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THE STABILITY OF FLOWING TRAINS OF CONFINED RED BLOOD CELLS
Jonathan B. Freund*1 and Spencer H. Bryngelson2

1Mechanical Science & Engineering and Aerospace Engineering, University of Illinois at Urbana-Champaign,
Urbana, Illinois, USA

2Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Summary The asymptotic and transient stability of single-file trains of fluid-filled elastic capsules flowing in narrow channels is analyzed as
a model for the lines of red blood cells commonly observed in small tubes or vessels. The most amplified disturbances in larger channels are
found to have a rich variety of characteristics depending upon the details of the particular configuration. Transient growth mechanisms are
found to be significant, even for relatively small perturbations, and are shown to precipitate nonlinear saturation and chaotic flow many times
more quickly than the t → ∞ asymptotic stability would predict even for nominally small perturbations.

INTRODUCTION

Red blood cells or similar elastic capsules in sufficiently small vessels or tubes are well-known to flow in a regular single-file
formation down the center of the vessel. In wider tubes or vessels, seemingly chaotic flow is observed (e.g. figure 1), presumably
because such capsule trains are unstable. The source of this instability is unclear yet fundamentally important, particularly how
it might be affected by geometric and capsule mechanical properties to avoid line disruption in microfluidic devices to process
blood. We consider the character of the most amplifying perturbations that might lead to chaotic flow.

The model system we analyze is a two-dimensional flow of capsules, which empirically displays both stable and chaotic
behaviors. We assume that the transition between these regimes arises due to the growth of small perturbations via linear
mechanisms. There is no expectation that linearization of this coupled fluid–structure system leads to a diagonalizable system,
so we also consider transient linear amplification of disturbances in addition to the eigensystem that governs long-time linear
amplification. These methods,1 as well as the transient non-modal behavior they expose, have been used to study, for example,
boundary layer stability. Here they are adapted to the complete fluid–structure coupled flow in the viscous limit. Direct
numerical simulations for specific cases confirm both the predicted transient and asymptotic amplification rates, and are used
to track the subsequent nonlinear evolution of the system to a chaotic behavior. Of particular interest are the most amplified
disturbances and what perturbation amplitudes are needed for transient disturbances to achieve nonlinear saturation significantly
before corresponding eigenmodes might lead to finite-amplitude effects at long times, as they must if any eigenvalues are
amplifying.

METHODS

The cells are modeled as finite-deformation elastic shells, each containing a Newtonian fluid of area πr2o , which for this
study matches that of the suspending fluid.2, 3 A boundary integral method4 is used to evaluate their surface velocities u, which
are nonlinear functions of cell surface positions x due to geometric factors. The full nonlinear system evolves as

dx

dt
= u(x). (1)

From this numerical model, with M spectral collocation points ~x representing the cell surfaces, a perturbation method is used
to construct the 2M × 2M matrix A that governs the temporal behavior of perturbations ~ε to ~x:

d~ε

dt
= A~ε. (2)

Figure 1: Simulation results for cell shapes and locations for a stable case (left) and an unstable case (right).

*Corresponding author. Email: jbfreund@illinois.edu
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To assess the linear evolution of perturbations governed by (2), we consider both the t → ∞ behavior, dictated by its
eigenvalue with the largest positive real component α = Re(λα) with corresponding eigenvector ~sα, and transient growth,
which corresponds to the maximum singular value of the singular-value decomposition of expAt. The t → 0+ transient
growth rate is η, with corresponding singular vector ~vη . These perturbations, amplification rates, and subsequent transition to
nonlinear chaotic motion are considered.

RESULTS

Figure 2 (a) shows the disturbance growth in time for five different initial perturbations for flow of 20 cells in W = 10ro
wide streamwise-periodic channel. The initial disturbances are determined by the linear analysis of A as outlined and their
evolution is computed by direct numerical solution of (1). For initial perturbation amplitudes ε̂ = 0.001ro, the initial transient
linear growth rate η is significantly faster than the long-time eigenvalue-based growth rate α. (Direct simulations with small-
amplitude initial conditions verify the numerical procedures in the linear limit.) However, for this small initial perturbation, the
cumulative amplification of this transiently amplified disturbance is insufficient to lead to significant nonlinear behavior before
the eigenvector growth dominates behavior at later times. Increasing the initial perturbation to a still small value of ε̂ = 0.01ro
allows the transient amplification to saturate nonlinearly and develop rapidly to a chaotic flow (see figures 2 b to h). This occurs
about 100 times faster than growth at the asymptotically most amplified rate. An ad hoc disturbance for the same amplitude,
formed by randomly perturbing cell centroids by the same ε̂ is less amplified still.
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Figure 2: (a) Amplification 5 different initial perturbations for a channel with packing Nro/L = 0.7 and width W = 40ro: — most amplified t → 0+

disturbance for ε̂ = 0.001, — most amplified t → ∞ for ε̂ = 0.001; — most amplified t → 0+ for ε̂ = 0.01; — most amplified t → ∞ for with ε̂ = 0.01;
and — ad hoc disturbance ε̂ = 0.01. (b) Visualization of the base flow state. (c–h) Evolution of the most unstable eigenvector perturbation to a chaotic flow
condition.

The most amplified transient and eigenvector disturbances change qualitatively for different configurations, showing
longitudinal displacements, rotations, transverse displacements, and symmetric and asymmetric distortions of the membranes.
The corresponding eigenvectors (not shown) are typically different in character from the most amplified transient disturbances.

This work was supported in part by the National Science Foundation under Grant No. CBET 13-36972.
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MICROCIRCULATION OF RED BLOOD CELLS FOR TWO MAJOR GENETIC DISEASES 
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Summary Sickle Cell Anaemia and Hereditary Spherocytosis are genetic hematological disorders in which red blood cell rigidity is increased. 
These changes result in problems of RBC circulation in narrow capillaries and through the thin slits of splenic sinusoids - both situations where 
the RBCs may be subject to very strong deformations. Here, we first show that even in presence of oxygen most RBCs from sickle cell anemia 
patients have an impaired motion when submitted to a shear flow at low shear rate. We then observe the passage of sickle RBCs, spherocytes 
and healthy RBCs through slits mimicking interendothelial slits within the spleen. Their difference in terms of transit time, trapped cell ratio, 
lysis ratio and RBC recovery time are quantitatively determined.  
 

INTRODUCTION 

 
   Two of the most important genetic diseases of red blood cells (RBCs), namely sickle cell anaemia - a very handicapping 
and the most prevalent genetic disease in the world - and hereditary spherocytosis are both characterized by an increase in the 
cell rigidity [1], [2]. In hereditary spherocytosis, the lack of deformability occurs via changes in membrane proteins which in 
turn alter the cytoskeleton resulting in a spherical cell shape whereas in sickle cell anaemia the mutated haemoglobin S able 
to form rigid fibers in conditions of deoxygenation is the cause. Moreover, sickle cell RBCs have been shown to be more rigid 
than healthy ones even in conditions of oxygenation [2]. Surprisingly, the effect of this increased rigidity of oxygenated RBCs 
on their flow behaviour has not been studied. Here, we quantitatively characterize the impact of the rigidity of sickle 
oxygenated RBCs on their orientation under shear flow. We then address the question of the passage of RBCs through the 
interendothelial slits within the spleen. Indeed, both diseases severely affect the spleen albeit leading to different conditions. 
In the case of spherocytosis, the spleen enlarges leading to splenomegaly and anaemia while the sickle cell disease leads to 
the condition of hyposplenism. We developed a technique that enabled us to mimic submicronic interendothelial slits in-vitro 
and we report the first quantitative description of the deformation and the dynamics of RBCs passing through submicronic 
slits in sickle cell anaemia, spherocytosis and healthy conditions. 
 

OXYGENATED RBC DYNAMICS UNDER SHEAR FLOW IN SICKLE CELL DISEASE 

 

 
Figure 1: Density sorting of a healthy blood sample (HbAA) and of sickle cell anaemia sample (HbSS). The evolution of the precession angle ϕ of RBCs 

with regards to the applied shear stress is shown for unsorted healthy blood samples and two density subpopulation of a sickle anaemia sample.  
 

In a simple shear flow at low shear rates, RBCs may display a variety of motion regimes such as steady tank-
treading/swinging, unsteady tumbling, and chaotic motion. In the tumbling-flipping motion, it has been shown that the 
orientation of the RBC axis of symmetry with the flow direction is determined by the shear stress as a way to minimize 
energetically costly deformations [3]. As such the transition from tumbling to rolling undergone by RBCs as the shear rate is 
increased is a true signature of their elasticity. Oxygenated RBCs from 15 sickle cell patients were suspended in 9% Dextran 
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2M. RBCs with a regular biconcave shape were selected and submitted to a controlled shear flow. In order to reduce 
variability, the blood samples have been separated in four different subpopulations based on their densities by using five 
Percoll density solution with densities of respectively 1.085, 1.092, 1.101, 1.107 and 1.122 as described in [4]. As expected, 
sickle RBCs were found to be overall denser than healthy ones (Fig.1 left). The evolution of RBC orientation with the shear 
rate for RBCs belonging to the main dense layer is shifted towards higher shear rates compared to healthy cells. The tank-
treading regime appears for higher shear rates too. This result shows that the enhanced rigidity of dense oxygenated RBCs 
from sickle cell anaemia patients induces a specific flow behaviour. However, RBCs from sickle cell anaemia patients and 
for controls that all belong to the main (less dense) layer of healthy cells present the same flow behaviour (Fig. 1 right). The 
alteration of the flow dynamics of RBCs from sickle cell anaemia seems therefore to be closely related to their density, i.e. to 
the haemoglobin concentration. We finally exploit these results to characterize the average rigidity of a blood samples of 
patients from the automatic detection of the orientation of a large population of RBCs in shear flow.  
 

BIOMIMETIC SPLEEN SLITS  

 
We then studied how the passage of the sickle RBCs and the spherocytes differ within the spleen and to compare them to 

healthy RBCs. To enable this, an on-chip biomimetic spleen is developed. The novelty of this device is the presence of 
submicron sized channels (0.5 μm) which have been obtained by the standard procedures of photolithography and wet 
chemical etching. Moreover, the submicron channels are prepared on a silicon master, which enables obtaining reproducible, 
transparent and disposable biomimetic spleen devices in PDMS.  

Using this device, the passage of sickle cells, spherocytes and healthy RBCs is studied. A difference in the behaviours of 
spherocyte RBCs and sickle RBCs is readily observed. A majority of the spherocyte RBCs are observed to be entrapped 
within the channels compared to the healthy RBCs (Fig. 2). The entrapment is effected by the flow rate of the passage. In 
certain cases, haemolysis of the cells is also observed. In contrast, most of the sickle RBCs are observed to pass through the 
channels but have higher shape recovery times compared to the healthy cells. In addition, the post-deformation shapes of the 
sickle and spherocyte RBCs are seen to be different from each other. 

The present work can therefore answer important questions such as how a difference in the cause of RBC rigidity can 
significantly influence its behaviour in microcirculation. To our knowledge, RBC deformation through channels of submicron 
size has not been studied and this opens up plethora of interesting experiments to be explored using this device. 

 

 
Figure 2: Ratio of healthy RBCs (H-RBCs) and hereditary spherocytosis (HS-RBCs) passing through, haemolysing or getting stuck within the sub-micronic 

PDMS slits (Width*Length*Depth=1.08±0.09*2.28±0.16*10µm) studied at 5mbar, 25mbar and 100mbar pressure drops. Time lapses of a RBC passing 
through the slit and of a haemolysed RBC are shown.  
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FLOW OF BLOOD CELLS IN COMPLEX GEOMETRY 
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Abstract A three-dimensional computational tool for simulating the flow of blood cells through geometries of arbitrary complexity is 
presented. Examples of complex geometries include, but are not limited to, micro-fluidic channels and networks, stenosed blood vessels, cell 
and particulate sorting devices, and complex micro-vascular networks. The computational tool is designed to span the entire spectrum of scales 
typically encountered in microcirculatory blood flow, thus enabling the direct simulation of physiologically realistic problems. The three-
dimensional unsteady Stokes equations are solved numerically in conjunction with two separate types of immersed boundary methods; a sharp-
interface method is used to simulate stationary and moving rigid boundaries, while a front-tracking method is used to simulation the motion of 
highly deformable blood cells. The resulting tool provides a fast, stable, and accurate platform for simulating highly complex problems 
involving cellular motion in a wide range of complex geometries. 
 

BACKGROUND AND INTRODUCTION 

 
      High-fidelity computational modelling of blood flow in a microvascular network remains a major challenge due to a 
lack of a model that can consider the entire spectrum of lengths scales, from an entire network comprised of many vessels 
with bifurcations and mergers, to deformation of every single cell, to the nano-scale receptor-ligand interaction. 
Microvascular blood flow modelling, to date, falls under two broad categories: (i) Continuum modelling, and (ii) cellular-
scale modelling. The continuum approach is often utilized for capturing macroscale effects. As applied to large networks, 
for example, each vessel is treated as a one-dimensional conduit, and the pressure-flow relationship is specified by 
Poiseuille’s law, while the rheological effects are added using empirical relations for non-Newtonian blood viscosity. 
Individual blood cells are not explicitly considered in such models. Although these models have been useful in 
understanding the network-scale hemodynamics, they lack the ability to address multiscale and realistic pathophysiological 
processes. In the cellular scale modelling, each blood cell is treated as a finite-size particle, and its deformation in flow is 
sufficiently resolved. While such an approach provides a very rich understanding of the cellular-scale processes, it is 
computationally demanding when a large number of cells are present. Moreover, most cellular-scale studies have considered 
blood flow in simple geometry, such as unbranched, straight conduits of uniform cross-section. In contrast, the architecture 
of a vascular network is highly complex, and is characterized by frequently bifurcating, merging, and tortuous vessels. The 
extent to which the existing knowledge of the cellular-scale flow in simple conduits can be applied to a complex 
microvascular network remains unknown. 
   To bridge this knowledge gap, we follow a bottom-up approach that has been recently taken in modelling whole-body 
circulation. Our broad objective is to scale the cellular-level modelling up to a network level, while coarse-graining the 
nano-scale receptor-ligand interactions. This allows us to address pathophysiological processes at realistic network scales 
yet resolving cellular-scale details and essential molecular interactions. 
 

NUMERICAL METHOD AND RESULTS 

 

We have developed a fully 3D, multiscale direct simulation technique for flow of deformable polydisperse cell suspension 
through microvascular network and geometrically complex conduits. The major challenge in the numerical development is 
that it involves highly deformable cell surfaces that are governed by complex physical laws, and non-moving boundaries 
that are characterized by the network architecture. A ghost-node immersed-boundary (GNIBM) method is used to model the 

vascular network. 3D network topology can be obtained from in vivo 
images of the microvasculature, and rendered to be used in a GNIBM-
based flow solver. The methodology also allows us to simulate flow 
of perfectly rigid particles. A finite-element method is used to resolve 
large deformation of every blood cell with high fidelity. A front-
tracking method is used to obtain a two-way coupling between the 
cell deformation and fluid flow. A coarse-grain technique using 
stochastic Monte-Carlo method is used to model the molecular 
interactions between the cells and the vascular wall.  
 Physiologically realistic microvascular network is considered in our 
modeling based on published high-resolution imaging data. Digital 
reconstruction is performed segment-by-segment by tracing the 
centerline path of each vessel, and manual demarcation of the vessel 
boundary. A 3D solid model is then created by sweeping a circular 
cross section through these paths, with radius varying in accordance 
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with that of the image. Once the solid model is completed, a finite element mesh is generated on the surface of each vessel 
(Fig 2) which defines the non-moving solid-fluid boundary. 
The basic premise of any IBM is to provide a means of 
simulating flows in presence of complex boundaries, such as 
the vascular network, without requiring a boundary-
conforming mesh. The entire domain, including the fluid and 
solid, can be discretized using a rectangular Cartesian mesh 
(Fig 1). The main idea is to impose certain velocity at the solid 
nodes (i.e. ghost nodes) nearest to the boundary such that the 
desired velocity at the boundary is achieved. We have 
developed an interpolation scheme using the image points of 
the ghost nodes inside the fluid domain, which resulted in a 
linear system that can be solved to obtain the ghost-node 

unknowns in an accurate and self-consistent manner for both stationary and moving rigid boundaries.  
As for the cell deformation, we previously had developed a 3D numerical model for deformable blood cells that is most 
comprehensive [2-4]. We model the cells as viscous liquid drops enclosed by zero-thickness hyper-viscoelastic membranes 
whose mechanical properties include resistance against shear deformation, area dilatation, bending, and membrane 
viscosity. The cell membrane is made of a lipid bilayer and an underlying viscoelastic cortex. The bilayer is modeled 
following Helfrich formulation for bending energy, and a finite-strain viscoelastic model is used to obtain the cortical 
tension. The membrane force is transferred to the fluid using a finite-span Delta function. The fluid flow is obtained by 

solving the three-dimensional Stokes equations on the fixed 
rectangular Cartesian grid using a staggered-grid discretization of 
the primitive variables.  Overall, a single set of equations is solved 
using a combined finite difference and spectral method to obtain 
flow fields inside and outside of each deformable cell, with the 
surfaces of rigid boundaries represented using constraints placed on 
Eulerian mesh points identified as ghost nodes.  
   Various validation cases have been performed to assess the 
accuracy of the simulation tool, such as the motion of deformable 
capsules flowing through constricted microchannels, and red blood 
cells moving through a micro-fluidic bifurcation. The later example 
has been used to predict the so-called Zweifach-Fung effect. As a 
further demonstration of the capability of the tool, Fig 3 presents a 
snapshot from a simulation on the flow of blood cells through a 
microvascular network.    
 
 

CONCLUSIONS 

 
   We have developed an IBM-based multiscale direct simulation 
technique to simulate flow of blood cells in complex geometry. The 

technique allows us to consider cellular motion in microvascular network comprised of bifurcating, merging, and tortuous 
vessels, while retaining the cellular-scale details, and essential molecular-scale information. This multiscale tool would 
enhance our ability to consider pathophysiological problems in microcirculation under realistic geometric conditions. 
Problems that can be readily addressed are the influence of vascular network architecture on the heterogeneity of the blood 
cell distribution in microcirculation, and on the platelet margination and leukocyte adhesion. It could also serve as a virtual 
test bed for optimizing the physical characteristics of engineered drug particles for rapid segregation and deposition in the 
microvasculature. 
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Summary Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological
functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer
simulations and in vitro experiments reveal that the hematocrit (φ0) partition depends strongly on RBC deformability, as long as φ0 < 20%.
Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less
RBCs than the higher flow rate child branch. At small enough φ0, we get the inverse scenario, and the hematocrit in the lower flow rate
child branch is even higher than in the parent vessel.

INTRODUCTION

Blood flows through a complex network of the circulatory system – from large arteries to very tiny capillaries – in order
to ensure oxygen delivery and to remove metabolic waste. This task is mainly carried out by red blood cells (RBCs) that
are remarkably deformable, in healthy conditions, and therefore able to squeeze into tiny capillaries. A major open problem
in blood circulation is to understand the perfusion in the vasculature networks, especially in the microvasculature where
RBCs accomplish their vital functions. In such a network, cell distribution is essentially heterogeneous, a phenomenon that
is mainly dictated by hematocrit partition at the level of bifurcations, where RBCs do not behave as passive tracers. Their
shape flexibility and dynamics have a decisive role because their size is comparable to that of blood capillaries. A well known
phenomenon in microcirculation is the Zweifach-Fung effect [Pries (1989)]: If we consider a bifurcation (as in Figure 1), the
child branch with the lower flow rate is depleted in RBCs as compared to the parent vessel, while the other, higher flow rate
child branch is enriched. That is, if in the parent vessel the total volumetric flow rate is Q0 and the RBC volumetric flux is
N0, and in the child branch with the lower flow rate this flow rate is Q1 and the RBC flux N1, then N1/N0 < Q1/Q0.

The Zweifach-Fung effect results from the existence of a cell free layer (CFL) close to the walls, which is only occupied
by plasma [Doyeux (2011)]. The feeding flow is divided by a separating streamline into two parts, one feeding the low flow
rate branch and the other feeding the high flow rate branch. Due to the CFL, the RBC fraction entering the low flow rate
branch is smaller compared to the original RBC fraction in the total feeding flow.

In the present work, we study the hematocrit partition at bifurcations using two-dimensional lattice Boltzmann simulations,
whose outcomes are validated and supported by microfluidic experiments.

Figure 1: Snapshots of the RBCs partition, in both experiments and simulations, when the hematocrit of the feeding flow is
around φ0 =10%. The length ratio between the two child branches is set to 3. The channels width is 20µm and the height is
8 µm. Only the high viscosity contrast (physiological conditions) is shown.
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MAIN RESULTS

Our main results are summarized in Fig 2. We first show that RBCs deformability strongly impacts partition when the
hematocrit is below 20%. RBC deformability is governed by several parameters such as membrane stiffness and viscosity,
swelling degree, and the viscosity contrast between the hemoglobin and the suspending fluid. Here we tune the deformability
through the viscosity contrast, that controls the RBC dynamics then all the migration mechanisms at the origin of the CFL.

The CFL is the result a balance between lift forces due to hydrodynamic interaction between the cells and the wall and
interactions between cells, that tends to widen the cell distribution. Both interactions depend on cell deformability. At
low concentration, interactions between cells play a minor role compared to lift phenomenon and the resulting CFL mainly
depends on lift forces intensity, therefore on deformability. So does the splitting law at the level of the bifurcation (Fig 2,
middle panel). At higher concentration, interactions between cells come into play, and our result show that they probably
depend on deformability the same way lift forces do, so that those dependencies cancel out. Therefore the CFL and the
splitting do not depend any more on cell deformability (Fig 2, left panel).

At lower hematocrit (below 5%), a peculiar effect arises due to the prevalence of the discrete nature of blood at that
scale. For all hematocrits, the distribution of RBCs in the feeding channel is not homogeneous, but rather exhibits two lateral
peaks. This become more pronounced at low hematocrit, where a two-file distribution of RBCs is observed.The central part
is depleted in RBCs, but it is escorted by two enriched layers, which themselves are surrounded by two depleted layers at
the periphery (close to the channel walls). This 5-layer configuration (fluid-cell-fluid-cell-fluid) has an extremely interesting
impact on the partition (Fig 2, right panel): at low Q1/Q0, the peripheral CFL in the parent vessel is recruited by the branch
1 so φ1 starts at 0 and increases when Q1 increases. Then, in some intermediate range for Q1/Q0, the low flow rate branch
recruits the lateral CFL layer plus the adjacent RBC-rich layer among the five layers. By contrast, the high flow rate branch
recruits the CFL layer close to the opposite wall plus its adjacent RBC-rich layer (exactly as the low flow rate branch) as
well as the central (and depleted) layer. This implies that the hematocrit is increased in the low flow rate branch, which is the
reverse behavior of the Zweifach-Fung effect.

Figure 2: Summary of the main results. See also [Shen (2016)].

CONCLUSION

The hematocrit in microcirculation can reach values as low as 10-20% compared to the average hematocrit in human body
(45%). At such a low hematocrit, our simulations and in vitro microfluidic experiments have revealed that RBCs partition at the
level of bifurcations depends strongly on cell deformability. In the extreme hemodilution, our results exhibit a newly reported
phenomenon: The low flow rate branch may receive higher hematocrit than the high flow rate branch. This phenomenon is
observed under moderate confinement and is the result of a peculiar structuring of the cell suspension.
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Summary A mechanistic theory is developed to describe segregation in confined multicomponent suspensions such as blood. It incorporates
the two key phenomena arising in these systems at low Reynolds number: hydrodynamic pair collisions and wall-induced migration. In
simple shear flow, several regimes of segregation arise, depending on the value of a “margination parameter” M . Most importantly, there
is a critical value of M below which a sharp “drainage transition” occurs: one component is completely depleted from the bulk flow to the
vicinity of the walls. Direct simulations also exhibit this transition as the size or flexibility ratio of the components changes. Results are
presented for both Couette and plane Poiseuille flow.

Using kinetic theory a mechanistic theory is developed to describe segregation in multicomponent suspensions in confined
flow. It incorporates the two key phenomena arising in these systems at low Reynolds number: hydrodynamic pair collisions
(see a schematic in Fig. 1b) and wall-induced migration. We consider a binary suspension of deformable particles in a slit
geometry in Couette and Poiseuille flows. A simple drift-diffusion model is obtained by taking several approximations such
as considering the important case of a binary suspension composed of a “primary” component (‘p’) and a “trace” component
(‘t’) such that ϕp ≫ ϕt, where ϕp and ϕt are the volume fractions of p and t. Fig. 1a shows an illustration of the binary
suspension in confined simple shear flow with the walls located at y = 0 and y = 2H .
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Figure 1: (a) Suspension of particles in a slit under simple shear flow. (b) Pair collision trajectories of particles of species α
and β under simple shear flow, where α = p or t and β = p.

In simple shear flow, several regimes of segregation arise, depending on the value of a “margination parameter” M .
Remarkably, this single quantity determines the qualitative nature of the concentration profile. The sign of M is determined
by the competition between the ratio of the migration velocities of the two components and the ratio of the collisional terms.
(1) M > 1: the trace component is displaced further from the wall than the primary component: it demarginates.
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Figure 2: Steady state volume fraction profiles of ϕp/ϕ̄p (black solid line) and ϕt/ϕ̄t for various values of M for (a) Couette
flow and (b) Poiseuille flow. (The curves coincide when M = 1.)

(2) 0 < M < 1: the relative concentration of the trace component is higher near the wall than the primary component but
does not display a peak: it weakly marginates.
(3) −1 < M < 0: the trace component displays a peak at y = ld, corresponding to an integrably singular concentration
profile: it moderately marginates. ld is the so-called cell-free layer or depletion layer thickness.
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(4) M ≤ −1: the solution for the trace component displays a nonintegrable singularity at y = ld. This steady state is
physically unrealizable as it corresponds to an infinite amount of material in a finite region. In this regime collisional transport
overwhelms migration, and the trace component accumulates indefinitely at y = ld, indicating strong margination.
M = −1 is a critical value of M below which a sharp “drainage transition” occurs: one component is completely depleted
from the bulk flow to the vicinity of the walls. Direct simulations also exhibit this transition as the size or flexibility ratio of
the components changes. Fig. 2a shows the volume fraction profiles of the trace component for different M values. Similar
results from the theory are observed for Poiseuille flow, as shown in Fig. 2b.

The mechanistic nature of the theory leads to substantial and systematic insight into the origins of margination; this
will complement detailed simulations and experiments in guiding development of technologies involving blood and other
multicomponent suspensions at small scales.
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Summary The inhomogeneous distribution of red blood cells and platelets normal to the flow direction plays a significant role in hemosta-
sis, drug delivery and microfluidics. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven
channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the
deformability-induced lift force and shear-induced diffusion results in a red blood cells’ peak concentration at the channel center and leaves
a cell-free or “Fahraeus-Lindqvist” layer near the walls. On the other hand, in the absence of a lift force, platelets have excess concentration
in the cell-free layer due to cell-platelet collisions. We also include in the model the process of platelets forming bonds with VWF-coated
surfaces, linking cell migration and platelet margination to bleeding events. We thus describe the role of hematocrit in platelet activity as
found in our associated experimental results.

INTRODUCTION

Blood is a multicomponent suspension consisting of many species including red blood cells, platelets etc. Under pressure-
driven flow in channels, each species exhibits a unique inhomogeneous center-of-mass distribution due to differences in
deformability, size and concentration. Red blood cells’ migration behavior, characterized by a concentration peak at the
channel center and a cell-free layer or “Fahraeus-Lindqvist” layer near the wall, results from a deformability-induced lift
force created by wall interactions. Platelets, however, “marginate” and thus develop an excess concentration in the cell-free
layer, primarily due to the lack of such a lift force. Experimental results show that bleeding time is influenced by red blood cell
volume fraction, or hematocrit, suggesting a direct influence of erythrocyte concentration distribution (and thus migration) on
platelet margination. The inhomogeneous concentration distribution is also important in applications such as drug delivery
and microfluidic diagonostics. In this paper, we propose a theory that determines both erythrocyte and platelet distributions
in the cross-flow direction using a semi-analytical approach as well as numerically calculated inputs from fast small-scale
simulations. Our method is similar to those used in simple shear flow[1, 2], and the novelty of our work lies in:(1) resolving
issues unique to shear rate gradients in pressure-driven flow (2) modeling the membrane properties and asperity of red blood
cells instead of treating them as capsules in an idealized fashion (3) comparing with simulation and experimental results for
verification and (4) introducing the platelet adhesion to a “wall trauma” as well as platelet margination.

METHODOLOGY

Our work focuses on flow through rectangular channels with the smallest dimension(height) being O(10µm). This size
matches capillary-sized blood vessels as well as many microfluidic devices. We assume the Reynolds number is zero so that
inertial effects can be ignored. As mentioned above, our theory does rely on output functions from computer simulations.
To determine the latter, we utilize an existing boundary integral simulation method[3] that solves Stokes flow including red
blood cell (RBC) deformation, plasma flow, and platelet dynamics. The properties of the RBC membrane are modeled using
the Skalak law with a reduced volume of 0.65. Platelets are treated as rigid oblates. We consider a capillary number(Ca =
µγ̇ca
Es

)between 0.5 and 2, corresponding to those characteristic of arteriole flow. Steady platelet and RBC distributions are
determined from flux balances. Three types of fluxes normal to the flow direction appear in these two balances: hydrodynamic
collisions, hydrodynamic lift and platelet adhesion (at the wall). We begin by examining the flow-induced “collision” of two
particles (e.g. cell-cell, cell-platelet), which results in irreversible cross-stream displacements due to cell deformation. These
changes in trajectories result in shear-induced diffusion and we use two particle collision simulations to obtain displacement
values. Red blood cells experience a lift force away from the wall due to their deformability and curvature of the flow. This
lift force creates a convective flux Nlift = uliftn which is the fundamental cause of RBC migration. We also use single cell
simulations to determine the lift velocity ulift numerically. Finally, platelets begin the process of thrombosis upon vascular
trauma via multi-step reactions and we consider the initial step of platelets forming GPIb bonds with VWF factors on a
damaged channel surface. This reaction produces a flux of platelets exiting the flow at the associated adhesion rate.
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Figure 1: Red blood cell(a) and platelet concentration(b) profile

RESULTS AND DISCUSSIONS

Red blood cell distributions are thus determined from the balance between lift force and shear-induced diffusion. From
simulation, the correlation for lift velocity is ulift = 0.0095 ˙γ(z)

z1.05 , and the fitted values are similar to those reported from vesicle
experiments. The scaling of the lift velocity associated with the wall distance z differs from the usual wall-induced migration
velocity scaling Szz

z2 in shear flow because the variation of the shear rate in the cross stream direction creates an additional
contribution to the lift velocity. As discussed by various researchers, a flux balance continuum model has a singularity issue
at the centerline due to vanishing fluxes from both lift and collision. We thus add a non-local shear rate correction term:
γ̄(z) = γ(z) + εumax

H/2 . Our shear-induced diffusion flux includes only cell-cell collisions for the RBCs because of the relative
paucity and size of RBC displacements in cell-platelet collisions. With a usual hematocrit between 10% and 20% in the
microcirculation, red blood cells are, in fact, in the dilute to semi-dilute regime, and thus multiple particle interactions are
important. We therefore lump higher-order collision processes into a second diffusivity term D ∂n

∂z . The diffusivity D is used
as a fitting parameter and it increases with hematocrit nearly linearly as expected but is uniformly smaller than the two particle
effects. Figure 1(a) shows the comparison between our theoretical results and those from simulation. Both methods predict a
reduction in the cell-free layer thickness with increasing hematocrit as a result of increased shear-induced diffusion.

In the absence of the deformation-induced lift force, platelet margination can be treated almost exclusively as a conse-
quence of RBC migration and collisions. We thus solve for the platelet distribution by balancing the cell-platelet collision flux
and platelet-platelet collision flux. The former drives platelets toward the cell-free layer and the latter controls the platelets’
distribution within the layer. We compare our model results to platelet-sized sphere margination experiments and demonstrate
that our model successfully captures the margination behavior. For platelet-sized particles, we assume Pe = ργ̇ca

3

kT → ∞ and
ignore Brownian motion. However, for smaller particles used in drug delivery applications, Brownian motion may be indeed
significant. We therefore expand our model to study nanoparticle margination by adding a thermal diffusion flux. As in Figure
1(b), margination by RBC collisions is predicted to still be significant for particles as small as O(10nm).

In the final stage of model development, we take platelet adhesion into consideration in the event of bleeding trauma.
VWF factors have an average size of 200nm and therefore only platelets within such a wall normal length are able to form
bonds with the surface. From the difference in cell-free layer thickness due to hematocrit (i.e. as a result of migration), we
find that the near-wall concentration of platelets changes and thus affects the adhesion rate. We then compare our results to
platelet adhesion experiments completed at different channel hematocrits.

CONCLUSIONS

By balancing the dominant mass fluxes normal to the flow direction calculated by a Boltzmann-collision approach, we
solve for RBC and platelet distributions in pressure-driven flow through a channel. Our theory predicts cell migration and
platelet margination and explains how hematocrit affects platelet adhesion in the case of a wall trauma. During the develop-
ment of our model, we also address important questions in regard to determining the red blood cell lift velocity in Poiseuille
flow as well as how particle size affects channel margination in blood flow. We compare our data to experimental and simula-
tion results to confirm the validity of theory and suggest it is a good alternative to large-scale simulation.
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Summary Red Blood Cells (RBCs) aggregation depends on the shear rate of the flow, under low shear rate rouleaux (aggregated RBCs) are 
formed and formed rouleaux disaggregate under high shear rates in the flow. Population Balance Modeling (PBM) is used to find the aggregation 
rate in a dynamic situation of RBCs sedimentation. In this configuration, disaggregation can be neglected due to low shear rate. The sizes of the 
aggregates are extracted using an image processing techniques and by using these data the aggregation rate is found.  
 

INTRODUCTION 

 
   Blood shows a non-Newtonian characteristics in microcirculation where low shear rates (lower than 100 𝑠−1) are present. 
This behavior is related to the particular nature of the blood component; as it is composed of a Newtonian base fluid (plasma) 
with suspended particles (RBCs, white blood cells, platelets, etc.). RBCs are the most abundant cell in blood and hence are 
responsible of the changes in blood behavior. However white blood cells, platelets and other component of blood have a 
negligible effect on blood rheology [1].  
   RBCs tend to clump together and form regular stacks called rouleaux. This phenomenon is defined as red blood cells 
aggregation. These stacks are not static, and constantly move and break apart. This is a healthy part of the blood function, and 
can be viewed as a natural function preserving a more constant set of properties in the human body. There is evidence that 
aggregation of red blood cells plays a crucial role in regulating blood viscosity [2]. Recently, Owens [3] proposed a model 
for blood viscosity as a function of rouleaux size. His model is based on Population Balance Equation (PBE) to find rouleaux 
size. The population balance equation is based on an experimental expression as it ignores microscopic interactions. Therefore, 
in order to use this equation, it is crucial to develop these experimental expressions. As mentioned in [3], due to lack of 
information on aggregation and disaggregation rates, a linear relation between disaggregation and aggregation rates with shear 
rate was assumed. Equation (1) shows the averaged PBE developed by Owens [3]: 

𝑑(𝑨𝑨𝑺)

𝑑𝑡
=

1

2
Ω𝐴𝑛0 −

1

2
Ω𝐷(𝑨𝑨𝑺)𝟐 +

1

2
Ω𝐷(𝑨𝑨𝑺)         (1) 

where 𝐴𝐴𝑆 denote the average aggregate size and 𝑛0 is the total number of red blood cells per unit volume. The aim of this 
study is to experimentally estimate coefficients for aggregation rate Ω𝐴  and disaggregation rate Ω𝐷  in order to be 
implemented in PBE to predict the aggregate size and the viscosity of the flow [3].   
 

EXPERIMENTAL PROCEDURE 

 
   The Experimental set-up is shown in Fig. 1. It consists of a high speed camera controlled using the LabVIEW software, 
10x lens magnification and a white light source. Images are recorded at the rate of one frame per second. Via a program 
developed in LabVIEW, the exposure time of the camera, the frame rate and the field of view can be varied to obtain the 
highest image quality for proper post processing. To study the sedimentation of RBCs in plasma, a U shaped channel with 
100µm height is used. This channel is similar to the channel proposed in [4] to study the sedimentation of RBCs. The 
dimensions of this channel are shown in Fig. 1. Poly-Di-Methyl-Siloxane (PDMS) is used for the fabrication of the channel. 
Human Blood is collected from 5 healthy individuals (Ethical clearance, University of Ottawa, H11-13-06). RBCs are 
suspended in their own native plasma at hematocrits (

tH ) of 5%. 
 

 
Fig. 1 RBCs sedimentation test microchannel and video microscopic system 

 
   ImageJ software is used to detect the aggregation sizes in the domain. Each image is cropped to remove the additional 
information in the picture. The background is subtracted and bandpass FFT filtering is applied to the pictures to get a clearer 
picture of the RBCs. Images are then converted to a binary image and then aggregate sizes are automatically estimated. 
Resulted images are shown in Fig. 2.  
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Fig. 2. a) Cropped image b) Removing the background and filtering c) Binary image d) Analyzed picture 
 

RESULTS AND DISCUSSION 

  
   It is assumed that there is no disaggregation due to low shear rate in this set-up, therefore Equation (1) further simplifies 
to 𝑑(𝑨𝑨𝑺)

𝑑𝑡
=

1

2
Ω𝐴𝑛0. Fig. 3 shows 𝐴𝐴𝑆 and number of particles in each size found using image processing results for the first 

140 seconds. Particle size measurements in this study is done according to Table I. 
 

 
Fig. 3 Sample EU08A (a) Change of average aggregate size with time (b and c) Change of number of aggregates in different sizes with time  

  
   The aggregation rate of Ω𝐴 = 2.7 × 103 1

𝑠⁄ (±0.3 × 103)  is 
estimated from dividing the rate of change of 𝐴𝐴𝑆 (0.75 ± 0.09

𝜇𝑚3

𝑠⁄ , 
obtained from the five samples) by 𝑛0 

2⁄ .  
   As is shown in Fig 3 (b and c), the number of aggregated RBCs in small 
classes decrease whereas the number of aggregates in larger class increase. 
The reduction of the number of the smaller aggregates are due to the 
aggregation of RBCs and thus the number of the larger size aggregates 
increases. The initial increases in the number of the sizes 5 and 6, is due to 
the formation of new classes from the aggregation of the smaller size 
aggregates. Furthermore, these newly formed classes tend to aggregate to 
produce bigger size aggregates resulting in a drop in the number of the 
aggregates in sizes 5 and 6. 
 

CONCLUSION 

 

   Ponder [5] suggested that there is a linear relation between the aggregation rate and the hematocrit (constant Ω𝐴). This 
relationship can be seen in our experimental data. The aggregation rate found in this study can be called a macroscopic 
aggregation rate and can be used in the Owens’ model [3]. However, this is not taking into account the aggregate sizes 
distribution. Furthermore, the distribution of the number of aggregates in the different classes collected in this study will be 
used for the development of a more comprehensive population balance model.  
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Summary We study computationally the transient motion of an initially spherical capsule flowing through a tube with a right-angled side
branch, using an immersed-boundary lattice Boltzmann method. We focus on path selection of the capsule at the bifurcation as a function of
a range of parameters, including the flow split ratio, the Reynolds number, the capillary number, and the capsule-to-tube size ratio. We find
that the capsule trajectory is strongly influenced by the Reynolds and capillary numbers which play opposite role. Through its significant
effect on the background flow, inertia increases the likelihood of the capsule to flow into the downstream main tube. On the contrary, the
deformation of the capsule promotes its cross-stream migration towards the side branch. When the flow strength is increased, both the fluid
inertia and capsule deformation increase: we summarize their effects in a phase diagram, which provides information on path selection
depending on the parameters.

INTRODUCTION

A capsule is a liquid droplet enclosed by a thin membrane which can resist shear deformation. Capsules are widely
found in nature in the forms of red blood cells (RBCs), eggs, etc. Artificial capsules have a vast range of applications in
food, cosmetic, biomedical and pharmaceutical industries [1]. In many situations, capsules are suspended in a fluid and flow
through a complicated network of tubes or channels. Central to these flows is the path selection of capsules at bifurcations.

Extensive in-vivo and in-vitro experiments have been conducted on blood flows in branched capillaries or microchannels
[2]. It has been well established that the daughter branch with a higher flow rate receives a larger number of RBCs than the
other branch; furthermore, it is possible that a daughter branch receives no RBC when its flow rate is very low (Zweifach-
Fung effect [3, 4, 5]). For capsules flowing in a branched tube, most previous studies have considered dense suspensions. In
the dilute limit, the problem has not been thoroughly studied experimentally, possibly due to the difficulty of manipulating
individual cells. On the numerical side, the problem has been studied mostly by means of 2D models [6]. To the best of
our knowledge, there is no systematic and in-depth 3D numerical study of a deformable capsule in a branched tube. In
particular, how results obtained from previous 2D simulations can be applied to 3D flows remains unclear. Furthermore,
almost all previous studies have considered low-Reynolds-number flows. The effect of inertia on path selection of a capsule
at a bifurcation remains unknown. The present study aims at addressing these open questions.

PROBLEM STATEMENT AND NUMERICAL METHOD

We consider the flow of an initially spherical capsule in a right-angled bifurcation, composed of cylindrical tubes with
the same diameter 2R (figure 1a). The capsule is initially spherical with a diameter of 2a. It is enclosed by a hyperelastic
membrane which obeys the Skalak’s (SK) law [7] and has a small bending stiffness. The fluids inside and outside the capsule
have identical viscosity µ and density ρ. The mass center of the capsule is initially positioned on the centerline of the parent
tube in the cross-section Sc. The fluid motion in the branched tube is governed by the Navier-Stokes equations. At the tube
wall a no-slip boundary condition is imposed; at the upstream inlet S0 and the two downstream outlets S1 and S2, we set the
velocity profiles to be the fully developed Poiseuille flows with corresponding flow rates of Q0, Q1 and Q2 respectively. The
problem parameters are the branch flow ratio q = Q2/(Q1 + Q2), the flow Reynolds number Re = 2ρV R/µ, V being the
mean flow velocity in the parent tube, the size ratio a/R and the capillary number Ca = µV/Gs, Gs being the surface shear
elastic modulus of the capsule membrane. The capillary number measures the ratio between viscous and elastic forces. The
ratio between the area dilatation modulus and the shear modulus in the SK law is equal to 3. In the present study, the fluid
flow and the fluid-capsule interactions are solved using the lattice Boltzmann method and the immersed boundary method [8],
respectively.
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Figure 1: (a) Geometry of a branched tube; (b) Phase diagram: the critical branch flow ratio qc as a function of the flow
Reynolds number for capsules with different sizes and membrane shear elasticity; (c) Unperturbed flow separation lines in the
cross-section Sc for q = 0.5 at different flow Reynolds numbers. The fluid elements above the separation line enter the side
branch and those below the line remain in the main tube.

RESULTS

We define a critical branch flow ratio qc, above which the capsule enters the side branch. Thus the branch flow ratio q must
be higher than qc for an initially centred capsule to choose the lateral flow. A phase diagram of qc as a function of Reynolds
number Re is shown in figure 1b for capsules with different membrane properties and sizes. Note that, for a given capsule
with fixed membrane properties, increasing the mean flow speed simultaneously increases Re and Ca. In the extreme case of
an infinitely small capsule (a/R = 0), the capsule will follow the streamline of the unperturbed background flow.

As shown in figure 1b, qc increases significantly with Re. This could be due to the bending of the fluid separation line (in
Sc) towards the side branch, as shown in figure 1c for q = 0.5. Comparing qc for two capsules with the same size a/R = 0.4
but different membrane shear elasticity (different Ca), we note that the capsule with a lower membrane shear elasticity is
easier to flow into the side branch, in general. This is mainly because a more deformable capsule has an enhanced capability
of cross-stream migration towards the side branch. The capsule deformation can also be affected by the size ratio between the
capsule and the tube: a smaller capsule with the same membrane is less deformable than a larger one in the same tube flow.
Indeed, as shown in figure 1b, it is more difficult to deviate a capsule with a/R = 0.2 into the side branch than a capsule with
a/R = 0.4, and the effect is more obvious at high Reynolds numbers.

DISCUSSION

The present results suggest that the trajectory of a capsule in a branched tube can be controlled by adjusting a range of
parameters such as the capsule size, membrane elasticity, tube flow rate. One potential application of the results is to guide the
development of microfluidic devices, using a bifurcation geometry, to separate capsules from a suspension or to sort capsules
with different size or membrane elasticity. In this application, it could be important for a branch to capture the capsule without
receiving too much matrix fluid. The present study suggests that this can be achieved by using the downstream main tube as
the capturing branch and flowing the suspension at a high rate when inertia becomes important. For using a branched tube as
a capsule sorter, the present results show that the capsule trajectory is sensitive to the capsule size and membrane elasticity, in
particular when inertial effect is significant (i.e., in figure 1b, the value of qc for capsules with different sizes and membrane
elasticity are very different at higher Re).
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Summary The present study is focused on the dynamics of non-spherical liquid-core capsules in simple shear flow. The objective is to 
determine the stability of the equilibrium configurations of oblate capsules. To solve the fluid-structure interaction problem, we use a numerical 
model coupling a finite element method for the capsule deformation with a boundary integral method for the internal and external flows. The 
equilibrium motions are found to be independent of the capsule initial inclination and to depend only on the capillary number Ca and inner-to-
outer viscosity ratio λ. For λ =1, the tumbling and swinging regimes are found to be stable only until Ca ~ 0.9. Above, the capsule follows an 
out of plane motion which converges towards the rolling motion for Ca > 1.2. For λ > 4, only tumbling is stable at low Ca and rolling at higher 
Ca.  
 

INTRODUCTION 
 
   Microcapsules consist of a liquid internal medium enclosed within a thin elastic membrane. The dynamics of an oblate 
capsule in simple shear flow has recently received great attention [1,2,3], owing to its relevance to model a red blood cell 
(RBC). Most studies have modelled the motion of a capsule with its revolution axis in the shear plane, which is a special 
case, as it is an equilibrium configuration in Stokes flow conditions. It has been shown that the capillary number Ca, ratio of 
the viscous to elastic forces, strongly influences the capsule motion. At low Ca, the capsule has a tumbling motion and 
rotates like a solid particle. As Ca is increased, the capsule experiences a transition and takes a swinging motion where it 
oscillates about the straining direction, while the capsule membrane tank-treads around the deformed shape (fluid-like 
motion). As Ca is further increased, the oscillation amplitude decreases and a tank-treading motion is recovered. 
   We have recently studied the motion of an initially off-plane prolate capsule in shear flow and shown that tumbling is 
mechanically unstable as the capsule revolution axis moves to become normal to the shear plane (rolling regime) [4]. At 
high Ca, the swinging regime is stable. In the intermediate range of capillary numbers, the capsule precesses around the 
vorticity axis. We have shown that the stable equilibrium states do not depend on the initial orientation of the capsule 
revolution axis. Dupire et al. [5] found experimentally that a RBC orbit is unstable in simple shear flow near the tumbling-
to-swinging transition. This shows that the dynamics of oblate capsules is still not well understood, particularly at low Ca. 
The present objective is to investigate the influence of the capillary number, viscosity ratio and initial orientation on the 
equilibrium configurations of an oblate capsule. 
 

PROBLEM FORMULATION AND NUMERICAL METHOD 
 
   We consider an oblate capsule of long-to-short axis ratio equal to 0.5 (volume 4πl3/3) suspended in a simple shear flow 
(shear rate 𝛾, fluid viscosity µ) with inner-to-outer viscosity ratio λ. The capsule wall (surface shear modulus Gs and area-
dilatation modulus Ks = 3Gs) is described as an elastic surface obeying a strain-hardening Skalak type law [6]. The capsule 
revolution axis is initially positioned with an angle ζ0 with respect to the vorticity axis. The fluid-structure interaction 
problem governing the deformation of the capsule is thus a function of three main parameters: the capillary number Ca = 
µ 𝛾l/Gs, the viscosity ratio λ and the initial orientation ζ0. We use a numerical model, that couples a finite element method 
for the capsule deformation with a boundary integral method for the internal and external flows [7]. Knowing the initial 
position of the capsule membrane, we compute the stretch ratios and tension tensor using the membrane constitutive law. 
The membrane equilibrium equation is solved using a finite element method to deduce the load on the membrane. The 
velocity of the membrane nodes is obtained from the boundary integral formulation. The new position of the capsule 
membrane points is calculated integrating the velocity with an explicit second-order Runge-Kutta scheme. 
 

