jl for student i.

In many applications this will simply be the posterior probability of belonging to school jl and will
generally depend on school size and sample design. We shall also assume that where the actual
membership is unknown the student does in fact belong to just one primary school (but see below). For
simplicity we assume known membership of just one secondary school for each student. Although we do
not know the primary school membership, the level 2 contribution to the variance is still 01241 . Since we
are ignoring the secondary school weights, this implies that [2] becomes

Yitiin = EBicim +Zuj. V5 T Y660
J
Ty 2 _ 2
var(z u, \/n'ij, b= oulz(ﬂ z, ) =0, [4]
b ]
Z”ij. =1
Ji

In the special case where we assume 77 B = 1/ n i where I i is the number of students in

the jl primary school, representing complete agnosticism about primary school membership, this leads to

the intra-primary school correlation between two students who are actually in the same primary school, but

neither of whose primary school membership is known, becoming
3}

-
S0 5]

o’ +
e ul
which reflects the fact that the probability of two randomly chosen students belonging to the same school is
1/n e If we knew that some students did in fact belong to more than one school then a weighting system

as in (2) would need to be used in addition to the following, leading to new weights as a product of the two.
Thus we can combine (2) and (4) to deal with both missing identifications and multiple unit membership.

The program MLwiN (Goldstein et al., 1998) has special commands which can be used to set up
and fit these models.

4. EXAMPLE

To illustrate the application of the above methodology, we make use of data from a three-year
longitudinal study of educational effectiveness known as the Victorian Quality Schools Project (Hill,
Holmes-Smith, & Rowe, 1993; Hill & Rowe, 1996).

A two-stage, stratified, probability sample of government, Catholic and independent schools in the
State of Victoria, Australia, was drawn on the basis of an estimated intra-unit correlation of 0.2 and an
average cluster size of 30 (see Ross, 1988a, 1988b). Within these constraints, schools were randomly
selected at the first stage of sampling, but with probability proportional to their enrollment size. At the
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second stage of sampling, the total cohort of students enrolled in the Kindergarten or Preparatory Grade
(K), Grade 2, Grade 4, Grade 7 and Grade 9 in each selected school, were included in the sample.

For illustrative purposes, we focus on data relating to teacher ratings of the achievement in English
of primary school students. The English scores have been scaled to have a mean of zero and a standard
deviation of 1. In the first year of the study (1992), useable data were received from 59 primary schools
including 41 government schools, 12 Catholic schools and 6 independent schools, for a total of 6,678
students and 365 teachers. In the second and third years of the study, data were obtained on the same
students remaining in the sampled schools as they proceeded to Grades 1, 3 and 5 and 2, 4 and 6
respectively, as indicated diagrammatically below .

1992 K 2 4
" AN .
~ .y - i
1993 o 1 - 3 5
~. S ~
b A
1994 4 2 » 4

Sample attrition rates over the life of the project were relatively high due to a number of factors,
one of which was missing data arising from a failure on the part of respondents to answer all questions.
However, natural attrition also played a part. Australia is a highly mobile society and a high tunover of
students from year to year is common. In addition, policy changes saw the closure of around one in ten
Government schools over the three-year period during which the study was in progress and this also had an
impact on sample attrition. Finally, five schools dropped out of the project after the first year for a variety
of reasons, but mainly on account of workload pressures on teachers. In most cases, the missing data could
be regarded as effectively randomly missing rather than systematically related to the characteristics of the
students retained in the sample.

In modeling the English achievement of students we assume a bivariate response model of the
general form

yti(j.,j2j3 k= (XB)li(j1~j2~js )k + Bzzli(hdmis)k (6]
(h (2) (3)
+(Vy + Uy, ¥ Uy, = Ui i e‘i(jl-iz-js)k)

in which the achievement of student i, either at t=1, namely at the end of 1993, or at t=2, namely at the end

of 1994, is predicted by a set of student characteristic variables X which may be background

1(j;,J2443)°
or time-varying measures, and a measure of prior achievement Z i1vdaeda) taken at the end of 1992
when t=1 and at the end of 1993 when t=2. The class level terms qull), quzz) and ugg) respectively refer
to the 1992, 1993 and 1994 class membership of the students. The subscript k indexes schools and V , is

the effect of school k at time t, and eﬁ( s ialt is the contribution of student i within school k in classes

jl (1992 class), j2 (1993 class) and j3 (1994 class) at time . The subscript t is thus the indicator for the

response. We have not incorporated a subscript t for the 1994 class, since we assume that membership of
the 1994 class will affect only the 1994 response. By contrast for the 1992 and 1993 class we have a
residual term for both the 1993 response and the 1994 response. Likewise both responses are present at the
student and school levels. We also note that the response in 1993 is the prior achievement covariate for the
1994 response. The model [6] can be represented as a five-level model, with observations at t=1 and t=2
nested within students within classes within schools. To accommodate the fact that class composition
changed in each of 1992, 1993 and 1994, a cross classification of 1993 classes with 1992 and 1994 classes
is introduced into the model by declaring two additional levels in the model, making it a six-level model.
The detailed procedure for defining and estimating these models is given in the MLwiN user's guide



(Goldstein et al., 1998). Note that no level | random terms appear in the model, since this defines the
bivariate structure (Goldstein, 1995, Chapter 4). Thus, in the random part of the model, there are five
variables representing student 1992 class, 1993 class, 1994 class and school effects. Equation [6] assumes
that for each student there are two records or sets of observations, one relating to achievement at the end of
1993 and including a 1992 prior achievement measure, and the other relating to achievement at the end of
1994 and including a 1993 prior achievement measure. For each 1993 record, it is assumed that unit
identification inciudes both the 1992 and 1993 class to which each student was assigned and the school to
which each student belongs. For each 1994 record, it is assumed that unit identification includes the 1992,
1993 and 1994 class to which each student was assigned and the school identification.

In practice, it was found that there were 460 students with a missing 1992 class identification. To
have carried out an analysis using only cases where there was complete identification would have been to
reduce efficiency. Also, if missingness is not completely random, by including all available data we will
tend to reduce any possible biases.

To incorporate all (4539) students and (6423) records within the one analysis, the assumption was
made that the 460 students with missing 1992 class identification information had an equal probability of
belonging to any one of the classes within the same school in 1992. Accordingly, we used identification
weights calculated as \ﬁ/TJ We note that our procedure is designed to deal with missing identification

in 1992 records rather than complete missing 1994 records. In the latter case, assuming missingness at
random, the data set will be unbalanced with respect to time but we will still obtain efficient (maximum
likelihood) estimates (Goldstein, 1995, Chapter 4).

Table 1 summarizes the results of fitting [6] to the data using the above method for handling
missing unit identification information within the model. Considering first the fixed parameter estimates,
the ‘intercept’ variables ‘1993’ and ‘1994’ are the achievement levels, expressed in standardised units and
adjusted for all other explanatory variables in the model, of students in the earliest years of schooling,
namely Grade 1 and Grade 2, in 1993 and 1994. Then follow dummy variables for the other year levels,
namely Grades 3 to 6, so that the associated coefficients represent the differences from the Grade 1 and
Grade 2 values. Model 1 predicts achievement scores solely on the basis of Grade level, thus providing a
‘base’ model with which to evaluate the effects of including further explanatory variables. By adding the
coefficients for each Grade level to the coefficients for the base Grades (Grade 1 in 1993 and Grade 2 in
1994), estimates can be obtained of average gross achievement levels and (from model 2) of average
adjusted or ‘value-added’ achievement levels across Grades 1 to 6. These are graphed in Figure 1.

Figure 1. Gross and value-added average scores for Grades
ltob6

—o— Gross
—#— Value-Added

Grade Level

Tumning now to the random part of Model 1, it will be noted that the residual variation at the
school level is small and higher for 1994 responses than for 1993 responses, indicating a tendency for the

‘ A more elaborate model which allowed interactions between year and other explanatory variables,

that is separate coefficients for each response, was also fitted. The differences in the coefficients
between 1993 and 1994 were small, however, and only the simpler model is represented.
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gap between schools to grow. The total residual variance for the 1993 response is 0.48 and for the 1994
response is similar at 0.53. The proportion of variance attributable to between school differences is about
four per cent for 1993 responses and nine per cent for 1994 responses. It will be noted also from the

covariance terms (O ., 0 ,,,) that there is a strong, positive correlation at the school level between

‘unadjusted 1993 and 1994 achievement scores (r = 0.849) so that considered jointly, the intra-school
correlation is 0.069.

The parameter estimates for residual variance at the class level (levels 3, 4 and 5) of Model 1
indicate that if 1993 and 1994 responses are considered separately, there is an intra-class correlation of
0.353 and 0.330 respectively, indicating substantial differences among classes in teacher ratings of student
achievement. Adding 1993 and 1994 effects, this translates into an overall intra-class correlation of 0.376.
As one might expect, the effect of 1993 class membership on 1993 responses is significantly greater than
its effect on 1994 responses, but the magnitude of the effect on 1994 responses is nevertheless significant.

In Model 2a, student achievement in English is predicted not only by Grade level, but also by four
student background characteristics and by Prior Achievement measured one year previously. The
parameter estimates indicate that female students make greater progress than males and students from high
occupational status families make greater progress than students from families where the highest
breadwinners are unemployed or in unskilled occupations. Non-English Speaking Background students
make less progress than their English-speaking counterparts and having experienced a Critical Event
during the year, such as an extended illness or some psychological trauma, is associated with a negative
effect on student progress. Prior Achievement is by far the most important predictor of student progress.

Inclusion of the student background variables and the measure of Prior Achievement result in a
significant improvement in model fit as indicated by the log likelihood ratio. Looking at the total (1993 +
1994) effects we note that judged one year at a time, the evidence points to large within-school-between-
class differences. The largest effects of 1993 class membership are on 1993 responses, while the largest
effects on 1994 class membership are on 1994 responses, however, 1993 class membership has a
significant effect on 1994 responses. The effect of 1992 class membership on 1993 and 1994 responses is
small and insignificant with respect to the effect on 1994 responses.

Model 2b is identical to Model 2a, but fitted to the data for only those students with complete class
identification information. In other words, the 460 students with missing 1992 class identification
information were omitted from the analysis. This was done to investigate any biasing effects from
excluding these students from the analysis. The parameter estimates for both the fixed and the random
parts of the model are in most instances very similar, suggesting that students with missing 1992 class
information were broadly representative of the full sample, although there are differences between the
intercepts for the different year levels.

5. DISCUSSION

This above approach to handling multiple membership and missing identification problems can be
generalized to a wide range of data analytic problems and practical situations. It can be used in both
univariate and multivariate linear and non-linear models involving complex hierarchical structures. Its
main application, however, would appear to be in connection with longitudinal studies where problems of
missing data related to the classification of students by classes or schools are frequently encountered as
students change school or the composition of classes changes from one year to the next. This is particularly
important for school effectiveness studies where the standard approach has been simply to omit students
who change school during the course of a study, even when this involves a majority of the students.
Another application is in household studies where individuals move across households over time and in
some cases identification of households may be missing.

An important issue is how to determine the weights in a muliple membership model or unit
membership probabilities in a missing identification model. In practice it would be advisable to carry out
sensitivity analyses by varying the weights and probabilities. For example, we might choose a logarithmic
transformation of the time spent in a school to determine the weights. More generally we may suppose that
the weight is a function of further explanatory variables, for those individuals who belong to more than one
unit. Thus we might assume that the weight is a linear function of time spent and other individual level
covariates. This leads to a model involving the product of unknown fixed coefficients and random effects.
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A special case is where the covariate is a grouping variable based upon time spent. One difficulty with this
approach lies in constraining the weights to add to unity for each individual. One possible solution is 10
scale the weights so that on average they added to unity. The estimation problems associated with this
approach are currently being investigated.

The model can be extended to the case where units divide into sub-units or amalgamate into combined
units. Thus, for example, schools may combine during the course of a longitudinal study or households
may split with members leaving to form new households. To incorporate such possibilities we form a
superset of units including all the original units together with the new sub-units and combined units.
Membership can then allocated to each unit, for example, according to the time spent in each unit, whether
an original or new unit.
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Table 1. Parameter estimates (and Standard Errors) for two bivariate response cross-classified models
with missing identification codes. Model 2b is identical 10 model 2a but with subjects excluded who have a
missing 1992 class identification.

Parameters Model | Model 2a Model 2b
(N=6423) (N=6423) (N=5963)
Fixed:
1993 intercept -1.054 (0.010) -0.246 (0.049) -0.223 (0.051)
Grade 3 t=1 0.815 (0.057) 0.019 (0.063) 0.103 (0.064)
Grade 5 1.561 (0.055) 0.444 (0.062) 0.342 (0.066)
1994 intercept -0.515 (0.051) -0.164 (0.051) -0.032 (0.056)
Grade 4 =2 0.823 (0.064) 0.236 (0.069) 0.061 (0.078)
Grade 6 1.527 (0.066) 0.422 (0.071) 0.365 (0.083)
Gender (Female - 0.067 (0.010) 0.056 (0.010)
Non-English Speaking - -0.045 (0.020) -0.028 (0.021)
Occupational Status - 0.059 (0.006) 0.058 (0.007)
Critical Events - -0.045 (0.012) -0.036 (0.012)
Prior Achievement - 0.700 (0.010) 0.721 (0.010)
Random:
School
2 0.052 (0.019 0.027 (0,016 0.008 (0.014
O-vl (1994) ( ) ( ) ( )
2 0.018 (0.010 0.044 (0.017 0.032 (0.014
O-v() (1993) ( ) ( ) )
0.026 (0.011) 0.010 (0.012) 0.012 (0.010)
o-le (1993,1994)
Class
7) 0.181 (0.020) 0.184 (0.019) 0.221 (0.024)
Gu(j3)0 (1994)
) 0.012 (0.006) 0.095 (0.011) 0.102 (0.013)
G, (j2)1 (493 class for ‘94 response)
2 0.175 (0.017) 0.176 (0.017) 0.145 (0.015)
Gu (j2)0 (*93 ciass for ‘93 response)
0.004 (0.008) -0.129 (0.013) -0.119(0.013)
G u(j2)10 (1993,1994)
2 0.002 (0.004) 0.002 (0.003) 0.001 (0.002)
Oy j1)0 (92 class for *94 response)
2) 0.009 (0.004) 0.085 (0.010) 0.102 (0.011)
Gu(jl)l (*92 class for *93 response)
Student
2 0.279 (0.008 0.132 (0.004 0.130 (0.004)
O.d (1994) ( ) ( )
2 0.281 (0.007 0.151 (0.004 0.150 (0.004)
O, (1993) . e
0.203 (0.006 -0.030 (0.004) -0.035 (0.004)
0'“0 (1994,1993) 4 ' \
-2*log(likelthood) 10494 8149
Intra-school correlations
1994 responses 0.094 0.061
1993 responses 0.037 0.096
1994 + 1993 resp 0.069 0.079
Intra-class correlations
1994 responses (1994 classes) 0.330 0418
1993 responses ( 1993 classes) 0.353 0.386
1994 + 1993 responses 0.376 0.606
0.197 (0.006) -0.0 -0.039 (0.004)
O 010 (1993,1994) 29 (0.004)
-2*log(likelihood) 107 8289
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WEIGHTING VERSUS MODELLING IN ADJUSTING FOR NON-
RESPONSE IN THE BRITISH LABOUR FORCE SURVEY: AN
APPLICATION TO GROSS FLOWS ESTIMATION

P.S. Clarke' and P.F. Tate’

ABSTRACT

The British Labour Force Survey (LFS) is a quarterly household survey with a rotating sample design
that can potentially be used to produce longitudinal data, including estimates of labour force gross
flows. However, these estimates may be biased due to the effect of non-response. Weighting
adjustments are a commonly used method to account for non-response bias. We find that weighting
may not fully account for the effect of non-response bias because non-response may depend on the
unobserved labour force flows, i.e., the non-response is non-ignorable. To adjust for the effects of
non-ignorable non-response, we propose a model for the complex non-response patterns in the LFS
which controls for the correlated within-household non-response behaviour found in the survey. The
results of modelling suggest that non-response may be non-ignorable in the LFS, causing the weighting
estimates to be biased.

1. INTRODUCTION

The British Labour Force Survey (LFS) is a household survey gathering information on a wide range of labour
force characteristics. Since 1992 it has been conducted on a quarterly basis, with a sample rotation scheme
replacing one-fifth of the sample each quarter. The survey is designed to produce cross-sectional data, but
it has been recognised that linking together data on each individual across quarters produces a rich source of
longitudinal data. An important use of linked LFS data is for the estimation of labour force gross flows.
However, these estimates may be biased, mainly by the effects of non-response and misclassification.

This paper describes work dealing with non-response bias in the context of estimating labour force gross flows
from LFS data. Tate (1997) investigates the characteristics of non-responding persons in the LFS, and
suggests a method to compensate for non-response by incorporating the results of this tnvestigation into the
weighting procedure used to produce population level estimates from the survey. However, there are two
problems which could potentially limit the effectiveness of this approach: first, non-response at successive
interview rounds may be non-ignorable, that is, the propensity to non-respond may depend on the unobserved
labour force status of an individual; and second, the household-based nature of LFS may lead to household-
level non-response where non-response behaviour is correlated within households.

A class of models for estimating gross flows in the presence of non-ignorable non-response is presented in
Little (1985). However, this work assumes that non-response is an individual-level process where individuals
respond or non-respond independently of other individuals. Clarke and Chambers (1997) propose a model that
controls for household-level non-response. We assess the suitability of the weighting approach in this situation
by comparing labour force gross flows estimates obtained using weighting with those from fitting household-
level non-ignorable non-response models. A linked data-set from two successive quarters of the LFS is used
in this analysis, namely, the summer and autumn quarters of 1995.

lDepartn'\ent of Social Statistics, University of Southampton, Highfield, Southampton S017 1BJ, U K.
?Office for National Statistics, RG/11, | Drummond Gate, London SW1V 2QQ, UK.
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2. WEIGHTING ADJUSTMENTS FOR NON-RESPONSE BIAS

Non-respondents may be atypical of the population as a whole, and so their loss from the sample can introduce
bias. To some extent, non-response bias in the LFS is compensated for in the course of applying the normal
weighting procedure, which weights the sample so that the marginal distributions of the control variables
corresponding to sex, age-group and region are consistent with the population (estimated using census data
and population projections produced by the Office for National Statistics and the Government Actuary's
Department). It is clear that this process will compensate for bias arising from differential non-response by
sex, age-group and region, but bias associated with characteristics not used in the weighting procedure may
not be compensated for.

Tate (1997) found that, consistently across waves, young people aged 18-29 (especially 18-24), single people,
those living in London or in rented accommodation (especially privately rented), and the unemployed or those
in temporary employment are under-represented in the LFS sample, that is, are more likely to non-respond.
Characteristics which are independently associated are identified using logistic regression and CHAID analysis
(Magidson, 1993). This analysis reveals that being a young adult and living in privately rented accommodation
are the principal determinants of non-response (there are also some relatively minor additional effects due to
being single, in temporary employment or economically inactive). A separate analysis for sample members
lost through non-contact and moving house shows the same factors determine non-response for both groups.

The analysis described above identifies the cross-sectional characteristics of sample members that are
associated with greater non-response. However, there exists a possibility that non-response might be greater
when the sample member is changing economic activity state between interviews, independently of whichstate
they start or finish in. If this is the case, the proportion of people making transitions between different
economic activity states would be lower at later waves. The analysis finds this not to be the case. suggesting
that there is no additional probability of non-response associated with changing economic activity state. The
existing weighting system for the LFS already incorporates age-group, hence incorporating tenure into the
weighting procedure will compensate for further non-response bias. Tenure is integrated into the weighting
procedure using a calibration method via the software package CALMAR (Sautory, 1992). The customary
variables of sex, age-group and region provide control totals, and then the prior weights adjust each category
of tenure to the proportions in a cross-section of the LFS sample. We apply the calibration method to a sample
032,282 households interviewed at both quarters in our sample; the prior weights are used to adjust the tenure
categories to the proportions in the first cross-sectional sample. The trial weighting was restricted to the
population of working age during both quarters.

Comparing the weighted data thus produced with the unweighted linked data and the cross-sectional data from

cross-sectional data, it does not fully reproduce the population distributions by marital status or economic
activity. This is despite the previous finding that tenure, together with age, captures most of the non-response
effects. Thus, the method is reapplied with prior weights calculated on the basis of tenure plus marital status,

are needed to adequately compensate for non-response. However, the inclusion of economic activity in the
derivation of the prior weights makes the unsatisfactory implicit assumption that the distribution of the cross-
sectional sample by economic activity is unbiased. It is also apparent that using prior weights which
incorporate economic activity in the first quarter does not satisfactorily reproduce the cross-sectional
distribution of economic activity at the second quarter.

3. MODEL-BASED ADJUSTMENTS FOR NON-RESPONSE BIAS

We are concerned with estimating labour force gross flows from the LFS where individuals’ labour force status
may be unobserved at any stage. In Section 2 we reveal that non-response is non-ignorable because it depends
on individuals’ missing labour force status. Itis further concluded that weighting cannot fully control for non-
response bias because the weighting adjustments cannot account for sample loss due to economic activity at
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the second quarter. Hence, we adopt a model-based approach to compensate for the effects of non-ignorable
non-response in the LFS. Theoretical details about modelling non-response in sample surveys are given in
Little (1982).

An attempt to estimate labour force gross flows from data subject to non-ignorable non-response is made in
Little (1985). However, there are two reasons why Little’s approach is not wholly valid in this situation. First,
non-response is treated as an individual-level process where each individual’s non-response behaviour is
independent. Infact, the LFS is a household survey and so non-response within households may be correlated.
For example, the LFS interview procedure involves asking one person for permission to interview the
household. If that person refuses to grant permission, then each household member non-responds. Second,
no distinction is made between different reasons for non-response. As well as refusals, non-response occurs
in the LFS due to households being non-contactable. individuals moving house and sample rotation. In
addition, sample rotation leads to labour force flows not being observed. The underlying mechanisms for each
non-response state would appear to be different, and so must be distinguished between by the non-response
model.

3.1 Non-response Patterns in the Labour Force Survey

We now give details about the LFS design that are of particular relevance to modelling non-response. A full
description of the LFS survey design is given in ONS (1997).

The LFS interview procedure consists of two states. Stage one involves contacting an eligible household
member in order to gain permission to interview the household; stage two involves interviewing the eligible
household members.

Non-response at stage one falls into one of three categories: outright refusal, circumstantial refusal and non-
contact. Outright refusal occurs when the household, or rather the individual from who permission is sought,
refuses to take part in the survey. Circumstantial refusal is less terminal, arising when the household does not
agree to be interviewed because the timing, or other conditions, is inconvenient. The third category of
interview non-response, non-contact, refers to the situation where it is not possible to contact an eligible
household member at all. In the event of an outright refusal, no further attempt is made to obtain an interview,
that is, the household is dropped from the survey. In the event of circumstantial refusal or non-contact, a
further attempt is made to contact the household at the next wave. Any further non-response at subsequent
waves results in the household being dropped.

Stage two non-response occurs when individuals non-respond within an otherwise responding household. It
may be impossible to elicit information from certain individuals within a household because, for example,
other household members are not willing to provide proxy responses. At subsequent waves, an attempt will
be made to interview non-responding individuals if the household responds.

A final complication arises due to the sample changing between quarters. As well as households leaving the
sample by being rotated-out, or entering the sample by being rotated-in, households can enter or leave by
moving-in or moving-out of a house. A household that moves-out of the sample leaves a slot in the sample
at that address which may be filled by a household that moves-in. Individuals can also move-in or move-out
of households

3.2 Modelling Household-level Non-response in the Labour Force Survey

Represent the complete sample of 63,486 households by S, indexed by h. The first quarter is herein referred
to as 7, and the second quarter as t,. The number of eligible individuals in h between 7, and 1, is denoted by
n,, which we take to be known and fixed between both quarters. An eligible individual is of working age and
resident on the British mainland. Labour force status has three categories: E="Employed’, U="Unemployed’
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and N="Not in Labour Force’'. To make the following results comparable with the weighted estimates, it is
necessary to control for sex and age-group when estimating the labour force flows. Sex has the usual
categorisation, and age-group has three groups: '16-24’, '25-44" and "45 and over’. There are six categories
formed by the cross-classification of sex and age-group, indexed by x=1.2,....6.

The number of individuals in h with labour force flow (a,b) and sex-age-grouping x is assumed to be the
random variable N,(abx) >0, where ¥ ,, N,(abx)=n,. The non-response status of & at 7, is denoted by Ry, for
j=1,2, with 8 outcomes: /="Interview’, NC="Non-contact’, CR="Circumstantial Refusal’, OR="Outright
Refusal’, MI="Move-in', MO="Move-out’, RI="Rotated-in" and RO="Rotated-out’. The realisations of the non-
response indicators R, and R,, determine the non-response flow of #. The non-response states are divided into
two groups: in-sample and in-transit. States /, NC, CR and OR are in-sample non-response states because the
household is resident in the sampled address and is approached for an interview. The other states, M1, MO,
RI and RO are called in-transit states because the household is in the process of leaving the address or entering
the address, and as such is not approached for an interview. For example, RO refers to a household that was
rotated-out of the sample after the previous quarter, and M/ is a household that moves-in to a selected address
in the following quarter.

The individual frequencies for h are represented by random vector N,=(N,(EEI)N(EUI),...N,(NN6)), and
the household non-response flow is represented by random vector R,=(R,.R,,). The realisations of these
random quantities are denoted by m, and r,, respectively. The joint model for the labour force flows, the sex-
age-grouping and the non-response flows is specified as

Pr(N,=n,, R,;=r,)=Pr(N,=n,)Pr(R,=r, |N,=n,),

where the first factor of the right-hand-side is called the labour force flows model and the second factor is
called the non-response flows model.

We assume that the labour force flows and sex-age groupings within each household follow a multinomial
distribution, that is,

N,~MN(n,,w)

where w=(W(EE]),w(UE1),...,w(NNG6))is a vector of probabilities, w(abx)>0 is the probability of having labour
force flow (a,b) and sex-age-grouping x, and Y ., . w(abx)=1. The main implications of the multinomial
assumption are twofold: individuals’ behaviour is independent within households; and since w is constant,
households are assumed to be homogeneous with respect to their individuals’ behaviour. These are strong
assumptions that are unrealistic in practice. We also make the further assumption that non-response and sex-
age-grouping are conditionally independent given labour force status, which enables the non-response model
to be constructed as follows.

As discussed previously, there are two problems to overcome when modelling non-response in the LFS: first,
a satisfactory way of modelling the probability of a household non-responding as a function of its individual
characteristics; and second, the complex non-response patterns which occur in the LES must be accommodated
into the model. To tackle the first point, we follow Clarke and Chambers (1997) and model the probability
of a household non-response flow as a weighted average of the individual labour force flows frequencies for
the household, namely,

n(uvin,) = iz n,(ab)y(uv|ab), (1)

n,ab

for all u,v, where nt(uv|m,)=Pr(R,= (4,v)|N,=r,) and {{(uv|ab)} are the coefficients of the weighted average.
Since { m(uv|m,)} are probabilities, setting n,=1 in (1) gives Y(uv|ab) the interpretation of the probability of
a household of size one (i.e., an individual) having non-response flow (4, v) given labour force flow (a.b). The
task of (1) is to control for clusters of individuals with the same non-response pattern. Hence, individuals who
non-respond in responding households are treated as separate non-responding households.
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To parameterise the complex non-response patterns which occur in the LFS, we consider the non-response
mechanism to be a three-stage process (itself preceded by the allocation of individual labour force flows by
the labour force flows model). The first two stages determine whether the non-response is an in-transit or in-
sample state. Stage one: the household is determined to be Rl or RO or neither. Stage two: given that the
household is not R/ or RO, it is determined to be M/ or MO or neither. The first two stages are conditional
because flows between in-transit non-response states at ¢, and ¢, are impossible or cannot be identified by the
survey. For example, a household cannot be R/ att, and RO at 1, because the design stipulates it must be in-
sample for five consecutive quarters. Furthermore, it is not possible to identify households that are Rf at ¢ and
MO at 1, because they are never in the survey, entering an address after the first interview and leaving before
the second, and similarly for other flows between in-transit non-response states. Thus, stage three determines
the household in-sample non-response state, either for the quarter the household was in-transit, or for both
quarters. Each stage is parameterised in the following way.

Sample rotation is, by definition, determined entirely by the survey design and is independent of labour force
flows. Thus, the probability of R/ at ¢, is «,, the probability of RO at ¢, is a,, and the probability of neither is
1-a,-a,. Conditional on the household neither being RI nor RO. we allow the probability of the household
moving-in or moving-out to depend on its labour force flows; thus, the probability of M/ at ¢, 1s (1-a, -
,)B,(ab), the probability of MO at ¢, is (1-a,-at,)P ,(ab) and the probability of neither M/ nor MO is (1-«,-
o,)(1-B,(ab)-B,(ab)). In-sample non-response is unconditional on the preceding in-transit non-response states.
If a household is in-sample during both quarters, most flows between I, NC,CR and OR are possible; and if
the household is in-sample at one quarter only. all in-sample non-response states are possible. The only
constraint on flows between in-sample non-response states is due to OR households at ¢, being dropped at 1,.
To parameterise the in-sample non-response structure, we factorise the in-sample non-response probabilities
into: A (ab), the probability of in-sample non-response state « at f, given labour force flow (a.b)
(u=I.NC,CR,OR); and 0, (ab), the probability of v at 1, given wu at 1, and labour force flow (a,b)
(u,v=I,NC,CR OR), where 0, og(ab)=1 if v=OR and 0 otherwise. For households in-sample at 1, the marginal
in-sample probabilities are 6 (ab). Examples of this parameterisation are: Yy(R/./|ab)=a,0,(ab), y(NCMO
lab)=(1- - a;) By(ab) Anc(ab) and W(/,CR|ab)=(1-a-a;)(1-Bi(ab)-B(ab))A(ab)Ocg (ab), which are
substituted into (1).

3.3 Non-response Models for the Labour Force Survey

Model fitting and estimability for this class of models is discussed in Clarke and Chambers (1997). Toensure
estimability, we must constrain the non-response model in accordance with some plausible assumptions about
the non-response mechanism. The first model considered is ignorable model 1, where the probability of non-
response is independent of labour force status: B(ab)=p,, A (ab)=A, and 0,,,(ab)=0,. This non-response model
has only 10 parameters and so is not overparameterised. We then consider three non-ignorable models, where
non-response depends on labour force status at the current time. Model N,, is the same as 1, except that
Aab)=A(a) and 0, (ab)=0,(b), a total of 22 non-response parameters. Model N, is the same as N, except
that B,(ab)=Pp,(a) and B,(ab)=P,(b), a total of 26 parameters. The final non-ignorable model is Ny where the
probability of in-sample non-response depends on being interviewed at ¢,: 8,,(b)=A.(a) and 8,,,(ab)=0,(b) if
u=1, also a total of 26 parameters.

4. RESULTS AND DISCUSSION

The estimated probabilities of each labour force gross flow are shown in Table 1. The first two columns are
estimates from the unweighted data and those weighted using prior weights based on tenure, marital status and
economic activity; the next four columns are estimates under the four estimable non-response models, I,. N,
N,; and Nj.
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Table 1 - Gross flows estimates: unweighted, weighted and for the non-response models

Gross Unweighted  Weighted ModelI, Model N,, ModelN,, Model Ny
flows

EE 70.62 69.84 68.89 66.36 66.13 66.52
EU 1.08 .18 815 1.52 1.46 1.46
EN 158 1555 1.58 1.50 1.50 1.51
UE 1.61 1.77 1.66 2.09 2.19 1.79
818} 3.78 4.33 430 6.92 7.13 7.7
UN 1.00 1.09 1.09 1.22 1.32 1.28
NE 1.40 1.42 1.39 1.32 1.31 1.31
NU 1.06 1.11 1.15 1.52 1.43 1.41
NN 17.92 17.75 18.79 1SS 17.53 17.55

The main differences between the estimates relate to the categories for employed in both quarters and
unemployed in both quarters. For both categories, the estimates are similar for the weighted data and model
I,. but change considerably when moving to the various non-ignorable models (the employed proportion
decreasing and the unemployed increasing). The changes between the ignorable and the non-ignorable model
estimates are less pronounced for the transitional flows between different economic activity states, with the
exception of transitions into unemployment. The only aspect that does not conform to this pattern is the
relatively high proportion not in the labour force at both quarters estimated by the ignorable model.

The results of the work on weighting suggest that, aithough more of the non-response bias can be related to
differential non-response by age or tenure, adjusting for these characteristics alone, or even together with
additional variables which contribute to non-response to a lesser degree, is not enough to reduce non-response
bias satisfactorily. Furthermore, there is evidence of non-ignorable non-response in the LFS. Indeed, the
salient difference between the non-ignorable model estimates and the others is that unemployed individuals
are being under-represented in the LFS sample. This is a feasible result, indicating that the model-based
approach is at least producing substantively believable adjustments.

Before more concrete conclusions about the existence and size of the effects of non-ignorable non-response
in the LFS can be drawn, it is necessary to carry out further work. The parameters of non-ignorable non-
response models are weakly identified (see, for example, Little (1982, p. 246)) and thus point estimates may
be extreme, that is, the effect of non-ignorable non-response may be overstated. For example, for model N ,,
the probability of CR at ¢, for unemployed is 0.56, and for not in labour force itis 0. It is unlikely that the true
probabilities are so extreme, and so one avenue may be to constrain the non-response probabilities to lie in
regions of believable values and re-estimate the labour force gross flows. Furthermore, the instability of the
non-response parameters implies the parameter estimate variances are large. We plan to refit our models to
further linked data-sets from the LFS to ascertain whether these results are the result of random vanability or
the result of a systematic effect due to non-ignorable non-response. Lastly, if non-ignorable non-response is
found to be a significant phenomenon in the LFS, we plan to perform simulation studies to assess the
robustness of any proposed weighting adjustments based on our models to mis-specification.
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CALCULATION OF WEIGHTS FOR THE EUROPEAN PANEL OF
HOUSEHOLDS: A COMPARISON OF SOME INDICATORS BASED
ON VARIABLES SELECTED TO CORRECT FOR HOMOGENEOUS

CATEGORICAL NON-RESPONSE

Christine Chambaz’

ABSTRACT

At the end of 1993, Eurostat launched a ‘community’ panel of households. The first wave, carried
out in 1994 in the 12 countries of the European Union, included some 7,300 households in France.
and at least 14,000 adults 17 years or over. Each individual was then followed up and interviewed
each year, even if they had moved. The individuals leaving the sample present a particular profile.
In the first part, we present a sketch of how our sample evolves and an analysis of the main
characteristics of the non-respondents. We then propose 2 models to correct for non-response per
homogeneous category. We then describe the longitudinal weight distribution obtained from the
two models, and the cross-sectional weights using the weight share method. Finally, we compare
some indicators calculated using both weighting methods.

KEY WORDS: Panel, longitudinal weights, cross-sectional weights.

1. INTRODUCTION

The European panel of households was launched in 1994 in the 12 countries which at that time made up the
Furopean Union. lts main purpose was to study the employment and income dynamics of individuals. The
survey is composed of two questionnaires, one for the household (composition, housing, etc.) and the other
for individuals 17 years or over (income, employment, health, relationships, etc.).

Contrary to what its name would imply, the European panel of households is a panel of individuals. The
evolution of the sample was determined in reference to individuals, who fall into two categories:
e the individuals making up the households selected in year 1 are the panel’s basic sample. They
will be contacted annually for the duration of the panel, even if they move (within metropolitan
France). They make up the population of panel individuals. By definition, all individuals of
households responding to wave 1 of the panel are panel individuals. By agreement, children born
over the course of subsequent waves 1o mothers in the original individual panel are also panel
individuals.

e  other adults in the households with at least one panel individual are interviewed, but only if they
are living with that panel individual (adult or child). They make up the population of non-panel
individuals. By definition, this population exists only as of wave 2 of the panel, and should be
evolving over the coming waves.

The European panel of households is not an actual panel, but a cohort study, in that the sample is not
renewed (Deville, 1998).

" INSEE, ‘Revenus et patrimoine des ménages’ Division, Stamp F350, 18 boulevard A. Pinard, 75675 Paris
Cedex 14, FRANCE.
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Because there are two categories of population, two types of weightings are calculated:

' * alongitudinal weighting for panel individuals, so that changes in the status of those individuals
can be studied. This longitudinal weighting is derived from the basic individual weight, defined
as the initial weights corrected for changes in the sample. For a given period (1,1+n), we can
calculate as many longitudinal weightings as there are follow-up subperiods.

e a cross-sectional weighting, to be used to do a cross-sectional analysis of individual responses.
This weighting is common to all adult respondents in a household, whether or not they are panel
individuals. By taking non-panel individuals into account for the cross-sectional analysis, we can
partly compensate for a shrinking sample as panel individuals leave the scope of the survey. In
principle, it must ensure that the population of households interviewed is representative at all
times.

The weightings were calculated based on the method recommended by Eurostat (Eurostat, 1995). We will
first analyze individual non-response of adult panel individuals (17 years and over) and estimate the
probabilities of non-response in homogeneous groups (part 2). Two non-response models are tested to
assess the impact of choice of model on the distribution of weights and the estimation of some indicators.
We then calculate the longitudinal basic weights in wave t (Wt) by correcting the basic weights in wave

(t-1) (Wt-1) based on those non-response probabilities (part 3). We then calibrate the longitudinal basic
weights to the age and gender structure of the population in t, calculated from the Employment Survey, and
from those weights, derive the cross-sectional weights calculated using the weight share method (part 4).
Finally, we compare some indicators calculated using either set of weightings to the total population and then
to the most mobile sub-populations (part 5). The analyses are essentially based on wave 2 of the panel.
Reference is made to wave 3 where necessary. This document was taken in large part from a paper
presented at the Insee 1998 Journées de Méthodologie Statistique (Chambaz and Legendre, 1998).

2. ANALYSIS OF INDIVIDUAL NON-RESPONSE AND CORRECTION PER
HOMOGENEOUS GROUP

2.1 Changes in the sample between waves 1, 2 and 3

In wave | (W1), 7,344 households were interviewed, which represented approximately 76% of the
households in scope for the survey. They were composed of 18,916 individuals, including 14,524 adults
eligible to respond to the individual questionnaire.

