A Framework to Improve the Effectiveness of Aquatic Environmental Impact Assessment

Reid Crowther \& Partners Ltd.

> A Manuscript Report Prepared for the Canadian Environmental Assessment Research Council March 1986

FOREWORD

> The Canadian Environmental Assessment Research Council (CEARC) was established in 1984 by the federal Minister of the Environment through the Federal Environmental Assessment Review Office (FEARO), to advance the theory and practice of environmental assessment (EA). As part of its commitment to improve EA in Canada, CEARC encouraged research in several areas related to environmental assessment. The research results are presented in three series of publications: Research Prospectus, Background Papers and Manuscript Reports.

This report is part of the Manuscript Report series which is composed primarily of individual research papers sponsored, completely or in part, by CEARC. The Manuscript Reports are provided in the language and format in which they were submitted. They are not subject to peer review and do not necessarily reflect the views and policies of CEARC.

Hard copies of CEARC publications can be ordered through:
Canada Communication Group - Publishing
Ottawa, Canada
K1A OS9
Tel: (819) 956-4802
Fax: (819) 994-1498
Microfiche copies of CEARC publications can be ordered through:
Micromedia Limited
165 Hotel de Ville
Place du Portage, Phase II
Hull, Quebec
G8X 3X2

Tel: I-800-567-1914 (Canada), (819) 770-9928
Fax : (819) 770-9265
For more information on CEARC's work, please contact:
Federal Environmental Assessment Review Office
Process Development Division
14th Floor, Fontaine Building
200 Sacré-Coeur Boulevard
Hull, Quebec K1A OH3
Tel : (819) 953-8591 or 953-0036
Fax: (819) 994-1469

[^0]
ACKNOULEDGEMENTS

Ue gratefully acknow edge the support of the project sponsors; Envi ronnent Canada, Department of Indi an Affairs and Northern Devel opment, the Federal Envi ronnental Assessment Review Office, the Northwest Territories Whter Board and Echo Bay Mnes Ltd. Of these agencies, the Yel lowknife Office of the Envi ronmental Protection Service and Echo Bay Mes were di rectly invol ved in data collection pertaining to the study and provision of advice and Iogistics support. For their cooperation and assi stance ve are particularly grateful.

We acknow edge the support and guidance of Dr. J. Brian Wilson, of the Northwest Territories Whter Board and Scientific Authority for this research contract.

Twel ve indi vi dual s representing governnent regul ators and resource managers, academic research institutes and the private sector reviewed this report. We thank them for their time and constructive criticism which have greatly enhanced this report.

Fi nally we acknow edge the contributions of our study associ ates. We thank Gary Ash of R.L. \& L. Envi ronnental Services Ltd. for his expert and consci entious assi stance with fisheries data collection. To Dr. Lars Hakanson of the National Swedi sh Envi ronnent al Protection Board, whose concepts were the inspiration for this study, we are sincerely gratef ul.

TABLE OF CONTENTS

Page
EXECUTI VE SUMMARY E-I
$1.0 \quad$ I NTRODUCTI ON 1-1
2.0 BACKGROUND. 2-1
2. 1 The Stat us of Envi ronmental I mpact Assessment. 2-1
2. 2 Aquatic Cont ami nation I mpact St udi es 2-4
2. 3 A Canadi an Case St udy. 2-6
3. 0 STUDY OBJ ECTI VES 3-1
4. 0 A FRAMEVORK FOR ASSESSMENT OF AQUATIC CONTAM NATI ON 4-1
4. 1 I ntroduction 4-I
4. 2 The Effect Paraneter 4-3
4. 3 The Dose Paraneter 4-4
4. 4 The Toxicity Factor. $4-5$
4. 5 The Sensitivity of the Reci pient 4-5
4. 6 The Resi dual Term 4-5
4. 7 Bi ol ogi cal Contact Area. 4-6
4. 8 Bi ol ogi cal Contact Ti ne. 4-7
4. 9 Addi tive Effects 4-7
4. 10 Appl c cation of the Franework 4-7
Page
5.0 USI NG THE FRAMEVORK APPROACH - A CANADI AN CASE STUDY. 5-1
5. 1 I ntroduction 5-1
5. 2 The Lupi n St udi es. 5-1
5. 3 Framework Eval uation 5-5
5.3.1 Study Desi gn. 5-5
5.3.2 Study Methods 5-8
5.3.3 Results and Di scussion. 5-10
5. 4 Improvements Offered by the Framework Appraoch 5-16
6. 0 DEVELOPMENT OF AN ECOLOG CAL RISK I NDEX FOR AQATI C POLLUTI ON CONTRQL AND ITS POTENTI AL APPLI CATI ON IN CANADA 6-1
6. 1 Introduction 6-1
6. 2 Deri vation of the Risk Index 6-1
6. 2. 1 Concentration Requi rement 6-3
6. 2. 2 Number Requi rement. 6-6
6.2.3 Toxi c Factor Requi renent. 6-8
6.2.4 Sensitivity Requi renent 6-9
6. 2. 5 The Ri sk Factor 6-10
6. 2. 6 The Ri sk I ndex 6-11
6. 3 Application to Sel ected Canadi an Lakes 6-12
6.3.1 Sel ection of Lakes. 6-12
6. 3. 2 Sedi ment Dat a 6-14
6. 3. 3 Contami nation Factors and Degree of Cont ami nation 6-14
6. 3. 4 Risk Factors and a Potential Ecol ogical Risk Index. 6-16
6. 4 Benefits of the Ecol ogical Risk Index and Future Di rections 6-20

TABLE OF CONTENTS (CONT' D)

Page
7. 0 THE APPLI CATI ON OF DI AGNOSTIC AND PROGNOSTI C MDDELS I N CANADA 7-1
7. 1 Introduction 7-1
7. 2 A Mbdel for Mercury Contani nation. 7-1
7. 3 Potential Applications of the Mercury Mbdel 7-3
7.4 Canadi an Test Data 7-5
7.5 Results and Di scussi on 7-5
7. 6 The Stat us of Canadi an Data Sources for Use In Mbdel Devel opment 7-7
7. 7 Recommendations for I mproving the Data Base. 7-8
8.0 CONCLUSIONS AND FUTURE DI RECTI ONS 8-I
8. 1 I nt roduction 8-1
8. 2 Benefits Offered by the Franenork Approach 8-1
8. 3 Appl i cati on of the Franework Approach in Canada. 8-4
8. 4 Recommendations for Further St udy. 8-5
8. 4. 1 Further Devel opment of Franenork Li nkage. 8-5
8.4.2 Data Requi renents 8-6
8.4. 3 Sampling Protocol 8-7
8.4.4 Appl ying the Framenork to Canadi an Aquatic Envi ronments. 8-7
8.4.5 Devel opment of Anal ogous Frameworks for Other Recei ving Envi ronments. 8-7
8. 5 Concl usi ons. 8-8
9.0 REFERENCES. 9-I

LIST OF TABLES

Fol lowing

Page
Table 1. Chemi cal and physi cal data from (Echo Bay Mes Envi ronnent al Laboratory) used in cal culating netals doses (Site Number 925-10 Nbrthwest Territories Water Board Licence Number N7L3-0925)

Table 2. Approxi mate dose ($\mathbf{k g}$) of total metal s rel eased from Echo Bay Mnes tailings pond at Site Number 925-10 for the decant period of Septenber 5, 1985 to October 1, 1985.

Table 3. Total netal concentrations in surface naters of I nner Sun Bay prior to, during and after the decant period, and total metals concentrations at other sites after the decant period. Al val ues reported as mg/L....................

Table 4. Determination of natural background concentrations of metal s in Sun Bay sediments (ug/g dry substance) bef ore tailings pond decant (from Reid Crowther 1985A)

Table 5. Determination of contamination factors (Cf) from mean (X) metal s concentrations in Sun Bay sediments after tailings pond decant in Novenber 1985 using previ ously cal cul ated nat ural background level s (Xn) from Table 4. 5-12

Table 6. X-ray florescence determinationl of netal $s(m g / g$ of ash wei ght) in the meats and shell s of composite samples of clans (Sphaerium nitidum and Psidi um nitidum) from Inner Sun Bay, Cont woyto Lake, NWT. before and after tailings pond decant. .. 5-13

Table 7. Determination of contamination factors (C_{f}) for clans from limited data available 5-13

Table 8. $\quad X$-ray florescence determination of metal $s(m y / g$ of ash wei ght) in the neats and shells of the snail (Val ata sincera) from I nner Sun Bay after tailings pond decant. Sampl es collected on Novenber 29, 1985.

Fol I owing
Page
Table 9. Determination of background netals level s (ppb wet wei ght) in muscle and liver of Iake trout, round whitefish, I ake cisco and Arctic char from Cont woyto Lake and surroundi ng lakes (data from R. L. \& L. Envi ronment al Servi ces Ltd., (1985) ... 5-14

Table 10. Background netal s level s (ppb wet wei ght) in
muscle and liver and the ratios of liver to muscle
concentrations for I ake trout, round whitefish,
I ake cisco and Arctic char from Contwoyto Lake and
sur roundi ng I akes 5-14

Table 11. Determination of background netal s level s (ppb wet wei ght) in muscle and liver of I ake trout, round whitefish, I ake cisco and Arctic char from Inner Sun Bay, Cont noyto Lake, NWT. (data fromR.L. \& L. Envi ronnental Servi ces Ltd., 1985)5-14

Table 12. Background metals level s (ppb wet wei ght) in muscle and liver and the ratio of liver to muscle concentrations for lake trout, round whitefish, Iake cisco and Arctic char fromlnner Sun Bay and Cont woyt o Lake, NWT 5-14

Table 13. Mean concentrations and standard devi ations of metal concentrations (uet wei ght ppb) in Iake trout and round whitefish livers and muscle tissues from Cont noyto Lake, NWT. after the decant period in the fall of 1985 5-15

Table 15. Estimated dose of total netal sto Inner Sun Bay and the correspondi ng contami nation factors for sedi nents, \quad llans and fish 5-15

Table 16. Lake area, maxi mum dept hs
the and source of data for
Canadi an lakes exani ned $\begin{aligned} & \text { d............. 6-12 }\end{aligned}$
Table 17. Mean values for constituents of surficial sedi ments (usually 0.5 cm) from sel ected Canadian I akes from various sources (see Table 16 for data sources).

Table 18. Contamination factors (Cfi) and val ues illustrating the degree of sedi ment contami nation (Cd) in 14 Canadi an I akes. All figures marked with an are hypothetical.

Table 19. Ranking of sedi nent contamination for the sel ected Canadi an and Suedi sh (Hakanson 1980A) 1 akes according to degree of contamination val ue and the order of contamination factors (Cf'). Al val ues narked with an * are hypothetical.

Table 20. Ri sk factors (Eri) and risk indices (RI) for the investigated lakes and for a reference lake (with $C_{f}^{i}=1$ for all substances and $\left.B P I=5.0\right)$. All val ues marked with an * are hypothetical and are incl uded only to illustrate the principle...6-17

Table 21. The potential ecol ogical risk factor (Eri) and risk indi ces (RI) of the investi gated Canadi an and Suedi sh (Hakanson 1980A) lakes. All figures narked with an * are hypothetical 6-17

Table 22. The-rel ationshi p bet ween. the contami nation fact ors $\left(C_{f}{ }^{1}\right)$ and the $C^{1} 0-1$ val ues (i.e. the nean content in ppm of the substances in superficial sedi ments 0.1 cm from accumul ation areas) for tho gi ven risk factors (Er ${ }^{\top}$) of 50 and 320 and a constant bi oproduction index (BPI)
of 5.0 (Hakanson 1980A)................ 6-18
Table 23. Data fromsix Canadi an I akes used to test the nercury nodel (Hakanson 1980B) and the nodel - cal cul ated val ues of nercury in fish tissue.

LIST OF FIGURES

		Fol I owing Page
Fi gure 1.		2-6
Fi gure 2.	Detailed Study Location Map With Sampling Sites ..	2-7
Fi gure 3.	Schematic of the concept ual franeuork with examples of paraneters whi ch could be used for each component of the franework dependi ng on the nature of the cont ani nant and the resource nanagement obj ecti ves.	4-3
Fi gure 4.	Schenatic of the conceptual franework illustrating parameters measured in the Lupin case study and opportunities for impact anal ysis. ...	5-8
Fi gure 5.	Schenatic of the conceptual framework illustrating the components and terns used in devel oping a potential ecol ogi cal risk index for aquatic contamination in lakes	6-1
Fi gure 6.	Schematic of the conceptual franework illustrating the components and terns used in devel oping a nodel for nercury contami nation in fish	7-2
Fi gure 7.	Schenatic of the conceptual framework illustrating some areas for recommended further research.	8-5

EXECUTI VE SUMMARY

INTRODUCTION

Thi study, which concer ns envi ronment al impact assessment methodol ogy and techni cal aspects of aquatic contamination studies, was funded by a Canada Departnent of Supply and Servi ces research grant, sponsored by Envi ronment Canada, Depart ment of Indi an Affairs and Northern Devel opment, the Federal Envi ronmental Assessment Review Office, the Northwest Territories Vater Board and Echo Bay Mnes Ltd. The study was initiated to aid practitioners of aquatic impact assessment by transferring current impact assessment concepts to the applied arena of aquatic contamination studies in Canada.

Several terns appear throughout the report. Their definitions in the context of this study are gi ven bel ow

- Envi ronmental Impact Assessnent (EIA) encompasses both the use of baseline information to predict environmental consequences and follow up monitoring to test predictions. It refers to overall envi ronnental assessment and planni ng whi ch may be requi red under a variety of jurisdictions rather than a specific formalized ElA process.
- Framework, concept ual framework and concept ual nodel are used interchangeably to refer to the framework devel oped by Hakanson which identifies the basic components of an aquatic contamination probl em and describes thei relationship to one another. The franework provi des a system for rationally anal yzing a contaminant problem desi gni ng an assessnent study and gathering rel evant data.
- Risk index is an expression of ecol ogical risk associated with a gi ven contami nation probl em whi ch permits ranking of contamination probl ens between lakes and ranking of contaminants within lakes.
- Diagnostic/prognostic model for metal contamination in fish is a quantitative (empirical) expression of an ecol ogi cal effect (nercury in fish tissue) resulting froma known contaminant dose (mercury in surficial sedi ments).

The di verse expectations of EIA's main participants (government administrators, project proponents, scientists, consultants) are sel dom met by traditional assessment methods practiced in Canada; however, time and budget constraints di scourage experimentation with new techni ques.

Aquatic pollution control is based largely on arbitrary discharge criteria derived from laboratory toxicity bi oassays. Studies are frequently oriented towards compliance monitoring; I arge vol umes of data are gener ated, very little of which are anal yzed and applied to quantitative prediction and assessment of contaminant effects and rel ated resource management.

I mprovenents to aquatic contaninant impact assessment studies are requi red to;

- devel op consensus among study participants on assessment priorities and study procedures,
- systematically build up information on the behavi our of contaminants in recei ving waters,
- generate information which is rel evant to resource managers,
- permit quantitative impact predictions which can be tested, and
- generate time and space comparable data.

STUDY OU ECTI VES

The purpose of this study was to illustrate the benefits of the conceptual framework for aquatic contaminant impact assessnent for improving impact assessment methods, resource managenent capabilities and the scientific qual i ty of aquatic contamination studies.

A conceptual framework being devel oped by Dr. Lars Hakanson of the National Swedi sh Envi ronnental Protection Board was described and used as a templ ate
for assessing a typical Canadi an contami nant study (Lupin Mne, N WT.) and identifying areas for improvenents. Data from 14 Canadian contaminant studi es were revi ewed and assessed for applicability to the devel opment of contami nation factors, ecol ogi cal risk indices and diagnostic/proynostic model s for metal accumulation in fish tissue. Areas for improvenent in study design, sampling nethodol ogy and data anal ysis to aid resource managenent and impact prediction were identified.

THE FRAMEVDRK

The concept ual framenork for assessing the effects of aquatic contanination provides a systenatic outline for tracing contaninants from dose to response and accounting for the mediating influences of envi ronmental factors. The franework is based on geoecol ogical principles which provide a sound rationale for study design (e.g. sample site sel ection, sample numbers, standards for collection/anal ysis) to generate time and space comparable dat a.

The components of Hakanson's framework are expressed by the following not ati on:

$$
E=f\left(D, T, W_{i}\right)+R
$$

where:
$E=a$ paraneter expressing an ecol ogi cal effect.

The framework approach advocates sel ection of a linited number of infornation-rich effect paraneters. Criteria for selection incl ude:

- Generous representation of the potential effect field by paraneters whi ch integrate a number of sub-effects (e.g. a tertiary consuner).
- Representation of, or direct linkage to, val ued ecosystem components.
- Representation of sensitive or weak links in the contaminant pat hway.

D = a contaminant dose paraneter.
Depending on the contami nant pathway and the effect parameters of concern, the dose nay be expressed in various forms. It nay be defined by a simple nass bal ance equation expressing input flow vol unes and concentration of contaminants, or it may integrate infornation concerning its expression in the recei ving environnent (e.g. concentrations in sedi ments, aquatic vegetation, etc.)

T = a factor expressing toxicity.
The toxicity factor is a measurenent of contaminant toxicity as it is expressed in natural naters (e.g. based on nat ural abundance in the recei viny water body).
$W_{i}=$ The $i t h$ factor or paraneter expressing receiving water sensitivity.
Sensitivity paraneters are those factors in natural recei ving maters (e.g. $\mathrm{pH}, \mathrm{O}_{2}$, al kalinity, salinity, bi oproductivity, water exchange) which influence the di stribution of contami nants in recei vi ny envi ronnents and the ecol ogi cal response to contaminants.
$R=a \quad$ residual term (the unaccountable remainder; a measure of the nodel's effecti veness).

The residual term(R) represents nat ural variability and envi ronmental factors, unaccounted for in our study design, which yi ve rise to a difference bet ween predicted and observed responses of aquatic systens to a contam nant dose. The objective of the framenork is to express quantitatively (by theoretical, empirical, intuitive or nathenatical nodel s) nor nati ve E - val ues froma limited nunber of readily measurable and representative integrating variables and to minim me the residual term The R term provides us with a measure of our success in accounting for the maj or operative mechanisns and the natural variability of the studi ed ecosystem

The rel ationship of contaminant dose to environmental response is al so influenced by space and tine. The effect terns may be transformed to indices by integratiny spatial aspects of the effect. Using the conceptual framenork notation;

$$
E^{\prime \prime}=\int E^{\prime} \text { or } E^{\prime}=A \cdot E^{\prime \prime}+R
$$

$E^{\prime \prime}$ stands for the potential ecol ogical risk accounting for "biol ogi cal contact area". The greater the area affected by aquatic contami nation, the greater the potential ecol ogical risk.

The biol ogi cal contact area (A) provides spatial di mensions to the dose, such as the physical area of influence of contaminant dose and the bi ol ogi cally availablefraction of the contaminant dose. An understanding of the physical processes (e.g. those giving rise to erosion, transportation and accumal ation zones in lake sedi nents) is requi red to define the physical area of cont ami nant influence. Definition of the bi ol ogically available dose may requi re a si mple standardized fractionation anal ysis yi el ding, for example, exchangeable, organi c and inert fractions of contaminant dose.

I ncorporation of temporal aspects of the contaminant dose or "bi ol ogi cal contact tine" (P) acknow edges the assumption that the ecol ogi cal effect varies di rectly with the duration of the contamination (under otherwise comparable conditions). Integration over tine yields;

$$
E^{\prime \prime \prime}=\iint^{P A} E^{\prime} \text { or } E^{\prime \prime \prime}=P \cdot A \cdot E^{\prime} \mathbf{t} R
$$

where $E^{\prime \prime \prime}$ stands for the potential ecological risk accounting for tine and area.

The "additive effects" of different toxic substances polluting the same recei ving water are incorporated in an overallindex as follows;

$$
\mathbf{P E}_{\mathbf{R}}=\sum E^{\prime \prime \prime}+\mathbf{R} \text { or } \mathbf{P E R}=\sum P \cdot A \cdot E^{\prime} \mathbf{t} \mathbf{R}
$$

where PER is the potential ecol ogical risk index for a given set contaminants in a gi ven recei ving water. Effects nay not be strictly additive.

Discrepancies between observed and expected effects (large R) may reflect synergi sm or antagoni sm and suggest areas for further investigation.

The conceptual franework is illustrated schematically in Figure 3 with franework exampl es of paraneters for each component. Various el enents of the framenork can be sel ectively anal yzed to neet specific assessnent obj ectives. Anal ytical tools devel oped from the framenork to date incl ude contamination factors, risk indices and di agnostic/ prognostic nodel s.

A CANADI AN CASE STUDY

The Lupin Mne case study is a typical Canadi an aquatic contaminant study required to obtain a water licence. The Lupin study was critically reviened using the franework as a template to identify opportunities for increasing the val ue of infornation obtai ned from this and other such studies.

Pertinent feat ures of the Lupi n study incl uded the foll owing:

- Wbrk addressi ng the dose and response components of the study was carried out as waste managenent/treatment design and aquatic contami nant studi es respectivel y.
- The waste nanagement studi es concerned mine tailings treatment design to achieve pre-specified effluent criteria.
- The aquatic studies invol ved characterization of the fisheries resource in the receiving water bodi es and collection of baseline data for future effects monitoring.
- Envi ronnent al impact prediction was not an objective of the study but was ulti matel y requi red to negotiate a hi gher effluent concentration criteria for zinc and assess arsenic toxicity.

FRAMEMORK EVALUATI ON OF THE CASE STUDY

The framenork anal ysis of the Lupin studies identified areas for improvenent as follows:

- Initially the Lupin study objectives avoided the issue of inpact prediction and were oriented towards regul atory nonitoring. When the need to address practical nanagenent problens arose, inpact prediction was inevitable and new infornation requirenents becane evi dent.

The framework orients the study design towards practical objectives at the outset. It presents a series of assessment milestones with exampl es of corresponding study products (e.g. i mpact prediction model s, effects nonitoring, contamination factors and ecol ogi cal risk indi ces). Thus, the framenork approach encourages the study design to address these potential practical applications:

- In the Lupin study, bel ated infornation on the nature of the dose shifted the aquatic study objectives from an effects nonitoring focus to an impact prediction focus. As a result, sone of the upstream sample sites were rendered extraneous; sone important infornation had not been obtai ned (e.g. fractionation of the cont ami nant dose).

The fundamental principal of the framenork is the linkage of dose with response. The full integration of these components is necessary to isolate critical study paraneters and minime extraneous data collection.

- The Lupi n studi es were oriented towards basel ine data collection, with little impetus to expl ore rel ationships between effect and sensitivity parameters or to compare these relationshi ps with other available data bases. Consequently a large anount of data was generated, very little of which was applied to analyzing contaminant i mpacts.

The framework di rects study towards the devel opnent of prognostic tool s by expl oring empi rical rel ationshi ps bet ween dose, reci pi ent sensitivity and effects (Section 7). Devel oping hypotheses for these relationshi ps provides a rational basis for selecting sensitivity parameters and exploring the data bases for these rel ationshi ps. This ongoing eval uation and application of the data base provides a check on extraneous data collection.

- The effect terns initially chosen for the Lupin studies were netal concentrations in water, sedi ments and fish tissue and invertebrate comminity structure. When it was known that the dose nould occur at high flow for a short period, the franework was used to eval uate the chosen effect terns. Due to the transportational character of the sediments, the nobility of the fish, and the natural temporal variability of invertebrate comunities, it became clear that the only term that was likely to integrate a measurable effect during the nonitoring period was water. This was considered an inadequate
representation of the potential effect field. Therefore, netal accumul ation in cl ans and snails was added as an effect term which would potentially integrate an effect over a short tine period and provide a link to the effect term of primary concern, the fish. There uas equal justification for liming sedi nent anal ysis to accumal ation areas, such as an accumul ation basin on Cont noyto Lake near the outlet of Sun Bay. The results of this refinenent were more information gai ned for effort expended and measurenent of effect at a "Meaker" or more sensitive link in the contaminant path which, if it persisted, might ultinately be rel ated to metal contamination in fish.
- The framework provides sone tools for expressing effects (e.g. contam nation factors) which, if widel y adopted, could be used to compare the behavi our of contani nants in different systens. Accumul ation of such comparative infornation nay ultimately be very val uable to resource managers.
- The Lupin study program did not explicitly address the toxicity, contact area, contact tine and additive effects components of the franework, al though systenatic consideration of these factors hel ped in data interpretation. By using a framework which incorporates these components the investigat or is encouraged not only to address themin his study desi gn but to seek rel evant infornation from the dose component of study.

THE ECOLOG CAL RISK I NDEX

The ecol ogi cal risk index is a di agnostic tool, provided by the framework, which ranks lakes according to the degree of ecol ogical risk associated with thei r contamination and ranks the contaminants witheach lake. This infornation allows resource managers to focus study and/or mitigation initiatives on the lakes and contaminants posing the highest risk.

The risk index is derived from the following paraneters:

- The dose - expressed as a contamination. factor ($C_{f}{ }^{i}$)-derived from the contani nant concentration ($C^{1} 0-1$), (based on five surficial sedi nent samples from accumul ation zones) di vided by the pre-industrial contami nant concentration (C_{n}), (defined as the nean pl us one standard deviation for el enents in uncontaminated sedi nents from 50 European and Aneri can lakes); i.e.,

$$
\mathbf{C f i}=\frac{\mathrm{ci}_{0-1}}{\mathrm{ci}_{n}}
$$

- The recei ving water sensitivity - as a bi oproduction index (BPI) determined from nitrogen content and ignition loss in sediments.
- The toxicity of the contaminant $\left(S_{t}{ }^{i}\right)$ - based on its natural abundance in nature, and its "fingerprint" in sedi ments (the quotient between pre-industrial concentrations in water and sediment). A toxic response factor (Tri) is derived which accounts for the sedi nent toxic factor (Sti) and the effect of BPI on the toxicity of the contaminant.

Based on these paraneters, a risk factor for each contaminant is defined as the product of the toxic response factor and the contanination factor; i.e.,

$$
E r i=\operatorname{Tri} \cdot C_{f} i
$$

The potential ecol ogical risk index (RI) is then defined as the sum of the risk factors for ei ght indi vidual contaminants; i.e.,

$$
\mathbf{R}=\sum_{i=1}^{8} E r i=\sum_{i=1}^{8} T r^{i} \cdot C_{f} i
$$

RI SK INDI CES FOR CANADI AN LAKES

Risk indices were devel oped from data for 14 Canadian Iakes. The data were incompl ete for use in the risk indices; therefore, some assumptions were made and the risk indices were cal cul ated for illustrative purposes. The risk indices appeared to rank the lakes appropriately according to available infornation for the lakes. The risk index anal ysis yiel ded the following observations:

- There is good potential for appl ying data fromacross the country to comparative observations on the occurrence of contaminants in various aquatic systens. By rel ating these observations to their respective contaminant discharge scenarios, strong enpirical evi dence can be compiled for guiding future contaminants managenent.
- Sampling design and protocol in Canada is inconsi stent and Iimits use of data for comparative anal ysis. Recomendations for standard net hods incl ude sampl ing sedi ments in accumul ation zones, anal yzing the surficial (0.1 cm) layer and incl udi ng consi stent measurements of recipi ent sensitivity (e.g. BPI as nitrogen content and ignition I oss in sedi ments).
- Regi onal val ues for pre-industrial 'contaminant' concentrations could be devel oped to gi ve hi gher resol ution to contaminant factor anal ysis.

The anal ysis al so highlighted areas for further investigation and devel opment:

- Risk indi ces should be devel oped for contaminant groups of specific concern to Canada. Separate indi ces could be devel oped for netal s and organic pollutants.
- The risk index shoul d be devel oped to incorporate di rect measures of ecol ogical risk (i.e. bi ol ogical effect terns).
- Risk indices should be devel oped for other physi cal regi nes (fluvi al, estuarine, marine, etc.).

DIAGNOSTIC AND PROGNOSTI C MDDELS FOR AQUATI C CONTAM NATI ON

The derivation, from the framenork, of a nodel for nercury contamination in fish was described and the model was tested using available Canadi an data. The nodel, or empirical formila, incl udes the following components:

- The dose term - wei ghted nean nercury content of surface sedi ments (O.1 cm) in ng / g dry substance (Hg_{50}).
- The sensitivity paraneters - pH and bi oproduction index (BPI) as determined from sediments or total phosphorus in water.
- The effect term - the content of nethyl-mercury in 1 kg pi ke muscle tissue as $\mathrm{ng} / \mathrm{kg}$ wet wei ght $[\mathrm{F}(\mathrm{Hg})]$.

The derived formula is:

$$
F(H g)=\frac{4.8 \times \log \left(1+\mathrm{Hg}_{50} / 200\right)}{(\mathrm{pH}-2) \times \log (B P I)}
$$

Available Canadi an data suitable for testing the formula was limited to six lakes. Data for mercury content in sedi ments, pH and BPI were anal yzed to derive nercury level s in pi ke tissue which were then compared to measured val ues. The predi cted val ues corresponded nel lith neasured val ues for four of the six lakes. For the renai ning two lakes, neasured val ues were low compared to predicted val ues, suggesting possible lead or zinc antagonism H igh concentrations for those elenents in the lakes corroborated that hypothesis.

The probl ens of inconsi stent and incompl ete data for Canadi an lakes uere di scussed. Recomendations for improving the data base were given.

Examples uere given to illustrate the application of the formula for
 fish, or in assessing envi ronmental effects and mitigation requirements rel ated to acidification of lakes.

APPLI CATI ON OF THE FRAMEVORK APPROACH

The study denonstrated that there are many benefits to adopting the framework approach, particularly in applied studies of aquatic contani nants rel ated to impact assessment and resource nanagenent. Use of the framework approach uould best be implenented by a government agency responsible for waste pernit approvals and envi ronmental protection. Such an agency woul d be able to standardize sampling net hods to generate comparable data and stipulate routine neasurenents of sensitivity paraneters.