RESULTS AND DISCUSSION 
 
   The capsule mechanical equilibrium configurations have been determined by initially positioning the capsule revolution 
axis off the shear plane and by following the capsule dynamics. The capsule equilibrium motion is found to be independent 
of the capsule initial inclination ζ0 and to depend only on Ca and λ.  
   For viscosity ratios λ ≤ 1 and very low Ca (Ca ≤ 0.02), the oblate capsule rotates around the vorticity axis and 
eventually places its revolution axis in the shear plane (see results for λ = 1 in Figure 1). The tumbling motion observed 
when the revolution axis is initially in the shear plane is recovered and is therefore mechanically stable. As Ca is increased 
(0.05 < Ca ≤ 0.9), the oblate capsule places the smallest and longest deformed axes in the shear plane and assumes a 
swinging motion. The swinging regime is stable only until Ca ~ 0.9. Above this threshold, the capsule experiences a 
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transition towards an out-of-plane motion characterized by precession around the vorticity axis until Ca ∼ 1.2. Above this 
value, the capsule stabilizes into a rolling motion with the revolution axis normal to the shear plane. 
   When λ < 3, the mechanical equilibrium configurations correspond to the ones observed for λ = 1 (Figure 1). The 
viscosity ratio, however, influences the capillary number at which the tumbling–to–swinging and swinging–to–rolling 
transitions occur. The tumbling-to-swinging transition takes place at higher Ca, since the increase in internal viscosity 
reduces the capsule deformability. On the contrary, the swinging-to-rolling transition tends to occur at lower values of Ca, 
as λ increases. As a consequence, the swinging motion disappears for λ ∼ 3: the stable mechanical equilibrium states, for λ 
> 4, are thus only the tumbling and the rolling regimes. The capillary number of the tumbling-to-rolling transition decreases 
with λ: at high λ, the rolling regime thus becomes the most likely mechanical equilibrium configuration. 
   We finally show that a capsule initially placed off the shear plane takes a finite time to reach its stable equilibrium 
configuration depending on its initial orientation, flow strength and viscosity ratio. For a capsule initially inclined by 45° off 
the shear plane, the non-dimensional convergence time varies between 50 and 400 for Ca ≤ 0. 5, and is about 600 for Ca > 2 
(λ = 1). Long computational times are thus required to study the equilibrium configurations of oblate microcapsules or cells.  
 

 
Figure 1: Phase diagram of the mechanical equilibrium configurations of an oblate capsule as a function of the capillary 
number Ca and viscosity ratio λ. The grey zones represent the tumbling–to–swinging and swinging–to–rolling transitions. 
From Dupont et al. [8]. 
 

CONCLUSIONS 
 

   By simulating oblate capsules initially placed out of the shear plane numerically, we have studied their stable equilibrium 
configurations [8]. For the first time, the complete phase diagram of the stable steady-state regimes has been derived as a 
function of the capillary number and viscosity ratio. Experimentally the external viscosity is indeed rarely matched with the 
viscosity of the internal fluid. In particular we have shown that the final equilibrium motion of an oblate capsule does not depend 
on its initial orientation, in contrast with previous conclusions.  
   Another important result is the time required for an oblate capsule initially placed off the shear plane to reach its mechanical 
equilibrium state. Such information is crucial when setting up experiments to observe the behaviour of oblate capsules, or when 
choosing the computational times in numerical models. Specifically, it is important to distinguish whether the observed motion is 
transitory or at steady state. For experiments, it is interesting to translate the non-dimensional times into dimensional ones. If 
one considers the case of a RBC subjected to simple shear flow, one finds that the stable tumbling equilibrium regime is 
reached after ∼50 s, stable swinging after ∼10 s and stable rolling after ∼2 s. Since the typical experimental window time 
for observation is of the order of 1 minute, one must be careful to check that equilibrium conditions have indeed been 
reached when the measurements are recorded, especially for low Ca experiments. 
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Summary In this paper we study the dynamical reasons for bats’ maneuverability. We developed a model similar to bats’ dynamical
characteristics and used a quasi-steady method for modeling aerodynamic forces. After validating the model with hovering motion, we
investigated the contribution of aerodynamic forces and inertial forces in creating roll and pitch maneuver. The results show that while the
effect of aerodynamic forces is negligible on roll motion, it has a substantial effect comparable to inertial forces on pitch maneuvers.

INTRODUCTION

Bats’ agility during flight, takeoff and landing is unique among flying animals and is achieved through a combination of
aerodynamic and inertial control afforded by use of their highly articulated membrane wings [1]. We seek to understand the
physical basis for such agile behavior, and to achieve this goal we have developed a dynamical model that mimics several
characteristics of bats including the inertial effects of the articulation and folding of their heavy wings as well as a detailed
aerodynamic model. The current model greatly extends our previous work, incorporating a more sophisticated aerodyamic
model as well as allowing for completely untethered motion (translation and rotation). In this paper, we use this model to
explore several characteristic modes of flight, including straight and level flight, climbing, descending and hovering, as well
as roll and pitch maneuvers necessary for flight stability and landing.

METHODS AND RESULTS

A 3D dynamical model is derived using a Lagrangian formulation. The model consists of a rigid body with 6 degrees of
freedom (3 rotational and 3 translational DoFs) and two rectangular wings. Each wing has mass and rotational inertia with 4
degrees of actuation (sweeping angle, flapping angle, wing pronation/supination angle, and half wingspan extension/flexion)
that allow the wings to move relative to the body. Figure 1 shows these degrees of freedom with respect to the body and the
order of the wing rotations for the dynamical modeling.
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Figure 1: Wing degrees of freedom and the sequence of rotation matrices.

The aerodynamic forces are calculated using a quasi-steady model in conjunction with a blade element method (e.g.
[2]), which divides the wing into finite narrow strips along the wing span and applies the drag and lift forces on each strip
independently based on its motion and geometry (Figure 2). We have validated our model for gliding flight, and for a hovering
condition typical of insects and hummingbirds [2, 3]. The results compare very well with a Newton-Euler solution of the
system using quasi-steady aerodynamic modeling.
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To achieve a rolling motion, we apply asymmetric ex-
tension to the wings during the wingbeat. Figure 3 shows
the sequence of time stamps during one wingbeat both with
and without the application of aerodynamic forces. It is per-
formed here with parameters typical of a moderate-sized bat,
Carollia perspicillata, which has relatively heavy wings. As
can be seen, the effect of the aerodynamic forces is negligi-
ble in achieving a roll maneuver using wingspan asymmetry.

To achieve a pitching motion, we apply additional sym-
metric sweeping angle to each wing during a wingbeat. Fig-
ure 4 shows the behavior of the system, again with and with-
out aerodynamic forces. This time, the results show that the
effect of aerodynamic forces for pitching motion is compa-
rable to the effect of inertial forces.

 T = 0 T = 0.2 T = 0.4  T= 0.6 T  = 0.8 T = 1.0

With 
Aerodynamics

Without 
Aerodynamics

Figure 3: Simulation of roll motion with and without aerodynamics.

With 
Aerodynamics

Without 
Aerodynamics

 T = 0 T = 0.2 T = 0.4  T= 0.6 T  = 0.8 T = 1.0

Figure 4: Simulation of pitch motion with and without aerodynamics.

CONCLUSIONS

The full paper will include a more detailed parametric study of these maneuvers, varying wing mass, geometry and
kinematic parameters. We will also explore the effect of wing mass in hovering motion, and provide the dynamical reasons
for the differences that have evolved among hovering kinematics of insects, hummingbirds and bats.
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Summary We analyze the flight dynamics of bumblebees using a combination of experiments and high fidelity numerical simulations. We
focus on unsteady inflow conditions generated by placing a vertical cylinder at the inlet of the wind tunnel test section, resulting in the
formation of a von Kármán vortex street in the wake. Flight trajectories of bumblebees flying upwind in unsteady winds towards an artificial
flower were measured using high speed videography. Then we performed high fidelity numerical simulations of an insect model with similar
anatomical features, flying in similar unsteady wind, with no flight control, to investigate the passive dynamic interactions. By comparing
the experiment and the numerical simulation, we reveal that bumblebees use a combination of active and passive strategies to mitigate the
challenges imposed by the inflow unsteadiness.

INTRODUCTION

Bumblebees are relentless foragers capable of flying in a wide range of weather conditions. Flight in unsteady wind is of
particular interest as it presents a complex dynamical interaction between the fluid and the insect. To interpret the observed
behavior and identify the control strategies employed, it is essential to disentangle the voluntary maneuvering performed
by the insect from the passive mechanical response of the flight apparatus in unsteady winds. Earlier work has shown that
bumblebees are most sensitive to lateral perturbations and roll rotations along the longitudinal body axis [1]. Rolling motion
and lateral translation are also critical components of voluntary maneuvering. In this study, we generate a von Kármán vortex
street behind a vertical cylinder in a wind tunnel. We compare the rolling and lateral flight dynamics of bumblebees flying in
the vortex street to their flight in a steady uniform inflow. In addition to the wind tunnel experiment, we develop a model of a
flapping bumblebee flying through a von Kármán vortex street that is nominally identical to the one utilized in experiments.
The model accounts for flow properties at all length scales in the oncoming flow [2, 3]. Such high fidelity simulations
require extensive computational resources, and over 8192 cores were used in this study, the highest number that has been
used to resolve flapping flight to date. We compare the body motions of live insects to those of the model bee in similar flow
conditions with no active control, to parsimoniously estimate the control strategies being implemented by bumblebees.

MATERIALS AND METHODS

Wind tunnel experiments
All experiments were conducted in a 6 meter-long wind tunnel with a 0.9 × 0.5 × 0.5 m working section. Bumblebees

(Bombus impatiens) from a commercial breeder (BioBest) were used in this study. Once sufficiently starved, each bee was
placed in the wind tunnel where it was trained to feed from an artificial flower. After consistent behavior was established,
the wind speed was set to 2.55 m/s and the bees flew upstream. Each bee was flown in two airflow conditions, steady and
unsteady. With a 25-mm cylinder positioned vertically at the inlet of the test section, a von Kármán street developed in the
wake, shedding at approximately 23 Hz. The bees were filmed within an interrogation 100-mm cube volume located 100 mm
downstream from the cylinder. A total of 13 bees were subjected to this assay. Paired trials in steady and unsteady inflow
conditions were obtained for each individual.

Numerical simulation
The bumblebee was approximated by three rigid elements: the body and two wings, which moved with respect to each

other. We modeled the wings as flat plates, which followed a prescribed periodic flapping motion with frequency f =
152 Hz. Two degrees of freedom of the insect motion were taken into account: lateral displacement and roll rotation about the
longitudinal axis of the body. We developed a numerical wind tunnel and placed the insect model in a virtual rectangular test
section of width 8R, height 4R and length 10R, where R = 13.2 mm is the wing length of the bee. The cylinder of diameter
2R was placed in front of the insect, at 6R from the insect’s center of mass. The computational domain was discretized
with a uniform Cartesian grid consisting of 960 × 768 × 384 points. The three-dimensional Navier–Stokes equations were
solved by direct numerical simulation on a massively parallel computer, using a Fourier pseudo-spectral method. The volume
penalization method was used to handle the no-slip boundary conditions on the time-varying geometry [3].

∗Corresponding author. Email: dkolom@chiba-u.jp
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DISCUSSION

In the unsteady flow condition, we observed high-frequency rolling motions and lateral accelerations superimposed on top
of slow casting motions, with a clear separation between these two types of oscillations in terms of their temporal scale (see
figure 1). The high-frequency oscillations occurred primarily at the vortex-shedding frequency associated with the wake of the
cylinder. They could be purely passive motions induced by the external airflow, as in the numerical simulation (see figure 2),
or they could represent a combination of passive, externally-induced motions and active, corrective maneuvers. Our results
showed that bees do not actively respond to the flow perturbations on a wingbeat-by-wingbeat basis [4].

Figure 1: Flight path of a bee in the wake of a cylinder. The red, blue and yellow lines track the position of the triangular
marker over the time.

Figure 2: Visualization of the flow field obtained from numerical simulation. Blue iso-surface shows the dimensionless
vorticity magnitude |ω| = 5, red shows |ω| = 40. The insect is colored in orange. The cylinder placed upstream from the
insect produces a vortex street with a characteristic length scale comparable to the insect wing span, that makes the insect roll
and drift laterally.
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MINIMALLY LOW ORDER VORTEX MODELING OF BIO-INSPIRED LOCOMOTORY
FLOWS
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Summary A novel vortex model is presented for the unsteady flows developed in biological or biologically-inspired locomotion at moderate
to high Reynolds number. The model preserves, with a minimal number of degrees of freedom, the essential physics of sustained vortex
shedding in such flows. The fluid dynamics are modeled with a hybrid of a vortex sheet and variable-strength point vortices. While the vortex
sheet is allowed to undergo the instability dynamics inherent to a wake or separated flow, its length is strategically limited by continuously
siphoning its strength into a point vortex. The overall number of degrees of freedom is thereby kept orders of magnitude smaller than in
a full vortex sheet solution, and much smaller still than in a high-fidelity simulation, while still capturing the physics of sustained vortex
shedding. The model’s accuracy is assessed with representative problems, including impulsive start of a wing at very high angle of attack.

MOTIVATION

At moderate to high Reynolds number, aerial and aquatic forms of locomotion in nature—or in vehicles inspired by
nature—are generally characterized by propulsors that undergo large amplitude motions, generating flows dominated by vor-
tices shed directly into the wake or into a separated flow. These unsteady vortical flows resist description by simple models
that efficiently capture their essential physics. By ‘efficient’, we mean computationally tractable in a manner required for
design and real-time control purposes; by ‘essential’, we hypothesize that the large spectrum of phenomena in these flows can
be distilled into a small number of basic (but still non-linear) interactions between vortex elements.

In previous work [1], we developed a planar model for the separated flow past a flat plate in which vorticity shed from the
edges of plate was collected in a small number of point vortices of variable strength. This model was adequate for the early
development of the flow, when it consists only of two coherent vortices: one associated with each edge. However, the model
was not sufficiently rich to capture the effects of vortex shedding (i.e. the detachment of a vortex from the plate into the wake,
and its replacement by a new vortex). The objective of the present work is to enrich the model with vortex sheets that capture
the emergence of new vortex structures through their intrinsic instability.

METHODOLOGY
The model uses a plate of infinitesimal thickness to represent a propulsive surface (e.g. wing, fin) and a collection of free

vortex sheets and point vortices to represent the flow. Each vortex sheet is rooted at the edge of the plate and is discretized by
a finite number of connected control points whose motions are tracked with the usual Kirchhoff velocity. However, rather than
letting the sheet’s length grow indefinitely, the strength (and therefore, its length) is continuously siphoned, with a specified
rate of vorticity flux Γ̇, into an accompanying variable-strength point vortex. The dynamics of this point vortex are amended
in order to cancel the spurious rate of change of linear impulse due to the transfer of circulation from the sheet to the vortex.
This also ensures that the force exerted on the plate is unaffected by discontinuous changes in Γ̇.

RESULTS
The model is applied here to the impulsive start of a flat plate at 60 degrees angle of attack. Figure 1 depicts a comparison

between high-fidelity simulations of this flow (at Reynolds number 1000), a vortex sheet model of the flow (in which the sheet
is allowed to grow indefinitely, and control points are inserted into the sheet where stretching is severe), and the current hybrid
model. All results capture the early development of the starting vortex from the trailing edge, the leading-edge vortex, and
the emergence of a new vortex due to roll-up of the shear layer near the trailing edge. The number of control points required
for the hybrid model remains around 500, an order of magnitude smaller than that of the sheet. This difference becomes more
stark at later times, as illustrated in the right panel in Figure 2. The normal force exerted on the plate, depicted in the left
panel Figure 2, is generally predicted well by the hybrid model, though there is some disagreement after 3 convective time
units, when the new vortex emerges from the trailing edge. Results from other representative biologically-inspired problems
will also be presented.
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Figure 1: Comparison of the predicted large scale structures around the plate using high fidelity CFD at Re = 1000 (top
row), a vortex sheet model (middle row), and the hybrid point/sheet model (bottom row). The CFD results show the vorticity
contours. The vortex models show the strength and positions of the vortex sheets and point vortices, as well as the number of
control points used to resolve the vortex sheet.
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Figure 2: (Left) Comparison of the force response predicted by high fidelity CFD (black), vortex sheet model (blue), and the
hybrid model (green). (Right) Number of computational elements over time in the vortex sheet model with point insertion
(blue) and the hybrid model (green).
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VORTEX FORMATION AND TRANSPORT FROM A ROTATING PLATE IN STILL FLUID
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Summary We investigate, using the framework of Lagrangian Coherent Structures (LCS), the vortex pair formation in an idealized model
of a fish turning manoeuvre called C-start. The two-dimensional flow, generated by a thin plate performing a large angle rotation in still
fluid, comprises the formation of a starting vortex during the plate rotation and the formation of a stopping vortex after the plate stops, thus
resulting in a vortex pair which travels in a direction closely aligned with the final stopping angle of the plate. LCS are shown to objectively
extract the boundaries of various transport entities in the flow, thus alowing us to map the long-term fate of various regions in the fluid at
the initial time. We conclude by demonstrating the correlation between the momentum associated with the material parcel that is advected
away from the plate and the impulse experienced by the plate.

Introduction Flapping foils in a freestream and the associated forces have often been investigated to provide insights on
the development of biomimetic underwater vehicles. An important characteristic of any bio-mimetic mechanism is its ma-
noeuvrability. Some fishes use a mechanism called C-start [1], which involves the fish contracting its muscles to assume a
C-shape and then beating the tail through a large angle to propel itself from rest in the direction of the final stopping angle of
the tail. Here, we study an idealized model of the C-start, as described in fig-1 A, where we see a bulk flow that is pushed
back in the direction of the final stopping angle of the plate (fig-1, C-F). Previous related works have focused on formation
time calculation by tracking vortex circulation on a rotating 3D plate [2] and direct force measurements on a 2D plate [3].

Temporally and spatially well-resolved velocity fields for the low Reynolds number flow are obtained using a finite-volume
solver in which the two-dimensional, incompressible Navier-Stokes equations are solved in the rotating plate frame, and are
validated by comparisons with experimental data. Results are presented for the case where the plate undergoes a rotation of
θmax = 90o in a time to = 10s and with an angular velocity θ̇(t) = A sin2(ωt), leading to a Reynolds number of around 800.

Lagrangian Coherent Structures (LCS) have recently been shown to be a powerful tool to understand advective transport
and mixing in a wide range of flows ([4], [5]). Applications to vortex-dominated flows have resulted in an objective identifi-
cation of vortices and related coherent patterns (see [6], [7]). To extract the LCS in our simulated flow, we adopt techniques
based on the forward- and backward- finite-time Lyapunov exponents, described in detail in [8]. We implement the recently
proposed variational theory of LCS to extract the elliptic and hyperbolic LCS in the flow.

A

B

C E

FD

c

Figure 1: A: Schematic of the plate rotation, B: The angular velocity θ̇ of the plate as a function of non-dimensional time t/to, Vorticity
(non-dimensionalized by the average plate angular velocity Ωavg) contours at times C: t/to = 0.5, D: t/to = 1, E: t/to = 2, F: t/to = 4.
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Figure 2: A: The red, green and brown regions represent the fluid regions at t = 0.025 that will ultimately comprise the starting vortex,
stopping vortex and the white region inside the material bulk shown in fig-2 B, respectively. The forward FTLE field is shown in the
background, B: Attracting, repelling and elliptic LCS at t/to = 2, C: Elliptic LCS at times t/to = 2, 3, 4, D: Horizontal (green) and
vertical (red) impulse experienced by the plate (solid lines) and the corresponding linear momentum acquired by the bulk of fluid (dotted
lines) as a function of t/to. E: Ratio between the momentum acquired by the bulk of the fluid advected away from the plate and the
corresponding impulse experienced by the plate.

Results and Discussion The plate accelerates from zero velocity at t/to = 0 and decelerates to rest at t/to = 1. The
attracting (red lines) and repelling (blue lines) LCS at t/t0 = 2 are shown in fig-2 B. The region encompassed by these LCS
represent the material bulk of the fluid that is pushed away from the plate in the direction of the final stopping angle of the
plate. Within this bulk are the elliptic LCS (red and green shaded regions, see fig-2 B)[9], whose material boundaries travel
forward with no-streching (fig-2 C). Most of the vorticity lies within these elliptic LCS. The regions that are outside the elliptic
LCS but inside the attracting and repelling lines at t/to = 2 travel forward with the bulk but get streched and folded, which is
unlike the fluid inside the ellipic LCS that travel forward without any filamenting. Furthermore, computing fluid trajectories
backward in time, we find that the regions encompassed by the repelling LCS at t/to = 0 ultimately form the material bulk
of the fluid that is advected away from the plate (Fig-2 A). Fig-2 D shows how the bulk of the fluid that moves away from the
plate as one coherent unit acquires momentum as the plate rotates. We see that the total momentum of this bulk represents
only a fraction of the total impulse felt by the plate, with the remaining impulse presumably generating the potential flow

around this main bulk fluid. More specifically, roughly half of the x-force-impulse (
t∫
0

Fxdt) felt by the plate goes into creating

the x-momentum of the fluid bulk (
∮
A
ρudA)(fig-2 E).
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HOW ANIMALS USE SPANWISE FLEXIBILITY FOR EXTREME MANOEUVRABILITY

Jaime G. Wong∗ and David E. Rival
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Summary Similar bending rules are observed on the wings and fins of animals across the entire domain of swimming and flight. The purpose
of this study is to investigate why they pursue similar strategies, in terms of how profile deformation affects the growth and convection of
the leading-edge vortex (LEV). To this end, three-component velocimetry measurements capturing the LEV has been conducted in order
to determine how the choice of profile bending shapes can be used to control LEV strength and convection. Preliminary results suggest
tip-lagging kinematics reduce LEV circulation, while tip-leading kinematics increase circulation.

A harmonically plunging profile is a common abstraction of flapping wings and undulating fins, and is used to investigate
the formation of the leading-edge vortex (LEV) ubiquitous to animal locomotion. Of particular interest is how appendage
kinematics of swimming and flying animals are used to manipulate the strength and streamwise convection of the LEV, as the
LEV is the dominant source of circulation in such flows [1]. The distribution of circulation along a wing can be manipulated
by transporting vorticity, as described by the spanwise-component of the vorticity transport equation:

∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
+ w

∂ωz

∂z
= ωx

∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z
, (1)

where the terms from left-to-right represent the rate of change of vorticity due to unsteadiness, convection of vorticity in the
streamwise (x), wall-normal (y), and spanwise (z) directions, vortex tilting in the streamwise and wall-normal directions, and
vortex stretching, respectively. Recently, it has been shown that spanwise-vorticity transport, specifically spanwise convection
and stretching, reduces streamwise LEV convection speed [2]. This allows the LEV to continue producing lift on a wing or
fin for longer periods of time. Moreover, when a root-fixed spanwise-flexible wing is impulsively towed from rest, it has been
shown that the circulation distribution along the wing will dynamically redistribute itself, implying that the deformed wing
shape must produce spanwise vorticity transport [3]. However, neither has the vorticity transport along a spanwise-flexible
wing been measured, nor has it been directly related to the resulting LEV strength and streamwise LEV convection. The
purpose of this study is to elucidate whether the above hypothesis holds and thus shed light on how animals use spanwise
flexibility for extreme manoeuvrability.

In animal locomotion, flexible appendages have been observed to curve both into and away from the direction of motion
[4]. This observation can be visualized with the aid of Figure 1, which on the left shows the magnitude of plunging amplitude
at the tip of a flexible profile relative to the root h(R)/h0, where the motion is forced from the root, for a wide range of
dimensionless stiffnesses Π1 and density ratios ρ∗. On the right, three arbitrary animal-like sets of dimensionless stiffness
Π1 and density ratio ρ∗ have been selected to be illustrated in time, to show the possible phase relationship as well. Here,
the kinematics of the profile tip may lead (dashed green line, Figure 1) or lag (dashed red line) the profile root (solid black
line), despite several orders of magnitude variation in the aforementioned dimensionless parameters. Indeed, animals exploit
similar profile-bending strategies across the entire domain of swimming and flight [5].

Figure 1: (left) A qualitative visualization of the magnitude of tip deflection of a plunging, spanwise flexible profile normalized
by the root. (right) This tip deflection results in a phase-lead or phase-lag of the tip with respect to the root.
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The tip-lead or tip-lag described above generates spanwise vorticity transport, as illustrated in Figure 2. Due to the phase-
lead or lag of the profile tip, there is a spanwise variation in plunge velocity v, and therefore also a spanwise variation in
vorticity feeding rate and vorticity magnitude ∂ωz/∂z 6= 0. Meanwhile, through either the curvature of the profile or through
profile sweep, a spanwise flow w is generated. Together with the gradient in vorticity, these terms serve to convect vorticity
along the profile span. As tip-leading versus tip-lagging kinematics should have opposite signs of vorticity transport, such
cases will be investigated experimentally in order to determine how these profile kinematics influence LEV growth, in addition
to a nominally two-dimensional reference case.

Emulating realistic wing kinematics as described above in an experimental setup poses a number of challenges, especially
considering the possibility that animals actively deform their wings or fins. Therefore, as the principle goal of this work
concerns the influence of vorticity transport on vortex evolution and not the biology which inspires it, a pitch-flap analogue
was developed to reproduce the variation in effective incidence and spanwise flow of a wing or fin in a simple reproducible
way. The pitching degree of freedom reproduces the same effective incidence as the plunging motion at a wing root, while the
superimposed flapping motion produces a gradient of effective incidence similar to the profile deflection, producing similar
vorticity-transport behaviour in the resulting LEV.

A pitching-flapping mechanism was developed for use in an optical towing-tank at Queen’s University. The wing span
was chosen to closely fit into the 1m×1m cross-section of the towing tank, in order to minimize the effect of tip vortices near
the mid-span where measurements would take place. Preliminary results are shown in Figure 3, where the tip-leading and
tip-lagging kinematics are directly compared. Whereas the tip-leading kinematics on the left show a strong and coherent LEV,
the tip-lagging kinematics on the right show a completely suppressed LEV at the same effective incidence. As the two cases
have very similar effective-incidence histories, this preliminary result supports the hypothesis that strong vorticity transport is
affecting circulation distribution. Specifically, it appears that outboard-directed vorticity transport from tip-lagging kinematics
reduces LEV circulation, while inboard-directed transport from tip-leading kinematics increases circulation. Currently, 4D-
PTV data has been acquired to resolve all elements of the velocity-gradient tensor. This will allow direct measurements of
vorticity transport within the LEV, facilitating the remainder of the proposed analysis.

Figure 2: Vorticity ωz fed into the LEV is convected
along the span of the wing by spanwise flow w, given
that there exists a gradient in effective incidence along
the span, v2 > v1. This convection w∂ωz/∂z acts to
reduce the streamwise LEV convection.

Figure 3: Preliminary vector fields are visualized here coloured
by spanwise vorticity magnitude for tip-leading (left) and tip-
lagging (right) cases with wing locations illustrated. The tip-
lagging case exhibits a completely suppressed LEV, compared to
the pronounced LEV in the tip-leading case.
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Summary Numerical simulations of unsteady maneuvering of the 3D bionic fish in a viscous flow are investigated in the present study, using a 
3D computational fluid dynamics package, which includes the adaptive multigrid finite volume method, the immersed boundary method and 

the control strategy of fish swimming. With the direction control strategy of the swing of the head mainly, the 3D bionic fish can turn quickly 

and swim in a given semicircle path. The analysis of fluid mechanism of maneuver locomotion reveals that the rotation moment in favor of 

turning motion is yielded by the pressure around the fish body, which are induced by the wake vortex, and the swing of the fish can manipulate 
the location and strength of the vortices shedding from the fish body. 

 
RAPID TURN OF THE 3D BIONIC FISH  

 

Fast starting and maneuvering of fish are used for catching prey or avoiding predators . The unsteady movement modes are 

crucial to swimming performance of the fish. Although the knowledge of maneuvering control of swimming fish has made 

considerable advances, most studies are basically limited in the ‘C’ types or‘S’ types, which fast starts and turns are 

classically characterized  as. Therefore, no systematic theories and exact formulas can define the changes of the fish 

geometry during the maneuvers at present. Distinguished from the predecessors, in this paper the 3D bionic fish achieves 

rapid turns and swimming in a given circle trajectories, using the direction control strategy of the swing of the head mainly, 

in which the impact of the swing of the fish body and the caudal fin on the direction control are also taken into account.  

When the 3D bionic fish swims with steady high undulation frequency during the maneuvering, the impact of the swing of 

the fish body and the caudal fin on the directional control of head swing cannot be ignored . In the process of fast turn, the 

fish need excellent maneuver features rather than high power. Therefore, the undulation frequency of the 3D bionic fish is 

not necessarily as high as straight-line cruising. The undulation frequency of the 3D bionic  fish is not constant during rapid  

turn. Fig. 1(a) and (b) presents the angular velocity and the angle of attack of 3D bionic fish swimming dur ing the rapid  

turning motion with the directional control strategy of the swing of the head . It can be seen from Fig. 1(a) that the angular 

velocity of the 3D b ionic fish induced by the positive moment exerted on the fish b ody continuously increases. Accordingly, 

the angle of attack of 3D bionic fish also increases steadily, and finally reaches up to θz = π/2 at time t = 3.0, as shown in 

Fig. 1(b).. It shows that the 3D bionic fish executes a 90
o
 rapid turn using this directional control strategy. 

 
(a) Angular velocity        (b) Angle of attack            (c) Pressure fields      (d) Vorticity fields 

Fig. 1: Analyses of the kinematic data and the flow field of 3D bionic fish during the rapid turn 

 

Fig. 1(c) shows that a high pressure region is fo rmed on the right side of the fish head, and the region on the left side of the 

head is a low pressure region. At the same time, a h igh pressure and low pressure region occur on the left side and the right 

side of the posterior parts of the fish body, respectively. It is the common characteristic of the pressure fields during the 

rapid turn. Thus, favorable rotational moments  forms near the head and around the posterior parts of the fish body. The 

pressure distributions around the fish body in favor of the rapid turn are induced by the vortices generated on the fish body 

and the caudal fin, and released into the wake. The vortex shedding successively before time t = 1.5 generates a downward 

jet in the inner side of the fish body, only the strength of the jet  varies at  different t imes . Fig. 1(d) presents the vorticity 

fields near the fish body at the time t = 2.5. The vortex pair on the outside of the fish head forms a strong jet, which is also 

favor for turning towards its inner side, as shown in Fig. 1(d). 
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TURNING IN A PRESCRIBED SEMICIRCLE LINE 

 

In the previous section, the 3D bionic fish achieves rapid turning motion with the directional control strategy of the head 

swing. The 3D bionic fish is only required to spend s hort time achieving substantial changes of the angle of attack within  

the smaller region during the turning process. In order to test deeply the accuracy and validity of the directional control 

strategy of the head swing, the 3D bionic fish completes  swimming in  a g iven semicircle path on the basis of the above 

study. 

 
(a) Angle of attack         (b) Moving path            (c) Pressure fields       (d) 3D vortex structure 

Fig. 2: Analyses of the kinematic data and the flow field of 3D bionic fish swimming in a given semicircle. 

 

In Fig. 2(b), the curve c1 and c2 is the target trajectory and the swimming trajectory, respectively. Fig. 2(b ) shows that the 

trajectory of the 3D b ionic fish is approximately a semicircle with centre coord inates (4.5, 2.5), of which  the radius is 2. 

Namely, the 3D b ionic fish succeeds in swimming around a predetermined circu lar t rajectory, with the directional control 

strategy of the head swing. Fig. 2(a) shows the changes of the fish posture with  time. Using this control strategy, the attack 

angle of 3D bionic fish gradually  increases, the direct ion of which is basically  the same as tangent direction of a prescribe d 

circular trajectory. The angle o f attack of the 3D b ionic fish finally  reaches up to θz = π, due to the positive angular velocity. 

The 3D bionic fish just reaches at the bottom of a given semicircle when the angle of attack is θz = π. It is evident that not 

only the trajectory of the 3D bionic fish is a semicircle, but also the body  posture is adjusted accordingly. The fish body is 

basically tangent to the swimming t rajectory circle. Th is  further illustrates the accuracy and effect  of the direct ional control 

strategy of head swing.  

Fig. 2(c) shows the pressure fields of the 3D bionic fish swimming in a semicircle  line, which features are the same as rapid  

turning movement. A high pressure region is formed on the outside of the fish head, and the region which the head sweeps 

to is always a low pressure area. At the same t ime, a reg ion with high pressure occurs on its inner side, as the reg ion on the 

outer side of the posterior parts  of the fish body is a low pressure region. Thus, favorable rotational moments forms near the 

head and the posterior parts of the fish body, respectively. Only the strength of pressure distribution in favor of turning 

varies with different amplitudes of head swing.  

The λ2 criterion suggested by Jeong and Hussain is employed for identify ing the 3D vortical structure of fish swimming in  

the study. The favorable rotation moment is yielded by the pressure around the fish body, which are induced by the wake 

vortex, as shown in Fig. 2(d). The swing of the fish can manipulate the location and strength of the vortex shedding from the 

fish body. The vortex shedding is asymmetric in the process of swimming in a given semicircle path. The asymmetric 

vorticity distributions generate the moments in favor of turn  on the fish body, and the vorticity strengths are not bigger, 

compared with that of rapid turn. Thus the 3D bionic fish would not rotate too fast, and the accurate swimming around a 

given path is achieved. 

 

CONCLUSIONS 

 

   During the maneuvering motion, the fish can manipulates the vortices shed from the fish body to form the pressure fileds 

around the fish head and the posterior parts of fish body, which are in favor of rapid turning movement , using the directional 

control strategy of head swing. The biggest advantage of directional control strategy of head swing is that the directional control 

and swimming propulsion is relatively independent during the self-propelled swimming. It is easier to implement the control of 

swimming with this directional control strategies. This study provides new ideas for the direction control of fish swimming and 

has great significance for the development of the bionic Robot fish. 
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Summary Arboreal snakes of the genus Chrysopelea are the only known snakes to glide. These snakes use large amplitude three-
dimensional body undulations in a controlled and stable glide to the ground. We use recently acquired glide data (provided in a com-
plimentary presentation) and a variable-geometry rigid-body model to address the passive stability properties of this system. By varying
the spatial and temporal characteristics of the undulation in simulated glides, we find that flying snakes are likely unstable in pitch and
moderately unstable in roll.

INTRODUCTION

Powered flight confers great advantage to species that can fly, yet has evolved only four times in the history of life.
Additionally, the evolutionary pathway to active powered flight is unknown. One possible explanation is the transition from
passive gliding of arboreal species to active flapping, necessitating increased control authority to compensate for time-varying
aerodynamic and inertial forcing during flapping flight. Therefore, studying the stability properties of gliding animals may
provide insights into how animals evolved flight.

Possibly the most unique gliders are flying snakes of the genus Chrysopelea. To execute aerial locomotion, a snake jumps
from a tree into the air while simultaneously flattening its body into an aerodynamically favorable shape. Snake gliding is
distinguished by complex, three-dimensional body undulations resulting in a stable glide. Flying snakes are highly dynamic
gliders that cannot truly fly, and therefore provide a unique opportunity to study how animals compensate for varying forces
distributed over their body.

VARIABLE-GEOMETRY RIGID-BODY MODEL OF SNAKE GLIDING

Our objective is to understand glide performance, as well as translational and rotational stability properties, of snake flight.
To address this, we formulate a reduced-order model for the dynamics of snake gliding and use experimentally determined
aerodynamic force coefficients. The model is comprised of three components: 1) kinematics of the snake’s body, 2) a variable-
geometry rigid-body model for the equations of motion, and 3) the aerodynamics model based on simple sweep theory.

The simulated kinematics are based on a prescribed planar undulation given by the serpenoid curve for the body curvature
κ(s, t) as a function of position along the body s and time t,

κ(s, t) = −2πA

λk
sin

(
2π

λk
x− 2πft+ φ

)
(1)

where the parametersA and λk affect the spatial compactness and wavelength, respectively, and f is the undulation frequency.
The (x(s, t), y(s, t)) coordinates of the body are found by integrating the tangent angle θ(s, t) using ∂sθ = κ, ∂sx = cos θ,
and ∂sy = sin θ. Recently acquired body kinematics of short glides indicate a serpenoid curve with A = 1.6, λk = 0.6, and
f = 1.4 Hz is a good approximation of the snake’s body [1].

We derive the dynamical equations in discrete form, using a variable-geometry rigid-body formulation, which includes
all inertial terms associated with the changing configuration of the body. The body kinematics are described in a co-moving

(1) body
kinematics

(3) "body" coordinate system

anterior

posterior

(2) dynamics model

head

tail

Figure 1: Components of snake simulation: body kinemat-
ics, variable-geometry rigid-body formulation, and body co-
ordinate system to define the airfoil cross section. The equa-
tions of motion are written for the co-moving snake frame
{b̂} as it translates and rotates in the inertial frame {n̂}. The
body kinematics are defined in the x̂–ŷ plane of the co-moving
frame. Sketch (3) is a modified version from ref. [2], originally
adapted from an illustration by Tara Dalton Bensen and Jake
Socha.
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plane that is free to translate and rotate in the full six degrees of freedom. We write the equations of motion for the location
and orientation of this plane, where the origin does not have to be coincident with the center of mass of the body. We
discretize the body intoN point masses and write Newton’s and Euler’s equations, summing the contribution from each piece
of mass (figure 1). The equations read in general form as,∑

~Fi,grav +
∑

~Fi,aero =
∑

mi
~̈Ro +

∑
−mi~ri × ~̇ω +

∑
~ω × (~ω ×mi~ri)

+ 2
∑

~ω ×mi[~̇ri] +
∑

mi[~̈ri]
(2)

∑
~ri × (~Fi,grav + ~Fi,aero) =

∑
mi~ri × ~̈Ro +

∑
~ri × (~̇ω ×mi~ri) +

∑
~ri × (~ω × (~ω ×mi~ri))

+ 2
∑

~ri ×
(
~ω ×mi[~̇ri]

)
+
∑

~ri ×mi[~̈ri]
(3)

where the square bracket denotes body derivatives expressed in the inertial frame. The last two terms in each equation
constitute the inertial contributions.

As the simulated snake translates and rotates, each mass element along the body will experience a different three-
dimensional flow velocity. Because the full aerodynamics of snake flight are unknown, we make the simplifying assumptions
of local aerodynamic interactions and of simple sweep theory, i.e. only the velocity component locally normal to the body
contributes useful aerodynamic work. This allows us to use previously measured lift and drag coefficients (CL, CD) as model
inputs [3]. We define the chord-line Ĉ(s, t) and backbone B̂(s, t) unit vectors using a Darboux-like frame, such that Ĉ is
within the co-moving plane and is perpendicular to the local tangent vector T̂ (s, t). Each local velocity vector is projected
into the Ĉ–B̂ plane and lift and drag are calculated using the high Reynolds number formulae, FL = 1/2ρU2SCL(α,Re) and
FD = 1/2ρU2SCD(α,Re), where the angle of attack α is measured between Ĉ and the projected flow velocity vector U .

RESULTS AND CONCLUSIONS

Because the simulated snake never satisfies an equilibrium condition, we define stability by viewing trajectories through
phase portrait projections of key dynamic variables, for varying undulation parameters A, λk, and f . Examples of pitch –
pitch rate and roll – roll rate phase portrait trajectories are shown in figure 2. For these initial conditions, undulation slows
the manifestation of a pitch instability (pitch angles are negative and becoming more negative) as shown in the left plot. We
see cyclic dynamics in roll (right plot), and that without undulation, the animal simply rolls to one side. Additionally, velocity
phase portrait movies indicate that pitch strongly affects the translational motion of the animal. These results suggest that
flying snakes may require active control to mitigate an inherent pitch instability, and that a roll instability cannot manifest
fully during transient glides because of cyclic roll dynamics. Supported by NSF 1351322 to JJS and NSF 1150456 to SDR.
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Figure 2: Transient glide stability is viewed as phase portrait projections of key dynamic variables, in this case pitch and roll
for simulated glides for three different undulation frequencies.

References

[1] Socha J. J., Baumgardner G. A., Ross S. D., Yeaton I. J.: A new understanding of Aerial Undulation in Flying Snakes. XXIV ICTAM submission, 2016.
[2] Krishnan A., Socha J. J., Vlachos P. P., Barba L. A.: Lift and wakes of flying snakes. Phys. Fluids 26, 2014.
[3] Holden D., Socha J. J., Cardwell N. D., Vlachos, P. P.: Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape

contributes to gliding performance. J. Exp. Biol. 217:382-394, 2014.

439



XXIV ICTAM, 21-26 August 2016, Montreal, Canada 

 

*Corresponding author. Email: jjsocha@vt.edu 

A NEW UNDERSTANDING OF AERIAL UNDULATION IN FLYING SNAKES 
 

John J. Socha*1, Grant A. Baumgardner2, Shane D. Ross1, Isaac J. Yeaton2 
1Department of Biomedical Engineering & Mechanics, Virginia Tech, Blacksburg, VA 24061, USA 

2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA 
 
SUMMARY  
Flying snakes are perhaps the world’s most unconventional gliders, turning their whole body into a wing and undulating in 
the air. Understanding the snake’s inertial mechanics and aerodynamics requires detailed knowledge of its kinematics, but 
previous data are under-resolved for such analyses. Here, we describe a new experiment of live flying snakes using a unique 
indoor arena at Virginia Tech, adapted for motion-capture recordings of gliders. The results provide the first comprehensive 
description of the snake’s body throughout its trajectory, enabling new modeling of the snake’s mechanics (provided in a 
complimentary presentation).   
 
MOTIVATION 
‘Flying’ snakes glide like no other animal: with no conventional wings or other membranes for flight surfaces, they flatten 
their entire body and send traveling waves from head to tail, giving the appearance of a ribbon swimming through the air 
[1].  Although highly unconventional, these snakes 
glide well for an animal, display surprising control, 
and in some species, can even maneuver [1-5]. In a 
developed glide, flying snakes move downward at a 
shallow angle (typically reaching ~30° from the 
horizon, but as little as 13° has been observed) and 
cover significant horizontal distance.  Their glides 
are stable—the snake is under control, and it can 
even recover from induced instabilities such as a 
forced tumble.  
 
A thorough understanding of animal flight requires 
knowledge of a flyer’s body posture, shape, and 
orientation to the oncoming airflow, and how these 
factors change through time. These features can be 
used to find speed and acceleration, lift and drag 
coefficients (CL and CD), center of mass (CoM), 
center of pressure (CoP, the location of net 
aerodynamic force), and moment of inertia. 
Together, these kinematic and geometric factors 
form the core parameters used to understand how a 
flyer produces aerodynamic forces and how it maintains stability. However, we currently lack sufficient information on the 
snake’s complex body kinematics to perform such analyses with confidence. Here, we address this issue by performing new 
experimental measurements of flying snakes tracked with high fidelity using a large motion-capture system. 
 
BACKGROUND 
A recent study [5] tracked five markers on the flying snake’s body using four cameras (for 3D reconstruction of position), 
representing our best understanding of the snake’s kinematics during a glide. Although the study provided valuable 
information on the snake’s body movements, the data are insufficient for conducting inertial and aerodynamic modeling, for 
the following reasons: 1) There were too few markers to identify the location and curvature of curves on the body, and the 
precise spacing of the body segments. Without this information, the exact posture of the aerial snake remains unknown, 
which is a key piece of information for determining the snake’s aerodynamics. 2) The tail was not marked, and so its 
patterns of movement have not been described. Although the tail does not flatten, it represents ~25% of the total length of 
the snake, and its apparent whip-like motion may create vortices that contribute to force production and therefore play a role 
in balance. 3) The five landmarks alone cannot provide information on the local orientation to air flow, meaning that the 
angles of attack along the body could not be determined. Angle of attack is a critical variable, because lift and drag 
coefficients are highly sensitive to airfoil orientation [6]. The angles of attack of local ‘airfoils’ along the snake’s body may 
in fact vary with position on the body and phase of the undulation cycle. 4) Accelerations were calculated from noisy spatial 
data, a process that amplifies error [7] and resulted in a high uncertainty in understanding the forces on the snake. 
 
 

 
Fig. 1. A view from the launch site in The Cube at Virginia Tech, 
showing the target landing tree and floor covered with padding to 

protect the snakes upon impact. Dimensions, 13x15x9 m. 
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MOTION CAPTURE OF FLYING SNAKES IN THE CUBE AT VIRGINIA TECH 
Recently, we conducted glide experiments using two species of the flying snake Chrysopelea. Our aim was to improve the 
temporal (6X) and spatial (4X) resolutions of the body of the snake during aerial undulation, as compared to previous 
studies, and to provide the first measurements of tail 
motion. We recorded a total of 97 glides from 7 
individuals of C. paradisi and 34 glides from 5 individuals 
of C. ornata in a large indoor arena, “The Cube” at 
Virginia Tech. Snakes were tagged with 12 to 17 infrared-
reflective markers along the trunk and tail, and allowed to 
jump and glide from a height of 8.5 m. Markers were 
tracked using a 23-camera motion-capture system (179 
fps, Qualisys Oqus 500) and two high-speed cameras (500 
fps, Photron APX-RS). We reconstructed body posture 
throughout the glide by fitting global cubic splines to the 
measured points and estimated the airfoil orientation 
through local rotations of a torsion-minimizing frame.. 
Separately from the live animal recordings, we sectioned a 
snake (which had previously died of natural causes) into 
one centimeters segments for weighing, enabling us to 
determine its mass distribution. 
 
RESULTS AND CONCLUSION 
The results from this new experiment using live flying 
snakes provide the first full description of the snake’s 
body kinematics through a full glide trajectory. In contrast 
to all other animal gliders, the snake is highly dynamic, and can be considered as a morphing wing whose kinematic 
characteristics continuously change. Along with velocity and acceleration, these data enable the calculation of time-varying 
variables including body spacing, curvature, angle of attack, and center of mass. We find that sections of the snake are 

highly swept, and that angles of attack are higher than 
expected, with typical values in the range of 40-50° but with 
parts of the body reaching up to 90°. Such values mean that the 
aerodynamic forces on the body can vary dramatically, and 
that at times parts of the body may act as drag-producing bluff 
bodies. We will use the results from this study to accurately 
model the snake’s inertial and aerodynamic mechanics for the 
first time, which will be presented in a complimentary 
presentation [8]. Supported by NSF 1351322 to JJS. 
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Fig. 3. Angle of attack along the body (in snout-vent 

lengths) vs. time for one snake in a single glide. 

 
Fig. 2. The recorded volume, represented by the 

overlapping fields of view of the 23 motion-capture 
cameras. Inset: the marked snake in the air. 
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Summary We investigate the influence of hydrodynamic forces on the synchronization of two eukaryotic flagella by triggering phase-
locking between a controlled external flow and the flagella of C. reinhardtii cells. We directly measure the hydrodynamic forces required for
synchronization between the controlled hydrodynamic forcing and beating flagella. We find these forces to be over an order of magnitude
larger than hydrodynamic forces experienced by C. reinhardtii in physiological conditions. Our results suggest that synchronization is due
instead to coupling through cell internal fibers connecting the flagella inside the cell body. This conclusion is confirmed by observations
of the vfl3 mutant, with impaired mechanical connection between the flagella. For these mutants, we do not observe consistent flagellar
synchronization.

MOTIVATIONS

The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated physicists and biolo-
gists alike. Phase transitions leading to synchronization are observed between and within biological organisms. Recently,
the organized dynamics of micron sized hair-like cell projections called cilia has attracted high levels of interest. The syn-
chronization between the two flagella of C. reinhardtii has been investigated as a model system for flagellar synchronization
and several mechanisms have been proposed. The dominant view has been that synchronization occurs through hydrody-
namic interactions [1, 2] and another recent view suggests that the cell rocking motion causes synchronization by creating
synchrony-restoring hydrodynamic drag on the flagella [3] . Both mechanisms rely on the eukaryotic flagellum responding
to hydrodynamic feedback forces. In this study, we investigate experimentally how eukaryotic flagella respond to external
hydrodynamic forces and quantify the coupling strength between flagella and flow. We also investigate the role of intracellular
coupling of the flagella through direct mechanical interactions [4]. We do this by studying Chlamydomonas vfl3 mutants, with
impaired mechanical connection between the flagella.

EXPERIMENTAL SET UP

Our experimental set up allows us to apply a periodic external flow with a controlled amplitude and frequency. The flow is
generated around a single biflagellated C. reinhardtii cell. The beating of the flagella is imaged through an inverted microscope
and recorded with a sCMOS camera at 838.4 frames per seconds. The flow is generated as follow. A micropipette is inserted
in an open flow chamber through an air-water interface, without direct contact with the walls of the chamber. A single C.
reinhardtii cell is held fixed at the end of the micropipette. The flow chamber itself rests on a piezo-stage which can be
translated. The motion of the piezo generates a relative translation of the flow chamber with respect to the cell, which remains
fixed in the laboratory frame of reference. This is akin to creating a background flow with respect to the cell. We impose
periodic flows of frequency fF = 48− 63Hz and amplitude varying from AF = 0− 10µm, corresponding to flow velocities
UF = 0 − 1360µm.s−1. The largest flows imposed are an order of magnitude higher than flows typically experienced by a
swimming cell, whose free swimming velocity has been measured to be U0 = 110 ± 12µm.s−1, in agreement with previous
studies. Movies of beating flagella are processed and analyzed to extract the phase dynamics of the flagella. In this study, we
track the phase difference between the flagella and the external forcing in order to investigate under which conditions beating
flagella synchronize with the external flow.

RESULTS

Our experiments reveal that Eukaryotic flagella are able to synchronize with an exterior background flow, however the
hydrodynamic forces required to reach synchronization are significantly larger than the forces experienced by flagella in
physiological conditions.

