The X-II-ARIMA seasonal adjustment method

Note

This and other government publications may be purchased from local authorized agents and other community bookstores or by mail order.

Mail orders should be sent to Publications Distribution, Statistics Canada, Ottawa, KIA OT6, or to Publishing Centre, Supply and Services Canada, Ottawa, KIA OS9.

Inquiries about this publication should be addressed to:

Seasonal Adjustment and Time Series Staff,

Statistics Canada, Ottawa, K1A OT6 (telephone: $995-3126$) or to a local office of the bureau's User Advisory Services Division:

St. John's (Nfld.)	$(726-0713)$
Halifax	$(426-5331)$
Montréal	$(283-5725)$
Ottawa	(992.4734)
Toronto	$(966-6586)$
Winnipeg	$(949-4020)$
Regina	$(569-5405)$
Edmonton	$(425-5052)$
Vancouver	$(666-3695)$

Toll-free access to the regional statistical information service is provided in Nova Scotia, New Brunswick, and Prince Edward Island by telephoning 1-800-5657192. Throughout Saskatchewan, the Regina office can be reached by dialing 1-800-667-3524, and throughout Alberta, the Edmonton office can be reached by dialing 1-800-222-6400.

The X-II-ARIMA
 seasonal adjustment method

by Estela Bee Dagum

Published under the authority of the President of the Treasury Board

Statistics Canada should be credited when reproducing or quoting any part of this document
(c) Ministor of Supply
and Servicas Canada 1980
February 1980
3-0002-511

Price: Canada, $\$ 8.00$
Other Countries, $\$ 9.60$
Catalogue 12-564E
Otawa
Version francaise de cette publication
disponible sur demande ($n^{0} 12-564 \mathrm{~F}$ au catalogue)

Preface

The need for a seasonal adjustment method that would produce more accurate current estimates of seasonally adjusted data has been long recognized by Statistics Canada and other central statistical agencies.

As far back as 1973, Dr. Estela Bee Dagum, then head of the Seasonal Adjustment Methods Unit, initiated research to remedy a serious weakness of the officially accepted U.S. Census Program, Method II-X-II Variant, developed by Julius Shiskin, Allan H. Young and John C. Musgrave in 1967. The recalculation of seasonal factors when current data were added to a series often produced large changes in the seasonal factors, even for observations several years back from the current period. This did not seem reasonable. The possibility of such changes meant that the seasonal factors used could be considered final only after many years of data had been added to the series.

By I974, Dr. Dagum had successfully achieved a major theoretical breakthrough which enabled her to subsequently develop what she called the X-11-ARIMA method of seasonal adjustment. This method basically consists of extending the unadjusted series with one or two years of extrapolated values from ARIMA (Auto-regressive Integrated Moving Average) models of the Box and Jenkins type fitted to the series, and then seasonally adjusting the extended series with the $\mathrm{X}-11$ program. The combination of the ARIMA modelling and extrapolation with the noving averages of the $\mathrm{X}-11$ reduces significantly the size of the revisions to the forecast and current seasonal factors. For the majority of the economic time series, the seasonally adjusted data can now be considered final after two years rather than three years of revision. These two main properties of the X-1I-ARIMA have been proved theoretically and are corroborated empirically by a large number of series.

The X-11-ARIMA method was officially adopted by Statistics Canada in January 1975 for the seasonal adjustment of the main Labour Force series and other economic indicators. The procedure was then applied by separately running two different computer programs: first, the ARIMA program which generated the projected values from a model already identified by the user: and second, the X-11 which produced the seasonally adjusted series from the original unadjusted series extended by one or two years of extrapolated values.

As more experimentation was carried out with ARIMA modelling, it was found that a small number of models fitted and extrapolated satisfactorily the values of a large number of series. This fact and the increasing demand for the method in Canada and other countries, led to the development of the new automated version of the X-11-ARIMA which combines two programs into one. This version of Statistics Canada X-11-ARIMA autonintically selects the ARIMA model used in the extrapolation phase from a set of three models, according to given guidelines of acceptance. There is also an option for those users who would prefer to submit their own model. The program includes new graphs and tables and a set of statistics to assess the quality of the seasonally adjusted data.

This publication is divided into three main chapters. Chapter I discusses the foundations of the method and gives a detailed description of the new options. Chapter II deals with the composition of various seasonally adjusted series and introduces some tests to analyze the smoothness of the composite. The composition can be made by summation, subtraction, multiplication and division. Chapter III is the user's manual of the computer program to seasonally adjust time series and to perform the composition of several seasonally adjusted series.

The following persons of the Seasonal Adjustment and Time Series Staff provided valuable technical and computer assistance to Dr. Dagum for the preparation of this automated version of X-I I-ARIMA: Guy Huot, John Lothian, Marietta Morry, John Higginson, Pierre-A. Cholette,

Stephen Tamasi, Alfod Pipineau and Kim Chiu. Special acknow ledgement is made bremand Atschuler, U.S. Bureau of Labor Statistics, for his important computer support at the final stage, particularly for the composition of various scasonally adjusted series.

JETER G KIRKHAM.
Oha Siuthician of Comak.

Table of Contents

Page
Chapter

1. Foundations of the X-11-ARIMA Seasonal Adjustment Method 7
Section
2. Introduction 7
3. ARIMA Models and Extrapolation 8
4. The Selection of ARIMA Models 10
The ARIMA Automatic Option 10
The Identification of ARIMA Models by the User 11
5. Basic Properties of the X-11-ARIMA Moving Averages 12
Main Steps to Produce a Seasonally Adjusted Series 12
Basic Properties of the Two-sided Linear Smoothing Filters (Central Weights) of X-11-ARIMA 13
Basic Properties of the One-sided Smoothing Filters (end Weights) of the X-11- ARIMA Method 14
6. The Advantages of X-11-ARIMA Over Method II-X-II Variant 15
7. Other Main Improvements Incorporated Into the Automated Version of the X-11- ARIMA 15
An F Test for the Presence of Seasonality in Table B1 16
A Test for the Presence of Moving Seasonality in Table D8 16
A Combined Test for the Presence of Identifiable Seasonality in Table D8 16
A Test for the Presence of Residual Seasonality in Table DII 17
The Normalized Cumulative Periodogram Test for the Randomness of the Residuals 17
A New Table D11A Where the Annual Totals of the Seasonally Adjusted Values are Equal to the Annual Totals of Raw Data 17
A Set of Quality Control Statistics 17
New Tables 18
New Charts 18
A Logarithmic Model 18
Other Features of X-11-ARIMA 18
II. The Seasonal Adjustment of Composite Series 19
III. The User's Manual of the X-11-ARIMA Computer Program 21
TABLE OF CONTENTS - Conchuded
PartPage
A. The X-1I-ARIMA Seasonal Adjustment Control Cards and Inputs (Mandatory) 21 Section1. The Main Monthly or Quarterly Control Card (Mandatory)21
8. The Extra Options Control Card (Optional) 30
9. The ARIMA Control Card for User Supplied Model (Optional) 31
10. User Supplied Format Card for the Unadjusted Series (Optional) 33
11. User Supplied Format Card for the Prior Adjusted Series (Optional) 34
12. The Special Output Control Cards (Optional) 34
13. User Supplied Format Card for the Special Output (Optional) 35
14. The Title Card(s) (Mandatory) 35
15. The Unadjusted Data Cards (Mandatory) 35
16. The Prior Adjustment Data Cards (Optional) 36
17. The End of Run Card (Mandatory) 36
B. The Control Cards for Seasonal Adjustment of Composite Series 36
C. File Description for the X-11-ARIMA Program 37
D. Sample Printouts 37
Appendix
A. The X-11-ARIMA Specifications 93
B. Fixed Moving-average Weights of X-11-ARIMA 111
Bibliography 117

Chapter I

FOUNDATIONS OF THE X-11-ARIMA SEASONAL ADJUSTMENT METHOD

Section 1. Introduction

The majority of the seasonal adjustment methods so far developed are based on univariate time series models. They are selected mainly for their simplicity and can be applied without specialized knowledge in a subject matter field.

A few attempts have been made to estimate seasonals based on causal explanations but none of them reached further than the experimental stage. Mendershausen (1939), for instance, tried to regress the seasonal for each month on a set of exogeneous variables (meteorological and social variates) in order to build an explanatory model for seasonality but his empirical results were inconclusive.

Univariate time series methods of seasonal adjustment try to estimate the generating mechanism of the observations under the simple assumption that the series is composed of a systematic part which is a well determined function of time, and a random part which obeys a probability law (Anderson, 1971; Dagum, 1974). The random element is assumed to be identically distributed with constant mean, constant variance and zero autocorrelation. The feasibility of this decomposition was proven in a famous theorem by Herman Wold in 1938.

The methods of estimation of the components of a time series can be grouped into two broad categories (Dagum, 1978.b and 1979.b):

regression methods; and

moving average techniques, also called linear smoothing procedures.
The regression methods assume that the seasonals and the other systematic components, trend and cycle, are deterministic functions over the entire span of the series.
The methods based on moving averages or linear smoothing filters assume that, although the time series components are smooth functions of time, they cannot be closely approximated by simple functions over the entire range of time under consideration. The assumptions implicit in the moving average procedures are that the trend, cycle and seasonals are stochastic and not deterministic.

The majority of the seasonal adjustment methods officially adopted by statistical agencies belong to the category of moving average techniques. They include: the U.S. Bureau of the Census Method II-X-11 variant; the BLS seasonal factor method; the Burman Method of the Bank of England; the Berlin Method, ASA II; the method of the Statistical Office of the European Economic Communities of Brussels; and the method of the Dutch Central Planning Bureau. These methods have often been criticized because they lack an explicit model concerning the decomposition of the original series and because their estimates for the observations of the most recent years do not have the same degree of reliability as compared to those of central observations (Kuiper, 1976 and Dagum, 1976.b).

The lack of an explicit model applies to the whole range of the series. Moving average procedures do make assumptions concerning the time series components, but the assumptions are valid only within the span of the set of weights of the moving average.

The second limitation is inherent in all linear smoothing procedures since the first and last observations cannot be smoothed with the same set of symmetric weights applied to central observations. Because of this, the estimates for current observations must be revised as more data is added to the original series. Frequent revisions, however, confuse the users of seasonally adjusted data, particularly if the revisions are relatively large or if they introduce changes in the direction of the general movement of the adjusted series. In fact, faced with the problem of controlling the level of the economic activity, policy makers will hardly base their decisions on seasonally adjusted data that are subject to significant revisions whenever new information is available.

The Statistics Canada X-11-ARIMA, as developed by Dagum (1975, and 1978.c) does not share the two common constraints of moving average procedures. It offers an ARIMA model for the series and minimizes the revision of the seasonals in mean square error.

The X-11-ARIMA basically consists of:
Modelling the original series by integrated autoregressive moving average processes (ARIMA models) of the Box and Jenkins (1970) types.

Extrapolating one year of unadjusted data at each end of the series from ARIMA models that fit and project well the original series. This operation, called "forecasting" and backcasting" is designed to extend the observed series at both ends.
Seasonally adjusting the extended (original) series with various moving averages of Method II-X-11 variant as developed by Shiskin, Young and Musgrave (1967). In addition, the user now has the option of applying a centred 24 -term filter to replace the centred 12 -term moving average for the preliminary estimation of the trend-cycle. This new filter gives better results for series strongly affected by short cycles (less than three years) or sudden changes in trend.

The ARIMA part incorporated into the $\mathrm{X}-11$ program plays a very important role in the estimation of seasonal factor forecasts and concurrent seasonal factors when seasonality is moving rapidly in a stochastic manner, a phemomenon often found in key economic indicators (Dayum, 19\%8.a). Since the series are extended with extra data, the filters applied by the X-11 to seasonally adjust current observations and to generate the seasonal forecasts are closer to the filters used for central observations. Consequently, the degree of reliability of the extended series for current estimates is greater than that of the unextended, and the magnitude of the revisions is significantly reduced. Similar conclusions were obtained from comparisons made with other seasonal adjustment methods based on moving averages (Kuiper, 1976).

Generally, a reduction of about 30% in the bias and of 20% in the absolute values of the total error in the seasunal factor forecasts for the 12 months (four quarcers) has been found for Canadian and Ainerican series (Kuiper, 1976; Farley and Zeller, 1976; and Dagurn, $1978 . \mathrm{b}$). The percentage reduction for those months (quarters) corresponding to peaks and troughs is larger than the average for the whole year.

Pierce (19\%8) shows that the ARIMA extrapolation makes the X-11-ARIMA a minimum mean square error seasorial adjustment method and that, in fact, this type of extrapolation would minimize the revisions of any moving average seasonal adjustment procedure in the mean square error sense. Similar conclusions are obtained by Geweke (1978) who extrapolates the future values of the series using the spectrum and one ARIMA model.

For senles with rather stable seasonality, a significant improvernent can be obtained when the trend-cycle is growing fast or the last year of data is one with a turning point. The final weights of X-11-ARIMA to estimate the trend-cycle are a combination of the symmetric Henderson weights and the asyinmetric weights of the ARIMA model used for the extrapolated data. Since these final weights change with the ARIMA model fitted to the series, they reflect the most recent movement of the series and, as a result, seldom miss a turning point. Better estimates of the seasonal-irregular ratios (dif-
ferences) are obtained which then are averaged to produce stable seasonals.

From the viewpoint of seasonal adjustment, another important advantage of X-11-ARIMA is that it offers a statistical model for the whole range of the series. The existence of a model that fits the data well fulfills the basic underlying principle of seasonal adjustment, namely, that the series is decomposable. If a series does not lend itself to the identification of an ARIMA model (here considering all AR, MA and ARMA as subclasses) which simply describes the general structure of the series in function of past values and lagged random disturbances, any further decomposition into trend, cycle, and seasonals becomes dubious. In fact, the lack of tit by an ARIMA model indicates that the series is practically a purely random process, or that it is so much contaminated by the irregulars that its systematic movernent is unidentifiable.

The X-11-AKIMA generates extrapolated values of the raw data such that the one lead projected value has a minimum mean square error and thus can be used as a benchmark for preliminary figures. This is particularly useful to producers of raw data obtained from incomplete returns, as is often the case with series that are flows.

Section 2. ARIMA Models and Exirapolation

A fundarnerital step in the improvement of the seasonal adjustment by the X-11 program (equally applicable to any seasonal adjustment method based on moving averages) is to decide what kind of extrapolation method should be used to extend the original series. For the X-11-ARIMA, the selection was made according to the following requirements (Dagum, $1978 . \mathrm{b}$):
The extrapolation method must belong to the "simplest" class in terms of its description of the real world. No explanatory variables must be involved, the series should be described simply by its past values and lagged random disturbances. This requirement is necessary to facilitate the incorporation of the extrapolation method into the X-11 program, since the procedure has to be automated.
The identified models must be robust to the incorporation of one or two extra years of data, and the corresponding extrapolated values should not change significantly with small variations in parameter values. This condition is necessary to avoid frequent changes of models and significant revisions that confuse the users of seasonally adjusted data.

The method must produce extrapolated values that follow the intra-year movement reasonably well although they could miss the level. This requirement reflects the fact that these projected values are not for policy or decision making but to improve current seasonal adjustment.

It must generate optimum extrapolated values in the minimum mean square error sense. This condition
\square
allows the extrapolated values, at least the one lead extrapolation, to be used as benchmarks for preliminary data coming from incomplete returns.
The method must be parsimonious in the number of parameters. The main characteristics of the series are thus summarized in a small number of parameters.

This set of conditions led to the selection of a univariate method of forecasting and, among the several well developed methods, the ARIMA models (autoregressive integrated moving averages) of the Box and Jenkins (1970) type were chosen. ARIMA models have been found to be powerful forecasting procedures for a large class of series (Newbold and Granger, 1974; Reid, 1975).

ARIMA models bring together two basic concepts in extrapolating: autoregression and moving averages. ARIMA is an acronym with the first two letters, AR, standing for "Autoregressive"; the second two letters, MA, for "Moving Average" and the I, for "Integration", or summation. This part of ARIMA is indispensable since stationary models which are fitted to the differenced data have to be summed or "integrated" to provide models for the non-stationary data.

In the Box and Jenkins notation, the general multiplicative ARIMA model for a series with seasonality is expressed as $(p, d, q)(P, D, Q)_{s}$, where d is the order of the ordinary difference and D is the order of the seasonal differences applied to the original series in order to make it stationary. In other words, the statistical structure of the series must be independent of tirne; this implies model stability. To correct for a contimuous change in level due to an upward or downward trend, a first difference $(d=1)$ is applied to the original series Z_{t}; i.e., the new series is $W_{t}=Z_{t}-Z_{t-1}$. Symbolically, $W_{t}=(1-B) Z_{t}$, where B is the lag operator such that $\mathrm{Bn}_{\mathrm{f}}=\mathrm{Z}_{\mathrm{t}-\mathrm{n}}$. For more complex cases of deterministic or stochastic instabiity, higher order differences are applied. To correct for a stable seasonality, the power of the seasonal difference, D, is made equal to one, and the transformed series is then $W_{t}=Z_{t}-Z_{t-s}=\left(1-B^{s}\right) Z_{t}$, where s is the seasonal periodicity, equal to 12 for monthly data and to 4 for quarterly data. Higher order seasonal differences remove uther kinds of seasonal patterns.

P and P indicate the ordinary and the seasonal autoregressive order parameters respectively, in other words, the number of periods that Z_{t} is lagged. If $\mathrm{p}=1$, the independent variable Z_{t} is lagged once, i.e., Z_{t-1}, if P equals $1, Z_{t}$ is also lagged once but in the seasonal periodicity, i.e, $\mathrm{Z}_{\mathrm{t}-\mathrm{s}}$. These lagged variables are affected by autoregressive parameters ϕ and Φ respectively, which measure the impact of the previous observed value
(month, quarter) and the previous year observed value for that month or quarter, on the dependent variable Z_{i}.
q and Q are the moving averages order parameters and indicate the number of periods that the observed residuals are lagged. If $q=1$, then the residuals a_{1} are lagged once; i.e., a_{t-1} and if $Q=1$, the residuals a_{t} are also lagged once but in the seasonal periodicity, i.e., a_{t-s}. These lagged residuals are affected by the parameters θ and Θ respectively, which measure the impact of the residuals of the previous value (months, quarters) and of the previous year value for the month or quarter, on the dependent variable Z_{t}.

Thus for ARIMA models, the variable Z_{t} is a function of lagged dependent variables and of lagged residuals. For example, the simple AKIMA model $(0,1,1)(0,1,1)_{4}$ of Z_{t} reduces to,

$$
\begin{align*}
&(1-B)\left(1-B^{4}\right) Z_{t}=(1-\theta B)\left(1-\Theta B^{4}\right) a_{t} \tag{1}\\
& \text { or } Z_{t}= Z_{t-1}+Z_{t-4}-Z_{t-5}+a_{t}-\theta a_{t-1}- \tag{2}\\
& \Theta a_{t-4}+\theta \Theta a_{t-5}
\end{align*}
$$

(2) says that Z_{1} is equal to the previous quarter value Z_{1-1} plus the difference berween the values for the corresponding last year quarter and previous last year quarter, plus the present innovation and lagged residuals.

For a crude approxmation θ can be interpreted as the extent to which residuals incorporate thenselves in the subsequent history of the trend-cycle and Θ as the extent to which the residuals incorporate themselves in the subsequent seasonal pattern.
θ and Θ take values between zero and 1 . When both are equal to one, the residuals have their maximum impact on the subsequent evolution of the series making the process deterministic. When both are equal to zero, the residuals have a transitory or instantaneous impact only and the process is strongly stochastic.

The procedure followed by model (1) to obtain an estimate of Z_{i} is not new to practicing statisticians who often use a very similar approach to get a projected value to compare with a figure being checked.

The values of the autoregressive parameters ϕ and Φ and of the moving average parameters θ and Θ vary for each series and, therefore, the ARIMA models are very flexible and can follow well the systematic movement of a large class of series.

The ARIMA extrapolating function can be expressed in different forms but for computational purposes the difference equation form is the most useful. For a detailed discussion of the properties and basic assumptions of ARIMA models the reader is referred to Box and Jenkins (1970), and Granger and Newbold (1977).

Section 3. The Selection of ARIMA Models

The ARIMA Automatic Option

The ARIMA models to be used in the context of the X-11-ARIMA method must fulfill the double condition of fitting the data well and of generating "reasonable" projections for the last three years of observed data. By "reasonable" projections is meant projections with a mean absolute error smaller than 5% for well-behaved series (e.g., Employment adult males) and smaller than 12% for highly irregular series (e.g., Unemployment teenage males).

These guidelines have been tested with more than 250 economic time series and are rather conservative. In fact, even with larger extrapolation errors, the X-11-ARIMA produces concurrent and forecast seasonals more reliable than those from X-11.

If possible, the identification of the ARIMA models should be made using data previously treated for extreme values. This recommendation is even more relevant if the outliers fall in the most recent years, in order to avoid the rejection of good models simply because the outliers will inflate the absolute average extrapolation error above the acceptance level of the guidelines.

To determine whether or not a model fits the data well, the portmanteau test of fit developed by Box and Pierce (1970) with the variance correction for small samples is used. The null hypothesis of randomness of the residuals is tested at a 10% level of significance and the estimated parameters are checked to avoid overdifferencing.

Based on the above criteria for fitting and extrapolation, three ARIMA models were incorporated into the $\mathrm{X}-11$ program in order to automate $\mathrm{X}-11$-ARIMA. The user can supply his own model or choose the automatic option. The latter can be used for series that are at least five years long and the program automatically checks whether one of the three models passes the required guidelines. For series longer than 15 years, only the last 15 years will be used in the ARIMA fit and extrapolation. In the affirmative case, the model chosen is the one that gives the smallest average extrapolation error. Then the program automatically extends the unadjusted series, with one year of extrapolated data and seasonally adjusts.

In the event that none of the three models is found acceptable, a message is given indicating that extrapolated values have not been incorporated into the unadjusted series. Particularly for flow series such as imports, retail trade and others, which can be strongly affected by strikes and trading day variations, it is recommended that these sources of variation be removed from the series before using the automatic option or identifying the ARIMA model. The program offers an
option where the extreme values of the series are replaced by the fitted values of the ARIMA model that passes the guidelines of acceptance, in a first run, and then the same model is resubmitted to the modified series to extrapolate. This option however does not modify extreme values that might be in the $2(p+P x s+d+D x s)$ observations at the beginning of the series. Thus for a $(0,1,1)(0,1,1)_{12}$ monthly model, this means that no replacement of extreme values is made in the first 26 observations.

When the three automatic models are rejected, the user should determine whether the rejection is due to an extremely large average extrapolated error for one particular year only. If such is the case, the models printed in the program can still be considered good if the year in question has been an unusual one, for example, of a strong recession. The best model should then be resubmitted using the option corresponding to user's ARIMA model identification.

The automated option for multiplicative and log additive seasonal adjustments chooses from the following three ARIMA models: $\log (0,1,1)(0,1,1)_{s}, \log$ $(0,2,2)(0,1,1)_{\mathrm{s}}$ and $(2,1,2)(0,1,1)_{\mathrm{s}}$ and for the additive decomposition, from $(0,1,1)(0,1,1)_{\mathrm{s}},(0,2,2)$ $(0,1,1)_{\mathrm{s}}$ and $(2,1,2)(0,1,1)_{\mathrm{s}}$.

The selection of the three first models was made from a set of 12 ARIMA models testing out of sample extrapolated values, for the four last years, on 174 economic time series of 15 years of length and of quarterly and monthly observations.

The 12 models tested were:

1. $(1,1,1)(1,1,1)_{\mathrm{s}}$
2. $(2,1,2)(0,1,1)_{\mathrm{s}}$
3. $(2,0,1)(0,1,2)_{5}$
4. $(1,1,2)(0,1,2)_{5}$
5. $(2,0,0)(0,1,1)_{\text {s }}$
6. $(1,1,2)(1,0,2)_{5}$
7. $(2,1,1)(0,1,2)_{S} \log$
8. $(0,1,2)(1,1,2)_{\mathrm{S}} \log$
9. $(0,1,1)(0,1,1) \leqslant \log$
10. $(0,1,1)(0,2,2)_{\mathrm{s}} \log$
11. $(0,2,2)(0,1,1)_{\mathrm{s}} \log$
12. $(2,1,1)(0,1,1)_{\mathrm{s}} \log$.

The 174 series were obtained from the following sectors: the System of National Accounts, Manufacturing, Prices, Labour, Construction, Domestic Trade, and Finance.

Originally, the models were ranked according to how well they fitted the series and met only two of the
criteria of acceptance, the χ^{2} test of randomness at 1% and the absolute average forecasting error lower than 10% (Lothian and Morry, 1978.a). In further experimentations the χ^{2} probability level was raised to to 10% and the absolute average forecasting error for the last three years to 12\% (Dagum, 1979.a).

It was found that model 2 fitted and forecast well 73% of the series. For the class of series not passed by model 2, model 11 provided acceptable results for 19% of those remaining (or 5% of the total). For the remaining series not passed by either model 2 or model 11 , model 9 showed the best performance, passing an additional 2% of the total number of series. Thus models 2,11 , and 9 jointly passed 80% of the series. An additional 1% could have been fitted by the other 9 models, while none of the 12 models tested provided acceptable results for the remaining 19% of the series.

The objective of an automatic procedure is to find adequate models for a great variety of series at minimal cost, i.e., have a small set of models that cover a large class of economic series.

The average forecast errors for each of the 174 series were ranked. It was found that when models 9 and 11 passed the guidelines, one of the two models often placed first among the 12 models. Due to this result only models 9 and 11 are fitted initially; model 2 is fitted only if neither 9 nor 11 pass the guidelines.

For a larger sample of 305 series and testing within sample extrapolated values for the same 12 models, it was found that the best three models were $(2,1,2)$ $(0,1,1)_{\mathrm{s}},(2,0,1) \quad(0,1,2)_{\mathrm{s}}$ and $\log (2,1,2) \quad(0,1,2)_{\mathrm{s}}$ (Dagunt, 1978.c.). The average out of the sample extrapolation error for this set of three models when testing the sample of 174 series was close to the average obtained by the other three models chosen and both sets passed the guidelines of acceptance. However, models 2, 9 and 11 have been preferred because they are more parsimonious in the number of parameters. Furthermore, one of the IMA type models, the $\log (0,1,1)(0,1,1)_{\mathrm{s}}$ has a system of weights similar to those of the additive standard option of the X-11 program according to Cleveland and Tiao (1976). The need for the logarithmic transformation stems from the fact that the majority of the series tested followed a multiplicative relationship among the trend, cycle, seasonal and irregulars.

For those series seasonally adjusted additively, the automatic selection is made from the $(0,1,1)(0,1,1)_{\text {s }}$, $(0,2,2)(0,1,1)_{\mathrm{s}}$ and $(2,1,2)(0,1,1)_{\mathrm{s}}$ non-log models. Although the first two models did not enter in the set of models originally tested, further experimentation with series that followed an additive relation among the components showed that the logarithmic transformation adversely affected both the average forecasting error and the χ^{2} probability value. It is also apparent that when the additive option is used because
of the presence of zeros or negative values in a series, the automatic option would test only the model $(2,1,2)(0,1,1)_{\mathrm{s}}$ if these changes had not been made. For further details on the model selection, evidences of overdifferencing, and new modifications from the first experiment, the reader is referred to Dagum (1979.a).

The extrapolation ARIMA option prints:
The tested models expressed in the classical form ($\mathrm{p}, \mathrm{d}, \mathrm{q}$) ($\mathrm{P}, \mathrm{D}, \mathrm{Q})_{\mathrm{s}}$ as described in Section 2 above.
The transformation performed on the data before testing the models.
The absolute average percentage error of the extrapolated values for each of the last three years and the average for the three years. If the average forecasting error (AFE) is greater than 12%, the ARIMA automatic option rejects the model.
The χ^{2} probability for testing the null hypothesis of randomness of the residuals. If the χ^{2} probability is smaller than 10%, the ARIMA automatic option rejects the model.

The coefficient of determination R^{2}.

The values of the estimated parameters in the following order: First, the ordinary autoregressive parameters ϕ the number of which is given by p ; second, the seasonal autoregressive parameters ψ the number of which is given by P ; third, the ordinary moving average parameters θ the number of which is given by q ; and fourth, the seasonal moving average parameters, θ the number of which is given by Q .

Evidences of overdifferencing are present if the sum of the ordinary moving average parameters or the seasonal moving average parameters, is greater than 90 . In such case, the model is rejected.

If any of the three models of the automatic option passes the guidelines of acceptance, the program uses the best one to backcast one year. The backcasts are tested in similar manner except that the absolute average backcasting error must be greater than 18% to reject the model. This increase in the upper bound of acceptance is due to the fact that the extrapolation errors are all expressed in percentage of the level of the series, and for most series, their level has more than doubled during the last 10 years. Furthemore, for series of 11 years or more, the influence of the backcasts in the current seasonal factors is minor.

The program has also an option by which only forecasts are generated from the ARIMA model chosen.

The Identification of ARIMA Models by the User
The guidelines for the acceptance of an ARIMA model when using the automatic option are conservative. If the series fails these guidelines "marginally", the users
may still apply the best of the three models if it is considered satisfactory for the series in question. By marginally is meant here a χ^{2} probability between 5% and 10%; and for highly irregular series, an average forecasting error between 12% and 15%. If none of the three selected models is marginally acceptable, the user should identify a new model. In many cases, the identification that lead to a good model requires minor changes to the automatic option's models. The following rules have been useful to improve the fitting and extrapolation for a large number of series.

Correcting for a low χ^{2} probability. A low χ^{2} probability indicates that the residuals of the fitted model are autocorrelated. This frequently happens because the log transformation is not needed (if applied) or vice versa. Resubmitting the model with the transformation changed may correct the low χ^{2} value. In other cases this low χ^{2} value is the result of overdifferencing and once this is corrected, as described below, the model becornes adequate.
Correcting for evidences of overdifferencing. Evidences of overdifferencing lead to cancellation of parameters suggesting a more parsimonious model. For example, if the estimated ordinary moving average parameters of the $(0,2,2)(0,1,1)_{4}$ model are $\theta_{1}=1.3$ and $\theta_{2}=0.3$, because their sum is greater than .90 , the program will reject the model on the basis of evidences of overdifferencing. In effect, the $(0,2,2)(0,1,1)_{4}$ model can be written as:
$(1-B)^{2}\left(1-B^{4}\right) Z_{t}=\left(1-1.3 B+.3 B^{2}\right)\left(1-\Theta B^{4}\right) a_{t}$,
where Θ is the seasonal moving average parameter and $s=4$ is the seasonal periodicity. The right hand member of (3) can be factored, as follows:
$\left(1-1.3 B+.3 B^{2}\right)\left(1-\Theta B^{4}\right)=(1-B)(1-.3 B)\left(1-\Theta B^{4}\right)(4)$ substituting (4) into (3) and simplifying, it becomes, $(1-B)\left(1-B^{4}\right) Z_{t}=(1-0.3 B)\left(1-\Theta B^{4}\right) a_{t}$.

The (5) is a $(0,1,1)(0,1,1)_{4}$ model. Because the estimation of the parameters is not exact, the model suggested by the parameter cancellation is not always the correct orie. Often sorne modifications must be made. In our example, if the $(0,1,1)(0,1,1)_{4}$ model is not adequate, by simply adding an ordinary moving average parameter to compensate for the complete elimination of the ordinary differences ($1-B$), a good model can be obtained, e.g.; $(0,1,2)(0,1,1)_{4}$. Another common case of overdifferencing occurs when the seasonal moving average parameter Θ is $>.90$. In such case, model (5) reduces to:
$(1-B) Z_{t}=(1-0.3 B) a_{t}$,
that is, a $(0,1,1)$ model. The cancellation suggests that: seasonality is not present; or seasonality, if present, is mostly of a deterministic character. In the first case, further evidence can be obtained by looking at the tests for presence of seasonality available in the X-11-ARIMA program. If these tests indicate that seasonality is present, the user can try a simpler model with only seasonal
moving average parameter, say $(0,1,1)(0,0,1)$ to generate the extrapolated values. Whether the ARIMA option is applied or not, it is recommended that the seasonal adjustment be made using the moving averages for stable seasonality.
Correcting for high extrapolation errors. Generally, having corrected for the low χ^{2} probability and/or evidences of overdifferencing, the extrapolation errors are reduced. However, if such is not the case, users should identify their own model using any computer program for ARIMA model identification and estimation. The versions called APCORR for model identification and TYMPAC for model estimation can be requested from the Seasonal Adjustment and Time Series Staff, at Statistics Canada.

Section 4. Basic Properties of the X-11-ARIMA Moving Averages

Main Steps in Producing a Seasonally Adjusted Series

The main steps in producing seasonally adjusted series using the X-11-ARIMA method are equal to those of Method II-X-11 variant (Shiskin, Young and Musgrave, 1967) as shown in Appendix A. The main differences are: (i) the extension of the unadjusted series with one year of extrapolated values from ARIMA models at one or both ends of the series whenever the ARIMA option is used; (ii) the option of applying a centred 24 -term movirig average for the preliminary estumation of the trend-cycle; (iii) short series of three and four years are seasonally adjusted only with the stable seasonality option.

The X-1 1 ARIMA assumes that the main components of a time series follow a multiplicative, an additive, or a \log additive model, that is

1. $\mathrm{O}_{\mathrm{t}}=\mathrm{C}_{\mathrm{t}} \mathrm{S}_{\mathrm{t}} \mathrm{I}_{\mathrm{t}}$ (multiplicative model)
2. $\mathrm{O}_{\mathrm{t}}=\mathrm{C}_{\mathrm{t}}+\mathrm{S}_{\mathrm{t}}+\mathrm{I}_{\mathrm{t}}$ (additive model)
3. $\log O_{t}=\log C_{t}+\log S_{t}+\log I_{t}$ (log additive model)
where O_{t} stands for the unadjusted series, C_{t} the trendcycle, S_{t} the seasonal and I_{t} the irregular.

The estimation is made with different kinds of moving averages that are applied sequentially in 13 steps repeated twice.

For the standard option of the computer program these 13 steps are:

1. Compute the ratios between the original series and a centred 12 -term moving average ($2 \times 12 \mathrm{~m} . \mathrm{a}$., that is a 2 -term average of a 12 -term average) as a first estimate of the seasonal and irregular components (SI).
2. Apply a weighted 5 -term moving average ($3 \times 3 \mathrm{~m}$. a.) to the seasonal-irregular ratios (SI) of each month separately, to obtain a preliminary estimate of the seasonal factors.
3. Compute a centred 12 -term moving average of the preliminary factors in 2 for the entire series. To obtain the six missing values at either end of this average, repeat the first (last) available moving average value six times. Adjust the factors to add to 12 (approximately) over any 12 -month period by dividing the centred 12 -term average into the factors.
4. Divide the seasonal factor estimates into the seasonal irregular (SI) ratios to obtain an estimate of the irregular component.
5. Compute a moving five-year standard deviation (σ) of the estimates of the irregular component and test the irregulars in the central year of the five-year period against 2.50 . Remove values beyond 2.50 as extreme and recompute the moving five-year o. Assign a zero weight to irregulars beyond 2.50 and a weight of 1 (full weight) to irregulars within 1.50. Assign a linearly graduated weight between 0 and I to irregulars between 2.5σ and 1.5σ.
6. For the first two years, the σ limits computed for the third year are used; and for the last two years, the o limits computed for the third-from-end year are used. To replace an extreme ratio in either of the two beginning or ending years, the average of the ratio times its weight and the three nearest fullweight ratios for that month is taken.
7. Apply a weighted 5 -term moving average to the SI ratios with extreme values replaced, for each month separately, to estimate preliminary seasonal factors.
8. Repeat step 3, applied to the factors found in step 7.
9. To obtain a preliminary seasonally adjusted series divide 8 into the original series.
10. Apply a 9 -, 13 -, or 23 -term Henderson moving average to the seasonally adjusted series and divide the resulting trend-cycle into the original series to give a second estimate of the SI ratios. (In the first iteration, only the 13 -term Henderson is applied.)
11. Apply a weighted 7 -term moving average ($3 \times 5 \mathrm{~m} . \mathrm{a}$.) to each month's SI ratios separately, to obtain a second estimate of the seasonal component.
12. Repeat step 3.
13. Divide 11 into the original series to obtain the seasonatly adjusted series.
Allan Young (1968), using a linear approximation of the Census Method II, arrives at the conclusion that a 145 -term moving average is needed to estimate one seasonal factor with central weights if the trend-cycle component is adjusted with a 13 -term Hernderson moving average. The first and last 72 seasonal factors (six years) are estimated using sets of asymmetrical end weights. It is important to point out, however, that the weights given to the more distant observations are very small and, therefore, this moving average can be very well approximated by taking one half of the total number of terms plus one. So, if a 145 -term moving average is used to estimate the seasonal factor of the central observation, a good approximation is
obtained with only 73 terms, i.e., six years of obser. vations. The properties of the filters used in the Method II-X-11 program are extensively discussed in Dagum (1976.a and $1978 . \mathrm{b}$) and the stochastic properties for data filtering of X-11-ARIMA are analyzed in Dagum (1979.c). A brief discussion is made here for monthly series but the conclusions are also valid for quarterly series.

