Effective Growing Degree Days

Ontario

Effective Growing Degree Days (EGDD):

- Heat units used by spring seeded small grains (e.g. wheat, barley) and canola crops, accounting for daylength adjustments.
- Accumulated from 10 days after average daily temp is above 5°C (seeding date), until fall frost (minimum daily temperature is 0°C), or October 31

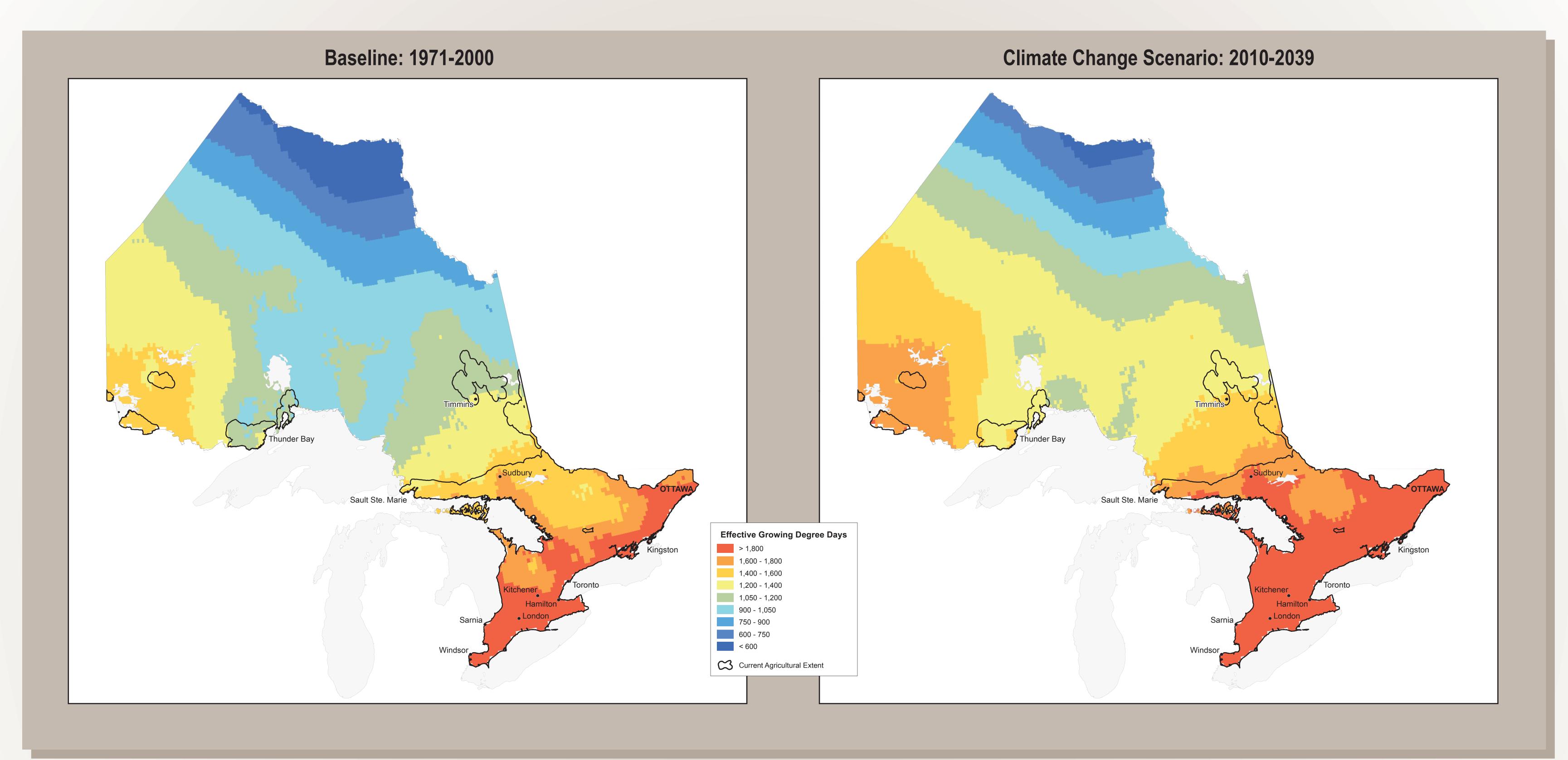


Table 1: Climate Suitability Ratings for Spring Seeded Small Grains

	Effective Growing Degree Days	Suitability Rating and Description	
	1,600	No limitations - Class 1	
	1,200	Moderate limitations - Class 3	
	1,050	Severe limitations - Class 4	
	900	Very severe limitations - Class 5	
	500	Not suitable - Class 7	

Note: Class 1 to Class 3 are considered suitable for continual crop growth.

For more information on suitability ratings for spring seeded small grains:

http://sis.agr.gc.ca/cansis/publications/manuals/lsrs.pdf

Table 2: Summary of EGDD comparing 1971-2000 to projected climate change in 2010-2039

Effective Growing Degree Days	1971 - 2000 Baseline	2010 - 2039 CGCM 3.1		
	Percent of total area			
> 1,800	5.3	10.9		
1,600 - 1,800	4.0	10.3		
1,400 - 1,600	10.0	15.1		
1,200 - 1,400	16.6	29.2		
1,050 - 1,200	19.2	14.5		
900 - 1,050	23.7	7.7		
750 - 900	8.9	6.0		
600 - 750	6.7	5.0		
< 600	5.7	1.4		

• The CGCM 3.1 model predicts an increase of 1 to 2 degrees Celsius by 2010-2039 in the average monthly temperature during the growing season in Ontario.

Climate Data and Future Scenario:

- □ 30 year average monthly climate data (Tmax, Tmin, ppt) was used to calculate:
 - Effective Growing Degree Days,
 - Moisture Deficits (P-PE) and
- Length of Growing Season (seeding date until fall frost).
 Baseline data (1971-2000) provided by Natural Resources Canada (Great Lakes Forestry Centre).
- Climate Change Scenario (2010-2039)
- Global Climate Change Model (GCM) used: Canada's Coupled Global Climate Model (CGCM3.1) developed by the Canadian Centre for Climate Modelling and Analysis.
- Climate data was spatially interpolated using ANUSPLIN software (2.5° grid interpolated to ~10km grid).

Limitations:

- □ Represents only a single climate change model result, using the A2 climate change scenario from the Intergovernmental Panel on Climate Change (IPCC).
- Seasonal and inter-seasonal variability in the 30 year average monthly climate data was not considered (e.g. extreme events such as drought and excess spring moisture).