For a given flow amplitude, the frequency of the periodic motion of the piezo-stage was varied around the intrinsic beating
frequency of the flagella f0 recorded in the absence of forcing. For forcing frequencies far from the intrinsic beating frequency
f0, the flagella beat at their own intrinsic frequency and do not phase lock with the external flow. For forcing frequencies within
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Figure 1: (left) Experimental setup. (right) Snapshots representing beating C. reinhardtii. The motion of a particle is due to
the periodic background flow of amplitude 5µm

a small frequency interval centered around f0, we observe that the power and recovery strokes of the flagella perfectly follow
the back and forth motion of the background flow and the flagella phase lock with the external flow. The size of the frequency
interval for which synchronization is triggered increases for larger amplitudes of the piezo-motion.

The synchronization between the external flow and the beating flagella is very well represented by the stochastic Adler
equation, which corresponds to a classic first order model for the dynamics of the phase difference[5]. Fitting our experimental
data with this simple model allows us to quantify the coupling strength ε. We find that the coupling strength linearly increases
with the velocity of the forcing flow ε = µUF /U0. Here UF is the velocity of the forcing flow UF = 2AF fF and µ = 0.51
s−1.

CONCLUSIONS

Our results show that the coupling between external flows and the eukaryotic flagella of C. reinhardtii is weak. For
external flows UF ≈ 1mm.s−1, which are one order of magnitude larger than the free swimming velocity, the coupling
strength is ε ≈ 5Hz. Hence, the flagella will synchronize with a background flow, only when the frequency fF is within 5 Hz
of their intrinsic frequency. For forcing frequencies outside of this frequency range, the eukaryotic flagella of C. reinhardtii
will beat at their own intrinsic frequency despite strong hydrodynamic forcing. We find that the flagella of C. reinhardtii are
weakly coupled with hydrodynamic forces. This suggests that flagellar synchronization in C. reinhardtii does not primarily
rely on hydrodynamic forces and points towards the role of direct mechanical forces transmitted through the cell cortex. To
test this hypothesis we performed experiments with Chlamydomonas vfl3 mutants. In this mutant, the mechanical connection
through the distal striated fiber, between the two basal bodies from which the flagella emerge, is impaired. We recorded
movies for over 20 biflagellated vfl3 cells and investigated the phase dynamics between the two flagella. We never observed
consistent phase-locking between the flagella except for one cell. We measured the average beating frequency of both flagella
and find a difference in intrinsic beating frequency of ∼ 15 Hz with the slower one beating at 48.6 ± 8.8 Hz and the faster
one at 63.1± 6.9 Hz. These results indicate that the mechanical connection between the two flagella plays an important role
in the synchronization of the two flagella of C. reinhardtii.
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Summary The present work reports the emergence of metachronal waves in cilia arrays immersed in a two-fluid environment using a
coupled lattice Boltzmann - Immersed Boundary method. The periciliary layer (PCL) is confined between the wall and the mucus layer. Its
depth is chosen in such a way that the tips of the cilia can penetrate the mucus layer. The cilia are initially set in a random state but quickly
synchronize with their immediate neighbors with a phase shift giving birth to sympleptic or antipleptic metachronal waves, depending on
the strength of the fluid retroaction onto the cilia. Antiplectic waves are found to be the most efficient to transport mucus compared to other
random or synchronised cilia motions.

INTRODUCTION

Fluid propulsion by moving cilia is an universal phenomenon that can be found everywhere in Nature from the locomotion
of micro-organisms to multiple processes in biological organisms at the cellular scale. For examples, in the early human
embryonic development, cilia are responsible for the heart placement on the left side of the chest. Cilia move also the ovules
in the Fallopian tubes, or the nutriments in the brain. In the specific problem of mucociliary clearance, cilia are responsible for
transporting the mucus outside the lungs. In severe respiratory diseases, such as cystic fibrosis or asthma, the number of cilia
clusters is decreased compared to the case of a healthy patient, and many cilia may beat in an abnormal way resulting in a less
efficient transport of mucus. It has been experimentally observed [1] that cilia beat in a synchronised way with a phase shift
between two neighboring cilia, forming a metachronal wave which appears to greatly enhance the transport of mucus. Then,
it is of great importance to understand how this wave emerges and which type of waves provides the most efficient transport.
This work could result in a better understanding of the mucociliary clearance process.

NUMERICAL METHOD

The fluid part is solved on a Cartesian grid using the lattice Boltzmann method with a D3Q19 scheme. The model of
Porter et al. [2] is used to model the fluid-fluid repulsion forces. The cilia are modeled with a set of 20 Lagrangian points,
and the immersed boundary method is used to ensure the no-slip condition along the cilia [5]. The equations of motion for the
cilia are taken from Chatelin [3] and the motion of each cilium is decomposed into a finite number of steps during a period.
If needed, an interpolation between two steps can be done in order to have the right velocity values along the cilia. The code
is suitable for High Performance Calculation using a MPI parallelization. Cilia are set in arrays in a two-fluid layer, with
PCL at the bottom and mucus above it. The PCL depth is set in such a way that the tips of the cilia emerge into the mucus
layer. Periodic boundary conditions are used in the X and Y directions. A Bounce-Back Rule condition is imposed at the
bottom of the domain and a free-slip velocity condition at the top using the "mirror method". The fluid retroaction onto the
cilia is evaluated by projecting the immersed boundary forces calculated at each time step for every Lagrangian points onto
the corresponding velocity vectors, and then the torques are computed. By doing so, only the norm of the velocity vector, but
not its direction, is modified. A new parameter α controls then the intensity of the retroaction: ||~V || = ||~V || ± α|| ~dV ||

RESULTS

Starting from an initially random state, cilia quickly synchronize with their immediate neighbors with a phase shift. With
time, metachronal waves -antipleptic or sympleptic- emerge. The sign of the parameter α, and the ratio h/Lcil of the PCL
depth with regards to the cilia length are two key parameters that determine the kind of emerging waves. Positive (resp.
negative) α-values correspond to sympleptic (resp. antipleptic) waves. A proper value of hPCL/Lcil is needed for the
metachronal waves to emerge. As it can be seen on figures 1(a) and 1(b), cilia move along a plane and so can be subjected to
collisions. But, since a 3D configuration is considered, one can suppose that cilia would actually slip onto each other in reality.
Figure 2 shows the mean mucus velocity evolving with time. It can be seen that, for the same set of parameters, antipleptic
metachronal coordination appears to greatly enhance the transport of mucus compared to random or other synchronized
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(a) (b)

Figure 1: (a) Sympleptic metachronal wave emerging from an array of 64 cilia disposed along the X direction, with α = 3.
Spacing between two cilia is 7 lattice units, and hPCL/Lcil = 0.9. Size of the domain in X, Y, Z is 449, 8, 50. (b) Antipleptic
metachronal wave emerging from an array of 16 cilia disposed along the X direction, with α = −3.5. Spacing between two
cilia is 5 lattice units, and hPCL/Lcil = 0.6. Size of the domain in X, Y, Z is 81, 6, 50. In both cases (a) and (b), Lcil = 22
lattice units and the viscosity ratio is set to 15.

Figure 2: Mean mucus velocity for different kind of coordinations.

collective motions. As for sympleptic metachronal coordination, the mean mucus transport is weaker that in the case of cilia
beating randomly. We explain this by the fact that this kind of synchronization induces large recirculations in the mucus phase.
Moreover, the cilia tips are always in the PCL phase and never emerge into the mucus. Confirming the simulations of Ding et
al. [4] using the regularized Stokeslet method, antiplectic waves are the most efficient for mucus transport.

CONCLUSIONS

An efficient and validated 3D lattice Boltzmann solver coupled to the immersed boundary method has been applied for
the first time to investigate the emergence of metachronal waves and their superiority to transport mucus in a two-phase flow
environment. A simple and efficient method has been applied successfully to take into account the fluid retroaction onto the
cilia. Metachronal waves emerge quickly before the flow reaches a steady state. The efficiency of the metachronal waves
for the mucus transport has been calculated, and antipleptic waves are found to be the most efficient ones compared to other
random or synchronised motions.

The authors acknowledge the support of the Physio-Assist company. The PhD of Sylvain Chateau is funded through the
NSERC discovery grant program.
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Summary The Endothelial Glycocalyx Layer (EGL) is a porous layer that lines the inside of blood vessels. It is of interest as it is believed
to fulfil a number of roles important for vessel health including regulating vessel permeability and as a transducer of mechanical stress from
flowing blood. In order to simulate a physiologically realistic microvessel, we derive an asymptotic treatment of the equations governing
fluid flow and solid deformation in the EGL based on the low permeability limit. We perform simulations on a physiologically realistic
microvessel that has been reconstructed from confocal microscopy data. By comparing results from the full governing equations against
the asymptotic treatment, we show that a physiological microvessel is within the asymptotic regime. We also show that redistribution of
the EGL away from cell peaks can reduce the shear stress experienced by the endothelium. Finally, we consider a more sophisticated EGL
model based on homogenisation.

INTRODUCTION

The Endothelial Glycocalyx Layer (EGL) is a porous macromolecular layer that lines the luminal surfaces of blood ves-
sels.The EGL as it lies at the important interface between flowing blood and the endothelium. The EGL consists of a complex
network of glycoproteins, proteoglycans and glycoaminoglycans and exists in a dynamics equilibrium with blood. In this
paper, we are particularly interested in modelling the EGL in the microvasculature. In microvessels, it is commonly accepted
to be approximately 0.5 µm thick, although some recent studies have found a thicker layer (1.5 µm [1]).

The EGL is hypothesised to be serve a range of functions including as a molecular sieve which regulates trans-endothelial
mass transport, as a barrier that protect vessel walls from harmful levels of fluid shear stress and as a transducer of mechanical
stress from blood flow. The EGL is difficult to study experimentally in the microcirculation not only due to the small scales
involved, but also because of its dynamic nature which makes it sensitive to changes in its environment. As such, we are
interested in modelling the EGL both to gain better understanding of it as well as to potentially inform future experiments.

FORMULATION

Current models of the EGL generally treat microvessels as a coupled system involving the lumen (which can be modelled
as a Stokes flow) and the EGL which is modelled using Biphasic Mixture Theory [2] as shown in figure 1. The endothelium is
treated as an impermeable wall. Based on the typical physical parameters involved in the microcirculation, the fluid flow model
for the EGL reduces to a Brinkman equation. The solid deformation reduces to a linear elasticity problem with additional fluid
pressure gradient and a fluid velocity forcing terms. Previous work in modelling the EGL has used Biphasic Mixture Theory.
However, it has only be considered under simplified geometries (axisymmetric) or in two dimensions. As such, we were
interested in modelling the EGL in a more physiologically realistic microvessel in three dimensions.

The EGL is highly impermeable and this results in a large Brinkman parameter (∼ 103) in the fluid model. This makes
performing simulations on a complex geometry computationally challenging. As such, we developed an asymptotic treatment
around this low permeability limit. In this asymptotic treatment, we find that at leading order, the fluid flow in the lumen
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Figure 1: (Left) A microvessel is modelled as a tube with a non-uniform wall shape. The vessel consists of two regions, the
lumen and the EGL. We consider two distributions of the EGL. One where the EGL that has redistributed to the relatively flat
regions between cell nuclei (α0 = 1.8) and a non-redistributed EGL, which has constant thickness, tmin (α0 = 1). (Right) An
example section of the elastic shear stress results obtained from the asymptotic treatment for a non-redistributed EGL.
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Elastic Stress
EGL Type α0 tmin = 0.25 tmin = 0.5 tmin = 1 tmin = 1.5
Non-Redistributed EGL 1 0.84 0.89 0.97 1.00
Redistributed EGL 1.8 0.79 0.80 0.79 0.76

Fluid Stress (10−3)
EGL Type α0 tmin = 0.25 tmin = 0.5 tmin = 1 tmin = 1.5
Non-Redistributed EGL 1 1.25 1.16 0.99 0.88
Redistributed EGL 1.8 1.11 0.92 0.65 0.48

Table 1: The maximum magnitude of longitudinal shear stress for (Top) elastic and (Bottom) fluid stress. Both tables are
normalised on the solid stress value for a non-redistributed EGL with tmin = 1.5 µm which has a non-dimensional stress
value of 1.708. The values given for the fluid stress are 10−3 smaller than the solid stress.

decouples from the EGL. The fluid flow in the EGL reduces to a core D’Arcy flow with two thin viscous layers. One
thin viscous region adjacent to the lumen-EGL interface allows continuity of traction to be enforced while another at the
endothelium ensures that no-slip is satisfied. The slip velocities that appear at the endothelium of the core D’Arcy flow give
us the fluid shear stress experienced by the endothelium. The modelling of the solid deformation also simplifies as the fluid
velocity is equivalent to a fluid pressure gradient in the D’Arcy flow, allowing the forcing term to be combined.

However, modelling the EGL using a volume averaged approach has some disadvantages. Experiments suggest that the
inner layer of the EGL consists of a periodic hexagonal structure of interlinked filaments that are anchored to the endothelium
in a regular pattern. This suggests that the elastic stress that results from the deformation of the EGL will likely be concentrated
at certain points rather than smeared out over the whole surface as is the case for the Biphasic Mixture Theory treatment. As
such, we are also pursuing a more sophisticated model for the EGL which using homogenisation theory to better represent
that structure details in modelling the EGL.

Numerical Method and Geometry
A bespoke computational program was created using the Boundary Element Method in order to perform the required sim-

ulations. This program allowed the simulation of a microvessel with arbitrary three-dimensional geometry. The microvessel
used in the simulations was reconstructed from a confocal microscopy image of mouse cremaster muscle which was gener-
ously provided by Dr Jennifer Bodkin and Professor Sussan Nourshargh, Queen Mary University of London.

RESULTS

By comparing predictions from the full model against its asymptotic treatment, we find that the microvessel has reached
the asymptotic regime for parameters that lie within the physiological range. Furthermore, we find that the elastic shear
stresses on the endothelium are up to a thousand times greater than the fluid shear stresses, which leads further support to the
hypothesis that the majority of mechanotransduction across the EGL occurs through solid deformation of the EGL.

We also use consider another hypothesis that has been proposed in the literature where it has been suggested that the EGL
redistributes away from the peaks of cells into order to reduce the shear stress experienced by the endothelium. In order to
investigate this, we considered two different distributions of the EGL as shown in figure 1, one where the EGL redistributes
(α0 = 1.8) and one where the EGL has a constant thickness (α0 = 1). An example of these results are shown in figure 1. We
find that redistribution does reduce the shear stress experienced by the endothelium. These results are summarised in table 1
for different values of tmin.

CONCLUSIONS

We show for physiological parameters, microvessels are within the asymptotic regime of low permeability in the EGL. We
also find that our simulations support the hypothesis that the majority of mechanotransduction occurs through the solid phase.
Finally, our simulations show that the redistribution of the EGL does indeed reduce the the shear stress experienced by the
endothelium, especially for a thicker EGL.
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Summary This study focuses on the potential for nonlinear mean streaming to enhance the gas transport during high-frequency ventilation,
a ventilation strategy used in intensive care wards. Direct numerical simulations of the reciprocating flow in a pipe are conducted, as this
basic flow serves as a model of the flow in various sections of the human airway. In particular, the impact of modifying the end conditions
of the pipe, so that there is some asymmetry from one end to the other, is investigated. Preliminary results show that the streaming flow,
which progresses in one direction in the middle of the pipe, and the opposite direction at the sides, is reasonably insensitive to the frequency
of oscillation, but it is heavily dependent on the amplitude.

PROBLEM DESCRIPTION

High-frequency ventilation (HFV) is a ventilation technique used in intensive care wards, particularly for neonatal patients.
It is an invasive process, requiring the use of an endotracheal tube (a tube inserted down the throat of the patient into the
trachea). It completely controls the breathing process, and therefore patients are generally heavily sedated whilst undergoing
HFV.

The defining feature of HFV is the use of very small, but very fast “breaths” - the breathing rate is usually of the order of
10Hz, and because of this the volume of gas that flows into and out of the airway in one breath is much less than the volume
of the airway. This avoids large peak pressures in the airway and lungs, and therefore reduces the risk of lung tissue damage.
However, the transport of Oxygen into the lungs, and Carbon Dioxide out, is not achieved by simply emptying and filling the
lungs each breath. More subtle fluid mechanics phenomena are involved.

A number of candidate phenomena have been proposed, including the Pendeluft effect, Taylor dispersion, turbulent diffu-
sion and nonlinear mean streaming. Basic descriptions of these mechanisms are provided in the reviews of [1, 5, 3].

An obvious candidate for the study of the fundamental flow phenomena in the airways is the reciprocating flow in a straight
pipe. The focus of this study is the potential for mean streaming to occur. In a reciprocating pipe flow, this is a mean flow that
has a net zero mean flux through the pipe, but the mean flow is non-zero. One such mean flow is one that progresses in one
direction in the middle of the pipe, and in the other direction along the sides. In this way, gases can be transported both up
and down the pipe. [2] showed that such a flow can occur if a straight pipe is slightly tapered, i.e, the symmetry from one end
of the pipe to the other is broken. It is clear that the difference in end conditions will influence the strength of this streaming
flow.

Here, a simple end condition is studied, that of a straight pipe with an entry/exit into a large reservoir. The impact of the
presence of the free end on the flow regimes present, and in turn their effect on the mean streaming flow are investigated using
direct numerical simulations and Floquet stability analysis. While the reciprocating flow in a straight pipe appears not to be
well predicted with stability analysis, the vortical flow structures expected to be produced by the free end may be unstable.

METHODOLOGY

The simulations and stability analysis have been run using a well-validated spectral-element method solving the incom-
pressible Navier-Stokes equations [6, 4]. The setup of the problem is a straight circular cross-section pipe that connects two
large reservoirs. Time-dependent Dirichlet boundary boundary conditions are used to control the flow rate into and out of
the reservoirs. The flow rate into one is always equal and opposite to the flow into the other, so that the flow rate at any
instant through the connecting pipe is controlled. The magnitude of the peak flow rate, and the frequency of oscillation
of the flow rate are the parameters of interest. These are expressed non-dimensionally as the Keulegan-Carpenter number
KC = Umax/(2πfD), and the Wommersley number α = fD2/ν where Umax is the maximum cross-sectional mean velocity
in the pipe, f is the frequency of oscillation, D is the pipe diameter, and ν is the kinematic viscosity of the fluid. A no-slip
boundary condition is applied at the pipe wall. Neumann boundary conditions, specifying a zero-normal-gradient, are applied
for the pressure at all boundaries. Initially the simulations are restricted to a two-dimensional, axisymmetric setup.

∗Corresponding author. Email: justin.leontini@gmail.com

448



 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3

 1

 1.5

 2

 2.5

 3

 0  100  200  300  400

KC α

L L

Figure 1: Development length as a function of KC, α = 400 and as a function of α, KC = 0.85. Points are measurements,
lines are best fits. It is clear that for the majority of the range of α tested, KC has a much stronger effect on the development
length.

Figure 2: Colour contours of the mean axial velocity field in one half of the pipe for a case where KC = 2, α = 400. White
is zero, blue (red) is negative (positive). The image shows there is a mean axial velocity to at least 4.5D from the end of the
pipe.

RESULTS AND DISCUSSION

A first indication of the impact of the free end is the measurement of the development length of the flow, L. To ascer-
tain this, the shear stress on the pipe wall was measured. The fully developed flow does not vary along the pipe, so that
∂(∂u/∂r)/∂x = 0 in the fully developed section, where u is the velocity in the axial direction, r is the distance in the radial
direction, and x is the distance in the axial direction. Therefore, the distance from the end of the pipe where ∂(∂u/∂r)/∂x
deviates from zero provides a measure of the distance where there is some impact from the free end, and therefore the distance
at which there is some potential impact of mean streaming.

Figure 1 plots this length for a constant α = 400 as a function of KC, and for a constant KC = 0.85 as a function of α. It
is clear that there is a strong, linear relationship betweenKC and L of the form L = 2.53KC+0.67. The development length
L initially increases quickly with increasing α, but is practically independent of α for α > 200. Figure 2 shows contours of
the mean axial velocity of KC = 2, α = 400. The image shows that there is a non-zero mean axial velocity, and therefore a
streaming flow, to at least 4.5D from the end of the pipe.
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Summary Mucociliary clearance is the transport of a mucus layer in the airways, induced by beating cilia present on the epithelial 
surface. We present a physical analysis on the density and dynamics of cilia required to transport the mucus at a macroscopic scale. We 
used cultures of human bronchial epithelium obtained by biopsies from controls and asthmatic patients. A power law shows that the 
ciliated cell density controls the distance over which a fluid can be transported. The fluid rotates at a constant angular velocity on 
localized circular domains thanks to a local force density that linearly increases with the distance to the domain center, through a local 
control of cilia density and beat directions. subcritical ciliated cell density may explain the impaired clearance in severe asthma, while the 
mucus rheological properties remain unchanged. 
 

INTRODUCTION 
 
   Mucociliary clearance is an essential innate mechanism of lung protection. Chronic respiratory diseases such as severe 
asthma are associated with impaired mucociliary clearance and a dramatic increased susceptibility to infection and 
inflammation. The mucociliary clearance mechanism consists in the circulation of a protective mucus layer at the surface of 
the airways epithelium. Mucus is transported along the airways and out of the lungs whereupon it is swallowed. Mucus is 
propelled by the asymmetric beating of microscopic cilia located on epithelial cells. During its forward motion, a cilium 
performs a fast effective stroke and its tip immersed in mucus propels it forward. The slow recovery stroke of a cilium 
occurs below the mucus layer, within the periciliary layer (2). The mucus velocity is determined by the density and the 
activity of cilia (frequencies, directions, phase synchronization of cilia beats), by their hydrodynamic interactions and by the 
mucus rheological properties. The physics of the integrated mucociliary coupled system has been little studied because 
quantitative in vivo measurements are difficult. Fundamental questions remain open. What density and spatial repartition of 
ciliated cells, what degree of coordination in cilia beat directions, phases and frequencies are required to enable mucus 
transport at the macroscopic scale? We report a detailed physical analysis of ciliary activity, fluid transport and mucociliary 
coupling on human bronchial cultures of primary airway epithelial cells at air–liquid interface (ALI), obtained by biopsies 
from controls and patients with asthma and chronic obstructive pulmonary disease (3). 
 

RESULTS 
 
   We used ALI cultures for 17 controls, 7 patients with mild asthma, 18 patients with severe asthma and 7 patients with 
chronic obstructive pulmonary disease (COPD). Cultures are circular with a diameter of 1.2 cm. By optical microscopy, we 
characterized the density of active ciliated cells (ACCD) and the cilia beat frequency (CBF). We analyzed local and 
macroscopic transport of 1µm-beads and mucus and we correlated the transport to the forces exerted by cilia at the 
epithelium’s surface. Our approach is finally applied to severe asthma and COPD. 
 
Cilia activity  
   ACCD was determined by measuring the fraction of epithelial surface covered by beating ciliated cells. It ranges from 
0% to 70%, with a large variability among different donors and a significant decrease for patients with COPD and severe 
asthma. Removal of the mucus layer on the epithelium surface did not affect the ACCD. The mean value of CBF measured 
at 37°C on healthy donors is 18.2 Hz. We qualitatively explored phase and directional correlation of beats between cilia 
located on a same cell and between cilia located on distant cells. Steric interactions between neighboring cilia impose a 
directional order and a partial phase synchronization of individual cilia on a same cell. Metachronal waves over several cells 
were observed only in zones of high ACCD, where mucus transport was observed over several hundreds of micrometers.  
 
Transport 
   We visualized the motion of native mucus and that of 1µm-beads diluted in PBS and placed on the culture’s surface 
immediately after mucus removal. In several culture chambers we observed a macroscopic rigid-like rotational motion of 
both native viscoelastic mucus and beads/buffer Newtonian fluid over the whole chamber (Fig. 1) (4). In the other culture 
chambers mucus remained still. However, local motions of beads were observed after mucus removal (trajectories shown in 
Fig. 1). In particular circular bead motion was observed on local domains ranging from 10 µm to hundreds of microns. The 
size of the largest circular domain of each culture displays a scaling law over more than 3 orders of magnitude with ACCD, 
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thus showing that the ciliated cell density governs the distance over which fluid transport is possible. The law is valid both 
for native mucus and Newtonian fluid. 

  
 
   

 
 Figure 1.  Left: stacks of images showing the rotational motion of mucus over the hole culture chamber ; 
center:trajectories of latex beads in buffer during localized motions; Right: ACCD for contols, patients ith mild asthma 
(MA), severe astma (SA) and COPD. 
 
Force 
We have analyzed the ciliary dynamics and circular transport within 6 domains in 5 different culture chambers. Each active 
cilium exerts a force on the surface fluid layer. This force has the direction of the cilium beat and its tangential component 
propels the surface layer circularly. We assumed that the force per unit area exerted by cilia at distance r from a circular 
domain center is proportional to  𝜈! < sin𝛼 >!, where α is the angle of the beat direction with the radial direction of the 
circular domain, 𝜈! . We indeed found that 𝜈! .< sin𝛼 >! varies linearly with r. It shows that the epithelium regulates 
cilia orientations and cell differentiation along the radial position of a circular domain to provide a linear variation of the 
force per unit area with r. An affine relationship of the curvilinear velocity of the surface fluid with the force is obtained and 
a tentative interpretation is proposed, based on the balance between the propulsion of mucus during the effective cilia stroke 
and the friction exerted by periciliary layer friction during cilia recovery. During ciliogenesis these local domains grow and 
merge to form a single macroscopic domain extended to the whole sample on which the viscoelastic mucus is transported. 
The merging of these domains requires a gradual spatial reorganization of ciliary beat directions and ACCD. This only 
occurs when the viscoelastic mucus is constantly present on the epithelium’s surface, thus inducing strong shear stresses. 
This suggests that these stresses experienced by cilia are transmitted to the cells that respond actively.  
 
Diseases 
Our approach is applied to ALI cultures from patients with mild and severe asthma and with COPD. Patients with severe 
asthma and COPD present a low ACCD, far beyond the critical value required to transport a surface fluid at the 
macroscopic scale (Fig, 2). No alteration of the rheological properties of mucus is observed. We therefore suggest that the 
origin of the impaired clearance in asthma and COPD comes from a lack of active ciliated cells and no from impaired 
rheological properties of mucus (5). 
 

SUMMARY 
 

   A low-viscosity Newtonian fluid can be transported at the epithelium’s surface on domains whose size obeys a power 
law with ACCD. The Newtonian fluid has a solid-like rotational motion on circular domains. This motion results from the 
linear increase of the tangential force exerted by cilia with their distance to the domain center. The force’s profile is 
provided by a fine spatial regulation of ciliary beat directions and ACCD. A subcritical ACCD may explain the impaired 
mucociliary clearance observed in severe asthma and COPD, while the rheological properties of mucus remain unchanged. 
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Summary In the low Reynolds number regime, actuating a rigid filament periodically at one end leads to a reciprocal motion and hence
produces no propulsive force. Instead if the filament is flexible viscous forces lead to a deformation of the filament and the generation
of a net propulsive force (thrust). For a given actuation frequency and filament length, an optimal bending modulus of the filament can
be determined to produce the largest propulsive force. Here we explore the possibility of further improving the propulsive performance
by allowing variable flexibility along the filament. We demonstrate that by simply dividing a filament into two segments with different
bending rigidity a higher propulsive force can be obtained compared with the case of uniform stiffness. The results suggest the possibility
of exploiting this new degree of freedom for enhancing propulsion at low Reynolds numbers.

INTRODUCTION

Locomotion of microorganisms in fluids is ubiquitous and crucial to many biological processes. In low-Reynolds-number
environments, where inertia effects are negligible and viscous forces dominate, microorganisms have to break time-reversal
symmetry in order to move, because any reciprocal motion results in zero net motion as dictated by the “scallop theorem”.
Some microorganisms propel by rotating rigid helical flagella while others propagate flagellar waves by coordination of dynein
motion proteins. Advances in fabrication technologies at small scales allow the recent rapid development of synthetic micro-
propellers capable of swimming at velocities comparable with microorganisms. In particular, slender flexible filaments have
been employed to enable locomotion at small-scales [1, 2].

A rigid filament driven at one end cannot propel itself because the motion is reciprocal. By introducing flexibility in
the filament, the coupling between the viscous and elastic forces produces deformation along the filament that can lead to
propulsion [4]. For a given actuation frequency and filament length, an optimal bending modulus of the filament can be
determined to produce the largest propulsive force. However, the possibility of further improving the propulsion performance
by allowing variable flexibility along the filament remains largely unexplored. At high Reynolds numbers, flying animals
such as hoverflies and hummingbirds exhibit non-uniform flexibility distribution along their wings, which provides optimal
performance. In this work, we consider the propulsive force generated by a boundary-driven passive filament at low Reynolds
number. The mathematical formulation allows variable bending flexibility, and we consider here arguably one the simplest
case of non-uniform flexibility distribution with two segments of different bending rigidities connected serially together.
Asymptotic analysis in the limit of small actuation amplitudes reveals the advantage of this simple non-uniform flexibility
arrangement over the uniform case.

MATHEMATICAL FORMULATION

We consider an inextensible cylindrical filament of length L and uniform radius a such that a � L, and describe the
elasticity of the filament by the Euler-Bernoulli beam theory. In order to describe the dynamics of the filament, we start from
an energy functional E = 1

2

∫ L

0

(
Ax2

ss + σx2
s

)
ds, where x(s, t) is the filament shape parametrized by the arclength s at time

t, A(s) is the bending rigidity allowed to vary along the filament, and σ(s, t) is a Lagrange multiplier introduced to satisfy
the local inextensibility condition [5]. The elastic force density along the filament can then be obtained by taking a variational
derivative, felastic = −δE/δx = −∂s

[
∂s(Aκ)n− (σ +Aκ2)t

]
, where the subscript s denotes derivative with respect to the

arclength, κ = ||xss|| is the local curvature, and t and n are the local tangent and normal vectors respectively. We remark that
we have kept bending rigidity generally as a function of s instead of a uniform value as usually done in previous studies.

At low Reynolds numbers, the force acting on a slender filament can be related to its velocity relative to the fluid, and to
leading-order in small filament aspect ratio, results in a purely local theory called the resistive force theory, which states that the
viscous force per unit length on the body at a point is related linearly to the local filament velocity, fvis = −

(
ξ⊥nn+ ξ‖tt

)
·xt,

where the hydrodynamics at this order is characterized by the tangential ξ‖ and normal ξ⊥ resistive coefficients.
The local force balance between the viscous and elastic forces together with the local inextensibility condition

fvis + felastic = 0, (1)
xts · xs = 0, (2)

∗Email: gelfring@mech.ubc.ca
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result in a set of coupled nonlinear partial differential equations governing the evolution of the filament shape x(s, t) and
Lagrange multiplier σ(s, t).

We consider a torque-free harmonic oscillation at one end of the filament (s = 0): y(0, t) = y0 sinωt and leave the
other end (s = L) force-free and torque-free. To make analytical progress, we perform asymptotic analysis in the small-
amplitude oscillation limit, ε = y0/L� 1, to determine order by order the filament shape, and the propulsive force generated
by the actuation can be obtained by integrating the viscous force along the filament averaged over a period of actuation,
Fp = −

〈
ex ·

∫ L

0
fvis ds

〉
.

RESULTS AND DISCUSSION

The dimensionless propulsive force occurs at O(ε2): Fp/(L
2ξ⊥ω) ∼ ε2F2. For the classical case of uniform bending

rigidity (A = constant) along the filament, the variation of propulsive force as a function of a dimensionless number comparing
the magnitude of viscous and elastic forces, the sperm number Sp = L(ξ⊥ω/A)

1/4, is shown in Fig. 1(a). As indicated by
the two blue dots in the proximity of the maximum propulsive force in Fig. 1(a), one can have deforming filaments of two
different sperm numbers generating the same propulsive force. In other words, for a given actuation frequency and filament
length one can generate the same propulsive thrust with filaments of two different bending rigidities (A1 and A2).
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Figure 1: (a) Propulsive thrust generated by a filament of uniform bending rigidity actuated at one end [3]. (b) Schematic
of a filament consisting of two segments of different bending rigidities (A1 and A2) connected serially and β = A2/A1. (c)
Propulsive thrust generated by two-segment filaments as function of α at different values of bending rigidity ratio β. For
β = 0.24 (more flexible materials at the actuation end), the maximum propulsive force generated is greater than the maximum
achievable thrust with a filament of uniform flexibility (see figure 1(a); also indicated by horizontal dotted line in figure 1(c)).

We probe the potential advantages of non-uniform flexibility by connecting the filaments with bending rigidities A1 and
A2 serially as shown in Fig. 1(b). For a given ratio of bending flexibility β = A2/A1, by varying the relative portion α of
the two segments, a non-monotonic variation of the propulsive force is observed (Fig. 1(c), β = 0.24, orange solid line). The
limits α = 0, 1 reduce to the case of uniform flexibility (with a propulsive force F2 = 0.09), and it is interesting to notice
that the propulsive force generated by a two-component filament can be greater than the case of uniform one when α & 0.4.
Furthermore, by putting a more flexible material at the actuation end i.e. β > 1 (e.g. β = 4.2, dashed line, Fig. 1(c)), the
propulsive force generated by such an arrangement can be greater than the maximum possible propulsive thrust achievable by
a filament with uniform bending rigidity (see Fig. 1(a) and dotted line in Fig. 1(c)). The two-segment arrangement considered
here is arguably one of the simplest scenario of non-uniform flexibility, and it already demonstrates an enhancement in the
propulsive force compared with the uniform case. This points to an optimization of this new degree of freedom for the design
of synthetic flexible micro-propellers.
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DEVELOPMENT OF A POROUS MEDIA MODEL FOR FLOW IN ALVEOLATED DUCTS
WITHIN THE HUMAN LUNG
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Summary The flow of air in an alveolated duct, which is the main porous structure found within the human lung, has been considered. A
model is developed based on the method of volume-averaging, which is used to derive macroscopic governing equations for a large number
of alveolated ducts. In order to close the volume-averaged equations, a set of partial equations is derived in terms of transformed variables
and is solved over a unit-cell of the duct to obtain the relevant effective flow parameter, namely the duct permeability. One-dimensional
analytical solutions have then been derived to verify the model in comparison to direct computational fluid dynamics.

INTRODUCTION

Simulation of flow in the human lung is of interest because it can provide details of the flow that cannot be measured in
vivo. Knowledge of the flow patterns within the lung are of practical importance because of the potential impacts on respiratory
drug delivery, particle deposition, and our general understanding of the relationship between lung structure and function [1].
The internal structure of the lung consists of a network of bifurcating airways that become smaller in both length and diameter
with each subsequent bifurcation. Each level of bifurcation is referred to as an airway generation. The first sixteen generations
are known as the conducting airways which take no part in the gas exchange process, but lead the air to the respiratory region
of the lung [2]. Gas exchange occurs by passive diffusion through the thin walls of small sacs, known as alveoli, which line
the airways in the respiratory region (17th generation and beyond) [3, 2]. The ducts surrounded with alveoli are known as
alveolated ducts.

Simulating flow in the lung is particularly challenging due to the large number of flow paths and the wide range of length
scales spanned by the various components of its structure. The zeroth generation of the airway tree is the trachea, which has
a typical diameter of about two centimetres [3]. At each of the approximately 23 bifurcations, the diameter of the subsequent
generation is reduced by a factor of approximately 21/3, leading to diameters as small as a fraction of a millimetre [3]. There
are approximately 300 million alveolar sacs in the human lung, each of which are about 0.3 mm in diameter [3].

Given the porous nature of the lung, it is the goal of this work to develop a porous media model for air flow in the lung
parenchyma using the method of volume-averaging [4], which yields a general model that is applicable to three-dimensional
flows and is readily coupled with models for the upper airways. Closure of the resulting volume-averaged momentum equation
is considered theoretically, which results in a closure problem that can be solved numerically on a periodic unit-cell of the
parenchyma to determine the relevant effective properties, shown in this case to be solely the permeability, or the resistance
to flow. As the majority of the lung parenchyma is made up of alveolated ducts, this is taken as the pore geometry of interest.
Results for the permeability are obtained using a realistic geometric idealization of an alveolated duct, shown in Fig. 1a. The
resulting volume-averaged model is then compared to direct pore-level simulations of an alveolated duct with moving walls
and some one-dimensional results are presented which are also compared to direct CFD calculations.

(a) (b)

Figure 1: A schematic diagram of (a) an idealized geometric model of an alveolated duct and (b) a periodic unit-cell of the
idealized geometric model of an alveolated duct.
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THEORETICAL MODEL

The theoretical model is based on the volume-averaged form of the governing continuity and Navier-Stokes equations,
given respectively as

∇ · 〈u〉 = − 1

V

∫
Afs(t)

u · nfsdA (1)

and

ρf

[
∂〈u〉
∂t

+∇ ·
(
1

ε
〈u〉〈u〉

)]
= −ε∇〈p〉f + µf∇2〈u〉+ 1

V

∫
Afs(t)

(−p̃nfs + µf∇ũ · nfs) dA− ρf∇ · 〈ũũ〉, (2)

respectively, where u is the fluid velocity vector, p is the pressure, ρf is the fluid density, t is time, and µf is the fluid dynamic
viscosity, Afs(t) is the area of intersection between the fluid and solid volumes, Vf and Vs. The unit-normal vector directed
from the fluid to solid phase on Afs(t) is denoted nfs. Spatial deviations are denoted, for a generic scalar φ, as φ̃ = φ−〈φ〉f .

In this study we treat in detail the integral terms appearing on the right sides of Eqs. 1 and 2 by deriving transport equations
for the spatial deviation terms and, based on dimensional analysis and appropriate transformations, deriving a set of “closure”
partial differential equations that can be solved over a unit cell of the porous material to put the integral terms in a closed from,
in terms of the duct permeability.

RESULTS

Based on a one-dimensional form of the closed-form governing equations, an analytical solution is derived and compared
with direct computational simulations of an alveolated duct with walls oscillating periodically in order to expand and contract
the domain in a breathing motion. Results show agreement within 2% for all cases, with the error increasing with the amplitude
of wall motion. For amplitudes typical of actual lung motions, agreement was well within 1%. Plots of the one-dimensional
solutions for dimensionless velocity and pressure are shown in Fig. 2.
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Figure 2: A plot of (a) the dimensionless velocity and (b) the difference between the dimensionless pressure and the di-
mensionless alveolar pressure, p∗ − p∗a, as functions of the dimensionless coordinate x∗ for initial Womersley and Reynolds
numbers (at t∗ = 0) of Wo = ReDH

= 0.01.

CONCLUSIONS

A porous media model for flow in alveolated ducts within the human lung has been developed using the theory of volume
averaging. A set of closure partial differential equations has been derived and solved within a unit cell representing an alveo-
lated duct to obtain the duct permeability. Based on analytical one-dimensional solutions, compared with direct computational
fluid dynamics simulations, the model has been verified.
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A 2D MULTIRING SIMULATION OF BLOOD FLOW IN ARTERIES
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Summary We propose a novel 2D multiring numerical model to compute blood flow in arteries, inspired from the multilayer shallow water
theory. This model is based on a long wave approximation of the Navier-Stokes equations and requires no a priori estimation, contrary to
classical 1D models. The wall shear stress (WSS), the axial velocity profiles and the flow rate computed with the multiring model are in
good agreement with the linear Womersley solution whereas classical 1D models’ solutions are much less accurate.

INTRODUCTION

In recent years, the numerical simulation of the propagation of the pressure pulse in the human systemic network has been
intensively studied to help doctors and medical practitioners better understand and predict the hemodynamics of the human
body. However, it is difficult and costly to compute accurate numerical solutions due to the complexity of the equations, the
size of the network and the strong interactions between the flow and the mechanics of the arterial wall. Using simplifying
assumptions (axisymmetric artery, long wavelength compared to the radius of the artery, incompressible Newtonian fluid)
Womersley [1] obtained the following simplified boundary-layer-like system of equations describing the conservation of mass
and momentum of blood flow in an artery:

∂ur
∂r

+
ur
r

+
∂uz
∂z

= 0

∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

= −1

ρ

∂p

∂z
+ ν

(
∂2uz
∂r2

+
1

r

∂uz
∂r

)
p (z, t) = p0 +K (R (x, t)−R0 (x))

,


ur(r = R, z, t) =

∂R

∂t
uz(r = R, z, t) = 0

∂ur
∂r

(r = 0, z, t) = 0 ,

(1)

whereR0, R andK are respectively the radius at rest, the instantaneous radius and the rigidity of the artery. By integrating (1)
over the cross-section of the artery, Hughes and Lubliner [3] obtained a simple conservative one-dimensional (1D) system of
equations. This 1D system can be solve using efficient and robust numerical methods that allow to compute accurate pressure
and flow waveforms in large networks with minimal costs [6]. Unfortunately, information on the axial velocity profile is lost
in the integration process and additional assumptions are required to estimate the friction and advection coefficients of the 1D
model [3, 6]. To overcome those difficulties, we solve (1) with a novel two-dimensional (2D) axisymmetric method taking
into account fluid-structure interactions and requiring no approximation contrary to previously existing 2D methods [2, 4]. We
show that we correctly compute, up to the degree of approximation, the axial velocity profile and the wall shear stress (WSS)
of the classical Womersley solution [1].

METHODS

We decompose each artery in a series of concentric rings (see figure (1)), inspired by the multilayer theory introduced by
Audusse [5] in the framework of shallow water equations. We integrate (1) over each ring and obtain the following equations
of mass and momentum conservation in the ring j, similar to those of the 1D theory, with additional source terms Gj± 1

2

representing the mass exchanges between the neighboring rings j − 1 and j + 1:
∂Aj

∂t
+
∂Qj

∂z
= Gj+ 1

2
−Gj− 1

2
, Gj± 1

2
=
∂Aj± 1

2

∂t
+ uz j± 1

2

∂Aj± 1
2

∂z
− 2πrj± 1

2
ur,j± 1

2

∂Qj
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∂
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Q2
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2
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2
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ρ
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+ 2πν

[r ∂uz
∂r

]
r
j+1

2

−
[
r
∂uz
∂r

]
r
j− 1

2

 ,

(2)

where Qj and Aj are respectively the flow rate and the cross section of the ring j. This system of equations is a natural
discretization of (1) in the radial direction. Indeed, while preserving the dependence in the axial (z) and radial (r) variables,
this approach does not require any a priori estimation, contrary to usual 1D approaches, and benefits from the simplicity and
robustness of the 1D theory, for which stable shock capturing numerical schemes exist.
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Figure 1: Sketch of the discretization of an artery in a series of concentric rings and a shape of an axial velocity profile (blue).

RESULTS

We compared our multiring numerical results to the linear Womersley analytic solution [1] for different Womersley num-
bers α (0.1 < α < 20) and found good agreement between both solutions for every α. As an example, we compare on figure
(2) the results obtained for α = 10 with the analytic Womersley solution (black line), the multiring model (blue line) and two
1D models for which the advection coefficient was set to 1 and two classical values of the 1D friction coefficient Cf = γπν
were used: γ1 = 8 (red line) and γ2 = 22 (green line). The multiring solutions for the WSS (figure (2) left) and the flow
rate (figure (2) right) at t = 6 s almost perfectly coincide with the analytic Womersley solutions, whereas both 1D models’
solutions are less accurate for both the amplitude and propagation speed of the wave forms. In figure (2) center, we also show
a good agreement between the multiring and the analytic solutions for the axial velocity profiles at different times.
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Figure 2: Comparison between the Womersley (black), the multiring (blue) (100 layers, 500 cells) and two 1D model solutions
(500 cells, Cf = 8πν (red) and Cf = 22πν (green)) for α = 10: (Left) Wall shear stress τw (z, t = 6 s) Pa; (Center) Velocity
profiles U (r, z = 1000 cm, t) cm.s−1 for t ∈ {8.4 s, 8.6 s, 8.96 s, 9.5 s} ; (Right) Flow rate Q (z, t = 6 s) cm3.s−1.

CONCLUSIONS AND PERSPECTIVES

We have presented a novel 2D axisymmetric multiring method to solve blood flow in arteries, taking into account fluid-
structure interactions. This model is a correct discretization of (1), in comparison to 1D models and other 2D approaches that
are biased by the required estimation of the shape of the velocity profile. The numerical results are in good agreement with the
linear Womersley solution of (1). Furthermore, due to its similarity with the 1D models, it can be easily inserted inside a large
1D network computation, to locally obtain an accurate description of the blood flow in stenoses or aneurysms. This model
can therefore provide valuable information to doctors and medical practitioners and can also be used to give an a posteriori
estimation of the coefficients required by the 1D model. These last points are the subject of future works.
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Summary A bacterial cell moves in a ballistic manner for a certain time period (run), and then changes its direction randomly (tumble).  
When a cell senses that it has moved to higher attractant chemical concentration, it reduces the frequency of the direction change. Collectively, 
this modulation produces bacterial chemotactic response, in which the cells accumulate around the chemoattractant source.  
In this study, a discrete biased random walk model based on bacterial chemotaxis was investigated. A steady distribution of cells was 
analytically obtained in one dimensional model. In this model, the cells move along a uniformly spaced number line at the rate of one interval 
per time step.  A chemical attractant source is placed at the origin. The probability mass function of cells decays with the distance from the 
source as a geometric sequence.  We confirmed the distribution by Monte Carlo simulations. 
 

INTRODUCTION 

 
   Bacterial chemotaxis occurs via a sequence of runs and tumbles (e.g. [1], [2]). A “run” refers to a smooth swimming 
motion, and a “tumble” indicates a directional change. In aqueous media, run and tumble motions are randomized. However, 
near a chemical attractant, a cell reduces the frequency of its tumbles [3], which biases its motion toward the source. 

A bacterial cell is too small to sense the spatial distribution of the chemical attractant at a given time using two or more 
sensors [4]. Thus, bacterial chemotactic behavior results from three distinct mechanisms. 

First, by moving a certain distance, the bacterium can detect whether it is approaching or receding from the 
chemoattractant source. The cell senses and compares the chemical concentration at two consecutive times. If the 
concentration has increased or decreased at the later time, the cell has approached or receded from the source, respectively. 
Second, the cell randomly determines its direction after a tumble. The direction is changed by fluid dynamic interactions 
between the deforming flagella and the cell body. Although the process of tumbling is well understood [5], the prediction of 
tumbling remains a complex fluid dynamics problem [6]. A bacterial cell cannot choose a proper posture relative to the 
source. Third, the cell does not stop when it detects the maximal concentration. Because the cell might be smaller than the 
spatial variability of the concentration distribution, continued motion is a suitable strategy to avoid trapping in local 
concentration maxima. 

We proposed a one-dimensional discrete model of bacterial chemotaxis [7]. A cell moves along a number line, as in the 
classical random walk model [8]. The model applies two simple rules based on real chemotactic behavior: if a cell 
approaches the origin in one time step, it moves in the same direction in the next time step, and if a cell recedes from the 
origin in one time step, it randomly moves right or left with a probability of 1/2. When many cells initially reside at the 
origin, their biased random motions following these rules eventually lead to a steady distribution. 

In the present study, we introduce a parameter  denoting the intensity of the bias, into our discrete model. The 
previous model corresponds to the most intense bias (). 
 

DISCRETE BIASED RANDOM WALK 

 

One dimensional model 

   Bacterial cells move along a number line sectioned at uniform intervals, at a rate of one interval per time step. The 
chemical attractant is sourced from the origin. 
   The direction of cell movement in each time step is dictated by two rules 
(see Fig. 1): (a) If a cell has receded from the origin in the previous time step, 
it moves to the left or right with the same probability (1/2). (b) If the cell has 
approached the origin in the previous time step, it either continues in the 
same direction with probability  or randomly selects a new direction with 
probability 1/2. The total probability that a cell will maintain or reverse its 
direction is (1+ and (1-, respectively. When , this model 
reduces to the classical random walk. 

Rule (a) corresponds to a tumbling motion, wherein the cell randomly 
changes its swimming direction. Rule (b) corresponds to the reduction in 
tumbling frequency when the cell senses a higher concentration of attractant 
chemical. 

 
Steady distribution 

 
Fig. 1.  One-dimensional discrete biased 
random model.  In each time step, the 
cell moves along a number line by one 
interval to the left or right. 
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   Figure 2 indicates the probability propagation along 
the positive region of the number line. L  and R  
denote that the probability propagates from the left and 
right sides, respectively. 1n

iL  depends on the 
probability at position 1i  at time n . The probability 

n
iL 1  corresponds to the cell’s motion from the left side, 

wherein the cell previously receded from the origin. 
Therefore, the cell will tumble and n

iL 1  propagates to 
1

2


n
iR  or 1n

iL  with equal probability (1/2). The 
probability n

iR 1  corresponds to the cell’s motion from 
the right side, wherein the cell previously approached 
the origin. The cell will continue toward the origin with 
probability  and will tumble with probability 1-. 1

1


n
iR  propagates to the left or right with probabilities of (1+ or (1-

, respectively (see Fig. 2). Thus we have 
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From these relations, we get the probability mass function at position )( iii RLp   in steady state as 

 i
ip




1
1 , 

assuming that ip  is a geometric sequence. 
 
Monte Carlo simulation 

The previous rules were implemented in a simulation 
of 106 cells. Two initial distributions were adopted: (i) 
all cells were gathered at the origin, (ii) cells were 
randomly distributed in the region 30i .Figure 3 
plots the spatial distributions of the cells at 
approximately 300 time steps. Under initial condition (i), 
two converged distributions at even and odd time steps 
alternate as time elapses. Therefore, the average of the 
two distributions is plotted in Fig. 3. Both the initial 
distributions appear to converge to a single distribution. Each distribution is a geometric sequence whose common ratio is 
1/(1+). 
 