In wave 2 (W2), only 'panel’ individuals in the households which responded in W1 are supposed to be re-
interviewed. However, some have left the scope of the survey. i.e. are deceased, the entire household has
moved, or they have emigrated. On the other hand, newborns have entered the survey population. In total,
18,909 panel individuals must be tracked, including 14,636 individuals eligible to respond to the individual
questionnaire.

Response rates are relatively high, with 12,986 panel adults (88.8%) having agreed to be interviewed. The
attrition rate, defined as the gap between the number of panel individuals responding in W2 and the number
responding in W1 is thus 9.4%.,

In wave 3 (W3), all individuals entering the sample in W2 must be tracked, whether or not they responded in
V2. This is a major change compared to wave 2.
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Taking into account departures from the sample scope and births, 18,912 panel individuals must be tracked,
including 14,724 adults. The response rates are again relatively high, although lower than in W2% 12,533
panel adults (85.1 %) agreed to be interviewed. The attrition rate between W2 and W3 is 3.5 %.

2.2. Selection of an individual non-response model and correction of non-response
per homogenous groups (CNRHG)

The non-response analyzed here involves panel individuals only ; non-panel individuals by definition have a
nil basic weight. Children are considered to have responded if the household was contacted. For them, the
non-response correction involves correcting their basic weight using the basic non-contact rate of households
including children (rate weighted per number of children in those households). By agreement, newborns are
assigned half the weight of their mothers. Response for adults is defined as response to the individual
questionnaire. This population will not be referred to in the rest of this document.

Information is gathered in two stages: first the household is contacted and then the individuals in the
household are interviewed. We therefore could have first estimated the probability of contacting the
individual through his or her household, and then a probability of non-response based on contact. We
preferred to directly estimate the probability of non-response by introducing into the explanatory model
variables strongly correlated to the probability of contact: nationality, type of household, socio-professional
category, even moving of the household, etc.

Two explanatory models for the non-response of panel adults were estimated, in W3 as in W2. For each
model, exogenous variables were gathered during the preceding wave, and are thus available for both
responding and non-responding individuals. In one of the models, we also introduced a variable describing
geographic mobility since the preceding wave, based on information gathered by the investigator.

For waves 2 and 3, the most discriminant variables from the point of view of non-response are much the
same, i.e. in the two models calculated, the type of household, nationality of the household’s reference
person. his or her activity or socio-professional category, the type of community, and the age of the
individual, and even (wave 3) housing-related expenses. However, when moving following a family break-
up is introduced as a variable. it appears however to be by far the most discriminant, particularly in

wave 2.

The non-response correction was calculated by modifying the basic weights (W(t-1) using the following
formula: [see last page for translation]

Basic weights W (t-1)

Basic weights W(t)=
1 — non — response rate (t)

To limit weight dispersion, the non-response rates were calculated for the homogeneous categories defined
by the intersection of the variables that appear to be the most discriminant.

For example, for wave 2, approximately 30 categories were established. Categories with only a few
individuals are grouped with the closest category to calculate the rate of non-response. The proximity of
categories was determined using coefficients estimated in the model. The rate of non-response varies, based
on category, from 4.6% to 38.8%. without taking into account moving households for the CNRHG, and
between 2.9% and 58.9% when taken into account.

In wave 3, as in wave 2, the distribution of basic weights for adult panel individuals is slightly more
dispersed when we incorporate the moving and break-up variable within the CNRHG.

? This higher rate of non-respoonse is automatically created by the rules for tracking individuals, which stipulate that persons who
refused to respond in W2 must be tracked.
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The comparison of weights for waves 1 and 2 or 2 and 3 also show an increased range of weight ratios in this
case. For example, in W2, this ratio is on average 1.1267, i.e. between 1.0297 and 24317, compared to the
average of 1.1265 when the CNRHG does not incorporate the moving variable, in which case the ratio is
then between 1.0486 and 1.6339.

3. CALIBRATING TO MARGINS AND
CALCULATING CROSS-SECTIONAL WEIGHTS

3.1. Calibrating to margins of W2 basic longitudinal weights

The purpose of calibrating to margins is to ensure greater cross-sectional representivity of our sample, and
was done before calculating cross-sectional weights.

Calibration has some drawbacks in the European panel of households. Because the sample is not renewed, it
is impossible to represent individuals joining families through immigration. This limitation may however be
ignored, because the panel is over just six years and immigration levels are relatively low.

Only the population used to calculate the cross-sectional weights (i.e. respondant panel adults) was
recalibrated. The calibration is minimal, based only on individual structures per 10-year age group x gender
and the number of individuals per household, as estimated using the March 1995 Employment survey.

In wave 2, when moving and break-up variables are incorporated in the CNRHG. the recalibrated weights
vary in a ratio of 1 to 12.3. The 1* to 99" percentiles ratio is 4.2; the 5" to 95" percentiles ratio falls to 2.2.
The ratio of basic weights after and before calibration is on average 0.99; it varies from 0.90 to 1.10. The
distribution after calibration is thus slightly more dispersed (the ratio of 1 to 12.3 comes from the maximum
weight of a single individual).

3.2. Calculation of cross-sectional weights using the weight share method

Based on Eurostat recommendations, the weight share method was selected for calculating cross-sectional
weights. This principle involves sharing the total of the adults’ basic weights among all adult members of
the household, whether or not they are panel individuals. All responding adult members of a household are
thus assigned the same cross-sectional weight (Lavallée, 1995).

We can thus calculate as many cross-sectional weights as there are series of basic weights or longitudinal
weights. In wave 2, the longitudinal weights are strongly related to the W1-W2 period. However, beginning
in wave 3, two longitudinal weights can be calculated based on whether the non-response in W2 of
individuals who respond in W3 is considered total or partial non-response. In the first case, a W1-W2-W3
longitudinal weight will be calculated for just panel individuals who respond to all three waves of the survey;
in the second case, we can calculate a longitudinal weight for all W1 individuals responding in W3, whatever
their response status in W2. Based on the choice made, individuals who respond in W3 but not in W2 will
either have a longitudinal basic weight or not. A household in which all of panel individuals fall into this
category therefore may or may not have a cross-sectional weight. So as not o lose from the analysis those
households in which no individual responded in wave 2, the basic weights used to calculate cross-sectional
weights in W3 were calculated by correcting W1 basic weights.

* Maximum value not reached per individual at maximum weight.
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3.3. Household distributions of W2 cross-sectional weights

We calculated the cross-sectional weights before and after calibrating the W2 basic weights for the panel
adults for each of the two series of longitudinal basic weights.

In the case of an adjustment without incorporating the behaviour variables within the CNRHG, the cross-
sectional weights before calibration have a maximum ratio of 1 to 24.8. The ratio of the 1* to the 99"
percentiles is thus 6.7, falling to 2.2 between the 5" and 95" percentiles. After calibration, the maximum
ratio of the cross-sectional weights reaches 26.6, and the ratios of the 1" to 99" percentiles and 5 10 95"
percentiles remain more or less the same (6.7 and 2.4). The ratio of pre- to post-calibration cross-sectional
weights is on average 1.00, varying between 0.88 and 1.09.

In the other case, where the CNRHG incorporates behaviour variables, the cross-sectional weights are
further dispersed before calibration, but the calibration changes them less and instead tends to reduce
dispersion. Before calibration, the cross-sectional weights have a maximum ratio of 1 to 36.8; the 1* to 99"
percentiles ratio is thus 6.1, with a 5 to 95" percentiles ratio of 2.3. After calibration the maximum ratio of
cross-sectional weights is lower (35.7), and the I* 10 99* percentiles and 5" 10 95" percentiles ratios remain
the same (6.1 and 2.3).

4. EFFECT OF WEIGHTING ON SOME INDICATORS

4.1 Population with a basic weight strongly affected by whether or not behaviour
variables (moving and breakup) are introduced

Individual basic weights are considered strongly affecied by the introduction of household behaviour
variables if they differ by more than 5%. 1.8% of adult panel individuals have a basic weight at least 5%
higher when those variables are incorporated. On the contrary, 5.7% have a weight at least 5% lower.

In 8 out of 10 cases. individuals whose weights increase strongly are renters (1/3 of the total population of
panel adults). Sixty-three percent (63%) are actively employed. 12% unemployed and 15% are students.
Forty-two percent (42%) changed jobs between October 1994 and October 1995. Among those actively
employed, 1/3 have fixed-term employment. They are younger than the rest of the population: 54% are
under 25 and 32% between 25 and 35. These are basically single people (41%) and childless couples (37%).
One-third have post-secondary education. They are over-represented in urban communities outside Paris.

The population with the lowest weight when behaviour variables are incorporated is both similar and
different: fewer are actively employed (43%) but more are unemployed (8.5%) than our sample as a whole.
Seventeen percent (17%) changed jobs between the two waves, fewer than the previous group, but more than
our sample as a whole. Twenty-five percent (25%) of those actively employed have fixed-term contracts.
This population is older than the preceding population, but are younger than our sample as a whole: 43% are
under 25 and 15% between 25 and 35. These are basically single-parent families (19%) and blended
families (34%). Twenty five percent (25%) are in training or going to school. Close to one in three live in
Paris.

4.2 Cross-sectional indicators of standard of living and poverty

When looking at the population as a whole, the usual distribution indicators of standard of living and poverty
indicators appear relatively unaffected by the weighting used (Table 1). Inequality and poverty seem slightly
more significant when the moving variable in incorporated within the CNRHG, and when the sample is
calibrated, but the differences remain relatively minor (1.4% for standard of living, 0.3 points for the poverty
threshold), a rather reassuring observation.



However, when the indicators are declined based on age segments, or the type of household is taken into
account, the differences are more marked. Based on the weighting system used. the estimated poverty rate
for those aged 15-29 varies between 12.7% and 13.3%. Similarly, the estimated poverty rate for single
people is strongly related to the set of weightings used. Differential attrition according to categories may
thus have non-negligeable impacts on analyses of inter-category disparities.

Table 1: Some cross-sectional indicators of living standard(*) and poverty for individuals in 1994

Population as a whole Individuals between 15 and 29 years Single persons
Average Poverty rate Average Poventy rate Average Poverty rate
standard of standard of standard of
living living living

No behaviour variables (moving, break-up) for tihe CNRHG

No calibration 103717 8.8 92 558 12.7 91 801 17.1
Calibration 103 603 9.0 92 251 12.9 91 733 17.2
Behaviour variables (moving, break-up) incorporated for the CNRHG

No calibration 103 421 9.0 91 670 13.1 90 771 17.8
Calibration 103 282 9.1 91 426 13.3 90 669 17.8

(*) Standard of living is defined as the ratio of total household income to number of consumption units (CU). The scale used to
calculate CU gives a weight of | to the adult head of the household, 0.5 to other adults and 0.3 to children under 14 years of age.
Individuals are defined ‘poor’ if their standard of living is lover than half the median standard. Estimation of the poventy threshold
thus varies with the estimation of the median, and is conditional on the weighting system.

5. CONCLUSION

The choice of non-response model may strongly influence weight distributions. However, when the results
of the analyses conducted are compared with the two series of weights from different models, overall the
results are close. The weights constructed in each system diverge significantly for a few very specific
segments of the population only. However, the statistics produced on these specific sub-populations appear
to be affected by the choice of model. The observed variances are statistically non-significant, but in the
absence of precise calculations of the estimates done, may result in contradictory interpretations. For
example, assume that the 1993 poverty rate was 8.7%. Based on the weighting system selected, one can
conclude stability (8.8%). or an increase (9.1%) in the percentage of poor people in the population.

REFERENCES

Chambaz C. and N. Legendre (1998). Calcul des pondérations dans le panel européen des ménages .
Journées de Méthodologie Statistique, awaiting publication.

Deville J.-C. (1998). Les enquétes par panel: en quoi différent-elles des autres enquétes? follow-up to
Comment attraper une population en se servant d’une autre? Journées de Méthodologie Statistique,
awaiting publication.

Eurostat (1995). Groupe de Travail Panel Communautaire de Ménages , Paris, September 18 and 19, 1995,
Longitudinal Weighting . Doc. PAN 51/95, Eurostat, July.

Lavallée P. (1995). Cross-sectional weighting of longitudinal surveys of individuals and households using
the weight share method, Survey Methodology, Vol. 21, No. 1, Statistics Canada, June 1995.



Proceedings of Statistics Canada Symposium 98
Longitudinal Analysis for Complex Surveys
May 1998

A NEW LONGITUDINAL PROCESSING SYSTEM FOR THE
SURVEY OF INCOME AND PROGRAM PARTICIPATION

Pat Doyle'

ABSTRACT

The U.S. Bureau of the Census implemented major changes to the design of the Survey of Income and Program Participation
(SIPP) with the panel begun in 1996. The revised survey design emphasized longitudinal applications and the Census Bureau
attempted to understand and resolve the seam bias common o longitudinal surveys. In addition to the substantive and
administrative redesign of the survey. the Census Bureau is improving the data processing procedures which yield microdata
files for the public to analyze. The wave-by-wave data products are being edited and imputed with a longitudinal element
rather than cross-sectionally, carrying forward information from a prior wave that is missing in the current wave. The
longitudinal data products will be enhanced, both by the redesigned survey and new processing procedures. Simple methods
of imputing data over time are being replaced with more sophisticated methods that do not attenuate seam bias. The
longitudinal sample is expanding to include more observations which were nonrespondents in one or more waves.
Longitudinal weights will be applied to the file to support person-based longitudinal analysis for calendar years or longer
periods of time (up to four years).

Keywords: longitudinal surveys, post data coliection processing.

1. INTRODUCTION

In conjunction with the conversion of the Survey of Income and Program Participation (SIPP) to Computer-
Assisted Personal Interviewing, the Census Bureau directed several changes to the survey and its data
processing to improve the data as a basis for longitudinal analysis. In particular, the post data collection
processing system is being redesigned to take better advantage of the longitudinal features of the survey. The
redesigned system will enhance the products we produce for both cross-sectional and longitudinal estimation,

In this paper we describe our plans for the new processing system. This report focuses on weighting, editing,
and imputation procedures currently being designed and developed as well as issues of file format, layout, and
access. In particular, we describe the universe for files, the weights, the scope of files, our approach to
processing, and our strategies for item imputation and weighting.

An extended version of this paper will exist on the Census Bureau's SIPP web cite. It will represent our source

of information for the public to anticipate the features of the longitudinal data products from SIPP. Users
unfamiliar with SIPP are referred to that report and other documents on that cite for more information.

2. UNIVERSE FOR LONGITUDINAL DATA PRODUCTS

The longitudinal files produced from SIPP are complicated to understand and use because they contain more

"This report describes work of the SIPP longitudinal work group. It was compiled by Pat Doyle with
assistance of the group at large. Contact Pat Doyle, U.S. Bureau of the Census, Demographic Surveys
Division, Room 3376-3, Washington DC 20233, Phone: 301-457-3795, Fax: 301-457-2306, E-mail:
patricia.j.doyle@ccmail.census.gov. This paper reports the results of research and analysis undertaken by
Census Bureau staff. It has undergone a more limited review than official Census Bureau publications.
This report is released to inform interested parties of research and to encourage discussion.
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observations than just those on which longiu;dinal estimation should be based. They contain records for
persons in the longitudinal sample as well as other persons for whom data are collected in SIPP.

The Census Bureau typically provides its data users with data products that are “complete” ( i.e., without
missing data). In other words, we reduce the bias due to unit nonresponse through the use of adjusted weights
and we assign imputed values to all unreported items. SIPP longitudinal data products will be created using
the same philosophy although not all observations will be complete for the full reference period of a
longitudinal panel. Also, the approach to developing longitudinal SIPP data products will be somewhat
different from the approach used for most Census Bureau data products.

2.1 Longitudinal Sample

The 1996 panel longitudinal files will offer the opportunity to analyze data over the full panel or over calendar
years within the time period of the full panel. To support these multiple reference periods for longitudinal
analysis multiple weights will be produced, one for each period. Also, the longitudinal sample corresponding
to those weights will vary depending on the reference period.

Regardless of the analytic period, the longitudinal sample will be defined as persons who receive positive
longitudinal weights, i.e., those persons who meet one of the following conditions during the reference period
for a particular weight:

They are in the sample and with valid data for a fixed point in time (i.e., the initial cohort) and they
continue to be interviewed during the analytic period for as long as they were in the SIPP universe

They do not qualify under the first condition, they are in the initial cohort, they remain in the SIPP
universe, and any noninterview or two consecutive noninterview waves are bounded by interview waves.

Muilitary personnel residing exclusively with military personnel will be excluded from the set of persons with
positive longitudinal weights.

2.2 Other People Represented in The Files

Only subsets of persons interviewed in SIPP get a positive longitudinal weight and, hence, form the
longitudinal sample. However, the longitudinal files to be publicly disseminated from SIPP will contain
information on all persons ever in the survey. In other words, at any point in time in the longitudinal file
information exists on the longitudinal sample persons (e.g., their total income and age) as well as on persons
with whom they reside. Hence, attributes of the sample persons’ family, program units, and household can
be constructed for analysis corresponding to any point in time during the reference period.

For cases with missing interviews (be they part of the longitudinal sample or not), we perform imputations for
noninterviews occurring during the period they are in the SIPP universe. For some but not all of these, we
perform longitudinal imputation for missing waves of data. Instances when we do impute the data
longitudinally include: persons with bounded waves of missing data, and persons in households where other
persons have bounded waves of missing data. Bounded waves of missing data are single waves or two
consecutive waves of noninterview with an interview immediately before and after. For missing waves of data
that do not qualify for longitudinal imputation, any information that was cross-sectionally imputed during the
wave processing is carried forward to the longitudinal file.

3. SCOPE OF LONGITUDINAL FILES
The longitudinal files are flexible in the definition of the sample with which and the analytic period over which

fongitudinal analysis can be conducted. However, the data contained in the file, the period over which these
data are processed, and the organization of these data are fixed.
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3.1 Content

The longitudinal file reflected information from the SIPP core questionnaire, selected recodes designed to
facilitate longitudinal analysis, and weights for use in estimation. The data file will cover the basic
demographic, income, labor force, and program content included in the core. The extent to which we are able
to preserve all of the details of the core will depend on physical constraints imposed by the available
technologies for distributing data. Since we have not yet specified the medium for data distribution, those are
constraints are unknown, We are interested in feed back on the file size and layout constraints faced in the
world today and expected in the next few years.

We face additional constraints on content for two reasons. First, the potential exists for 52 replicates of each
variable for the 48 months of the reference period plus the extra months needed to complete calendar years
1996 and 1999. Second is a large number of records (roughly 120,000) to be included in the final file.
Because of these content constraints, the longitudinal data products from the early panels of SIPP added very
few recodes designed to facilitate analysis. For example, earlier files reflected very few attributes of
households and families and formatted the unearned income variables based on a generic presentation of
uneamned income, with only implicit identification of sources of income.

File size and content not withstanding, we are planning to expand the recodes for the 1996 panel files to
include monthly attributes of families. Furthermore, we will add to the information on the file to make it easier
for users to create their own family and household attributes. Our plans for identifying individual income
sources are not yet final.

3.2 Organization

Ultimately the final longitudinal product from a SIPP panel is the full-panel file and it reflects core information
covered throughout the life of the panel. However, we will also issue an interim longitudinal product for the
1996 panel covering calendar years 1996 and 1997 data from the first 7 waves of the 1996 panel.

While each longitudinal data product is one physical file, it is organized to support varying definitions of the
longitudinal reference period. Specifically, it is organized to support longitudinal studies of events occurring
during the full reference period covered by the file. It is also organized to support calendar year studies. For
each period, the appropriate longitudinal sample consists of the group of persons with positive weights.

The data are organized by variable and within variable, by month (or wave). The months correspond to the
months of the reference period (numbered consecutively) which is a varying calendar period depending on
rotation group. Conversion of reference month replicates of each variable to calendar months is often needed
for analysis but the conversion involves a straightforward calculation based on data in the file.

4. PROCESSING METHODS
With the 1996 Panel we are introducing a new approach to producing both the cross-sectional and longitudinal

data products. The new approach for this panel changes not only the production of the longitudinal files but
also the construction of the cross-section files.

4.1 Cross-Section Files

After Wave 1, the cross-section files will reflect longitudinal imputation although they will contain cross-
sectional weights and reflect essentially a cross-sectional image of the U.S. In other words, we will impute for
missing data in the current wave based on knowledge of events in the prior wave (i.e., forward imputation).

Some items in the cross-section files will be imputed using a longitudinal hot deck or direct substitutions
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methods described further in a subsequent section. Some items that are conditional on characteristics of the
reference period will not be directly imputed because those characteristics (like number of weeks in each
reference month of the wave) will vary by rotation group. Finally, to maintain correlation of information within
each persons’ record, some items will be derived from other data elements rather than imputed directly.

Because the procedure is designed to work for item nonresponse which can be any small subset of the total
items, there are no conditional procedures embedded in the imputation logic to ensure that, for a given recipient
in the hot deck, that the same donor will be used for all missing items. Hence, use of a derivation procedure
(rather than an imputation procedure) is necessary to ensure that information within one record relates to other
information in the same record in a plausible fashion. For example, we need to ensure that someone is
working or not working but not both at a fixed point in time.

4.2. Longitudinal files

As with the earlier panels, the longitudinal data products from the 1996 panel will be generated from the cross-
section files. Currently, our plans for the longitudinal files will parallel the methods used for the earlier panels,
except they will require use of new longitudinal imputation methods discussed in more detail in the next
section. For each item of missing data on each person, we will look to see if there is reported information in
the subsequent wave (or waves, depending on the context). If so, we will determine whether to substitute the
information imputed based on the prior wave, with a new information based on the subsequent waves.

However, we are still reviewing the interactions of the imputation process across modules. Because the
longitudinal hot deck uses information from across the instrument to impute a given item, we need to consider
the impact of changes in one module in the longitudinal processing may have on imputations of items in the
other modules. For example, when considering an imputation of Wave t, if the wave 2 correlates (on which
the cross section imputation was based) change during longitudinal imputation, do we still want to rely on prior
wave | data as imputed on the cross section files. Would not we want to redo the imputation in light of the
new values for the correlates, even though we might otherwise accept the forward imputation already
performed. This situation suggests an iterative process of imputation but this approach is computationally
intensive and, therefore, may not be feasible.

Instead of iteration we are considering the following approach: first establish an order in which to provide
imputation that takes the major interdependencies into account, then, taking each section in the designated
sequence, reimpute all the imputed data from the wave files. The approach for reimputation would be the same
approach as used in the wave file processing with one exception. Rather than imputing information only from
the prior wave, also allow the imputed value to be derived from a subsequent wave.

The method of choosing to replace a forward imputed item with a backward imputed item derived from
reported data in a subsequent wave has not been firmly decided. At this time we are considering letting that
choice be determined based on the potential of the subsequent wave to inform the imputation and on the
potential for reducing the bias in spell lengths. Overall, however, we plan to do the following:

If the missing information was not reported in the prior wave (and thus cross sectionally imputed in the
current wave) then it will be imputed based on the reported information in the subsequent wave.

If the missing information was not reported in either the prior or the subsequent wave it will remain cross-
sectionally imputed as it is on the wave files.

If the information was reported in both the prior and subsequent waves then we will potentially derive
imputed estimates from both waves.

4.3 Unique Missing Data Problem

The 1996 panel presents a rather unique missing data problem which must be addressed either through
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imputation or reweighting. There was a U.S. government furlough that delayed the start of the 1996 panel from
February to April resulting in a gap in 1996 calendar year data for half of the sample. 1996 is a cntical year
at least in the analysis of welfare reform in the U.S. since it represents a year of transition from an old to a new
system of assisting our low income population. Therefore, we have decided to compensate for the missing data
through imputation rather than reweighting so that we can keep the full longitudinal sample.

A comparable missing data problem will occur at the end of the 1996 panel because the Census Burcau has
decided to end the last wave of the year 2000 panel with the January 2000 interview, thus missing end of
calendar year 1999 data for 2 rotation groups. So that the full longitudinal sample can be used as a basis for
estimation, we will impute the missing months of information at the end as well.

5. IMPUTATION METHODS

Here we summarize three types of longitudinal imputation strategies and how we plan to use these in carrying
out the longitudinal imputation for both the cross-sectional and longitudinal data products’ The fuller version
of this paper summarizes some literature on how well each if these imputation methods perform.

The first imputation method is direct substitution of information from either a prior or subsequent wave.
There are several variations on this method: simple carry over, modified carryover, and random carry over.
Methods vary in determining which information is actually used in the substitution. Simple carry over uses
information reported for the last month of the prior wave to as the value to assign to one or more missing
months in the current wave. We will use simple carry over for characteristics that should not change over time
or change slowly (like the demographic information). Modified carry over methods use information directly
from the prior or subsequent wave, the determination of which will be based on observed empirical distribution
of the months at which the transition occurred. Random carry over uses one or the other wave depending on
the outcome of a random draw from the uniform distribution.

We are also using a longitudinal hot deck procedure for our longitudinal imputation of items that can change
relatively often within the reference period of the survey.. In general, a hot deck procedure is designed to
locate a “donor” from among persons reporting a particular item and then using their data as the basis of the
imputation, The determination of the “donor” varies by hot deck method as does the way in which the donor’s
information is used to determine the imputed amount.

The hot deck method considered for this study is referred to as a longitudinal hot deck because we will select
the donor based on longitudinal rather than current-wave characteristics in the survey as follows:

Lets say we have person x in wave t who is missing a key variable in wave t but not in wave t-1. To find
a donor for person x, we first look back to wave t-1 to determine his/her characteristics in wave t-1,
including the value of the missing variable of interest and other correlated variables. Using the values of
those wave t-1 variables as dimensions of the hot deck, we find a match from among persons in Wave t-1
who (1) resemble the person in wave t-1 and (2) who have reported data for the variable of interest in
waves t-1 and t. When the optimum match is found (based on what ever matching criteria is chosen for
this hot deck), that person becomes the donor for variable of interest for person x in wave t.

When the donor is found, we can either impute the amount the donor reported in wave t or we can compute
the amount for wave t from the amount in wave t-1 based on the observed change in values across waves in
the donor’s record. Once a donor is used, it is flagged and it is only used again if no other donors after it exist.

? Edits are performed as well but these are primarily for consistency within a wave. In general, we are not
performing wave-to-wave consistency edits on the 1996 panel except to correct an error in reporting basic
demographics discovered in later waves.
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As just illustrated, donors can be chosen based on characteristics in the prior wave from among persons who
report the missing item in the current wave. Similarly, we can apply the same technique to the find the donor
in the subsequent wave from among the set of persons reporting the variable of interest in Waves t and t+1.

Other methods of longitudinal imputation use a model to predict current wave values based on prior wave
values using regression techniques. Such models can be designed to predict the actual missing values or to
predict change from another (typically prior) wave. Such models could be estimated directly from person-level
data or aggregate data. We are not currently planning to use these methods but they are still on the table as
options should they seem appropriate for a given item.

A special case of imputation is when we have an entire interview that needs to be imputed, i.e., a missing
wave. As noted earlier, we include persons with missing waves when the missing wave is bounded by two
reported interviews (that are at most two waves apart). Most but not all missing data in a missing wave record
are imputed using the direct substitution method. The exceptions are household-level attributes which have
been edited to consistency with other information from successful interviews in the household, information
specific 10 a calendar month (such as the number of weeks in 2 month) or conditional on the length of the
calendar month (such as weeks worked in that month).

With some exception, we randomly determine the transition point between months where data are derived from
the prior wave and the subsequent wave. The exceptions relate to persons who move, where the transitions
are tied to the move date itself, and to persons who attain the age of 15 in the course of the missing wave,
where the transition is tied to the birthday. (More limited information is collected for persons under age 15.)
Information collected by wave (rather than by month) is derived from the prior or subsequent wave depending
on the outcome of a random draw.

6. WEIGHTING

The weights assigned to persons in a designated longitudinal sample (i.c., longitudinal weights) are the product
of 3 components, an initial weight, a noninterview adjustment factor, and second stage adjustments. Multiple
weights are assigned to a file, one for each longitudinal reference period defined for a given file (generally this
is the full reference period of the file plus each calendar year period identifiable within that period). The
computation of weights is identical across the reference periods but the starting values and subsequent
adjustments vary because the composition of the longitudinal sample varies. The general procedures to
compute the three components follow.

6.1 Initial Weight

Traditionally he initial weight represents the inverse of the probability of selection in the first wave of the
longitudinal reference period (frequently Wave 1), adjusted for household nonresponse in that wave and for
first stage factors appropriate for cross-sectional weighting (Kalton, 1998). For 1996, we are just using the
initial weight adjusted for noninterview based on region, characteristics of area of residence, race, tenure,
household size, and rotation group.

6.2 Post Wave 1 Noninterview Adjustment

Th initial weight is further adjusted for person-level noninterviews occurring after the initial wave (i.e, only
those that are not otherwise compensated for through the missing-wave imputation process discussed earlier).
This adjustment accounts for all persons who received a cross-sectional weight in the initial wave who do not
receive a longitudinal weight for this reference period.

The person-level noninterview adjustment factors have varied over the tenure of SIPP in an attempt to better

compensate for the nonrandom nonresponse that occurs after Wave 1 (Kalton, 1998). More recently the
controls for this noninterview adjustment have been race and ethnicity, labor force activity (self-employed or
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not and in the labor force or not), household income, education of the reference person, welfare program
participation, ownership of financial assets, and tenure. For 1996 we are introducing some new factors: within
PSU stratum code, Census division, number of imputed items, and average monthly poverty ratio.

6.3 Second Stage Adjustments

The second stage adjustments are intended to bring the weighted estimates from SIPP in line with independent
estimates. Specifically, the SIPP longitudinal weights are controlled to Current Population Survey estimates
of households and independent estimates of the size of the population of Hispanic Origin. The process differs
slightly for persons age 15 and over versus persons under age 15. The adjustment process is controlled so that
the final weights are not extremely large or extremely small and so that the adjustments are based on data on
population groups derived from cell sizes of at least 30 unweighted cases.
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ADJUSTING FOR MISSING DATA, CLASSIFICATION ERRORS
AND INFORMATIVE SAMPLING

Danny Pfeffermann' and Natalia Tsibel’

ABSTRACT

This article extends and further develops the method proposed by Pfeffermann, Skinner
and Humphreys (1998) for the estimation of gross flows in the presence of classification
errors. The main feature of that method is the use of auxiliary information at the
individual level which circumvents the need for validation data for estimating the
misclassification rates. The new developments in this article are the establishment of
conditions for model identification, a study of the properties of a model goodness of fit
statistic and modifications to the sample likelihood to account for missing data and
informative sampling. The new developments are illustrated by a small Monte-Carlo
simulation study.

KEY WORDS: Goodness of fil, informative sampling, missing data, parameter
identifiability.

1. INTRODUCTION

Gross flows estimates are often produced from longitudinal data observed over several time periods. A
familiar problem with the use of this kind of data is the existence of classification errors that are known to
bias the gross flows estimators. Many of the methods proposed in the past to deal with this problem assume
the existence of validation data obtained from re-interview surveys, which permits estimation of the
misclassification rates. See, for example, the articles by Abowd and Zellner (1985), Poterba and Summers
(1986), Chua and Fuller (1987) and Singh and Rao (1995). All these articles consider the estimation of
gross flows between states of labor markets, using data collected from Labor Force Surveys (LFS). The
present study uses a similar framework.

The major problem with the use of methods that rely on the existence of validation data is that very often
such data are not available, or that they are not suitable for adjusting the gross flows estimates, (Forsman
and Schreiner, 1991). This lead various researchers to consider models that relate the true states and the
observed states at different occasions, see, e.g., Van de Pol and Langeheine (1990), Vermunt (1996) and
Humphreys and Skinner (1997). All these studies assume that data are available in the form of contingency
tables.

In a recent article, Pfeffermann, Skinner and Humphreys (1998, hereafter PSH) propose a different
approach for adjusting flow estimates for bias. The proposed approach is based on fitting separate
multinomial logistic models to the true state transition probabilities and the classification error
probabilities, using values of auxiliary variables at the individual level. The notable advantage of this
approach is that it does not require validation data for the estimation of the misclassification rates. It
permits the identification of factors that are related to the misclassification and true transition rates and it

! Danny Pfeffermann and Natalia Tsibel, Department of Statistics, Hebrew University, Jerusalem, Israel,
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does not require independence between the classification errors at different time points, an assumption
underlying the other methods mentioned before. The major disadvantage of the proposed approach is that it
requires the estimation of many more parameters. Another issue is the robustness of the flow estimates to
possible departures from the postulated working model, given that the latter refers to the unobservable true
states and classification errors.

In this article we further develop this approach focusing on four main topics:

I- We establish necessary conditions for the identification of the model fitted to the sample
measurements,

2-  We derive the sample likelihood for the case of randomly missing data,

3-  We propose modifications to the likelihood that account for informative sampling schemes,

4- We establish the asymptotic distribution of a goodness of fit statistic employed in PSH.

Section 2 reviews briefly the models and estimation procedures employed by PSH. Sections 3-6 discuss the
four extensions listed above and Section 7 presents simulation results illustrating some of the developments
of the previous sections.

2. THE PSH APPROACH

The method proposed by PSH consists of fitting separate multinomial logistic models at the unit level for
the true state transition probabilities and the misclassification probabilities. using values of auxiliary

variables. Let Y ” denote the true state of individual k at time t, taking values 1...L, and let y & denote the
corresponding observed state. The covariate variables values associated with unit k are denoted by x ke

Notice that different covariates may be included in different models, (see Section 3), but for expository
purposes we use in this section the uniform notation x e for all the models.

A- Model for Initial True States
= =Py, =1|ku)=exp(x;dﬁl)/u+z§=‘]‘exp(x;dﬁj)1. 1=1.L-1, 28 =1-g1z @

B- Model for True Transition Probabilities
rrik’ =Pty = j1 Y,y =hxg,) = exp(K, T, i+ Zhexpta 7. Hhi=1.L.j=1.L-1,

L1 ki
-z 22)

C- Model for Observed States
q; = Phiy, =illg = L= exp(x,,a',,)/{l+Z,,,exp(xt,a,l)l I=1..L,i=1..L-1,

qp =1-¥ilg 2.3)

The model defined by (2.3), but not the models defined by (2.1) and (2.2) may include the previously
observed state among its covariates.

Assuming that the sampling design used for the sample selection is non-informative so that the model
defined by (2.1) - (2.3) holds for the sample data, and that observations y,, are obtained for r=/...T time

ints independently between units k, the sample log-likelihood is obtained as log(/) = 37 _, logl/(k)]
po k=1

where

5
s . - _<L L Ky =kt k1 kl PN
I(k)—Pr('vkl"'kl'")kT_tkT)-ZI]=1"'ZIT=l['I:]2‘71,ik, g ]"1,:“ " (2:4)
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and the summation E§l=, ...E,L7_=, 1s over all possible realizations of the true states Yy;...Y,r. Notice that

the construction of the likelihood imposes a Markovian structure on the observed and true state
probabilities. See Equations (2.2a)-(2.2¢) in PSH.

The likelihood defined by (2.4) depends on models for unobservable components which raises the question
of the robustness of the estimates to possible model misspecification. As a partial solution to this problem,
PSH propose to maximize the likelihood (2.4) subject to the constraints that the predicted (expected) true
stocks (marginal proportions) at each time point under the model agree with the corresponding observed
stocks. These constraints are based on the proposition that the observed stocks are approximately unbiased
for the true stocks, even in the presence of misclassification, a proposition underlying the other methods
mentioned in the Introduction. (See e.g., Singh and Rao, 1995 for discussion.) Simulation results reported
in PSH indicate good performance of the constrained estimators. An alternative procedure proposed to us
by W. Fuller (private communication) is to constrain the predicted true stocks to agree with the expected
(predicted) observed stocks under the model. The resulting model is known in the literature as the unbiased
response error model, Fuller (1987, Section 3.4.2). The latter constraints have the advantage of not
depending on sample statistics but we surmise that by constraining the predicted true stocks to agree with
the observed stocks, the resulting predictors are more robust to possible model misspecifications.

3. PARAMETER IDENTIFIABILITY

A fundamental question underlying the estimation of the vector parameters {f}.{y,] and {ay;) by

maximaization of the likelihood (2.4) is whether there is more than one global maximum. When this is the
case, the vector parameters (or some of them) are no longer identifiable, (Kendall and Stuart, 1979, Vol. 2,
p.44). In this section we define necessary conditions for parameter identifiability under the model defined
by (2.1)-(2.3).

Let X;(x) denote the X-variables included in the logistic models (2.2). (We assume the same variables

Xj(x) for all j=1...L.) Similarly, let X/(g) denote the X-variables included in the logistic model (2.3),
(assumed to be the same for all i).

THEOREM 1: The parameters {5, }, {7;} and (a;;} are not identifiable under either one of the following

conditions:

1- f(l(:r)s...s)?l‘(:r)and il(q)a...s )?L(q).

2- The classification probabilities are independent of the true states; g =..q; =q for all
i=l.L1=1.T,

3- Observations are available for only 7 < 2 time points. (at most one set of lransmons)

Proof of I: Here we illustrate the non-identifiability of the parameters by considering the case L=2 and
commenting on the case L=3. When L=2 there are five unknown vector parameters, 5,1, 721, @11, a21.