Using the franework and its associ ated tool s (contamination factors, risk indices, model s), agenci es could devel op infornation with a broader application than compliance nonitoring. They could systematically build a data base directly applicable to resource management. It is strongly recomended that an existing resource management agency or a specialy constituted workshop of agency representatives test the framework approach on the desi gn of an aquatic contamination study.

RECOMMENDATI ONS FOR FURTHER STUDY

- The franework approach encourages refi nenent and further devel opnent of all linkages. In particular, work is required on the integration of cont act area and cont act ti ne. Inf or nation is requi red on physical dynamics and the fractionation characteristics of contami nants in the recei vi ng envi ronment.
- Devel opnent of prognostic and di agnostic nodel s for contaminants is a naj or area for further work. Available data should be assenbled, nor malized and augnented by standardized sampling net hods.
- The use of new effect terns (e.g. contaminant concentrations in aquatic plants and clans, production-respiration ratios, etc.) should be expl ored both for bi ononi toring application and tracing cont ami nant pathways.
- Future data gat hering prograns for aquatic contani nant studies shoul d incl ude;
- contami nant dose data in conj unction with effect term data,
- contami nant fractionation data,
- contact area data, and
- sensitivity paraneters data.
- I mpl enentation of standard data collection methods and protocol is requi red to generate comparable data.
- Regi onal data should be gathered for pre-industrial level s of contami nants in Canada.
- A naj or area for further work lies in the application of the frameuork approach to other physical regi mes (rivers, marine envi ronnent, etc.).

Basic concepts of ecol ogi cal impact assessnent have been widel di scussed in the technical literature; however, routine integration of these concepts into applied investigations has been slowto occur. The franenork identifies and organizes key infornation components with an impact assessment problem As such, it may be used as a template to hel p investigators systenatically address and rationalize these important components in their study design. It al so provides a common frane of reference for EIA partici pants to commicate and coordi nate their study objectives. Although the framework has a si mple structure, it can accomodate sophi sticated reasoning. It invites further devel opment and refinement. The franenork can be readily implemented to improve impact assessment capability and strengthen the scientific basis for applied aquatic contaminant i nvesti gations.

1.0 I NTRODUCTI ON

The impetus for this study arose from our desire, as practitioners of Envi ronmental Impact Assessment (EIA)* pertaining to aquatic systens, to improve the tools of our trade. As consultants specializing in water resource managenent, our ains are to facilitate responsibe resource devel opment while appl ying our specialized know edge in aquatic sciences to the effective stewardship of aquatic envi ronnents. A key to fulfilling these tasks is ai diny commication and devel opi ng agreement anongst project proponents, government admi nistrators, technical experts and the public regarding appropriate assessment methods and managenent actions.

In pursuing these objectives we have net with constraints commonly encountered by practitioners of aquatic envi ronnental assessnent, primarily, the rudi nentary state of impact prediction and the complex and, at tines, arbitrary administrative frameworks for water manayenent. Despite the common shortcomings of the aquatic impact assessnent process, nany val uable insights and techni ques have arisen from i sol at ed st udi es. Those advancements now need to be introduced, norked with and devel oped by the aquatic impact assessment commity at larye. Though our understandi ny of aquatic systens responses to perturbations is far from complete, the vital job of aquatic resource managenent must still be carried out. We require practical tools for aquatic pollution control in the short term and at the sane tine we need to systenatically build our scientific understanding of aquatic i mpacts.

[^1]The purpose of this work is to illustrate the use of a franenork for aquatic contaminant impact assessment currently being devel oped in Sweden by Dr. Lars Hakanson of the Uni versity of Uppsal a and of the National Swedi sh Envi ronmental Protection Board. This franework is applied to a current Canadi an aquatic contani nant case study to expl ore its potential for improving our impact assessment and prediction capabilities and for building up our understanding of aquatic impacts.

The termfranework as used in this report refers to the overall concept ual nodel, devel oped by Hakanson, which identifies the maj or el enents of an aquatic contaminant system and describes their rel ationship to one another. Briefly, the franework expresses the ecol ogi cal effects (E) of aquatic contamination as anction of the contaminant dose (D), the contaminant toxicity (T) (as expressed in natural waters) and the sensitivity of the recipient aquatic system to the cont ami nant $\left(W_{i}\right)$. A resi dual term (R) accounts for the practical impossibility of devel oping a nodel capable of giving a compl ete expl anation of ecol cal cause- effect rel ationships. Tine, space and additive effects are also incorporated in the framework. This franework is not a si mul ation nodel but a systemfor rationally anal yzi ng a cont ani nant problem desi gning an assessment study and gat hering rel evant data.

The franework supplies the logic to identify and quantify various terns and rel ationshi ps of the cont ami nant system and to carry out different orders of anal ysis for specific impact assessnent applications. Two types of anal ysis which will be di scussed in this report are an ecol ogical risk index (Section 6) and a di agnostic/ prognostic nodel (Section 7) for netal contamination in fish tissue.

The risk index is a di agnostic tool which provides a quantitative val ue for the potential ecol ogical risk associated with a gi ven aquatic contamination situation. It permits rankiny of contamination
probl ens bet ween aquatic ecosystens and ranki ng anongst the cont aminants of concern.

The di agnostic/prognostic nodel for metal contamination infish a quantitative (empi rical) expression of specific components of the framework allowing quantitative prediction of an ecol ogical effect (e.g. nercury concentrations in pike tissue) resultiny froma known contami nant dose (e.g. measured as mercury concentrations in the top 1 cm l ake sedi nents).

A Canadi an case study (Section 5) is revi ewed in the context of both the concept ual franework and its accompanying quantitative tool s to illustrate how the franework approach can enhance impact st udy design, data anal ysis and the sci entific basis for aquatic impact assessment. The case study presented was chosen because of the authors' familiarity with the study and because we believe that it is a typi cal example of contami nant di scharge assessment studi es in Canada. The procedures for technical studies in support of licenciny are constantly evolving in response to new infornation and objectives. It is hoped that this project will contribute to the transfer of technol ogy and the evol ution of these procedures.

We emphasize that the concept ual franework as illustrated is not intended as a rigid structure providing the only approach to aquatic cont aminant impact assessment. Rather it is like a skel eton which can be built upon and modified as our understanding of contami nant systens grows. Furthernore, the franework is not intended to provi de a bl ueprint for ecol ogical research. It is intended to generate practical tools for aquatic impact manayenent fromalimited number of readily and i nexpensi vel y neasured and represent ative integrating variables. It does, however, incorporate a strong scientific rationale and as such can significantly enhance the scientific val idity of impact assessment studies.
2. 0 BACKGROUND

2. 0 BACKGROND

2.1 THE STATUS OF EMM RONMENTAL I MPACT ASSESSMENT

Recent revi eus of the status of envi ronnental i mpact assessnent (El A) in Canada agree that maj or changes are needed to improve the effectiveness of the process (Efford 1976, Rosenberg and Resh 1981, Beanl ands and Dui nker 1983). Currently ElAis guided by procedural framenorks established by governnent policies and legislation; however, there are no commonly accepted scientific/technical standards for the content of assessnent studies. Si milarly there are no commonly empl oyed procedures to create fruitful collaboration anong the main ElA participants to design and execute an optimal EIA study (Beanl ands and Dui nker 1983).

This lack of commonly accepted standards for the content of impact assessnents has given rise to di verse expectations anony the main participants in ElA about the purpose and function of the process. The maj or participants identified by Beanl ands and Duinker (1983) and their perspectives on El A incl ude:

- The Governnent Administrators - who tend to view ElA as fulfilI ment of procedures set by policy and legislation (Beanl ands and Dui nker 1983).

In addition, the administrators are responsible for usiny the infornation generated by EIA to make resource manayement decisions (project yo or no yo; if yo, under what mitigatory or compensatory conditions?). Faced with complex issues requiring multi-disciplinary investigations they nay or nay not have the technical background to specify the scientific inquiries they require to aid assi st resource rnanayenent deci si on- naki ng.

Administrators may enlist scientists to prepare terns of reference for ElA or to revi ew the study results but, without the context of social and resource management concerns or the practical constraints of study (time and money), this input can be m sleadi ng and at times di sruptive (Beanl ands and Dui nker 1983).

- The Project Proponents - vi ew ElA as a necessary precursor to project approvals and in sone cases as a means of enhancing public rel ations (Beanl ands and Dui nker 1983).

EIA's may be very costly and may lead to imposition of safety factors in project design which could si gnificantly affect project feasibility (de Broissia 1984).

Proponents frequently hire consultants to carry out the EIA. The proponents may not be fully aware of the contents or rationale for El A or understdnd how their active participation in the process could save them money or enhance thei r project pl anning process.

- The Research Scientists - often feel that the political and time constrai nts acting upon ElA studi es precl ude the conduct of acceptable sci ence (Beanl ands and Duinker 1983). They may be invol ved in ElA for isol ated tasks (e.g. report review, devel opment of terns of reference) but sel dom are their skills used to best advantdge. ElA will never (and probably should never) enj oy the rel ativel y unrestrai ned circunstances of pure research projects; however, the effective application of scientific know edye and methods to the applied field of EIA is essential if the process is to becone a nore powerful and useful envi ronnental manayenent tool.
- The Consultants - are frequently the practictioners of EIA on behalf of project proponents. They are in the position of having to (1) fulfilleIA procedural requi rements; (2) address political

Issues; (3) minimize the costs of the study to the client; and (4) meet the standards of scientific and technical revi ewers who may or may not have been invol ved in earlier phases of the study (Beanl ands and Dui nker 1983). The consultant, attempting to reconcile the di verse expectations of the preceding groups, is nore apt to resort to established precedents for El A methods than risk study tine and budget in experimenting with new approaches.

Traditional El A methods, such as the "busy taxonomist" and "information broker" approaches descri bed by Val eila-Vard (1978) have relied primarily on descriptions (in sone instances hi ghly comprehensi ve descriptions) of pre-project envi ronnents followed by judgenents and deduction of probable project effects. There have rarel y been postdevel opnent studi es to determine whether impact predictions, even qual itative ones, were on track (Cl ark 1983, Bi sset 1980, 1982). A small percentage of EIA's have expl ored more definitive techni ques with success (Holling 1978, Beanl ands and Oui nker 1983, Val eila-Vard 1978) but on the whole El A and our abilities to predict envi ronnental i mpacts have advanced very little.

Beanl ands and Dui nker (1983) descri bed EIA in Canada as being at a cross-roads...
"either we improve scientific rigour of the studi es which support the entire process, or we run the risk of seeing the concept degenerate into an exercise in public rel ations and government l obbyi ng. "

Recomendations for improvenents to El A include the following:

- Use of a procedure (e.g. nodel ling workshops) whereby di verse interest groups can commi cate effectively and reach a consensus on assessment priorities and study procedures.
- Cl ear definition of the st udy objectives, val ued ecosystem components and effect paraneters of concern.
- Definition of a temporal, spatial and statistical context for prediction and neasurenent of impacts.
- Devel opment of a study strategy focussing on clearly rational ized Iinkages between the project and the effect parameters of concern.
- Formalation of explicit, quantitative impact predictions.
- Prediction testing (e.g. by experimentation and project noni toring).

2.2 AQUATI C CONTAM NATI ON I MPACT STUDI ES

The essential objective of aquatic contamination impact studies is to determine the effect of contaminant di scharges on the recei ving envi ronment. El enents of the 'recei ving envi ronment' of importance to resource managers may include aquatic bi ota (especially fish) and nan, through his use of aquatic resources. A common approach to aquatic contam nant studies is to examine various physical, chemical and bi otic components of the recei ving waters to characterize their val ue and sensitivity to contaminant di scharge and to generate baseline data for subsequent effects nonitoring. The contani nant di scharge or dose is described by flow and composition and attempts are made to predict its ultimate disposition in the receiving waters. These predictions may range fromqualitative to quantitative, based, for example, on the results of various types of simiation nodel ling. Frequently, quantitative predictions on the fate of contaminants in the physical envi ronment (e.g. concentration, di spersion area) are used to generate qualitative predictions of effects on aquatic biota and man systens.

Much of the effort in aquatic contamination studi es is geared towards ensuring that contami nant di scharges neet established standards for chemi cal concentrations either at the end of the di scharge pipe or in the recei ving waters. The standards strive to protect aquatic life based on toxic threshol d concentrations determined by laboratory bi oassay studies. Si nce the standards generally must be net by cont ani nant di scharges and should, by definition, mitigate agai nst acute toxic impact in the recei ving envi ronment, contaminant impact assessnents are frequently rel egated to predictions of subtler and nore complex chronic and cumul ative effects.

There are two naj or problens with this traditional approach. In the first place, while our standards for contaminant control are based primarily on laboratory toxicol ogical tests, we lack information on the ways in which environmental factors alter the expression of contaminant effects in natural recei ving waters (i.e. observations in Iaboratory toxi col ogy tests may not be transferable to the field). Thus to date we do not have a strongly devel oped rational efor setting of effluent control standards.

Secondly, we lack the infornation and tool s with which to explicitly state and test predictions of sub-acute impacts or express these impacts in terns which are meani ngf ul to resource managers and deci si on makers. Resource managers may be faced with deci si ons such as whet her to requi re costly waste treat nent of an industry to neet arbitrary di scharge standards or to risk unknown effects on the recei ving environment by rel axing di scharge standards. Qualitative assessments, such as, "nay be sone adverse effect on fisheries production or quality" do not aid the deci si on- naki ny process nor do they provide any yardsticks by which to test and refine the accuracy of impact predictions. Quantitative predictions, while difficult with our present understandiny of aquatic ecosystens, are requi red to
introduce accountability to the impact assessnent and resource managenent process.

Quantitative assessnent and prediction of aquatic impacts are plagued by data problens rel ated to the patchy distribution of organisns and nat ural variability of conditions over time (de Broissia 1984). To build on our contan nant impact assessment experi ence we require the devel opnent of sampling protocols which will generate tine and space comparable data. This in turn imposes the requirenent for a sound understanding and integration of physical and bi otic conponents of aquatic ecosystens. Frequently aquatic impact assessments fail to devel op adequately the physicall rationale for sampling prograns.

With these deficiencies, we are still largely in the realmof free speculation when faced with predicting the impacts of contaminant di scharges or prescribing appropriate aquatic pollution control standards. While isol ated studi es have used methods which attenpt to address these deficiencies, there is now a need, anongst the commity of aquatic ElA practitioners as a whole, to define fundanental assessnent study requirenents and to systenatically build upon our collective inpact assessnent experience. The franevork for aquatic impact assessnent is presented as a possible foundation on which to desi gn contaminant impact assessment studies and to build our understanding and predictive capabilities related to aquatic cont ami nant impacts.

2. 3 A CANADI AN CASE STUDY

The use of the concept ual franework for designing procedures and interpreting the results of aquatic contaninant studies is illustrated by applying the framenork to aquatic studies at a gold mine currently operating in the central barrenlands of the Northwest Territories. Lupin Me, operated by Echo Bay Mnes Ltd., is located on the shore of Contwoyto Lake near the northwestern end of the lake
(Figure 1). Approxi matel y thi rteen hundred and fifty tonnes of ore are processed daily. The gold is extracted by a cyani dation process and mill tailings are discharged to a large tailings inpoundment basin 6 km south of the min. Based on the current mill operating rate, the tailings impoundment has a minm tuo year hol ding capacity. The impoundment consists of two ponds in series. Solids are allowed to settle in the upper pond and the decant fluid is treated with an iron salt to enhance preci pitation and settlenent of metals in the lower pond. Cyanide is reduced by natural aeration (and probably by photo-oxidation). Tailings nater is decanted from the Iower pond to a recei vi ng stream basin (Seep Creek) west of the tailings impoundment by neans of five siphons with a total discharge capacity of approxi mately $2 \mathrm{~m}^{3} / \mathrm{s}$. Decanting operations are intermittant and occur over a period of one nonth on an annual basis. The contaminants of interest in the tailings di scharge are cyanide and the netal s arsenic, zinc, copper, nickel, lead and iron.

The imedi ate recipient of the decant di scharge is a small shallow lake, called DamlA Lake, which in turn di scharges to the $6 \mathbf{k m}$ long Seep Creek and ultinately, via the snall Unnamed Lake, to Sun Bay on Cont noyto Lake (Figure 2). Seep Oreek, just above Unnaned Lake, has an average di scharge of $0.26 \mathrm{~m}^{3} / \mathrm{s}$ during open water and a measured range in flows from $0.02 \mathrm{~m} / \mathrm{s}$ in the fall to $4 \mathrm{~m} / \mathrm{s}$ during spring runoff. Several small tributaries \mathbf{j} oin Seep Creek downstredm of the tailings pond and a maj or stream Concession Creek, di scharges to Unnamed Lake fromthe southwest. Average annual flows in Concession Creek are estinated at $2.5 \mathrm{~m}^{3} / \mathrm{s}$. Sun Bay is approxi mately $4 \mathbf{k m 2}$ and di vided by a narrow constriction into a shallow (l-4 m deep) inner basin - Inner Sun Bay, and a deeper ($\mathbf{2 0} \mathbf{m}$ deep) outer basinOuter Sun Bay (Fi gure 2).

Conditions governing the water supply and wastewater disposal for Lupin Mne are specified in a Northwest Territories Whter Board

YELLOWKNIFE

LUPIN MINE

FIGURE 1

Figure 2: Detailed Study Location Map With Sampling Sites.

Li cence, enforcedby the Whter Resources Division of Indian Affairs and Northern Affairs Canada. The pertinent conditions, are as f ol I ous:

- the requi renent to determine the chemical, physi cal and biol ogi cal properties of the aquatic envi ronment potentially affected by the project operations, ; and
- the requi rement to characterize the liquid waste in the tailings contani nant area and to assess alternative met hods for waste treat nent to meet effluent quality standards specified by the Northuest Territories Water Board (and written in the Vater Li cence).

The st udi es addressing these conditions were carried out by consultants for Echo Bay M nes Ltd. (Rei d Crouther 1985A,B, R. L. \& L. Envi ronnental Servi ces Ltd. 1985). The studi es were designed by the consultants in consultation with the Techni cal Advi sory Committee of the Northwest; Territories Whter Board, whose nenbers represent Environment Canada, Departnent of Indian Affairs and Northern Development. Department of Fi sheries and Oceans, Health and Welfare Canada, Government , of the Northwest Territories - Department of Renewable Resources: Northwest Territories Association of Municipalities and the Northwest Territories Chanber of Mes.

The aquatic studies for Lupin Mne commenced in 1980 and comprised a basel i ne i nventory with consi derable emphasis given to devel opnent of a statistically defined database for use in future project monitoring. I mpact assessnent was not an explicit objective of the studi es al though the parameters neasured inplicitly reflected environmental concerns (i.e. water quality, benthic productivity, accumul ation of metal s in sedi nents and fish).

The waste managenent studies were orientated towards design of waste treat ment processes to meet the effluent standards stated in the

Whter Li cence and based on federal metal mine standards. The effluent standards were stipulated before the aquatic studi es commenced.

Although the aquatic and waste managenent studi es were carried out under separate objectives the findings of the two studi es were ul timately conbi ned to produce an impact anal ysis prior to the hearings for Water Li cence reneval. This anal ysis was used to rationalize revision of the effluent standards and the proposed design and operation of tailings treat ment facilities. Issues concerning the establ ished effluent standards incl uded the appropriateness of the standards for zinc and total arsenic.

The studi es conducted for Lupi \mathbf{n} M ne were typical of, though possi bly sonewhat nore comprehensi ve than, the naj ority of mine water licence st udi es conducted at that ti ne. In hi ndsi ght, the desi gn and execution of these studies suffered froma number of the shortcomings mentioned in previ ous sections:

- Varied expectations anongst the participants regarding the objectives and content of the study. The nethodol ogy for the study evol ved in an ad hoc manner, in response to indi vi dual concerns expressed by nembers of the Techical Advi sory Committee and to logistics, technical and budgetary constraints.
- Lack of a framework within which to resol ve expectations, reach a concensus on appropriate study nethods and focus efforts on the nost si gnificant environmental issues. Different opi ni ons about the appropriate scope of study, hel d by the proponents and i ndi vi dual nembers of the Techni cal Advi sory Comittee, persi sted throughout the study.
- Failure to ori ent the study explicitly towards impact prediction as a basis for hypothesis testing (nonitoring), formulation of appropriate effluent standards and waste treatnent design.
- Lack of a systenatic framework to assi gn appropriate di nensi ons to the study and hence generate time and space comparable data.

While aquatic studies such as those for Lupin have been consi dered adequate in the past, we feel that there are opportunities to significantly enhance the efficiency and practicality of aquatic contaminant studi es and increase the val ue of inf ornation gai ned theref rom In this report, we use the Lupi n Mne case study to denonstrate how the application of a systenatic franeuork nay accomplish such i mprovenents.
3. 0 STUDY OBJ ECTI VES

3. 0 STUDY OBJ ECTI VES

Abstract

The purpose of this study was to introduce a concept ual franework for the desi gn and execution of aquatic contaminant studies with emphasis on impact assessment requirements and scientific validity. To enhance the applicability of studies to El A, a conceptual franework must:

- Allow cl ear definition of study objectives and their rel evance to aquatic resource managenent.
- Assi st study partici pants of di verse backgrounds to communi cate and devel op a concensus on study approach and procedures.
- Assi st sel ection of appropri ate "effect terns" including val ued ecosystem components.
- Assi gn explicit di mensions to the aquatic contamination probl em
- Focus study efforts to maximize information gai ned rel ative to study costs.

To enhance the scientific vatidity of aquatic contam nant impact studi es, a framework must:

- Facilitate a clear definition of cause-effect pathways and a cl ear rationalization for choice of parameters measured (i.e. leave a clear trail of scientific rationale which can be built upon).
- Facilitate quantification of impacts.

[^2]Such aframework, if widel y recognized and applied, would permit us to systenatically build our understanding of aquatic contani nant processes and to devel op powerful tools in aquatic pollution control.

This study exam ned a conceptual framework for aquatic contaminant i mpact assessment, devel oped by Dr. Lars Hakanson. The framenork provi des the foundation from which the basic infornation requi renents of aquatic contami nant studi es can be assessed in an orderly and I ogi cal fashi on. Using the notation system supplied by this franework, logical anal ytical thenes can be devel oped with varying degrees of complexity and power in their applications to El A. One such thene is a nathenatical nodel to predict nercury levels in fish tissue in response to contaminant doses.

The following sections present a case for adopting the concept ual nodel approach in the design and execution of aquatic contami nant i mpact studies in Canada. The case is presented by:

- Describing the conceptual franework for aquatic contaminant impact st udi es devel oped by Hakanson (Section 4).
- Appl yi ng the framework approach to a Canadi an case study (Lupin Mne aquatic studies) to illustrate study desi yn and data anal ysis benefits, and carrying out a first order anal ysis of the Lupin data to generate contami nation factors for sedi nent, clans and fish (Section 5).
- Appl yi ng an ecol ogi cal risk index based on sedi ment contami nation to the Lupi n Mne data, other Canadi an case studi es and Swedi sh I ake contamination studies. This level of anal ysis has rel atively I ow prognostic capability but it may be val uable to resource
managers. The risk index provides a basis for rankiny of cont amination problens between water bodies and isol ating. specific contaminant parameters of concern (Section 6).
- Denonstrating the application of second order nodels (i.e. diagnostic/prognostic nodel s) to contaminant impact assessment and aquatic pollution control, describing the status of rel evant Canadi an data bases and outlining data requi renents for further nodel devel opment (Section 7).

It is hoped that the presentation of this case will contribute to the much needed transfer of sci entific know edge fromthe academic arena to the applied arena of aquatic pollution control. It is al so hoped that this case will denonstrate the benefits of the franenork approach for improving the practical and scienti fic val ue of aquatic contamination studi es in Canada.
4. 0 A FRAMEVORK FOR ASSESSMENT OF AQUATI C CONTAM NATI ON

4.1 INTRODUCTION

The concept ual framework (Hakanson 1984A) for assessing the effects of aquatic contam nation provides a systematic procedure for tracing contami nants from dose to response, while accounting for the medi ating influences of envi ronmental factors. The franework is based on geoecol ogi cal principles accounting for abiotic factors and processes which govern and interact with bi otic components. This basis in geoecol ogy provides a sound rationale for a study design (e.g. sample site selection, sample numbers, standards for collection/ anal ysis) to generate time and space comparable data. In summary, the franework provi des a clear, logical system to account for important parameters nedi ating the behavi our of contaminants in aquatic systens and to describe their rel ationshi p to one another.

The components of concept ual franework nay be expressed by the following notation:

$$
E=f\left(D, T, W_{i}\right)+R
$$

wher e:

E = a paraneter expressing an ecol ogical effect (e.g. changes in a val ued ecosystem component or an effect paraneter di rectly rel ated to the val ued ecosystem component)

D = a contaminant dose paraneter (e.g. netal levelsin water or sedi ments)

T = a factor expressing toxicity
$W_{i}=$ the $i t h$ factor or parameter expressing receiving water sensiti vity
$R=a \operatorname{residual}$ term(the unaccountable renai nder; a neasure of the nodel's effectiveness).

The rel ationship of contaminant dose to envi ronment al response is al so influenced by space and time. Thus the effect terns nay be transf orned to indi ces by integrating these factors. Usi ng the conceptual framework notation, spatial aspects of the effect may be incorporated as follous:

$$
E^{\prime \prime}=\int^{A} E^{\prime} \quad \text { or } \quad E^{\prime \prime}=A \cdot E^{\prime}+R
$$

The effect term (E) is transforned into an effect index (E') to allow for quantitative comparison of different effect paraneters, e.g. nercury content in fish muscle with benthicindices, and then integrated over the "biol ogi cal contact area" (A). In this case E" stands for the potential ecol ogical risk accounting for "bi ol ogical contact area". The greater the area affected by aquatic contamination, the greater the potential ecol ogical risk.

Temporal aspects of the contami nant dose may be accounted for by "biol ogi cal contact time" (P) which describes the duration of a gen contamination event and is based on the assumption that the ecol ogical effect varies directly with the duration of the contami nation (under ot herwise comparable conditions). Integration over time yi el ds:

$$
E^{\prime \prime \prime}=\iiint^{\prime} E^{\prime} \quad \text { or } E^{\prime \prime \prime}=P \cdot A \cdot E^{\prime}+R
$$

where E"I stands for the potential ecol ogical risk accounting for time and area.

The "additive effects" of different toxic substances polluting the same receiving uater may be incorporated by an overall index accounting for the sum of the effects of the indi vi dual pollutants as fol lows:

$$
\mathbf{P E R}=\sum E^{\prime \prime \prime}+\mathbf{R} \quad \text { or } \mathbf{P E R}=\sum P \cdot A \cdot E^{\prime}+\mathbf{R}
$$

where PER is the potential ecol ogical riskindex for ai ven set of contaminants in a gi ven recei ving water. While recognizing effects may not be strictly additive this provides at least a starting point to di rect further assessnent.

The concept ual franework is illustrated schematically in Figure 3 with sone rel evant examples for the various components of the framework. Further di scussion on each of the framework components is presented bel ow

4.2 THE EFFECT PARAMETER

In aquatic contaminant impact studies it is not possible to examine all components of the aquatic ecosystem potentially affected by a contaminant dose. Representative or critical effect paraneters (E) must be sel ected which are applicable to impact assessnent and scientifically rationale.

From the standpoint of impact assessnent it is important that the effect terns incl ude sone neasure of val ued ecosystem components as described by Beanl ands and Uui nker (1983). These are the potential effects which are viewed as nost important by the public and resource managers (e.g. the effect on quality of a fisheries resource expressed as metal concentrations in fish tissue).

The sel ected effect terns al so should represent as large a proportion of the potential "effect field" as possible. This nay be

- This conceptual relationshipprovides abasis for the development
of prognostic models of ecological ef fect.
* (R) Rasidual Ten measures effectiveness of the prognostic model

In accounting for princlpal cause-effect linkages and natural
varlabllity in the ecological effect term.
accompl ished, for example, by sel ecting effect terns which integrate a nunber of sub-effects (e.g. a tertiary consumer). In some instances, the val ued ecosystem component may represent only a small proportion of the effect field and so complenentary effect terns must be sel ected. The nore fully the effect terns represent the total effect field, the lower the "residual term" will be.

I deal ly, the effect terns should al so. include the nost sensitive or weakest link in the effect field (these nay or may not be "val ued" ecosystem components) to provi de a safety factor or an early warning system to predict responses in the less sensitive effect parameters.

To meet the practical constraints of impact assessment studies, while provi ding the opportunity to conbi ne and transfer the know edge gai ned through indi vi dual studies, a limited number of effect paraneters should be sel ected. They should be easy to determine and measurable by standard and easily reproduci ble methods.

4. 3 THE DOSE PARAMETER

The contani nant dose paraneter (D) nay be neasured in various nays. The ideal dose paraneter is one which yi el ds integrated infornation concerning its expression in the recei ving envi ronnent and which yi el ds the nost infornation with the fewest samples. Hakanson, for example, in his uork on cont ami nated aquatic systens, suggests accumul ation-bottom sedi nents, sedi nent trap data and/ or data from aquatic vegetation. In predictive applications, the dose parameter nay be defined in part by a si mple mass bal ance equation expressing input flow vol unes and concentration of contaminants. It is al so necessary, however, to know somethiny about the rel ationship of the contaminant to its carrier particles (i.e. its fractionation characteristics) and the physi cal system dynamics which will dictate its expressi on in the recei ving envi ronment.

