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ABSTRACT

Statistical hypothesis testing is often used in environmental

monitoring, and to a lesser extent in impact assessment, to test some null

hypothesis (e.g. that there is no effect of a hydroelectric project on fish

mortality rate). An important concept in statistical hypothesis testing is

statistical power, which is the probability that a monitoring project or impact

assessment will correctly detect an effect of a specified magnitude,

provided this effect exists. Statistical power analysis methods for designing

impact assessments or monitoring programs that have high power are

readily available, yet they are rarely used. Instead, designs are often based

on historical precedents or other non-statistical criteria. As a result,

statistical power is often low for environmental studies, meaning that such

studies have little chance of correctly detecting specified effects, even if

they actually exist.

The purpose of this report is to illustrate the importance of statistical

power analysis and to show its applicability to impact assessment and

environmental monitoring. Here, I review statistical power and factors that

influence it. I show how statistical power analysis can be used (a prior/J  to

improve the design of impact assessments or monitoring programs, and (a

posteriori)  to help interpret the results of past studies that failed to reject

some null hypothesis. These uses of statistical power analysis are

illustrated by several examples. I make recommendations to routinely apply

statistical power analysis and to include statistical power as a criterion to

evaluate the effectiveness and efficiency of proposed impact assessments

and monitoring projects.
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1. INTRODUCTION

In Canada there are no standard protocols describing the

methodologies to be used when designing impact assessments for projects

under the federal Environmental Assessment Review Process. Practitioners

can thus use a variety of approaches to design assessments. Some of these

approaches are qualitative (e.g. resource inventories, check lists, matrices),

while others are more quantitative (e.g. experimental research, statistical

hypothesis testing, and simulation modelling). Several authors have

recognized the need to encourage quantitative impact assessments that

make use of hypothesis testing and statistically-based study designs (e.g.

Gore et al. 1979; Green 1979; Fritz et al. 1980; Beanlands and Duinker

1983). Quantitative approaches, including statistical hypothesis testing, are

also encouraged for environmental monitoring, which is an integral part of

impact assessment (CEARC 1986).
I

Statistical power is an important concept relevant to quantitative

impact assessments and monitoring programs that utilize statistical

hypothesis testing. Statistical power describes the ability of an impact

assessment or monitoring project to correctly detect a specified effect,

provided this effect exists (Dixon and Massey 1983; Cohen 1988). High-

power impact assessments or monitoring programs have the greatest

chance of correctly detecting specified effects, if they actually exist. Low-

power studies, on the other hand, are flawed because they have little

chance of correctly detecting such effects.

The theory of statistical power is well developed and the methods of

statistical power analysis for the design and interpretation of statistically-

based impact assessment or monitoring projects are readily available (e.g.
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Dixon and Massey 1983; Zar 1984; Cohen 1988; Lipsey 1990; Peterman

1990a). Yet, statistical power has received little attention in impact

assessment and monitoring. For example, Beanlands and Duinker (1983)

fail to mention statistical power in their report on ecological approaches to

environmental impact assessment, but their report has become the basic

scientific framework for quantitative approaches to impact assessment in

Canada (although they do include references that allude to statistical

power). As well, very few practitioners actually use statistical power

analysis in the design and evaluation of impact assessments or monitoring

projects (Green 1989). This lack of application of power analysis is a

serious problem because it can lead to lengthy and costly low-power studies

that are unlikely to detect even large, ecologically important effects (e.g.

Vaughan and Van Winkle 1982; De la Mare 1984; Hayes 1987; Peterman

1990a).  Furthermore, many practitioners ignore statistical power when their

studies fail to detect effects (Peterman 1990b),  which can mislead decision

makers in cases where the environmental assessment or monitoring program

had only a low probability of detecting an effect anyway.

The purpose of this report is to review the concept of statistical

power and to illustrate the role of statistical power analysis in impact

assessment and environmental monitoring. I show how a priori power

analysis can be used in the design phase of impact assessments or

monitoring programs, and how a posterior? power analysis can help interpret

the results of past studies that failed to reject some null hypothesis. I also

make recommendations for practitioners and for the Canadian Environmental

Assessment Research Council (CEARC).
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2. STATISTICAL POWER

Traditional statistical hypothesis testing (Zar 1984) is a process where

data are used to test a null hypothesis (for example, that there is no effect

of a hydroelectric project on fish mortality rate). The statistical procedure

results in a decision to either reject the null hypothesis (Ho) or not reject it.

Since the true state of nature (that is, whether Ho is true or false) is

unknown, there are four possible outcomes for a statistical hypothesis test

(Table 1). If the true state of nature is that the null hypothesis (Ho) is

actually true (i.e. there really is no effect of the project on the mortality rate

of fish), then a statistical decision to reject Ho will result in a type I error.

