
Moisture Deficits (P-PE):

Table 1: Climate Suitability Ratings for **Spring Seeded Small Grains**

Moisture Deficit (mm)	Suitability Rating and Description	
-150	No limitations - Class 1	
-300	Slight limitations - Class 2	
-400	Moderate limitations - Class 3	
-500	Severe limitations - Class 4 to Class 5	

Note: Class 1 to Class 3 are considered suitable for continual crop growth.

For more information on suitability ratings for spring seeded small grains: http://sis.agr.gc.ca/cansis/publications/manuals/lsrs.pdf

Moisture Deficits

Atlantic Region

Moisture deficit is precipitation (P) minus potential evapotranspiration (PE). Moisture deficits were accumulated from seeding date, until estimated crop maturity using the Bio-Meteorological Time Scale (BMTS) for wheat.

Table 2: Summary of P-PE comparing 1971-2000 to projected climate change in 2010-2039

Moisture Deficit (mm)	1971 - 2000 Baseline	2010 - 2039 CGCM 3.1	
(11111)	Percent of total area		
> -100	97.1	99.7	
-150 to -100	2.9	0.3	
-200 to -150	0.0	0.0	
-250 to -200	0.0	0.0	
-300 to -250	0.0	0.0	
-350 to -300	0.0	0.0	
-400 to -350	0.0	0.0	
-450 to -400	0.0	0.0	
< -450	0.0	0.0	

• The CGCM 3.1 model predicts slightly wetter springs, but drier summers by 2010-2039 across Atlantic Canada, as well as a shift to earlier crop seeding and maturity times.

Climate Data and Future Scenario:

- □ 30 year average monthly climate data (Tmax, Tmin, ppt) was used to calculate:
 - Effective Growing Degree Days, • Moisture Deficits (P-PE) and
 - Length of Growing Season (seeding date until fall frost).
- Baseline data (1971-2000) provided by Natural Resources Canada (Great
- Lakes Forestry Centre).
- □ Climate Change Scenario (2010-2039)
 - Global Climate Change Model (GCM) used: Canada's Coupled Global Climate Model (CGCM3.1) developed by the Canadian Centre for Climate Modelling and Analysis.
 - Climate data was spatially interpolated using ANUSPLIN software $(2.5^{\circ} \text{ grid interpolated to } \sim 10 \text{ km grid}).$

Limitations:

- Represents only a single climate change model result, using the A2 climate change scenario from the Intergovernmental Panel on Climate Change (IPCC).
- Seasonal and inter-seasonal variability in the 30 year average monthly climate data was not considered (e.g. extreme events such as drought and excess spring moisture).

