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Abstract 

Following each Canadian Census, an evaluation study known 
as the Reverse Record Check is carried out to estimate the 
level of undercoverage. The sample size of this study is such 
that reliable estimates of undercoverage can be produced 
for each province, and for certain age-sex groups at the 
national level, but not for age-sex groups at the province 
level. The use of synthetic estimation techniques has been 
investigated for this latter purpose, but these have the 
disadvantage .that they are based on inherently unverifiable 
assumptions. Cressie (1989) proposed a compromise model 
that combines the direct survey estimate and a synthetic 
estimate. We generalize Cressie's model to admit the 
possibility of bias in the survey estimates, and include some 
results on possible gains to be made by employing this 
model. These results are illustrated with data from the 1986 
Reverse Record Check. 

I. Introduction 

The Census of Canada is conducted every five years, the 
most recent having been on June 4th 1991. Census counts 
serve a variety of uses, such as the allocation of seats in the 
federal Parliament, the transfer of money between various 
levels of government, and the planning of essential services 
such as health, education, and local transportation. 

For the period between censuses, Statistics Canada also 
produces a series of population estimates which are used for 
many of the same purposes. These population estimates are 
obtained by adding births and in-migrants to the most recent 
census counts, and subtracting deaths and out-migrants. 
When new census results become available, the estimates for 
the past five years are revised to bring them in line with the 
new census counts. 

Until 1986, this methodology for population estimates was, 
by and large, acceptable to most users. However the 1986 
Census saw a substantial increase In undercoverage. At the 
national level, estimated undercoverage rose from the 2% 
level experienced in 1971, 1976 and 1981 to over 3%. There 
was also considerable variation in undercoverage among 
provinces, among age and sex groups, and among various 
other sub-groups of the population. 

The unprecedented levels of undercoverage caused 
considerable disruption in the population estimates program 
and in several other programs which depend on population 
estimates. As a result, it was decided in early 1989 to 
investigate the possibility of changing the methodology of 
the population estimates program to include an allowance for 
census undercoverage. It should be noted that the published 
1991 Census data themselves will n^ be adjusted for 
undercoverage; only the population estimates based on 
census counts would be affected. From a technical viewpoint, 
however, the issue is similar to the question of census 
adjustment which has been the subject of much debate in 
the United States. 

One of the key questions in deciding on adjustment is 
whether, and if so how, adjustments made at higher levels of 
aggregation (e.g., provinces] should be 'carried down" to 
lower levels of detail. The coverage studies can only supply 
reliable estimates of undercoverage at relatively aggregated 
levels, but adjusting at some levels but not others would 
cause severe problems for data users. An important part of 
the research, therefore, was an investigation of estimation 
techniques for small domains that would maintain the overall 
consistency of the estimates program. 

Oie such technique is that of synthetic estimation. However, 
synthetic estimation tends to treat all small areas alike. Areas 
with reliable estimates of undercoverage are treated the 
same as areas with unreliable, or no, estimates of 
undercoverage. In an effort to combine the best features of 
synthetic estimation and direct survey estimates of 
undercoverage, Cressie in a series of papers ((1988a), 
(1988b),(1989)} examined an Empirical Bayes methodology 
and illustrated it with results from the 1980 U.S. Census Post-
Enumeration Program (PEP). 

In this paper we examine Cressie's model for undercoverage 
and analyze the sensitivity of its results to changes in some 
of the model's key assumptions. Section 2 describes 
Cressie's model and reviews his basic findings concerning 
the risk functions for the Census, synthetic, and Bayes 
estimators of a population total. Section 3 then varies 
Cressie's model by: (i) Investigating the effect on the risks of 
having to estimate the synthetic adjustment factors, rather 
than assuming that they are known, (ii) allowing the 
possibility that the survey estimates of undercoverage may 
be biased, and (iii) considering the effect of having to 
estimate the variance components used in the Empirical 
Bayes estimator. In Section 4 we illustrate the effects of these 
variations in the model with results fronri the 1986 Canadian 
Reverse Record Check. Section 5 summarizes our 
conclusions and indicates directions for future research work. 

2. Cressie's Model or Undercount 

Cressie (1989) takes as his basic starting point that the 
population of interest has been stratified such that 
undercounting is homogeneous within each stratum. In 
formulating the model, the following definitions will prove to 
be useful. Let: 

Vji be the true population count for the j-th stratum 
(l = 1, 2, ... J) in the i-th area (i = 1, 2, ...1); and 

Cji be the corresponding observed Census count 
for the j-th stratum in the i-th area (assumed to be 
always non-zero). 

