
Moisture Deficits

Prairie Region

Moisture Deficits (P-PE):

- Moisture deficit is precipitation (P) minus potential evapotranspiration (PE).
- Moisture deficits were accumulated from seeding date, until estimated crop maturity using the Bio-Meteorological Time Scale (BMTS) for wheat.

Table 1: Climate Suitability Rating for Spring Seeded Small Grains

Moisture Deficit (mm)	Suitability Rating and Description
-150	No limitations - Class 1
-300	Slight limitations - Class 2
-400	Moderate limitations - Class 3
-500	Severe limitations - Class 4 to Class 5

Note: Class 1 to Class 3 are considered suitable for continual crop growth.

For more information on suitability ratings for spring seeded small grains:

http://sis.agr.gc.ca/cansis/publications/manuals/lsrs.pdf

Table 2: Summary of P-PE comparing 1971-2000 to projected climate change in 2010-2039

Moisture Deficit (mm)	1971 - 2000 Baseline	2010 - 2039 CGCM 3.1
	Percent of total area	
> -100	18.9	20.6
-150 to -100	18.2	20.5
-200 to -150	26.3	24.9
-250 to -200	20.3	19.3
-300 to -250	8.7	8.5
-350 to -300	5.5	5.5
-400 to -350	2.0	0.8
-450 to -400	< 0.1	0.0
< -450	0.0	0.0

• The CGCM 3.1 model predicts slightly wetter springs, but drier summers by 2010-2039 across the prairies, as well as a shift to earlier crop seeding and maturity times.

Climate Data and Future Scenario:

- 30 year average monthly climate data (Tmax, Tmin, ppt) was used to
 - Effective Growing Degree Days,
- Moisture Deficits (P-PE) and Length of Growing Season (seeding date until fall frost).
- Baseline data (1971-2000) provided by Natural Resources Canada (Great
- Lakes Forestry Centre).
- Climate Change Scenario (2010-2039)
 - Global Climate Change Model (GCM) used: Canada's Coupled Global Climate Model (CGCM3.1) developed by the Canadian Centre for Climate Modelling and Analysis.
 - Climate data was spatially interpolated using ANUSPLIN software (2.5° grid interpolated to ~10km grid).

Limitations:

- Represents only a single climate change model result, using the A2 climate change scenario from the Intergovernmental Panel on Climate Change (IPCC).
- Seasonal and inter-seasonal variability in the 30 year average monthly climate data was not considered (e.g. extreme events such as drought and excess spring moisture).