CONCLUSIONS 
 

   A discrete biased random walk model based on bacterial chemotaxis was proposed. The bias intensity  introduced into this 
model may indicate the strength of bacterial chemotaxis. To verify this idea, we need to compare our present results with 
experimental data of bacterial cell distributions around a chemoattractant. 

This work was supported by JSPS KAKENHI Grant Number 15K05796. 
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Fig. 2.  Time-position diagram of probability mass function 
along the right half of the number line.  The chemo-
attractant is sourced from the left of this diagram. 

 
Fig. 3.  Spatial distribution of cells calculated by Monte 
Carlo simulation. 
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Summary The vortex structures and hydrodynamic performance of a tadpole undulating in the wake of a D-section cylinder are 
studied by solving the Navier-Stokes equations for the unsteady incompressible viscous flow. It is found that three factors can 
contribute to thrust of the tadpole behind a D-cylinder. Tadpole's relative undulating frequency and the distance between the D-
cylinder and the tadpole have a great influence on both vortex structure and hydrodynamic performance. At different undulating 
frequency, a tadpole may break or dodge vortices from the D-cylinder, corresponding to the performance of the tadpole. As the 
tadpole is located behind the D-cylinder at different distances, three typical kinds of wake are observed. 
 
 

INTRODUCTION 

 
   Unsteady water flows are common in nature. There are always vortices in the living environment of aquatic animals. 
According to the researches, aquatic animals are usually expert in taking advantages of the surrounding vortices. By 
adjusting the body to control the flow around, aquatic animals are able to improve swimming abilities. 
   Understanding how fish extract energy from environmental vortices is a topic of considerable interest. Studies on the 
interaction between fish and vortices shedding from a cylinder have provided a focused way to begin to understand how fish 
swim in complex flows. Previous studies[1,2] revealed that the vortex wakes may lead to a passive propulsion to the dead fish 
in the wake. Liao et al.[3-5] compared fish swimming in the wake of a D-cylinder to those swimming in free stream. It was 
shown that fish behind a D-cylinder adopts novel body kinematics behind a cylinder, termed the Kármán gait. The fish 
changes its undulating frequency and wavelength to synchronize the vortices shedding from the D-cylinder, slaloming 
between vortices shedding from the D-cylinder rather than swimming through them. On the other hand, numerical 
simulations on fish interacting with the environmental vortices have also been carried out. Shao and Pan[6] investigated the 
hydrodynamic performance of an undulating foil in vortex wakes of D-cylinder. The wake area can be divided into three 
domains: suction domain, thrust enhancing domain, and weak influence domain.  
   There are many experimental and numerical researches about how fish extract energy from environmental vortices. 
However, much less is known about the interaction between the tadpole and its surroundings. As the larva of the frogs and 
toads, the abrupt transition from their globose bodies to the laterally compressed tails make them seem less ‘streamlined’[15]. 
In fact, the undulating mode of a tadpole is different from that of fish because of its blunt body[7,8]. The interaction between 
the tadpole and its surroundings would be more complicated than that of fish. 
   The aim of this paper is to numerically study the vortex structure and hydrodynamic performance of a tadpole 
undulating in the wake of a D-section cylinder. In addition, the effects of various controlling parameters on hydrodynamic 
performance of an actively undulating tadpole model with no forward motion are also investigated. 
 

METHODS 

According to the observed data[9], the tadpole model is built. Just like other studies, a tadpole undulates actively 
without forward motion in the wake of a stationary D-section cylinder.  

The finite volume method is used to solve the Navier-Stokes equations for the unsteady incompressible viscous flow. 
The PIMPLE method is specially introduced to solve the unsteady flow. A special dynamic mesh fitting deforming body 
surface at each time step is employed to match tadpole’s high-amplitude periodic motion. 
 

RESULTS AND DISCUSSION 

Propulsive mechanism 

Here we compare the tadpole swimming in different motions, such as a non-undulating tadpole gliding in the cylinder 
wake, an undulating tadpole swimming either in free stream or in vortex wakes. The undulating tadpole in the cylinder wake 
can gain the highest thrust. Besides, as the non-undulating tadpole glides in the wake of a cylinder, the tadpole is also 
subject to a weak thrust. It is found that three main factors can contribute to thrust of the tadpole behind a D-cylinder: the 
backward jet in the wake, the local reverse flows on the tadpole surface and the suction force caused by the passing vortices. 
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Effect of relative undulating frequency 

Table.1 Parameters and hydrodynamic performance of the cases with different frequencies   
Cases Re fL/U S/L D/L       

UW1 2000 0.3 1 0.3 0.1386 0.0049 
UW2 2000 0.6410 1 0.3 -0.0124 0.0002 
UW3 2000 0.7 1 0.3 0.2219 0.0144 
UW 2000 2 1 0.3 0.7329 0.1572 

From Table.1, mean thrust coeffecient    and mean power coeffecient    vary in large range with different 
undulating frequency. Among all the cases in Table.1, the case UW2, in which the tadpole undulates at the frequency just as 
same as the vortex shedding frequency of D-cylinder, is quite different from the others. There are no thrust produced and 
little swimming cost in the case UW2. While in the other cases, both thrust and power consumption increase with the 
relative frequency increasing. In fact, different hydrodynamic performances are caused by different vortex structures in flow 
field. In this study, it is found that when the vortices shedding from the D-cylinder reach the area around tadpole’s tail tip, 
the tadpole may dodge vortices or break them. According to this, the motion of the tadpole can be divided into three types: 
the dodging mode(Fig.1), the breaking mode(Fig.2) and the dodging mode alternates with the breaking mode. With a 
breaking mode, tadpole has higher mean thrust coefficient and mean power thrust coefficient, which means the tadpole 
generates larger thrust but also does more work to maintain the undulating swimming. On the contrary, with a dodging 
mode, the tadpole is subject to low thrust or even drag. However, it can maintain undulating swimming in the wake with 
very little energy consumption. 

         
           (a) Vorticity contour             (b) Velocity contour                   (a) Vorticity contour             (b) Velocity contou 
               Fig.1 Flow field of the dodging mode                                Fig.2 Flow field of the breaking mode 
Effect of the distance between D-cylinder and the tadpole 

   Three kinds of the wake are observed at different distances between the D-cylinder and the tadpole. When undulating in 
a relative high frequency, a tadpole has higher mean thrust coefficients and mean power coefficients behind a D-cylinder 
than that in free stream. When the distance meets the requirement that vortices shed from the D-cylinder and form an 
incomplete Kármán vortex street, the vorticity magnitude of vortices is the highest, resulting in the strongest local reverse 
flows, the highest suction force and the strongest local high-speed jet stream in the wake. All these contribute to the highest 
thrust. In the study, when the distance between the D-cylinder and the tadpole is 0.6 tadpole’s length, the tadpole has the 
highest mean thrust coefficient and mean power coefficient. 
 

CONCLUSIONS 

   In this study, two-dimensional simulations have been performed to investigate the tadpole undulating swimming in the wake 
of a D-sector cylinder. The vortex structure of the flow filed and the hydrodynamic performance of the tadpole is studied.  
   When the tadpole undulates in the wake of the D-cylinder, three main reasons contribute to the increase of the thrust. They 
are the backward jet in the wake, the local reverse flows on the tadpole surface and the suction force caused by pressure 
difference between the head and the tail tip of the tadpole. 
   The relative undulating frequency of the tadpole has great influences on the hydrodynamic performance. At different 
undulating frequency, the tadpole breaks or dodges the vortices from the D-cylinder. In general, the breaking mode provides 
great thrust and the dodging mode save energy for tadpole undulating swimming. 
   When the tadpole is located at different distances behind the D-cylinder, three typical kinds of wake are observed, which are 
classified by the vortex structures behind the D-cylinder. When an incomplete Kármán vortex street forms between the D-
cylinder and the tadpole, the tadpole is subject to the highest thrust. 
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Summary It is known that the suspension of Euglena gracilis exhibits macroscopic spatially localized patterns when it is illuminated from
below with strong light. Such structure is hierarchical ranging from µm scale of microorganism to cm scale of the convection cells. We
discuss the localization mechanism in terms of the photosensitive behavior of Euglena gracilis in both scales. Individual’s response to
light gradient is analyzed experimentally, and the result is related to the flux of the number density in macroscopic scale to construct a
hydrodynamic model. The model has spatially localized steady solutions, and the bifurcation structure has a bistable region, which often
observed in spatially localized structures in dissipative systems.

INTRODUCTION

Euglena gracilis is a photosensitive microorganism with flagella; the body is approximately 10 µm wide and 50-100
µm long(Fig.1(a)). They can swim by the flagellum, and the statistical property of the motion depends on the surrounding
light environment. In particular, they swim away from the light source if the light intensity is stronger than a critical value
(negative phototaxis), while forward to the light source if the light intensity is less than the critical value (positive phototaxis).

When a suspension of Euglena gracilis is illuminated from the bottom with strong light, they form ordered convection
patterns called bioconvection (Fig.1(b)). Unlike other bioconvection patterns known so far, the bioconvection pattern of
Euglena gracilis is peculiar because it is spatially localized[1]. Shoji et al.[2] succeeded in obtaining the elementary structures
of the localized bioconvection. The aim of this paper is to investigate the hierarchical structure of the localized bioconvection
pattern and its dynamical property to understand the localization mechanism.

EXPERIMENTS

A key mechanism of the localization is the photomovement of Euglena gracilis due to the light intensity gradient. We
will show experimental results of the characteristics in both microscopic and macroscopic scales. In microscopic motion, we
track the orbit of individuals in the light gradient environment to construct a statistical model. A simple Markov model is
constructed to explain the response to the light gradient, and the equilibrium state of the model agrees with the observation.
In macroscopic motion, number density flux of the suspension of the microorganism has been measured for light intensity
gradient .

For experiments of the macroscopic convection pattern, we prepared an annular container to suppress the complex patterns
in the radial direction and to exclude the wall effect in the azimuthal direction. So far, two types of localized convection
patterns were observed[2]. One pattern consists of a single region of high microorganism density sandwiched with two
counter-rotating convection rolls (‘bioconvection unit’). Another pattern is a spatially localized traveling wave, a wave of high
density region in confined region. These two typical patterns are similar to those observed in thermal convection of binary fluid
mixtures (e.g., mixtures of water and alcohol): so-called “convecton” and “localized traveling wave”, respectively[3], although
physical mechanisms of the binary fluid convection is the (positive) buoyancy and the Soret effect, which are different from
the bioconvection. For the bioconvection unit, several bound states are observed. In particular, two (or three) bioconvection
units exists for a long time before disappearing one by one. Such interaction of bioconvection units will be discussed.

NUMERICAL MODEL

Based on the experimental results, we construct a hydrodynamic model in which the number density flux depends on the
light intensity gradient. The model reproduces a localized bioconvection pattern similar to the bioconvection unit. Linear
stability analysis indicates that the effect of the light gradient on the number density flux greatly shifts the critical value of the
onset of the convection. The bifurcation analysis using a branch-tracking technique reveals that a bistability region is observed
when the aspect ratio Γ is large (Γ = 8), while such region is not obtained when Γ is small (Γ = 2).

∗Corresponding author. Email: makoto@mis.hiroshima-u.ac.jp
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CONCLUDING REMARKS

The experimental results of the localized convection patterns suggests that the localized patterns are similar to those in the
binary fluid convection. The bioconvection unit, a minimal localized structure, and their dynamics are similar to those in the
reaction-diffusion systems. Such similarities are not directly owing to the similarities of the physical mechanism. However,
the mathematical similarities are suggested to explain the similarities. Bistability is the first evidence of the conjecture and the
further research is needed. Interaction between the localized bioconvections is an interesting topic and a theoretical approach
based on the dynamical system theory may be useful[4, 5].

(a) (b)

(c)

Figure 1: (a) Euglena gracilis. (b) Localized convection pattern of suspension of Euglena gracilis illuminated below. (c)
Steady solution representing bioconvection unit.
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Summary During certain severe medical situations, the only option for treatment is to use a heart and lung machine. This is carried out by
temporarily relieve the heart and lungs to allow for recovery. One of the main issues associated with the treatment is the possible risk of
blood clot formation within the machine. During such an event, the entire system needs to be changed. In this study, the flow in the pump,
cannula as well as tubing of such a system is investigated. The main motivation is to understand the reason for the formation of blood clots
as well as identify possible sites where blood coagulation may be initiated.

INTRODUCTION

Generally, all critical organs in the human body have an excessive capacity to manage severe situations. However, during
certain operations or serious illnesses, extra support may be needed to maintain life. When organ failure is temporary and
no other options exist, artificial replacements may be used during the time needed for recovery. During the last decades, the
so-called ”heart and lung machines” have been developed in which a mechanical system manages the blood pumping of the
heart and the oxygenating function of the lungs. The Extra Corporal Membrane Oxygenator (ECMO) system belongs to this
group of mechanical life support systems. Introduced by Bartlett et al [1] in 1976, the function of the heart and lung is replaced
by a pump and a membrane oxygenator, respectively.

Although known to enable treatment in situations where no other alternatives are available, there are complications associ-
ated with ECMO. Hemolysis, i.e. destruction of Red Blood Cell due to shear, as well as blood clot formation (thrombogenesis)
are the most common side effects of ECMO. Figure 1 shows coagulation of blood in the pump (middle) and a tubing con-
nector (right) of an ECMO system. Besides the direct formation of clots, hemolysis is as well associated with an enhanced
tendency for blood coagulation due to increased platelet activation [2, 3]. However, the mechanisms contributing to hemolysis-
associated platelet activation are not well understood. Platelets may be activated as a result of biochemical reactions started
by ambient substances or due to fluid mechanical forces acting on the platelet itself. The activation leads to a change of
platelet morphological structure along with the release of chemical substances promoting clot formation. Once activated,
other platelets are allowed to attach to the activated platelet, in turn activating these attaching platelets. This chain reaction
leads to a quick release of coagulation factors advancing the formation of clots. Thus, the role of platelets and their activation
is essential for the understanding of why and where clotting may occur in patients receiving ECMO treatment.

In this study, the focus is on thrombogenesis, investigating the flow characteristics within the ECMO system as well as the
reason for platelet activation along with the location associated with activation of platelets. The main purpose is to understand
the fluid mechanical processes contributing to the initiation of blood coagulation in the ECMO system.

Components of the ECMO system
The ECMO system consists of pumps, oxygenators, cannula, tubing and heat exchangers. The pump and oxygenator

with accompanying control units for flow, blood oxygenation and anticoagulation are the most vital parts of the system. The
pump is either a roller or a centrifugal pump, where the latter is used at the ECMO unit at Karolinska Hospital in Stockholm,
Sweden, Fig. 1 (left). The blood enters and leaves the pump through the central and side tube, respectively. The role of blood
oxygenation within the ECMO system can be carried out by different types of oxygenators, all with the purpose of providing
an efficient oxygenation along with a simple, safe and reliable operation as well as sterilization. Another important component
is the cannula coupling the system to the patient. The side connected to the patient (venous side) ends with multiple holes to
enable quick suction of blood without risking attaching the tip to the wall. The arterial side, i.e connected to the tubing of the
extracorporeal parts of the ECMO system, has a single hole through which the resistance is lower to avoid blocking the flow.

Figure 1: The centrifugal pump used in ECMO (left). Blood coagulation in the pump (middle) and the connector (right).
∗Corresponding author. Email: prahl@mech.kth.se
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NUMERICAL METHOD AND GEOMETRICAL SET-UP

The flow of an incompressible, isothermal fluid is represented by the Navier-Stokes equations:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1)
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∂
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(
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The flow is resolved using implicit LES. The fluid, i.e. blood, is considered to be single phase and Newtonian, having a
viscosity equal to that of water. The platelets are modelled using Lagrangian Particle Tracking applying the platelet activation
model according to Nobili et al [4].

Three parts of the ECMO system is investigated; the pump, the cannula and the connector. As for boundary conditions for
the pump, velocity inflow with 5% synthetic turbulence is applied at the inlet and constant a pressure is used at the outlet. No
slip is considered at all walls and the impeller is rotated using sliding mesh. For the connector and cannula, constant velocity
is applied at the inlet, pressure boundary condition is used at outlet and no slip is applied at the walls.

RESULTS / DISCUSSION

The main motivation for this study is the fact that the actual location of initial clot formation in the ECMO system
is unknown. Considering the characteristic speed of the pump, if taken to be the speed of the blade tip, the velocity is
approximately 1.3 m/s when running the pump at 3600 rpm. A similar velocity magnitude is found in the pipe, which has a
diameter of 1 cm. A typical length scale of the pump could be the height of the tip, corresponding to 2 mm. This leads to a
Reynolds number that is less than a number in-between the range of 1000− 10000, in turn depending on the viscosity chosen
for the fluid (water or blood analogue). Thus, the flow is less likely to be turbulent in the lower Reynolds number range and
could display transitional or turbulent behavior at the larger Reynolds numbers.

Figure 2 (left) shows the isosurfaces of the λ2-criterion in the pump, clearly showing the vortical structures forming around
and behind the trailing edge of the blades as well as from the tongue region near the outlet. Moreover, the velocity field in a
cross-section of the pump also displays the vortical structures. Especially, the vortices found in the bottom parts of the pump
are interesting since these vortices, under certain conditions, could enhance platelet aggregation [5], possibly explaining the
line of platelets found in this area, Fig. 2 (mid). This could indicate a possible site of platelet activation within the ECMO
system.

Blood clots are often found on the cannulas. Thus this component is suspected to be another site prone to blood coagula-
tion. Moreover, these catheters are also associated with strong unsteady shear-layers that may lead to damaging of the RBCs
as well as activation of the platelets. This, however, is still to be evaluated through the simulations carried out in this study.

Figure 2: Vortical structures found in the pump, visualized by λ2-criterion (left). The trace of activated platelets in the lower
parts of the pump (middle) and the velocity vectors in the gap in the lower parts of the pump (right).
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Summary This paper numerically investigates the diffusive and convective transport of subconjunctivally and episclerally implanted drugs in 

the anterior segment of human eyes. Effects of implant location and orientation of the eye are analyzed. The results can help to understand drug 

transport processes in the anterior human eye, and improve the drug delivery efficacy in clinical treatment of anterior eye diseases. 

INTRODUCTION 

   Currently, b ioavailab ility of topically  applied  drugs in the treatment  of anterior eye diseases is main ly limited by the 
anatomical and physiological barriers in the anterior eye, which includes nasolacrimal drain age, corneal epithelium, 
clearance from the blood vessels in the conjunctiva, and  the protection against the entry of xenobiotics [1]. Recently, 
anterior segment implants in subconjunctiva [2] were adopted to treat primary open angle glaucoma and ocular hypertension, 
and episcleral implants [3,4] were found to be effictive with long duration in the treatment of keratoconjunctivitis in  animal 
preclin ical studies. To make the implant treatment more  effect ive, understanding of the drug delivery process becomes 
crucial. Due to the difficulty of experimental measurement of drug distribution in the eye, numerical modelling has been a 
useful tool to comprehensively describe drug delivery process in the eye. In our previous work [5], transport processes of 
topically applied drugs were investigated numerically, and suggestions of clinical applicat ions were proposed. The goal of 
this work is to investigate the transport process of subconjunctivally and episclerally implanted drugs in the anterior 
segment of human eyes. 

METHODOLOGY 

A 3D numerical model of the eye (Fig. 1) is developed, which includes the cornea, sclera, anterior chamber, posterior 
chamber, lens, vitreous, iris, trabecular meshwork (TM), ciliary  body (CB) and the subconjunctival/ episcleral implant 
which is modeled as a drug source. Temperature d istribution is governed by the transient bioheat equation, with heat loss 
due to convection, radiation and tear evaporation on the corneal surface and a heat flux boundary condition specified on the 
sclera surface. Steady 3D incompressible Navier-Stokes equations are solved to obtain the AH flow in the anterior and 
posterior chamber, in which the buoyancy force due to temperature gradients across the eye is considered. Inlet and outlet of 
the AH flow are specified at  CB and TM, respectively, and no-slip  conditions are specified  on other boundaries. Finally, 
evolution of drug concentration is obtained by solving a transient convection diffusion equation, with a t ime-dependent 
concentration flux (calculated from the experimental results in [3]) on the bottom surface of the episcleral/subconjunctival 
implant. The coupled heat transfer, fluid flow and mass transfer problem is solved numerically in COMSOL Multiphysics.                                                     

RESULTS AND DISCUSSIONS 

Since the corneal temperature increases from its center to the periphery, warmer fluids with lower densities tend to rise 
along the corneal surface, resulting in the AH natural convection in the anterior chamber of an up-facing eye (Fig. 2). Fig. 3 
and 4 plot the top-view and side-view AH flow in a horizontally-facing eye, respectively, and velocity components in the 
horizontal plane (Fig. 3) are about one order of magnitude smaller than those in the vertical plane (Fig . 4). In Fig. 4, a  
clockwise AH circulation is present in the anterior chamber, also due to natural convection effects . 
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Fig. 1                             Fig. 2                          Fig. 3                 Fig. 4               

Time-dependent evolution of accumulative amount of the drug at iris, lens, and TM in a horizontally-facing eye (Fig. 5) 
shows that subconjunctival implant is more effect ive in drug delivery to all the three targets than  episcleral implant, due to 
the shorter delivery  path, and more drug is delivered to iris and lens than TM, due to their g reater surface areas. Our 
numerical results also demonstrate that drug delivery to all the three targets is more effect ive in the horizontally -facing eye 
than in the up-facing eye (Fig. 6), and drug distribution in the anterior eye is more uniform, 2 days after subconjunctival 
implant, in the horizontally-facing eye than in the up-facing eye (Fig. 7). However, it is seen from Fig . 7 that most of the 
drug released from the implant is lost in the v itreous. Circumferential position of the implant is also investigated, and Fig. 8 
demonstrates that drug implant at 12 o’clock position (looking from the outside) is the most effective for drug delivery to 
iris and lens, and implant at 3 o’clock position is the most effective for drug delivery to TM.  

  
Fig. 5                        Fig. 6                      Fig. 7                        Fig. 8 

CONCLUSIONS 

In this study, a coupled numerical model of heat transfer, AH flow and drug transport is developed to investigate the 
transport process of subconjunctival and episcleral implants in the anterior human eye. Our numerical results show that 
subconjunctival implant is more effective in drug delivery than episcleral implant; drug delivery to iris, lens and TM is more 
effective in the horizontally-facing eye than in the up-facing eye; implant at 12 o’clock position is the most effective for 
drug delivery to iris and lens, and drug implant at 3 o’clock position is the most effective for drug delivery to TM. These 
results can help to understand drug transport processes in the anterior human eye, and improve the drug delivery efficacy in  
clinical treatment of anterior eye diseases. 
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THE INFLUENCE OF HEMATOCRIT ON THE DECAYING SHEAR TURBULENCE OF
BLOOD FLOW IN LARGE ARTERIES

David E. Rival∗, Saeed Rahgozar, and Lucas Serafini
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, Canada

Summary A novel experimental approach, consisting of scaled hydrogel beads representing red blood cells, is used to model pulsatile
turbulent flow in large arteries. The large optical facility uses a boundary-free, uniformly-sheared flow that decays in time, in which the
velocity fields are acquired via particle image velocimetry on streamwise/cross-stream and streamwise/spanwise planes for Newtonian and
non-Newtonian single-phase blood analogues, as well as for the two-phase case representing varying levels of hematocrit. Changes in the
decay rate are observed when moving from the Newtonian to non-Newtonian and finally two-phase (varying hematocrit) blood analogues.

BACKGROUND AND MOTIVATION

A proper characterization of local flow separation in large artery hemodynamics, as represented in Figure 1, is crucial to
advancing biomedical devices, and for our diagnosis, prevention and treatment of cardiovascular disease. Despite the general
assumption that blood flow remains laminar throughout most arteries, several exceptions have been reported in the literature
including instances of transitional flow in the ascending aorta, at branch points in large arteries, in stenotic arteries and in
unhealthy or mechanical heart valves [1-2]. The occurrence of transition to turbulence in the cardiovascular system has been
of hemodynamic interest over the past decades since it is generally agreed that this localized turbulence may be responsible
for a number of cardiovascular diseases and abnormalities such as cardiac murmurs, thrombus formation, hemolysis, platelet
activation and atherosclerosis [1,3-6]. Despite the growing awareness of the importance of turbulence in hemodynamics, our
knowledge about characteristics, scales and structures of turbulence in blood flow is still rudimentary. Beyond the inherent
challenge of characterizing turbulence, blood flow is particularly complex because of its pulsatile, multi-phase and viscoelastic
characteristics as well as its irregular deforming boundaries. Moreover, due to the limitation of instrumentation and access,
very little in vivo information exists about the turbulent statistics and structures in the cardiovascular system. While the early
in vivo investigations were limited to invasive point measurements [1,7], the modern non-invasive techniques such as magnetic
resonance imaging (MRI) suffer from lower signal-to-noise ratios and lower spatial and temporal resolutions [8-9]. Thus these
limitations in characterizing this flow hinders not only our progress towards understanding of turbulence in large arteries but
also our ability to develop realistic models for future simulations.

In the present work, we endeavour to characterize the influence of hematocrit on turbulence decay in the inherent pulsatile
environment of blood flow in large arteries. By keeping the geometry as simple as possible, i.e. boundary-free shear, and
allowing the turbulent characteristics of the flow to be representative of the turbulent motion in real arteries based on the
relevant dimensionless parameters and available in vivo data, we expect to identify where classic single-phase, Newtonian
assumptions of blood break down. Our optically-matched, scaled up experimental setup allows us to employ particle image
velocimetry (PIV) in order to accurately measure velocity fields and consequently to investigate the details of turbulence
scales, parameters and structures for the various blood analogues tested. The specific methodology is described next.
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stenosis shear layer
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peak systole: t*~1

diastoleQ

FOV T

 mid-deceleration: t* = 0

0 0.5 1 t*= t/T

Figure 1: Cross section of a generic artery showing the generation of a shear layer downstream of a stenosis. On the right-hand
side, three representative times in the cardiac cycle are denoted. Note t∗ is dimensionless time, which is normalized by the
cycle period T .
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Figure 2: Side view of the test section with the shear generator passing from left to right. The curve on the right shows the
solidity distribution of the grid generator. Y is the cross-stream coordinate and H is the overall cross-sectional height of the
tank.
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Figure 3: (a) Bulk viscosity characterization for the non-Newtonian, single-phase blood analogue (red) compared to literature
(black) [10]; and (b) initial findings of turbulent kinetic energy (k) decay indicate increased dampening for non-Newtonian
analogue (red curve) when compared to the Newtonian case (black curve).

METHODS AND PRELIMINARY RESULTS

The experiment is performed in a large optical towing tank with approximate dimensions of 8×1×1 m3. The test section
is located in the middle of the tank to ensure negligible end wall effects. A high-speed traverse system tows a shear generator
in the center of the towing tank at speeds up to 1 m/s over a maximum distance of 4 m. An approximately uniform mean shear
is generated in the tank by towing the shear generator consisting of a plane parallel-rod grid of uniform rod diameter (d) with
non-uniform spacing (s). Figure 2 shows a schematic of the shear generator passing through the field of view. In the present
experiments the towing speed (Uc) was 0.2 m/s and the diameter of the rods was 42 mm. The right-hand curve in this figure
shows the solidity distribution of the grid. The blockage necessary for generating shear is kept minimal (i.e. about 30% of the
area of the cross section) in order to minimize potential large-scale secondary flows. High-speed planar PIV measurements are
performed using a Photron SA-4 camera at 125 Hz with full resolution of 1024 × 1024 pixels. In Figure 3, the single-phase,
non-Newtonian analogue is compared to literature to ensure consistency (left). Subsequently this non-Newtonian analogue
demonstrates an increased dampening to turbulent kinetic energy relative to the Newtonian case. Data for the two-phase
analogue with scaled hydrogel beads - representing red blood cells - has since been collected and is currently being processed.
Here the influence of hematocrit will determine at what critical level attenuation in decaying turbulence becomes apparent.
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A MODEL FOR TRACHEOLAR FLOW IN INSECTS

Anne Staples∗1 and Krishnashis Chatterjee2
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Summary Inspired by some of the fundamental features of insect respiratory systems, we investigate the effects of rarefaction on low-
Reynolds number, collapse-driven flow through a microtube. The Navier-Stokes equations are linearized, a periodic wall collapse motion
is prescribed at two sites along the tube, and physiologically realistic pressure boundary conditions are applied along with first-order slip
boundary conditions. The axial and radial velocities, axial pressure gradient, and time averaged flow rate in the tube are found as a function
of the phase lag between the two contraction sites, with and without slip. Unlike for purely pressure- or collapse-driven flows, when slip is
added, this flow is highly sensitive to the phase lag parameter, and the flow can be accelerated, decelerated, or reversed, depending on its
value, resulting in a multi-functional microfluidic system that can acccelerate or decelerate flow as needed with slight changes in the timing
of its wall collapses.

INTRODUCTION

Insect tracheal tubes collapse periodically as a result of the animal’s regular abdomenal contractions in the rhythmic
tracheal contraction (RTC) respiration regime [1]. Furthermore, the diameter of typical insect tracheal tubes is from 1 to
several hundred micrometers, and the working fluid is air at close to atmospheric pressures, resulting in flow in the slip regime
in a significant portion of the tracheal system. Additionally, the flow in the respiratory system, which is comprised of a
complex network of tracheal tubes that begin at the body openings called spiracles (typically 100 − 500 µm diameter) and
terminate at the tissue (typically ≤ 1 µm diameter), delivering freshly oxygenated air directly to the cells, is creeping flow
with Reynolds numbers typically less than 1.

Here, we build on one author’s previous work modeling the insect respiratory flow transport mechanism as low-Reynolds
number flow through a periodically collapsing microtube [3, 4] by adding first-order slip boundary conditions to the model, as
well as physiologically accurate pressure boundary conditions at the ends of the tube. The pressure boundary conditions are
adapted from the intratracheal pressure measurements taken in blowfly respiratory systems by Wasserthal [2].

METHODS

Referring to the schematic in Figure 1, assuming the tube length to be much greater than its diameter, the tube wall profile
including its two collapse sites is governed by the spatio-temporal function H(x, t), which is periodic in time, with x param-
eterizing the axial direction. Using the boundary conditions (i) at r = H(x, t), u = β ∂u

∂r , v = ∂H
∂t , (ii) at x = 0, p = po(t),

and (iii) at x = L, p = pL(t), where β is the slip parameter (slip length), we derive the following expressions for the axial
and radial velocities, and the instantaneous volumetric flow rate [3]:

ux = 1
4
dp
dx (r

2 −H2 + 2βH)

ur = r
4
dp
dx

dH
dx (H − β) + r

4
d2p
dx2 (

H2

2 − r2

2 − βH)

Q(x, t) =
∫H(x,t)

0
ux(x, r, t)rdr.

Figure 1: Schematic of collapsing microtube with two collapse sites, wall position function H(x, t), and phase lag between
collapse times θ.
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Figure 4: Average volumetric flow rate over one period versus phase lag.

RESULTS

Using slip parameter values of β = 0, 0.001, and 0.1, which correspond to no slip, low slip, and high slip conditions,
respectively, we calculated the axial and radial velocities, axial pressure gradient, and average volumetric flow rate over one
cycle as functions of x and θ, the phase lag parameter, which specifies the fraction of a period between the time when the
first collapse site is actuated and the time when the second collapse site is actuated. When θ is zero, there is no net flow.
The spatial or temporal symmetry needs to be broken to produce unidirectional flow. We found that the effect of adding slip
was to reduce the magnitude of axial and radial velocities, the pressure gradients, and the flow rates. Figure 2 show the axial
velocity along the tube for the three different slip parameter values at time t = 0.3 and phase lag θ = 30◦. Figure 3 shows
the axial pressure gradient along the tube under the same conditions. Finally, in Figure 4, the cycle-averaged volumetric flow
rate is plotted versus the phase lag parameter, θ. We see that the flow rate is reduced when slip is added, but we also see a
surprising new feature – for certain values of θ, the flow reverses. This does not occur for purely pressure-driven flow through
a microtube, or for purely collapse-driven flow, nor does it occur without the addition of slip boundary conditions.

CONCLUSIONS

In this work we derived an analytical model for Stokes flow through a periodically collpasing microtube with slip, as a
simplifed model for the nexus of specialized fluid flow regimes that can occur in insect respiratory systems. We find that the
combination of creeping flow in a microtube with slip that is both pressure- and collapse-driven constitues a highly sensitive,
tunable microfluidic device that can accelerate, decelerate, or reverse its flow with slight variations in the phase lag parameter,
θ. We conjecture that an insect could change its phase lag parameter easily by varying its rate of abdominal pumping.
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Summary Based on Sorenson et al.’s model of platelet deposition on to artificial surfaces [1, 2], an improved mathematical model describing 
the process of thrombus growth in-vivo is developed. The new model is comprised of two parts: the equations of fluid motion and a set of 
convection-reaction-diffusion equations representing the transport and reactions of chemical and biological species. The model is then 
applied to the rapid thrombus growth in an injured blood vessel with Adenosine Diphosphate (ADP) injection, for which a good agreement 
between our numerical results and available experimental data is demonstrated.  

INTRODUCTION 

A thrombus is commonly known as a “blood clot,” or cluster of deposited platelets, anchored to a surface. The normal function 
of thrombosis is to prevent bleeding. However, pathological thrombosis in the coronary artery can lead to a heart attack; if 
transported to the brain it is likely to cause a cardiogenic stroke. Decades of basic scientific studies have revealed complex 
biological reactions involved thrombus formation, which have enabled the possibility of quantitatively describing thrombus 
formation by means of mathematical models [3]. Our current work capitalizes on recent findings to improve a previously 
published model of thrombosis by Sorenson et al. [1, 2]. Specifically, it offers three improvements: (1) shear-induced platelet 
activation, (2) thrombus embolization due to shear, and (3) fluid-solid interaction of the growing thrombus with the flow field.  

METHODS: MATHEMATICAL MODEL 

Equations of Motion 
Blood is treated as a multi-constituent mixture comprised of (1) a fluid phase which is modeled as a linear fluid and (2) a 
thrombus phase. The fluid phase which consists of red blood cells (RBCs) suspended in plasma is governed by:  

���

��
� ��	
���� � � (1) 

��
��

��
� ��	
��� � ���� � ������
� � ��� (2) 

where �� � ����� � �� ! � "#��� � ��$� is the stress tensor of the fluid, � is the pressure, and #�  is the asymptotic 
dynamic viscosity (whose value is 3.5cP). A scalar field � is introduced to represent the volume fraction of deposited 
platelets (thrombus). The density of the fluid phase is defined in terms of the volume fraction according to �� � �� � ����%, 
where ��% is the density of the fluid phase (��&�' ()*+,), ��  is the body force, � and � are the velocities of the fluid 
and thrombus phases, respectively. The term ������
� � �� is the resistance force on the fluid from the thrombus, where 
�� is computed by assuming that the deposited platelets behave like densely compact particles of 2.78µm in diameter (see 
Johnson et al. [4] and Wu et al. [5, 6]), and ���� � ��� � &-.�� is the hindrance function.  

Convection-Diffusion-Reaction Equations 
The process of thrombosis is represented by a set of coupled convection-diffusion-reaction equations. The current model 
includes ten (10) chemical and biological species, illustrated in Figure 1. These include five categories (states) of platelets: 
(i) RP: resting platelets (in the flow field); (ii) AP: activated platelets (in the flow field, and more reactive); (iii) RPd: 
deposited (trapped) resting platelets; (iv) APd: deposited active platelets; and (v) APs: deposited and stabilized platelets. 
Additional five biochemical species include: (1) apr: platelet-released agonists (ADP); (2) aps: platelet-synthesized agonist 
(thromboxane A2); (3) PT: prothrombin; (4) TB: thrombin, synthesized from prothrombin on the platelet phospholipid 
membrane; and (5) AT: anti-thrombin III, which inhibits thrombin and whose action is catalyzed by heparin via the kinetic 
model of Griffith [1]. Figure 1 also depicts the fundamental mechanisms represented in the thrombosis model, including: 
Platelet Activation, Platelet Deposition, Thrombus Propagation, Thrombus Dissolution or Erosion, Thrombus Stabilization, 
Thrombus Inhibition�����Thrombus-fluid interaction. The transport of the above species in the flow field is described by a 
corresponding set of convection-diffusion-reaction equations [1, 2] of the form: 

��/0 

��
� ��	
� 1 ��2 � � ��	�32 1 4��2 � � 52, (3) 

where ��2  is the concentration of species i, 32  refers to the diffusivity of species i in blood, and 52 is a reaction source 
term for species i, with the time dependency of the concentration of deposited platelets (RPd, APd, and APs) governed by: 

��/0 

��
� 52 . (4) 
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For details on the source terms 52, species concentration ��2 , boundary conditions and detailed computational methods, see 
Reference [7]. For all general parameters, as well as the case-specific parameters (3) which were adjusted to best fit the 
experiment, we refer the reader to References [1, 2, 7]. 

Figure 1. Schematic of the thrombosis model, comprised of platelet deposition, aggregation, and stabilization. 

RESULTS AND DISCUSSION 

Begent and Born [8, 9] experimentally studied thrombosis induced by the iontophoresis of Adenosine Diphosphate (ADP) in 
a hamster’s blood vessel in vivo. The schematic of the simulated blood vessel flow is shown in Figure 2 (Left), where the inlet 
velocity was chosen to be 800#6*7 to match the experimental value. From the experimental observation [8] [see Figure 2 
(Right)], it is clear that the thrombus grows both upstream and downstream of the location of the pipette, in agreement with 
our numerical results shown in Figure 3 (Left). According to Reference [8], the thrombus took approximately 100s to reach a 
size of 1/3 height of the blood vessel in the experiment while the same size was obtained after about 150s in our simulation. 
Figure 3 (Right) shows that the height versus length curves of the expanding thrombus in obtained numerically and 
experimentally [9] are in good agreement. In the future, the current model will be applied to further investigate thrombosis in 
practical medical devices such as artificial hearts and lungs.  

Figure 2 (Left) Schematic of the simulated blood vessel. The ADP is injected by a micro-pipette locating at the bottom vessel wall. 
(Right) Thrombus in blood vessel observed by Begent and Born [8] after approximately 100s of ADP injection through a micropipette. 

(The experimental data is reused with permission.) 
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Figure 3 (Left) Progression of thrombosis obtained with the current model; The arrow indicates the position of the micro-pipette. (Right) 
Comparison of the thrombus’ height versus length by numerical simulations (current work) and experiments in [9]. 
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Summary Hemodynamics studies on artificial heart valve has been conducted since the first available valve on market. However, better and 
more accurate prediction in the hemodynamic performance that an artificial heart valve could offer is still needed. Current advance 
computational technique, such as FSI (fluid-structure interaction), integrated with proper rheological properties of human blood could provide 
further insight for optimal hemodynamics in an artificial heart valve implantation. The presented hemodynamics studies demonstrates an 
accurate numerical modelling with the Newtonian and non-Newtonian rheological implementation using FSI approach for analysis of the 
variance of different hemodynamic parameters between the two models. Minimum difference in leaflet motion was found with noticeable 
variations in wall shear stress distribution throughout different phases of one cardiac cycle.  
 

INTRODUCTION 

 
   Among of all people who deceased in Canada in 2012, 19.7% of them were caused by the disease of heart[1]. For those 
who has a diseased heart valve, mitral and aortic valves are the most commonly affected valves, which account for 34% and 
44% morbidity, respectively[2][3]. With the increase of popularity in adopting computational methods for the investigations 
and modeling of hemodynamics for cardiovascular diseases, the use of fluid-structure interaction (FSI) method for 
simulating the hydrodynamics of heart valves and other cardiac vasculatures has gain significant insight[4]-[8]. Although 
the rheological properties of blood in large arteries are typically assumed as Newtonian fluid, blood behaves as non-
Newtonian fluid with shear thinning and thixotropic properties. By integrating the non-Newtonian relationship, the locations 
with concentrated high and low shear stress can be identified for further hemodynamics investigate and assessments for 
blood cell damage. Therefore, this paper presents a generalized FSI model for the hemodynamics investigation of artificial 
heart valve using both Newtonian and non-Newtonian rheological models for predicting leaflet motion, velocity profiles and 
shear stress distribution under physiological conditions and geometry. 
 

METHODOLOGY 

 

   The numerical models presented in this paper were constructed using COMSOL Multiphysics (V5.2). The geometrical 
parameters for the artificial heart valve model and the surrounding aortic root were gathered from experimental setup by 
ViVitro Lab Inc. The artificial valve modelled represented a bileaflet mechanical heart valve with an approximate aortic 
diameter of 23.4 mm. Valve leaflets were assumed to behave as isotropic material with a Young’s modulus of 30 GPa, 
Poisson ratio of 0.3, and density of 2116 kg∙m-3. Laminar flow region was assumed with a density of 1060 kg∙m-3 and a 
Newtonian dynamic viscosity of 0.0035 Pa∙s. The non-Newtonian rheological model for blood was constructed using 
Carreau equation using parameters with η∞ = 0.0035 Pa∙s, η0 = 0.056 Pa∙s, λ = 3.313, and n = 0.3568, based on study 
published by Karimi et al[9]. Inlet and outlet boundary conductions were applied with normal physiological pulsatile blood 
pressure profiles, which are identical to the experiments, at the ventricular and aortic position. Pressure pulses have a period 
of 0.86 s that represent a nominal heart rate of 70 beats per minute. The arterial wall boundaries were assumed to be rigid 
with no-slip condition. Free rotation condition was applied to the hinge of artificial heart valve with conditionally prescribed 
counter moment added only when the leaflets reached either minimum or maximum allowable angular position, which was 
25 and 85 degree, respectively. The numerical models were conducted using fully coupled direct solve technique with a 
multifrontal massively parallel sparse direct solver (MUMPS). Deformation and displacement of the valve leaflet in the 
simulation was handled with arbitrary Lagrangian-Eulerian (ALE) formulation and require domain-wide remesh based on 
mesh quality or relative mesh volume. Relative tolerance for the simulation was set to be 0.01. Mesh independence study 
was conducted on the Newtonian model and concluded with a change in solution less than 5%. The flow experiments, used 
for numerical validation, were conducted using a cardiovascular testing system at ViVitro Lab.  
 

RESULTS 

 
   In general, the variation in leaflet dynamics between the Newtonian model and non-Newtonian model was insignificant 
and the motion of the leaflets was in agreement with [7]. The approximate duration for open leaflet was 230 ms from leaflet 
opening to closing. The leaflets remained fully opened for approximately 100 ms. Maximum Von Mises stress was also 
processed for both leaflet and found to be below 100 MPa, which is less than the yield strength of the leaflet material. In 
terms of wall shear stress (WSS), both Newtonian and non-Newtonian models had similar WSS magnitude. However, with 
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higher flow velocity magnitude during peak systole forward flow and diastole leakage flow, the variance in WSS between 
the two models could be differentiated more since the distribution of high WSS region in non-Newtonian model was larger. 
Similar observation and conclusion was made by [10]. There are minor velocity distribution difference between the 
Newtonian and non-Newtonian models. Shown below in Figure 1 is the flow velocity field during peak systole with 
Newtonian viscosity. Recirculation of blood within aortic sinuses as well as forward blood jet around valve leaflet, 
identified with forward red arrows, can be seen during fully opened leaflets. 
 

 
Figure 1: 3D Velocity Arrow Field for Bileaflet Mechanical Valve with Newtonian properties at Peak Systole 
 

CONCLUSION 

 
  The presented FSI model demonstrated an accurate prediction of leaflet dynamics and the hemodynamic performance for 
the mechanical valve, which was validated experimentally. Between the Newtonian and non-Newtonian model, difference 
in velocity profile was found; however, there was only minor velocity distribution difference between the two 
computational models. Similarly, the leaflet dynamics was slightly affected by different viscosity models. WSS analysis, on 
the other hand, has identified regions close to arterial wall and valve leaflet with larger WSS distribution for the case of 
non-Newtonian model. Since the non-Newtonian model used in current study only depend on shear rate, a more complex 
rheological fluid model that considers either haematocrit or viscoelasticity will be used for further improvement.  
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Summary We study the stability of elastic tubes conveying fluids. An apparatus for investigations of self-exciting oscillations of the elastic 
Penrose tubes was created. The effect of the flow regime (laminar vs turbulent) on the limit cycle oscillations and the stability boundary is 
experimentally analyzed. The influence of the fluid viscosity on the limit cycle oscillations is studied. Maps of regimes are obtained. 
 

INTRODUCTION 

 
Self-exciting oscillations of elastic tubes conveying fluid have been extensively studied during last 50 years in the 

context of biological applications, including blood vessel vibrations [1 – 4]. Although biofluid flows are generally laminar, 
most experimental studies deal with turbulent flows. In this investigation we find the stability boundary for different 
regimes, analyze the effect of the flow regime (laminar vs turbulent) on the limit cycle properties, the flow rate limitation 
and the influence of the fluid viscosity on these characteristics at the turbulent regimes. 

 
EXPERIMENTAL APPARATUS 

 
The apparatus used is shown in the Fig. 1. An elastic Penrose tube is attached at each end to a rigid tube of the same 

diameter. The external pressure    in the chamber is constant. The fluid flows through the elastic tube under the pressure 
drop         , where    and    are the upstream and downstream pressures. The pressure drop is changed by the 
flow rate Q or downstream pressure   . The flow rate Q may by controlled by the adjustable resistance and is measured by 
flowmeter,    may by controlled by the position of draining hose. 

 
Figure 1: An apparatus for investigations of self-exciting oscillations of elastic tubes conveying fluid. 

 
RESULTS OF EXPERIMENTS 

 

Glycerin solutions of different concentrations and water were used at the experiments. Viscosities of the solutions 
provided laminar or turbulent flow regimes with the same pressure drops. 

The first series of experiments was conducted for fluids with various viscosities corresponding to turbulent regimes. 
Reynolds number based on the Penrose tube diameter was varied in the range 2500<Re<16000. Results showed that the 
stability boundary and the character of limit cycle oscillations do not significantly depend on the fluid viscosity. This is 
explained by the fact that the molecular viscosity is negligible compared to the turbulent viscosity. When the stability was 
lost while keeping       constant and increasing         , the tube first oscillates in the following manner: two 
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collapses followed by a delay in the stable state, then again two collapses, etc. For higher   , the tube collapsed three times 
followed by a delay; then four, five, and up to eleven times. As a rule, for higher    single-frequency oscillations were 
finally established and locked the tube, i.e. neither frequency nor flow rate are changed when    is increased more. The 
map of the regimes is shown in the Fig. 2a. In all the regimes the frequency representing consecutive collapses was not 
changed much when changing   . 

 
Figure 2: Map of the limit cycle oscillations for turbulent (a) and laminar (b) flow regimes. Number of 

consecutive tube collapses followed by a delay for each limit cycle type is marked by number and color. Dashed 
lines show the stability boundaries. 

 
At the second series of tests a more viscous glycerine solution was used, which provides laminar flow at the unstable 

regimes with 100<Re<1000 with similar pressure drop along the Penrose tube. Unstable behaviour is quite different. For 
most flow rates, single-frequency oscillations developed almost immediately after the loss of stability (Fig. 2b). When 
increasing   , the regime does not change.  

Oscillation amplitude at the laminar regime is essentially lower than at turbulent, so that the oscillations do not fully 
block the tube, that is why the oscillation frequency is more significantly affected by the pressure drop than at turbulent 
regimes. 

The work is supported by grant MD-4544.2015.1. 
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Summary A dual space-spectral description of energy flux is presented for the axial velocity component at the centreline and in the log
region of turbulent pipe flow at large Reλ.

OUTLINE

We have previously examined[1] the inertial subrange scaling of the axial velocity component for the centreline of turbulent
pipe flow for Reynolds numbers in the range 249 ≤ Reλ ≤ 986, where λ is the Taylor length scale. Measurements were
performed in the Princeton/ONR Superpipe using NSTAP probes of length, ` = 30 µm or 60 µm, with temporal resolution up
to 300 kHz. Estimates of the dissipation rate, ε, are made by both integration of the one-dimensional dissipation spectra and
the third-order moment of the structure function, where the separation r = −Uδt. Figure 1 shows A plotted as a function of
Reλ, where ε = v3ε /η = Au3τ/R. In the case of the “4/5ths” law, the estimate of ε is taken to be the maximum over a range
of r/η — this is made necessary by the nature of the third-order moments which do not show a pronounced plateau.

It is noticeable that neither dissipation estimate provides values of A that asymptote to a constant: rather A increases
almost linearly with Reλ. The ordinate is proportional to ε: therefore the increase in A at higher Reynolds numbers cannot be
attributed to poor spatial resolution. Furthermore, there is a remarkable consistency between estimates of A using the 30 µm
and 60 µm probes. Hence this scaling does not fully account for the effects of the outer boundary condition. This important
result is not the same as that shown, for example, by [2], in which the influence of the large scales appears as Cε ≡ A
decreasing with Reλ. Both viscous and turbulent transport at the centreline contribute to a non-conservative spectral flux,
the effect of which is clearly evident in both the corresponding spectra and in the dimensionless dissipation rate. Turbulent
transport is clearly the dominant mechanism in determining global effects on spectral flux, where the principal effects of
the boundary conditions appear through finite turbulent transport which constitutes a source or a sink at each wavenumber.
Moreover, these effects cannot be described well by Kolmogorov’s “extended similarity hypothesis”, K62, in which the
dissipation rate retains its self-similar form.