Alpha (a) is the acceptable probability for making a type I error. The

probability of correctly failing to reject Ho when Ho is actually true, is I-CL

If the true state of nature is that Ho is false (that is, if a true effect exists),

then a statistical decision failing to reject Ho will result in a type II error.

Beta (fl) is the acceptable probability of making such an error. The

probability of correctly rejecting Ho when Ho is actually false, is 1-P. Thus,

1-p is statistical power, that is, the probability of correctly detecting a

specified effect, if that effect actually exists.

In statistical hypothesis testing, researchers always preset cx - the

acceptable level for the probability of making a type I error (i.e. the

probability of incorrectly concluding that there is an effect when in fact

there is no effect). CY however, applies only when the Ho is true. Since

there is no way of knowing whether Ho is actually true or false, researchers

and decision makers should also be concerned with the probability (p) of

making a type II error (i.e. the probability of incorrectly concluding that there
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is no effect when in fact there really is an effect). This type II error applies

when the Ho is false.

In general, researchers do not tend to design environmental impact

assessments, monitoring programs, or other data gathering procedures in

order to generate a low fl value; in fact, general practice appears to ignore

the implied /3 (Peterman 1990a). For the reasons discussed below, this

leads to large /3, which means that power is low (i.e. there is a low

probability of correctly detecting specified effects, even when they are

present). In order to attain high power, and thus to minimize the probability

of a type II error, the desired p should be preset to some low value during

the phase of designing a data-gathering procedure that will lead to a

statistical hypothesis test. The desired pI however, might not necessarily

be set to the same, low level as that for CY because the cost of a type II error

might not equal the cost of a type I error. Often in environmentalI

monitoring, the costs of a type II error (i.e. the costs of an incorrect

conclusion of no effect, such as human health effects or loss of revenues

from a fishery) are greater than the costs of a type I error (i.e. the costs of

an incorrect conclusion of an effect, such as the installation of a pollution

control device) (Toft and Shea 1983; Peterman 1990a). Thus, providing

there is no preference for a particular type of error, researchers might set CY

and (3 so that the expected cost (probability of occurrence times the cost if

the event occurs) of a type I and type II error are equal (see Peterman

1990a). If researchers want to set CY and 6 based on the sampling costs

and the expected costs of each of the four possible outcomes from a

statistical test, then formal decision analysis (Raiffa 1968; Parkhurst 1984)

can be used.



Factors That Influence Statistical Power

The specific equation for estimating statistical power depends on the

statistical test (e.g. t-test, F test, or chi-square test). In general, statistical

power is a function of four factors: alpha, the effect size, the sample size,

and the sample variance (Dixon and Massey 1983). Below, I describe these

four terms in the power equation, along with other factors that influence

power.

Albha  (CY)

Alpha (CY) is the acceptable probability for a type I error. If, after a

statistical analysis of some data, the probability of a type I error (P value

derived from the statistical test) is less than CX, then Ho is rejected at an a

level of significance, i.e. the result is statistically significant (Cohen 1988).

If the P value exceeds O! then Ho is not rejected.

(II is inversely related to @, or equivalently, CY is positively related to

power (power = 1 -p), with all else equal (Dixon and Massey 1983). So as CY

increases, the power of the statistical test increases, but at the expense of

an increased risk of a type I error. CY is, however, almost always set by

convention at 0.05 for statistical significance testing.

Effect Size

The effect size is often defined as the magnitude of the real effect,

e.g. the true difference between a control and a treatment mean (Lipsey

1990). However, this effect size might not be the effect size that is

important, say for biological, social, or economic reasons. Thus,

researchers should have in mind the effect size that is of concern (Sharma

et al. 1976; Green 1984). A study can then be designed to detect this
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important effect with high-power. Often there is very little information

regarding the importance of effects, hence a range of effect sizes should be

considered in any analysis.

Large effects are easier to distinguish against background variation

than small effects, with all else equal, and thus large effects increase the

chance of showing up as statistically significant in a statistical test. Hence,

statistical power also increases as the effect size increases (Cohen 1988).

In certain situations, it might be possible to select variables for impact

assessments or monitoring projects according to the size of the effect that

is of concern. For example, consider a study designed to test the

effectiveness of a pollution control device. Dynamic response models (e.g.

McKay 1989) can be used to determine which compartment (e.g. water,

sediment, fish, benthos, or plants) will respond the fastest to reduced

loading of a pollutant (Dr. Frank Gobas,  Simon Fraser University, Burnaby,

B.C., pers. communic.) That compartment will provide the largest effect

size and will thereby be the most detectable (have the highest power).