Consider the following transformation,
,Bl =B .1 Yo P2 TR G P ey Ay Py 3.1
which corresponds to permutation of the true states such that state 1 becomes state 2 and vice versa. For
0 a g ’ k2 _ ; ]

example, by (2.2), T} = explan P+ explxg 21 ) and Ty = exp(.rk2y2|)/(1 +exp(xk2}'2[)} . By
changing rm €72 the new state transition probabilities, assuming il(n)z ,\72(”) are,
AN = exp(=x, 1) {1 + exp(=x, 7)) = 73, and &3} =exp(=x[, 7, ) {1 +exp(-x[,3,,)) =7,,. We thus
have the following changes in the model probabilities implied by the transformation (3.1),

ki =kt

—=kl _ k] =kt L Sk =k ki =k ke
=7, _”n'”ZI_”IZ'qu 45 -92 =4y, - (3.2)
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Next we show that the likelihood contributions /(k) defined by (2.4), and hence the log-likelihood
log(!) = Z;{':] log[/(k)] are invariant to the parameter transformation (3.1). To simplify the exposition we

suppose T=2 and i;=i,=1. (The same is true for general 7 and any realization i,...ir of the observed states.)
Before the transformation,

() ="l mil gy + m'Qins @l + 2 Gl qn + 7 Ay 3.3)

After the transformation,

/(k) = qulx”“zqﬂz 1“‘7? K2 k2 +ﬂ,1:q,kll lzaﬁz f1¢”f12qxl (3.4)
which by virtue of (3.2) is the same as (3.3). Since the two likelihood functions are the same, there are
clearly two global maximums.

When L=3, there are six different sets of parameter values corresponding to the six possible permutations
of the true states, all yielding the same likelihood. Consider, for example, the ‘clockwise permutation’
1 2,2 3,3 > | such that

A =al B =m R = N =)@ = g5, 0% = g3 As in the case L=2, if Condition 1 is
satisfied these changes in the model probabilities correspond to a simple linear transformation of the vector
parameters, leaving the likelihood function intact.

Proof of 2: Under Condilion 2

kr k1

lq =i S lI'Ifr k= (gl
[l lll ll"\] Il “1 =)™ 1 =1 { ! l 1=1 Ut

(A)—_ = _[ﬂ
h=1" ‘"’T I q[l‘kr qu‘k! =1 ")

5 L L kt kl _L L = g A ikeli
since le =1'"le =lr]:[ [”I: l: ]:rll —zll='m}:l?‘=' Pr(y“ _1],,_)/“_ _IT) =1. Thus, the likelihood does

not depend on the parameters {/,; ] and lyij] which therefore are obviously not identifiable.

Proof of 3: Suppose first that the parameters {4, ),{,}and {a;; ) consist only of intercept terms. The

number of unknown parameters is then (L-7)+2L(L-1)=(L-1)(2L+1). On the other hand. with T=2 and
fixed sample size n, there are only (L-1)+L(L-1)=(L-1)(L+1) sufficient statistics, (assuming ‘full data’ in
the sense that observations are available for all possible transitions), such that the model is not identifiable.
When T=3 and the data is full, the number of sufficient statistics is (L-7)(L+1)+ L(L-1)=(L-
1)L +L+1) which is larger than the number of parameters.

In the more general case where some or all of the vector parameters are of dimension larger than 1, the total
number of vectors is (L-7)(2L+1) so that assuming sufficient observations for each transition, all the vector
parameters are estimable based on only 7=3 time points.

Further discussion

A simple solution to the parameter identifiability problem is to impose different regression variables for the
logistic models in (2.2) and/or (2.3). This, however, is not always possible as for example in the case where
the various models only contain intercept terms. An alternative solution is suggested by the fact that
whereas permutation of the true states under the first condition leaves the predicted observed stocks and
flows unaffected, it does affect the predicted true stocks and flows. (See PSH for the computation of the
respective predictions under the model.) Thus, the alternative solution is to consider all possible
permutations of true states and select the one that yields predicted true stocks that are most consistent with
“prior knowledge”. For example, if it is believed that the true stocks in the various time points should
follow a similar order to that of the observed stocks, the permutation of true states that yields orders of the
true stocks that are closest to the orders of the observed stocks should be selected. We mention in this
respect the constrained maximization of the likelihood referred to at the end of Section 2. Constraining the
parameter values to yield predicted true stocks that coincide with the corresponding observed stocks or
predicted observed stocks automatically defines a single choice for the parameter values and hence a single
set of predicted true stocks and flows..
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4. THE LIKELTHOOD IN THE CASE OF RANDOMLY MISSING DATA

In this section we consider situations where classifications of units are missing “‘completely at random” for
some time points. Such situations occur for example when the data are collected in surveys that use rotating
panel sampling schemes. For instance, the U.S. LFS uses a rotating scheme of 4 months in sample, 8
months out of the sample and then 4 more months in the sample. In Israel the sampling scheme is 2 quarters
in, 2 quarters out and then 2 quarters in again. As shown below, this kind of missing data can easily be
handled by an appropriate integration of the “complete data” likelihood.

Let T!, ={tli, missing}define the time points for which the classification of unit k is not observed. In

mis

what follows we suppose that the explanatory variables are known for all r=/...7. This will always be the
case with variables that are fixed over time or that change systematically, like Age for example. Some
extrapolations may be needed in practice for other variables. Denote, as before, by
I(k)=Pr(y, =i,.t&T),)the likelihood contribution by unit k. With data missing completely at random,
the likelihood /{k) is calculated as

l(k) = Zl .—] «..IT_]{E & IQT‘ [(nqh,,‘, l, Iy )qlp“ ‘Il]’ Q (4'1)

The sample log-likelihood is obtained as log(!) = Z;(’:l log[/(k)]. similarly to the complete data case.

COMMENT: A much more difficult problem occurs when the missing data process is informative like for
example when the probabilities of response depend on the true states in some unknown way. This problem
is not considered in the present article.

5. INFORMATIVE SAMPLING

The likelihood functions defined by (2.4) and (4.1) assume a non-informative sampling scheme. Suppose,
however, that units are selected to the sample with unequal selection probabilities that depend on the true or
reported classifications at the first time point that they join the sample. Clearly, ignoring the sampling
process in such cases may bias the parameter estimators and hence the prediction of the true flows. A
possible way to deal with this problem is by use of the pseudo likelihood (PL) approach. The approach
consists of estimating consistently the ‘census likelihood equations’, (the equations that would have been
obtained in the case of a census), and solving the estimating equations. In what follows we describe the
approach in some more detail with reference to our model and show how to estimate the variances of the
resulting estimators. For further discussion on the use of the PL approach with many examples, see
Binder(1983) and Skinner, Holt and Smith(1989).

Let log[Z,(8)] = X ¥ log[/(/,8)] denote the census log-likelihood function indexed by the vector parameter

=\B {7, },{a,,} . The census maximum likelihood estimator (mle), OC . maximizes log[L,(#)] and in

regular cases solves the likelihood equations,

N O log[1(:, € 9)]

U@ =Xl u@ =X\ — il 5.1

The pseudo mle (pmle) is defined as the solution 0(0) = 0 where [/(9) is design consistent for ({8) . The
estimator [1(0) in common use is the Horvitz-Thompson estimator obtained by weighting each sample
score U,(8) by the weight w, =1 Pr(ie s) so that ém is the solution of

yr @ =T wu(8)=0. (5.2

The estimator épm,,is generally design consistent for é, which is consistent for & under the model.
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The variance of ém,,, cannot be estimated using large sample likelihood theory. Instead, we follow Binder

(1983) and extract an estimate for the design variance, Vn(épm,,) from VD[l} HT (éc)] as follows: Expand,

Uy Bme)=0=U w0+ al{ 'T( ) . . —6.), such that
36I6—
- U ®) A, _,(6) U, _(6) 7
U, (8)s- 22017 g .~ 6. and v (U, _, (6. H-T v r . Changing sides,
#-1(6,) e - ( ) Uy (€= [ A ]X (,.,,.,.) [ '9—9¢]
. al, (6) @) .r. -
Vo) = {2 6” . 1 XVp[Uy_1(6, {2 - "9’ 1’} ‘ (5.3)

The estimatorV,,(8,,.,,)is obtained by replacing €, by .. in the right hand side of (5.3). Notice that for

pmle pmle

large populations and small sampling fractions, V, (6, ) estimates also the “total variance™ over all

possible population (census) values and all possible sample selections.

6. A MODEL GOODNESS OF FIT STATISTIC

PSH use the following measures to assess the goodness of fit of models fitted to the sample data.
| .
§,=I—2—}:2=,Zf=,ll(y,u=i)—P,",I; (=31, 5T (6.1)
n

where I(y, =i)is the indicator function and P, = Pr(y, =ilx,,) . The measure 6, compares the observed

states at time ¢ with the probabilities to observe these states under the model. A similar measure can be
defined to compare the observed transitions with their estimated probabilities. The measure J, has the

following properties:

Pl- 0sd <1 ; P2- =1k, y, =i P =1 P3- §=0@Vk, Yo =i=> P =0

. I
pre Bowlili ! s pe BN 5 280 .
L L YL, n(t,i)

(ZL, n(e, D) 2 i s (D) =201y, =1).
=1

The properties P1- P5 follow straightforwardly from the alternative expression,

1 .
= n'ZL. Th(y, = DR (6.1a)

Written this way, &, is seen to represent the “average probability” of the observed states.

Another desirable property of the measure &, is that it is possible to extract its asymptotic distribution under
a given model. This permits the construction of confidence intervals for its expectation. Define

5 1 .
Q, =¥t I(y, =i)F, such that J, = ., 370, - The random variables (rv) Q, take the values P2l

with probabilities F,...P; . Hence,
E(le Zl=l(Pkil )2 = ﬂlrl N var(le) = (’)k’l ! [z:-l (P‘:, )2 ]z = O-kzl (62)
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Also. @, ..Q, are uniformly bounded, independent, and V? =Var(¥;. 0, ) ——==. Thus,

[6, — — X7, 4, 1/[V, / nlis distributed asymptotically as N(0,1), r=1...T. We mention that it is also simple to
n

calculate Cov(é,,d,) for 1 # T and hence the asymptotic joint distribution of &, = (4,...8;) .

In a recent article, Estrella (1998) proposes a new goodness of fit measure for dichotomous dependent
variables, defined as a function of the log-likelihoods under the full model and the model with an intercept
term only. We intend to compare the properties of this measure and &, in the near future.

7. MONTE-CARLO SIMULATION RESULTS

In order to illustrate some of the new developments of this article, we simulated population measurements
for T=4 time points from a reduced model fitted previously to data on employment status of heads of
households, collected by the Israel LFS. For further simplification we classified the employment status into
the states of “employed” (E) and “Other” (O). Sample data for samples of size n=1500 were obtained in
two different ways: A- By simulating directly from the population model which corresponds to
noninformative sampling from “large populations” and B- By generating a (single) population of N=6000
values and selecting simple stratified samples with the strata defined by the “observed™ employment status
at time r=/. The sampling proportions in the two strata are ngy/Np=750/4269 and no/No=750/1731. This
sampling process is informative.

The model used for the simulations is the same as defined by (2.1)-(2.3) (with L=2) and is defined by the
first three columns of Table |. The explanatory variables are defined as follows where we denote by /(.) the
indicator function: Intercept(Int), Age. Education(Ed)=I(more than 12 years at school ), Chitd=I(has
children aged 5-14), Married(Mar)=I(married), Self=I(self supplied information),
Method(Met)=I(personal interview).

TABLE 1. Simulation Results: Coefficient Estimates, SD’s and SD Estimates.

Model Coeff. Val. | Means SD M(SDE) M(SDE)| Means Means SD M(SDE)
Eq's mle mle inf mat design “mle” pmle  pmle design |
‘h‘; Int 1.5 1.50 0.08 0.07 0.07 1. 32 1752, 0.08 0.07
Self 3.2 330 0.54 0.57 0.59 3isit 3.39 041 0.39
q" Int -09 | -0.89 0.09 0.12 0.12 -0.88 090 0.1l 0.08
Met 22 226 057 0.65 0.68 -2.69 -1.97 0.62 0.84
Int 0.8 073 0.64 0.61 0.64 0.47 070  0.60 0.61
,,)k; Mar 1.7 1.72  0.27 0.29 0.30 1.95 1.73 0.33 0.32
Age 2.6 2.81 1.53 1:35 1.42 3.41 2.85 1521 1.32
Int 09| -097 063 0.76 0.85 -0.83 -0.86 0.58 0.43
,,511 Child 1.8 1.82 0.32 0.33 0.36 1.74 1.85 0.25 0.19
Age 29| -2.80 138 1.65 1.86 -2.65 -3.16 1.20 0.90
,rlk I Int 0.7 0.69 0.08 0.08 0.08 0.13 0.68 0.05 0.05
Ed 34| 350 0.51 0.62 0.63 3.08 3.45 0.45 0.32
Suy 065 065 0.01 0.61 0.65 0.01
Sic) 075! 0.75 0.01 0.73 0.75 0.01

Table | contains summary statistics computed over 100 samples selected for each sampling process. The
columns entitled “means” show averages of the coefficient estimates. The columns entitled SD show the
corresponding standard deviations. The columns entitled M(SDE) show averages of the SD estimates with
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“inf.mat” denoting estimates obtained from the inverse information matrix and “Design” denoting the
design variances obtained from (5.3). The last 2 rows show the means and SD of the goodness of fit

measures &, , defined by (6.1). We distinguish between the case where the probabilities Pr(y,, =1)are
calculated as P, =Pr(y,, =il x,,) . for which we denote the measure by &,(u) . and the case where these

probabilities are calculated as }.;,"4 =Pr(y,, =il X5 ¥+ Y20 Yi3) . for which we denote the measure by

J,(c) . Both sets of probabilities are easily calculated from (2.4).

The results emerging from Table 1 can be summarized as follows:

1- For the case of noninformative sampling, the mle’s of the model coefficients are essentially unbiased.
with all the means being within two standard errors of the true values. Notice the large SD's of some of the
coefficient estimates, indicating the high degree of variability in the population data. The two methods used
to estimate the SD’s yield similar estimates which in most cases are close, in average, to the empirical
SD's. The goodness of fit measure J,(c) is seen to be significantly higher than J,(u), illustrating the

much-improved predictions of the observed classifications at time t=4 when conditioning on the previously
observed states. We mention in this respect that when fitting to the same samples the model with only

intercept terms, the mean measures are J,(u)=0.63 and §,(c)=0.72, suggesting that for these data the

inclusion of the covariates improves the prediction power only marginally. On the other, the mean log-
likelihood values computed for the two models are —2627.7 for the full model and ~2944.1 for the model
with intercepts only, indicating the high significance of the covariates.

2- For the case of informative sampling, the “mle’s” obtained by maximizing the unweighted likelihood
are highly biased for many of the coefficients, a direct effect of the sample selection bias. These biases are
fargely reduced by use of the pmle’s that maximize the probability weighted likelihood equations, with
almost all the means being either within or on the border of two standard errors of the true values. The
design variance estimates again perform well on average in at least most of the cases. The weighted

measures of goodness of fit, obtained by weighting each of the quantities Q,, = Y%, /(y, =i)B, (equation
6.1a) inversely proportional to the unit's selection probability are similar to the corresponding unweighted

measures obtained for the case of noninformative sampling, and they are unbiased for the corresponding
measures computed for the population data.
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MOBILITY MATRICES AND COMPUTATION OF ASSOCIATED PRECISION

Nathalie Caron' and Christine Chambaz’

ABSTRACT

The study of social mobility, between labour narket statuses or between income levels, for
example, is often based on the analysis of mobility matrices. When comparing these transition
matrices, with a view to evaluating behavioural changes, one often forgets that the data derive from
a sample survey and are therefore affccted by sampling variances. Similarly, it is assumed that the
responses collected correspond to the ‘true value.’

The purpose of our study is, first of all. to show measurement errors indirectly by means of an
example. After defining the transition matrices. we then estimate the accuracy of the transition
probabilities between states. Two types of transition matrices are considered in turn, according to
the way in which the different possible states are defined: these states are defined first based on the
modalities of a categorical variable during the survey, and then based on an estimated distribution
of the survey data. The calculation of accuracy is more complex in the second instance. The study
is carried out using data from the Economic Survey of Households. In the example considered,
states correspond to the standard of living distribution quartiles. They are first assumed to be
exogenous (which corresponds to the case in which the modalities are derived from a categorical
variable from the survey). The inaccuracy related to to how they are defined is then taken into
account to estimate the variance. The confidence intervals obtained for the elements of a transition
matrice are shorter when the inaccuracy related to the definition of states 1s taken into account.

KEY WORDS: mobility matrices, measurement errors, accuracy.

1. INTRODUCTION

The study of inequalities is often based on the analysis of snapshot distributions of social states, such as a
socio-professional class or standard of living quantile. However, those states are not immutable: a person
whose standard of living on date ¢ places him or her among the poorest 10% of the population may on date
t’ ( £'>1) have a higher standard of living and thus fall within another distribution decile. Measuring soctal
welfare may therefore be significantly impacted by whether or not opportunities for social mobility are
incorporated.

Dardanoni (1993) proposes a particularly interesting approach to the analysis of social mobility. He
considers asymmetrical utility functions, giving more weight to the future of individuals who initially fall
within the most disadvantaged categories. He then establishes a criterion for categorizing societies sharing
the same fixed distribution of social states from a social welfare perspective. This criterion is used to
compare matrices where each element p,  corresponds to the probability that an individual's situation is

lower than or equal to i in 7, and lower than or equal to j in "> 1. The thorough comparison of these matrices
assumes that observed variances can thus be initially tested to estimate their variances. The purpose of this

' INSEE, Unité Méthodes Statistiques, Stamp F410, 18 boulevard A.Pinard, 75675 Paris Cedex 14,
France.

2 INSEE, Division Revenus et Patrimoine des ménages, Stamp F350, 18 boulevard A. Pinard, 75675 Paris
Cedex 14, France.



study is therefore to propose a method for estimating the variance in transition probabilities, in particular
probabilities p, . used in the dominance criteria established by Dardanoni.

The survey selected for this study is the triannual PCV (Permanente sur les Conditions de Vie des ménages)
(Household Standard of Living Survey), half of the sample of which is renewed each year, and specifically
the intersections of modalities for responses to the same question given by a single household in two
successive surveys (May 1996 and May 1997). In this study, a household is defined as identical if its
address is the same and if its head of household is the same (first name, date of birth and gender has
remained the same). The households weights were adjusted by calibration to the margins to correct for
sampling fluctuations and attrition.

First, we show measurement errors indirectly using a variable with limited variance between two successive
interviews. We then estimate the accuracy of transition probabilities between states. Two types of transition
matrices are considered in turn, according to the way in which the different possible states are defined: these
states are defined first based on the modalities of a categorical variable during the survey, and then based
on an estimated distribution of the survey data. This paper is an excerpt of a more lengthy paper to be
published in 1998

(Caron, Chambaz, 1998).

2. TRANSITION PROBABILITY OR MEASUREMENT ERROR?

All statistical analyses are based on data measured with a certain degree of inaccuracy. A well-known
source of inaccuracy is selected households who refuse to respond to the survey, which may, in the absence
of a cormrection for non-response, produce biased estimators. Another less blatant source comes from two
other types of errors liable to occur between the time the question is asked and the time the results file is
available: measurement errors and variable coding and capture errors. In this section, we illustrate the
existence of measurement errors using the education level variable (see also Caron, 1993).

The education level of the reference person is a variable constructed from statements made by the
individual about their highest degree of general education, technical education and post-secondary
education. These three education variables are each coded using code-cards during the survey. The only
possible variations therefore correspond to an increase in the education level, and are located on the upper
diagonal of the transition matrice. However, in our sample of 2,299 reference persons who have not moved,
281 (12.2%) gave answers that placed them lower in May 1997 than in May 1996 (Table 1). Three hundred
and seventy-one (371) reference persons in our sample (16.1%) reported an increase in the education level
between May 1996 and May 1997.

This proportion is approximately 10 times higher than that obtained from the first two waves of the
European Panel of Households, in which questions on education are asked differently.

The types of errors illustrated in this section also affect the subsequently-analyzed standard of living

transition matrices. Given that the main goal of this study is not to estimate the variability attributable to
these errors, all observed situation changes will be treated as actual changes.
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Table 1: Variance in reference person’s education level

Estimated education Estimated education level in May 1997

level in May 1996 0 ] 2 3 4 ) 6
Level 0 (no diploma) 361 80 25 13 6 4 2
Level 1 (DFEO) 49 326 36 10 2 % 10
Level 2 (CAP-BEP) 15 30 18 50 10 3 11
Level 3 (BEPC) 13 14 30 170 15 19 8
Level 4 (tech. degree) 0 2 i 13 50 16 5
Level 5 (general degree) 4 3 4 18 14 75 29
Level 6 (post-grad) 7 4 8 10 11 25 347

Source: PVC survey May 1996 and 1997
Field: households surveyed both times where the reference person has not changed
Note: impossible a priori configurations are shaded.

3. ESTIMATING THE ACCURACY OF THE TRANSITION MATRICE
COMPONENTS

3. 1. Reminders and notes

This survey uses a multi-stage stratified sampling plan. Several accuracy calculations conducted from this
survey produced a design effect close to |, meaning that in the initial approach, the sampling plan can be
considered as a one-time random sampling.

3. 2. Methodological aspect

N represents the total number of households in the population and n represents the number of respondent
households. The extrapolation weights in the file are represented as w .

3.2.1 States defined using based on the modalities of a categorical variable

It 1s assumed that the states are defined using the p modalities of variable X, represented as VARI,
VAR2,..... VARP. We will use f)ij to represent the estimated proportion of heads of households responding

with the ith modality of the variable X during the first interview and with the jth modality during the second
interview. The variance estimation calculations subsequently developed for the estimated proportion p,,

are easily generalized for the estimated proportion ]Sij .

Using for each household k:

y, =1 if the head of household reported VAR at both interviews

¥, =0 if not
and using N to represent the estimated number of households from the survey, we obtain
o
tt IQ

where Y is the estimator of the sum of ¥ obtained with weights w .

As aresult, P, is written as the ratio of the estimated sums of the two variables. Using the linearization

technique applied to a ratio, we show that the variance for ]3“ is that of the sum of the variable U defined
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for a household k by:

| Epf 7
*TNUE N
which, by approximating the sampling plan as a without replacement random sampling plan, gives

n

Vo)=Y |=v(0)=(1- 2L L S -t -

@ i~y

where U is the estimated sum of the variable U and Slzl is the modified empirical variance of the variable U
calculated from the sample.

Therefore, the level 0.95 confidence interval of the ratio f)” is:

3.2.2. States defined based on an estimated distribution of the survey data

The accuracy calculation differs from that established in the previous example because the states, and as a
result the boundaries separating the different states, are derived from an estimated distribution of the survey

data. We will use Taﬂ to represent the estimated proportion of individuals whose variable X value is lower
than the estimated o distribution fractile and whose variable Y value is lower than the estimated 3
distribution fractile. In this section we will estimate the TaB variance. The results obtained would not be

particularly valid for the proportion P, defined in the transition matrix presented above, that is for

estimations of proportions of individuals located in the transition matrix at the intersection of the two states,
one of which is defined by two boundaries estimated from the sample.

Let X, (resp. yg) be an estimate of the fractile x; (resp. ya ) of the variable X distribution with order
o, based on the first interview (resp. B for the second interview). By using M to represent the discrete

snapshot measurement with unit value in each point of the population and M to represent the measurement
describing the weighted sample (using weights w ), the statistic of interest Taﬂ and its estimator T,4can

be written respectively as:

xa¥p x'a V8 x, Vs x, Y
[ Jamixyy | famexy) | [amexy) | [amixy)
Tg=-———m— = and Ty= = = - :
i | [amx.») ) JJant(x.y)

According to J.-C. Deville (1997, 1998), the vanance of Taﬁ is the sum of the linearized variable related

to Taﬁ which corresponds in the case studied to the influence function Taﬂ- By noting that the parameter

of interest T is a ratio, the linearized variable of Top is: /7, = - (A X —Taﬂ) where A cormesponds

to the linearity of the numerator obtained using the influence function.

After calculating A and grouping the various terms (see Caron, Chambaz, 1998), the influence factor IT
is written as:
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IT, = = ((Y (xk < Xgo Vi <yp)—Tap)—A(Y (xk <xa)—a)—B(Y (yk <yﬁ)—ﬁ))

| —

where
* A (resp. B) is an estimate of the distribution function in y; (resp. x, ) conditional upon X = X, (resp.

y=yg)ie:

z WE Z Wi

Y <Yp £ <x,
neln-eneg = o +4]

2. v Z Wi

x elx, ~ecx, +e] Ve e[y,,-s:y,,+:]

A=

The element £ must be chosen in such a way that the estimations of the distribution function are the least
sensitive as possible to sample fluctuations.
e X, (resp. y, ) represents the income for household k during the first interview (resp. second).

o 1 (m) =1 if the occurrence m is checked, or 0 if not.

We can analyze the consistency of the linearized variable obtained, for example by verifying that B (resp.
0.) tends towards 1, i.e. by choosing as a variable of interest the proportion of individuals whose variable X
value (resp. Y) is lower than the 0. fractile (resp. 3 ). the linearized variable is also zero, resulting in a zero

variance. In this configuration, the proportion is a known quantity which is also equal to O (resp. B ).

As a result, the level 0.95 confidence interval for the ratio p,; is:

[ﬁ.. ~196 V(IT): py, +196 =\?7()i:)}

2
where V(IT) = (l - ;) N s:}.r using s,zr for the modified empirical variable of variable IT calculated for
n

the sample.

3.3. Application

In this section, we will apply the results obtained above to the proportion of stable households in the first
standard of living’ distribution quartile for the two interviews. We compare the variance estimations
obtained by assuming first that the values of the quartiles are fixed and secondly that the values of the
quartiles are estimated from the survey. The calculation was done for the northern Pas-de-Calais region
(158 observations).

The confidence interval obtained by assuming that the quartiles estimated from the survey correspond to the
true boundaries is wider than that obtained by integrating the random nature related to the estimation of
those quartiles. However, we observe instability in the estimation of the variance when parameter € is
small. Such instability is related to the estimations of the conditional distribution functions based on very
small numbers {(one or even two observations for the initial values £). The width of the confidence interval
decreases when € increases until it stabilizes when the estimations of the conditional distribution functions
are more robust. Specifically, the confidence interval for low &€ values may be wider than that obtained
when fixed quartiles are assumed.

¥ Standard of living is defined as the ratio of household income to number of equivalent adults in the houschold. The equivalency
scale used assigns a weight of 1 to the first adult in the household, 0.5 to other adults and 0.3 to children under 14 years of age.
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Graph: proportion of heads of households in the first standard of living distribution quartile for the two
interviews ( [3” )- North Region - Pas-de-Calais®
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4. CONCLUSION

In this study, the change in the situation matrices considered are based on states defined using the
distribution of a variable observed in the sample. We compared the length of two confidence intervals: the
interval obtained when assuming that the situation definitions are exogenous and the interval obtained
taking into account the true determination of states. We observe that the confidence intervals obtained for
the elements of a transition matrice are shorter when the inaccuracy of the definition of the states is taken
into account. The same result can be established for the stability probabilities in a situation (see Caron and
Chambaz, 1998). However, the variance estimation calculations conducted in the latter case have two
limitations. On the one hand, they are based on two estimates of conditional distribution functions.
Although those may prove unstable when they are based on very few observations (1. 2 or 3), this can be
offset by slightly increasing the number of observations used in the estimation of distribution functions.
The estimation of the variance thus reaches an almost stable level, corresponding to the sought value.
On the other hand, as we explained at the beginning, all observed changes in situation were treated as true
changes in situation. To complete our results, we would have to be able to evaluate the variability derived
from measurement errors and link it to the calculation of the variance estimation done here.

To conduct comparison tests of mobility matrices, two types of approaches are possible: one consists of
emphasizing simplicity in the variance calculations by assuming that the states are defined exogenously for
the survey; the other, however, consists of conducting the most thorough calculations possible by
incorporating inaccuracy related to the definition of the states, given that application is more complicated.
When there is a significant number of transition matrices to be compared, an interim approach could consist
of doing thorough calculations for both matrices, evaluating the order of importance of the over-estimation
of the variance obtained using exogenous states, and then doing the simplest calculation by extrapolating

* Legend: The lower boundary (upper resp.) corresponds to the lower boundary (upper resp.) of the confidence interval when it is
assumed that the values of the quartiles are estimated from the survey. The three solid lines correspond, from bottom to top: to the
lower boundary of the confidence interval when it is assumed that the values of the quartiles are known, 10 the estimator. and to the
upper boundary of the confidence interval when it is assumed that the values of the guartiles are known.



that over-estimation for all other comparisons.
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A LATENT CLASS MODEL FOR THE TRANSITION
FROM SCHOOL TO WORKING LIFE
IN THE PRESENCE OF MISSING DATA

Giulio Ghellini'
Andrea Regoli’

ABSTRACT

A longitudinal study on a cohort of pupils in the secondary school has been conducted in an Italian
region since 1986 in order to study the transition from school to working life. The information have
been collected at every sweep by a mail questionnaire and, at the final sweep. by a face-to-face
interview, where retrospective questions referring back to the whole observation period have been
asked. The gross flows between different discrete states — still in the school system, in the labour
force without a job, in the labour force with a job — may then be estimated both from prospective and
retrospective data, and the recall effect may be evaluated. Moreover. the conditions observed by the
two differem techniques may be regarded as two indicators of the “truc’ unobservable condition,
thus leading to the specification and estimation of a latent class model. In this framework, a Markov
chain hypothesis may be introduced and evaluated in order to estimate the transition probabilitics
between the states, once they are cormrected or the classification errors. Since the information
collected by mail show a given amount of missing data in terms of unit nonresponse, the *missing’
category is also introduced in the model specification.

KEY WORDS:  Gross flows: Response errors; Memory errors; Latent Markov models.

1. INTRODUCTION

A great deal of attention is recently being paid to the data quality from longitudinal studies. Such a growing
interest has mainly taken the shape of analyses for measuring, treating and controlling the presence of non
sampling errors (in the form of measurement errors or nonresponses). Less marked has been the
contribution to the specification of statistical models combining both the phenomenon under analysis and
the error generating mechanism (see, among the others, Abowd and Zellner, 1985, and Poterba and
Summers, 1986).

This paper is intended to contribute to the latter kind of research, by focusing on the transition between
discrete states. The availability of longitudinal data may arise either from a panel or a retrospective survey.
The former suffers mainly from wave nonresponse (besides measurement errors due to conditioning
effects), bringing the problem of selection bias to the foreground. The latter is mainly plagued by memory
errors that are even more severe when the reference period is farther back in time.

Specifically this paper deals with the opportunity of adjusting the measurement errors presumably included
in the data from a longitudinal Italian survey (called LEVA project): this survey is designed to follow some
cohorts of pupils in order to study their transition from school to working life over a period of six/seven
years after the compulsory education. The information on the schooling/working condition s collected
every year by a mail questionnaire; the last interview is planned as a face-to-face interview and includes
retrospective questions over the whole time period. On the basis of this information, a stochastic approach
for esumating the school to work transition has been followed, which exploits both observations on the

' Giulio Ghellini, Dip. Metodi Quantitativi, P.za S. Francesco 8, 53100 Siena, Italy,
giulio @turing.dmq. unist. it
* Andrea Regoli, ISTAT, Via A. Rava 150, 00142 Roma, ltaly, regoli @istat.it
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same set of units. The two observations correspond to two manifest indicators of the schooling/working
condition, which is considered to be a variable that is not directly observable.

2. MARKOV MODELS AND WAVE NONRESPONSE

The methodology applied in this paper is defined in the framework of latent Markov models. These models,
proposed by Lazarsfeld and Henry (1968) and used by Van de Pol and Langeheine (1992) for the flows
estimation with longitudinal data, assume that at each time period a ‘true’ condition, observable with errors,
is associated with every sample unit. In other words, the actual condition is to be considered a latent
variable, only observable through one or more fallible indicators at the same time period.

In this study, at each time period, the latent condition - employed, unemployed, student - is supposed to be
measured through a pair of indicators, the condition declared respectively at the repeated and at the
retrospective survey (figure 1).

Figure | - The latent variable and the indicators

ey N¢: latent condition, time t

x¢: condition observed at the mail, repeated survey, time t

y: condition observed at the retrospective survey, time {
e

ESIEN

Moreover, the latent classification is assumed to follow a first order Markov chain, such that the latent
condition at time t+1 depends on the latent condition at time t only (and not on the latent condition at the
previous times, figure 2).

Figure 2 - The latent Markov model
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Besides the initial probabilities of every latent category, the model estimates: a) the conditional transition
probabilities between the latent states and b) the response probabilities, i.e. the probabilities of observing
the state ‘i’ when the true state is ‘j°.

Maximum likelihood estimates of the parameters can be obtained through a version of the EM algorithm
implemented in the software PANMARK (Van de Pol, Langeheine and de Jong, 1991).

If another observed category (missing condition) is added to the three just recalled (employed, unemployed,
student) for the repeated survey, the probability of a missing response can be estimated conditional on each
latent state. This allows us to verify whether the nonresponse behaviour could be assumed independent of
the latent condition or, on the contrary, the belonging to one of the three latent conditions could
significantly modify the chance of nonresponse.

As already mentioned, the memory errors that may afflict the retrospective data could plausibly lead to an
underestimation of the observed transitions (see, for instance, Mathiowetz and Duncan, 1988). The true,
latent transitions are expected to be adjusted from this kind of errors, so that from the retrospective survey
the estimated flows turn out to be larger than the observed flows.

On the other hand, the observed flows may be affected by classification errors, determining spurious
transitions. The estimated transitions are expected to take this kind of errors into account and adjust for it in
the direction of turning the spurious changes into actual permanencies (see, among the others, Meyer, 1988
and Singh and Rao, 1991).
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The estimated response probabilities allow to measure the degree of correspondence between the latent
condition and what is observed through both the retrospective and the repeated survey. With reference to
the repeated survey, the estimates permit the evaluation of both measurement errors (in the form of
classification errors) and wave nonresponses.

3. THE DATA SET

The data come from the LEV A project (see figure 3 for the design of the survey; see also Bernardi, Ghellini
and Penello, 1996), specifically from the first cohort of pupils.

Figure 3 Survey design of the LEVA project

Observed 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
Cohorts

I Cohort 1 11 11l v \Y VI VII
co0 | MO | MO MO MO MO | HO
May May |Oct/Dec|Oct/Dec|Oct/Dec|Oct/Decj|Oct/Dec

11 Cohort 1 I 111 v \Y Vi Vil
cCcO | MO | MO (MO |M® | M® | HO
May [Oct/Dec|Oct/Dec||Oct/Decf|Oct/Dec|{Oct/Dec||Oct/Dec

ml 1 I 11 v
Cohort cCO (MO | MO | MO
May [|Oct/Dec|{Oct/DecjiOct/Dec
v I
Cohort co
May

Survey techniques: C: interview in classroom Observed subgroups:  @: the whole sample

M: interview by mail ®: school leavers not employed

H: Interview at home ©: students

@: not students

The information has been collected by both three mail interviews (may 1987, october 1988 and october
1989) and a face-to-face interview (late 1992). The first mail interview asks for both the present condition
and the condition referring back to october 1986, while the face-to-face interview contains retrospective
questions over the whole period 1986-1992.

The initial sample is composed of 2,422 pupils. The analysis has kept the information on 1,618 units (about
two thirds of the whole sample), corresponding to those participating both at the final interview and at least
at one yearly mail survey.

The nonresponse rate is higher for the first and the third mail survey (respectively 16.7 and 14.8 per cent)
and Jower for the second (5.3 per cent), due to differences in the follow-up strategies for the initial
nonrespondents.

In accordance with the expectations, the observed transitions from the retrospective survey show a less
stressed dynamics, especially for the labour force conditions (employed and unemployed). With reference
to the flows from the second to the third wave (see table 1) the percentage of the employed who stay in the
same condition after one year is 90.4 from the mail survey and 97.0 from the retrospective survey. For the
unemployed there are even more marked differences: from the yearly survey, only the 37.5 per cent of them
remain unemployed at the third wave, as against the 48 per cent from the retrospective final survey.
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Table I- Permanencies in the observed conditions at the different waves (percentages)

Observed Mail Retrospective Mail Retrospective Mail Retrospective

condition 152 12 253 23 34 34
Employed 98,3 100,0 90,4 97.0 96,8 97.4
Unemployed 62.8 86,8 3748 48.0 47,6 57.5
Student 97,2 97.7 86.6 88,4 89,9 88.9

4. MODEL SPECIFICATION AND PRELIMINARY ANALYSES

The above discussion has led to the specification and the estimation of a first order Latent Markov Model.
The latent vaniable is the school/work condition (employed, unemployed, student) at the four waves, each
time measured by two manifest indicators, i.e. the condition observed through both the repeated mail and
the retrospective survey.

The model parameters are: a) the initial probabilities of being in a specified condition; b) the response
probabilities’; ¢) the transition probabilities, i.e. the conditional probabilities of moving from one condition
at the beginning of the time period to another one at the end of the interval.

Since the pattern of the observed condition shows many empty cells, the chi-square approximation for the
likelihood ratio (LR) statistics is not valid in order to evaluate the goodness-of-fit of the model.
Nevertheless such approximation can be used for the comparison of nested models as a criterion for the
specification search (Van de Pol, Langeheine and de Jong, [991).

An evaluation of the estimated response probabilities (table 2) highlights the unemployment as the
condition which is more often missclassified.

Table 2 — Estimated response probabilities

Mail | Mail 2
Observed condition Observed condition
E U S N.R - U S N.R
Latent E {036 (025 (011 |0.28 Latent E (055 [008 (009 |0.28
condition U |0.13 (047 (011 [0.28 condition U |021 [049 [0.03 |0.28
S 1000 /000 (085 |0.15 S 000 (000 |0.85 |0.15
Mail 3 Mail 4
Observed condition Observed condition
E U S | NR | E U S [NR|
Latent ' _E [081 |0.07 |0.04 |0.08 Latent E |069 [0.02 [001 [0.28 |
condition U [029 (053 |0.10 |0.08 condition U {029 038 005 |0.28
S 000 [001 |095 [0.04 S 1002 (002 |0.88 (0.08
Retrospective 1 Retrospective 2
Observed condition Observed condition
E W [ S E 9] S
Latent E [090 [0.01 [0.09 Latent E [1.00 1000 |0.00
condition U [000 (073 |0.27 condition U (000 [0.76 [0.24
S (000 [0.00 [1.00 | S 1000 [000 [1.00

3The estimated response probabilities are the entries of two kinds of matrices. The former is a 3x4 matrix whose entries correspond to
the probabilities of observing the 4-state condition through the repeated survey. given the 3-state latent condition. The latter is a 3x3
matnix whose entries are the probabilities of observing the 3-state condition through the retrospective survey, given the 3-state latent
condition.
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Retrospective 3

Latent
condition

Observed condition

]

| E U S |
E 1088 (003 [0.09
U |002 (063 |0.35
S (000 000 |1.00

Retrospective 4

Observed condition

E U S
Latent E [1.00 [000 [000 |
condition U 1011 (069 [0.20 |
S 1000 [001 (099

E: employed, U: un_e—‘n{ﬁo&a. S: student. N.R.: nonresponse

Moreover. the probability of not responding to the repeated survey is lower if you are still in the schooling
system. In a formal way, the independence of the response behaviour from the true condition (an
assumption which is equivalent to the MCAR assumption; Rubin, 1976) may be checked by introducing the
restrictions of equality for the entries in the response probability matrices for the repeated survey
corresponding to the probabilities of a missing response given the three latent conditions. In such a
situation, the matrix to be estimated for each wave of the repeated survey is of the following kind:

~ m >
~ ™ W
X Q0
O O D

where the equality restriction is highlighted by the same letter (D). The comparison is based on the
difference between the LR statistics of the two nested models (the general and the restricted model),
showing that such restrictions are to be rejected (ALR=145.15 with 6 degrees of freedom).