THE TOXICITY FACTOR

The toxicity factor (T) accounts for the fact that various contaninants have different toxic effects on aquatic organisns. Usually in aquatic toxicity studies the toxicity factor is accounted for by the results of laboratory bi oassay procedures. Toxicity factor in the context of this franework is di rected towards neasurement of toxicity in natural waters. The toxicity of contaminants may be ranked, for example, on the basis of their natural abundance in the recei ving envi ronment. Use of these rel ationships provides rel evant di nensi ons to contami nant problens and hel ps in the sel ection of appropriate effect terns.

4.5 THE SENSI TI V TY OF THE RECI PI ENT

Sensitivity paraneters $\left(W_{j}\right)$ are those factors in natural recei ving waters (e.g. pH, 0_{2}, al kalinity, salinity, bi oproductivity, water exchange) which affect the way in which contaminants associ ate with carrier particles and the chemical form of the contaminants. These factors influence the di stribution of contami nants in recei vi ng envi ronments, and the ecol ogi cal response to contaminants. As a result, responses of organi sns in the nat ural envi ronment nay be different to toxic responses produced by laboratory bi oassays. Accordingly, sensitivity factors should be accounted for in the assessnent franenork and they should be neasurable by simple, accepted, standar di zed means.
4.6 THE RESI DUAL TERM

The residual term(R) represents natural variability and environmental factors, unaccounted for in our study design, which giverise to a difference between predicted and observed responses of aquatic systens to a contaminant dose. Theoretically, if we had sufficient know edge of the basic mechanisns acting on our dose-response pathway
and could quantify all causal rel ationships between dose, sensitivity and response, we could reduce the R termto a mimm representing only sampling variability. On the basis of our present know edge of ecol ogy, this possibility is renote and the practical constraints of impact st udi es precl ude comprehensi ve nodel ling of all possible envi ronnental factors. Furthernore, such fine resol ution is not necessarily required for effective envi ronnental managenent. Thus, the obj ective of the framework is to express quantitativel y (by theoretical, empirical, intuitive or nathematical nodel s) normative E-val ues froma linited number of readily measurable and representative integrating variables and to minize the residual term The R termprovi des us with a measure of our success in accounting for the maj or operative nechani sns and the natural variability of the studied ecosystem

4. 7 BI OLOG CAL CONTACT AREA

The bi ol ogi cal contact area (A) provi des an important di mension to the dose term which permits ranking of impacts. This paraneter incorporates two el enents: the geographic areas of influence of contaminant dose; and the bi ol ogically available fraction of the cont ami nant dose.

The physi cal area of influence of a contam nant nay be descri bed by standardi zed nethods; for example, the di stribution of contaminants in sedi ments as a function of bot tom dynamics. An understandi ng of the physical dynamic processes (e.g. those giving rise to erosion, transportation and accumal ation zones) is a prerequi site to the definition of this parameter.

Bi ol ogi cal contact area, as a function of the biol ogi cally available dose, provi des finer resol ution to the ecol ogical risk or impact assessment. I mpl enentation of a si mple standardized fractionation scheme, yi el di ng, for exampl e, exchangeabl e, organi c and inert
fractions of contani nant dose can provide val uablinformation to risk assessment.
4. 8 BIOLOGICAL CONTACT TIME

The complete franework should al so account for the rel ationship bet ueen dur ation of a cont aminant dose and ecol ogi cal risk. Bi ol ogical contact time (P) is in turn linked to the dose characteristics (concentration), the contact area and the duration of interface with effect paraneters. The franework assunes that the potential ecol ogical effect increases with increased bi ol ogical contact time (under otherwi se comparable conditions) and vice versa.

4.9 ADDI TI VE EFFECTS

Si nce different toxic substances can pollute the sane recipient, it is necessary to strategi cally prepare for additive effects in the franework. The additive effects term accounts for the potential increased ecol ogi cal risk arising from the impact of nunerous contami nants di scharged to a si ngle reci pient water body. In fact, the i mpact of nore than one contami nant nay invol ve princi ples of ant agoni sm and synergi sm whi ch are very interesting, complex and little studied phenonena in natural aquatic environments. Thus, while effects may not be strictly additive, the framenork at least provides a starting point from which these concepts can be further addressed.

4. 10 APPLI CATI ON OF THE FRAMEVORK

The framework is not intended to provide a rigid format which must be closel y adhered to in every study of aquatic contamination. It is nore a systematic notation system derived from our current practical understanding of envi ronmental impact and, specifically, aquatic contaminant impact rel ationships. It is a skel et on which
provi des a common denomi nat or for commini cation anongst impact assessnent practitioners and it is neant to be expanded, revised and adapted as our understanding of impact assessnent grows.

Subsequent sections of this report will denonstrate with schenatics how el enents of this framework have been extracted, conbi ned and devel oped for specific assessment applications. We hope to illustrate how the use of a framenork approach can generate practical tools for aquatic pollution control while improving our scientific know edge of aquatic contaminant systens.
5.0 USING THE FRAMEVORK APPROACH - A CANADI AN CASE STUDY

5.1 INTRODUCTION

Thi section of the report denonstrates the application of the concept ual franework approach to a current Canadi an case study, the Lupi \mathbf{n} Mne aquatic studies.

The Lupi n st udi es were not ori gi nally desi gned using the framenork approach descri bed in Section 4. The object of thi s case study anal ysis was to critically review the Lupin studies using the framework as a templ ate to identify areas where the val ue of such studies could be increased rel ative to the effort expended.

This section begins with a description of the context, rational e and components of the original Lupin studi es followed by the franework anal ysis and recomendations for areas of improvenent.

5. 2 THE LUPI N STUDI ES

Detailed documentation of the concurrent Aquatic Studies and Whste Managenent Compliance Studies for Lupin Mne is contai ned in separate reports by Rei d Crouther \& Partners Ltd. (1985A and B, respecti vel y).

As indi cated by the two reports, the dose and effect components of the Lupi n aquatic contaminant investigations were exam ned under separate terns of reference with different objectives. The dose, or waste managenent, studi es were ai ned at characterizing the effluent and desi gni ng a waste treat nent process to achi eve predetermined effluent standards. The effects, or aquatic, studies were ai ned primarily at generating baseline data for future effects nonitoring. Athough outside of the original terns of reference, sone of the
information generated by both studi es was inevitably integrated and interpreted in an impact assessment context (Reid Crouther \& Partners Ltd. 19858).

The effects parameters examined in the Lupin aquatic studi es were sel ected by the consultants through di scussi on with technical speci alists representing envi ronmental managenent agencies on the Techni cal Advi sory Comittee of the Northwest Territories Whter Board. As little was known about the reci pient water bodies, the studi es had tho general objectives: to describe the fisheries resource (species, numbers, habitat use) potentially affected by tailings decant effluent; and to gather baseline data on environmental parameters (water, sedi ments, benthic invertebrates, fish tissue) which would be measured in an effects nonitoring program during mine operations.

VIthout know edge of what the tailings pond decant discharge rate ultimately would be, it was determined that the area of likely short term effects would be the Seep Creek drai nage pathway and Inner Sun Bay on Contwoyto Lake. It was assumed that contaminants would rapidly disperse in Quter Sun Bay with potential gradual long term i ncreases in sedi nent cont ami nant level s in the Outer Bay. Thus, monitoring sites were di stributed al ong the effluent pathway from i mmedi atel y downstream of the tailings impoundment to Outer Sun Bay. The contami nants of concern uere assumed to be the netal s (e. y. arsenic, copper, lead, ni ckel, zi nc) and possi bly cyani de and cyani de complexes. The likely effects of concern uere consi dered to be potential chronic toxic effects and metal accumalion in aquatic organi sns.

The paraneters sel ected for study during the pre-di scharge stage and the rationale for neasuriny them were as follows:

- Whter Quality - was sel ected as a paraneter which would permit quantitative neasurenent of change, either long term(if the effluent was to be di scharged continuously throughout the open water season) or short term(if the effluent was di scharged during a short period on an intermittent basis). Sites were located at the outlet of each snall lake al ong Seep Creek, at the nouths of Seep Creek and Concessi on Creek and in Sun Bay to al low mass bal ance cal cul ations of contami nant. inputs al ong the length of the effluent pathway. Seasonal measurenents were made over three years to characterize nat ural variability. Samples were anal ysed for a comprehensive series of chemical and physical parameters, and consi der able emphasis was placed on quantifying low netals concentrations.
- Sedi ment Quality - was chosen as an integrator of contaminant dose over tine and as a paranater for whi ch quantitative data could be generated. Cores of varying depths were collected frombasins al ong the effluent pathway fromthe impoundment area to Outer Sun Bay. Sampl es were taken fromthe deepest part of each lake or in deposition areas indicated by the presence of fines in shallow lakes., 'the finesf raction for each sample was anal ysed for netals concentrations; 'Particle-size and organic carbon anal yses were conducted on whole samples. Seasonal measurenents were made over two years to describe nat ural variability.
- Fish Tissues (Iiver and muscle) - were collected for netals anal yses in conjunction with the general fisheries descriptive study. Fi sh were consi dered the nost val ued aquatic resource of the study area. Sun Bay is a popular fishing spot for mine empl oyees and was identified as a traditional area of Inuit camps. Thus, metals levels in fish tissue were consi dered an important and quantifiable effect term
- Benthic Macroi nvertebrate Commities - were sel ected as a Iinkage bet ween sedi nent accuml ations and fisheries and an as integrator of contaminant effects over tine. Commity indices were examined as a potential measure of chronic effects. Seasonal measurenents were made over three years to characterize natural variability.

During the course of the aquatic studies, various circunstances arose which al tered the context of the aquatic studies. These are di scussed bel ow

- A large part of the waste management study was di rected towards experimentation to determine the effectiveness of various treatment methods. A treat nent system was implement ed to neet prescri bed effluent standards. Aquatic studies data and water intake nonitoring data were used by Echo Bay Mnes Ltd. to negotiate a hi gher effluent concentration for zinc. Tailings pond waters were nonitored prior to decant according to licence requi renents (i.e. total metal s level s were measured). When the tailings liquids failed to meet total arsenic standards, decant rel ease was negotiated on the basis of bi oassay tests which sugyested that onl y a nor fraction of the arsenic in the effluent nould be bi ol ogically available.
- Requirenents for internal nodifications in the tailings impound= ment dictated a hi gh decant di scharge rate in the first year of decant rel ease. This resulted in the desi gnation of Sun Bay, rather than Seep Creek, as the recei vi ng body and negated the rationale for collecting monitoring data on upper Seep Creek.
- Recommendations which enanated ultinatel y from the waste nanagement conpl iance program requi red supportiny anal ysis addressing potential envi ronmental effects. Data from the aquatic studies were used to make quantitative predictions of water quality in Sun

Bay, and these in turn were used to nake qualitative assessments of potential effects on benthic communities and fisheries.

The ci rcunstances surrounding this study, which rendered sone data collection extraneous and highlighted the need for other data not collected, arose primarily fromthe segregation of the dose and response component by separate study obj ectives. Thi s experi ence provides a strong justification for using the framework approach at the outset of the study, to ensure that the output from the dose- ori ented studi es (frequently engi neering studi es) is compatible with the input requirements of the response-oriented studies (envi ronnent al studi es).

The following section eval uates the paraneters used in the Lupin studi es in the context of the concept ual framework and identifies areas needi ng improvenent.

5.3 FRAMEVORK EVALUATI ON

5. 3. 1 Study Desi gn

The nai n prenise for the design of the aquatic studies using the concept ual framework is to identify critical linkages bet neen contani nant dose (netal s) and envi ronmental response. The idea is not to examine every possible linkage but to define a primary logical pathway which links dose to response and which contains easily neasurable effect terns, sone of which will have time comparability to the dose. To have tine comparability with the dose, the effect termmust have a neasurable response which is integrated over the duration of the dose and is proportional to that dose. Thus, in order to observe a response in an effect term the dose termmust neet certain criteria with respect to concentration and/ or contact time with the effect term The main pathway for metal contamination examined in the Lupin study is as follows:

Metals in sub-acute toxic concentrations may afect the recei ving envi ronment through accumulation, with consequent impacts on the quality of effect terns (e.g. fish tissue) and/or by chronic effects on the physi ol ogy of the ecosystem with functional changes (e.g. productivity) occurring in the effect terns. In practically oriented pollution control studies, effect terns must be easily measurable and have sone rel evance to resource managers. Thus, the pat hway exam ned for the purpose of this case study rel ates primarily to the accumul ation of netal s in the recei ving envi ronnents and particularly in fish tissue.

As noted in the previ ous section, benthic invertebrate commity composition originally was selected as an effect termfor the study. Changes neasured in this term can provide nore insightinto the yeneral health of the receiving envi ronnent; however, these changes are nore difficult to measure and interpret and thus are nore difficult to apply in managenent context. The Envi ronmental Protection Service of-Envi ronment Canada (EPS) used this effect term in their decant monitoring program; however, their results are not incl uded in this report.

C ans were added as an effect termto improve representation within the potential effect field. The clam data provide a direct link bet ween the dose and the response of concern (netal levels in fish ti ssue). They are a more sensitive integrator than the sedi ments of the dose in the transportational envi ronment of Sun Bay. Further, they provide a sensitive link in the contaninant pathway which can
show del eteri ous trends prior to their expression in the effect term of concern (fish tissue) such that corrective steps can be i mplenented if justified.

The dose (tailings pond decant) was rel eased for approxi nately one nonth. In this situation, one uould expect a rapid decline of the dose to the water of Sun Bay, via Seep Creek, after the decant si phons were shut down. Whter as a response term neasures effects over a very short time period, say hours to days, and shoul d respond rapidly to changing concentrations in the dose. The dose to the sedi nents of Seep Creek, however, woul d be transported through Seep Creek and rel eased to Sun Bay over a Ionger time period. Sedi ments neasure effects over long time periods, say years, if they are coll ected from accumlation areas. Sedi nents coll ected from transportational or erosi onal zones neasure effects over unknown tine periods. Cl ans neasure effects over a period of nonths, particularly over the summer grouth period, while fish integrate a response over a period of nonths to years.

Effect terns in Sun Bay were examined during and two nonths after the decant period. One would expect a response in the water col um of Sun Bay during, and for a short period after, decant; a response in the clans within two nonths of decant; but little or no response in the fish and sedi ments because of the lack of contact time. Al so, the transportational nat ure of Sun Bay sedi ments make them a poor choice as an effect term One way to rel ate sedi ment effects in transportational zones to known time periods is with the use of sedi ment traps which can measure response over a period of nonths.

It is important that effect terns be expressed in a manner neani ngf ul to resource managers. Using the framenork approach, the effects terns in this study may be expressed as metal contamination factors for water, sedi nent, clans and fish. Contamination factors rel ate the post-decant concentrations to the natural background concentra-
tions (which contain a statistical neasure of variability). Thus, the the contam nation factors nay be used directly as a neasure of the response or effect. They provide a synopsis of the data which, taking into account the tine comparability of the response, can provide a basis for deci si on- naki ng.

Fi gure 4 takes the schenatic outline of the concept ual franework (Figure 3), and illustrates the paraneters measured in the Lupin study and opportunities for anal ysis rel evant to impact prediction and resource managenent. The following sections describe the Lupin study in nore detail and identify areas for enhancing infornation val ue using the framework approach.

5. 3. 2 Study Methods

The methods of sample collection and anal ysis are briefly descri bed to provi de sone background to subsequent di scussi on and eval uation of study results. Al pre-decant data nere collected prior to initiation of this project. The need to use pre-decant data from several sources placed sone restrictions on the way post-decant data was collected. The nethods enpl oyed were as follows:

The Dose Term

The tailings pond decant was nonitored by Echo Bay Mnes' Envi ronnental Laboratory with periodic crosschecks by a comercial Iaboratory in Edmonton. Daily flow rates were estimated and reported as $\mathrm{m}^{3} /$ day. Daily grab samples were anal yzed for total arsenic (sil ver di et hyl di thi ocar banate nethod), zinc, lead, ni ckel, iron and copper (atomic absorption spectrophotonetry - APHA 1980). The approxi mate dose (kg) was cal cul ated by multiplying daily flow rates with the netal concentrations and appropriate conversion factors, then suming over the decant period for each metal.

```
Schenatic of the conceptual franework illustratina, parameters
neasured in the Lupin case study and opportunities for impact
```

anal ysis_

Whter: Whter samples collected before and after decant by Reid Crouther personnel were anal yzed by Cantest Laboratories, Vancouver. For details on nethods see Rei d Crouther (1985A) and for sampling I ocations see Fi gure 2. Whter samples collected during decant period from sample site \#925-2\% were anal yzed by Echo Bay Mnes personnel as descri bed previ ousl y.

Sedi ments: Sedi ment samples prior to decant were collected with a gravity corer, the whole core was sieved and the -53 mmfines were anal yzed (Reid Crouther 1985A). For samples collected after decant, only the top 5 cm was si eved and anal yzed, so as to be comparable to the EPS study which was taking place concurrently. As the Bay is predominantly transportational and subject to frequent resuspension of sedi ments, the sedi nents are very honogeneous in composition thus differences in sedi nent composition attributable to sampling nethods are expected to be nini nal. Post-decant sedi nent sampling was attempted at all water quality sites, but was successful only at EPS Site 3 and EPS Site 6 (Fi yure 2).

Q ans: Clans were collected prior to decant by EPS at EPS Site 3 (Fi gure 2). They were collected using an Eckman dredge and frozen for storage. Cl ans were collected after the decant period (under ice) by Reid Crouther personnel usi ng a long-handl ed net at three locations several meters apart at EPS Site 3. Clans and snails were separated from detritus and sedi ment, then frozen for storage. Al clans and snails were shi pped to Cl evel and State Uni versity where sampl es were thawed, shells and meats were separated and separate pellets of meat and shell suitable for x-ray fluorescence determination were produced. The pel lets were then anal yzed by x-ray fluorescence techni ques devel oped by Dr. M chael J.S. Tevesz and Dr. Robert L. R. Towns.

Fish: Fish were collected using gillnets at tuo sites (Figure 2) bef ore and during decant; on the east si de of Contwoyto Lake (ESC), and in the narrous of Sun Bay (SB). Fish al so were collected from the narrous following decant. The fish were processed and anal yzed using methods similar to those outlined in R. L. \& L. Envi ronnent al Servi ces Ltd. (1985).

Sensitivity Factors

Measurenents of pH, al kalinity, di ssol ved oxygen and bi oproductivity were made in conj unction with water and sedi nent sample anal ysis (Reid Crouther 1985A). Bi oproductivity paraneters neasured in the nater incl uded nutrients and chl orophyl I a (APHA 1980); those measured in sedi ments incl uded organi c carbon and ni trogen.

5.3.3 Results and Di scussi on

The Dose Term

Decant: The tailings pond decant occurred from Septenber 5, 1985 to October 1, 1985 and rel eased a total cuml ative vol une of approximately 4,414,000 m^{3}. The daity flow rate with five si phons operating ' uas . approxi mately $200,000 \mathrm{~m}^{3} /$ day or about $2 \mathrm{~m} / \mathrm{s}$. The actual daily flow rates and metal concentrations in the decant were approximateify constant throughout the decant period (Table 1).

The approxi nate total metals dose rel eased during the decant period ranged from 24 kg for lead to $9,000 \mathrm{ky}$ for iron (Table 2). It should be stressed that the dose concentrations are expressed as tot al metals and do not necessarily indicate the fraction which is bi ol ogi cally available. The rel ative order of the total netals dose f rom lowest to hi ghest was: lead, ni ckel, copper, zi nc, arsenic and iron.

Table 1. Chemical and physical data (from Echo Bay M nes' Envi ronment al Laboratory) used in cal culating netals doses (Site Number 925-10 Northwest Territories Water Board Licence Number N7L3-0925).

$\begin{aligned} & \text { Month/Day } \\ & 1985 \\ & \hline \end{aligned}$	Daily FI ow Kate(m3/day)	TOTAL METALS CONCENTRATIONS$(\mathrm{mg} / \mathrm{L})$					
		As	Zn	Pb	N	Fe	cu
September							
6	226,000	0.63	0.250	0.013	0.048	2.21	0.113
7	226,000	0.42	0.432	0.009	0.043	2.25	0.104
8	226,000	0.49	0.293	0.007	0.040	2.21	0.098
9	227,000	0.58	0.180	0.007	0.043	2.05	0.104
10	222,000	0.65	0.190	0.005	0.046	2.03	0.103
11	218,000	0.52	0.232	0.005	0.042	1.99	0.102
12	218,000	0.56	0.168	<0.002	0.052	2.01	0.102
13	212,360	0.54	0.175	0.002	0.035	1.92	0.098
14	215,296	0.64	0.165	0.002	0.040	1.89	0.095
15	212,605	0.61	0.188	<0.002	0.038	1.72	0.090
16	210,404	0.63	0.208	0.002	0.038	1.70	0.088
17	208,691	0.68	0.188	<0.002	0.035	2.25	0.088
18	209,425	0.66	0.195	0.008	0.038	2.25	0.088
19	203,064	0.65	0.238	0.002	0.038	2.02	0.085
20	203,064	0.63	0.188	0.002	0.030	2.20	0.082
21	199,883	0.62	U. 188	0.002	0.030	2.12	0.082
22	195,969	0.65	0.135	0.002	0.030	2.30	0.080
23	194,256	U. 68	0.138	0.002	0.028	2.28	0.080
24	190,586	0.71	0.182	0.022	0.032	1.58	0.078
25	188,140	0.70	0.172	0.002	0.032	1.80	0.072
26	0						
27	0						
28		0.67	0.215	0.013	0.035	1.93	0.078
29	81,470	0.65	0.180	0.008	0.038	1.90	0.073
30	76,822	0.65	0.153	0.018	0.035	1.98	0.073
October							
1	48,472	0.68	0.148	0.013	0.035	2.20	0.073

Table 2. Approxi mate dose (kg) of total metal s rel eased from Echo Bay Mes tailings pond at Site Number 925-10 for the decant period of Septenber 5, 1985 to Oct ober 1, 1985.

TOTAL METALS (kg)					
Arseni c (As)	Zinc (Zn)	Lead (Pb)	N ckel (Ni)	Iron (Fe)	Copper (Cu)
2700	905	24	170	9000	400

The Response Terns

Whter: During decant, metal s concentrations in Inner Sun Bay (Table 3) were approxi natel y one-third of metal s concentrations in the tailings decant for the sane days (Table 1). This indicates a 3:1 dilution of decant flows in Seep and Concessi on Creeks. The concentrations of metals in the waters of Inner Sun Bay were subsequently reduced by approxi matel y tenfold to bel ow detection level s of al metals, except zinc, when sampled in Novenber (Table 3). Surface water samples from Outer Sun Bay (EPS 6) and Cont woyto Lake near the nouth of Sun Bay (VQ 11) showed concentrations bel ow detection Iimits for the metals of concern, while bottom water sampl es from the same sites shoned arsenic concentrations at $0.002 \mathrm{mg} / \mathrm{L}$ and $<0.001 \mathrm{mg} / \mathrm{L}$, respectively (Appendi x A). Had freeze- up not occurred shortly after the decant periods, it is doubtful that any el evations in metal concentrations uould have been observed a nonth and a half after the decant had stopped. The spring freshet flows, which at their peak could di spl ace the 'vol une Inner Sun Bay in I-2 days (Reid Crouther 1985B), would likely return all metais concentrations to backyround I evel s.

Sedi ments: As previ ously mentioned, sedi ments from transportational zones (areas of resuspension and novement) are of limited value in aquatic pollution control prograns because they integrate effects over an unknown time period. The results are incl uded here primarily to denonstrate how nat ural background concentrations and contamination factors are cal cul ated and to illustrate the importance of knowing how the chosen parameters integrate the response and the dose. The netal concentrations of Sun Bay sedi ments over a period of several years (Table 4) varied significantly ($\mathbf{p}<0.001$ to $p<0.02$) bet ween sone dates for all the metals except arsenic. This was without any decant rel ease during these tine periods. The natural background concentrations nere cal culated by the formula listed

Table 3. Total metal concentrations in surface waters of Inner Sun Bay prior to, during and after the decant period, and total metals concentrations at other sites after the decant period. Al val ues reported as mg/L.

Date	As	Cd	Cr	cu	Fe	Pb	Hg	$\mathbf{N i}$	Zn

PRI OR TO DECANT

I nner Sun Bay
$21 / 9 / 84$
$12 / 9 / 84$
$(\mathbf{N}=\mathbf{1 7})$

DURI NG DECANTI
Inner Sun Bay
18/9/85
0. 18
0. 022
0.88
<0.002
0.011
0.041
21/9/85
0. 17
0.025
0.75
<0.002
0.012
0. 061
28/9/85
0. 22
0. 024
0.66
0.001
0. 018
0. 068

AFTER DECANT

Inner Sun Bay
22/11/85
$0.021<0.001$
<0.001
0. 002
0. 10
0. $001<0.00005<0.005<0.010$

Outer Sun Bay
$24 / 11 / 85<0.001<0.001<0.001<0.001<0.03<0.001<0.00005<0.005<0.010$
Contwoyto Lake
$29 / 11 / 85<0.001<0.001<0.001<0.001<0.03<0.001<0.00005<0.005<0.010$

1 Data from Echo Bay Mnes, Envi ronmental Laboratory Sample Site Number 925-22.
(Table 4) and were rounded of f to emphasi ze that the val ues are not preci se.

Using the nat ural background netal concentrations (Table 4) and the nean metal concentrations deternined after the decant (Table5), a set of contam nati on factors was determined for the netals. The cont ami nation factors (Table 5) were generally very lowfor the sedi ments, al though there is some indi cation of increased arseni c concentrations. The hi gher arsenic concentrations occurred in Outer Sun Bay, farthest from the source of pollution. This is understandable if bottom dynami cs are consi dered. The hi ghest sedi ment metal concentrations hould be expected to occur in the cl osest accumul ation area in the path of the decant. Si nce Outer Sun Bay is deeper, its bottom dynamics nould be less transportational than the shallow narrow Inner Sun Bay. This was borne out by the particle size distribution data which indi cated a hi gher percentage of silt and clay at the Outer Sun Bay site. Inner and possiby Outer Sun Bay are essentially acting as conduits for sedi ments which are ultimatel y deposited in the nain lake.

Cl ans and Snails: Metals concentrations in clans and snails were chosen as a bi ol ogi cal effect termfor several reasons. From previ ous fish stonach anal yses it was determined that plecypods (clans) and gastropods (snails) were used as food by lake trout, lake cisco, and to lesser degree, round whitefish. Secondly, speci mens were easy to separate from the detritus and sedi nent of the sample by si eving and hand-picking. Thi rdly, the shells provide an integrated response to contamination over the period of shell grouth as metal s are incorporated into the shell matrix. Fourthly, the use of the shel I precl uded the need to purge the ani nal s of contaminating sedi ments in their di gestive tracks. Finally, an appropriate method using x-ray fluorescence was available to anal yze the shell material. (Cal ci um interference inhibits use of atomic absorption spectrophot onetry nethods on shell materials.)

Table 4. Determination of natural background concentrations of netal s in Sun Bay' sedi nents (ug / g dry substance) before tailings pond decant (from Rei d Crowther 1985A).

Date	As	Cd	Cr	cu	Pb	Hg	Ni	Zn
20/09/82	6. 38	0. 14	35.2	13.8	2. 90	0. 014	24.5	46.4
	5.94	0.13	33.1	13.4	3. 34	0.012	23.6	45.7
	6. 29	0. 13	30.7	14.0	3.02	0. 012	23.8	45.8
10/06/83	6. 50	0. 20	44.8	28.3	1. 75	0. 013	28.2	55.7
	7. 38	0.15	48.5	52.6	1. 50	0.014	26.9	62.9
10/08/83	5. 75	0. 15	34.8	15.4	3.00	0. 015	26. 2	42.0
	7. 13	0.15	42.1	13.4	3.00	0.012	21.8	40.8
	9.00	0. 23	38.8	13.7	2. 75	0.014	24.8	53.4
	10. 30	0. 20	40.9	15.0	3.00	0.011	29.3	51.2
22/09/83	6. 00	0. 13	38. 3	25. 2	4.00	0. 012	22.9	44. 2
	9. 38	0. 13	37.6	33.3	3.88	0.015	23. 0	49.8
	6.50	0. 10	38.3	29.3	3. 75	0.015	21.8	48.8
	7.00	0. 10	38.3	45.3	6. 88	0. 025	25.2	50.7
12/09/84	8.00	0.05	27.8	21. 2	6. 00	<0.005	22. 2	41.7
	6.38	0.05	30.2	28. 3	4.13	0. 009	19.1	37.9
	6. 75	0.05	32.2	20. 1	3.50 .	<0.005	20.8	38.7

For All Dates

\bar{X}	7.17	0.13	37.0	23.9	3.53	0.012	24.0	47.2
SD	1.34	-0.05	5.5	11.9	1.35	0.005	2.7	6.7
n	16	16	16	26	16	16	16	16
n	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13
$X_{n} \mathbf{t} 975$	7.91	0.16	40.0	30.4	4.27	0.015	25.5	50.9

Rounded

X_{n}	8	0.2	40	30	4	0.015	25	50

* $X_{n}=\bar{X}+\left(t_{0.975} \cdot S D / \sqrt{n-1}\right)$

Table 5. Determination of contamination factors (Cf) from nean (\bar{X}) netal s concentrations in Sun Bay sedi nents after tailings pond decant in Novenber 1985 using previ ously cal cul ated nat ural background levels $\left(X_{n}\right)$ from Table 4.