Basic Properties of the Two-sided Linear Smoothing Filters (Central Weights) of the X-11-ARIMA

The linear smoothing filters applied by Method 11-X-11 and the X-11-ARIMA to produce seasonally adjusted data can be classified according to the distribution of their set of weights into symmetric (twosided) and asymmetric (one-sided). The symmetric moving averages are used to estimate the component values that fall in the middle of the span of the average, say $2 n+1$, and the asymmetric moving averages, to the first and last n observations. The sum of the weights of both kinds of filters is one and thus the mean of the original series is unchanged in the filtering process. 1

It is very important in filter design that the filter does not displace in time the components of the output relative to those of the input; in other words, the filter must not introduce phase shifts. ${ }^{2}$ Symmetric moving averages introduce no time displacement for some of the components of the original series and a displacement of $\pm 180^{\circ}$ for others. A phase shift of $\pm 180^{\circ}$ is interpreted as a reverse in polarity which means that maxima are turned into minima and vice versa. In other words, peaks (troughs) in the input are changed into troughs (peaks) in the output.

For practical purposes, however, symmetric moving averages act as though the time displacement is null. This is so because the sinusoids that will have a phase shift of $\pm 180^{\circ}$ in the filtering process are cycles of short periodicity (annual or less) and moving averages tend to suppress or significantly reduce their presence in the output.
The centred 12 -term moving average. The centred 12 -term moving average is used for a preliminary estimate of the trend-cycle (step 1). This filter reproduces exactly the central point of a linear trend and annihilates a stable seasonality over a 13 -month period in an additive model. If the relationship among the components is multiplicative, then only a constant trend multiplied to a stable seasonality will be perfectly reproduced.

[^0]The main limitation of this filter is that it misses peaks and troughs of short cycles (three or two years) and unless the irregular variations are small, it will not smooth the data successfully. If the input to this filter is a sine curve of three-year periodicity and amplitude 100 , the output is a sine curve of equal periodicity but with amplitude reduced to 82.50 ; the amplitude of sine waves of two-year periodicity is reduced to 75 ; and only sine waves of five years or more are passed with very small reductions in their amplitudes. However because the trend-cycle variation of most economic time series is mainly due to long cyclical variations of 40 months or more (Davis, 1941), this filter is generally good for a prelininary estimation of the trend-cycle.
The centred 24 -term moving average. For series mostly dominated by short cyclical fluctuations (three or two years) or affected by sudden changes in trend level, an optional centred 24 -term filter is included in X-11 ARIMA. This filter is a modified version (Cholette, 1979) of the Leser filter (1963).

The amplitude of sine waves of three- and two-year period are reduced by only 5% and 18% respectively.
Furthermore, it eliminates the irregular variation more than the centred 12 -term filter. Unfortunately, as we depart from the central observation, the estimation of the 12 points at each side deteriorates gradually. Because of this, in X-11-ARIMA the asymmetric weights that estimate only the six points at each side of the central observation are used. The first and last six observations are deleted as in the centred 12 -term filter. These asymmetric weights applied to observations 7 to 12 and 14 to 19 share the same spectral properties of the centred 24 -term filter except for small phase shifts.
The 9., 13- and 23 -term Henderson moving averages. The Henderson moving averages were developed by summation formulae mainly used by actuaries. The basic principle for the summation formulae is the combination of operations of differencing and summation in such a manner that when differencing above a certain order is ignored, they will reproduce the functions operated on. The merit of this procedure is that the smoothed values thus obtained are functions of a large number of observed values whose errors, to a considerable extent, cancel out. These filters have the properties that, when fitted to second or third degree parabolas, their output will fall exactly on those parabolas and, when fitted to stochastic data, they will give smoother results than can be obtained from the weights which give the middle point of a second degree parabola fitted by least squares. Recognition of the fact that the smoothness of the resulting filtering depends on the smoothness of the weight diagram led Robert Henderson (1916) to develop a formula which makes the sum of squares of the third differences of the smoothed series a minimum for any number of terms.
The Henderson moving averages are applied to obtain an improved estimate of the trend-cycle (step 10). They give the same results as would be obtained by smoothing the middle values of a third degree parabola fitted by
weighted least squares, where the weights given to the deviations are as smooth as possible.
The fact that the trend-cycle is assumed to follow a parabola over an interval of short duration (between one and two years approximately) makes these filters very adequate for economic time series.
None of the Henderson filters used by the X-1 I-ARIMA program eliminates the seasonal component but since they are applied to data that are already seasonally adjusted, this limitation becomes irrelevant. On the other hand, they are extremely good for passing sines of any period longer than a year. Thus, the 13 -month Henderson, which is the most frequently used, will not reduce the amplitude of sines of period 20 months or more, which stand for trend-cycle variations. Moreover, it eliminates almost all the irregular variations that can be represented by sines of very short periodicity, six months or less.
The weighted 5 -term (3×3) and the weighted 7 -term (3×5) moving averages. The weighted 5 -term moving average is a 3 -term moving average of a 3 -term moving average (3×3 m.a.). Similarly, the weighted 7-term moving average is a 3 -term moving average of a 5 -term moving average ($3 \times 5 \mathrm{~m} . \mathrm{a}$.). These two filters are applied to the seasonal-irregular ratios (or differences) for each month, separately, over several years. Their weights are all positive and, consequently, they reproduce the middle value of a straight line within their spans. This property enables the X-II-ARIMA program to estimate a linearly moving seasonality within five- and seven-year spans. Therefore, these filters can approximate quite adequately gradual seasonal changes that follow non-linear patterns over the whole range of the series (more than seven years).

The weighted 5 -term moving average ($3 \times 3 \mathrm{ma}$.) is a very flexible filter that allows for fairly rapid changes in direction, but since the span of the filter is short, the irregulars must be small for the SI to be smoothed successfully.

The weighted 7 -term moving average (3×5 m.a.) is less flexible and it is applied for the final estimate of the seasonal factors. For series whose seasonal factors are nearly stable, this program also provides other optional sets of weights which are applied to longer spans and thus produce smoother seasonal-irregular ratios.

Basic Properties of the One-sided Smoothing Filters (End Weights) of the X-11-ARIMA Method

It is inherent in any moving-average procedure that the first and last n points of an unadjusted series cannot be smoothed with the same set of symmetric weights applied to middle values. In the X-11-ARIMA the seasonal adjustment of current years and the seasonal factor forecasts are obtained from the combination of two filters: (i) the one-sided filters used for extrapolating the unadjusted data from the ARIMA models and (ii) the filters of the X-1I program used for seasonal
adjustment. The extrapolation filters of the ARIMA models change with the series and are therefore very flexible. These filters reflect the most recent movements of the series, in particular, rapidly changing seasonality.

The X-11 filters applied to the extended unadjusted series for the trend-cycle estimation are two-sided. Therefore they do not miss turning points and do not introduce phase shifts, which allows them to estimate the cyclical variations well.

The X-11 filters that estimate the seasonal factors are still one-sided but closer to the symmetric filters used for central observations. Thus, with one year of extrapolated data, the seasonal factor forecasts are obtained from the extrapolated data with the X-11 filters used for producing concurrent seasonal adjustment.

It is the combination of the fixed filters from X-11 (the same for any series) with the flexible filters of the ARIMA models (changing with the series) that makes X-11-ARIMA a better method than X-11 for current adjustment.

Section 5. The Advantages of X-11-ARIMA Over Method II-X-11 Variant

The main advantages of X-11-ARIMA over the X-11 variant are:

1. The availability of a statistical model that provides relevant information on the quality of the raw data. The existence of a model that fits the original series, even though it does not pass the guidelines for extrapolation, warrants the fulfilment of the fundamental principle of seasonal adjustment, that is, the series is decomposable. In other words, if a series does not lend itself to the identification of an ARIMA model (including any type AR, MA, ARIMA) which simply describes the series as a function of past values and lagged random disturbances, any decomposition into trend-cycle, seasonal and irregulars can be seriously criticized and of doubtful validity. In fact, the lack of fit by an ARIMA model can indicate deficiencies conceming the way in which the observations are made, e.g., improper sampling interval.
If the series has an ARIMA model, the expected value and the variance of the original series can be calculated and thus, confidence intervals can be constructed for the observations. This enables the identification of extreme values, particularly at the end of the series.
2. The one-step extrapolation from ARIMA models is a minimum-mean-square-error extrapolation and can be used as a projected value or benchmark for preliminary figures.
3. If concurrent seasonal factors are applied to obtain current seasonally adjusted data, there is no need to revise the series more than twice. For many series,
one revision alone will give seasonal factors that are "final" in a statistical sense.
4. The total error in the seasonal factor forecasts and in the current seasonal factors is significantly reduced for all the months. Generally, a reduction of some 30% in the bias and of 20% in the absolute value of the total error has been found for Canadian and American series.
There are several reasons for the significant reduction of the error in the seasonal factor forecasts and concurrent seasonal factors. The X-11-ARIMA produces seasonal factor forecasts from the combination of two filters: (i) the filters of the autoregressive integrated moving averages (ARIMA) models used to extrapolate the raw data; and (ii) the filters that Method II-X•II variant applies to obtain the first revised seasonal factors. In this manner, the seasonal factor forecasts are obtained from the extrapolated raw values with a set of moving averages whose weights, though still asymmetric, are closer to the weights applied to central observations as compared to the forecasting function of the X-II variant.
5. Another advantage of X-1I-ARIMA is that the trend-cycle-estimate for the last observation is made with the symmetric weights of the Henderson moving averages (which can reproduce a cubic in their time span) combined with the weights of the ARIMA model used for the extrapolated data. Since these latter weights change with the ARIMA model fitted to the series, they reflect the most recent movements and a better trend-cycle estimation is obtained from the combined weights. This is particularly true for years with turning points because the X-11 applies the asymmetric weights of the Henderson filters which can adequately estimate only a linear trend.
6. Finally, by adding one or two more years of extrapolated data (with no extremes, since they are mere projections) a better estimate of the variance of the irregulars is obtained. The latter allows a significant improvement in the identification and replacement of outliers which, as is well known, can severly distort the estimates obtained with linear smoothing filters. For concurrent seasonal factors, the same observations are valid except that the seasonal filters are closer to the central filters than those corresponding to the seasonal factor forecasts. For this reason, the number of revisions in the seasonal factor estimates is also significantly reduced. It was found that one year of forecasts and backcasts is the best compromise for the majority of the series when using the automated option.

Section 6. Other Main Improvements Incorporated Into the Automated Version of the X-11-ARIMA

A set of new statistical tests, tables and graphs have been incorporated into the present automated version of the X-1I-ARIMA besides the automatic selection of the ARIMA models, as discussed earlier in Section 3 of this chapter. These tests are used to assess the quality
of the original series and the reliability of the seasonal adjustment. A brief description of these improvements follows:

An F Test for the Presence of Seasonality in Table B1

This test is based on a one-way analysis of the variance on the SI ratios (differences) similar to the one already available in Method II-X-11 variant for the presence of stable seasonality in Table D8. It differs only in that the estimate of the trend-cycle is made directly from the original series by a centred 12 -term moving average. The estimate of the trend-cycle is removed from the original series by division into (subtraction from) the raw data for a multiplicative (additive) model.

The value of the F ratio is printed in Table B1. The F is a quotient of two variances: (i) the "between months or quarters" variance which is mainly due to the seasonals and (ii) the "residual" variance which is mainly due to the irregulars.

Since several of the basic assumptions in the F test are probably violated, the value of the F ratio to be used for rejecting the null hypothesis, i.e., no significant seasonality present, is tested at the one per thousand probability level.

A Test for the Presence of Moving Seasonality in Table D8

The moving seasonality test is based on a two-way analysis of variance performed on the SI ratios (differences) from Table D8 (Higginson, 1975). It tests for the presence of moving seasonality characterized by gradual changes in the seasonal amplitude but not in the phase.

The total variance of the SI ratios (differences) is considered as the sum of the:

1. σ_{m}^{2}, the "between months or quarters" variance which primarily measures the magnitude of the seasonality. It is equal to the sum of squares of the difference between the average for each month of the SI and the total average, corrected by the corresponding degrees of freedom.
2. σ_{y}^{2}, the "between years" variance which primarily measures the year-to-year movement of seasonality. It is equal to the sum of squares of the differences between the annual average of the SI for each year and the total average of the SI for the whole table corrected by the corresponding degrees of freedom.
3. σ_{r}^{2}, the "residual" variance which is equal to the total variance minus the "between months or quarters" variance and the "between years" variance.

The F ratio for the presence of moving seasonality is the quotient between the "between years" variance and the "residual" variance.
To calculate the variance in an additive model the absolute values of $S+I$ are used, otherwise the annual average is always equal to zero. For a multiplicative model, the SI ratios are replaced by absolute deviations from 100 , i.e., by $|\$ 1-100|$. Contrary to the previous test, for which a high value of F is a good indication of the presence of measurable seasonality, a high value of F corresponding to moving seasonality reduces the probability of a reliable estimate of the seasonal factors. The F test is printed in Table D8 indicating whether moving seasonality is present or not.

A Combined Test for the Presence of Identifiable Seasonality in Table D8

This test combines the previous test for the presence of moving seasonality with the F test for the presence of stable seasonality and the Kruskal-Wallis chi-squared test (another non-parametric test for the presence of stable seasonality).

The main purpose of this test is to determine whether the seasonality of the series is "identifiable" or not. For example, if there is little stable seasonality and most of the process is dominated by rapidly moving seasonals, chances are that the seasonals will not be accurately estimated for they will not be properly identified by the X-11-ARIMA method.

The test basically consists of combining the F values obtained from the three previously prescribed tests as follows:

1. If the F_{S}-test for the presence of stable seasonality at the 0.1% level of significance fails, the null hypothesis, i.e., seasonality is not identifiable, is accepted.
2. If (1) passes but the F_{M} test for the presence of moving seasonality at the 5% level of significance fails, then this F_{M} value is combined with the F_{S} value from (1) to give $T_{1}=\frac{7}{F_{M}-F_{S}}$ and $T_{2}=\frac{3 F_{M}}{F_{S}}$ and a simple average of the two T's is calculated. If this average is greater than or equal to one, the null hypothesis, i.e, identifiable seasonality not present, is accepted.
3. If the F_{M} test passes but one of the two T's statistics fails, or the Kruskal-Wallis test fails at the 1% level, then the program prints "identifiable seasonality probably present".
4. If the F_{S}, F_{M} and the Kruskal-Wallis chi-square values pass, then the null hypothesis (of identifiable seasonality not present) is rejected. The program prints "identifiable seasonality present".

The messages are printed at the end of Table D8.
For further details, the reader is referred to Lothian and Morry (1978.b).

A Test for the Presence of Residual Seasonality in Table D11

This is an F test applied to the values of Table D11 and calculated for the whole length of the series as well as for the last three years. The effect of the trend is removed by a first-order difference of lag three for monthly series and lag one for quarterly series, that is, $\hat{O}_{t}-\hat{O}_{t-s / 4}$ where $\hat{0}_{t}$ are the values of Table D11. Two F ratios are printed at the end of the table as well as a message indicating the presence or absence of residual seasonality for the last three years and the whole length of the series (Higginson, 1976).

The Normalized Cumulative Periodogram Test for the Randomness of the Residuals

The Method II-X-11 variant uses the Average Duration of Run (ADR) statistic to test for autocorrelation in the final estimated residuals obtained from Table D13. This non-parametric test was developed by W.A. Wallis and G.H. Moore (1941), and is constructed on the basis of the number of turning points. It is efficient for testing the randomness of the residuals only against the alternative hypothesis that the errors, l_{t}, follow a first-order autoregressive process of the form $\mathrm{I}_{\mathrm{t}}=$ $\rho I_{t-1}+e_{t}$ where ρ is the autocorrelation coefficient and e_{t} is a purely random process.

If a process is purely random and we have an infinite series, the $A D R$ statistic is equal to 1.50 . For a series of 120 observations, the ADR will fall within the range 1.36 and 1.75 with a 95% confidence level. Values greater than 1.75 indicate positive autocorrelation and values smaller than 1.36 indicate negative autocorrelation.

This test, however, is not efficient for detecting the existence of periodic components in the residuals, which can happen when relatively long series are seasonally adjusted or when the relative variation of the seasonal component is small with respect to that of the irregular. To test independence of the residuals against the alternative hypoethesis implying periodic processes, the normalized cumulative periodogram has been incorporated in the X-11-ARIMA program.

The normalized cumulative periodogram values are given in a table and also in a graph. By visual inspection it is possible to determine if components with certain periodocity are present or not in the irregulars.

If the residuals are the estimates of a sample realization of a purely random process, and if the size of the sample tends to infinity, then the normalized cumulative periodogram tends to coincide with the diagonal of the square in which it is drawn.

Deviations of the periodogram from the line expected if the residuals were purely random can be assessed by use of the Kolmogorov-Smimov test. This test is useful to determine the nature of hidden periodicities left in the irregulars, whether of seasonal or cyclical character and complements the information provided by the test for the presence of residual seasonality. (A simple explanation of this test is given in Dagum, Lothian and Morry, 1975.)

A New Table D11A Where the Annual Totals of the Seasonally Adjusted Values are Equal to the Annual Totals of the Raw Data
This new Table D11A produces a modified seasonally adjusted series where the annual totals of the seasonally adjusted values and the raw data are made equal.

The discrepancy between both annual totals is distributed over the seasonally adjusted values of Table D11 in a way that preserves the month-to-month or quarter-to-quarter movements of the unmodified seasonally adjusted series. The procedure is based on a quadratic minimization of the first differences of the annual discrepancies expressed as differences or ratios. For further details the reader is referred to Huot (1975) and Cholette (1978).

A Set of Quality Control Statistics

The statistics Canada X-11 version as developed in 1975 had two statistics called Q_{1} and Q_{2} that provided an indication of the amount and nature of the irregulars and the seasonal components respectively. These statistics and their basic assumptions are discussed by Huot and de Fontenay (1973).

Considerable research has been carried out since the first set of guidelines was developed and they are now reduced to only one Q statistic which results from the combination of several other measures (Lothian and Morry, 1978.c). Most of them are obtained from the summary measures of Table F2. Their values vary between 0 and 3 , and only values less than one are considered acceptable. The statistics that are combined to produce the final Q - statistic follow:

1. The relative contribution of the irregulars over three-month spans as obtained from Table F2B denoted by M_{1}.
2. The relative contribution of the irregular component to the stationary portion of the variance as obtained from Table F2F; denoted by M_{2}.
3 . The value of the I / C ratio (the ratio of the average absolute month-to-month or quarter-to-quarter per cent change in the irregular to that in the trendcycle) for the selection of the Henderson moving averages in Table D7 printed in Table F2E; denoted by M_{3}.
3. The value of the average duration of run for the irregulars from Table F2D denoted by M_{4}.
4. The MCD or QCD (the number of months or quarters it takes the average absolute change in the trend-cycle to dominate the average absolute change in the irregular) from Table F2E denoted by M_{5}.
5. The total I/S moving seasonality ratio obtained as an average of the monthly moving seasonality ratios from Table $D 9$ denoted by M_{6}. (It is the ratio of the average absolute year-to-year per cent change in the irregulars to that in the seasonals.)
6. The amount of stable seasonality in relation to the amount of moving seasonality, from the tests of Table D8, printed in Table F2I; denoted by M_{7}.
7. A measure of the year-to-year variation of the seasonal component for the whole series from Table D10 denoted by M_{8}.
8. The average linear movement of the seasonal component for the whole series from table D10 denoted by M_{9}.
9. Same as 8 but calculated for recent years only; denoted by M_{10}.
10. Same as 9 but calculated for recent years only; denoted by M_{11}.

New Tables

Two Tables, B20 and C 20 , produce the extreme values from the decomposition of the irregulars I ' of Table B13 and Table C13, given the final weights W of Table B17 and Table C17 respectively. For additive models the extreme values are equal to $I^{\prime}(1-W)$ and for multiplicative models they are equal to $I^{\prime} /\left(1+W\left(I^{\prime}-1\right)\right)$.

A new Table D16 gives the total effect due to both the trading-day factors and the seasonal factors.

New Charts

The following new charts are available:
Gl chart that plots the values of the original series as in Al or, in Bl if prior modifications are made. together with the backcasts and forecasts generated from the ARIMA option. It also plots the values of the original series as modified for extreme values from Table El.

G6 graph corresponding to the Cumulative Periodogram test for the randomness of the residuals.

A Logarithmic Model

A new option allows the user to decompose the original series in an additive relation using the logarithms of the components. It is the additive equivalent of the multiplicative model (Lothian, 1978).

Other Features of X-11-ARIMA

1. In Method II-X-11 variant the end of the series is not treated in the same manner as the beginning, and seasonally adjusting the data in reverse time order does not give the same results as the original series. This is due to a nonhomogenous effect in
the identification of the extremes. This effect is not present in the X-11-ARIMA program.
2. A new F3 table is introduced containing the new monitoring and quality control statistics.
3. Images of the main control and ARIMA cards are printed on the title page.
4. In the F2 table, several new summary measures statistics are introduced. For monthly series the first 14 autocorrelations of the final irregular are calculated (the first six for quarterly series). The approximate contribution of the components to the stationary portion of the variance is given. (The series is made stationary by removing a linear trend for additive models and an exponential trend for multiplicative models.) The results of all the analysis-of-variance tests in the program are printed with their associated probability values. The I/C ratio from Table D12 is printed.
5. The probability values for the normal, chi-squared, F, and t values are printed.
6. A variable trend-cycle routine that includes the 5 and 7-term Henderson filter and prior adjustment are available in the quarterly program.
7. If there is prior adjustment, except by trading-day factors, the D11 table equals Table Al divided by Table D10 for the multiplicative version and equals Al minus D10 for the additive version.
8. If the MCD (or QCD) is an even number, the MCD moving average is centred by taking an average of two MCD moving averages.
9. Two new printout options. These are a brief printout which prints only three to five tables and an analysis printout.
10. The quality control statistics for each series adjusted are collected and printed at the end of the printout. This allows users to quickly judge the acceptability of all series adjusted.
11. New input and output data formats were added. New formats for the prior adjustment factors were added.
12. The number of decimals of the input data no longer controls the number of decimals on the printout. The decimals on the printout are controlled by a separate option.
13. If the data is read from tape (or disk), the user can select an option which allows the program to search the tape for the series with the required series identifier. Another option will rewind the tape and search.
14. All weights for the moving averages (except the end weights for the Henderson) are calculated using their explicit formulae.

Chapter II

THE SEASONAL ADJUSTMENT OF COMPOSITE SERIES

By composite series is here understood a series that results from the addition, subtraction, multiplication and/or division of several components. These conponents series can enter into the composite with equal or different weights. Because of non-linearities involved in the process of composing the series by multiplication and division and/or in their seasonal adjust. ment method, the direct and indirect seasonally adjusted composites are usually different. The direct seasonal adjustment consists of making the composite of the unadjusted components, and then seasonally adjusting the composite series. The indirect seasonal adjustment consists of first seasonally adjusting the component series and then the seasonally adjusted composite series is obtained by implication. In order to decide whether the composite series should be seasonally adjusted using the direct or the indirect procedure the criterion of smoothness is often used. A classical measure of the degree of roughness or lack of smoothness in a seasonally adjusted composite series is the sum of squares of the first difference of the series. That is:
$\mathrm{R}_{1}=\Sigma_{\mathrm{t}}\left(\hat{\mathrm{X}}_{1}-\hat{\mathrm{X}}_{\mathrm{t}-1}\right)^{2}$
where X_{t} is the series in question. The larger R_{1} the rougher the series $\hat{\mathrm{X}}$ or, equivalently the less smooth.

The rationale of this measure is that the first difference filter removes most of the variations of long periodicities (trend and cycle). Lothian and Morry (1977) have found that the R_{1} measure is related to the magnitude of the revisions in the seasonally adjusted series. The implicit definition of smoothness of R_{1}, however, excludes cycles of short periodicities and to compensate for this a new measure of roughness R_{2} based on the 13-term Henderson filter is given in Dagum (1979). The R_{2} measure is:
$\mathrm{R}_{2}=\sum_{\mathrm{t}}\left(\hat{\mathrm{X}}-\mathrm{H} \dot{X}_{\mathrm{t}}\right)^{2}=\sum_{\mathrm{t}}\left[(\mathrm{I}-\mathrm{H}) \dot{\mathrm{X}}_{\mathrm{t}}\right]^{2}$
where $\mathrm{I}-\mathrm{H}$ is the complement of the Henderson filter.
These two measures, expressed as averages and, in percentages when the composition is multiplicative, have been incorporated in the X-11-ARIMA program used for the direct and the indirect seasonal adjustment of composite series. Generally, both measures give consistent results in favouring one procedure over the other from the viewpoint of smoothness. However, this consistency is not present when the composite series are strongly affected by cyclical variations of short periodicity and, in such cases, R_{2} should be preferred in deciding which of the two procedures gives the smoothest seasonally adjusted data.

Chapter III

THE USER'S MANUAL OF THE X-11-ARIMA COMPUTER PROGRAM

This user's manual is divided into Parts A, B, C and D. Part A describes the control cards and inputs for the seasonal adjustment of single series by the X-11-ARIMA method. Part B describes the control cards and input for the seasonal adjustment of composite series that result from adding. subtracting, multiplying and/or dividing the component series. Part C is the file description for the X-11-ARIMA Program and Part D gives the sample printouts.

Part A. The X-11-ARIMA Seasonal Adjustment Control Cards and Inputs (Mandatory)

There are 11 types of control cards and inputs for the X-11-ARIMA program if no compositing is done. Four of these types are mandatory $(1,8,9$ and 11) for the processing of each series while the other seven types of input cards are optional. The type and order of the 11 control cards and inputs are:

Section

1. The Main Monthly or Quarterly Control Card (Mandatory)
2. The Extra Options Control Card (Optional)
3. The ARIMA Control Card for User Supplied Model (Optional)
4. User Supplied Format Card for the Unadjusted Series (Optional)
5. User Supplied Format Card for the Prior Adjustment Factors (Optional)
6. The Special Output Control Card(s) (Optional)
7. User Supplied Format Card for the Special Output (Optional)
8. The Title Card(s) (Mandatory)
9. The Unadjusted Data Cards (Mandatory)
10. The Prior Adjustment Data Cards (Optional)
11. The End of Run Card (Mandatory).

Part A is divided into 11 sections corresponding to the 11 types of inputs. Sections $1,8,9$ and 11 will enable the user to run the standard versions of the program. If the user is interested in applying different seasonal curves for different months, or different trendcycle curves for preliminary adjustment or other extra options, Section 2 should be read. If the user is interest. ed in running a non-standard ARIMA model, Section 3 should be read. If the input data is in a non-standard format, Section 4 should be read. If a prior monthly or quarterly adjustment is required and the prior input data is in a non-standard format, Section 5 should be read. If the user requires any of the tables in X-II-ARIMA reproduced in machine-readable form, Section 6 should be read and if these tables are required in a non-standard format, Section 7 should be read. If prior monthly or quarterly adjustment is required, Section 10 should be read.

Section 1. The Main Monthly or Quarterly Control Card (Mandatory)

There are two types of main control cards, a monthly version and a quarterly version. The two types are mutually exclusive and the user should refer to Part A.I if interested in doing a monthly adjustment and Part A. 2 if interested in a quarterly adjustment. Both types of cards are divided into a data description section and an option section. Columns 1 and 2 and 11 to 22 contain data description information and all the information for this section must be supplied. Columns 23 to 80 contain information on possible options available in the program. All these columins can be left blank and the user will obtain a standard multiplicative seasonal adjustment without ARIMA extrapolation. The user should read the option section to select, among others, ARIMA extrapolation, strike adjustments, trading-day adjustments, different moving averages or longer printouts. Basically, the two types of main control cards are similar except an " M " is inserted in column 1 for a monthly adjustment and a " Q " is inserted in columin 1 for a quarterly adjustment.

PART A.1. Monthly Seasonal Adjustment Control Card

Data Description Section (Mandatory)

Card Column	Punch	Description
1		CONTROL CARD IDENTIFIER
	M	Monthly seasonal adjustment.
2		INPUT FORMAT CONTROL
	Blank	Year and identifier on the right, data FORTRAN FORMAT (12F6.0,12,A6) in 6-digit ficlds.
	1	User supplied format A FORTRAN FORMAT card describing the data areas only is required after the main X-11-ARIMA control card. See Section 4 of this part.
	2	Year and Identifier on the right of 2nd card (two cards per year), datain 12-digit fields.
	3	STC Standard Format
		Identifier and year on the left (monthly FORTRAN FORMAT (A6,12,12F6.0) series), data in 6 -digit fields.
	4	Tape or disk in CANSIM data base utility format, data in 16-digit fields.
	5	Identifier and year on the left on the first of two cards <two cards per year), data in 12 -digit fields.
3.10	Any	Series Identification Code may be numeric, alphabetic, or mixed; must be identical to series identifier on data cards. The series identifier must be left justified, i.e., if the data records have a six-column identifier, punch it in columns 3 to 8 inclusive
$11 \cdot 12$	$01 \cdot 12$	Number of the month in which series start, i.e., 01 for January, 02 for February, ..., 12 for December. The first entry on the first data card must be made in the field corresponding to the month entered here. Thus if the series begins in March, the first two data fields on the first data card must be blank.
13-14	00-99	Last two digits of the year in which the series starts. This date must be the same as the year punched on the first data card for this series. The first two digits of the year, in this field and all others calling for a year entry, are assumed to be 19 .
$15 \cdot 16$	01.12	Number of the month in which the series ends.
19.18	00-99	Last two digits of the year in which the series ends. This date must be the same as the year punched on the last data card for this series.
19		Number of Decimals on Input Cards. This option can be used to modify input formats $0,2,3$ and 5 in column 2 on the card. This option will have no effect on input formats 1 and 4.
	Blank	No decimals.
	1	1 decimal.
	2	2 decimals.
	3	3 decimals.
	4	4 decimals.
	5	5 decimals.
20		Tape or Disk Input
	Blank	Input Data on cards.
	1	Input Data on tape or disk. Input data on tape or disk and the tape is rewound before reading.
	2	
	3	Input data on tape or disk and concatenated input files can be read.
21		Special Output (Card, Tape, Disk, etc.).
	Blank	No special output.
	1	Special output. If this option is selected, a control card describing the special output must follow this card. See Section 6 of Part A.

Data Description Section (Mandatory) - Concluded
Card Punch Description
Column

22 Number of Decimals on Output Tables. All tables will be printed with the number of decimals entered here.
In the multiplicative version trading-day adjustment factors on Tables C 16 and $\mathrm{C18}$, seasonal factors on Table D10 and combined factors on Table D16 are shown with two decimals in the regular output only. Tables of ratios are shown with one decimal. The allowed values for other tables are the same as in the "number of decimals on input cards" in column 19.

Option Section

Option Code	Card Column	Punclı	Description
A	23		Type of Adjustment
		Blank	Multiplicative adjustment.
		1	Additive adjustment.
		2	Logarithmic adjustment.
B	24		Adjustment of Yearly Totals
		Blank	No adjustment of yearly totals.
		1	Adjust the seasonally adjusted series to make the yearly totals of the seasonally adjusted series and original series the same.
C	25		Type of Program
		Blank	Seasonal adjustment.
		1	Summary measures develops estimates of the trend-cycle, irregular, $\overline{\mathrm{I}} / \overline{\mathrm{C}}, \mathrm{MCD}$ and residual trading-day and seasonal variation from a seasonally adjusted input.
D	26		Type of Printout
		Blank	Standard printout from 19 to 31 tables are printed depending on which other options are selected.
		1	Brief printout. From three to four tables are printed (A1, D10, and D11 and D16).
		2	Analysis printout. From seven to 13 tables are printed (A1, D, L, and F tables).
		3	Short printout. From seven to 13 tables are printed (mainly D and F tables).
		4	Long printout. From 28 to 42 tables are printed.
		5	Full printout. From 45 to 62 tables are printed.
E	27		Charts
		Blank	Standard charts. The original series, 12 monthly seasonal charts and the trend-cycle chart are printed.
		1	No charts.
		2	All charts, 12 monthly seasonal charts and charts of the original series, trend-cycle, irregular, seasonal factors and the Kolmogorov-Smirnov cumulative periodogram.
F	28.29		Lower Sigma Limit for Graduating Extreme Values in Estimating Seasonal and Trend-cycle Components
		Blank	Assign full weight to irregular values within 1.5 o limits.
		01-99	Irregulars will be assigned full weight within the o limit entered here (where 01 means a o limit of 0.1).
G	30-31		Upper Sigma Limit for Graduating Extreme Values
		Blank	Assign zero weight to irregular values outside the 2.5σ limit.
		01-99	Irregulars will be assigned zero weight outside the σ limit entered here (where 01 means a σ limit of 0.1)

Option Section - Continued

Option Code	Card Column	Punch	Description
H	32		Moving Average for Seasonal Factor Curves
			For series shorter than five complete years, the program chooses only the stable seasonality option and the user has no control over it.
		Blank	Select a 3×3 for the first estimate of the seasonals in each interation and a 3×5 in the final estimate.
		1	Select a 3×3 moving average in all iterations.
		2	Select a 3×5 moving average in all iterations.
		3	Select a 3×9 moving average in all iterations.
		4	Select a stable seasonal (average of all values for the month) in all iterations.
		5	This option will select a different moving average for each month. The program chooses the appropriate average and the user has no control over the selection procedure. For the selection of different moving averages for different months the user is referred to Section 2 of Part A.
I	33		Moving Average for Variable Trend-cycle Routine
		Blank	The program will select an appropriate moving average from the three listed.
		1	Select a 9-term Henderson.
		2	Select a 13-term Henderson.
		3	Select a 23 -term Henderson.
J	34		One Year of Forecasts and Backcasts Using ARIMA Extrapolation Routine
			This option generates one year of extrapolated values at the beginning (backcasts) and or at the end (forecasts) of the series and it can be applied only to series of at least five complete years. For series longer than 15 complete years, only the last 15 years will be used to fit the model. The extrapolated values are printed only in Table B1 and not used for the calculations of the summary measures.
		Blank	No extrapolation.
		1	Three ARIMA models are automatically fitted to the unajusted series. The model giving the smallest average extrapolation error for the last three years is chosen to produce one year of extrapolated values at both ends of the series. None of the models is selected and, therefore, no extrapolation is made if: (1) the absolute average crror for the last three years is greater than 12% for the forecasts or 18% for the backcasts; or (2) the χ^{2} probability is smaller than 10%; or (3) there are signs of over-differencing. If the above criteria failed marginally, the user can still apply the model that gives the smallest extrapolation error by resubmitting the series with the option where the user provides his own model.
		2	A model chosen by the user will be fitted to the unadjusted series and the extrapolated values will be used even if the model does not pass the above acceptance criteria. A card containing the model identification information must immediately follow the " M " card or the X -card if present if this option is selected. The data and format for this card are described in Section 3 of Part A.
		3	Similar to (1) but the extreme values of the original series are automatically replaced by their corresponding function values of the ARIMA model chosen. This option should be used when the unadjusted series is strongly affected by outliers to avoid a bad extrapolation and a poor estimation of the seasonal factors. The replacement of the extreme values is not made for $2(p+$ Pxs $+d+D x s)$ observations at the beginning of the series. This means that for a $(0,1,1)$ $(0,1,1)_{12}$ ARIMA monthly model, no replacement of extremes is made for the first 26 months of the series.
		4	Similar to (2) but the extreme values of the original series are automatically replaced by their corresponding function values of the ARIMA model chosen. This option should be used when the unadjusted series is strongly affected by outliers to avoid a bad extrapolation and a poor estimation of the seasonal factors. The replacement of the extreme values is not made for $2(\mathrm{p}+\mathrm{Pxs}+\mathrm{d}+\mathrm{Dxs})$ observations at the beginning of the series. This means that for a ($0,1,1$) $(0,1,1)_{12}$ ARIMA monthly model, no replacement of extremes is made for the first 26 months of the series.
		5	Similar to (1) but the ARIMA model is used to generate only forecasts.
		6	Similar to (2) but the ARIMA model is used to generate only forecasts.
		7	Similar to (3) but the ARIMA model is used to generate only forecasts.
		8	Similar to (4) but the ARIMA model is used to generate only forecast

Option Section - Continued

Option Section - Concluded

Option Code	Card Column	Punch	Description
P	74		Trading-day Regression
			Estimates of the seven daily trading-day weights may be made from the data. These estimates may be computed and used, not used or used only if they explain significant variations on the basis of an F test. Prior weights, if supplied, may or may not be corrected by these estimates. See Appendix A.
		Blank	Exclude the computation of the trading-day regression.
		1	Compute the trading-day regression and print the results but do not adjust the series by the factors computed.
P	74	2	Compute the trading-day regression, print the results and adjust the series by the regression estimates. If prior factors have been supplied, correct them on the basis of these estimates.
		3	Compute the trading-day regression and print the results. In iteration B of the program (see Appendix A), adjust the series by the regression estimates or prior factors corrected by the regression estimates to obtain preliminary weights for the irregular series. In iteration C (see Appendix A), use the regression estimates only if they explain significant variation on the basis of the F test.
Q	75-76		Starting Date for Computing Trading-day Regression
			(This option is meaningful only if the trading-day regression is computed in option P.)
		Blank	Derive estimates of the trading-day weights using the entire series as input to the regression.
		00.99	Derive estimates of the trading-day weights using only the part of the series beginning with January of the year punched here as input to the regression.
R	77-78		Starting Date for Applying Trading-day Regression
			(This option is meaningful oniy if the trading-day regression is applied in option P.) The starting date determined by this option is independent of the date selected in option Q and may be the same, earlier or later.
		Blank	Apply the trading-day regression estimates or prior trading-day weights corrected by regression estimates to the entire series.
		00-99	Apply the trading-day regression estimates only to the part of the series beginning with January of the year punched here. If prior weights are supplied, adjust the part of the series preceding this date by the prior weights only, and adjust the part of the series from this date to the end by the prior weights corrected by the regression estimates.
S	79-80		Sigma Limit for Excluding Extreme Values from Trading-day Regression
			(This option is meaningful only if the trading-day regression is computed in option P.)
			In estimating trading-day variation from the data, irregular values more than a designated number of standard deviations (σ 's) from 1.0 in the multiplicative version (or 0.0 in the additive version) are excluded as extreme. These values are shown in Tables B14 and C14. Usually a limit of 2.5σ is satisfactory. For more details, see Appendix A.
		Blank	Exclude irregular values beyond a a limit of 2.5 .
		01.99	Exclude irregular values beyond a σ limit between 0.1 and 9.9.