In this paper, we extend the analysis to examine the scaling of the inertial subrange in the local-equilibrium region,
y/R = 0.052. With the assumption of “wall” (uτ , y) scaling, we expect the log-law and local-equilibrium regions to be
approximately coincident. With the assumption of local equilibrium, and using the momentum equation,

−uv+ = 1− y

R
− 1

κy+
, (1)

we estimate the dissipation rate as ε+ = (−uv+)/κy+. However, the spectral flux is much more spatially intermittent than
either the production or dissipation spectra, and since the energy balance at any point in space is an integration over all
wavenumbers, local equilibrium will only ever be an approximation. Figure 2 shows that A in the local-equilibrium region
is closer to a constant value than at the centreline over a similar range of Reλ. This could be attributed to the fact that
the turbulent transport in the local-equilibrium region is a somewhat smaller fraction of production and dissipation there.
Estimates of dissipation rates are compared with locally-isotropic estimates available from integration of the one-dimensional
dissipation spectra and the “4/5ths” law.
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Figure 1: Nondimensional dissipation rate at centreline, A = εR/u3τ . N, isotropic estimate; �, “4/5ths” law.
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FINE STRUCTURE OF NEAR WALL DISSIPATION 
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Summary Direct numerical simulations of a turbulent channel flow performed in large computational domains up to the Karman number 1100 
are analyzed in order to clarify the near wall behaviour of the dissipation. It is shown that the axisymmetric homogeneous distribution predicts 
well the dissipation in the whole layer, and that the local isotropy is only valid towards the end of the log-layer. The dissipation characteristics 
conditioned by fixed amplitudes of the velocity fluctuations show that the level-crossings of the wall normal velocity in the spanwise direction 
contribute most significantly to the dissipation next to the wall.  
 

INTRODUCTION 
 
  Zero-crossings of fluctuating velocity time series provide a simple way to access to Taylor scales in wall-bounded flows 
(see Kailasnath & Sreenivasan [1] and references within). Experiments have shown that the time scale related to the velocity 
zero-crossings (the Liepmann scale) is roughly equal to the Taylor scale in wall-bounded flows. We revisit the problem here 
by considering the zero-crossings of fluctuating velocity fields in space, at a given time. Direct numerical simulations 
(DNS) performed in large computational domains of a turbulent channel flow up to the Karman number of 1100 are used 
for this purpose (Bauer et al., [2]; Tardu [3]). The fine characteristics of the dissipation are further analyzed by investigating 
the related statistics at fixed amplitudes of the velocity fluctuations.  
 
 

RESULTS 
 

  Fig. 1 shows the distribution of the mean dissipation 

€ 

ε = ν ui, j ui, j + u j, i( ) , (where 

€ 

ui, j = ∂ui /∂x j ) versus the wall 
normal distance in wall units at four Karman numbers 

€ 

Reτ = hu τ /ν in the range 180 to 1100 (wall units are the shear 
velocity 

€ 

u τ  and the viscosity 

€ 

ν ; 

€ 

h  is the half channel width). It is seen that the Reynolds number dependence are 
particularly significant below the low buffer layer in agreement with [4]. We will first show that the axisymmetric 
homogeneous distributions (form 2) proposed by George&Hussein [5] provide a good approximation to the dissipation at all 
the Reynolds numbers across the whole layer, in agreement with the earlier analysis of Antonia et al. [6] performed at lower 
Reynolds numbers. The local isotropy is never exactly reached but can be supposed to approximately hold only towards the 
end of the log-layer (precisely at wall distances larger than 300 wall units (wall units are the shear velocity 

€ 

u τ  and the 
viscosity 

€ 

ν ). The Taylors and Liepmann scales collapse also well at all the Reynolds numbers. 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Mean dissipation versus the wall normal distance in wall units. 
 
  The data is further analyzed by exploring the dissipation characteristics for fixed amplitudes of fluctuating velocity 
components in the same way as in [3] and [7]. It has been argued for a while that the zero-crossings of the streamwise 
velocity fluctuations should largely contribute to the dissipation [1]. That the zero-crossing frequency of 

€ 

u  is related to 

482



€ 

∂u ∂x( )2 , does obviously not imply that the dissipation is locally important during the zero-crossings, and this point has not 
been entirely elucidated. Furthermore, there is no reason for 

€ 

u  zero crossings to mostly contribute to 

€ 

ε  near the wall. 
One has to be careful in determining the statistics conditioned by level crossings of a stochastic signal. Using a suitably 
defined Dirac function at the   

€ 

σ ui  level crossings, where 

€ 

σ ui  is the rms of 

€ 

ui , it can be rigorously shown that the 
ensemble-averaged dissipation   

€ 

ε   conditioned by level crossings is the normalized mean of the dissipation times the 
absolute velocity derivative along the assigned direction, and not simply the ensemble averaged dissipation when the level-
crossings occur (for details see Tardu&Bauer, [7]). In return, the correct definition of the contribution 

€ 

cε  of the level 
crossings to the dissipation poses no particular problems. Fig. 2 shows the distribution of 

€ 

cε  at the zero-crossings of the 
streamwise 

€ 

u , wall normal 

€ 

v  and spanwise 

€ 

w  velocity components versus the wall normal distance in wall units 

€ 

y+ . 
Contrarily to what has been suggested before, the zero crossings of the wall normal velocity 

€ 

v  (predominantly in in the 
spanwise direction 

€ 

z  contribute mostly to the dissipation instead of longitudinal 

€ 

x  crossings of the streamwise velocity 

€ 

u  [1]. It is seen in Fig. 2 that in the viscous sublayer wherein the dissipation reaches its maximum and where the Reynolds 
number dependences are much prominent, the contribution of the spanwise zero crossings of 

€ 

v  is about 30 % , while the 
contribution of 

€ 

u  hardly exceeds 5 %. 
  One of the most striking results we obtained concerns the mean dissipation conditioned by fixed amplitudes of the 
spanwise velocity fluctuations

€ 

w . The mean dissipation condition by fixed 

€ 

w  is remarkably constant beyond the viscous 
sublayer independently of the threshold   

€ 

 . This last result indicates different roads to model the dissipation in wall bounded 
turbulent flows, as it will be discussed in detail during the talk. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2 Contribution to the dissipation of the zero-crossings of fluctuating velocity components at

€ 

Reτ = 1100 . 
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HOW COMPARABLE ARE THE THREE “CANONICAL” TURBULENT FLOWS ?
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Summary The three canonical turbulent flows, the zero pressure-gradient turbulent boundary layer (abbreviated ZPG TBL), turbulent chan-
nel (TCh) and turbulent pipe flow (TP), have often been compared and their similarities analysed. Focussing on the three mean velocity
profiles obtained from some of the best available experiments and computations, the consequences of assuming a unique Kármán constant
on the large Reynolds number asymptotic expansion of the free stream and the centerline velocities, respectively, are explored.

Introduction
The quest of unifying the description of the three “canonical” wall-bounded turbulent flows, ZPG TBL, TCh and TP,

has a long history (see e.g. [1]) and is principally rooted in the belief that at very high Reynolds numbers the near-wall
flow becomes independent of the outer flow. Concentrating on the mean velocity profile U(y), this implies that all three
inner velocity profiles approach the same logarithmic law κ−1 ln(y+) + B, where y+ ≡ yuτ/ν → ∞. This view has been
challenged in [2] where different Kármán coefficients κ are derived for the three flows by fitting composite expansions to the
complete profiles up to the highest Re data available.

It is nevertheless worthwhile to explore the consequences of assuming that the inner expansions of U+ in all three flows,
in particular the log-law constants κ, are identical. Whatever the log-law-κ’s are, the standard asymptotic matching between
inner and outer profiles requires that the outer expansions have a leading term equal to ln(Re)/κ, with Re = Reδ∗ , H+ or
R+. Hence, the outer expansions of all three “canonical” flows must be of the general form

U+ ∼ κ−1 ln(Re) +
∑
n=0

fn(η) [ ln(Re)]−n +O(Re)−1 (1)

with η ≡ y+/Reδ∗ , y/H or y/R and f0(η → 0) ∼ κ−1 ln(η) +B .

with the same κ as in the respective inner log-laws κ−1 ln(y+) +B.

The zero-pressure gradient turbulent boundary layer
The mean velocity data in the ZPG TBL are the most abundant and come from the largest diversity of facilities. Since the

advent of independent wall shear stress measurements, most estimates of κ have converged to the interval [0.38, 0.39]. In the
following we will use κ = 0.384, which has been found in [3], and propose a new outer fit

U+
out(η) =

1

0.384
ln

{
3.50Reδ∗ tanh1/2

[(
5.05 η

3.50

)2
1 + (10.8 η)4 + (12.7 η)5 + (11.2 η)8

1 + (12.7 η)5

]}
(2)

The quality of this outer fit (2) is evident from figure 1 which shows in particular, that U+
∞ = ln(3.50Reδ∗)/0.384 with

the κ of the log-law. Note also that for the ZPG TBL the fn(η) in (1) appear to be zero for n ≥ 1 or buried in the experimental
scatter.
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Figure 1: (a) 19 ZPG TBL U+-profiles used in [4] and 6 profiles of [5] minus the log-law U+
log = ln(5.05 y+)/0.384

corresponding to (2). • (black), Reδ∗ ≤ 2× 104 ; N (blue), 2× 104 < Reδ∗ ≤ 4× 104 ; � (red), Reδ∗ > 4× 104. · · ·, leading
term (10.6 η)4 of the small-η departure from the log-law for Reδ∗ = 2×104, 4×104 and 7.84×104 (last red profile). The grey
band indicates deviations of up to ±0.2 from the log-law. (b) Same profiles minus outer expansion (2) versus η = y+/Reδ∗ .
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Figure 2: (a) Centerline velocity U+
c in turbulent channel flow versus H+. ◦, CFD data from [6], [7] and [8]; △, experimental

data from [9]; �, data from [10]. (b) Centerline velocity U+
c in turbulent pipe flow versus R+. ◦, “superpipe” Pitot data from

[4]; △, experimental data from [11]; �, data from [12]. Fits as indicated on the figures.

Centerline velocity in turbulent channel and pipe flows
In channel and pipe flows, the κc obtained by fitting the centerline velocity with U+

c = ln(Re)/κc+C is clearly different
from 0.384. As seen in fig. 2a for the channel, κc = 0.416, resulting from the best fit of the CFD data for H+ ≥ 103,
is far from 0.384 and even further from the value deduced in [2]. However, when allowing for a non-zero f1 in (1) with
f1(η ≡ H+ = 1) = 4.5 and f1(η → 0) = 0, the centerline data can be perfectly reconciled (see the solid red line in fig. 1a)
with a log-law-κ of 0.384, found in [8], for instance.

For pipe flow, the situation is similar to the channel, as the fit of a simple log-law to the Pitot data in the Princeton
“superpipe” yields a κc = 0.42. Again, a three-term asymptotic series (1) with f1(η ≡ R+ = 1) = 10 and f1(η → 0) = 0,
shown as solid red line in fig. 1b, fits the data nicely.

Conclusions
In this contribution, we are pointing out the fact that in turbulent channel and pipe flows the κc obtained from fitting the

centerline velocity U+
c is significantly larger than the log-law-κ in [8], [1], etc. and the κ deduced from both log-law and

free-stream velocity in the ZPG TBL. This has received very little attention so far, despite the incompatibility of κc ̸= κ with
the asymptotic matching of inner and outer U+- expansions across a logarithmic overlap. Here we propose a way out of this
dilemma by generalizing the outer expansion to equation (1).

One may think that the dilemma only exists if one believes in a unique log-law-κ dictated by the widely scrutinized TBL
data, but the requirement κc = κ remains valid if the log-law-κ’s in the three flows are different. As the centerline data in
figure 2 are thought to be reliable, at least for TP where there are no issues related to side-walls and span-wise variation of
Uc+ (see e.g. [13]) or span-wise periodicity, the question is whether log-law-κ’s of 0.416 and 0.42 are compatible with TC
and TP data. Given the history of κ deduced from the “superpipe” data and the limited Reynolds number range of channel/duct
data, it appears difficult to settle the question without further theoretical work.
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SKIN FRICTION GENERATION BY ATTACHED EDDIES IN A TURBULENT CHANNEL
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Summary The role of different scales in skin friction generation is investigated in a turbulent channel, at moderately high Reynolds numbers.
Three different methods are used: the FIK identity, and two sets of LESs using minimal boxes and selective flow damping respectively. We
show that the self-similar coherent motions in the form of Townsend’s attached eddies in the logarithmic layer are the dominant contributors
to wall shear stress at sufficiently high Reynolds numbers, whereas the near-wall and outer coherent structures are of limited importance.

INTRODUCTION

Background
The near-wall region has often been understood as the largest contributor to wall shear stress. At low Reynolds number,

coherent structures in this region have been shown to dictate drag production with the major role played by the streamwise-
aligned vortices [1]. However, for the last decade, the measurements at high Reynolds numbers significantly challenged this
early view, revealing the significance of the regions above the near-wall region. Indeed, the structures in the logarithmic
and outer regions have been shown to be very energetic and to influence the near-wall region with significant generation of
turbulent skin-friction drag [2, 3]. Furthermore, a growing body of very recent evidence suggests that the coherent structures
in wall-bounded turbulent flows are organized in a hierarchical form throughout the entire wall-normal layers with a self-
similar energy-carrying eddy entity, as in the attached eddy hypothesis by Townsend [4, 5]. It is, however, almost completely
unknown how these self-similar structures (i.e. attached eddies), populating mainly the logarithmic region, are involved in
turbulent momentum transport, particularly, to the wall (i.e. turbulent skin-friction generation). The purpose of this study is to
explore this issue by quantifying turbulent skin-friction generation by these structures at moderately high Reynolds numbers.

Methodology
Based on recent finding that the size of the attached eddies is characterized by the spanwise length scale [5], in this study,

we introduce three approaches in order to quantify turbulent skin-friction generation by the motions, the spanwise size of
which λz is smaller than a given cut-off wavelength λz,c: 1) the FIK identity [6] combined with the spanwise wavenumber
spectra from existing DNS database [7]; 2) selective damping of the motions at λz > λz,c in a sufficiently large computational
domain; 3) ‘minimal-box’ simulation, which means that the motions, and relative coherent structures, at λz > λz,c are
physically limited by the spanwise size Lz such that λz,c = Lz [8] (‘minimal’ is here used with this particular implication).
For the latter two approaches, a set of near-wall resolved large-eddy simulations are performed in a turbulent channel of the
half height h with the Vreman model. The simulations have been carefully validated with the existing DNS database at the
bulk Reynolds numbers varying from Rem = 38× 103 to Rem = 193× 103, resulting in the friction Reynolds numbers from
Reτ ' 1000 to Reτ ' 4000.

RESULTS

Figure 1 shows that variation of the skin friction coefficient Cf with the cut-off spanwise wavelength λz,c obtained with
the three approaches introduced. Note that, in turbulent channel flow, the spanwise wavelength of the outer structures, namely
very-large-scale and large-scale motions, is λz ' 1.5h [5]. All the three different approaches clearly show drastic decrease of
Cf on decreasing λz,c. The drop in Cf is particularly severe for λz,c/h < 1. The spanwise size of the self-similar coherent
motions in the logarithmic region is given in the range of 0.05 < λz/h < 1.5 at this Re: this suggests that the largest amount
of turbulent skin-friction generation comes from the self-similar coherent motions, which belong to the logarithmic region
given their length scale. We also mention that the FIK-identity-based approach, which applies only to the relevant portion
of the λz spectra, exhibits remarkable discrepancy from the other two approaches which artificially remove the motions at
λz > λz,c. This implies that the remainder of the flow is affected by the removal of the motions at λz > λz,c and it undergoes
non-negligible changes that partially recover the lost skin friction. Inspection of the spectra (not shown) revealed that this is
due to the lack of proper scale interaction of the motions near the cutoff wavelength λz,c (i.e. the largest permitted structures
in the given flow) with the removed motions, resulting in a non-negligible amount of Reynolds-stress generation in the wall-
normal location supposed to be emptied by the removal. We also underline that the statistics and Cf , obtained based on
selective damping and minimal boxes, show remarkable agreement, meaning that the manner of the removal has little effect
on the flow and skin friction.

∗Corresponding author. Email: m.de-giovanetti14@imperial.ac.uk
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Figure 1: Variation of Cf on the cut-off spanwise wavelength λz,c at Reτ ≈ 2000: �, FIK; ◦, selective damping; ∗, minimal boxes.

Figure 2: Dependence of Cf on Reb with minimal-box approach (i.e. λz,c = Lz): (a) Lz/h = 0.25, 0.4, 0.5, 0.75, 1.5; (b) L+
z ≈

400, 1000, 3000. Solid line shows the empirical fit by Dean, Cf = 0.073Re−0.25
m . Arrows represent increasing values of Lz and L+

z .

The relative contributions of the motions at λz < λz,c to Cf on increasing Rem are shown in figure 2 using the minimal-
box approach (i.e. λz,c = Lz). The lines in figure 2(a) indicate Cf when Lz is chosen to be scaled with the outer unit.
On the other hand, those in figure 2(b) are Cf when Lz is scaled with the inner unit. Figure 2(a) suggests that the relative
contribution of the motions at λz > Lz is almost unchanged with Rem when Lz is scaled in the outer unit. In contrast, the
relative contribution of the motions at λz > Lz decays with Re, when Lz is scaled in the inner unit (figure 2b). This implies
that the motions, the size of which are larger than a certain outer length scale, generate the almost same relative contribution,
whereas those smaller than a certain inner length scale progressively reduce their importance on growing Re. This trend
implies an increasing contribution of the self-similar motions in the logarithmic layer to total turbulent skin-friction drag with
Re, thereby dominating in overall skin-friction generation at sufficiently high Re. It is worth noting that outer structures
at λz > 1h are found to bear only a small amount of drag (figures 1 and 2), indicating that their removal would be only
marginally beneficial.

CONCLUSIONS

Turbulent skin-friction generation by the motions at different length scale has been quantified by taking three independent
approaches in the range of Reτ from 1000 to 4000. All the three approaches indicate that turbulent skin friction at sufficiently
high Reynolds numbers is collectively generated by the self-similar coherent motions given in the form of Townsend’s attached
eddies in the logarithmic region. This finding may explain the failure of many drag-reducing techniques, targeting the near-
wall motions, at moderate and high Re.
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Summary We present near-wall results from zero-pressure gradient boundary layer DNS, at Reynolds numbers up to Reθ = 2000 based on
momentum thickness θ and free-stream velocity U∞. Statistics and probability distributions of fluctuating skin friction suggest increasing
standard deviation and higher moments with increasing Reθ . An algebraic correlation for wall dissipation is proposed, fitting current and
previous data. The wall-shear stress angle appears correlated with the streamwise vortex structures which are responsible for rare negative
shear stress events. A conceptual model is presented, relating statistics of filtered skin friction fluctuations with velocity structure function
in δν � y � δ (δν and δ are wall viscous length and boundary layer thickness). According to the model, the fluctuating shear stress
influences velocity spectra in the Townsend-Perry attached-eddy range 1/δ < k < 1/y, inducing a higher slope than the classical result
E(k) ∝ k−1.

INTRODUCTION

Estimating wall-shear stress fluctuations in turbulent boundary layers is very important, as they play a fundamental role in
noise and drag generation in wall bounded flows. Accurate numerical studies are especially useful, since experiments usually
have limited resolution to measure skin friction fluctuations, due to wall thermal effects on hot-wire and hot-film probes.
Moreover, understanding the dynamics of wall shear stress is also very interesting from a fundamental point of view, since
it is linked to velocity fluctuations along the boundary layer by attached eddies, as explained by the model of Townsend-
Perry [5]. A comprehensive computational study of shear stress fluctuations is summarised here, confirming an empirical
correlation for wall dissipation with Reynolds number and presenting an algebraic model relation between skin friction and
velocity statistics, in order to account for the fluctuating skin friction in the classical theory of Townsend-Perry.

Computational method
Results have been obtained from a high resolution Direct Numerical Simulation of a zero-pressure gradient boundary

layer. The computational solver is Incompact3d [1], a 6th-order finite difference code, with a spectral treatment for the
pressure equation and a semi-implicit time advancement for the viscous terms. The simulation has been performed with
4097 × 513 × 256 cells, and size 480 × 40 × 15 δ99,0, based on boundary layer thickness at the inlet. The computational
domain is only stretched in the wall normal direction and the resolution, in wall viscous units (at Reθ = θU∞/ν = 1470,
based on the momentum thickness θ and free-stream velocity U∞), is: ∆x+ = 10.2, ∆z+ = 5.1, ∆y+ = 0.42 at the wall
and ∆y+ = 108.8 at the top of the domain. Periodic boundary conditions are specified in the spanwise direction and a
homogeneous Neumann condition is imposed at the top boundary. The Reynolds number range of the simulation, based on
momentum thickness, is Reθ = 270 − 2100. A laminar Blasius profile is prescribed at the inlet and transition to turbulent
state is triggered, 15δ99,0 downstream, via a random-forcing method as in [2]. After an initial period of T ≈ 2000δ99,0/U∞
mean quantities and statistics have been averaged over T = 3000δ99,0/U∞ (T+ = 11000).

RESULTS

The standard deviation dependence on Reτ of both streamwise and spanwise shear stress fluctuations fits a logarithmic
trend (as in [2]), and this can be used to formulate an empirical correlation for the wall dissipation dependence. The proposed
correlation is in good agreement not only with current simulation results but also with other published numerical data (Figure
1). The Reynolds dependence of τx must come from the influence of large scale wall-attached eddies, and Townsend-Perry
theory predicts that turbulence kinetic energy in the inertial region also increases logarithmically with Reτ . This correlation
can be important, for instance, in turbulence modelling, since it allows to extrapolate the wall dissipation value for Reynolds
numbers at which DNS simulations do not exist.

The p.d.f. of streamwise shear stress follows a quasi log-normal distribution but there are extreme events with negative
values for τx. The instantaneous shear stress vector τ= {τx, τz} forms an angle with the x direction which follows a symmet-
ric, high kurtosis distribution. The probability of events with ±90◦ angle is much higher than greater angle events, showing
that the negative τx events correspond to high values of spanwise shear stress τz . The spatial location of turbulence structures
alongside angle contours (Figure 3) suggests a correlation between the near wall quasi-streamwise vortices and the high values
of the shear stress angle, and both often come in opposite pairs.
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Figure 1: Empirical correlation for dissipation rate along dif-
ferent simulation data. Shadowed region represents an error
of ±5%.

Figure 2: Cross-correlation between shear-stress and stream-
wise velocity. The peak is centred using a constant delay an-
gle α ≈ 15◦, τ ′ = τ − y/(tan(α)u(y)).

Figure 3: Vortex structures visualised with λ2 criterion super-
imposed on contours of shear-stress angle. High angle values
locations are correlated with the vortex positions.

Figure 4: Model parameter n, showing a consistent value
around 3-3.5 for several y+ and two different Reynolds num-
bers.

A conceptual model for the filtered shear stress fluctuations
An algebraic model is proposed to relate the statistics of shear stress filtered fluctuations, u2∗(x, r, t) (r is the filter scale),

and the structure function of streamwise velocity at y positions along the boundary layer, within δν � y � δ (where δν and
δ are the wall viscous length and boundary layer thickness). The range of scales y < r < δ is dominated by attached eddies,
linking the wall shear stress and velocity fluctuations at y. In a general way, following the ideas proposed by Kolmogorov

in 1962 [3,4], the relation can be formulated as 〈(u′(x+ r, y)− u′(x, y))
2〉 ∼ u2τf

(
〈
[
u2
∗(x,r,t)
u2
τ

]n
〉
)

, where n is the model
parameter, assumed constant, and uτ is the mean friction velocity. Statistical moments with n > 2 decrease with the filter
scale r while the structure function increases with this variable, so we chose f(x) ∼ 1/x, keeping a simple formulation for the
model. Numerical results from time collecting probes were used to validate this model, using Taylor hypothesis to transform
between temporal (τ ) and spatial streamwise structure functions. A relation between streamwise and wall-normal scales r is
suggested by cross-correlations of u along y, as tanα = y

u(y)τ , which shows a constant delay angle α around 15◦ (Figure 2).
Simulation results confirmed a consistent value for the model parameter n between 3 and 3.5, for several y and Reτ (Figure
4), which provides a good correlation along the wall-attached eddy range y < tanαu(y)τ < δ. The influence of shear stress
fluctuations on the structure function in the wall-attached range, 1/δ < k < 1/y, predicts an increase of the energy spectra
slope, E(k) ∝ k−1−µ, with small µ ≈ 0.1 which is determined by n and the decay rate of the variance with r.
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TURBULENT TEMPERATURE MEASUREMENTS IN WATER

Clayton Byers∗1, Matthew Fu1, Yuyang Fan1, and Marcus Hultmark1

1Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA

Summary The fluctuating temperature field in a heated turbulent boundary layer is investigated. The working fluid is water, which is shown
to have implications on the measurement devices, which typically are optimized for operation in air. A novel nano-scale temperature sensor,
previously utilized in air, is redesigned for water measurements with a bandwidth of up to 1 MHz and spatial resolution more than an order
of magnitude better than conventional sensors. The new sensor enables a detailed study of both mean and fluctuating temperature profiles
in the boundary layer, as well as the turbulent heat fluxes when combined with velocity measurements.

BACKGROUND

Even though there have been tremendous improvements in flow measurement techniques over the last couple of decades,
instrumentation for measuring turbulent temperatures have not advanced at the same pace. The need for miniature probes to
avoid spatial filtering has been shown in several studies (see for example Ligrani et al. [1]). A common rule of thumb is
that the size of the sensing element should not exceed 20 viscous units, which is typically challenging to satisfy, especially
at high Reynolds numbers. Cold-wires are still the preferred technique for obtaining turbulent statistics for temperature, even
though they have been shown to have inadequate bandwidth [2]. This results in temporal filtering, while the long length of
conventional cold wires (typically 0.5-1 mm) leads to the spatial filtering as described in [1]. The inadequacy of the in-
strumentation has resulted in a lack of high-quality temperature data, especially in wall-bounded turbulent flows where the
resolution requirements typically are high. Modern semiconductor manufacturing techniques have enabled miniaturized sen-
sors to be developed and manufactured (Bailey et al. [3] and Fan et al. [4]), which have been utilized successfully. However,
these sensors have only been used in gaseous media, and they have consequently been optimized for such environments.

By using water as the test fluid, scaling parameters for the temperature field can be better evaluated. Most previous thermal
boundary layer data have been acquired in air flows, where the Prandtl number (ratio of viscous to thermal diffusion) is 0.7,
meaning that temperature and velocity fields develop in a similar fashion. Therefore, many data sets for the temperature field
utilize identical scaling parameters as those for the velocity field. With a Prandtl number of 7 in water (and adjustable from 3
to 9 depending on the free stream temperature), both classical and newly developed scaling relations can be tested. However,
testing in water implies that the length scales are even smaller, and spatial resolution even more critical.

One of the main concerns when miniaturizing temperature sensors is to reduce any end-conduction effects, since the
timescales associated with the supports of the sensing element are much larger than those associated with the sensing element
itself. Conventional cold wires are subject to severe attenuation even at low to moderate frequencies, due to end-conduction,
resulting in large discrepancies in measured versus actual temperature in turbulent flows [2]. A cold wire model based on the
lumped capacitance approach was developed and validated experimentally with multiple cold wire geometries. The results
and the model lead to the development of the TNSTAP sensor, a nano-scale temperature probe modified from the NSTAP
velocity sensor developed at Princeton [3, 4]. These modifications reduce the influence of the probe support and enable high
bandwidth temperature measurements, reduced low frequency attenuation and an increased roll-off frequency both compared
to conventional cold-wires and NSTAPs when used as a constant current cold wire. The advantage of the TNSTAP over
regular cold wires was shown by Arwatz et al. [5], and the cold wire model accurately accounted for the cold wire attenuation.

TEMPERATURE MEASUREMENTS IN WATER

By utilizing the cold wire model developed by Arwatz et al., the frequency response for different wire geometries and flow
conditions can be predicted. The response for a conventional cold-wire is compared to an NSTAP and a TNSTAP, operating
in air at 10 m/s, in figure 1. The four wires simulated (a Wollaston 2.5 µm (90% Pt and 10% Rh) conventional cold-wire with
l/d = 500, a 30 µm and a 60 µm long NSTAP, and a 200 µm long TNSTAP) have radically different response curves. As
can be seen, the two NSTAPs have improved low frequency behavior compared to the conventional cold-wire, but suffer from
severe attenuation above 100 Hz. This is perhaps not surprising, since the NSTAPs were designed to be hot-wires, where end
conduction effects are less critical. The TNSTAP, which was specifically designed to eliminate the attenuation observed in
the NSTAPs and the conventional cold-wires, exhibits an order of magnitude increase in roll-off frequency and significantly
improved low frequency attenuation.

However, a cold-wire operates on the principle of adjusting to the ambient flow temperature, thus the heat transfer char-
acteristics to the flow is of great significance to the dynamics of its response. In this study we are particularly interested
in temperature measurements in a heated water channel. The heat transfer coefficient is significantly higher in water, at an

∗Author. Email: claytonb@princeton.edu
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Figure 1: Comparison of wire response utilizing lumped capacitance model of Arwatz et al. [2].

otherwise similar configuration, compared to air. It can therefore be expected that all of these sensors will perform better in
water, since they can adapt faster to a change in the ambient temperature. The model used above allows investigation of this
effect, and figure 1 also shows the response of the 30 µm NSTAP and the TNSTAP in water at 2 m/s. The roll-off frequency
is nearly identical for both sensors with a bandwidth greater than 1 MHz, and low frequency attenuation is nearly non-existent.
This is almost two orders of magnitude faster than what the model predicts for a conventional cold-wire in water. Furthermore,
in order for a sensor to respond fast enough to changes in the ambient flow, the internal accumulation of heat in the sensor
itself must be small. This is characterized by the Biot number (ratio of external to internal heat conduction), which must be
less than 0.1 for the lumped capacitance method to work. The cold wire studied in figure 1 has a Biot number much smaller
than 0.1 in air, but in water it becomes greater than 0.1, especially for the larger geometries. This implies that the model will
over predict the bandwidth of a conventional cold-wire in water. In contrast, the nano-scale probes all have Biot numbers less
than 0.1 both in air and water, implying that the lumped capacitance model is valid and the above predictions accurate.

DISCUSSION

The results of the modeling above indicate that a wire with poor frequency response in air may have exceptional response
in water. It further indicates that there is no advantage of utilizing the TNSTAP over the 30 µm NSTAP for temperature
measurements in water since both have nearly identical temporal response. However, with the 30 µm NSTAP being 7 times
shorter than the TNSTAP, the spatial resolution is almost an order of magnitude better. In the planned water channel boundary
layer experiment, the thermal length scale can approach 2.5 µm, thus the NSTAP has an length of 12 thermal units versus 80
for the 200 µm long TNSTAP. Therefore, the 30 µm NSTAP will be able to accurately capture the temperature fluctuations
in the innermost regions of the thermal boundary layer. In addition to capturing the temperature variance more accurately,
this small wire can also be utilized as a constant current hot wire in water. With the modified end conduction requirement
developed by Hultmark et al. [6], the 30 µmNSTAP can be shown to still satisfy end conduction criteria for use as a hot wire in
water. Therefore, in addition to a significantly improved response to temperature fluctuations over a standard cold wire, the 30
µm NSTAP can be utilized for velocity measurements. This comes as a significant savings in experimental complexity, since
only one sensor is required for two different measurements. Furthermore, combined temperature and velocity measurements
will enable measurements of the turbulent heat fluxes, one of the more difficult parameters to measure.
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Summary Recent direct numerical simulations (DNS) of the restricted nonlinear (RNL) model have demonstrated its ability to reproduce
important features of wall-bounded turbulent flows despite the system’s simplified dynamics. The computational effort required by DNS has
limited these studies to relatively low Reynolds numbers. In order to investigate the RNL system in the very high Reynolds number regime,
we develop a new large-eddy simulation (LES) framework for the model to facilitate studies at effectively “infinite” Reynolds number. Early
results confirm that the RNL-LES at “infinite” Reynolds number is successful in reproducing some of the same important statistical features
captured in previous low Reynolds number simulations. The RNL-LES framework offers a new and useful tool to aid in understanding the
connection between coherent structures and critical momentum transfer mechanisms of wall-bounded turbulent flows.

BACKGROUND

The streamwise-coherent structures often observed in wall-bounded turbulent shear flows have, in recent years, motivated
the study of reduced-order models with simplified streamwise dynamics. One example is the two-dimensional, three-velocity-
component (2D/3C) model which consists of 2D fields for all three velocity components and the pressure gradient. Studies of
the 2D/3C dynamics have elucidated important mechanisms in turbulent plane Couette [1] and pipe [2] flows.

The related restricted nonlinear (RNL) model builds on the 2D/3C system by coupling its dynamics with those of a
streamwise-varying perturbation field. The RNL system is straightforwardly derived from the Navier-Stokes equations by
decomposing the velocity field into a streamwise mean flow, Ui(y, z, t), and perturbations about that mean, ui(x, y, z, t). The
perturbation field is associated with streamwise-varying wavenumbers (i.e., non-zero streamwise wavenumbers) while the
mean flow only includes the zeroth streamwise wavenumber. The total velocity is thus: (uT , vT , wT ) = (U+u, V +v,W+w).
The same decomposition is employed for the pressure field. The nonlinear term associated with the interactions between
perturbations is then eliminated to obtain the RNL system:

∂iUi = 0, ∂tUi + Uj∂jUi + ∂iP − ν∂j∂jUi = −〈uj∂jui〉 − ∂xp∞ î (1)
∂iui = 0, ∂tui + Uj∂jui + uj∂jUi + ∂ip− ν∂j∂jui = 0. (2)

The angle brackets in equation (1) indicate the streamwise-averaging operation. Direct numerical simulations (DNS) of
the RNL system have highlighted that its dynamics are supported by a reduced set (compared to the Navier-Stokes system) of
streamwise-varying wavenumber modes [3]. Studies have also indicated that the streamwise-varying wavenumbers involved
in the dynamics can be changed, e.g. by shifting and/or band-limiting these modes, while still maintaining a turbulent flow
[4, 5]. Additionally, the particular streamwise-varying wavenumbers involved have a strong effect on the turbulence statistics.

The RNL studies carried out to date have focused on friction Reynolds numbers (Reτ ) below 1000. In order to investigate
the behavior of the RNL system at very high Reynolds numbers, such as those encountered in the atmospheric boundary layer
and various engineering applications, we propose a version of the RNL model suitable for large-eddy simulations (LES). This
RNL-LES model requires a sub-grid scale model as well as a wall model to circumvent the high-cost associated with resolving
the near-wall region. We present results using a standard Smagorinsky model, τ sgsij , which is desirable for its simplicity and
appropriate for an initial, proof-of-concept step. Thus, in the LES version, equations (1) and (2) contain the additional sub-
grid stress terms ∂j

〈
τ sgsij

〉
and ∂j [τ

sgs
ij −

〈
τ sgsij

〉
], respectively. The wall region is modelled by imposing stresses at the first

gridpoints above the wall which assume the standard rough wall log law.

NUMERICAL TECHNIQUE

The spatial discretization is pseudospectral in the horizontal directions (streamwise x, spanwise y) with second-order finite
differencing in the wall-normal (z) direction. We use 3/2-rule dealiasing and integrate forward in time with the second-order
Adams-Bashforth method. The horizontal boundary conditions are periodic while the wall-normal direction has a stress-free
condition at the top boundary and the aforementioned wall model at the bottom boundary. For all simulations we have uniform
mesh spacing with 1282 grid points in the y-z cross-plane with a box size of [Lx, Ly, Lz]/H = [2π, 2π, 1]. For the LES case
we also have 128 grid points in the x-direction while the RNL-LES cases require fewer streamwise grid points (depending
upon the particular streamwise wavenumbers retained in the restricted dynamics).
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RESULTS
The natural RNL-LES dynamics, which we refer to here as the “baseline” scenario, over-predicts the mean velocity profile

in a way that is consistent with earlier DNS of the RNL system. The profile does not exhibit the standard logarithmic depen-
dence on wall-normal height as the RNL system over-predicts the velocity in the bulk of the flow and is too flat in the upper
region of the domain. The spanwise (not shown) and wall-normal Reynolds stresses, respectively [v′T v

′
T ]/u

2
∗ and [w′Tw

′
T ]/u

2
∗,

are under-predicted (square brackets indicate horizontal- and time-averaged quantities, the prime symbol indicates the devia-
tion from the time-averaged total velocity), while the streamwise Reynolds stress, [u′Tu

′
T ]/u

2
∗, is strongly over-predicted, also

consistent with prior work [4].
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Figure 1: Mean velocity (top left) and Reynolds stress (top middle, right) profiles; streamwise velocity, uT /u∗, cross-plane snapshots
(LES: bottom left, RNL-LES: bottom right).

By forcing the perturbation dynamics (i.e., the non-zero streamwise wavenumbers present in equation (2)) to operate over
a different set of non-zero streamwise wavenumbers, which we refer to as the “band-limited” scenario, we observe marked
improvement in all of the turbulence statistics, aside from the [u′Tw

′
T ]/u

2
∗ Reynolds stress, which is accurate in all scenarios

due to the required momentum balance which must hold in all cases in the statistical steady state. While earlier DNS studies
of the RNL system showed that one streamwise-varying wavenumber is sufficient to accurately reproduce the mean velocity
profile at low Reynolds numbers, these new results indicate that a more complex wavenumber set may be required at very
high Reynolds numbers. In this band-limited instance, the selected streamwise-varying wavenumbers are chosen to be the 8th

and 16th streamwise modes, based on some initial insights, but another more optimal set (and number) of modes may exist.
Ongoing work is targeted at precisely characterizing the relationship between the streamwise wavenumber support and the
turbulence statistics, which is still not fully understood even in the low Reynolds number regime.

CONCLUSIONS
Our results provide evidence that further study of the RNL system could aid in the development of reduced-order models

of wall-turbulence. The extreme computational expense associated with high-fidelity turbulence simulations is well-known.
By investigating and manipulating the spatial structures embedded in turbulent wall-bounded flows, we can gain insights into
some key mechanisms of wall-turbulence and exploit that knowledge in the development of less-expensive, reduced-order
models. LES of the RNL system provide another angle of attack to further understand the structures and mechanisms involved
in wall-turbulence by allowing one to approach the problem from the very high Reynolds number regime.

This work is supported by the US NSF (Nos. ECCS-1230788, and IIA-1243482, the WINDINSPIRE project).
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Summary The resolvent framework developed by McKeon & Sharma [1] for wall turbulence is a systems-level model that treats the
nonlinear term of the Navier-Stokes equations as a forcing that acts upon the linear dynamics to output a velocity and pressure response
across wavenumber-frequency space. An optimization scheme was developed to determine a full spectral representation of the unknown
nonlinear forcing such that the resulting velocity spectra optimally matched those of DNS for turbulent channel flow. Results show that
this optimization not only determines a forcing field that leads to excellent reproduction of the DNS velocity spectra but also highlights the
potential of this framework to make predictions about statistical quantities not explicitly constrained in the optimization scheme. This study
represents continued progress in the development of the resolvent model as a systematic pathway towards both understanding the dynamics
of wall turbulence and control objectives such as turbulent drag reduction.

INTRODUCTION

Turbulent drag reduction continues to be an important engineering challenge, and the potential economic and environmen-
tal impact is well-documented [2]. A model of turbulence amenable to the rich tools of controls and system theory would
provide a practical means of achieving this desired drag reduction. In this context, we seek to develop a low-order model of
turbulence at a systems-level that captures the key statistical and structural features observed in experiments and simulations,
and that can be scaled with Reynolds number. The resolvent framework has shown promise in possessing these characteristics
[3, 4] and admitting linear control laws via modification of the boundary conditions [5, 6]. The framework formulates the
Navier-Stokes equations as a input/output system across (streamwise and spanwise) wavenumber-frequency space in which
the nonlinear term is treated as a forcing that acts upon the linear dynamics (resolvent operator) to yield a velocity and pressure
response.

In previous work, Moarref et. al. [7] employed a singular value decomposition of the resolvent operator and used opti-
mization and DNS data to identify a finite number of resolvent modes which contributed directly to the velocity spectra. Most
notably, this formulation failed to accurately match the 〈uv〉 Reynolds stress, which is needed to sustain the assumed mean
profile. Since it is not known a priori how many resolvent modes are needed to fully represent the velocity/forcing fields, a
new approach has been developed that does not decompose the operator and instead attempts to solve for the nonlinear forcing
directly. In this study, turbulent channel flow DNS data is combined with optimization techniques to determine and character-
ize the unknown nonlinear forcing that yields a velocity/pressure field whose spectral and statistical features optimally match,
and ultimately predict, those of DNS.

METHODOLOGY

A schematic of the optimization procedure is shown in figure 1. The scheme used an iterative approach within MATLAB
to determine the nonlinear forcing such that the resulting time-averaged velocity spectra matches the DNS data of del Alamo
and Jiménez [8]. As this DNS database did not have pressure spectra data available, in addition to matching velocity spectra

Resolvent 
operator 

Compute time-averaged 
velocity spectra 

Formulate residual between 
velocity spectra and DNS data 

Supply initial 
guess of forcing ff          

Compute new    
forcing ff     

For each 
 

Enforce  Poisson equation 

Figure 1: Optimization algorithm used to iteratively solve for the nonlinear forcing
∗Corresponding author. Email: krosenbe@caltech.edu
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the optimization framework enforced the Poisson equation in an attempt to further constrain the forcing (see figure 1). The
optimization was run for a pair of streamwise and spanwise wavenumbers (kx, kz) and over a range of frequencies to obtain
time-averaged spectra. The first singular forcing mode of the resolvent operator was used to provide an initial guess of the
forcing shape and was found to be a robust choice for the range of wavenumbers considered. Optimization results were ob-
tained on a grid of 30 streamwise wavenumbers, 30 spanwise wavenumbers, and 50 wall-normal points, which is a significant
reduction in degrees of freedom from the corresponding DNS.

RESULTS

Optimization results in the form of intensity profiles are shown in figure 2 for Reτ = 186. The velocity plots indicate
the success of the optimization scheme to match the DNS data it was explicitly enforced to match. Moreover, the pressure
intensity profile reveals that without providing any information about the pressure spectrum and by simply enforcing the
Poisson equation within the optimization scheme, the framework was able to closely match the results from DNS. This helps
to lend support to the notion that the forcing obtained from the optimization is unique, though further validation of this claim is
the subject of ongoing work. The 1-D pre-multiplied spectrum of the v-component of the forcing (f̂v), also shown in figure 2,
clearly shows a defined spectral signature and thus may provide insight into the spatio-temporal scales that drive the linear
dynamics of the flow. The other two forcing components, not reported here, also showed similar discernible signatures. These
results are encouraging and suggest a complete characterization of the nonlinear forcing via this optimization framework is
possible and has the potential to elucidate the complex dynamics of wall-bounded turbulent flows.

Figure 2: Intensity profiles for velocity and pressure components (DNS- red line, resolvent optimization- blue circles) for
Reτ = 186 and the 1-D pre-multiplied spectrum of f̂v obtained using the algorithm outlined in Figure 1.
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BOUNDARY LAYERS
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Summary The turbulent/non-turbulent (T/NT) interface in a transitional boundary layer is examined using direct numerical simulation
(DNS) flow field. The interface is identified using the local vorticity, and its statistical properties are reported. Similarities between the
turbulence spots and fully turbulent region are evaluated using conditional sampling. In addition, the modulation of the interface by large-
scale motion (LSM) is investigated with the aid of a streak detection algorithm.

BACKGROUND

The turbulent/non-turbulent (T/NT) interface is an important region in the study of mass and scalar transport [1]. In the
wall-bounded flow, especially the transitional boundary layer, the mechanics of the flow in the vicinity of the T/NT interface
are complex because of the sharp gradients in the local intermittency and propagation of the turbulence into the surrounded
laminar region. Recently, it has been revealed that the T/NT interface in fully turbulent boundary layers has similarity with
the internal layer, of the edge of large-scale motion (LSM) [2]. However, this similarity has not been explored in the context
of turbulence spots in transitional boundary layers. In the current study, propagation of the turbulence at the T/NT interface
and modulation of the interface by large-scale motion (LSM) in transitional and early turbulent boundary layers are examined
using conditional sampling techniques.

SIMULATION DETAILS AND STRUCTURE IDENTIFICATION

Direct numerical simulation (DNS) of a transitional boundary layer is performed for flow over a semi-infinite flat plate.
The leading edge of the flat plate is a super ellipse (aspect ratio AR = 20). Laminar-to-turbulence transition takes place due
to forcing by inflow free-stream turbulence. Zero pressure gradient is ensured by applying the appropriate suction velocity at
the top and bottom boundaries, which is based on the continuity equation and active control to maintain a constant mean free-
stream speed. The domain size is 1050R, 40R and 240R in the streamwise (x), wall-normal (y) and spanwise (z) directions,
where R is the plate half thickness (see figure 1). The Reynolds number at the exit plane is Reθ ≡ U∞θ/ν = 1,400. By
storing a time-series of the flow field in a crossflow plane, we can perform a subsequent simulation to higher Reynolds number
(Reτ > O(103); for this purpose, the width of the current simulation is very large in the spanwise direction.

For the main statistical analysis, the T/NT interface and the large-scale motions are identified and tracked within the 3-D
velocity fields. The T/NT interface is detected using the vorticity magnitude excluding the spanwise component since it is large
even in the laminar region. Large-scale motions (LSM), on the other hand, are identified using a streak detection algorithm

Figure 1: Computational domain (orange) and detected structures. Upper region (z/R < 120): Isosurface of the turbulent/non-
turbulent interface. Lower region (z/R > 120): Cores of low- and high-speed streaks.

∗Corresponding author. Email: t.zaki@jhu.edu
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Figure 2: Instantaneous visualization of vortical structures within a spot (λ2 = −0.005) colored by the wall-normal location,
and the turbulent/non-turbulent interface (|ωx| + |ωy| = 0.1). The side, end and top views are extracted at z/R = 180,
x/R = 310 and y/R = 1, and show contours of the wall-normal velocity.

[3]. In order to eliminate the small-scale feature, a Gaussian filter is applied to the streamwise velocity with a filter size that
represents the characteristic dimension of the turbulent streak [4]. Figure 1 shows an example of the structure identification
within the instantaneous flow field of the transitional and turbulent boundary layers. The T/NT interface is accurately captured
and the LSM are correctly identified within the laminar region, the turbulent flow, and also across the interface.

RESULTS

In the transitional boundary layer, the T/NT interface marks (i) turbulence spots within the laminar region and (ii) the
most upstream position of the fully-turbulent flow [5]. First, we examine the relationship between the T/NT interface and the
turbulence within the interface statistically. Analysis of the instantaneous flow field within the spot (figure 2) can correlate
depressions of the interface (marked ‘A’ to ‘C’) with sweep motions. The joint probability density function of the interface
height and positions of the underlying streaks confirms that the low- and high-speed streaks promote locally thicker and
thinner interfaces, respectively. Because the detected streaks represent large-scale motions in wall-turbulence, the shape of
the interface also undergoes large-scale deformations. These deformations induce the engulfing process, and ultimately result
in a rapid entrainment of the outer laminar fluid into the turbulent zone. Although the spatial dimensions of young turbulence
spots are too small to enclose large-scale structures, mature turbulence spots exhibit similar trends to those observed in the
fully turbulent zone. Furthermore, the mechanism of spot spreading is investigated in terms of (i) the growth of the enclosed
turbulence structures or (ii) the genesis of new turbulence structures in the vicinity of the interface.

Characteristics of the T/NT interface are computed using conditional sampling. Turbulence quantities such as the mean
velocities and the turbulent kinetic energy are conditionally averaged in the vicinity of the interface. The velocity jump at the
interface, which is found in the fully turbulent regime [2], is also observed at the sides of the spot in the transitional regime.
Both turbulence spots and the fully turbulent region include a back edge of the interface, which is the most upstream position
of the turbulent zone. The conditional spatial-temporal correlation of the edge position shows that the propagation speed of
the turbulent interface at the back of the spot is faster than the back edge of the fully turbulent region [6]. Although the
advection velocities of these edges differ for the spot and the fully turbulent region, both interfaces mark a sharp variation in
mean-flow and turbulence quantities. The faster propagation of the spot in comparison to the fully turbulent region results in
their continual merging, which sustains the upstream edge of the fully turbulent boundary layer.
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Summary Phenomena related to scale interaction in wall-bounded turbulent flows were considered through the lens of critical layer analysis.
A 3D critical layer formulation was used, with the 3D critical layer associated with a particular structure defined as the height where
the instantaneous velocity field composed of the large scales and the mean velocity matched the convection velocity of that structure.
Characterization of the velocity field surrounding the 3D critical layer in wall-bounded turbulent flows led to conclusions consistent with
previously observed phenomena including the shape of the interface defining uniform momentum zones (UMZs) [1] [2] and amplitude
modulation of the small scales by the large scales [5]. The use of a 3D critical layer formulation in wall-bounded turbulent flows may lead
to improved modeling of small scale activity in reduced order models and LES.