Samble Size

The sample size influences the sample variance, along with other

variables. The larger the sample size, the smaller the sample variance, and

as variability decreases, power increases because real effects are easier to

distinguish from natural background variability (Cohen 1988; Lipsey 1990).

However, larger sample sizes also increase sampling costs and in some

cases may lead to pseudoreplication (Hurlbert 1984). Therefore, it is

important to note that sample size is only one of the four main factors that

determine power.
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Samble  Variance

Although larger sample sizes decrease the sample variance and hence

increase power, there are other ways to decrease the sample variance.

These include the reduction of measurement error (by improving sampling or

analytical techniques), and the reduction of the variability associated with

uncontrolled factors (by using a sampling design amenable to analysis of

variance with blocking, or control-treatment pairing) (see McKenzie et al.

1977; Skalski and McKenzie 1982; Millard and Lettenmaier 1986). Note,

however, that if a sampling design based on analysis of variance with

blocking or pairing is used in a situation where it does not reduce the

variance, then the power of the statistical test will be lower than that for

the same design without blocking or pairing because blocking or pairing

reduces the degrees of freedom (Dixon and Massey 1983). Blocking or

pairing should thus be used only when the loss of power from having fewer

degrees of freedom is offset by the increase in power from removing the

variance associated with extraneous factors.

Other Factors

The directionality of the statistical test can also influence power.

Two-tailed tests assess deviations from the null hypothesis in two

directions, and are therefore less powerful than unidirectional tests (which

assess deviations from the null hypothesis in one direction only) (Cohen

1988). Although one-tailed tests are more powerful, they have no power to

detect effects in the direction opposite to that stated by the alternative

hypothesis (Cohen 1988).

Statistical power is also influenced by the extent to which the data

meet the assumptions of the statistical test. The degree to which power is
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affected depends on the statistical test and the particular assumption. It is

important to note that many statistical tests are extremely robust to

violations of their assumptions (Dixon and Massey 1983; Green 1979).

Thus, researchers should consider how such violations will affect the power

of the test before transforming the data or resorting to non-parametric tests

(Green 1979). Non-parametric statistics have fewer assumptions than

parametric tests, but they are generally less powerful (Green 1979, Lipsey

1990).

3. STATISTICAL POWER ANALYSIS IN IMPACT ASSESSMENT AND

ENVIRONMENTAL MONITORING

Statistical power analysis is relevant for all types of impact

assessment and monitoring where a statistical test is used to test some null

hypothesis (Ho). In general, it is more relevant in environmental monitoring

because statistical hypothesis testing is more common there. Although

statistically-based study designs are used to a lesser extent in impact

assessment in Canada, experimental approaches based on statistical

hypothesis testing are increasingly common in impact assessment (e.g.

Thomas et al. 1978; McKenzie et al. 1979; Fritz et al. 1980). Thus, in this

report I will refer to the applicability of statistical power analysis in

environmental studies, which could be impact assessments or monitoring

programs.

Power analysis can be applied a priori in the experimental design of a

study and a posteriori in the interpretation of results when a statistical test

fails to reject some Ho (Fig. 1). Below, I explain the role of a priori and a

posteriori power analysis in impact assessment and monitoring. The general
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concepts presented here are also applicable for statistically-based studies in

other disciplines.

A Prr’bri  Power Analysis

The steps in designing a study to test some null hypothesis (i.e.

objective - questions - hypotheses - model - sampling design - statistical

test) are well known concepts in experimental design and are described

elsewhere (e.g. Cochran and Cox 1957; Winer 1971; Green 1979, 1984).

However, the usefulness of a priori power analysis in the experimental

design of a study is less familiar to many researchers. A priori power

analysis can be used in the design of a study to determine the sample size

required to attain high power to detect an important effect, given CY and an

estimate of the sample variance (e.g. Green 1979, 1984; Skalski and

McKenzie 1982; Bernstein and Zalinski 1983;,  Alldredge 1987; Gerrodette

1987). Desired high power should be set to at least 0.8, which means the

study design will have at least an 80% chance of correctly detecting the

important effect, if this effect actually exists. If desired power is 2 0.8,

then fl - the probability of type II error, is 5 0.2. If researchers want to be

as conservative about making a type II error as they are about making a

type I error, then they can set p equal to C Y. Thus, if a is set to 0.05 by

convention, then 6 would be 0.05 and hence desired power (l-beta) would

be 0.95. Other approaches to set desired power include balancing the

expected costs of type I and type II errors (see Peterman 1990a), and

decision analysis (Raiffa 1968), which can account for both the sampling

costs and the expected costs of the possible outcomes from a statistical

test.



