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Foreword 

This monograph on Models for Time Series was written by 
Dr. Estela Bee Dagum, Head of the Research and Development 
Unit, General Time Series Staff. 

The main purpose of this study is the identification and analysis 
of the basic hypotheses of different kinds of models for time 
series. 

Emphasis is given to univariate models for which well established 
methods of estimation already exist. By discussing the assumptions 
of these models, it is hoped to make users and researchers aware 
of their limitations. 

The reason for this study lies in the fact that the optimality of any 
method of estimation strictly depends on the fulfillment of the 
assumptions upon which the methods rely. 

In other words, behind each method of estimation there is a model 
for which it is optimal (optimality defined here in the usual 
statistical sense). But since there is no unique model that should 
be applied to all time series in all situations, no method of estimation 
should be used uncritically as the one giving unique optimal solution. 

The author is solely responsible for the views expressed in this 
monograph; however, she would like to acknowledge with thanks, 
Professor C. Dagum, Ottawa University, Mr. Phillip Smith, Current 
Economic Analysis Division, and Miss Mary Lennox, Chief, General 
Time Series Staff for their valuable comments. 

P. N. TRIANDAFILLOU 
Director, 
Current Economic Analysis Division. 
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1. INTRODUCTION AND SUMMARY 

During the last decade, many statisticians have been devoted to the search for 

optimal methods of estimation for time series. The reason for this search is 

not hard to perceive. The need for accurate statistical data is crucial for 

decision-making. Policymakers, faced with the responsibility of controlling 

the economic activity, will hardly base their decisions on poor estimates or 

on estimates subject to significant revisions whenever new information is 

available. 

Several methods of estimation, and corresponding computer programs, have 

been produced. For the most part, they are based on classical statistical 

techniques such as least squares or moving averages, although some other 

types of linear filters have also been considered. Thus, the work done to 

obtain accurate and robust estimates for historical and current data has been 

centered on methods of estimation. However, when using these methods of 

estimation, a fundamental and simple principle is forgotten - the optimality of 

any method of estimation strictly depends on the fulfillment of the assumptions 

upon which the methods rely. 

In other words, behind each method of estimation, there is a model for which 

it is optimal. But since there is no unique model that should be applied to all 

time series in all situations, no method of estimation should be used uncritically 

as the one giving unique optimal solutions. 
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The more the behaviour of the generating process of a time series 

departs from the assumptions of the model, the less its validity to 

describe the phenomenon and consequently, no matter how optimal 

its corresponding method of estimation is, the final results will be 

seriously distorted. 

This kind of negligence should be attributed not only to users but also to 

researchers engaged in wasteful discussions on the superiority of one method 

with respect to another (superiority usually illustrated with a given time series 

for which the method proved to be optimal). This criticism is extended to 

the theoretical statisticians, for most of the new methods of estimation are based 

on very simple models, the assumptions of which are sometimes so general that 

it is very hard to find the real phenomenon that properly fits them. Yet a large 

class of models exists which, from a mathematical point of view, are feasible 

to deal with and better fitting the behaviour of many phenomena evolving through 

time, but for which methods of estimation have not been developed. We speci-

fically refer to those models based on the assumptions of non-stationarity, and 

non-normality. We shall not discuss here these types of models but shall 

concentrate our analysis on univariate models for which well-established 

methods of estimation exist. By discussing their assumptions, we hope to make 

users and researchers aware of their limitations. Our approach is concerned 

strictly with the theoretical empirical foundation of the models and not with 

their estimation procedures or other aspects of statistical inference. 

We hope in this manner to provide an insight into the most realistic and/or 

mathematically tractable assumptions to be made concerning the behaviour 

of a phenomenon that evolves through time in a probabilistic way. 
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By a model, we shall not mean a theoretical system lacking empirical content. 

On the contrary, it is defined here (See Dagum and Dagum, 1972) as: "an 

empirical-theoretical system which satisfies the following requirements: 

(1) it must represent a non-contradictory but possible world; 

(2) it must represent a world of possible experience; and, 

(3) it must be submitted to and has to pass tests of either corroboration 

or falsification". 

Following the idea of Wold (1938), already incorporated in the current literature, 

a time series is seen here as a sample realization of a stochastic process, which 

from a non-mathematical point of view, is any process controlled by probabilistic 

laws. The observations made as the process continues indicates the way it 

evolves. For each point of time t, belonging to a period T, that is, t cT, the 

observation made x(t) is considered the outcome or observed value of a random 

variable X(t) and a family of such random variables {X(t), t C T} defines a 

stochastic process or random function. 

Given that an observed time series {x(t), tcT} is assumed to be a sample 

realization of a stochastic process {X(t), tt T} one attempts to infer from 

the observed time series the generating mechanism or probability structure 

of the process. 
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Therefore, in order to analyze a time series, one must first assume a model 

for it which must be completely specified except for the values of its parameters 

which one proceeds to estimate on the basis of observed samples. 

Models for time are stochastic processes and there are several ways to classify 

a stochastic process. 

We shall consider a classification that allows us to discuss the assumptions 

on which each type of process is based as well as to distinguish those processes 

used for practical applications from the more theoretical ones. 

Table I 

Classification of a Stochastic Process 

(1) Accorc±irg to the independence or not of the 

properties of the stochastic process on the 

time origin. 

(2) According to the distribution functions that 

characterize the process. 

(3) According to the independence or not of the 

behaviour of the process on its values in the 

preceding time interval. 

(a) Stationary 

(b) Non-Stationary 

(a) Normal 

(b) Non-Normal 

(1) Markovian 

(2) Non-Markovian 

Intuitively, a stationary process is one whose distribution remains the same 

as time progresses because the random mechanism producing the process 

does not change with time. In other words, all the probability distributions 

depend only on the mutual positions of the instants of time t 1 , t2 , 	t, but not 

on the actual values of these quantities; that is, if the set of points t 1 , t2  . 

t is shifted along the time axis t, the probability distributions remain the 

same. 
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A stochastic process is completely specified by its probability distributions 

but this procedure is, in general, not convenient because of its unwieldiness. 

In practice, instead of considering the probability functions, only the first two order 

moments are specified. A process is then said to be stationary in the wide sense 

or second order stationary if the mean value and the variance are constants and 

the covariance function depends only on the difference between any two points 

in time. 

Any process for which the conditions of stationarity in the wide sense are not 

fulfilled is called non-stationary. There is an important subclass of non-stationary 

processes that has been extensively developed for practical applications, namely, 

the homogeneous non-stationary processes, also called processes with stationary 

increments. These processes are non-stationary but, by taking differences of a 

finite order, the processes become stationary in the differences. In a way, they 

are a generalization of the theory of the stationary random processes. 

The second attribute which can also be used as the basis of a classification of 

random functions is the form of the distribution functions that specify the 

process. The distribution law most frequently encountered is the normal law. 

Also, normal processes can use certain methods of calculations which cannot 

be applied in other cases. Hence, it is advantageous to divide the stochastic 

processes in two groups: normal and non-normal. It is important to observe 

that if the distribution functions are normal, only the first two order moments 

are necessary for a complete description of a normal random process. 

Finally, for a classification of stochastic processes, one can take into con-

sideration the dependence of the behaviour of a process on its value in the 

preceding time interval. A stochastic process {X(t), t t} is said to be 



Markovian if for any set of n points t <t 2 < ... < t, the conditional distribution 

of X(t n ) for given values of X(t 1 ), X(t 2 ),.... X(t_ 1 ) depends only on X(t n-i ), 

the most recent known value. In other words, the probability of any particular 

future behaviour of the process when its present state is known is not altered 

by conventional knowledge concerning its past behaviour. Conversely, if the 

probability properties of the process at a given movement of time depend on its 

values in preceding time intervals the process is said to be non-Markovian. 

These three main categories are compatible and any combination among them 

is possible. For example, a process may be normal stationary of a Markovian 

type, or stationary and non-normal, or normal and non-stationary, and so on. 

However, for practical applications, not all the combinations are possible. 

The main constraints are the lack of a well-developed theory and of proper 

methods of estimation to make their applications feasible. Therefore, we 

shall discuss the assumptions of those types of processes for which empirical 

applications are possible at present; namely, (1) Normal Non-Stationary 

(in the mean) processes; (2) Normal Linear Stationary Processes and (3) Normal 

Homogeneous Linear Non-Stationary Processes. A stochastic process X(t) 

is said to be linear if there exists a purely random process U (i. e., a process 

of independent random variables identically distributed) and a sequence of 

parameters 	1' 2' 	such that X(t)= ko akU_k. 
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Processes (1), (2) and (3) have proved to be the easiest to deal with from a 

mathematical point of view. Also, they seem to describe quite accurately the 

generating mechanism of many physical problems. 

The properties that make these types of processes very useful are that, by the 

assumption of normality, they are completely specified with only the first two 

moments of the distribution functions; by being assumed stationary or stationary 

in the differences, (homogeneous non-stationary) their means and variances are 

constants and their autocovariance functions depend only on the time lags. For 

processes (2) and (3), the assumption of linearity guarantees the fulfillment of 

the principle of ergodicity. 

The importance of stationarity in a process resides in the fact that the ergodic 

theorem and the spectrum were first defined for stationary stochastic processes. 

All linear stationary processes are ergodic; i. e., one can obtain consistent 

estimators of the mean and covariance function of a given process with only 

one single realization. In other words, averages computed from one sample 

(one set of data) called time averages can ultimately be identified with 

corresponding ensemble averages, i. e., averages over the whole space of 

outcomes or realizations of the process at a given moment. The ergodic 

property is extremely important when dealing with economic time series, 

the data of which are the result of a single experiment. 

The spectrum is the Fourier transform of the autocovariance function and, 

from a mathematical point of view, they are equivalent. Both provide the 

same type of probability information for determining the generating mechanism 

of an observed time series but the autocovariance function stresses the time 

domain whereas the spectrum conveys the same information in the frequency 

domain. 



The spectral representation of a stochastic process is done with the use of 

Fourier series or Fourier integral, depending on whether the time parameter is dis- 

crete or continuous. The periodic functions in Fourier analysis are sines 

and cosines. They have the important properties that an approximation of 

a given number of terms gives the minimum mean square error between the 

function and its approximation, and also, they are orthogonal, so the co-

efficients may be determined independently of one another. 

The spectral representation of a stationary process is then a "decomposition" 

of the process into separate pair-wise uncorrelated periodic oscillations and 

the total variance of the process is distributed over frequency. For discrete 

time, it is possible to determine the proportion of variance attributable to each 

component with a particular frequency A and for time continuous processes, 

one refers to the contribution of a band of frequencies A 

Spectral analysis has been used preponderantly for solving problems that 

require frequency response studies like the design of aircraft structures, or 

for experiments to optimize the performance of industrial processes. However, 

when dealing with time series, particularly with economic time series, the 

autocovariance function is more appropriate for model building. However we must 

point out, following Mandelbrot (1972), that the autocovariance function analysis 

is effective primarily for models that correspond to near normal or Gaussian 

stochastic processes with high frequencies or small lags; i. e. , for models of 

short run near Gaussian effects. 



In our study, we shall stress the analysis of the autocovariance (autocorrelation) 

function but we shall also give the corresponding spectrum (normalized 

spectrum) for the models considered. The latter is done more for the sake of 

completeness than usefulness. 

Within the broad categories of Normal Non-Stationary (in the mean) processes, 

Normal Linear Stationary processes and Normal Homogeneous Linear Non-

Stationary processes, several kinds of models have been built for description 

and for forecasting of time series. Although the assumption of normality is 

not always made explicit in the formulation of the models, it is indeed introduced 

when testing their hypotheses. The following classification is useful for our 

purposes despite its simplicity and a certain amount of overlapping in its elements. 

Table II 

Classification of Models for Time Series 

(1) Concerning the set 

of hypotheses made 

on the signal and 

the noise. 

(2) Concerning the 

number of para-

meters of the 

model. 