The ratio of the true population count to the observed 
Census count for the j-th stratum and the i-th area is defined 
as 
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^ C 

(1) 

The net number of persons missed by the Census in the j-th 
stratum and the i-th area is defined as 

^jl " ^Ji ~ ^ji 
(2) 

H all the Fj, are known completely then it is easy to see that 
for any area i the true population can be written as 

r F.C.. 
j-i 

(3) 

variance remain as stated then the results of this section are 
not compromised. However, this assumption has not 
reduced the number of parameters in the model since the 
variance term depends on the area and the stratum. Cressie 
argues, however, by both a Bayesian and a frequentist 
argument, that the variance can be written as 

2 

'̂ c 
(7) 

provided that the Census count CJ{ is large. This reduces the 
number of parameters from I x J to 2J. 

Afurther level of randomization occurs in this model because 
the adjustment factors f« are not directly observed but have 
to be estimated using direct estimates )̂ | from a survey. 
Cressie states this dependence through the following model: 

By defining the adjustment factor in this fashion, consistency 
over any set of areas has been achieved. This can be seen 
be summing over any two areas and seeing that the higher-
level adjustment factor can be written as 

^ji\Fji N{F, ol) 
(8) 

' ji&i 
Pfn F.C.. (4) 

C, + C,, 

This shows that the adjustment factor at any higher level of 
aggregation is merely the weighted average of the lower level 
adjustment factors. 

If the adjustment factors f], are unknown, then some 
assumptions must be made. The simplest assumption that 
can be made is that the stratification has been carried out 
perfectly so that within each stratum the adjustment factor for 
any stratum group j is the same across all the areas i. This 
would permit the population for any area to be determined 
by the basic synthetic relationship: 

y. 
J 

(5) 

This reduces the number of parameters in the model from (I 
x J) to J. However the assumption of perfect stratification 
seems strong. 

Cressie relaxes this assumption by allowing the adjustment 
factor for any area1 and stratum j to come from a distribution 
with an expected value which depends only on the stratum 
but with a variance specific to the stratum and the area. This 
can be written as 

FH-N{F, ^l) 
(6) 

where the X represents the direct survey estimate of the 

adjustment factor and ajj represents the sampling variance. 
Cressie simplifies this model further by noting that the 
sample design of the 1980 US Post Enumeration Survey can 
be assumed to be probability proportional to size within 
strata. This permits the sampling variance to be modelled as 

(9) 
^Ji 

In summary then, there are two stages to the Cressie model. 
The first stage states that the true adjustment factors for each 
stratum j and area i equals the stratum level adjustment 
factor plus a random error. The second stage states that the 
true adjustment factor in the j-th stratum and the i-th area is 
unbiasedly estimated by the direct survey estimate. 

Assuming the above formulation, Cressie uses the results of 
Undley and Smith (1972) to show that the posterior 
distribution of F̂ ;, the true adjustment factor in the j-th 
stratum and the i-th area, given 
estimate >̂  has been observed, is: 

that the direct survey 

^Ji 1 Xj, - NiFj > o)/X .̂, - f.), 

ji 

(10) 

where 

(11) 

The distribution has been assumed to be Normal but this is 
not strictly necessary. As long as the expected value and the If the Fj and the variance components T* and o' are known, 



and if a squared error loss function is used, the mean of the 
above distribution provides the Bayesian estimate of F,. 

Cressie then compares the risks of using different estimators 
of \J using the following loss function; 

^ ( ^i ) = 
( ^ * ^ -Y^f (12) 

where the population of any area i is estimated by 

^" = E^j'^c, (13) 

Synthetic: 

Ci 

^ 2 Cj> (18) 

Bayes: 

>(« 
( r - Yj r 

(19) 

and the superscript (e) represents the estimator that is to be 
used. 

Cressie determines the risks, or expected loss, for three 
estimators of the true population count VJ: the actual Census 
count, a synthetic estimator and the Bayesian estimator. 
Throughout this development it is assumed that the 
parameter values are known and the expectation is taken 
over the model for f̂ , and )^|. 

The three estimators (see footnote 1) for the population of 
area i can be written as 

Census : ff = E ŷ* J (14) 

Synthetic : 9^^ = ̂  F, Ĉ . ; (15) 

Bayes.Yl'^ = '£{Fj^i^jiXj,-Fp)C^ 

(16) 

The risks for each estimator can be written as 

Census: 

C, J ^ C, (17) 

J ^i 

Clearly the following inequalities concerning the risks are self 
evident from this development the risks can be ordered as: 

Bayes i Synthetic i Census 
(20) 

The implication of these inequalities is that the Bayes 
estimator will always have a lower risk, or at worst a risk 
equal to that of the actual Census count. 

3. Modifications to Cressie's Model 

As is evident from the previous section there are many 
assumptions that have been made in the development of the 
Bayesian model. This section examines Cressie's basic 
model when three of his assumptions are relaxed. Rrst, we 
examine the impact on the risks when estimates of the F are 
used instead of assuming them known (this was described 
in Cressie (1988b) but is repeated here for the sake of 
comparison to the risks presented in Section 2). Next, the 
assumption of unbiased direct survey estiniates will be 
replaced by using survey estimates that are possibly biased. 
Finally, using results of Prasad and Rao (1990), we examine 
the effects on the risk of using estimates of the variance 
components in place of the true, but unknown, variance 
components. 