The 3D critical layer has previously been considered in wall-bounded turbulent flows in the context of self-sustaining,
exact solutions to the Navier-Stokes equations [3]. The present work links phenomena related to a critical layer and current
observations of scale interaction in wall-bounded turbulent flows. The shape of the interface outlining UMZs in instantaneous
snapshots of turbulent boundary layers has been observed to lie along an isocontour of velocity [1] [2], which can be considered
to constitute an instantaneous 3D critical layer. Additionally, observations that large scales in the flow can modify the local
wall shear stress [4] and the amplitude of the local small scales [5], can be considered through the perspective of the 3D critical
layer analysis. Considering physical and statistical features of wall-bounded turbulent flow through a critical layer framework
allows for improved understanding of scale interactions and may lead to improved modeling of these phenomena.

Figure 1 offers an illustration of a 3D critical layer identified in PIV data. 2D Gaussian filters were used to identify distinct
scales in the PIV velocity data, and Taylor’s hypothesis was used to visualize a larger field of view than is available in the data.
Large-scale velocity structures corresponding to instantaneous velocity higher than the mean velocity are shown to correspond
to depressions in the 3D critical layer towards the wall (relative to the 2D critical layer corresponding to the location where the
mean velocity is equal to the structure convective velocity) and are correlated (both visually and statistically) with energetic
small scales at lower heights in the flow, while those leading to instantaneous velocities slower than the mean velocity are
shown to correspond to raised regions of the 3D critical layer and are associated with energetic small scale activity at higher
heights in the flow.

The resolvent analysis of McKeon and Sharma [6] has been used to model this simplified definition of the 3D critical
layer in wall-bounded turbulent flows. A single velocity response mode from resolvent analysis superimposed with the mean
velocity profile leads to a 3D critical layer signature that qualitatively matches observations of 2D PIV data.

In summary, the utility of the 3D critical layer to describe a range of phenomena that have been observed in the literature
is demonstrated and exploited.

The support of an NDSEG fellowship (TSF) and AFOSR (grant FA9550-12-1-0060) is gratefully acknowledged.
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Figure 1: A visualization of a 3D critical layer is shown using PIV observations of a turbulent boundary layer. The streamwise
large-scale (a), streamwise small-scale (b), and wall-normal small-scale (c) fluctuating velocity structures are identified from
PIV velocity data using 2D Gaussian filters. The black contour line in each figure is an instantaneous contour of u = 0.83U∞
in the full, unfiltered flow field. The grey contour line is the same velocity isocontour identified from the velocity field of the
superposition of only the mean and the large scales, and represents a 2D cut through the 3D critical layer corresponding to
the large scale structure. The similarity of the black and grey contour lines suggests that the large-scale streamwise velocity
structure identified in (a) is largely responsible for the shape of the full velocity isocontour. The small scales in (b) and (c) are
seen to follow the black and grey contour lines closely, potentially identifying the source of the well-characterized amplitude
modulation effect. Note that Taylor’s hypothesis has been applied to all velocity contours using a convection velocity of
0.83U∞ to show a larger field of view than is available in the data. Adjacent images are overlapped to visualize the accuracy
of Taylor’s hypothesis.
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Summary A candidate flow configuration is identified that has the potential to generate a self-sustaining interaction between a single vortical
fissure and adjacent uniform momentum zones, i.e. the primal coherent structures and interactions observed in the outer part of turbulent
wall flows at asymptotically large Reynolds number Re. Matched asymptotic analysis is used to derive a reduced set of PDEs governing the
coupled dynamics of the fissure and uniform momentum zones in the limit Re → ∞. The analysis clarifies the nature of the hypothesized
interaction and provides an equation set that is suitable for efficient multiscale numerical simulations.

INTRODUCTION

Both field observations and laboratory experiments suggest that at extremely large Reynolds numbers Re ≡ uτh/ν,
where uτ is the friction velocity, h an appropriate integral length scale and ν the kinematic viscosity, fluid motions in the outer
part of turbulent wall flows self-organize into interacting vortical fissures (VF) and uniform momentum zones (UMZ). The
fissures are essentially internal shear layers across which the instantaneous streamwise (x directed) velocity changes sharply,
thereby separating adjacent UMZ in the wall-normal (y) direction (see Fig. 1, left). Experiments reveal that the dimensionless
thickness of the VF (normalized by h) is O(1/

√
Re), while the dimensionless streamwise velocity jump across the fissures

(normalized by uτ ) is O(1) [1]. These scalings, which are consistent with the conceptual notion that the turbulent boundary
layer comprises logarithmically many viscous internal layers containing most of the vorticity and, hence, dissipation, must be
respected by any credible predictive asymptotic theory.

A CANDIDATE FLOW CONFIGURATION

The UMZ are colocated with very large-scale motions (VLSM) or super-structures, elongated regions of spanwise (z)
alternating, relatively uniform, low and high streamwise-momentum fluid. Observations confirm that the low-momentum
regions are separated by the vortex cores of nearly inviscid streamwise roll modes [2]. Here, we suggest that these observations
are consistent with the notion that the super-structures and UMZ are driven by a variant of the self-sustaining process (SSP)
first proposed by Waleffe [3] for plane parallel shear flows and subsequently described in the large-Re limit by Hall &
Sherwin [4] and Beaume et al. [5]. According to this theory, comparably weak [O(Re−1)] streamwise vortices drive an
O(1) redistribution of the background streamwise shear; the resulting spanwise inflections in the streamwise velocity are the
sites of x-varying shear instabilities that nonlinearly interact to reinforce the (weak) streamwise vortices, thereby comprising
a SSP. Until recently, Waleffe’s SSP and the associated “exact coherent states” (ECS) – unstable 3D equilibrium, traveling-
wave or periodic-orbit solutions of the Navier–Stokes (NS) equations – had been thought to be relevant only to the near-wall
dynamics of the turbulent boundary layer (if at all). However, it is conceivable that a similar mechanism partially sustains the
UMZ much farther from the wall. One crucial difference concerns the dynamics of the streamwise-averaged flow: in the SSP
articulated by Waleffe and Hall, the effective Reynolds number for this x-mean flow is O(1); in contrast, our scaling analysis
confirms that the streamwise-averaged dynamics within the UMZ are essentially inviscid. This is significant, since the x-
averaged streamwise flow (the ‘streaks’) associated with Waleffe’s lower- and upper-branch ECS is not uniform. In contrast,
at sufficiently large effective Reynolds number, a counter-rotating cellular flow in the y–z plane is expected to homogenize the
(x-mean) streamwise velocity component, consistent with the defining property of UMZ.

ASYMPTOTIC DEDUCTION AND REDUCTION

Consider the incompressible Navier–Stokes (NS) equations normalized using uτ , ρu2τ (where ρ is the fluid density), h and
h/uτ as scales for the velocity, pressure, length and time, respectively. Letting ε ≡ 1/

√
Re, we require the (emergent) internal

shear-layer thickness ∆ ∼ ε in accord with the observed scalings of VF in turbulent wall flows at large Re. As ε → 0, the
shear layer thins to a sheet and the dynamics is expected to be largely inviscid except within a thin O(ε) region centered on
the shear layer. Thus, this configuration is amenable to analysis using the method of matched asymptotic expansions, with an
outer region in which y = O(1) and an inner region in which y = O(ε) and, hence, Y ≡ y/ε = O(1).

∗Corresponding author. Email: greg.chini@unh.edu
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Figure 1: Left: Schematic of the flow structure in the outer part of turbulent wall flows at large Re [1]. Middle: Snapshot
of the streamwise-averaged streamwise (i.e. ‘streak’) velocity, with the roll velocity field overlaid, taken from a numerical
simulation of the 2D advection-diffusion equation governing ū0(y, z, T ) in the weak-diffusion limit. Right: The horizontally
(x and z) averaged streamwise velocity profile ūxz0 obtained by averaging in z the 2D field shown in the middle panel. Note
the emergence of uniform momentum zones (UMZ) and an internal shear layer (vortical fissure).

Within the UMZ (i.e. the outer regions), the field variables are expanded in the following asymptotic series:

u(x, y, z, t; ε) ∼ ū0(y, z, T ) + ε [ū1(y, z, T ) + u′1(x, y, z, t, T )] ; v⊥(x, y, z, t; ε) ∼ ε [v̄1⊥(y, z, T ) + v′1⊥(x, y, z, t, T )] ,

where v⊥ = (v, w), and u, v andw are the x, y and z velocity components. A slow time scale T ≡ εt has been introduced, and
the fields have been decomposed into a streamwise/fast-time mean and a fluctuation. The form of these expansions is identical
to that employed by Beaume et al. [5], but the scaling of ε with Re differs. Consequently, weak rolls drive O(1) streaks, as
in Waleffe’s ECS, but the scalings employed here ensure that ū0(y, z, T ) satisfies a 2D advection equation with subdominant
diffusion that nevertheless must be retained: a shear-dispersion mechanism enhances diffusion as the roll motion twists iso-
surfaces of and thereby homogenizes ū0 (Fig. 1) [6]. Also unlike Waleffe’s SSP, the streamwise-averaged flow is driven by the
fluctuation dynamics within the shear layer; i.e. exterior to the rolls. Within the VF (i.e. the inner region), the field variables
are again expanded in appropriate asymptotic series. In particular, the magnitude of the streamwise velocity fluctuation (u′1) is
amplified by a factor 1/ε within the internal shear layer, as can be verified by analysis of the Orr-Sommerfeld equation with a
mixing layer shear-flow profile having an O(ε) thick region of strong shear. For obliquely-oriented disturbances on the shear
layer, incompressibility implies the spanwise velocity fluctuation w′1 experiences the same amplification. The wall-normal
velocity fluctuation remains O(ε), but experiences a jump in value across the VF. Using these deductions, the NS equations
within the VF reduce to a variant of the laminar boundary-layer equations.

DISCUSSION

Our matched asymptotic analysis yields reduced equations that are less computationally expensive to time-integrate than
the NS equations in the large-Re limit of interest. More significantly, the analysis makes clear one possible mechanism for
the self-sustenance of coexisting uniform momentum zones and internal shear layers (vortical fissures) in the outer part of
turbulent wall flows. Our preliminary results indicate that the large-scale roll modes act as a homogenizing agent that leads
to the formation and sustenance of the UMZ while simultaneously producing concentrated regions of spanwise vorticity (i.e.
VF). Owing to this homogenization, the fluctuations (streamwise-varying fields) are largely irrotational within the UMZ,
implying that the primary mechanism for driving the roll modes necessarily arises from the nonlinear fluctuation dynamics
within the fissure. The analysis also reveals the precise scaling properties of the roll modes and internal fissure structure that
are required to self-consistently generate internal shear layers with the experimentally observed O(1/

√
Re) thickness.
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Summary We investigated the space-time correlation of streamwise velocity in the high Reynolds number atmospheric surface layer 

(ASL) using multipoint synchronous field observation array. The experimental results show that the iso-correlation contours of space-time 

correlations have an elliptical shapes rather than straight lines, which suggests that, instead of Taylor hypothesis, the elliptic model [1] is 

more suitable for describing the space-time correlation for the streamwise velocity in the ASL. It relates the space-time correlation to the 

space correlation via convection velocity U and sweeping velocity V. The further experimental results suggest that U is basically equal to 

local mean streamwise velocity and V is approximately twice as large as the root-mean-square of the streamwise velocity. 

 

INTRODUCTION 
 

Turbulence contains eddies with various scales which is characterized by the fluctuating velocity field ( , )v τx  at 

position x  and time τ . The space–time correlation function of fluctuating velocities, defined as eq (1) is a fundamental 
description on fluctuating velocity field.  

( , ) ( , )( , ) (1)
( ) ( )rms rms

v t vC
v v

τ ττ 〈 + + 〉
=

+
x r xr

x r x
 

For simplicity, we just analyzed the space–time correlation of streamwise velocity ( , )uC r τ  and r  is the spatially 
streamwise separation. The space–time correlation function ( , )C τr  provides more information on turbulent structures than 
time autocorrelation or spatial cross correlation. However, there is little research on ( , )C τr  in the ASL. Understanding the 
relationship between space and time in ( , )C τr  of fluctuating velocities is one of the important scientific issues in 
turbulence research. For example, ( , )C τr  can characterize the cascade processes in turbulence which can describe the 

transportation of energy between eddies. It is also important in subgrid scale (SGS) modeling for large eddy simulation 
(LES) in the closure theory of turbulence[2]. 
 

EXPERIMENTAL SET-UP 
 

The field experimental observations were conducted at a dry and flat lake bed of the Qingtu Lake which is located 
between Tenger Desert and Badain Jaran Desert in the western area of China ( ' '' ' '':103 40 03 , : 39 12 27E N° ° ; 1300m elevation) 

during the period of 26 March to 06 May 2014.This area has strong steady northwest and southeast winds in spring and the 
variation of the surface topography within 10 km in northwest and southeast is less than 2m. The observation array consist a 
streamwise array of 9 movable towers with the spacing were: 0, 1, 5, 10, 15, 20, 30, 40, 50m respectively. In order to get 
more experimental data, the direction of the array is adjusted in the direction of the streamwise velocity before every strong 
wind. There were 9 three component sonic anemometers (Gill Instruments R3-50) settled on the movable towers at the 
height of 2.5m.The anemometers measure wind velocities as well as temperature at a sampled rate of 50Hz, all 9 
anemometers are sampled simultaneously and calibrated by GPS every hour.  
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CONCLUSIONS 
 

We studied the space-time correlations for streamwise velocity. It can be obviously seen from the figure 1(left) that the 
2D plot of the contours of ( , )uC r τ  have an elliptic shape. If Taylor frozen hypothesis is hold in the ASL, the iso-correlation 
contours of ( , )uC r τ  should be straight lines [4]. The fact that the shape of the ( , )uC r τ  is different from Taylor frozen 
hypothesis reveals that that elliptic model is more suitable to describe ( , )uC r τ  than Taylor frozen hypothesis in the ASL. 

     

Figure 1. (left) 2D contours of the space-time correlation function in time and space plane; (right)The schematic diagram for 
the 2D contours in Taylor’s frozen flow. 

The elliptic model relates the ( , )uC r τ  to ( ,0)u EC r  via 2 2 2( ) ( )Er r U Vτ τ= − + , the convection velocity U can be calculated 
from the condition, 

0/ |E rr r =∂ ∂ ;while the sweeping velocity V  which is determined by 
0/ |E rr τ =∂ ∂  as mentioned by He et al 

[3] and Zhou et al [4].The comparison between the magnitudes of U and V  is made in figure 2. The further experimental 
results suggest that U is basically equal to the local mean streamwise velocity and V is approximately twice as large as the 
root-mean-square of the streamwise velocity. 

.  

Figure 2. Comparison of the magnitudes of the convection velocity U (solid circles) and sweeping velocity V  (hollow 
circles) for ( , )uC r τ  in 10 groups of independent experiments. 
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Summary The goal of the study is to determine the scales that define the shape and extent of the transitionally rough regime. This is 
accomplished by testing rough surfaces with systematically altered surface statistics. Preliminary results are presented for a rough surface with 
scales that follow a power law spectrum. 
 

INTRODUCTION 
 
   Understanding the relationship between a surface’s topography and its hydraulic resistance is an important, yet illusive, 
goal in fluids engineering. Particularly poorly understood are the flow conditions at which a given surface will begin to 
show the effects of roughness in the form of increased wall shear stress above that of the hydraulically smooth wall and the 
behaviour of frictional drag in the transitionally rough regime. The goal of the research is to develop engineering 
correlations for the prediction of frictional drag for all roughness regimes. Ideally, the correlations should be based on 
information that can be obtained solely from the surface topography, thus excluding any information that requires 
hydrodynamic testing. Previous results (Flack & Schultz 2010) showed that the root-mean-square roughness height (krms) 
and the skewness (Sk) of the probability density function are the roughness scales that best predict frictional drag in the fully 
rough regime. These statistics will be tested as predictive scales for determining the frictional drag in the transitionally 
rough regime. In order to accomplish this, the roughness function must be mapped throughout the entire transitionally rough 
regime from hydraulically smooth to fully rough using roughness where surface statistics are parametrically altered. The 
extent and shape of the transitionally rough regime are then related to appropriate scales.  
 

EXPERIMENTAL METHODS 
 

Experiments on rough surfaces are conducted in the high Reynolds number turbulent channel flow facility at the United 
States Naval Academy (figure 1). The test section is 25 mm in height (H), 200 mm in width (W), and 3.1 m in length (L). 
The bulk mean velocity in the test section ranges from 0.4 – 11.0 m/s, resulting in a Reynolds number based on the channel 
height and bulk mean velocity (Rem) range from 10,000 – 300,000. The wall shear stress, τw, is determined via measurement 
of the streamwise pressure gradient, dp/dx. A similarity-law procedure is employed to determine the roughness function, 
ΔU+. The flow develops over smooth walls for a distance of 60H in the upstream portion of the channel.  The roughness-
covered plates form the top and bottom walls for the remainder of the test section.  There is a roughness fetch of 30H 
before the first tap used in the determination of dp/dx. Fully-developed flow was confirmed with velocity profiles located 
90H and 110H downstream of the trip.   

 

 
Figure 1. High Reynolds number channel flow facility 

 
   The rough surfaces are generated mathematically so the surface statistics can be systematically changed and controlled 
to identify the roughness scales that contribute the most to frictional drag. The current surfaces have a range of scales that 
follow a power law spectrum E(k) ~ kP. The slope of the power law is changed while holding krms constant. Three sample 
test surfaces with power law slopes of P = -0.5, -1.0 and -1.5 are shown in figure 2. The generated surfaces are reproduced 
using a high-resolution 3D printer (lateral resolution 34μm, elevation resolution 16μm). Silicon rubber molds are made to 
replicate the printed surfaces and the surfaces are batch duplicated using cast resin. The cast surfaces are randomly arranged 
across the test plates, as shown in figure 3.   
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Figure 2. Mathematically generated rough surfaces with power law slopes P = -0.5, -1.0 and -1.5.  

 
Figure 3. Tiling of surface with roughness coupons 

 
RESULTS AND DISCUSSION 

 
   Sample skin friction results for the P = -0.5 case are shown on Figure 4. Also shown are the smooth wall results of 
Schultz & Flack (2013). At low Reynolds number the surface is hydraulically smooth. At higher Reynolds number the 
surface exhibits fully rough behaviour where the skin friction is independent of Reynolds number. The roughness function 
(ΔU+) for a range of roughness Reynolds number (ks

+), where ks is the equivalent sand grain roughness height, is shown on 
figure 5. Roughness effects are evident at ks

+ ~ 2 and the onset of the fully rough regime occurs at ks
+ ~ 15. The shape of the 

roughness function in the transitionally rough regime does not follow the Nikuradse (1933) roughness function for uniform 
sand grain or the Colebrook (1939) roughness function that is used in the Moody Diagram (1944).  
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Figure 5. Skin-friction coefficient 
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Figure 6. Roughness function 

 
CONCLUSIONS 

 
   Results are presented for a rough surface with a range of scales following a power law slope of P = - 0.5. The entire 
roughness function is mapped to determine the extent and shape of ΔU+ in the transitionally rough regime. Additional surfaces 
that have parametrically altered surface statistics will be presented to determine the roughness scales that define the transitionally 
rough regime. 
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Summary Experiments were performed to investigate the modulating influences of the inertial-region large-scale structures, on the small
scales near the wall in a turbulent boundary layer. Hot-wire measurements were made in flow over a smooth- and a rough-wall (a multi-
scale topography), in light of recent studies establishing the phenomena in flows over smooth walls. One-probe measurements capture the
streamwise turbulent kinetic energy distribution among various scales and local large-scale–small-scale interactions across the flow. Two-
probe measurements, measuring the large scales in the inertial region and small scales in the near-wall region simultaneously, were then
performed to investigate the modulation influences. Amplitude (AM) and frequency modulation (FM) were observed in rough-wall flow,
similar in structure to that of the smooth-wall flow. Further, among different spanwise locations investigated in flow over the roughness,
it was found that the subtle differences in interactions exist between regions of low-momentum pathways (LMPs) and high-momentum
counter parts (HMPs).

INTRODUCTION
Recent studies on high Reynolds number (Re) smooth-wall turbulent boundary layers have shown strong modulation

influences of the outer layer on the near-wall, small-scale turbulence. Particularly, the small scales close to the wall were
found to be amplitude- and frequency- modulated by the large- and very large-scale motions (LSMs and VLSMs) in the
inertial layer. Since the latter grow stronger with Re, these influences on the ‘autonomous’ (and Re-independent) near-wall
production cycle could gain significance at high-Re flows. More details and analyses can be found in earlier experiments
([1, 2] etc.) and DNS simulations ([3] etc.) for smooth-wall flows.

While these phenomena are well observed in smooth-wall turbulent flows, it is of interest to investigate the same in rough-
wall turbulent boundary layers. A fully-rough turbulent boundary layer is expected to have an outer-layer structure similar
to that of smooth-wall flows (outer-layer similarity). The near-wall turbulence production cycle of the smooth-wall flow is
substituted, in this case, with a roughness sublayer, to which the outer-layer merely ‘adjusts’. Thus, it would be interesting to
investigate if such interactions exist across the ‘outer’ region and the roughness sublayer. The current work investigates these
influences on a complex roughness reproduced from a damaged turbine blade [4]. With the outer-layer similarity established
in earlier studies [5], we aim to understand the amplitude and frequency modulating influences across the boundary layer
using 1- and 2- hot-wire probe measurements.

EXPERIMENTS
All experiments were performed in open-circuit wind tunnel ([4] for details). Two types of streamwise velocity time series

measurements were taken employing the hot-wire CTA technique. The first set, 1-probe measurements, were made using a
single-component hot-wire probe, traversing across the boundary layer in the wall-normal direction. Amplitude and frequency
modulation analyses were then performed using this 1-probe data by assuming that large scales locally measured with the
probe are representative of the outer-layer structure owing to a superposition of large scales in the logarithmic region. A
second set of measurements, 2-probe measurements, were performed using two hot-wire probes. While the first-, outer- probe
was fixed in the logarithmic region to directly measure the large scales of the flow, a second-, inner- probe simultaneously
measured the small scales close to the wall. These latter 2-probe measurements eliminate the aforementioned 1-probe analysis
assumption regarding the large scales.

The roughness and flow characteristics can be found in earlier studies [4, 5, 6]. Particularly, Barros and Christensen [6] re-
ported spanwise alternating high- and low-momentum pathways (HMPs and LMPs) in the mean flow, bounded by streamwise-
oriented roll cells, associated with roughness-induced turbulent secondary flows driven by the heterogeneity of the roughness
under consideration. 1- and 2-probe measurements and analyses were performed at two spanwise locations corresponding to
one HMP-LMP pair, centered at the HMP and LMP. For the sake of brevity, only 1-probe results are presented here.

RESULTS
A single-probe amplitude modulation analysis is performed using the Hilbert transform method described in [1]. As

mentioned before, this method assumes that the large-scale velocity fluctuations measured (close to the wall) are a superim-
posed imprint of the LSMs and VLSMs in the logarithmic region. The Hilbert transform can then be used only on the small
scales, and large-scale variations in amplitude of small scales can be correlated with the large scales to compute 1-probe am-
plitude modulation correlation coefficients (R1

a). Figure 1(a-c) shows the contours of time-delayed R1
a at various wall-normal

positions corresponding to the smooth-wall, rough-wall LMP and rough-wall HMP cases. It can be seen that the contours
∗Corresponding author. Email: christensen.33@nd.edu
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Figure 1: (a-c) Contours of AM correlation coefficient (R1
a) for smooth-wall (SW), rough-wall LMP (R-LMP) and rough-wall

HMP (R-HMP) cases. (e-g) Corresponding FM correlation coefficients (R1
f ). Contour levels are from -0.5 to 0.5 in steps

of 0.1; dashed contour lines are negative levels. (d,h) AM and FM coefficients, respectively, at zero time delay (R1
a;τ=0 and

R1
f ;τ=0). black, circles: SW; red, triangles: R-LMP; blue, squares: R-HMP.

of R1
a of rough-wall flow are anatomically similar to the smooth-wall case, with the interactions reflected in high correlation

values near the wall. Further, the zero-time delay correlation coefficients [R1
a;τ=0; Figure 1(d)] show clearly that the amplitude

modulation as measured by this technique also persists in the rough-wall cases as well. However, the correlation coefficient
appears to behave differently in the HMP and LMP regions.

Frequency modulation analysis can also be performed using 1-probe measurements using wavelet transforms instead of
the Hilbert transform [7], where the velocity time series are decomposed into time-frequency wavelet power spectrum (WPS).
By choosing an ‘instantaneous frequency’ per time instant, one can obtain the small-scale frequency time series which can
be correlated with the large-scale signal to obtain frequency modulation correlation coefficients (R1

f ), and investigate the FM
influences of large scales on the small scales. Figure 1(e-g) shows contours of R1

f , akin to the AM counterparts. The near-wall
modulation effect is readily apparent close to the wall, much more so than the AM analysis, since the effects measured in FM
do not overlap with scale arrangement in the inertial region (that is captured in R1

a). Further, it can be seen from the zero-time
correlation [R1

f ;τ=0; Figure 1(h)] that the frequency modulation effects also exist alongside the amplitude modulation in both
the HMP and LMP regions, and in a similar fashion.

The 2-probe simultaneous measurements and analyses (not shown here) enable direct correlation of roughness sublayer
dynamics with the inertial region structures. Work is being done to examine the similarities and differences, if any, with the
smooth-wall flow dynamics. We expect this analysis to shed additional light on the interaction mechanisms in both smooth-
and rough-wall turbulent flows.
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Summary Drag reduction effects by spanwise traveling surface waves with wall deformation in a fully turbulent flat plate boundary layer 
are investigated by PIV and μ-PTV. A parametric study is performed in a low speed wind tunnel by varying the wave frequency, the 
amplitude, and the Reynolds number. Several parameters, e.g., wave amplitude, frequency, and Reynolds number are found to be relevant 
factors of the drag reduction effect. In this study, we focus on the wave frequency dependence of the drag reduction. Within the range of 
the parameters investigated, the maximum drag reduction ratio is 3.4 % at A+ = 9 and T+ =110. Furthermore, the turbulence statistics 
above the moving surface are investigated in detail and the drag reduction mechanism is related to a damping of the turbulent flow 
structures with the induced spanwise velocity component. 
 
Introduction  

   Due to the high energy consumption and the need of reducing pollutant emissions in the environment, friction drag 
reduction of turbulent wall-bounded flow is increasingly drawing attention from the fluid mechanics research community. 
In the past two decades, many control strategies have been developed for drag reduction, such as micro-structured surfaces 
[1], MEMS-based closed-loop feedback control [2], and open-loop wall motions [3]. Amongst these methods, the in-plane 
wall motions with which large scale flow control is feasible have been reviewed by Quadrio [4]. Tamano and Itoh [5] 
analyzed the effect of spanwise traveling waves with surface deflection in the wall-normal direction using a flexible sheet. 
A maximum drag reduction ratio (DR) of 13% was obtained in a turbulent boundary layer, which agrees well with the 
numerical simulation by Klumpp et al. [6]. A similar approach by Tomiyama and Fukagata [7] with direct numerical 
simulation achieved a drag reduction of 13.4% in a channel flow. Recently, the impact of the amplitude and pressure 
gradient were investigated by Koh et al. [8] and Meysonnat et al. [9], respectively. These investigations suggest that the 
traveling wave-like wall deformation is an effective control method for drag reduction. However, the drag reduction 
mechanism and how the wave parameters dominate the drag reduction effect by spanwise traveling wave motion in 
turbulent boundary layers are not fully understood, yet. In this study, the experimental investigations focus on the influence 
of the wave frequency on the drag reduction with a transversal surface wave, i.e., a spanwise traveling wave with surface 
deformation in the wall-normal direction. Particle-image velocimetry (PIV) and micro-particle tracking velocimetry (μ-
PTV) measurements in the near-wall region of a fully turbulent flat plate boundary layer are conducted at the position above 
and downstream of a moving surface to investigate the impact of the wave-like surface deformation. The experiments are 
performed under several sets of wave conditions, i.e., frequency, amplitude, and Reynolds number to analyze the impact of 
the wave parameters on the wall-shear stress distribution. 

Experimental setup and methods 

   The experiments are performed in a low speed wind tunnel. A flat plate with a tripping wire downstream of an elliptical 
leading edge is used to generate a fully developed zero pressure gradient turbulent boundary layer. The center of the flat 
plate is equipped with a flush-mounted insert, in which an aluminum surface of 0.3 mm thickness is actuated creating a 
spanwise traveling sinusoidal wave with wall-normal deflection. The transversal wave is imposed on the aluminum surface 
by an electromagnetic actuator system developed by the Central Institute for Electronics (ZEL) of the Forschungszentrum 
Jülich. It consists of 10 bars with a lateral spacing of 20 mm aligned in the streamwise direction which are glued to the 
lower surface of the aluminum sheet. Each bar is equipped with a copper coil of 200 windings and is located between 
permanent magnets. The actuator system is operated by a control unit that allows the generation of transversal surface 
waves with an amplitude up to A = 0.5 mm and frequencies in the range 0 Hz < f < 160 Hz. To obtain the flow field in the 
boundary layer, several measurement techniques are applied including standard 2D-2C PIV, high resolution µ-PTV, and 
multi-camera 2D-2C/3C PIV. The velocity profiles in the x-y plane are measured by a standard 2D-2C PIV setup and the 
near-wall region is obtained using a µ-PTV system. The local wall-shear stress 𝜏𝑤  is determined by the velocity gradient in 
the viscous sublayer (𝑦+ ≤ 3.5) which yields 𝜏𝑤 = 𝜇𝜕𝑢/𝜕𝑦 ≅ 𝜇𝑑𝑢/𝑑𝑦. Furthermore, the spanwise velocity distribution 
over the moving surface in the x-z plane is determined by a multi-camera 2D-2C/3C PIV setup. To investigate the impact of 
the wave phase, the measurement systems are triggered by the wave signal such that the flow fields over the wave crest and 
trough can be analyzed. 

Results and discussion 

   The experiments were conducted at three Reynolds numbers of ReΘ = 1200, 1660, and 2080 based on the momentum 
thickness Θ. The wavelength of the surface wave was kept at a constant value of λ = 160 mm, whereas three amplitudes 
A = 0.26, 0.315, 0.375 mm were analyzed. Additionally, three frequencies of f = 27, 54, 81 Hz were investigated. However, 
only those parameter combinations of Reynolds number, frequency, and amplitude that are listed in Table 1 were 
investigated. These values corresponded to dimensionless periods of T+ = uτ

2 / (f v) = 330, 165, 110 and amplitudes of A+ = 
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A uτ / v = 6, 7, 9 at ReΘ = 1200. Figure 1 shows the results of the local drag reduction (DR) defined as the relative wall-shear 
stress difference between the modified and the non-impacted flow 3 mm (75 wall units for ReΘ = 1200) downstream of the 
actuated surface. The comparison of the results of f = 27, 54, 81 Hz at ReΘ = 1200 shows that the drag reduction effect 
depends strongly on the wave frequency. At a lower T+ value a higher drag reduction is achieved while at higher T+ the drag 
reduction effect decreases. The PIV and µ-PTV results in the x-y plane show that the velocity gradient and turbulence 
intensity are reduced by the traveling surface wave motion in the drag reduction cases. A phase-averaging measurement 
over the moving surface in the x-z plane is conducted at ReΘ = 1200 with the frequency of 81 Hz and amplitude of 0.375 
mm which shows the maximum drag reduction of 3.4%. The results in Figure 2 show that a velocity component in the 
spanwise direction is induced by the wave motion. Above the wave trough a spanwise flow is induced in the same direction 
as the traveling wave, while above the wave crest a weaker flow is induced in the opposite direction. The quasi-streamwise 
vortices are weakened and shifted away from the wall by the induced spanwise flow. These experimental results confirm the 
findings of Tomiyama and Fukagata [7] on the mechanisms of spanwise traveling surface waves. 

         Table 1. Experimental parameter combinations of Reynolds number, frequency, and amplitude 

ReΘ A = 0.26 mm A = 0.315 mm A = 0.375 mm 

1200 27/54/81 Hz 27/54/81 Hz 27/54/81 Hz 
1660 81 Hz 81 Hz 81 Hz 
2080 81 Hz 81 Hz 81 Hz 

 

 
Figure 1. DR versus T+ showing the comparison of present results and the findings of Tamano and Itoh [5] 

 

 
Figure 2. Comparison of the phase-averaged spanwise velocity distributions over the nonactuated surface, wave trough and 

crest, x-z plane, y+ = 25, A+ = 9, T+ = 110 
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SummaryWe analyse the properties of three-dimensional sweeps and ejections in two zonesof a zero-pressure-gradient turbulent boundary
layer (ZPG TBL), corresponding to two ranges of Reynolds number, and three zones of a strongly decelerated TBL, corresponding to three
ranges of mean velocity defect. In the case of the APG TBL, the last zone includes a very thin separation bubble. The ZPG TBL results show
that the properties of sweeps and ejections are only minimally affected by the Reynolds number for the Reynolds number range considered.
The effect of increasing mean velocity defect in the adverse pressure gradient (APG) TBL is however significant. The near-wall sweeps
and ejections and the taller ones that reach the wall (important in the log layer of the ZPG TBL) become progressively less numerous, less
intense and less streamwise elongated. They lose their role as the main contributors to the Reynolds shear stress.

A turbulent boundary layer subjected to a strong or prolonged adverse pressure gradient develops a large mean velocity
defect. Consequently, turbulence activity and production is small near the wall and important in the outer region, in contrast to
canonical turbulent wall flows. Various studies suggest that the physical mechanisms and coherent structures responsible for
the production and transport of turbulence might be different in APG TBLs, but information on the coherent structures found
in APG TBLs is sparse (see [1]). Recently, we investigated the three-dimensional properties of theu anduv structures (Qs)
found in the two flows of the present study by focusing on one zone in each flow [1]. In the APG TBL, it was found that near-
wall streaks, ejections and sweeps are less numerous in the large-defect zone of the flow. Large sweeps and ejections that reach
the wall region (wall-attached) were also found to be much less predominant. The present study pushes further the analysis of
the three-dimensional Q structures by investigating their streamwise evolution in a ZPG TBL (effect of the Reynolds number)
and in an APG TBL with a progressive increase of its mean velocity defect (effects of the pressure gradient, principally, and
of the Reynolds number).

The two direct numerical simulations have been performed with the same code. The ZPG TBL was simulated by Sillero et
al. [2] while the APG TBL simulation was carried out recently by the present authors [1]. The ZPG DNS covers the Reynolds
number rangeReθ = 2780−6680. For the APG DNS, the inflow boundary conditions are those of a ZPG TBL atReθ = 1003
provided by an auxiliary ZPG TBL simulation running concurrently. The flow at the edge of the boundary layer decelerates
over most of the domain but reaccelerates at the end. It results in a turbulent boundary layer with a steadily increasing mean
velocity defect. At the wall, the flow separates near the exit of the domain in the form of a very thin separation bubble (the
height of the zone of negativeU never exceeds0.02δ). The reacceleration of the flow at the end reattaches the boundary layer.

The three-dimensional Qs are identified with a method similar to that of [3]. They are defined as regions of connected
points that satisfy simultaneously two conditions. The first condition is|uv| > H∗σuσv, whereH∗ = 1.75 is the threshold
constant determined via a percolation analysis [1] andσu, σv are the local standard deviations ofu and v. The second
condition is that all points within a Q structure are in the same quadrant of theu, v space. Following the notation of [3], Q2
and Q4 structures will be referred to as Q−s, and Q1s and Q3s as Q+s. Table 1 describes the 5 extraction volumes chosen in
the two flows.Rem = Umδ/ν is the outer region Reynolds number expressed with a mixing-layer-type outer-velocity scale
Um = 2(Ue − U(y = 0.5δ)) [1]. Bx, By andBz are the box dimensions along the three axes andδa is the average boundary
layer thickness inside the box. The extraction volumes are chosen long enough to ensure that the longest Qs are detected. The
APG2 box ends at the position of mean flow separation and APG3 includes the thin separation bubble.

Before discussing the Q results, the Reynolds shear stress and its quadrant decomposition are presented. Figure 1 shows
the rapid evolution of the Reynolds shear stress in the APG TBL whereas changes with Reynolds number in the case of the
ZPG TBL are relatively small. In the APG flow, its maximum is in the outer region and it shifts further away from the wall
with increasing velocity defect. The trend just described is common to all Reynolds stress components. The fact that Reynolds

Table 1: Parameters of the Q extraction zones and number and volume proportions (in %) of the Q−s
Case Reθ Rem H (Bx, By , Bz)/δa Na Va Nw Vw Nwa Vwa

ZPG1 4544-5801 10195-10811 1.38-1.37 4.5, 2.0, 10.6 58 88 72 8642 2.2
ZPG2 6270-6600 14126-14931 1.37-1.36 4.5, 2.0, 7.7 57 89 68 84 46 2.0
APG1 1506-2577 3708-9181 1.54-1.97 6.5, 2.0, 7.6 62 86 81 85 14 1.2
APG2 2577-3916 9204-27889 1.97-3.42 5.0, 2.0, 4.1 52 83 58 62 12 1.1
APG3 3635-4409 21894-32700 2.98-3.75 3.8, 2.0, 2.9 51 78 48 49 8 1.2

∗Corresponding author. Email: yvan.maciel@gmc.ulaval.ca
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stresses normalized withUm decrease with velocity defect throughout the outer region implies that large-defect TBLs are less
efficient in transferring energy from the mean flow to turbulence. Figure 2 presents the fractional contributions from the four
quadrants to the Reynolds shear stress (data at position of mean flow separation for the APG TBL). The pressure gradient
increases the fractional contribution of all quadrants, except for Q2 in the outer region. The differences between the two flows
are more pronounced near the wall. The crossing between the sweep-dominated region and the ejection-dominated region
takes place much further from the wall in the APG case. This point is close to the local maximum of the Reynolds shear stress.

The following results come from the examination of several joint pdfs of parameters of individual Qs: linear dimensions
and volume, wall-normal position, volumetric average ofu, v anduv. In Table 1,Na andVa are respectively the number and
volume percentage of Q−s (sweeps and ejections) with respect to all Qs, for the whole boundary layer. As in channel flows [3],
Q−s are more frequent than Q+s in both TBLs, and they occupy a larger fraction of the space. However, the predominance of
the Q−s diminishes as the defect increases in the APG TBL. But sweeps and ejections remain bigger than Q1s and Q3s. In the
logarithmic region of the ZPG TBL, streaky wall-attached sweeps and ejections are bigger and stronger than wall-detached
ones as in channel flow [3]. They are the ones that contribute significantly to the Reynolds shear stress. In the outer region of
the APG TBL, as the velocity defect increases, the wall-attached Q−s progressively become less numerous and voluminous
than the detached ones. The stronger Q−s are always in the region of maximum Reynolds shear stress and very big ones
regularly reach the wall, especially sweeps.

Nw andVw in Table 1 are respectively the number and volume percentage of near-wall Q−s with respect to all near-wall
Qs (near-wall Qs are defined here as structures whose center is below0.05δ). Again, for the small defect cases, near-wall
Q−s tend to be more numerous and bigger than near-wall Q+s. Moreover, Q2s are stronger than the other Qs. In the case of
the ZPG TBL, as expected, most of the sweeps are found very close to the wall, below the strong ejections. The near-wall
sweeps divide in two groups: flattened sweeps very close to the wall and streaky sweeps, like the streaky ejections, that tend
to be taller than wider. In the APG TBL, the organisation of the near-wall Qs changes as the velocity defect increases. The
predominance in terms of number and size of the near-wall Q−s over Q+s has completely disappeared in zone APG3. In that
zone, near-wall Q4s and Q1s are the strongest events, with higheru values. They however have comparable size, wall-normal
distributions and shapes as Q2s and Q3s. All near-wall Qs tend to be flattened. They lose their streamwise elongation and
become as wide as they are long, with the most probable aspect ratios being roughly∆x ≈ ∆z ≈ 2∆y. The biggest near-wall
Qs tend to be wider than longer.Nwa andVwa in Table 1 are respectively the number and volume percentage of near-wall
Q−s with respect to all Q−s. The proportion of near-wall ejections and sweeps in the large defect APG TBL is considerably
smaller than in the ZPG TBL, and it diminishes as the velocity defect increases.
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Summary The present investigation focusses on the concerted investigation of pressure gradient and streamwise curvature effects on turbu-
lent boundary layers. In particular, a number of direct and large-eddy simulations covering a wide range of pressure gradient parameters and
streamwise histories on flat and curved surfaces is performed and will be compared with wind tunnel experiments that overlap and extend
the Reynolds number range. Results are aimed at isolating the effects of pressure gradients, streamwise curvature and streamwise (pressure
gradient) histories, which have traditionally inhibited to draw firm conclusions from the available data.

MOTIVATION

The quest for more efficient airplanes, trains and other ground vehicles is directly coupled to reducing the form and/or
friction drag without compromising the other. A prototype of a canonical flow on which our understanding of friction drag has
been developed is the zero-pressure gradient (ZPG) turbulent boundary layer (TBL). Despite its importance for fundamental
research, most flows of relevance in technical applications are exposed to various pressure gradients and surface curvature
which instead may lead to changes (increase) of the form drag. The applicability of knowledge from canonical wall-bounded
flows is hence limited when it comes to these complex flows and geometries (see e.g. Ref. [4]). While the effect of pressure
gradient and surface curvature has been the focus of much attention, their combined effect is not a simple superposition and
therefore deserves special attention [8]. Although a number of simulations and experiments on e.g. adverse pressure gradients
(APG) were performed in the past (spanning a wide range of Reynolds numbers Re and the values of the Clauser pressure
gradient parameter β), it is hard to draw firm conclusions from the available data due to the differently varying streamwise
gradients of β, i.e. different upstream histories leading to a particular pressure gradient condition. The present contribution
aims therefore at establishing different upstream histories on curved and flat surfaces, and in particular to maintain a region of
constant β, in order to study the genuine effect of the imposed pressure gradient and its upstream history separately.

METHODS AND OUTLOOK

A number of direct numerical and large-eddy simulations (DNS and LES) have been performed in flat plate ZPG [5, 6] and
APG [1] TBLs with different power-law free-stream parameters m. Additionally, the results of a DNS of the flow around a
wing section represented by a NACA4412 profile are at hand (Fig. 1), which complement the numerical data base and already
indicate clear dependencies on pressure gradient and upstream histories as evident from Fig. 2: By comparing the wing and
the flat plate at a matched Reτ and β, it is possible to assess the effect of history, i.e. of β(x), on the state of the TBL. As
apparent, the wake region in the mean velocity as well as the outer peak in the variance profile are significantly affected by the
history of the pressure gradient; a manifestation of the interaction between the large-scale motions, which are more energetic
due to the APG, and the outer flow. Further simulations are being performed in which a sufficiently long constant β range
is established. To extend the Re-range and cross-validate numerical and physical experiments, wind tunnel experiments are
currently ongoing in the Minimum Turbulence Level (MTL) wind tunnel at KTH Royal Institute of Technology in which the
desired pressure gradient conditions and histories will be established by means of wall inserts. Besides oil-film interferometry,
hot-wire anemometry and particle image velocimetry will be employed to measure the wall shear stress and study the flow
kinematics and dynamics, respectively.

The results from these concerted efforts will be presented at the congress.

∗Corresponding author. Email: ramis@mech.kth.se
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Figure 1: Instantaneous visualization of the flow around
the NACA-4412 airfoil, with Rec = 400000 and angle
of attack of 5 degrees. The figure shows coherent vor-
tices identified by means of the λ2 criterion [2]. The
spectral element mesh is also shown, but not the indi-
vidual grid points within elements. Note that the flow
is tripped at a distance 10% of the chord length down-
stream of the leading edge, both on the pressure and suc-
tion sides. For full details, see Ref. [7].
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Figure 2: a) Clauser pressure gradi-
ent parameter β as function of friction
Reynolds number Reτ for the bound-
ary layer on the wing (red), and the flat
plate (m = −0.13: green, m = −0.16:
blue). Inset indicates the matched β −
Reτ values. Inner-scaled b) mean and
c) variance profiles for the matched con-
ditions (filled circles) shown in a) com-
pared with a ZPG TBL on a flat plate [5]
at comparable Reτ (black).
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Summary: In order to investigate the cause of the low-frequency unsteadiness of a pressure-induced turbulent separation bubble (TSB), long 
meandering superstructures are observed in the zero-pressure-gradient turbulent boundary layer well upstream of the TSB. The characteristic 
frequency associated with the superstructures is compared to that of the low-frequency breathing motion previously documented in the TSB. 
The large difference between the two characteristic frequencies indicates that the superstructures are not the cause of the unsteadiness. 
   

INTRODUCTION 

Turbulent separating and reattaching flows are often characterized by unsteady motions in a wide range of time scales. 
Recently, Weiss et al [1] investigated the unsteady behavior of an incompressible, pressure-gradient-induced, turbulent 
separation bubble (TSB) formed on a flat test surface by a combination of adverse and favorable pressure gradients. Using 
single-point instrumentation including unsteady pressure transducers and thermal-tuft probes, they showed that the TSB is 
characterized by two unsteady modes: a low-frequency mode, with a Strouhal number 𝑆𝑡1 = 𝑓 ∙ 𝐿𝑏 𝑈𝑟𝑒𝑓⁄ ≈  0.01, which is 
related to a global “breathing” motion (i.e., contraction/expansion) of the separation bubble, and a medium-frequency mode, 
with a Strouhal number 𝑆𝑡2 ≈  0.35, which occurs because of the vortex shedding associated with the shear-layer instability. In 
both cases the Strouhal number is constructed with the average length 𝐿𝑏 of the TSB and the velocity 𝑈𝑟𝑒𝑓  in the potential 
region of the incoming flow. The medium-frequency shedding mode was shown to be consistent with the mechanism already 
observed in flows were separation is fixed by a geometric singularity: vortices are created through a Kelvin-Helmholtz instability 
and subsequently merge to form larger coherent structures that are shed downstream [2]. On the other hand, the mechanism 
responsible for the breathing mode remains unexplained. 

In the present contribution we investigate if the long, meandering superstructures detected in turbulent boundary layers 
by several researchers (e.g. [3]) may be the cause of the low-frequency breathing motion. This hypothesis is motivated by the 
results of Ganapathisubramani et al [4] and Pearson et al [5], who suggested that those superstructures might be responsible for 
the low-frequency unsteadiness observed in a shock-induced separated flow and a forward-facing step flow, respectively. In a 
first step, we attempt to visualize the superstructures and compare their size with those reported by Hutchins and Marusic [3]. 
Then, in a second step, we compare the characteristic frequencies of these superstructures with that of the breathing motion 
documented in our TSB. 

EXPERIMENTAL SETUP 

Measurements are performed in the TFT Boundary-Layer Wind Tunnel at a reference velocity 𝑈𝑟𝑒𝑓 = 25 m/s, as in 
Weiss et al [1]. A 2D-2C high-speed Particle Image Velocimetry (PIV) system is used to measure the velocity field in a 
streamwise / spanwise plane (x-z) upstream of the TSB. The laser sheet of 1 mm thickness is positioned 4 mm away from the 
wall (𝑦+ = 𝑦 ∙  𝑢τ ν⁄ = 250). The streamwise dimension of the field-of-view (FOV) is ∆𝑥𝑃𝐼𝑉 = 76.4 mm and the spanwise 
dimension is ∆𝑧𝑃𝐼𝑉 =  216.7 mm. The upstream side of the FOV is positioned at 𝑥𝑢 = − 1.17𝐿𝑏 from the mean detachment 
line, where 𝐿𝑏 = 0.4m is the average length of the TSB on the test-section centerline [1]. The pressure gradient within the FOV 
is essentially zero, the boundary-layer thickness in the midpoint of the FOV is δ = 30 mm, and the friction velocity is 𝑢τ =
0.98 m/s. Images are recorded by two Phantom V9.1 CMOS cameras that are positioned side by side. The frame rate is 
𝑓𝑃𝐼𝑉 = 900 Hz and the resolution of the vector field is approximately 1.1 mm in the x and z directions. The images are 
processed by the LaVision DaVis software (v.8.2). More details about the PIV setup are provided in [6]. 

 
RESULTS AND CONCLUSION 

Figure 1 shows a contour plot of the streamwise velocity fluctuations u(x, z). The streamwise domain is reconstructed 
using Taylor’s hypothesis in a manner similar to [3] and [4]. The convection velocity 𝑈𝑐 is assumed to be equal to the average 
local velocity: 𝑈𝑐 = 𝑈 ≈ 18.7 m/s. Without the use of Taylor’s hypothesis, the extent of the streamwise plane would be limited 
by the cameras FOV to about 2.5δ. The figure reveals the presence of elongated meandering structures whose length can be in 
excess of 20δ. This is consistent with the results of [3] and [4]. Figures 2 and 3 show the streamwise 
correlation 𝑅𝑢𝑢(∆𝑥, 𝑧𝑟𝑒𝑓

 ) and the spanwise correlation 𝑅𝑢𝑢(𝑥𝑟𝑒𝑓
 , ∆z) respectively, where 𝑥𝑟𝑒𝑓  and 𝑧𝑟𝑒𝑓  are the FOV central 

coordinates. Here also, the data compares reasonably well with the values provided by Hutchins and Marusic (H&M) [3] but our 
longitudinal correlation appears slightly larger. A possible explanation might be that our structures have not yet “relaxed” from 
their travel through the wind-tunnel nozzle. There is also a difference in Reynolds number (𝑅𝑒τ = δ ∙  𝑢τ ν⁄ ≈ 2000 for the 
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present case and 𝑅𝑒τ = 7610 for H&M). Nevertheless, based on these comparisons, we conclude that the elongated structures 
observed in Fig. 1 are indeed consistent with the notion of “superstructures” identified by Hutchins and Marusic [3]. 