PART A.2. Quarterly Seasonal Adjustment Card
Data Description Section (Mandatory)

| Card
 Column\quad Punch | Description |
| :--- | :--- | :--- |

1	Q	CONTROL CARD IDENTIFIER Quarterly seasonal adjustment.	
2		INPUT FORMAT CONTROL	
	Blank	Year and identifier on the right, data in 6-digit fields.	FORTRAN FORMAT (4 (12X,F6.0), 12, A6)
	1	User supplied format.	A FORTRAN FORMAT card describing data areas only is required after the main X-11-ARIMA control card. See Section 4.
	2	Year and identifier on the right, data in 12 -digit fields.	FORTRAN FORMAT (4F12.0, 24X, I2, A6)

Data Description Section (Mandatory) - Concluded

Card Column	Punch	Description
2	3	STC Standard Format
		Identifier and year on the left, data in 6 FORTRAN FORMAT (A6, 12, 4 (12X, F6.0)) digit fields.
	4	Tape or disk in CANSIM data base utility FORTRAN FORMAT format, data in 16 -digit fields. (A8, 12, 10X, 12E16.10, 18X)
	5	Identifier and year on the left, data in FORTRAN FORMAT (A6,I2,4F12.0) 12-digit fields.
3-10	Any	Series Identification Code may be numeric, alphabetic or mixed; must be identical to series identifier on data cards. The series identifier must be left justified, i.e., if the data records have a six-column identifier, punch it in columns 3 to 8 inclusive.
11-12	01-04	Number of the quarter in which series starts, i.e., 01 for first quarter, 02 for second quarter, 03 for third quarter and 04 for fourth quarter. The first entry on the first data card must be made in the field corresponding to the quarter entered here. Thus if the series begins in the third quarter, the first two data values on the first data card must be blank.
13-14	00-99	Last two digits of the year in which the series starts. This date must be the same as the year punched on the first data card for this series. The first two digits of the year, in this field and all others calling for a year entry, are assumed to be 19 .
15-16	01-04	Number of the quarter in which the series ends
17-18	00-99	Last two digits of the year in which the series ends. This date must be the same as the year punched on the last data card for this series.
19		Number of Decimals on Input Cards. This option can be used to modify input formats 0,2,3, and 5 in column 2 on this card. This option will have no effect on input formats 1 and 4.
	Blank	No decimals.
	1	1 decimal.
	2	2 decimals.
	3	3 decimals.
	4	4 decimals.
	5	5 decimals.
20		Tape or Disk Input
	Blank	Input data on cards.
	1	Input data on tape or disk.
	2	Input data on tape or disk and the tape is rewound before reading.
	3	Input data on tape or disk and concatenated input files can be read.
21		Special Output (Card, Tape, Disk, etc.).
	Blank	No special output.
	1	Special output. If this option is selected, a control card describing the special output must follow this card. See Section 6.
22	0.5	Number of decimals on output tables. All tables will be printed with the number of decimals entered here. In the multiplicative version, seasonal factors on Table D10 are shown with two decimals in the regular output only. Tables of ratios are shown with one decimal. The allowed values for other tables are the same as the input decimals option in column 19.

Option Section

Option	Card Column
Code	Punch

A 23	Type of Adjustment Blank 1	Multiplicative adjustment. Additive adjustment.

Option Section - Continued

Option Code	Card Column	Punch	Description
A	23	2	Logarithmic adjustment.
B	24		Adjustment of Yearly Totals
		Blank	No adjustment of yearly totals.
		1	Adjust the seasonally adjusted series to make the yearly totals of the seasonally adjusted and original series the same.
C	25		Type of Program
		Blank	Seasonal adjustment.
		1	Summary measures develops estimates of the trend-cycle, irregular, $\bar{I} / \overline{\mathrm{C}}, \mathrm{QCD}$ and residual seasonal variation from a seasonally adjusted input.
D	26		Type of Printout
		Blank	Standard printout from 19 to $3 I$ tables are printed depending on which other options are selected.
		1	Brief printout. From three to four tables are printed (A1, D10, and D11).
		2	Analysis printout. From seven to 13 tables are printed (A1, D, E and F tables)
		3	Short printout. From seven to 13 tables are printed (mainly D and F tables).
		4	Long printout. From 28 to 42 tables are printed.
		5	Full printout. From 45 to 62 tables are printed.
E	27		Charts
		Blank	Standard charts. The original series, four quarterly seasonal charts and the trend-cycle charts are printed.
		1	No charts.
		2	All charts, four quarterly seasonal charts and the charts of the original series, trend-cycle, irregular, seasonal factors and Kolgomorov-Smirnov cumulative periodogram.
F	28-29		Lower Sigma Limit for Graduating Extreme Values in Estimating Seasonal and Trend-cycle Components
		Blank	Assign full weight to irregular values within the 1.5 o limits.
		01-99	Assign full weight to irregular values with a σ limit between 0.1 and 9.9.
G	30-31		Upper Sigma Limit for Graduating Extreme Values
		Blank	Assign zero weight to irregular values outside the 2.5 olimit.
		01-99	Assign zero weight to irregular values outside a σ limit between 0.1 and 9.9.
H	32		Moving Averages for Seasonal Factor Curves
			For series shorter than five complete years, the program chooses only the stable seasonality option and the user has no control over it.
		Blank	Select a 3×3 for the first estimate of the seasonals in each iteration and a 3×5 in the final estimate.
		1	Select a 3×3 moving average in all iterations.
		2	Select a 3×5 moving average in all iterations.
		3	Select a 3×9 moving average in all iterations.
		4	Select a stable seasonal (average of all values for the quarter) in all iterations.
		5	This option will select a different moving average for each quarter. The program chooses the appropriate average and the user has no control over the selection procedure. For the selection of different moving averages for different quarters, the user is referred to Section 2 of Part A.
I	33		Moving Average for Variable Trend.cycle Routine
		Blank	The program will select an appropriate moving average from the two listed.
		1	Select a 5 -term Henderson.
		2	Select a 7-term Henderson.

Option Section - Continued
Cption
Code

Column \quad| Description |
| :--- |
| One Year of Forecasts and Backcasts Using ARIMA Extrapolation Routine |
| This option generates one year of extrapolated values at the beginning (backcasts) and or the |
| end (forecasts) of the series and it can be applied only to series of at least five complete years. |
| For series longer than 15 complete years, only the last 15 years will be used to fit the model. |
| The extrapolated values are added to the unadjusted series to improve the seasonal adjustment |
| of the most recent years. The extrapolated values are printed only in Table B1 and not used |
| for the calculations of the summary measures. |

Prior Quarterly Adjustment Factors

This option is used to specify whether or not a prior adjustment is required and in what format the prior adjusted series must be read. The prior factors are divided into the original data before the multiplicative or logarithmic seasonal adjustment process. They are subtracted from the original series before the additive adjustment. 6 -digit fields.
User supplied format.

Year and identifier on the right, data in 12 -digit fields.

A FORTRAN FORMAT card describing data areas only is required after the main $\mathrm{X}-11$ control card. See Section 5 .
FORTRAN FORMAT (4F12.0,24X,12,A6)

Option Section - Concluded

\begin{tabular}{|c|c|c|c|}
\hline Option Code \& Card Column \& Punch \& Description \\
\hline \multirow[t]{4}{*}{1} \& \multirow[t]{4}{*}{36} \& 4 \& STC Standard Format \\
\hline \& \& \& ldentifier and year on the left, data in 6- FORTRAN FORMAT (A6, 12, 4 (12X, F6.0))
digit fields. \\
\hline \& \& 5 \& \begin{tabular}{l}
Tape or disk in CANSIM data base utility FORTRAN FORMAT format, data in 16 -digit fields. \\
(A8, 12, 10X, 12E16.10, 18X)
\end{tabular} \\
\hline \& \& 6 \& Identifier and year on the left, data in 12- FORTRAN FORMAT (A6, 12, 4F12.0) digit fields. \\
\hline \multirow[t]{4}{*}{M} \& \multirow[t]{4}{*}{\(37-44\)

73} \& Any \& Prior quarterly adjustment identification code. This code may be numeric, alphabetic, or mixed and must be identical to the prior series identifier on the data cards, see Section 10 of this part for a description of the prior quarterly adjustment factor cards.

\hline \& \& \& X-card Indicator

\hline \& \& X \& An X-card will follow immediately behind the main control card.

\hline \& \& Blank \& No X-card is present in the control deck.

\hline
\end{tabular}

Section 2. Extra Options Control Card (Optional)

This optional control card allows the user to: (i) select a centred 24 -or 8 -term moving a verage for monthly or quarterly data to replace the centred 12 - or 4 -term moving average used for a preliminary estimation of the trend-cycle; (ii) include length-of-month variation in trading-day factors; (iii) select different moving averages for different months or quarters and; (iv) perform direct and indirect seasonal adjustment of composite series when each component enters either subtracting, multi-
plying, dividing or summing with a constant weight different from one. For direct and indirect seasonal adjustment this extra options control card must be used with other control cards as described in Part B of this user's manual.

This extra options control card must always have an " X " punched in column 1 for its identification. If this extra options control card is present, the user must punch an "X" in column 73 of the main control card.

Extra Options Control Card (Optional)

Card Column	Punch	Description
1	X	This is a required entry and identifies this card as the control card for extra options selected by the user.
2	Blank	Monthly - 12 -term centred moving average. (Quarterly - 4-term centred moving average.)
	1	Monthly - 24 -term centred moving average. (Quarterly - 8 -term centred moving average.)
3		Length-of-month Allowance
		(This option is meaningful only if a prior and/or trading-day regression is made, and is available only with the multiplicative adjustment.) The option allows the inclusion of variations arising from the length of the month in the seasonal factors or in the trading-day factors.
	Blank	Do not include an allowance for the length of month in the trading-day factors. Length-of-month variations are included with the seasonal factors. Divisors used in the construction of monthly weights are 31,30 , and 28.25 for 31 and 30 day months and February, respectively.
	1	Include length-of-month variation in the trading-day factors rather than in the seasonal factors. Divisors for all months is 30.4375 , the average length of a mon th.
4	Blank	a - No compositing called for or b - series to be only added if compositing.
	1	Series enters into the composite by being subtracted.
	2	Series enters into the composite by being multiplied.
	3	Series enters into the composite by being divided.

Extra Options Control Card (Optional) - Concluded

Card Column	Punch	Description
5-9	Blank	a - No compositing called for or b - component series are not to be multiplied by a constant before doing compositing called for on column 4 of the card.
	$\begin{aligned} & 00001 \\ & 99999 \end{aligned}$	Component series are to be mutiplied by a constant, .001 to 99.999 before doing compositing called for on column 4 of this card.
10	Blank	The same moving average, specifled in column 32 of the main control card, will be used for every month or quarter.
	1	Select a 3×3 moving average for January or the first quarter.
	2	Select a 3×5 moving average for January of the first quarter.
	3	Select a 3×9 moving average for January or the first quarter.
	4	Select a stable seasonal (average of all values for the month) for January or the first quarter.
11	0-4	Same options as column 10 for February or second quarter.
12	0-4	Same options as column 10 for March or the third quarter.
13	0-4	Same options as column 10 for April or the fourth quarter.
14	0.4	Same options as column 10 for May.
15	0-4	Same options as column 10 for June.
16	0-4	Same options as column 10 for July.
17	0.4	Same options as column 10 for August.
18	0-4	Same options as column 10 for September.
19	0-4	Same options as column 10 for October.
20	0.4	Same options as column 10 for November.
21	0-4	Same options as column 10 for December.

Section 3. The ARIMA Control Card for User Supplied Model (Optional)

This control card allows the user to specify an ARIMA model. The specification procedure is general enough to cover most of the possible models. If this control card is required, the user must punch a " 2 " in column 34 (option J) of the main control card. There are three
models built into the program and if the user wishes, this card is not required to do an ARIMA forecast. A " 1 " can be punched in column 34 (option J) in the main control card and the program will specify the model. The computing time for the ARIMA option can be reduced considerably by specifying good initial values for the parameters. Thus users should specify the model and the initial parameter values if available.

ARIMA Model Identification Card (Optional)

| Option
 Code | Card
 Column | Punch |
| :--- | :--- | :--- |\quad| Description |
| :--- |

ARIMA Model Identification Card (Optional) - Continued

Option
Code
Column

B Punch \quad\begin{tabular}{l}
Description

\quad

3 autoregressive parameters.

4 autoregressive parameters.

C
\end{tabular}

ARIMA Model Identification Card (Optional) - Concluded

Option Code	Card Column	Punch	Description
L	29-32	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 3rd parameter.
	33-36	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 4 th parameter.
	37-40	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 5 th parameter.
	41-44	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 6th parameter.
	45-48	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 7 th parameter.
	49-52	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 8th parameter.
	53-56	$\begin{array}{r} -999 \\ 9999 \end{array}$	Initial value of the 9th parameter.
	57-60	-999	Initial value of the 10th parameter.
M	61-80		Orders for the Parameters
			The order of the parameters can be specified by this option. The orders of the regular autoregressive parameters come first, followed by the regular moving average parameter, the seasonal autoregressive and seasonal moving average parameters, and a zero for the order of the θ_{0} or φ_{o} parameter if applicable. If the user wishes to specify orders, an order must be specified for each parameter in the model.
M	61.80	Blank	The default values are 1 for the 1 st regular autoregressive parameter, 2 for the 2 nd parameter, etc.; followed by a 1 for the 1 st regular moving average parameter, 2 for the 2 nd parameter etc. followed by a $1 \mathbf{X}$ (seasonal period) for the 1 st seasonal autoregressive parameter, a 2 X (seasonal period) for the 2nd seasonal autoregressive parameter, etc.; followed by a 1 X (seasonal period) for the 1 st seasonal moving average parameter, a 2 X (seasonal period) for the 2 nd seasonal moving average parameter, etc.; and followed by a zero for the θ_{0} or ϕ_{0} parameter.
	61-62	01-99	The order for the 1st parameter.
	63.64	01-99	The order for the 2nd parameter.
	65-66	01.99	The order for the 3 rd parameter.
	67-68	01-99	The order for the 4th parameter.
	69.70	01-99	The order for the 5 th parameter.
	71-72	01-99	The order for the 6th parameter.
	73-74	01-99	The order for the 7th parameter.
	75-76	01-99	The order for the 8th parameter.
	77-78	01-99	The order for the 9 th parameter.
	79.80	01-99	The order for the 10th parameter.

Section 4. User Supplied Format Card for the Unadjusted Series (Optional)

The word "format" refers to how the input data are arranged on the cards or records. The format of a data card is a sequence of fields (data points), each of which occupies one or more columns. For the computer program, the format is a set of specifications according to which information is read into the program from punched cards. The specifications tell the program which parts (or columns) of the card to skip, which parts to regard as all one number, and which parts to regard as several numbers in a row. It does this by giving the program a sequence of instructions which indicate the size of a field and the method of handling the field (i.e., skipping it, entering it into the computer as a whole number, entering it into the computer as a number with two decimal digits, etc.).

The X-11-ARIMA program has five built-in formats to input and output data. The user should use these formats whenever feasible because they enable the program to check the identifiers and years for all the input or output data. This feature considerably reduces errors due to misplaced or wrong cards and also allows the user to begin processing of the series in a year other than the first year of the series.

Sometimes the user will find it inconvenient or impossible to have the data prepared in one of the five standard formats. If this is the case, the user must punch a " 1 " in column 2 of the main control card and supply a fortran format statement to the program.

This fortran format statement must be on one, 80 column data card. The format must begin with an open
bracket and end with a closed bracket. Only F-type and E-type formats are permitted on this card. For more information on fortran format statements, the user can read any introductory fortran book.

If a format card is supplied by the user, the identifiers and years cannot be checked by the program. If the input cards have identifiers and years on them, the program must be instructed to skip the columns containing this information.

Section 5. User Supplied Format Cand for the Prior Adjustment Factors (Optional)

The format for the prior adjusted monthly or quarterly series need not be the same as the input original series. As in Section 4, there are five standard formats available and the users should use these whenever possible. If the standard formats are used, the identifier given in columns 37 to 44 of the main control card is checked against the identifier used on the prior adjustment data cards.

If the user wishes to apply the format for the prior adjusted series, a " 2 " should be punched in column 36
(option L) of the main control card. If this option is selected, the identifier in option " M " of the main control card is not checked but the identifier will be printed at the top of Table A2.

Section 6. The Special Output Control Cards (Optional)

Most tables in X-11-ARIMA can be output on cards, tape, or disk. At most nine tables can be reproduced by this option and only those appearing on the main table printout can be reproduced. Thus users should check column 26 of the main control card to see if the table they selected appears in the printout they chose. The user should also check to see if a " 1 " is punched in column 21 of the main control card because this option must be selected if card output is required. The tables are produced without any headings or titles and in the same sequence as they appear in the printout.

If a " 4 " is punched in column 2 of this card, the tables cannot be output on cards. The tables must be output on disk or tape because the record length is 230. If a " 0 ", " 2 ", " 3 " or " 5 " is punched in column 2, the last two columns of each "output series identification code" must be left blank.

Card, Tape, or Disk Output Option Card (Optional)

Card
Column
Punch
Description
1

Section 7. User Supplied Format Card for the Special Output (Optional)

The output format for special output need not be the same as the input or prior series format. Users can choose one of five standard formats or supply one of their own. If a standard format is chosen, an identifier and the year will be printed on each card. Since this will greatly decrease the chance of misplacing or losing a card, the user should try to choose a standard format whenever possible.

If a non-standard format is required, a "l" should be placed in column 2 of the special output control card and a Fortran format statement must be inserted
describing the form of the output. If this option is chosen, identifiers and years cannot be placed on the card output and the number of decimals option becomes inoperative.

Section 8. The Title Card(s) (Mandatory)

This card is identified by a " T " punched in column 1. The name of the series and any other information required by the user is entered on this card. This information will appear at the top of each page of output. Columns 2 to 80 can be left blank with no effect on the program. This card is mandatory for each series being processed.

Title Card(s) (Mandatory)

Card Column	Punch	Description
1	T	This is a required entry and identifies this card as a title card. 2
The Number of Additional Title Cards No additional title cards.		
$1-9$	Any	The total number of title cards. There cannot be more than nine title cards. Series title. Any identification desired may be used.
$1-80$	Any	Additional Title Cards (Optional) Additional title information, printed only on the title page of the printout. Total number of title cards is indicated in column 2 of the main title card.

Section 9. The Unadjusted Data Card (Mandatory)

The data cards are placed immediately after the title card. Each series must contain at least three years and no more than 30 years of data if the ARIMA option is not used. If the ARIMA option is used, the series must have at least five years and no more than 29 years of data (series longer than 15 years have no backcasts).

All data points in a series that is to be multiplicatively or logarithmically adjusted must contain a positive, nonzero numeric entry. If a zero or negative value appears in a series for which multiplicative or logarithmic adjustment was requested, the program will automatically switch to an additive method of adjustment. However, if the prior adjustment option is selected, the switch will not be made, since multiplicative prior adjustment factors are not compatible with an additive adjustment.

The data cards must be in calendar order and must agree with the description of the data in columns 1 to 22 of the main control card. Thus the series must be in the format specified in column 2, must begin and end on the dates given in columns 11 to 18 , and if a standard format is selected, the series identification on each data card must be identical to that given in column 3 to 10 .

If formats $0,2,3$ or 5 are selected in column 2 of the main control eard, the user must leave columns 9 and 10
in the identification code blank and the columns 3 to 8 must agree exactly with the identification codes on each data card.

The series may begin and end in any month (or quarter) of the year. The series may not start earlier than 1900 nor end later than 1999. If a series starts in a month (or quarter) other than the first, blank fields must appear on the data cards for the missing months (or quarters). These fields are ignored by the program but must be inserted. If a user-supplied format is used, this is no longer true since the user has complete control over the specification of which columns to skip or read.

Leading zeros in the data need not appear, nor the decimal points, because their position can be controlled by the "number of decimals" option in column 19 of the main control card. If no decimals are specified in column 19 but decimals appear in the input data, the number of decimals option is automatically overridden and the number of decimals on the card is read. The number of decimals on the printout (column 22 of the main control card) need not be the same as the number of decimals for the input data.

The input data need not be on cards immediately following the title cards. The data can be placed on a tape or disk completely separated from the other nine
types of input cards. To select this option a " 1 ", " 2 ", or " 3 " must be punched in column 20 of the main control card.

If this option is selected in conjunction with a standard format option (in column 2 of the main control card), an automated search mechanism is activated in the program. If a " 1 " is punched, the program will sequentially search through the disk or tape for data with the right identifier and starting year. If a " 2 " is punched, the disk or tape is rewound before searching for the series. If a " 3 " is punched, an end-of-file on unit 13 causes the program to increment the Fortran sequence number (i.e., FT13F001 is changed to FT13F002). The " 3 " punch is used for concatenated files.

Section 10. The Prior Adjustment Data Cards (Optional)

These cards are placed immediately after the data cards. The factors must begin and end in the same months (or quarters) as the input data cards. The prior adjustment cards must be in calendar order and, as in the input data cards, if the series does not begin in the first month (or quarter) the unused fields at the beginning of the first card must be left blank.

The format of the prior adjustment need not be the same as the format for the input data. If a standard format is selected, the series identification code on each prior adjustment card must be identical to the identifier in columns 37 to 44 (option M) of the main control card. If a $1,3,4$ or 6 is punched in column 36 (option L) of the main control card, columns 43 and 44 must be left blank and columns 37 to 42 must agree exactly with the identification codes on each prior adjustment card.

If an additive adjustment is requested, the number of decimals on each prior adjustment card is assumed to be equal to the number of decimals requested for the input data in column 19 of the main control card. If the adjustment is additive, the prior adjustment series is subtracted from the original series.

If a multiplicative or logarithmic adjustment is requested, the number of decimals on each prior adjustment is assumed to be 3 (unless a user's supplied format is selected, then the user chooses the number of decimals). The prior factors must vary about 100 and no values can be negative (for the user's convenience, a blank value is assumed to be a value of 100). If the adjustment is multiplicative or logarithmic, the factors are divided into the original series.

Section 11. The End of Run Card (Mandatory)

Following the last data card of the last series to be run (or the last prior adjustment card if present) there should be a card with a " Z " punched in column 1 and the other 79 columns left blank. This card signifies to
the program that the run is completed. Only one end card should be present regardless of the number of series being processed.

Part B. The Control Cards for the Seasonal Adjustment of Composite Series

The X-11-ARIMA seasonal adjustment program allows the user to seasonally adjust directly and indirectly composite series that result from the addition, subtraction, multiplication or division of any number of components, with equal or different constant weights.

When one of the component series of the composite enters either subtracting, multiplying, dividing or adding but with a weight different from one, then the Extra Options Control Card (the "X" card) must he used. The entries on this card are explained in Part A, Section 2.

For direct seasonal adjustment, the program first composes the unadjusted components and then seasonally adjusts the total. For indirect seasonal adjustment, the program first seasonally adjusts each of the components and then produces the seasonally adjusted composite series by implication. The final output of this program produces two statistics that measure the degree of roughness or lack of smoothing of the direct versus the indirect seasonally adjusted composed.

The indirect seasonal adjustment can be made even when some of the components enter in the unadjusted form. In such cases, a summary measures run must be requested for those components that will not be seasonally adjusted. The user should punch a " 1 " in column " 25 " of the main control card of the particular component. To operate the composite series seasonal adjustment program, two control cards with a "C" punched in column " 1 " are required. The first " C " card comes before the control cards of the series to be composed. This card must have a " C " in column 1 and the remaining 79 columns must be blank. This card initializes a composite run and tells the program that all the series after this control card and before the next "C" card are to be included in the composite.

After the first "C" card follow the control cards for seasonally adjusting each of the components in the composite. All components to be seasonally adjusted must begin in the same month and year, and end in the same month and year. All the components in the aggregate must be monthly or all must be quarterly. There can be no mixing of monthly and quarterly components. There are no restrictions on the other options. Thus the user could do some of the components additively and some multiplicatively. Components can be run with or without ARIMA.

The control cards for the individual components must conform to the specifications and order of Part A of this manual. Note that the main control card and title card
must appear for each component, and other control cards may be required depending on the options selected on the main control cards for the components.

After the data cards for the components, another card with a "C" in column 1 must appear. This card tells the program that the aggregate rum is complete. Reading of this card will produce a direct and indirect seasonal adjustment of the composite of the preceding components. This control card must have a " C " in column 1 and column 2 must be blank. Columns 3 to 80 will contain information for the seasonal adjustment of the composite series. The information in these columns is the same as in the main monthly or quarterly control card of Part A-note that columns 3 to 18 are mandatory and failure to fill in these columns will cause the run to abort. Also the user may specify any options desired in columns 21 to 80 .

After the second "C" control card, a title card is required and any other control card required by the selection of options in columns 21, 34 and 36 of the second " C " card. The order of these cards must conform to the order given in Part A. In a similar manner, several composite runs can be processed together or after a composite run series can be seasonally adjusted individually.

Part C. File Description For the X-11-ARIMA Program

There are five output files and one or two input files depending on how the user prepares his input program control cards and data. All these files are assigned to different logical units, described below:

1. Unit 3 is for the print output file on the printer. It is a log of computer run and error messages. If you do not require this printout, change this card to a dummy card, e.g. (for IBM 360/370 OS) //FT03F001 DD DUMMY
2. Unit 9 is for the output file which contains the main printout of the X-11-ARIMA tables and charts.
3. Unit $1 I$ is for the output file which contains the special table output from the program. This unit can be assigned to a card punch, disk, tape or any other output device to suit your request. This card is optional. It can be absent or dummied if no special output is requested.
4. Unit 15 is for the output file which has summary quality control statistics for all of the series rum.
5. Unit 16 is for the output file which contains copies of the F2 and F3 tables for the series run. It also can be a dummy card.
6. Unit 1 is for the input file. This input unit is usually assigned to a card reader, but can be assigned to any
other input device. The program control cards and data may be in one stream to this unit or separated into two different units. In the latter case, the program control cards will go into unit I and the data will be assigned to unit 13. In this case, an additional JCL card, e.g. (for the IBM 360/370 OS)
//FT13F001 DD DSN=DATA.SET.NAME,UNIT=. should be added.

A corresponding JCL example to run this job for IBM $360 / 370$ OS is given below.

Suppose that the user has catalogued the load module in a library named USER.LIB (XIIARIMA) then the JCL to run this program is:
a) // job card
b) // EXEC PGM=X11 ARIMA, REGION=260K
c) // STEPLIB DD DSN=USER.LIB.DISP=SHR

1) //FT03F00I DD SYSOUT=A,DCB=RECFM=UA
2) $/ / \mathrm{FT} 09 \mathrm{~F} 001 \mathrm{DD}$ SYSOUT $=\mathrm{A}, \mathrm{DCB}=\mathrm{RECFM}=\mathrm{UA}$
3) //FT1IF001 DD SYSOUT=B,DCB=(RECFM=F, // BLKSIZE=80)
4) //FT15F001 DD SYSOUT=A,DCB=RECFM=UA
5) //FT16F001 DD SYSOUT=A,DCB=RECFM=UA
6) //FTOIFOOI DD *
control cards and data
d) // job end card

In this exaniple 1) to 6) are the corresponding JCL cards for the files described previously, Lines a), b), c) and d) will depend on the computer system.

Part D. Sample Printouts

For illustration purposes, sample printouts of seasonal adjustment of single series and of composite series have been incorporated into this manual. The single series processed by X-I1-ARIMA are: (i) "Finance, Checks Cashed in Canadian Clearing Centres", and (ii) "Freight and Shipping Payments". The first series is monthly and a full printout of the selected options is shown. The second series is quarterly and an analysis printout of the selected options is shown.

The composite series directly and indirectly seasonally adjusted is "Unemployed Both Sexes, 16 to 19" that results from the addition of "Unemployed Males 16 to 19" and "Unemployed Females 16 to 19". Brief printouts are shown for the direct and the indirect seasonally adjusted totals.

Finance, Checks Cashed in Clearing
Centres,
by Acc. Personal Checks -
Monthly Full Printout

STATISTICS CAPIADA

X－11 APIMA MONTHLY SEASCNAL ADJUSTMENT METHOO

THIS METHOD HODIFIES THE $X-12$ VARIANT OF CEISSUS METMOD II
BY J．SHTSKIM，A．H．YOLNG AND J．C．MUSGRAVE DF FEEPUAPY， 1067
THE MODIFICATIONS MADE ARE EASED C：THE METMODOLOGICAL RESEAPCH DEVELCFED BY ESTELA BEE OAGUH，CHIEF OF THE SEASC：MAL ADJUSTHENT AND TIME SERIES STAFF DF STATISTICS CANADA．SEOTEMPER， 1979.

SERIES TITLE－FIHANCE，CHECKS CASHED IN CLEARING CENTERS－BY ACC．PERSCNAL CHECKS

SERIES NO．FINALM

```
-PEPICO COVEPEQ- 15T MCNTH,1968 TO 12TH MONTH,1977
-TYPE OF PLNN - IMLTIFLICATIVE SERSNNAL ADJUSTREHT
- FULL FRIQTOJT. ALL CH:OTS.
-SIGMA LIMITS FCF GOADUATIFG EXVREF!E VALUES ARE 2.5 APD 2.5
-C:GE YEAR OF FCRECASTS AHTD BACKCASTS FFC:I ARIRA MODEL SELECTED BY THE FROGRAM.
-FPIOF TPAOI*:G OAY ADJUSTMENT WITHCUT LEHGTHOF , MONTH ADJUSTMENT.
-TRADING DAY REGRESSION COSFUTED STARTING 1968 EXCLLJIPK IRREGULAR VALUES OUTSIDE 2.S-SIGMA LIMITS.
-TRADING DAY PEGPESSICA, ESTIPIATES APPLIED STARTIRG 1968 IF SIEPIFICAITT
```


A 1．ORIGIHAL SERIES

YE：O	SAEY	FEB	MAR	APR	May	JUT	JUL	AUG	SEP	OCT	NOV	OEC	TOTAL
1958	456.	447.	477.	530.	619.	555.	607.	576.	630.	666.	744.	782.	7089.
1959	697.	734.	734.	789.	901.	834.	854.	777.	838.	881.	911.	920.	9928.
1970	831.	792.	871.	911.	861.	972.	1016.	923.	1043.	1005.	1002．	1005．	11555.
1971	052.	968.	1115.	1044.	1137.	1195.	1164.	1108.	1180.	1135.	1301.	1290.	13500.
1972	1279.	1287.	1430.	1437.	1654.	1625.	1582．	1674.	1572．	1763.	2187	2625.	190\％6．
1073	1735.	1576.	1753．	1767.	2223.	218%.	2072.	2116.	1980.	2238.	2259.	2890.	23998.
1974	2204.	2107.	2085	2714.	3029．	2601.	2746	2626.	2645.	27ぐ。	2927.	2771.	31465.
1975	2695.	2597．	2502.	2931．	2931.	3120.	3108.	2874.	3162.	\＄160．	3017.	32 e8．	35495.
1976	3077.	3100.	3360.	3262.	3559.	3777.	3574.	3479.	3782.	3720.	3891.	3571.	\＄2072．
1977	3315.	3414 ．	3797.	31.49.	4253.	4342．	3 300．	3991.	4144.	3809.	4444.	4128.	46005.
AVGE	1730.	1702.	1841.	1883.	2127.	2135．	2061.	2018.	2098.	2110.	2277.	2166.	
	TABLE	OTAL－	24140		AM－	12.	STD．	VIATID	11				

FIMRNEE,CHECKS CASYEO IN CLEAQING CENTERS-BY ACC. PERSONAL CHECKS

1978	99.6	99.1	102.2	96.5	103.3	100.1	97.5	102.7	97.9	99.6	102.5	96.4

AUTCREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) EXTRAPOLATION FROGRAM
AS. ARIMA EXTPAFOLATION MODEL (FORECAST)

			THIS PMOEQAM WAS DEVELCPED FOLLOHING THE FROCEDURES OUTLIHED IN 'TIHE SERIES ANALISIS' BY G. E. P. BOX ANS G. M. JENRINS. AVERAGE PEFCENTAEE STAAIOARD ERRCQ IM FORECASTS								
MODEL	TRAM.	adoitive CCNSTANT	LAST 3 YEARS	LAST YEAR	LAST-1 YEAR	LAST-2 YEAR	$\begin{aligned} & \text { CHI-SQ. } \\ & \text { FRCB. } \end{aligned}$	R-SRUARED Value		ESTIMATED	PARAMETERS
(0,1,1)(0,1,1)	Leg	0.0	6.32	5.02	2.92	11.02	76.06\%	0.9904	0.37982000	0.6368 E 00	
$(0,2,2)(0,1,1)$	LOE	0.0	5.50	5.02	2.51	8.98	78.86\%	0.9860	0.1106E 01-0	$0.3112 E 000$	$0.5765 E 00$

THE MODEL CHOSEN IS $(0,2,2)(0,1,1) 0 \mathrm{WITH}$ TRANSFORMATION - LOG

AUTOREGRESSIVE INTEGRATED HOVING AVERAGE (ARIMA) EXTRAFOLATION PROGRAM
A6. ARIMA EXTRAFDLATION MODEL (BACKCAST)

> THIS PROGRAM WAS DEVELOPED FOLLOWIHG THE PROCEDURES DUTLINED IN
> 'YIHE SERIES AHILYSIS' BY G.E. P. BOX AHO G. M. JENKINS.
> AVERACE PERCENTAGE STAHIDARD
> ERROR IN EACKEASTS

THE MODEL CHOSEN IS $(0,2,2)(0,1,1) 0 \mathrm{MITH}$ TRANSFORMATION - LOG

FINANCE，CHECKS CASHED IN CLEARINE CENTERS－BY ACC．PERSONAL CHECKS

B 1．PRIOR ADJUSTED ORIGINAL SERIES

YEAR	JAN	FEB	MAR	APR	May	JUN	JUL	mus	SEP	cct	NOV	OEC	TOTAL
1967	255.	257.	287.	302.	355.	353.	357.	357.	382.	401.	458.	454.	4220.
1968	442.	434.	495.	524.	605.	575.	588.	586.	634.	649.	760.	785.	7077.
1969	682.	741.	753.	770.	917.	890.	832.	808.	829.	862.	944.	899.	9922.
1970	897.	799.	875.	888.	997.	961.	994.	946.	1018.	1023.	1009.	1059.	11556.
1971	998.	977.	1030.	1043.	1166.	1266.	1185.	1112.	1151.	1178.	1286.	1262.	13603.
1972	1311.	1251.	1399.	1488.	1601.	1625.	1602.	1630.	1606.	1770.	2133.	1625.	19101.
1973	1680.	1590.	1785.	1779.	2165.	2237.	2080.	2070.	2051.	2167.	2e58．	2143.	24003.
1974	2146.	2126.	2370.	2683－	2963.	2787.	2659.	2673.	2662.	2649.	2991．	278\％．	31491.
1975	2636.	2620.	2658.	2860.	2984.	3160.	3026.	3001.	3126.	3091.	3125.	3104.	35451.
1976	3133.	3069.	3253.	3260.	3649.	3635.	3639.	3513.	3688.	3858.	3847.	3591.	42205.
1977	3399.	3444.	3697.	3524.	4270.	4234.	4054.	3864.	4141.	3905.	4336.	4203.	47073.
AVGE	1598.	1573.	1695.	1738.	1970.	1969.	1910.	1869.	1935.	1959.	2112.	2004.	
	table	OTAL－	24568		MEAN－	1861.	5 50．	EviATION－	1190.				