3.1 Risks Associated with Estimating the F.s 

We examine the effect on the risks of the three estimators of 
population when estimates of the stratum level adjustment 
factors, the FjS, must be used. It is assumed throughout this 
section that both the 
variance are known. 

model variance and the sampling 

Since the Census estimator does not involve any of the 
model parameters, the risk of using the Census counts will 
not change and will remain as in (17). 

The risk of using the Synthetic model will change because Y 
is now estimated by 

(21) 
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Using the model developed earlier ((6) and (6)), the risk of 
using an estimate of the Synthetic estimator can be shown 
to be 

Ci re, ^ 

J Cf C. Cj 

(22) 

c, c., 

so that 

«;* = 

(25) 

(26) 

This risk is simply the risk of using the original Synthetic 
model with an added term representing the risk from 
estimating the F̂ s. From (22) It can be seen that when the 
sampling variance and model variance are equal in each 
stratum the added risk due to estimating the F.s is zero. 
However, If the sampling variance Is larger than the model 
variance then the risk of using the Synthetic model with 
estimated F̂ s will grow. Note also that it is possible to have 
the risk decline even when estimating the F̂ . This occurs 
when the sampling variance is smaller than the model 
variance. 

Under the model assumptions in (6) and (8), the risk of using 
the Bayes estimator can be shown to be 

That is, alpha represents the bias in the estimate of missed 
divided by the actual Census count. 

Bias in the estimation of undercoverage may arise from 
many sources. IHogan and Wolter (1988) describe the major 
sources of error in the U.S. Post Enumeration Survey (PES), 
while Burgess (1988) describes similar issues for the 
Canadian Fteverse Record Check (RRC). Among these are 
non-response, matching errors, correlation bias fm the case 
of the PES) and. In the case of the RRC, the fact that the 
RRC measures gross, not net, undercoverage. Thus, it would 
seem prudent, in any assessment of risks, to consider the 
possibility that the survey estimates of undercoverage are 
biased. 

C^ 
E - ^ 
/ Ci Cj 

Ci 

J ? ( 1 - iij) 

(23) 

This is just the risk of using the Bayes estimate when the Fs 
are assumed known plus an additional term due to the 
estimation of the F.s. Note that this added term will always 
add to the risk of using this estimator, unlike the synthetic 
case where the risk can actually decline with estimation of 
the Fj. Cressie (1988b) showed that this risk (23) was always 
less than or equal to the risk of the synthetic estimator (22), 
and also gave a sufficient condition for the risk of the 
synthetic estimator (22) to be less than that of of the Census 
(17). 

3 J Bias in the Direct Surrey Estimates 

Considering the Synthetic estimate first, using the model of 
the bias developed above (24) (and using (6)) it can be 
shown that the risk of using the Synthetic estimator when the 
direct survey estimate )̂ | is subject to bias can be written as 

(f'^- Y "P- C 

c, 

— { ( — - — ) 
Cj Cj 

(• 
Bias ( Mj ) 

)̂ 1 

(27) 

This is same as the Synthetic risk (21) developed earlier with 
the last term being an added bias term. 

The Empirical Bayes model with bias can be developed 
similarly. It can be shown that the risk of using the Bayes 
estimate for any area i when the direct survey estimate is 
subject to bias is 

In this sub-section we modify Cressie's model by now 
permitting the possibility ot biased estimates, X,, from the 
survey. We can write this modification to Cressie's original 
model (8) for the survey estimates as 

where the alpha component represents a bias term that is 
present in all areas and strata. Another interpretation of this 
term can be seen by writing the expected value of X, as 

. ^ = E|^a-^ 
J 

C^ 

CiCj 

C; Bias{.M) 
f 

(28) 

This is the same risk as developed in (22) but with a term 
added to reflect the additional risk due to using biased 



estimates from the survey. Note that the added bias term for 
the risk of the Empirical Bayes estimate is the same as that 
for the Synthetic estimate. Hence the Empirical Bayes risk 
will still be less than equal to the Synthetic risk. 

3 J Estimation of the Variance Components 
Bayesian Model 

in the 

In previous sections, the estimator developed under the 
Bayesian framework has assumed that the variance 
components are known. In practice, however, they will not 
be known and an Empirical Bayes estimator would be used. 
The Empirical Bayes estimator is actually developed in two 
stages: first, the Best Unear Unbiased Predictor is obtained 
assuming the variance components are known, and then the 
variance components are replaced by estimates of the 
variance components. However, Prasad and F^o (1990) have 
noted that Ignoring the uncertainty in the variance 
components and then using the standard Mean Square Error 
(MSE) calculation of the best linear unbiased predictor of F̂ , 
as an approximation to the corresponding MSE of the two-
stage estimator can lead to serious understatement of the 
MSE. 