 
Following [4] and [5], we now attempt to relate these superstructures to the unsteady breathing motion of the TSB. 

Recall that the breathing motion is a contraction/expansion of the TSB with a characteristic Strouhal number 
𝑆𝑡1 = 𝑓 ∙ 𝐿𝑏 𝑈𝑟𝑒𝑓⁄ ≈ 0.01 [1,6]. Assuming that the superstructures have an average length of 20δ [3], their characteristic 
frequency 𝑓𝑠 is equal to: 𝑈𝑐 (20 δ)⁄ The Strouhal number 𝑆𝑡𝑠 associated with the superstructures is then:  

𝑆𝑡𝑠 = 𝑓𝑠 ∙
 𝐿𝑏

𝑈𝑟𝑒𝑓

=
 𝑈𝑐

20δ
∙

 𝐿𝑏

𝑈𝑟𝑒𝑓

≈ 0.50 

Hence the Strouhal number associated with the convected superstructures is fifty times larger than the characteristic 
Strouhal number of the breathing mode. We therefore conclude that the unsteady breathing mode is not likely to be related to the 
presence of the superstructures upstream of the TSB. This is in contrast with the shock-induced TSB investigated in [4], where 
the superstructures documented upstream of the separated zone were correlated with the low-frequency unsteadiness at 
𝑆𝑡 = 𝑓 ∙ 𝐿𝑏 𝑈𝑟𝑒𝑓⁄ = 0.03. The large difference in characteristic frequencies observed in our flow also contrasts with the 
forward-facing step investigated in [5], in which the time scale corresponding to the separation region fluctuations was shown to 
be consistent with the superstructures. Clearly, further work is required to understand the causes of the low-frequency breathing 
motion and, more generally, the effect of the superstructures on separated flow regions. 
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FIGURES 

     

Figure 1: Example of Taylor reconstruction from PIV data. The convection velocity is 18.7 m/s. A part of a meandering 
superstructure is circled in red. Only negative values are shaded for illustration. 

Figure 3: Spanwise Correlation coefficients 
𝑅𝑢𝑢(𝑥𝑟𝑒𝑓 , ∆𝑧) 

In black, results from Hutchins and Marusic [3] 
( δ𝐻&𝑀 = 0.336 m); In red, the spanwise 
autocorrelations from the Taylor reconstruction of 
the PIV field, averaged on the streamwise values 
(δ = 0.030m). 

Figure 2: Streamwise Correlation coefficients 𝑅𝑢𝑢(∆𝑥, 𝑧𝑟𝑒𝑓) 
In black, results from Hutchins and Marusic [3] (δ𝐻&𝑀 = 0.336m); In red, 
the streamwise autocorrelations from the Taylor reconstruction of the PIV 
field, averaged on the spanwise values ( δ = 0.030m ); In blue, the 
autocorrelations from a single hot wire, built from its own Taylor 
reconstruction with a sampling rate of 102.4kHz. 
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Summary Our current activities focus on nonlinear parabolized stability equation (NPSE) and bi-global stability analysis of the crossflow, 
second-mode, and secondary instabilities associated with hypersonic geometries such as the yawed straight cone and the elliptic cone. A 
predictive NPSE formulation (EPIC) has been developed in-house for modeling of the evolution of instabilities, including the stationary-
crossflow-vortex path and the variation of the spanwise wavenumber in the streamwise direction. Multiple instabilities and secondary 
instabilities are mapped, and these studies are extensively verified and validated with lessons learned provided. 
 

BACKGROUND 

 
   The ability to accurately predict and control the transition process from laminar to turbulent flow will provide significant 
advances in air-vehicle design, with applications ranging from high-altitude long-endurance unmanned aerial vehicles, to 
energy-efficient transports, to hypersonic systems. The development, validation, and introduction of physics-based 
approaches for stability and transition prediction will lead to smaller and more manageable uncertainties in the design of 
vehicles. Moreover, control may be applied for two different reasons. First there is the desire to delay transition, which 
contributes to aerodynamic heating load reduction and range and/or endurance. A second desire is to encourage transition 
for enhanced mixing or separation delay, such as over control surfaces and the inlet of a scramjet engine. The most effective 
strategy for control is to capitalize on the flow physics, identify the relevant instability mechanisms and what affects them, 
and modulate the most unstable disturbances as they are just beginning to grow. Our team has successfully applied linear 
and nonlinear parabolized stability equation and global methods to these problems, and also considered the effects of 2-D 
surface excrescences and formulated a physics-based correlation for forward-facing steps (in subsonic flow) in 3-D 
boundary layers. Through mechanism identification, verification, and validation activities, several lessons have been learned 
in applying stability formulations.1 
   There is much information available concerning low-speed fundamental stability mechanisms leading to transition. 
Mack2 describes three major differences between supersonic and subsonic flow: the presence of a generalized inflection-
point, the dominance of 3-D viscous disturbances called ’first modes’ (as compared with 2-D viscous disturbances for 
subsonic), and the presence of high-frequency acoustic modes. For a 2-D adiabatic flat-plate boundary layer at edge Mach 
number greater than approximately 4, a 2-D inviscid acoustic mode is generally found to be the dominant instability. This is 
termed the ’second mode’, or ’Mack mode’, and is tuned to and influenced by the thermal boundary layer. Mack modes 
become slightly oblique in a 3-D boundary layer.3 
   Three-dimensional geometry and non-zero angle-of-attack can result in curved streamlines and 3-D basic-state velocity 
profiles which can be highly inflectional, and thus unstable, and lead to the crossflow instability. Concerning crossflow, the 
past decades have seen an international effort with close collaboration among theory, computation, experiment, and flight 
tests, resulting in the identification of important factors for subsonic, transonic, and low supersonic flows.4,5 First, linear 
theories predict that traveling crossflow waves are more amplified than stationary waves. In addition, crossflow is ultra 
sensitive to leading-edge roughness and freestream disturbances and leads to important nonlinear effects across much of the 
transition zone (necessitating a nonlinear approach such as a nonlinear parabolized stability equation (NPSE) or direct 
numerical simulation (DNS) approach). Nonlinear effects and modal interaction play an early and important role in 
transition because of the presence of stationary co-rotating vortices. These vortices distort the mean flow to include 
inflection points which destabilize the high-frequency secondary instabilities that rapidly breakdown to turbulence. 
 

PROBLEM FORMULATION 

 

   Recently, simple 3-D geometries (yawed straight circular cones and elliptic cones) have been studied to provide insight 
into the stability and transition of hypersonic vehicles, and these are the configurations considered here. (References are 
provided in Moyes et al.6). To model disturbance growth within the boundary layer, different methods may be applied. This 
work utilizes linear stability theory (LST), NPSE, and 2-D partial-differential-equations (PDE)-based LST, aka spatial bi-
global (SBG) theory, for secondary stability analysis.6,7 In each case, each flow variable is decomposed into a basic state 
quantity, upon which a disturbance is to be superposed, and the disturbance itself. This superposition is substituted into the 
governing equations to yield the disturbance equations, which describe the evolution of the disturbance. Each method 
considers a different solution form of the disturbance. 
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RESULTS AND CONCLUSIONS 

 
   Focusing on the stationary crossflow instability, our in-house developed NPSE capability, called EPIC7, predicts 
nonlinear disturbance evolution that has been verified with DNS of Balakumar & Owens8 and validated with the quiet-
tunnel experiments of Craig & Saric9. See Moyes et al.6 for details and figures. The direction of the crossflow vortex paths 
and the variation of the spanwise wavenumber are well predicted solely from the basic state.7  
   As the next step, considering the resulting nonlinearly distorted basic state (due to the presence of the stationary 
crossflow) with low momentum fluid over high momentum fluid and the appearance of new inflection points in the 
streamwise profile, we apply a bi-global analysis to it. Multiple instabilities are found, including traveling crossflow, 
secondary instabilities, and second modes. The traveling crossflow begins concentrated near the wall and then as it is more 
modulated by the stationary crossflow waves, it concentrates in the trough and upwelling of the wave. The secondary 
instabilities fall into two categories, type-I and type-II. Type-I appear in the shoulder and type-II appear in the crest. The 
second mode appears near the wall and extends through the boundary layer, with a concentration slightly above the critical 
layer as well. There is qualitative and quantitative agreement with the experiment of Craig & Saric.9 Finally, there are 
similarities between the secondary instabilities associated with the nonlinear evolution of both hypersonic and 
incompressible-swept-wing stationary crossflow.10 Further details are found in Reference [6]. 
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Summary This paper analyses the response and receptivity of the hypersonic boundary layer over a wedge to free-stream acoustic, vortical
and entropy disturbances. In the presence of a shock, the boundary layer supports viscous Tollmien-Schlichting (T-S) instability modes,
whose eigenfunctions are oscillatory in the far field. Any of three elementary types of disturbances interacts with the shock to generate a slow
acoustic wave, which is reflected between the shock and the wall. Through this induced acoustic wave, vortical and entropy disturbances
drive significant fluctuations in the boundary layer, which is impossible without a shock. A quasi-resonance occurs for high frequencies
leading to a strong response to a continuum of disturbances. In the vicinity of the lower-branch neutral curve the slow acoustic wave of
suitable frequency and wavenumbers is in exact resonance with a neutral eigen mode. As a result, the latter can be generated directly by
each of three types of free-stream disturbances without involving any surface roughness element.

INTRODUCTION

Laminar-turbulent transition in super- and hyper-sonic boundary layers evolves, similar to its subsonic counterpart, through
a sequence of stages, the first of which is the receptivity, i.e. the process in which ambient disturbances excite instability modes.
Several receptivity mechanisms have been identified, and they can be classified into two types. The first involves interactions of
two external perturbations, including: free-stream acoustic/vortical disturbances interacting with local or distributed roughness
[1]-[4] and interaction between acoustic and vortical perturbations [5]. Such an interaction produces an equivalent forcing that
is resonance with, and hence excites, an instability mode. The second type is the leading-edge adjustment, where an acoustic
wave is diffracted by the strongly non-parallel flow near the leading edge to generate an so-called asymptotic eigen mode
of the boundary-layer equations, which then develops into an unstable mode downstream [6]-[7]. In the subsonic regime,
the acoustics/vorticity-roughness interaction provides a more efficient mechanism than the leading-edge adjustment since the
asymptotic mode in the latter experiences severer decay before amplifying. In contrast, the leading-edge mechanism is of
primary importance in the supersonic regime as the asymptotic mode amplifies from the outset. Surface roughness, on the
other hand, does not appear to play a significant role.

None of existing receptivity theories has considered the effects of shocks, which are usually present in super- and hyper-
sonic flows. Cowley & Hall [8] showed that when a shock is close to the outer edge of the boundary layer, additional viscous
instability modes on the triple-deck scales arise. In this paper, we investigate how such modes are excited by, as well as the
boundary-layer response to, free-stream disturbances. A shock is found to be instrumental in both processes.

THEORETICAL ANALYSIS

The boundary layer due to a uniform U∞ flow past a wedge is considered. We assume that the half angle θ � 1, and the
Mach numberM � 1 so that the shock is close to the wedge surface. The Cartesian coordinates (x, y, z) are used with x and
y being in the directions along and normal to the wedge surface respectively; they are normalized by L, the distance of the
location of interest to the apex of the wedge. The Reynolds numberR = U∞L/ν∞ � 1.

The velocity, pressure and density of a free-stream disturbance with a small amplitude εa∞ are represented by

(ũ, p̃, ρ̃) = εa∞(û, p̂, ρ̂) ei(αx+γy+βz−ωt), (1)

where the wavenumbers α and β, and the frequency ω satisfy the corresponding dispersion relations for acoustic, vorti-
cal/entropy waves. They are assume to be on the triple-deck scales. Each disturbance interacts with a shock to generate all
three types downstream of the shock. In the presence of a surface, the disturbance downstream also consists of reflected waves
as well as the signature associated with instability modes of the boundary layer; the latter may be modulated. A general shock
condition, which allows for these complications, is derived first.

Broad-brand Response At an arbitrary streamwise location, the response to the free-stream disturbance has an O(ε)
pressure, p = ε(aI ei

γay +aR e− i γay) ei(αax+βaz−ωt), where aI and aR represent the waves propagating towards and away
from the wall respectively. They must, together with the velocity fluctuations, be determined by considering the boundary
layer. The response may be measured by aI . Solving a triple-deck system governing the response, we obtain

aI = a∞F/Δ(αa, βa, ω;x), (2)

∗Corresponding author. Email: x.wu@ic.ac.uk
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where Δ(αa, βa, ω : x) denotes the local dispersion function of T-S waves and the effective forcing, respectively.

Receptivity Among all disturbances with a frequency ω, there exist αa and βa such that the dispersion relation of a
neutral T-S mode is satisfied, i.e. Δ(αa, βa, ω;x0) = 0. Such a disturbance resonantes with, and thereby excites, the T-S
mode in the vicinity of x0. The pressure and streamwise velocity in the lower deck are

(pTS , uTS) = εR3/16M−15/8A(x̄)(1,M11/4ūTS) ei
(αax+βaz−ωt) with x̄ = R−3/16M15/8(x − x0), (3)

where the amplitude function A(x̄) describes the evolution from the upstream response to a T-S mode, and is found to satisfy
the equation, A′ = σx̄A + F , where σ and F can be determined numerically. As x̄ → ∞, A → A0 exp{

1
2 σx̄

2} with
A0 = F(2π/σ)1/2 representing the scaled initial amplitude of the T-S mode excited. The streamwise velocity uTS of the T-S
mode is of O(R5/16M7/8A0). We may define the coupling coefficient

C = max
y

|uTS |/(εa∞). (4)

A SAMPLE OF RESULTS

The plot on the left-hand side of figure 1 shows the contours of aI in the ω − αa parameter plane. There is an extremely
strong response to a broadband of high-frequency disturbances within a narrow band of αa, represented by the two narrow
and almost vertical strips in the figure. Examination of (2) shows that this occurs because Δ � 1 but remains non-zero as
ω � 1 and αa approaches a particular value αc. This is referred to as ‘quasi-resonance’.

The plot on the right-hand side of figure 1 shows typical coupling coefficients for acoustic (CA), vortical (CV ) and
entropy (CE) disturbances respectively. They are very large, ranging from O(105) for acoustic waves to O(102) for vortical
disturbances. This is in striking contrast to typically O(1) coupling coefficients in known receptivity mechanisms. The large
coupling is due to the resonant nature of excitation and the well-known amplification effect of a strong shock. Moreover,
excitation at the neutral position means that the mode excited grows immediately without undergoing any decay, or missing
any portion of the unstable region. All these indicate that this new mechanism is particularly efficient.
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INTERACTION OF SUPERSONIC BOUNDARY LAYER INSTABILITIES WITH
STATIONARY STREAMWISE STREAKS

Pedro Paredes∗, Meelan M. Choudhari, and Fei Li
Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA 23681, USA

Summary The nonlinear evolution of the linearly optimal stationary perturbations in a Mach 3 flat plate boundary layer is computed using
the nonlinear, perturbation form of parabolized Navier-Stokes equations. As noted in previous works, the optimal initial disturbances
correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures,
i.e., streaks, via a lift-up effect. To assess the effect of the finite-amplitude streaks on boundary layer instabilities, the plane-marching
PSE are used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. Finite-amplitude streaks are
known to stabilize Tollmien-Schlichting waves in the incompressible regime. Here, subcritical streaks are observed to destabilize first mode
instabilities with two spanwise wavelengths of the streak while they stabilize those with three and four spanwise wavelengths. These results
support the passive flow control strategy of using micro-vortex-generators for delaying transition due to oblique first mode instabilities in
supersonic boundary layers.

EXTENDED SUMMARY

Under low levels of background disturbances, transition is initiated by the exponential amplification of linearly unstable
eigenmodes, i.e., modal instabilities of the laminar boundary layer. In two-dimensional boundary layers, different instability
mechanisms dominate the exponential growth phase depending on the flight speed. Planar, i.e., two-dimensional Tollmien-
Schlichting (TS) waves are the most unstable in the incompressible regime, whereas oblique first mode instabilities correspond
to the most amplified disturbances in the supersonic regime. The hypersonic regime is again dominated by the growth of planar
waves of the second mode type [1]. In the presence of sufficiently strong external disturbances in the form of either freestream
turbulence (FST) or three-dimensional wall roughness, streamwise streaks involving alternately low and high streamwise
velocity have been observed to appear in incompressible boundary layers [2]. Further research in the incompressible regime
has shown that high amplitude streaks can become unstable to shear layer instabilities that lead to a form of “bypass transition”
[3]. When the streak amplitudes are low enough to avoid these instabilities, i.e., when the background disturbance level is
moderate, the streaks can actually reduce the growth of the TS waves [4]. The stabilizing effect of stationary streaks has been
utilized to demonstrate delayed laminar-turbulent transition via micro vortex generators (MVG) along the body surface [5].

The onset of streak instabilities at supersonic speeds has been addressed in recent work [6]; however, the effect of lower
amplitude, i.e., stable or at most weakly unstable streaks (referenced as subcritical streaks in this paper) on the growth of
oblique first mode instabilities has not been studied as yet. The present work seeks to bridge this gap in order to expand the
range of available techniques for transition control at supersonic edge Mach numbers, as well as to provide insights that will
contribute to more robust transition prediction in such flows.

To that end, we first consider the nonlinear evolution of finite-amplitude linearly optimal disturbances in a Mach 3, zero
pressure-gradient, flat plate boundary layer, and on the effect of subcritical streaks on the first mode boundary layer instability.
Transient growth analysis is performed using the linear parabolized stability equations (PSE). For illustration, we consider a
final optimization location (x = x1) corresponding to a length Reynolds number of Rex1

= 106 and set the initial disturbance
location to x0/x1 = 0.0004, i.e., very close to the leading edge. The optimal stationary perturbation that leads to maximum
energy gain at x1 has a spanwise wavenumber of βTG = 0.25 relative to similarity length scale at x = x1 and the associated
energy gain is Gmax/Rex1

= 0.002525. For the flow conditions of interest, the optimal initial perturbation is influenced
by the Mach wave emanating from the leading edge, resulting in a reduction of the maximum gain by a factor of 9% with
respect to results based on the self-similar basic state [7]. Subsequently, the nonlinear development of the above linearly
optimal disturbances is computed for selected initial amplitudes by solving the nonlinear form of the plane-marching PSE
[8] in a fully implicit manner. Figure 1(a) shows the downstream evolution of the streak amplitude, which is defined as
Asu(x) = [maxy,z(ũ) − miny,z(ũ)]/2, where ũ is the streamwise velocity perturbation, for selected initial disturbance
amplitudes, defined as A0 =

√
E0 = A/

√
Gmax. A three-dimensional view of the boundary layer flow across four spanwise

wavelengths of the A = 1 streak is also shown in figure 1(b).
Finally, the amplification of first mode instabilities in the boundary layer flow modified by the presence of the streaks has

been computed using the linear plane-marching PSE, which account for the three-dimensionality of the perturbed basic state.
Figure 2 compares the N-factor evolution for the first mode instability in the unperturbed case (A = 0) with three perturbed
cases (A = 0.1, 0.5, and 1.0). The three separate subfigures correspond to different values of the spanwise wavenumbers,
with the frequency parameter corresponding to the most amplified frequency for that wavenumber when A = 0. Results show
that the first mode disturbances with a relatively large spanwise wavenumber (β = βTG/2), are destabilized by the presence
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Figure 1: (a) Streak amplitude evolution of the optimal linear perturbations initialized with selected amplitudes in a Mach 3
flat plate boundary layer with Rex1

= 106 and x0/x1 = 0.0004. (b) Iso-lines of streamwise velocity at streamwise locations
up to x/x1 = 9 for four spanwise wavelengths of the A = 1 streak. The color map varies from ū = 0.05 (dark blue) to
ū = 0.95 (dark red).
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Figure 2: Evolution of logarithmic amplification ratio (i.e., N-factor) of first mode instabilities in Mach 3 flat plate boundary
layer perturbed by linearly optimal perturbations with initial amplitudes from Fig. 1. The spanwise wavenumber scaled by
similarity length scale at x = x1 (Rex1 = 106) corresponds to βTG = 0.25, which yields the maximum energy gain from
x0/x1 = 0.0004 to x1. From left to right, the selected spanwise wavenumbers and the associated circular frequencies are (a)
β = βTG/2 and ω = 0.040, (b) β = βTG/3 and ω = 0.024, and (c) β = βTG/4 and ω = 0.016.

of the streak. However, these disturbances correspond to lower N-factors, and hence, are unlikely to initiate transition in
the low disturbance environment characteristics of flight. In contrast, a reverse effect is observed at the smaller spanwise
wavenumbers, which are likely to play an important role in causing transition by virtue of their enhanced linear growth
potential. The implication of these findings is that the presence of subcritical streaks leads to a flattening of the N-factor
envelope and, consequently, to a reduction of the maximum N-factor values within the parameter range examined herein.
These results provide the basis for the development of a passive flow control strategy to delay transition due to first mode
instabilities in the supersonic boundary layer.

This work is supported by the Transformational Tools & Technologies (TTT) subproject of the National Aeronautics and
Space Administration (NASA).
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EFFECT OF MEDIUM-INTENSITY FREE-STREAM VORTICITY ON A COMPRESSIBLE
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Summary The nonlinear response of a compressible boundary layer to unsteady free-stream vortical fluctuations is investigated theoretically
and numerically. The amplitude of the disturbances is strong enough for nonlinear interactions to arise within the boundary layer. Com-
pressibility is taken into account through aerodynamic heating effects due to the free-stream Mach number being O(1) and through heat
transfer at the wall. The free-stream flow is studied by including the boundary-layer displacement effect and is found to assume different
forms depending on the regime being subsonic or supersonic. Even in a low-disturbance environment such as flight conditions, nonlinearity
is found to play a significant stabilizing role on the velocity and temperature streaks, the latter being more markedly attenuated than the
former at supersonic speeds. The effect of different parameters, which are relevant to the study of the nonlinear compressible streaks, is also
investigated.

INTRODUCTION

Laminar-to-turbulent boundary-layer transition is known to be strongly affected by disturbances present in the free stream,
which are characterised by their intensity Tu, length scales and spectra. In boundary layers with Tu>1%, transition occurs
rapidly, bypassing the so-called orderly route via Tollmien-Schlichting (T-S) waves. In this scenario, referred to as bypass
transition, the laminar boundary-layer breakdown is preceded and caused by unsteady streamwise-elongated regions of high
and low streamwise velocity, known as Klebanoff modes or laminar streaks. The focus of our work is on the nonlinear
evolution of the streaks in the compressible regime because in high-speed flows transition occurs more frequently through
the bypass route than via the T-S wave growth described by classical stability theory. The streaks are studied using the
mathematical framework of the boundary-region equations, i.e. the asymptotic limit of the Navier-Stokes equations for low-
frequency disturbances, developed by Leib et al.[1] and extended by Ricco & Wu [2] and Ricco et al.[3] to linear perturbations
in compressible boundary layers, and nonlinear disturbances in incompressible boundary layers, respectively.

SCALING AND GOVERNING EQUATIONS

An air flow with mean uniform velocity U∗∞ and constant temperature T ∗∞ passing over a semi-infinite flat plate is consid-
ered. The symbol ∗ is used to indicate dimensional quantities. The oncoming perturbation consists of a pair of vortical modes
with the same frequency (and hence streamwise wavenumber k∗x) but opposite spanwise wavenumbers ±k∗z . The free-stream
Mach number is M∞=U∗∞/c

∗
∞=O(1), where c∗∞ is the speed of sound. The space coordinates are non-dimensionalised by

λ∗=1/k∗z and the other variables are scaled by their respective constant values in the free stream. Spanwise-diffusion effects
become important at a downstream location x̄=k∗xx

∗=O(1), where the boundary layer thickness δ∗= O(λ∗).
The boundary-layer flow is decomposed as the sum of the Blasius flow and the unsteady perturbation induced by the

free-stream disturbance. The perturbation is expressed as a Fourier series in time and in the spanwise direction z. By taking
the limits of the continuity, Navier-Stokes and energy equations for low frequency disturbances, k∗x�k∗z , and large Reynolds
number, Rλ=U∗∞λ

∗/ν∗∞�1, with kxRλ=O(1), the nonlinear unsteady compressible boundary region equations are derived.
The boundary-layer displacement effect influences the free-stream flow at leading order. The irrotational part of the outer

perturbation assumes different forms depending on the regime being subsonic or supersonic. A close analogy with the flow
over a thin oscillating airfoil is exploited to find analytical solutions of the Helmholtz and Klein-Gordon equations which arise
in the subsonic and supersonic cases. This analogy is used here for the first time to study unsteady boundary layers.

RESULTS

The parameters for the numerical results inside the boundary-layer are selected to be representative of two possible in-
dustrial and aerospace applications, i.e. subsonic turbomachinery and supersonic flight conditions, and of typical high-speed
wind-tunnel experiments. For brevity, the first two cases are shortly discussed in the following paragraph, while the latter is
further analyzed thereafter.

The turbomachinery case is characterized by a low Mach number (M∞=0.7) and an intense turbulence level (Tu=1−2%),

*Corresponding author. Email: e.marensi@sheffield.ac.uk
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while the flight case features a higher Mach number (M∞=2− 6) and a quieter disturbance environment (Tu=0.1− 0.3%).
The relevant parameter for the study of the nonlinear effects is the turbulence Reynolds number, rt≡εRλ=O(1), where ε is a
measure of the turbulence level. Ricco et al.[3] already observed a stabilizing effect of nonlinearity on the streamwise velocity
fluctuations in the incompressible regime for high turbulence levels. Here, it is shown that in the compressible case the non-
linear effects play the same role on the temperature streaks and that nonlinearity needs to be taken into account even for low
turbulence levels, such as in flight conditions. Increasing the free-stream Mach number attenuates the velocity fluctuations
while enhancing the thermal streaks, relative to U∗∞ and T ∗∞, and the overall effect of nonlinearity becomes weaker.

The idealized case of a supersonic (M∞=3) wind tunnel with no acoustic modes is now considered. An abrupt deviation
of the nonlinear solution from the linear approximation is observed for the highest turbulence Reynolds number considered,
rt=6 (Tu=0.3%), as shown in figure 1(a). Only the signature of the streamwise velocity is presented, as that of the tem-
perature is qualitatively very similar. This sharp deviation was not reported in the incompressible work of Ricco et al.[3]. A
parametric study shows that this phenomenon occurs at supersonic speeds when a sufficiently small streamwise wavenumber
is employed, kx≤1.5 · 10−3, together with a high turbulence Reynolds number, rt≥6.
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Figure 1: Evolution of the maximum root mean square (r.m.s.) of the streamwise velocity for different rt (a) at M∞=3, and
for different wall-temperature conditions (b): hot wall (hw), adiabatic wall (aw) and cold wall (cw) at M∞=3 and rt=6. In
(a): thick lines: nonlinear solutions, thin lines: linearized solutions.

In figure 1(b) three different wall-temperature conditions are considered: hot, adiabatic and cold wall. The wall-heat flux
is found to influence the position where the onset of the strong stabilizing effect occurs. This suggests that the employment
of the adiabatic-wall condition in wind-tunnel experiments may lead to an inaccurate prediction of the transition location for
flight conditions, which are instead characterized by a cold-wall condition due to the radiative-cooling effect.

The numerical results for the outer flow show that in the subsonic regime the disturbance propagates in all directions from
the plate, while at supersonic speeds the fluid ahead of the body remains undisturbed and the perturbation is confined to within
the Mach dihedron defined by the Mach line.

CONCLUSIONS

The boundary region equations are employed to describe the nonlinear unsteady streaks generated by medium-intensity
free-stream vorticity within a compressible laminar boundary layer. The results show that, even for a low-disturbance environ-
ment such as free flight, the nonlinear effects play a significant role in attenuating the velocity and temperature streaks inside
the boundary layer. For a sufficiently high free-stream turbulence level and a sufficiently long streamwise wavelength an
abrupt deviation of the nonlinear solution from the linear one is observed, which is a new feature of the compressible analysis.
The present study provides the accurate description of the compressible boundary-layer streaks, which is indispensable for the
secondary instability analysis of the unsteady nonlinear boundary-layer flow. This paper also includes numerical evidence of
the effect of nonlinearity on the T-S waves found by Ricco & Wu [2] for vortical disturbances with a relatively large λ∗.
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INSTABILITY AND TRANSITION OF A MACH 5.8 ZERO PRESSURE GRADIENT
BOUNDARY LAYER OVER A THERMOMECHANICALLY COMPLIANT PANEL
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Summary Boundary layer instability and transition are fundamental design considerations in hypersonic flight vehicles. Recent results
have shown that the fluid-thermal-structural interaction between the structure and grazing boundary layer can affect the turbulence and that
transient growth mechanisms appear to be important in amplifying structural motion-induced disturbances. In this paper we use convective
and global stability descriptions to identify and characterize the stability properties of a Mach 5.8 flat plate zero pressure gradient boundary
layer grazing a thermo-mechanically compliant panel. The new coupled stability modes are verified using direct numerical simulation and
their impact on transition is demonstrated.

BACKGROUND

Sustained hypersonic flight, with M∞ ≥ 5 occuring for periods of time of up-to 100 minutes, is accompanied by severe
thermal and fluid dynamic loads on the vehicle structure. Conservative air vehicle design methodologies that separately treat
the fluid, structural, and thermal dynamics make “worse case” assumptions that are not long-term viable for future designs.
Instead, more radical procedures are needed where all three disciplines are treated simultaneously to yield equally safe, but
less conservative and thus lighter, vehicle concepts. Perhaps the most uncertain feature of hypersonic flight is predicting
over which portion of the body does the boundary layer transition from laminar to turbulent. Developing the new design
methods will require a critical reexamination of the interaction of compressible wall-bounded flows with mechanically- and
thermally-compliant surfaces. Preliminary results from a temporally-developing Mach 2.25 turbulent boundary layer over
a metallic panel (see Fig. 1) suggest that under certain scenarios, turbulence-induced surface motion can reduce turbulence
production and bring current RANS-based design methods into question [1]. It is thus necessary to understand how mass,
momentum, and energy are exchanged between the flow and the dynamic underlying surface from a fundamental perspective.
Our recent investigation into the behavior of compliance-induced disturbances strongly suggests that they can use transient
growth mechanisms to amplify and modify the otherwise-canonical turbulent flow [2]. Computation-based methods are thus
well positioned to examine the fluid-thermal-structure interaction (FTSI).

APPROACH

We examine the hypothesis that fluid and structural waves can couple to modify the canonical natural transition mecha-
nisms of zero pressure gradient laminar boundary layers. Support for this hypothesis can be seen in Fig. 2 where the phase
velocity of several fluid- and solid-borne waves are given for a Mach 5.8 boundary layer grazing a steel-like panel, such as
shown in Fig. 1. The waves in the freestream are either convective or compressive, with phase velocities U∞ and U∞ ± c∞,
respectively, with c∞ being the fluid sound speed. In the solid, shear and compressive waves exist and travel at phase veloc-
ities proportional to

√
E/ρs where E is the material Young’s modulus and ρs is the material density. Rayleigh waves travel

near the solid surface, being evanescent away from it, and travel at a speed of slightly more than 92% of the shear wave speed.
For thin panels of thickness h dispersive bending waves exist with phase speed

√
E(αh)2/(3ρs(1− ν2)) for streamwise

wavenumber α and Poisson’s ratio ν.
As Fig. 2 makes apparent the wavespeeds are of a similar order of magnitude except for the very smallest values of αh and

several direct couplings between the waves are feasible. In addition, under suitable boundary conditions resonance conditions
may exist where solid waves are trapped between the upstream and downstream boundaries and extract energy from the
mean flow during each cycle, similar to what we found earlier [1]. It is thus conceivable that both convective and absolute
instabilities may exist in the coupled system.

Convective stability analysis for FTSI
Referring to the coordinate directions shown in Fig. 1, a traveling wave-type solution of the form q′(x, t) = q̂(y)ei(αx+βz−ωt)+

c.c. is assumed for any disturbance q′ taken about an appropriate mean value of q within the fluid domain. In the usual manner
by assuming ω and β to be real-valued and specified, an eigenvalue problem for α is obtained once the boundary conditions
are specified. We treat the structure as a simple flat plate whose transverse deflection η(x, z, t) satisfies the equation

ms
∂2η

∂t2
+B

[
∂4η

∂x4
+ 2

∂4η

∂x2∂z2
+
∂4η

∂z4

]
+ p′(x, 0, z, t) = 0 (1)
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Figure 1: Visualization of the boundary layer vorticity (color),
pressure iso surfaces (gray), and panel deformation (contour)
caused by a Mach 2.25 turbulent boundary layer grazing a
deformable panel. Inset shows problem definition.
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Figure 2: Phase velocities of several fluid and solid waves
for a Mach 5.8 boundary layer grazing a steel-like panel of
thickness h. Shaded region gives phase velocity range of
boundary layer instability waves.

for a plate of mass per unit area ms = ρsh, bending stiffness B, and exposed to an unsteady pressure field p′ directed in the
−y-direction. Apply the ansatz and requiring the panel deformation and fluid velocity to be compatible yields an impedance
boundary condition relating the pressure and wall normal velocity, namely

p̂(0) = Z−1v̂(0) where Z =
iω

−msω2 +B(α2 + β2)2
. (2)

The thermal fluctuations can be shown to satisfy the heat equation whose solution can be analytically determined such that a
Robin boundary condition for the fluid temperature exists.

Global stability analysis for FTSI
The global stability analysis begins by discretizing the linearized form of the equations of mass, momentum, and en-

ergy density with the plate equation (Eq. (1)) using summation-by-parts finite difference operators [3] and the simultaneous-
approximation-term [4] boundary condition enforcement to yield the linear system

dq′

dt
= L(qe)q

′, (3)

where L(qe) is the discrete operator, including boundary terms, linearized about the equilibrium solution qe. The eigenvalue
problem we consider is based on a modal decomposition of the form q′(x, t) = q̂(x)eσt so that Eq. (3) becomes

σq̂ = L(qe)q̂ with adjoint L†q̂† = σq̂† where L† = V−1LTV, (4)

with σ as the eigenvalue and q̂ and q̂† as the forward and adjoint eigenvectors. The matrix V = diag(v1/V, v2/V, . . . , vn/V ),
with V , the volume of the fluid domain and vi, the volume of the cell associated with grid point i is a norm.

DNS-predicted transition
Using both the convective instability and global stability FTSI tools as a guide, we will present cases for which the FTSI

system is expected to be measurably different from the traditional, rigid, non-FTSI cases.
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Summary The unsteady flow generated due to the impulsive motion of a sphere is a paradigm for the study of many temporally developing
boundary layers. The boundary layer is known to exhibit a finite-time singularity at the equator. We present results of a new study that
focuses upon the behaviour of the flow after the onset of this singularity. Our new computational results demonstrate that the singularity
in the boundary layer manifests as the ejection of a radial jet. This radial jet is preceded by a toroidal starting vortex pair which detaches
and propagates away from the sphere. The radial jet subsequently develops an absolute instability, which propagates upstream towards the
sphere surface. New experimental results will also be presented confirming the fundamental stages of flow evolution post the development
of the finite-time singularity in the unsteady boundary-layer equations.

INTRODUCTION

The flow induced by a rotating sphere provides a paradigm for the study of many fundamental questions in fluid mechanics,
in particular the phenomena of boundary-layer collisions and unsteady boundary-layer separation. If a sphere immersed in a
body of fluid, and initially at rest, is imparted with angular momentum, fluid is advected around the sphere from the poles,
within a boundary layer, to collide at the equator. The study of this boundary-layer development process, and subsequent
collision, has a long history, [6, 1]. The latter study demonstrated that the boundary-layer collision is manifest in the boundary-
layer equations through the development of a finite-time singularity. The structure of this singularity was first considered by
[8] and later by [4, 9]. Van Dommelen [9] used a Lagrangian approach to obtain the most accurate prediction of the time for
the onset of the finite-time singularity.

A number of other studies of the boundary-layer on a rotating sphere have demonstrated that the flow undergoes a transition
to turbulence as a result of an absolute instability within the boundary layer. Theoretical results by [5] suggest that the
absolute instability occurs well away from the equator (typically 60-70 degrees towards the sphere’s pole), providing good
confirmation with experimental results of [7]. Here we explore the boundary-layer development, its breakdown through a
finite-time singularity and the subsequent development of a radial jet through a combined computational and experimental
approach.

COMPUTATIONAL RESULTS

The flow around an impulsively rotated sphere was determined numerically exploiting a spectral element discretisation
of the axisymmetric Navier-Stokes equations; full details of the computational scheme, domain and grid has been described
in [2]. The flow was taken to be axisymmetric in order to focus on the development of the singularity/eruption process and
the subsequent development, and instability, of the radial jet. Representative results are shown in fig. 1 for a flow Reynolds
number (based upon the sphere radius) of 16000 and a variety of times post-spin-up (the sphere is spun up from rest at time
t = 0). Here we can clearly (top image) see the radial jet (preceded by a starting toroidal vortex pair) emanating from the
equator, a consequence of the ejection of fluid at the equator due to the boundary-layer collision. The incipient detachment of
the toroidal vortex pair coincides with the onset of an absolute instability in the jet (middle image) which grows in amplitude
and propagates back towards the sphere surface (bottom image).

EXPERIMENTAL RESULTS

A solid sphere (an “8-ball”) of diameter 57.15 ± 0.127 mm was mounted on a 4 mm metal rod. This was achieved by
drilling a hole through the (approximate) centre of the sphere, then gluing the rod into the hole. With the rod mounted through
the sphere, the tolerance of this sphere/rod system was accurate to within 0.1 mm. The rod was placed in a perspex tank, with
a depth and width of 600 mm and height of 300 mm, and held in place at the top and bottom of the tank with small, circular
perspex brackets. The rod was attached to a variable speed DC motor using a pulley system which was designed to minimise
any vibrational effects from the motor being transferred to the rod/sphere. A laser sheet was generated perpendicular to the
sphere and Time Resolved Particle Image Velocimetry of the flow was conducted.

Figure 2 shows false streamlines of the flow from which we observe the thickening of the boundary layer at the equator and
the radial jet that results from the collision of fluid which has been transported from the poles to the equator as a result of the
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t=54.9

t=64.2

t=90.0

Figure 1: Contour plots of the azimuthal velocity (Re =
16000).

(a) (b)

(c) (d)

Figure 2: False streamlines (obtained from 5 images) of the
flow showing the starting vortex for four different times post
spin-up. The flow Reynolds number in this case is 388.

centrifugal forces arising from the rotation of the sphere. The development of the absolute instability, for a flow with Reynolds
number 15000, is seen in the false streamline images of the flow presented in figure 3a. The thin radial jet can clearly be seen
in the first image, together with the finite amplitude, Kelvin-Helmholtz-like, “billows” resulting from the absolute instability.
At later times, the absolute instability has propagated back towards the sphere, as can be seen in fig. 3b, and will ultimately
serve to drive a transition to turbulence in the boundary layer in the vicinity of the equator.

(a) (b)

Figure 3: False streamlines showing the instability and its de-
velopment with time.

Figure 4: Top-down flow visualisation showing the absolute
instability in the radial jet; see [2] for more details

.CONCLUSIONS

Through a mix of computational and experimental techniques we have elucidated the dynamics of the flow around an
impulsively rotated sphere. This flow is known to develop a finite-time singularity in the boundary layer near the sphere’s
equator. Our results demonstrate that this singularity results in an eruption of fluid at the equator which propagates outwards as
a radial jet. This radial jet is preceded by a toroidal starting vortex pair and the jet is susceptible, at sufficiently high Reynolds
numbers, to an absolute instability which in turn can propagate back towards the sphere, and so impacting up the flow stability
within the boundary layer. The effects of three-dimensionality on this flow remain to be explored. Preliminary results suggest
that the radial jet is highly susceptible to three-dimensional disturbances; see fig. 4.
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Summary Laminar boundary layers subjected to weak random excitations break down into turbulent motion through a succession of turbulent 
spots. The late stage of transition is therefore different from that observed when excitation is periodic, as is common in many investigations. 
The spot occurrence is not necessarily where the magnitudes of the perturbation time series are at a maximum. A series of experiments mapping 
out the flow oscillations that arise downstream from a pseudo-random driven point source are discussed. It would seem that the breakdown 
process obtained in these experiments mimics the naturally occurring behaviour observed when background system noise creates the 
disturbances. 

INTRODUCTION 

 
   The prediction of the state of a boundary layer on an aircraft wing has been a necessary design requirement for almost 
one hundred years.  The transition from a laminar state to a turbulent one has been known to influence the characteristic of 
a flying surface.  In particular, a turbulent boundary layer has higher skin friction drag than a laminar one and thus the 
position of transition will influence performance. Generally transition increases drag and reduces flight performance, but 
there are situations where a turbulent boundary layer can prevent local separations and therefore be beneficial.  The 
transition process is complex and prediction methods have had to rely, to an extent, on empirical data derived from 
experimental measurements.  As more understanding of the complex phases of the transition are formed the degree of 
empiricism employed has been reduced with a consequent improvement in the ability to correctly estimate the occurrence of 
transition.  Over the years a great deal of understanding of boundary layer transition has been obtained from analytical, 
experimental and, more recently, from computational studies.  We now have some understanding of how the environment 
can excite small perturbations in the flow that grow into large amplitude distortions to the flow and eventually into turbulent 
motion.  Unfortunately nearly all these studies deal with over-simplified scenarios involving time periodic excitations.  
This may have seemed reasonable as the early stages of excitation and amplification involve very weak perturbations that 
can quite properly be described by linearized theory. However it turns out that naturally occurring random excitations 
generate narrow band modulated disturbances that evolve very differently during the nonlinear phase of growth. 
   In a flat plate boundary layer a periodic excitation from a point source produces clean wedge shaped zones of travelling 
waves that grow spatially downstream.  The same physical set up involving a pulsed excitation will generate a downstream 
travelling wave packet. Both of these flows can be described by linear theory when the amplitudes are sufficiently weak. 
But, it turns out that the wave packet becomes highly distorted and deviates from the linear model at a fraction of the 
amplitude that the periodic wave train exhibits any non-linear effects [1]. In any real situation the excitation will inevitably 
be broad band and the subsequent break down will be influenced by the myriad of rich wave-wave interactions as observed 
in experiment [2].  
 

EXPERIMENTAL SETUP 

 

   The evolution of an irregular train of waves emanating from a randomly excited point source and monitored by a 
traversable hot-wire element is considered. The work builds on previous studies [3] & [4]. The experiment was carried out 
in the laminar boundary layer that formed on a flat plate mounted in a wind tunnel that had a background turbulence 
intensity of 0.007% at 10 m/s free-stream velocity. This type of investigation can only be carried out in a very low noise 
environment if the data is too be free from corruption by system noise. The controlled excitation was provided by a 
computational derived deterministic pseudo-random signal driving a miniature acoustic driver buried in the plate that 
coupled to the flow through a 0.5 mm dia. hole. The experiment was fully computer controlled so that position of the probe, 
the tunnel unit Reynolds number and the sampling rate were all set, taking account of the temperature and atmospheric 
pressure variations during the acquisition period. This was necessary because many of the data sets were recorded over 
periods of up to a week of continuous running.  
 

RESULTS 

 

   The random time series was stored on the controlling computer and could be used repetitively. Each signal realisation 
generated by the excitation time series created a slightly different outcome because of additional weak system noise. In this 
experiment 50 realisations were recorded at each measuring station so as form an ensemble mean and the deviation from 
that mean. A set of records at 600mm from the leading edge taken directly downstream from the source at various  
distances from the wall show the ensemble mean and, drawn in red, the deviation together with the mean profile.  In the 
initial stages of development the records were very repeatable and show irregular quasi-periodic ripples arising from a 
narrow band response to a broad-band excitation. Further downstream at 860mm we see a short period within the record 
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where the deviation is significant. Subsequent analysis focuses on these secondary oscillations as they rapidly growth with 
downstream position, until a third somewhat higher frequency appears before true chaotic motion occurs as an embryo spot.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

CONCLUSIONS 

 

   Highly modulated oscillations arising from a random excitation evolve different from purely periodic waves when the 
nonlinear effects become important. Secondary ripples appear and grow rapidly to form small bursts of oscillations that evolve 
through even higher frequency disturbances that evolve into spots of chaotic turbulence. 
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LOCALIZED SELF-SUSTAINING PROCESSES IN THE ASYMPTOTIC SUCTION
BOUNDARY LAYER
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Summary Strongly nonlinear three-dimensional interactions between a roll/streak structure and a Tollmien-Schlichting wave are considered
at high Reynolds number in the asymptotic suction boundary layer. A brief derivation of the interaction equations will be given, followed
by the presentation of the results of numerical computations corresponding to nonlinear travelling-wave states bifurcating from the lower
branch linear neutral point. The states are observed to localize in the spanwise direction with increasing amplitude due to the formation of
a singularity which slowly develops in the governing interaction equations.

In recent years a dynamical systems picture of transition to turbulence has emerged in which equilibrium solutions of
the Navier-Stokes equations have been shown to play a key role in transitional and turbulent dynamics. These equilibrium
solutions consist of three crucial components: a roll flow in the cross-stream plane, a streamwise streak and a finite amplitude
three-dimensional travelling wave. These three components interact in a mutually sustaining manner in which the roll flow
drives a spanwise-modulated streak which is itself unstable to the wave. The wave then self-interacts nonlinearly to reinforce
and re-energize the roll flow. This interaction can be described approximately at finite Reynolds number, e.g. [1], and exactly
at asymptotically large Reynolds number, where it is known as vortex-wave interaction (VWI) [2]. In the latter formulation the
wave can either be governed predominantly by inviscid Rayleigh instability of the streak profile away from the wall or viscous
TS wave instability of the near-wall form of the streak. For the former Rayleigh-type interaction it has been demonstrated that
the states computed are directly related to finite Reynolds number solutions. In contrast the numerical study of the interaction
involving viscous TS waves has received far less attention. We aim to redress this balance here by considering the important
problem of roll/streak/TS wave interactions at high Reynolds number within the asymptotic suction boundary layer (ASBL)
and demonstrate the existence of alternative three-dimensional solutions to the well-known exact Navier-Stokes solution.

The linear stability properties of ASBL are well-known: there are distinct upper and lower branches along which neutral
solutions exist and the streamwise wavenumber tends to zero as the Reynolds number R tends to infinity. Here the Reynolds
number is defined as the ratio of the uniform external velocity to the wall suction speed. The solutions we are interested
in bifurcate from the lower branch at high Reynolds number and are generated through the interaction of a pair of neutral
oblique TS waves. On the lower branch at large R, the linear instability of ASBL is described by a triple deck structure in
which the instability wavenumber and wavespeed are both of O(R−1/4). Since this framework can also describe the nonlinear
development of the instability we can use it as our starting point for the formulation of the relevant governing interaction
equations.

After some asymptotic modelling (with brief details to be given in the talk) and matching between the three layers of the
triple-deck structure, the final governing interaction equations can be written down as follows.