(a) Error Models 

(b) Linear Stationary 

Processes 

1 (c) Homogeneous Linear 

I Non-Stationary 

L 	Processes 

(a) Parametric Models 

11 (b) Non-Parametric Models  

(b. 1) Autoregressive 

Processes 

(b. 2) Moving Average 

Processes 

(b. 3) Autoregressive 

Moving Average 

Processes 

[Autoregressive 

4 Integrated Moving 

[Average Processes 
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In an error model the generating mechanism of a time series is assumed to be 

composed of a systematic component or signal which is a deterministic function 

of time (in general, a polynomial of low degree) and a random component 

supposed to be purely random or white noise, i. e. identically distributed with 

constant mean, constant variance and zero autocorrelation. This set of assump-

tions regarding the random component of the model forces any effect of time to 

be made in the deterministic part and therefore, each observation is stochastically 

independent of the previous ones. The properties of the time series are then 

summarized in the expected value of the function and variations in the random 

element do not affect these properties. in a way, the order in which the observa-

tions of the time series appears is of no relevance and the analysis of such a time 

series reduces to a multi-dimensional statistical analysis. The process is non-

stationary but if the signal is a polynomial of time, it is then a homogeneous non-

stationary process. In this case, by taking a finite number of differences of the 

observations, the process is linear stationary in the differences, the order of 

which is given by the degree of the polynomial. 

Historically, these models were elaborated first in the research domain of 

Astronomy. They were built to determine the position of a planet at a given 

moment of time. In such a case, errors in the observed time series are attributed 

to errors of observation due to atmospheric conditions or imperfections of the 

telescope. The errors will not affect later positions of the planets nor our 

observations of them. 

These models are then acceptable when the errors can be attributed to errors 

of measurement. However, for many other time series, in particular economic 

time series, the errors are not only due to wrong observations but also to more 

serious irregularities, and once they appear, they are incorporated into the 

process and influence its future evolution. In other words, the errors are 

autocorrelated; the order of the observations is crucial and the current value 

of Xt will depend on the time which has elapsed since the process started. 
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For such cases, within the categories of normal linear stationary and of normal 

homogeneous linear non-stationary, several models were built. Among them, 

the Autoregressive-Moving Average, ARMA (p, q) is very useful for description 

and forecasting when the time series is assumed to follow a stationary normal 

or near normal process with few lags. Such a process is obtained by equating 

an autoregressive process of order p with a moving average process of order q. 

A process Xis said to be an autoregressive process of order p if it can be 

expressed as a weighted sum or linear combination of the p previous values of 

the process plus a purely random component U. 

On the other hand, a process X is said to be a moving average process of 

order q if it can be expressed as a weighted sum or linear combination of 

purely random variables U, U 1 , . . . Ut q  

An ARMA (p, q) process is then considered to be the output X obtained from 

a purely random input U summitted to a linear transformation with weights 

resulting from the quotient of two polynomials. 

If the generating mechanism of a time series departs from the stationarity 

assumption only by observed differences in the level and/or the slope of 

different parts of the series, the process is then considered homogeneous 

non-stationary. Given the assumption of autocorrelated errors, the models 

used in these cases are called Autoregressive Integrated Moving Averages, 

ARIMA (p, d, q) models, where p stands for the order of the autoregressive 

process, d, for the order of the differences and q for the order of the 

moving average process. The assumptions of normality or near normality 

and of short run dependence are implicit in these models. The ARMA (p, q) and 

ARIMA(p, d, q) have been used for forecasting with quite good success when 

p, d, and q are no larger than 2. 
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It is traditionally assumed in the analysis of economic time series that the 

observed series results from the superposition of four processes that represent 

different types of evolution; namely, (a) trend, (b) cycle, (c) seasonal and 

(d) irregular. 

The trend corresponds to a variation in some defined sense persisting over a 

long period of time, that is, a period which is long in relation to the cycle. 

The cycle is a movement of quasi-periodic appearance characterized by alter- 

nating periods of expansion and contraction. The seasonal movement corresponds 

to regular weekly, monthly or quarterly variations (repetitive intraannual 

fluctuations) caused by the climate and other institutional practices. 

The irregulars are unforeseeable movements connected with events of all kinds. 

In general, they have a stable random appearance. In much analytical work, 

the trend and cycle components are combined, since it is the standing of 

the series apart from seasonal variation upon which interest is centered. 

The presence of a trend-cycle element introduces non-stationarity in the stochastic 

process. It is usually considered as a deterministic function of time (in general, 

a polynomial of a low degree) in the error models and as a function subjected 

to stochastic changes in the ARIMA models. 

The seasonal movement plays a very important role in the analysis of economic 

time series. We have devoted Section 10 to the models that are usually built to 

describe the seasonality. We must point out, however, that the seasonal move-

ment very rarely occurs on its own without being superimposed on a more or 

less regular trend. Besides, like all the other components of an economic time 

series, it is not an observable process. If the seasonal variation is assumed 
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to be stable and deterministic, it is represented by a strictly periodic 

Icti(n u t'.me, uually a polynomial of sines and cosines of time with both 

ciitnt ,i 	11tule tnci phases. But if the seasonal movement is assumed 

st. ble and stochastic, then the amplitudes are described by a purely random 

pocess. When the seasonal pattern is evolving through time in a deterministic 

manner, the amplitudes are a function of time, while if it is assumed to change 

stochastically then the amplitudes follow a stationary stochastic process, not 

purely random. 

In the error models, the seasonal variation is treated as deterministic while 

in the ARIMA models, it is treated as stochastic. 

The irregular are assumed to follow a purely random process or sometimes, 

less restrictively, a non-autocorrelated process. 

The error models, the ARMA (p, q). the ARIMA (p, d, q) and the seasonal 

models are parametric, i. e., a finite number of parameters are involved. 

Other ways to describe the probability structure of a time series are non-

parametric models, so called because an infinite number of parameters 

considered. This classification of parametric and non-parametric 

rmdels for time series should not lead to confusion with the use of the words 

l)trt1netr1 and riot: parametric in statistical analysis. In the latter, a method 

is said to bt parametric it it is assumed that the random variable follows a 

given distribution, and is said to be non-parametric if the distribution is free. 

Ihe non-parametric models we discuss here are the autocovariance function 

and its Fourier transform, the power spectrum. The study of any one of 

these functions is very useful for exploratory purposes, in the early stage 

of a research when very little is known about a particular phenomenon. The 
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main purpose of the time series analysis at this stage is to look at the data in 

different ways to see what hypotheses may be suggested and an exploratory 

model would then help to build an appropriate parametric model. 

Finally, we want the reader to bear in mind that the choice of the appropriate 

model for a time series is always function of both the a priori knowledge we 

may have of the nature of the phenomenon considered and the purpose of the 

analysis. But for immediate empirical applications, this choice is also constrained 

to the existence of numerical methods of solution readily mechanized. 



- 15 - 

2. A TIME SERIES AS A SAMPLE REALIZATION OF A STOCHASTIC PROCESS 

From a non-mathematical point of view, a stochastic process is any process 

controlled by probabilistic laws. The observations made as the process continues 

indicate the way it evolves. 

In most cases we are interested in temporal variation and the state of the 

process at any time t is described by the values of a certain number of observable 

quantities which are random variables. 

Assume the process is described by only one random variable X(t), then for 

each t, the numerical value of X(t) will not be uniquely determined as in the 

case of a deterministic system but will depend on the random influences that 

have been acting upon the process up to the time t. Then, for every fixed t, 

X(t), is a random variable defined on a probabilistic space 01, F, P). When 

t varies over the time range under consideration, we obtain a family of random 

variables X(t) depending on the parameter t and defined on the same probablistic 

space. This family{X(t), tc T }of random variables X(t) is a random function 

or stochastic process. If T is a finite set, then we have a finite number of 

random variables in the process which can be described by using multidimensional 

distribution functions. In effect, if X = {X 11  X2 , . . . , X} , then this is an 

n-dimensional random-vector and it is specified by its multidimensional dis-

tribution function, 

F(x , x 	. . . , x )=P{X .x , X 	x , ... X 	x }. 1 	2, 	n 	1 	1 	2 	2 	n 	n 

If T is the set of the integers, the process is infinite and is called a stochastic 

process with a discrete time parameter (discrete here refers to the nature of 
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the set T) or a stochastic sequence. If T is the set of the real numbers, the 

process is also infinite but uncountable or non-denumerable and is called a 

continuous stochastic process or simply a stochastic process. The term, 

stochastic process, has usually been applied to indicate processes with an 

infinite (countable or uncountable) number of random variables. The complete 

specification of a stochastic process requires something more than a mere 

extension of the finite case. 

For every fixed t, say tt 1 , we have a random variable X(t 1 ) which is completely 

specified by its distribution function (d. f) denoted by 

(2.1) F t 1 	1 (x )P ((t 1 )<x 1  } 

For every element t in the set T, we have 

(2.2) F(x)=P{X(t)<x } 

For each pair of points t 1 , t2  in the set T, we have the following distribution 

function, 

(2. 3) Ft t2(xii x 2) P X(t 1 )<x 1 , X(t2 ) <x2  } 

of the two-dimensional random variable X = (X(t 1 ), X(t2 )). 

In general, for any arbitrary finite set of t values, we have 

(2.4) F t l ,  t2, . . . , n t (x1  , x2 , . . . ,x n ) =P {X(t 1 ) <x 11 X(t2 )<x2 , .. . ,X(t) <x 

corresponding to an n-dimensional random variable X=(X(t 1 ), X(t 2 ). .. ,X(t)). 

The family of all these joint distributions for n=1, 2, ... and all possible values 

t. constitutes the family of finite dimensional distributions associated with the 

stochastic process X {X(t), tT }. For (2.4) to specify a stochastic process, 

it has to satisfy the following two conditions: 



(a) The syLulnetry condition, according to which 

	

(2. 5) Ft ' . ' 	
(x, , x. 	x. ) =F 	(x x

2'''' 
X n 

	

i 2 	i 	2 	 t 1  t2 	n 	1' 	) 

where j 1 ,  2• ''in is any permutation of the indices 1, 2,..., n. 

In words, the symmetry condition requires that the n-dimensional distributions 

F given in (2.4) should be symmetric in all pairs (x3 , t.) so that F remains 

invariant when the t. and x. are subjected to the same permutation. 

(b) The compatibility condition according to which 

	

(2. 6) F t , t 	. . . , t , t 	, . . . , t (x 1 	2 , x , . . . * x m , 	, . . . , 	) = 
12 	mmi 	n 

F t ' 	' . 	' 	(x 1 , x2 , . . 	x) 
12 	m 

	

for any t 1 , 	,t if m<n. 

In other words, the compatibility condition requires that 

	

urn, F , 	, . . - , 	(x1 	2 , x , . . 	m . x ) 	t F , 	, . . . 	(x 1 , x 2 , . . . , x 	) t x 	i  2 	m 	 i t2 	tm_i 	 rn-i 
In 

It was proved by a celebrated theorem by Kolgomorov (1933), that (2. 4) with 

(2. 5) and (2. 6) uniquely defines the probability distribution of the sample space 

of the stochastic process. 

The converse is also true; that is, any family of finite distribution functions 

(2. 4) satisfying conditions (2. 5) and (2. 6) can be regarded as defining some 

stochastic process. 
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We have defined a stochastic process or random function on T as a family of random 

variables {X(t), t cT }. It is important to point out that, since the X(t)s 

are random variables, this means that they are real valued functions of the 

outcome wof the sample space Q . For this reason, sometimes a stochastic 

process is written explicitly as a collection of functions with two arguments, 

namely, w (the outcome or point) which is an element of Qand t (time) which 

is an element of T. In symbols 

(2.7) (2.7)XX(,t),c,tcT}. 

This was not done above because, in probability theory, the dependence on w 

of a random variable X is traditionally suppressed. 

Looking at (2. 7), two interpretations of a stochastic process can be given 

depending on which of the two argument variables the emphasis is placed. 

For a givenw , (2. 7) reduces to a family of functions of time, which are 

indexed on w. Thus to each outcome wof a given experiment, there is a 

corresponding well-defined real function of the variable t. This function 

is called a realization or sample function of the stochastic process. This 

approach is of great interest to us since a realization of a stochastic process 

is precisely an observed time series. 

On the other hand, if t is given, (2. 7) reduces to a collection of random 

variables indexed on t. In this case, to specify the stochastic process, we 

have to give the probability of occurrence of the various realizations, which 

leads to the definition of a probability measure P on the function space of 

realizations. 