To estimate the MSE of the two-stage estimator, Prasad and 
F^o quote a result from Kacker and Harville (1984) that states 
that 

MSE ( y**̂  ) = M5£ ( Yf ) (29) 

£ ( Yr - Yf' ? 
where 

/̂'̂  = Ec,(/',*<^>(^,-^>)(io) 

where 6, = — 
^ «2 <; * o, 

The similarity to (16) is obvious: all parameters in (16) are 
now replaced with their estimates. Note we assume that the 
estimate of the sampling variance is not subject to sampling 
error. The relationship between the MSE(YI) and the loss 
function (12) that Cressie used can be seen to be: 

MSE{9^) £ ( Y^ - Y, )̂  (31) 

Ci Ci 

Hence apart from the multiplicative constant (1/Q), Prasad 
and l^o's results apply directly to the risk as defined by 
Cressie. 

Prasad and F^o show that a second order approximation of 
(29) can be written (suitably modified to correspond to the 
original loss function (12)) in two parts. The first component 
is just the MSE(V;^')and was shown for the Bayes model in 
(28) (for the case where the survey estimate is subject to 
bias). The second part of (29) can be shown to 
approximately equal to: 

£ itr - *̂v 
^ of , Var ( T? ) 

/ O, + T, O, + X, 

(32) 

where, approximately, 

Vcr(iJ) 2(.; * o ']f 
(33) 

assuming normality of the model and sampling errors. 

Prasad and Fteo note that if the model and sample errors 
have been generated from a normal distribution this second 
order approximation is satisfactory. They also note that by 
ignoring the final term in (29) that the MSE calculation of the 
estimate can be understated by up to 20% depending on the 
assumed error distribution. The same conclusions can be 
applied to the risks that were developed for the Bayes model. 

The total risk for the Empirical Bayes estimate including the 
risk due to estimation of the variance components can now 
be summarized by: 

).i«V 
(Yr - y. Y c„ 

= E 7 ^ ^ ; ( i - - y ) 

Bias (Mj ) 

I- C 
o ; ( i - Q . ) 

(34) 

4. Empirical Results 

4.1. Reverse Record Check Results from 1986 

We first apply the methods of Section 2 to the 1986 Reverse 
Ftecord Check. The objective of the Reverse Record Check is 
to provide estimates of the number of persons and 
households missed in the Canadian Census. It is described 
more fully in Burgess (1988), but briefly the approach is as 
follows. In 1986, some 36.000 persons were selected for the 
study from the following four frames: 

persons enumerated in the 1981 Census of 
Canada; 
persons missed in the 1981 Census of Canada 
(available in the form of a sample of persons so 
classified in the 1981 Fteverse Ftecord Check); 
a birth frame containing all births in Canada 
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between the 1981 Census and the 1986 Census; 
an Immigrant frame containing a list of Immigrants 
to Canada between the two censuses. 

Each person in the sample was then traced to their 1986 
Census Day address and the 1986 Census questionnaire for 
that address was checked to determine if the person had 
been enumerated or not. 

The sample size and the sample design are sufficient to 
provide reliable estimates at the province level and for some 
age-sex combinations at the national level. In 1986, for 
example, for individual provinces the resulting coefficient of 
variations varied from under 6% for Ontario to over 37% for 
Prince Edward Island. However estimates at the level of 
province by age group and sex, which would be required for 
any adjustment Of the population estimates program, are 
very often not reliable. In 1991, the Ftoverse Ftecord Check 
sample has been increased to approximately 50,000 persons 
but many of the estimates by province-age-sex will still have 
unacceptably large CVs. 

The unknown parameters that have to be estimated are the 

F̂  s, the model variance tj and the sampling variance oJ. 
F̂ ollowing the development in Maritz and Lwin (Section 2.8, 
1989) we use the method of moments to estimate the F, with 

E^y< Cji (35) 

where X is the direct survey estimate from the F^verse 
Ftocord Check of the adjustment factor in the j-th stratum and 
the i-th area. 

Using our notation, the estimate for the model variance can 
be written as: 

Ec,('.-'/)" 
/-I ».o 

(36) 

This is the same approach used by Cressie and also 
described in Prasad and Ftoo. 

The sampling variance must be estimated directly from the 
survey using sampling considerations. We consider two 
possible approaches. 

The first method is simply to use the direct estimate of the 
sampling variance that is produced by the Fteverse Ftecord 
Check for each age-sex stratum. The sampling variance 
estimates from the published table can be determined by 
taking 

. 2 Var ( Mj ) (37) 

The second approach is to use a Generalized Variance 
Function as suggested by Wolter (1985). To estimate this we 
first set 

log 
Var (MJ) 

M 

(38) 
a + p A/,. + Ŷ  

and use least squares to estimate the unknown parameters 
in (48). We then use the estimating equation 

, 2 = - ^ exp( o + p M,. ) 
(39) 

to generate estimates of the sampling variance for the 
number of missed persons (̂ )̂ in each stratum. 