Generally, a priori power analysis is not used to determine the sample

size required to design an environmental impact or monitoring study to have

desired high power. Instead, sample sizes are usually set arbitrarily, based

on past practices, or by logistical constraints, which has lead to a number of

low-power studies because of too few samples to attain high power to

detect a specified effect (e.g. McCaughran  1977; Thomas 1977; Vaughan

and Van Winkle 1982; Hayes 1987; Peterman 1990a). Low-power studies,

however, provide little information about whether the important effect size

actually exists because the study had little chance of correctly detecting

that effect, if it was present. Only when power is high can researchers

reasonably sure that their methods would have detected an important

effect, if it was present.

be

In order to prevent wasted time and money on low-power impact

assessments or monitoring projects that are unlikely to detect postulated

effects, researchers should use statistical power analysis to design studies

to have high power. High-powered studies tend to make p, the probability

of a type II error, low. There are two main reasons for doing everything

possible to reduce the chance of making type II errors in environmental

studies. First, type II errors (for example, a conclusion that there is no

effect of some pollutant on biota when in fact, there really is some

detrimental effect), can lead to the unjustified degradation of our

environment. Second, type II errors (which might, for example, lead to the

unjustified loss of a valuable sport fish species and hence potential

revenues, or to health effects associated with consumption of contaminated

food sources), are often costly in environmental situations.

In addition to using a priori power analysis in the experimental design

of a study to determine the sample size required to attain desired high-
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power, it can also be used to estimate power for studies with a planned

sample size (e.g. Gerrodette 1987). If power is estimated to be low for the

planned sample size, then alternative designs that might increase power

should be considered. Power can be increased by increasing the sample

size or the duration of the study, or by decreasing the sample variance.

Green (1989) shows that a resampling approach (where the same sites are

sampled before and after an impact) can increase power substantially over a

reallocation approach (where new sites are sampled after the impact). For

estimating sample means, Brumelle et al. (1983) show that composite

sampling (where a number of samples are pooled and analyzed as a single

sample) provides a smaller estimate of the standard error than does grab

sampling (where each sample is analyzed separately); composite sampling

could then increase the power of the statistical test. The choice of sampling

methods should also be considered because the size and type of sampler

and the density of organisms can influence the sample variability and hence

statistical power (e.g. Morin 1985).

Another application of power analysis in the experimental design of a

study is to determine which variables can be monitored with high power (Dr.

R. M. Peterman, Simon Fraser University, Burnaby, B.C., pers. communic.).

For example, a priori power analysis can be applied to a number of variables

to determine the sample size required to monitor each variable with high

power. If the sample size required for high power cannot be attained for

some of those variables due to cost constraints or too few units available to

sample, then those variables should not be monitored. An “effects

monitoring” strategy for Canada’s east coast (Thomas et al. 1985)

recommends that this type of approach be taken so that those variables that

are unlikely to be distinguished. from background variation can be eliminated
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from the monitoring program at an early stage. Alternatively, new sampling

techniques could be considered to improve the probability of detecting

important effects in those variables. Furthermore, monitoring all variables

may be unnecessary because of the redundant information provided by

correlated variables (e.g. Kaesler et al. 1974; MacDonald and Green 1983).

Thus, power analysis can be applied to correlated variables to determine

which variable(s) can be monitored with high power; this will improve the

cost effectiveness of the monitoring program.

Statistical power provides information about the ability of impact

assessments or monitoring programs to detect important effects. It should

thus be considered, along with other criteria such as proper experimental

design, in an a priori evaluation of proposed projects (Fig. I). Studies

designed to have low-power might be deemed inefficient because time and

money could be wasted on projects that have little chance of detecting an,

effect of a specified magnitude, if that effect exists (Peterman 1990a).

Furthermore, low-power projects might have to be redesigned with high

power and repeated later in order to test strongly whether there is an effect

(Peterman 1990a). Studies are also inefficient if the sample sizes used are

far in excess of that necessary to detect an important effect with high

power. Power can also be used as a criterion to evaluate effectiveness of

projects because if they have low-power, they have little chance of

detecting anything but catastrophic changes. Hence they are ineffective

because they provide little or no information about the presence of smaller,

yet possibly still important effects. Thus, statistical power analysis should

be taken into account in the a priori design phase of an environmental

impact assessment or monitoring study to ensure that only those projects

that are efficient and effective are implemented. A posteriori power analysis
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(described below) can also be informative by indicating which designs

should not be implemented in the future, because they had power that was

too low.

A Posteriori  Power Analysis

Although a priori power analysis can be used to design a study to

attain desired high power, one cannot always be sure that high power will

result. For example, if the actual sample variance is larger than that

estimated before the study, or if the sample size required for high power is

not attained due to logistical difficulties, then power will be lower than

estimated a priori. Thus, a posteriori power analysis must be applied to

calculate the power of a statistical test when analysis of the data gathered

does not reject the Ho.