If t and ware both given, then (2. 7) reduces to a number. 
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The process that generates the observation of a time series is thus seen as 

a random process where one of the infinite many w, members of Q, could have 

been the observed outcome at an instant of time t, say t 1 . Since this is done 

for all t elements of T, one realization (observed time series) of the process 

is one function of a doubly infinite set of functions which might have been 

generated by the stochastic process. 

The feature of time series analysis which distinguishes it from other statistical 

analyses is the explicit recognition of the order in which the observations are 

made. In several areas of study, successive observations of a time series are 

dependent particularly in social and economic time series. There are, however, 

cases where the observations are statistically independent, especially in some 

physics and astronomy problems. The hypothesis of dependence or independence 

among successive observations of a time series determines the kind of model to 

use for describing the generating process of the series. 

When a stochastic process is specified according to the family of finite distribution 

functions (2. 4) that fulfill the symmetry condition (2. 5) and compatibility 

condition (2. 6), the model that generates a time series is said to be non-para-

metric in the sense that an infinite number of parameters are involved. 

There exist however other methods of specifying a stochastic process. It 

is often convenient to define a random function by an analytical model, contain-

ing a finite number of parameters which are random variables. When this is 

the case, the model is said to be parametric. In this study, we analyse the 

parametric and non-parametric models which are more often encountered in 

time series analysis. One parametric model that has proved to be useful for 

description and forecasting in empirical cases is the autoregressive 
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integrated moving average process. On the other hand, the autocovariance 

and autocorrelation functions and their Fourier transforms the spectral density 

(spectrum) and the normalized spectral density (normalized spectrum) are 

non-parametric approaches to describe a random function. 
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3. STOCHASTIC PROCESSES MODELS: STATIONARY 

AND NON-STATIONARY PROCESSES 

The most important assumptions made about a time series are that the 

corresponding stochastic process is stationary and that a stationary 

stochastic process can be described by the lower moments of its distri-

bution functions. The lower moments include the mean, the variance and 

the covariance function or its Fourier transform, the spectrum. An 

alternative approach to the above is that a stationary stochastic process 

can be also adequately described by a model with few parameters. 

We shall first define what is meant by a stationary stochastic process. 

From an intuitive point of view, a process is said to be stationary if 

it is in statistical equilibrium, in the sense that its properties do not 

change with time. In other words, it is a process without trend and 

all its properties can be summarized by computing certain functions 

from the data. (Of these functions, the autocorrelation function was 

the first to be studied. ) 

From a statistical point of view, a stochastic process 

X..-{X(,t),ç, tcT}is  defined as stationary or strictly 

stationary if all the finite dimensional distribution functions (2. 4) 

remain the same when the set of points t1 	2 , t......  n t is shifted 

along the time axis t. That is, if 

) (3.1) F 	 (x 
1,  x  2, 

 ...x 
 n 	t )=_ F 	 , x n l2,  t 

 n 

for any n, t 1 , t 2 	t and T. ...,n 
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In particular, this implies that for a stationary stochastic process, all 

the one-dimensional distributions of F(x)  (2. 2) must be identical. In 

other words, they are independent of the values of time t. In the case 

of the two-dimensional distribution functions of (2. 3), the (3. 1) implies 

that they can only depend on the time difference t 2  - t 1 , but not on 

the values of t 1  and t 2  and, in general, according to (3. 1) the finite 

n-dimensional distribution functions depend only on the differences 

t - t. Ci 	-2,3 ...... n). 

In practice, instead of defining a process as strictly stationary, it 

is very useful to consider it as stationary in the wide sense or second 

order stationary. In this case, only the properties of the first two 

moments are specified. Thus, a stochastic process is defined as 

stationary in the wide sense if: 

i) the mean value or first order moment p (t) is a constant. In symbols, 

(3. 2) p(t)E [x(t)==f: xdFx) = m 

ii) the autocovariance function o(tit2) defined as, 

(3. 3) 	t 2 )=E [X(t1) - 11(t 1 )J [X(t2 ) p(t2 )] 

is finite and depends on a single variable which is the difference 

between any two points in time t, t 1 ; that is, 

3 4x1' t2)xx(ti+T t2+T) 

setting T -t 1 , gives 

(3. 5) a xx  (t i l t2) 9 xx(O t2_t1)xx(t2t1)xx(T) 
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where rt2-t 1  is the time lag between the two random variables. 

For t2 -t 1  O, (3. 5) gives the variance o ( (0) of the process and 

dividing (3. 5) for the variance we obtain, the autocorrelation 

functions p(T), 

(t) 
'=XX 12 =a 

xx (0) 

The mean value is an important characteristic of a stochastic process 

but it only gives the coarsest properties of the process: it is only 

a measure of location. A better description is provided by the 

autocovariance function. For t 1 t2 , a(t) reduces to the variance 

that is a measure of dispersion in the mean square sense and for all 

t2  =t 1  a() is a measure of the linear association of the random 

variables through time. 

For the comparison of the autocovariance functions of two different 

stochastic processes, it is convenient to use the autocorrelation function 

which eliminates the influence of the unit of measure of the random 

variables involved. 

Observe that a second order stationary process coincides with a strictly 

stationary process when the process is assumed Gaussian or normal, 

with finite second order moments. 

The simplest example of a strictly stationary process is the purely 

random process or white noise in which the random variables are 

assumed serially independent and identically distributed. This is 

the assumption underlying the random component used in error 

models which are non-stationary processes. 
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Any process for which conditions (i) and (ii) are not fulfilled defines a non-

stationary stochastic process. Of the class of non-stationary processes, the 

so-called homogeneous non-stationary or processes with stationary increments 

were first studied by Kolgomorov (1941) and Yaglom (1955). 

Processes of this kind are non-stationary but, by adequately differencing the 

process, we obtain a stationary process in the difference of a finite order. 

In the empirical applications, very often the distinction between one part of 

the observed series and another part of the same series is only in the local 

level and/or slope of the curve; therefore, the order of the difference is low. 

The homogeneous non-stationary processes generalize the theory of stationary 

random functions. It is obvious that every stationary process is also a process 

with stationary differences. 

The derivative (difference) of a random function (sequence) of stationary 

increments is a stationary process and conversely, the indefinite integral 

(infinite sum) of a stationary process is a process of stationary increments. 

We give now the following definition for a process with stationary increments 

(Yaglom, 1955): "the random process X(t) is called a process with stationary 

increments if the mathematical expectation of the increment of X(t) during any 

time interval is proportional to the length of the interval, so that E[X(s) - X(t)] 

a(s-t); a, constant; and the structure function D(t; u, v) of the process X(t) 

depends only on the differences u-t and v-t; i.e., D(t;u,v) = ]D(u-t, v-t) 

The structure function is more appropriate than the autocovariance function for 

the description of this type of process and was first used by Kolgomorov (1941). 

Thus, a process with stationary increments is characterized by a constant a 

(which in practice can be taken to be zero) and by the structure function, which 

is a function of two variables, 
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(3.7) D(T 19 T 2 ) = E[X(t+t1) - X(t)] [X(t+t 2 ) - X(t)] 

For the real case, instead of (3. 7), we have a function of one variable, 

(3.8) D(t) = E[X(t+t) - X(t):12 

For a real stationary process, a is equal to zero and D(T) can be expressed 

in terms of the autocovariance function a (r) as follows: 

(3.9) D(r) = 2o(0) - a(t) - a(-r) = 2a(0) - 20(T) 

The error models which we shall discuss in Section 4 are homogeneous non-

stationary processes when the deterministic component (the signal) is assumed 

to be a polynomial of time. By taking successive differences, the process is 

reduced to a linear stationary process. Another important category of stochastic 

process is the homogeneous linear non-stationary process. The property of 

linearity here comes from the fact that the process is seen as the output from a 

linear filter, the input of which is white noise or purely random. 

In this type of process, previous values of the random variable X(t) will 

contribute to the determination of its value at time t. The non-stationarity 

may be present in the mean and/or in the variance. A simple example is 

given by a process called random walk in which as the time increases, the 

random variables tend to oscillate about its mean value (a line) with an ever 

increasing amplitude. This type of process has been used for time series of 

economic levels and in particular, to fit stock market price data. For example, 

let us assume that W is a purely random process and X is another process 

related to W as follows: 

x l- w l  

x 2= x 1+ w2  

xt = x_1 
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Then X can be expressed as a linear combination of the purely random 

process W with all the weights equal to 1. If the expected value of 

W is jand the variance a 2 it follows that: 
w 

(3.7) E(Xt)  =t M 

and (3. 8) var 

The autocovariance of the X process is 

(3.9)c 	 (t 1  t2 ) min (t 1 , t2) o 2 
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4. ERROR MODELS 

The first studies on time series were done in the research domain of Astronomy. 

Models were built to determine the position of a planet at a given moment in 

time. The nature of the problems encountered by astronomers led to the build-

ing of very simple models which are today known as error models or simply, 

as regression models (Pannekoek, 1961). 

Error models assume that successive observations of a time series are independ-

ent. The ordered set {x t , t = . . . -1, 0, 1 ... } (1) can be expressed by a 

general model composed of a completely deterministic function of time f(t) which 

is called the signal or systematic part of the model and a random element 

called white noise (or purely stochastic component) of the process which is 

assumed to be independent of f(t). The model can be written as follows: 

(4.1) X=f(t)+Ut 	t=...-1,.0,l..... 

The assumption of independence among successive observations is introduced 

into the set of hypotheses that characterize the random component U which 

is supposed to be identically distributed with zero mean, constant variance at 

each point of time and zero autocorrelation. These specifications force any 

effect of time to be made in the signal f(t). 

In some cases, f(t) is a known function of time or other observable quantities 

and of parameters. If f(t) is assumed to be linear in the parameters, then 

it reduces to a "regression function" and the estimation of its parameters is 

made with least squares methods. 

(1) We shall use lower case letters when referring to observed quantities and 
upper case letters for the corresponding stochastic variable. We shall 
write t as a subindex when time is discrete, and as an argument when 
time is continuous. 



- 28 - 

When the signal is not linear in its parameters, as for example in growth 

functions, then the estimation of the parameters and the testing of the hypotheses 

require previous transformations or more complicated procedures. 

In other cases, the analytical form of the systematic component is not known 

but can be fairly approximated by linear combinations of known functions of 

time, such as powers of time t or trigonometric functions of t. 

In general, two types of functions of time may be distinguished for f(t). One 

is a polynomial of fairly low degree which fulfills the assumption that the 

systematic component moves slowly, smoothly, and progressively through 

time. The other, is a linear combination of sines and cosines of time with 

constant coefficients (a finite Fourier Series) which takes into account cyclical 

fluctuations, strictly periodic or not. 

For economic time series, the signal f(t) very often follows a pattern of 

behaviour that requires the addition or multiplication of both types of function. 

The polynomial is then said to represent a long-term trend and the finite 

Fourier Series stands for cyclical fluctuations and seasonal variations. 

In all cases mentioned above, the estimation of the parameters of the signal 

is done with the techniques of regression analysis (classical least squares 

theory) or analogies of them. Under the assumption that the random variables 

are normally distributed, all tests of hypotheses can be performed. 
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However, there are cases where the signal can not be approximated by a simple 

time function for all the time range although it behaves smoothly and does not 

fluctuate greatly in any small interval of time. The usual procedure is then to 

use non-parametric methods for smoothing. 

The smoothing of a sequence x means going over to a new sequence xt  

obtained from the original sequence by forming the moving average, 

* n 
(4.2) x = Ea x k 	t=n+1....... T-n t -n k t+ 

For simplicity, we have written a finite sum but, if certain convergence 

conditions are met, we can extend the sum to aO. 

Ea Also, the a 's are usually normalized so - k = 1. In practice, smoothing is 

widely used to filter sequences, in order to diminish the effects of measurement 

errors and other weakly correlated disturbances. 