Using either of these estimates (37) or (39) and substituting 
the result directly into (36), it was found that there were a 
large number of zero estimates for the model variance. 
Cressie, in this situation, suggests collapsing the strata. 
Doing so resulted in 4 strata in each case. The strata differed 
slightiy in the details of the collapsing (see Tables 1 and 2). 

Table 1 gives the estimated variance components when the 
sampling variance is estimated directiy from the 1986 
Fteverse Record Check; Table 2 displays the estimated 
variance components when the sampling variance has been 
smoothed. 

Using the estimates from Table 1 and Table 2, the estimated 
adjustment factors for the Bayesian model were calculated. 
The results of the methods of Section 2 are presented in 
Table 3. The first estimate in each cell gives the direct 
survey estimate of the adjustment factor calculated from the 
Ftoverse Ftecord Check. Note the entries that have an 
adjustment factor of 1 , such as Alberta males 65 and over, 
mean that the Fteverse Ftecord Check estimated no missed 
persons in this cell. The second row within each cell gives 
the Synthetic estimate that is determined solely by the total 
for the age-sex national estimate. 

The third row and fourth rows in each cell give the Empirical 
Bayes estimates. The third row was calculated using variance 
components based on the direct estimates of the sampling 
variance from the Fteverse Record Check, as displayed in 
Table 1. The fourth row was based on the smoothed 
estimates of the sampling variances as given in Table 2. 

The extremes of the adjustment factor for each cell entry are 
always the direct survey estimate and the Synthetic estimate. 
The two Bayesian estimates represent compromises between 
these extremes. For cells with very small samples, as is the 
case in Prince Edward Island for Males 45 - 54, the Bayesian 
approach smooths the adjustment factor back almost to the 
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Synthetic estimate. In the larger provinces of Ontario and 
Quebec the estimates for both the direct survey and the 
Synthetic estimate are usually very close. Hence the 
Empirical Bayes estimates does nol affect either estimate 
greatiy. 

4 J Eyaluation of Risks 

4J.1 Estimated Risks of each Procedure in the 19S6 
Reverse Record Check 

The risk of using each procedure to estimate the true 
adjustment factor for each area i can be evaluated for the 
1966 Census. Ftecall the final risks for each of Census (17), 
Synthetic (27) and Bayes (34). 

Substituting the estimates of the variance components and 
the stratum level adjustment factors F̂  into the above, we can 
estimate the components and the total risk for the three 
estimators (see footnote 2). These are displayed in Table 4. 
The sequence of the terms in Table 4 for the risk of using the 
Synthetic estimate and the Bayes estimate are ordered to 
correspond to the terms In (27) and (34). The bias 
component was estimated by assuming an overall relative 
bias of approximately 5%. 

The first point to notice about Table 4 is that for every area 
the risk of the Census count is always considerably higher 
than the risk of either the synthetic estimate or the Empirical 
Bayes estimate. Since the 'model' component of the 
synthetic estimator Is equal to the first component of the 
Census risk (see equation (17)), it can be seen that almost ail 
of the Census risk arises from the second term in (17). 
Second, unlike the results of Sections 2,3.1 and 3.2, the risk 
of the Empirical Bayes estimator is actually higher than that 
of the synthetic estimator. The reason Is because of the 
additional term in the risk representing the effect of 
estimating the variance components. Without this latter 
component, the risk of the Empirical Bayes estimate would 
have been lower than that of the synthetic estimate. The 
effect of the estimation of the variance components on the 
total risk of the Empirical Bayes estimate is substantial. 

The figures In Table 4 assumed a relatively small amount of 
relative bias (5%) in the estimation of the number of persons 
missed. To examine the potential impact of higher levels of 
bias on the total risk, the bias component of Prince Edward 
Island was re-written as 

Bias {III,) 'f M, (54) 

and then gamma was allowed to vary from 0, representing an 
unbiased estimate of missed persons from the survey, to 1. 
However, only when gamma approaches 1 does the risk from 
either the Synthetic or the Bayes estimate approach the risk 
for the Census. Thus, the Impact of biased estimates of 
missed will only Impact on the ordering of the relative risks 
in extreme situations. 

5. Conclusions and Future Research 

Cressie in his papers demonstrated that the risk of using the 
Bayes estimate was less than the risk of using the Synthetic 
estimate which in turn was always less than using the actual 

Census count, for both the usual Bayes and Empirical Bayes 
methods. When the effect of the estimation of variance 
components are considered, however, it appears that these 
relationships may no longer hold. Although the risks for both 
the synthetic and Empirical Bayes were always found to be 
less than the Census counts, taking the effect of the 
estimation of the variance components into account can 
result in a situation where the synthetic estimator has a lower 
risk than the Empirical Bayes estimator. 