Statistical power needs to be determined a posteriori because there

are two reasons for failing to reject some Ho. First, a decision to fail to

reject the Ho can occur when the true state of nature is that there really is

no effect. Second, a failure to reject the Ho can occur when there really is

an effect of a specified magnitude present, but the study had low power

and hence a low probability of detecting it. Thus, if an a posteriori power

analysis shows that power is low, then the results of the statistical test are

inconclusive for the effect size deemed important because the researcher

does not know the real reason for failing to reject the Ho (Peterman and

M’Gonigle  1992). When the Ho is not rejected with high power (i.e. 2 0.8)

for some specified effect size, researchers can be reasonably sure that their

methods would have detected the associated size of effect, if that effect

was present.
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The methods to use a posteriori power analysis to calculate power are

readily available (e.g. Dixon and Massey 1983; Zar 1984; Cohen 1988),

even in computer software (Goldstein 1989). The general approach is to

calculate the power of the statistical test for the specified important effect

size, cy, the sample size used in the study, and the sample variance

estimated from the study. It is note-worthy that power is not relevant when

a statistical test rejects some H, (from Table I). Thus, a posteriori power

analysis applies only when a statistical test fails to reject some Ho (Cohen

1988).

Statistical power is often low in environmental studies (Peterman

1990a).  As well, a review of the toxicology literature indicated that power

was high in only 19 out of 688 reports that failed to reject some Ho (Hayes

1987). Low-power studies are uninformative for the effect size deemed

important because they have little chance of ,detecting  this important effect,

if it actually exists. Such studies will only have a high probability of

detecting some much larger effect size, one that may have already

generated some severe consequences.

Although the power of a statistical test is necessary for the correct

interpretation of the results when they fail to reject some Ho, it is rarely

reported. This is often misleading because when the Ho is not rejected but

power is not reported, researchers might conclude that there is no effect.

For example, Toft and Shea (1983) have pointed out several cases where a

failure to reject Ho has led researchers to conclude that some effect is

absent. These conclusions of no effect are of course reasonable only when

power is high, that is, when there is a high probability of correctly detecting

an effect of a specified size, if this effect is actually present. Researchers

can help prevent invalid conclusions of no effect by routinely reporting
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statistical power for a specified effect size (or a range of important

sizes), when a test fails to reject some Ho.

4. EXAMPLES OF POWER ANALYSIS

Although the methods of statistical power analysis are well

developed, they are rarely used in impact assessment or monitoring. There

are, however, some examples of power analysis in environmental studies,

only a few of which are illustrated here. These examples illustrate the

variety of ways in which power analysis can be informative in the design

and evaluation of impact assessments and monitoring programs. Most of

these examples pertain to environmental monitoring because there are few

examples of power analysis in impact assessment. However, the methods

and concepts of statistical power analysis presented in the examples below

are applicable to impact assessments that utilize statistical hypothesis

testing.

Designing Studies

Power analysis can be used to help design studies to have the best

chance of correctly detecting effects (e.g. trends, violations of

environmental standards, or differences between control and treatment

means). For example, Gerrodette (1987) applied a priori power analysis to

alternative ways of detecting a time trend with linear regression in the

abundance of a California sea otter population. Based on a five-year

program, one aerial survey per year would lead to a 72% chance of

detecting an increase in sea otter abundance of 10% per year (Fig. 2). Two

flights per year would give a 95% chance of detecting a change of 10% per
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year. To detect an increase in abundance of 6.8% per year with power of

0.95, five flights per year would be required. Although Gerrodette (1987)

applied power analysis to detect a trend in abundance, this method can also

be used to detect linear trends in other variables such as diversity,

productivity, or mortality. This method has been criticized  by Link and

Hatfield (1990), who report that the power calculations are unreliable

because the t-distribution approximates the standard normal distribution only

when the sample size is large. In response, Gerrodette (1991) shows that

the original method (Gerrodette 1987) is valid when the number of degrees

of freedom are large, and when samples are taken at regular intervals in

time and space. If data are not taken at equal intervals in time or space,

then the method in Gerrodette (I 991) applies.

Another approach to using power analysis to design monitoring

programs (or impact assessments) is to use optimization techniques to

maximize power, given some other constraints. This method was used by

Millard and Lettenmaier (I 9861, who developed two optimization strategies

for designing environmental monitoring programs to detect biological or

ecological effects. They show how a monitoring program (based on a

factorial treatment design) can be designed to maximize power for a fixed

cost. They also show how the sampling costs can be minimized for a given

desired power or probability of detecting an effect.