Assuming we have a finite number of observations in model (4. 1), after 

smoothing we obtain, 
* n 	n 

(43) xEakf(t+k)+Eaku+k 	 tn+1....... T-n 

where E(u)O,  E(u)o 2  and E(uu)=O,  t$s; Then, 	has 

2 n  2 
variance a Ea u-n k 

The mean square of u is greatly decreased if the smoothing weights ak  are 

properly chosen whereas the signal f(t) is approximately the same. Hence, 

the weighted average of the observed values are used to estimate the trend 

and the rather irregular curve generated by the observed points is replaced 

by a smooth curve of the moving average. However, successive terms in the 

smoothed series are correlated. We have, 

** 	12n 
E(u u 	)=o 	a a 	, 	 h = 0, 1, ..., 2n tt+h I u -nkk-h 

0 	 h = 2n+1, 
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One should observe that the assumption of smoothness is a local property 

whereas the assumption of a polynomial trend concerns the entire 

time range t = 1, 2,.. . , T. The assumption of smoothness uses only obser-

vations near a given point in time t to estimate the trend at that point, while 

the assumption of a polynomial trend implies that all observations are used 

to estimate the function that represents the trend over the entire time range 

considered. 

The general basis for most smoothing procedures is to fit a polynomial(1) 

to 2n±1 successives observations and use this fitted polynomial to estimate the 

trend at the middle value. Since the estimates of the parameters of the 

polynomial are linear in the observed values Xt+k  the estimate of the trend 

has the form (4.2). 

Suppose that the trend f(tk) at time points tk = t - n....., t+n, can be 

approximated by a polynomial on k of degree p, that is, 

(4.4) f(k)0i  k+a 2k2+. . .+ak; k=-n, ..., n 

then for k= 0, 1(t) is approximately f (0) =a 
0 

We can estimate the a 's in terms of the observed values x_ ..... 	using 

the method of least squares. The normal equations for the estimates of 6co'1'" 'p 

are 

(4.5) & Ek+& Eki1+. . .+& 	kx 0-n 	1-n 	p -n 	-n t+k 

J = 0, 1, ..., p 
Note that the sums 	are functions of n only. 

(1) A similar procedure rests on the use of a formula derived by fitting 
a harmonic function such as, 

f(t)=cz+ 	[.cos w 1 k+y.sin w.k] 
J=1 	J 	J 

where p and the angles whave to be chosen a priori and the fitting 
determines the coefficients a 	S. and 
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By symmetry, the sum of any odd power of k is zero. Since our estimate 

of f(t) will be a^ 	 we are interested only in the equations for j even, 

namely, 

(4.6) 6L 	Ek+ 	Ek 2+.. .+ 	Ek 	k3 x o-n 	2-n 	p-n 	-n t+p 
j =  0, 2, 4, ..., p 

The equations to be solved fora 0  are the same for p odd as for the next 

lower even value of p. We need to consider only p= 0, 2, 4, 

The system (4. 6) can be split in two. One equation for j = 0 and a system 

of equations for j = 2, 4, . . , p. Then (4. 6) becomes 

	

(4.7) (2n+1)&+2 k2 	
n 	n 0 	& +. . .+2 k& = 	j=0 1 	2 	p-n 

n j2 	
= 

	

2 k3 &+2  Ek 	2" .+2 
 1

Ek 
	1 	

t_k+xt+k) 

j=2, 4, ..., p 

The solution of (4. 7) for & is 0 
n 

(4.8) = 	a Xt+k 
0 -nk 

Where a_k= ak and the ak's  are functions of n and p only and are 

polynomials in k. Then the estimation of the trend x given by 

(4. 2) is x = o as determined by (4. 8). 

Thus the process of fitting a polynomial by the moving average method 

consists of determining the weights a and calculating for each consecu-

tive set of 2n1 terms in the series, a value a o  given by (4. 8). 
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It can be proved that, for a given p, the variance of the smoother sequence 

decreases as the number of observations or points are increased and that 

for a given number of points (n), the variance increases with increasing 

p. The selection of p and n that optimize the fitting is a statistical multiple 

decision problem (Anderson, T. W. ,1971). 

The advantage of smoothing to estimate the signal is its flexibility. However, 

since the method is not based on an explicit probability model it cannot 

be treated fully in terms of mathematical statistics and statistical inference 

is severely limited. For example, f(t) is not determined by a small 

number of parameters for which a confidence region can be given. One 

cannot perform either hypothesis testing about the trend or directly 

relate the estimated trend to a theory or model for the generation of the 

observed series. 

We shall not pursue any further this topic which is concerned with the 

problem of estimation of the signal and not with the probabilistic model 

that generates the time series. We proceed to summarize the main 

properties of error models introduced in this section. Error models for 

time series assume that the observed series is made up of a well known 

function of time and an error component which is white noise. Therefore, 

the observations are serially independent and the effect of time is not 

incorporated in U but is assumed to affect only f(t). The analytical form 

given to f(t) is usually a linear combination of functions of time, such as 

powers of time t or sines and cosines functions of t. The estimation of the 

trend is done either by the least squares method or by a smoothing techni-

que like the moving averages. 
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These kinds of models are acceptable when the errors in the observed 

time series can be attributed only to errors of measurement or of 

observation. In that case, any discrepancy is regarded as purely temp-

orary, with no effect on the future motion of the process. This seems 

to be the case in many of the problems of Astronomy. For example, the 

errors in the observed position of the planets at a moment of time t 

could be attributed to errors of observations due to the atmospheric 

conditions or imperfections of the telescope. Such error will not affect 

future positions of the planets nor our observations of them. The 

properties of the time series are then summarized in the mean value 

of the signal, and variations in the random component do not affect 

these properties. 

When the errors are autocorrelated, the error models are no longer 

representatives of the time series generating process. The observations 

are now stochastically dependent in time and the current value of 

t will depend on the time which has elapsed since the process started. 

The interpretation given to autocorrelated errors is that the errors 

are not simply due to incorrect independent observations, but to 

other systematic forces and, once they appear, they are incorporated 

in the process and influence its future evolution. This seems to be the 

case for most time series, in particular social and economic time series. 

The discovery of this aspect has been attributed to Yule (1921) (1927), 

Processes that take into consideration the assumption of autocorrelated 

errors are the Linear Stationary and Homogeneous Linear Non-Stationary 

Processes. 

We deal with these types of models in the following sections. 
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5. LINEAR STATIONARY STOCHASTIC PROCESSES 

A stochastic process X is said to be linear if there exists a purely random 

process U and a sequence of parameters a  0,  a  1,  a  2.....such that, 

(5.1) X -mU +ai Ut_i+  a2U_2+.... kO  akUt k; a 0  =1 

In continuous time, the relation (4. 2. 1) becomes,

00(5. 2) X(t)-m = J a(v) U(t-v) dv. o 

The E(Ut)E  [U(t)] = 0 and E (Xt)  =EEX(t)]m 

If the series (or the integral) is convergent, then 5. 1 (or 5. 2) defines 

a stationary linear stochastic process, where m is the expected value of 

the process. 

If the series (or the integral) is not convergent, then (5. 1) or (5. 2) 

defines a non-stationary linear process and in has no precise meaning, 

except as a point of reference for the level of the process. The (5. 1) 

is sometimes called an infinite moving average although the infinite sum 

of the coefficients is not constrained to be equal to 1. 

For a finite number of terms, (5.1) defines a linear parametric stochastic 

process with a discrete time parameter. 

In this section we shall deal only with discrete time parameter processes. 

(The analysis for continuous time follows a similar procedure.) 

Using the lag operator L, where L °  = 1, LUt=  U_ 1  and LU =U 	the 

(5. 1) for m=O can be written in compact form as follows: 
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(5.3) X =(1 	- cZL 2+,..)U = 	L k  U t  =c(L)  u t k=O k 

where kokL k = ( it 	is the linear filter or operator that transforms 

the input U into the output X. It is also called the transfer function 

of the linear system or generating functions of the weights. In the 

latter, L can be considered as a dummy variable whose k-th power 

is the coefficient of c k. 

For (5. 3) to be stationary in the wide sense, it is a necessary and 

sufficient condition that the transfer function 	(L) be convergent for 

LI 1 which implies that k 	<N , M finite. 

5. 1 Autoregressive Processes (AR) 

Autoregressive processes were first introduced by U. Yule 

(1921) and are a subclass of linear processes. A process X 

is said to be an autoregressive process of order p, AR(p) if it 

can be expressed as a linear combination of p previous values 

of the process plus a purely random component Ut.  It can be 

written in the following form 

(5. 1. 1) X + I31X_1 +  2X_2 + . . . + B X 	=U p t-p t 

Using the lag operator L, (5. 1. 1) results in, 
p 

(5. 1. 2) Ut 	+ 2L 2+ ... + 	IY) X = 	LrX; 
p 	t 	rO r 	t 	0 

If the X process is stationary then (5. 1. 2) can be written as an 

infinite moving average; 

(5.1.3)x = 	1 	Ut = 	U = 	h L U t r=o r 
r 

r=o r 
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In effect, each X 1 , 11, .., p can be replaced by an autoregressive 

process and finally we end up with an infinite series of U's. 

There are several equivalent conditions for the stationarity of (5.1.3). 

Written as an infinite moving average, we already said in the previous 

sections that the infinite series of weights must be convergent for 

l,which implies ror 
 finite. 

p 
These conditions for convergence are equva1ent to E A r  L 	o 

p 
since if :: V Lr 	o then the transfer function becomes infinite. 

r=o r 

We shall see which are the conditions for ror Lr # o 

(5.1.4) ror 	
= (1 + 	L + 2 L 2  + . . 	L) = 13(L) 

Observe that 13(L) is a polynomial in L of order p. Factoring out L 

and making L = 1 we have 
G 

(5.1.5) V () = L (G + 	G 	 + 	+... + 	= 

1 (G-G1 ) (G-C 2) ... (G-Gp) 

G 

Where A. G 2 , ...,, 	are the p roots of the characteristic equation of 

1 

It is obvious that the (5.1.5) can also he written as 

(5.1.6) :(L) = (l-G 1 L) (1-G 9 L) 	. (l-c;L) 
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Therefore, if there is a C. = , (L) = 0, the process (5.1.3) is 

non-stationary. For it to be stationary, the roots of (L), namely 

L1  = C 1 1 , i = 1,2, ..., p must all be in absolute value greater than 

1 or equivalently IGI < 1. The conditions IGil < 1 coincide with 

the requirements for the stability of the deterministic component of 

(5.1.1). Observe that if U = 0, then (5.1.1) reduces to a homogenous 

difference equations of order p, whose general solution is 

(5.1.7) X = A1  G + A2  G + ... + A Gt 
pp 

Where C1 , i = 1,2,.. ,p are the roots of its characteristic equation and 

for (5.1.7) to be stationary, IGil < 1, for i = 1,2,.. ,p. 

For a continuous time parameter, the autoregressive process (5.1.1) is 

defined by a differential equation of order p and to be stationary, the 

roots of its characteristic equation must all have negative real parts. 

5.2 Finite Moving Average Processes (MA) 

The autoregressive model discussed above, expressed X an a finite 

weighted sum of p previous values of the process X, plus a purely ran-

dom component U. Equivalently, if the process is stationary, it can be 

expressed as an infinite weighted sum of the U t 's, where E(U) = 0, 

E(U)2 =a and E(U Ut~T) 	0 for all T 	0. 

Now a process X is said to be a finite moving average of order g, MA(q) 

if it is a linear combination of purely random variables U, U 19  

U t-q . 	That is, 

q 
(5.2.1) X =t  + c 1 	+ a2 U2 + ... + a  u 	a U 	a q t-2 	r=o r t-r; 0=1. 
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Using the lag operator L, (5.2.1) becomes, 

q 	r 
(5.2.2) X 	E ar  L U = 

r=O 

Where a(L) = 1 + a L + a 2 L + •• + ttqL 	is the generating function 

of the weights. 

The (5.2.1) is always stationary, that is a(L) is convergent for Ll:4 

but for (5.2.1) to be invertible i.e. to be expressed as an infinite 

autoregressive process, 

q 	r)— x = c' (L)X = ro Lr (5.2.3) U 	 X = ( L t 	r-oar L  

the roots of a(L) = o must lie outside the unit circle. 

5.3 Autoregressive-Moving Average Processes (ARNA) 

For empirical applications, a combination of an autoregressive process, 

say of order p  with a moving average, say or order q, has the advantage 

of involving very few parameters. 