In the future, we hope to identify specific algebraic conditions 
under which the risk for the Empirical Bayes estimator, 
including the component due to the.estimation of the 
variance components, is less than or equal to the risk for the 
synthetic estinriator. This would represent an extension of 
conditions given in Cre5sie(1988b). In tiie numerical example 
given, the estimated sampling variances were much larger 
than the model variances. Since the additional term In the 
risk is a function of the sampling variance, it could be that 
lower sampling variances would lead to a situation where the 
risk of the Empirical Bayes estimator, even allowing for the 
effect of estimating the variance components, would still be 
lower than the synthetic estimator. 

We will also investigate other nhodels for the adjustment 
factors. The model that Cressie proposed (6) results In 
consistency with the national age - sex adjustment factors 
but not with the provincial level estimates. To create 
consistency on both margins, other models will be 
investigated. A recent paper by Barry (1990) describes an 
Empirical Bayes approach, using a logit model, to the 
estimation of binomial probabilities (e.g., undercoverage 
rates) in two-way tables that preserves both row and column 
margins. Empirical Bayes methods that combine direct 
survey estimates with Kerative Proportional Fitting estimates 
will also be investigated. 
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Footnotes 

1. Cressie also considered a constrained Bayes estimator, 
however we do not deal with it in this paper. 

2. In fact, Prasad and Fteo show that an unbiased estimator, 
to o(r ^), of the first component of the Bayes risk In (34) is 
equal to the sum of the first and last terms in (34) with 
estimates of the variance components substituted thus the 
figures in Table 4 for the Bayes risk are underestimates. 

Table 1 

Variance Components Estimated Directly from Survey 

Stratum 

Male 20 - 24 

Male 15 - 19. 25 - 44 

Male 0 -14. 45 plus 

1 Female 

»? 

61.43 

54.35 

30.86 

37.88 

«,' 

7.76 

11.32 

8.59 

13.99 

0.112 

0.172 

0.172 1 

0.270 1 

Table 2 

Variance Components Estimated from Smoothed Variances 

. Stratum 

Male 1 5 - 2 4 

1 Male 25 - 44 

1 Male 0 -14. 45 plus 

1 Female 

»," 

1 73.58 

1 42.23 

1 29.48 

1 39.52 

«? 

9.04 

21.80 

9.97 

12.35 

"' 1 

0.109 

.340 

0.253 

0.238 



T a b I * 3. 