If the equality restriction is only imposed on the two parameters for the employed and the unemployed, i.e.
if the matrix to be estimated is of the following kind:

A
7
1

~ 7w
= Q 0O
=l

the LR difference shows that this restriction can’t be rejected (ALR=1.58 with 3 degrees of freedom).

The estimated latent transition matrices (see table 3) show that the permanencies in the same condition (the
diagonal entries in the matrices) are usually higher than the observed ones. The largest flows are estimated
from the unemployment to the employment. Generally these matrices are of a lower triangular kind,
showing nearly no moves out of the employment state nor moves towards the student condition.

Table 3 — Estimated transition probabilities

1-2 . 23 e 34
E| U] S ¥ RN ["E T w1 8§
E 1.00]0.000.00 . E | 1.00[0.000.00 " E |0.980.02]0.00
U [0.13]0.87 0.00 | U [043]0.53[0.04 | U [0.28]0.72[0.00
'S 10.00[0.01]0.99 | S [0.08[007 085 S [0.03/0.0310.94

E: employed, U: unemployed, S: student

The information on some background variables included in the available dataset allows to introduce and
evaluate the presence of heterogeneity both in the dynamics of transition and in the response behaviour.
Previously conducted analyses have underlined a set of variables to be considered as relevant for the study
of the transition. They comprise: the gender, the regularity in the compulsory schooling path and the
educational level of parents or eldest siblings.
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In the framework of latent Markov models, the observed heterogeneity may be taken into account if a
mixed model, with two or more different chains, is specified (see Poulsen, 1982).

Some preliminary analyses in this direction show that, on the basis of gender and schooling path, the
hypothesis of heterogeneity (in transition and response probabilities) between groups cannot be rejected.
Specifically, the males who have left the school after the first wave of the survey have a higher estimated
probability of being employed at the fourth wave than the females in the same situation (0,79 against 0.49).
Finally, the pupils who have passed through a schooling failure during the compulsory school have a higher
estimated probability of remaining unemployed in the whole period than the others (0.49 against 0.23).
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TOOLS FOR INFERENCE ON DYNAMICS
OF LOW INCOME STATUS

Milorad S. Kovacevic'
ABSTRACT

The log-linear modelling of categorical longitudinal survey data on income is studied. An
emphasis is on inference about change. Special attention is paid to modelling of longitudinal
data from two waves. A small illustration is based on data from the Canadian Survey of
Labour and Income Dynamics.

KEY WORDS: Categorical Longitudinal Data; Log-Linear Modelling; Gross Flows;
Transition Rates

1. INTRODUCTION

A goal of this paper is to show how the methods developed for analysis of categorical cross-sectional data may
be applied to data from complex longitudinal surveys in order to analyse change. For suchdata, it is necessary
to account for the temporal orderings and within-subject correlations, as well as to allow for the complex
design of a longitudinal survey.

We consider a case where the original response variable y is categorized into K22 discrete, mutually exclusive
and exhaustive categories, which we interchangeably call states. For example, after-tax family income can be
categorized into two categories, “below the low income cut-off (LICO) corresponding to the family type” and
“above the LICO.” Here, the assumption is that LICOs come from an independent data source. A more
general analysis of change for K>2 is presented as well. For example, we consider the family income

categorized into K ordered categories as in (1) where Etw is the estimated 100pth percentile of the income

distribution at wave 1 for the corresponding family type

1' yn'sel:lll{‘
v, = B il i (hH
K, )’,PE:;l 1K

In this case the category boundaries are sample dependent and thus add some variability to estimates of gross
flows and transition rates. A balanced sample is assumed, i.e., that there is a longitudinal sample of n,

individuals that responded in all 7 waves. Also we assume that there is no classification error.

The data used for an illustration in this paper represent individuals of all ages in the 1992 Canadian population
(the reference population) who were alive and lived in Canada in 1994. The illustration part of the paper is
partly a reproduction of the analysis presented in a Statistics Canada document by Noreau, Webber, Giles and
Hale (1997). An example of a 2x2 table of estimated counts is taken from their paper. Another table found
in their paper presents the gross flows of persons and transition rates between the after-tax family income
quintile groups. These tables are given in the Appendix.

'Milorad S. Kovacevié, Social Survey Methods Division, Statistics Canada, Ottawa, K1A 0T6, Canada, e-
mail: kovamil @statcan.ca
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The next section deals with gross flows and transition rates, their estimation and variance estimation of their
estimates. Section 3 contains a review of the basics of log-linear modelling of survey data. An approach to
modelling change using data from two waves is developed in Section 4. In section 5 a summary is given with
a list of possible directions for future research.

2. ESTIMATION OF GROSS FLOWS AND TRANSITION RATES

Any analysis ts usually confined to a domain of interest in the population. In the case of a longitudinal
population, a domain definition necessarily depends on time. For example, we define the principal domain
of the SLID in 1994 as: the members of the 1992 reference population that were alive in 1994, who lived in
one of the ten provinces, but not in institutions, Indian reserves, nor in Armed Forces barracks. The
longitudinal weights in a year of interest should add up to the size of the reference population properly
reflecting changes 1n the size of domains of the reference population over time.

Straightforward summary information about a categorical variable y,” observed in both waves, takes the form
of a KxK table of weighted counts (N, | (a=1,...K, b=1,....K) that sum up to the estimated size of the domain
of interest of the longitudinal population ¥, X, N, =N,. The first index a indicates the state of the

categorized variable v ° at the first time point, and the second index b indicates the state of the same variable
att=2. Estimates { N , | estimate the sizes of mutually exclusive subdomains of the domain of interest of the
longitudinal population, taking form (2):

Nab = Z w Iy =al Hy,=b!}, @)
i€s,

and are called estimates of gross flows. The corresponding cell proportions are estimated as £, =N, / N,

For measuring change it is generally more convenient to use transition rates which estimate the conditional
probabilities of staying in the same state or shifting from one state to the other. In the case of a KxX table the
transition rates are obtained as ratios of estimated counts to the corresponding row margins, that is

Pbla N Nab/Nao' where N"’ :§ Nﬂb'

For inferential purposes it is necessary to estimate the covariance matrix of the table of estimated counts or
transition rates. The number of degrees of freedom (df) with which these variances and covariances are
estimated is important for further inferential applications of the variance estimators. For the linearized variance
estimator the number of degrees of freedom is approximated by the total number of PSU’s reduced for the
number of strata, assuming sampling of PSU’s with replacement. In the SLID example, variance and
covariance estimates are obtained using the lineanzed covariance estimator with 237 df at Canada level.

Regarding the definition of the states (categories) we distinguish two cases: (i) category boundaries are
obtained from sources different than the actual sample, and (ii) category boundaries are estimated from the
same sample. In the second case the variability of the boundaries has to be accounted for in estimation of
variances of gross flows and transition rates. Using linearization we are able to obtain an expression for the
variance estimator in a closed form. If using the case of resampling methods, for each replicate we need to
reestimate the boundaries as well.

3. LOG-LINEAR MODELS

Most categorical data analysis methods have been developed in the context of simple random sampling and
stratified sampling assuming independence among sampling units. If these methods are applied unmodified
to data obtained in complex sampling schemes that include stratification, clustering and unequal probabilities
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of selection, results may be erroneous. A variety of modifications of the classical methods has been developed.
These different approaches, with the risk of oversimplification, can be classified into two groups:

(i) The first group represents modifications of the usual Pearson X (or likelihood ratio test statistics L,) in

order to achieve an asymptotic x° distribution for a given complex design. The most notable result in this
group is known as the Rao-Scott theory, given in papers by Rao and Scott (1981, 1984, 1987) and Rao and
Thomas (1987, 1988). In the same group is Fay's (1985) jackknifing X ? test which essentially estimates the

Rao-Scott first-order corrected X° or L, by means of resampling.

(11) The second group of methods is based on the application of the generalized least squares method (Gnizzle,
Starmer and Koch (1969), and Koch, Freeman and Freeman, (1975)). The assumption on availability of a
consistent estimate of the covariance matrix of the estimated cell counts (or proportions) is essential. Then,
the Wald statistic is used for testing. However, due to the low precision of covariance estimation for complex
surveys, especially when the number of cells in the table is large, the Wald statistic may not perform
adequately, resulting in a high rate of rejection under a null hypothesis. A good study of this phenomenon is
given in Hidiroglou and Rao (1987).

In order to present the basic ideas for analysis of change we adopt the second approach. The transition tables
contain a small number of cells relative to the number of degrees of freedom of the estimated covariance
matrix.
A regular log-linear model, with the unknown proportions = replaced by their design-consistent estimators
p.is:

logp=XA+e. (3)

The error term € reflects the correlations among estimated proportions, as well as their heteroscedasticity. It
is centred at zero and has the covariance matrix V_ which is approximated by expression (4) (using Taylor

linearization):
V, = D'vpD, 4)

where D =diag { ti. Now, the estimator of A (the vector of parameters) can be obtained by the weighted
least squares method as
I-x'v'x)'x'V " logp.

with its covariance matrix estimated by a consistent estimator
Yy - g

The residual term
W, = (logp-X1) V. (logp-X%)

is asymptotically x* distributed under the null hypothesis of goodness of fit for the model. The number of df
of Wg , is g-r, where g is the number of cells size of the table, and r is the number of parameters in the model.

The next section contains some examples of log-linear models for analysis of change in 2x2, and more general
models for KxK tables.
4. MODELLING OF CHANGE

4.1. Change in a 2x2 table

To analyse change in low income (LI) status one needs to model categorical longitudinal data in such a way
that a test of goodness of fit of such a model is actually making inference about change. We begin with an
elementary situation with two waves (7=2) and two states (K=2). In order to emphasize components of
dynamics, Clogg, Eliason and Grego (1990) reparametrized the standard log-linear model. For example in a
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2x2 table, cells (1,1) and (2,2) define the “no-change” situation or “persistence” in the LI status (a=b=1) or
in the above the LI status (a=b=2), respectively . Similarly, cells (1,2) and (2,1) denote change from “low
income™ to “above low income”, and vice versa. The estimated proportions are p = {p, .5 ,.5,.P5, !> a

corresponding design matrix X is

1
llg 1 -l
1
1

and the parameter vector is A = (pu, A", A5, A%) . Here A" describes the persistence effect, A* expresses the
effect of change or the symmetry, and A” is a parameter that describes the temporal association between two
distributions of counts (at =1 and 1=2). ‘

To infer about transitions between the states, we first observe that the ratio of the transition rates from a given

state a at t=1 to states | and 2 at r=2 represents the odds Plla/PZI(l =N, /(N, -N,), a=12. Taking the
logarithm of the ratio we end up with an ordinary logit model
LY =log[Py,/(1-P, )] = 227 + 207, a=1.2. (5)

This model tells how transition rates vary with different states at t=1. However, since this model is saturated,
there are not enough degrees of freedom to reparametrize it to analyse change.

Another approach may be taken for testing a hypothesis on persistence (or on symmetry) in transition
probabilities. Assuming large-sample normality, a null hypothesis on persistence: P, e P, 2= 0 canbe tested
using the normal test. The variance of the difference can be estimated using the covariance matrix obtained
for the table of transition rates: V&r(ﬁ, L= Pm) = szr(ﬁl“) + V&r(f’m) —2C5v(ﬁ|“ . f’m).

Note that the interpretation of a test on persistence in the case of counts is different from the case of transition
probabilities. In the first case, H: AP=0, we test whether the number of people that remain in the same state

is identical for both states. In the case of transition rates, the null hypothesis H,: P, = P, , means that the
conditional probabilities of staying in the same state are identical.

As an illustration, consider Table A.l, which contains estimates of gross flows from two waves of SLID.
Models of persistence, symmetry and independence were fit to these data. Parameter estimates, with their
corresponding standard errors in parenthesis, are displayed in Table 1. Also included are Wald statistics for
goodness of fit of each model, computed using the estimated covariance matrix of the estimated counts (Table

A3).
Clearly, there is a substantial difference between the two states in the persistence of gross flows, with fewer

people stay in the LI state compared to people staying in the non-LI state. Similarly, fewer flow from the non-
LI state to the LI state, than vice versa, making the margins heterogeneous.

Table 1: Results for models of change applied to data on gross flows in Table A.l

P s
Models i 3 A 3 daf | Wald staistic

Independence {A* =0) 8522 (034) | O -1.290 (.059) 0.185 (.046) 1 765

Persistence (A" = 0) 8.540 (.035) | 1.094 (.034) | O 0.321 (.059) I 921
Symmetry (15 = 0) 7.909 (.040) | 0.958 (.035) | -1.164 (.038) 0 1 9.84
Saturated 7907 (.034) | 0.958 (034) | -1.133 (.038) 0.186 (059) |0
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Using the interpretation of the odds ratio, exp(4 A*), as the ratio between the prevalence of the LI state at ¢
=2 among those that were in the LI state at r =1, and the incidence of the LI state at r =2, we may say that if
one was in the LI state in 1993, will be in the LI state in 1994, 45.77 times as likely as one would move there
who was not there in 1993.

The test of persistence for the transition rates gives a Z statistic with a value of -13.39 indicating that there is
a significant difference in the conditional persistence of the two states over time. Testing for symmetry in a
2x2 transition table is essentially the same as testing for conditional persistence.

4.2 Change in a KxK table

Some of the special models for square tables (see Bishop et. al (1975, p. 281)) can be adapted and used for
studies of change in a KxK contingency table when K>2. Without going deeper into explanation of these
special models we will briefly discuss their relevance for studying change.

In general, testing of marginal homogeneity (MH) via log-linear modelling is a difficult task since it includes
all counts (or proportions) in the body of the table (K?) and their variances and covariances (K*). Instead, we
perform two tests - one for symmetry and the other for quasi-symmetry and use their difference as a condilional
test on MH, provided that quasi symmetry holds.

A standard model that is useful for analysis of gross flows is the quasi-independence model (or the mover-
stayer model) introduced by Blumen, Kogan, and McCarthy, 1955. The basic assumption is that the
longitudinal respondents are either movers (meaning that they change their response categories from wave to
wave), or stayers (meaning that they keep the same response category in two waves.) If we can separate movers
from stayers, the contingency table for stayers would have all off-diagonal elements equal to zero, while
movers could exhibit total independence. Since there is no way to separate movers from stayers, we may model
the conditional independence of the off-diagonal cells through a quasi-independence model.

Quantile groups as defined in (1) are ordinal categories; their ordinality may be used to define a logit model
for transition rates for adjacent guantile groups. First, the ordered scores | u;” I and{ uéh } are assigned 1o

the quantile groups at t=1,2. Then,

log(Pb.na/Pb;a) =log (N, ,., IN,,)= }'5:231'}‘;2) i (“1:3):'“;2)) “;n- (6)
For unit-spaced scores {ubm I, model (6) simplifies to log (Pb,,|a/Pb:a) =B, +a u!" where B, = Af", —Af).
An interpretation of parameter « is the following: for a person that was in the a+1 group at ¢ =1. the odds of
transition to the quantile group b+1 instead of the quantile group b at 1=2 differs by a factor of exp(«) from
the same odds for a person who was in the a group at t=1. The equivalence of the logit models for transition

rates to the log-linear models of proportions or counts provides a clear way for parameter estimation and testing
of goodness of fit.

As an illustration of application of these special models consider Table A.2 which is a 5x5 table of estimated
counts and proportions for the principal domain in 1994. Variable Y is categorized into 5 categories which are
time dependent. This has an effect in estimation of the covariance matrix, see section 2. All tests were
significant at the .05 level (see Table 2). A particular interpretation of & =0.6 and exp( . )=1.82, from model
(6). is the following: a person that was in the second quintile group in 93, has an odds of moving up to the third
quintile group in 94 that is 1.82 times higher than a person who was in the lowest quintile group in 93.

Table 2. Test results for models applied to data from Table A.2

Model df | waid Statistic  (x?) || Mede! 47 | Wald Statistic xH
Independence 6 164.98 (12.59) || Quasi-symmetry 6 19.69 (12.59)
Marginal Homogeneity 4 Conditional MH 4 418 (9.48)
Symmetry 10 23.87 (18.31) || Quasi-independence 1} 46.11 {19.68)
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5. SUMMARY

The idea for this paper was to provide analysts with a set of tools for inference about change based on
longitudinal categorical data. Estimation of gross flows and transition rates and their variances is only a
starting point on which the next stage, the modelling of change, relies. Models of symmetry, marginal
homogeneity and independence are modified and applied to data with temporal dependencies. Examples using
real data from SLID are chosen to support the selection of methods.

Methods for inference on change based on more than two waves would be a natural extension of this material.
Some models could be directly extended, others require additional theory and modifications to suit the
complexity of longitudinal surveys. These methods include hierarchical modelling for multi-way tables, and
Markov models for transition rates. Another direction would lead toward incorporating covariates in modelling
of change. distinguishing cases of fixed and time-varying covariates.
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APPENDIX

Table A.1 Gross Flows (in thousands) and
Transition Rates Into and Out of Low
Income (LI) Status Between 1993 and

Table A.2 Gross Flows (in thousands) and Transition
Rates Between Income Quintile Groups in
1993 and 1994

1994
I 1994 1993 Income quintile group in 1994
i L1 Status Non-LI Status Total First |Second | Third |Fourth | Fifth | Total
N . =2231 N.- 864| N = 3095 First 3722 1152 292 118 52 5336
LI Status ; i3 &
P, -0.72] P, -0279 0.697| 0.216] 0.0s55| 0.022| o.010
N. -1255 N,,=22484| N, -23740 Second 920 3019 1001 249 105 5295
Non-LI 2 = .
iai P, ,-0.083 P, ,-0.947 0.174| os70| 0.as89| o0.047] o.020
Total N‘_I = 3486 N_,=23348| N-26835 Third 312 761 3012 1139 129 5354

Table A.3 Covariance Matrix for 2x2
Gross Flows Table A.l
(x 10%

Cov N, N, N, N,

N 23323 1830 3347 -7245

N, 5990 918 575
N, 12326 -11294
N, 41273

= 3

0.058| 0.142 0.563| 0.213] 0.024

Fourth 234 325 835 3038 1007 5439
0.0431 0.060 0.153| 0.559| 0.185
Fifth 169 106 233 801 4103| 5411

0.031| 0.020 0.043| 0.148) 0.758

Total 5358 5362 5374 5345 5396| 26835

Table A.4 Covariance Matrix for 2x2 Transition

Rates Table A.1
(x 104
Cov B P, Pies P
PI ' 4.377 -4.377 0.053 -0.053
ﬁl x 4.377 -0.053 0.053
B 0.237 -0.237
p 0.237
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EVALUATING NONRESPONSE ADJUSTMENT IN THE CURRENT
POPULATION SURVEY (CPS) USING LONGITUDINAL DATA'

2 3
Brian A. Harris-Kojetin and Edwin L. Robison

ABSTRACT

The purpose of the present study is to utilize panel data from the Current Population
Survey (CPS) to examine the effects of unit nonresponse. Because most nonrespondents
to the CPS are respondents during at least one month-in-sample. data from other months
can be used to compare the characteristics of complete respondents and panel
nonrespondents and to evaluate nonresponse adjustment procedures. In the current paper
we present analyses utilizing CPS panel data to illustrate the effects of unit nonresponse.
After adjusting for nonresponse, additional comparisons are also made to evaluate the
effects of nonresponse adjustment. The implications of the findings and suggestions for
further research are discussed.

KEY WORDS: Panel Nonresponse; Weighting

1. INTRODUCTION

Survey nonresponse occurs at several different levels, with individuals or households not responding at all
(unit nonresponse), not responding during one wave or more waves or panels of a longitudinal survey
(wave/panel nonresponse), or simply omitting certain survey items (item nonresponse). Ideally, one would
hope that nonrespondents are a random cross-section of the sample, reflecting the same demographic,
geographic, and economic groups as respondents. If this is the case, then one need not be concerned about
obtaining biased results from a survey in which there was some degree of nonresponse. However, it is
typically the case that nonrespondents differ from respondents on these characteristics (for reviews see
Goyder, 1987; Groves and Couper, 1998). Therefore, even surveys with high response rates may have
some degree of bias in their results to the extent that nonrespondents differ from the respondents.

Given that a survey has encountered some level of unit nonresponse, the survey manager is faced with the
decision of how to deal with it. Typically weighting adjustments are used to compensate for unit
nonresponse (Kalton and Kasprzyk, 1986) and a variety of different procedures and models can be used,
e.g., population weighting, sample weighting, ratio, and response propensity (for summaries of different
procedures see Kalton and Kasprzyk. 1986; Oh and Scheuren, 1983). The purpose of all these procedures
is essentially to increase the weights of the respondent cases to represent the nonrespondents. Nonresponse
weighting adjustments require some information about the nonrespondents and respondents as well as
assumptions about the differences between respondents and nonrespondents.

I Opinions expressed in this paper are those of the authors and do not constitute policy of the Bureau of
Labor Statistics.

2 Bureau of Labor Statistics, 2 Massachusetts Avenue N.E., Room 4915, Washington, D. C. 20212 USA.
3 Bureau of Labor Statistics, 2 Massachusetts Avenue N.E., Room 4915, Washington, D. C. 20212 USA.
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Of course, it is the nature of nonresponse that we almost never know exactly what we want to know about
survey nonrespondents. Since longitudinal surveys have a panel or wave component, some insights into the
characteristics of nonrespondents is available from information they provided on a previous or subsequent
panel or wave. For example, monthly labor force surveys with large sample overlaps from month-to-month
can use gross flow analysis to examine the "flow” of persons from respondent to nonrespondent status (and
vice versa) to understand better the characteristics of nonrespondents and the consequences of nonresponse
on labor force statistics (e.g., Stasny and Fienberg, 1985). In previous research using the Current Population
Survey (CPS) we found that persons who were nonrespondents to the CPS one-month had higher rates of
unemployment, labor force participation, and employment than those who were respondents both months
(Tucker and Harris-Kojetin, 1997).

The purpose of the present research was to utilize longitudinal data from the CPS to identify specific
differences between respondents and nonrespondents, and then to evaluate the CPS nonresponse adjustment
procedures by comparing respondents and nonrespondents after the nonresponse weighting adjustment.
Because the normal CPS processing is done separately on each monthly file, we created a longitudinal file
that resembled as closely as possible a typical monthly file so that we could simulate the nonresponse
adjustment as accurately as possible. In the current paper, we present preliminary analyses comparing the
characteristics of nonrespondents to respondents using information obtained in months in which there was
an interview, We then used similar procedures to the CPS nonresponse adjustment procedures (o see how
well the adjustment compensates for the differences observed between respondents and nonrespondents on
demographic and labor force characteristics.

2. METHODS

2.1 Design of the CPS

The CPS is the monthly household labor force survey for the United States conducted by the U.S. Census
Bureau for the U.S. Bureau of Labor Statistics. Approximately 50,000 eligible households are sampled
each month in a two-stage clustered design. Households selected for the sample are interviewed for 4
consecutive months, are not interviewed 8 months, and then are interviewed again for 4 consecutive months.
Furthermore, in any given month, one eighth of the sample is composed of households participating for the
first time (month-in-sample 1: MIS 1), one-eighth the second time (MIS 2), etc. All households, except
those in for the first time and the fifth time, were in sample the previous month; and, therefore, % of the
households are the same from month-to-month.

2.2 Data used in the Present Study

In order to replicate as closely as possible the typical monthly nonresponse adjustment to CPS, we created a
longitudinal CPS file that consisted of eight “cohorts” who were in the CPS sample for the full 8 months
over a 22-month period. Data for the present investigation were drawn from the eight cohorts that
completed all of the eight months-in-sample (MIS 1-8) since their initial selection during or after April
1996. The first cohort began in April 1996 and finished in July 1997. and the last cohort began in
November 1996 and completed in February 1998. This file is similar to the monthly CPS files that contain
eight rotation groups. This data set includes a total of 69,618 households.

We included in our analysis file 51,289 households (about 74% of all the households in the sampie during
this time) that were eligible for interview all of the months that they were in sample. Of these households,
7148 (13.9%) had some combination of interviews and nonresponses (i.e., refusals, noncontacts, other
noninterviews), while 43,294 households (84.4%) were interviewed all months they were in sample. There
were an additional 8§47 (1.7%) households that were nonrespondents all months they were in sample that are
not included in any analyses. These complete nonrespondents represented less than 11% of the
nonresponding cases. A total of 123,539 persons (87%) were in households that were interviews all their
months in sample and 18,604 persons (13%) were in households that had at least one interview and at |east
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one nonresponse. For purposes of the present paper, we do not distinguish between persons who were
within the household all eight months and those who may not have been living in the household one or more
of those months.

2.3 Nonresponse Weighting Adjustment

The current CPS unit nonresponse adjustment is performed within sample PSUs that are assigned to clusters
that are similar in Metropolitan Statistical Area (MSA) status and size, and generally are within the same
state. Similarly, non-MSA PSUs are also assigned to clusters with other non-MSA PSUs. Each MSA
cluster is split into separate cells for “central cities” and “not central cities,” while non-MSA clusters are
split into separate cells for urban and rural areas. There are currently a total of 250 nonresponse-
adjustment-weighting cells in the CPS. These cells may be collapsed if there are fewer than 50 unweighted
interviewed households in a particular cell or if the nonresponse adjustment factor exceeds certain limits
(see below). Typically. less than 10 cells are collapsed in a month. In the current dataset, after collapsing,
there were a total of 242 cells.

The unit nonresponse adjustment factor is normally computed in CPS by dividing the total number of
weighted, eligible households within a nonresponse adjustment cell by the weighted number of interviewed
households. This has the effect of weighting up the respondent households to equal the total number of
(weighted) eligible households. This was also performed in the present investigation except that we treated
the complete respondents (interviewed all months they were in sample) as the respondents and treated the
partial respondents (interviewed at least once with at least one nonresponse) as the nonrespondents. This
adjustment factor was then multiplied by the baseweights to create a nonresponse-adjusted weight.

3 RESULTS

3.1 Comparison of Complete and Partial Respondents on Demographic
Characteristics

In the initial analyses cases were weighted to reflect the probability of selection. All statistical tests and
calculation of standard errors were conducted in WesVarPC (Westat, 1997) and take into account the
complex design of the CPS sample. Due to space limitations, only some characteristics are shown in Table
1. The second column shows the percentage distribution for each characteristic for the complete
respondents and the third column shows the distribution for the partial respondents. There were significant
differences between partial and complete respondents for region of the country, urbanicity, and poverty of
the area (all p's < .01). There was a relatively greater proportion of households thal were partial respondents
in the Northeast and West and in central cities, and in high poverty areas, while a relatively greater
proportion of households were complete respondents the Midwest, South, in rural areas, and in low poverty
areas. Partial respondent households were also relatively more likely than complete respondent households
1o be occupied by renters, have fewer persons living there (1 or 2), and to be headed by a single person (all
p’s < .01). In addition, members of partial respondent households were relatively less likely to answer a
question on total family income than members of complete respondent households.

There were also significamt differences between complete and partial respondents on a variety of person-
level demographic characteristics. Households that were partial respondents were relatively more likely to
contain persons who were Black, Hispanic, who had graduated college, who were 25-54 years of age, who
had never been married, and were not related 1o the householder than households that were complete
respondents. Complete respondent households were relatively more likely than partial respondent
households to contain persons who were white, under 19 years old or over 65 years old, who had not earned
a High School Diploma, and who were married.
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Table 1. Comparison of Partial and Complete Respondents and Comparison of Estimated Total
(Nonresponse Adjusted Complete Respondents) with Actual Totals (Complete and Partial Respondents).
(Percent Distribution with standard errors in parentheses; * p <.05, **p <.01)

Characteristic Partial Respondent Complete Respondent Estimated Total Actual Total
Number of Persons
1 27.44 21.64** 21.67 22.45**
(.82) (.27) (.28)
2 33.74 311.43%% 31.34 31.76*
(.56) ' (.18) (.19)
3 16.38 17.63* 17.62 17.45
(.56) (.22) (.23)
4 13.60 16.78%* 16.78 16.34*
(.50) (17 (.18)
5 or more 8.84 12.52F* 12.59 12.00**
(.27) (.17) (.18)
Household Income
DK/Refused 16.57 4.82%* 4.84 6.47**
(.80) (.10) (.10)
Race
White 78.94 84.25%* 83.96 83.56
62) (.25) (.25)
Black 15.60 11 018% 11.13 11.60
(.47 (.30) (.30)
American Indian 1324 95 .95 .97
(.20) (.05) (.05)
Asian/Pacific Islander 4,34 3.80 3.96 3.87
(.48) (.21) (.22)
Age
0-15 years 20.57 22.80** 22.82 22.51*
(.47) (.12) (.13)
16-19 years 5.48 6.26** 6.24 6.16
(.24) (.09) (.09)
20-24 years 7.09 6.95 6.94 6.97
(.38) (.07) (.07)
25-34 years 17.18 14.84** 14.88 15.14%*
(.31 (.10} (.10)
35-44 years 18.30 161574 16.18 16.44*
(.33) (.11) 1hy)
45-54 years 13.56 12.48** 12.47 12.62
(.24) .14 (.15)
55-64 years 8.25 8.04 8.02 8.06
(.18) (.09) (.09)
65 + years 9.56 12.47** 12.44 12.09*
(.21) (.16) (.16)
Education
< High School 18.90 22.44** 22.45 21.97*
(.45) (.20) (.21
HS Diploma only 32.17 31.56 31.41 31.64
(.43) (.28) (.29)
Some College 25.11 25.42 25.38 25.38
(.38) (.16) 17
Bachelors Degree + 23.82 20.59** 20.75 21.02
(.62) (.28) (.27)
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In the next phase of analyses. the nonresponse adjustment cells were used to create weights for the complete
respondents to bring them to a level that would reflect the total sample without including the partial
respondents. These estimated totals are shown in column 4 of Table 1. Because we know these
characteristics for the partial respondents, we can compare the estimated totals from the nonresponse-
weighted complete respondents to the actual totals of the complete and partial respondents (shown in the
last column of Table 1). We used the standard errors of the estimated totals to construct 95 percent
confidence intervals and tested whether the point estimate of the actual totals fell within the confidence
interval of the estimated total. All of the percentages in actual totals for region of the country, urbanicity,
and poverty of the area fell within the confidence intervals of the estimated totals. This is quite expected
since the nonresponse adjustment uses geographic information to create the weighting adjustment cells.
However. as can be seen in the last two columns of Table |, the nonresponse adjustment of the complete
respondents underestimates the percentage of one and two person households and the percentage of
households that did not provide income data. The actual totals for the different racial groups all fell within
the confidence intervals of the estimated totals, but the nonresponse adjustment of the complete respondents
overestimates the percentage of children less than 15 years old and adults over 65 years but underestimates
the percentage of adults age 25-44 years. The nonresponse adjusted complete respondents also
overestimates the percentage of persons with less than high school education (see Table 1).

3.2 Comparison of Complete and Partial Respondents on Labor Force
Characteristics

Unlike most of the demographic characteristics noted above, a person’s labor force classification may
change from month-to-month during the time that they are in the CPS sample; therefore, one cannot
determine with certainty a person’s labor force classification during the months the person was a
nonrespondent. However, for illustrative purposes, we can compare the differences in labor force
classification between the complete respondents and partial respondents by using the labor force status of
the partial respondents each time they were interviewed and had a labor force status. Given space
limitations we will ignore the month-in-sample and count complete respondents eight times. while partial
respondents may be counted at most seven times, since they had at least one nonresponse. As can be seen in
Table 2, partial respondents were relatively more likely to be in the labor force, to be employed, and to have
a higher unemployment rate than complete respondents. As can be seen in the last two columns of Table 2,
the nonresponse adjustment of the complete respondents underestimates the percentage of persons who are
in the labor force and the percentage employed.

Table 2. Comparison of Partial and Complete Respondents and Comparison of Estimated Total
{Nonresponse Adjusted Complete Respondents) with Actual Totals (Complete and Partial Respondents).
(Percent Distribution with standard errors in parentheses).

Labor Force Status Partial Respondent Complete Respondent Estimated Total Actual Total
All Months-in-Sample

Civilian Labor Force 67.99 65:29%* 65.23 65.56*
(.52) (.14) (.13)

Employed 64.71 62.36%* 62.28 62.60**
(.48) .13 (a2

Unemployment Rate 4.83 448 4.52 452
(.17 (.08) (.08)

*p <05, **p<.0]

4 DISCUSSION

The present results have possible implications for post-survey nonresponse adjustment procedures as well
as field procedures. Current CPS nonresponse adjustment procedures utilize only geographic information.
The present results show that this is insufficient in reducing nonresponse bias for some demographic and



labor force characteristics. A major obstacle in improving unit nonresponse adjustment is the fact that very
little information is currently obtained in the field about nonrespondents. Changes in field procedures that
put more emphasis on obtaining more characteristics of the household and persons living there is essential
in furthering research and understanding of nonresponse and improving nonresponse adjustment (Groves
and Couper, 1995; Madow et al., 1983). In addition, further research should also be conducted on utilizing
prior information obtained from the household for use in making nonresponse adjustments. Although this
would not help with the cases their first month-in-sample, these data are potentially very useful for
nonresponse in other MIS, and there are many more possibilities for enhanced and refined nonresponse
adjustments. The current results suggest efforts in this area may be quite worthwhile.

The nonresponse-adjusted weights used in the present investigation did not include the later stages of
weighting that are conducted as part of the normal monthly estimation process in CPS. These adjustments,
because they use demographic data, are likely to have larger effects on reducing these kinds of differences
observed between respondents and nonrespondents. The effect of these weighting adjustments on reducing
the observed differences between respondents and nonrespondents is an important next step in this research.
In addition, although nonresponse adjustment procedures have typically not taken into account the kind of
nonresponse, it may be important to distinguish between refusals, noncontacts, and other noninterviews
because the underlying causes of each type of nonresponse may be quite different. Recently, Groves and
Couper (1995, 1998) have shown that contact with a household and refusal to participate have different
correlates and have suggested that models based on these could be used to improve nonresponse adjustment
procedures. This approach represents a promusing area for further research.
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CALCULATION OF CHANGE FOR
ANNUAL BUSINESS SURVEYS

Pascal Riviére'

ABSTRACT

The disseminated results of annual business surveys inevitably contain statistics that are changing.
Since the economic sphere is increasingly dynamic, a simple difference of aggregates between n-1
and n is no longer sufficient to provide an overall description of what has happened. The change
calculation module in the new generation of annual business surveys divides overall change into
various components (births, deaths, inter-industry migration) and calculates change on the basis of
a constant field, assigning special importance to restructurings. The main difficulties lie in
establishing subsamples, reweighting, calibrating according to calculable changes, and taking
account of restructurings.

KEY WORDS: Change; sampling; business demographics: restructuring.

1. INTRODUCTION

Annual business surveys are conducted in France by six survey sections, respectively covering
manufacturing, agricultural and food industries, commerce, services, construction and transportation. In
the new generation of business surveys, a number of statistical methods have been adjusted and refined in a
way that is common to the various survey sections.” The calculation of change is one of the topics being
investigated. The entire problem lies in determining relevant changes. that is, in taking account of an
breaking down the group of factors that contribute to the change in an economic aggregate.

The change calculation module described here, which is common to the various annual business surveys,
applies to some fifteen core variables used in all those surveys (number of employees, sales, value added,
etc.), and additional variables considered useful by individual survey sections.

2. BASIC CONCEPTS

Consider a quantitative variable X for which we want to calculate the change from one year to another. Let
T, denote the total of this variable for the industry considered in year n. In itself, this calculation poses no
particular problem. The change in the variable between n-1 and n is written as follows:

Tp =Th-

N
7'n—l

Am/p-t =

But this expression, while not false, yields only an "apparent change”, and is not sufficient to truly
represent the change, since from one year to the other the field for which the aggregates are calculated has
evolved, owing, for example, to the demographics of the units. If we want to represent the change over the

' Pascal Riviere, INSEE, Timbre E210, 18 Bd A. Pinard, 75675 PARIS CEDEX 14
? See Riviere, 96b.



period realistically, it is therefore necessary to provide other information: to break this change down
among different subpopulations, to attempt to determine changes on the basis of a constant field, etc.

Thus, in practical terms, the change calculation module provides two indexes: apparent change, described
above, and "pure” economic change (in which inter-industry shifts and restructurings are dealt with);
added to this, for each change, is the breakdown of these indexes into different components: ongoing
firms, deaths, births, firms migrating from one industry to another, and restructured firms.

It should be noted that the "births" category includes units that were inactive the previous year: by the
same token, businesses that become inactive are included in the "deaths” category. The "entries to the
industry” category includes units that were outside the industry in n-1, and, the "exits from the industry”
category includes for purposes of apparent change firms that have left the industry, but these are not taken
into account in determining economic change.

Calculations were carried out by activity, in the entire field, in NAF (nomenclature d'activités fangaise -
French industrial classification) or in NES (nomenclature économique de synthése - general economic
classification). The level of detail (class, group or division in NAF) is a parameter of the program.