Thus, an ARMA (p,q) process can be written as, 

(5.3.1) x =t  + ct1U i + 	+ aqUt_q - 	-. • .- 

or equivalently 

r 
5.3.2) ( E a L )X 

r=or 	t 

q 	r 
=r )U; 

and therefore, 

q 
a 
 r 

(5.3.3) Xt  = ro 

ro r 



- 39 - 

The ARNA (p,q) process is considered as the output X obtained from 

an input Ut  purely random or white noise, where the transfer function 

is the quotient of two polynomials. The number of parameters of the 

model (5.3.1) is p+q+2, including the mean of X and the variance of 

U. In most of the cases solved with this model p and q are no larger 

than 2 (Box and Jenkins, 1970). 

For the ARMA (p,q) process (5.3.3) to be stationary the same conditions 

discussed In the previous sections are required namely, the roots of 
p 

the characteristic equation ror1' 	(L) = 0 must all be in absolute 

q 
value greater than 1. The (5.3.3) is invertible if E a L = a(L) = 0 

has all its roots outside the unit circle. Then, 

(5.3.4) Ut = P B Lr 
r=o 	X 

t 

Lr 
r=o r 
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6. NON-PARANETRIC STATIONARY STOCHASTIC MODELS: THE AUTOCOVARIANCE 

FUNCTION AND THE POWER SPECTRUM 

The models previously discussed are all parametric, that is they 

have a finite number of parameters. Another way to describe the gen-

erating process of a stationary time series is by means of non-para-

metric models - models with an infinite number of parameters. Among 

the non-parametric approaches, the analysis of the autocovariance and 

autocorrelatiori functions and their Fourier transforms, the power 

spectrum and the normalized spectrum are the most relevant. 

From a mathematical point of view, these functions are Fourier pairs 

and consequently, they are equivalent. Both provide the same type of 

probability information, in the sense that both characterize all the 

second order moments of a stationary stochastic process. The use of 

either the autocovariance function analysis or the spectral analysis 

depends on the particular properties of the data that one needs to 

stress. The latter stresses the frequency domain, whereas the former 

conveys the same information in the time domain. 

In the spectral representation, a stationary process is seen as a 

linear combination of random oscillatory components and the total 

variance is distributed over frequency. If the process is defined for 

discrete time parameter, it is possible to determine the proportion of 

variance attributable to each component with a particular frequency X, 

but for time continuous processes, we refer to the contribution of a 

band of frequencies around a particular X. 
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An important use of the autocorrelatlori function and the normalized 

spectrum is to permit the identification of linear filters that 

minimize the mean square error when the systematic component of a 

process if corrupted by a purely random component. 

Both functions are also very useful as initial guides in constructing 

a probability model for the mechanism which has generated the time 

series. Thus, for example, an autocorrelation function that is posi-

tive for successive values of r (time lag) and tends to zero as T 

increases, will reflect both a smooth behaviour of the time series and 

the fact that the process is more a finite autoregressive type than 

purely random. The order of the autoregressive process can also be 

obtained from the partial autocorrelation function. The same information 

is given in the frequency domain by a normalized spectral density 

function (normalized spectrum) with predominancy of low frequencies. 

On the other hand, when adjacent values of p(r) are negatively corre-

lated, the process generating the time series will show a great fluc- 

tuation for short periods of time and the corresponding normalized 

spectral density function will have predominancy of high frequencies. 

However, although important for model building (especially in engineering 

and physics) spectral analysis has shown to be more relevant in fre-

quency response studies and in the area of design of experiments to 

optimize the performance of industrial processes. 

In the analysis of economic time series the first non-parametric approa-

ches were based on the autocovariance function. At the end of the fifties 

and during the decade of the sixties, the latter was almost abandoned 
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and spectral analysis became fashionable. Very recently, the autocova-

riance function began regaining acceptance, mostly because of the avail-

ability of new computer programs (Box and Jenkins, 1970). 

The autocovariance function of a stationary process X is by definition, 

(6.1) a xx(T)  = E(X tXt+T) 	T = • ., -1,0,1,... 

where t is the time lag, assumed here to be an integer. If the time 

parameter of the process is continuous, then t can assume any value 

between ±. 

a 	_a 
(6.2) p 	('r) = yj(T) - yx(i) ; 	 = • ., -1,0,1,... xx a 	2 

XX(o) 	a x 

Observe that, 

(6.3) a 
xx 	xx 	

- (0) p ( T) 	a 
xx 

(T)  

and therefore, if we know the autocorrelation function and the variance 

of the process X we have all the information provided by the autocovariance. 

The graph of (6.2) is also known as the correlogram. The basic proper- 

ties of the autocorrelation function for a real process are: (We shall 

suppress the subindex X to abbreviate the notation): 

(1) p(0)=l 

(2) p(- T) = p(T) The function is symmetric with respect to the origin 

because of the stationarity assumption and therefore it needs only to 

be calculated for positive lags. 
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(3) p('r)[ .11. This is a consequence of the fact that the variance 

of a random variable or of linear combination of random variables is 

positive. (1) 

(4) The autocorrelation matrix is positive semi-definite. That is, 

the determinant of the autocorrelation matrix and all its principal 

minors are positive or zero. Property 4 is a generalization of 

property 3 and shows that the autocorrelation function is always 

positive semi-definite. The converse is also true; that is, every 

positive semi-definite function of a real (or integral) argument is 

the autocorrelation function of a continuous (discrete) stochastic 

process. (This was proven by Khinchin and Kolniogorov, see Yaglom, 1962). 

(1) In effect, assume YAlX t+  X2Xt 	then the variance of 

2 	2 
(1) var. Y = Xi var. X + X2 var. Xt 	+ 2X1X2 coy. (xX) 

The right member is non-negative for all X1,X2 real and the 

second member is a quadratic form in X1,X 2 . For it to be positive, 

its roots must be imaginary, which implies 

(2) var. X var. 	[cov(X 
t  X  t-T)l 

2 

or equivalently 

2 
(3) p (Xt , XtT ) = 

[coy (XtXtT)l 2 

var X 
t 
 var X 

tT 

For a stationary process, (3) reduces to, 

Ip(i)I - 	1 
- 
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(5) If the process is continuous, then p(T) is defined for T 

taking values between +oo and - and it is a necessary and sufficient condition 

that the function be continuous at t = 0 since this implies conti- 

nuity everywhere (Yaglom, 1962). If the process is assumed to be 

purely random, this continuity property poses problems. 

For a discrete purely random process U, the autocorrelatiori function 

is p  (0) = 1 and p(T) = 0, for alit 0 0. If U is a time conti- 

nuOUS process we would have a discontinuity at T = 0. To avoid this, 

the autocovariance function is redefined as 

(6.4) CiT) = a(0) S(i) = 2  CT 

Where cS(t) is a Dirac delta or impulse function(1), interpreted as 

zero for I 16  0 and infinite for T = 0, then the covariance between 

neighbouring points is zero but at the expense of making the variance 

of the process infinite (Jenkins and Watts, 1969). 

Since any analytical function, periodic or not, can be approximated 

to any degree using any class of periodic functions, the spectral 

representation of a stochastic process can be done using Fourier series 

or Fourier integral, depending on the time parameter being discrete or 

continuous. In Fourier analysis, the periodic functions are sines and 

cosines. They have the important properties that an approximation of 

(1) A delta function is defined as a sequence of function 6 (t) such 

co  that £c,, n(t) dt = 1, for every n and in the limit as n tends to 

00 t 	0 
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a given number of terms gives the minimum mean square error between 

the function and its approximation, and also that they are orthogonal, 

so the coefficients may be determined independently of one another. 

The use of Fourier series to describe phenomena evolving through 

time was suggested in several studies by Lagrange (1772-78), Buys-

Ballot (1847) and Stokes (1879), but the best known work was the 

periodogram method used by Schuster (1898) in the search of hidden 

periodicities in sunspot data. In economics, the periodogram was used 

by Moore (1914) and by Beveridge (1922). The use of the periodogram 

to describe time series failed because of the assumptions of fixed 

amplitudes, frequencies and phases in the Fourier components. The 

modern spectral analysis uses the Fourier series (or Fourier Integral) 

assuming that the amplitudes and phases are random variables. 

It is shown (Yaglom, 1962) that every stationary stochastic process 

X(w,t) can be approximated by a linear combination or harmonic oscil-

lations of form 

(6.5) X(,t) = 

where XK(u) Is a time Independent random variable and f (t) Is a nume-

rical function of t. The numerical factor Re 1  can be included in 

the random variable Xk() and the product X,(w)Re 19  will be simply 

denoted here by Xk;  then (6.5) becomes, 

(6.6) Xk(t) = X, ek 

where X. is a complex random variable with mean value zero, and X 

is a constant. 
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Then, each component of the form (6.6) describes a periodic oscillation 

of angular frequency Ak(l),  with random amplitude R and random phase e. 

If the process is defined for a discrete time parameter, we can re-

present it by 

(6.7) x= klXkek 

and for Continuous time parameter by, 

(6.8) X(t)= fe 
jAt

dZ(A) 

where (X) is a stochastic process indexed on A. 

The (6.7) is the spectral representation of a stationary process with a 

discrete spectrum and the set of numbers 1A 1 , A 2 . . . } is called the 

spectrum of the process. 

The (6.8) is the spectral representat ion of a stationary process, where 

Z(X) is a continuous spectrum with mean value zero and uncorrelated 

increments. The possibility of such representations for arbitrary 

stationary processes was first shown by Kolgomorov (Yaglom, 1962). 

The spectral representation of a stationary process is then a 

"decomposition" of the process into separate pairwise uncorrelated 

periodic oscillations. It is possible to separate spectral components 

corresponding to different parts of the spectrum by using suitable 

chosen linear operators or filters(2). In practice, the filters 

(1) The angular frequency X=2flf=2iT 
1 
 , is the number of cycles around 

the unit circle per unit of time. f is simply the frequency 
and it is the reciprocal of the period T or length of time required 
for one complete oscillation. 

(2) In engineering, a filter is a device which passes harmonic oscillations 
in certain frequency range (the pass band) while suppressing oscilla-
tions with different frequencies. 
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used are of three types, the low-pass filters, passing all oscillations 

with frequencies less than a certain critical frequency A 0 , the high-pass 

filters, passing all oscillations greater than A ç  and the band-pass 

filters passing only oscillation with frequencies A that belong to a 

given interval (pass-band) [A,A 1 1. 

We shall see now, that the information contained in the autocovariance 

function is equivalent to the one given by its Fourier-Stieljes 

transform, the spectral distribution function. 

Since any arbitrary stationary process can have a spectral representation, 

its corresponding autocovariance function can also be expressed in 

the spectral form. 

Thus, for a process such as (6.7), which is assumed stationary and there- 

fore E(XKXl)=O,  k#1 (by X we denote the conjugate of X), the autocovariance 

function is, 

iAT 
(6.9) a(i)= 

klEk 2 iA i 
e k = kl 'b ke 	; 	bk> o 

The autocovariance function (6.9) exists if the series is convergent, 

that is, if 

m i 
2 b < (6.10) klEkI = k=l k 

It was shown by Slutsky (1938) that the converse is true, every 

stationary stochastic process with autocovariance function of the form 

(6.9) can be represented in form of (6.7) with E(XK5l)0  for k#l. 

Setting r=0, the (6.9) becomes, 

2 
(6.11) a(0)= klEtXkI = klbk 
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which shows that in the superposition of uncorrelated periodic oscillations, 

the total variance of the process is equal to the sum of the variances 

of the separate periodic components. 

Observe that variances bk  of the separate periodic components are the 

mean values of the squares of the amplitude Xk  of the harmonic compon-

ents X,eAkT  of the process X. 

The formula (6.9) was generalized by Khinchin (1934) who proved that 

the autocovariance function of - stationary stochastic process can 

be represented in the form of an integral, 

(6.12) o(t)= f 	e'dG(A) 

where G) is the spectral distribution function or the Fourier-Stieljes 

transform of the autocovariance function o(i). The spectral distribution 

function is a monotonically non-decreasing function, symmetric with 

respect to the origin and bounded G(-cz)o and G(co)=a(0). When G(X) 

is normalized, that is, divided by the variance, then F(X)= 	is 

called the normalized spectral distribution function which is the 

Fourier-Stieljes transform of the autocorrelation function p(t). That 

is, 

(6.13) P(T)= f ethdF(A) 

The normalized distribution function F(A) is also non-decreasing, 

symmetric with respect to the origin and bounded F(-oo)0 and F(co)1. 