E d m a t s d Ad)uMnwnt Factor* 

IML£ FEMALE 

gC ALTA SASK MAN ONT QUE N8 NS PB NFUJ BC ALTA SASK MAN ONT QUE MB NS PEI NFLO 

T O M 
1.02S 
t.026 
1.027 

1.028 
1.025 
1.026 
1.020 

1.011 
1.02S 
1.022 
1.022 

1.008 
1.025 
1.022 
1.021 

i.o:}2 
1.025 
1.027 
1.027 

1.022 
1.025 
1.025 
1.024 

1.008 
1.035 
1.022 
1.021 

1.02t 
1.025 
1.024 
1.024 

1.006 
1.025 
1.021 
1.021 

1.015 
1.025 
1.023 
1.023 

•"1.074 

1.054 

1.058 

I.0S8 

1.023 

1.054 

1.040 

1.051 

1.060 
1.054 
i.ose 
1.057 

1.077 
1.054 
1.058 
1.057 

1.066 
1.054 
1.056 
1.055 

1.040 
1.054 
1.052 
1.053 

1.061 
1.054 
1.055 
1.055 

1.031 
1.054 
1.050 
1.052 

1.020 
1.054 
1.048 
1.050 

1.019 
1.054 
1.04S 
1.050 

T.164 
1.132 
1.136 
1.13S 

1.146 
1.132 
1.134 
1.134 

1.121 
1.132 
1.131 
1.131 

1.147 
1.132 
1.134 
1.134 

1.143 
1.132 
1.133 
1.133 

1.118 
1.132 
1.130 
1.131 

1.074 
1.132 
1.126 
1.126 

1.088 
1.132 
1.127 
1,127 

1.068 
1.132 
1.125 
1.125 

1.054 
1.132 
1.123 
1.123 

1.095 
1.071 
1.075 
1.079 

1.062 
1.071 
i.oes 
i.oea 

1.040 
1.071 
1.066 
1.060 

1.067 
1.071 
1.070 
1.070 

1.064 
1.071 
1.070 
1.069 

1.079 
1.071 
1.072 
1.074 

i.oeo 
1.071 
1.072 
1.074 

1.079 
1.071 
1.072 
1.074 

1.03S 
1.071 
1.06S 
1.069 

1.041 
1.071 
1.066 
1.061 

1.057 
1.041 
1.044 
1.048 

1.017 
1.041 
1.037 
1.033 

1.055 
1.041 
1.043 
1.046 

1.031 
1.041 
1.039 
1.038 

1.033 
1.041 
1.038 
1.038 

1.052 
1.041 
1.043 
1.045 

1.076 
1.041 
1.047 
1.063 

1.026 
1.041 
1.038 
1.036 

1.011 
1.041 
1.038 
1.031 

1.028 
1.041 
1.038 
1.036 

1,025 
1,028 
1.026 
1.026 

1.019 
1.026 
1.025 
1.024 

1.011 
1.026 
1.023 
1.023 

1.031 
1,026 
1.027 
1.028 

1.036 
1.026 
1.028 
1.029 

1.018 
1.026 
1.025 
1.024 

1.010 
1.026 
1.023 
1.022 

1.013 
1.026 
1.023 
1.023 

1.146 
1.028 
1.052 
1,057 

1.028 
1.026 
1.026 
1.026 

1,055 
1.026 
1.032 
1.033 

1.020 
1.026 
1.024 
1.024 

1.023 
1.026 
1.025 
1.025 

1.018 
1.026 
1.024 
1.024 

1.026 
1.026 
1.026 
1.026 

1.017 
1.026 
1.024 
1.023 

1.013 
1.026 
1.023 
1.022 

1.032 
1.026 
1.027 
1.027 

1.018 
1.026 
1.024 
1.024 

1.011 
1.026 
1.023 
1.022 

1.051 
1.025 
1.031 
1.031 

1.000 
1.025 
1.019 
1.018 

1.003 
1.025 
1.020 
1.010 

1.022 
1.025 
1.024 
1.024 

1.024 
1.025 
1.025 
1.025 

1,022 
1.025 
1.024 
1.024 

1.009 
1.025 
1.021 
1.021 

1.058 
1.CS5 
1.032 
1.033 

1.000 
1.025 
1.018 
1.018 

1.021 
1.025 
1.024 
1.024 

XII 
F) 
F ]i using diract vaiianca 
F fl using wgrassJon variance aslimatas 

00-14 

15-19 

20-24 

2S04 

55-64 

1.028 
1,027 
1.027 
1.027 

1.025 
1.027 
1.027 
1.027 

1.026 
1.027 
1,027 
1.027 

1.047 
1.027 
1.032 
1.032 

1.034 
1.027 
1.028 
1,020 

1.020 
1.027 
1.025 
1.025 

1.004 
1.027 
1.021 
1.022 

1.015 
1.027 
1.024 
1.024 

1.000 
1.027 
1.020 
1.021 

1,023 
1,027 
1.026 
1.026 

1.058 
1.046 
1.049 
1.049 

1.056 
1.048 
1.048 
1.048 

1.038 
1.046 
1.044 
1.044 

1.012 
1.046 
1.037 
1.036 

1.048 
1.046 
1.048 
1,046 

1.042 
1.046 
1.04S 
1.045 

1.031 
1.046 
1.042 
1.042 

1.090 
1.046 
1.056 
1.056 

1.029 
1.046 
1.041 
1.042 

1.000 
1.046 
1.033 
1.035 

1.151 
1.090 
1.106 
1.104 

1.094 
1.080 
1.081 
1.091 

1.109 
1.090 
1.095 
1.094 

1.082 
1.090 
1.088 
1.068 

1.064 
1.090 
1.068 
1.068 

1.073 
1.000 
1.085 
1.086 

1.112 
1.090 
1.096 
1.095 

1.057 
1.090 
1.081 
1.082 

1.061 
1.090 
1.062 
1.083 

1.087 
1.090 
1.089 
1.089 

1.065 
1.045 
1.060 
1.049 

1.043 
1.045 
1.044 
1,044 

1.022 
1.045 
1.038 
1.038 

1.022 
1.045 
1.038 
1.038 

1.045 
1.045 
1.045 
1.045 

1.046 