Location/ Date	As	Cd	Cr	Cu	Pb	$\mathbf{H g}$	N	Zn
I nner Sun Bay, Nbv. 22. 1985								
\bar{X} (after decant)	9.25	ND	43.3	17.7	ND	0.012	27.0	45.9
Cf ($\mathrm{X} / \mathrm{X}_{\mathrm{n}}$)	1. 2		1.1	0.6		0.8	1. 1	0.9
Outer Sun Bay, Nov. 24, 1985								
$\bar{\chi}$ (after decant)	25. 0	ND	44.6	17.9	ND	0. 013	28.4	48.5
$C_{f}\left(\bar{x} / X_{n}\right)$	3. 1		1.1	0.6		0.9	1. 1	1.0

Sun Bay Average,
Nov. 22-24, 1985

\bar{X}								
$C_{f}\left(\bar{X} / X_{n}\right)$	$\mathbf{1 7 . 1}$	ND	43.9	$\mathbf{1 7 . 8}$	ND	$\mathbf{0 . 0 1 2}$	$\mathbf{2 7 . 7}$	47.2
$\mathbf{2 . 1}$		1.1	$\mathbf{0 . 6}$		$\mathbf{0 . 9}$	$\mathbf{1 . 1}$	0.9	
X_{n}(Background from Table 4)	$\mathbf{8}$	$\mathbf{0 . 2}$	40	$\mathbf{3 0}$	$\mathbf{4}$	$\mathbf{0 . 0 1 5}$	$\mathbf{2 5}$	50

ND - Not Detected

The concentration of netal s in cl am shel l s indicated that the clans did indeed accumilate netals in their shells (Table 6) and could incorporate sone response within a one to three nonth period of exposure but whether this is a naxi mum response is not known. Using the Iimited clam data available from the pre-decant period to determine natural background metal concentrations, and the nean netal concentrations of the $c l a n s$ after decant, contami nation factors were determined (Table 7). These contamination factors are highly subjective due to the limited pre-decant data and nere calculated prinarily for illustrative purposes. The resulting contamination factors indicated an increase of iron, lead and zincin the clam shel Is while copper decreased and arsenic remai ned constant. The absence of a response to the I arger arsenic dose could be expl ai ned tuo ways: either the clans were not sensitive to the arsenic or the arsenic was in a totally-bound form unavailable for biological uptake. The decrease in copper concentrations in the shel may have been due to an antagonism with one or nore of the other metals, possibly zinc. The rel atively high lead contamination factor resulting from the dose sugyested that the clans accumil ated lead preferentially and/ or that a high proportion of the lead dose was bi ol ogi cally avai I able.

The data on cl am neat were very Iimited. The clam neat was anal yzed to test the applicability of the x-ray fluorescence technique to tissue material and to see if clam meats were nore responsive on a short-term basis than cl am shel s . The present data is inconcl usi ve in this regard. The use of freshwater clans, particularly their shells, shows excellent promise as a biol ogical monitoring tool for metal cont ami nation. Depending on the species of clam the tine period monitored can range from nonths to years. On larger, I ong-lived clam species, shells can be sectioned by rings in appropriate timefranes to provide an historical account of cont ami nant doses.

Table 6. X-ray florescence determination ${ }^{1}$ of netal s (mg / g of ash wei ght) in the neats and shells of composite samples of clans (Sphaerium nitidum and Psidi um nitidum) from Inner Sun Bay, Cont woyto Lake, NWT. before and after tailings pond decant.

Sampl e Type	Date	Pellet Wei ght (ng)	MetalConcentrati on2		(Detection Li		Limits)	- ppm
			$\begin{gathered} \text { AS } \\ (5-10) \end{gathered}$	$\begin{gathered} c u \\ (10) \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ (10) \end{gathered}$	$\begin{gathered} \text { Pb } \\ (5-10) \end{gathered}$	$\begin{gathered} 5 r \\ (5) \end{gathered}$	$\begin{aligned} & L n \\ & (5-10) \end{aligned}$
Cl am Meat EPS Yel I oukni fe	Aug/85	38.1	202	2039	955	<10	<5	485
C am Meat	Nov 29/85	37.5	176	1472	4802	144	<5	538
Dextron Bl ank (for Bi nding Meats)		35.0	ND	7.2	9.0	ND	ND	ND
Cl am Shel I s	Aug/85	23.4	71	156	775	10	1329	64
EPS Yell oukni fe		25.4	17	156	782	5	1243	63
Clam Shel I s	Nov 29/85	27.0	36 34	35	11700	57	1321	62
Site A		26.6	34	30	13080	64	1447	53
$\begin{aligned} & \text { a am Shell s } \\ & \text { Site B } \end{aligned}$	Nov 29/85	26. 1	61	66	12330	120	1433	449
		25.3	75	73	12745	122	1433	484
$\begin{aligned} & \text { Clam Shel I s } \\ & \text { Site C } \end{aligned}$	Nov 29/85	26.5	33	12	11570	83	1401	87
		24.8	64	12	12020	80	1429	114

1 Determinations done by Dr. M chael J.S. Tevesz (Geol ogy Department) and Dr. Robert L. R. Towns (Chemistry Department) of Cl evel and State Uni versity.

2 The following metals $\mathbf{M}, \mathbf{C o}, \mathbf{N i}, \mathbf{H g}$ and $\mathbf{C d}$ were below detection limits (10-15 ppm) for all samples.

3 Samples collected by Dave Sutherland and Mark Gordon of EPS Yellowknife.

Table 7. Determination of contamination factors (C_{f}) for clans from limited data available.

Paraneters	Metal s (ppm)					
	As	cu	Fe	Pb	Sr	Zn
Xnl , Cl am Meat	202	2039	955	< 10	-	485
$\bar{X}, \mathbf{C l}$ am Meat	176	1471	4802	144	-	538
$C_{f}\left(\bar{x} / X_{n}\right)$ for Meat	0.8	0.7	5	14	-	1.1
Xnl , Clam Shel I s	50.4	156	778. 2	7.6	1286	64
$\bar{\chi}, \mathbf{C l}$ am Shel I s	43. 9	37.8	12242	87.5	1411	208
$C_{f}\left(\bar{x} / x_{n}\right)$ for Shells	1	0.2	16	12	1	3

$1 X_{n}$ was approxi nated from the mean netal concentrations with no account for vari ance due to the snall sample size ($n<3$).

Snails al so were analyzed after the decant period (Table 8). No pre-decant data nere avail able. The data for snail shells showed hi yher I evel s of arsenic, lead and zinc, and hi yher ratios of these netals to iron, than the clam data. This suggests that snail shells nay al so be a val uable bi ononitoring tool for netal contamination.

Fish: The natural background netals levels for liver and muscle tissue from four fish species from Cont noyto and surrounding Iakes and from Inner Sun Bay were determined using several year's data (Tables 9 and 10 and Tables 11 and 12, respectively). For a det ailed discussion of the spatial and temporal aspects of fish length on variations in the netal concentrations in the fish samples see R. \& L. Envi ronnent al Services Ltd. (1985). The need to collect fish in similar size and age classes during simiar tine periods (e.g. I ate summer/ early aut umm) is important, al though Hakanson (1984B) found the variability of metals to be prinarily dependent on the fish cont ami nation factor and not on fish age, wei ght, species, oryan, metal or lake. He found that fish populations with higher cont ami nation factors require a larger sample number than those with l ower contami nation factors to obtain a nean metal concentration within a fixed statistical confidence interval.

The background I evels for Cont noyto and surrounding I akes were cal cul ated to determine if any najor differences would be detected bet ween the whole area and Inner Sun Bay. While minor differences were detected for some metals, the level s were generally very close for both sample sets. This was encouraging as it indicated the possibility of determining regi onal background levels which could be used to eval uate cont ami nation in other northern lakes.

To determine the fish contamination factors, the nean concentrations of netals in fish from Inner Sun Bay (Table 13; Appendix B) were di vided by the natural backyround I evels determined for Inner Sun Bay

Table 8. \mathbf{X}-ray florescence determination of netal (mg / g of ash wei ght) in the neats and shells of the snail (Valata sincera) from Inner Sun Bay after tailings pond decant. Samples collected on Novenber 29, 1985.

Sample Type				Pellet Vei ght (mg)	MetalConcentrationl		(Dection Limits) -			$\frac{\text { ppm }}{(5-10)}$
					$\begin{gathered} \text { As } \\ (5-10) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (10) \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ (10) \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ (5-10) \end{gathered}$	(5)	
Snai I	Meats,	Sites	A, B, C	36.8	239	36	1751	ND	ND	2727
Snail	Shel I s,	Site	A	25.4	121	21	7175	134	663	1096
Snail	Shells,	Site	B	29.7	262	10	6126	95	592	1140
Snail	Shel I s,	Site	C	25.4	171	20	8060	274	1078	1474

1 The following netal $\mathbf{s} \mathbf{M}, \mathbf{C O}, \mathrm{N}, \mathrm{Hg}$ and Cd were bel ow detection limits (10-15 ppn) for all samples.

Table 9. Determination of background metal s level s (ppb wet weight) in muscle and liver of I ake trout, round whitefish, I ake cisco and Arctic char from Cont noyto Lake and surrounding lakes (data from R.L. \& L. Envi ronnental Services Ltd., 1985).

	Muscle					Li ver				
Metal	$\begin{gathered} \bar{x} \\ (\mathrm{ppm}) \end{gathered}$	SD	n	$t_{0.975}$	$\begin{gathered} x_{n} 1 \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \bar{x} \\ (\mathrm{ppm}) \end{gathered}$	SD	n	$t_{0.975}$	Xn (ppb)

Lake Trout

As	$\mathbf{0 . 0 2 2}$	0.031	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{2 7}$	0.016	$\mathbf{0 . 0 1 5}$	$\mathbf{5 3}$	2.01	$\mathbf{2 0}$
Cd	$\mathbf{0 . 0 0 9}$	0.031	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{1 4}$	0.488	$\mathbf{0 . 1 5 0}$	$\mathbf{5 3}$	2.01	$\mathbf{5 3 0}$
$\mathbf{C u}$	$\mathbf{0 . 5 9 1}$	0.372	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{6 5 2}$	15.163	$\mathbf{8 . 7 5 9}$	$\mathbf{5 3}$	2.01	$\mathbf{1 7 6 0 5}$
$\mathbf{P b}$	$\mathbf{0 . 0 2 7}$	0.022	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{3 1}$	0.045	$\mathbf{0 . 0 3 1}$	$\mathbf{5 3}$	2.01	$\mathbf{5 4}$
$\mathbf{H g}$	$\mathbf{0 . 2 0 4}$	0.194	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{2 3 6}$	0.507	$\mathbf{0 . 5 0 5}$	$\mathbf{5 3}$	2.01	$\mathbf{6 4 8}$
N	$\mathbf{0 . 0 7 2}$	0.087	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{8 7}$	0.137	0.087	$\mathbf{5 3}$	2.01	$\mathbf{1 6 1}$
$\mathbf{Z n}$	$\mathbf{5 . 0 5 1}$	2.678	$\mathbf{1 4 4}$	$\mathbf{1 . 9 8}$	$\mathbf{5 4 9 4}$	30.152	$\mathbf{6 . 0 6 2}$	$\mathbf{5 3}$	2.01	$\mathbf{3 1 8 4 2}$

Round Whitefish

As	$\mathbf{0 . 0 2 8}$	0.022	$\mathbf{3 6}$	2.02	$\mathbf{3 5}$	0.023	$\mathbf{0 . 0 2 2}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	48
Cd	$\mathbf{0 . 0 0 8}$	0.012	$\mathbf{3 6}$	2.02	$\mathbf{1 2}$	0.310	$\mathbf{0 . 1 6 6}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	$\mathbf{5 0 0}$
$\mathbf{c u}$	$\mathbf{0 . 5 7 5}$	0.371	$\mathbf{3 6}$	2.02	$\mathbf{7 0 1}$	2.419	$\mathbf{1 . 2 7 3}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	$\mathbf{3 8 8 3}$
$\mathbf{P b}$	$\mathbf{0 . 0 3 0}$	0.029	$\mathbf{3 6}$	2.02	$\mathbf{4 0}$	0.165	$\mathbf{0 . 2 7 6}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	482
Hg	$\mathbf{0 . 0 6 1}$	0.034	$\mathbf{3 6}$	2.02	$\mathbf{7 2}$	0.120	$\mathbf{0 . 0 6 7}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	$\mathbf{1 9 7}$
Ni	0.113	0.179	$\mathbf{3 6}$	2.02	$\mathbf{1 7 4}$	0.089	$\mathbf{0 . 0 9 1}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	$\mathbf{1 9 3}$
Zn	6.821	4.254	$\mathbf{3 6}$	2.02	$\mathbf{8 2 7 3}$	24.894	$\mathbf{8 . 7 6 6}$	$\mathbf{6}$	$\mathbf{2 . 5 7}$	34968

Lake Cisco

As	$\mathbf{0 . 0 3 9}$	0.011	$\mathbf{3 4}$	2.03	$\mathbf{4 3}$	0.023	$\mathbf{0 . 0 0 8}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	30
$\mathbf{C d}$	0.007	0.001	$\mathbf{3 4}$	2.03	$\mathbf{7}$	0.256	$\mathbf{0 . 0 9 2}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	348
cu	0.689	0.218	$\mathbf{3 4}$	2.03	$\mathbf{7 6 6}$	2.554	$\mathbf{0 . 2 9 2}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	2845
$\mathbf{P b}$	$\mathbf{0 . 0 2 7}$	0.018	$\mathbf{3 4}$	2.03	$\mathbf{3 3}$	0.090	$\mathbf{0 . 0 9 4}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	$\mathbf{1 8 4}$
Hg	$\mathbf{0 . 0 8 1}$	0.025	$\mathbf{3 4}$	2.03	$\mathbf{9 0}$	0.154	$\mathbf{0 . 0 3 1}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	$\mathbf{1 8 5}$
Ni	0.066	0.054	$\mathbf{3 4}$	2.03	$\mathbf{8 5}$	0.084	$\mathbf{0 . 0 3 2}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	$\mathbf{1 1 6}$
Zn	6.380	1.332	$\mathbf{3 4}$	2.03	6850	32.012	$\mathbf{6 . 1 8 8}$	$\mathbf{7}$	$\mathbf{2 . 4 5}$	$\mathbf{3 8 2 0 2}$

Arctic Char

As	0.021	0.013	$\mathbf{2 9}$	2.05	$\mathbf{2 6}$	0.011	$\mathbf{0 . 0 0 7}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	$\mathbf{1 7}$
Cd	0.006	0.001	$\mathbf{2 9}$	2.05	6	0.466	$\mathbf{0 . 1 0 2}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	538
cu	0.716	0.612	$\mathbf{2 9}$	2.05	$\mathbf{9 5 4}$	18.635	$\mathbf{7 . 1 7 8}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	$\mathbf{2 3 6 9 7}$
Pb	0.033	0.029	$\mathbf{2 9}$	2.05	$\mathbf{4 4}$	0.044	$\mathbf{0 . 0 2 6}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	$\mathbf{6 2}$
Hg	0.056	0.023	$\mathbf{2 9}$	2.05	$\mathbf{6 5}$	0.140	$\mathbf{0 . 0 4 0}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	168
Ni	$\mathbf{0 . 2 6 1}$	0.750	$\mathbf{2 9}$	2.05	$\mathbf{5 5 2}$	0.144	$\mathbf{0 . 0 8 9}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	207
$\mathbf{Z n}$	$\mathbf{4 . 6 1 3}$	0.747	29	2.05	$\mathbf{4 9 0 2}$	31.451	$\mathbf{3 . 1 7 4}$	$\mathbf{1 1}$	$\mathbf{2 . 2 3}$	$\mathbf{3 3 6 8 9}$

$$
1 x_{n}=\bar{x}+\left(t_{0.975} \cdot S D / \sqrt{n-1}\right)
$$

Table 10. Background netals levels (ppb wet weight) in muscle and liver and the ratios of liver to muscle concentrations for lake trout, round whitefish, I ake cisco and Arctic char from Cont noyto Lake and surrounding lakes. (= is used to nean "is approxi natel y" in this table).

Metal	Miscle	Li ver	K LM

Lake Trout
As
Cd
cu
Pb
Hg
N
Zn

$$
\begin{aligned}
27 & =30 \\
14 & =15 \\
652 & =650 \\
31 & =30 \\
236 & =240 \\
87 & =90 \\
5494 & =5500
\end{aligned}
$$

$\mathbf{2 0}$	$=\mathbf{2 0}$	0.7
$\mathbf{5 3 0}$	$=\mathbf{5 3 0}$	35
$\mathbf{1 7 6 0 5}$	$=\mathbf{1 8 0 0 0}$	28
$\mathbf{5 4}$	$=\mathbf{5 0}$	2
$\mathbf{6 4 8}$	$=\mathbf{6 5 0}$	3
$\mathbf{1 6 1}$	$=\mathbf{1 6 0}$	2
$\mathbf{3 1 8 4 2}$	$=\mathbf{3 2 0 0 0}$	6

Round Whitefish

As
Cd
cd
Pb
Hg
N
Zn

$$
\begin{aligned}
35 & =35 \\
12 & =10 \\
701 & =700 \\
40 & =40 \\
72 & =70 \\
174 & =180 \\
8273 & =8300
\end{aligned}
$$

48	$=50$	2
500	$=500$	50
3883	$=3900$	6
482	$=480$	12
197	$=200$	3
193	$=190$	1
34068	$=35000$	4

Lake Cisco

As	43	$=40$	30	$=30$
Cd	7	$=10$	348	$=350$
cu	766	$=770$	2845	$=2800$
Pb	33	$=30$	184	$=180$
Hg	90	$=90$	185	$=190$
Ni	85	$=85$	116	$=120$
Zn	6850	$=6900$	38202	$=38000$

Artic Char
As
Cd
cu
Pb
Hg
N
Zn

$$
\begin{aligned}
26 & =30 \\
6 & =10 \\
954 & =950 \\
44 & =45 \\
65 & =65 \\
552 & =550 \\
4902 & =4900
\end{aligned}
$$

17	$=20$	0.7
538	$=540$	54
23697	$=24000$	25
62	$=60$	1
168	$=170$	3
207	$=210$	0.4
33689	$=34000$	7

Table 11. Determination of background metal s level s (ppb wet weight) in muscle and Iiver of Iake trout, round whitefish, lake cisco and Arctic char from Inner Sun Bay, Contwoyto Lake, NWT. (data from R. L. \& L. Envi ronmental Servi ces Ltd., (1985).

	Muscle					Li ver				
Metal	$\begin{gathered} \bar{X} \\ (\mathrm{ppm}) \end{gathered}$	SD	n	$t_{0.975}$	$\begin{gathered} x_{n}{ }^{1} \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \bar{x} \\ \text { (ppm) } \end{gathered}$	SD	n	$\mathrm{t}_{0.975}$	$\begin{aligned} & \mathbf{X n} \\ & (\mathrm{ppb}) \\ & \hline \end{aligned}$

Lake Trout

As	0.023	0.012	43	2.02	27	0.023	0.018	25	2.06	31
Cd	0.014	0.055	43	2.02	31	0.508	0.127	25	2.06	562
cu	0.507	0.208	43	2.02	571	17.212	9.444	25	2.06	21183
$\mathbf{P b}$	$\mathbf{0 . 0 2 3}$	0.016	43	2.02	28	0.043	0.029	25	2.06	55
$\mathbf{H g}$	$\mathbf{0 . 1 9 8}$	U .136	43	2.02	240	U .527	0.516	25	2.06	74
\mathbf{N}	$\mathbf{0 . 0 6 1}$	0.049	43	2.02	76	0.172	0.089	25	2.06	210
$\mathbf{Z n}$	$\mathbf{4 . 5 0 2}$	1.127	43	2.02	4835	31.934	3.915	25	2.06	33580

Round Whitefish

As	$\mathbf{0 . 0 3 0}$	0.022	19	2.09	41	0.028	0.019	3	4.30	80
$\mathbf{C d}$	$\mathbf{0 . 0 0 6}$	0.000	19	2.09	6	0.319	0.131	3	4.30	718
$\mathbf{c u}$	$\mathbf{0 . 4 7 6}$	0.104	19	2.09	527	1.805	0.598	3	4.30	3623
$\mathbf{P b}$	$\mathbf{0 . 0 2 7}$	0.024	19	2.09	38	0.284	0.381	3	4.30	1441
$\mathbf{H g}$	$\mathbf{0 . 0 6 2}$	0.036	19	2.09	80	0.085	0.035	3	4.30	191
$\mathbf{N i}$	$\mathbf{0 . 0 7 1}$	0.045	19	2.09	93	0.071	0.037	3	4.30	183
$\mathbf{Z n}$	$\mathbf{5 . 4 6 2}$	0.761	14	2.09	5837	21.400	2.545	3	4.30	29138

Lake Cisco

As	$\mathbf{0 . 0 4 3}$	0.009	23	2.07	47	0.024	0.008	6	2.57	33
$\mathbf{C d}$	$\mathbf{0 . 0 0 7}$	0.000	23	2.07	7	0.257	0.101	6	2.57	373
$\mathbf{c u}$	$\mathbf{0 . 6 5 1}$	0.199	23	2.07	739	2.491	0.263	6	2.57	2794
$\mathbf{P b}$	$\mathbf{0 . 0 3 0}$	0.020	23	2.07	39	0.103	0.096	6	2.57	213
$\mathbf{H g}$	$\mathbf{0 . 0 7 7}$	0.023	23	2.07	88	0.145	0.024	6	2.57	173
\mathbf{N}	$\mathbf{0 . 0 8 4}$	0.058	23	2.07	109	0.086	0.035	6	2.57	126
$\mathbf{Z n}$	$\mathbf{6 . 7 1 3}$	1.157	23	2.07	7223	32.307	6.725	6	2.57	40036

Arctic Char

As	$\mathbf{0 . 0 1 0}$	0.006	8	2.36	15	0.010	0.007	4	3.18	23
Cd	$\mathbf{0 . 0 0 6}$	0.000	8	2.36	6	0.560	0.065	4	3.18	680
$\mathbf{c u}$	$\mathbf{1 . 1 1 9}$	1.086	8	2.36	2087	18.685	3.570	4	3.18	25239
$\mathbf{P b}$	$\mathbf{0 . 0 1 9}$	0.019	8	2.36	36	0.035	0.013	4	3.18	58
Hg	$\mathbf{0 . 0 5 5}$	0.024	8	2.36	77	0.117	0.025	4	3.18	163
Ni	0.732	1.375	8	2.36	1958	0.193	0.107	4	3.18	389
Zn	4.368	0.244	8	2.36	4586	32.432	2.166	4	3.18	36409

$1 x_{n}=\bar{x}+\left(t_{0.975} \cdot S D / \sqrt{n-1}\right)$

Table 12. Background netals level s (ppb wet wei ght) in muscle and liver and the ratio of liver to muscle concentrations for lake trout, round whitefish, lake cisco and Arctic char from Inner Sun Bay and Cont noyto Lake, N.W.T. (= is used to mean "is approximately" in this table).

Metal	Muscl e	Li ver

Lake Trout

As	$27=30$	$31=30$	1
Cd	$31=30$	$562=560$	19
cu	$571=570$	$21183=22000$	4
Pb	$28=30$	$55=55$	2
Hg	$240=240$	$744=750$	3
Ni	$76=75$	$210=210$	3
Zn	$4835=4900$	$33580=34000$	7

Round Whitefish

| As | 41 | $=40$ |
| ---: | :--- | ---: | :--- |
| Cd | 6 | $=10$ |
| cu | 527 | $=530$ |
| Pb | 38 | $=40$ |
| Hg | 80 | $=80$ |
| Ni | 93 | $=90$ |
| Zn | 5837 | $=5900$ |

80	$=80$	$\mathbf{2}$
718	$=720$	$\mathbf{7 2}$
3623	$=3600$	$\mathbf{7}$
1441	$=1400$	$\mathbf{3 5}$
191	$=190$	$\mathbf{2}$
183	$=180$	$\mathbf{2}$
29138	$=29000$	$\mathbf{5}$

Lake Cisco

AS	47	$=50$	33	$=35$
Cd	7	$=10$	373	$=370$
cu	739	$=740$	2794	$=2800$
Pb	39	$=40$	213	$=210$
Hg	88	$=90$	173	$=170$
\mathbf{N}	109	$=110$	126	$=130$
$\mathbf{Z n}$	7223	$=7200$	40036	$=40000$

Artic Char

As	15	$=15$
$\mathbf{C d}$	6	$=10$
$\mathbf{c u}$	2087	$=2100$
$\mathbf{P b}$	36	$=35$
Hg	77	$=80$
\mathbf{N}	1958	$=2000$
$\mathbf{Z n}$	4586	$=4600$

23	$=25$	2
680	$=680$	68
25239	$=25000$	12
58	$=60$	2
163	$=160$	2
389	$=400$	0.2
36409	$=36000$	8

(Table 12). The contamination factors for liver and muscle tissue for I ake trout and round whitefish (Table 14) generally indicated little or no contamination had occurred. The exceptions were the I i vers of round whitefish for the netal s arsenic, nickel, zinc and copper.

The contamination noted in the round whitefish livers was likely an artifact due to the snall sample size for round whitefish pre-decant data and the anal ysis of the very small liver of each fish on a wet wei ght as recei ved" basi s for the post-decant samples. The possibility that round whitefish livers are good accuml ators of these netal s seens unlikely as there were no corresponding increases in metals in the muscle tissues after decant and the natural background concentration in round whitefish livers did not differ greatly from the livers of other fish species.

The general lack of response exhibited by the fish is what would be expected gi ven the short contact tine with the dose, the rapid decline of the dose to near background levels and the nobility and netal avoi dance behavi our of fish. The nobility of the fish precl udes knowing the length of time any given fish has been exposed to the dose.

Summary: The summarized results of the contamination factor anal ysis (Table 15) indi cate the necessity for tine-comparability bet neen the effect and the dose terns and the need to be concerned with the form of the dose (i.e. the biological availability). The lack of effect on the sedi ments can be expl ai ned by the transportational nat ure of the site. The clans showed a response to iron, lead and zi nc but no response to arsenic. The proportionatel y greater response of clans to a low lead dose and the Iack of response to a hundred-fold Iarger arsenic dose nould suggest a substantial difference in biological availability between lead and arsenic in this case. The contamination factors for the fish showed a low or mixed response to the dose

Table 13. Mean concentrations and standard deviations of metal concentrations (wet weight ppb) in lake trout and round whitefish livers and muscle tissues from Contwoyto Lake, N.W.T. after the decant period in the fall of 1985.

Location	Species	Tissue Type	n	As		Cd		Cu		Pb		Hg		Ni		Zn	
				$\bar{\chi}$	SD	$\bar{\chi}$	SD	$\bar{\chi}$	SD	$\bar{\chi}$	SD	\bar{x}	D	$\bar{\chi}$	SD	$\bar{\chi}$	SD
East Side of	Lake	Liver	5	5.4	0.6	490	97	11,770	5,930	5.4	0.4	200	161	148	49	31,505	6,110
Contwoyto Lake	Trout	Muscle	5	5.4	0.3	4.6	2.0	445	141	5.4	0.4	158	65	71	70	4,890	543
Inner Sun Bay	Lake	Liver	10	26.3	44.4	427	124	21,590	13,820	5.4	0.7	223	44	189	96	33,480	6,870
	Trout	Muscle	10	22.0	27.2	5.7	0.5	512	148	16.0	32.7	199	35	32.4	13.7	4,995	820
	Round	Liver	5	692	820	257	166	7,664	8,298	5.0	0	172	33	597	375	56,500	34,800
	Whitefish	Muscle	5	23.6	17.8	5.8	0.3	390	48	5.8	0.3	104	30	41.3	26.9	5,900	548

Table 14. Determination of contamination factors (Cf) from the mean metal concentrations of liver and muscle tissues in lake trout and round whitefish for I nner Sun Bay, Cont woyto Lake, N.W.T. during fall 1985.

Species	Tissue Type	Paraneter	As	Cd	Cu	Pb	Hg	Ni	Zn
Lake Trout	Li ver	$\bar{\chi}$	23.6	427	21,590	5.4	223	189	33,480
		$\mathrm{C}_{\mathrm{n}}^{2}$	30	560	22,000	55	750	210	34,000
		Cf^{3}		0.8	1.0		0.3		
	Muscl e	$\bar{\chi}$	22.0	5.7	512	16	199	32.4	4,995
		C_{n}	30	30	570	30	240	75	1. 0
		Cf_{f}	0.7	0.2	0.9	0.5	0.8	0.4	1.0
Round Whitefish									
	Li ver 4	$\bar{\chi}$	692	257	7,664	5.0	172	597	56,580
		C_{n}	80	720	3,600	1,400	190	180	2,900
		Cf_{f}	8.7	0.4	2.1	0.0	0.9	3. 3	2.0
	Muscle	$\bar{\chi}$	23.6	5.8	390	5.8	104	41.3	5,900
		C_{n}	40	10	530	40	90	90	5,900
		Cf_{f}	0.6	0.6	0.7	0.1	1.3	0.5	1.0

[^3]which is understandable due to the short contact tine and the nobility of the fish.

5.4 I MPROVEMENTS OFFERED BY THE FRAMEVORK APPROACH

Using the templ ate of the concept ual franework (Fi gure 3) to examine atypical water licence case st udy (Fi gure 4), a number of usef ul observations can be made.

1. First, envi ronmental regul atory studi es represent a val uable source of information upon which to build our understanding of aquatic contaminant effects; however, they are val uable onl y if the objecti ves of the study are clearly defined and the study approach (paraneters, nethods) is fully and clearly rationalized. The benefit of the framework is that it orients the study design towards the practical objectives of the study at the outset. It presents a series of assessment milestones (Figure 3) with examples of corresponding study products (e.g. i mpact predi ction model s, effects nonitoring, contamination factors and ecol ogical risk indi ces).