Selecting Variables

Power analysis can also be used to determine which variables should

be assessed or monitored. This type of approach was adopted by Lissner et

al. (I 986),  who examined the power of various indices of community

structure to detect the effects of oil and gas exploration on the benthic



community. Using data from a reconnaissance survey in the Santa Maria

Basin and the Western Santa Barbara Channel, California, they found that

the power of a two-way analysis of variance to test the interaction between

time and location was consistently higher (across all depths and strata) for

tests based on community indices (the Gleason diversity, Shannon-Wiener

diversity, evenness, total abundance and number of species) than for tests

based on abundance of individual species. Thus, in order to have the

greatest chance of detecting a change in that community’s structure, tests

based on community indices would yield the best results.

Caswell and Weinburg (1986) also considered the effects of

community structure (species diversity and density) on statistical power for

the two-sample t-test. Their results were similar to those of Lissner et al.

(1986); tests based on community diversity indices had higher power than

those based on the abundance of single-species  indicators. Their results

showed that the power of the test differed greatly for different indices, with

evenness being the most powerful, followed by the Shannon-Wiener index,

species richness, and then Simpson’s index. They also found that the

power of each index increased with density, and at high densities the

differences in power among the various indices was reduced. Practitioners

could use this type of information to help design high-power impact

assessments or monitoring programs by selecting those variables that are

likely to have the highest power.

Selecting Sampling Designs and Statistical Models

The choice of a sampling design or statistical model can also be

based, in part, on the criterion of statistical power. Skalski and McKenzie

(1982) compared control-treatment pairing (CTP) designs and traditional
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unpaired designs, to see which design will improve the ability to detect the

effects of nuclear power plants on benthic and planktonic communities.

They found that higher power could be attained using CTP designs because

such designs reduce the experimental error associated with the monitoring

study. Thus, by evaluating the power of alternative monitoring designs,

researchers can select an appropriate design that is likely to have the

greatest power, and hence the least sample size required to detect a

specified effect with desired high power.

Loftis et al. (1989) evaluated the power of seven statistical tests that

are often used to detect trends in water quality variables caused by acidic

precipitation. They used Monte Carlo simulation to generate the frequency

distributions of these tests because they are unknown and hence analytical

formula have not been derived. Their results showed that no one test was

the most powerful for all circumstances, but ,based on the range of variables

tested, they recommended the Mann-Kendall test for annual sampling and

the Seasonal Kendall or the analysis of covariance test for seasonal

sampling.

Power analysis was also used by Hipel et al. (I 986) to help select a

statistical test with the best ability to detect trends in time series for

environmental management problems. These authors employed Monte Carlo

simulation to examine the power of Kendall’s tau and the lag-one serial

correlation test. They found that the Kendall’s tau was more powerful for

deterministic trends but for stochastic trends the lag-one serial correlation

was more powerful.

Although several authors have used power analysis to select the

statistical test that is mostly likely to attain high-power, in some cases the

choice of a statistical test will be constrained by the objectives of the study
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and the sampling design. Thus, a range of plausible statistical tests may not

always be possible.

Evaluation of Proposed or Existing Studies

Vaughan and Van Winkle (1982) illustrate how a priori power analysis

can be used to evaluate an existing monitoring program to determine

whether it is likely to detect specified effects, provided they exist. Exactly

the same methods can be used to evaluate proposed programs. Using

historical data, Vaughan and Van Winkle showed that a project that was

designed to study the impact of an electric power plant on white perch

(Morone  americana)  recruitment in the Hudson River, New York, had a low

probability of detecting even large effects. They calculated that with ten

years of monitoring data, in order to have a 75% chance of detecting a

significant change in recruitment, a 78% reduction in fish recruitment would

have to occur (Point A on Fig. 3). Nineteen years of data would be required

to have a 50% chance (power) of detecting a 50% reduction in year-class

strength (point B on Fig. 3). This corresponds to about half the expected

lifetime of the power plants! If a 50% reduction in year-class strength is

important to detect, even 100 years of data would not give a greater than

0.55 probability of detecting such an effect! By evaluating proposed

studies, managers can help to prevent situations where studies are

implemented that have high power to detect only very large effects.