TEST FOR THE PRESENCE OF SEASONALITY ASSUMIPIG STABILITY

BETHEEN		StM Of	OGRS ．OF	MEAN	$\begin{aligned} & \text { F-VALUE } \\ & 15 . 乞 53 m \text { * } \end{aligned}$
		52゙リガロES	FREECOM	STLROE	
	MORTHS	2679.5561	11	243.59964	
	RESICUAL	1533.1651	96	15．97068	
	total	4212.7812	107		

FINAHCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC. PERSONAL CHECKS

FINAHCE, CHECKS CASHED IN CLEARIN'G CEHITERS-BY ACC. PERSONAL CHECKS

B 7
Tretid cycle - henderson curve
13-TERM MOVIAG averase selected. I/C ratio is 1.16

YEAR	JAN	FES	MAR	AFR	may	Sut	JUL	AUG	SEP	OCT	Nov	DEC	TOTAL
1958	463.	484.	505.	526.	546.	566.	588.	612.	639.	670.	701.	729.	7028.
1\%99	754.	776.	795.	811.	823.	833.	839.	844.	851.	860.	873.	885.	9944.
1970	805.	900.	905.	912.	928.		966.	936.	1003.	1018.	1032.	1045.	11532.
1971	1057.	1068.	1080.	1092.	1104.	1116.	1127.	1140.	1159.	1187.	1228.	1280.	13638.
1972	1338.	1393.	1440.	1479.	1507.	1540.	1585.	1642.	1701.	1754.	2788.	1801.	18966.
2973	1803.	1811.	1838.	1886.	1949.	2009.	2052.	2081.	2101.	2119.	2151.	2212.	24011.
1974	2300.	2403.	2505.	2588.	2640.	2659.	2662.	2665.	2684.	2720.	2765.	2801.	31392.
1975	2323.	2632.	2835.	2844.	2869.	2910.	2954.	2998.	3043.	3090.	3143.	3201.	35539.
1976	3250.	3313.	3357.	3389.	3419.	3463.	$35 \div 8$.	3505.	3649.	3684.	3697.	3698.	42054.
1977	3701.	3721.	3759.	3814.	3967.	3903.	3728.	3054.	390%.	4047.	4121.	4212.	47018.
AVEE	1839.	1870.	1902.	1934.	1965.	1994.	2023.	2052.	2082.	2115.	2150.	2186.	
	TABLE	OTAL-	24112		AN-	009.	STO.	EVIATIO	11				

B 8. UMODIFIED SI RATIOS

FINANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC. PERSONAL CHECKS

B10. SEASONAL FACTORS

YEAR	JAN	FEB	mar	AFP	may	Jun	JUL	AUG	SEP	Oct	Nov	DEC
1988	95.1	90.4	97.2	97.7	110.1	103.2	101.1	96.2	99.3	99.4	108.2	101.9
1969	95.4	90.3	97.4	97.7	109.3	103.3	101.5	96.6	99.5	99.6	108.0	101.3
1970	95.5	90.1	97.4	97.5	108.8	103.8	102.0	97.1	99.4	100.1	107.5	100.5
1971	95.5	89.8	97.3	97.8	108.4	104.3	102.1	97.9	99.4	100.4	107.2	99.7
1972	05.0	89.8	97.0	98.1	108.3	105.1	102.2	98.7	99.4	100.4	106.8	99.1
1973	94.8	89.9	96.6	98.5	108.2	105.7	102.0	99.2	99.7	100.2	106.5	98.6
1974	94.3	90.4	96.2	98.5	108.5	106.3	101.9	99.3	100.1	100.0	106.0	98.4
1975	94.0	90.9	96.0	98.1	103.6	106.7	102.0	99.1	100.8	99.6	105.7	¢8.5
1976	93.5	91.5	96.1	97.6	108.6	107.0	102.3	98.7	101.5	$\bigcirc 9.3$	105.2	98.7
1977	93.5	91.9	96.2	97.2	109.3	107.2	102.5	98.3	101.9	00.2	104.9	08.8
AVGE	94.7	90.5	96.7	97.9	108.7	105.3	102.0	98.1	100.1	99.8	106.6	99.6
	TASL	L-	11998		MEAN-	00.0	ST0.	viati				

$B 11$
SEASENALLY ADJUSTED SERIES

YEAR	JAN	FEB	MAD	$A P R$	MAY	JUN	JUL	AUG	SEP	CCT	Nov	DEC
1968	464.	480.	507.	536.	550.	557.	582.	609.	639.	653.	$70{ }^{\circ}$	770.
1967	715.	820.	773.	798.	830.	861.	81°.	835.	833.	865.	874.	887.
1970	939.	887.	897.	711.	616.	925.	075.	974.	1024.	1025.	1002.	1054.
1971	1045.	1088.	1109.	1067	1075.	1118.	1160.	1136.	1159.	1174.	1200.	1265.
1972	1380.	1393.	1441.	1510.	1479.	1546.	1567.	1652.	1616.	1763.	1998.	1701.
1973	1772.	1768.	1948.	1896.	2001.	2117.	2039.	2085.	2058.	2163.	2120.	2173.
1974	2275.	2352.	2464.	27×5.	2731.	2622.	2609.	2692.	2660.	2649.	2821.	çべ 6 ,
1975	2805.	2894.	2768.	2914.	2747.	2944.	2968.	3029.	3103.	3102.	2957.	3230.
1976	3349.	3356.	3387.	3339.	3361.	3443.	3557.	3561.	3635.	3883.	3657.	3638.
2977	3636.	3750.	3842.	3627.	3943.	3950.	3953.	3930.	4065.	3935.	4134.	4255.
AVGE	1839.	1878.	1904.	1923.	6964.	2003.	2083.	2050.	2079.	2121.	2149.	2180.

TABLE TOTAL- 241169. MEAN- 2010. STD. DEVIATIO\& 1132.
$B 13$.
IRREGULAR SERIES

YEAP	SAPH	FE8	MAP	APR	Mar	JUS	JUL	AUG	SEP	OCT	HOV	DEC
1968	100.2	99.2	100.8	102.0	200.7	98.4	98.9	99.6	99.9	97.5	100.2	205.7
1039	94.8	105.7	97.3	97.2	101.9	103.4	97.6	98.7	97.9	100.6	100.2	100.1
1970	105.0	98.5	99.2	09.8	09.0	98.0	100.7	98.8	102.1	100.5	79.1	100.7
1971	98.8	101.8	102.7	97.7	97.4	100.1	102.9	99.7	99.9	98.7	97.8	98.8
1972	103.1	100.0	100.1	102.6	98.1	100.4	98.9	100.6	05.0	100.5	111.7	94.5
1973	03.2	97.6	100.6	05.8	102.7	105.4	99.4	100.2	98.0	105.2	98.6	98.2
1974	98.9	97.9	99.4	105.3	103.5	98.6	98.0	101.0	99.1	97.4	102.0	100.9
1575	99.4	101.8	97.6	102.5	95.7	101.2	100.5	101.0	102.0	100.4	94.1	100.9
1976	102.7	101.3	100.9	98.5	95.3	99.4	100.8	99.0	99.6	105.4	98.9	98.4
1977	99.2	100.8	102.2	95.1	102.0	101.2	100.7	99.4	101.8	97.2	100.3	101.0
S.0.	2.8	2.3	1.7	3.2	2.4	2.3	1.5	0.8	2.1	2.4	4.3	2.7
	Tamer	OTAL =	12000		EAN-	00.0	ST0.	EVIATIO	[1)			

214．EXTFE：：IRREGULAR VALUES EXCLLDED FRCM TRADING DAY REERESSION （CUTSIDE 2．5－5IEMA LIMIT）

TEAR	JAN	FEB	MAR	AFR	MAY	JuN	JUL	AUG	SEP	OCT	MOV	DEC
1958	\＃\＃\＃＊＊＊＊＊＊＊＊	99.2	＊＊＊＊＊＊＊＊＊				＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊			＊＊4＊＊＊＊＊
1259	＊＊＊＊＊＊＊＊＊＊		＊	＊＊＊＊＊＊＊＊		＊＊＊＊＊＊＊＊					\＃\＃＊＊＊＊＊＊	
1370		＊＊＊＊＊＊＊＊							＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊其奥前＊＊
1971				\＃＊＊＊＊＊＊＊					＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊		＊＊＊＊＊＊＊＊
17.2		100.0	＊＊＊＊以＊＊＊				＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊世いも＊	111.7	
1073	＊＊＊＊＊＊＊＊＊＊＊		＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	105.4	＊＊＊＊＊＊＊＊	＊＊＊＊＊M＊＊	＊\＃＊＊＊＊＊＊			リ＊＊＊＊＊＊＊
2974		＊＊＊＊＊＊莫	＊＊＊＊＊＊＊	＊＊＊＊＊＊世＊			＊＊＊＊＊＊＊		＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	
：975	＊＊＊＊＊＊＊＊＊＊	－\＃＊＊＊＊＊	W＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊			＊＊＊＊＊＊＊＊	＊＊＊女＊＊＊	－¢¢＊＊＊＊			
1976	＊＊＊＊＊＊＊＊＊＊	101.3			＊＊＊＊＊＊＊＊＊＊	N＊＊＊＊＊＊＊				105.4	＊＊＊世＊＊＊＊	＊＊＊＊＊＊＊＊
2977	\＃＊＊＊＊＊＊＊＊＊									＊＊		

E：5．FDELIM TPADIHG DAY PEGRESSIOH

	COMEIHEC	FRIOR	REGPESSION	ST．EPROR	T	T
	HEIGHT	HEIGHT	COEFF．	（ CCRMg． WT ．）	（1）	（PRICR WT．）
reisdar	1．28s	1.272	0．014	0.172	1.663	0．OSO
TLESOAY	1.313	1.071	0.241	0.176	1.776	1.372
h：こulessay	1.426	1.674	－0．249	0.173	2．456＊	－1．435
T：Mmsjar	1.321	1.090	0.230	0.160	1.756	1.284
FPTOAY	0.951	0.92 \％	0.022	0.181	－0．270	0.122
SATLPDAY	0.276	0.431	－0．155	0.176	－4．109世木＊	－0．879
SWMDAY	0.42 A	0.532	－0．10．	0.174	－3．281＊＊	－0．593

THE STADS INOICATE TME CCHSINED WT，IS SIGMIFICSNTLY DIFFERENT FCOM 1 CR THE FPIOR HT．THE SICNIFICAA：CE LEVELS ARE
3 STAOS（0． 1 PEPCENT）， 2 STARS（1 PERCENT）， $15 T A Q$（ 5 PERCENT） AOL ：S SHRS IVDICATES HOT SIGIIFICANT AT THE 5 PERCENT LEVEL

SCUPCE OF	SUTY OF	EGRS．OF	MEAN	
VAPIANCE	SqUAPES	FREEDOM	STUARE	F
二a゙scessicai	3.143	6	0.524	1.156
Es：\％	43.943	108	0.453	
TCitit	52.086	114		

PESIDUAL TRADIFG OAY VAPIATION NOT PRESEMT AT THE I PERCENT LEVEL
STAMARH E：HOES CF TRADING OAY ADJUSTMENT FACTORS DERIVED FROM REGRESSION COEFFICIENTS

31－CAY TONTHS－	0.49
30－DAY MJITHS－	0.53
29－DAY MOTTHS．	0.59

E16．TFADING DAY ADJUSTMENT FACTORS DERIVED FROM REGRESSION COEFFICIENTS

YEAR	$J A N$	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVGE
1968	100.0	100.8	99.2	100.9	100.0	99.1	100.0	100.3	99.7	100.7	99.6	100.5	100.1
1959	100.0	100.0	99.2	100.0	100.3	99.7	100.7	99.2	100.9	100.0	99.1	100.0	99.9
1970	100.3	100.0	100.5	99.9	99.2	100.9	100.0	99.2	100.0	100.3	99.7	100.7	100.1
1.771	99.2	100.0	100.0	100.8	99.2	100.0	100.3	100.5	99.9	99.2	100.9	100.0	100.0
1972	99.2	100.8	100.0	99.1	100.0	100.8	99.2	100.7	99.6	100.5	99.9	99.2	99.9
：973	100.0	100.0	100.3	99.7	100.7	99.6	100.5	100.0	99.1	100.0	100.8	99.2	100.0
：5．4	100.7	100.0	99.2	100.9	100.0	99.1	100．0	100.3	99.7	100.7	99,6	100.5	200.1
1275	100.0	100．0	99.2	100.0	100.3	99.7	100.7	99.2	100.9	100.0	99.1	100.0	\％9．9
1976	100.3	99.6	100.0	100.8	99.2	100.0	100.3	100.5	99.9	99.2	100.9	100.0	100.1
1977	99.2	100.0	100.7	99.6	100.5	99.9	99.2	100.0	100.8	99.2	100.0	100.3	100.0
AVGE	99.9	100.1	99.8	100.2	100.0	99.9	100.1	100.0	100.0	100.0	100.0	100.1	
	TABLE	OTAL－	12000		EAN－	200.0	570	EVIATIO					

FIHAMCE,CHECKS CASHED IN CLEARIRIS CEHTERS-BY ACC.PERSCHAL CHECKS

B27. FRELIM WEICYTS FCR IFFEGULAO CCMFOMENT
GRAOUATIO: RARIGE FMO:1 1.5 TO 2.5 SIGMA

YEAR	SAlt	FEB	MAR	AFR	MAY	JUR	JUL	AUS	SEP	OCT	NOV	OEC	50.
1968	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	57.0	100.0	0.0	1.7
1959	0.0	0.0	100.0	87.0	100.0	30.5	66.3	100.0	75.4	100.0	100.0	100.0	1.7
1970	10.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.7
1971	100.0	100.0	100.0	200.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	2.0
1072	73.2	200.0	100.0	91.8	200.0	100.0	100.0	100.0	46.2	100.0	0.0	34.5	2.2
1973	100.0	100.0	100.0	81.0	100.0	0.5	100.0	100.0	100.0	100.0	100.0	100.0	2.2
1974	100.0	109.0	200.0	59.9	99.1	100.0	100.0	100.0	100.0	100.0	100.0	100.0	2.3
1975	100.0	100.0	100.0	100.0	34.5	100.0	100.0	100.0	100.0	100.0	0.2	200.0	2.3
1976	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	2.1
2977	100.0	100.0	100.0	4.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.8

B18. TRADINS-DAY ADJUSTMENT FACTOAS FROY CDASINEO DAILY WEIGHTS

YEAR	JAN	FEB	MAR	$A F P$	MAY	HM	JUL	AUG	SEP	OCT	NOV	DEC	AVGE
1968	103.3	103.8	95.7	102.0	102.2	95.7	103.3	98.5	99.0	103.4	97.4	100.1	100.4
1969	102.2	99.1	\%6.7	202.5	95.5	99.0	103.4	95.7	102.0	102.2	95.7	103.3	100.0
1970	98.5	99.1	100.1	102.5	95.7	102.0	102.2	96.7	102.5	98.5	99.0	203.4	100.0
1971	95.7	99.1	103.3	100.9	96,7	202.5	98.5	200.1	102.5	95.7	202.0	102.2	99.9
1972	96.7	103.8	102.2	95.7	103.3	100.9	96.7	103.4	97.4	100.1	102.5	95.7	99.9
1973	103.3	99.1	98.5	99.0	103.4	97.4	100.1	102.2	95.7	103.3	100.9	96.7	100.0
1974	103.4	99.2	95.7	102.0	102.2	95.7	103.3	98.5	99.0	105.4	97.4	100.1	200.0
1975	102.2	99.1	96.7	102.5	98.5	99.0	103.4	95.7	102.0	102.2	95.7	103.3	100.0
1976	98.5	100.6	103.3	100.9	96.7	102.5	98.5	100.1	102.5	95.7	102.0	102.2	100.3
1977	98.7	99.1	103.4	97.4	100.1	202.5	95.7	103.3	100.9	96.7	102.5	98.5	99.7
AVGE	100.1	100.2	99.6	100.5	99.8	99.7	100.5	99.4	100.4	100.1	99.5	100.6	
	TABLE	OTAL -	12003		MEAN-	00.0	STD.	EVIATIO					

B19. AOJUSTEO* ORIGIHAL SERIES
*ADJUSTED BY... TRADIHG DAY ADJUSTHENT FACTORS DERIVED FROM REGRESSION COEFFICIENTS

YEAR	$J 2 N$	FES	HAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	TOTAL
1958	441.	432.	499.	520.	605.	580.	588.	585.	636.	644.	764.	781.	7073.
1969	882.	741.	759.	770.	914.	893.	826.	812.	522.	862.	952.	898.	9930.
1970	894.	799.	870.	889.	1005.	953.	994.	954.	1018.	1020.	1103.	1052.	11550.
1971	1006.	977.	1079.	1035.	1175.	1166.	1181.	1207.	1151.	1188.	1276.	1262.	13602.
2972	1322.	1240.	1399.	1502.	1601.	1612.	1615.	1619.	1614.	1762.	2134.	1699.	19116.
14i3	1680.	1590.	1779.	1784.	2150.	2247.	2070.	2089.	2069.	2166.	2239.	2160.	24004.
1976	2131.	2126.	2389.	2661.	2962.	2812.	2658.	2665.	2670.	2630.	3004.	2769.	31478.
1975	2636.	2620.	2679.	2861.	2974.	3150.	3005.	3025.	3100.	3090.	3153.	3183.	35478.
1976	3123.	3081.	3253.	3233.	3679.	3606.	3627.	3496.	3690.	3889.	3815.	3590.	42161.
1977	3427.	3444.	3672.	3540.	4249	4237.	4086.	3863.	4107.	3937.	4337.	4189.	47089.
AVGE	1734.	1705.	1838.	1879.	2132.	2134.	2065.	2020.	2088.	2119.	2278.	2158.	
	TABLE	OTAL-	24148		MEAN-	012.	STO	EVIATIO	214				

FinAnce，Checks cashed in clearing centers－by acc．personal checks
B20．Extreme values

YEAR	JAN	FEB	MAR	AFR	may	JUN	JUL	AUG	SEP	OCT	NOV	DEC	S．D．
1968	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.6	100．0	105.2	1． 5
1969	94.8	105.7	100.0	99.6	100.0	102.5	98.9	100．0	99.3	100.0	100.0	100.0	2.4
1970	103.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100．0	100.0	100.0	100.0	1.1
1971	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0
1972	101.0	100.0	100.0	100.3	100.0	100.0	100.0	100.0	97.5	100.0	111.8	96.6	3.6
1973	100.0	100.0	100.0	99.2	100.0	105.8	100．0	100.0	100.0	100.0	100.0	100.0	1.7
1974	100.0	100.0	109.0	101．8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.5
1975	100.0	100.0	100.0	100.0	97.0	100.0	100.0	100.0	100.0	100.0	95.4	100.0	1.6
1976	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	106.2	100.0	100.0	1.8
1977	100.0	100.0	100.0	95.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.2
S．D．	2.1	1．8	0.0	1.5	1.0	2.0	0.3	0.0	0.8	2.0	4.0	1.9	
	TABLE	DTAL－	22016		：AN－	0.1	ST0．	VIATIO					

C 1．ADJUSTED＊ORIGIMAL SERIES MODIFIED BY FRELIM WEIGHTS
WAOJUSTED EY．．．TRADIA：OAY ADJUSTHEHT FACTCRS DERIVED FROM REGRESSIOM COEFFIEIENTS

YEAP	JAN	FEB	MAP	AFR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1968	441.	431.	499.	520.	605.	580.	588.	585.	636.	653.	764.	743.	7044.
1759	719.	701.	750.	773.	914.	870.	835.	812.	8c9．	862.	952.	808.	9923.
1970	861.	799.	870.	889.	1005.	953.	994.	954.	1018.	1020.	1103.	1052.	11517.
1971	1006.	977.	1079.	1035.	1175.	1166.	1181.	1107.	1151.	1188.	1276.	1262．	13502．
1972	1309.	1240.	1399.	1498.	1601.	1611.	1615.	1619.	1655.	1762.	1909．	1755.	18972.
1973	1650.	1590.	1779.	1798．	2150.	2124．	2070.	2369.	2069.	2166.	2239.	2160.	23694.
1974	2131.	2126.	2389.	2615.	2951.	2812.	2659.	2665.	8670.	2630.	3004.	2769.	31431.
1975	2636.	2620.	2579．	2861．	3067.	3150.	3005.	3025.	3100.	3090.	3307.	3183.	$357 巛 4$.
1076	3123.	3081.	3 353．	3233.	3679.	3688.	3627.	3496.	3690.	3661.	3815.	3590.	41933.
1977	$34 \hat{2} 7$.	3444.	3672.	3697.	$4{ }^{\text {E }} 49$.	4237.	4085.	3863.	4107.	3937.	4337.	4189.	47245.
AVGE	1733.	1701.	1839.	1892.	2141.	2119.	2066.	2020．	2093.	2097.	2271.	2160.	
	TAELE	OTAL－	24123		AN－	11.	ST0．	EVIATIO	114				

c 2．TFENO CYCLE－CENTEPED 12 －TERM MOVING AVERASE

Yesa	Jant	FES	MAR	AFR	MAY	JUN	JUL	AL＇S	SEP	OCT	130 V	OEC	TOTAL
1058	467.	425.	505.	527.	551.	575.	599.	621.	643.	665.	688.	713.	7042.
1969	736.	755.	773.	790.	806.	820.	833.	843.	852.	861.	870.	877.	9815.
1970	687.	897.	013.	928.	941.	053.	066.	979.	905.	1010.	1025.	1039.	11535.
1971	1056.	1070.	10.92.	1055.	1109.	1125.	1146.	1170.	1194.	1227．	1264.	1300.	13337.
1572	1337.	1376.	1418.	1463.	1513.	1560.	1505.	1526.	1657.	2685．	1721.	1765.	18718.
1973	1805．	1843.	1879.	1913.	1944.	1974.	8010.	2051.	2090.	2158.	2226.	ごご39．	24191.
1974	2342.	2391.	2411.	2435.	2537.	259\％．	2640.	2632.	2715.	2737.	2752.	2770.	31085.
1975	2777	2823.	2061.	2898．	2930.	2860.	2997.	3037.	3080.	3119.	3160.	32C8．	35877.
1976	3256.	3302.	3346.	3304.	3439.	3477.	3507.	3535.	3568.	3604.	3648.	3694.	41771.
1977	3736.	3771.	3804.	3832．	3868.	3912.	3961.	4009.	4050.	4117.	4179.	4.945.	47492.
AVEE	1842.	1872.	2902.	1933.	1963.	1995.	2026.	0055.	2085.	2118.	2153.	2100.	

FINANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACS. PERSONAL CHECKS

FINANCE, CHECKS CASHED IN CLEARING CERTERS-BY ACC. PERSONAL CHECKS
$c 7$.

YEAR 1968 1969 1970 1971 1972
c 9.

YERP	SAN	FEB	MAR	APR	may	Jun	JUL	AUG	SEP	OCT	Nov	DEC	AVGE
1968	96.0	89.3	98.6	98.5	110.5	102.2	89.7	85.1	99.2	97.8	109.8	102.8	100.0
1969	96.4	91.5	96.6	96.0	111.1	104.3	99.4	96.4	จ7.4	100.0	108.9	102.0	100.0
1970	97.4	89.9	97.1	97.9	108.8	101.0	102.7	96.2	100.7	89.8	107.2	101.1	100.0
1971	95.2	91.1	99.9	95.0	106.8	104.6	104.3	96.7	99.7	100.8	104.5	98.8	99.8
1972	97.7	88.7	96.8	101.4	106.2	104.7	102.4	99.4	98.1	101.3	107.7	98.1	100.2
1973	93.8	88.6	97.8	96.4	111.6	107.0	101.7	99.8	93.5	101.8	103.6	97.9	99.9
1974	93.5	89.2	95.6	101.0	112.2	105.9	100.3	100.5	99.7	96.6	108.3	98.4	100.1
1975	92.8	92.2	94.4	100.5	106.9	108.2	101.2	99.9	100.7	99.0	104.1	93.2	99.8
1976	94.6	92.3	97.1	96.2	108.4	106.9	103.2	97.6	101.8	100.3	104.4	98.2	100.1
1977	93.2	92.4	96.9	96.0	108.8	107.5	103.3	97.6	103.1	97.4	105.0	99.2	100.0
AVGE	95.1	90.5	97.1	97.9	109.1	105.2	101.8	97.9	99.9	99.5	106.4	99.5	

C10. Seasomal factors $\quad 3 \times 5$ Moving average selected.

YEAR	Jatl	FEB	MAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	AVGE
1768	96.1	90.7	97.6	97.6	109.8	102.8	100.7	95.6	93.9	99.1	109.5	102.4	100.0
1969	96.3	90.4	97.7	97.5	109.3	102.9	101.2	96.1	99.1	99.5	108.1	101.7	100.0
1970	96.2	90.2	97.7	97.4	108.9	103.5	101.7	\%.8	99.1	100.1	107.4	100.7	100.0
1971	96.1	89.8	97.6	97.7	108.8	104.1	102.1	97.7	99.2	100.3	106.8	99.7	100.0
1972	95.4	89.8	97.2	98.1	108.9	105.0	102.2	98.6	99.3	100.3	106.2	98.9	100.0
1973	94.9	89.9	96.8	98.7	108.9	105.7	102.0	99.1	99.5	100.0	105.9	93.4	100.0
1974	94.2	90.4	66.5	98.6	109.1	106.6	102.9	99.3	100.0	90.6	105.5	98.3	100.0
1975	93.8	90.9	76.3	98.4	109.2	106.9	102.0	99.1	100.6	99.1	105.4	98.4	100.0
1976	93.4	91.6	96.3	97.8	109.0	107.2	102.4	98.6	101.4	98.7	105.0	98.6	100.0
1977	93.4	92.0	96.4	97.4	108.6	107.2	102.8	98.2	101.9	98.7	104.8	98.7	100.0
AVGE	95.0	90.6	97.0	97.9	109.0	105.2	101.9	97.9	99.9	99.5	106.4	99.6	
	TABLE	TAL-	11998		EAN-	00.0	STD.	VIATIO					

FIHANCE, CHEEKS CASHED IN CLEARI*G CENTERS-8Y ACC. PERSOMAL CHECKS

C14. EXTREME IRREGULAR VALUES EXCLUDEO FROM TRADIMG DAY REGRESSION IOUTSICE 2.5-SIGMA LIMIT)

	JAN	FEB	MAR	AFR	May	JUN	JUL	AUG	SEP	OCT	NOY	DEC
1968			*********									
1969		107.0			******			********				
1970		********		********					*********	*W******		
1971											*********	********
1972					*********			********			113.3	
1973			********	WW*****		106.6		******W*				
1974		***W****	******** ${ }_{\text {W }}$	********		W*******					面********	
1975							*******					
1976										107.1		*********
1977	*******	W******			*******							

FINANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC. PERSONAL CHECKS

C15. FINAL TRAOING DAY REGRESSION

	CCMSII:5	FRIOR	REGRESSION	ST. EPROR	T	T
	WEIEHT	HEIGYT	COEFF.	(CCHS. HT.)	(1)	(PRIOR MT,
Meriday	1.315	1.272	0.043	0.152	2.074*	0.283
TUESDAY	1.295	1.071	0.225	0.154	1.927	1.464
WEDHESDAY	1.403	1.674	-0.266	0.153	2.650**	-1.738
THUESDAY	1.357	1.090	0.267	0.156	2.234*	1.707
feioay	0.930	0.929	0.001	0.161	-0.437	0.003
SATURDAY	0.238	0.431	-0.193	0.257	-4.348***	-1.228
5E.0.ay	0.456	0.532	-0.076	0.152	-3.573**	-0.499

THE STARS IHOICATE THE COMBTNED WT. IS SIENIFICANTLY OIFFERENT FROM I CR THE PRICR WT. THE SIGNIFICAVICE LEVELS ARE
3 STAOS 10.1 FEFCENT), 2 STAES (1 PEECENT), 1 STAO (5 PERCENTT),
ANO NO STARS IHDICATES NOT SIGHIFICANT AT THE 5 FERCENT LEVEL

C16B. REGEESSIOHI TRADING DAY RDJUSTMENT FACTORS

YEAR	JA.N	FEB	MAP.	AFP.	May	Jun	JUL	AUG	SEP	DCT	NOV	DEC	Avge
19.58	100.00	100.92	99.13	100.89	100.00	99.10	100.00	100.24	99.89	100.73	99.36	100.62	200.07
1969	100.00	100.00	09.27	99.86	100.24	99.89	100.73	99.13	100.89	100.00	99.10	100.00	99.93
1970	100.24	100.00	100.62	100.00	99.13	100.89	100.00	99.27	99.86	100.24	97.89	100.73	100.07
1971	99.13	100.00	100.00	100.89	99.27	99.85	100.24	100.62	100.00	99.13	100.89	100.00	200.00
1972	99.27	100.78	100.00	99.10	100.00	100.89	99.27	100.73	99.36	100.62	100.00	99.13	99.93
1973	100.00	100.00	100.24	99.89	100.73	97.36	100.62	100.00	99.10	100.00	100.89	99.27	100.01
1974	100.73	100.00	99.13	100.69	100.00	90. 10	100.00	100.24	99.59	100.73	99.36	100.62	100.06
1975	100.00	100.00	09.27	99.66	100.24	99.89	100.73	99.13	100.89	100.00	99.10	100.00	99.93
1976	100.24	97.74	100.00	100.89	99.27	97.86	100.24	100.62	100.00	99.13	100.89	100.00	100.07
2977	99.27	100.00	100.73	99.35	100.62	100.00	99.13	100.00	100.89	99.27	99.86	100.24	99.95
AVGE	99.89	100.14	99.84	100.16	99.95	99.89	100.10	100.00	100.08	99.99	99.94	100.06	
	TAELE	TOTAL-	12000.		MEAR-	90.00	5 STO.	oEviatio	0.				