Initially the Lupin study objectives avoi ded the issue of impact prediction and were oriented towards regul atory nonitoring rather than gathering information which nould facilitate active envi ronnental managenent. When the need to address practical nanagenent problens arose, impact prediction was inevitable and new inf or nation requi rements became evi dent. I mpact prediction and the corresponding nonitoring of contami nant pathways can provide a val uable source of infornation pertinent to envi ronnental managenent. Use of the framework in project design hel ps to keep these long term goals and opportunities in mind.
2. The framenork stipulates the integration of dose (project desi gn) and response (recei vi ng envi ronment) st udi es, whi ch are frequent-

Table 15. Esti nated dose of total metals to Inner Sun Bay and the corresponding contani nation factors for sedi ments, cl ans and fish.

	Approx. Dose (kg)	Q- Sedi nent			Cf- Cl ans		C_{f}-Fish		
		Inner	Outer	Whole			Lake	out	$\begin{gathered} \text { Round } \\ \text { Whitefish } \\ \hline \end{gathered}$
		Bay	Bay	Bay	Meat	Shel I	Muscle	Liver	Muscle
Arseni c	2700	1.2	3.1	2.1	0.8	1	0.7	0.9	0.6
Cadmi um		ND	ND	ND	ND	ND	0.2	0.8	0.6
Chroni um		1.1	1.1	1. 1					
Copper	400	0.6	0.6	0.6	0.7	0.2	0.9	1.0	0.7
Iron	9000				5	16	-		
Lead	24	ND	ND	ND	14	12	0.5	0.1	0.1
Mercury		0.8	0.9	0.9	ND	ND	0.8	0.3	1. 3
Ni ckel	170	1.1	1. 1	1. 1	ND	ND	0.4	0.9	0.5
Zinc	905	0.9	1. 0	0.9	1.1	3	1.0	1.0	1.0

ly separated and al located to engi neering and envi ronnent al specialists respectively. The franework emphasizes the interdependence of these components in the process of envi ronnental managenent. Integration of dose and response studi es ensures an effective focus on critical study paraneters and minimes wasted effort on extraneous or redundant data collection.

In the Lupi n exampl e, bel at ed inf ornation on the nat ure of the dose shifted the aquatic study objectives from an effects monitoring focus to an impact prediction focus. As a result, sone of the upstream sample sites were rendered extraneous. As uel I some i mportant inf or nation had not been obt ai ned (e.g. fractionation of the arseni c dose).
3. The reci pi ent sensitivity term of the framework forces rationalization of the sampling sites and parameters sel ected for study. The sensitivity of the recei ving water body depends on many factors starting with the basic physical dynamics of the system The physical basis for sampling prograns frequently is weak in prograns desi gned by bi ol ogi sts. In the Lupi n study, this lead to an overemphasis on the sedi nent linkage in contaminant pathways in Inner Sun Bay.

Frequently, far nore parameters for reci pient sensitivity are neasured than will ever be usef ully applied to impact prediction or interpretation. Sel ection of these parameters and frequency of their measurenent should be carefuly rationalized in terns of thei rel ationship to the dose parameters and the study objectives. By keeping the intended application of these data in cl ear vi ew, the investigator is encouraged to work with his data and refine his sampling program or drop paraneters which fail to yi eld instructive relationships.

The franework introduces the potential for devel oping usef ul prognostic tools by expl oring empirical rel ationshi ps bet ween dose, reci pient sensitivity and effects (Section 7). Devel oping hypotheses for these rel ationshi ps provides a rational basis for sel ecting sensitivity parameters and devel oping and exploring data bases for these paraneters. This ongoing eval uation of the data base provi des a check on extraneous data collection. Agai n, it must be stressed that this approach emphasizes maximum infornation return for minimm sampling effort and the devel opnent of practical (uorking) tool s for cont ami nant managenent.

When cont ami nant studi es are ori ented towards basel ine data collection for regul atory purposes, as was the case for Lupin, there is little impetus to expl ore rel ationships bet ween effect and sensitivity paraneters or to compare these rel ationships with other available data bases. Too frequently, the product of baseline st udi es is vol unes of data, very little of which are ever appl ied to enl arging our understandi ng of cont ami nant i mpacts.
4. Sel ection of the ecol ogical effect terns in the context of the framework emphasi zes how well the chosen paraneters represent the impact of the dose in the envi ronment and whether the effects are expressed in terns which are neani ngf ul to resource nanagers.

The effect terns initially chosen for the Lupin studies were water, sedi ments, invertebrate community structure and fish tissue metal concentrations. When it becane apparent that the dose would be intermittent and of rel atively short duration, the framework was used to eval uate the chosen effect terns. Because of the transportational character of the sedi nents, the nobility of the fish and the nat ural temporal variability of invertebrate
comminies, it becane clear that the only term likely to denonstrate an effect in this case was the water. Know edge of short term change in water quality at sub-acute toxic contaminant concentrations is not particularly hel pf ul to the resource nanager whose maj or concern nay be fisheries. Therefore, netal accumul ation in mol uscs (clans and snails) was added as an effect term which was nore apt to integrate an effect over a short tine period and represent a link in the contaminant pathway (as food) to the fish. There is equal justification for dropping the sedi ment anal ysis as an efect term except in accumul ation areas, possibly the accumul ation basin in Cont noyto Lake nearest the outlet of Sun Bay. This refinenent nould result in nore infornation gai ned for effort expended and would provide a neasure of effect at a nore sensitive link in the path. If this effect persisted it might ultinately be rel ated to netal cont am nation in fish.

Hakanson has devel oped sone tools for expressing effects (e.g. contami nation factors) which, if widel y adopted, could be used to compare the behavi our of contami nants in different systens. Accumal ation of such comparative information would ultinatel y be very val uable to resource nanagers. This is only one example of nany such anal ytical tools which could be devel oped for wide use by resource managers.
5. As shown in Figure 4, the Lupin study program did not explicitly address the toxicity, contact area, contact time and additive effects components of the framework, although systematic consi deration of these factors hel ped in data interpretation. By usi ng a franework which incorporates these components, the investigator is encouraged not only to address themin his study desi gn but to seek rel evant infornation from the dose component of the study. While it is generally acknow edged that temporal, spatial and cumul ative effects components are critical el enents
of any ecol ogi cal impact study, using the framework in study design will improve the chances that they are systenatically consi dered.

In summary, the framenork incorporates fundanental and widely recognized princi pal s of ecol ogi cal and impact assessment study desi gn. Although these principals have been di scussed at length in the impact assessment literature, they have yet to becone routinely i ncor porated in applied aquatic contami nant st udies. The franework is a val uable practical aid which can be readily implenented to i mprove study desi gn and its fornat encourages further devel opment and refinement. For practitioners of aquatic contaminant inpact assessment, the framework provides a valid starting point for enhancing the quality and end product of El A studies.
6. 0 DEVELOPMENT OF AN ECOLOGICAL RISK I NDEX FOR AQUATIC POLLUTI ON CONTROL AND ITS POTENTI AL APPLI CATI ON I N CANADA

6.0 DEVELOPMENT OF AN ECOLOGICAL RISK INDEX FOR AQUATI C POLLUTI ON

 CONIROL AND ITS POIENTI AL APPLI CATI ON IN CANADA
6. 1 INTRODUCTION

The framenork to date has generated a number of anal ytical tool s desi gned to aid resource managers. One such tool is the ecol ogi cal risk index, a di agnostic tool for giving rel ative di mensions to aquatic contaminant problens in a number of lakes. Specifically, the risk index ranks lakes/ basi ns and contami nant substances by degree of ecol ogi cal risk as a basis for focusing manayenent action.

The objective of this section is to demonstrate a way in which data from aquatic cont ani nant st udi es nay be assenbled, anal yzed and expressed in terns which are rel evant to resource managers. Risk i ndi ces are devel oped using data froma series of Canadian Iake cont ami nant studi es and the I akes are ranked according to the degree of ecol ogi cal risk presented by their respective contamination problens. This anal ytical approach is fully di scussed in Hakanson (1980A) and is presented here in synoptic formal ong with Swedi sh and Canadi an examples. The use of exi sting dat a from Canadi an studi es to devel op risk indi ces reveals opportunities to improve and standardize our data gat hering techni ques such that the data generated nay be nore readily adaptable to resource nanagenent applications.

6.2 DERI VATI ON OF THE RI SK I NDEX

The risk index (RI) is based on components of the franework (Fiyure 5). Rel ative risk in a recei ving uaterbody can be expressed in various ways depending on the infornation incorporated in the expressi on (Figure 5). For example, rel ative risk may be expressed in terns of the dose onl y, as degree of contamination; as a potential ecol ogi cal risk factor, incorporating el ements of dose, recipient

sensitivity and toxicity; and as a risk index, incorporating the additive effects of several contaminants enteriny the sane waterbody. Clearly there are potentially nany more ways of expressing rel ative risk by incorpor ating nore or different components of the framework or by altering the expression of the terns within each component. The ways need onl y be limited by the objectives of the investigat or and/ or the availability of rel evant data. The following di scussion describes one way in which risk indices nay be devel oped usi ng the types of data which are frequently collected in contani nant studies.

Thi s risk index is based on infornation derived prinarily from the sedi ments and provi des an assessment of "potential ecol ogical risk rather than a direct description of ecological effects as no bi ol ogi cal paraneters are included inthe index. The work is based on the premise that a sedi mentoloyical risk index for toxic substances in limic ecosystens should account, at least, for the following four components of the franework:

- the dose (as integrated by concentration in sedi nent);
- the sensitivity of the recei ving uater body;
- the toxicity of the pol I utants; and,
- the additive effects (number of pol lutants).

This risk index is meant to provide a fast and simplequantitative val ue expressing the potential ecol ogi cal risk of a gen contamination situation in a given freshwater lake. For the purpose of accuracy, simplicity and rapidity, the risk index uses sedi nent data. Sedinent data, when collected properly, are tine-integrated and timestable when compared to water chemistry data; sedi nent sampl es are rel atively easy to collect; sample representativeness in time and space can be eval uated; and the generally higher contami nant concentrations in sedi ments, rel ative to uater, permit yreater anal ytical accuracy at a loner cost.

The risk index can reflect the threat towards resources val ued by nan due to increased exposure of these aquatic resources, such as fish, to toxic substances in sedi ments. Secondarily, the riskindex can reflect the potential ecological hazard of a contaminant in a broader bi ol ogi cal context (i.e. the risk of destroying the "neakest links in an ecol ogi cal chai $n^{\prime \prime}$ in a given lake).

The foll owing sections describe the rational efor derivation of risk i ndi ces as illustrated schenatically in Figure 5 .

6.2.1 Concentration Requi rement

The concentration requi rement addresses the direct relationship bet ween the risk i ndex- val ue and sedi ment cont ami nation. In order to obtain a represent ative neasurement of contami nant concentrations in whol e lakes or I ake basins, the following problens must be overcone:
(a) The problem of lake bottom dynamics - To identify representative sample sites, the physical dynanics of the lake bottom should be characterized (i.e. erosion - transportation- accumal ation bottons), (see Hakanson 1977A,B). Accuml ation areas are areas where fine naterial (nedi umsilt and finer) is being deposited continuously; in transportation areas fine naterial is deposited di scontinuously (i.e. periods of accumal ation and transportation are alternating); and, erosion areas are areas where no fine naterial is deposited. Data from transportation and erosion zones are not suited to devel opment of a risk index because the sedi nents may be ol d, complex, highly variable and, thus, i mpossi ble to interpret. Consequently, sedi ment cont ami nant samples must be taken from accumal ation areas. Conversely, one must avoid sampling sedi nents for concentration measurements in the following envi ronments: rivers and other high energy envi ronnents; bet ween islands where a bottleneck effect may be apparent; areas cl ose to river nouths; and areas on sub- aquatic
sl opes with inclinations greater than $4-5 \%$, where fine naterial is easily resuspended.
(b) The problem of defining nat ural background concentrations - This is a central question in all projects dealing with lake sedi nents as indicators of pollution. The problem can be approached in tho quite different ways. One way is to devel op a general geol ogi cal reference level as a standard val ue for all comparisons. Another way is to determine a preindustrial level for every sedi ment core using certain pollen horizons. In the first case, all local variations are ignored; in the second case al I ocal differences are enphasized.

Using defined, standardized, prei ndustrial reference val ues saves time and money and provides practical and administrative advantages connected with the use of general reference val ues; once these have been determined, no sampling or anal ysis of sedi nents ot her than surficial deposits fromaccumul ation areas is requi red. The nain di sadvantage is lower resol ution. For the devel opnent and application of a risk index, the first approach is considered nost useful and rel evant.

What standard prei ndustrial-reference val ues shoul d be used and what substances: should be included in the risk index? The second question will be addressed in the "number requirements" Section (6.2.2). With respect to the first question, Hakanson determined standard prei ndustrial reference val ues from uncont ami nat ed sedi ments of 50 European and Anerican lakes of varying size, geographical position, trophic level and other limological characteristics. He defined the standard prei ndustrial reference level $\left(C_{n}{ }^{i}\right)$ for each substance as the mean pl us one standard devi ation, rounded to emphasize that the val ues are not precise. This definition takes into account the variability of sedi nent data between lakes; if the data
display a low degree of scatter then ($\mathrm{X}+\mathrm{SD}$) will be close to X; if a great spread exists this is accounted for in a statistically definable and rel evant way. The val ues in ppm are:

- $\mathrm{PCB}=0.01$
- $\mathrm{Hg}=0.25$
- $\mathbf{C d}=1.0$
- $\mathbf{A s}=15$
- cu $=50$
- $\mathbf{P b}=70$
- $\mathrm{Cr}=90$
- $\mathrm{Zn}=175$

These val ues represent the "upper linit" for natural background or prei ndustrial sedi nent concentrations.
(c) The thi ckness of the sedi nent I ayer to be sampl ed and anal yzed Thi s is important because:

- it is difficult to collect good samples if thin layers are utilized (< 1 cm); and
- thick layers provide less accurate resol ution in tine.

While from a theoretical viewpoint it would be preferable to collect, anal yze and compare sedi nent data from a known and comparable tine span, this uould require considerable nonitoriny and detailed nork. As a general nonitoring tool, the 0-1 cm I ayer should be used as a standard.
(d) The number of samples needed to obtain valid mean val ues Hakanson (1980A) recommends at least five samples, taken from accumal ation bottom deposits and providing even area coverage of
a lake. or sub-basin, to nake a proper estinate of the mean val ue.

Bearing these points in mind the concentration of cont am nants can be expressed as a contamination factor ($C_{f} i$) for each el enent of concern, i.e.:

$$
\frac{c^{i_{0-1}}}{c_{n}{ }^{i}}
$$

where ${ }^{C^{i}} 0-1$ is the nean concentration in surficial sedi nents from accuml ation areas and Cni is the prei ndustrial reference level for a gi ven substance, i.

The following classification is used in this risk index appr oach:

$$
\begin{aligned}
C_{f} i<1 & \Rightarrow \text { l ow contani nation fact or; } \\
1 & \leq C_{f} i<3 \\
3 & \leq C_{f} i<6 \\
& C_{f} i \geq \text { noder ate contami nation factor; } \\
& \Rightarrow \text { very hi gh contani nation factor. }
\end{aligned}
$$

6. 2. 2 Number Requi rement

The number requi rement addresses the assumption that, under simiar situations, a lake polluted by nany substances should be attributed a hi gher risk index than a lake cont aminated by fewer substances. It is neither practical nor desirable that the risk index incorporate al l possible toxic substances. It should al ways be based on the sane parameters for comparative purposes. The question is what subst ances?

The substances chosen should be representative of groups of substances which occur in the sedirnents in a similar way. Elements such as Fe , Mn and P are unsuitable because their appearance in sedi ments is often governed by physical/chemical processes in the sedi ments which cannot be linked unambiguously to contani nation. These el enents of ten show very complex sedi mentol ogi cal di stribution patterns. Extremely rare el enents (e.g. At omic Number > 50) and substances whi ch cannot be anal yzed in a standard manner should al so be avoi ded. Maj or el enents ($\mathrm{Si}, \mathrm{Al}, \mathrm{K}$, Na and Mg which make up the largest group of the sedi ment matrix), carbonate el ements (Ca, Mg which constitute the second largest group - 15% and nutrient el ements (org. C, N and $\mathrm{P}-10 \%$ should be distegarded in a risk index which focuses on toxic substances.

There are, of course, many criteria one can use in the choice of parameters, and the subsequent list should be considered simply as an exarnple. The eight paraneters used in the present study were Hg, Cd, $\mathrm{Pb}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{As}, \mathrm{Cr}$ and PCB . Three co-paraneters should al so be measured. To determine the physical status of the surficial sedi ments, the water content (W_{0-1}) must be determined, and to account for sensitivity factors rel ated to bi oproduction, nitrogen content (N) and the ignition loss or organic content (IG) can easily be determined.

The degree of contani nation (cd) which accounts for the number of contaminants affecting a given waterbody in a quantifiable way, is defined as the sum of the contamination factors $\left(C_{f}{ }_{f}\right)$. For the ei ght representative parameters identified above, the degree of contamination nould be expressed as follous:

$$
\mathrm{Cd}=\sum_{i=1}^{8} C_{f} i
$$

The val ues $C_{f} i$ and $C d$ nay be used to gi ve a standardized description of sedi ment contami nation and are a first step towards a risk index. Note that the contamination factor in itself can provide a "first cut" assessment of rel ative risk in waterbodies.

The following classification nay be used to describe the degree of cont ami nation (C_{d} val ue) based on ei ght paraneters:

$8 \leq \mathrm{Cd}<16 \Rightarrow$ noderate degree of contami nation; 16 _ $\mathbf{C d}<32 \Rightarrow$ consi derable degree of contamination Cd $\geq 32 \Rightarrow$ very high degree of contami nation; i ndi cating serious ant hropogeni c pol I ution.

6. 2. 3 Toxi c Factor Requi renent

The toxic factor requi rement accounts for the fact that different substances have different toxic effects in aquatic systens. The principles which were used to incorporate this factor are as foll ons:
(a) The "abundance princi ple" states that a proportionality exists between toxicity and rarity. The "abundance number" has been determined from concentrations in igneous rock, soils, freshuater, I and plants and I and ani mals. The following order of natural abundance has been establ i shed between the netal s :

(b) The principle of "sink-effect" states that different elements will make different "fingerprints" in lake sedi ments. A "si nk-factor" has been determined from the quoti ent between the nat ural background concentrations in freshwater for the netal s
and the prei ndustrial reference val ues for I ake sedi ments. The following order has been established:
$\underset{(2)}{\mathbf{O r}}<\underset{(27)}{\mathbf{A s}}<\underset{(57)}{\mathbf{Z n}}<\underset{(71)}{\mathbf{P b}}<\underset{(200)}{\mathbf{C d}}=\underset{(200)}{\mathbf{C u}}<\underset{(320)}{\mathbf{H g}}$
(c) A "sedi nent toxic factor" (Sti) expressing the toxicity of an el ement and its expression in the sedi ments, can be deri ved by multiplying the "abundance" by the "sink-factor" and subsequentIy normalizing to fit the resultant val ues within a norkable range while mai ntaining thei r appropriate di stances. The Sti val ue is a constant for each metal and is anal ogous to the prei ndustrial reference level (Cni). The val ues obtai ned by Hakanson (1980A) are as follows:

$$
\mathrm{Zn}=1<\mathrm{Cr}_{\mathrm{r}}=2<\mathrm{Cu}=\mathrm{Pb}=5<\mathrm{As}^{2}=10<\mathrm{Cd}=30<\mathrm{Hg}=\mathrm{PCB}=40 \text {. }
$$

6.2.4 Sensitivity Requi rement

Different lakes/ basins have different sensitivities to different toxic substances. Val ues for "sensitivity factors" are derived from the sane samples used to determine the concentrations of the toxic substances (sedi ments in the present context). One such "sensitivity factor" is the bi oproduction index (BPI-val ue). The BPI-val ue is determined from data on nitrogen content and organic content (ignition loss $=I G$) in the sedi ments and is defined as the \mathbf{N}-content on the regression line that corresponds tolG=10\% (Hakanson 1984C). Using a BPI-val ue of 5. O, which is characteristic for noderatel y eutrophic and bi oproductive waters, a "toxic-response factor" (Tri) was devel oped (Fi gure 5). The "toxic-response factor", which accounts for the "sedi nentol ogical toxic factor" (St ${ }^{i}$) and the sensitivity requi renent (as measured by BPI), has been defined in the following way for the actual substances (Hakanson 1980A) :

Sti_value	$\frac{\text { Tri-value }}{}$
40	$40 \cdot B P I / 5$
40	$40 \cdot 5 / B P I$
30	$30 \sqrt{5} / \sqrt{B P I}$
10	10
5	$5 \sqrt{5} / \sqrt{B P I}$
5	$5 \sqrt{5} / \sqrt{B P I}$
2	$2 \cdot \sqrt{5} / \sqrt{B P I}$
1	$1 \sqrt{5} / \sqrt{B P I}$

6. 2. 5 The Ri sk Fact or

To quanitatively express the potential risk of a given contaminant in a gi ven lake, we may define the risk factor (Ed) accordingly:

$$
E r^{i}=T r^{i} \cdot C_{f}^{i}
$$

where
$\operatorname{Tr}^{i}=$
the toxi c-response fact or for a gi ven substance and
$C_{f}{ }^{i}=$ the contani nation factor for the gi ven substance.

The following terminol ogy nay be used to describe the risk factor:

Table 16. Lake area, maxi mum depths and source of data for the Canadian l akes exani ned.

Lake	Provi nce/ Territory	Lake Area (km²)	$\begin{aligned} & \text { Maximum } \\ & \text { Depth } \\ & \text { (m) } \end{aligned}$	Source
Rice	Mani toba	3.82	5.1	Beck (1984A)
Snow	Mani toba	5. 26	17.4	Beck (1984B)
Herblet	Mani toba	30. 1		Beck (1984B)
Trout (Embury)	Mani toba	9*	35"	Vil son (1984)
Cliff	Mani toba	2*	18"	VVI son (1984)
Gods	Mani toba	1050	74. 3	Beck (1982)
Francois	B. C.	420	245	Kel so \& J ones (1983)
Meg	N WT.	0. 15	1. 5	Mbore et al. (1979)
Keg	N WT.	0. 35	2. 5	Mbore et al. (197Y)
Peg	N WT	0.1	2.0	Mbore et al. (1979)
Narr ow	N WT	0.07	3.0	Mbore et al. (1979)
Great SI ave	N WT.	28,570	157	Mbore et al. (1979)
Koot enay	B. C.	389	154	Dal ey, et al. (1981) Crozier \& Duncan (1985)
Sun Bay (Cont woyot o)	N WT	8.9	>10	Rei d Crout her (1985)

[^4]

6. 2. 6 The Ri sk I ndex

Anal ogous to contamination factor (Cfi) and the degree of contamination (Cd), we nay now define the potential ecol ogical risk index (RI) as the sum of the risk factors, i.e.:

$$
\mathbf{R J}=\sum_{i=1}^{8} E r i=\sum_{i=1}^{8} T r^{i} \cdot C_{f} i
$$

The following terminol ogy may be used to describe the Rl -val ues:

probl ens in the data, they can be used to denonstrate the use of the potential ecol ogical risk index.

Mbst of the lakes examined are influenced by ming activities and the presence of a mine or mines was the basis of the studies. Rice Lake was studi ed bef ore and after the reactivation of San Antonio Gold Mne in Bi sset, Manitoba. Trout and Cliff lakes were studiedin associ ation with Trout Lake M ne; however, nost of the contami nation is believed to be derived by aerial deposition fromsnelter stack emissions at Flin Fl on, Manitoba. Both Cliff and Trout Iakes are the source of Flin Flon's water supply. Snow and Herblet Iakes, Manitoba were investigated in rel ation to a gol d mine whi ch was operational from 1949 to 1958. Snow Lake is utilized as a water supply by the Town of the sane nane. Gods Lake, Manitoba was investigated for potential pollution by leachate froman abandoned gol d mine. Gods Lake Gold M nes Limited operated for ei ght years from 1935 to 1943. Francois Lake, B. C. was investigated in connection with an amendment of Endako Mes pollution control permit. Discharges were allowed from their new ultra pure plant to a new No. 3 tailings pond and eval uation of seepages from their No. 1 and No. 2 tailings ponds was requi red. Meg, Keg, Peg, Narrow and Great Sl ave Iakes, NWT. were studi ed to determine the effects of waste di scharges from Cominco Ltd.'s Con Mne operations in Yellowknife. The tailings pond effluent flows from Mey Lake to Keg Lake to Peg Lake and finally, to Great Sl ave Lake. Narrow Lake is not in the path of the tailings effluent and was consi dered a "control " I ake. Kootenay Lake, B. C. has been influenced by many mines si nce 1890, the I argest and I onyest produci ng mine being the Bl uebel I near Ri ondel. The I ake was used as a site for dumping waste and di sposal of tailings. Sun Bay

- (Contwoyto Lake), NWT. was sampl ed to eval uate the effects of tailing pond decants fromthe Echo Bay Mnes, Lupin Gold Mne. The val ues used to determine the contamination factors for Sun Bay are from the post-decant period.

6. 3. 2 Sedi ment Dat a

The sedi nent data for the sel ected Iakes are presented in Table 17. For this example, any missing val ues for the netals were set as equal to the natural background levels $\left(C_{n}{ }^{i}\right)$ previ ously defined (Section 6.2.1). The bi oproduction index (BPI) required to define the sensitivity of the lakes to pollutants was determined from the nean total phosphorous val ues expressed as ug/L. The BPI was then estimated using a graph rel ating total phosphorous to BPI (Figure 5 in Hakanson 1980A). Thi s was necessary as nost of the sedi ment data did not incl ude the ignition loss and nitrogen val ues needed to estimate the BPI from sedi ments. The mean total phosphorous val ues were generally lake-wide means but were not al ways annual means (i.e. of ten they were based on one sample date onl y). Thus the BPI-values determined must be considered as crude estimates.

6.3.3 Contamination Factors and Degree of Contamination

The contami nation factor $\left(C_{f} i\right)$ for each substance in the sel ected I akes was calculated by di viding the mean concentration of the metal in surficial sedi nents by the preindustrial reference val ue for that metal (Table 18). To deri ve degree of contamination val ues comparable to Suedi sh data, an arbitrary contami nation factor $\left(C_{f}{ }^{i}\right)$ of 1 was assi gned for PCB and all ei ght contami nation factors were summed (Table 18). The range of degree of contamination was consi derable anong the lakes sel ected. The lakes were then ranked according to the degree of contamination, the pol lutants were ranked by the contami nation factor, and these were, in turn, compared to 15 Swedi sh lakes (Table 19).

The synoposis of large anounts of data (Table 19) by a standard nethod utilizing well-defined terminol ogy can be very val uable tool for deci si on-makers in aquatic pollution control. The I akes near the top of the list had the hi ghest degree of contamination. For each

Table 17. Mean val ues for constituents of surficial sedi ments (usually 0.5 $\mathbf{c m})$ from sel ected Canadi an lakes (see Table 16 for data sources).

Lake	$\begin{gathered} \mathrm{P}_{\mathrm{H}} \mathrm{u}_{\mathrm{O}} \\ (\mathrm{~g}) \mathrm{L}) \end{gathered}$	Est. BPI	As	Cd	$\frac{\mathrm{Cr}}{(\mathrm{ug} / \mathrm{g}}$	Cu	$\frac{\text { Pb }}{\text { tance) }}$	Hg	Zn
Rice	25	4.9	32.7	1.93	90"	610	33.7	1. 42	202
Snow (Bl ock B)	38	5.2	112.9	1.4	90*	58.1	35.0	0.07	10
Herb1 et (Bl ock E)	78	6.0	273.4	1.0	90"	654	27	0.03	119
Trout	10	3.5	175	10	90*	318	266	0. 40	1502
Qiff	14	3.9	107	17	90*	620	396	1. 22	2922
Gods (Block E)	20	4.5	8.5	1.6	90*	37.9	20.6	0. 30	83.4
Francois	6	2.8	20.4	0.6	22.8	31. 8	9.0	0.25*	76
Meg	115	6.0	539	ND	33	477	11	0. 132	112
Keg	220	6.0	349	ND	120	544	8	0. 047	252
Peg	76	6.0	76	ND	89	106	8	0. 080	185
Narrow	63	5.9	22	ND	38	39	8	0.037	82
Great Slave	25	4.9	12	ND	130	172	14	0.053	199
Kootenay	15	3.9	193	2.92	22	57	567	0.25*	691
Sun Bay	<20	3.9	7.17	0.13	37.0	23. 9	3.5	0. 012	47.2

* Hypothetical val ues set to preindustrial reference levels.

ND = Not Detected.

Table 18. Contamination factors ($C_{f}{ }^{i}$) and val ues illustrating the degree of sedi nent contami nation (Cd) in 14 Canadian lakes. Al figures marked with an * are hypothetical.

Lake	$C_{f}{ }^{i}$								$\mathbf{C d}=\sum_{i=1} C_{f} i$	
	As	Cd	Or	Cu		Hg	$\mathbf{Z n}$	PC6		
Rice	2. 2	1.9	1.0*	12.2	0.5	5.7	1.2	1.0 "		25.6
Snow	7.5	1.4	1.0 "	1.2	0.5	0.3	0.6	1.0*		13.5
Herblet	18.2	1.0	1.0 "	13.1	0.4	0.1	0.7	1.0 "		35.5
Trout	11.7	10.0	$1.0 *$	6.4	3.8	1.6	8.6	1.0*		44.0
Qiff	7.1	17.0	1.0 "	12.4	5.7	4.9	16.7	1.0*		65.8
Gods	0.6	1.6	1.0	0.8	0.3	1.2	0.5	1.0*		6.9
Francois	1. 4	0.6	0.3	0.6	0.1	1.0*	0.4	1.0*		5.4
Meg	35.9	0.0	0.4	9.5	0.2	0.5	0.6	1.0*		48.2
Keg	23.3	0.0	1.3	10.9	0.1	0.2	1.4	1.0 "		38.2
Peg	5.1	0.0	1.0	2.1	0.1	0.3	1.1	1.0 "		10.7
Narrow	1.5	0.0	0.4	0.8	0.1	0.2	0.5	1.0 "		4.4
Great Slave	0.8	0.0	1.4	3.4	0.2	0.2	1.1	1.0*		8.2
Kootenay	12.9	2.9	0.2	1.1	8.1	1.0*	3.6	1.0*		30.8
Sun Bay	0.5	0.1	0.4	0.5	0.1	0.1	0.3	1.0*		3.0

Table 19. Ranking of sedi nent contamination for the selected Canadian and Swedi sh (Hakanson 1980A) I akes according to the degree of contamination (Cd) val ue and the order of contamination factors ($C_{f}{ }^{1}$). Al val ues narked * are hypothetical .