For the part of the change calculation that concerns restructurings, we have restructuring envelopes, which
in particular include the list of input units (reflecting the situation before restructuring) and the list of output

units (representing the situation after restructuring): this enables us to calculate changes on a "constant
field" basis.

3. FORMALIZATION?®

The population is divided into six categories, numbered as follows:

(nH Ongoing firms: firms that exist in n and n-/ and remain in the industry
2) Firms created in n

3) Firms that ceased to exist inn

4) Firms that entered the industry in n and were not in the industry in n-/
(5) Firms that exited the industry in n

(6) Firms that have taken part in a restructuring.

Let T,f denote the total of variable X for all firms in category &, belonging to the reference universe in year

n, for the industry considered; T:—I will also be the total for category k, but for year n-1; T, and T, _,

will be the respective totals of the variable for the industry, regardless of the category, in n and n-1.

k| Apparent change

6 6
We therefore have: T, = X T,f s Tp =X T:_I . The apparent change A,/ p—) 1S rewritten as:
k=l k=1

Ta+Ts +Ta +_T,§’ Ty -1 -1} -1

Ap/p-1 = a e = F_i e n-1 2)
n—
k k X
4 B, % T
Suppose that of =1! , and fo—l =1."'!, = Tn _Tn =ak (1+A,/n0).  After simplifying, we
4 n-| n fp-

obtain:

* This section is largely based on Christine, 95.
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In this expression, the af elements represent the "weight” of firms in category k, for variable X, in relation

to all firms at time r; Al and A8 represent category-specific changes, associated with categories |
(ongoing firms) and 6 (restructured firms) respectively:

1 1 6 6
] Ty _Tn--l A6 Th —Tn—l
A= . k = P (5)
Tn—l Tn-l

Equation (3) gives the breakdown of the apparent change into its constituent parts. Here it is necessary to
distinguish between contribution, change and weight: thus, the weight of ongoing firms is a:'_l . their

- A': the contribution of categories 2 and 4 is of the form

change is Al and their contribution is o

af, (144, /n-1). and that of categories 3 and 5 equals —af,_l. Formula (4) shows the advantage of

providing an equation solved in Ay /.
The objective of the change calculation model is therefore to estimate:

1

S 6 2 4 52 4
o RPN MY and oy, Bn—l and Bn-l'

3
10 &

- weights a il

= changes Al and A%;
1 6 A(’

- the 6 contributions: o' .Al, o2 (1+A J—o od(1+a -0 a
of MR A n/n=1p"%, 1,%n n/n-1h=%, 1%,

3.2 Pure economic change

Our objective here is to calculate a "constant field" change. For this purpose, we will take as our basis the
list of units in industry s in year n (plus the units of s that ceased to exist in n). Thus, for the units entering
industry s in n, we will recover their data for n-1, even though they were not in the industry at that time.
Conversely. units leaving the industry between n-1 and n will not be taken into account in the calculation.

The constant field principle also calls for a special treatment of restructurings: in economic change, a unit
that is part of a restructuring will be assigned to the industry to which its restructuring envelope belongs,
and not to its own industry.

Lastly, we will systematically take account of the employment size group in the calculations: we always
place ourselves in a given industry s and a given employment size group .

Following a breakdown similar to the one for apparent change, we thus recalculate an overall change. We
again break this change down into 6 factors, but they are no longer entirely the same. This time the factors
are: ongoing firms remaining in the same employment size group; births; deaths; entries to the industry;
firms that have participated in a restructuring; and entries to the employment size group (ongoing units
which did not migrate from another industry, but which belonged to another employment size group in n-
1). The economic change is written in the following form:
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If we compare this to the apparent change, we observe that logically, the term for firms exiting the industry
disappears by construction, and that the category of ongoing firms has split into two (category 11,
consisting of those that remain in the same employment size group; and category 12, comprising those that
have changed from one group to another). The specific changes are also more numerous. once again by

construction.

Note: while the apparent change may be calculated by any user of statistics, this is not the case with the
economic change. Thus, it will not be necessary to calibrate according to some total, since it is in fact the
sum of the components that yields the economic change.

4. PARTITIONING UP THE SAMPLE

One of the difficulties of calculating change lies in determining the subsamples that will be used as the
basis for the calculation, in n and n-1. This determination is closely linked to the tool used to draw the
samples. This is described in detail in Riviére, 96a.

4.1 Characteristics of samples

For drawing samples, annual business surveys use the OCEAN sample selection and co-ordination system
[OCEAN: outil de coordination des enquétes annuelles - annual surveys co-ordination tool]. used in France
since 1990 and described in Cotton, 1989. The draws are stratified simple random samples. The
stratification variables remain the same from one year to the other: main activities at the finest level,
employment size group, region. The strata do not change, except for the recent introduction of a new
employment size group. There is a take-all portion to the sample, roughly corresponding to units with at
least 20 employees. Clearly, then, many elements remain unchanged, but the sampling rate per stratum can
vary in relation to the previous years.

The OCEAN sampling frame is divided into two parts, of equal size in expectation. From one year to
another, one of these two parts remains the same: exactly the same units are retained; this is what is known
as the retained part of the sample. In the second half-frame, a new sample selection. independent of the
preceding one, is carried out: this is the renewed part of the sample. The following year, we switch: the
renewed part will be from the first half-frame. and the retained part from the second.

4.2  Determination of subsamples

The theoretical definition of subpopulations does not pose any major problem. On December 31 of year n,
in the annual business surveys database, the unit has a certain number of characteristics: inclusion in the
field or not, status (active or not), main activity, employment size group. presence of absence of
restructuring. This information, in n-1 and n, is sufficient to determine the change category to which the
unit belongs.

Putting this into practice is not as simple a matter, since in fact we do not have this information for the
entire sampling frame. In particular, when a unit is new to the sample, it is not possible to know whether or
not it has migrated from another industry or become in scope between n-1 and n.

There are two cases in which we have all the information: firstly, births, identified in the inventory; and
secondly. restructurings. Since we are confining ourselves to known restructurings from the CITRUS
system. they are identified, in effect by construction.

In the other cases, it is essential to focus on a subsample for which the information is available. For this,
we confine ourselves to units from the sample for year n that were already in the n-1 sample. All that is
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necessary, then, is to take the retained part of the sample, plus what is called the "renewed-retained” part:
units in the renewed part that were sampled in n-1.

5. ESTIMATION

The subsamples for the different change categories are now defined, in n-1 and n. Combining them yields
an overall subsample. to which our estimates will then apply. Now we must first determine the new
weights to be applied to the units for the purpose of calculating change, then specify the estimators.

5.1 Principles

The principle for determining weights 1s, in the initial approximation, fairly straightforward:

- the weight would be equal to | in the take-all portion;

- it would be equal to the sampling weight where we have the entire sample for the calculation of
change:

- it would be equal to twice the sampling weight when we are working on the part retained between
n-1 and n.

However, such a method cannot be applied. owing to four supplementary effects:

- the presence of a "renewed - retained part”, of variable size;

- the existence of tabulatable units that we do not want to incorporate into the calculation of change;
- the possibility that a sample will change in size;

- the fact that reweighting must depend on the change category considered.

In what follows. we will deal solely with the reweighting due to the renewed-retained part, as well as the
matter of changes in the sampling rates.' Note that in the case of units participating in restructuring, the
weight to be applied is always rate j fraction and the problems described below do not arise.

5.2  The problem of the renewed - retained part

We will place ourselves in a given survey stratum s in year n. This stratum may be divided in two: into a
retained part and a renewed part. By construction, the sum of the weights of the units in the retained part
must be equal to the number N of units in the stratum divided by 2. Our goal will be to multiply each
weight by a factor A. so that the sum of the weights will be equal 1o N.

Ip,

1€ refained - part

2p,

1€ retained — part ~extended

We can easily find: A=2 )]

5.3 Change in sampling ratio between n-1 and n

If the sample size varies between n-/ and n, the question that arises is no longer that of the multiplicative
factor, but rather of the sampling weight by which that factor will be multiplied - which of the two? Of
course, the question does not arise for births, firm resuming activity, firms returning from out of scope and
deaths. For the others, the idea, insofar as possible, ° is to calculate changes by taking account of the same
units in both periods: it is in fact the overlap between the two samples that is taken, if we refer to the
definition of the subpopulations. Thus, if one sample contains the other, it is the smaller one that will serve
as our reference, meaning that we will use the higher weights.

“ For further details on the rest, see Rivire, 98.
% That is, except in one specific case, namely where take-all thresholds are crossed.
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Consequently, in all calculations, the sampling weight ¢; to be used will systematically be:
qi =max(p,-(n),p,- (n—])) instead of p;,exceptif p; equals 1.

5.4  Calibration
The aggregates T,, and T,_; are actually estimated, independently of any calculation of change.
Applying the Horvitz-Thompson formula, let f‘,, and f',,_l denote the corresponding estimates. Then

T, =:‘;Pniym’ 3 Tpy = ?Pu—l,i Yn—l,i (8)

Since these aggregates are published, the apparent change is accessible to any user of statistics. But is
happen that if we calculate the six components of the change in the "natural” way, there is every change
that in adding them up, we will not obtain the apparent change, because the samples are different.

6
n-1’Tn12Tn
with the appropriate weight for each unit. In each case, we merely apply the formula, but we apply it to the

To solve this, we calculate the Horvitz-Thompson estimators of: T,l ,T’:_l . T,,2 o (] :—1 ,T,:‘ s T5 T6

subsample associated with each subcategory. We thus obtain estimators T and T _, .

The aggregates estimated by summing the contributions are therefore:

= =1 72 =4 56 5 =1 ~3 ~5  ~6
Tn=Tn, Tns In T i Ty =T,y Ty 0 Ty o T (%)
" - P A
Anditisclearthat Ay 1 = < n-l C- T [ O L
Tn—l T,,_]

To estimate the components of the change, note firstly that the components relating to newly created firms

and restructurings can be estimated as such: 7*-"2 =f,,2 . f,? - f,,6, f‘:_] = fr?—l )

The other Tl: components will be estimated on the basis that their share of the total, truncated (since we

remove Part 6 and possibly Part 2) is the same for fk and fk . This gives us:

o M Fem o A 5 RE
i F _F2_F6 i Tpo =T

nonT 8 {"6 (i=18) Ala : =l (i=135) (10)
Tn | Fp=¥y =iy R e =T

In short, this method of calculation, from which other parameters are deducted, ensures consistency with
the apparent change.

- 6. TAKING RESTRUCTURINGS INTO ACCOUNT

Since the 1996 fiscal year, restructurings have been incorporated into the annual business surveys database
by means of the CITRUS information system. which is described in Corbel, 1996. Restructurings
especially complicate the statistical analysis, particularly since they often involve very large units and thus
carry a heavy weight in the statistics. Thus a business enterprise absorbed by an industrial enterprise
simply disappears from the commercial sector. It will contribute negatively to economic changes in
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commerce and positively to those in industry. Large restructurings may therefore introduce breaks in
structural statistics, which it is important to be able to explain. This is why the CITRUS system is of
interest.

To be able to calculate constant-field change, CITRUS creates restructuring envelopes. Each envelope
contains the list of firms prior to restructuring and the list of firms after restructuring. For each envelope, a
main activiry for the envelope is also calculated. Thus, for economic change, the units involved in a
restructuring will be classified in the industry to which their envelope belongs, which may be different from
the industry to which the firm belongs. Finally, for each envelope, a multiplier known as the aggregation
coefficient is determined. The later is used for dealing with non-additive variables, such as the sales figure:
in the case of a merger of two units A and B, for example, the sales that took place between A and B in
year n-1 obviously no longer appear in n. To the extent possible, they must be eliminated from the
calculation. Hence the value of applying, when calculating the change in sales, a multiplier in n-1 to
eliminate the effect of "intra" exchanges.

Theoretically, all this lends itself to generating constant-field changes. In practice, things are not so simple.
For the 1996 fiscal year, we counted 816 restructuring operations in CITRUS, with the total amount of
assets transferred in all these operations exceeding 1 trillion francs. The 698 restructuring envelopes that
result for the annual business surveys contain 1,757 firms. For 716 of them, or nearly half, we have no
individual business survey data, especially in n-1 (units out-of-sample , outside the field, non-responding,
etc.). Calculating the aggregation coefficieni is therefore pointless in many cases; but above all, this lack of
data has a negative effect on the calculation of economic change as such.

While the idea of constant-field change for restructurings is not easy to put into practice, the fact remains
that the calculation of change provides the user with highly informative results. The problem, however, is
to sort through the mass of indicators. The challenge at this point, then, is no longer to refine the

calculalion methodology, but rather to develop another methodology - one that will enable us to make good
use of the results of this new program.
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VARIANCE ESTIMATION IN LONGITUDINAL STUDIES OF
INCOME DYNAMICS

Susana R. Bleuer' and Milorad S. Kovacevic’
ABSTRACT

We address the problem of estimation for the income dynamics statistics calculated from
complex longitudinal surveys. In addition, we compare two design-based estimators of
longitudinal proportions and transition rates in terms of variability under large attrition rates.
One estimator is based on the cross-sectional samples for the estimation of the income class
boundaries at each time period and on the longitudinal sample for the estimation of the
longitudinal counts; the other estimator is entirely based on the longitudinal sample, both for
the estimation of the class boundaries and the longitudinal counts. We develop Taylor
linearization-type variance estimators for both the longitudinal and the mixed estimator
under the assumption of no change in the population, and for the mixed estimator when there
is change.

Key Words and Phrases: Gross Flows, Longitudinal Proportions, Taylor Linearization.

1. INTRODUCTION

Estimates of gross flows and transition rates between different income classes from longitudinal
surveys are required in studies of income dynamics. The boundaries of these income categories are often
defined by linear functions of income quantiles which have to be estimated from the survey as well. For
example, one measure of income inequality that is frequently used, the low income line (Low Income
Measure). is defined as half of the median income, where income is adjusted for family size. Thus, estimators
of counts of transitions to and from "low income" require the estimation of the income medians at the time
period of interest.

In this study, the income class boundaries refer to the respective cross-sectional populations. We
estimate these from the cross-sectional samples to obtain design-consistent estimators. If the change in
population from one wave to the other is negligible, a longitudinal sample, defined as the intersection of the
cross-sectional samples, may represent the population at both time points, and we could estimate the tncome
categories from the longitudinal sample. Otherwise, estimation of income categories from the longitudinal
sample may yield biased estimates.

Two design-based approaches are considered for the estimation of gross flows and transition rates,
under the assumption of no births between the two waves. One approach is based on the cross-sectional
samples for the estimation of the class boundaries at each time period and on the longitudinal sample for the
estimation of counts of units in the longitudinal population (longitudinal counts). This results in an estimator
that we term the mixed estimator. The other approach uses an estimator based on the longitudinal sample for
both the class boundaries and the longitudinal counts, and we call it the longitudinal estimator.

On the other hand, if the number of births between the two waves considered is relatively large, a new
panel is usually added to the sample to represent better the population in the second wave. In this situation the
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longitudinal estimator would no longer have “good * properties.

The main objective of this study is to develop Taylor-linearization vanance estimators for these
statistics. Variance estimation has to take into account the variability of the income class boundaries, as well
as changes in the population over time and attrition. In section 2 we define the parameters of interest. In section
3 we define the longitudinal and the mixed estimators, and we state the conditions for their consistency. We
also show that the Taylor linearization method yields different formulas for change vs. no-change in the
population and attrition vs. no-attrition. For the calculation of the variance we assume that the model of
compensation for the missing data is correct and the resulting estimates are unbiased under the model.

2. CONCEPTS, ASSUMPTIONS, DEFINITIONS

Let U, represent the population at time #=0,1. We define the longitudinal population at times 0 and
Loy Uy, = U, nu ;- “Deaths” and “births"” from one time period to the next are considered as change in the

population. By “deaths” we mean real deaths and/or emigration; similarly, “births” means real births and/or
immigration. Let U, denote the set of individuals who belong to the population U, at time =0 and do not
belong to the population U, at =1 dueto*death”. Let U, denote the set of “births” fromtime O to I. Hence,
the population at ¢= | canbe expressedas U, = (U,\ Up) U Uy, and the longitudinal population can be then
expressed as U, , = U\U, = U/ \Ug. Let N, N, N, N, and N, denote the sizes of the populations
Up: Uy, Uy
Let s, and s, denote the samples representing the population U and U, respectively. Let s, be the

U,, and U, respectively.

sub sample of individuals in s, who “died” between 1 =0 and = 1, and let s, be the sub sample of individuals
in s, “bom” between =0 and 7 =1, such that s, is a representative sample of U,,, and s, is a representative
sample of U,. In this study the longitudinal sample is defined in terms of two waves by s, = s, (1 s,.

Non-respondents to the initial wave at r=0 exist but they are relatively few compared to non-
respondents in later waves. When there is attrition, non-respondents cumulate over time, and the longer the
study lasts, the greater is the non-response. For the sake of simplicity, assume that s, is a sample with the
initial non-response removed and with the associated weights already adjusted for it.

We assume a stratified two-stage design with a large number H of strata and relatively few clusters
or primary sampling units (PSU) sampled within each stratum. Although the number of strata does not change
from one time period to the next, the number of clusters within a stratum and/or the size of the clusters may
change to account for “births” and “deaths™ in the population.

Without loss of generality we consider only the longitudinal low income proportions. The results can
be extended easily to other parameters of income dynamics. Let Xuij and Yhii be the family income adjusted for
family size for the j -th ultimate unit in the i-th PSU of stratum 4 at times r=0 and r=1 respectively. For the sake
of simplicity we denote by j the individual j in cluster i of stratum 4. Then the proportion of individuals with
income less than or equal to x at time 0 and income less than or equal to y at time 1 is given by

NL
F(x,y) = TVL p> I(x; < x) I(y; < y) (H

L J=l
where N, is the total number of the units in the longitudinal population Uy, .7 is the indicator function.
F(x,y) is the bivariate distribution function of incomes at times 0 and 1. Note that the sum in (1) is over the
units in U, that did not “die” by r=1.
The Low Income Proportion at times /=0 and r=1(the two-wave LIP) is given by 60 = F(ll,) where
lo = M,/2 is half the median income at time 7=0 and /, = M, /2 is half the median income at 7=1. The

following situations arise:

1. No change in population: there are no births nor deaths from time r=0 to time r=1. The size of the
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longitudinal population coincides with the sizes of the marginal populations. Then the marginal proportions
of individuals with income less or equal than x and y respectively, can be expressed by
N

Fo(x) = F (x,+=) = X I(x; 5 x)IN, ,
J=
and N,
Fiy) = Fi(+=y) = L I(y;s ¥JIN,

ija
2. Change in population: there are either births or deaths or both, fromtime /=0 to time r=1. Then the marginal
proportions can be expressed by

Fo(x) = ¢y F (x,+) + ¢, F(x) ,

where ¢, = N, / (N, +N, ), ¢, = N, / (N, + N, )and F (x) isthe proportion of individuals in U/,

with income less than or equal to x, and

FY] d & Bl wag) & culPplil 5
where ¢, = N / (N, +Ng). ¢y = Ns / (N, + Ng)and Fy(y) is the proportion of individuals in U, with
income less than or equal to y.

3. Attrition: the model for non-response in the second wave 1s that of the observations missing at random
withinresponse classes (M.A.R.): pm(ll(r) = 1) = p, ifindividual jbelongs to response class “a”, where Ij(r)

is the response indicator for individual j. The corresponding weight adjustments are given by the inverse of
the probabilities of response: w; (r) = 1/ p_ if individual j belongs to response class “a”.

3. ESTIMATION

A ratio estimator of F(x,y) is given by
Fixy) = X w, I(x;s x) 1y, s y) / Yw, 2)

where the sum is over the sample elements and w; is the survey weight attached to the sample element j. We
set 1\70 = Zw/. The survey weights w, are chosen so that 1\70 F(x, ¥)/ N, is design-unbiased for F(x,y). We
denote by Fo(x), 1:"l (), fo, and f| the estimators of F(x), F (y),/,, and /| based on the complete sample
at time ¢ = 0,1, defined by Fo(x) = I:"D(x.ﬂo). ﬁl()') =S 150( +oo_ y), and 2[0 = 150'l (1/2).. Then, under the
regularity conditions, fo, fl‘ F and ﬁ(fo. in) are design-consistent estimators of .1, F and F(l, 1)
respectively. This result is a direct generalization of Shao and Rao’s (1993). We denote by F, i and /.  the
estimators of F,[ and [, based on the longitudinal sample and adjusted for non-response. The adjusted
weights are of the form wj(L) = wj'wj(r).

If there is no change in the population from time =0 to time =1, we consider the two design-based
estimators of 6, = F(/,.[,), namely,

Oped = F Ol By with 2f = F7' (12,1 =1, 2. 3)

and

Opng = F (I I with 2, = F' (12), 1=1.2 @)
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If there is change in the population, and the sample at time 1 contains a sub sample representative of
the births occurring from time ¢=0 to time =1, then we estimate the marginal proportions by

ﬁo(x) = ¢ F (x, +o) + ¢ FD(x)
where F p(x) is a domain estimator of F,(x), and
Fi(y) = ¢, F(+0,y) + ¢y Fg(y) ,

where £ () is a domain estimator of F(y), based on the birth component of the sample at time r=1. We also

define 2, = £ ' (1/2), t=0,1. We then consider the estimator of 6, given by

85=F (i, 1) (5)

In order to show “consistency” of estimators (3), (4), and (5) and to provide linearization variance
estimators, we need to assume a model for non-response and certain limiting conditions about the population
and the sampling design. By “consistency’ here, we mean that -6 -0 probability, where the probability
is defined in a product space determined by the model and the design (there exists a product space and a
probability measure defined on it, whose projection onto the design and the model probability spaces coincides
with the respective design and model probability measures (Bleuer, 1998)). The assumed conditions are similar
to those made by Shao and Rao (1993) for the linearization variance of the cross-sectional Low Income
Proportion. In addition, we also assume the attrition model described in the previous section. Therefore, we
assume the following: the design is stratified, multistage on a sequence of increasing finite populations, such
that, as the overall number of clusters in the sample increases (n - «), no survey weight is disproportionate
(basically. the sizes of the clusters are bounded): the sequence of finite population Low Income Measures are
bounded,; the finite population distribution functions converge to a distribution function which is differentiable;
the first derivatives of the limit distribution function are bounded from below and from above.

Then, under the assumption of no change in population, and under the model for non-response in the
second wave, we have the following results:

i. Both 8,,,,,, and 8, are “consistent” estimators of 8,
1. the longitudinal estimator of the two-wave Low Income Proportion is approximated as n — «, by:
Brane -8 = {FUlguly) - FUgd )} -a {F(205,2) -2} -a { F(=, 21)) - 13 6)
where

a, = F! (I, 1 )12F} 2, =),

X X
and

1 1
a, = F)(ly 1) /2F (=, 20,

where F ,' W F y' are the first derivates of the limiting distribution function. Thus 8 Long 1S @pproximated

by the sum of three terms: the first term accounts for the variability of the longitudinal proportion £,
and the second and third terms account for the variability originated by the estimation of the Low
Income Measures (LIM) [ and /,, respectively.

The three terms in (6) are weighted sums which together can be expressed as the estimator
of a single total based on the longitudinal sample:

Bpng =8, - Z, W) Z, =T w(L) (N Z,,

Long
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i

iv.

where the Z are finite population values which are functions of income indicators
I(x, < 1), 1y < 1), Ix, < 20), and I(y, < 21,). Hence aTaylor-linearization variance estimator can
be obtained in the form V(ﬁlmg) = ‘;’[ESLW‘I‘(L) Z/} note that the variance is taken with respect to the

model for non-response and the design.

the mixed estimator can be written as:
eMi.red_ a0 - (eLong- 60) * ( eMiXtd— elﬁng) (7)
where

Busces Brong = | Frliply) 1 2F )@y |-[F 2y ) - F 28 ] (8)

Expression (8), the second term in (7), accounts for the difference in estimating the LIM at time 0,
based on the initial sample s, before attrition occurred, and estimating the LIM at ime 1, based on

the longitudinal sample, already affected by non-response. The difference is, as n — «, a linear
combination of indicators of sample selection and response. and it can be approximated by

~

Optized = Otong ~ WAL (N - DZ},

where the ZJ are finite population values. Hence a Taylor-linearization variance estimator can be

obtained in the form
Vo, )=V ):‘ij(L) I(r +E,°(w}(L) i) - WE

where the variance is calculated with respect to the mode! for non-response and the design.

If g, is the minimum non-response rate among all the response classes, then the variance of the
difference between the mixed and the longitudinal estimators increases with g, and

Var(emm— e,m) / Vp 2:Q8 9)

where V_is the variance under a complete response model.

Under the assumption of change in the population, where the sample at time | contains a new panel
of births, and complete response, 90 is a design-consistent estimator of 6 and is approximated as

n— e, by
8, -8, ~ {Fgly) - Fgt ) - a{F2lp=) - 12} - a {F (=,21) - 112} .
~a, (Fp(21) - 12) -a,) ( Fy(21,) - 112), b
where

a,= ¢y FlUply) 1 2 (e (2y) + cp Fa20)].

al=cpFlllpl) 1 2 [6 F}(2Uym) + cn Fi( 20y
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a,=c,F)Upl)) 1 2 [e,Fl(=20) + ¢y F(21))] .
and

a) =cyFl(pl) 1 2 [e, Fl(=.20) + ey Fy2l)|

F p{(x) and F 5 () are the corresponding domain estimators of F,(x) and Fg(y) respectively.

Thus éois approximated by the sum of five terms: the first three terms account for the variability

originated in the estimation of F, and the LIM’s at times 0 and | respectively, and the other terms
account for the variability of the sample of individuals who “died”, s,, and the sample of individuals

who were “born”, s,.

The first four terms are linear combinations of sample indicators of the first panel and the
fifth term carry sample indicators of the new panel introduced at time 1, which was selected
independently of the first. Hence, the right side of (10) can be expressed as the sum of two
independent estimators of single totals and a Taylor-linearization variance estimator can be obtained
in the same way as in ii. and iii. above.

The proof of the consistency and the approximations follows similar arguments of Serfling (p.75,
1980) for the quantile of the ““superpopulation’ and Shao and Rao (1993) for the quantile of a finite population.
Our estimators differ from Shao and Rao’s in that they contain response indicators and thus we have to work
in a product space where the model and the sampling design “live” together (Bleuer (1998)). The complete
version of the proof will appear in a later paper.
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MARGINAL MODELS FOR REPEATED OBSERVATIONS:
INFERENCE WITH SURVEY DATA

JNK. Raol

ABSTRACT

In longitudinal surveys, sample subjects are observed over several time points. This feature typically
leads to dependent observations on the same subject, in addition to the customary correlations across
subjects induced by the sample design. Much research in the literature has focussed on modeling the
marginal mean of a response as a function of covariates. Liang and Zeger (1986) used generalized
estimating equations (GEE), requiring only correct specification of the marginal mean, and obtained
standard errors of regression parameter estimates and associated Wald tests, assuming a “working”
correlation structure for the repeated measurements on a sample subject. Rotnitzky and Jewell (1990)
developed quasi-score tests and Rao-Scott adjustments to “working" quasi-score tests under marginal
models. These methods are asymptotically robust to misspecification of the within-subject correlation
structure, but assume independence of sample subjects which is not satisfied for complex longitudinal
survey data based on stratified multi-stage sampling. We propose asymptotically valid Wald and quasi-
score tests for longitudinal survey data, using the Taylor Linearization and jackknife methods.
Alternative tests, based on Rao-Scott adjustments to naive tests that ignore survey design features and
on Bonferroni-t, are also developed. These tests are particularly useful when the effective degrees of
freedom, usually taken as the total number of sample primary units (clusters) minus the number of
strata, is small.

1. INTRODUCTION

In a longitudinal survey sample subjects are observed over two or more time points. Such surveys are suited
to study individual changes over time, unlike cross-sectional surveys. Applications of longitudinal surveys
include: (a) Gross flows: estimation of transition counts between a finite number of states for individuals in
a population from one point in time to the next. Such flow estimates are important to researchers and policy
analysts for understanding labor market dynamics. (b) Event history modelling; for example unemployment
spells. (c) Elimination of the effect of latent variables in regression models using individual changes in the
response and explanatory variables between two consecutive time points. (d) Modelling the marginal means
of responses as functions of covanates. (e) Conditional modelling of the response at a given time point as a
function of past responses and present and past covariates. Such models can provide better understanding of
the underlying dynamics than the marginal models (d). Binder (1998) gave an excellent account of the issues
related to longimdinal surveys.

Longitudinal surveys typically lead to dependent observations on the same subject, in addition to the customary
cross-sectional correlations induced by the clustering in the sample design. In this paper we focus on marginal
modelling and analysis of such longitudinal survey data. The case of a simple random sample of individuals
has been studied extensively in the literature, especially in the analysis of data occuring in biomedical and
health sciences. Liang and Zeger (1986) used generalized estimating equations, requiring only correct
specification of the marginal mean. They obtained standard errors of regression parameter estimates and
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associated “Wald” tests, assuming a “working” correlation structure for the repeated measurements on a sample
subject. Rotnitzky and Jewell (1990) developed “quasi-score” tests and “Rao-Scott” adjustments to working
quasi-score tests, under marginal models. These methods are asymptotically valid regardless of the true within-
subject correlation structure, but assume independence of sample subjects which is not satisfied for complex
longitudinal survey data based on stratified cluster samples.

In this paper, Wald and quasi-score tests for longitudinal survey data are proposed, using the Taylor
linearization and jackknife methods. These methods take account of the survey design features (clustering,
stratification, unequal sampling weights etc.) as well as the longitudinal feature and thus are asymptotically
valid.

2. INDEPENDENCE ESTIMATING EQUATIONS

Suppose the survey population U consists of M individuals and a sample, s, of individuals is selected using
stratified multistage sampling. Let denote the basic design weight attached to the k-th sample individual in
the i-th sample cluster (i =1,...,n,) from the A-th stratum (h =1,...,L ). In a longitudinal survey, the
sample s is observed over a specified number of time points, say 7, but in practice some of the sample
individuals may not respond. The sample weights of respondents, , on the first occasion are first adjusted for
unit nonresponse, and then subjected to post-stratification adjustment to ensure consistency with known
benchmark totals, e.g., age-sex counts obtained from external sources. We denote the final weights as w,,, ,
often called longitudinal weights.

Suppose that the i-th respondent is observed for T, occasions (I < T, < T and i € s, ); here “i” refers to some
“hik”. We assume that the responses are missing completely at random (MCAR), i.e., the response
probabilities for an individual do not depend on the missing responses and the observed responses, following
Liang and Zeger (1986). The data for the i-th sample individual (i € s, ) consists of ((y,.,,x,., ).1=1,...,T }
where y, is response on occasion f andx,, is a p x lvector of associated covariates. In the case of binary
response, y, =1 if subject i has the attribute at time 1, and O otherwise.

The marginal model assumes that the mean response p, =E_(y, ) is a specified function of x, and regression
parameters [3; in particular g (p, ) = x,T, P where g (*) is called the link function. With binary responses, the
logit link function g (pt) =log {pu/(1 - )} is a natural choice, leading to a logistic regression model. In this
section, we assume *“working” independence so that

cov(y,) =V, = diag (V,,),

14rsT,

where V= V,(u,) = var(y,) is the working variance. For example, in the binary response case,
VO(U,,) = IJ,-,(] '“,‘,)‘

The above formulation permits time varying regression coefficients. For example if 7 =2 and
g(p,) = o + Bz,,t=12, then we can define x, = (12,00),x,=(001z,) and
B=(ef b, )". In this case, it might be of interest to test the constancy of the slope coefficient over time,
i.e, Hy: B, = P, which is of the form H,:¢"B = Owith ¢ = (010 - 1).

We assume that the marginal model holds for the whole population of M subjects so that we get the “‘census”
model

glm)=xuB 1=1,. . Tii=1,..M 2.1

where T, now refers to the number of consecutive occasions the i-th population subject would respond if
contacted. We further assume that the population of M subjects is a self-weighting sample from a
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superpopulation obeying the marginal model. Itis not necessary to regard the population as a random sample
from the superpopulation. The census generalized estimating equations (GEE) are then given by

M
5(B) = }31 ol B =5, O50GE. D (2.2)
where
d a“n ()’,-, " My
u,(B) = e T (2.3)

Under general conditions, the solution of (2.2), B,,, is a consistent estimator of . We denote B,, as the
census regression parameter and make statistical inferences on [3,,, following Binder (1983). Such inference
are also valid for B under certain conditions. For simplicity, we do not distinguish between [3,, and B in this

paper.

Noting that the left hand side of (2.2) is the population total of u, (B), a design-consistent cstimator of
S5(B) = (S,(B)....S,(B) )', called the sample GEE, is given by

-

5(3) e (P2 Wh:k“m(p) =0 (2.4)

hikes,

where u,, (B) = Ly ( B)..., Ynikp (B) )" with iy, ( B ) obtained from(2.3) by changing i to “hik”. The
solution of (2.4), B, is a design-consistent estimator of §,,.

3. WALD TESTS UNDER WORKING INDEPENDENCE

Itis a common practice among social scientists and others to use normalized weights w,, = mw,., / Xs w,.,,
where m is the size of s, and then apply standard methods, using SAS or some other standard software
package. Using the normalized weights in the standard “sandwich” covariance estimator of ﬁ we get the
following naive covariance estimator:

w (8) - [#(3)]" [g whi.uh,,(a>uh,,<a)7) [(8)]" £k

where 1( ﬁ) is the estimated information matrix with

i(B) = - £, E,[0u,(B) ap | (3.2)
This follows by applying the Liang-Zeger sandwich covariance estimator formula to the census parameter:

v (By) = [7 (B )] hz Wyt (Bog ) s (B [I(BM)]-I (3.3)

ike U/

and then replacing each term in (3.3) by its estimator based on the normalized weights, W, Where I(B,,)
is the census information matrix with
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I(B)= - I E,[au,(B)/ ap | (34)

hike U

In the case of a simple random sample and no post-stratification adjustment, we have w, = 1 for all the sample
subjects i and (3.1) reduces to the Liang-Zeger formula.

Suppose we are interested in lcstmg a hypothesis of the form H,: BZ B,,. using the sample data
(Vs Xni ) s ik €5t = 1,1, | where B s pationed s B = (B, ,Bz) wih B, arx 1 veor ad P, ag x 1
vector (¢ + r = p). For example B, could represent interaction terms and we are interested in testing for
the absence of interactions, i.e., Bzo = 0. A “naive” Wald test of H, treats

Wy = (B, - Bl [mn(B)]" (B, - Ba) (3.5)

asa y’ variable with r degrees of freedom (d.f.), where v, » B ) is the submatrix of v, ( ﬁ ) corresponding
to B,. This test, however, is asymptotically incorrect under stratified multistage sampling or any othcr complex
sampling design. In fact, W, is asymptotically distributed as a weighted sum of independent x, variables,
where the weights are the cxgcnvalucs of a “design effects” matrix. As a result, the naive test could lead to
inflated significance levels relative to the nominal level, say 0.05.

Weassume that the sampling design provides consistent, asymptotically normal estimators of totals. Following
Binder (1983), under certain regularity condition, B is then asymptotically normal with mean B,, and its
covariance matrix, cov ( ﬁ ), can be consistently estimated by

v (B) = [F(B)]" »($)[F(B)]" (3.6)

Here

J(B) = -038(B)/ap" = - T wy, du,, /ap (3.7

hikes,

and v ( $) is the estimated covariance matrix of § () under the specified sampling design evaluated at
B - B. Notethat v (§) is obtained from a standard survey variance estimator, noting that S (B ) isthe vector
of estimated totals of u,,, (B),¢ = 1,...,p. However, the variance estimator used should account for post-
stratification and nonresponse adjustment For example, if the post-stratification indicator variables are
denoted by z,, ,hik € 5, and nonresponse is absent, then 4 (S) is the estimated covariance matrix of

Ep)- £ Wmem(ﬂ) where e, (B) = uy,, (B) - 2y B, with

hike s

~

-1
a4 [ L Wyt Zhit Z:u) [ L w2 uhm(ﬂ)] L0=1,...,p
Letting e, = n, X w,, em(ﬁ),We have
k

(8) -2 by B - ) e -] 38

where e, - X e, /n,. The formula (3.8) assumes that the first stage clusters are either drawn with
replacement in’ each stratum or the first stage sampling fractions are negligible.
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In the case of nonresponse with weighting classes cutting across post-strata, the formula for v ( S ) becomes
more complicated (see Yung, 1996, Chapter 4).

If post-stratification is not employed, then Wy = W, and we replace e, ( ﬁ) by u,, ( B)in(38) w0 get
v(S)

An alternative version of v, ( B) is obtained by changing J B )t i By, where 7 B) = E, Vi B)in(3.6).
We suspect that f ( ﬁ ) is more stable than J ( B ). Note that J B)-=E, Jq B) for logistic regression with
binary response.

It may be noted that post-stratification may not lead to increased efficiency because the model residuals
u,,, (B) may be unrelated to the post-stratifiers z,,, particularly when the model fits the data well.

The jackknife method can be used in a straightforward manner to estimate the covariance matrix of ﬁ An
advantage of the jackknife is that post-stratification and unit-nonresponse adjustment are automatically taken
into account, unlike the linearization method.

Using the estimated cov ( ﬂ) Wald test of hypothesis of the form H,:{y = C B = 0 arc readily obtained,
where C is a r x p full rank matrix of known constants and B is p x 1 vector (r < p). Under H,),

- ¢ (v, (B)CT) 4 (39)

is distributed asymptotically as x,, ay?® variable with rd f.,where § = CP. Therefore, the p-value assocxaled
with H, is computed as P | x > X} w(obs )], where X W( obs ) is the observed value of the Wald statistics X
More gencra] hypotheses of the form H,: ¥ = h(B) = 0canalsobetestedusing the Wald method, where h ( B )
isarx 1 vector. Under H,, we havc

— ﬁ;‘ v (3.10)

is asymptotically x’, where § = A () and ﬁ, =H(P) v, (B)H(B) with H(B) = dh(B)/ap.a
r x p full rank matrix.