C16C. REGRESSICN TJADI:IG DAY ADJUSTMENT EACTORS, DHE YEAR AKEAD

C17. FIHAL HEIEHTS FOR IPREEULAR COMPCPEHT ERADUATICN RAHGE FPOM 1.5 TO 2.5 SIC:IA

YEAP	Jath	FEB	MAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	HOV	DEC	S.D.
1968	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	1.4
1509	0.0	0.0	100.0	100.0	100.0	3.1	99.5	100.0	100.0	100.0	200.0	200.0	1.4
1970	0.0	100.0	100.0	200.0	100.0	100.0	100.0	100.0	100.0	100.0	200.0	200.0	1.4
1971	200.0	100.0	200.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.8
2972	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	59.7	100.0	0.0	28.3	2.1
1973	100.0	100.0	100.0	94.5	100.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	2.2
1974	100.0	100.0	100.0	5.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	2.2
1975	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	2.1
1976	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	1.7
1977	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.5

FINANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC. PERSONAL CHECKS

C20. EXTMEME VALUES

Yeat	JASN	FEB	MAR	AFR	mar	JUN	Jue.	aug	SEP	OCT	Nov	DEC	S.0.
1968	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	106.1	1.8
1969	94.9	107.0	100.0	100.0	100.0	103.5	100.0	100.0	100.0	100.0	100.0	100.0	2.7
1970	105.4	200.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.6
1971	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0
1972	100.0	100.0	100.0	100.0	100.0	100.0	100.0	200.0	98.3	100.0	113.3	96.5	4.0
1973	200.0	100.0	100.0	99.8	100.0	108.6	100.0	100.0	100.0	100.0	100.0	100.0	1.9
1974	100.0	100.0	100.0	104.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.4
1975	100.0	100.0	100.0	100.0	95.2	100.0	100.0	100.0	100.0	100.0	93.4	100.0	2.4
1976	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	107.1	100.0	100.0	2.0
1977	100.0	100.0	100.0	93.9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.8
5.0.	2.3	2.2	0.0	2.5	1.5	2.4	0.0	0.0	0.5	2.2	4.7	2.2	
	table	OTAL-	12025		EAN-	00.2	STD.	eviatio					

0 1. ORIGIMAL SERIES MODIFIEO BY FINAL WEICHTS

YEAR	JAN	FEP	Msp	AFR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1968	442.	434.	495.	524.	605.	575.	586.	586.	634.	649.	760.	740.	7032
1939	718.	692.	753.	770.	917.	880.	832.	806.	829.	862.	944.	899.	9880
1970	851.	799.	875.	888.	997.	961.	994.	946.	1018.	1023.	1099.	1059.	11510
1971	998.	977.	1080.	1043.	1166.	1186.	1185.	1112.	1151.	1178.	1286.	1262.	13603
1972	1311.	1251.	1399.	1488.	1601.	1625.	1602.	1630.	1634.	1770.	18e?	1746.	28939
1973	1680.	1590.	1785.	1782.	2165.	2098.	2080.	2070.	2051.	2167.	2258.	2143.	23867
1974	2146.	2126.	2370.	2559.	2963.	2787.	2659.	2673.	2662.	2649.	2001.	2782.	3146
1975	2636.	2620.	2658.	2860.	3133.	3140.	3026.	3001.	3126.	3091.	3346.	3184.	3582\%
1976	3133.	3069.	3253.	3260.	3649.	3685.	3639.	3513.	3688.	3603.	3847.	3571.	41430
1977	3399.	3444.	3697.	3753.	4270.	4234.	4054.	3864.	4141.	3905.	4336.	4203.	47302
AVGE	1731.	1700.	1836.	1893.	2147.	2113.	2066.	2020.	2003.	2090.	2275.	E161.	
	TABLE	TAL-	24125		EAN-	010.	STD.	EVIATIO	114				

D 2. TREND CYCLE-CENTERED 12-TERM MOVING AVERAGE

TEAR	JAOd	FEB	MAR	APR	may	JUN	JUL	aus	SEP	OCT	NOY	DEC	TOTAL
1968	467.	485.	506.	527.	550.	574.	597.	620.	641.	662.	686.	710.	7025.
1969	732.	752.	769.	786.	803.	817.	829.	839.	848.	853.	867.	874.	9774.
1970	835.	898.	911.	926.	939.	952.	065.	979.	995.	1010.	1023.	1039.	11523.
1971	1055.	10\%0.	1083.	1095.	1109.	1125.	1147.	1171.	1196.	1228.	1264.	1302.	13845.
1972	1338.	1377.	1419.	1464.	1513.	1558.	1504.	1623.	1653.	16A2.	1717.	1760.	12809.
1973	1800.	1833.	1874.	1900.	1940.	1972.	2008.	2050.	2097.	2154.	2219.	2281.	24143.
1974	2334.	2383.	2434.	2479.	2530.	2587.	2634.	2675.	2708.	2732.	2752.	2774.	31024.
1975	2804.	2033.	2866.	2904.	2937.	2088.	3005.	3045.	3089.	3130.	3168.	3013.	35063.
1976	3261.	3308.	3352.	3397.	3439.	$3 \div 77$.	3505.	3532.	3566.	3605.	3652.	37000.	41705.
1977	3741.	3772.	3806.	3837.	3870.	3916.	3068.	4018.	4068.	4119.	4176.	4244.	47535.
AVGE	1842.	1872.	1902.	1932.	1963.	1975.	2025.	2055.	2086.	2118.	2152.	2190.	
	TABLE	OTAL-	24135		EAN-	11.	STO.	VIATIO	11				

FINAPICE, CHECKS CASHED IN CLEARING CEHTERS-BY ACC. PERSOHAL CHECKS
04. MODIFIEO SI RATIOS

YEAR	JAH	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVGE
1968	94.6	89.4	97.8	99.5	210.2	100.1	98.4	94.6	98.9	97.9	110.9	104.2	99.7
1969	96.0	92.1	97.9	98.0	114.3	105.3	100.3	96.1	97.7	100.4	108.9	102.8	101.0
1970	96.2	89.0	95.9	95.9	106.1	100.9	103.0	\%\%.7	102.3	101.3	107.4	102.0	99.7
1971	74.5	91.3	99.7	95.3	105.1	203.6	103.3	95.0	06.2	96.0	101.7	96.9	98.2
1972	98.0	90.8	98.6	101.7	105.8	104.3	100.5	100.4	98.8	105.3	109.6	90.2	101.1
1973	93.3	86.5	95.2	93.4	111.6	106.4	103.6	101.0	97.8	100.6	101.7	93.9	98.7
1974	92.0	89.2	97.4	103.2	117.1	107.7	100.9	99.9	98,3	96.9	108.7	100,3	101.0
1975	94.0	92.5	92.7	93.5	106.7	105.8	100.7	98.6	101.2	98.7	105.6	99.1	90.5
1976	96.1	92.8	97.0	96.0	106.1	106.0	103.8	99.5	103.4	99.9	105.4	97.0	100.2
1977	90.9	91.3	97.1	97.8	110.3	108.1	102.2	96.2	101.8	94.8	103.8	99.0	99.4
AVGE	94.8	90.5	96.9	97.9	109.3	104.8	101.7	97.8	99.6	99.2	106.4	99.4	
	TABLE	TAL-	11983		EAN-	99.9	570.	EVIATIO					

05 SEASOHAL FACTORS
3×3 MOVING AVERAGE SELECTED.

YEAR	JAlt	FEB	MAR	AFR	MAY	JUN	JUL	AUG	SEP	OCT	MDV	OEC	AVGE
1968	96.4	90.5	97.5	99.2	212.1	102.3	99.6	95.4	98.6	99.0	109.0	102.9	200.0
1969	96.3	90.5	97.5	97.5	110.0	102.7	100.8	95.7	93.9	99.4	108.2	102.4	100.0
1970	96.4	90.5	97.8	97.3	108.2	102.9	101.9	96.6	99.4	100.2	107.4	101.2	100.0
1971	96.8	90.4	98.0	97.1	107.5	104.0	102.8	97.9	99.0	100.8	106.0	99.2	99.9
1972	95.6	89.8	97.9	98.2	108.4	104.8	102-4	99.2	98.7	101.2	106.1	98.1	100.0
1973	94.4	89.4	96.8	98.3	110.4	106.0	102.2	99.9	98.6	100.3	105.6	97.5	100.0
1974	93.9	90.0	96.0	99.0	111.1	106.4	101.7	99.7	99.3	99.3	106.2	98.2	100.1
1975	93.6	91.1	95.5	98.4	109.9	106.7	102.0	99.1	100.7	98.4	105.7	98.4	100.0
1976	93.8	92.0	96.2	97.8	108.7	106.8	102.4	98.5	102.0	98.1	105.6	98.6	100.0
1977	93.3	92.0	96.7	97.0	108.5	107.3	102.8	98.2	102.6	97.9	105.0	98.4	100.0
AVGE	95.0	90.6	97.0	97.9	109.4	105.0	101.9	98.0	99.8	99.5	106.5	99.5	
	TABLE	TAL-	21999		EAP-	00.0	STD.	VIATIO					

06. SEASONALLY ADJUSTED SERIES

YEAR	JAN	FES	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	HOV	DEC	TOTAL
1568	458.	430.	507.	534.	545.	562.	590.	615.	643.	655.	697.	719.	7005.
1969	746.	765.	772.	790.	834.	838.	825.	842.	838.	867.	872.	878.	9566.
1970	883.	882.	894.	913.	921.	034.	975.	980.	1024.	1021.	1023.	1046.	12498.
1971	1038.	1081.	1101.	1075.	1085.	1121.	1153.	1137.	1162.	1169.	1213.	1272.	13606.
1972	1371.	1392.	1429.	1516.	1477.	1550.	1564.	1643.	1655.	1749.	1774.	1779.	18900.
1973	1779.	1779.	1845.	1813.	1960.	1978.	2036.	2072.	2081.	2160.	2138.	2198.	23836.
1974	2285.	2363.	2469.	2585.	2667.	2621.	2615.	2680.	2680.	2667.	2817.	2834.	31282.
1975	2816.	2877.	2782.	2908.	2851.	2943.	2967.	3028.	3103.	3142.	3167.	3234.	35818.
1976	3341.	3338.	3382.	3335.	3356.	3450.	3555.	3565.	3617.	3674.	3644.	3641.	41897.
1977	3643.	3743.	3825.	3870.	3936.	3947.	3943.	3934.	4036.	3990.	4128.	4269.	47263.
AVGE	1836.	1870.	1901.	1934.	1963.	1994.	2022.	2050.	2084.	2109.	2147.	2187.	

FINANEE,CHECKS CASHED IH CLEARIHS CEMTERS-BY ACC.PERSCNAL CHECKS

YEAP	JKN	FE8	M ${ }^{\text {PR }}$	AFR	May	Jun	JUL	mus	SEP	OCT	NOV	DEC
1968	460.	483.	506.	527.	547.	567.	589.	613.	639.	665.	693.	720.
1969	742.	761.	780.	820.	819.	830.	835.	839.	$8: 7$.	850.	871.	877.
1970	882.	887.	895.	707.	923.	943.	986.	950.	1010.	1022.	1029.	1040.
1971	1056.	1071.	1081.	1089.	1100.	1116.	1133.	1146.	1156.	1178.	1222.	1280.
1972	1343.	1401.	1445.	1478.	1508.	1540.	1577.	2627.	1682.	1730.	1762.	1779.
1973	1784.	1792.	1819.	1865.	1924.	1981.	2031.	2050.	2097.	2126.	2159.	2203.
1974	22^{78}.	2374.	2482.	2568.	2621.	2644.	2645.	2651.	2679.	2724.	2776.	2815.
1975	2938.	2841.	2842.	2858.	2865.	2925.	2977.	3032.	3086.	3136.	3100.	3250.
1976	3307.	3343.	3352.	3350.	3390.	3447.	3518.	3583.	3625.	3642.	3644.	3651.
1977	3677.	3735.	3810.	3878.	3910.	3939.	3949.	3959.	3987.	4049.	4135.	4231.
AVEE	1837.	1869.	1901.	1933.	1964.	1993.	2022.	2051.	2081.	2113.	2148.	2185.
	TABLE	OTAL -	24096		AN-	008.	STO.	VIATIO	113			

0 8. FIHAL URMODIFIED SI RATIOS

YEAR	JAN	FEB	HAR	AFR	May	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AVGE
1968	96.0	89.9	97.8	90.4	110.7	101.4	99.8	95.6	09.3	97.5	109.8	309.1	100.5
1969	92.9	97.3	96.5	96.2	112.0	107.1	99.5	96.0	97.8	100.2	108.4	102.4	100.5
1970	201.7	90.1	97.7	97.9	109.0	108.0	102.8	95.6	100.8	100.1	108.8	101.8	200.4
1971	94.5	91.2	99.9	95.8	106.0	104.5	104.6	97.0	99.5	100.0	105.2	98.6	99.7
1972	97.6	89.3	96.8	100.7	106.2	105.5	201.5	100.2	95.5	102.3	121.0	94.7	102.0
1973	94.2	80.7	98.1	95.4	112.5	112.9	102.4	100.0	97.8	101.9	104.5	97.1	100.5
1974	94.2	89.5	95.5	104.5	113.0	105.4	100.5	100.9	99.4	97.2	107.8	98.8	100.6
1975	92.9	92.2	93.5	100.1	103.4	107.4	101.6	99.0	102.3	98.6	98.0	97.9	98.8
1976	94.7	91.8	97.0	97.0	107.6	105.9	103.4	98.1	102.7	105.9	105.6	98.4	100.7
1977	92.4	92.2	97.0	90.9	109.0	107.5	102.7	97.6	103.9	96.5	104.9	99.3	99.5

 TABLE TOTAL- 12025.5 MEAN 100.2 STO. OEVIATION- 5.8

TEST FOR THE PRESENCE OF SEASONALITY ASSUMING STABILITY

**SEASONALITY PRESENT AT THE 0.1 PER CENT LEVEL

NONPARAMETRIC TEST FOR THE PRESENCE OF SEASONALITY ASSUMIME STABILITY

KRUSKAL-WALLIS	OEGREES OF	PROBABILITY
STATISTIC	FREEDOM	LEVEL

```
87.9504
11
\(0.000 \%\)
```

SEASONALITY PRESENT AT TME ONE PERCENT LEVEL

MOVING SEASCNALITY TEST				
	SUM OF	DGRS.OF	MEAN	
	SQULRES	FREEDOM	SGUARE	F-VALUE
BETWEEN YEARS	47.2804	9	5.253381	0.783
EFROR	664.2928	99	6.710028	

NO EVIDENCE OF MOVING SEASONALITY AT THE FIVE PERCENT LEVEL

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY

IDENTIFIABLE SEASONALITY PRESENT

0 9．Final replacement values for extreme si ratios

YEAR	Jan	FEB	Mag	APR	may	JW	JUL	AUG	SEP	OCT	NOV	DEC
1968	＊＊＊＊＊＊＊＊＊＊	＊＊＊＊世＊＊＊	＊＊＊＊＊＊＊＊	＊E＊＊＊＊＊＊	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊4．		\＃＊世＊\＃＊＊＊	m＊＊＊＊\＃\＃＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	102．8
1989	96.8	$91 . C$	＊世＊\＃世＊＊＊	\＃\＃＊\＃＊＊＊＊	＊＊＊世＊世＊＊	103.6	99.5	＊＊＊＊＊＊＊＊	Wツ\＃\＃\＃＊＊＊	M＊＊世い＊＊＊	＊＊＊＊＊＊＊	＊K＊＊＊＊＊＊
1970	\％ 6	＊＊＊＊＊＊＊＊	＊＊＊＊\％世の＊	＊＊＊＊＊M＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊		＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊		F＊＊＊＊＊
2971	＊＊＊＊＊＊＊＊＊＊	＊＊＊＊＊＊萛	＊\＃＊＊\＃＊\＃＊	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊		＊＊＊＊＊＊＊	＊＊＊${ }^{\text {c＊＊＊＊＊}}$	＊＊＊＊＊＊＊＊		＊＊\＃＊＊＊＊＊	＊＊＊＊＊＊＊＊
1972	＊＊ャッサツ＊＊＊＊	＂ばいせ\＃\＃゙	＊＊＊以世\％＊＊	＊＊＊＊＊＊が	＊＊＊＊＊＊	＊＊と＊＊＊＊＊		\＃\＃\＃＊＊＊＊＊	97.1	＊世末世世＊＊＊	106.8	98.1
1973	＊＊＊＊＊＊＊＊＊＊	＊＊¢＊＊＊＊	＊＊＊世＊＊＊＊	95.5	＊世＊＊＊＊＊＊	105.9	＊＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	ME\＃\＃＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊：＊＊＊	H＊＊＊＊＊＊＊
1074	＊＊＊＊＊＊＊＊＊	＊	＊＊＊＊ット＊＊	99.6	＊＊＊＊＊＊＊	＂＊5＊＊＊＊＊	\＃＊＊＊＊＊E＊	\＃＊＊＊＊＊＊＊	＊＊＊＊＊＊＊＊	＊＊以＊＊＊＊＊	M＊W＊＊＊K＊	＊と＊＊＊＊＊＊
1975	＊＊リッカッ＊＊＊＊	＊＊＊」＊＊＊＊	＊世世世世世＊＊	＊＊＊＊＊u＊＊	108.6	＊＊＊＊＊＊＊＊	※\＃\＃\＃させ世＊		ハー＊＊＊＊＊＊	M＊Fw世Mm	104．9	－＊＊＊＊＊＊＊
1976			＊＊＊＊＊＊世关	＊＊＊＊＊＊＊＊	＊＊＊＊＊W＊＊	＊＊＊＊＊＊＊M	＊6＊＊＊＊＊＊	m＊＊＊＊＊＊	＊＊＊＊＊＊＊	98.9	＊＊＊＊＊＊＊＊	＊＊＊＊＊mE＊

－9A．YEAR TO YEAR CHANGE IN IRPEGULAR ANT SEASCNAL COMPONENTS APTD HOVENG SEASOHALITY PRTIO

	Jat	FEB	MAP	AFR	may	Ju4	Jul	Aus	SEP	OCT	Nov	DEC
1	1.694	1.464	1.832	3.016	2.531	1.290	1.552	0.901	1.459	1.556	1． 707	0．841
5	0.336	0.243	0． 357	0.300	0.500	0.480	0.352	0.524	0.278	0.349	0． 356	0.582
Ratio	5.06	6.02	5.13	10.04	5.06	2.80	4.28	1.89	5.29	4.45	4.79	1.45

aln．EINAL SEASCHAL FACTORS $\begin{gathered}3 \times 5 \\ \\ \end{gathered}$

1．1． 5	Jan	FES	M 1.0	AFR	may	JUN	JUL	AUS	SEP	OCT	NOV	DEC
4598	95.97	90.73	97.51	97.78	109．91	109．77	100.58	95.74	98.92	90.22	108．34	102．47
$1 \% \% 7$	96.07	90.58	07.63	97.73	109．24	102.98	101.14	96.17	99.03	99.58	207.92	101.79
$\therefore \%$	96.00	90.33	97.74	97.49	108.84	103.54	101．73	96.91	98.94	100.17	107．24	100．77
1：71	95.87	S0．00	97.62	97.63	108.79	104．08	102．10	97.88	98.88	100.50	106.72	99.78
1%	95.32	89．06	97.29	97.75	109.04	104．88	102.27	98.69	93.92	100.49	106.10	99.88
17：3	94.92	90.06	96.78	98.23	109．28	195.52	102.17	99.29	99.18	100.10	106．04	98． 36
1774	94.34	90.48	96.34	98.21	109.64	106.19	102.03	97.40	99.78	99.50	105.79	98.17
1775	93.95	93.91	96.13	98.10	109.73	106.60	102.09	99.16	100.60	98.82	105．66	98， 35
1376	93.48	91.47	96.15	97.75	109．40	107.02	102.33	98.70	101.49	98.30	105．32	93.53
1977	93.38	91．81	96.33	97.52	108.87	107－27	102.56	98.36	101．93	98.17	105.11	98.65
Avge	94.93	90.63	96.95	97.81	109．28	105.08	101.90	98.03	99.77	99.49	106.43	99.58
	TASLE	at－	11998.		MEAN－	99.99	STD．	EVIRTI	5.			

010R．SEASOHAL FACTORS，OHE YEAR AHEAD

FINANEE, CHECKS CASHED IN CLEARING CENTERS-BY ACC.PERSONAL CHECKS

D12. FINAL TREND CYCLE - MEIJERSOM CURVE
O-TERM MOVING AVERASE SELECTEO. I/C RATIO IS 0.81

YEAR	JAN	FEB	MAR	APR	may	JUN	JUL	mug	SEP	OCT	Nov	DEC
1968	460.	483.	507.	529.	548.	566.	596.	610.	637.	685.	695.	723.
1969	744.	761.	780.	802.	619.	830.	834.	836.	845.	660.	873.	881.
1970	885.	890.	895.	005.	019.	939.	064.	900.	1011.	1024.	103 n .	1044.
1971	1050.	1075.	1080.	1085.	1095.	1113.	1135.	1150.	1158.	1177.	1219.	1276.
1972	1343.	1403.	1749.	1479.	15ca.	1530.	1578.	1631.	1688.	1733.	1760.	1771.
1973	1772.	1782.	1817.	1871.	1935.	1992.	2038.	2073.	2096.	2121.	2150.	2194.
1974	2263.	2364.	2485.	2582.	2638.	2656.	2648.	2646.	2675.	2723.	2776.	2815.
1975	2835.	2836.	2839.	2858.	2887.	2928.	2979.	3030.	3082.	3131.	3189.	3254.
1976	3317.	3353.	3356.	3356.	3381.	3439.	3514.	3584.	3629.	3645.	3646.	3654.
1977	3632.	3739.	3808.	3872.	3910.	3935.	3952.	3966.	3903.	4049.	412 B .	4221.
AVGE	1836.	166%.	1906.	1934.	1964.	1994.	2023.	2052.	2082.	21.13.	2147.	2183.

D13. FINAL TPREGULAR SERIES

YEAR	JAM	FEB	MAR	APR	May	JUN	JUL	AUS	4 SEP	OCt	NDV	DEC
1768	99.9	99.0	100.0	101. 3	100.5	98.7	09.7	300.5	100.7	99.2	101.0	106.1
1069	95.4	207.5	98.9	98.4	102.5	104.1	98.6	100.2	99.0	100.7	100.2	100.2
1970	105.5	99.4	99.9	100.7	99.7	98.9	101.3	98.7	101.7	99.7	99.3	100.7
1971	08.9	101.0	102.4	73.5	97.8	100.7	102.3	98.8	100.5	09.6	98.9	99.1
1972	102.5	93.1	99.2	202.9	97.4	100.7	99.2	101.3	96.2	101.7	114.1	96.2
1973	99.8	00.1	101.5	93.8	102.4	106.4	99.9	100.6	98.6	102.0	99.0	99.3
1974	100.5	99.4	99.0	105.	102.4	98.8	98.4	101.6	99.7	97.8	101.8	100.7
1975	99.0	101.6	97.4	102.0	94.2	100.6	99.5	99.9	100.8	99.9	92.7	99.5
1976	101.0	100.1	100.8	90.4	98.7	100.1	101.2	99.3	100.1	107.7	100.2	99.7
1977	93.8	100.6	100.8	93.3	100.3	109.3	100.0	99.1	101.7	08.2	99.9	100.9
S.0.	2.6	2.5	1.4	3.3	2.6	2.5	1.2	1.0	1.8	2.8	5.1	2.3
	TABLE	OTA $1-$	12005		EAN-	00.2	5 5\%.	EVIATIO				

D16. CORETHED SEASONAL ARID TPADING DAY FACTCOS

YEAR	JAN	FEB	MAR	AFR	MAY	Ju:	JUL	ALS	SEP	OCT	NOV	DEC	AVGE
1968	09.12	93.42	94.03	98.84	112.37	09.21	103.88	09.04	98.27	201.89	108.03	102.05	100.26
1969	96. 22	80.76	05.22	100.26	107.31	102.30	103.87	92.74	100.16	101.81	104.19	105.14	100.07
1070	94.30	89.53	97.34	97.97	104.95	104, 72	104.01	94.52	101.40	98.40	166.54	203.47	99.93
1971	92.45	89.20	100.83	97.69	106.11	106.67	100.29	97.47	101.40	05.91	107.94	102.01	99.91
1272	92.97	92.57	99.47	04.37	112.62	204.95	90.75	201.35	96.82	100.08	108.89	95.35	99.93
1773	08.04	89.27	95.06	97.59	112.23	103.27	101.75	101.51	95.75	103.38	106.11	95.93	99.99
1274	96.88	89.66	92.90	99.33	112.10	102.52	205.43	97.64	09.13	102.19	103.53	97.77	99.92
1975	95.05	90.10	93.76	100.53	107.79	105.91	104.84	95.62	101.75	101.03	102.01	101.58	100.08
1976	91.82	92.38	99.31	97.82	206.70	109.67	100.52	08. 30	104.07	04. 79	106.52	100.73	100.22
1977	91.08	91.00	99.93	05.44	108.43	110.01	98.89	101.59	102.05	05.75	107.72	96.99	99.81
AVEE	95.07	90.69	96.68	98.17	109.06	104.92	102.32	97.48	100.08	99.62	105.95	100.10	
	TASLE	OTAL-	12001.		MEAN-	100.01	5 T0.	oEviatio	5				

DIGA, CONGIHED SEASCNAL ATD TRADIHS DAY FACTCES, OHE YEAR AHEAD

YEAR	IAN	feg	MAO	APA	May	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1978	92.97	91.14	98.72	93.85	112.13	07.47	00.23	0.78	00.06	97.84	07.59	95.14

E 1. ORIGINAL SERIES MODIFIED FOR EXTREMES WITH ZERO FINAL WEIGMTS

YEAR	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUE	SEP	OCT	NOV	DEC	TOTAL
1968	456.	447.	477.	530.	619.	555.	607.	576.	630.	666.	744.	737.	7044.
1969	731.	683.	734.	789.	901.	884.	854.	777.	838.	881.	911.	928.	9911.
1970	835.	792.	871.	911.	961.	972.	1016.	923.	1043.	2005.	1092.	1038.	12509.
1971	962.	968.	1115.	1044.	1137.	1195.	1184.	1108.	1180.	1136.	1301.	1290.	13600.
1972	1279.	1287.	1430.	1437.	1654.	1626.	1562.	1674.	1572.	1763.	1916.	1625.	18825.
1973	1735.	1576.	1753.	1767.	2223.	2057.	2072.	2116.	1980.	2238.	2259.	2090.	23066.
1974	2204.	2107.	2285.	2714.	3029.	2691.	2746.	2626.	28.65.	2720.	2927.	2771.	31465.
1975	2695.	2597.	2592.	2931.	3112.	3120.	3108.	2894.	3162.	3160.	3253.	3288.	35012.
1976	3077.	3100.	3360.	3262.	3559.	3777	3574.	3400	3782.	3458.	3891.	3671.	42008.
1977	3315.	3414.	3797.	3695.	4253.	4342.	3009.	3991.	4144.	3809.	4444.	4126.	47241.
AVGE	1729.	1697.	1841.	1908.	2145.	2122.	2061.	2018.	2098.	2083.	2274.	2162.	
	TABLE	TAL-	24138		EAN-	012.	STO	VIATIO	114				

E 2. FINAL SEASCHALLY AOJUSTED SERIES MODIFIED FOR EXTREMES WITH ZEPO WEIGHTS

YEAR	JAN	FEB	MAR	APR	MaY	JUN	JUL	AUE	SEP	OCT	NOV	OEC	TOTAL
1968	460.	478.	507.	536.	+551.	559.	584.	613.	641.	654.	702.	723.	7008.
1969	744.	762.	772.	pe9.	840.	864.	822.	838.	637.	865.	874.	883.	9856.
1970	885.	885.	895.	911.	916.	928.	977.	977.	1029.	1021.	1025.	1051.	11499.
1971	1041.	1085.	1106.	1069.	1072.	2120.	1161.	1137.	1164.	1172.	1205.	1265.	13505.
1972	1376.	1390.	1438.	1523.	1469.	1549.	2566.	1652.	1624.	1762.	1760.	1704.	18911.
1973	1770.	1765.	1844.	1811.	1081.	1092.	2036.	2084.	2068.	2165.	2129.	2179.	23924.
1974	2275.	2350	2460.	2732.	2702.	2625.	2605.	2600.	2668.	2662.	2827.	2834.	31429.
1975	2606.	2882.	2764.	2915.	2887.	2976.	2065.	3027.	3108.	3128.	3189.	3237.	35953.
1976	3351.	3356.	3384.	3335.	3335.	3444.	3556.	3559.	3634.	3645.	3653.	3444.	41898.
2977	3640.	3752.	3838.	3872.	3922.	3947.	3953.	3929.	4061.	3978.	4125.	4260.	47277.
AVge	1835.	1870.	1901.	1949.	1967.	1998.	2022.	2050.	2083.	2105.	2149.	2178.	
	TABLE	OTAL -	24107		MEAM-	009.	570.	VIATIO	11				

E 3. MODIFIED IPREGULAR SERXES

YE:0	3AF\%	FEB	$M 1 R$	AFP	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	5.0.
1968	59.9	99.0	100.0	101.3	100.5	98.7	99.7	100.5	100.7	98.2	101.0	100.0	0.9
1969	100.0	100.0	98.9	98.4	102.5	104.1	98.6	100.2	99.0	100.7	100.2	100.2	1.6
1970	100.0	99.4	99.9	100.7	69.7	98.9	101.3	98.7	101.7	99.7	99.3	100.7	0.9
1971	99.1	101.0	102.4	98.5	97.8	100.7	102.3	98.8	100.5	99.6	98.9	99.1	1.5
1972	102.5	99.1	97.2	102.9	97.4	100.7	99.2	101.3	68.2	201.7	100.0	ct 62	2.2
1973	99.8	99.1	101.5	96.8	102.4	100.0	99.9	100.6	98.6	102.0	09.0	99, 3	1.5
1974	100.5	99.4	99.0	105.8	102.4	98.8	98.4	101.6	99.7	97.8	101.8	100.7	2.2
1975	99.0	101.6	97.4	102.0	100.0	100.6	90.5	99.9	100.8	09.9	100.0	09.5	1.2
1976	102.0	100.1	100.8	89.4	98.7	100.1	101.2	99.3	100.1	100.0	100.2	99.7	0.7
1977	78. 8	100.4	100.8	100.0	100.3	100.3	100.0	99.1	101.7	93.2	99.9	100.9	0.9
S.D.	1.2	0.8	1.4	2.5	1.8	1.5	1.2	1.0	1.6	1.4	0.8	1.3	
	TASLE	OTAL-	12002		E則-	00.0	ST0.	EVIATIO	1				

FIMAMEE, CHECKS CASHED IH CLEARING CENTERS-BY ACC. PERSOHAL CHECKS

E 4. RATIOS OF AMHUAL TOTALS, ORIGIHAL AHD ADJUSTED SERIES

YEAR	URT:OIFIEO POOITIED	
1967	100.16	100.16
1968	100.53	100.52
1969	100.19	100.25
1970	100.06	100.08
1971	109.04	100.04
1972	100.19	109.07
1973	100.20	100.18
1974	100.11	100.11
1975	100.12	100.16
1976	100.23	100.27
1977	99.95	99.92
1978	99.95	99.95

E 5. MONTH-TO- MONTH CHANGES IN THE ORIGINAL SERIES

YEAR	JAM	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1968		-2.0	6.7	11.1	16.8	-10.3	9.4	-5.1	9.4	5.7	11.7	5.1
1969	-10.9	5.3	0.0	7.5	14.2	-1.9	-3.4	-9.0	7.9	5.1	3.4	1.9
1970	-5. 3	-10.1	10.0	4.6	5.5	2.1	4.5	-9.2	13.0	-3.6	8.7	-0.4
1971	-11.6	0.6	35.2	-6.4	8.9	5.1	-2.6	-4.8	6.5	-3.7	14.5	-0.6
1972	-0.9	0.6	11.1	0.5	15.1	-1. 7	-3.9	7.2	-6.1	12.2	24.0	-25.7
1973	6.8	-9.2	11.2	0.8	25.8	-1.5	-5.3	2.1	-6.4	13.0	0.9	-7.5
1974	5.5	-4.4	8.4	18.8	11.6	-11.2	2.0	-4.4	0.7	2.8	7.6	-5.3
1975	-2.7	-3.6	-0.2	13.1	0.0	6.4	-0.4	-6.9	9.3	-0.1	-4.5	9.0
1976	-6.4	0.7	8.4	-2.9	9.1	6.1	-5.4	-2.1	8.1	-1.6	4.6	-5.7
1977	-9.7	3.0	11.2	-9.2	23.3	2.1	-10.0	2.1	3.8	-8.1	16.7	-7.1
AVGE	-3.9	-1.9	8.2	3.8	13.0	-0.6	-3.5	-3.0	4.6	2.2	8.8	-3.7
	TABLE	TAL-	284		AN-	2.2	STD.	VIATI				

E 6. MCHTH-TO- MONTH CHANGES IN THE FINAL SEASONALLY ADJUSTED SERIES (DI1.)

YEAR	JAN	FES	MAR	APR	MAY	INM	Jut	sug	SEP	OCT	NOV	DEC
1968		4.0	6.0	5.7	2.7	1.6	4.5	4.8	4.7	2.0	7.3	9.2
1969	-7.4	15.2	-5.7	2.2	6.6	2.9	-4.8	1.9	-0.1	3.4	1.0	1.0
1970	5.8	-5.3	1.2	1.8	0.5	1.4	5.2	-0.0	5.3	-0.7	0.4	2.6
1971	-1.0	4.3	1.9	-3.4	0.3	4.6	3.6	-2. 2	2.4	0.7	2.8	4.9
1972	8.8	1.1	3.4	5.9	-3.5	5.5	1.1	5.5	-1.7	8.5	14.0	-15.1
1973	3.8	-0.2	4.5	-1.8	9.4	7.0	-3.9	2.4	-0.8	4.7	-1.7	2.3
1974	4.4	3.3	4.7	11.1	-1.1	-2.9	-0.8	3.3	-0.6	-0.2	6.2	0.2
1975	-1.0	2.7	-4.1	5.5	-6.7	8.3	0.6	2.1	2.7	0.6	-5.4	9.4
1976	3.5	0.1	0.8	-1.4	0.0	3.2	3.2	0.1	2.1	B.0	-6. 8	-0.2
1977	-0.1	3.1	2.3	-5.8	8.5	0.6	0.1	-0.6	3.4	-2.0	3.7	3.3
AVGE	1.9	2.8	1.5	2.0	1.7	3.2	0.9	1.7	1.7	2.5	2.1	1.8
	TABLE	TAL-	235		(N-	2.0	510	VIATIC				

AVGE

Firumee, checks cashed in cleaging centers-by acc. persorial checks

```
F 1. MCD MOVIRGG AVERAGE
```

Year	JAN	FEB	mar	48	mar	JUN	JUL	mug	SEF	oct	nov	DEC	TOTAL
1988	**********	481.	507.	533.	549.	583.	585.	613.	637.	663.	P06.	736.	6573.
1969	751.	779.	787.	786.	833.	848.	837.	834.	844.	550.	874.	693.	9736.
1970	909.	-00.	896.	909.	918.	937.	965.	990.	1014.	1024.	1031.	1042.	11533.
1971	1054.	1079.	1091.	1079.	1083.	1118.	1145.	1149.	1159.	1178.	1212.	1278.	13625.
1972	2352.	1398.	2447.	1483.	1502.	1533.	2583.	1623.	1665.	1789.	1871.	1797.	19648.
1973	1752.	1783.	1816.	1032.	1973.	2064.	206%.	2050.	2036.	2132.	2150.	2100.	23059.
1074	2270.	2359.	2500.	2657.	2600.	2639.	2631.	2683.	2672.	2705.	2788.	2825.	31398.
1975	2832.	2334.	2e3n.	28:9.	202s.	2894.	2975.	3031.	3092.	3080.	3070.	3196.	35490.
1976	3324.	3362.	3354.	3347.	3162 .	3645.	3509.	3377.	3 c 88.	3784.	3719.	3645.	$4 \hat{20.45 .}$
1977	3669.	3745.	3760.	3747.	3052.	3042.	3045.	3768.	4007.	4035.	4122.	*****	42734.

AVGE 1990. 1872. 1000. 1924. 1959. 1008. 2026. 2052. 2097. 2125. 2154. 1956.
TAGLE TOTAL- 236501. MEAN EOO4. 5T0. DEVIATION- 1113.

5F: 1	81		013		012		0105		011		$\begin{array}{r} 51 \\ 1: 0 \end{array}$	
IH												
I:O:STHS	AVEE	5.0.	AVEE	S.D.	Asee	S.D.	AveE	S. 0.	AV'GE	S.D.	aver	S.0.
1	2.2 2	8.49	0.09	3.97	1.89	1. 32	0.13	5.62	1.93	4.37	1.87	1.89
2	4.37	29.42	0.09	3.92	3. 50	2.80	0.61	7.29	3.91	5.17	3.07	3.53
3	6.42	18.75	0.05	3.51	5.72	3. 7 is	- 56	9.17	5.8 2	5.64	5.63	4.61
4	e. 45	12.64	0.07	3.65	7.67	4.79	0.54	3.47	7.-5	6.50	7.61	5.56
5	10.17	12.68	0.07	$\bigcirc .91$	9.64	5. 71	0.37	7. 39	9.75	7.64	0.57	3.42
6	12.05	10.7\%	0.07	3.77	11.65	6.58	0.24	5.42	11.77	8.29	11.69	7.15
?	14.31	12.73	0.05	3. 25	13.71	7.45	0.45	7.19	13.81	8.73	13.62	7.15 7.89
8	16.65	13. 35	0.09	3.86	35.79	8.33	0.60	0.02	15.92	9.09	\$5.64	7.89 8.77
9	13.73	15.75	0.01	3.82	27.89	9.21	0.67	8.50	17.85	10.79	17.72	8.69
10	20.85	16.60	0.03	3.55	20.01	10.07	0.51	7.42	20.10	12.t6	10.77	10.40
11	ここ. 59	14.62	0.02	3.69	22.12	10.85	0. 24	5.41	22.22	12.62	26.83	11. 27
12	24.25	13.66	-0.03	4.06	24.24	21.53	0.00	0.43	C4. 48	13.35	23.85	12.01
AvERAGE	dteati	DF run										

F C.E: I/C RATIO FOR HEVTHS SPAH

	1	2	3	4	5	6	7	B	9	10	11	12
	1.51	0.71	0.43	0.33	0.28	0.21	0.17	0.18	0.15	0.13	0.11	0.12

F 2.F: RELATIUE CCHTRIEUTION OF THE COMFCNEHTS TO THE STATICLARY FORTICN OF THE VARIARCE IN THE ORIGINAL SERIES

$$
\begin{array}{cccccc}
\text { I } & \mathrm{C} & \$ & \text { P } & \text { T0 } & \text { TOTM } \\
6.47 & 53.14 & 24.50 & 0.0 & 5.42 & 54.53
\end{array}
$$

$$
\begin{aligned}
& \text { F 2.6: THE AUTOCCFPELATIEN OF THE IRREGULARS FOR SPAHIS } 1 \text { TO } 24 \\
& \begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
-0.21 & -0.12 & 0.03 & 0.04 & -0.12 & -0.02 & 0.26 & -0.04 & -0.05 & 0.09 & 0.07 & -0.20 & 0.02 \\
\hline
\end{array}
\end{aligned}
$$

$\begin{array}{rlll}\text { F 2.h: THE FIMAL 1/C RATIO FROM TAELE DIE: } & 0.81 \\ \text { THE FIMAL I/S EATIO FFDH TSSLE O10: } & 4.09\end{array}$
F 2.1 :

F 3. MOUITORIFH ANO GUALITY ASSESSMEIT STATISTICS
ALL THE MEASUPES BELOW APE YN THE PANGE FROM 0 TO 3 HITH APA ACCEPTANCE REGION FROM O TO 1.