It can be decomposed as, 

(6.14) F(X)=F1(A)+F2(A)+F3(A) 
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where F 1 (A), F 2 (.X) and F 3 (A) are each non-decreasing, F 1 (A) is a pure 

step function, F2 (A) is absolutely continuous, that is, F2 (A)f F(U)du 

and F3 (X) is a singular function, continuous and with F(A)=O almost 

everywhere. 

Thus F(A) can be seen as a distribution function and p([) as its character-

istic function. Since G(X) and F(A) are odd functions, for every real 

process, the (6.12) and (6.13) are real integrals and can be written as 

(6.15) a(T)= fcosAtdG(A)f cosAtdG 1 (A) 

where 	2G(X) and 

(6.16) P(T)= fcosATdF(X)=JcosAtdF1 (A) 

where F1 (A)=2F(A). 

When F(A) and G(A) have derivatives (which are the interesting cases) 

(6.17.a) dF(X) = F(X)dA 

(6.17.b) dG(A) = g(A)dX 

then f(A) is called the normalized spectral density function or normalized 

spectrum, and g(X) the spectral density function or power spectrum. 

o(t) and p(T) are the inverse Fourier transforms of g(A) and f(X) 

respectively. 

For t discrete, the normalized spectral density function f(A) is the 

Fourier transform of a sequence of autocorrelations and we have 

(6.20) f(A)= •Ti• t_cot) -iAT  ; 	-11AII 

and for T a continuous time parameter, 

-iATCO 

(6.21) f(A) 	f p(T)e 	dT; 	-X- 
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Similarly the spectrum g(A) for a discrete process is 

CO 	-IAT (6.22) g(A)= 	E G(T)e 	; 	_11:5 ?~11 

and for a continuous process, 

o(T)e 	d 	_coAo (6.23) g(A)= 4 -  i L: 	—iXT
T 

Since F(X)= ff(u)du, integrating (6.20) and (6.21) we obtain the 

normalized spectral distribution function F(A). 

For a real process X, the (6.20) reduces to 

(6.24) f(A)= 	+
-

1 00
1 

211 	II E 1p(T)cosAT = 
-- 

Ep(T)cosAT; -JTA11 

and the (6.21) takes the form, 

(6.25) f(A)=:pTcosxTdT 	_ooXco 

Then, the corresponding normalized spectral distribution functions are: 

(6.26) F(X)= P(o) + 1 	p('t)sinAt ..fl~Afl 
211 	HTLOO 	T 

and 

(6.27) F(A)= 
1 

I
X 

I
OD 
p(T)cosXTdTdX; 	-X 

A similar procedure is followed to obtain G(A). 

In the next section we deal with the autocorrelation function and the 

normalized spectral density corresponding to the linear processes in (5), 

(5.1), (5.2) and (5.3), and illustrate with some theoretical examples. 
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7. AUTOCOVARIANCE AND AUTOCORRELATION FUNCTIONS OF LINEAR STATIONARY 

PROCESSES AND THEIR FOURIER TRANSFORMS 

We saw in Section (5) that a linear stationary process X can be interpreted 

as the output obtained from an input U (a purely random process) that has 

been passed through a transfer function a (L) which is a convergent infinite 

sum of weights a for LI:~l.  That is, 

co 

00 
(7.1) X = a U _k=koakLt=L)Ut; 	a <M; 	M finite 

k=o k t k=o k t 

Where L is the lag operator in the transfer function. When the transfer 

function is considered as a generating function of the a weights, L is then 

treated as a dummy variable where a is the coefficient of the k-th 

power of L. Then applying the formula for the autocovariance function and 

remembering that the process is stationary, we obtain, 

72 	2 
XX 	- 	 tt-f-T 	Uk=okk+i 

The variance of X is then, 

22 
" 	0U kOak 

and the autocorrelation 

0xX (T)  
(7.4) p(i) 

= 

function is 
co 

- 

co2 

k=o k 
The autocovariance function can be obtained in an easier way using the 

autocovariance gnerating function, which also can be used to obtain the 

spectrum of the process. 

The autocovariance generating function is 

(7.5) GXX(') = 
	 T= o,±1±2, 

Since for a stationary process aXX(r) is an even function, then 
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is the coefficient of Lk  and  Lk. 

For the linear process (7.1) the autocovariance generating function is 

shown to be 

(7.6) a(L) = 

For L = e_IX, the (7.5) becomes 

(7.7) axx(L) = 	
-1AT e 

T = 0, + 1, ± 2, 

Comparing (7.7) with the spectrum g(A) given in (6.22), namely g(X)= 

100 	
-jAr 

2rT=XX 	 , we see that 2rg(A)=c(L). If we limit A to be non- 

negative, then, 

Therefore, multiplying the autocovariance generating function by I  gives 
Tr 

us the power spectrum of the process. Then, applying (7.6), the spectrum 

of the linear process in (5) can also be written in the form, 

2 

(7.8) g(A)= —Ic(e-IA 
 ) 

2 
xx 	'IT' 

_1T'~A:5 7r 

is called the filter gain and it is the square of the filter 

transfer function. The (7.8) shows that the spectrum of the output X 

of the linear process (7.1) can be obtained from the constant uniform 
2 

spectrum 
a 
U of a white noise process U, multiplied by a factor (the 

filter gain) that depends only on the characteristics of the filter. 

-IX The frequencies for which Ia(e ) 

2

Is large are magnified and those 

for which the filter gain is small are reduced. The variance of X is, 

(7.9) o=f1Tg ( A ) d A= 	cL(e1X) 2dA 
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Dividing (7.8) by (7.9) we obtain the normalized spectral density function 

f(A) which is the Fourier transform of the autocorrelation function 

p(T). Then, 

-iX 2 
(7.10) 	f(A)= c(e 	)I 

-ix 2 
Ia(e 	)I dA 

0 

It is easy to show that the autocovariance and autocorrelation functions 

of the autoregressive process AR(p) in (5.1.1) satisfy the same form of 

difference equation corresponding to the deterministic part of it. In 

effect, multiplying (5.1.1) by Xt_T  and applying (5.1.3) we obtain, 

p 	 00 

(711)8 
	hU U r Z 	X X =o r t-r t-T

=  r=o r t t - T-r 

Since E(Xt_rXt_T)a(T_r); E(U)=a;  E(UU) = 0 for all ts; the 

expected values of the two sides of (7.11) satisfy for ro and for 

T>O, respectively, 

p 

	

(7.12) 	8 a (-r)= 2  
rorXX 	aU 

and 

p 

	

(7.13) ro8r0xX(T0 
	 = 1, 2, 

These are often called the Yule-Walker equations. Thus, the sequence 

a(T-l), 0 (i-2) ......., a(r-p), r= 1, 2 .....satisfies the 

homogeneous difference equation (7.13). Dividing (7.13) throughout 

by 4, we obtain the autocorrelation function which also satisfies 
a homogeneous difference equation analogous to the one of the process 

itself. We can write the (7.13) using the lag operator L in the 

form of, 

	

(7.14) 	8 Lr ro r a(t)=B(L)o(T)=o; T = 1, 2 
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and equivalently for the autocorrelation function, 

r 
r or (7.15) 	L XX P (t)(L)p(i)=o; 	T = 1, 2, =  

8o= 1 

where L operates on T. 

The same conditions for stationarity that were required for the finite 

autoregressive processes of the form (5.1.1) apply here. If all the 

roots G.1  <1 are distinct, we have two situations: 

(1) A root C1  is real, in which case A.G (see 5.1.7) decreases geo-

metrically to zero as s increases. If the root Is positive, 

we will have a decreasing exponential function; and, if it is 

negative, we will have an exponential function alternating in 

sign and decreasing in absolute value. 

(2) A pair of complex conjugate roots G1 . C., in which case they 

generate a term that is an oscillating trigonometric function, 

decreasing in absolute value, and whose period of oscillation 

depends on the argument of the complex roots. 

The variance GXX(o)  of an autoregressive process X can be obtained 

from (7.12) and also can be expressed in terms of the autocorrelation 

function by dividing (7.12) by o.(0)  and making GXX(-r)=OXX(r). 

Then, 
2 

(7.16) cr= 
1-f- 1p(1)+ 2p(2)+. . .+ p(p) 

The spectrum g(A) for the AR(p) process can be obtained using 

(7.8) where the filter gain is 
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Then, 

2 	2 _____ ________ 	<'< (7.17) g(A)= llI(e1)I2 

	JTi]+ e -IA +.+ 	
-IpX 2' 	

0-A-fl 

p e 

The normalized spectral density function f(A) is obtained dividing 

by CF 
2 

Though the autocorrelation function of an AR(p) process is infinite in 

extent, by its own nature it can be described in terms of p non-zero 

functions of the autocorrelations. This information is provided by 

the partial autocorrelation function which helps to determine the 

order of an autoregressive process to fit to an observed time series. 

For an autoregressive process of order p, the partial autocorrelation 

function has a cutoff after the p lag. 

Denoting by Bk.  the jth coefficient in an AR(k) process so that 

Bkk is the last coefficient, then from (7.15) Bkk  satisfies the set 

of equations. 

(7.18) 	J -6 1 3l2(J 2)+. •+B ( P(Jk) 	jl, 2, ... k 

leading to the Yule-Walker equations, which may be written as; 

(7.19) 1 	p . . . p(k-l)1 Bkl 	p(l) 
1 . . . p(k-2) 	Bk2 	p(2) 

L(k_l) 	p(k-2) 1 	
] 

solving (7.19) for k=1, 2, 3, ... we obtain the partial autocorrelations 

11 	2' B33
, ... In general 8kk  is the partial autocorrelation function 

of the lag k. 

For the finite moving average process of order q (MA-q) in (5.2.1) the 

autocovariance function is 
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q-t 
(7.20) 	() E(XX 	)2 kOakk+T, xx 

and 

T>q 

Then the variance of the MA(q) process is 

(7.21) a22 
X 

a 
 U k=o k 

and the autocorrelation function is 

q-T 

(7.22) 
p 	

kokk+T (r) = xx  
q 2 

k oak 

and 

Pxx(t) 0  ; 

Consequently, the correlogram of a MA(q) process is zero for T=q+l onwards. 

According to (4.7.8) the spectrum of a MA(q) process Is 
2 	2 

((A)= 4Ic(e) 2 - 	

q 	
-jAk 2 

7.23) g 	 E 	; 	o1; 	oA~]1 
- II ko k e 

and the normalized spectral density function fxx(A)  is 

For the ARNA(pq) process X defined in (4.5.1), the oxx(r) pxx('r) ,  

g(A) and fxx(A)  can be obtained in a similar way. Thus, 

(7.24) oxx( T ) =  U(T) -I-cia(T_l)+.. .+aqa(t_)_ 1o.. ._o(t_p) 

where a(T) is the cross covariance function between X and U and is 

defined by o(T)=E(X_TU). 

Since X1  depends only on random components which have occurred up to 

time t-T uncorrelated with U it follows that oxu(T)o  for t>o and a(t)# o, 

T q 

Tq 

for T~O. 
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The (7.24) reduces to, 

(7.25) a(T)=- 1a(T-l)-. . .- o(t-); 	rq+l 

Hence, the autocorrelation function is: 

(7.26) p(T)=-t31p.. .-p(t-p), 	 Tq+l 

or 
Tq+l 

where L operates on T. 

Then for an ARNA(p,q) process there will be q autocorrelations whose 

values depend on the choice of the q moving average parameters a as well 

as on the p autoregressive parameters . Now for T>q+l, the p autocorrelations 

already obtained provide the initial values for the homogeneous difference 

equation (L)p(r)=o which then entirely determines the autocorrelations 

of higher lags. 

If q<p,  the whole autocorrelation function will consist of a mixture of 

damped exponentlals and/or damped sine functions. If q?p, the q-p+l 

autocorrelations used as initial values will not follow this general 

pattern. 