1.045 
1.045 
1.045 

1.038 
1,045 
1.043 
1.043 

1.023 
1.045 
1.039 
1.040 

1.075 
1,045 
1,053 
1.052 

1.037 
1.045 
1.042 
1.043 

1.026 
1.018 
1.020 
1.020 

1.018 
1.018 
1.018 
1.018 

1.027 
1.018 
1.021 
1.020 

1.005 
1.018 
1.015 
1.015 

1.014 
1.018 
1.017 
1.017 

1.024 
i.ots 
1.020 
1.019 

1.019 
1.018 
1.019 
1.016 

1.000 
1.018 
1.013 
1.014 

1.000 
1.0IS 
1.013 
1.014 

1.006 
1.013 
1.015 
1.01S 

1.030 
1.021 
1.023 
1.023 

1.040 
1.021 
1.026 
1.025 

1.023 
1.021 
1.021 
1.021 

1.038 
1.021 
1.025 
1.025 

1.017 
1.021 
1.020 
1.020 

1.016 
1.021 
1.016 
1.020 

1.013 
1.021 
1.019 
1.019 

1.015 
1.021 
1.018 
1.019 

1.003 
1.021 
1.016 
1.018 

1.010 
1.021 
i.oia 
1.018 

1,057 
1.029 
1.037 
1.036 

1.022 
1.029 
1.028 
1.028 

1.030 
1.028 
1.030 
1,030 

1.006 
1.029 
1.023 
1.024 

1.027 
1.029 
1.029 
1.029 

1,029 
1.029 
1.029 
1.029 

1.057 
1.029 
1.037 
1.036 

1.000 
1.029 
1.021 
1.022 

1.000 
1.029 
1.021 
1.022 

1.011 
1.029 
1.024 
1.025 

1.042 
1.031 
1.034 
1.034 

1.028 
1.031 
1.030 
1.030 

1.025 
1.031 
1.028 
1.030 

1.027 
1.031 
1.030 
1.030 

1.024 
1.031 
1.029 
1.029 

1.038 
1.031 
1.033 
1.033 

1.031 
1.031 
1.031 
1.031 

1.029 
1.031 
1.030 
1.031 

1.047 
1.031 
1.035 
1.035 

1.038 
1.031 
1.033 
1.033 

PROVINCIAL 
HATE 

1.057 
1.041 
1.044 
1.045 

1.040 
1.043 
1.042 
1.042 

1.035 
1.041 
1.040 
1.040 

1.037 
1.042 
1.040 
1.040 

1.042 
1.042 
1.042 
1.041 

1.040 
1.042 
1.041 
1.042 

1.037 
1.042 
1,041 
1,041 

1.034 
1.042 
1.040 
1.040 

1.028 
1.041 
1.039 
1.039 

1.026 
1.042 
1.03S 
1.039 
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BC 

Table 4 
Estimated Risk of Using Various Estimates Averaged over Age - Sex Groups 

ALTA 

Risk using estimates from Table 1 

SASK MAN ONT QUE NB NS PEi NFLD 

Census 1526.31 1295.36 530.37 569.97 4859.50 3541.80 389.63 478.39 77.90 313.19 

Synthetic 
Total 

Model 
Estimation 
Bias 

Bayesian 
Total 

Model 
Estimation 
Bias 
Var. Comp 

19.10 
11.83 
3.24 
4.03 

22.86 
9.02 
3.56 
4.03 
6.26 

18.00 
11.82 
2.77 
3.42 

21.84 
9.03 
3.02 
3.42 
6.36 

14.27 
11.76 
1.12 
1.38 

17.80 
8.97 
1.23 
1.38 
6.22 

14.49 
11.81 
1.19 
1.49 

18.05 
9.01 
1.31 
1.49 
6.25 

35.02 
11.84 
10.29 
12.90 

39.51 
9.03 

11.30 
12.90 
6.28 

28.72 
11.86 
7.46 
9.39 

32.94 
9.05 
8.19 
9.39 
6.31 

13.64 
11.83 
0.81 
1.01 

17.20 
9.02 
0.88 
1.01 
6.29 

14.06 
11.83 
0.99 
1.24 

17.65 
9.02 
1.09 
1.24 
6.29 

78.04 
11.79 
0.14 

66.11 

81.50 
8.99 
0.16 

66.11 
6.25 

13.26 
11.81 
0.65 
0.80 

16.83 
9.01 
0.71 
0.80 
6.30 

Risk using estimates from Table 2 

Census 

Synthetic 
Total 

Model 
Estimation 
Bias 

Bayesian 
Total 

Model 
Estimation 
Bias 
Var. Comp 

NOTE: Bias 

BC 

1485.29 

19.99 
13.02 
3.05 
3.92 

23.05 
9.61 
3.44 
3.92 
6.08 

0.05 

ALTA 

1255.13 

19.04 
13.15 
2.58 
3.30 

22.08 
. 9.70 

2.91 
3.30 
6.17 

= 

SASK 

521.17 

15.25 
12.80 

1.09 
1.35 

18.18 
9.49 
1.22 
1.35 
6.12 

45,600 

MAN 

558.74 

15.49 
12.89 
1.15 
1.45 

18.42 
9.54 
1.29 
1.45 
6.13 

ONT 

4739.26 

35.41 
12.97 
9.86 

12.58 

39.38 
9.59 

11.07 
12.58 
6.14 

QUE 

3441.37 

29.25 
13.07 
7.06 
9.12 

32.86 
9.65 
7.95 
9.12 
6.14 

NB 

382.73 

14.70 
12.93 
0.78 
0.98 

17.61 
9.57 
0.88 
0.98 
6.18 

NS 

469.55 

15.10 
12.92 
0.97 
1.22 

18.05 
9.57 
1.08 
1.22 
6.19 

PEI 

77.80 

77.94 
12.81 
0.14 

64.99 

80.82 
9.50 
0.16 

64.99 
6.17 

NFLD 

310.51 

14.29 
12.86 
0.64 
0.79 

17.28 
9.53 
0.72 
0.79 
6.23 

883,898 
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