1. THE PELATIVE CONTRIEJTION OF THE IFPEGULAR OVER THPEE MONTHS SPAN \&FRCM TABLE F $2 . B 1$.
2. THE RELATIVE CONTRIEUTIG:1 OF THE IRREGULAR COMPOIENT TO THE STATIONARY PORTION OF THE VAOTAFICE (FPCM TASLE F 2.F).
3. THE AMOUNT OF MCNTH TO MPNTH CHAMGE IN THE IPPEEULAR CDHPOHEMT AS CO:HPAPEO TO THE AMOUBT OF FIONTH TO V:OWTH CHAFEE IH THE TPEMD-CYCLE (FEO:1 TAELE FZ.H).
4. THE AMOUNT CF AUTOCCPPELATION IN THE IPREGULAR AS OESERIEED BY THE AVEPAGE OURATION OF RU: (TABLE F 2.0).
 CF CHARISE IN THE IFन巨CLLAP (FFOM TABLEF 2.E).
5. THE AMOHINT OF YEA? TO YEAR CHAR:GE IH THE IPREGULAR AS COHPARED TO THE AYPLNT OF YEAR TO YEAR CHA:ISE IH THE SEASOINAL (FRCM TABLE F 2.H).
6. THE AMELMT OF STAELE SEASNMMLITY FRESENT RELATIVE TD THE AMOUNT OF MOVIMS $M 6=0.116$ SEASOMALITY (FROH TABLE F E.I).
7. THE SIZE OF THE FLUCTUATIC:IS IN THE SEASOSAL COIFOMENT THROUSHOJT THE WHOLE SERIES.

8. S丹IF AS \&, CALCULATED FCF FECEIHT YEAFS C:ILY.
9. SAME AS 9, CALCULATED FCR RECENT YEANS OVLY.

FINANCE, CHECKS CASMED IN CLEARING CENTERS-BY ACC. PERSONAL CHECKS

FIMANCE, CHECKS CASMED IN CLEARING CENTERS-BY ACC.PERSONAL CHECKS

G 1. CHART
(X) - B 1. ORIGIMAL SERIES
(0) - E 1 . ORIGIMAL SERIES MOOIFIED FOR EXTREMES WITH ZERO FINAL WEIGHTS
(*) - COINCIDENCE OF POINTS
(E) - ARIMA EXTRAPOLATION

SCALE-SEMI-LOG
254.1 471.2
873.7
1620.3
3004.7
5572.1

JiN173
FEB73
MAR 73
AF773
MaY73
JU:173
JUL73
AL'573
SEPT3
0¢T73
$1: 0 \vee 73$
DEC73
3AMT4
FEB74
MAP 74
AFR 74
Mar74
Juel74
JUL74
AUG74
SEF74
SEF74
OCT74
HOV 74
DEC74
JR1475
FEB75
MAR75
AFR75
Maris
JUL 75
AUG75
SEP75
OCT75
HOV75
OEC:5
FE876
MAP 76
AFR 76
MAY76
Jun 76
JUL76
AUS76
SEP76
oct76
NOCV76.
OEC76
JARA77.
JAR177
FEB77
HAR77
AFR77
may 77
Junt7
jut77
AC:377
SEP77
HOV77
oEC77
JANT8
JANT8
FEB78
MARTB
AFR78
MAY78
Jusij8
JULIE
ALS78
ALJ78
ETT8
OCT 78
MOV 78
$\stackrel{*}{*} \stackrel{\text { " }}{*}$

$\stackrel{*}{*}$

.

MOV78
0EC78

FINAIACE，CHECKS CASHED IN CLEARING CENTERS－BY ACC．FERSOMAL CHECKS

```
G 2. CHAPT
            (X) - D11. FINAL SEASOHALLY ADJUSTED SERIES
            (O) - DlE. FINAL TREHD CYCLE
            (*) - COI:NCIOE: 2 E E OF FOI:MTS
        SCALE-SEMI-LCG
    \(265.6 \quad 462.7806 .0\)
                            -•.................................
FEES3 . * \(\times 0\)
MIFG 8
AFP68
MaY6g
Jui:s8
JUL
AUこと 8
SEFES
OCTEB
1:0.68
DECES
J11:57
FEES9
MO. 69
FEES9
MO 069
AFR69
MArs?
MEO69 :
AFR69:
MAY69:
JU!69:
JUL69
AUE69
SEF59
AUE69
SEF59
\(\begin{array}{lll}\text { OCT69. } \\ \text { NOV69. } & \text {. } & \text {. }\end{array}\)
```



```
HOV69. . . .
JAl:TO
FEETO
MAR70
AFマTO
l1ay70
コび:ンO
JULTO
AUST0
SEF70
OCT70
\(1: 2 \div 70\)
\(0 E C 70\)
\(1: 2: 70\)
\(0 E C 70\)
JAN71
FEB71
FEB71
\(M: 971\)
APPT1
MaY71
JUN71
MAY71
JUN71
JULTI
AいET1
ALG71
SEP71
0CT71
liOvil
OECTI
J\&:172
OECTI
jsi412
JEL:12
FEB 72
FEB72
MART2
APR72
MAY 72
APR72
MAY 72
JUN72
JUL 72
AUG72
SEP72
SEP72
OCT72
OCT72
NOV72
0EC72
    265.6 462.7 806.0
    1404.0
C445.6
4260.1
JAll6S
FERT0 .
* \(0 \times\)
\(\times 0\)
```



```
G 2. CHART
    (X) - DII. FINAL SEASONALLY ADJUSTED SERIES
        (0) - O12. FINAL TREPND CYCLE
        (*) - COINCTOENCE OF POINT5
    SCALE-SEMI-LOG
    265.6 462.7 806.0
        1404.0
        2445.6
        4260.1
JAN7T3
FEB73
MAR73
APR73
MAY73
JUN73
JUL73
AUG73
SEP73
OCT73
NOV73
DEC7S
JAN74
FEB74
MAR74
APR74
MAY74
JUT174
JUL74
AUG74
SEP74
OCT74
NOV74
NOV74
JAN75
FEB75
MAR75
APR75
MAY75
JUN75
JUL75
AUG75
SEP75
OCT75
NOV75
DEC75
JAN76
FEB76
MAR76
APR76
MAY76
JUN76
JUL. }7
AUG76
SEP76
OCT76
NOV76
0EC76
JAN77
FEB77
MAR77
APR77
Mar77
JUN77
JUL77
AUG77
SEP77
OCT77
NOV77
DEC77
265.6 462.7 806.0

\section*{FIHANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC.PERSONAL CHECKS}


\section*{FIHAHCE, CHECKS CASHED IN CLEARIHG CENTERS-BY ACC. PERSOHAL CHECKS}


FINAHICE, CHECKS CASHED IN CLEARING CEHTERS-BY ACC. PERSONAL CHECKS
```

G 3. CHART
(x) - D10. FINAL SEASCNAL FACTCRS
(D) - D 8. FIPIAL L!N!ODIFIED SI RATIDS
(+) - 0 9. FIHAL FATICS H:ODIFIED FOR EXTREMES
(*) - COLP:CIDES:CE OF FOIPITS
(E) - EXTRAFOLATED SEASOHAL FACTOPS
SCALE-ARITHIETIC
83.7 95.2 101.7 108.1 114.6 121.0
SEPTEMEER

```



```

HOVEMSER

```

```

88.7 95.2 $101.7 \quad 108.1 \quad 114.6$ 121.0

```


FINANCE, CHECKS CASHED IN CLEARING CENTERS-EY ACC. PERSONAL CHECKS


FINANCE,CHECKS CASHED IN CLEARING CENTERS-BY ACC.PERSONAL CHECKS

```

G
5. CHART
(X) - DI3. FINAL IPREGULAR SEPIES
(0) - E 3. FIHAL IICJIFIED IPREGULAR SERIES
(*) - COINCIDENICE OF FOIHTS

```
102.8
108.5

\section*{JANES}

FERS8
M0568
4FFSS
MAY68
Ju! 68
JULE8
ALEE8
SEFらS CCT68 lioves
DECS8 JARIS?
FEES?
MAE69 AFFS 9 MAY69 J": 59 JULS9 SEFら?
DCT69
151/69 DEC69 JA!170 FEB70 MAD 70 AFP70
MAY70

DEC72
        SCALE-ARITHI:ETIC
85.9 91.5 97.2
91.5
97.2
85.9

\(x\)
\(x\)
*
*
\(x\) 0
0
0
:













                *

                *
            0
                \(x\)
\[
\text { Juni } 70
\]
JULTO
\[
\begin{aligned}
& \text { AL'STO } \\
& \text { SFPTO }
\end{aligned}
\]
SEP70
OCTTO
\[
1: 10,70
\]
DEC70
J:itit

\[
\text { JUL } 71
\]



FER72


Msoil
\[
\begin{aligned}
& \text { APR } 71 \\
& \text { MAY } 71
\end{aligned}
\]
\[
\text { MAY } 71
\]
JUP:T1


Al'G71
SEFTI
ССт71


\[
\text { HOv } 71
\]
\[
\begin{aligned}
& \text { 1Novi } \\
& \text { DEC71 }
\end{aligned}
\]

JADV2
FES72

\[
\text { MAR } 72
\]
\[
\begin{aligned}
& \text { AFR } 72 \\
& \text { MAY } 72
\end{aligned}
\]
JUP172


\[
A F R 72
\]
\[
\text { JUL } 72
\]
\[
\begin{aligned}
& \text { AUS } 72 \\
& \text { SEg }
\end{aligned}
\]
\[
\begin{aligned}
& \text { SEP72 } \\
& \text { OCT72 } \\
& \text { HOV72 }
\end{aligned}
\]




0

\section*{FINANCE, CHECKS CASHED IN CLEARING CENTERS-BY ACC.PERSONAL CHECKS}

G
5. CHART
(X) - DI3. FINAL IRREGULAR SERIES
( 0 ) - E 3. FIHAL MODIFIED IRREGULAR SERIES (*) - COINCIDENCE OF POINTS
SCALE-ARITHMETIC
85.9
91.5
97.2
102.8
108.5
114.1


FINANCE, CHECKS CASHED IN CLEAR ING CENTERS-BY ACC.PERSONAL CHECKS
G 6. CHART
KOLMOGOROV-SMIRNOV SIGNIFICAFICE TESTS FOR THE FIMAL IRREGULARS


\footnotetext{
95\% LEVEL=
0.1771

75\% LEVEL=
0.1328
}


KOLMOGOROV-SMIRNOV SIGNIFICANCE TESTS FOR THE FINAL IRREGULARS
GRAPM OF THE CUTULATIVE PERIODOGRAM
(.) REPRESENTS \(95 \%\) CONFIDENCE LIMITS
(*) REPRESENTS CUMULATIVE PERIODOGRAM


Freight and Shipping Payments Quarterly Analysis Printout

\section*{STATISTICS CANAOA}

\section*{X-II ARIMA QuARTEPLY SEASCHAL AOJUSTMENT METHCD}

THIS METHCD MOOLFIES THE \(X-11\) VARIANT OF CENSUS METHOD II
BY J. SHISKIN, A.H. YOLAG AND S.C. MUSERAVE OF FEEFUARY, 1967
HE MCOIFICATIO'T3 MACE ACE BASEO CA THE METHCDOLOSICAL RESEARCH
OEVELOFED BY ESTELA EEE DAGLM, CHIEF OF THE SEASCNAL ADJUSTHENT
ARO TIME SERIES STAFF OF STATISTICS CANADA. SEPTRFRER, 1979

\section*{SERIES TITLE FREIGHT AND SHIPRING PAYMENTS}

FPETCO COVEPED- IST GUATTER, 1 S\&9 TO 4TM QUARTER. 1978
-TYPE OF FUN - AODITIVE SEAECHML ADJUSTMENY
- AHALYSIS FRIHTCUR. STANDAPDO CHARES.
-SIEMA LIHITS FCQ GR:ENATIP:S EXTPEME VALUES ARE 1.5 ANO 2.5
-OME YEAR OF FOPECASTS AMO BACKCASTS FROY APIMA HCDEL SELECTED OY THE PROGRAM.



THE MODEL CHOSEN IS \((0,1,1)(0,1,1) 0\) WITH TRANSFDRHATION - NONE
aUTCREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) EXTRAPOLATION PROGRAM
A6. ARIMA EXTRAPOLATION MODEL IBACKCASTI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{9}{|l|}{\begin{tabular}{l}
THIS FRCSRAM HAS DEVELOFED FOLLCWING THE PROCEDURES OUTLINEO IN 'TIME SERIES ANALYSIS' BY G. E. P. BDX AND G. M. JEMKIMS. AVERIGE PERCEMTAEE STAPMARD \\
ERFC? IH E\&CKCASTS
\end{tabular}} \\
\hline Mcoel & TRAN. & \begin{tabular}{l}
ADDITIVE \\
CO:STAAT
\end{tabular} & LAST 3 YEARS & \[
\begin{aligned}
& \text { LAST } \\
& \text { YEAR }
\end{aligned}
\] & LAST-I YEAR & LAST-2 YEAR & \[
\begin{aligned}
& \text { CHI-SQ. } \\
& \text { FRCS. }
\end{aligned}
\] & R-Squareo Value & & ESTIMATEO & PARAMETERS \\
\hline (0,1,1)(0,1,1) & Morte & 0.0 & 11.92 & 8.46 & 11.66 & 15.63 & \(46.72 \%\) & 0.9562 & 0.2698 E 000 & \(4341 E 00\) & \\
\hline
\end{tabular}

FREIGHT ANTD SMIPPING PAYMENTS
B 1. DRIGINAL SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline YEAR & 151 & Quar & & 2 N Quar & & 3RD euar & 4 th cuar & total \\
\hline 1968 & & 184.5 & & 25*. 5 & & 242.4 & 249.3 & 932.7 \\
\hline 1967 & & 210.0 & & 269.0 & & 252.0 & 265.0 & P9\%. 0 \\
\hline 1970 & & 232.0 & & 306.0 & & 284.0 & 284.0 & 1206.0 \\
\hline 1971 & & 212.0 & & 324.0 & & 363.0 & 317.0 & 2106.0 \\
\hline 1972 & & 247.0 & & 350.0 & & 350.0 & 368.0 & 1315.0 \\
\hline 1973 & & 3 22.0 & & 411.0 & & 300.0 & 420.0 & 1560.0 \\
\hline 1974 & & 427.0 & & 545.0 & & 499.0 & 565.0 & 2036.0 \\
\hline 1975 & & 467.0 & & 586.0 & & 525.0 & 569.0 & 2147.0 \\
\hline 1976 & & 479.0 & & 828.0 & & 547.0 & 575.0 & 2219.0 \\
\hline 1977 & & 490.0 & & 641.0 & & 606.0 & 609.0 & 2346.0 \\
\hline 1978 & & 528.8 & & 687.8 & & 841.6 & 669.1 & 2527.3 \\
\hline avge & & 345.4 & & 454.0 & & 426.3 & 445.3 & \\
\hline & TABLE & TOTAL- & 18381.0 & MEAN - & 417.7 & sro. & 149.0 & \\
\hline
\end{tabular}
original series extpapolated ohe vear aheado
\begin{tabular}{rrrrrr} 
YER & 1ST QUAR & 2HO QUAR & 3RO GUAR & GTH QUAR \\
1979 & 583.7 & 736.7 & 690.7 & 713.5
\end{tabular}
010. FINAL SEASONAL FACTORS
\(3 \times 5\) HOVIPG AVERAGE SELECTEO.

011. FINBL SEASOHALLY AOJUSTEO SERIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline YEAO & 251 guap & 2ND CUAR & 3RD QUAR & ATH QUAR & TOTAL \\
\hline 1969 & 256.2 & 243.0 & 242.1 & 258.1 & 095.3 \\
\hline 1970 & 280.1 & 276.9 & 273.3 & 275.1 & 1105.4 \\
\hline 1971 & 262.0 & 293.0 & 333.0 & 307.0 & 1195.0 \\
\hline 1772 & 299.9 & 315.6 & 342.3 & 356.2 & 1313.9 \\
\hline 2973 & 378.4 & 371.5 & 395.3 & 413.5 & 1558.7 \\
\hline 1974 & 487.5 & 499.8 & 499.0 & 540.5 & 2034.9 \\
\hline 1975 & 531.9 & 535.0 & 527.9 & 550.5 & 2145.3 \\
\hline 1976 & 549.1 & 532.1 & 550.5 & 555.7 & 2217.5 \\
\hline 1977 & 564.7 & 581.6 & 608.8 & 590.1 & 2345.2 \\
\hline 1978 & 606.2 & 626.8 & 642.8 & 651.5 & 2527.2 \\
\hline AVGE & 421.6 & 430.3 & 441.5 & 450.4 & \\
\hline & Sle Potal- & MEAN- & STO. DEVIATION- & 136.4 & \\
\hline
\end{tabular}

\section*{FREIGHT AND SHIPPING PAYMENTS}

E 5. QUARTER-TD-QUARTER CHANGES IN THE ORIGINAL SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline YEAR & \(15 T\) quar & & 2NO GUAR & & 3RD QUAR & \(4 T H\) QUAR & AVGE \\
\hline 1969 & *************** & & 59.0 & & -17.0 & 13.0 & 18.3 \\
\hline 1970 & -33.0 & & 74.0 & & -22.0 & 0.0 & 4.8 \\
\hline 1971 & -72.0 & & 112.0 & & 19.0 & -26.0 & 8.3 \\
\hline 1972 & -70.0 & & 103.0 & & 0.0 & 18.0 & 12.8 \\
\hline 1973 & -46.0 & & 89.0 & & -12.0 & 29.0 & 15.0 \\
\hline 1974 & -1.0 & & 118.0 & & -46.0 & 66.0 & 34.3 \\
\hline 1975 & -98.0 & & 119.0 & & -61.0 & 44.0 & 1.0 \\
\hline 1976 & -90.0 & & 139.0 & & -71.0 & 28.0 & 1.5 \\
\hline 1977 & -85.0 & & 151.0 & & -35.0 & 3.0 & 8.5 \\
\hline 1978 & -80.2 & & 159.0 & & -46.2 & 27.5 & 15.0 \\
\hline AVGE & -63.9 & & 112.3 & & -29.1 & 20.3 & \\
\hline & TABLE TOTAL- & 459.1 & MEAN- & 11.8 & STO. DEVIATION- & 71.6 & \\
\hline
\end{tabular}

E 6. QUARTER-TO-QUARTER CHANGES IN THE FINAL SEASONALLY ADJUSTED SERIES (DII.,


\section*{FREIEHT ARD SHIFPIHG PAYMENTS}


\section*{FREIGHT ANO SHIPPING PAYMENTS}

F 3. MOHITCRING AND QUALITY ASSESSMENT STATISTICS
ALL THE MEASUPES EELOH APE IN THE RANGE FROM O TO 3 WITH AN ACCEPTANCE REGION FROM 0 TO 1.
1. THE RELATIVE COMTRIEUTIOH OF THE IPREGULAR OVER ONE GUARTER SPAN (FROM TASLE F 2.B). M1 = 0.338
2. THE RELATIVE CONTRIPUTIOM OF THE IFPEGULAR COMPONENT TO THE STATIONAPY PORTION OF \(=0.289\) THE VAPIA:ICE (FPCM TABLE F 2.F).
3. THE AMOUNT OF GUADTER TO GUADTER CHAHGE IN THE IPPEGULAR COMPCYENT AS COMPAPEO TO THE AMOUNT CF QUAPTER TO QUSDTER CHANGE IH THE TREND-CYCLE (FROM TABLE FZ.H).
4. THE AMCUNT OF AUTCCCRFELATIOH IN THE IFREGULAR AS DESCRIRED BY THE AVERAGE DURATION M4́ \(=0.695\) OF RU:は (TABLE F 2.D).
5. THE HUMBER OF GUARTEPS IT TAKES THE CHAPBE IN THE TREMD-CYCLE TO SUQFASS THE AMOUNT M5 \(=0.418\) OF CHAl:SE IN THE IRPESULAR (FFOM TABLE F 2.E).
6. THE AMOUNT OF YEAR TO YEAR CHAR:'EE IM THE IPREGULAP AS CCMPAPED TD THE AMDUNT OF YEAR \(M 6=0.766\) TO YEAD CHAB:GE IM THE SEASCUAL (FPOM TARLE F 2.HI.
7. THE AMOLAT OF STABLE SEASCAMLITY FPESEMT PELATIVE TO THE AMOUMT OF MOVING \(=0.300\) SEASO:!ALITY (FRCM TASLE F 2.I).
8. THE SIZE OF THE FLUCTUATIC:S IN THE SEASOHAL CCNFONENT THRCLEHCUT THE RHOLE SEPIES. M8 \(=0.683\)
9. ThE AVEPAGE LINEAP MOVEMEMT IN THE SEASCNAL COMROMENT THPOLGHOUT THE hHOLE SERIES.
\(M 9=0.642\)
10. SAPME AS \&, CALCULATED FCP RECENT YEARS ONLY.
11. SAME AS 9, CALCULATED FOR RECENT YEAES OHLY.

FREIGHT AND SHIPPIN:G PAYMENTS

G 1. CHART (X) - B 1. ORIGINAL SERIES (O) - E 1. CPIGIMML SEFIES MODIFIED FOR EXTREMES WITH ZERO FINAL WEIGHTS (*) - COINにICE:CE DF FOIMTS
(E) - APIMA EXTPAFOLATICN SCALE-APITH:ETIC 184.5
294.9
405.4
515.8


\section*{FPEIGHT ARX SHIPPING PAYMENTS}


\section*{FREIGHT AHD SHIPPIHS PAYMENTS}
```

G 3. CHART
(X) - D10. FINAL SEASCNAL FACTODS
(O) - D 8. FINAL U゙:*`のワFIED SI DIFFEREHCES
(+) - D 9. FIHAL DIFFEREHCES PICOIFIED FO? EXTREMES
(*) - COINCIDENCE CF FOINTS
(E) - EXTPAPOLATED SEASOH:AL FACTDOS
SCALE-ARITHMETIC
-79.7 -51.1 -22.6
5 . 9
34.4
6 3 . 0
15T QUARTER

```

```

 1976 * *
 1978 .* X
 1979.E
 -79.7 -51.1 -22.6 5.9 54.4 53.0
    ```













```

3RO QUARTER
1769
1970
1971
1 9 7 2
1973
1974
1975
1976
1977
1978
1 9 7 9
* X
*

```



\section*{Direct Versus Indirect \\ Seasonal Adjustment of Unemployed}

Both Sexes, 16 to 19 -
Monthly Brief Printout


THIS METHCD MODIFIES THE \(X-11\) VARYANT OF CEHSUS METHOD II BY 1. SHISKIN, A.H. YCUM AS AND J.C. RUSSRAVE OF FERPUARY, 1967. THE MPDIFICATICUS MLDE AFE BASEO OY THE METHODOLCGICAL RESEARCH OEVELCRED BY ESTELA EEE CAGUM, CHIEF OF THE SEAE己UAL AOJUSTHENT AND TIHE SERIES STAFF OF STATISTICS CANADA. SEPTEMSER, 1979
-FERIOD COVERED- \(15 T\) MONTH, 1967 TO \(12 T H\) MONTH,1978
-TYFE OF RUN - ADDITIVE SEASCNAL AOJUSTRENT
- RRIEF FPIHITOUT. AODITIVE SEASCNAL

EIGIEF FPITIOUT
-SIG:iA LIHITS FCR GRADUATIP:3 EXTREIE VALUES ARE 1.5 AN: 2.5.
-OHE YEAR OF FCRECASTS APD BACKCASTS FROM AN ARIMA MCOEL SELECTED BY THE USER.
\(\qquad\)

COLUMN NUMBER \(\quad 12345678901234567890123456789012345678901234567890123456789012345678901234567890\)
IMAGE OF THE MAIM OPTION CARD: C 0050 02671278 211
IMAGE OF THE ARIMA OPTIDN CACD: 011011

UMEMPLOYMENT BOTH SEXES \(16-19\) YEARS

A 1. ORIGINAL SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & JAN & FEB & MAR & \(A P R\) & may & JUN & JUL & AUG & SEP & OCT & NOV & DEC & TOTAL \\
\hline 1967 & 667. & 771. & 646. & 623. & 606. & 1463. & 1204. & 901. & 769. & e28. & 85 \% & 722. & 10061. \\
\hline 1956 & 650. & 769. & 722. & 619. & 616. & 1598. & 1302. & 823. & 741. & 723. & 776. & 727. & 10066. \\
\hline 1969 & 702. & 728. & 735. & 674. & 623. & 1436. & 1250. & 965. & 842. & 837. & 809. & 735. & 20235. \\
\hline 1970 & 884. & 878. & 862. & 883. & 775. & 1782. & 1451. & 1137. & 1132. & 1132. & 1235. & 1130. & 13261. \\
\hline 1971 & 1168. & 1127. & 1142. & 1031. & 982. & 1878. & 1727. & 1272. & 1100 & 1161. & 1844. & 1167. & 15089. \\
\hline 1972 & 1267. & 1356. & 1279. & 1134. & 952. & 1881. & 2624. & 1346. & 1259. & 1147. & 1230. & 1148. & 15823. \\
\hline 1973 & 1050. & 1201. & 1104. & 1108. & 986. & 1793. & 1571. & 1174. & 1209. & 1119. & 1247. & 1142. & 14704. \\
\hline 2974 & 1271. & 1260. & 1226. & 2029. & 1082. & 2053. & 1649. & 1293. & 1479. & 1400. & 1513. & 1460. & 26915. \\
\hline 1975 & 1731. & 1654. & 1676. & 1521. & 1553. & 2434. & 2177. & 1823. & 1673. & 1602. & 1583. & 1600. & 21027. \\
\hline 1076 & 1737. & 1654. & 1622. & 1551. & 1434. & 2247. & 2009. & 1791. & 1603. & 1569. & 1635. & 1553. & 20413. \\
\hline 1977 & 1680. & 1636. & 1648. & 1436. & 1397. & 2367. & 1957. & 1654. & 1610. & 1480. & 1542. & 1293. & 19700. \\
\hline 2978 & 1539. & 1570. & 1549. & 1359. & 1317. & 2057. & 1927. & 1542. & 1512. & 1430. & 1479. & 1447. & 18727. \\
\hline AVGE & 1294. & 1217. & 1184. & 1081. & 2027. & 1916. & 1671. & 1302. & 1252. & 1202. & 1263. & 1177. & \\
\hline & TAELE & OTAL- & 1858 & & CAN- & 290. & 570 & EVIATIO & 4 & & & & \\
\hline
\end{tabular}

AUTOPEGPESSIVE INTEGRATED MOVING AVERAGE (ADIMA) EXTPAPOLATION PROGRAM
A5. ARIMA EXTRAFOLATION MODEL (FORECAST)
THIS FRCBRAM WAS DEVELCFEO FOLLCNIH:G THE FROCEOUTES OUTLIPED IN
'TIME SERIES ANCLISIS' BY G. E. P. BOX AND G. H. JEYKINS.
AVERAGE FEFCEITAGE STCHI ARE
EFRCS IN FOFECASTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MODEL & TRAN. & ADOITIVE CO*STAMT & LAST 3 YEAPS & \begin{tabular}{l}
LAST \\
YEAR
\end{tabular} & \[
\begin{aligned}
& \text { LAST-1 } \\
& \text { YEAR }
\end{aligned}
\] & LAST-2 YEAR & \[
\begin{gathered}
\mathrm{CHI}-5 \mathrm{Q} \\
\text { pres. }
\end{gathered}
\] & \[
\begin{gathered}
\text { R-STUAPED } \\
\text { VALUE }
\end{gathered}
\] & & ESTIHATEO & PARAMETERS \\
\hline (0,1,1)(0,1,1) & NOPSE & 0.0 & 5.38 & 3.23 & 7.18 & 5.74 & \(15.67 \%\) & 0.9577 & \(0.4357 E 00\) & 0.7139 E 00 & \\
\hline
\end{tabular}

THE ROCDEL CHOSEN IS \((0,1,1)(0,1,1) 0\) HITH TRANSFORIGATION - NONE

AUTORZGOESSIVE IHTEGRATED MOVIHG AVEPAGE (ARIMA) EXTRAFOLATION FSOGRAM
A6. ARIHA EXTRAFOLATION ROOEL (BACKCAST)


\footnotetext{
THE MDDEL CHOSEH IS \((0,1,1)(0,1,1) 0\) WITH TRANSFORMATION - NOHE
}

B 1. ORIGINAL SERIES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & JAN & FEB & MAR & APR & Mar & Jun & JUL & ALG & SEP & OCT & Nov & DEC & TOTAL \\
\hline 1966 & 600. & 666. & 611. & 546. & 504. & 1402. & 1151. & 777. & 706. & 702. & 748. & 657. & 9072. \\
\hline 1967 & 667. & 731. & 646. & 623. & 606. & 1463. & 1204. & 901. & 769. & 828. & 859. & 722. & 10061. \\
\hline 1968 & 650. & 769. & 722. & 619. & 616. & 1598. & 1302. & 823. & 741. & 723. & 776. & 727. & 10066. \\
\hline 1969 & 702. & 728. & 735. & 674. & 623. & 1436. & 1250. & 865. & \(84 \hat{2}\). & 837. & 808. & 735. & 10235. \\
\hline 1970 & 964. & 878. & es2. & 883. & 775. & 1782. & 1451. & 1137. & 1132. & 1132. & 1235. & 1130. & 13281. \\
\hline 1971 & 1168. & 1127. & 1142. & 1031. & 982. & 1878. & 1727. & 1272. & 1190. & 1161. & 1244. & 1167. & 15089. \\
\hline 1972 & 1267. & 1356. & 1279. & 1134. & 952. & 1881. & 1624. & 1346. & 1259. & 1147. & 1230. & 1148. & 15623. \\
\hline 1973 & 1050. & 1201. & 1104. & 1108. & 986. & 1793. & 1571. & 1174. & 1809. & 1119. & 1247. & 1142. & 14704. \\
\hline 1974 & 1271. & 1260. & 1226. & 1029. & 1082. & 2053. & 1849. & 1293. & 1479. & 1400. & 1513. & 1460. & 16915. \\
\hline 1975 & 1731. & 1654. & 1676. & 1521. & 1553. & 2434. & 2177. & 1823. & 1673. & 1602. & 1583. & 1600. & 21027. \\
\hline 1976 & 1737. & 1654. & 1622. & 1551. & 1434. & 2247. & 2009. & 1791. & 1603. & 1560. & 1638. & 1558. & 20413. \\
\hline 1977 & 1680. & 1636. & 1648. & 1436. & 1397. & 2367. & 1957. & 1654. & 1610. & 1480. & 1542. & 1293. & 19700. \\
\hline 1978 & 1539. & 1570. & 1549. & 1358. & 1317. & 2057. & 1927. & \(154{ }^{2}\). & 1512. & 1430. & 1479. & 1447. & 18727. \\
\hline AVGE & 1148. & 1175. & 1140. & 1039. & 987. & 1876. & 1631. & 1261. & 1210. & 1164. & 1223. & 2137. & \\
\hline & TABLE & OTAL- & 10489 & & EAN- & 249. & 570. & EVIATIO & & & & & \\
\hline
\end{tabular}

ORIGINAL SERIES EXTRAPOLATED OHE YEAR AHEAD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & JAN & FEB & MAP & \(A P R\) & MAY & JUN & JUL & AUS & SEP & CCT & NOV & DEC & TOTAL \\
\hline 1979 & 1565. & 1559. & 1539. & 1389. & 1362. & 2108. & 1055. & 1607. & 1552. & 1475. & 1534. & 1442. & 19158 \\
\hline
\end{tabular} D10. FINAL SEASOHAL FACTORS
\(3 \times 5\) MOVII:S AVERAGE SELECTED.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & SAM & FEB & MAR & APR & May & JUN & JUL & AUG & SEP & OCT & NOV & DEC & AVGE \\
\hline 1967 & -121. & -6? & -130. & -193. & -231. & 630. & 389. & 14. & -67. & \(-64\). & -34. & \(-129\). & -0. \\
\hline 1958 & \(-113\). & \(-76\). & -125. & -187. & -234. & 625. & 383. & 11. & -65. & -67. & -35. & \(-130\). & -1. \\
\hline 1969 & -100. & -75. & -115. & -184. & -241. & 618. & 380. & 8. & -62. & -78. & -35. & -127. & -1. \\
\hline 1970 & -85. & -72. & -106. & -185. & -246. & 608. & 374. & 5. & -55. & -90. & -36. & -128. & -1. \\
\hline 1971 & -68. & -62. & -98. & \(-193\). & -252. & 605. & 350. & 1. & -49. & -105. & -36. & -128. & -1. \\
\hline 1972 & -47. & -53. & -93. & -209. & -254. & 607. & 368. & 1. & -47. & -110. & -40. & -132. & -2. \\
\hline 1973 & -27. & -43. & -67. & -226. & -254. & 610. & 368. & 5. & -50. & -131. & -48. & -133. & -1. \\
\hline 1976 & \(-10\). & -41. & \(-79\). & -237. & -250. & 611. & 367. & 7. & -52. & -137. & -57. & \(-137\). & -1. \\
\hline 1975 & -2. & -39. & -69. & -240. & -250 . & 612. & 364. & 7. & -52. & -137. & -65. & -140. & -1. \\
\hline 1976 & 1. & -40. & -59. & -236. & -250. & 611. & 361. & 8. & -54. & -136. & -71. & \(-141\). & -0. \\
\hline 1977 & -4. & -35. & -49. & \(-228\). & -252 . & 605. & 355. & 0. & -53. & -133. & -73. & -141. & -0. \\
\hline 1978 & -11. & \(-34\). & -44. & \(-220\) & -252. & 600. & 349. & 5. & \(-50\). & \(-131\). & -71. & -141. & 0. \\
\hline AVGE & -49. & -53. & -88. & -211. & -247. & 612. & 369. & 7. & -55. & -111. & -50. & -134. & \\
\hline & TÂEle & TAL- & -ii & & EAN- & -1. & 574. & VATIC & & & & & \\
\hline
\end{tabular}

010A. SEASOHAL FACTOES, OHE YERR AHEAD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Jan & PEB & M: & AFR & May & JUN & JUL & A 46 & SEP & OCT & 110 V & DEC & AVGE \\
\hline 1979 & -17. & -31. & -40. & -217. & -254. & 59.9 & 347. & 2. & -65. & \(-130\). & \(-70\). & -142. & -0. \\
\hline
\end{tabular}

\section*{UNEMPLOYMENT BOTH SEXES 16-19 YEars}
011. FINAL SEASONALLY ADJUSTED SERIES
 IHOIRECT SEASOMAL ADJUSTHENT OF COMFOSITE SERIES STATISTICS CAYMADA, MANCH, 1979

\section*{SERIES TITLE- UNEHPLOYHENT BDTH SEXES 16-19 YEARS}

SERIES NO. OOSO
PEPIOD COVERED- \(1 / 67\) TO 12/7B.

THERE ARE 2 COMFCHEATS IA THE COMFOSITE.