4. QUASI-SCORE TESTS UNDER WORKING INDEPENDENCE

For the Wald tests, we have 1o fit the full model g (p,) = x! B which could lead to unstable estimates if the
full model contains a large number of terms. For example, with a factorial structure of explanatory variables
containing a large number of interactions we may be interested in testing the significance of interaction effects,
denoted as H,, : B2 Bzo = 0. Onthe other hand for the quasi-score tests we need only to fit the simple null
model, g () x,,, B, . where x;, (x,,, .xz,, )" . Moreover, the quasi-score tests are invariant to nonlinear
transformations of B, unlike the Wald tests (Boos, 1992). Rao and Scott (1996) studied quasi-score tests in
the context of cross-sectional survey data.

Let - (B] ,Bm)rbethesoluuonofS ([iI ,Bm) = 0,where S - (Sl .S )" is partitioned in the same way
as B. The analogue of the score test, called quasi-score test, is given by

eSS @.1)

where S = S ( ﬂ )and v ( S ) is adesign-consistent estimator of cov ( S ). We now sketch a proof to show
that X? P asymptoueallyx, under H,.
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Expanding S, (B) and S, (B ) around the true value B~ = (B], B3, )7 gives
0-5(8)=$(p)-7.(p -8) 42)
and
$, = 5,(p") - 7, (B, - B;) (4.3)

where J* =j(|3')isthevalueoff(ﬂ) = -08S(B)/op at B = B~ and J" is partitioned as

x no I
g -

n I
Now replacing J* by its expected value I* and substituting forB] - B, from (4.2) into (4.3), we get

S, = $,(B) = $,(8°) - 17, 1 S, (")

(4.4)

= X wh;k Uy (B. )
hikes,

where @,,, (B*) = uy,, (B") - A" u,,, (B )withA® = I, I° andu,, = (“mkv"zmk) It follows from
(4.4) that S is approximately equal to a vector of esnmated totals so that S is asymptotically normal with
mean 0 and covariance matrix cov(Sz) Thus X is asymptotically xf under H,. Note that E (Sz) 0
under H,.

Calculation of the quasi-score test X requires an estimator of cov ( S ). A jackknife estimator, v, ( S ) is
obtained in a straight foward manner. The Jackkmfe final weights, w,",w), when the (gj)-th sample clustcr is
deleted are obtained in the same manner as wh,,‘,usmgmejacklaufebasncwexghts Whikgy = Wy b, whereb . = 0
if (i) = @);n /(n, - 1)ifh=gandi »j;=1ifh »g. Replacing Wi by Whirg)» WE get 1S )(B) B(m
and Sz(w Sm’) (B ). Using Sz( ) We get

& (s-z) ; i ! (gz(m - gz)(gzw) -8 4.5)

Computation of B( o) (ﬁ]T( o)’ B;o )" can be simplified by performing only a single Newton-Raphson iteration

for the solution of $§ i) ( B,T 3 B;O ) = 0, using fi as the starting value. The jackknife quasi-score test (4.1) is
invariant to a one-to-one reparametrization of B with non-singular Jacobian, unlike the Wald test X, .

A Taylor linearization estimator of cov ( S ), denoted as v, ( S ), can also be obtained using the asymptotic
represcntanon (4.4) of S as a vcctor of estlman:d totals. We replace #,,,( B°) by

gy, (B) =uy, (B) - Au,M(B), where A is an estimator of A*, and then use (3.8) with um(ﬁ)
changed to uwt ( ﬁ ). There are several possible choices for B It nnght seem natural to use J ( |3) in place
of I, where J () is given by (3.7). For the special case of scalar B, (i.e., 7= 1) and one time point (i.e., 7,
= 1), Binder and Patak (1994) used this form of quasi-score test to construct confidence intervals for B,,
although their approach is different from that given here. This choice, however, does not have the desired
invariance property in general. We can get an invariant quasi-score test by taking the expectation of J B)
under the mean specification defined by (2.1), i.e. by using
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A o

Ipy= 'E TR th(ﬁ) Dmu(ﬁ)r I Vo (Bp) (4.6)

hikes,

where D, (B) = dp,, /0P with fi,, denoting the value of the mean y,, at B = f. Moreover, the
resulting test is likely to be more stable. Of course, for the binary response logistic regression case

i) = Jp).

Under the stratified multistage sampling set-up it can be shown that v, (§2) = v, ( 5'2). so that the jackknife
and Taylor linearization quasi-score tests are asymptotically equivalent.

More general hypothesesof the form H:§ = h(f) = 0 canalsobe tested using the quasi-score method. The
estimate [} under £, is obtained by solving

SB) -HPY A =0, h(p)-0 (4.7)

for P and A, where A is the r x 1 vector of Lagrange multipliers. Let S, = H(B) [F($))"' S (), then the
jackknife quasi-score is given by

= 5 v ($)1"' S, (4.8)

where v, ( S ) is the jackknife estimator of cov (S ) which is obtained in a straightforward manner from (4.5)

by changmg S to §, and § to §,

() h(xs)"

A Taylor linearization estimator of cov (5-',,), denoted as v, ( S » )+ can also be obtained using the following
asymplotic representation of §, :

=H'I'"'SB) -H (B - P

o
v

(4.9)

u

H IS,

notingthat 0 - h(ﬁ) =h(p)+H* (B - B)sothat H* (B - B*) = 0 under H, , where H* = H(p").
Now letting &,,, (B) = H ()T (B) " u,, (B),itfollows from (4.9) that v, (Sh)xsgwenby(3 8)with u,, (B)
changed to 4, , (B), assuming complete response.

5. WORKING CORRELATION STRUCTURE

In this section we generalize the previous results on quasi-score tests to the case of a workmg correlation
matrix of y,, assummg T, = T. The working covariance matrix of y,, = (¥,,,..- ,y,"”) is assumed to be
Lhe form V., = A,"k RA,",t with common correlation structure across units (hik), i.e., R,, = R, where

A = diag (Voo Vouyr) and Vo, = var (y,,).

We use B, obtained under working independence and H,, 10 get an estimator of R:

fi(f}) s th.ikih,klzwh‘ik' (5.1)
where I?,".k = RM([—}) with
R, (B) = Ah,‘: D = M (B)) e - "hik(p))TAr:;:‘ (5.2)
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Note that R (B) is a design consistent estimator of the census parameter R, = > R, (P)/M.

Now using ﬁ(ﬁ), we get
u,, (B) = (a"Zik/ ap) ‘7(;:,1: Ohic ~ M) » (5.3)

i /TZ.,‘ R(p) A4, Zk. The results of Section 3 under working independence can be extended by
changing u,, (B) to u,:,.,‘ (B) given by (5.3). The information matrix (4.6) now changes to

where V.

Idy- ¢ Wik mk(B) Oh:k hik(B)T (5.4)

hikes,

where D, (B) = 3 p,{i,‘ /8 P. Properties of the resulting score tests are under investigation.
Liang and Zeger (1986) consider the case of general T, assuming working exchangeable correlation structure,
moving average process (MA-1) or autoregression process (AR-1). However, this approach can lead to

inefficient estimators of B under misspecification of the correlation structure, as demonstrated by Sutradhar
and Das (1999).

6. CONCLUDING REMARKS

The Wald and quasi-score tests become unstable if the effective degrees of freedom is small. In the context
of stratified multistage sampling, effective degrees of freedom, f, is usually taken as the total number of sample
primary units minus the number of strata. For a subgroup (or domain), fcan be much less if the subgroup is
not uniformly distributed across the sampled primary units. If fis not large, F-version of the Wald or quasi-
score tests might perform better in controlling the size of the test. An F-version of the quasi-score test treats

= {(f-r+ 1)I(fr)] X2 6.1)

as an F-variable with r and f - r + 1 degrees of freedom.
Alternative Rao Scott (1984) corrected tests or Bonferroni-f tests (Korn and Graubard, 1990) might perform

better than X or F¢ when fis small. Rotnitzky and Jewell (1990) proposed Rao-Scott corrected score tests
in the case of a sunplc random sample of subjects. We plan to study the properties of these alternative tests.
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ESTIMATING THE INCIDENCE OF DEMENTIA FROM LONGITUDINAL
TWO-PHASE SAMPLING WITH NONIGNORABLE MISSING DATA
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ABSTRACT

Two-phase saumpling designs have been conducted in waves to estimate the incidence of a rare
disease such as dementia. Estimation of disease incidence from longitudinal dementia study has to
appropriately adjust for data missing by death as well as the sampling design used at each study
wave. In this paper we adopt a selection model approach to model the missing data by death and
use a likelihood approach to derive incidence estimates. A modified EM algorithm is used to deal
with data missing by sampling selection. The non-parametric juckknife variance estimator is used
to derive variance estimates for the model parameters and the incidence estimates. The proposed
approaches are applied to data from the Indianapolis-Ibadan Dementia Study.

KEY WORDS: nonignorable missing data, selection model, EM algorithm, jackknife.
1. INTRODUCTION

Two-phase sampling designs are often used in studies where a disease is rare and diagnosis of the
disease 1s expensive or difficult. In the first phase of the study a large random sample from the targeted
population is screened, in the case of dementia, with questionnaires administered by trained interviewers.
Based on the results of the screening, study subjects are stratified and randomly selected within strata to
receive extensive clinical evaluations to determine disease status.

In a longitudinal study on dementia and Alzheimer's disease, the two-phase sampling design is
first used at the study baseline to estimate disease prevalence, and then repeated several years apart to
estimate disease incidence and to identify potential risk factors of the disease. Therefore, the two-phase
sampling is conducted in waves to identify new disease case. The estimation of disease incidence requires
appropriate adjustment for the complex samplings used at each of the study waves. In a recent article
Clayton et al (1998) give an excellent review on statistical techniques in longitudinal dementia studies with
two-phase sampling designs. They proposcd the method of inverse probability weighting, a full maximum
likelihood approach, and a mean score imputation approach and compared these methods on simulated data
sels.

Most longitudinal dementia studies, as acknowledged by Clayton er al (1998), are also
complicated by the presence of missing data by "happenstance”. For example, some study subjects die
before the next study wave, some refuse further partcipation in the study and some moved out of the study
areas. For studies on elderly subjects, death is an inevitable source for missing data. For these subjects
disease status prior to death cannot be ascertained and remains missing in the data. Under the assumption
of missing completely at random (MCAR) or missing at random for the missing data mechanism, using the
terminology of Little and Rubin (1987), valid incidence estimates can still be derived provided appropriate
likelihood or Bayesian approaches are taken and all covariates contributing to missing data process are
included in the model. However, medical studies following demented subjects in cohort studies have found
that demented subjects are more likely to die than non-demented subjects. Hence there are reasons to
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suggest the data missing by death are probably nonignorable, meaning that the missingness may depend on
the unobserved disease status. Estimation procedures without adjusting for this type of missing data may
lead to underestimation of disease incidence.

Statistical inference with nonignorable missing data has mostly relied on making additional
assumptions about the missing data mechanism, in situations where information external to the data cannot
be used to determine the missing data process. The approaches have been broadly classified into a
selection model approach, as in Diggle and Kenward (1994), and the pattern mixture model approach, as
reviewed by Litte (1995).

In this paper we attempt to estimate the incidence of dementia from the longitudinal two-phase
sampling setting under a nonignorable missing data assumption for the deceased subjects by using the
selection model approach of Diggle and Kenward (1994). Diggle and Kenward demonstrated their
approach on longitudinal continuous outcomes. Here for the dementia data we consider longitudinal binary
disease outcomes with complex sampling designs. We assume a logistic regression model for the mortality
outcome and use maximum likelihood approach to derive parameter estimates. The EM algorithm
approach is used to deal with data that are missing by design, i.e. by sampling selection. The incidence
estimates are then obtained as the predicted means from the disease models. Since it is difficult to derive
analytic variance estimators for the incidence estimates with the nonignorable missing data and the
complex sampling design, we propose to use the jackknife variance estimator to estimate the variances of
the model parameters and the incidence estimates.

2. PROPOSED METHODOLOGY

We consider the situation of just one follow up wave afier baseline wave in this paper. Let Y, and Y»
be two binary variables for disease status at study baseline and follow up wave, respectively. Let X, and X
be two N x p matrices of covariates measured at baseline and follow up wave, respectively. N is the total
number of subjects in the study cohort. Assume that D is the dichotomous variable for survival status with
D = | indicating a subject has died between baseline and follow up and D = 0 for the survivors. We
suppress the use of subscript i for the ith subject in the study for simplicity in notations.

For the joint modeling of ¥; and Y-, it is reasonable to model the baseline dementia probability and the
incidence dementia probability because these quantities are usually of interest themselves. Furthermore,
the baseline probability of dementia is often modeled using a logistic regression model to achieve robust
variance estimates in prevalence estimates because of the small number of cases in some sampling strata
(Roberts et al, 1987, Beckett e al, 1992). Clayton et al (1998) have also demonstrated that the modeling
approach is more efficient than the inverse probability weighting approach in the longitudinal setting.
Therefore, we use the following logistic regression model for the baseline disease probability:

Prob(¥, =1/ X, )=logit X, & (1

We now assume a logistic model for the conditional probability of dementia given a subject was
dementia free at study baseline:

logit X, 8 if ¥; =0,
Prob(Y> =11, X5 )= 2)
r (2 \1 2){1 if Y, =1, (

Note the above conditional model enforces the irreversible disease constraint on the conditional
probability. Since the dementia data consists data selected by complex sampling as well as data missing by
death, we develop our proposed method in two steps. The first step deals with nonignorable missing data
by death, and the second considers that data are obtained by sampling.
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2.1 Selection model without sampling

For the time being we assume that every subject had baseline clinical evaluation and all survivors had

*
follow up diagnosis. Let Y, be the latent disease status for the deceased subjects who are missing disease
status at the follow up wave.

Following Diggle and Kenward (1994) we assume the probability of dying between the two study
waves is nonignorable and follows the model:

Prob(D=1[Y},Y,.Z)=logit(Z6y + 6, ¥, +6, 5 ) 3)
The likelihood function for the observed data can be writien as:

L=TT. [ f . 0. |X,. X0, B)7 (DY, Y., 2. Z:0 Y]

=TI r %) TLw, £ (5. X)0=p, @Y XD L., [£ (5. X,)p, 2.7, 1) )ay;

where py (Z,Y,Y> )=Pr0b(D =1Z.Y,.Y, )

Adopting the notation that p| =Prob (Yl =1X) ). and py =Prob (Yz =1 ¥ ,Xz). then the log
likelihood function for the observed data can be decomposed into three parts:

N
h= El Y {log py + (1-1; Jlog (1= py )} (4)
l, = {DZ=()} {(1 -¥, )[Y: log p, + (1- Y, Jlog (1- P )]+ log (1-p, )}- (5)
. 1 4 i
L=Z log [Pé' " et P ] (©6)

Note to obtain the maximum likelihood estimate of & we only need to maximize /j. To obtain

maximum likelihood estimates of 3 and s we need to maximize [y + /3.

The incidence of disease is then estimated by the predicted probability Prob (Y] =0,Y; = 1):

1 N ( )
r=— X (1- p" p‘\ 1)
N i=l ] i :
2.2 Selection model with sampled data

In dementia studies, there are usually a large number of subjects who were not clinically evaluated
at either the baseline or the follow up wave. Therefore, the above maximum likelihood method cannot be
applied directly. We propose to use a modified EM algorithm (Dempster, 1977) to obtain the maximim
likelihood estimates for the model parameters and disease incidence.

First we propose to use the baseline data to obtain consistent estimates of ¢ . This can be
achieved by performing a weighted logistic regression on the baseline dementia outcome on the covariates
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X with sampling weights. Strictly speaking, the estimates & derived by weighted logistic regression arc
not necessarily maximum likelihood estimates. Instead, they are the so called pseudo-maximum likelihood
estimates. Under the assumption that the model f (YIIX ]) is correctly specified and the sampling

selection does not depend on Y7, the pseudo-maximum likelihood estimates are the same as the maximum

likelihood estimates (skinner er al, 1989). In dementia study sampling selection is independent of disease
status given screening results. Therefore, it is important that screening groups be included in the covariates

X so that (¢ obtained by weighted logistic regression is also approximately maximum likelihood
estimates.

Conditional on the estimates of & we then obtain estimates of 3 and 6 by maximizing

l5 + I3 using the EM algorithm.

For the E-step of the EM algorithm conditional on the observed data, py and the parameter
estimates from the rth iteration we have:

E(y)= {Dz_o}{[E(Yz)— E(MYp]log pi +[1- E(¥)) - E(Y2) + E(Y2)] log (1 - pi)

+log (1= pygo)1=p1) (1= pp) +log (1= p'f) ) pS? (1= py) +1log A= pYl ) by }
where
1 1
) M {0 —
Paw et Pan = T Pan = e e-ze__.;"—e,"’n-eé"rz .
Edy)= % {loglp 1 +(1-p) 1)
— Pt SE () a0 7 0]
{D=1) 1 4¢- 260" 6, 14+e %%
1 1
+log( - 1 0i
. 1420006 | -z67-6" h}
The expectations in E(/,) are:
Y] iff Y] ObSCI'VCd,
EM)=4q. .
p1  if Yq unobserved.
Y, if Y, observed,

E(Yy)= |
e {ﬁl +pg) —ﬁlpg) if ¥, unobserved.
1Y,  if ¥} and Y, observed,
YiE(Y,) if Y] observed Y, unobserved,
Y>E(Y)) if Y, observed Y} unobserved,
P if both ¥; and Y, unobserved.

EhY) =
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For the M-step of the algorithm we derive estimates by maximizing the expected likelihood function
E(l5)+ E(l3). A Newton-Raphson algorithm can be used to derive the maximum for E(/y)+ E(l3)

at each parameter iteration. The process iterates between the E-step and the M-step until the parameter
estimates converge. Incidence estimates can again be obtained using equation (7).

2.3 Variance estimation

Variance estimation for the model parameters and for the incidence estimation is ditficult to derive
analytically because the use of the EM algorithm and the fact that § and 6 are obtained conditional on

(¢ . Therefore we propose to use a non-parametric variance estimator, the jackknife estimator.

Suppose we arc to obtain variance estimate for a parameter @, we then carry out the following
steps with the jackknife approach: (1). Atthe ith step, delete the ith observation from the data. (2). Carry

out the analysis procedure on the new data set to obtain an estimate of @, denoted by ¢;( i)- (3). Repeat

previous two steps for /=1, ..., N, generating a series of estimates ¢;(,-) \ %5 ¢;( N). The jackknife variance

estimates is given by:

)5,

™M=

~ - - 1 N
i (¢(i) "¢(,)))2, where ¢(_) = El ¢(i)'

Diggle and Kenward (1994) in their illustration on continuous longitudinal outcomes proposed to use
the likelihood ratio test for testing that @ = 0. The test is especially important on 65 which determines if
the missing data mechanism is nonignorable under the assumed missing data model. The likelihood ratio
test cannot be used here because our estimates are obtained by maximizing a conditional expected log-

likelihood, instead of the original full likelihood estimates. If the estimate o derived under the pscudo-
likelihood approach is also maximum likelihood estimates, and the EM algorithm converges to a global

maximum, then under some regularity conditions, the estimates ﬁ and é are asymptotically normally

distributed with mean ﬁ and O, respectively. Due to the missing data by sampling selection, the
information matrices are difficult to derive analytically. The jackknife variance estimator has been used for
data collected from complex sampling and is proven to be a consistent variance estimator (Krewski and
Rao, 1981). Rao and Wu (1988) also demonstrated empirically that the jackknife variance estimators is
more stable than the bootstrap estimator. Therefore we use the parameter estimates divided by its jackknife
standard error estimates as the test statistic to test the null hypothesis of 6 = 0. The test statistic follows a
standard normal distribution approximately.

3. THE INDIANAPOLIS-IBADAN DEMENTIA STUDY

The Indianapolis-Ibadan (I-I) Dementia Study is an on-going comparative epidemiological study on
dementia and Alzheimer's disease supported by NIH. The study populations are African Americans age 65
and older living in Indianapolis, USA and Nigerian Africans age 65 and older living in Ibadan, Nigeria.
The primary goal of the study is to estimate and compare the prevalence and incidence of dementia and
Alzheimer's disease in the two populations and identify potential risk factors that contribute to the
difference in disease rates. The I-I study is designed to have a baseline wave followed by three follow up
waves two years apart. The two-phase sampling design is used at each wave of the study. Based on the
screening results from the first phase the subjects are divided into three groups: good performance,
intermediate performance and poor performance. The second phase sampling uses stratified random
sampling to select individuals for extensive clinical evaluation to determine disease status. In this paper we
illustrate our methods using data from Indianapolis and focus on estimating the incidence of dementia. We
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will restrict our attention to data missing by death, therefore, ignore data missing by other causes. We
therefore use a study cohort with 1997 subjects. 188 of them died before the first follow up wave.

Comparison of baseline characteristics suggests that the deceased subjects are significantly older, had
poorer performances at baseline than the survivors. There are significantly higher proportions of demented
subjects in the deceased group than in the surviving group. Male subjects have a marginally significant
higher proportion of dying than female subjects. In dementia studies it has been reported that subjects in
the poor performance groups are more likely to develop incident dementia than those in the good
performance group. Therefore, a complete case analysis in which all deceased subjects are excluded may
lead to the underestimation of disease incidence rates.

The set of covariates used to model baseline dementia probability, f (Y, | X,), are age at baseline, male
sex, and baseline performance groups. The covariates, Z, for modeling the nonignorable missing data by
death are age at death for the deceased subjects, age at follow up screening interview for survivors, male
sex and baseline performance groups. The covariate, X;, for modeling the conditional probability of
dementia at follow up wave includes age at follow up, male sex, performance group at follow up wave.

Note that incidence estimation from (7) requires that all subjects have the covariate X, for predicting
incident dementia. Age at death for the deceased subjects is used. However, the deceased subjects do not
have the follow up performance groups. For illustration purpose we assume that the deceased subjects are
in the same performance groups as at baseline. In other words, this assumption does not allow the deceased
subjects Lo decline drastically to a lower performance group. Incidence estimates derived under this
assumption may be conservative. Further research and efforts are under way to also deal with missing
covariates in our proposed approach.

Details on the numerical methods and results for the model parameters are not presented here and are
available from the first author. Incidence estimates using various approaches are presented in Table 1.

Table 1. Estimates annual incidence of dementia using the complete case analysis and the selection
model approach. Data from the Indianapolis site of the Indianapolis-Ibadan Dementia Study. The annual
incidence rates are derived by dividing each incidence estimates by the mean follow up time 1.74 years.
The standard error estimates by jackknife method are in the parentheses.

Age Group Complete Case Analysis Selection Model
65-74 0.5405(0.1473) 0.7784(0.1577)
75-84 2.2054(0.4739) 3.1164(0.5709)
85+ 5.4731(1.3596) 7.1174(1.1442)

A complete case analysis is used in which we use the disease models (1) and (2) excluding the
missing data by death. This approach assumes that the data missing by death is either MCAR or missing
dependent on the covariate X; and X, . Parameter cstimates are derived using EM algorithm to deal with
the data missing by sampling at baseline and at follow up. The selection model approach uses the disease
models (1) and (2) with the missing data model (3). Parameter estimates are derived using the conditional
EM algorithm outlined in Section 2.2. The selection model approach yields higher incidence estimates than
the complete case analysis approach by adjusting for the missing data by death.

4. DISCUSSION

The approach presented here is only the first attempt to adjust incidence estimates for missing data
in longitudinal dementia studies. Itshould be pointed out that the results obtained by assuming a model for
the missing data mechanism can be very sensitive to the model assumption. Therefore, alternative
approaches should also be taken to explore the sensitivity of results to the various assumptions in adjusting
for the missing data. Alternative estimators may also be used for estimating the variance of the incidence
estimates. For example, the stratified bootstrap sampling approach used by Clayton er al [2] can be
adopted and compared with the performance of the jackknife estimator proposed here. The methods



presented in this paper have largely depended on large sample properties. For example, the consistency of
the jackknife estimator and the test statistic for @ = 0. It will be interesting to assess the biases and
efficiencies of the parameter estimators and the variance estimators in a well planned simulation study with
reasonable sample sizes.
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EXPLORATION OF POSSIBLE TIME TRENDS IN DATA FROM
THE U.S. THIRD NATIONAL HEALTH AND NUTRITION
EXAMINATION SURVEY

J.L. Eltinge, V.L. Parsons and M.D. Carroll'

ABSTRACT

The U.S. Third National Health and Nuirition Examination Survey (NHANES III) was carried out from
1988 to 1994. This survey was intended primarily to provide estimates of cross-sectional parameters
believed to be approximately conslant over the six-year data collection period. However, for some
variable (e.g., serum lead, body mass index and smoking behavior), substantive considerations suggest
the possible presence of nontrivial changes in level between 1988 and 1994. For these variables,
NHANES III is potentially a valuable source of time-change information, compared to other studies
involving more restricted populations and samples. Exploration of possible change over time is
complicated by two issues. First, there was of practical concem because some variables displayed
substantial regional differences in level. This was of practical concern because some vaniables displayed
substantial regional differences in level. Second, nontrivial changes in level over time can lead to
nontrivial biases in some customary NHANES II1 vanance estimators. This paper considers these two
problems and discusses some related implications for statistical policy.

KEYWORDS: Change estimators; Collapse effect. Diagnostic; Interaction. Informative design;
NHANES III: Stratified multistage sample survey; Timeliness; Variance estimator stability.

1. INTRODUCTION

1.1  The Third National Health and Nutrition Examination Survey (NHANES
III)

The U.S. Third National Health and Nutrition Examination Survey (NHANES III) was carried out to assess
the health and nutritional status of the U.S. noninstitutionalized civilian population. NHANES III was carried
out over six years (1988-1994), due to the expense and logistical constraints associated with the medical
equipment used in this study.

For most variables measured in NHANES IlI, population parameters were believed to be essentially constant
over time. However, for at least three health phenomena, substantive considerations suggested the serious

possibility of nontrivial changes in parameters over time. These phenomena were the following.
1. Serum lead. Over the past quarter century, U.S. legislation has imposed increasing
restrictions on the use of lead in paint, gasoline and other industrial products. Also, in some

'J.L. Eltinge, Department of Statistics, Texas A&M University, College Station, TX 77843-3143 U.S.A
VL. Parsons and M.D. Carroll, National Center for Health Statistics, 6525 Belcrest Road, Hyattsville, MD
20782 US.A.
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U.S. areas there have been serious public health efforts on lead abatement in older housing
stock and on increasing public awareness of risks associated with lead. Consequently, there
is substantive interest in exploring possible decreases in blood lead levels in the U.S.
population. NHANES III collected serum lead data on over 10,000 adults; see Brody et al.
(1994) for some general background. Due to the population-based nature of NHANES I11,
estimation of changes in population lead levels from NHANES III are potentially more
informative than estimates from more limited clinical or community studies.

2 Overweight. Some recent clinical and community studies have suggested an increase in the
proportion of the U.S. population that is overweight. NHANES 1II collected information
on body mass index (BMI), defined as the ratio of a person’s weight (in kilograms) divided
by the square of the person’s height (in meters). Persons generally are classified as
overweight if their BMI values are above the mid 20s.

3! Smoking. Legal and medical controversies associated with smoking often are influenced
by perceptions of whether rates and intensity of smoking have increased or decreased in
recent years. However, many population-based surveys that collect data on smoking
behavior rely on self-reported interview responses; two U.S. examples are the National
Health Interview Survey and the Behavioral Risk Factor Surveys. Due to the increased
stigma associated with smoking in recent years, there is a potential for concern that self-
reported smoking data may have been subject to increased levels of nonreporting or
underreporting. NHANES III collected similar self-reported interview data, but also
recorded blood-sample measurements of cotinine, a byproduct of the metabolic breakdown
of nicotine. Consequently, exploration of possible changes in cotinine levels can potentially
offer insight into possible changes in the prevalence and intensity of true smoking behavior.
In addition, comparison of cotinine and self-reported smoking for individuals may offer
insight into the abovementioned possible changes in nonreporting or underreporting. For
discussion of some relevant substantive issues, see, e.g., Pirkle et al. (1996) and references
cited therein.

1.2 Limitations of NHANES III Data for Assessment of Change

As noted above, NHANES II1 was carried out primarily to estimate cross-sectional parameters believed to be
approximately constant over 1988-1994. For this reason, as well as practical constraints involving respondent
burden, NHANES 111 did not use a repeated-measurement or rotation-sample design commonly used for
surveys intended specifically for estimation of change over time.

Instead, NHANES I1I used the following cross-sectional design. The U.S. was partitioned into 49 strata. Two
primary sample units (PSUs, roughly equivalent to individual counties) were selected from each stratum.
Additional subsampling was carried out at the secondary unit (segment), household and individual person
levels.

Within a given stratum, one of the two selected PSUs was randomly assigned to Phase I (interview and
examination work scheduled for 1988-1991) and the other selected PSU was assigned to Phase 2 (work
scheduled for 1991-1994). We emphasize here that the term “phase’ here is standard usage for NHANES 111,
but conceptually is somewhat different from the use of “phase” in customary discussion of muitiphase
sampling in the survey literature (e.g., Cochran, 1977, Chapter 12).

Phase | PSUs were then assigned to a specific year (1988-1989, 1989-1990 or 1990-1991) in a somewhat ad
hoc manner intended to give some balance in coverage of specified regions and demographic groups in each
year; and similarly for Phase 2 PSUs. Also, to reduce weather-related logistical problems, NHANES 111
fieldwork followed a cyclical pattern within a given year, with the south and southwest covered in the late fall,
winter and early spring, and the northern half of the U.S. covered in the balance of the year. These design
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features lead to the following complications in the use of NHANES III data to assess possible changes over
time.

a. Possible interaction of year with region. Despite attempts to give some coverage of each region in
each year, regions did not receive balanced coverage in each year. For example, out of 16 PSUs
covered by NHANES III in its final year (1993-1994), only one was from the Northeast region.
There was not direct adjustment of weights toaccount for these one-year imbalances. Consequently,
if a time change pattern differed substantially across regions, direct use of customary NHANES II1
weights could lead to biased estimation of the the true change in level over time.

b. Possible confounding of region with season. Substantive considerations indicate that some measured
variables may display nontrivial seasonal and regional variation. Due to the abovementioned pattern
of fieldwork in the north during warmer months and in the south during colder months, the seasonal
and regional effects are potentially confounded. Thus, it is important to attempt to account explicitly
for this combined seasonal/regional effect in the exploration of possible changes over time.

C: Limitations on effective sample size. For each of cases (1) through (3) in Section 1.1, there is some
qualitative interest in the full population, but perhaps greater interest in time changes within specified
demographic groups. This in turn entails limitations on effective sample size and on power to detect
changes over time.

d. Bias in variance estimators due to implicit collapse. Finally, the customary NHANES 111 variance
estimator is based on a sum of squared differences between residual terms associated, respectively,
with the Phase | and Phase 2 PSUs within a given stratum. For population characteristics that are
constant over time, the observed (Phase 1 - Phase 2) differences in a given stratum are attributable
to sampling variability and thus lead to an approximately unbiased variance estimator. However,
standard stratum-collapse arguments indicate that a nontrivial time trend will inflate the expected
squares of the observed (Phase | - Phase 2) difference in a given stratum. This in turn implies that
time changes can induce a nontrivial positive bias in the customary NHANES III variance estimator.

The remainder of this paper addresses issues (a) through (d) in the following way. Section 2 explores
definitions of finite-population time changes, with special reference to comparison of the magnitude of change
to standard errors or to specified differences Ao considered to be a practical importance. Section 3.1
describes some possible variantes and extensions of the ideas in Section 2. Finally, Section 3.2 discusses some
related possible implications for statistical policy. Due to limitations of space, discussions here is limited to
relatively general material; technical details and empirical results will be discussed further elsewhere.

2. POPULATION, PARAMETERS AND SAMPLES

2.1 Definition of Parameters Over Time

Following the motivatingexample introduced in Section 1, consider a nominally cross-sectional survey carried
outover an extended period of time, |, , 1, | ,say, foragiven Ies[tl A tz] ,let U’ be the population
of interest at time f , e.g., all persons over age 20 living in the U.S. attimeé ¢ . Also, let N, be the
number of elements in - U, ,andlet Y,; be avector of attributes for element i€ U, attime . In
addition, let

¥, = XY ti
iel,
be the associated vector of population totals; and let 6 =f(Y,) be our parameter of principal interest,
where f(-) is a well-defined function with continuous first and second derivatives.
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In general, we anticipate that U, N, Y, and 0, willchangeas ¢ increases from t; to L, . For

instance, in the abovementioned U.S. example, additional persons reach age 20 or immigrate over
te|t,,t, | , whileother persons who were U.S. adults at time 7,  will have died or emigrated by time
I, . Inaddition,as I increases, a person i who is continuously present in U,,te f,1, | may

have changes in Y (i €8, dueto changes in health status.

To avoid notational complications, let U12 be the union of all distinct population elements in
U,te|t,t,| . Also,for i€ U,, .,if 1€U, ,thendefine Y, =0 . Within this framework,

consider the definition of a target parameter averaged over [tl ' [2] . One possible definition is the simple

time average of 6, ]

0,=(1-1)" f:l 0,dr .

A second definition (in some cases more attractive due to consistency issues) involves similar averaging of

the vector totals Y s

where
- - "l
Fa=(l-4)" [; Fdr.

There are two related cases in which the averaged parameters 612 or 6;2 are of substantive interest.
First, let Ao be the smallest change in 0 , over time that would be considered of practical importance.
If

(C.1) the differences 9, = 9,i ,1€E (1‘1 I tz] , are uniformly small relative to Ao

then 612 may be considered a satisfactory approximation for 6, across €|l ,1, ] . Second, in some
cases the instantaneous tru parameter §) , s subject to seasonal variability or other short-term effects that
are not of primary substantive interest. For these cases, 9,2 or a similarly averaged parameter may be of
greater substantive interest than the instantaneous parameter U, .
A third, potentially more problematic case arises if: (a) the instantaneous parameter 9‘ is of principal
substantive interest; (b) there is no articulated scientific consensus regarding a practical-difference quantity
Ao : and (c) for the customary design-based estimator 61)12 , say, of 912
(C.2) the differences 9, = 612, te [tl ) Iy ] , are uniformly small relative to the design-based
standard error of U, .

For this third case, estimation of 9,2 may be potentially of interest. However, if a subsequently
identified Ao 1s small relative to the standard error of U, and if condition (C.1) does not hold, then
the information conveyed by § p12 Mmay be of somewhat limited practical value. This arises, for example,
when Bli’. is a parameter of a relatively small subpopulation.

2.2 Approximately Unbiased Estimation of 0,

Let D be a nominally cross-sectional design implemented to sample from U 12 - Note that a realization of
D effectively specifies both the elements of U 15 that are selected and when each selected element i is
measured. Also, note that in many cases D will be based on an incomplete frame, e.g., due to problems with
birth and death units, new construction, and errors in time-related sub-population membership identification.
In addition, partition the interval (tl ] tz] into J subintervals ( tjl B tjz] and define
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= [y tll)‘f'z’edt.

For our NHANES III example, the subintervals ( tj ] of principal interest are six one-year segments
or two three-year segments. In addition, let §) Di be a design-based estimator of 0. basedon a direct
p(plxcatxo]n of customary cross-sectional weights originally developed for the design D and the full time period
Ui oil

L]

Work with estimation of the parameters 61., : Bp or B also depends on the informativeness of the
design D. For example. consider the following assumpuon

(C.3) The sample design D 1s uninformative for the differences 9, = 6’| oRIE (tl 1 ]

Note that under conditions (C.1) through (C.3), direct implementation of the design D with the
estimator 6 will lead to approximately unbiased estimation of ﬂp which in turn is a satisfactory
proxy parameter for 6, it et () I, | . Thisappears to be the case for many cross-sectional surveys carried
out over a relatively short period of time. However, if either condition (C.1) or (C.3). or both, are not satisfied,
then time effects may cause serious problems with the customary parameter estimator 0 p - some simple
cases are considered in Section 3.

Finally, note that the preceding work focused on the instantaneous parameters 6, and Y , »andontime
averages thereof. In some cases, one could consider changes that are approximately linearin [ € [II e
For such cases, one could also consider estimation of a slope coefficient, defined as,

B=(t,-1)" (E),2 - 6,') .

3. DISCUSSION

3.1 Variants and Extensions

Sections | and 2 considered issues associated with analysis of possible time changes in data from NHANES
111. These ideas can be extended in several ways. First, recall that NHANES 111 had a relatively small number
of primary sample units assigned to a given year (approximately 16, depending onthe year). For surveys with
large numbers of primary units included per year, one could model inclusion probabilities for a given year as
a function of region and other PSU-level explanatory vaniables. Following, e.g., Little (1986) and Czajka et
al. (1992), one could then use the resulting estimated probabilities for within-year weighting adjustment.

Second, we restricted attention to estimation of functions of the parameters 6 te [tl » Iy | . However,
in many practical cases, the time-averaged parameters 6]2 or 9]2 are someumes used as proxies for the
parameters 9 t>t, . For example, estimates based on the 1988-1994 NHANES Il data are used in
current (1998) health EOIIC)’ discussions. Justification for this approach would involve the assumption that
the differences 6, 6 are uniformly small for ¢ in some interval t2 5 t , say; and by information
from related empirical studies that support this assumption. Related issues arisew entwo independent cross-
sectional studies are carried out in the time intervals rt 1 2 ] and t3 s ’4 .say, where t > t . Then
for parameters 6r for which the differences 6 6 are uniformly small over € tl 5 ., one
could consider combined use of data from these two cross-secuonal surveys to estimate a new averaged

parameter,

B ={(r-1) (1 1)} ( f:, 6,dr + f:: B,dtJ :

say. This is of special interest for small subpopulations for which the standard error of 6 D12 » SaY. IS
relatively large. A practical example of this 1ssue will arise in 1999 and subsequent years, when the next U.S.
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National Health and Nutrition Examination Survey is expected to begin production of data.

3.2 Policy Issues

To complement the preceding discussion, we close with some brief comments on statistical policy.
Specifically, when a survey is conducted over time, the following issues can be relevant to statistical agency
policy regarding publication of official estimates and research results.