For T=O, the (7.24) gives the variance of the process 

(7.27) ax= CY 4-ctia(_l)+.. .+aqaxu ( 	icY(l). 

which has to be solved along with the p equations (7.24) for T1, 2, ... p 

to obtain 4,a,(l), ... XX 

The spectrum of the process Is 
-jAr 2 

Uj r=ore 
(7.28) 	

p 	...jXr2 
k ore 

and the normalized spectral density function f(X)  is the quotient between 

g (A) and 
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We shall now illustrate with some theoretical examples adapted from A.A. 

Sveshnikov (1966) the connection between the autocorrelation function and 

the normalized spectral density function. 

Example 1 

Consider an autocorrelation function of the form 

(1) p(i)=e 

where o<ct<l serves as a measure of the rapidity of decrease of the p(T) 

with the increase of the time lag T. We see in Figure 1, that the greater 

the a, the more damped the autocorrelation function, thus implying a less 

smooth stochastic process. 

Figure 1 

p (i) 

-r 

The corresponding normalized spectral density function f(A) is, 

1 . 	-iAi 	1 	-fAT-cz -rl 	1 	
a 

-L (2) f(A)= 	p(T)e 	di --fe 	di = 	
2 A 2  +a 

and it gives the same information contained in (1) but in the frequency 

domain. The normalized spectral density function is shown in Figure 2. 

We can see that for small a the normalized spectrum has predominancy of 

low frequencies implying a smooth process, whereas as a increases, the 

curve is compressed toward the A- axis, at the same time becoming flatter. 

This kind of behaviour of the function f(A)  enables us to illustrate the 
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of a purely random process or white noise, the normalized spectral density 

1 
of which is a constant equal to 	for 	Observe that the ordinate 

1 
of f(A) at the origin is ha and as a increases, the interception decreases. 

In fact, it is assumed that a can assume very high values and the p(T) is 

transformed into a spike-shaped function, different from ze.ro only in a 

very small neighborhood around t=O. 

Figure 2 

f (A) 

C A 

The total variance of the process is the area under f(A). For small a, a 

low frequency band accounts for most of the variance whereas for the large 

a , the variance is distributed almost uniformly in the frequency band 

capable of exerting an effect on the process under consideration. It is 

impossible for absolutely white noise to exist, since for the spectral 

density to be constant In the whole range of variations of A, the 

autocovariance function for t=O, would have an infinite variance which 

cannot take place in any real process. In effect, 

a (o)=f g(A)dAcf dA= xx 	 Co- 	 - 

Example 2 

As a second example, consider an autocorrelation function p(T) of the form 

(3) p(r)=e-a r .os wT 

which differs from (1) by the presence of the factor cos wT that 

gives to P(T) the form of a damped harmonic oscillation as shown in 



Figure 3. If we were to observe the generating process, some periodicity 

would be apparent. 

Figure 3 

p(T 

T 

The corresponding normalized spectral density function can be obtained 

- iWT 

	

replacing cos wi by - 1 
iwT 

(e +e 	) and by replacing A by (A-w) and 

(A+w) in the integrals of f(X). Then, 

ii 	cx 	a 	_ct 1 A 2+cc 2+w 2  
(4) f(A)= 

211 
(A)22  + (A+)2 

2 - 11 	2 2 2 2 	2 2 -I-cc 	(A-w-cc)+4cxA 

The representation of f(A) shown in Figure 4 presents peaks in the neighbor-

hood of the angular frequency w. For w --, the fundamental seasonal 

frequency in the time domain would correspond to a period of 6 months; 

for w= --, to a period of 12 months. Then, the corresponding model for 

the generating process would have an oscillatory seasonal component whose 

amplitude and phase are changing slowly compared with the fundamental 

seasonal period. The larger the cx (that is, the more rapid is the rate 

of change) the more obscure is the seasonal component and therefore, the 

less sharp is the peak in the normalized spectral density function. 
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Figure 4 

f(A) 
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8. ERGODICITY 

In the applications of probability theory, one ordinarily deals with events 

that repeat themselves many times. Hence, as the mean value of a random 

variable X characterizing an observed event, we cant take the arithmetic 

mean of all the observed values X. of X. Similarly, to determine the mean 

value and the autocovariance function °(t,$) of a stochastic process X(t), 

we must have a large number of realizations of the process X(t), that is, 

and then we calculate the mean for every value t, and the 

autocovariance function for every pair of values t and s. However, in 

practice there are many time series and particularly, economic time series, 

the data of which is the result of a single experiment. For this kind of 

series, it is necessary to specify the conditions under which a single 

realization of the process allows the calculation of consistent estimators 

for all the characteristics of the distribution of the process. The 

possibility of doing the latter is because the Ergodic theorem (or law of 

large numbers) is applicable to a class of stationary random processes. 

According to the ergodic theorem, the mathematical expectation of X(t) 

and of X(t)X(s) obtained by taking the average of the corresponding quantities 

over the whole space of outcomes Q (called the ensemble average or sometimes 

spatial average) can be replaced by the time averages of the same quantities. 

Given a stationary stochastic process X(t), the time average for the mean 

of X(t) is defined by 

(8.1) ì1TX(t)dt; 	ltT 
T To 

For T-, the time average p converes to the ensemble average 4 in mean 

square (also in probability) if and only if 

(8.2) 	urn. E(T_p)2=o 
T- 
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since, 

(8.3) lim.E(j:iT_1I2=lim.-fc1(T)dT; 	I = S-t 
T- 	T- 

then, the (8.2) will be verified if and only if 

(8.4) lim.-f iT o(T)dT= 0 
0 

This condition was first shown by Slutsky (1938) and any stationary process 

that fulfils the (8.4) is said to be ergodic in the mean. For ergodicity 

in the second order moments, we need the time average of the autocovariance 

function, namely 

(8.5) cT(T)_ 4f{[x(t+t)-] [X(t)-]idt 

to converge in mean square to the ensemble average of the autocovariance 

function 0(T). That is, 

(8.6) lim.E[T(T)_o(T)1 2=0 
T-*c° 

For normal process, the (8.6) reduces to 

(8.7) urn. i fT 0(1) 2dt o 
T-° T o 

The existence of time averages and their convergence properties were proved 

in the famous ergodic theorem of Birkhoff and Khinchin (Genedenko (1966)). 

It is easy to show that all linear stationary stochastic processes are ergodic. 

However, not all the stationary processes are ergodic. Consider, for example, 

a simple harmonic process, where a and b are normally distributed random 

variables with zero means and common variance 

(8.8) X(t) a cosXt+bsin At 

The autocovariance function 0(1) is 

2 (8.9) oT)= 0 COSAT 
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Using (8.4) we can show that this process is ergodic in the mean. We have 

(8.10) urn. 4 IT()d 	liiii. 2 sinAT = 
T- 	T-+ 	

T 

But the process is not ergodic for the autocovariance function. Applying 

(8.7), 

1 T 	2d'r 	sin2XT (8.11) urn. - f 	= u rn 	° ( f To 	 T T-° 
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9. HOMOGENEOUS LINEAR NON-STATIONARY PROCESSES 

9.1 Autoregressive Integrated Moving Average - (ARIMA) models 

The ARMA (p,q) model discussed in (5.3) can be generalized by 

including processes which are non-stationary in either their 

local level and/or slope. In other words, we will consider 

the case in which the linear operator that transforms an input 

U purely random into an output X, is homogeneous non-stationary. 

Assume X follows a process stationary in the dth-difference, and 

U follows a moving average process of order q, we can then write 

(9.1.1) 	L) X = cz(L)U 

where p(L) is a non-stationary autoregressive operator and a(L) 

is an invertible moving average operator. 

Since the process X is stationary in the dth-difference, d of the 

roots of 4(L) = 0 are equal to 1 whereas the rest, say p, lie 

inside the unit circle. The (L) operator can then be written 

in the form 

(9.1.2) 	(L) = 	(L)(l_L)d=I (L)i 

p+d 	p 	p 

where l-L = A is the difference operator, the subindices indicate 

the order of the operators, namely, p+d f or the generalized autore- 

gressive operator (L) and p for the stationary autoregressive 

operator (L). 

Assuming the order of the moving average operator to be q, the 

(9.1.1) becomes, 

(9.1.3) 	4 (L)X 	
q p t = 13 (L)t dX= CL (L)U 



IMM 

and is called an Autoregressive Integrated Moving Average process - 

ARIMA (p,d,q). Note that for d = 0, the (9.1.3) defines an ARNA 

(p,q) process. Also by making A aX = W, (9.1.3) is stationary 
in W, or equivalently in the dth-difference of X. 

The ARIMA (p,d,q) model can be written under the explicit form of 

a difference equation as follows 

(9.1.4) 	X = U+ aiU_1+. . .+ a qUt_q_iXt_i_. . _ p+dXt_p_d ;  

a 
0 

= 0=1 

The difference equation form is generally used for calculating the 

forecasts. 

Since in (9.1.3), 	(L) and aq (L) are respectively stationary 

and invertible operators, other explicit forms of an ARIMA model 

are possible, namely: (1) in function of the current and previous 

values of the random process U, and (2) in function of the previous 

values of X plus the current value of U. In the first case we 

have, 

(9.1.5) 	X = 	(L)a (L)U = 
t 	p+d 	q 	t 	t 

where 
2 

(9.1.6) 	p(L) = l+1L + p 2 L +... 

The weights can be obtained by equating coefficients of L in the 

expansion of 	(L) 1P(L)U= aq (L)ut . 

That is, 
p+d 

' P+d
(l+1L+2L 2+. . .)= l+a 1 L+a 2L2+. . .+aqL 
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1'or j greater than the larger of p+d-1 or q, the 	weights satisfy 

the following difference equation, 

(9.1.8) 	(L).=v (L)A.=o p+d 	j p 	j 

where L operates on the subscript j. 

ii t 11k. 	 X in function of the previous values of K t 	 t 

I us t Iii C Li r rri t vi I uo of U, we have 

(9.1 .9) 	4+d(L)a1(L)X=fl(L)X=U 

whorC 

(9.1.10) 	.(L)=1+L+:L +... 

S inc 	(L) is an invertible operator, (L) is convergent on or 

witIiin the unit circle. 

To obtain the U weights, a procedure similar to the one described 

for the 4' weights, is followed. We equate coefficients of L in 

(9.1.11) 	p (L)=t q (L)fl(L) 

and for j greater than the larger of p+d-1 or q, the H weights 

satisfy the difference equation 

(9.1.12) 	ttq (L)ll j =O 

where L operates on j. 

Finally, the ARIMA (p,d,q) process in (9.1.1) can be modified by 

adding a deterministic function of time f(t), usually a polynomial 

of a degree equal to the order of the difference operator, which 

stands for a deterministic trend. 

Also, it can happen that there Is added noise to the process in 

the sense that we actually do not observe X but another random 

process Z=X+U, where U can be a purely random process or a 



correlaed random process. Then, if the observed process is Z, 

(9.1.13) 	 = Ccq (L)Ut+3p (L) dU 

Now if we assume that U is an ARMA (p 1 ,q 1 ) process, that is, 

3 (L)U1  = o (L)E 
p1 	t 	q1 	t 

where E t is a purely random process independent of U, then 

(9.1.13) becomes 

(9.1.14) 	(L) 	(L)tZ =3 (L)ct (L)U + (L)ct (L)AdE 
p1 	p 	t 	i 	q 	t r 	q1 	t 

Let P = p 1-I-p and Q be equal to whichever of p 1+q or p+q 1+d is 

larger, then the (9.1.14) can be written in the form 

(9.1.15) 	
(L)Adz = aQ(L)V 

with Vt  a purely random process and Z an ARIMA (P,d,Q) process 

since the sum of two independent moving average processes is 

another moving average process with order given by the component 

process of higher order. 

9.2 	Integrated Moving Average (IMA) Models 

For p = 0, the ARIMA (p,d,q) process defined in (9.1.3) reduces 

to an integrated moving average process of order (0,d,q). That is, 

the stochastic process X is seen as generated by applying d times 

the infinite sum operator to a finite moving average process of 

order q. In symbols, 

(9.2.1) 	A d xt= cq(L)Ut 

or equivalently 

(9.2.2) 	xt=Adq(L)Ut=sdaq(L)Ut 
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where S = (1-L) 1= 	is the infinite summation operator and the 

supraindex d indicates that the (9.2.1) process is summed d 

times. (1) 

The (9.2.1) model can be written explicitly in the form of a 

difference equation as follows 

(9.2.3) . . 	U 	+ 	
- ld(d-l)X t-2 +. . . +(_l)dX t-d 

q t-q 	t-1 2  

It can also be written explicitly in function of the current value 

of Ut  and its previous values, or in function of the previous values 

of X plus the current value of U. 