D10. FIHAL SEASONAL FACTORS
\(3 \times 5\) MOVII:S AVEPAGE SELECTED.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & Jard & FEB & MAR & Arp & Mar & Jut & JUL & AUS & SEP & OCt & 160 V & DEC \\
\hline 1967 & -136. & -70. & \(-130\). & -194. & -231. & 645. & 377. & 16. & -70. & -68. & -33. & -130. \\
\hline 1968 & -128. & -75. & -125. & -188. & -235. & 641. & 396. & 12. & -68. & -72. & -35. & -130. \\
\hline 1989 & -114. & -79. & -215. & -104. & \(=243\). & 635. & 30\%. & 8. & -69. & -82. & -40. & -127. \\
\hline 1970 & -Cs. & -81. & -107. & -179. & -24. & 624. & 391. & 2. & -58. & -95. & -41. & -128. \\
\hline 1971 & -75. & -76. & -100. & -176. & -257. & 617. & 394. & \(-4\). & \(-50\). & \(-110\). & \(-44\). & \(-129\). \\
\hline 1972 & -51. & \(-88\). & -95. & \(-182\). & -260. & 612. & 380. & -4. & -49. & -122. & -51. & -134. \\
\hline 1973 & -27. & -57. & -88. & \(-193\). & -26\% & 609. & 373. & - 0. & -50. & -132. & -60. & \(-136\). \\
\hline 1974 & -8. & -50. & -80. & -ctoz. & -257. & 605. & 365. & 4. & -51. & -136. & -68. & \(-140\). \\
\hline 1975 & 1. & \(-4 \hat{C}\). & -69. & \(-209\). & - 255. & 304. & 356. & 7. & -50. & \(-133\). & -75. & -142. \\
\hline 1976 & 4. & -30. & -57. & -215. & -253. & 601. & 350. & 9. & -52. & -234. & -80. & -142. \\
\hline 1977 & 0. & -34. & -46. & -216. & -25e. & 594. & 350. & 9. & -52. & -131. & -79. & -141. \\
\hline 1970 & -6. & -31. & -41. & -213. & -252. & 588. & 346. & 6. & -49. & -130. & \(-74\). & -141. \\
\hline AVEE & -53. & -58. & -88. & -196. & \(-250\). & 615. & 374. & 5. & -55. & -112. & -57. & -135. \\
\hline
\end{tabular}

TABLE TOTAL- -128. MEAR- -1. STD. DEVIATION - 37.
OIOA. SEASOHAL FACTORS, OIE YEAR AHEAD
\begin{tabular}{cccccccccccc} 
YEAR & JAN & FEB & MAR & \(A F R\) & MAY & JUN & JUL & NUS & SEP \\
1979 & -10. & -30. & -39. & -212. & -251. & 586. & 344. & 5. & -47. & -129. & -71.
\end{tabular}

UNEMPLOYMENT BOTH SEXES \(16-19\) YEARS


MEASUGES OF ROUGHISESS R1 AND R2 FOR SEASOHALLY ADJUSTED SERIES
DIRECT IHOIRECT PERCENTAGE CHANSE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & FULL SERIES & LAST THPEE YEAPS & FULL SERIES & LAST THREE YEAPS & FULL SEPIES & LAST THREE YERES \\
\hline RI-MEAM SQUARE ERPCR & 4892.219 & 5399.961 & 4708.230 & 5113.634 & 3.761\% & 5.209\% \\
\hline RJ-ROOT MEAN SQUARE ERROR & 69.944 & 73.484 & 68.617 & 71.545 & 1.898\% & 2.639\% \\
\hline R2-PIEAN SQUARE EPPOR & 2090.647 & 2374.917 & 2042.854 & 2271.957 & \(2.286 \%\) & 4. \(335 \%\) \\
\hline P2-ROOT MEAN SQUARE ERROR & 45.724 & 48.733 & 45.198 & 47.645 & 1. \(150 \%\) & 2.190\% \\
\hline
\end{tabular}
pOSITIVE FEREENTAEE Chariges indicate that the indirect seasorally adjusted
CDMPOSITE IS Smoother than the direct seasorally adjusted corarosite.

\section*{Appendix A}

\section*{THE X-11-ARIMA SPECIFICATIONS}

\section*{Symbolic Notation}
Description
Original series (O) composed
of trend-cycle (C), seasonal (S).
trading-day (D), and irregulai
(I') variations.
(I') variations.

Irregular variations ( \(I^{\circ \prime}\) ) include holiday variation, major strikes, etc., which may be removed by prior adjustment factors (P), plus extremes (E) and residual or "true" irregular (I). Extremes are defined as irregular values falling outside 2.5 standard deviations ( \(\sigma\) 's). For the purpose of ARIMA extrapolation these extreme values can be replaced by the corresponding function values of a fitted ARIMA model chosen in a first iteration. For the purpose of fitting curves in Parts C and D, the unmodified irregular (I) values are assigned linearly graduated weights varying between 0.0 and 1.0 for values between \(2.5 \sigma\) and \(1.5 \sigma\). Values within \(1.5 \sigma\) receive full weight.

The selection of 1.5 and 2.5 as o limits is optional. For special purposes other limits may be advisable. (See Chapter III.)

\section*{Multiplicative}
\(O=C S I{ }^{\prime \prime} D ;\)
\(D=D_{p} D_{r} ;\)
\(D_{p}=\) Prior trading-day adjustment factors;
\(\mathrm{D}_{\mathrm{r}}=\) Any residual trading-day variation left after applying \(D_{p}\) (or all trading-day variation if no prior trading-day factors are used);
\(\mathrm{I}^{\prime \prime}=\mathrm{PE} \mathrm{I}\);
\(\mathbf{I}^{\prime}=\mathbf{E} I\), where \(\mathbb{E}=\left|I^{\prime}-1.0\right|>2.50 I^{\prime}\);
\(\left[\mathbf{W}=1.0+\mathbf{w}\left(\mathrm{I}^{\prime}-1.0\right)\right.\);
where \(w=0.0\) when \(\left|1^{\prime}-1.0\right|>\left.2.50\right|^{\prime}\)
\[
\begin{aligned}
& =1.0 \text { when }\left|I^{\prime}-1.0\right|<\mathbb{I} .5 \sigma I^{\prime} \\
& =2.5-\left|\mathbb{I}^{\prime}-1.0\right| / \sigma \mathbb{I}^{\prime}
\end{aligned}
\]
when \(1.50 I^{\circ} \leqslant\left|I^{\prime}-1.0\right| \leqslant 2.50 I^{\circ}\).

In general, if \(\mathrm{U}=\) upper \(\sigma\) limit and \(\mathrm{L}=\) lower \(\sigma\) limit,
\(w=\frac{\mathbf{U}}{\mathrm{U}-\mathbf{L}}-\frac{1.0}{\mathrm{U}-\mathbf{L}}\left[\left|\mathbf{I}^{\prime}-1.0\right| /\left.\sigma\right|^{\mathbf{j}}\right]\)
when \(\mathrm{Lo}^{\prime} \leqslant\left|\mathrm{I}^{\prime}-1.0\right| \leqslant \mathrm{U} \mathrm{I}^{\prime}\).
\(\mathrm{M}_{\mathbf{i}} \mathrm{Y}\) represents a moving average of length i computed from series \(Y\).

NOTE: The irregular (I) is presented here as having a mean of 1.000 although it is shown in the computer printout as a percentage with a mean of 100.0. Seasonal, trading-day, and prior factors are also shown as percentages.

\section*{Specifications - Monthly X-11-ARIMA}

\section*{Part A. Prior Adjustments}

This part describes the various prior adjustments that the user should make to the original unadjusted series,
when applicable, to produce efficient estimates of the seasonal and trading-day factors. If no prior adjustments are needed, the computations start with those described in Part B.

Part A. Prior Adjustments - Continued

Table number and title Multiplicative and additive or \(\log\) additive

Symbolic notation

\section*{Multiplicative}

Additive or log additive

NOTE: Additive descriptions are (underlined).

A1. Original series

A2. Prior monthly adjustment factors

A3. Original series adjusted by prior monthly adjustment factors

A4. Prior trading-day adjustment factors

Original monthly time series.

To adjust for the effect of certain holidays, change the level of the series, etc., the user may supply monthly adjustment factors.

Divide the A2 factors into (subtract the A2 factors from) the original data (A1).

To adjust for trading-day variation, the user may supply seven daily weights from which the computer constructs monthly adjustment factors that are divided into (A1) or (A3). The computer adjusts the seven daily weights to total 7.000 . For the multiplicative case, the monthly calendar factors are computed by the formula
\(M_{i}=\frac{X_{1 i}\left(D_{p 1}\right)+X_{2 i}\left(D_{p 2}\right)+\ldots+X_{7 i}\left(D_{p 7}\right)}{N_{i}}\),
where \(\mathrm{M}_{\mathrm{i}}\) is the monthly factor for month i ;
\(\mathrm{X}_{\mathrm{ji}}\) is the number of times that day-of-the-week j occurs in month i;
\(D p_{j}\) is the prior daily weight for day-of-the week j:
\(\mathrm{N}_{\mathrm{i}}\) is 31,30 , or 28.25 depending upon whether month i is a 31- or 30-day month or February.
If length-of-month variation is to be included in the trading-day factors, \(\mathrm{N}_{\mathrm{i}}\) is 30.4375 for all months. This option is not available for the additive case. The result is printed in Table B1. A similar trading-day adjustment can be based upon factors estimated from the data in Parts \(B\) and C, below.

A5. ARIMA extrapolation model (forecast)

To extend the series with one extra year of forecasts, three ARIMA models are automatically fitted to the original series or, if applicable, to the original series modified by A2, A4 and extreme values replaced by the corresponding function values of the ARIMA model chosen in a first iteration. Thus, a prior treatment of extreme values consists of testing the residuals from the fitted ARIMA model of the first iteration that fulfills the criteria for acceptance (see below) against \(\pm 2.5 \sigma\). The values that fall outside this interval are replaced by the corresponding function valucs. The same ARIMA model is then fitted to the modified data to produce the forecasts. No model is automatically selected and no forecasts are made if: (1) the absolute average forecasting error for the last three years, is greater than \(12 \%\); (2) the chi-square probability value is smaller than 10\%; or (3) there are evidences of overdifferencing. These criteria of acceptance apply only to the three programsupplied models and not to a user-supplied model.
\(0=\mathrm{CSI}^{\prime \prime} \mathrm{D}\).
\(\mathrm{O}=\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime \prime}+\mathrm{D}_{\mathrm{r}}\).

\section*{P.}
P.
\(\mathrm{O} / \mathrm{P}=\mathrm{CSI} \mathrm{I}^{\prime} \mathrm{D}\).
\(\mathrm{O}-\mathrm{P}=\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\).
\(\mathrm{D}_{\mathrm{p}}\) NA
\(\frac{C S I D}{D_{p}}=\operatorname{CSID}\).

Part A. Prior Adjustments - Concluded


\section*{Part B. Preliminary Estimation of Trading-day Variation and Weights}

Preliminary trading-day adjustment factors and weights for reducing the effect of extreme or near-
extreme irregular values are developed from the data. These estimates are refined in Part C, where final estimates are developed.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Table number and title} & \multirow[b]{2}{*}{Multiplicative and additive or log additive} & \multicolumn{2}{|l|}{Symbolic notation} \\
\hline & & Multiplicative & Additive or log additive \\
\hline \multirow[t]{3}{*}{B1. Prior adjusted original series or original series} & Either the original series or original series adjusted by: (1) the prior factors shown in A2; and/or (2) the prior factors shown in A4; and/or (3) the prior ARIMA modifications. & \multirow[t]{3}{*}{\(\operatorname{CSI}^{\text {r }} \mathrm{D}_{\mathrm{r}}\).} & \multirow[t]{3}{*}{\(\mathrm{C}+\mathrm{S}+\mathrm{r}^{+} \mathrm{D}_{\mathrm{r}}\).} \\
\hline & The latter consists of extending the original series, at both ends, with one year of backcasts and forecasts or only-forecasts, from the Applicable, replacement of extreme values by the corresponding function values of the ARIMA model chosen. & & \\
\hline & An F test for the presence of seasonality (see Chapter I) is applied to BI and a message is printed to indicate whether or not seasonality is present at the \(0.1 \%\) level & & \\
\hline \multirow[t]{2}{*}{B2. Preliminary trendcycle} & Compute a centred 12 -term moving average (a 2 -term average of a 12 -term average) of (B1) as an estimate of the trend-cycle. & \multirow[t]{2}{*}{\(\mathrm{Mc}_{\mathrm{C}}\left[\mathrm{CS} \mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\right]=\mathrm{C}_{1}\).} & \multirow[t]{2}{*}{\(\mathrm{M}_{\mathrm{C}}\left[\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\right]=\mathrm{C}_{1}\)} \\
\hline & The user has the option of computing a centred 24-term moving average (2-term average of
a 24 -term average) of B 1 as a preliminary estimate of the trend-cycle (see Chapter I). & & \\
\hline B3. Unmodified
(differences)
S-I ratios & Divide (B2) into (B1) (subtract (B2) from (B1)) to obtain seasonal-irregular (S-I) ratios (differences). & \[
\begin{aligned}
& \operatorname{cs~I}^{\prime} \mathrm{D}_{\mathrm{r}} / \mathrm{C}_{1}= \\
& \mathrm{SI}^{\prime} \mathrm{D}_{\mathrm{r}}
\end{aligned}
\] & \[
\begin{aligned}
& \left(C+S+I^{\prime}+D_{r}\right)-C_{1}= \\
& S+1^{\prime}+D_{r} .
\end{aligned}
\] \\
\hline  & To the B3 S-I ratios (differences), apply a weighted 5 -term moving average separately to each month to estimate preliminary sath for
factors. See Appendix B for the weights for the 5 -term ( \(3 \times 3\) ) average. & \(\mathrm{M}_{\mathrm{S}}\left[\mathrm{S} \mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\right]=\mathrm{S}\). & \(M_{S}\left[S^{+1} 1^{+}+D_{r}\right]=S\). \\
\hline
\end{tabular}

Part B. Preliminary Estimation of Trading-day Variation and Weights - Continued
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Table number and title} & \multirow{2}{*}{Multiplicative and additive or log additive} & \multicolumn{2}{|l|}{Symbolic notation} \\
\hline & & Multiplicative & Additive or \(\log\) additive \\
\hline \multirow[t]{7}{*}{B4. Replacement values for extreme \(\mathrm{S}-\mathrm{I}\) ratios (differences) - Concluded} & Compute a centred 12 -term moving average of the preliminary factors for the entire series. To obtain the six missing values at either end of this average, repeat the first (last) available moving average value six times. Adjust the factors to sum to 12.000 ( 0.000 ) (approximately) over any 12 -month period by dividing (subtracting) the centered 12 -term average into (from) the factors. & & \\
\hline & Divide the seasonal factor estimate into the S-I ratios (subtract the seasonal factor estimaxes from the S -I differences) to obtain an estimate of the irregular component. & S I' \(\mathrm{D}_{\mathrm{r}} / \mathrm{S}=\mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\). & \(\left(\mathrm{S}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{F}}\right)-\mathrm{S}=\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\) \\
\hline & Compute a moving five-year standard deviation \((\sigma)\) of the estimates of the irregular component and test the irregulars in the central year of the five-year period against 2.50 . Remove values beyond 2.50 as extreme and recompute the moving five-ycar \(a\). & & \\
\hline & Assign a zero weight to irregulars beyond \(2.5 \sigma\) and a weight of 1.0 (full weight) to irregulars within 1.50 . Assign a linearly graduated weight between 0.0 and 1.0 to irregular between \(2.5 \sigma\) and 1.50 . & & \\
\hline & For values receiving less than full weight, the corresponding \(\mathrm{S}-\mathrm{I}\) ratios (differences) are replaced with an average of the ratio (difference) times its weight and the two nearest preceding and two nearest following full-weight ratios (differences) for that month. & \[
\begin{aligned}
& \mathrm{I}^{\prime}=\mathrm{IW} \text { for } \\
& \left|\mathrm{I}^{\prime}-1.0\right|>1.5 \sigma \mathrm{I}^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{I}^{\prime}=\mathrm{I}^{\mathrm{w}} \text { for } \\
& \mathrm{I}^{\prime} \mid>1.5 \mathrm{I}^{\prime}
\end{aligned}
\] \\
\hline & For the first two years, the \(\sigma\) limits computed for the third year are used; and for the last two years, the \(\sigma\) limits computed for the thirdfromend year are used. To replace an extreme ratio (difference) in either of the two beginning or ending years, the average of the ratio (differenee) times its weight and the three nearest full-weight ratios (differences) for that month is taken. & & \\
\hline & The moving five-year o's and the replacement values for the extreme \(\mathrm{S}-\mathrm{I}\) ratios (differences) are shown in Table B4. & S \({ }^{\text {w }}{ }^{\text {d }}\) r & \(\mathrm{S}+\mathrm{I}^{\mathrm{w}}+\mathrm{D}_{\mathrm{r}}\). \\
\hline \multirow[t]{3}{*}{B5. Seasonal factors} & To the B3 S-I ratios (differences) with extreme values replaced by the corresponding B4 values apply a weighted 5 -term average to each month separately to estimate preliminary seasonal factors. & \(\mathrm{M}_{\mathrm{S}}\left[\mathrm{S}^{\mathbf{w}} \mathrm{D}_{\mathrm{s}}\right]=\mathrm{S}_{1}\). & \(\mathrm{M}_{\mathrm{S}}\left[\mathrm{S}+\mathrm{I}^{\mathrm{w}}+\mathrm{D}_{\mathrm{r}}\right]=\mathrm{S}_{1}\) \\
\hline & Adjust the factors to sum to 12.000 using a centered 12 -term moving average (see second paragraph in B4). & & \\
\hline & To obtain factors for the six missing values at either end of the series due to the use of the centered 12 -term trend-cycle moving average in step B2, repeat the nearest available factor for that particular month. & & \\
\hline B6. Seasonally adjusted series & Divide (B5) into (B1) (subtract (B5) from (BI)) to obtain a preliminary seasonally adjusted series. & \[
\begin{aligned}
& \text { C S I }{ }^{\prime} D_{r} / S_{1}= \\
& \text { C I } I^{\prime} D_{r} .
\end{aligned}
\] & \[
\begin{aligned}
& \left(\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\right)-\mathrm{S}_{1}= \\
& \mathrm{C}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}} .
\end{aligned}
\] \\
\hline B7. Trend-cycle & Apply the variable trend-cycle curve routine (modified so that the weighted 13 -term average is selected for \(1 / \overline{\mathrm{C}}>0.99\) ) to (B6). See note at the end of these specifications for details of the variable trend-cycle curve routine. & \(\mathrm{M}_{\mathrm{C}}\left[\mathrm{Cl} \mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\right]=\mathrm{C}_{2}\). & \(\mathrm{M}_{\mathrm{C}}\left[\mathrm{C}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\right]=\mathrm{C}_{2}\). \\
\hline
\end{tabular}

Part B. Preliminary Estimation of Trading-day Variation and Weights - Continued


Part B. Preliminary Estimation of Trading-day Variation and Weights - Continued
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Table number and title} & \multirow{2}{*}{Multiplicative and additive or log additive} & \multicolumn{2}{|l|}{Symbolic notation} \\
\hline & & Multiplicative & Additive or log additive \\
\hline \multirow[t]{2}{*}{B13. Irregular series} & Divide (B7) into (subtract (B7) from) (B11) to obtain a preliminary irregular series. & \multirow[t]{2}{*}{\(\mathrm{CI} \mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}} / \mathrm{C}_{2}=\mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\).} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \left(\mathrm{C}+\mathrm{I}^{2}+\mathrm{D}_{\mathrm{r}}\right)-\mathrm{C}_{2}= \\
& \mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}} .
\end{aligned}
\]} \\
\hline & Adjustment for Trading-Day Variation (optional). Steps B14 to B16 and B18 to B19 are included only when a trading-day adjustment based upon the information in the monthly series is desired. To adjust for trading days on the basis of external information, Table A4 is used. Various combinations of these options are described in Chapter III. & & \\
\hline \multirow[t]{3}{*}{B14. Extreme irregular values excluded from tradingday regression} & Sort B13 irregulars for 31 -day months into seven groups depending upon the day of the week the month begins. Likewise, sort \(30-\) day months into seven groups. For February, separate leap years from non-leap years. & & \\
\hline & For 31- and 30 -day months and non-leap-year Februaries, compute the mean of each group and the squared deviations of the values from their respective means. From these, compute a "trading-day" variance ( \(\sigma_{t}^{2}\) ) over the entire series, which is used to identify extremes. Identify and remove values beyond \(2.5 \sigma_{\mathrm{t}}\) limits. (The built-in a limit is 2.5 , but a different limit for identifying extremes may be specified in the option card.) See Chapter III. & & \\
\hline & Recompute the means and \(\sigma_{\mathrm{t}}\) and re-identify and remove extremes beyond \(2.5 \sigma_{\mathrm{t}}\). For teapyear Februaries, throw out values that deviate from \(1.0(0.0)\) by more than \(2.5 \sigma_{\mathrm{t}}\). Values removed as extremes are shown in Table B14. They are not included in the tradingday regression in B15. & \begin{tabular}{l}
For \(\left|\mathrm{I}^{\prime}-1.0\right|>\)
\[
2.5 \sigma_{\mathrm{t}} \mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}
\] \\
removed from regression.
\end{tabular} & For \(\left|\mathrm{I}^{\prime}\right|>2.5 \sigma_{\mathrm{t}}\) \(\left[\mathrm{I}^{\circ}+\mathrm{D}_{\mathrm{r}}\right]\) removed from regression. \\
\hline \multirow[t]{11}{*}{B15. Preliminary trading-day regression} & Estimate by least squares seven daily weights from the Bi3 irregular (with extremes omitted) using the specification: & \multirow[t]{11}{*}{\(\left[\mathrm{IL}_{\mathrm{L}}\right]\) ] \(\mathrm{D}_{\mathrm{r}}\).} & \multirow[t]{11}{*}{\(\left[1+D_{r}\right] \rightarrow \mathrm{D}_{\mathrm{r}}\).} \\
\hline & Multiplicative: & & \\
\hline & \begin{tabular}{l}
\[
\left(I D_{\mathrm{r}}\right)_{\mathrm{i}}-1.0=\frac{\mathrm{X}_{1 \mathrm{i}} \mathrm{~B}_{1}+\mathrm{X}_{2 \mathrm{i}} \mathrm{~B}_{2}+\cdots+\mathrm{X}_{7 \mathrm{i}} \mathrm{~B}_{7}+\mathrm{I}_{\mathrm{i}}}{} ;
\] \\
where \(\left(1 D_{\mathrm{r}}\right)_{\mathrm{i}}\) is the irregular component for month i with residual trading-day variation;
\end{tabular} & & \\
\hline & Additive:
\[
\left[I+D_{r}\right]_{i}=X_{1 i} B_{1}+X_{2 i} B_{2}+\cdots+X_{7 i} B_{7}+I_{i}
\] & & \\
\hline & where \(\left[I+D_{r}\right]_{i}\) is the irregular component for month i with residual trading-day variation; & & \\
\hline & \(\mathrm{X}_{\mathrm{ji}}\) is the number of times that day-of-theweek joccurs in month \(i\); & & \\
\hline & Monday \(=1, \cdots\), Sunday \(=7\); & & \\
\hline & \(B_{j}\) 's are the seven "true" daily weights, & & \\
\hline & where \(\sum_{\Sigma}^{7} \mathrm{~B}_{\mathrm{j}}=0\); & & \\
\hline & \(\mathrm{N}_{\mathrm{i}}\) is either 31,30 , or 28.25 , if no prior adjustment was made, depending upon whethet month i is a 31 - or 30 -day month or February. \(\mathrm{N}_{\mathrm{i}}\) is equal to the sum of the prior daily weights (Dp) for all the days of the month if a prior adjustment was made; & & \\
\hline & \(\mathrm{I}_{\mathrm{i}}\) is the "true" irregular from month i . & & \\
\hline
\end{tabular}

Part B. Preliminary Estimation of Trading-day Variation and Weights - Continued


Part B. Preliminary Estimation of Trading-day Variation and Weights - Concluded
\begin{tabular}{ll}
\hline Table number and title \\
& Multiplicative and additive or log additive \\
\hline
\end{tabular}

\section*{Part C. Final Estimation of Trading-day Variation and Irregular Weights}

The original series adjusted for tradingday variation is modified for extreme and near-extreme values with the B17 weights, and improved trend-cycle and seasonal
estimates are obtained. These improved estimates are divided into (subtracted from) the original series, and final trading-day factors and weights are estimated from the resulting irregular.


Part C. Final Estimation of Trading-day Variation and Irregular Weights - Continued
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Table number and title} & \multirow[b]{2}{*}{Multiplicative and additive or \(\log\) additive} & \multicolumn{2}{|l|}{Symbolic notation} \\
\hline & & Multiplicative & Additive or \(\log\) additive \\
\hline C 5. Seasonal factors & Same as BS except that C4 ratios (differences) are used. & \(\mathrm{M}_{\mathrm{S}}\left[\mathrm{S}[\mathrm{w}]=\mathrm{S}_{3}\right.\). & \(\mathrm{M}_{\mathrm{S}}\left[\mathrm{S}+\mathrm{l}^{\mathrm{w}}\right]=\mathrm{S}_{3}\). \\
\hline C 6. Seasonally adjusted series & Divide (C5) into (C1) (subtract (C5) from (Cl)) to obtain a preliminary seasonally adjusted series. & \(\mathrm{CSIW} / \mathrm{S}_{3}=\mathrm{CIw}\). & \(\left[\mathrm{C}+\mathrm{S}+\mathrm{I}^{\mathrm{w}}\right]-\mathrm{S}_{3}=\mathrm{C}+\mathrm{I}^{w}\). \\
\hline C 7. Trend-cycle & Apply the variable trend-cycle curve routine to (C6) to estimate a preliminary trend-cycle. & \(\mathrm{M}_{\mathrm{C}}\left[\mathrm{C} \mathrm{I}^{\mathrm{w}}\right]=\mathrm{C}_{4}\). & \(\mathrm{M}_{C}\left[\mathrm{C}+\mathrm{I}^{\mathbf{w}}\right]=\mathrm{C}_{4}\). \\
\hline \multicolumn{4}{|l|}{C 8. Not used} \\
\hline C 9. Modified S-I ratios (differences) & Divide (C7) into (C1) to obtain S-I ratios (subtract (C7) from (C1) to obtain S-I differences). & \(\mathrm{CSSI} / \mathrm{C}_{4}=\mathrm{SI}^{\mathrm{w}}\). & \(\left[\mathrm{C}+\mathrm{S}+\mathrm{I}^{\mathrm{w}}\right]-\mathrm{C}_{4}=\mathrm{S}+\mathrm{I}^{\mathrm{w}}\) \\
\hline C10. Seasonal factors & Same as B10 except that C9 S-I ratios (differences) are used. & \(\mathrm{M}_{S}\left[\mathrm{~S} \mathrm{I}^{\mathbf{w}}\right]=\mathrm{S}_{4}\). & \(\mathrm{M}_{\mathbf{S}}\left[\mathrm{S}+\mathrm{I}^{\mathbf{w}}\right]=\mathrm{S}_{\mathbf{4}}\). \\
\hline C11. Seasonally adjusted series & Reintroduce trading-day variation and extreme and nearextreme values by dividing (BI) by (CIO) (subtracting (CIO) from (BI)). & C S I' \(\mathrm{D}_{\mathrm{r}} / \mathrm{S}_{\mathbf{4}}=\mathrm{Cl}^{\prime} \mathrm{D}_{\mathrm{r}}\). & \[
\begin{aligned}
& {\left[C+S+1^{\prime}+D_{r}\right]-S_{4}=} \\
& C+I^{\prime}+D_{r} .
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{C12. Not used} \\
\hline C13. Irregular series & Divide (C11) by (C7) (subtract (C7) from (C11)) to obtain an estimate of the irregular. & \(\mathrm{Cl}^{\prime} \mathrm{D}_{\mathrm{r}} / \mathrm{C}_{4}=\mathrm{I}^{\prime} \mathrm{D}_{\mathrm{r}}\). & \[
\begin{aligned}
& {\left[\mathrm{C}+\mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}}\right]-\mathrm{C}_{4}=} \\
& \mathrm{I}^{\prime}+\mathrm{D}_{\mathrm{r}} .
\end{aligned}
\] \\
\hline & Adjustment for Trading-day Variation (optional). When the trading-day routine is applied in B14 to B16 and B18 to B19, it is reapplied in C14 to C16 and C18 to C19 to obtain improved estimates. & & \\
\hline C14. Extreme irregular values excluded from tradingday regression & In reapplying the trading-day routine, the variance is computed using the 22 types of monthly trading-day factors shown in B16 instead of the means of the 31- and 30 -day months and non-leap-yeat Februaries. This improves the treatment of extremes, particularly for leap-year Februaries. Extremes beyond \(2.5 o_{q}\) are shown in C 14 . & For \(\left|\mathrm{I}^{\prime}-1.0\right|>2.5 \sigma_{\mathrm{t}}\) \(I^{*} D_{r}\) removed from regression. & For \(\left|\mathrm{I}^{\prime}\right|>2.5 a_{1}\) \(I^{\prime}+D_{r}\) removed from regression. \\
\hline \multirow[t]{10}{*}{C15. Final trading-day regression} & Same as B15 except that the computations are based on C13 (with extremes omitted). & \(\left[1 \mathrm{D}_{\mathrm{r}}\right] \rightarrow \mathrm{D}_{\mathrm{r}}\). & \(\left[1+\mathrm{D}_{\mathrm{r}}\right] \rightarrow \mathrm{D}_{\mathrm{r}}\). \\
\hline & Using the standard errors of the seven daily weights, compute estimates of the standard errors of the monthly calendar adjustment factors \(\mathrm{M}_{\mathrm{i}}\) as follows: & & \\
\hline & Multiplicative: & & \\
\hline & 31 -day months beginning on day-af-the-week j: & & \\
\hline & \[
{ }^{a_{M 1}} M_{31}=\frac{1}{31}\left[\dot{\sigma}_{j}^{2}+\partial_{j+1}^{2}+\hat{\sigma}_{j+2}^{2}\right.
\] & & \\
\hline & \(+2\left(\partial_{j, j+1}+\partial_{j, j+2}+\partial_{j+1, j+2)}\right]^{1 / 2}\), & & \\
\hline & 30-day months beginning on day-of-the-week j: & & \\
\hline & \[
\partial_{M_{30}}=\frac{1}{30}\left[\partial_{j}^{2}+\partial_{j+1}^{2}+2 \hat{o}_{j, j+1}\right]^{1 / 2}
\] & & \\
\hline & Leap-year Februaries: \(\hat{o}_{M_{29}}=\frac{1}{29} \hat{\delta}_{\mathrm{j}}\); & & \\
\hline & Non-leap-ycar Februaries: \(\hat{\sigma}_{\mathrm{M}_{28}}=0\); where \(\hat{o}_{j+7}=\partial_{j}\). & & \\
\hline
\end{tabular}

Part C. Final Estimation of Trading-day Variation and Irregular Weights -- Concluded


Part D. Final Estimation of Seasonal Factors, Trendcycle, Irregular, and Seasonally Adjusted Series
The original series adjusted for trading-day variation is modified for extreme and near-extreme values by the

C17 final weights and final estimates of the seasonal, trend-cycle, and irregular are derived.
\begin{tabular}{llll}
\hline Table number and title & Multiplicative and additive or log additive & Symbolic notation & \\
\hline
\end{tabular}

Part D. Final Estimation of Seasonal Factors, Trend-cycle, Irregular, and Seasonally Adjusted Series - Continued
Table number and title
Multiplicative and additive or log additive

Part D. Final Estimation of Seasonal Factors, Trend-cycle, Irregular, and Seasonally Adjusted Series - Concluded
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Table number and title} & \multirow[b]{2}{*}{Multiplicative and additive or log additive} & \multicolumn{2}{|l|}{Symbolic notation} \\
\hline & & Multiplicative & Additive or log additive \\
\hline DIIA. Final seasonally adjusted series with revised yearly totals & This is an optional table that produces a modified seasonally adjusted series where the annual tolals of D11 are equal to those of A1 or B1, when prior adjustments are not made (see Chapter 1). & & \\
\hline D12. Final trend-cycle & Divide (D1) by (D10) (subtract (D10) from (DII) to obtain a modified seasonally adjusted series. Apply the variable trend-cycle curve routine to the modified seasonally adjusted series to obtain the final trend-cycle. & \(\mathrm{M}_{\mathrm{C}}\left[\mathrm{C} \mathrm{I}^{\mathrm{w}}\right]=\mathrm{C}_{7}\). & \(\mathrm{M}_{\mathrm{C}}\left[\mathrm{C}+\mathrm{I}^{\mathrm{w}}\right]=\mathrm{C}_{7}\). \\
\hline D13. Final irregular & Divide (D12) into (D11) (subtract (D12) from (DII)) to obtain the final irregular. Compute the standard deviation for each year, each month, and the entire series. & \(\mathrm{CI}^{\prime} / \mathrm{C}_{7}=\mathrm{I}^{\prime}\). & \(\left[\mathrm{C}+\mathrm{I}^{\prime}\right]-\mathrm{C}_{7}=\mathrm{I}^{\prime}\). \\
\hline D16. Combined seasonal and trading-day factors & Divide (A1) or (Bl), if prior modifications are not made, by D1l (subtract (AI) or (BI) if prior modifieations are not made) from DII to obtain the combined seasonal and tradingday factors. & \(\mathrm{CSI}^{\prime} \mathrm{D}_{\mathrm{r}} / \mathrm{Cl}^{\prime}\) & \(\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime}+\mathrm{Dr}_{\mathrm{r}}-\left[\mathrm{C}+\mathrm{I}^{\prime}\right]\) \\
\hline
\end{tabular}

\section*{Part E. Modified Original, Seasonally Adjusted, and Irregular Series}

The original and seasonally adjusted series and the irregular are modified for extremes (beyond \(2.5 \sigma\) ).
Table number and title
\begin{tabular}{c} 
E1. Original series modified by \\
extreme values with zero
\end{tabular} extreme values with zero final weights.

E2. Modified seasonally adjusted series

E3. Modified irregular series

E4. Ratios (differences) of annual totals
8.5. Per cent changes (differences) in original series

Replace those values in the original series (Al or Bl) where a zero weight was assigned in C17 (beyond 2.5 o) with the product (sum) of the trend-cycle, seasonal, trading-day and prior adjustment components shown in DI2, D10, C18, and A2 to obtain an original series modified for extremes.

Replace those values in the final scasonally adjusted series (DII) where a zero weight was assigned in C17 with the D12 final trendcycle values.

Replace those values in the final irregular series (D13) with \(1.0(0.0)\) where a zero weight was assigned in C17. Compute the standard deviation for each year, each month, and the entire series.

Compute the ratios (differences) of the annual totals of (between) (a) the original (A.1) to (and) the final seasonally adjusted (DI1) series and (b) the modified original (E1) to (and) the modified seasonally adjusted (E2) series.

Compute and print out the individual month-to-month per cent change (differences) in Al.

Where \(w=0.0\), I' set equal to 1.0 ; i.e., \(C S I^{\prime \prime} D=\) C SPD.

Where \(w=0.0\),
I' set equal to 1.0 ;
i.e., \(C \mathbf{I}^{\prime \prime}=C\).

Where \(w=0.0\),
I' set equal to 1.0 .

Where \(\mathrm{w}=0.0\), I' set equal to 0.0 ; i.e., \(\mathrm{C}+\mathrm{S}+\mathrm{I}^{\prime \prime}+\mathrm{D}_{\mathrm{r}}=\) \(\mathrm{C}+\mathrm{S}+\mathrm{P}+\mathrm{D}_{\mathrm{r}}\).

Where \(w=0.0\),
I' set equal to 0.0;
i.e., \(C+I^{\prime}=C\).

Where \(w=0.0\),
I' set equal to 0.0.

Part E. Modified Original, Seasonally Adjusted, and Irregular Series - Concluded
\begin{tabular}{ll} 
Table number and title & Multiplicative and additive or log additive
\end{tabular}

Part F. MCD Moving Average and Summary Measures
\begin{tabular}{lll}
\hline Table number and title & Multiplicative and additive or log additive & Sumbolic notation
\end{tabular}

Part F. MCD Moving Average and Summary Measures - Continued
\begin{tabular}{lll}
\hline Table number and title & Multiplicative and additive or \(\log\) additive & \begin{tabular}{l} 
Symbolic notation
\end{tabular} \\
& \begin{tabular}{l} 
Multiplicative
\end{tabular} & \begin{tabular}{l} 
Additive or log \\
additive
\end{tabular} \\
\hline
\end{tabular}

F2B. Relative Contributions of Components to Per Cent Changes (Differences) in Original Series
Compute the relative contribution of each component to the per cent changes (differences) in the original series over each span t using the relationship
\(\overline{\mathrm{O}}_{\mathrm{t}}^{2} \cong \overline{\mathrm{I}}_{\mathrm{t}}^{2}+\overline{\mathrm{C}}_{\mathrm{t}}^{2}+\overline{\mathrm{S}}_{\mathrm{t}}^{2}+\overline{\mathrm{P}}_{\mathrm{t}}^{2}+\overline{\mathrm{D}}_{\mathrm{t}}^{2}\).
Since the sum of squares of the per cent changes (differences) does not equal \(\overline{\mathrm{O}}^{2}\) exactly, substitute \(\overline{\mathrm{O}}^{\cdot 2}\), where \(\overline{\mathrm{O}}_{\mathrm{t}}^{2}=\overline{\mathrm{I}}_{\mathrm{t}}^{2}+\overline{\mathrm{C}}_{\mathrm{t}}^{2}+\overline{\mathrm{S}}_{\mathrm{t}}^{2}+\) \(\overline{\mathrm{P}}_{\mathrm{t}}^{2}+\overline{\mathrm{TD}}^{2}{ }^{\mathrm{t}}\). Then compute the ratios \(\mathrm{I}^{2} / \overline{\mathrm{O}}_{\mathrm{t}}^{2}, \ldots, \mathrm{TD}_{\mathrm{t}}^{2} / \overline{\mathrm{O}}_{\mathrm{t}}^{\prime 2}\), which express the relative importance of the changes in each component. Also, compute the ratio
\(\overline{\mathrm{O}}_{\mathrm{i}}^{2} / \overline{\mathrm{O}}_{\mathrm{t}}^{2}\)
as an indicator of how well the approximation \(\overline{\mathrm{O}}_{\mathrm{t}}^{\prime 2} \cong \overline{\mathrm{O}}_{\mathrm{t}}^{2}\) holds.