Power analysis can also be used to evaluate existing impact

assessments or monitoring projects in order to help modify them to improve

the chances of correctly detecting specified effects. For example, Ontario

Hydro (Wismer 1990) used power analysis to evaluate an existing program

designed to monitor fish impingement mortality on cooling water intake
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devices at nuclear power plants. A posterim’ power analysis indicated that

the existing monthly sampling schedule, conducted over a five-year period,

generated only an 18Or6 chance of detecting a 50% change in May monthly

alewife impingement mortality, caused by new devices aimed at reducing

mortality. By changing to a weekly sampling program, two years of data

will create a 78% chance of detecting the observed rate of annual change in

impingement mortality. Power analysis could thus be used to evaluate

current monitoring programs to determine whether they are likely to detect

the postulated effects of the new devices. If the chances of detecting

important effects are shown to be small, then power analysis can provide

information about the modifications to the monitoring program required to

increase the chances of correctly detecting the effects of concern.

Evaluation of Past Studies I

A posterior/ power analysis can be used to evaluate past studies to

provide the information that is required to design future studies that will

have high power. This strategy was used by the U.S Nuclear Regulatory

Commission (NRC) in their review and evaluation of the design of aquatic

monitoring programs at nuclear power plants. For example, McKenzie et al.

(I 977) reviewed the logarithmic transformed benthic data collected from the

Haddam  Neck power plant, and showed that a sample size of 100

observations (at each of the control and treatment stations in the

preoperational and operational phases) would be required to obtain an 80%

chance of detecting changes in benthic densities in the 20 to 55% range,

depending on the sample variance. This sample size is larger than that used

at nine of the nuclear power plants reviewed by Gore et al. (I 979). Thomas

(1977), working with data from the Monticello and Haddam Neck power
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plants, showed that sample sizes larger than those currently used in most

monitoring programs are needed to detect changes of 50% in benthic

densities, given the variability commonly found in environmental samples.

Thomas (1977) recommends that much of the monitoring effort that

currently goes into all nuclear power plants should be focussed on one or

two programs so that adequate numbers of samples can be obtained.

The U.S Nuclear Regulatory Commission also reviewed the monitoring

data from the San Onofre, Calvert Cliffs, and Pilgrim nuclear power plants to

estimate the experimental error (MSE)  associated with the control-treatment

pairing (CTP) analysis of variance (McKenzie et al. 1979). They found that

the MSE for plankton abundance and productivity is relatively site-

independent, thereby allowing estimation of the sample size required to

provide high power for CTP designs without extensive preliminary sampling

to estimate the expected MSE. The MSE for,benthic  communities, however,

was found to be less stable, meaning that this approach would yield less

precise estimates of the sample size needed for future monitoring of benthic

communities. In situations where a number of studies or other background

data are available to estimate the sample variance, this approach may help

eliminate the need for expensive, and perhaps time consuming preliminary

studies.

5. CONCLUSIONS

Statistical power is an important part of traditional statistical

hypothesis testing, a method that is commonly applied in environmental

monitoring, and to a lesser extent in impact assessment. In this report, I

review statistical power and show how it increases as the sample size, (;Y,

21



and the important effect size increase, and as the sample variance

decreases. I illustrate the applicability of statistical power analysis in the

design (a priori’) of monitoring or environmental impact programs and in the

interpretation (a posteriori)  of results when a statistical test fails to reject

some null hypothesis. I show how a priori power analysis can be used to

design studies to have high power, thereby helping to prevent wasted time

and money on low-power studies that are unlikely to detect postulated

effects. A priori power analysis can also save time and money by

preventing situations in which unnecessarily large samples are collected to

detect an effect of a specified magnitude with desired high power, and by

eliminating from the study those variables that are not likely to attain high

power to detect specified changes. I show how a posterior-i power analysis

can be informative when interpreting the results of studies, and when

evaluating past results (which can help improve the design of future

studies). This report also shows how power analysis can be used to

salvage current monitoring approaches that have little chance of detecting

important effects, if they are present.

In this report I included examples to illustrate the role of statistical

power analysis in impact assessment and environmental monitoring. Most

of these examples, however, are from U.S. sources, perhaps because the

U.S. has incorporated power analysis into several documents pertaining to

the design of impact assessments and monitoring strategies (e.g. Sharma et

al. 1976; Wolfe 1978; Fritz et al. 1980). As well, various agencies in the

U.S. have published reports that illustrate their application of power analysis

in the review and evaluation of completed impact assessments and

monitoring projects (e.g. McKenzie et al. 1977; Thomas 1977; Warren-Hicks

et al. 1989).
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In general, little attention has been given to statistical power analysis

in Canada (however, the ignorance of statistical power is not restricted to

Canada). It is unclear why many researchers have ignored the concept of

statistical power. Millard (1987) suggests that some of the reasons for

ignoring statistical power in environmental monitoring are the lack of

emphasis on statistical power in statistical textbooks and in statistics

courses, and the lack of hiring of statisticians in this field. As well, many

researchers might be less familiar with statistical power analysis in impact

assessment and monitoring because there are few examples, technical

manuals, or other documents that illustrate the applicability and methods for

environmental studies. Up until recently, researchers also may not have

been thinking seriously about the potentially high cost of type II errors

(Peterman 1990a, b). Although there are a number of software packages

for statistical power analysis, which have beyn reviewed by Goldstein

(19891, many of these are not user friendly and they assume that the user

has a working knowledge of the concepts of statistical power.