(1). Note that 

(1) su t = h E= Ucoh =(l+L+L2+.. . )U=( 1_L) 1U 

t 	i 
(2)  

and so on. 
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10. 	SEASONAL MODELS 

In the analysis of economic time series, it is traditional to 

distinguish different types of evolution; namely, (a) the trend, 

(b) the cycle, (c) the seasonal variation, and (d) the irregular 

fluctuations. 

The trend reflects long-run movements, lasting many years. The 

cycle is a quasi-periodic oscillation characterized by alternating 

periods of expansion and contraction. The seasonal represents the 

composite effect of climatic and institutional elements which 

repeat more or less regularly each year. These three types of 

fluctuation are assumed to follow systematic patterns. (They are 

the signals of the process.) 

On the other hand, the irregulars are unforseeable movements 

related to events of all kinds. In general they have a stable 

random appearance. 

In much analytical work, the trend and the cycle are combined since 

it is the standing of the series apart from seasonal variation upon 

which interest is centered. The information given by seasonally 

adjusted series plays a vital role in long-term decision-making 

for controlling the economic activity. It is therefore very 

important to identify the pattern followed by the seasonality and to 

estimate the seasonal factors with a high degree of accuracy. In 

this section, we will review briefly the most common models 

built for the seasonal variation. 



- 71 - 

The simplest and most often studied assumption is that the seasonal 

component has a stable pattern; that is, it is a strictly 

periodic function with periodicity of 12 months. Then, 

the seasonal component s can be represented for a monthly data 

as a series of twelve constants, one for each month, which sum 

zero. Let these constants be aK,  then we have; 

(10.1) st4k;  for t=k or t-k divisible by 12, 
otherwise. 

12 

klak=O  

The (10.1) can be represented also working with frequencies instead 

of periods as follows 
6 

(10.2) s = 	(a cosX t+a sinA t) j=lj 

Where the A j 'S are the seasonal frequencies for a monthly series 

and where components with a periodicity of less than 2 months are 

not being observed. However, all results can be easily modified 

for weekly or other series. 



- 72 - 

From (10.1) and (10.2) we obtain the following relationship 

6 
(10.3) ak= . 1 (c..cosX.k+i3.sinX.k); 	k1, ..., 12 

Although s is assumed to be strictly periodic, it is not a 

deterministic function as long as ct. and . are considered purely 

random variables, with zero means and 

fo2  E(cz.ck 	E(I3.k) =°j 	; 	jk 
 ; 	jk 

and E(cJ3k) = o for all j and k. 

Then, (10.3) will be a stable seasonal model that follows a 

covariance stationary process, but which will not be ergodic in 

the second order moments if the random variables are assumed 

to be normally distributed (see Section 8). 

The spectral representation of such process s will have a spike 

of height o at each X.. We will have a concentration of spectral 

mass precisely at the seasonal frequencies. Although this will 

never occur in practice, it is a good approximation if the sea-

sonal peaks in the spectrum are narrow. 

Several attempts have been made to produce seasonal models of a 

more realistic kind. Because of institutional, technological and 

other exogenous changes in an economic structure, the seasonal 

patterns of economic time series tend to change through time. 
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In such cases, the best procedure will depend on the nature of 

the evolving pattern. Various possibilities have been discussed 

such as the following: 

(1) There is a sudden change which divides the observed series 

In two fairly uniform parts. In such cases, one should 

obviously estimate a seasonal pattern for each part of the 

series. 0. Lange (1963) and M. Abel (1962) give examples 

for such cases. 

(2) There are changes in the amplitude while the phase still 

remains unchanged. In other words, the a and a coefficients 

of (10.3) depend on t. The simplest case is to assume that 

they are polynomials of a low degree. In the case of 

linearity, the s is, 

0 	6 (1 .4 ) 5
jl1j c 2 t) cosAt+(8 1 +8 2 t)sinAt} 

These types of models have been studies by Hannan (1963) 

Nettheim (1965) and H.M. Rosenblatt (1963). 

Another way to approach changes in amplitudes is by defining 

the stochastic process that generates a j  an 

and Tuckwell (1970) and Terrel and Tuckwell 

empirically with the assumption that a, and 

stationary autoregressive model of order 1. 

(1970) have considered a similar approach. 

8 
J  
.. Hannan, Terrel 

(1970) have worked 

8. follow a 
J 

Grether and Nerlove 
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However, there is no constraint, except from the point of view 

of the estimation procedures, to assume that a 
J 

and 
 3 

. are 

described by other kind of processes. 

(3) The seasonal pattern may change also in phase in which case, 

not only the amplitudes but the phase should be considered 

generated by a stochastic process. Then, the (10.2) written 

now under the cosine form becomes 
6 

(10.5) s t = j 11 R.(cosA.t+e) 

Where 	is the random amplitude of the process 

and e = arcot. a. 	is the phase and it is also random. 
it 
Jt 

For forecasting time series where a changing seasonal pattern 

may exist, Box and Jenkins (1970) have suggested a kind of 

model known as multiplicative seasonal model. This model 

belongs to the category of homogeneous non-stationary linear 

processes and it is based on the assuxaption that, in periodic data, 

one expects relationships: (1) between successive monthly observations 

within a year, and (2) between observations for the same month 

in successive years. We are then faced with two time intervals, 

one for which the L lag is of one period and other for which 

the L lag period is given by the seasonality. Assuming that 

the seasonal pattern is of periodicity s, then L 5Xt  = 

Looking at the observations of each month in successive years, 

and ARIMA (P,D,Q) model is proposed to describe them; that is, 

(10.6) Bp(L)Xt=AQ(L)Et 

where the subindices P, D, and Q denote the order respectively 

of the stationary autoregressive operator B(L 5); of the difference 

operator A=l_LS and of the invertible moving average operator 
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A(L5). E t stands for an autocorrelated random process. In 

other words, one expects that each month's observation is also 

related to previous months and therefore, that E  is related 

to Ei. Et2 and so on. To take care of this relationship, 

a second ARIMA (p,d,q) model is introduced. 

(10.7) Bp (L)AdEt=nq (L)Ut  

where the U is now a purely random process and 0 (L) is a 

stationary autoregressive operator of order p,A = l-L is the 

difference operator of order d and cig (L) is an invertible 

moving average of order q. Combining (10.6) and (10.7) one 

obtains 

(10.8) Bp (L)BP (L5 )L? dtxt=Xq (L)AQ (LS )U t  

which Is the general multiplicative seasonal model of order 

(p,d,q)(P,D,Q) 5 . 

The (10.8) is used for forecasting time series where a changing 

seasonal pattern may exist. K.R. Brewer (1969) has used the 

forecast functions or predictors corresponding to different 

identifications of (10.8) and divided them into trend and sea-

sonal components for current seasonal adjustment. The idea is very 

interesting and well developed from a theoretical point of view 

but can not be used in practical applications on a production 

line basis. There are serious limitations stemming from both 

the validity of the Box and Jenkins models to describe different 

kinds of economic time series and the method of estimation for the 

decomposition of the forecast functions. 
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11. CONCLUSIONS 

Models for time series are stochastic processes, that is, processes controlled 

by probability laws. From a theoretical point of view, a large class of models 

can be built to describe the behaviour of phenomena that evolve through 

time in a probabilistic way. For empirical applications, however, only a 

restricted subclass of models have been properly developed. These models 

belong to the categories of: (1) Normal Non-Stationary (in the mean) Processes; 

(2) Normal Linear Stationary Processes, and (3) Normal Homogeneous Linear 

Non-Stationary Processes. Very often, the assumption of normality is not 

explicitly introduced in the model but it is used in the testing of the hypotheses. 

When the normality is dropped, the stationarity is defined in the wide sense. 

The building of time series models depends on both the behaviour of the phen-

omenon and the purpose of the analysis but for immediate empirical applications, 

it also depends on the existence of optimal methods of estimation 

If the purpose of the analysis is the description of the probability structure of 

a time series, then parametric (finite number of parameters, usually small) and 

non-parametric (an infinite number or a very large number of parameters) models 

are equally acceptable. 

Among the parametric models, the error model which is a normal non-

stationary (in the mean) process and the autoregressive integrated moving 

average model, which is a normal homogeneous linear non-stationary process, 

are the most frequently applied. 
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The non-parametric models most commonly used are the autocovariance function 

and the power spectrum. However, they are not useful for forecasting which 

can only be done with parametric models. 

In an error model, the generating process of a time series is decomposed into 

a systematic component (signal) and a purely random process (white 

noise). The properties of the time series are then summarized in the expected 

value of the process, and variations in the random element do not affect these 

properties. In other words, any effect of time in the process is made on the 

deterministic part and therefore, each observation is stochastically independent 

of the previous ones. 

This model is classical for the analysis of economic time series where the 

signal is assumed to have a trend (a systematic component that moves slowly 

smoothly and progressively through time), a cycle (a quasi-periodic oscilla- 

tion) and a seasonal factor (an oscillatory component that tends to repeat 

more or less regularly each year). 

The assumption of a non-autocorrelated error component, however, introduces 

serious limitations in the validity of this type of model to describe the behaviour 

of economic time series. The errors in the observed values of economic time 

series are not only due to wrong independent observations but also to other 

more serious irregularities, and once they appear, they are incorporated in 

the process and influence its future evolution. Yule (1921, 1927) was first 

attributed with pointing out this aspect; however, it has been almost completely 

neglected in the analysis of economic time series until very recently. 



The decomposition of the signal into a trend-cycle component and a seasonal 

component is of extreme importance for the economic policy maker who, 

faced with the problem of controlling the level of economic activity, does 

not wish to mistake a seasonal movement for a long-term change. 

A model that fulfills these purposes and, at the same time, introduces more 

realistic assumptions about the behaviour of the random component would 

be one in which the time series is decomposed on both a signal (trend-cycle 

and seasonality) and an error which is autocorrelated. Although from a 

theoretical point of view this is feasible, there is no method of estimation 

properly developed for time series following this type of model. 

Computer programs for estimation of models with autoregressive residuals 

based on generalized least squares or maximum likelihood have been produced 

in the last few years. But they can only be used when the trend cycle follows 

a fairly low degree polynomial of time and when the seasonal factors are also 

polynomial functions of time for all the time range. Unfortunately, these 

requisites are fulfilled very rarely by economic time series. 

On the other hand, the autoregressive integrated moving average model assumes 

that the generating mechanism of a time series has autocorrelated errors and 

that it is non-stationary either in its local level and/or slope. Therefore, by 

adequately differencing the process, one obtains a stationary process in the 

difference of a finite order. The stationary process is assumed to be the output 

obtained from an input that is white noise, which has been submitted to a 

linear transformation. This model is generalized by including a seasonal 

operator either in a multiplicative or additive way. 
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The identification of the parameters for this type of model is made by the 

analysis of the autocorrelation function. It has been shown however, that 

the autocorrelation function analysis is effective primarily for models that 

correspond to near normal or normal stochastic processes with high frequen-

cies or small lags; that is, for models of short-run near-gaussian effects 

(Mandelbrot, 1972). Moreover, the final estimates for these models give the 

total for the signal and do not split this total into the amount that corresponds 

to the trend-cycle and the seasonal, so they are useful for different purposes 

than the ones of the error model. They are useful mainly for providing final 

estimates of the raw data and for forecasting. They can also be applied to 

estimate and forecast already deseasonalized series but then, great caution 

should be exercised in the identification and estimation since by correcting 

the raw data, distortions may be introduced that contradict the assumptions 

upon which the models rely. 

The above considerations demonstrate that for empirical applications, particu-

larly in economics, the types of time series models for which already exist 

optimal methods of estimation are very limited and they are far from being 

the best. It still requires a great amount of theoretical and empirical research 

for a thorough understanding of the problems raised by the analysis of 

economic time series. 
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