F2C. Means and Standard Deviations of Per Cent Means and Standard Deviations of Per Cent
Changes (Differences)

Compute the mean and standard deviation of the per cent changes (differences) for \(\mathrm{O}, \mathrm{I}, \mathrm{C}, \mathrm{S}\), Cl and MCD over each span \(\mathrm{t}(\mathrm{t}=1, \ldots, 12)\). Print out the means and standard deviations of the per cent changes (differences) with the symbol and table number of the series from which the measures were computed.
F2D. Average Duration of Run
Compute average duration of run (the average number of consecutive monthly changes in the same direction; "no change" is counted as a change in the same direction as the preceding change) for the following series:
\begin{tabular}{lll} 
Table & Symbol & Series \\
D11 & C1 & \begin{tabular}{l} 
Final seasonally adjusted \\
series
\end{tabular} \\
D13 & I & Final irregular series \\
D12 & C & Final trend-cycle \\
F1 & MCD & MCD moving average.
\end{tabular}

F2E.
Compute and print out
\(\bar{I}_{t} / \bar{C}_{t}\) for \(t=1, \ldots, 12\).
Designate as the MCD span the shortest span for which
\(\bar{H}_{1} / \overline{C_{1}}<1.0\).
F2F.
Relative Contribution of the Components to the Stationary Portion of the Variance of the Original Series

The series is made stationary by removing a linear trend for additive and log additive decompositions and an exponential trend for multiplicative decomposition. The relative contribution to the variance is calculated for I, C, S, P, TD and total.

Part F. MCD Moving Average and Summary Measures - Concluded


\section*{Part G. Charts}

Charts G1 and G2 and available as part of the standard printout. G3 and G4 are available optionally.

The user may also specify that no charts are to be printed. See Chapter 111 for further details.

Part G. Charts - Concluded

Multiplicative and additive or \(\log\) additive
\begin{tabular}{ll} 
G1. Chart & \begin{tabular}{l} 
Plot the original series if prior modifications are not made (A1) or the modified series with extrapo- \\
lated values (B1) and modified series (E1).
\end{tabular} \\
G2. Chart & \begin{tabular}{l} 
Plot the final seasonally adjusted series and final trend-cycle (D11 and D12, respectively).
\end{tabular} \\
G3. Chart & \begin{tabular}{l} 
Plot the final S-I ratios (differences) with extremes, final S-I ratios (differences) without extremes, \\
and final seasonal factors (D8, D9, and D10, respectively).
\end{tabular} \\
G4. Chart & \begin{tabular}{l} 
Plot in calendar order the final S-I ratios (differences) with extremes, final S-I ratios (differences) \\
without extremes, and final seasonal factors (D8, D9, and D10 respectively).
\end{tabular} \\
G5. Chart & Plot the final irregular and final modified irregular (D13 and E3, respectively). \\
G6. Chart & Plot the cumulative periodogram of the final irregulars from Table (D13).
\end{tabular}

\section*{Scales on Charts}

\section*{Multiplicative:}

The scales for Charts G1 and G2 are semi-log. The program selects one of the six following semi-log scales so as to maximize the space utilized by the charts themselves:
5 -cycle - largest value is 100,000 times the smallest value on the scale;
4 -cycle - largest value is 10,000 times the smallest;
2 -cycle - largest value is 100 times the smallest;
1-cycle - largest value is 10 times the smallest;
"half-cycle" - largest value is 4 times the smallest;
"quarter-cycle" - largest value is twice the smallest.
The scales for the charts in G3, G4, G5 and G6 are arithmetic. They are chosen so as to maximize the space utilized by the charts themselves.

\section*{Additive:}

The scales for all charts are arithmetic and are chosen so as to maximize the space utilized by the charts themselves.

\section*{Specifications - Variable Trend-cycle Curve Routine}

The steps in the variable trend-cycle curve routine are as follows:
1. As a preliminary estimate of C , compute a 13 -term Henderson moving average of the seasonally adjusted series. Do not extend to ends of series.
2. As a preliminary estimate of 1 , divide (subtract) the 13 -term moving average into (from) the seasonally adjusted series.
3. Compute the average month-to-month per cent change (difference) without regard to sign in the preliminary estimates of the irregular (I) and the trend-cycle \((\overline{\mathrm{C}})\). Compute their ratio \((\overline{\mathrm{I}} / \overline{\mathrm{C}})\) to obtain an estimate of the importance of the irregular variations relative to the movements in the trend-cycle.
\begin{tabular}{ll}
\hline\(\overline{1 /} / \overline{\mathrm{C}}\) & Moving average \\
\hline 0.00 to 0.99 & \\
1.00 to 3.49 \\
3.50 and over & \begin{tabular}{l} 
9-term Henderson \\
13-term Henderson \\
\(23-\) term Henderson
\end{tabular} \\
\hline
\end{tabular}

For the weight patterns for the Henderson moving averages and the weights used for extending the averages at the ends of the series, see Appendix B.

\section*{Specifications - Quarterly Program (Multiplicative or Additive and Log Additive) X-11ARIMA (Q)}

The steps in the quarterly program are analogous to those in the monthly program with the following changes:

\section*{1. Options A2 and A4 are not applicable.}
2. The tables dealing with trading-day variation (B14 to \(\mathrm{B} 16, \mathrm{BI} 8\) to \(\mathrm{B} 20, \mathrm{C} 14\) to \(\mathrm{C} 16, \mathrm{C} 18\) to C 20 ) are not applicable.
3. The available options are slightly different from the monthly options. See Chapter III for further details.
4. The estimates of the trend-cycle are derived by a centred 4 -term moving average (Tables B2, C2, D2) or an optional centred 8 -term moving average. The final estimate of this trend-cycle (Tables B7, C7, D7. D12) is derived by a 5 -term or a 7 -term Henderson moving average selected by the program.
5. The seasonal factor estimates are adjusted to sum to 4.000 using a centred 4 -term moving average (Tables B4, B5, B9, B10, C5, C10, D5, D10).
6. In step \(B 7\), replace an extreme value with the average of the value times its weight and the nearest fullweight value on either side. To replace a value in the first (last) quarter, replace the extreme value with
average of the value times its weight and the nearest full-weight value.
7. In Table F2, the P and TD summary measures are not applicable. Summary measures are shown over one to four-quarter spans. Table F1 is quarters for cyclical dominance (QCD) moving average.


\section*{Appendix B}

\section*{FIXED MOVING-AVERAGE WEIGHTS OF X-11-ARIMA}

\section*{Seasonal-factor Curve Weights \({ }^{1}\)}

Text Tables I and II give the fixed weight patterns for the seasonal-factor curve moving averages available in X-11-ARIMA, the weights for extending the averages at the ends of the series, and the implicit weights for one year-ahead seasonal factors. The stable seasonal, uses an
\(\qquad\)
1 The weights used by the program have eight digits.
unweighted average of all available S -I ratios for all seasonal factors (including those at the ends) and the year-ahead factors. " N " is the last year for which an S-I ratios is available, and the weights for year " \(\mathrm{N}+\mathrm{I}\) " represent the implicit weights for the year-ahead seasonal factors. \({ }^{1}\) When the ARIMA option is used only the symmetric weights are fixed; the end weights and the implicit weights for the year-ahead seasonal factors change with the ARIMA model.

TEXT TABLE 1. Seasonal-factor Curve Fixed Moving Average Weights
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Factor for year & \multicolumn{7}{|l|}{Weight given S-I ratios in year} \\
\hline & N. 4 & & N. 3 & N-2 & & & N \\
\hline & \(3 \times 3\) & & & & & & \\
\hline \(\mathrm{N}+1\) & 0 & & \(-.056\) & . 148 & & & . 481 \\
\hline N & 0 & & 0 & . 185 & & & . 407 \\
\hline \(\mathrm{N}-1\) & 0 & & .111 & . 259 & & & . 259 \\
\hline N-2 & .111 & & . 222 & . 333 & & & . 111 \\
\hline & N-6 & N-S & & N-3 & N-2 & N-1 & N \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\(\mathrm{N}+1\) & 0 & 0 & -.034 & .134 & .300 & .300 & .300 \\
N & 0 & 0 & 0 & .150 & .283 & .283 & .283 \\
\(\mathrm{~N}-1\) & 0 & 0 & .067 & .183 & .250 & .250 & .250 \\
\(\mathrm{~N}-2\) & 0 & .067 & .133 & .217 & .217 & .217 & .150 \\
\(\mathrm{~N}-3\) & .067 & .133 & .200 & .200 & .200 & .133 & .067 \\
\hline & \(\mathrm{~N}-10\) & \(\mathrm{~N}-9\) & \(\mathrm{~N}-8\) & \(\mathrm{~N}-7\) & \(\mathrm{~N}-6\) & \(\mathrm{~N}-5\) & \(\mathrm{~N}-4\) & \(\mathrm{~N}-3\) \\
\hline
\end{tabular}
\(3 \times 9\) moving average
\begin{tabular}{lrrrrrrrrrrr} 
& 0 & 0 & 0 & 0 & -.014 & .031 & .096 & .180 & .208 & .236 & .265 \\
\(\mathrm{~N}+1\) & 0 & 0 & 0 & 0 & 0 & .051 & .112 & .173 & .197 & .221 & .246 \\
N & 0 & 0 & 0 & 0 & .028 & .092 & .144 & .160 & .176 & .192 & .208 \\
\(\mathrm{~N}-1\) & 0 & 0 & 0 & .032 & .079 & .123 & .133 & .143 & .154 & .163 & .173 \\
\(\mathrm{~N}-2\) & 0 & 0 & .034 & .075 & .113 & .117 & .123 & .128 & .132 & .137 & .141 \\
\(\mathrm{~N}-3\) & 0 & .034 & .073 & .111 & .113 & .114 & .116 & .117 & .118 & .120 & .084 \\
\(\mathrm{~N}-4\) & .037 & .074 & .111 & .111 & .111 & .111 & .111 & .111 & .111 & .074 & .037 \\
\(\mathrm{~N}-5\) & & & & & & & &
\end{tabular}

TEXT TABLE II. Seasonal Factor Curve Fixed Moving Average Weights for Series with a Shorter Span Than the Terms in the Average Applied 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Factor for year & \multicolumn{7}{|l|}{Weight given S-I ratios in year} \\
\hline & N-4 & N-3 & & N-2 & & N-1 & N \\
\hline & \multicolumn{7}{|l|}{five-year series - \(3 \times 5\) moving average} \\
\hline \(\mathrm{N}+1\) & \(-.034\) & . 134 & & . 300 & & . 300 & . 300 \\
\hline N & 0 & . 150 & & . 283 & & . 283 & . 283 \\
\hline N-1 & . 067 & . 183 & & . 250 & & . 250 & . 250 \\
\hline N-2 & . 200 & . 200 & & . 200 & & . 200 & . 200 \\
\hline & N-5 & N-4 & N-3 & & N-2 & N-1 & N \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrr}
\(\mathrm{N}+1\) & 0 & -.034 & .134 & .300 & .300 & .300 \\
N & 0 & 0 & .150 & .283 & .283 & .283 \\
\(\mathrm{~N}-1\) & 0 & .067 & .183 & .250 & .250 & .250 \\
\(\mathrm{~N}-2\) & .133 & .217 & .217 & .217 & .150 \\
\cline { 2 - 6 } & \(\mathrm{~N}-4\) & \(\mathrm{~N}-3\) & \(\mathrm{~N}-2\) & N .1 & N
\end{tabular}
five-year series \(-3 \times 9\) moving average
\begin{tabular}{llllll}
\(\mathrm{N}+1\) & .200 & .200 & .200 & .200 & .200 \\
N & .200 & .200 & .200 & .200 & .200 \\
\(\mathrm{~N}-1\) & .200 & .200 & .200 & .200 & .200 \\
\(\mathrm{~N}-2\) & .200 & .200 & .200 & .200 \\
\hline & \(\mathrm{~N}-5\) & \(\mathrm{~N}-4\) & \(\mathrm{~N}-3\) & \(\mathrm{~N}-2\) & \(\mathrm{~N}-1\) \\
\hline
\end{tabular}
six-year series \(-3 \times 9\) moving average
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{N}+1\) & \(-.007\) & . 085 & & . 176 & & . 212 & . 248 & . 286 \\
\hline N & . 051 & . 112 & & . 173 & & & . 221 & . 246 \\
\hline N-1 & . 167 & . 167 & & . 167 & & & . 167 & . 167 \\
\hline \multirow[t]{3}{*}{N-2} & . 167 & . 167 & & . 167 & & & . 167 & . 167 \\
\hline & N-6 & N-5 & N-4 & & N-3 & N-2 & N-1 & N \\
\hline & \multicolumn{8}{|l|}{seven-year series \(-3 \times 9\) moving average} \\
\hline \(\mathrm{N}+1\) & -. 014 & . 031 & . 096 & & . 180 & . 208 & . 236 & . 265 \\
\hline N & 0 & . 051 & . 112 & & . 173 & . 197 & . 221 & . 246 \\
\hline \(\mathrm{N}-1\) & . 028 & . 092 & . 144 & & . 160 & . 176 & . 192 & . 208 \\
\hline N-2 & . 143 & . 143 & . 143 & & . 143 & . 143 & . 143 & . 143 \\
\hline N-3 & . 143 & . 143 & . 143 & & . 143 & . 143 & . 143 & . 143 \\
\hline
\end{tabular}

See footnote(s) at end of table.

\section*{TEXT TABLE II. Seasonal Factor Curve Fixed Moving Average Weights for Series with a Shorter Span Than the Terms in the Average Applied \({ }^{1}\) - Concluded}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Factor for year} & \multicolumn{11}{|l|}{Weight given S-1 ratios in year} \\
\hline & N-7 & N-6 & N-5 & \multicolumn{2}{|l|}{N-4} & \multicolumn{2}{|l|}{N-3} & \multicolumn{2}{|l|}{N-2} & \(\mathrm{N}-1\) & N \\
\hline & \multicolumn{11}{|l|}{eight-year series - \(3 \times 9\) moving average} \\
\hline \(\mathrm{N}+1\) & 0 & -. 014 & . 031 & . 096 & & . 180 & & . 208 & & . 236 & . 265 \\
\hline N & 0 & 0 & . 051 & . 112 & & . 173 & & . 197 & & . 221 & . 246 \\
\hline \(\mathrm{N}-1\) & 0 & . 028 & . 092 & . 144 & & . 160 & & . 176 & & . 192 & . 208 \\
\hline N-2 & . 032 & . 079 & . 123 & . 133 & & . 143 & & . 154 & & . 163 & . 173 \\
\hline N-3 & . 125 & . 125 & . 125 & . 125 & & . 125 & & . 125 & & . 125 & . 125 \\
\hline & N-8 & N-7 & N-6 & N. 5 & N-4 & & N-3 & & N-2 & N-1 & N \\
\hline
\end{tabular}
nine-year series \(-3 \times 9\) moving average
\begin{tabular}{lrrrrrrrrrr}
\(\mathrm{N}+1\) & 0 & 0 & -.014 & .031 & .096 & .180 & .208 & .236 & .265 \\
N & 0 & 0 & 0 & .051 & .112 & .173 & .197 & .221 & .246 \\
\(\mathrm{~N}-1\) & 0 & 0 & .028 & .092 & .144 & .160 & .176 & .192 & .208 \\
\(\mathrm{~N}-2\) & 0 & .032 & .079 & .123 & .133 & .143 & .154 & .163 & .173 \\
\(\mathrm{~N}-3\) & .034 & .075 & .113 & .117 & .123 & .128 & .132 & .137 & .141 \\
\(\mathrm{~N}-4\) & .111 & .111 & .111 & .111 & .111 & .111 & .111 & .111 & .111 \\
\hline & N .9 & \(\mathrm{~N}-8\) & \(\mathrm{~N}-7\) & \(\mathrm{~N}-6\) & \(\mathrm{~N}-5\) & N .4 & \(\mathrm{~N}-3\) & \(\mathrm{~N}-2\) & \(\mathrm{~N}-1\) & N \\
\hline
\end{tabular}

10-year series - \(3 \times 9\) moving average
\begin{tabular}{lrrrrrrrrrr} 
& 0 & 0 & 0 & -.014 & .031 & .096 & .180 & .208 & .236 & .265 \\
\(\mathrm{~N}+1\) & 0 & 0 & 0 & 0 & .051 & .112 & .173 & .197 & .221 & .246 \\
N & 0 & 0 & 0 & .028 & .092 & .144 & .160 & .176 & .192 & .208 \\
\(\mathrm{~N}-1\) & 0 & 0 & .032 & .079 & .123 & .133 & .143 & .154 & .163 & .173 \\
\(\mathrm{~N}-2\) & 0 & .034 & .075 & .113 & .117 & .123 & .128 & .132 & .137 & .141 \\
\(\mathrm{~N}-3\) & .034 & .073 & .111 & .113 & .114 & .116 & .117 & .118 & .120 & .084 \\
\(\mathrm{~N}-4\) & & & \\
\hline
\end{tabular}

1 Series with less than five complete years of data are always seasonally adjusted with the stable seasonality option.

\section*{Trend-cycle Curve Weights \({ }^{2}\)}

Text Table 111 gives the fixed weight pattern for the trend-cycle average used: (1) in the variable routine, i.e., 5 - and 7 -term Henderson curve for quarterly series and 9-, 13-, and 23-term Henderson curve for monthly

\footnotetext{
2 The weights used by the program have eight digits.
}
series and corresponding sets of end weights; and (2) in the preliminary trend-cycle estimation, i.e., centred 8 -term moving average for quarterly series and centred 24 -term moving average for quatterly series and their corresponding end weights. " N " is the last month for which a value in the seasonally adjusted series is available.

TEXT TABLE III. Trend-cycle Curve Moving Average Weights
\begin{tabular}{lllllll}
\hline & Weight piven Cl values in quarter & & & \\
\hline
\end{tabular}

Weight given Cl values in month
\begin{tabular}{lllllllll}
\(\mathrm{N}-8\) & \(\mathrm{~N}-7\) & \(\mathrm{~N}-6\) & \(\mathrm{~N}-5\) & \(\mathrm{~N}-4\) & \(\mathrm{~N}-3\) & \(\mathrm{~N}-2\) & \(\mathrm{~N}-1\) & N
\end{tabular}

9 -term Henderson

\section*{C value for}

N
\(\mathrm{N}-1\)
\(\mathrm{~N}-2\)
\(\mathrm{~N}-3\)
\(\mathrm{~N}-4\)
\begin{tabular}{rrrrrrrrr}
0 & 0 & 0 & 0 & -.156 & -.034 & .185 & .424 & .581 \\
0 & 0 & 0 & -.049 & -.011 & .126 & .282 & .354 & .298 \\
0 & 0 & -.022 & 0 & .120 & .259 & .315 & .242 & .086 \\
0 & -.031 & -.004 & .120 & .263 & .324 & .255 & .102 & -.029 \\
-.041 & -.010 & .119 & .267 & .330 & .267 & .119 & -.010 & -.041 \\
\hline \(\mathrm{~N}-12\) & \(\mathrm{~N}-11\) & \(\mathrm{~N}-10\) & \(\mathrm{~N}-9\) & \(\mathrm{~N}-8\) & \(\mathrm{~N}-7\) & \(\mathrm{~N}-6\) & \(\mathrm{~N}-5\) & \(\mathrm{~N} \cdot 4\) \\
\hline
\end{tabular}

C value for
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline N & 0 & 0 & 0 & 0 & 0 & 0 & -. 092 & -. 058 & . 012 & . 120 & . 244 & . 353 & . 421 \\
\hline N-1 & 0 & 0 & 0 & 0 & 0 & - . 043 & -. 038 & . 002 & . 080 & . 174 & . 254 & . 292 & . 279 \\
\hline N-2 & 0 & 0 & 0 & 0 & -. 016 & -. 025 & . 003 & . 068 & . 149 & . 216 & . 241 & . 216 & 148 \\
\hline \(\mathrm{N}-3\) & 0 & 0 & 0 & - . 009 & -. 022 & . 004 & . 066 & . 145 & . 208 & . 230 & . 201 & . 131 & . 046 \\
\hline N-4 & 0 & 0 & -. 011 & -. 022 & . 003 & . 067 & . 145 & . 210 & . 235 & . 205 & . 136 & . 050 & -. 018 \\
\hline N-5 & 0 & -. 017 & -. 025 & . 001 & . 066 & . 147 & . 213 & . 238 & . 212 & . 144 & . 061 & -. 006 & -. 034 \\
\hline N-6 & -. 019 & -. 028 & 0 & . 066 & . 147 & . 214 & . 240 & . 214 & . 147 & . 066 & 0 & -. 028 & -. 019 \\
\hline & N-22 & N-21 & N-20 & N-19 & N. 18 & N-17 & & & & N-14 & N-13 & N-12 & N-11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline N & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -. 077 \\
\hline N-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -. 046 & -. 041 \\
\hline N. 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -. 022 & -. 025 & -. 025 \\
\hline N. 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -. 008 & -. 014 & -. 018 & -. 015 \\
\hline N. 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - . 001 & -. 008 & -. 013 & -. 012 & -. 003 \\
\hline N. 5 & 0 & 0 & 0 & 0 & 0 & 0 & . 003 & -. 006 & -. 011 & -. 011 & -. 002 & . 015 \\
\hline N. 6 & 0 & 0 & 0 & 0 & 0 & . 002 & -. 006 & -. 012 & -. 011 & -. 003 & . 015 & . 039 \\
\hline N. 7 & 0 & 0 & 0 & 0 & . 001 & -. 007 & -. 013 & -. 011 & -. 003 & . 015 & . 039 & . 068 \\
\hline N. 8 & 0 & 0 & 0 & -. 002 & -. 007 & -. 013 & -. 013 & - . 003 & . 014 & . 039 & . 068 & . 097 \\
\hline N- 9 & 0 & 0 & \(-.003\) & -. 010 & - . 015 & -. 014 & -. 005 & . 014 & . 040 & . 069 & . 097 & . 122 \\
\hline N. 10 & 0 & -. 004 & -. 011 & -. 016 & -. 015 & -. 005 & . 013 & . 039 & . 068 & . 097 & . 122 & . 138 \\
\hline N-11 & -. 004 & -. 011 & -. 016 & -. 015 & -. 005 & . 013 & . 039 & . 068 & . 097 & . 122 & .138 & . 148 \\
\hline
\end{tabular}

TEXT TABLE III. Trend-cycle Curve Moving Average Weights - Concluded
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Weight given CI values in month} \\
\hline & N \(\cdot 10\) & N. 9 & N-8 & N-7 & N. 6 & N-5 & N-4 & N-3 & N-2 & N-1 & N \\
\hline & \multicolumn{11}{|l|}{23-term Henderson - Concluded} \\
\hline N & -. 064 & - . 049 & -. 028 & . 002 & . 039 & . 084 & . 133 & . 182 & . 227 & . 263 & . 288 \\
\hline N. 1 & -. 035 & -. 024 & -. 004 & . 025 & . 061 & . 801 & . 141 & . 176 & .203 & . 219 & . 224 \\
\hline N. 2 & -. 019 & -. 005 & . 018 & . 049 & . 082 & . 116 & . 146 & . 166 & . 177 & . 176 & . 166 \\
\hline N. 3 & -. 004 & . 015 & . 042 & . 073 & .103 & . 129 & . 147 & .154 & . 150 & . 134 & .112 \\
\hline N. 4 & . 015 & . 040 & . 068 & . 098 & . 121 & .137 & . 142 & . 136 & . 119 & . 095 & . 066 \\
\hline N-5 & . 039 & . 067 & . 095 & . 119 & . 134 & . 839 & . 131 & . 114 & . 088 & . 059 & . 027 \\
\hline N-6 & . 068 & . 096 & . 118 & .134 & . 138 & . 132 & . 114 & . 089 & . 059 & . 027 & . 001 \\
\hline N. 7 & .096 & .120 & . 135 & .140 & .133 & . 116 & . 090 & . 060 & . 031 & . 005 & -. 015 \\
\hline N. 8 & . 120 & .137 & . 140 & . 136 & . 118 & . 094 & . 064 & . 034 & . 008 & \(-.010\) & - . 021 \\
\hline N. 9 & . 138 & . 143 & .137 & . 120 & . 095 & . 067 & . 037 & . 011 & -. 007 & -. 017 & -. 019 \\
\hline N. 10 & . 144 & . 138 & . 122 & . 097 & . 068 & . 039 & . 013 & -. 005 & -. 015 & -. 016 & -. 011 \\
\hline N-11 & . 138 & . 122 & . 097 & . 068 & . 039 & . 013 & -. 00.5 & -. 015 & -. 016 & -. 011 & -. 004 \\
\hline
\end{tabular}

Weight given Cl values in quarter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline N-8 & N-7 & N-6 & N. 5 & N. 4 & N-3 & \(\mathrm{N}=2\) & N-1 & N \\
\hline
\end{tabular}
centred 8 -term moving average for preliminary trend-cycle estimation

centred 24 -term moving average for preliminary trend-cycie estimation

\section*{\(C\) value for}
N. 7
N. 8
N. 9

N-10
N-11
\(\mathrm{N} \cdot 12\)
N-13
\begin{tabular}{rrrrrrrrrrr}
0 & .019 & .011 & -.002 & -.016 & -.026 & -.031 & -.027 & -.017 & -.001 & .019 \\
0 & .018 & .005 & -.011 & -.024 & -.029 & -.027 & -.018 & -.002 & .017 & .041 \\
0 & .012 & -.004 & -.018 & -.026 & -.025 & -.018 & -.004 & .014 & .034 & .057 \\
0 & .002 & -.012 & -.021 & -.023 & -.016 & -.004 & .012 & .030 & .047 & .069 \\
0 & -.011 & -.020 & -.021 & -.014 & -.003 & .012 & .027 & .043 & .059 & .081 \\
0 & -.022 & -.023 & -.016 & -.003 & .012 & .028 & .041 & .056 & .073 & .091 \\
-.011 & -.027 & -.089 & -.005 & .011 & .027 & .042 & .056 & .072 & .089 & .103 \\
\hline \(\mathrm{~N}-12\) & N .11 & \(\mathrm{~N}-10\) & N .9 & N .8 & \(\mathrm{~N}-7\) & \(\mathrm{~N}-6\) & \(\mathrm{~N}-5\) & \(\mathrm{~N}-4\) & \(\mathrm{~N}-3\) & N .2 \\
\hline
\end{tabular}
centred 24 -term moving average for preliminary trend-cycle estimation - Concluded

\section*{\(C\) value for}
\begin{tabular}{lllllllllllllll}
\(\mathrm{N}-7\) & .070 & .064 & .072 & .085 & .100 & .110 & .114 & .110 & .100 & .084 & .064 & .039 & .014 \\
\(\mathrm{~N}-8\) & .090 & .065 & .079 & .094 & .107 & .113 & .111 & .101 & .085 & .066 & .042 & .018 & -.006 \\
\(\mathrm{~N}-9\) & .106 & .071 & .087 & .101 & .110 & .109 & .101 & .087 & .069 & .049 & .027 & .003 & -.022 \\
\(\mathrm{~N}-10\) & .115 & .081 & .096 & .105 & .106 & .099 & .087 & .072 & .054 & .036 & .014 & -.010 & -.032 \\
\(\mathrm{~N}-11\) & .118 & .094 & .103 & .104 & .098 & .086 & .071 & .056 & .040 & .024 & .002 & -.019 & -.034 \\
\(\mathrm{~N}-12\) & .115 & .106 & .107 & .099 & .086 & .071 & .055 & .042 & .027 & .010 & -.008 & -.023 & -.031 \\
\(\mathrm{~N}-13\) & .106 & .111 & .103 & .089 & .072 & .056 & .042 & .027 & .011 & -.005 & -.019 & -.027 & -.011 \\
\hline
\end{tabular}
i No estimates are computed for N and \(\mathrm{N}-1\).
2 No estimates are compured for \(\mathrm{N}, \mathrm{N} \cdot 1, \ldots, \mathrm{~N} \cdot 6\).

\section*{Bibliography}

Anderson, T.W. (1971): The Statistical Analysis of Tine Series, New York; John Wiley and Sons.
Box, G.E.P. and Jenkins, G.M. (1970): Time Series Analysis Forecasting and Control, San Francisco; Holden Day.

Box G.E.P. and Pierce, D.A. (1970): "Distribution of Residual Autocorrelations in Autoregressive Integrated Moving Average Time Series Models", Journal of the American Statistical Association, 65, pp. 1509-1526.

Cleveland. W.P. and Tiao, G.C. (1976): "Decomposition of seasonal time series: A model for the Census X-11 program", Journal of the American Statistical A ssociation, 71, pp. 581-587.

Cholette, P.A. (1979): "A Comparison of Various Trend-Cycle Estimators", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Cholette, P.A. (1978): "A Comparison and Assessment of Various Adjustment Methods of SubAnnual Series to Yearly Benchmarks", Research Paper, Seasonal Adjustment and Time Series Analysis Staff, Statistics Canada.

Dagum, E.B. (1974): Models for Time Series, Statistics Canada Technical Paper, Catalogue 12-548E, 83 pages.

Dagum, E.B. (1975): "Scasonal Factor Forecasts from ARIMA Models", Proceedings of the International Institute of Statistics, 40th Session, Contributed Papers, Vol. 3, Warsaw, pp. 206-219.

Dagum, E.B. (1976.a): "Recent Developments in Seasonal Adjustment Methods and Application", Selected Papers from North American Conference on Labor Statistics, July 26-29, U.S. Department of Labor, Bureau of Labor Statistics, pp. 146-161.

Dagum, E.B. (1976.b): "Comments of the Paper A Survey and Comparative Analysis of Various Methods of Seasonal Adjustment," Proceedings of the NBER/Bureau of the Census Conference on Seasonal Analysis of Economic Time Series (Arnold Zellner, Editor) Washington, D.C.. September 9 and 10, pp. 85-92.

Dagum, E.B. (1978.a): "The Estimation of Changing Seasonal Variations in Economic Time Series" in Survey Sampling and Measurement (K. Namboodiri, Editor), New York; Academic Press, pp. 217-228.

Dagum, E.B. (1978.b): "Comparison and Assessment of Seasonal Adjustment Methods for Labor Force Series", Background Paper No. 5, U.S. National Commission on Employment and Unemployment Statistics, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 100 pages.

Dagum, E.B. (1978.c): "Modelling, Forecasting and Seasonally Adjusting Economic Time Series with the X-11-ARIMA Method", The Statistician, Vol. 27, Nos. 3 and 4, pp. 203-216.

Dagum, E.B. (1979): "The Seasonal Adjustment of Economic Time Series Aggregates: A Case Study: The Unemployment Rate". Background paper No. 31, The U.S. National Commission of Employment and Unemployment Statistics, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

Dagum, E.B. (1979.a): "Further Modifications in the Selection of ARIMA Models for X-11ARIMA", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Dagum, E.B. (1979.b): "Fondements des Deux Principaux Types de Méthodes de Désaisonnalisation et X-11-ARIMA", Economie appliquée, Vol. XXXII, No. I, pp. 23-47.

Dagum, E.B. (1979.c): "Data Extrapolation and Smoothing with the X-11-ARIMA Seasonal Adjustment Method", Proceedings of the 12th Annual Symposium Interface Computer Science and Statistics, (Jane F. Gentleman Editor), University of Waterloo, Canada, pp. 195-202.

Dagum, E.B., Lothian, J. and Morry, M. (1975): "A. Test of Independence of the Residuals based on the Cumulative Periodogram", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Davis, H.T. (1941): The Analysis of Economic Time Series, Bloomington, Indiana; The Principia Press Inc.

Farley, D. and Zeller, S. (1976): "Comments on the Paper A Survey and Comparative Analysis of Various Methods of Seasonal Adjustment", Proceedings of the NBER/Bureau of the Census Conference on Seasonal Analysis of Economic Time Series (Arnold Zellner, Editor) Washington, D.C., September 9 and 10, pp. 464-467.

Geweke, J. (1978): "An Efficient Method for Revising Seasonally Adjusted Time Series", Department of Economics, University of Wisconsin.

Granger, C.W.J. and Newbold, P. (1977): Forecasting Economic Time Series, New York; Academic Press.

Henderson, R. (1916): "Note on Graduation by Adjusted Average", Transactions of the Actuarial Society of America, Vol, XVII, pp. 43-48.

Higginson, J. (1975): "An F Test for the Presence of Moving Seasonality when using Census Method II-X-11 Variant", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Higginson, J. (1976): "An F-test for the Presence of Residual Seasonality in Table DII of the X-II-Seasonal Adjustment Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Huot, G. and de Fontenay, A. (1973): "General Seasonal Adjustment Guidelines, Statistics Canada Version of the X-11 Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Huot, G. (1975): "Quadratic Minimization Adjustment of Monthly or Quarterly Series to Annual Totals", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Kuiper, J. (1976): "A Survey and Comparative Analysis of Various Methods of Seasonal Adjustment", Proceedings of the NBER/Bureau of the Census Conference on Seasonal Analysis of Economic Time Series, (Arnold Zellner, Editor) Washington, D.C., September 9 and 10, pp. 59-76.

Leser, C.E.V. (1963): "Estimation of Quasi-Linear Trend and seasonal Variation",Journal of the American Statistical Association, 58, pp. 1033-1043.

Lothian, J. (1978): "The Relationship between the Additive, Multiplicative and Logarighmic Model in the X-11-ARIMA Seasonal Adjustment Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Lothian, J. and Morry, M. (1977): "The Problem of Aggregation: Direct or Indirect Seasonal Adjustment" Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Lothian, J. and Morry, M. (1978.a): "Selection of Models for the Automated X-11-ARIMA Seasonal Adjustment Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Lothian, J. and Morry, M. (1978.b): "A Test for the Presence of Identifiable Seasonality when Using the X-11 Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Lothian, J. and Morry, M. (1978.c): "A Set of Quality Control Statistics for the X-11-ARIMA Seasonal Adjustment Program", Research Paper, Seasonal Adjustment and Time Series Staff, Statistics Canada.

Mendershausen, H. (1939): "Eliminating Changing Seasonals by Multiple Regression Analysis", The Review of Economic Studies, 21, pp. 171-177.

Newbold, P. and Granger, C.W.J. (1974): "Experience with Forecasting Univariate Time Series and the Combination of Forecasts (with discussion)", Joumal of the Royal Statistical Society. A, 137, pp. 131-165.

Pierce, D. (1978): "Data Revisions with Moving Average Seasonal Adjustment Procedures", Federal Reserve Board.

Reid, D.J. (1975): "A Review of Short Term Projection Techniques", Practical Aspects of Forecasting (H.A. Gordon, Editor.), London; Operational Research Society, pp. 8-25.

Shiskin, J., Young, A.H. and Musgrave, J.C. (1967): "The X-11 Variant of Census Method III Seasonal Adjustment", Technical Paper No. 15. Bureau of the Census, U.S. Department of Commerce.

Wallis, W.A. and Moore, G.H. (1941): "A Significant Test for Time Series Analysis", Journal of the American Statistical Association, 36, pp. 401-409.

Wold, H. (1938): A Study in the Analysis of Stationary Time Series, Stockholm; Almquist and Wiksell (2nd Edition, 1954).

Young, A.H. (1968): "Linear Approximations to the Census and BLS Seasonal Adjustment Methods", Journal of the American Statistical Association, 63, pp. 445-471.

\section*{衁: TEOS}

\section*{sblothdque statyetione Canade}

1010013615```


[^0]:    ${ }^{1}$ The sum of the weights of a filter determines the ratio of the mean of the smoothed series to the mean of the unadjusted series assuming that these means are computed over periods long enough to ensure stable results.
    ${ }^{2}$ In spectral analysis, the phase is a dimensionless parameter that measures the displacement of the sinusoid relative to the time origin. Because of the periodic repetition of the sinusoid, the phase can be restricted to $\pm 180^{\circ}$. The phase is a function of the frequency of the sinusoid, the frequency being equal to the reciprocal of the length of time or period required for one complete oscillation.