1. Publication of “most recent estimates” and related issues of timeliness.

a. If a given parameter displays sufficiently strong changes over time, published estimates of,
e.g., asix-year average level may be relatively uninformative. Consequently, in some cases
in is worthwhile to consider modified methods intended to estimate parameters for a more
limited time period, e.g., the last one to three years covered by the survey.

b. Point (1.a) has implications for the broader issue of timeliness. For a cross-sectional survey
with fieldwork carried out in a relatively brief period, timeliness generally involves two
considerations: (i) rapid dissemination of results after completion of data collection; and (ii)
relatively frequent repetition of the survey. See e.g., Bradbum (1997) for discussion of (i)
and (ii). Implicit in point (ii) is the assumption that more recent data can lead to better
indications regarding the parameter 9, at the current time ¢. This may be widely accepted
for relatively volatile parameters associated with, e.g., economic statistics, opinion polling,
or tracking a winter influenza epidemic. This may also be widely accepted, e.g., for health
parameter estimates based on measurement methods that have recently undergone
substantial improvements. However, timeliness issues become considerably more complex
when substantive considerations indicate that the parameters in question are essentially
constant over time. In some such cases, the best indication of the current parameter 6,
may be provided by combining data collected over an extended period of time,
supplemented by appropriate checks for possible change over that extended period; of the
comments in Section 3.1 on the combined parameter U,

e In addition, issues (1.a) and (1.b) can be complicted by: (i) the bias issues mentioned in
Section 1 and 2 above; (i1) increases in sampling errors due to reduction of effective sample
sizes; and (ii1) the need to avoid possible public misinterpretation of moderate changes in
mean estimates over time.

2. Guidelines for formal identification of nontrivial change over time. In keeping with point (1.a.i1i)
above, it is also useful for an agency to establish guidelines for identification and interpretation of
nontrivial changes over time. Some relevant issues are as follows.

a. Risks of inflated Type I error rates, especially if possible trends are explored for a large
number of variables and subpopulations.

b. Public health implications of (i) reporting a change that subsequently turns out to be strictly
an artefact of sampling error; or (ii) delays in reporting a true nontrivial change over time.

c. Evaluation of time changes observed in a given dataset, within the context of: (i) substantive

considerations consistent with the presence or absence of a nontrivial change over time; and
(i1) applicable evidence provided by related surveys or limited-population case studies.
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THE LONG-TERM CONSEQUENCES
OF GROWING UP WITH A SINGLE PARENT

Miles Corak and Andrew Heisz,'

ABSTRACT

The objective of this research project is to examine the long-term consequences of being raised in a
single parent household. We examine the impact of parental separation or divorce on the adult labour
market behaviour of children ten to fifteen years after 1the event. In particular, we relate the family
income and household charactenstics of a cohort of individuals who are 16 10 19 vears of age in 1982
to their labour market eamings, reliance on social transfers (Ul and Income Assistance), and
marital/fertility outcomes during the early 1990s, when they are in their late 20s and early 30s. Our data
is based upon the linked income tax records developed by us at Statistics Canada, the Survey of
Labour and Income Dynamics, and the National Longitudinal Survey of Children and Youth.

Existing studies of the consequences of single parenthood suffer from the fact that it is difficult to
discem the impact of parental separation from the impact of low income. Single-parenthood and low
income are inter-related events that both have an impact on the ultimate labour market outcomes of
children. We propose to devise a "natural” expenment to isolate the separate effects of these variables
by using the group of individuals who suffered a loss of a parent through death as a control group. We
also devise an experiment based upon the fact that there were significant changes in the legislation
governing divorces in Canada.

We feel that our research will be relevant to federal government policy toward child poverty. Current
policy discussions implicitly assume that there are long-term consequences to child poverty. and that
greater financial assistance will be of long-term benefit to the children. Isolating the "true” effect of
income and of family structure will inform this discussion.

We also feel that our proposal best fits into the theme of the conference described as "Causal Analysis
of Panel Data" as it illustrates the use of "natural” experiments as a means of developing causal models
with longitudinal data.

| Miles Corak and Andrew Heisz, Statistics Canada.
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PROBABILITY OF VICTIMIZATION OVER TIME: RESULTS
FROM THE U.S. NATIONAL CRIME VICTIMIZATION SURVEY

Sharon Lohr and Siyi Sun'

ABSTRACT

Victimizations are not randomly scattered through the population, but tend to be concentrated in
relatively few victims. Data from the U.S. National Crime Victimization Survey (NCVS), a
multistage rotating panel survey, are employed to estimate the conditional probabilities of being a
crime victim at time t given the victimization status in carlier interviews. Models are presented and
fit to allow use of partial information from households that move in or out of the housing unit
during the study period. The estimated probability of being a crime victim at interview t given the
status at interview (t-1) is found to decrease with t. Possible implications for estimating cross-
sectional victimization rates are discussed.

KEY WORDS: Gross flow estimation: Longitudinal data: Nonresponsc: Panel attrition

1. INTRODUCTION

The U.S. National Crime Victimization Survey (NCVS) is one of the richest sources of information
available for gaining knowledge of nationwide victimization rates and experiences of crime victims. The
NCVS design prescribes interviewing the residents of each housing unit in the sample every six months for
a total of seven interviews. But much of the longitudinal information in the data has gone uninvestigated,
and the data used primarily for cross-sectional estimation of victimization rates.

l.chnen and Reiss (1978) studied early NCVS (called the National Crime Survey, NCS for data prior to
1992) data for effects of the pane] design of the survey on estimates. They found that households that were
in the sample longer tended to have lower vicimization rates, and that respondents were more likely (o
report a victimization to the survey if they had reported a victimization on a previous interview. Saphire
(1984) found stmilar results—that victimization rates were related to time-in-sample. Fienberg (1980) fit
Markov models to estimate transition probabilities for households that were victimized at least twice. All of
these analyses used the longitudinal files constructed from the earliest NCS data, 1972-75, by Reiss (1980).

l.ehnen and Reiss suggested that respondent fatigue may be a problem; respondents familiar with the survey
may be less likely to report victimizations because they know that reporting an incident on the screening
questionnaire will lead to further follow-up questions. The higher victimization rate for households that
were previously victimized could be due to familiarity with the survey—repeat respondents know more
about what is considered a victimization, and might have better recall—or could be related to victim

Proneness.

Stasny (1990) and Conawayv (1993) fit models to NCVS data that mecorporated explicit modeling of
nonresponse. Stasny and Conaway both used a symmetry model for the gross flows; both found that
incorporating partial information into the model increases estimated victimization rates.

' Department of Mathematics, Arizona State University, Tempe, AZ USA 85287-1804
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Although modelling households' experiences with crime over time is not one of the primary objectives of
the NCVS, the panel design allows such longitudinal analyses. In this paper, we consider models based on
Stasny (1986) for the panel data that fit the transition probabilities of victimization. We employ a subset of
the data consisting of those households that are present for the first interview.

2. NCS LONGITUDINAL DATA STRUCTURE

The NCS and NCVS are both stratified multistage cluster surveys with a rotating panel design. Occupants
of housing units (HUs) selected to be in the sample are interviewed every six months for 3 1/2 years, for a
total of seven interviews. To avoid an abrupt change of all HUs at the end of 3 1/2 years, entry of new HUs
into the sample is staggered; a new rotation group enters the sample every six months, replacing a rotation
group that has completed all seven interviews. The first interview of HU residents is used for bounding
purposes only, and not for calculation of annual victimization rates.

The NCS Longitudinal File (U.S. Department of Justice, 1993), abbreviated NCSL, contains records for the
33,272 HUs in rotation groups 4-6 of sample J14. A substantial number of those HUs have no associated
data, because the HU is vacant or does not exist, leaving 24,499 households that participate in the first
interview.

The NCS and NCVS follow HUs, not households (HHs) over time; consequently, if HH x moves out of the
HU at interview 3 and HH y moves into the HU at interview 4, then the victimization record for the HU is
that of HH x for interviews 1-3 and HH y for interviews 4-7. Thus. the record for a HU may contain
responses from several different HHs. To construct longitudinal models for HHs in the NCVS, then, we
must be careful to include only information for one HH per HU. Of the original 24,499 households that
provide data for the first interview, 16,305 (67%) complete all seven interviews. The persistence of the
original households is illustrated in Table 1. Table 1 presents a different picture of longitudinal
nonresponse than found in earlier studies of NCS data. In the data set from Stasny (1990), only about 70%
of households participating in Interview 1 in a given year also participated in Interview 2.

The reason that a HH drops out of the sample may be associated with its previous crime victimization
experience or some of the demographic characteristics. Table 2 provides some information about the
differences (victimization experience and demographic characteristics) between the HHs that drop out and
those that stay in the sample. Table 3 shows the difference in victimization experience for the respondents
and longitudinal nonrespondents. HHs that stay in the sample longer are more likely to be crime-free than
those that drop out earlier. HHs that complete the seven interviews have the fewest victimizations. Also, the
percentage of the HHs that report at least one victimization in Interview 1 (the first row) is higher than the
percentage of HHs reporting victimizations in Interview 2 through Interview 7, for each column. This might
be caused by telescoping—HHs in Interview 1 may recall incidents that occurred more than six months
ago, and have no previous interview information to be used for editing out duplicate incidents.

3. CONDITIONAL PROBABILITIES OF VICTIMIZATION

In all of the following, we consider only two states for a HH's victimization status at an interview:
nonvictim (no victimization incidents during the 6-month period preceding the interview) or victim (at least
one victimization incidents during the 6-month period).

Stasny (1986) considered the observed data to be the result of a two-stage process. The first stage,
unobserved, pretends there is no nonresponse. Thus P;; is the probability that an observation is in state i at
time 1 and state j at time 2, for i,j € {N,V}. For the second stage, an observation in the (i,j) cell of the
victimization matrix for times (¢ - 1) and  has probability ¢;(¢) of missing the information at time (¢ - 1),
and probability () of missing the information at time 1. Using Stasny’s two-stage model, the underlying
probabilities for observed victimization data are:
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Interview 1

Nonvictim Victim Missing
Interview Nonvictim (I - onn—Wnn ) Pan (1 = Qv — Wny ) Pay Z yy; Py
-1 Victim (1 —@un—yw~) Py (1 = Qv —Yvw) Pyw Zyy; Py
Missing b, LOAN] Pin b2 Oiv Piv

We fit five models for the ¢'s and y/'s:

Model
A B C D E

O3 Aay A Ay Aap A
vt A A Ay A Aid

In Model A, the saturated model, the probability of missing one of the two consecutive interviews depends
on the interview period as well as on the victimization classification when observed. Under Model B, the
probability of missing either of the two consecutive interviews (Interview t-1 and Interview t) depends only
on the interview period, not the victimization classification. Under Model C, the probability of missing
cither of the two consecutive interviews depends only on the victimization classification. Models D and E
are hybrid models not considered by Stasny (1986). but thought to be contenders here because of the
possibility that HHs moving in to the survey may differ from those moving out after a period in the survey.
Under the models considered, ¢,(¢) ,the probability of missing the first interview, is a function only of j and
1. and (1) is a function of i and ¢. Thus the likelihood is a product of one factor involving the P;; and a
second factor involving the ¢'s and y/'s.

Model A, of course, provided a perfect fit to the data. A surprising result was that Model D also fit well,
especially for the later periods. The estimated expected cell counts are in Table 4 and the estimates of the
parameters for Model D in Table 5.

Unfortunately, clustering and stratification information is not available on the NCS public use data sets for
these years, so we were not able to incorporate the clustering information into our estimates of the standard
errors. However, we note that the overall design effect of the NCS is about two, so dividing the Pearson and
likelihood-ratio chi-square statistics in Table S by two should give p-values that are close to the true values
(Rao and Scott, 1992). After this adjustment, Model D fits the transition periods 4-5, 5-6, and 6-7 well. It
fits the data in the earlier interviews less well.

Incorporating the partial information led to increased estimated probabilities in all victimization categories.
Model D, which fits the last three time periods well, suggests that for HHs that participate in at least four
interviews, the probability of nonresponse on the next interview is unrelated to victimization status. HHs
that report at least one victimization at time !, however, are 1.5-2 times more likely to have been
nonrespondents at time (t-1) than are HHs reporting no victimizations at time 1. This may be because they
move as a result of previous victimization, or may be because HHs on their first interview always report
more victimizations because of telescoping. We note that between 22 and 24% of the “drop-in" HHs report
at least one victimization in the interview for which they are present, a figure consistent with the
percentages in the first row of Table 3. This lends support to the theory that a large part of the difference
between drop-ins and drop-outs is due to the lack of a bounding interview for the drop-ins.

4. INCORPORATING THE COMPLEX SURVEY DESIGN

In the models reported in this paper, we did not use the survey weights or account for the complex design in
variance estimation. We were unable to do the latter because clustering information was not available in the
data set. However, we note that pseudostratum information has very recently been added to the 1992-95
NCVS public-use data sets (U.S. Department of Justice. 1998). This will pernut rephication methods to be
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used in estimating variances for longitudinal as well as cross-sectional analyses. Results from this research,
with additional models incorporating the entire victimization history of HHs, are forthcoming.

Weights for the NCS and NCVS are calculated to give cross-sectional estimates of victimizations, to
estimate number of victimizations for the entire population. The survey is designed so that initially, every
HH has equal probability of selection. Weights are then calculated to adjust for subsampling in some areas,
to adjust for nonresponse, and to conform survey population estimates to independent estimates based on
the 1990 Census adjusted for the undercount. Thus, the same HH will have different cross-sectional
weights at different times, reflecting changes in nonresponse and population over time.

We considered the weight provided for the first time in sample as the weight for each HH. This presents
some difficulties, as the three rotation groups in NCSL have different start dates and these weights depend
on the composition of the sample at the different dates; however, it gave us a basis for exploring the effects
of incorporating weights into the analysis. We found that the probabilities in Table 3 and in the gross flow
models of Section 3 were little changed when weights were used. In other surveys, though, weights may
make more of a difference in longitudinal analyses. The models in Section 3 may be extended for non-self-
weighted surveys by adopling a pseudo-MLE approach as in Binder (1983). Latouche and Michaud (1997)
studied the effects of different weighting structures in the Canadian Survey of Labour and Income
Dynamics.

Incorporating partial information from respondents present at only one of the two interviews increases the
estimated conditional and unconditional probabilities of victimization. The models fitted in this paper,
however, suggest that much of the increase is due to the incoming HHs that do not have a bounding
interview. Further investigation is needed of the effect of including these unbounded “drop-in” HHs when
estimating cross-sectional victimization rates.
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TABLES

Table 1. Households that stay in or drop vut of NCSL. The horizontal arrows indicate the households that
stay in the survey: the vertical arrows indicate households that drop out. Of the 24499 households that
participated in the first interview, 22782 also participated in the second interview and 1717 did not
participate in the second interview.

Interview Number

[ z 3 4 5 6 7
24499 - 22782 — 21475 — 19996 — 18683 — 17288 — 16305
L \ 1 ') \ X!

Il 1307 1479 318 1395 083

Table 2. Differences in households with longitudinal nonresponse. All percentages, und the average age,
are for interview 1. The reference person (RP) is identified as owning or renting the living quarters.
‘ Number of Interviews Completed

I 2 3 4 5 6 7
| Number of HHs 1717 [ 1307 [ 1479 [ 1313 [ 1395 [983 | 16305
% who own HU 348 [374 [494 [527 [570 [537 |745
% 1-person record 39.1 369 329 309 [291 306 1225
| % married RP 436 [435 [496 [509 [53.5 [522 [643
4 crime-free 76,0~ *I| 7651 78:0 WHRIH Il Jo.4 _HIR I S {ISHD
“ white RP 847 [835 [850 (842 857 [850 |88.5
| ¢ never-married RP 957 |289  a88 JMR | rpb itioa | o
| % income < $15K 429 [417 [354 [366 |33.2 |351 |288
|_Average age, RP a0 LM et 356 s6i 5] L EE
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Table 3. Percent of HHs with at least one victimization experience in the six months prior to Interview n.

Number of Interviews Completed

n 1 2 3 4 5 6 i

1 34.00 23.49 22.04 21.25 20.65 21.87 19.07
i 18.82 15.75 16.37 15.77 18.11 14.32
3 b ==y 17.58 15.92 14.92 14.65 13.56
g 1 =N . 14.78 15.27 13.63 13.26
5 e peid = - 14.77 13.84 12.80
6 ) el WY o e 15.36 12.27
7, 1 =2 B | e B om I VEE ] e 12.03

Table 4. Estimated expected cell counts from gross flow models. Estimated standard deviations of the
counts range from 138 for the first entry in the table (18517) to 27 for the last entry in the table (611).
Column 5 estimates p(Vli), the conditional probability that a HH is in class V at time 7 given victimization
status i at time (r - 1), from records that have complete data at both times. The second estimate of p(Vli), in
Column 6, is from the model fit in Section 3.

Time t p(Vli) p(Vli)

Time t-1 Nonvictim Victim (complete data) (model)

1-2 Nonvictim 18517 2705 L2 124
Victim 3889 1507 .268 279

2-3 Nonvictim 18291 2643 19 126
Victim 2692 1048 267 .280

3-4 Nonvictim 17649 2470 ANS 128
Victim 2431 909 258 242

4-5 Nonvictim 16521 2232 0] 119
Victim 2170 792 252 267

5-6 Nonvictim 15721 2018 106 114
Victim 1942 707 .249 264

6-7 Nonvictim 14678 1828 .103 11
Victim 1760 611 .243 258

Table 5. Estimates of parameters for Model D. Standard deviations (assuming independent observations)
. . . ) . . . s

are in parentheses behind the estimates. X and G? are the Pearson and likelihood-ratio test statistics for

goodness-of-fit, under the assumption that HHs are independent.

(D) Qiv() ) X G’

Interviews Ao Ay A

Bi 0721 (0017) | .1199 (.0050) | .0645 (0015) | 15.8 172
2-3 0685 (0017) | .1235 (.0054) | 0530 (.0014) | 14.5 13.7
3-4 0761 (.0019) .1353 (.0059) 20630 (.0016) 14.5 587
4.5 0700 (0019) | .1357 (0062) | 0605 (.0016) | 1.5 15
5.6 0763 (0020) | .1415 (.0066) | 0683 (.0018) | 3.6 55
6-7 0754 (.0021) .1425 (.0071) 0521 (.0016) 7.4 7.0
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AN INCREMENT-DECREMENT MODEL OF SECONDARY
SCHOOL PROGRESSION FOR CANADIAN PROVINCES

Geoff Rowe und Edward Chen’
ABSTRACT

A model of secondary school progression has been estimated using data from the 1991
School Leavers Survey conducted by Statistics Canada. The data on which the school
progression model was based comprised current educational status and responses to
retrospective questions on the timing of schooling events. These data were sufficient for
approximate reconstruction of educational event histories of each respondent. The school
progression model was designed to be included in a larger, continuous time micro-
simulation model. Its main fealures involve estimation -- by age, month of birth and
season for both sexes in each province -- of rates of graduation, of dropout, of return and
of dropout graduation. Estimation was reinforced with auxiliary 1991 Census and
administrative data.

KEY WORDS: mulustate hfe table, education, microsimulation, hazard function

1. INTRODUCTION

The secondary school progression model was developed as a component of a larger micro-simulation
model (LifePathsSL) whose immediate purpose was to facilitate analysis of post-secondary education
funding policies, student needs and resources as well as post-education outcomes. It is particularly
important that such a model accurately reflect demand for post-secondary education in terms of the
numbers of secondary graduates available and that it meshes with other components of the larger model. In
addition, it is important that such a model faithfully reflect the structural differences among the education
systems in place among the provinces. Thus, the aim was to provide an accurate description of the
dynamics of secondary school progression rather than an explanatory model. For example, the model does
not include socio-economic or other parental influences, which would be obvious candidates for inclusion
in & more comprehensive model. LifePathsSL was developed, in part, under contract to Human Resources
Development Canada.

The typical dynamics of elementary/secondary school progression are simple ~ they compnise lock step
grade advancement from the time of (say) 1™ grade entry to graduation 10-12 grades later depending on
province. Complexity only arises if students skip or are held back a grade, if there are dropout (DO) spells
of appreciable length or both. The implications of such factors could be studied directly only by analyzing
linked administrative micro-data and/or prospective or retrospective survey data, Currently, the dynamics
are not reflected well in administrative data of the form available -- as is indicated in a comparison of ‘High
School Non-completion Rates’ Table 1 (Gilbert et.al. 1993):

" Geoff Rowe and Edward Chen, Sttisties Canada . Socio-Economic Modeling Group,
24" Floor R H.Coats Building, Ottawa, Ontario, Canada, KI1A 0T6
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Table 1: Selected High School Non-completion Rates
Administrative Data Survey Data
Complement of Apparent Census Labour Force | School Leavers
age cumulative | cohort dropout Survey Survey
graduation rate rate Age 20 Age 20 Age 20
Canada 31% 32% 21% 20% 18%

2. 1991 SCHOOL LEAVERS SURVEY

The 1991 School Leavers Survey made use of 1986-90 Family Allowance files as a sampling frame to
select a stratified random sample of 18,000 18-20 year olds. Sampled individuals were contacted by
telephone from April to June of 1991. The survey achieved a contact rate of 60% traced and of those 88¢:
were interviewed producing about 9,500 useable responses. A wide range of questions were included in
the interview — dealing with demographic background, school experience, as well as post-school labour
market and other outcome measures. We focus only on those questions that can aid in reconstructing each
respondent’s experience of the secondary school system.

1) Basic Demographics - Sex, Year & Month of Birth, Month of Interview and Province of Study
2) Current Status - Graduate / Leaver (Dropout) / Continuer (Still in School’

3) Has respondent ever dropped out of high school?
4) What was the last month and year you went to high school, junior high or elementary school?
5) About how many months passed between the first and fast time you dropped out?

Tuable 2: Survey Response Categories, Modeled Events and Representation of Event Histories

Modeled Event

Response Category

1C or RC

Jointly IC RC RC
-- Jointly IC uce

- uC Jointly IC -

RC - right censored UC - uncensored IC - interval censored

Using these questions, we are able to identify precisely or to bracket the age at which dropout, return to
school or graduation events occurred. The reported intervals between dropout events tended to be short
(i.e., <6 months), so we have assumed that at most two dropout events can occur in our model. In addition.
we have assumed a minimum age of 9 for the earliest possible dropout event (i.e., the youngest such age
reported in any province). Table 2 displays the relations among seven categories of response and five

events classified by their contribution to the representation of event histories.
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Not all questions were asked of all respondents; for instance, the timing of dropout events for continuers
was not reported precisely (e.g., ‘minimum age < age(DO) & Age(Return) < interview’ -- dropout and
return events were jointly interval censored). The response category ‘Unobserved DO Graduauon’ was
identified from responses combining a reported dropout spell, a successful graduation and an age at leaving
below the usual provincial age. Since, the ages at leaving were often below 15, we could reasonably
assume that the reported age referred to a dropout event. Evidently, these responses represent completion
of secondary school requirements outside of conventional secondary schools (e.g., in ‘storefront schools”).
Since our model has to do with the timing of labour force entry and/or eligibility for post-secondary
education, we do not need to disunguish among means of satisfying secondary school requirements (i.e.,
these graduations arc not treated as a distinct event type).

3. MODEL STRUCTURE

3 Event Hazards and Monthly Transitions

The model’s initial state is ‘in school’ (i.e., Continuer Never DO - CNDQ), it is assumed that the whole
population is in this state as of their 9" birthday. Table 2 specifies the categories of event that form the
basis of the model. Graduation and DO2 represent terminal states that most of the population is expected to
reach by their 22™ birthday (some respondents had attained age 21 by the interview). Modeled transitions
correspond to the hazards specified in Table 3. It is an important feature of the model that return to school
is permitted, but thereafter special graduation and DO hazards are applied (i.e., experience dependent
hazards).

Table 3: Model Hazard Matrix ( h = [.h])

CNDO GND DO1  RTS GDO DO2

(‘NDO 0 (.'Nl)h n()]h 0 0 0

GND 0 0 0 0 0 0

DO1 0 0 0 rrsh 0 0
RTS 0 0 0 0 eooh  pozh

GDO 0 0 0 0 0 0

DO2 0 0 0 0 0 0

Given the inital state, the proportions of the population in each of the six states at any given age ( P(a) )
are determined by the product of monthly transition matrices. Each transition matrix is calculated using the
current age-specific hazard matrix (i.e., by a matrix exponential of h minus a diagonal matrix containing
the row sums of h — expressed, with unit column vector u, as diag (h*u) — see, for example, Hoem and
Funck-Jenson (1982)).

PEa™) =P a) [l ‘:” exp [ hay - diag [h *u 1.4 (e )

Given the hazards, probabilitics of occupying @ given state or of muking a transition between any par of
states can be calculated for any month in the interval between the 9" and 22™ birthdays.

3.2 Age Categories — Auxiliary 1991 Census Data
[n the absence of grade progression data, age serves as a proxy. 1991 Census tabulations provide evidence

that grouping by age at December 31 forms appropriate age categories (i.e., providing a good proxy for a
*school entry cohort’).
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Figure 1: Paired Comparisons - Between and Within School Entry Cohorts from Census:
Proportions (within each cell) of Attenders (A), Dropouts (D) and Graduates (G)

Age Birthday Before June Birthday June or After
At Census
17 P(A), PD)& P(G) = = = "'P(A), P(D) & P(G)
(Cohort C-1) (Cohort C)
18 P(A), P(D) & P(G) em «m == ’,P(A), P(D) & P(G)
(Cohort C) (Cohort C+1)

The census tabulations consist of the proportions of secondary school graduates, secondary school attenders
(i.e. not graduates) and dropouts (i.c., not graduates and not attending in the previous nine months)
classified by age and month of birth. The proportions sum to 1.0 within each cell; so, for example, P(G)
corresponds roughly to a cumulative graduation rate. Paired comparisons Between and Within school entry
cohorts may be formed in the manner indicated schematically in Figure 1.

The proportions of graduates progressively increase with age, with a corresponding progressive decline in
the proportions of attenders. Thus, successive older-younger differences in graduate proportions give an
indication of dissimilarity in cumulative graduation rates Between Cohorts (horizontally) and Within
Cohorts (diagonally). An example of these differences (Ontario Males) is displayed in Figure 2. The
disparity between Within Cohort and Between Cohort curves is sufficient to motivate forming hazard age
groups based on age at year-end. Evidently, the groups compared Beiween Cohort tend to differ in school
grade, as well as age. Smaller, but significant Within Cohort differences remain, which might be explained
by earlier school entry for some in the older group and/or by higher failure rates within the younger group.

Figure 2: Differences (Older-Y ounger) in Proportions of Graduates -- Ontario Males
with 95% Confidence Intervals

— ew==Between Cohorts W ithin Cohorts

0.2 4 < ™~
| < Sn
0.1 » 5 =5
/
. rmff
15 16 (i 18 19 20 21 22

Average (Older & Younger) Age at Census

Figure 3 displays corresponding results for Dropout proportions. In this case however, the effects of age
differences Within Cohorts appear to be as strong as the effects of age differences Between Cohorts. This
seems to indicate that -- all else being equal -- the older members of a grade/class are more likely to
dropout than younger members. The magnitude of these effects (1-2%) understates the differential that
might be expected in dropout rates, because the census data represents net flows of only relatively long-
term dropouts (9 or more months).

The Ontario Male results are qualitatively consistent with findings for males and females in all provinces.

However, the magnitudes of Between and Within cohort differentials are smaller for Quebec than in other
provinces, perhaps because of the lower graduating grade.
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Figure 3: Differences (Older-Younger) in Proportions of Dropouts -- Ontario Males
with 95% Confidence Intervals
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3.3 Seasonality — Auxiliary Administrative Data

The timing of graduation is critical to the larger microsimulation model given the September start of many
post-secondary courses. The relative importance of June graduation is highlighted in Figure 4. We
compare a cumulative distribution from administrative data on ages at graduation to corresponding
distributions derived from census data. It might be expected that the administrative distribution would
coincide with the average of the two ‘school entry cohorts’ derived from census data. Instead, there is a
discrepancy (equivalent to about one school grade), which we assume is accounted for by differcnces in the
reporting period for the two data sources. The census reporting period is effectively May, while the
administrative data represents certification of graduates as of the end of June.

Results similar to those in Figure 4 may be obtained for males and females in all provinces. Note that there
appears to be a positive bias in the census data at ages 15-16, perhaps due to self reported ‘graduate
equivalent’ standing. Removing the bias would increase the discrepancy between the data sources,
however the magnitude of the bias at ages 17+ is unknown.

Figure 4: Cumulative Distribution of Age at Graduation - Ontario Males
1990-91 Administrative Data and 1991 Census Data
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3.4 Hazard Specifications

The model hazards by event type (eh) have been configured, using the results from sections 3.2 and 3.3, as
outlined below:

Dimension Classification

s - Sex Female, Male

p - Province Newfoundland, ... , British Columbia
t — Season June, Summer, School Year

m — month of birth January=1, ..., December=12

a — age at year end <15,15, ..., 19, 20+

Month of birth effects are specified in terms of relative risks that are linear in month as follows:

4 o€ Janwary € Junuan

h - "
€ pecember I =2 (e.lum & J (2)

4. MODEL ESTIMATION

4.1 Survey Weights

Survey weights have been post-stratified using 1991 Census data taking into account age, sex, province of
residence and school attendance status (secondary or post-secondary). We have not been able to resolve
the problems that migration poses. Our principal concern is with patterns of progression through each
province's school system (i.e., province of study). Thus, post-dropout/graduation migration will introduce
biases of unknown magnitude.

4.2 Penalized Likelihood

We have made use of a complicated, but conservative, fitting criterion that was selected to compensate for
problems anticipated with samples as small as that of Prince Edward Island. Using (1), we are able to
compute an unconditional probability of occupying any of the states (;P(a)) and unconditional probabilities
of a transition between pairs of siates ( fjj(a) * .f(a): event probability). By replicating these calculations
12 times, defining each replicate series as starting in a different month of the 9™ birthday, we are able to
account for all possible seasonal patterns. Throughout, months of birth are assigned equal weight when
averaged.

Following Green (1987), the fitting criterion combines terms representing lack-of-fit (LOF) and a
roughness penalty for the fitted values (PEN). A generalized cross-validation criterion is defined by a
weighted ( * ) combination of these terms - [ LOF ++ PEN ]/RDF2 (RDF is residual degrees of freedom).
Increasing » will result in increases to both LOF and RDF and decreases in PEN. The optimal combination
balances lack-of-fit and smoothness.

The roughness penalty has five components, each representing the sums of squares of 2™ differences ( * %)

of probabilities for an event (logarithms of probabilities aggregated to integer ages):
2

3)

PEIN =3 4, |a%m % L@ )
€

a € nt(a)

The principal function of the roughness penalty is to prevent the estimation algorithm from being trapped
by a local singularity in the likelihood. Penalized estimates correspond approximately to a smoothing
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spline. The penalty was assessed over integer age to prevent conflict between smoothness and seasonal
effects.

Lack-of-fit has three components ( LOF = -2In(L) + D(C,* )+ D(A,A) ) — outlined as follows:

i. —-2*Log Likelihood of Survey Response ( -2*In(L) ) computed for each event and accounting for
each type of censoring.
* * *
PV A" j 5" k
L="T1 & ' 11 (X.1) 0L (4)
ie UC je lC a k € RC

where W, represents the survey weight associated with the 1™

event divided by the average weight.

L. Distance from the 1991 Census tabulations which underlie Figures 2 & 3: fitted proportions are
grouped by age and state type ( s+ ) and averaged over month of birth within the September-May interval -
- to match census concepts (i.e., in terms of person-months by category). N represents the approximate
simple size underlying the census tabulation.

- CY=%F = N ( _f'*“'_)2
DC, €)= 4 e I\af;. e P o Bl (s)

i Distance from the administrative data which underlies Figure 4: graduation probabilities in June
by age (aggregated over types of graduate and normalized - *). AN represents the number of graduates
underlying the administrative data.
oy 1} el [ n - A — N
DA, AY=d AN ELYG{ (a)—\;Gf (a) } (6)
Simpson  (1987) shows that the form of distance employed in (5) & (6) is, approximately, commensurate

with -2¥In(L) (4), and has robustness properties that may limit the influence of (apparently) biased
observations, sucl as the 1S vear old census graduates.

Finally, estimation was subject to a number of explicit constraints:

(a) Hazards are less than 1.0 0 h<1

(b) Graduation at specified months ch(a) > 0 at June, August & December
(¢) No Retumn at Graduation months gh(a) = 0 at June, August & December
(d) No graduation occurs before age 15 onoh(a) & gpoh(a) =0, at age < 15

(e) Graduate age distributions onoF* ¢ GpoF*

(F Relative Risks U

Optinnzation employed a modified quasi-newton algorithm implemented in GAUSS 3.2. Starting values
were obtained from a few thousand steps of the Metropolis-Hastings algorithm.

5. RESULTS

53 Validation

As may be seen in the charts below, the model for Ontario Males reproduces the timing of graduation
represented in the administrative data (Figure 5), but does not appear 1o do as well with the timing implied
by census data (Figure 6). The difficulty seems to involve conflict between the administrative data and the
census, rather than lack-of-fit, per se. Lack-of-fit with the census would be improved by a bias adjustment
10 the census data at ages <20. Nevertheless, the fitted values agree with census data in terms of both the
month of birth differences and the eventual proportion graduating. Figure 7 indicates a good fit of census
ita on dropouts, except perhaps at ages 16 and below. The fit for census data on attenders is essentially
the complement of that for graduates



5.2 Provincial Comparisons

Having fit a complete set of models, it is possible to derive comparisons among provinces that would not
otherwise be direct. Tables 4 and 5 illustrate such comparisons, focusing on the eventual graduation of
dropouts. It appears that, as of age 22, most dropouts have not returned to complete secondary school.
Note that the percentages in Table 4 are considerably higher than corresponding percentages for 20-year-
olds from the 1991 School Leavers Survey. They are, however, more in line with the 25% (nationally) of
respondents who had been dropouts as of the 1991 survey and who reported having graduated by the time
of the 1995 School Leavers Follow-up Survey (ages 22-24).

Table 4: Model Percent of Ever Dropouts Graduating by Age 22
|NFLD PEI NS NB QUE ONT MAN SASK ALTA BC
Males 169 40.1 369 458 389 336 336 164 145 728

Females 207 404 212 250 549 559 218 182 345 375

It may not be surprising that dropouts who eventually graduate appear to have returned to school and
resumed their education promptly. Gilbert et.al. (1993) report that dropouts are more likely to have failed a
grade than are others. That being the case, if dropout graduates complete their requirements about one year
later than others (Table 5), then much of the additional time might be accounted for by an extra year spent
repeating a grade. Dropout graduates may have spent little time out of school.

Table 5: Model Average Difference in Age at Graduation
Ever Dropout — Never Dropout
|NFLD PEI NS NB QUE ONT MAN SASK ALTA BC

Males 0.9 In8R 251 MOy Bl 1.9 2.1 2.8 1.3
Females 310 23 r 201 2.3 K6 1.8 1.4 1.8 25 1.2

6. CONCLUSIONS

The model provides estimates that represent a compromise between ‘reconstructed event histories’” and
cross-sectional data. Implemented as a component of the larger microsimulation model, it generates
realistic secondary school progression patterns. It further serves to highlight some features of secondary
school progression that may often be overlooked — notably: the ages of school entry cohorts, seasonality
and differences in experience by month of birth. Nevertheless, the deficiencies of the model and gaps
revealed in the data serve to emphasize the value that prospective data on a school entry cohort would have.
Failing that, more detailed retrospective event histories might be collected.
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Figure 5: Ontario Males - Fitted Percent of Graduates by Age at Graduation
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Figure 6: Ontario Males — Fitted Percent Graduates PYs by Age & Month of Birth (<June, June+)
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Figure 7: Ontario Males - Fitted Percent Dropouts PYs by Age & Month of Birth (<June, June+)
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ESTIMATION WITH PARTIAL OVERLAP
LONGITUDINAL SAMPLES

Wayne A. Fuller'

ABSTRACT

In a longitudinal survey conducted for & periods some units may be observed for less than
k of the periods. Examples include, surveys designed with partially overlapping
subsamples, a pure panel survey with nonresponse, and a panel survey supplemented with
additional samples for some of the time periods. Estimators of the regression type are
exhibited for such surveys. An application to special studies associated with the National
Resources Inventory is discussed.

KEY WORDS:  Survey sampling: Regression estimation: Panel surveys.

I. INTRODUCTION

Study of the dynamics of populations requires observations made at multiple time points on units in the
population. We define a pure panel survey to be a survey in which the same units are observed at each time
point of a survey conducted at more than one time point. A longitudinal survey is a survey conducted at
more than one time point with some units observed at more than one time point, but the term is generally
used for surveys conducted at more than two points in time with multiple observations on some units
planned as part of the survey design. A rotation survey is one in which a unit is observed for a partial set of
time points and is not observed for the remaining set of time points in the study. The Canadian Labor Force
Survey and the United States Current Population Survey are examples of surveys designed to run
continuously in which units rotate into the sample for a fixed period (or periods) and then permanently
rotate out of the observation set.

There exist an array of designs combining individuals observed at some time points and individuals
observed at all time points of the study set of time points. The simplest such design is a two-phase sample
in which the observations at the second of two time points is a subsample of those observed at time one.
The book edited by Kasprzyk et al. (1989) contains an excellent discussion of various aspects of panel
surveys. Duncan and Kalton (1987) and Schreuder, Gregorie. and Wood (1993) discuss different types of
repeated surveys and the objectives of such surveys. The largest fraction of the survey literature on
repeated surveys has been devoted to rotating surveys. An early study is that of Jessen (1942), also see
Cochran (1942). Patterson (1950) investigated estimation for rotating samples. Patterson’s work was
followed by a number of authors, including Eckler (1955), Rao and Graham (1964), Gurney and Daly
(1965), Raj (1965), Smith (1978), Wolter (1979), Jones (1980), Huang and Ernst (1981), Breau and Ernst
(1983), Kumar and Lee (1983), Singh (1996) and Yansaneh and Fuller (1998).