I ake, the cont ani nants were ranked from hi ghest (left) to lowest (right) contamination factor. Thus, if an envi ronmental nanager was reviewingan application to di scharge pollutants into a lake that was catal ogued in the list, he would have sone rational basis for a response and subsequently, devel opment of a di scharge permit. Lakes with hi gher degrees of contamination could demand nore stringent effluent controls and possi bly no di scharge of certain pollutants whi ch al ready show a hi gh contamination factor.

The degree of contamination is aseful tool which is based on few assumptions. It does not, however, account for the toxicity of the pol lutant or the sensitivity of the water body. The toxicity and I ake sensiti vity uould have to be taken into account by the manager when using such a table. In order to standardize the nethod whereby these tho factors are taken into account, Hakanson (1980A) nade numerous assumptions about toxicity, its expression and the sensitivity of the waterbody to produce risk factors (Eri) for each substance and a potential ecol ogical risk index (RI) for water bodies. While risk indices are val uable di agnostic tool s, they should not be used without due regard to the assumptions used in their derivation. Thus, it is beneficial initially to produce tables of contamination factors and degree of contamination for the lakes of a province or regi on which can then be examined by regi onal environnental managers aware of the special problens and sensitivities within their region.

From thei r high degree of contamination (Table 19) one woul d expect el evated netals or other problens to be evident in the bi ota of Cliff, Meg, Trout, Keg and Herblet Iakes. This was confirned by the concl usi ons in the respective reports. Cliff and Trout Iakes had el evated levels of $\mathbf{C u}, \mathbf{Z n}$ and As in fish, with levels in Cliff Lake fish being hi gher. Meg and Keg Lakes both had reduced invertebrate numbers and el evated As, Pb, Zn and other met al s in the water. Herblet Lake had el evated level s of As in fish and water.

One nould expect lower levels of netals and associ ated problens to be evi dent in Koot enay and Ri ce I akes whi ch both di spl ayed a consi derable degree of contamination. El evated levels of Cu and As were observed in fish fromRice Lake. Concentrations of metals were low in Kootenay Lake fish; this could have been due to a low biologi-tally-active component of the netals, the localized nature of the metal contam nation and the age of the contamination. Lakes with low to moderate degrees of contamination (Snow, Peg, Great Slave, Gods, Francoi s, Narrow and Sun Bay) uould be expected to di spl ay the I east or no problens with netal contamination in bi ota. The concl usi ons of the respective reports confirmed this assumption. Snow and Great Sl ave Iakes showed Iowlevel s of netals in fish tissue. Both Peg and Great Sl ave I akes had an abundance of benthic macroi nvertebrates and Narrows Lake was a "control " I ake for the study. Both Gods Lake and Sun Bay showed low netal concentrations in fish tissue; however, some bi oaccumul ation was denonstrated in the nacroi nvertebrates in both waterbodi es. The Francois Lake report was a data report with no concl usi ons drawn, but netal levels in fish tissue appeared to be low For a di scussi on of the Swedi sh Iakes see Hakanson (1980A).

The cont ani nation character of a particular lake/ basin may be described in a uniform instructive and standardized way by using the contamination factor and the degree of contanination. This is useful in aquatic pollution control since it provides a basis for discussion and deci si ons by government admi ni strators, resource devel opers and resource nanagers.

6. 3. 4 Risk Factors and a Potential Ecol ogical Risk I ndex

Contamination factors and degree of contani nation deal with the "easy points" of this approach and are primarily concerned with concentration and numbers of contaminants. They do not di rectly address the problem of ecol ogical risk and effects. In an attempt to account

Table 20. Risk factors (Eri) and risk indices (RI) for the investigated Iakes and for a reference lake (with $\mathrm{C}_{\mathrm{f}} 1=1$ for all substances and $B P I=5.0$). Al 1 val ues narked with an * are hypothetical and are only incl uded to illustrate the principle.

Lake	$E_{r}{ }^{i}$								$\mathbf{R}=\sum_{i=1}^{8} E r^{i}$
	A s	Cd	Cr	Cu	Pb	Hg	Zn	PCB	
Rice	22	59	2"	62	2	232	1	39*	419
Snow	75	41	2*	6	2	11	1	42"	180
Herblet	182	27	2"	60	2	4	1	48*	326
Trout	117	359	2"	38	22	91	10	28*	668
Qiff	71	577	2*	70	32	250	19	31*	1054
Gods	6	51	2*	4	2	53	1	36 "	154
Francois	14	24	1	4	1	71*	1	22*	138
Meg	359	0	1	44	1	18	1	48*	470
Keg	233	0	2	50	1	6	1	48*	340
Peg	51	0	2	10	1	11	1	48*	122
Narrow	15	0	1	4	1	5	1	47*	72
Great SI ave	8	0	3	17	1	9	1	39*	78
Koot enay	129	99	1	6	46	51*	4	31*	367
Sun Bay	5	4	1	3	1	2	1	31*	47
Reference	10"	30"	2"	5*	5*	40"	$1 "$	40"	133*

Table 21. The potential ecological risk factor ($E_{r}{ }^{i}$) and risk indices (RI) of the investigated Canadian and Swedish (Hakanson 1980A) lakes. All figures marked with an * are hypothetical.

	Lake	RI	Potential Ecological Risk Factor ($E_{r}{ }^{c}$)				
			Very High $E_{r} \geq 320$	$160 \leq \mathrm{E}_{\mathrm{r}}^{\mathrm{High}}<320$	$\begin{aligned} & \text { Considerable } \\ & 80 \leq E_{r} \uparrow<160 \end{aligned}$	$\begin{gathered} \text { Moderạte } \\ 40 \leq E_{r}<80 \end{gathered}$	$E_{r}^{i}<40^{\text {Low }}$
Very High$R I \geq 600$	Vasman	1201	Hg	Cd	PCB* > PB	As*	$\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Cliff	1054	Cd	Hg	-	As > Cu	$\mathrm{Pb}>\mathrm{PCB}^{*}>\mathrm{Zn}>\mathrm{Cr}^{*}$
	Norra Barken	813	-	PCB* $>$ Cd	Hg	$\mathrm{Pb}>\mathrm{Cu}$	$\mathrm{Zn}>\mathrm{Cu}>\mathrm{Cr}$
	Ovre Hillen	741	Hg	PCB*		Pb > As^{*}	$\mathrm{Pb}>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Trout	668	Cd	-	As $>\mathrm{Hg}$	-	$\mathrm{Cu}>\mathrm{PCB}^{*}>\mathrm{Pb}>\mathrm{Zn}>\mathrm{Cr}^{*}$
	Varmlandssjon	652	Hg			$\mathrm{Cd}>\mathrm{PCB}{ }^{*}$	$\mathrm{As}^{*}>\mathrm{Pb}>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Stora Aspen			PCB*	Cd > As*	$\mathrm{Hg}>\mathrm{Pb}>\mathrm{Cr}$	$\mathrm{Zn}>\mathrm{Cu}$
$\begin{aligned} & \text { Considerable } \\ & 300 \leq \text { RI } \leq 600 \end{aligned}$	Vanern	511	Hg	-	-	Cd > PCB*	$\mathrm{As}^{*}>\mathrm{Pb}>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Meg	470	As	-	-	PCB* ${ }^{\text {c }} \mathrm{Cu}$	$\mathrm{Hg}>\mathrm{Pb}=\mathrm{Zn}=\mathrm{Cr}>\mathrm{Cd}$
	Rice	419	-	Hg	-	$\mathrm{Cu}>\mathrm{Cd}$	PCB * ${ }^{\text {a }}$ ($\mathrm{Pb}=\mathrm{Cr}^{*}>\mathrm{Zn}$
	Osterjon	415	-	-	$\mathrm{PCB}{ }^{*}>\mathrm{Hg}$	$\mathrm{Cd}>\mathrm{As}^{*}$	$\mathrm{Cr}>\mathrm{Cu}>\mathrm{Pb}>\mathrm{Zn}$
	Hjalmaren	380	-	PCB*	-	Cd*	$\mathrm{Hg}^{*}>\mathrm{As}^{\star}>\mathrm{Pb}>\mathrm{Cu}>\mathrm{Cr}>\mathrm{Zn}$
	Amanningen	370	-	PCB*	-	$\mathrm{Cd}>\mathrm{Hg}>\mathrm{As}^{*}$	$\mathrm{Pb}>\mathrm{Cr}>\mathrm{Zn}>\mathrm{Cu}$
	Kootenay	367	-		As > Cd	$\mathrm{Hg}^{*}>\mathrm{Pb}$	PCB* $>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Freden	365	-	PCB*	Cd	Hg	$\mathrm{As}^{*}>\mathrm{Cr}>\mathrm{Pb}=\mathrm{Cu}=\mathrm{Zn}$
	Keg	340	-	As		Cu > PCB*	$\mathrm{Cr}>\mathrm{Pb}=\mathrm{Zn}>\mathrm{Cd}$
	Malaren	326	-	As	PCB* $>$ Hg	Cd	$\mathrm{As}^{*}>\mathrm{Cu}>\mathrm{Pb}>\mathrm{Cr}>\mathrm{Zn}$
	Herblet	326	-	As	($\mathrm{Cu}>\mathrm{PCB}^{*}$	$\mathrm{Cd}>\mathrm{Hg}>\mathrm{Pb}>\mathrm{Cr}^{*}>\mathrm{Zn}$
	Blacken	305	-	PCB*	-	$\mathrm{Cd}>\mathrm{Hg}$	$\mathrm{As}^{*}>\mathrm{Cu}>\mathrm{Cr}>\mathrm{Pb}>\mathrm{Zn}$
$\begin{gathered} \text { Moderate } \\ 150 \leq \mathrm{RI} \leq 300 \end{gathered}$	Haggen	275	-	-	Cd	PCB* $>\mathrm{Hg}$	$\mathrm{As}^{*}>\mathrm{Pb}>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Vattern	248	-	-	PCB*	$\mathrm{Cd}^{*}>\mathrm{Hg}$	$\mathrm{As}^{*}>\mathrm{Pb}>\mathrm{Cu}>\mathrm{Zn}>\mathrm{Cr}$
	Bysjon	231	-	-	PCB*	$\mathrm{Hg}>\mathrm{Cd}$	$\mathrm{As}^{\star}>\mathrm{Pb}>\mathrm{Cu}=\mathrm{Zn}>\mathrm{Cr}$
	Snow	180	-	-	-	$\text { As > PCB* }>\mathrm{Cd}$	$\mathrm{Hg}>\mathrm{Cu}>\mathrm{Pb}=\mathrm{Cr}^{\star}>\mathrm{Zn}$
	Gods	154	-	-	-	$\mathrm{Hg}>\mathrm{Cd}$	$\mathrm{PCB}^{*}>\mathrm{As}>\mathrm{Cu}>\mathrm{Pb}=\mathrm{Cr}^{*}>\mathrm{Zn}$
$\stackrel{\text { Low }}{\text { RI }<150}$	Francois	138	-	-	-	Hg^{*}	$\mathrm{Cd}>\mathrm{PCB}^{*}>\mathrm{As}>\mathrm{Cu}>\mathrm{Cr}=\mathrm{Pb}=\mathrm{Zn}$
	Reference	133*	-	-	-	$\mathrm{Hg}^{*}=\mathrm{PCB}{ }^{*}$	$\mathrm{Cd}^{*}>\mathrm{As}^{*}>\mathrm{Pb}^{*}=\mathrm{Cu}^{*}>\mathrm{Cr}^{*}>\mathrm{Zn}$ *
	Peg	122	-	-	-	As > PCB*	$\mathrm{Hg}>\mathrm{Cu}>\mathrm{Cr}>\mathrm{Pb}=\mathrm{Zn}>\mathrm{Cd}$
	Great Slave	78	-	-	-		$\mathrm{PCB}^{*}>\mathrm{Cu}>\mathrm{Hg}>\mathrm{As}>\mathrm{Cr}>\mathrm{Pb}=\mathrm{Zn}$
	Narrow	72	-	-	-	PCB*	As $>\mathrm{Hg}>\mathrm{Cu}>\mathrm{Cr}=\mathrm{Pb}=\mathrm{Zn}>\mathrm{Cd}$
	Sun Bay	47	-	-	-		$\mathrm{PCB}^{*}>\mathrm{As}>\mathrm{Cd}>\mathrm{Cu}>\mathrm{Hg}>\mathrm{Pb}=\mathrm{Zn}=\mathrm{Cr}$

for the potential transport avenues of toxic substances to man, their threat to man, and their nore complex threat to the aquatic ecosystem risk factors (Eri$)$ and a potential riskindex (RI) were devel oped as outlined in the preceding sections. The riskindex approach expresses potential for a toxic response to substances (Tri) as a function of the natural abundance of the substance in the envi ronment, the proportional representation of the substances in the sedi nents ("fingerprint") (Section 6.1.4) and the lake sensitivity to the substances as a function of bi oproduction (Section 6.1.5).

The risk factors (Eri) for the sel ected lakes were cal cul ated (Table 20) by miliplying the toxic response factor (Tr^{i}) by the contamination factor ($C_{f}{ }^{i}$). The risk index ($R I$) is simply the sum of the ei ght risk factors for a gi ven lake. The lakes were then ranked by the risk index and the contaminants were ranked by risk factors (Table 21). The risk index ranked the lakes in a slightly different order than did the degree of contam nation (Table 19). diff and Trout lakes still headed the list anong Canadi an lakes due to hi gh contamination and their oligotrophic nature. Meg, Keg and Herblet Iakes were rated lower due to their highly eutrophic status whi ch decreases their sensitivity to met al pollution. Kootenay and Ri ce I akes remai ned at the same level. The remaining lakes showed only slight shifts in the low to noderate categories depending on the primary contaminant (e.g. Gods Lake noved up because of the emphasis pl aced on Hg by the risk index). The ordering of the contaminants by risk factors, however, changed substantially fromthe previ ous order obtai ned by contamination factors (Table 19). Greater importance is gi ven to PCB, Hg, Cd and As by the toxic-response factor (Tri) and, consequently, these four substances dom nated the very high and hi gh risk factor categories. Thus, greater priority is placed on contamination by these substances than by, say, Zn contamination.

To obtain a full appreciation of the factors upon which this sedi nentol ogical index is built, the folloi ung example may be usef ul :
(a) What is the significance of a risk factor of Eri $=50$? This is the limit between Iow and noderate potential ecol ogical effect.

Assune that the lake has a BPI-val ue of 5.0 .

The result for the given substances are shown in Table 22.

The toxic factors in the second col um should be interpreted as normative constants. The contani nation factors in the third col um are determined from the equation:
$C_{f}^{i}=\frac{50}{T r^{i}}$

The prei ndustrial reference val ues for the sedi nents ($C_{n}{ }^{i}$) should be consi dered as constants.

The nean superficial sedi nent contents required to obtain an Eri of 50 for the various substances (last col umn) have been determined from the equation:
$C_{0-1}^{i}=C_{f}^{i} \cdot C_{n}^{i}$
The I ast col um illustrates that a sedirnent content of 8750 ppm for $\mathrm{Zn}, 2250 \mathrm{ppm}$ for $\mathrm{Cr}, 500 \mathrm{ppm}$ for $\mathrm{Cu}, 700 \mathrm{ppm} \mathrm{f}$ or $\mathrm{Pb}, 1.67$ ppm for $\mathrm{Cd}, \mathbf{0} \mathbf{3 1} \mathbf{~ p p m}$ for $\mathbf{H g}$ or $\mathbf{0 . 0 1 3} \mathrm{ppm}$ for PCB nould produce a I ow to noderate ecol ogical risk in lakes with noderate levels of bi oproduction (BPI =5.0).

Table 22. The rel ationship bet ween the contami nation factors (Cfi) and the ${ }^{1}{ }^{1} 0-1$-values (i.e. the mean content in ppm of the substances in superficial sedi nents 0.1 cm from accumul ation areas) for tho given risk factors $\left(E \Gamma^{1}\right)$ of 50 and 320 and a constant bi oproduction index (BPI) of 5.0 (Hakanson 1980A).

Substance	Toxic Factor (St ${ }^{1}$-value)	Cont ami nation Fact or ($C_{f}{ }^{1}$-value)	Prei ndustri al Ref erence Level ($C_{n}{ }^{1}$-val ue)	Mean Superficial Sedi nent Content (${ }^{1} 0-1$-value)
$\underline{E r^{i}=50 . B P I=5.0}$				
PCB	40	1. 25	0.01	0.013
Hg	40	1.25	0.25	0.31
Cd	30	1. 67	1. 0	1. 67
As	10	5. 0	15	75
Pb	5	10.0	70	700
cu	5	10.0	50	500
Cr	2	25.0	90	2250
Zn	1	50.0	175	8750
Eri $=320, \mathrm{BPI}=5.0$				
PCB	40	8.0	0.01	0.08
Hg	40	8.0	0.25	2.0
Cd	30	10.7	1. 0	10.7
As	10	32.0	15	480
Pb	5	64.0	70	4480
cu	5	64.0	50	3200
Cr	2	160	90	14400
Zn	1	320	175	56000

The cruci al point is not that this anal ysis is an absol ute represent ation of risk, but rather that the val ues obtai ned provi de a framework for compari sons. The approach provi des data in a quick, i nexpensi ve and standardized nanner. These data should be looked upon as reference figures - a di screpancy from the reference val ue nay of ten be \mathbf{j} ust as important and infornative as a val ue which seens to agree with present know edge.
(b) It is even nore interesting to apply the sane test to the Iimitation val ue between high and very high potential ecol ogical risk (i.e. Eri = 320). The results are al so given in Table 22.

For noder atel y bi oproductive lakes, witha BPI-val ue of 5.0 , a sedi ment cont ami nation of $\mathrm{Zn}=56,000 \mathrm{ppm} \mathrm{Cr}=17,700 \mathrm{ppm} \mathrm{Cu}=$ 3, $200 \mathrm{ppm} \mathrm{Pb}=7,780 \mathrm{ppm} \mathrm{As}=780 \mathrm{ppm} \mathrm{Cd}=10.7 \mathrm{ppm} \mathrm{Hg}=2.0$ ppm or $P C B=0.08$ ppm nould yi eld the sane ecol ogical risk fact or $\left(E r^{i}=320\right)$.

What do these examples say about the validity of the ecol ogi cal risk factor and how we can check these interpretations? What is the consequence of a high ecol ogi cal risk factor to bi ol ogi cal systens, species or organi sns? Existing infornation is i nsufficient to verify or dispute these interpretations. Some examples nay illustrate this point. A val ue of 2 ppmin surficial sedi nents for Hg nould produce a hi yh ecol ogi cal risk factor and nany eutrophic lakes with $\mathrm{C}^{i} \mathrm{U}-1$-values for Hg inthis range (e.g. I ake Orre Hillen where $\mathrm{Cl}_{\mathrm{O}-1}=2.04$) are posted as unsuitable for fishing. If we take the val ue for Zn as another example, we would rarely expect to find $C^{i}{ }_{0-1}$-values in the range of 60,000 . Such sediment contents have been obtai ned in zinc-sand deposits outside zinc-mines. While the bottomfauna has been consi derably
altered and reduced in numbers, it is not clear whether this is due to high $\mathbf{Z n}$ contamination or is a consequence of other contaminants, such as Cd or Cu . At present it is not possible to answer such questions, and thus we have to accept the results for what they are (i.e. readily determined di agnostic val ues indi cating that further investigations should be focused on el enents and locations which show hi gh or very high risk factors).

6.4 BENEFITS OF THE ECOLOGICAL RISK INDEX AND FUTURE DI RECTI ONS

Data from 14 Canadi an lakes have been assenbled and anal yzed in a stepwise progressi on to produce contamination factors for indi vidual substances in indi vi dual waterbodies, val ues expressing the degree of contamination resulting from the influence of several substances in each waterbody, risk factors for each substance in each lake i ncorporating expressi ons of toxi city and recei ving lake sensitivity and, finally, risk indi ces which sumthe risk factors for several substances acting in each waterbody. The result has been a ranking of I akes in terns of the ecol ogical risk associ ated with their current contamination problens and a ranking of the contaminant of concern within each waterbody. The difficulties with the Canadi an data available for this exercise have been discussed and, for this reason, the actual val ues obtai ned by this anal ysis shoul d not be used outsi de the context of this report. The real val ue in this anal ysis lies in illustrating the principal of the risk index, denonstrating how data gathered from cont ami nant st udi es may be practically applied to aquatic pollution control and revealing ways to improve our data collection prograns so that the infornation gathered is nore usef ul to resource managers.

A maj or benefit of the riskindex anal ysis is that it shows the potential for using data fromstudies across the country to systematically document our empirical observations on the behavi our of
contani nants in various aquatic systens. With comparable data from numerous sites we have the opportunity to compare waterbodi es and relate observed contamination conditions to their respective contani nant di scharge scenarios. By systematically building this empi rical evi dence, we have a mach stronger basis for making future cont ami nant managenent deci si ons.

In addition, the risk index has the benefit of transl ating data into terns which are di rectly relevant to resource nanagers. It provides them with a comparative assessnent of the stat us of waterbodi es and hi ghl ights waterbodi es and contaminants of concern. Such infornation may be useful, for example, in directing nonitoring efforts or defining waste di scharge criteria.

In this revi ew of Canadi an data, it was found that inconsi stenci es in sampling design and protocol presently linit the deyree to which the data can be used for comparative anal ysis. It is anticipated that sone standardization of sampling nethods could be readily implenented without sacrificing indi vidual study objectives. Specific recommendations in this regard include sampling sedi nents in accumul ation zones as determined by bathymetric data, anal yzing a consi stent core fraction (e.g. O.I cm) and incorporating neasurenents of reci pi ent - 'sensitivity (e.g. bi oproduction as a function of sedi nent organi c content).:"

A systenatic effort to devel op natural background or preindustrial I evels (Cni) for given uriscictional or physi ographic areas in Canada would provi de greater resol ution for contaminant factors than the gl obal level s used in this illustration. At the same tine, a regional data base nould help to place limited site-specific baseline studies in perspective. It is recoynized that a great deal of federal and provi nci al cooperation is required to implement any standardization of sampling methods, but such an effort is needed and woul d pay I ony-term di vi dends.

Use of the framework, and the risk index anal ysis in particular, opens up nany avenues for further investigation. There are nany interesting and important aspects that have been del iberatel y ignored in the devel opment of the risk index to date. These incl ude:
(a) The impact of pH , Eh, al kalinity and other water parameters on the toxicity of the substances.
(b) The i mpact of norphometry and hydrol ogy on the sedi ment ol ogi cal "fingerprint".
(c) Alternative expressi ons of recipient sensitivity (e.g. chl orophyl I and al gal vol une).
(d) The rel ationship bet ween the type of pollution, the species of netal and the toxicity (i.e. a measure of bi ol ogical availability and/ or toxicity).
(e) Alternative substances or groups of substances (e.g. oil, PAH, pesticides and others).

In a Canadi an context, these issues shoul d be addressed. Perhaps a risk index for netal pollution should be devel oped separately froma risk index for organic pollution. The substances incl uded should be rel evant to the particular physi ographic or manayenent region. As noted earlier the devel opnent of preindustrial levels $\left(C_{n}{ }^{i}\right)$ for indi vi dual physi ographic areas may provi de greater resol ution, while the presently defined level s could be used on a national basis.

The risk index as illustrated applies specifically to lake systens and emphasi zes a sedi nentol ogi cal approach using dat a from accumul ation zones. Many contani nant di scharges occur in ri vers and ot her areas where accumul ation sedi nents cannot be empl oyed. Risk indi ces should be devel oped for these systens using alternative appropriate
expressions of dose, recipient sensitivity and effect (e.g. concentrations in suspended sedi nents, concentrations/bi onass for benthic bi ota, production/ respi ration ratios, etc.).

The overal I obj ective of the framework, incl uding the riskindex, is to increase our understanding of the 'operative linkages bet ween contaminant dose and envi ronnental response; thus, a naj or thrust for further work is the incorporation of di rect measurenents of ecol ogical risk (i.e. bi ol ogical effect parameters in the risk index). Systenatic devel opment of empirical data for these rel ationshi ps can in turn lead to devel opment of di agnostic and prognostic nodel s of envi ronnental impact as di scussed in Section 7.
7.0 THE APPLICATION OF DIAGNOSTIC AND PROGNOSTI C MDDELS IN CANADA
$\stackrel{\star}{\because}$,

7.1 I NTRODUCTI ON

The successful application of the conceptual franework in Canada uould generate a honogeneous data set for dose, recipient sensitivity and ecol ogi cal effect terns for many lakes. Fromthis data, set empi rical rel ationshi ps bet ween dose and response could be devel oped and expl ored. These relationships could then be used to produce nathenatical nodels. In sone cases, the mathenatical nodels produced nould be intuitively obvi ous based on present ecol ogi cal know edye. Conversel y, the empirical rel ationships might not be intuitively obvious and future research could be di rected at the underlying causes of the rel ationshi p. The devel oped nodel s could be used as diagnostic and prognostic tools in aquatic environnental assessment.

Using the franework approach, Hakanson (1980B) has devel oped a nodel for ner cury contamination in fish. Subsequent sections of this report outine the derivation of this model and illustrate its potential application in aquatic pollution control. The mercury nodel is tested using available Canadian data. Finally, the general stat us of the Canadi an data base for nodel devel opnent is revi eved and recomendations made for improvenents.

7.2 A MDDEL FOR MERCURY CONTAM NATI ON

A formula for mercury contanination in fish was deduced by Hakanson (19805) from a large, inhonogeneous data source and was tested with very positive results on an independent set of Swedi sh lakes. The formala describes the quantitative impact of pH , bi oproduction and nercury cont ami nation of the sedi ments on the mercury content of northern pike (Esox lucius). The formala is:

$$
F(H g)=\frac{4.8 \times \log \left(1+\mathrm{Hg}_{50} / 200\right)}{(\mathrm{pH}-2)} \times \frac{\log B P \Gamma}{}
$$

where
$\mathrm{F}(\mathrm{Hg})=\mathbf{t h e}$ content of nethyl nercury in $\mathbf{1} \mathbf{k g}$ pike muscletissue (as $\mathrm{mg} / \mathrm{kg}$ wet wei ght);
$\mathrm{H}_{50} \mathrm{O}=$ the wei ghted mean mercury content of surface sedi ments (0-1 cm) in ng/g dry substance;
$\mathrm{PH} \quad=$ the nean pH of the water system

BPI = the bi oproduction index.

This formula is primarily meant to be used as a diagnostic tool in practical work concerning aquatic pollution control. The model incorporates the nost important aspects of the concept ual framework (Figure 3) by rel ating dose and recipient sensitivity to an ecological effect term (Fi yure 6).

The nodel incorporates assumptions which place certain denands on the data. The mean pH val ue should be determined on different occasi ons (months, years), at various sites and at different el evations in the water col umn. A rule of thunb for the minimmer of pH val ues would be no less than five measurenents of which at least two represent different seasons. The level of bi oproduction (BPI) should be expressed as the val ue derived from $0-1 \mathrm{~cm}$ sedi nents (Hakanson 19808); however, estimates of BPI nay be determined with less accuracy by other neans (e.g. total phosphorous concentrations in the water). Mercury contamination (Hg_{50} in ng / g ds) should be expressed as an estinate of the areal nedian nercury content based on at I east five sedi ment samples (0.1 cm) which provide an even coveraye of the investigated area. The formula should onl y be used

for I akes or basi ns with accumal ation bottons. As di scussed in previ ous sections, basins with transportational or erosional bottons yi el d sedi nent data which cannot be adequately inter preted for this application. Thus, this dose paraneter cannot be used in shallow I akes where the entire bot tom is domi nated by processes of transportation and resuspensi on.

7.3 POTENII AL APPLI CATI ONS OF THE MERCURY MDDEL

Quantitative predictions of envi ronnental impact are a major, and as yet unobtai ned, objective of EIA The nercury nodel nakes significant progress towards that objective. The predicted val ue, nercury concentration in fish tissue, is directly relevant to management and regul at ory concerns. with further work, the dose paraneter nay be di rectly linked to project inputs.

In its present form the nodel nay be usefully employed to weight ecol ogical and economic issues in resource manayenent problens. Two examples illustrate potential applications.

The first exampl e concerns a lake which is recei ving mercury and is being acidified by at nospheric input rel ated to the use of fossil fuels. The nercury dose and reduced pH have caused el evation of nercury in fish tissue to levels that are unsuitablefor hunan consumption. If the at nospheric inputs cannot be eliminated, what managenent options are availabe for this lake? The nodel shous that an increase in bi oproduction or pH should cause a reduction in nercury levels in fish. The first option of increasing bioproductivity nay not be desi rable for aesthetic reasons, I eaving the second option of increasing pH with line.