Despite the lack of attention given to statistical power (and the

related concept of type II errors) in impact assessment and environmental

monitoring in Canada, this report argues the need to adopt statistical power

analysis in our current approaches to impact assessment and monitoring.

The routine application of statistical power analysis in both the design and

evaluation of studies can improve the state-of-the-art in impact assessment

and monitoring by leading to more rigorous tests of statistical hypotheses

and to stronger inferences drawn from statistically based-study designs.

Furthermore, statistical power analysis can also lead to more cost-effective

studies by helping to prevent low-power studies, which provide little

information on the effects of concern. We should thus attempt to develop a
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standard protocol that includes the use of statistical power analysis to

design studies to have high power and to help interpret the results of impact

assessments or monitoring projects (see recommendations below). In the

meantime, we should encourage more rigorous approaches to impact

assessment and environmental monitoring by ensuring that practitioners and

CEARC follow the recommendations provided below.

6. RECOMMENDATIONS

This study leads to a number of recommendations for statistical

power analysis in impact assessment and environmental monitoring. First, I

make recommendations for practitioners. Second, I make recommendations

for CEARC. These recommendations may also apply to other management

agencies involved in impact assessment and monitoring (see Peterman

1990a).

Practitioners

I) Practitioners should use statistical power analysis to determine the

sampls  size required by quantitative impact assessments and monitoring

projects to achieve high statistical power. Desired high power should be at

least 0.8, however, other approaches (e.g. balancing the expected costs of

type I errors and type II errors, or other approaches such as decision

analysis) might be used to set desired power.
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2) The effect of different estimates of the sample variance and the

important effect size on the sample size required to attain desired high

power should be explored during the experimental design.

3) Power should be routinely reported for a range of important effect sizes,

along with P values and confidence intervals, when a statistical test fails to

reject some Ho.

4) When a statistical test fails to reject some Ho, managers should not

take action or make recommendations as if there is “no effect” unless the

power of the test is high for an effect size deemed important.

CEARC

5) CEARC should encourage and support research towards determining

what constitutes an important effect, for biological, economic or other

reasons. Impact assessments or monitoring programs should then be

designed to detect these important effects with high power.

6) CEARC should take steps to ensure that study designs for impact

assessments and monitoring projects are evaluated a priori,  before they are

implemented. Projects should be implemented only if they are based on

proper experimental and statistical design, including high statistical power.

This will help to prevent situations where time and money are wasted on

low-power projects. As well, CEARC should not fund research projects

unless they are designed to attain high power to detect the effect size of

concern.

25



7) Statistical power should be taken into account, where applicable, in the

efficiency and effectiveness criteria used by the Canadian Environmental

Assessment Research Council for evaluating impact assessments and

monitoring (CEARC 1988).

8) Statistical power analysis should be included in standard protocols for

designing quantitative impact assessments and monitoring programs. The

role of statistical power analysis in these protocols is described under

recommendations 1 to 4 above. In addition, CEARC should include the

concept of statistical power and statistical power analysis in other

documents that pertain to the methodological aspects of impact assessment

or monitoring.

9) CEARC should prepare a technical manual, to illustrate by example the

methods of power analysis for a variety of statistical tests that are

commonly used in environment impact assessment and monitoring. A

manual or guide to statistical power analysis in those fields should also be

prepared for managers and decision makers.
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Table 1. Four possible outcomes for a statistical hypothesis
test, depending on the true state of nature and the statistical
decision. The probability of a certain outcome is given in
parentheses. Redrawn with permission from Peterman
(1990a).

Statistical decision

State of nature Reject Ho Do not reject Ho

Ho true Type I error
M

Correct
(l-4

Ho false Correct
(1-p = power)

Type II error
(PI
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Figure I. Flowchart showing the use of power analysis in the
experimental design (a priori) and interpretation (a posteriori) of
studies designed to test some null hypothesis (Ho).
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Figure 2. Power curves to detect annual rates of increase in
population size of sea otters in central California for various
numbers of aerial surveys per year. Reprinted from Gerrodette
(1987).
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Figure 3. lsopleths of power, or probabIity  or detecting a
statistically significant decline in recruitment of white perch in
the Hudson River, New York. Each curve represents a common
power value that can be attained by various combinations of
number of years of data available and the detectable reduction
in year-class strength. Reprinted with permission from
Peterman (1990a).
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