We review generalized least squares estimation for partial overlap survevs. We then compare some designs
for swdies directed toward longttudinal dynamics. Because such studies are muluple purpose, we cannot

Fuller, Wayne A., Towa State University. 218 Snedecor Hall, Statistical Laboratory, Ames, lowa
USA S00T1-1210.
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hope to develop a design that is optimal for all objectives. A part of our investigation will be to identify the
trade-offs.

2. SUPPLEMENTED PANEL DESIGNS

To introduce generalized least squares estimation, consider a simple three period survey in which one-
fourth of the units are observed on all three periods and each of three sets of one-fourth of the units is
observed in exactly one of the three periods. Thus, if the total sample size is n , then 0.5 n of the units are
observed at each time point, Let (), Y», Y3,) denote the value of a characteristic observed at times one, two,
and three respectively. Assume that the correlation between observations at time i and time j on the same
element is that of a first order autoregressive process with parameter p . Assume simple random sampling
for the selection of all samples.

Let (¥,,. ¥5,. ¥y,)" denote the estimated mean at time one, two and three, of the sample elements that are
observed all three periods. Let (y,,, ¥,;, vy, )" denote the sample means for the three periods for the

sample elements that are observed once. We call these six estimators the elementary estimators. See
Gurney and Daly (1965). Let p =(u,.H,,H,)" denote the population means for the three periods. Then

we can write
y=Xpu+e (1

where ¥y =(¥,,, Y31+ Y31» Y12+ Y3» Y1) » X "= (I,. 1), the covariance matrix of e is

1 ppp 0 0 O
py T pp 0 0 O
b, 1 @& 0 9.
Z,= G- 2
“ 0 O W 0 10 k2
0 0 0 0 1 0
6o 0 o o o0 1

and &’ is the variance of a mean of n 4 observations. It follows that the best linear unbiased estimator of 1
using this amount of information is
B =S, X0 X5, (3)
and
Vil Gk "B (4)
We compare the covariance matrix (4) with the covariance matrix of a pure panel survey in which the same
0.5 n units are observed on all three periods. The covariance matrix for the pure panel design is

1 pl pl 62
V{llpml}= 1Py 5
P, Py 1

The comparison is for populations in which p; = p and p; = p’ . Table 1 contains variances for several
functions of means for p ranging from 0 to 0.99, relative to the corresponding variance for the pure panel
design. If p =0, the variance of the best linear unbiased estimator of the three means is the variance of the
simple mean at each period. If the total number of elements is n , the variance at each time period is 2n’'a’.
In the remaining discussion we assume o = 1. If observations on the same element are correlated (p # 0),
the variance of the estimated means for the supplemented panel design is less than 2n"'. The limit of the
correlation is one. This can occur for characteristics such as the age of an individual at a fixed point. The
lower bound for the variance of the supplemented panel design at p = 1 is n”' because this is the number of
different individuals in the study. Correspondingly, the limit of the relative efficiency for period means of
the supplemented panel, relative to the pure panel, is 2.0. The variances of the estimated means for the
supplemented panel design for the first and last period are the same. The variance of the middle period is

180



somewhat smaller because the middle observation has one period correlation with the first and third
observations on the same element.

Table 1. Variances of Functions of the Estimators for Three Period Design With 50% New
Observations at Each Time Relative to Variances of Pure Panel Design.

P v ¥ Y ate Yi—X¥s
-0.70 0.838 0.755 0.674 1.253
-0.50 0.929 0.875 0.768 1.143

0 1.000 1.000 1.000 1.000
0.50 0.929 0.875 1.304 1.143
0.70 0.838 0.755 1.488 1.253
090 0.660 0.595 1.773 1.681
0.99 0.520 0.510 1.973 1.951

If the correlation is positive, the variance of the difference of two means is smaller for the pure panel survey
than for the supplemented panel design. As p approaches one, the variance of the difference of two means
approaches zero for both designs. Thus, for example, the variance of period-to-period change for the pure
panel is only 2% of the variance of the mean if p = 0.99. The pure panel design has an efficiency
approaching twice that of the supplemented panel design as p approaches one. This efficiency holds for any
multiple period study.

We have outlined an estimation scheme for a vector of time means for a scalar y-characteristic, but there is
no conceptual difficulty in extending the procedure to a vector of y-characteristics. However it is not
operationally feasible to construct separate estimates for every variable in a study. For applications we
suggest the procedure of Fuller (1990). The procedure has been implemented for the United States Current
Population Survey. See Lent, Miller, and Cantwell (1996). In that procedure a set of variables from each
time period is chosen as the control variables. Generalized least squares or a similar procedure is used to
estimate the means (or totals) for the vector of control variables. A set of regression weights is then
constructed for the panel portion of the sample using the control variables. An alternative method of
constructing the weights for rotating samples has been suggested by Singh (1996).

Linder certn conditions, the variance estimation procedure suggested by Fuller (1998) can be applied to
estimate the variance of estimates. Under less restrictive conditions, the replication scheme in which
replicates are drawn from the entire sampling procedure can be used. See Rao and Sitter (1995) and Sitter
(1997,

3. THE NATIONAL RESOURCES INVENTORY

The Natonal Resources Inventory is a survey of the nonfederal land area of the Umited States condutted by
the Natural Resources Conservation Service of the United States Department of Agriculture. It is a large
survey of about 300,000 primary sampling units. A primary sampling unit is a segment of land. In the
Midwest the segment is 160 acres, but the primary sampling units vary across the country. In the west,
there are some that are as big as 640 acres and in the east some segments are on the order of 100 acres.
Within the primary sampling unit, points are designated for observation. There are either two or three
points per primary sampling unit. The basic survey has been conducted in each of the years 1982, 1987,
1992, and processing is currently underway for 1997 data.

In 1993, a sample of 3,000 segments was selected from the 300,000 for a study that was called the Erosion
Update Study. This study was a subsample of the large sample, but the primary sampling units were
different. In 26 states, counties were sampling units and for 22 of the states. states were primary sampling
units. The 1992 basic NRI sample of 300,000 segments and the 1995 subsample of 3.000 segments Torm a
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classical two-phase sample. In the first-phase sample of 300,000 sampling units vector X is observed. In
the subsample of 3,000 units, an extended vector (X, Y) is observed.

A second special study was conducted in 1996. The original 1995 sample of 3,000 was augmented by
another 1,000 segments to obtain a total of 4,000 segments. A third study was conducted in 1997 in which
the 1996 sample was augmented by another 2,000 segments. Thus, we can divide the original 300,000
segments into four subgroups: 294,000 are observed only in 1992; 3,000 are observed in 1992, 1995, 1996,
and 1997; 1,000 are observed in 1992, 1996, and 1997; and 2,000 are observed in 1992 and 1997. The
vector of subgroup means is for a characteristic y for these data is

¥ [.qu.m » Y9230 ¥95.3+ Y530 Yo1.30 Yor.1+ Yos» Yoru+ Yoa» 5’97.2]
where y, , is the mean for the characteristic at time ¢ on a group of j(000) segments, and i, is the mean of ¥

attume 7 .

The covariance structures for several characteristics observed in the National Resources Inventory have
been estimated. See Breidt and Fuller (1998). We use those correlations to study the efficiency of
generalized least squares. Under the model used to estimate the correlations, the observation on segment ¢
at time ¢ . denoted by y; , is expressed as a sum of |, and e, , where L, is the mean at time 7 and ¢ is the
deviation from the mean. The deviation is assumed 10 satisfy the model

e, = 0, +€, .

o, = pa

I + Uy .

=]

where @, is a stationary autoregressive process, | p <1 is the autoregressive parameter, £, is uncorrelated

measurement error distributed with mean zero and variance Gg:, denoted by (0, Gf ) and w;, is the (0, &l )
uncorrelated error of the autoregressive process. Under the model

vy} = a-p) "ol +0. .

v = [V{y,}]-I o P

where v is the fraction of total variance that is due to measurement error. Under the mmodel the correlation
between observations & periods apart is

Corr(y,,, y,_“,,) =p"(-v), h=2%1 %2 .

The estimated parameters for several characteristics are given in Table 2.

We let

Table 2. Estimated parameters of error model.

Parameter

Characteristic p \

USLE 0.955 0.229
Cultivated cropland 0.981 0.014
Noncult. cropland 0.955 0.130
Pasture 0.974 0.031
Rangeland 0.992 0.011
Forest 0.981 0.015
Small built-up 0.957 0.029
Large urban 0.977 0.016
Streams 0.996 0.089
Roads 0.998 0.027

The USLE is the tons of soil loss calculated by the Universal Soil Loss Equation. The computations require
a number of factors such as the slope of the land and the cropping practices. Hence, the variable has large
relative measurement error with nearly 23 % of total variance attributable to measurement error. The
remaining variables are the acres in that land use in the segment. Land uses that are relatively permanent.

182




such as rangeland, streams. and roads have large autoregressive coefficients. There is considerable
measurement error associated with the determination of the acres in streams.

One simple estimator of the mean for each period is the mean of segments actually observed during that
period. Table 3 contains estimated efficiencies of generalized least squares relative to the simple mean.
The generalized least squares estimator for 1992 is the simple mean because all other samples are
subsamples of the 1992 sample. The estimator for 1997 is a two-phase estimator with the 1992 sample as
the first phase sample. The estimates for 1995 and 1996 use information from more than one other sample.

The smallest efficiency gains are for USLE which has the smallest autocorrelations. The year-to-year
correlation for USLE is about 0.74. On the other hand, generalized least squares is much superior to the
simple mean for rangeland which has a year-to-year correlation of about (0.98.

The estimated efficiencies for changes are given in the last three columns of Table 3. The gains for changes
are generally comparable to those for levels.

Table 3. Estimated relative efficiency of generalized least squares to sampie means.

Year Change
Charactenstic 1995 1996 1997 JLoat=sic, Wae — Mge Hos — Hor
USLE 3.67 1.90 1.59 3.70 1.67 1.42
Cultivated cropland 14.42 pAls 4.67 16.32 4.56 6.09
Noncult. cropland 8.29 391 253 8.76 297 3.85
Pasture 5.58 291 234 5. 75 207 1.91
Rangeland 24.15 12.74 8.60 30.86 7.51 9.88
Forest 14.51 7.19 471 16.45 4.58 6.11
Small built-up 7.58 3.67 247 7.95 2.70 3592
Large urban 12.63 6.18 4.05 14.00 4.06 5.36
Streams 9.83 5.38 4.65 10.59 2.96 2.70
Roads 24.34 13.86 11.13 31.2] 6.86 7.04
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MULTIVARIATE LOGISTIC REGRESSION
FOR DATA FROM COMPLEX SURVEYS

Paul-André Salamin'

ABSTRACT

Multivanate logistic regression, introduced by Glonek and McCullagh (1995) as a generalisation of
logistic regression, is useful in the analysis of longitudinal data as it allows for dependent repcated
observations of a categorical variable and for incomplete response profiles. We show how the
method can be extended to deal with data from complex surveys and we illustrate it on data from
the Swiss Labour Force Survey. The effect of the sampling weights on the parameter estimates and
their standard errors is considered.

KEY WORDS: Muhltivariate binary data: Multivariate Logistic Regression: Complex Surveys.

1. INTRODUCTION

Some of the survevs conducted by the Swiss Federal Statistical Office (SFSO) are of a longitudinal nature,
i.e. surveys where the umts of a sample are observed repeatedly through time. In this type of surveys, the
observations taken at different times are dependent. Also, some of the response profiles can be incomplete,
either by design as in a rotating panel or due to non-response. When the observed response is categorical,
we found the multivariate logistic model useful for analysing this type of data (Salamin 1997, 1998).

In Section 2 we indicate how multivariate logistic regression can be extended to deal with data from
complex surveys. In Section 3 the method is illustrated on data from the Swiss Labour Force Survey.
Finallv, in Section 4 we present our conglusions and indicate directions tor further work

2. MULTIVARIATE LOGISTIC REGRESSION

The multivariate logistic model, introduced by Glonek and McCullagh (1995), can handle multivariate
responses of either nominal or ordinal type and either discrete or continuous explanatory variables. Here we
consider only multivariate binary responses and discrete predictors. The multivariate logistic model is an
cxample of a generalised linear model, see McCullagh and Nelder (1989). Its link function, also called the
multivariate logistic transformation, expresses the joint distribution of the response profiles in terms of
marginal logits, marginal log odds ratios and contrasts of marginal log odds ratios.

We consider a binary variable observed at d occasions. We denote by y the vector whose components are
the profile indicator functions, i.e. for any given response profile i, the corresponding component of the
vector y is equal to 1 if the profile i has been observed, and to 0 otherwise. The vector of the probabilities
of the response profiles is denoted by n. The multivariate logistic regression models are defined to be those
of the form 1y = X B, where X is a matrix of explanatory variables, B is a vector of unknown parameiers and
1 is the image of m under the multivanate logistic transformation. For one observation, the kernel of the log
likelthaod 1s given by

"Paul-André Salamin, Statistical Methods Unit, Swiss Federal Statistical Office. Schwarztorstrasse 96,
CH-3003 Berue, Switzerland



IB:y) =y logn(B),
where nt(B) is the inverse of the link function. The score vector and the information matrix are given by
s(B; y, X)=Dr(B)" (diagn(B))"'y
and
1(B; X)= Dn(B)’ (diag n(B))™' Dn(B).
where Dr(P) is the Jacobian matrix of n(fB).

The extension of multivariate logistic regression to the case of a sample drawn from a finite population is a
straightforward application of the results of Binder (1983). We consider a finite population U of size N and
we assume that a vector of profile indicator variables and a design matrix are associated to each element of
U. Let § be a probability sample of size n drawn from the population U. We denote by w the weights
associated to §. We define the population score vector as

Su (B)=Zkeu sBiyv, X,

For any value of P, the population score vector is a vector of totals. Using the sampling weights, we can
then estimate this population score vector from the sample. Following Binder (1983). we assume that we
can compute a consistent estimator of the covariance matrix. under the sampling design, of this estimated
population score vector. The estmated population score vector can then be used 10 define an estimator of 8
as the solution of the equation

s.(P)= Z‘ES wisilBiay,. X, D=0
An estimator of the covariance matrix, under the sampling design, of the estimator of 5 1s given by
cov,, (ﬁ) =1 (fB)" cov, (s, (B))I‘, (B)NI ‘ o
where
I“(_B)=—Z;“ .\n"/(ﬁ;,\() S

is an estimator of the population information matrix.

3. ILLUSTRATION

3.1 Description of the data

A detailed description of the sampling design and weighting procedure for the Swiss Labour Force Survey
(SLFS) can be found in Hulliger er al. (1997). Here we just recall some of the relevant aspects of this
survey. The SLFS collects information on employment of resident persons of age 15 or more in
Switzerland. Starting in the second quarter of 1991, a sample of about 16000 persons are interviewed each
year. The survey is designed as a rotating panel with a time-in-sample of 5 years. During the start-up phase,
i.e. from 1992 to 1996, approximately one fifth of the original sample was rotated out each year and
replaced by a renewal sample. The units in the renewal samples then stay in the panel for a full period of 5
years. The sample was drawn according to a two-stage stratified design, with households as primary uniis
and persons as secondary units. The 42 strata in the first stage are defined in term of regions and type of
communes. The sample is allocated proportionally to the size of the strata, with the exception of some
regions that were over-sampled. In the second stage, a target person is selected with equal probabilities
among the eligible persons of the household. The final weights are obtained from the inverse of the
inclusion probabilities after adjustment for non-response and calibration on some known population
characteristics. The "pavallel group” juckknife is used for variance estimation, With this tvpe of jackkmte,
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the strata are first divided into G groups of equal size and the jackknife replicates are obtained by deleting
in turn one group of observations from all the strata. The variable of interest is the employment status. This
is a nominal variable with three categories defined as "employed”, "unemployed” and “out of the labour
force”.

3.2 Example

In this example we use the observations of the employment status, for the years 1992 to 1995, obtained
from the individuals in the sample of the canton of Vaud. Here. we define the employment status as a
binary variable taking the value 1 if an individual is employed and 2 if an individual is unemployed or out
of the labour force. For simplicity, we have also eliminated the individuals that dropped out of the panel.
An attractive feature of multivariate logistic regression, however, is the possibility of incorporating into a
single model the different types of response profiles arising from the rotating panel. Thus the individuals
which dropped out of the panel could also have been incorporated into the analysis.

In what follows, the emphasis is on the impact of the sampling weights. In particular, it is of interest to
check if the weights, which were developed primarily for cross-sectional estimation, change the estimates
of the parameters of multivariate logistic models, and to quantify the increase of the variability of the
parameter estimates due to the sampling weights. In order to facilitate the comparison with estimates based
on the unweighted data, the sampling weights are normalised to sum to the sample size.

We consider a model in which we have one parameter for each of the marginal logits and for each of the
log odds ratios. The parameters of order 3 and 4 are set to 0. The parameter estimates and their standard
crrors are given in Table 1. For the weighted data, the estimate of the standard error can be computed either
ignoring the sampling weights, in which case it is denoted by SD, or taking the sampling weights into
account, in which case it is denoted by SD.w. Note that SD is computed as the square root of the diagonal
of the mverse of the estimated population information matrix (2), and that SD.w is based on (1).

Table 1: Parameter estimates and standard errors

Parameter Unweighted data Weighted data

_ B SD B SD SD.w
logit 92 0.6362 0.0352 0.6223 0.0356 0.0407
logit 93 0.5573 0.0338 0.5720 0.0342 0.0389
logit 94 0.5411 0.0325 0.5574 0.0329 0.0356
logit 95 0.4716 0.0320 0.4984 0.0323 0.0365
log OR 92 93 4.2579 0.1465 40113 0.1394 0.1647
log OR 93 94 41111 0.1310 3.9258 0.1269 0.1484
log OR 94 95 45561 0.1389 4.3527 0.1334 0.1549
log OR 92 94 3.8372 0.1442 3.5633 0.1369 0.1654
log OR 93 95 3.7913 0.1334 3.5891 0.1290 0.1527

log OR 92 95 3.5774 0.1530 3.2882 0.1447 0.1643

Overall, we notice that the parameter estimates are not strongly affected by the weights: the differences
between the estimates based on the unweighted or weighted data are within twice their standard errors. This
is due to the circumstance that, at least for the example considered here, the SLFS weights do not distort the
profile counts by much. Comparing SD and SD.w for the weighted data, we can assess the effect of the
weights on the variability of the parameter estimates. We observe a fairly consistent increase of about 15%.
As in the SLFS only one person per household is selected, we are not expecting a large cluster effect and
the moderate increase in the variability of the parameter estimates is plausible. Also, it is consistent with
values obrained m similar surveys at the SFSO.
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4. CONCLUSION

We have proposed an extension of multivariate logistic regression to data from complex surveys and
demonstrated its use on data from the SLFS. As far as the computation of point estimates is concerned, the
standard method needs only minor adjustments. The estimation of the variance of the point estimates
requires the estimation of the variance of a total under the sampling design. This can be complicated. For
example, in the SLFS this is done by the parallel group jackknife, a fairly computer intensive procedure.
However, for the data that we examined. we found a fairly consistent increase of the variability due to the
sampling weights. This can be used to correct results from the standard analysis. which are easier to obtain.

Although the results we obtained seem reasonable, the validity of the proposed method rests on asymptotic
arguments and it would be desirable to investigate the properties of the method more thoroughly.
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PARAMETER ESTIMATION FOR A FINITE MIXTURE
OF DISTRIBUTIONS FOR DICHOTOMOUS
LONGITUDINAL DATA: COMPARING ALGORITHMS

J.-F. Beaumont and A. Demnati'

ABSTRACT

For longitudinal data. mixed models are often used, since they allow analysts to take account of the
correlation between different observations from the same individual. The finite mixture model may
be considered as a special case of a mixed model. In this document, attention will be given to the
maximum likelihood method. The maximization of the likelihood function for a finite mixture of
distributions is generally more difficult than in the usual case of a single distribution and can require
considerable time. The objective of this project was therefore primarily to identify 1he one or more
algorithms that best meet the criteria of run time and of efficiency in finding the solution. To achieve
this objective, a simulation study was carried out. Only the situation in which the dependent vanable
is dichotomous was considered. This situation is very useful in practice, since among other things it
can be used to model discrete durations, such as the length of time in “low income” status.

KEY WORDS: Finite mixture of distributions: Mixed model: EM algorithm; Newton-Raphson;

Logistic model.

1. INTRODUCTION

tor longitudinal data, mixed models (Zeger, Liang and Albert, 1988) are often used, since they allow analysts
to take account of the correlation between different observations from the same individual. These models are
said to be mixed because they include both fixed and random parameters (or etfects). The finite mixture model
may be considered as a particular case of a mixed model. The only difference lies in the way of specifying the
distribution of the random parameters (Beaumont and Demnati, 1998). For a mixture, the random parameters
are discrete and do not come from a known parametric distribution such as a normal distribution.

Models in which it is assumed that individuals come from a finite mixture of distributions are becoming
increasingly common, and they provide a useful and attractive tool for analysts. For longitudinal data, these
models allow for taking account of the correlation of observations over time. There are other factors that may
encourage the use of such models. Among other things, they can make it possible to take account of the effect
of a missing variable, since categories of that variable that could not be observed may be associated with the
distributions that make up the mixture. These models may also be used for the purpose of clustering
(McLachlan and Basford, 1988).

This paper will focus solely on the maximum likelihood method. Furthermore, only the situation in which the
dependent variable is dichotomous will be considered. This situation is very practical to consider, since among
other things, it can be used to model discrete durations, such as the length of time in “low income™ status.

In Section 2, an example of an application is briefly presented. Section 3 serves primarily to show that the
likelihood function for a finite mixture of distributions is flatter than in the usual case of a single distribution.

* 1.-F. Beaumont and A. Demnati, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario,
Canada K1A 0T6.
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In Section 4, different algorithms for maximizing this likelihood function (or its natural logarithm) are
examined. Section 5 describes and presents the findings of a simulation study for comparing algorithms in
terms of total run time (related to the number of iterations to converge) and efficiency in finding the solution.
The last section offers a brief conclusion.

2. EXAMPLE

In this section, an example of an application is briefly presented using the longitudinal administrative databank
(LAD) of the Small Area and Administrative Data Division of Statistics Canada. That databank is obtained
from Revenue Canada and is designed on the basis of individuals’ income tax returns. In fact, LAD is a
Bemoulli sample in which each return has one chance in ten of being selected. It currently covers the years
1982 to 1995.

In this example, we are interested in modelling the length of time in “low income™ status. With LAD, the data
are available only on an annual discrete basis. The mixed logistic model (Zeger, Liang and Albert, 198¥)
therefore seems appropriate. This model allows us to take account of the correlation between episodes in “low
income” status for a same individual as well as the correlation between the observations of a single episodc.
Furthermore. the model allows for the use of independent variables that vary over time. Forexample. duration
is incorporated into the model by means of independent dummy variables.

In this application, we assumed a model in which individuals come from a mixture of two distributions and
in which only the intercept is random. The estimates were obtained by the maximum likelthood method. It
was found that the probability of moving out of “low income” status depends on a number of factors. one of
which is obviously length of time. In addition, there is strong evidence against the hypothesis that individuals
come from a single distribution, meaning that there are likely at least two groups of individuals in the
population. These groups may correspond to categories of a variable that we were unable to observe. With
LAD, for example, we have no information concerning individuals’ education level. If it is believed that this
variable affects the probability of moving out of “low income” status, the unobserved variable could be
interpreted as being education level. The unobserved variable could also be interpreted as being each
individual’s motivation to move out of “low income™ status. The interpretation of this varable is therefore
difficult and should not be taken lightly.

3. LIKELIHOOD FUNCTION

In what foltows. 1t will be assumed that the individuals come tfrom a superpopulation which ts a finite mixture
of distributions and that the sampling design is ignorable. The likelihood function is given in Beaumont and
Demnati (1998), among other sources. There are a number of factors that make this function more difficult
to maximize than the one for the usual case of a single distribution. One such factor is that this function has
frequently more than one maximum, which in some cases makes it ineffective to use the commonly used
algorithms, such as Newton-Raphson. Furthermore, the likelihood function for a mixture is generally flatter
than in the case of a single distribution. To show this phenomenon, we simulated a data set in which the
dependent variable is dichotomous and in which there is no independent variable except for the intercept. The
data set contains 100 individuals with 10 observations per individual, and the data come from a mixture of two
distributions. We then compared the natural logarithm of the likelihood function (NLLF) for the following
three cases: (1) We choose the mixed logistic model and assume a mixture of two distributions. We then
estimate the parameter associated with the distribution of the random effect and consider known the other
parameters. (2) We choose the mixed logistic model and assume a mixture of two distributions. We then
estimate the intercept (fixed parameter) and consider known the other parameters. (3) We choose the usual
logistic model (a single distribution) and estimate the intercept.

From examining Figure 1, it may easily be seen that the likelihood functionis flatter if we assume a mixture
of two distributions (cases ! and 2) than if we assume a single distribution (case 3). This phenomenon is even
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more pronounced when we attempt to estimate the parameter associated with the distribution of the random
effect (case 1). Thus, when we assume a finite mixture of distributions, the convergence criterion must be
sufficiently strict, since it is generally based on the relative change in the NLLF between two successive
iterations. If this criterion is not adequate, the convergence might appear to be achieved, whereas the solution
would still be relatively far off.

It should lastly be noted that in practice, all the algorithms that will be presented in the next section are
generally good for finding the global maximum in such simple cases (a single parameter to be estimated and
the two distributions relatively well-separated).

Figure 1: Comparison of
NLLF divided by 100
for cases 1,2 and 3

4. ALGORITHMS

The algorithms that will be considered for maximizing the likelihood function may be grouped into two
categories: algorithms of the Newton-Raphson type, described in Section 4.1, and algorithms of the EM
(expectation-maximization) type, described in Section 4.2. In Section 4.3, we will discuss another way to
approach the maximization problem, which consists in combining two algorithms. For a more detailed
description of these algorithms, the reader is referred to Beaumont and Demnati (1998).

Each of the algorithms was programmed using the NLIN procedure of SAS (SAS Institute Inc., 1990),
which is designed to minimize a sum of squares. Thus they will be easier to compare in terms of run time.
Furthermore, to ensure that the NLLF increases with each iteration, this procedure performs sub-iterations.
A sub-iteration consists in reducing by half the change in a given iteration. These sub-iterations are carried
out so long as the NLLF does not increase and the maximum number of sub-iterations has not been
reached.

4.1 Algorithms of the Newton-Raphson type

With this type of algorithms, the maximization of the NLLF is obtained by solving the system of non-linear
equations resulting from the first derivatives of the NLLF with respect to each of the parameters to be
estimated. The Newton-Raphson (NR) algorithm is well-known and is often used to solve such a system of
equations. It calls for calculating the first and second derivatives of the NLLF. This algorithm converges
quickly if the imtial values are not too far from the solution. However, it very often becomes incapable of
finding the global maximum of the likelihood function when the initial values are not sufficiently close to
the solution. In addition, calculation of the second derivatives can take considerable computer time,
especially when the model considered contains many parameters or when there are a large number of
observations.
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If providing the second derivatives is impractical or if calculating them involves a great deal of run time,
they can be approximated using the first dertvatives (Beaumont and Demnati, 1998). The algorithm for
this 1s called NRH1.

4.2 EM-type algorithms

The EM algorithm, developed by Dempster, Laird and Rubin (1977), serves to maximize a likelihood
function where the data are incomplete. An iteration of this algorithm consists in (i) calculating the
expectation of the NLLF for the complete data, conditional on the values observed and the current values
of the parameters, and (ii) maximizing this expectation. For a finite mixture of distributions, the complete
data are constituted by the observed values and the unobserved variable. An important feature of the EM
algorithm is that the NLLF does not decrease over the course of the iterations.

By means of a simulation study, Rai and Matthews (1993) show that the run time of the EM algorithm
could be greatly shortened by carrying out a single Newton-Raphson cycle at the maximization step when
this maximization requires an iterative process. They name this algorithm EM1. Another way to reduce
the run time is to avoid calculating second derivatives in the maximization. This reduction will be
especially great if there are a large number of observations and parameters to be estimated. Once again,
the second derivatives may be approximated by means of the first derivatives (Beaumont and Demnati,
1998), and the algorithm EMIHI1 is obtained.

4.3 Combination of algorithms

The EM algorithm is known for requiring a great number of iterations before converging. However, it has
the property of having the likelihood function that does not decrease over the course of the iterations,
which makes the algorithm useful, especially if the iterative process is started with poor initial values. The
EM1 and EM1HI algorithms do not have this property, but in practice, they will seldom produce a
decrease in the likelihood function. By contrast, algorithms of the Newton-Raphson type take fewer
iterations to converge but are much more sensitive to the choice of the initial values.

The approach here therefore consists in starting the iterative process with an EM-type algorithm and
finishing with an algorithm of the Newton-Raphson type. Consequently, two convergence criteria are used:
a less strict one determining when to stop the EM-type algorithm, and a stricter one for determining when
to stop the iterative process. Therefore, the stricter the first criterion, the closer one gets to the EM-type
algorithm, and the less strict it is, the closer one gets to the algorithm of the Newton-Raphson type. In what
follows, the focus is solely on the following combination: EMIHINRH1 (EM1HI in combination with
NRHI1).

5. SIMULATION STUDY

In order to compare the different algorithms described in Section 4, we conducted a simulation study. The
main objective of the study was to evaluate the algorithms in terms of the number of iterations required to
achieve convergence, total run time including data reading time, and efficiency in finding the solution.

To conduct this study, we simulated a number of data sets in which the dependent variable was
dichotomous and in which only the intercept was random. Thus we used the mixed logistic model. The
data sets contain 1,000 individuals, with 12 observations per individual (12 time periods) . and the data are
from a mixture of two distributions. We then tested the behaviour of the different algorithms for the
following four cases: (A) well-separated distributions and good initial values, (B) well-separated
distributions and poor initial values, (C) distributions close together and good initial values, and (D)
distributions close together and poor initial values.

The convergence criterion is based on the relative change in the NLLF between two successive iterations.
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Convergence is considered to be achieved when the change is less than € = 1x107'°, For EMIHINRHI,
this criterion is applied for a first time to end EM1H1 withe = 1x10* and for a second time to end the
iterative process with € = 1x10°'". The maximum number of iterations is set at 151.

In Section 5.1, the mixed logistic model with 25 independent variables is considered. In Section 5.2, the
algorithms NRHI and EMIHINRH] are compared, varying the number of independent variables from 0 to
60. All the calculations were made using a portable Pentium 90 computer. The reader is referred to
Beaumont and Demnati (1998) for further details concerning the simulation study.

5.1 Model with 25 independent variables

We first considered the mixed logistic model with 25 dichotomous independent variables. The values of
these variables may vary over time and are obtained by means of a Bernoulli distribution with probability
of success equal to 0.5. We simulated one data set in which the distributions are well-separated and another
in which the distributions are close together. Table 1 shows the results for five algorithms studied. The
run time is measured in seconds.

Table 1: Comparison of algorithms for a model with 25 independent variables

CASE A CASEB CASEC CASED
METHOD ITER TIME ITER TIME ITER TIME ITER TIME
NR 3 64749 X X 4 678.88 X X

NRHI 8 126.82 I 171.86 9 139.24 15 191.2
EMI 19 1.027.6 35 1.675.51 151 5.483.77 151 5.602.67

EMIHI 14 11276 18 148.19 151 976.3 151 1154.7

EMIHINRHI1 8 143.75 12 185.81 3 186,57 18 2231

Note: X indicates that the global maximum of the likclihood function was not attained. It is assumed that this maximum is the

one that corresponds to the largest value observed from the NLLF among all the algonithms considered and the two types
of initial values.

The main finding that emerges from Table 1 is: the algorithms that have to calculate second derivatives are
much slower. For example, the NR algorithm is the one that takes the fewest iterations to converge when it
begins the iterative process with good initial values, whereas it is far from being the fastest. It should be
noted that this algorithm did not converge toward the global maximum when the initial values were poor
(cases B and D).

When the distributions are well-separated. the EM1H]1 algorithm is faster in terms of run time. On the
other hand, it reaches the maximum number of iterations (151) when the distributions are close together.
However, it has the following advantages: not much time is required for each iteration, and most of the
change in the likelihood function takes place in the first few iterations. For case D. for example, the NLLF
equals -7,901.02 at the beginning, -5,331.37 after the fifth iteration, -5,326.14 after the twentieth iteration
and -5,320.27 when the global maximum is reached. The EMIH] algorithm is therefore quite efficient
when combined with an algorithm that requires fewer iterations to converge, such as NRHI.

Only two algorithms converged for all four cases: NRH1 and EMIHINRHI. The algorithm

EMIHINRHI is somewhat slower than NRH1 but reads the data twice (being a combination of two
procedures), which makes it appear less attractive.
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5.2 Comparison of NRH1 and EM1HINRHI1 for case D

In order to determine which algorithm to choose between NRH| and EMIHINRHI, we simulated one data
set containing only the intercept, another with five independent variables that can vary over time, another
with 10 independent variables that can vary over time, and so forth, up to 60 independent variables. We
thus obtained 13 data sets for which the values of the independent variables are obtained by means of a
Bernoulli distribution with probability of success equal to 0.5. We settled for examining case D only,
which is a realistic scenario in practice. Figure 2 shows the number of iterations required to converge
according to the number of independent variables for the two algorithms considered. Figure 3 shows the
same chart, except that the variable on the vertical axis is the run time rather than the number of iterations.

An analysis of figures 2 and 3 shows that the number of independent variables has a greater impact on run
time than the number of iterations required to converge. The algorithm NRHI is faster, especially when
there are a large number of independent variables. It should again be noted that the run time includes twice
the data reading time for EMIHINRH]1. On the other hand, the NRH! algorithm is less efficient for
finding the global maximum, since it did not achieve that maximum for 4 of the 13 simulated samples,
whereas EMIHINRHI1 achieved the global maximum in all cases. This is why the curves for the NRHI
algorithm are not continuous.

Figure 2: Number of iterations according to Figure 3: Run time according to number of
number of independent variables independent variables
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In Table 1 in Section 5.1, we saw that the EM1H1 algorithm was the fastest when distributions were well-
separated and the NRH1 algorithm was faster when the distributions were closer together. Thus,
EMIHINRHI, which is a combination of these two algorithms, is an attractive compromise with respect to
run time. [t is also the most efficient algorithm for finding the global maximum.

6. CONCLUSION

In the preceding section, we saw that avoiding the calculation of second derivatives could greatly reduce
the run time. Hence the EMIHINRHI algorithm, which is a compromise between EM1H1 (EM algorithm
with one iteration at the maximization step and approximation of second derivatives) and NRH1 (Newton-
Raphson algorithm and approximation of second derivatives) is attractive from this standpoint.
Furthermore, this algorithm is highly efficient for finding the global maximum of the likelihood function,
even when the distributions are close together.

Other algorithms that do not require calculating second derivatives could be combined with EMIHI.
Among the potential candidates are the quasi-Newton algorithms. They were not, however, considered in
this study since it does not appear possible to use them with the NLIN procedure of SAS. Therefore, the
results would not have been comparable with the algorithms studied.
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In this document, we focused on the problem of estimating parameters for dichotomous data. However, it
is realistic to believe that the conclusions of this study also apply to other types of distributions. Among
other things, avoiding the calculation of second derivatives should reduce the run time regardless of the
distribution of the data.
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I promise not to keep vou very long, as this has been a very full two days and I am much too humbile to think
that I could add substantially to the heady stuff that has been offered.

However, I do appreciate the opportunity to say how grateful I am that this conference actually happened, as
a step along the long road to mining our longitudinal data sources to their fullest.

1 would like to begin by thanking the organizing commitice of the 15th svmposium, for a truly excellent event.

Mike Hidirogtou, Michel Latouche, Tony Lubillors, Sylvie Michaud. Georgia Roberts & Denis Lemre, throngh
hard work and careful planning, have provided us with a great opportunity 10 exchange ideas on a topic that is
of critical importance to many statistical agencies. These people did not give up their day jobs either to plan
the conference-I think it was truly a labour of love.

I would next like to thank all the volunteers who worked on this event. You can see on the screen the long list
of volunteers who have helped out. Needless to say, it takes an enormous amount of work to successfully plan
a conference of this scope, and the volunteers deserve a big, heartfelt thank you.

Next, thanks to our international visitors, who took the time to come and share their experiences with us. It is
always a pleasure to hear from colleagues working on panel surveys in other countries who, despite institutional
and other differences, share a common understanding of the challenges that such surveys pose.

Finally, I would like to thank our presenters for very stimulating talks on topics that are complex and often
difficult to encapsulate in a twenty minute presentation. Judging from the questions and comments of the
audience, their topics were well chosen and piqued considerable interest. For all those who had a hand in
making this conference a success, I suggest that we offer a round of applause.

Let me take a moment to tell you what I have gained from this symposium. My experience lies more in the area
of survey management and defining survey content. Consequently. I found a number of the presentations to
be—how shall I say it—a challenge.

I am, however, very much aware that the development of longitudinal data sources requires teamwork by
methodologists, subject matter experts, computer analysts and users. Only such an approach will bring success.
The program included a fairly wide choice of subjects to underscore the network of disciplines that must heip
each other in order to achieve the goal.

So..analvsts. methadologists. systems analysts all have an important role in ensuring that we really do draw the
henefits from these surveys. The agenda for this Symposium underscored this fact by covering not just
analytical techniques and data quality issues but also processing concerns, data access, confidentiality
protection. These are all major concerns for all of us. Those of us who have lived though the early growing
pains of a new longitudinal survey are not likely to ever forget trying to wrestle the time dimension into a data
structure, as we learn to “think longitudinally™.



In his opening address, Michael Wolfson referred to the new longitudinal data sources in Statistics Canada, on

health, children, labour and income dynamics. Others on the drawing board or being implemented covering
such topics as school to work transitions and immigration. It seems longitudinal surveys have come into their
own, and not just in Canada.

With the European Panel at much the same stage of development as the recent Canadian surveys, and the SIPP
redesign in progress, it is important to continue the dialogue, share our experiences in exploiting these new and
powerful data sets. So, once again, thanks to all who contributed to this conference. 1 wish our visitors a safe
trip home. Thank you, and I look forward to seeing you again.
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