How much I i ne woul d be needed? Fromthe nodel, the requi red i ncrease in pH can be cal cul ated. W th access to data on water chemistry, I ake vol une and retention tine, it is fairly simplocalculate the
anount of lime needed to get the desired increase in pH. Alime treat nent would be a temporary cure with attendant long-term costs. In this and similar exanples, the nodel nay be used to optinize the econonic resources, since it provides quantitative data on treatnents and response.

A second example highlights an interesting and perhaps paradoxical consequence of sewage treat nent. Before installation of a sewage treat ment pl ant, a lake has an Hg_{50} in sedi ments of $600 \mathrm{ng} / \mathrm{g}$, a bi oproduction index of 4.4 and a pH of 7.0. This would represent a severely mercury polluted lake in a mesotrophic state with neutral pH . According to the nodel, the nercury in fish nould be $\mathbf{0 . 9 0} \mathbf{~ m g} / \mathrm{kg}$ wet wei ght.

After installation of the treatment plant, the input of nutrients and nercury nould be reduced. This would in turn result in lower bioproduction, lower pH due to reduction in bioproduction and a lower val ue of nercury in the sedi nents. Assuming that the lake after treatnent would have a bi oproduction index of 3.0, a pH of 6.6 and Hg_{50} of $380 \mathrm{ng} / \mathrm{g}$, what woul d be the effects on the lake? The transparency nould be better, the lake would look cleaner, the trophic state nould be reduced and sedi ment concentrations of nercury nould be reduced.

What about the mercury content in fish? Using the model with the assumed val ues for bi oproduction, pH and Hg_{50}, a nercury content in fish tissue ($\mathbf{F}(\mathbf{H g})$) of $1.01 \mathrm{mg} / \mathrm{kg}$ wet wei ght is predicted. This val ue would be hi gher than the bef ore treatnent val ue and would be above the accepted level for human consumption in Sweden. If the assumptions are reasonable, the nodel suggests that the cost of a sewage treat ment plant may be augnented by unantici pated ecol ogi cal and social costs.

These examples are primarily meant to illustrate the potential benefits of such nodels and formal ae when it cones to addressing
compl icated ecol ogi cal and economic inter-rel ationships. If such quantitative nodel sere devel oped, our capability for predicting impacts and optimizing resources uould be greatly improved.

7.4 CANADI AN TEST DATA

Available Canadi an data were revi ewed with the objective of testiny the mercury model. The anount of Canadian data neeting all the requirements of the formula was small; however, using various assumptions, the Canadian data was anal yzed to see if the nodel could predict val ues which were reasonably cl ose to the enpirical data for nercury content in northern pike. From our survey of Canadi an data, seven lakes were found to have sedi ment, water and northern pike data. The seven lakes (Rice, Snow Herblet, Trout, Cliff, Gods and Great Slave; see Table 16) net only a few of the requi rements of the formula. Of these lakes only Snow Herblet, Trout, $\mathbf{C l i f f}$, Gods and Great Sl ave lakes were deep enough to have accumul ation bottons. The sedi ments for these lakes were collected from the top 5 cm Trout and Cliff lakes were sampled on an even- area basis while the rest were sampl ed ose to the contaminating source. Snow Herblet, Trout and diff lakes had water chemistry from one season onl y. The bi oproduction val ue was estimated froma graph rel atiny total phosphorous to BPI (Figure 1 in Hakanson 1980B). Bearing in mind the problens with the data, a predicted val ue for nercury in pike tissue was derived and then compared to the enpirically neasured val ue.

7.5 RESULTS AND DI SCUSSI ON

The predi cted val ues for mercury level s in northern pike compared reasonably well with the neasured val ues for Snow, Herblet, Gods and Great SI ave Lakes (Table 23). For Trout and Ciff lakes, neasured val ues were substantially lower than the predicted val ues (Table 23). The reason for this anonaly is uncl ear.

Table 23. Data from six Canadi an lakes used to test the nercury nodel (Hakanson 19808) and the nodel-cal cul at val ues of nercury in fish tissue.

Lake	Hg (ug/kg) Sedi nents, 0.5 cm	Total $P_{\mathrm{H} 20}$ ug/L	$\begin{gathered} \text { Estimated } \\ \text { BPI } \end{gathered}$	Mean PH	$F(H g)$ Predi cted	$F(H g)$ Empiric
Snow (Blocks B\&C)	1451	412	5. 2	7. 782	0. 27	0. 31
Herblet (Blocks E\&F)	1551	652	5. 8	7. 60	0. 27	0.36
Gods (Block C)	1383	20	4. 5	7. 91	0. 28	0.31
Tr out	402	101	3. 5	7. 701	0. 74	0.35
Cliff	1220	141	3. 9	7. 791	1. 19	0. 31
Great SI ave (Near Con $\mathbf{M n e}$)) 53	25	4. 8	7. 23	0. 14	0.1;

1 Adj usted to an aver age of naxi mum val ues fromsites providing a nore even area cover age.
2 From numer ous stations for one sample date onl y.
3 Sample site 40 excl uded ($N=8$).

Theoretically, for these latter two ol igotophic lakes, the high mercury contamination of the sedi ments should have produced el evated levels of mercury infish tissue. Whs the model at fault or were factors, which were not incorporated in the nodel, acting in these two lakes? A similar discrepancy occurred for Lake Saxen in Sweden (Hakanson 1984A) and it was postulated that the lower observed mercury levels in the fish were a result of zinc, and possiblylead, antagoni sm Lake Saxen was found to have hi gh contamination factors for both zinc and lead. When the contamination factors for Trout and Cliff lakes were examined (Table 18; Section 6.2.3), the sedi nent contamination factors were found to be high for bothlead and zinc. The sum of the sedi ment contamination factors for lead and zinc was 12. 4 and 22. 4 for Trout and $\mathbf{C l i f f}$ lakes, respectivel y. The nean zinc concentrations in the water were reported as 0.30 and $0.39 \mathrm{mg} / \mathrm{L}$ for Trout and Cliff lakes, respectively (\mathbf{V} / I son 1984). In the case of these tuo I akes and Lake Saxen, the concurrent contamination by zinc may have acted antagonistically to the mercury pollution, thus providing one possible explanation for the nodel's failure to predict the neasured val ues.

From this linited set of data for Canadian lakes and results of tests on Suedi sh lakes, the mercury model showed potential as a tool for predicting mercury levels in pike muscle tissue. The formulacould be transformed from a diagnostic or descriptive nodel into a prognostic nodel if the $\mathrm{Hg}_{\mathrm{g}} 0^{-v}$ value is replaced by a dose factor expressing nercury loading to the water system and into a simulation model if various plausibe mercury doses are tested. Such a model is greatly needed in practical pollution control. It could be used to examine such questions as: What potential ecol ogical effect could be expected if X kg nercury were discharged to Lake A? Wuld Lake A be unsuitable for use as a donestic, sport or comercial fishery? What envi ronnental factors are nost important? If adequately tested quantitative model sere available for the most important yroups of
toxic substances, then it would be possible to establish normal val ues and hence to quantify any di vergence from the nornal.

7. 6 THE STATUS OF CANADI AN DATA FOR USE IN MDDEL DEVELOPMENT

During the course of this study numerous Canadian governnent agencies (Appendix C) were contacted regarding availability of data on metal concentrations in lake water, sedi nents, invertebrates, and fish. No attempt was nade to examine the so-called "grey" literature incl uding unpubl ished impact assessment docunentation and reports by other consultants.

This informal survey confirmed that standard data collection practices do not generally exist across Canada, although there is some standardization within provinces and agencies. Msst of the persons contacted were very hel pf ul and interested in the possibility of applying their data to the devel opment of ecological risk and contamination nodels. As a result of our inquiries, numerous final reports, data reports, and raw data sheets were forwarded to us. It al so becane apparent that large anounts of data nould not be comparable unl ess transformations were perforned due to differences in data collection practices. As well, additional background information was required to enable accurate interpretation and appropriate normalization. Often, within data sets, values critical to the nodel devel opnent were missing.

One I arge standardi zed data set which showed considerable potential for application to nodel devel opnent was the water-sedinent-fish data set collected by the B. C. Mnistry of Envi ronnent, Water Manayenent Branch. This computerized data set contai ned data for approxi nately 100 lakes for which there were approxi mately 40 with fish data. The data were collected using standardized collection and anal ysis techni ques. While the data set was deficient for sone paraneters, a complete matrix of data including sensitivity and effect terns could
be produced with a mininal effort. The number of rel evant data sets for B.C. I akes also could be increased by a fish sampling and anal ysis program for the lakes currently missing fish data. Various other suitable indi vidual data sets from other lakes in B. C. and across Canada could be transformed where necessary and incorporated into the natrix. Fromthis data natrix useful risk nodels could be devel oped for various netal contaminants and several species of fish. The nodel s could then be empirically tested by various agencies across Canada and further refined.

The data sets whi ch have been collected for this study could al so be applied to devel op nat ural background levels of netal in sedi ments and fish for various regions in Canada. This nould be a beneficial first step in the devel opment and use of contamination factors in EIA's and aquatic pollution control prograns (Sections 5 and 6).

7.7 RECOMENDATI ONS FOR IMPROM NG THE DATA BASE

Previ ous sections have di scussed deficiencies in available Canadian data with respect to devel oping quantitative aquatic contamination model s. What, then, would constitute an ideal data base for the devel opnent of such usef ul quantitative formal ae?

First, rel evant data are needed from a representative sample of Canadian lakes. A representative sample might comprise 40 Iakes for whi ch the fol lowing envi ronmental measurenents have been determined: pH , al kalinity, naj or constituents, level of bi oproduction (P/R, BPI, chl orophyll, etc.), transparency, water retention time, norphonetry (vol une, area, nean depth, naxi mum depth, etc.), areas of accumul ation/erosi on/transportation and area of sedi nent contamination. All these parameters/ variables can be readily determined by existing met hods.

It is not practical to study every possible toxic substance. Initially it may be nore appropriate to select a group of representati ve substances, for example $\mathrm{Hg}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Cu}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{As}, \mathrm{A}, \mathrm{PCB}$, DDT and PAH A cont ami nant budget (input, out put, sedi ment ation) should be determined to permit quantitative dose calculations. Data on the recei ving water di scharge (Q) should al so be obtai ned.

For these substances, the following effect terns could be tested:

- concentration in aquatic plants (e.g. Fontinalis);
- benthic invertebrate community composition;
- concentrations in clam or snail shells; and
- concentrations in liver or tissue of appropriate fish species for gi ven regi ons.

This strategy nould yield a matrix of data, where the dose and sensitivity paraneters could be correl ated with the effect terns to identify maj or rel ationships and reduce the residual term (or the unaccountable remai nder). The resi dual terns should be established by parallel empirical data sets. The results nould, hopefully, yield usef ul risk nodel s for the given substances and a better knowledge of the maj or causal rel ationships. If such empirically tested nodel s were available, they would represent a maj or advance in our impact prediction and resource managenent capabilities compared to the sonewhat chaotic situation of today.
8. 0 CONCLUSI ONS AND FUTURE DI RECTI ONS

8. 0 CONCLUSI ONS AND FUTURE DI RECTI ONS

8.1 I NTRODUCTI ON

As stated at the outset of this report, the franework for aquatic cont am nation impact assessment represents one possible avenue for i mproving our impact assessment capabilities. As it stands the franework provi des nuner ous practical and scientific benefits to the practice of ElA; however, parts of the framework, which are presently incorpor ated concept ual $l y$, requi re further devel opnent to enable functional integration into the franework. The franework is presented as a starting point to organize thinking and objectives. As nore data becomes available and as el ements of the framework are explored and devel oped, the framework will change and expand to reflect our growing know edge. This section revieus the benefits of the framework approach di scussed in previous sections, di scusses potential for imedi ate application of the framenork and identifies areas for further study.

8. 2 BENEFI TS OFFERED BY THE FRAMEVDRK APPROACH

Previ ous sections have identified various benefits provided by the franework in enhancing the applicability of aquatic contaminant studies to impact assessnent and in improving the scientific basis for cont aminant studies. These benefits are reviened briefly bel ow

1. The franework breaks the impact assessnent problem down into sever al key inf ormation components (dose, sensitivity, toxicity, effect, contact area, contact time, additive effects). As such, it is a practical tool which stimlates investigators to systenatically address and rationalize these important el enents i n thei r study desi gn.
2. The framework assists in the definition of temporal and spatial di mensi ons for i mpact assessnent study design.
3. The framenork orients study design towards the practical objectives of impact prediction and resource management, thus increasing the chances that relevant infornation will be col l ected.
4. The si mple format of the framevork and its orientation towards objectives enhances communication anongst the study participants.
5. The franenork, with its enphasis on the relationship between dose and response, encourayes the integration of project design (engi neering) studi es with envi ronmental studies, thus reducing the risk of irrel evant investigation in both areas arisiny from i nappropriate assumptions.
6. Impact prediction is a maj or objective of impact studies. The franenork provides the necessary building blocks for the formalation of quantitative impact prediction.
7. The framework approach stri ves for optimm representation of the possible ecol ogical effect field by calling for effect terns which are appropiate integrators of effects in relation to contact tine characteristics. In addition, the franework approach stresses selection of effect terns which provide linkages to the socially val ued ecosystem components and which at the sane tine represent the weakest or nost sensitive link in the cont ami nant pathway.
8. By orientiny studi es towards practical objectives and focusing investiyations on infornation rich paraneters, the franenork can i mprove the cost effectiveness of inpact studies.
9. The framework provi des a number of practical tools applicable to aquatic contaminant assessment and aquatic resource nanayenent (contamination factors, risk indices, prognostic nodel s). Use of these tools encourages sampling by standardized methods to generate conparable data. The availability of honogeneous data increases the usef ul ness of the data for comparative anal ysis and builds up a cumulative information base on contaminant effects in different water bodi es.
10. The framenork structure directs aquatic contaminant study emphasis away from the "end of the pipe" and the toxi col ogy labs, and towards the recei ving environnent. Infornation onfects in the recei ving envi ronment provides a much stronger basis for managenent deci si ons.
11. The franework approach bases aquatic contamination inpact studies on a thorough understanding of the physical dynamics of the receiving water body. This is essential to assigning appropriate spatial and temporal di nensi ons to aquatic impact studies.
12. The framework is not a rigid format for study design, but is a skel et on on which to organize study desiyn. It allows flexibility in the selection of specific paraneters, but encourages thor ouyh rationalization of that sel ection. The franevork invites el aboration and refinement as know edge of aquatic contami nant impacts grous.

8.3 APPLI CATI ON OF THE FRAMEVORK APPROACH IN CANADA

Numerous studies of aquatic contaminant impacts are being carried out by industry and governments at all levels in response to fornal ElA requi rements, licence and permit requirenents, monitoring proyrarn
requi rements and specific research objectives. Despite the Iarge body of data that is constantly being generated, our understanding of aquatic contaminant impacts and our capability to manage them effectively is advancing rel atively slow ye submit that this situation night improve significantly if there was sone impet us anong aquatic contaminants investigators to commini cate and coordinate st udy obj ectives, using a common frane of reference such as the conceptual framework. Realistically, widespread adoption of a common framework for anal yzing cont ami nant problens and desi gning study methods could best be implenented through a governnent agency. Trial use of the franework by an exi stiny resource nanagenent agency (e.g. the Techni cal Advi sory Committees or the Envi ronmental Advi sory Comittee of the NWT. Water Board) or a specially constituted uorkshop of agency representatives in order to desi gn an aquatic cont ami nant st udy and nonitoring proyram uoul denonstrate the feasibility of implenenting the franework approach. Feedback from such a trial application migh, in turn, be used to refine the framework to improve its effectiveness as a communications tool and techni cal aid.

General applications of the framework approach to work carried out by agencies responsibe for regul ation, management and research rel ated to aquatic contaminants incl ude:

- I mproved desi gn of cont ami nant studi es requi red by EIA, wat er licences, monitoring prograns, etc.
- Standardization of sampling nethods to generate data which is comparable bet ween st udi es.
- Accumul ation of infornation on contaminant behavi our recei ving envi ronments through generation of contami nation factors.
- Comparative assessment of lake contamination problens using risk i ndi ces.
- Devel opment of prognostic model s to facilitate impact prediction, determine mitigation requirenents and permit anal ysis of costs and benefits rel ated to various contaminant managenent options.
8.4 RECOMENDATI ONS FOR FURTHER STUDY

The franework, at its present level of devel opnent, offers many benefits to the study of aquatic contaminants. It also highlights current deficiencies in our understanding and infornation base rel ated to aquatic contaminant inpacts. The areas for further study (Figure 7) have been di scussed in previ ous sections and are revi ewed briefly bel ow

8. 4. 1 Further Devel opment of Franework Li nkages

- To date, infornation anal ysis using the framework notation has concentrated on integrating effect terns, dose, toxicity factors and envi ronnental sensitivity factors. A maj or area of future devel opment lies in the integration of contact area and contact tine, vital paraneters in any ecological study. Part of the problemlies in generating definitive infornation to truly define contact area, both physically and in terns of biological availability. Characterization of the physical dynamics of recei ving envi ronnents and anal yses to deternine the fractionation characteristics of contani nant doses will aid devel opnent of these I i nkages.
- Prognostic and diagnostic nodels can be very usef ul tools in impact assessment and envi ronnent al management. A nodel to predi ct nercury levels in pi ke has been devel oped using Swedi sh data. Devel opment of si milar nodel s for various contaminants and

various speci es would be a very val uable exercise in Canada. This would require a consi derable effort in researching unpubl ished data sources and in or ganizing, normalizing and anal ysing the assembl ed data. I mplementation of standard sample collecting methods for contaminant studies al so would facilitate this work greatly.
- Effect terns used in this nodel to date (e.g. netal level sin fish) reflect specific managenent concerns rel ated to specific contami nants for whi ch we have some understanding of medi ating sensitivity factors. Much uork can be done to expl ore the use of other effect terns in the context of metal s and other contaminant problens. The possibilities are unlimited for expl oring the application of this franevork to assessnent of many aquatic pollution problens.

8. 4. 2 Data Requi renents

The ability to expl ore ecotoxi col ogical linkages within the franenork depends on the availability of comparable, rel evant data. Data deficiencies which presently impede devel opment of linkages incl ude:

- contani nant dose or loading data in conjunction with effect term data;
- fractionation data as a means of defining contact area and time;
- data on contact area as determined by physical dynamics in aquatic systens; and
- consistent data for sensitivity paraneters (e.g. measures of bi oproduction).

I ncl uding these dat a requi renents in gover nment monitoring net works and permit sampling prograns uould greatly enhance the usef ul ness of the data base.

8. 4. 3 Samplina Protocol

A persistent problemin aquatic contam nation studies is inconsistenci es in the way sampl es are collected and anal yzed. A val uable tool to enhance the use and transferability of information gathered in contami nant studi es uoul d be the devel opnent and implenentation of standard data collection methods for measuring dose, sensitivity, toxicity and ecological effects in recei ving waters.

8. 4. 4 Appl yi ng the Framework to Canadi an Aquatic Envi ronments and Concerns

Sone of the assumptions used in deriving contamination factors and assigning risk factors to various contaminants are based on arbitrary assumptions or global generalizations concerning pre-industrial contaminant levels and their natural abundance. Mbre resol ution could be achi eved in these anal yses for site specific managenent applications in Canada if some systematic attempt was made to define prei ndustrial concentrations in physiographic and/or political/jurisdictional regi ons within Canada. Specifically, basel ine information should be collected for water, sedirnent, clans, fish and other effect terns. Risk factors assi gned to contami nants should be based on experience in Canada of problens associated with various contaminants. Based on these experiences, priority could be gi ven to the systematic devel opment of baseline data for problem el enents.

8. 4. 5 Devel opment of Anal ogous Framenorks for Other Recei vi ng Envi ronments

Lakes represent only one type of physical regi me which is subject to contami nant di scharges. The components of the framework are generic
and it could \mathbf{j} ust as validly be applied to other regi mes (fluvial, marine, terrestrial). A maj or area for future nork consists of devel oping expressi ons for dose, reci pi ent sensitivity and effect which are appropriate to these other physical and bi otic regi nes.

8. 5

CONCLUSI ONS

This report has presented a case for adoption of the framework for aquatic contaminant assessment in the design and execution of aquatic i mpact studi es. The study objectives (Section 3) outlined several criteria to improve El A and the scientific validity of assessnent studies. The success of the franework approach in addressing these criteria is di scussed bel ow

In terns of enhancing scientific validity, the franework provides a checklist of basic components and rel ationships which govern cont aminant impacts. BY selecting specific parameters and rel ationships for measurenent, the investigator is forced to rationalize his choice and specify how factors such as tine, space and additive effects will be addressed in his study design. By docunenting this rationale, a clear trail of scientific logic (hypothesis formal ation) is laid whi ch may ultinatel y be confirned, rejected or nodified as new infornation is generated. The franework incorporates sone well devel oped tools for quantification of effects, and the potential for refining and expanding these, as wel as devel oping others, is unlimited. In addition, by encouraging hypothesis formulation and quantitative prediction, the franework establishes a firm basis for effects nonitoring prograns and the systenatic accumul ation of knowledge gai ned through aquatic contaminant impact studi es.

From the standpoint of the ElA process, a significant benefit of the framevork is the full integration of contami nant dose and ecol ogi cal response terns. This perspective assi sts a clear definition of
overal l study obj ectives and ensures integration of study components that are of ten segregated into envi ronnental and proj ect planni ng/ engi neering compartments. Further, the framework, with its emphasis on sel ection of alimited number of representative effect terns, assists in focusing study efforts on significant impacts and effect terns which are val ued socially (i.e. val ued ecosystem components). This approach, toget her with the requi renent for comparable data generated by accepted, standard techni ques, also enhances the cost-effectiveness of studies, a maj or benefit to project proponents/ study sponsors. Finally, the quantitative anal ysis tool which assign rel ative di nensi ons to ecol ogical risk associ ated with a number of impact problens or which can generate quantitative predictions for effect terns such as netal concentrations in fish tissues, can provide usef ul infornation to resource nanagers. These types of inf ornation can hel panagers to allocate study resources appropriately or provide a concrete rationale for establishing di scharge standards.

The efficiency of the framework in pronoting communi cation and consensus anong El A partici pants has been denonstrated in Sueden; however, this benefit remains to be tested in Canada. In support of its potential is Beanl ands and Dui nker's (1983) observation with respect to EIA that,
> "significant scientific improvenents will depend on the early adoption of appropriate concept ual franeworks and technical standards to gui de the required studies, as well as a recognition of the overriding constraint of tine in the design of the assessment progran'.

We feel that the conceptual framework provides a usef ul starti ny point for improving aquatic contaminant impact assessment skills. Our search for Canadian data applicable to the framework anal ysis generated considerable interest and willingness to assist anong those
contacted. Many agenci es have data for various paraneters within the franework whi ch they would like to see applied to the devel opnent of tools for aquatic pollution control.

Finally, it is important to re-emphasize Beanl ands and Duinker's (1983) concl usi on that the impetus to rai se the scientific standards of impact assessnent as a whole must cone fromadministering agencies. It is hoped that this revi ew will stimulatinterest and ent husi asm anong readers to experi nent with the framenork approach and to enbark upon some of the future di rections recommended in this report.
9.0 REFERENCES

APHA 1980. Standard methods for the examination of water and waste water. Aneri can Public Health Association. 15th Edition. Kashi ngt on, D. C.

Beanl ands, G E. and P. N Dui nker. 1983. An ecol ogi cal framework for envi ronnent al impact assessment in Canada. Published by Institute for Resource and Envi ronment Studies. Dal housie Uni versity and Federal Envi ronmental Assessment Revi ew Office; ISBNO-7703-0460-5.

Beck, A.E. 1982. An investigation of potential pollution of Gods I ake by leachate from an abandoned goldmine. Witer Standards and Studi es Report \#82-28. Envi ronnental Managenent Di vision, Manitoba Dept. of Northern Affairs and Envi ronnent. Winni peg, Man. pp. 71.

Beck, A.E. 1984A. Ri ce Lake water quality before and after the San Ant oni o Gold M ne. Water St andards and St udi es Report \#84-6. Envi ronment al Managenent Di vi si on, Mani toba Envi ronment and Wbrkpl ace Saf ety and Health. Virnni peg, Manitoba.

Beck, A. E. 1984B. An investigation of Snow Lake and Herblet Lake in rel ation to an inoperational gol d me compl ex. Whter Standards and St udi es Report \#84-2. Envi ronment al Managenent Division, Mani toba Envi ronment and Wbrkpl ace Safety and Heal th, Winnipeg, Man. 67 pp.

Bi sset, Ronal d. 1980. Probl ens and issues in the implementation of EIA audits. Envi ronment al I mpact Assessnent Revi ew I(4) (Dec.): 379-395.

Bisset, Ronal d. 1982. Envi ronmental impact assessment: The role of monitoring and audit studies. Paper presented at the First Kuwai t Wbrkshop on Envi ronment al Impact Assessment, Kuvai t, Decenber 4-9, 1982.

Cl ark, B. C. 1983. Post-devel opment audits to test the effectiveness of envi ronnental impact prediction methods and techniques. In Envi ronment Canada and Can. Petrol eum Assn., 1983.

Crozier, R.J. and WF. A Duncan. 1985. Kootenay Lake: 1984, compilation and synopsi s of physi cal, chemical, and bi ol ogi cal data from 1968 to 1984. Whste Managenent Branch, B. C. M ni stry of Envi ronment, Nel son, B. C. 187 pp.

Dal ey, R.J., E.C. Carmack, G.B.J. Gray, C.H Pharo, S. Jasper and R.C. Wegand. 1981. The effects of upstream impoundments on the Ii mol ogy of Kootenay Lake. Sci entific Series No. 117. National Whter Research Institute, Inl and Whters Directorate, Envi ronment Canada, Vancouver, B. C. 98 pp.

De Broissia, M 1984. Revi ew of current and potential application of nodel ling and si mul ation in envi ronnental assessment in Canada. For Feder al Envi ronment al Assessment Revi ew Office; Contract No. 1656917. 69 pp.

Hakanson, L. 1977A. The influence of wind, fetch, and water depth on the di stribution of sedi ments in Lake Vanern, Sweden. Can. J. Earth Sci. 14: 397-412.

Hakanson, L. 1977B. Sedi nents as i ndi cators of contami nationinvestigations in the four largest Swedish lakes. SN PM 839 I NLU Rappart 92, Uppsal a.

Hakanson, L. 1980A. An ecological riskindex for aquatic pollution control. A sedi mentol ogi cal approach. Vater Res. 14: 975-1001.

Hakanson, L. 1980B. The quantitative impact on pH, bi oproduction, and $\mathbf{H g}$-contamination on the $\mathbf{H g}$-content of fish (pike). Envir. Pol I ut. B. 1: 235-304.

Hakanson, L. 1984A. Aquatic contami nation and ecol ogi cal risk. An attempt to a conceptual framework. Whter Res. 18(9): 1107-1118.

Hakanson, L. 19848. Metals in fish and sedi ment from the River Kol backson Water System Arch. Hydrobi ol. 101(3): 373-400.

Hakanson, L. 1984C. On the rel ati onship bet ween I ake trophic I evel and Iake sedi ments. Wter Res. 18(3): 303-314.

Holling, C. S. (Ed.). 1978. Adaptive environmental assessment and management. No. 3. Int. Ser. on Applied Anal ysi s, Int. Inst. for Appl ied System Anal ysi s. John Wiley and Sons, Toronto, Ontario. 377 pp.

Kel so, B. and M Jones. 1983. A data report on water quality and bi ol ogi cal data from the recei ving waters of the area around the Pl acer M ni ng Devel opment. Endako M nes Di vi si on, Francois Lake. Regi onal Program Report No. 83-07. Envi ronnental Protection Branch, EPS, Pacific Regi on. 105 pp.

More, J. W, D. Sutherl and, The effects of netal mines on aquatic ecosystens in the Northwest Territories. III. Cominco Ltd., Con Mne, Yel I ouknife. EPS-5- NW 79-5. Dept. of Fi sheries and the Envi ronnent, EPS, Northwest Reyi on, Yel Iouknife, N WT. 86 pp.

Rei d Crouther \& Partners Ltd. and R. L. \& L. Envi ronnent al Services Ltd. 1985A Echo Bay M nes Ltd. Lupin Mne. Report on aquatic studi es program Prepared for Echo Bay Mnes. File 30566-002.

Rei d Crouther \& Partners Ltd. and R.L. \& L. Envi ronnental Servi ces Ltd. 1985B. Echo Bay M nes Ltd. Lupi \mathbf{n} Mne. Report on waste managenent compliance program Prepared for Echo Bay Mnes. File 50081.
R. L. \& L. Envi ronmental Services Ltd. and Reid Crouther \& Partners Ltd. 1985. Echo Bay M nes Ltd. Lupin Gold Mne. Aquatic Studi es Program - addendum Fish tissue netal anal yses. File 30566- 002.

Valiel a-Ward, D. Bi ol ogi cal envi ronnental impact studies: Theory and nethods. Academic Press, Inc., New York, New York. 157 pp.

APPENDI X A

Appendix A Cheni cal anal ysis of uater from Contuoyto Lake, N WT. for Novenber 1985.

Locat i on:	I nner Sun Bay, south of Narrous
Sampl e No.:	EPS Site 3, mid-depth
Date/ Ti ne:	Novenber 22, 1985, $13: 10$

		Lab Sample No.		
		1 A	1B	1C
pH (pH units)		6.82	6.94	6. 66
Conductivity ($\mu \mathrm{S} / \mathrm{cm}$)		61.5	64.4	60.7
Total Suspended Solids		L 1.0	L 1.0	L 1.0
Total Dissol ved Solids		52.	51.	50.
Bicarbonate Alkalinity	HCO3	9.82	9.82	9.82
Carbondte Al kalinity	co3	Ni	$N \mathrm{~N}$	$N \mathrm{~N}$
Ortho Phosphorus	P	0. 003	0. 002	0. 005
Total Di ssol ved Phosphorus	P	L 0.2	L 0.2	L 0.2
Total Phosphorus	P	L 0.02	L 0.2	0. 025
Nitrate and Ni trite Nitrogen	N	0.21	0.20	0. 24
Ammoni a Nitrogen	N	0.94	0.92	U. 84
Organi c Nitrogen	N	1. 76	1. 32	1. 41
Total Kjeldahl Nitroyen	N	2. 70	2. 24	2. 25
Total Organic Carbon	C	3.4	2.9	3.6
Total Cyani de	CN	L 0.01	L 0.01	L 0.01

Total Metal s

Al uni num	Al	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arseni c	*As	0. 024	0. 022	0.018
Bari um	Ba	0. 004	0. 004	0. 005
Beryl Iium	Be	L 0.005	L 0.005	L 0.005
Bi smuth	Bi	L 0.5	L 0.5	L 0.5
Boron	B	L 0.01	L 0.01	L 0.01
Cadmi um	* Cd	L 0.001	L 0.001	L 0.001
Cal ci um	Ca	3.49	3.54	3. 48
Chromi um	*Cr	L 0.001	L 0.001	L 0.001
Cobal t	Co	L 0.02	L 0.02	L 0.02
Copper	${ }^{*} \mathrm{Cu}$	0.002	0.002	0.002
Iron	Fe	0.10	0. 10	0.10
Lead	*Pb	L 0.001	L 0.001	L 0.001
Magnesi um	Mg	0.56	0.56	0.56

Location: Sample No.: Date/ Ti me:	Inner Sun Bay, south of Narrous (cont'd) ESP Site 3 mid-depth November 22, 1985, 13:10			
		Lab Sample No.		
		1 A	1B	1 C
Manganese	M	0.007	0. 006	0. 006
Mercury	Hg	L 0.00005	L 0.00005	L 0.00005
Mbl ybdenum	M	L 0.04	L 0.04	L 0.04
Ni ckel	*Ni	L 0.005	L 0.005	L 0.005
Phosphor us	PO4	L 0.4	L 0.4	L 0.4
Pot assi um	K	0.72	0.72	0.72
Silicon	SiO_{2}	0.54	0.57	0.56
Sil ver	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	4.45	4.43	4.34
Strontium	Sr	L 0.001	L 0.001	L 0.001
Tin	Sn	L 0.03	L 0.03	L 0.03
Ti tani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Z nc	*Zn	L 0.010	L 0.010	L 0.010

Al results expressed as mg/L unl ess noted otherwise.

* Hydride Generation or Di rect AA

L = Less Than

Appendi x A. CONT' D

Location: Outer Sun Bay, north of Narrous
Sample No.: EPS Site 6, 1 mbel ow surface
Date/ Ti ne: Novenber 24, 1985, 11:45

		Lab Sample No.		
		2A	2B	2 C
pH (pH units)		6. 34	6.39	6. 34
Conductivity ($\mathbf{O c m}_{\text {cm }}$		11.6	11.6	11.6
Total Suspended Solids		L 1.0	L 1.0	L 1.0
Total Dissol ved Sol ids		10.	10.	10.
Bicarbonate Al kalinity	HCO3	4.91	4.91	4.91
Carbonate Al kalinity	co3	Nil	Ni l	Ni
Ortho Phosphorus	P	0.018	0. 010	0.018
Total Di ssol ved Phosphor us	P	L 0.02	L 0.02	L 0.02
Total Phosphorus	P	L 0.02	L 0.028	L 0.02
Ntrate and Nitrite Nitrogen	N	L 0.010	L 0.010	L 0.010
Ammoni a Nitrogen	N	0.075	0.033	0. 033
Organic Nitrogen	N	0.32	0.52	0.33
Total Kj el dahl Nitroyen	N	0.39	0. 55	0.36
Total Organic Carbon	C	1.5	1. 3	1. 4
Total Cyani de	CN	L 0.01	L 0.01	L 0.01
Total Metal s				
Al uni num	A1	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arseni c	"As	L 0.001	L 0.001	L 0.001
Bari um	Ba	0.003	0.002	0.002
Beryl Ii um	Be	L 0.003	L 0.003	L 0.003
Bi smuth	Bi	L 0.5	L 0.5	L 0.5
Boron	B	L 0.01	L 0.01	L 0.01
Cadmi um	*Cd	L 0.001	L 0.001	L 0.001
Cal ci um	Ca	0.78	0.77	0.77
Chromi um	*Cr	L 0.001	L 0.001	L 0.001
Cobal t	co	L 0.02	L 0.02	L 0.02
Copper	* cu	L 0.001	L 0.001	L 0.001
Iron	Fe	L 0.03	L 0.03	L 0.03
Lead	*Pb	L 0.001	L 0.001	L 0.001
Magnesium	Mg	0.36	0. 36	0.36

Appendix A CONT'D

Location: Outer Sun Bay, north of Narrous (cont'd)
Sample No.: EPS Site 6, 1 mbel ow surface
Date/Ti ne: Nbvenber 24, 1985, 11:45

		Lab Sample No.		
		2A	2 B	2 C
Manganese	M	L 0.003	L 0.003	L 0.003
Mer cury	Hg	L 0.00005	L 0.00005	L 0.00005
Mb ybdenum	M	L 0.04	L 0.04	L 0.04
Ni ckel	*Ni	L 0.005	L 0.005	L 0.005
Phosphorus	PO4	L 0.4	L 0.4	L 0.4
Potassi um	K	0.38	0.38	0.38
Silicon	SiO_{2}	0.13	0. 096	L 0.08
Sil l er	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	0.43	0.41	0. 40
Strontium	Sr	0.005	0.005	0. 005
Tin	Sn	L 0.03	L 0.03	L 0.03
Ti tani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Z nc	*Zn	L 0.010	L 0.010	L 0.010

Al results expressed in mg / L unl ess noted otherwise.

* Hydride Generation or Di rect AA

L = Less Than

Appendi x A. CONT' D

Location: Outer Sun Bay, north of Narrous
Sample No.: EPS Site 6, 7 m depth
Date/ Ti ne: \quad Novenber 24, 1985, 11:45

		Lab. Sampl e No.		
		3A	3B	3 C
pH (pH units)		6.46	6.47	6.28
Conductivity ($\mathrm{Q}^{\text {cm }}$)		12.7	15.0	13.1
Total Suspended Solids		L 1.0	L 1.0	L 1.0
Total Di ssol ved Solids		12.	12.	12.
Bi carbonate Al kalinity	HCO3	4. 21	4.91	4. 91
Carbonate Al kalinity	COB	N	Ni	Ni
Ortho Phosphorus	P	0.007	0.011	0.010
Total Dissol ved Phosphorus	P	L 0.2	L 0.2	L 0.2
Total Phosphorus	P	L 0.2	L 0.2	L 0.2
Nitrate and Nitrite Nitrogen	N	L 0.010	L 0.010	L 0.010
Ammonia Nitrogen	N	0.058	0.096	0.093
Organi c N trogen	N	0.38	0.42	0.41
Total Kjeldahl Nitrogen	N	0.44	0.52	0.50
Total Organic Carbon	C	1. 4	1. 6	1. 6
Total Cyani de	CN	L 0.01	L 0.01	L 0.01
Total Metal s				
Al uni num	Al	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arseni c	*As	0.001	0.002	0.002
Bari um	Ba	0.002	0.003	0.002
Beryl Ii um	Be	0. 008	0.003	L 0.003
Bi smuth	Bi	L 0.5	L 0.5	L 0.5
Boron	B	L 0.01	L 0.01	L 0.01
Cadmi um	* Cd	L 0.001	L 0.001	L 0.001
Cal ci um	Ca	0.86	1. 03	0.98
Chromi um	* Cr	L 0.001	L 0.001	L 0.001
Cobal t	co	L 0.02	L 0.02	L 0.02
Copper	* cu	L 0.001	L 0.001	L 0.001
Iron	Fe	L 0.03	L 0.03	L 0.03
Lead	* Pb	L 0.001	L 0.001	L 0.001
Magnesi um	Mg	0.37	0.39	0.38

Appendi x A CONT'D.

Location: Outer Sun Bay, north of Narrous (cont'd)
Sample No.: EPS Site 6, 7 m depth Dat e/ Ti ne: Novenber 24, 1985, 11:45

		Lab Sampl e No.		
		3A	3B	3c
Manganese	M	0. 010	0. 004	0. 003
Mercury	Hg	L 0.00005	L 0.00005	L 0. 00005
Mbl ybdenum	M	L 0.04	L 0.04	L 0.04
Nickel	*Ni	L 0.005	L 0.005	L 0.005
Phosphor us	PO4	L 0.4	L 0.4	L 0.4
Pot assi um	K	0. 40	0.43	0.42
Silicon	SiO_{2}	0. 14	0. 18	0.17
Si I ver	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	0.56	0. 78	0. 70
Stronti um	Sr	0. 005	0. 005	0. 005
Ti n	Sn	L 0.03	L 0.03	L 0.03
Ti tani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Zi nc	\cdots * Zn	L 0.010	L 0.010	L 0.010

Al results expressed as mg / L unl ess noted otherwise.

* Hydri de Generation or Di rect AA

L = Less Than

Location: Controyto Lake, NE of Sun Bay
Sampl e No.: WQ 11, 1 m bel ow surface
Date/Ti ne: Novenber 29, 1985, 11: 0

			Lab Sample No.		
			6A	6B	6C
pH ${ }^{\text {pH }}$	units)		6. 29	6. 30	6.29
Condu	ctivity ($\mu \mathrm{S} / \mathrm{cm}$)		10.5	10.5	9.66
Total	Suspended Solids		L 1.0	L 1.0	L 1.0
Total	Di ssol ved Solids		11.	9.	9.
Bi carb	onate Al kalinity	HCO3	4.21	4. 21	4.21
Car bon	nate Al kalinity	co3	Ni	Ni	N
Ortho	Phosphorus	P	0. 019	0. 019	0. 017
Tot al	Di ssol ved Phosphorus	P	L 0.02	L 0.02	L 0.02
Total	Phosphorus	P	L 0.02	L 0.02	L 0.02
N trat	e and Nitrite Nirogen	N	L 0.010	L 0.010	L 0.010
Ammoni	a Ntrogen	N	0.022	0. 028	0.027
Organi	c Nitrogen	N	0.32	0. 35	0.31
Total	Kj el dahl Nitrogen	N	0. 34	0. 38	0.34
Total	Organi c Carbon	C	1. 3	1. 3	1.4
Total	Cyani de	CN	L 0.01	L 0.01	L 0.01

Total Metal s

Al umi num	Al	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arsenic	* As	L 0.001	L 0.001	L 0.001
Bari um	Ba	0.002	0.002	0. 003
Beryllium	Be	L 0.003	L 0.003	L 0.003
Bi smuth	Bi	L 0.5	L 0.5	0.5
Boron	B	L 0.01	L 0.01	L 0.01
Cadmi um	*Cd	L 0.001	L 0.001	L 0.001
Cal ci um	Ca	0.73	0.71	0.72
Chromi um	* Cr	L 0.001	L 0.001	L 0.001
Cobal t	co	L 0.02	L 0.02	L 0.02
Copper	* cu	L 0.001	L 0.001	L 0.001
Iron	Fe	L 0.03	L 0.03	L 0.03
Lead	* Pb	L 0.001	L 0.001	L 0.001
Magnesi um	Mg	0. 34	0.33	0. 34

Appendi x A. CONT' D

Location: Contuoyto Lake, NE of Sun Bay (cont'd)
Sample No.: VQ 11, 1 m bel ow surface
Date/ Ti ne: Novenber 29, 1985, 11:00

		Lab Sample No.		
		6A	6B	6C
Manganese	M	L 0.003	L 0.003	L 0.003
Mercury	Hg	L 0.00005	L 0.00005	L 0.00005
Mbl ybdenum	M	L 0.04	L 0.04	L 0.04
Ni ckel	*Ni	L 0.005	L 0.005	L 0.005
Phosphor us	PO4	L 0.4	L 0.4	L 0.4
Potassi um	K	0.36	0.36	0. 36
Silicon	SiO_{2}	L 0.08	L 0.08	L 0.084
Sil ver	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	0.38	0.33	0.36
Strontium	Sr	L 0.001	L 0.001	L 0.001
Tin	Sn	L 0.03	L 0.03	L 0.03
Titani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Zinc	*Zn	L 0.010	L 0.010	L 0.010

Al results expressed as mg / L unl ess noted otherwise.

* Hydride Generation or Di rect AA

L = Less Than

Appendi x A CONT'D

Location: Contuoyto Lake, NE of Sun Bay
Sample No.: VQ 11, 12 m
Date/ Ti ne: Novenber 29, 1985, 11: 00

		Lab Sample No.		
		/A	7B	7 C
pH (ph units)		6. 34	6.28	6.27
Conductivity ($\mu \mathrm{S} / \mathrm{cm}$)		11.2	11.3	11.8
Total Suspended Sol ids		L 1.0	L 1.0	L 1.0
Total Di ssol ved Sol i ds		10.	10.	10.
Bi carbonate Al kalinity	HCO3	4. 21	4. 21	4. 21
Carbonate Al kalinity	co3	N		
Ortho Phosphorus	P	0.014	0. 019	0. 019
Total Di ssol ved Phosphorus	P	L 0.02	L 0.02	L 0.02
Total Phosphorus	P	L 0.02	L 0.02	L 0.02
Nitrate and Nitrite Nitrogen	N	L 0.010	L 0.010	L 0.010
Ammoni a Nitroyen	N	0.049	0. 039	0.049
Organi c Ni trogen	N	0.25	0.15	0. 10
Total Kjeldah1 Nitrogen	N	0. 30	0. 19	0.15
Total Organic Carbon	C	1. 3	1. 4	1. 3
Total Cyani de	CN	L 0.01	L 0.01	L 0.01
Total Metal S				
Al umi num	Al	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arsenic	"As	L 0.001	L 0.001	L 0.001
Barium	Ba	0.002	0.003	0.002
Beryl li um	Be	L 0.003	L 0.003	L 0.003
Bi smith	Bi	L 0.5	L 0.5	L 0.5
Boron	B	L 0.01	L 0.01	L 0.01
Cadmi um	* Cd	L 0.001	Li 0.001	L 0.001
Cal ci um	Ca	0.71	0.71	0.72
Chromi um	* Cr	L 0.001	L 0.001	L 0.001
Cobal t	co	L 0.02	L 0.02	L 0.02
Copper	* cu	L 0.001	L 0.001	L 0.001
I ron	Fe	L 0.03	L 0.03	L 0.03
Lead	* Pb	L 0.001	L 0.001	L 0.001
Magnesi um	M	0.33	0.33	0.33

Appendi x A. CONT' D

Location: Contnoyto Lake, NE of Sun Bay (cont'd)
Sample Nb: UQ 11, 12 m
Dat e/ Ti me: Novenber 29, 1985, 11: 00

		Lab Sample No.		
		7A	78	7c
Manganese	M	L 0.003	L 0.003	L 0.003
Mercury	Hg	L 0.00005	L 0.00005	L 0.00005
Mbl ybdenum	M	L 0.04	L 0.04	L 0.04
Ni ckel	*Ni	L 0.005	L 0.005	L 0.005
Phosphor us	PO4	L 0.4	L 0.4	L 0.4
Pot assi um	K	0.35	0.35	0. 35
Silicon	SiO_{2}	0.084	0.11	0.41
Sil ver	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	0.36	0.38	0.41
Strontium	Sr	L 0.005	L 0.005	L 0.004
Tin	Sn	L 0.03	L 0.03	L 0.03
Titani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Z nc	* Z	L 0.010	L 0.010	L 0.010

All results expressed as $\mathbf{n y} / \mathbf{L}$ unl ess noted otherwise.

* Hydride Generation or Di rect AA

L = Less Than

Appendi x A. CONT' D .

Locati on:	Inner Sun Bay
Sampl e No.:	EPS Site 8, mid-depth 1.5 m
Date/ Ti ne:	Novenber 29, 1985, 17:00

		Lab Sample No.		
		8A	8B	Distilled Water Blank
pH (pH units)		6. 44	6.20	
Conductivity ($\mu \mathrm{S} / \mathrm{cm}$)		59.2	59.1	
Total Suspended Sol ids		L 1.0	L 1.0	
Total Dissol ved Solids		54.	55.	
Bicarbonate Al kalinity	HCO3	8. 42	6.31	
Carbonate Al kalinity	co3	Nil	NI	

Total Metal s

Al umi num	Al	L 0.15	L 0.15	L 0.15
Anti mony	Sb	L 0.15	L 0.15	L 0.15
Arsenic	*As	0.018	0. 018	L 0.001
Bari um	Ba	0.005	0.005	L 0.001
Beryllium	Be	L 0.003	L 0.003	L 0.003
Bismuth	Bi	L 0.5	L 0.5	L 0.5
Boron	B	L 0.01	L 0.010	L 0.01
Cadmi um	*Cd	L 0.025	L 0.025	L 0.001
Cal ci um	Ca	3.56	3.52	0. 003
Chromi um	${ }^{*} \mathrm{Cr}$	L 0.03	L 0.03	L 0.001
Cobal t	co	L 0.02	L 0.02	L 0.02
Copper	* cu	L 0.001	L 0.001	L 0.001
Iron	Fe	0.18	0. 18	L 0.03
Lead	*Pb	L 0.001	L 0.001	L 0.001
Magnesi um	Mg	0.61	0.61	L 0.002
Manganese	M	0.008	0.008	L 0.003
Mercury	Hg			L 0.00005
Mblybdenum	Mb	L 0.04	L 0.04	L 0.04
Ni ckel	* \mathbf{N}	L 0.005	L 0.005	L 0.005
Phosphor us	PO4	L 0.4	L 0.4	L 0.4
Pot assi um	K	0.63	0.71	L 0.01
Silicon	Si 02	0.69	0.67	L 0.08
Sil l er	Ag	L 0.03	L 0.03	L 0.03
Sodi um	Na	4.18	4.14	0. 10
Strontium	Sr	0. 012	0.011	L 0.001
Tin	Sn	L 0.03	L 0.03	L 0.03
Ti tani um	Ti	L 0.006	L 0.006	L 0.006
Vanadi um	V	L 0.01	L 0.01	L 0.01
Zinc	*Zn	L 0.010	L 0.010	L 0.010

Al results expressed as mg / L unl ess noted otherwise.

* Hydride Generation or Direct AA

Appendi x A. CONT' D

Location: Mouth of Outer Sun Bay (by island)
Sample No.: VQ 10, \#4 = $1 \mathrm{~m} \# 5=7 \mathrm{~m}$
Date/ Ti ne: Novenber 24, 1985, 15: 00

		Lab Sampl e No.			
		4A	4B	5A	58
pH (pH units)			6. 33	6.33	
Conductivity ($\mu \mathrm{S} / \mathrm{cm}$)			11.9	11.8	
Total Suspended Solids			L 1.0	L 1.0	
Total Di ssol ved Sol i ds			11.	11.	
Bi carbonate Al kalinity	HCO3		4.91	4.91	
Carbonate Al kalinity	co3		Ni 1	N	

Total Metals

Al uni num	Al		0. 15	L 0.15	L 0. 15	L 0.15
Anti nony	Sb		0.15	L 0.15	L 0.15	L 0.15
Arsenic	*As		0.001	L 0.001	L 0.001	L 0.001
Bari um	Ba		0.003	0.003	0.002	0.002
Beryl Ii um	Be	L	0.003	L 0.003	L 0.003	L 0.003
Bi smuth	Bi	L	0.5	L 0.5	L 0.5	L 0.5
Boron	B	L	0.01	L 0.01	L 0.01	L 0.01
Cadmi um	*Cd	L	0.025	L 0.025	L 0.025	L 0.025
Cal ci um	Ca		0.82	0.82	0.81	0.82
Chromi um	* Cr	L	0.03	L 0.03	L 0.03	L 0.03
Cobal t	co	L		L 0.02	L 0.02	L 0.02
Copper	* cu	L	0.001	L 0.001	L 0.001	L 0.001
Iron	Fe	L	0.03	L 0.03	L 0.040	L 0.03
Lead	*Pb	L	0.001	L 0.001	L 0.001	L 0.001
Magnesi um	Mg		0. 39	0.38	0. 34	0.38
Manganese	M	L	0.003	L 0.003	L 0.003	L 0.003
Mercury	Hg					
Mbl ybdenum	M	L		L 0.04	L 0.04	L 0.04
Nickel	*Ni	L	0.005	L 0.005	L 0.005	L 0.005
Phosphorus	PO_{4}	L	0.4	L 0.4	L 0.4	L 0.4
Potassi um	K		0.40	0.37	0.37	0.40
Silicon	SiO_{2}		0.10	0.11	0.14	0.096
Silver	Ag	L	0.03	L 0.03	L 0.03	L 0.03
Sodi um	Na		0.40	0.41	0.53	U. 46
Strontium	Sr	L	0.001	L 0.001	L 0.001	L 0.001
Tin	Sn	,	0.03	L 0.03	L 0.03	L 0.03
Ti tani um	Ti	L	0.006	L 0.006	L 0.006	L 0.006
Vanadi um	V	L	0.01	L 0.01	L 0.01	L 0.01
Z nc	*2n		0.010	L 0.010	L 0.012	L 0.010

All results expressed as mg / L unl ess noted otherwise.

* Hydride Generation or Di rect AA
$\mathrm{L}=$ Loss Than

APPENDI X B

									Metal s (ppm net wei ght)					
Location	Date	Speci es	Sanpl e \#	$\begin{gathered} \text { Ti ssue } \\ \text { THPC } \end{gathered}$	Length (min)	Wei ght (gm)	Sex Code	Mbi st ure (\%)	As	Cd	Pb	Hg	N	$\mathbf{Z n}$
ESC ${ }^{1}$	30/9/85	LT	2086	L	541	1770	11	76.2	0.01	0.43	0.01	0.15	0. 15	26.42
ESC	1/10/85	LT	2100	L	534	1575	1	-2	0.01	0.63	0.01	0.08	0. 12	34.70
ESC	2/10/85	LT	2107	L	681	3040	9	76.0	0.01	0.48	0.01	0.48	0. 23	40.56
ESC	2/10/85	LT	2108	L	424	530	9		0.01	0.53	0.01	0.14	0. 14	29.60
ESC	2/10/85	LT	2116	L	541	1680	9	80.7	0.00	0.38	0.00	0.15	0. 10	26.25
ESC	30/9/85	LT	2086	M	541	1770	11	79.5	0.01	0.01	0.01	0.17	0.03	4.86
ESC	1/10/85	LT	2100	M	534	1575	1	76.5	0.01	0.01	0.01	0.10	0.03	5.33
ESC	2/10/85	LT	2107	M	681	3040	9	77.3	0.01	0.01	0.01	0.26	0. 19	5.52
ESC	2/10/85	LT	2108	M	424	530	9	79.5	0.01	0.01	0.01	0.11	0. 09	4.55
ESC	2/10/85	LT	2116	M	541	1680	9	79.1	0.01	0.00	0.01	0.14	0.03	4.20
SB	28/19/85	LT	2003	L	553	1990	0	75.3	0.01	0.21	0.01	0.22	0. 22	24.65
SB	29/9/85	LT	2034	L	561	1750	9		0.01	0.45	0.01	0.16	0.11	38.90
SB	29/9/85	LT	2036	L	552	1825	19		0.01	0.61	0.01	0.21	0.10	36.10
SB	29/9/85	LT	2060	L	541	2130	9	79.2	0.01	0.44	0.01	0.22	0.23	23.92
SB	29/9/85	LT	2063	L	541	1700	19	80.0	0.10	0.49	0.01	0.29	0.15	44.60
SB	24/11/85	LT	2122	L	582	1905	19	78.5	0.01	0.29	0.01	0.26	0.13	36.55
SB	24/11/85	LT	2122	L	563	2055	9	78.3	0.01	0.42	0.01	0.22	0.18	29.51
SB	25/11/85	LT	2123	L	578	1955	18	71.6	0.01	0.32	0.01	0.15	0.10	28.97
SB	29/11/85	LT	2152	L	530	1480	0		0.01	0.58	0.01	0.26	0.41	40.20
SB	29/11/85	LT	2154	L	540	1460	19	79.9	0.12	0.45	0.01	0.23	0.26	31.36
SB	29/19/85	LT	2003	M	553	1990	0	75.7	0. 02	0.01	0.01	0.17	0.03	5.30
SB	29/9/85	LT	2034	M	561	1750	9	77.3	0.01	0.01	0.01	0.21	0.03	5.99
SB	29/9/85	LT	2036	M	552	1825	19	75.0	0.03	0.01	0.01	0.17	0.03	4.97
SB	29/9/85	LT	2060	M	541	2130	9	76.6	0.01	0.01	0.01	0.18	0.03	4.59
SB	29/9/85	LT	2063	M	541	1700	19	76.4	0.09	0.01	0.01	0.16	0.07	6.23
SB	24/11/85	LT	2121	M	582	1905	19	77.1	0.01	0.01	0.01	0.27	0.03	4.31
SB	24/11/85	LT	2122	M	563	2055	9	79.6	0.01	0.01	0.01	0.21	0.03	5.14
SB	24/11/85	LT	2123	M	578	1955	18	76.6	0.01	0.01	0.01	0.17	0.03	5.57
SB	29/11/85	LT	2152	M	530	1480	0	78.2	0.03	0.01	0.11	0.21	0.03	3.66
SB	29/11/85	LT	2154	M	540	1460:	19	81.4	0.03	0.00	0.00	0.24	0.02	4.18
SB	24/11/85	RW	2132	L	436	830	0		1. 40	0.52	0.01	0.22	1.01	66.50
SB	25/11/85	RW	2126	L	452	925	0		0.01	0.31	0.01	0.19	0.62	85.00
SB	29/11/85	RW	2153	L	440	870	0		0.31	0.19	0.01	0.14	0.50	23.70
SB	29/11/85	RW	2149	L	430	920	0		1. 74	0.10	0.01	0.16	0.03	16.00
SB	25/11/85	RW	2127	L	399	690	0		0.01	0.17	0.01	0.15	0.83	91.70
SB	24/11/85	RW	2132	M	436	830	0	75.1	0.05	0.01	0.01	0.06	0.03	6.27
SB	25/11/85	RW	2126	M	452	925	0	76.6	0.01	0.01	0.01	0.10	0.03	6.44
SB	29/11/85	RW	2153	M	440	870	0	77.1	0.01	0.01	0.01	0.09	0.09	5.59
SB	29/11/85	RW	2149	M	430	920	0	78.0	0.03	0.01	0.01	0.14	0.03	5.10
SB	25/11/85	RW	2127	M	399	690	0	76.6	0.03	0.01	0.01	0.13	0.03	6.11

1 Abbrevi ations: ESC = East Si de Cont woyto Lake; SB=Inner Sun Bay; Species; LT = Lake Trout; RW=Round Whitefish; L=Iiver; M= muscle; Sex Code ($0=$ not determined; l-10=nale; 11-20=fenal e).
2 Liver tissue sanples with no noi sture val ues were analyzed on "wet weight as recei ved basis" due to insufficient sanple size.

APPENDIX C

APPEND X C. Governnent agenci es contacted reyarding netal contamination dat a.

AGENCY		LOCATI ON	

APPENDI X C. Conti nued

AGENCY	LOCATI ON	CONTACT

PROM NCI AL

1. British Col unbia
a. Mnistry of Envi ronnent

Kater Managenent Branch

Victoria
Colin McKean

Whste Managenent Branch Victoria

Smithers	Brian Vill kes
Prince George	Rich Girard

Nel son
2. Al berta
a. Pol Iution Control Branch Edmonton
b. Envi ronnental Research Vegfeville Centre
3. Saskat chewan

Akio Masuda

Jim More

Conputerized data set for over 100
lakes with sedi nent and water quality; 40 lakes al so have fish data

Buttle Lake and Campbell River drai nage system reports.

Al drich Lake
Lakes of the Pinchi fault area of B.C., with water, fish and sedi nents data and sone shellfish data

Kootenay Lake - water quality and fish data

No data
Hg partitioning N Saskat chevan Ri ver

Data not yet available for public di stributi on

APPENDI X C. Continued

AGENCY	LOCATI ON	CONTACT

PROM NCI AL (cont ' d)
4. Mani toba
a. Envi ronment \& Wbrkpl ace Winni peg

Saf ety \& Heal th, .
Envi ronnent al Managenent
Denni s J. Brown
5. Ontario

1. M ni stry of Envi ronment Whter Resource Centre
2. Quebec
a. M ni stry of Envi ronnent Sai nte-Foy Denis Lal iberte

Four reports on 6 lakes with chemistry, fi sh and sedi nents for heavy netal s. Interesting bi ononitoring programing using fish and sedi nents in river systens

No data

Extensi ve river data with water, sedi ment, plant, i nvertebrates and fish (computerized), not much lake data

[^0]: * Her Majesty in Right of Canada owns all intellectual and other property rights and title in the CEARC Reports.

[^1]: * El A as used in this report encompasses both the use of baseline information to predict environmental consequences and follow up nonitoring to test predictions. It refers to overal environmental assessnent and planning which nay be requi red under a variety of j urisdictions rather than a specific formilized El A procedure.

[^2]: - Facilitate expression of impacts as testable hypotheses (predi ctions).

[^3]: 1 After decant from Table 13.
 Nat ural background I evel s for Inner Sun Bay from Table 12.
 ${ }^{3} \mathrm{Cf}=\bar{X} / C_{n}$.
 4 Based on a very limited number of background samples ($N=3$) and \bar{X} deternined on "wet wei ght as recei ved basis" due to insufficient sample size for noi sture determination.

[^4]: * Esti mated val ue.