In the main part of the boundary layer the roll/streak flow dominates over the wave and to leading order the velocity
components are

(U(y, z), R−1V (y, z), R−3/4W (y, z)),

where U(y, z) is the spanwise-modulated streak flow, (V,W ) are the scaled normal and spanwise components of the roll flow,
with (y, z) the scaled coordinates in the normal and spanwise directions. From substitution into the governing Navier-stokes
equations it is found that the roll/streak flow satisfies the balances

∂V

∂y
+

∂W

∂z
= 0, V

∂W

∂y
+W

∂W

∂z
=

∂2W

∂y2
, V

∂U

∂y
+W

∂U

∂z
=

∂2U

∂y2
. (1)

It is notable that there is no contribution from the pressure gradient in these equations: the asymptotic modelling shows that the
roll pressure exerts only a higher order effect. Also absent from these equations is any direct effect from the three-dimensional
wave. In fact the wave exerts its most prominent effects within the lower deck and transmits its influence to the roll/streak
flow via an azimuthal slip condition. This forms one of the boundary conditions for the system (1), together with the usual
suction condition for ASBL, and the decay of the spanwise roll component in the far-field:

W (0, z) = q(z), V (0, z) = −1, W → 0 as y →∞. (2)

From these equations we can see the roll/streak/wave interplay explicitly. Firstly the roll satisfies nonlinear boundary-layer-
type equations (1a,b) and the resulting roll-field then provides coefficients for equation (1c) which describes the development

∗Corresponding author. Email: a.walton@imperial.ac.uk

530



Z

y

 

 

0 1 2 3 4 5 6
0

2

4

6

8

−0.03

−0.02

−0.01

0

0.01

0.02

Z

y

 

 

0 1 2 3 4 5 6
0

2

4

6

8

−0.1

−0.05

0

0.05

0.1

Z

y

 

 

0 1 2 3 4 5 6
0

2

4

6

8

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0 1 2 3 4 5 6
−0.1

−0.05

0

0.05

0.1

Z

λ̄

a) b)

c) d)

Figure 1: Numerical solution of the ASBL roll/streak/wave interaction equations for a moderate wave amplitude. (a) The
perturbation U(y, z)−UB(y) to the streak basic state; (b) normal roll perturbation V (y, z)−VB ; (c) spanwise roll component
W (y, z); (d) perturbation to wall shear stress Uy(0, z)− U ′B(0).

of the streak. However, in the absence of any wave forcing, a suitable roll flow cannot be sustained (all such solutions would
decay in time) and the equations would then only admit the familiar undisturbed ASBL flow:

U ≡ UB = 1− e−y, V ≡ VB = −1. (3)

The spanwise slip condition (2a), representing the effect of the wave on the roll, is therefore absolutely crucial in setting up
a self-sustaining process and generating nonlinear three-dimensional alternative solutions to (3). For a given spanwise slip
profile q(z) it indeed proves possible to generate non-trivial solutions to the system (1), (2). However calculating this profile
for a given wave amplitude is a complicated numerical process involving the determination, for a given near-wall streak shear,
of the wavenumber and frequency of the corresponding 3D TS wave. This calculation is also responsible for introducing an
element of spanwise ellipticity into the interaction equations which are otherwise parabolic in z in view of the lack of spanwise
diffusion in the roll/streak equations (1). More details of this process and the numerical treatment used will be given in the
talk.

Once the slip profile q(z) is identified the roll/streak problem consisting of (1), (2) also needs to be solved numerically.
Periodic boundary conditions are applied in the spanwise direction. A spectral approach is adopted in which the spanwise
variations are expressed in terms of Fourier series while suitably-mapped Chebyshev polynomials are used over the semi-
infinite domain in y. A solution is then obtained by a Newton-Raphson approach. A suitable initial guess for the solution
is obtained in the first instance by starting at small wave amplitudes and using the linear neutral TS solution to generate an
analytic small amplitude solution for the roll and streak. The solution can then be found at higher amplitudes by a continuation
strategy.

A typical solution for a moderate wave amplitude is given in Figure 1 where the departures from the undisturbed flow (3)
are given. A feature of the solution is an apparent localization which develops in which various flow properties at particular
spanwise locations adjust over increasingly short lengthscales as the wave amplitude is increased. It will be shown that this
localization is due to the existence of an eigenfunction perturbation to the solution of the spanwise-local version of (1). This
perturbation is responsible for an increasing lack of regularity in the flow solution at various spanwise locations with increasing
nonlinearity of the fluid motion. Eventually a critical amplitude is reached beyond which spanwise derivatives of the key flow
quantities are no longer continuous. The breakdown of the solution can also be attributed in part to the lack of spanwise
ellipticity in (1), as mentioned earlier. At such large amplitudes the VWI formulation described here is no longer valid and a
new interactive structure in which spanwise diffusion is more prominent must come into play. Possible replacement structures
will be discussed briefly if time allows.
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Summary The nonlinear optimal inflow disturbance to the flow over a flat plate with a slender leading edge is calculated. At a prescribed
frequency ω and a given magnitude, the optimal inflow disturbance is the one which induces the maximum disturbance energy within the
computational domain. The Reynolds number based on free-stream velocity and half thickness of the plate is Re = 800. The optimal is a
combination of streamwise vorticity and streamwise velocity, where the second part can be attributed to the leading edge effect. The flow
response to the optimal inflow disturbance has the form of high- and low-speed streaks, whose amplitude increases as the frequency of the
inlet disturbance is reduced. The steady inflow rolls and streaks response are therefore the global nonlinear optimal for a monochromatic
inflow forcing.

INTRODUCTION

Previous studies have computed the nonlinear optimal initial condition in pipe flow and boundary layers [1, 2]. By com-
parison, few efforts have been devoted to the optimal inflow disturbance, which is most relevant to the bypass transition [3].
In linear investigations, the optimal inflow disturbance to a boundary layer flow downstream of a leading edge is streamwise
vorticity whose spanwise wavelength is on the order of the boundary-layer thickness [4]. In the present work, the methodology
by Mao et al. (2015) [5] is extended to compute three-dimensional nonlinear optimal inflow disturbances in a boundary layer
flow. A flat plate with a slender leading edge is adopted, and the Reynolds number based on the free-stream velocity and half
thickness of the plate is Re = 800.

METHODOLOGY

The flow is decomposed into an undisturbed (base) flow and a superposed disturbance, (u, p) = (U , P ) + (u′, p′), where
u, U and u′ denote the total, base and disturbance velocity vectors, respectively, and p, P and p′ represent the total, base
and disturbance pressure terms, respectively. Substituting this decomposition into the Navier-Stokes equations, the following
disturbance equations are derived,

∂tu
′ + U · ∇u′ + u′ · ∇U + u′ · ∇u′ +∇p′ −Re−1∇2u′ = 0 with ∇ · u′ = 0. (1)

The initial condition of the disturbance velocity is set to zero while the inflow boundary condition is given by

u′(B, t) = G(t)u′B(B) with G(t) = (1− e−σt
2

)(1− e−σ(T−t)
2

)eiωt, (2)

where the temporal and spatial dependences of the inflow disturbance are separated. B denotes the inflow boundary, ω
represents the frequency of the inflow disturbance, and the definition of G ensures that the boundary disturbance is zero at
t = 0 so as to be compatible with the zero initial condition of the disturbance. The term u′B(B) is the spatial distribution of
the inflow disturbance. This distribution will be optimized in order to maximise the disturbance energy E =

∫
u′T · u′TdΩ,

where u′T is the disturbance velocity at t = T and Ω denotes the computational domain. In each optimisation calculation, the
final time T , the frequency ω and the boundary norm of the inflow disturbance, ||u′B ||b = (

∫
u′B ·u′BdB)1/2, are prescribed.

The gradient of the disturbance energy within the domain with respect to the inflow disturbance can be computed as,

∇u′
B
E = T−1

∫ T

0

(p∗n−Re−1∇nu
∗)Gdt,

where u∗ and p∗ are adjoint variables that are computed by integrating the adjoint equations

∂tu
∗ + u · ∇u∗ −∇u · u∗ −∇p∗ + Re−1∇2u∗ = 0, with ∇ · u∗ = 0.
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(a)
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(c)

Figure 1: (a) Contours of the base-flow streamwise velocity. (b) Plane view (top to bottom) on the x−z plane at y= {3, 2.5, 2,
1.5}, colored by streamwise disturbance velocity induced by the optimal inflow disturbance. (c) Optimal inflow velocity; the
arrows denote the in-plane spanwise and wall-normal velocities; the contours represent the out-of-plane, streamwise velocity.
The target time is T = 180 and the inflow parameters are ω = 0 and ||u′B ||b = 0.01.

RESULTS

A Cartesian system is adopted and x, y and z denote the streamwise, vertical and spanwise directions, respectively. The
inflow and outflow boundaries are located at x = −20 and x = 200; the leading edge of the plate is at (x, y) = (0, 0); the
spanwise domain length is 12 and 48 Fourier modes are used in the spanwise direction.

The two-dimensional base flow is shown in figure 1(a). The flow response to the optimal inflow disturbance at T = 180,
ω = 0 and ||u′B ||b = 0.01 is shown in figure 1(b). This response clearly has the form of high- and low-speed velocity streaks,
which are commonly observed in bypass transition.

The corresponding optimal inflow disturbance is illustrated in figure 1(c). This disturbance consists of a streamwise
velocity and a streamwise vorticity. The maximum magnitude of the streamwise, vertical and spanwise velocities are 0.023,
0.009 and 0.008, respectively. Clearly this nonlinear optimal is dominated by the streamwise component which arises only in
the presence of the leading edge boundary layer.

CONCLUSIONS

Three-dimensional nonlinear optimal inflow disturbances are calculated in flow over a thin flat plate with a slender leading
edge. The optimal disturbance is the combination of streamwise velocity and streamwise vorticity, and the flow responses
have the form of high- and low-speed streaks. The form of the optimal disturbance differs from earlier results that do not
simulate the effect of the leading-edge region.
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CONTROL OF CROSSFLOW INSTABILITY USING PLASMA ACTUATORS 
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ABSTRACT 

 

Nonlinear parabolized stability equations are used to provide a computational assessment of potential use of plasma 

actuators for transition control on flow dominated by crossflow instability. The disturbance evolution is resolved with the 

plasma effect modelled by a distributed body force. Numerical study of crossflow instability in swept Hiemenz flow shows 

that plasma actuators which are posited just beneath the crossflow vortices reduce the growth rate of primary instability 

disturbance and weaken the crossflow vortices. Three operating voltages of plasma actuators are tested as well and the 

moderate voltage performs best. This control approach works even better in infinity swept wing flow and decreases the energy 

of disturbance nearly two orders of magnitude. The result demonstrates that plasma control offers great potential for transition 

delay. 

 

INTRODUCTION 

 

Laminar flow technology plays an important role in the development of future aerospace vehicles and it would reduce not 

only aerodynamic drag but also thermal loads on the structure. Recently, many researchers focus on transition delay of the 

boundary layer attached on the upper surface of a swept wing. This kind of boundary layer is susceptible to crossflow 

instability. Crossflow instability often results in the formation of crossflow vortices that modify the mean velocity field and 

hence the stability characteristics of the boundary layer. Breakdown is caused by the secondary instability ride on the new 

distorted mean flow. The key to control the crossflow instability is to control crossflow vortices. Inducing body force near 

wall with the opposite direction of the flow in the crossflow vortices is 

considered a potential approach. The relative position of crossflow 

vortices and the body force is shown in Fig 1. Here, x,y,z-direction is the 

streamwise direction, wall-normal direction and spanwise direction, 

respectively. Lines in Fig 1 are the isolines of the streamwise velocity 

and the colour indicates the body force strength. Crossflow vortices 

convect low-momentum fluid away from the wall at the left side and 

high-momentum fluid toward the wall at the right. The figure is viewed 

facing downstream. The electrodes are mounted parallel to vortices’ axis. 

Thus the body force is distributed in a strip regions that aligned to 

crossflow vortices and the resultant force direction is just perpendicular 

to the vortex’s axis. The body force distribution used in this work came 

from Kriegseis et al.[1] and it is induced by a dielectric barrier discharges 

(DBDs) plasma actuator. 

 

RESULTS AND DISCUSSIONS 

 

Linear stability theory is used to find the most unstable mode 

in swept Hiemenz flow and then the mode is treated as the target 

mode. The target mode is imposed at the inlet of computational 

domain and the control region is from X=500 to 550. To find the 

best spanwise position to put the plasma actuator, 10 different 

positions were tested. Here, z0 is used to denote the relative 

position of the plasma actuator in different test cases. z0=0.1 

means that in this test case the plasma actuator is 0.1 wave length 

away from the origin point of z axis. All the electrode in the plasma 

actuator are parallel to the crossflow vortices. Fig 2 gives the 

evolution of primary stationary crossflow maximum streamwise 

disturbance velocity component with and without control. The 

calculation with an actuator was put at z0=0.7,0.8,0.9 were also 

performed but the disturbance grew too fast such the computation 

crashed when it just marched into the control region. The evolution 

of modes’ energy and the body force relative position in the best case is shown in Fig 3. It can be seen plasma actuators which 

 

Fig 1 relative position of crossflow vortices 

and induced body force in y-z plane 

 

Fig 2 Evolution of primary stationary crossflow 

mode’s maximum streamwise disturbance velocity 

component with and without control 
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are posited just beneath the crossflow vortices reduces the growth rate of primary instability disturbance and weakens the 

crossflow vortices. Three operating voltages of plasma actuators are tested as well and the moderate voltage performs best. 

 

Fig 3  Comparison of modes’ energy with and without control (left) and the body force relative position (right) (z0=0.4) 

The infinity swept wing flow whose configure conforms to Reibert’s experiment[2] is used here to test the plasma control 

approach. Evolution of modes’ energy is shown in Fig 4. The control region is between the two red points. The harmonic (0,2) 

mode grow fast in the control region, but dies out soon when it comes out of the region due to its decreasing stability feature. 

Combined with the (0,2) mode which suppresses the fundamental mode through nonlinear effect, plasma actuators attenuate 

the fundamental mode and decreases its nearly two orders of magnitude. So, even though the mode keeps growing from 

X/C=0.46 to 0.7, it would never recover back. From the energy evolution, we can see that disturbances is totally suppressed 

when the plasma control approach is used and then transition is delayed. 

 

 

Fig 4 Evolution of modes’ energy with (red) and without (black) control 

 

CONCLUSIONS 

 

   This paper numerically studied the use of plasma actuators for transition control on boundary-layer flows dominated 

by crossflow instability. With a wall-paralleled body force assumption for plasma actuators, the disturbance evolution was 

resolved using parabolic stability equations in swept Hiemenz flow and infinity swept wing flow. In the swept Hiemenz flow, 

it was found that plasma actuators which were posited just beneath the crossflow vortices reduced the growth rate of primary 

instability disturbance and weakened the crossflow vortices. Otherwise, if the plasma actuators was put in a wrong position, 

it won’t work. Three operating voltages of the plasma actuator were tested and the moderate voltage performs best. Too strong 

forcing would cause formation of nocent vortices which promoted disturbance growth. In the swept wing flow, the instability 

almost totally suppressed since the harmonic (0,2) which excited by plasma actuators has the decreasing feature and it helped 

to control the primary mode through nonlinear effect. The result demonstrated that the elaborately designed plasma actuators 

would delay the transition dominated by crossflow instability and it offered great potential for application on airplane with 

swept-wings. 
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Summary The mean dynamics in reciprocating channel flow is studied to better understand transition to turbulence in periodic flows. The
balance of the leading order terms in the phase-averaged mean momentum equation confirms that fully-developed turbulence first emerges
at the early phases in the decelerating portion of the cycle. The underlying mechanism of this transition is the emergence of an internal
shear layer that first develops during the late phases of the accelerating portion of the cycle. In the absence of this internal shear layer, the
flow remains transitional over the entire cycle.

INTRODUCTION

Reciprocating channel flow is a periodic flow that oscillates at a fixed angular frequency, ω, with a cycle-averaged zero
mean velocity. The mean flow over a half-period first accelerates to maximum velocity, next decelerates to zero velocity, then
reverses direction. The process is then repeated indefinitely. The important similarity variable is the Stokes Reynolds number,
Res =

Umls
ν , where Um is the amplitude of the cross-sectional average velocity, ls ≡

√
2 νω is the Stokes layer thickness, and

ν is the kinematic viscosity of the fluid. Based on Res, reciprocating flow is typically categorized into five flow regime types:
I (laminar), II (disturbed laminar), III (self-sustaining transition), IV (intermittently turbulent), V (fully-developed turbulent)
[1, 2]. Understanding the mechanisms of transition between flow regime types is important to understand and predict the
transport mechanisms in many biological and engineered flow systems. In the present study, the balance of the leading order
terms in the phase-averaged mean momentum equation are used to define the onset of turbulence in type IV flows. At this
onset condition, mean flow properties are investigated to understand the underlying mechanisms of transition to turblence.

METHODOLOGY

Direct numerical simulations (DNS) of a reciprocating channel flow is used to study transition to turbulence in periodic
flows. The simulations are performed for Res = 648 and 1019, representing type III (self-sustaining transition) and type IV
(intermittently turbulent) flow regimes, respectively. The phase-averaged mean momentum balance is analyzed to determine
the leading order terms as a function of phase angle. Turbulence is defined when the magnitude ordering of the leading order
terms in the mean momentum equation matches with the four layer structure first introduced by Wei et al. [3] for fully-
developed wall-bounded turbulent flows. Mean flow properties such as the turbulent inertia and the temporal acceleration are
investigated prior to and during the onset of turbulence to understand the underlying mechanisms of transition.

RESULTS AND DISCUSSION

In fully-developed channel flow with a periodic pressure gradient, the phase-averaged momentum equation is

−∂U
∂t︸ ︷︷ ︸
i

+
1

ρ
cos(ωt)︸ ︷︷ ︸

ii

+ ν
∂2U

∂y2︸ ︷︷ ︸
iii

+
∂(−u′v′)

∂y︸ ︷︷ ︸
iv

= 0, (1)

where t is time, x and y are streamwise and wall-normal directions, U is the phase-averaged velocity in the x direction, u′ and
v′ are fluctuating velocities in x and y directions, and ρ is the density of the fluid. The ratio of term iii and term iv in Eq. 1 as
a function of wall-normal position is shown in Fig. 1a and 1d for Res = 648 and 1019, respectively. A four-layer structure
similar to that first described by Wei et al. [3] for canonical wall-bounded flow emerges at 9π

16 ≤ φ ≤ 11π
16 for Res = 1019.

Similarly, the phase-averaged velocity and temperature profiles shown in Fig. 1e at the same phases agree reasonably well
with the expected profiles for canonical wall-bounded turbulent flow. Conversely, the profiles for Res = 648 do not exhibit
behaviors similar to canonical wall-bounded flow at any phase. In summary, fully-developed turbulent channel flow behaviors
are observed for Res = 1019 (during the early phases in the decelerating portion of the cycle) but not for Res = 648. It
follows that Res = 1019 is a type IV flow while Res = 648 is a type III flow. To investigate the mechanisms of transition
from type III to IV, the temporal acceleration (term i in Eq. 1) for each phase angle in a half-cycle is shown Fig. 1c and 1f, for
Res = 648 and 1019, respectively. For Res = 1019, inspection of the phases prior to and after φ = π

2 , when the bulk flow
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Figure 1: (a) The ratio of term iii and term iv in Eq. 1 as a function of wall-normal position for Res = 648. Black circles
represent fully-developed zero pressure gradient turbulent boundary layer at different Reynolds numbers. Vertical dashed
lines mark the approximate boundary between the four layers introduced by Wei et al.. Dark green, light green and cyan
are φ = 6π

16 ,
7π
16 ,

8π
16 , respectively. Magna, red and purple are φ = 9π

16 ,
10π
16 ,

11π
16 , respectively. (b) Phase-averaged profiles of

velocity and temperature in wall-units for Res = 648. Black lines represent ensemble-averaged profiles of fully-developed
turbulent channel flow. (c) Phase-averaged profiles of ∂U

∂t for Res = 648. Grey lines are the rest of the phases with phase
increasing from top-to-bottom. Vertical dashed line marks the laminar Stokes layer. (d), (e) and (f) are the same profiles as
(a), (b) and (c) for Res = 1019. Colored line identifiers are the same in all six figures.

transitions from an accelerating flow to a decelerating flow, reveals the emergence of an internal shear layer that decelerates
at a phase-lead compared to the near-wall and core regions. The emergence of the internal shear layer coincides with the
spatially coincident strong sink-like behavior of the turbulent inertia. With increasing phase (i.e., bulk flow deceleration), the
internal shear layer likely rolls-up triggering further flow instabilities that transition the flow to a fully-developed turbulent
channel. The eventual acceleration of the flow suppresses the turbulence and the flow transitions back to a transitional flow.
The cycle is then repeated indefinitely. For Res = 648, an internal shear layer does not emerge and the flow never transitions
to a fully-developed turbulent channel. It follows that the key mechanism of transition from a type III to type IV flow is the
emergence of an internal shear layer.

CONCLUSIONS

The mean dynamics in reciprocating channel flow is studied to better understand transition to turbulence. When the Stokes
Reynolds number is large enough (Res > 750), the turbulent inertia is large enough to create an internal shear layer that phase-
leads both the near wall and the core regions of the flow. The development of this shear layer transitions the flow to a fully
developed turbulent channel flow in the early phases of the deceleration portion of the cycle.
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Summary A transverse magnetic field of finite and large strength is applied to a hydrodynamic channel flow that has asymmetric channel
wall distortions and a cross-channel pressure interaction. As the magnetic field strength is gradually increased, the basic character of the
hydrodynamic interaction is preserved but on a shorter stream-wise length scale. At a sufficiently large value of the magnetic field strength,
a new flow structure emerges, where the stream-wise length of the interaction is comparable to the channel width. Linear free interactions
are used to investigate the properties of these structures.

Flow of a steady, incompressible, electrically conducting fluid through a plane channel in the presence of a transverse
magnetic field is considered. The fluid flow is governed by the continuity and Navier-Stokes equations, coupled with the
magnetic induction equations [4]. The nature of the hydrodynamic flow is controlled by a competition between viscous and
inertial terms in the Navier-Stokes equations, often resulting in flow separation from the channel walls, especially for large
Reynolds number, Re, flows. For very long stream-wise length scales, Smith [1, 2] showed that the hydrodynamic flow is
controlled by a prescribed displacement, which is the average of the wall shapes. As the stream-wise length decreases to
O(Re1/7) [3], a cross-channel pressure gradient develops in the channel core which is sustained by the displacement of the
viscous wall layers. On longer length scales that correspond to the hydrodynamic solution of Smith [1, 2], the transverse
magnetic field tends to suppress flow separation [4]. In this study, we address how increasing magnetic field strength alters
the properties of the flow of [3].

We start with flow at finite Hartmann number Ha, where the flow upstream in a straight channel is given by the Hartmann
solution [4]. A gradual increase in Ha leads to a suppression of the leading order core velocity, which affects the pressure-
displacement interaction of [3] through

Pupper = Plower + κ(Ha)A′′(X) (1)

where

κ(Ha) =

∫ 1

0

U2
0 ds = csch 2(

Ha

2
)

[
Ha(2 + cosh(Ha))− 3 sinh(Ha)

8Ha3

]
, (2)

U0(y,Ha) is the Hartmann solution in the straight channel [4], κ(Ha) has the limits lim
Ha→0

κ = 1/120 (same as Smith’s [3])

and lim
Ha→∞

κ ∼ 1/(4Ha2).

(a) 1 << Ha << Re1/6 (b) Ha ∼ O(Re1/6)

Figure 1: Flow Structures

When 1 << Ha << Re1/6 this interaction and the near-wall viscous layers are maintained through shortening of the
channel wall distortion length scale, i.e., x ∼ Re1/7Ha−6/7. As a result, a five-deck structure (see Fig.1(a) above) develops,
which has two wall layers (LWL, UWL) similar to Smith’s [3] structure, two Hartmann layers (LHL, UHL) and a core. The
wall layers are connected through a linearly varying core pressure. The decreasing x-scale and core velocity lead to a decrease

∗Corresponding author. Email: roth@iastate.edu
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in the core perturbation velocity scales. Hence the convective term uux in the x-momentum equation will eventually fall to the
level of the stream-wise pressure px, the largest neglected term of the stream-wise momentum equation. This balance leads to
a breakdown of the structure when Ha = Re1/6H , where H is the scaled Hartmann number.

In the new structure (Fig. 1(b)) where Ha = Re1/6H , the core is governed by

PXX + Pyy = 0, (3)

A+B = 4H2

∫ 1

0

P (X, s) ds (4)

where Ulower → λ(Y + A(X)) and Uupper → λ(Y + B(X)) as Y → ∞ are the U -matching conditions for the LWL and
UWL, respectively. For H = 0, the displacement equation (4) reduces to Smith’s [3] where B = −A.

To further assess the properties of the structures, we examine the linear free interactions through a perturbation of the
displacement function, i.e., A(X) = ±εeθX , where x = Re1/7X and ε � 1. The solution of the resulting linear problem
yields the growth rate, θ = [−3Ai′(0)/22/3κ(Ha)]3/7 where κ(Ha) is given by (2) and Ai′(0) ' −0.2588. For Ha → 0,
θ = 2[−45Ai′(0)]3/7 and the hydrodynamic value of [3] is recovered. For 1 << Ha << Re1/6, the dispersion relation
between θ and Ha is given by θ = [−12Ai′(0)/22/3]3/7Ha6/7 (Fig. 2(a)). Therefore, the pressure interaction (1) of the
hydrodynamic solution [3], as well as the linear free-interactions, are preserved, but on a shorter stream-wise length scale.
When Ha increases to the level of Ha = Re1/6H , we obtain a dispersion relation between the scaled growth rate θ and H ,
given by

22/3θ8/3 + 12H2Ai′(0)θ4/3 cot(θ) =
36

22/3
H4(Ai′(0))2, (5)

shown in (Fig. 2(b)) where θ is the growth rate on the O(1) stream-wise length scale.

(a) 1 << Ha << Re1/6 (b) Ha = Re1/6H

Figure 2: Free interaction

As H → 0, we can recover the 1 << Ha << Re1/6 solution. On the other hand, the H → ∞ limit shows that the
linear free interaction is preserved but approaches a constant stream-wise length scale that is proportional to the channel width.

In summary, a large Reynolds number asymptotic structure for steady, two dimensional laminar MHD flow in channels
with wall shapes of stream-wise lengthO(Re1/7) has been examined. The hydrodynamic wall layer solution can be recovered
at very small Ha. Smith’s interaction [3] can also be preserved as Ha→∞ but on a shorter stream-wise length scale. A new
structure develops when Ha ∼ O(Re1/6). The authors believe that the Ha ∼ O(Re1/6) structure of this study likely has a
direct correspondence to the entry flow structure originally examined by Smith [5], and that there is also a likely connection
between the progression from finite to large Ha and the movement of the Smith [3] interaction into an entry flow region.
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Summary This paper is concerned with the behaviour of boundary-layers in transonic flows. When the Reynolds number is large, the

interaction between the boundary layer and inviscid flow outside the boundary layer becomes important in many flow situations. These

include the flows in a vicinity of the separation point and near body surface irregularities. Even a simple discontinuity in the surface

curvature proves to be capable of creating a pressure gradient that is strong enough to cause the boundary-layer separation. Alternatively,

small surface imperfections may be arranged in such a way that they would produce a strong favourable pressure gradient, which allows to

accelerate the flow in the boundary layer making it more resistant to separation and laminar-turbulent transition. We use asymptotic (large

Reynolds number) analysis of the Navier–Stokes equations to describe this flow behaviour.

Historic background

As the aerospace industry is now in pursuit of laminar wing design for passenger aircraft, a better understanding of the

behaviour of laminar boundary layer in transonic flows at large values of the Reynolds number is required. Of particular

interest is theoretical prediction of possible separation of the boundary layer and of the laminar-turbulent transition.

It is well known that the classical boundary-layer theory, as formulated by Prandtl (1904), is not applicable near the separa-

tion point, where the displacement effect of the boundary layer becomes strong enough to cause a significant redistribution of

the pressure outside the boundary layer. This phenomenon, known as the viscous-inviscid interaction, was initially discovered

experimentally. A large number of experimental studies were perform during 1940s and 1950s concentrating mainly on the

boundary-layer separation in supersonic flows (a review of these studies was given by Chapman et al, 1958). Among the first

was a work of Ferri (1940) devoted to supersonic and transonic flows.

A formal theory of viscous-inviscid interaction was developed independently by Neiland (1969) and Stewartson & Williams

(1969) in application to the boundary-layer separation in supersonic flows. Using the asymptotic analysis of the Navier–Stokes

equations they found that the flow near the point of separation can be described in the framework of the so-called triple-deck

model (see Figure 1). The flow in region 1 is governed by Ptrandtl’s boundary-layer equations. However, the pressure acting

on the boundary layer is not known in advance, and has to be found by analysing the interaction with region 3 that lies outside

the boundary layer. The interaction process consists of the following. Being exposed to perturbations of the pressure, the flow

in region 1 produces the displacement of the streamlines from the body surface. These are then transported through region 2

to the upper tier (region 3), where the deformation of the streamlines are ‘converted’ into the pressure perturbations, and these

are then transported back to region 1. Region 2 plays a passive role in the interaction process; it does not contribute into the

displacement effect of region 1, nor it changes the pressure produced in region 3. If this flow is supersonic, then the Ackeret

theory holds in region 3.

Later the theory was shown to be applicable to wide variety of flows, both supersonic and subsonic (see, for example,

Sychev et al, 1999).
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Figure 1: Three-tiered structure of the interaction region.
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TRANSONIC VISCOUS-INVISCID INTERACTION

The triple-deck theory was first applied to transonic flows by Bodonyi & Kluwick (1977, 1998), who analysed, among

other flows, the flow near the trailing edge of a flat place. In this problem the flow is only perturbed near the trailing edge where

the viscous-inviscid region is situated. The process of viscous-inviscid interaction proceed in the same way as in supersonic

and subsonic flows, that is the middle deck (region 2) remains passive, and the interaction takes place between the lower

deck (region 1) and the upper deck (region 3). Of course, in transonic flow one has to use the Kármán-Guderley equation for

region 3. This changes the size of the interaction region from ∆x ∼ Re−3/8 to ∆x ∼ Re−3/10, and also some changes of the

flow properties have been observed.

However, the true nature of the transonic flows has been revealed in analysis of the transonic flow separation from a corner

point (see Ruban & Turkyilmaz, 2000) and of the transonic Prandtl–Meyer flow (see Ruban et al, 2006). In both problems, the

transonic flow outside the interaction region develops a strong singularity with an ‘extremely favourable’ pressure gradient act-

ing on the boundary layer. As a result the nature of the interaction changes completely. Instead of viscous-inviscid interaction

it becomes inviscid-inviscid interaction taking place between the middle tier (region 2) and the upper tier (region 3).

In the present paper we will also discuss the transonic flow near a point of discontinuity of the body surface curvature,

which may be expressed by the equation

y =

{

κ1x
2 x < 0,

κ2x
2 x > 0.

Depending on κ1 and κ2 the flow might display a deceleration and separation from the body surface or strong acceleration.

An example of the latter is shown in Figure 2 which demonstrates how the skin friction increases in the interaction region.

Obviously, instead of using suction for the flow control, it is much easier to accelerate the flow in the boundary layer by

introducing a simple discontinuity in the surface curvature.
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Figure 2: Skin friction τ(x).
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UNSTEADY BOUNDARY-LAYER SEPARATION
AT FINITE AND INFINITE REYNOLDS NUMBERS
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Summary Unsteady boundary-layer separation in the limit as Reynolds number goes to infinity is marked by the onset of the Van Dommelen
singularity, which signals a sudden, small-scale eruption of vorticity from the boundary layer. A more complete and comprehensive picture
of the unsteady separation process has been sought for some time, including how the limiting process based on asymptotic methods is
adjusted for finite Reynolds numbers of practical interest. Here, an alternative mechanism is described that also leads to an ejection of
near-wall vorticity, i.e. unsteady separation. It is predicated on the splitting of a recirculation region or vortex within the boundary layer
owing to the Vortex-Shedding Mechanism (VSM). However, it is not found to be permissible in the boundary-layer limit. Therefore, it is an
alternative to the Van Dommelen singularity-based unsteady separation mechanism that may occur at finite Reynolds numbers.

UNSTEADY SEPARATION

Unsteady separation marks a turning point in a wide variety of high Reynolds-number, surface-bounded flows. Instigated
by an adverse pressure gradient acting upon a boundary layer, it is characterized by a sudden ejection of near-wall vorticity
into the outer flow. Such an event leads to significant and abrupt changes in aerodynamic forces and/or mixing, for example.
Although isolated in space and time, it typically has significant consequences for the global flow field in flows for which it
occurs.

In general, unsteady separation is defined as a sudden ejection of near-wall vorticity on small spatial scales. In the context
of the unsteady boundary-layer equations, which apply in the limit as Reynolds number goes to infinity, unsteady separation
has a clear and definitive criterion. First articulated as the Moore, Rott, and Sears (MRS) criterion in Eulerian coordinates, an
adverse pressure gradient acting on the boundary layer produces the Van Dommelen singularity[1], which consists of a narrow
region in space within the boundary layer erupting suddenly away from the surface. Subsequent asymptotic stages also have
been identified that involve interaction between the viscous boundary layer and inviscid outer flow followed by the influence
of normal pressure gradients, which are neglected in leading-order boundary-layer theory.

Attempts have been made to delineate these initial three stages of the unsteady separation process within the context of the
full Navier-Stokes equations at large, but finite, Reynolds numbers[2, 3]. Although broadly in agreement, there are important
differences that call into question the validity of the limiting, infinite-Reynolds-number picture of unsteady separation. In par-
ticular, there is evidence that the scales at which viscous-inviscid interaction arises are only valid at extremely high Reynolds
numbers, even beyond those that are of practical relevance.

In addition to the prospect of their being severe limits on the extensibility of the boundary-layer theory to Reynolds num-
bers of practical interest, the question arises as to the possibility that additional mechanisms may lead to unsteady separation
as defined generally above. In particular, is the Van Dommelen singularity-induced eruption the only mechanism that may
lead to an ejection of vorticity from within a boundary layer?

VORTEX-SHEDDING MECHANISM

There is growing evidence that an unsteady separation mechanism exists at finite Reynolds numbers that is triggered by the
splitting of an existing recirculation region or vortex within a boundary layer[4]. After summarizing this mechanism, we then
consider whether such a mechanism is permissible in the unsteady boundary-layer equations that govern at infinite Reynolds
numbers.

Assume we have a two-dimensional, incompressible finite Reynolds-number flow such as the flow past a circular cylinder
or a vortex above a plane wall. These flows are known to have vortices or recirculation regions that undergo splitting and
subsequent shedding. Recent investigations have shown that the Vortex Shedding Mechanism (VSM) predicts if a vortex or
recirculation region will undergo a splitting event in any two-dimensional, incompressible flow. The VSM is based upon the
second invariant of the velocity gradient tensor or Q-criterion given by

|∇v| = Q =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
, (1)
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and the divergence of the net forces of the Navier-Stokes equations,∇ · fnet, defined as

∇ · fnet = −∇2p+∇ · fb, (2)

where fb is the body force. Note that for an incompressible fluid, the divergence of the viscous terms is identically zero by
continuity; therefore, only pressure gradient and body force terms appear. It can be shown that the Q-criterion is related to
both the determinant of the Hessian matrix of the streamfunction and to the divergence of the net forces according to

Q = |H(ψ)| = −1

2
∇ · fnet. (3)

As a result, if the divergence of the net forces is positive, then by the Second Partial Derivative Test, the vortex or recirculation
region experiences a splitting via a saddle-node. Formally, the VSM states that given a two-dimensional, incompressible flow,
an existing vortex or recirculation region, having positive Q, will undergo a splitting event at a location, if and only if, (1)
there is a critical point in the streamfunction (zero momentum), and (2) the Q-criterion is less than zero which occurs if there
is a positive divergence of the net forces.

Recently, splitting and shedding of the “parent” recirculation region or vortex via the VSM has been found to play a critical
role in determining if an ejection of near-wall secondary vorticity will occur. From numerical simulations of the flow about
a circular cylinder and that induced by a thick-core vortex above a wall, we have observed that the ejection event is always
preceded by a splitting of the parent recirculation region or vortex via the VSM. This occurs because the zero-vorticity “front”
of the ejection cannot pass through a region where Q > 0. Moreover, we have shown suppression of an ejection event by
mitigating the VSM. Thus, the ejection phenomenon appears to require the VSM as a prerequisite in these problems. This
may be viewed as follows. The parent recirculation region splits via the VSM creating a corridor or pathway for escape of the
near-wall vorticity. Not only can the VSM be proven to be a necessary and sufficient condition for splitting of a recirculation
region or vortex, but the ejection phenomenon appears to require the VSM as a prerequisite.

Given this mechanism leading to a vorticity ejection in finite Reynolds-number flows, i.e. unsteady separation, it raises
the question as to whether the VSM-induced ejection is in any way related to the Van Dommelen singularity or if it is an
alternative mechanism altogether. In order to decipher which is the case, let us determine whether the VSM is permissible
within the context of the unsteady boundary-layer equations.

The O(Re−1/2) thick boundary layer gives rise to the boundary-layer scalings y = Re−1/2Y and v = Re−1/2V for the
normal coordinate and velocity, respectively. According to these scalings, the force-divergence criterion (2) takes the form

∇ · fnet = −
∂2p

∂x2
+ ν

∂

∂x

(
∂2u

∂Y 2

)
. (4)

As this form does not admit the Q-criterion inherent to the VSM, it is concluded that the VSM-based ejection mechanism is
not permitted by the unsteady boundary-layer equations. Consequently, the VSM is therefore found to be a distinct mechanism
from the Van Dommelen singularity.

CONCLUSIONS

Whereas unsteady separation is clearly defined by the Van Dommelen singularity within the context of the unsteady
boundary-layer equations, which formally govern in the limit as Reynolds number goes to infinity, finite Reynolds-number
flows are found to admit an alternative mechanism leading to unsteady separation. This mechanism requires the splitting of
a recirculation region or vortex within the boundary layer that provides a pathway for the ejection of near-wall secondary
vorticity from deep within the boundary layer. Whereas the Van Dommelen singularity occurs when the MRS criteria are
satisfied, or equivalently when a stationary point forms in the continuity equation, the criteria for the VSM requires a positive
force divergence at a location of zero momentum. Anecdotal numerical evidence suggests that this mechanism may be more
common than a finite Reynolds-number version of the Van Dommelen singularity.
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Summary The rotor-oscillator flow consists in rotating a cylinder parallel to a wall in a viscous fluid to generate a separation. If in addition
the cylinder is translated along the wall with a given velocity profile, the separation profile becomes unsteady and can be easily manipu-
lated. Particle image velocimetry is used to study different scenario of two-dimensional fixed and moving separation. For the fixed case,
existing formulae to compute the profile of the on-wall separation are validated. For the moving case, the separation point coincides with a
Lagrangian saddle-point moving inside the flow and a method is proposed to compute the stable and unstable manifolds to which it belongs.

INTRODUCTION

In 2004, G. Haller [1] extended the conditions proposed by L. Prandtl to capture separation in two-dimensional steady
flows to the unsteady case, thus unifying prior works into a single theory and extending them to cases not covered before. This
new approach showed that the key point to capture separation is to use a Lagrangian approach where the separation profile
can be described by a material line that first attracts, then ejects fluid particles initially located in the vicinity of the boundary.
Two types of separation were considered. A fixed separation occurs when the flow has a well-defined mean value, such as in
periodic flows. In this case, the boundary point of separation is fixed at a location where the backward-time average of the skin
friction vanishes, but the shape of the separation profile is time-dependent. A moving separation occurs when the flow does
not have a mean value, such as in a boundary layer where the external velocity changes constantly. In this case, the separation
point may move, and is defined at the location where the time-varying mean component of the skin friction vanishes.

A very few studies have focused on the experimental validation of the new theory. The reason is that the computation of the
time-dependent separation profile requires to measure instantaneous spatial gradients of the two velocity components. To the
authors knowledge, only one study has been reported in the literature. In [2], a cylinder whose axis can be oscillated parallel to
a wall is simultaneously rotated in a viscous liquid to manipulate an unsteady separation. Under periodic, quasi-periodic and
random forcing, observations reveal that separation emanates from a fixed location on the surface, its position and orientation
over time being accurately predicted by the theory. However, experiments were used only to provide visualisations, since
quantitative data were extracted from a numerical simulation of the experimental flow. In this study, an experimental set-up
similar to the one used in [2] was designed and particle image velocimetry (PIV) was used to explore diverse two-dimensional
separation phenomena thanks to different combinations of rotation and translation of the cylinder.

METHODS

A cylinder of diameter 2.54 cm is inserted vertically in a rectangular acrylic tank. The stepper motor used to rotate the
cylinder is mounted on a motorized linear stage that is parallel to the longest side of the tank. The tank is filled with a water-
glycerin mixture of 95% glycerin by weight. This mixture was chosen because the density of the fluid is very close to that
of fluorescent tracer particles (Rhodamin B, mean diameter of ∼10 µm) used for PIV measurements. The laser light sheet is
positioned horizontally and a camera is placed vertically below the tank to obtain the two components of velocity vectors in
the whole area between the cylinder and the vertical wall. The particle images are processed by the LaVision DaVis software
to obtain the velocity fields, and are also averaged in different ways depending on the type of separation that is investigated.

RESULTS

The rotation speed of the cylinder is Ω and its translation speed is Uc = U0 + β cosωt, where U0 is a constant translating
velocity on which an oscillating movement of angular frequency ω and amplitude β is superimposed. In the case of a periodic
flow, i.e. when U0 = 0, the separation profile S (t) at time t corresponds to a material line (an unstable manifold) anchored to
a point s fixed to the wall, as schematically presented in figure 1(a). In this case, formulae to obtain the shape of the unsteady
separation profile are provided in [1] for any desired approximation order, i.e. the first order gives the separation angle, the
second order the curvature and so on. As an example, figure 1(b) superimposes the second order theoretical profile (yellow
line) to particule images averaged over a long time for the steady case (Uc = 0). As can be observed, the theory perfectly
predicts the particle trajectories in the vicinity of the boundary.

For the general case, the flow is no longer periodic (U0 6= 0), and the separation point is considered to be moving but
should still be captured from on-wall signatures according to [1] and [3]. In these studies, separation occurs at a point on
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Figure 1. Description (a) and validation (b) of the fixed separation for the steady case (Uc = 0).

the wall where an adequate temporal filtering of the shear signal vanishes. However, here, measurements do not show any
point on the wall where the skin friction vanishes. Instead, it is proposed in [4] that the separation point may on the contrary
be represented by a moving point off the wall without any connection to on-wall quantities, as schematically presented in
figure 2(a). This point corresponds to a Lagrangian saddle point defined by an attracting material line S (t) (the unstable
manifold), that coincides with the separation profile, and a repelling material line L (t) (the stable manifold).

To verify experimentally if the curves S (t) and L (t) exist, we first need to capture the separation point. This point
should follow the cylinder motion, and since the flow is periodic in a reference frame moving with the cylinder, we first seek a
Lagrangian point whose position relative to the cylinder is the same at t and t+ T , where T is the flow period. Then, we seek
the attracting and repelling lines in the form of a time-dependent material line defined by a second order Taylor series around
the separation point of coordinates (xs(t), ys(t)) previously obtained:

a1(x− xs) + a2(x− xs)
2 + b1(y − ys) + b2(y − ys)

2 + c(x− xs)(y − ys) = 0. (1)

By differentiating (1) with respect to time, we obtain a first equation where velocity components of particles belonging
to the material line appear. Then, by differentiating this new equation with respect to the curvilinear coordinate and set
(x, y) = (xs, ys), we obtain a linear differential equation for the slope m of the material line. By repeating the procedure for
the second derivative, we obtain an equation for the curvature γ of the material line. By numerically integrating in time the
equation for m over T , it is possible to find two initial guess m0 = m(t0) for which m(t0 + T ) = m(t0), which therefore
correspond to the tangent to S (t0) and L (t0). Finally, by integrating in time the equation for γ, we obtain the initial curvature
γ0 of both material lines.

To validate these results, the average of five consecutive particle images acquired at an arbitrary time is shown in figure 2(b)
for a given set of non-zero parameters (U0, β, ω). Before the averaging process, images have first been shifted to follow the
trajectory of the separation point, thus revealing the organization of the flow pattern around s. The computed profiles for
S (t0) and L (t0) are superimposed in yellow, and a good agreement is obtained, thus confirming that the separation point is
indeed not anchored to the wall.

Further investigations on the periodic case (U0 = 0) have finally shown that depending on the value of the velocity
amplitude β, it is possible to obtain two separation points, one fixed and the other mobile.

L (t) S (t)

s(t)

Uc = U0 + � cos!t

⌦
(a) (b)

Figure 2. Description (a) and validation (b) of the moving separation for the case where Uc = U0 + β cosωt.
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[4] MIRON, P., VÉTEL, J. 2015 Towards the detection of moving separation in unsteady flows. J. Fluid Mech. 779, 819–841.

545



XXIV ICTAM, 21-26 August 2016, Montreal, Canada
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Summary A Chebyshev collocation method is applied to the triple deck equations governing the transient flow regime which ensues finite

time blow-up events occurring in the solution of the fundamental equation of marginal separation theory under certain conditions.

MOTIVATION

The present investigation of marginally separated boundary layer flows (so-called laminar or alternatively transitional

separation bubbles) is based on a high Reynolds number asymptotic approach first published in [5] and [8]. Typical situations

featuring laminar separation bubbles include, among others, the flow past the suction side of slender airfoils at small to

moderate angels of attack and channel flows with suction or (smooth) wall distortion. As is well-known, classical (hierarchical)

boundary layer computations usually break down under the action of an adverse pressure gradient on the flow, a scenario

associated with the appearance of the Goldstein separation singularity. If, however, the parameter controlling the strength of

the pressure gradient (the angle of attack, the relative suction rate or distortion magnitude in the examples mentioned above) is

adjusted accordingly, the application of a local viscous-inviscid interaction strategy by using triple deck arguments is capable

of describing localized boundary layer separation (marginal separation, dashed lines regions indicated in Fig. 1). Moreover,

taking into account unsteady effects and flow control devices allows the investigation of the conditions leading to forced

or self-sustained vortex generation and the subsequent evolution process culminating in separation bubble bursting, [7], [2].

Within the asymptotic formulation of this stage bubble bursting is associated with the formation of finite time singularities

in the solution and a corresponding break down of the underlying equations. The distinct blow-up structure gives rise to a

fully non-linear, interacting triple deck stage featuring shorter spatio-temporal scales characteristic of the successive vortex

evolution process, Fig. 1, [7]. Although the Cauchy problem associated with this stage has been extensively studied in [4], it

still lacks a satisfactory numerical treatment. Following the achievements of [3], we aim at numerical solutions of the triple

deck stage bridging the gap between proper initial conditions and the formation of yet another finite time blow-up, whose

terminal structure has been computed in [6].
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��������������������������
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Figure 1: Asymptotic layer structure of laminar marginally separated flows including bubble bursting (schematic). Spike

formation initiated by a finite time blow-up event, modeled up to the triple deck stage. Inviscid, irrotational upper decks UD,

predominantly inviscid, rotational main decks MD, viscous boundary layer and lower deck regions LD (highlighted in gray).

SHORT OUTLINE

Specifically, we consider laminar, two-dimensional incompressible flows, the LD problem of the triple deck stage then

reads
∂2Ψ

∂Y ∂T
+
∂Ψ

∂Y

∂2Ψ

∂Y ∂X
−
∂Ψ

∂X

∂2Ψ

∂Y 2
= −

(

1 +
∂P

∂X

)

+
∂3Ψ

∂Y 3
, P =

1

π

∫

∞

−∞

∂A/∂ξ

X − ξ
dξ . (1)

Here Ψ(X,Y, T ), P (X,T ), A(X,T ) denote the stream function, the induced pressure and the displacement function to be

determined and X , Y , and T the stream-wise, wall-normal coordinates and the time. All quantities are non-dimensionalized

∗Corresponding author. Email: stefan.braun@tuwien.ac.at

546



and suitably scaled. Equations (1) represent the boundary layer equation with both, prescribed adverse and induced pressure

gradients and the interaction law (Hilbert integral). They are subject to the no-slip conditions Ψ = ∂Ψ/∂Y = 0 at Y = 0,

and the far field conditions Ψ ∼ (Y +A)3/6 + · · · as Y → ∞ and Ψ → Y 3/6, A,P → 0 as |X | → ∞. A connection to the

self-similar blow-up structure of the previous stage is ensured by means of the initial - or equivalently matching - condition

Ψ ∼ |T |1/3
[

ŷ3

6
+ |T |−7/9 ŷ

2

2
Â1(x̂) + |T |−11/9 ŷ

2

2
ê1(x̂) + |T |−14/9ψ̂2(x̂, ŷ) + |T |−16/9 ŷ

2

2
ê2(x̂) + · · ·

]

,

P ∼ |T |−10/9p̂1(x̂) + |T |−14/9p̂e1(x̂) + |T |−17/9p̂2(x̂) + |T |−19/9p̂e2(x̂) + · · · ,

A ∼ |T |−6/9Â1 + |T |−10/9ê1 + |T |−13/9Â2(x̂) + |T |−15/9ê2 + · · ·

(2)

as T → −∞ with the appropriate scalings X = |T |4/9x̂ and Y = |T |1/9ŷ. The leading term ŷ3/6 represents the separation

profile and (p̂1, Â1), (p̂2, Â2), (p̂e1, ê1), etc. form Hilbert pairs according to (1). Whereas Â1, Â2, ψ̂2, etc. are uniquely

determined, the eigenfunctions ê1 ∝ Â′

1 and ê2 ∝ (Â1 + 2/3x̂Â′

1) with indeterminate amplitudes carry the ‘history’ of the

flow, Fig. 2. The numerical approach to solve the initial value problem (1), (2) in essence is as follows. As a starting basis,
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Figure 2: Various quantities which constitute the blow-up structure (2) and are used to initialize the triple deck computations.

the stream function is split into two parts: one part is introduced to capture the singular far field behaviour and the second is

treated as the intrinsic unknown of O(1). Furthermore, for the problem to be discretized in bounded computational domains,

transformations are applied, which map the (semi-) infinite X-, Y - and T -domains to [−1, 1]. Finite differences with adaptive

time stepping are used for temporal derivatives and the spatial derivatives are realized via a differentiation matrices approach

based on Chebyshev polynomials. To this end each unknown quantity u is represented by a polynomial interpolant of degree

n in barycentric Lagrange form (here demonstrated for one spatial coordinate s ∈ [−1, 1] only), [1]

u(s) =

n
∑

j=0

ujℓj(s) , u(sj) = uj , ℓj(s) =
wj

s− sj

[ n
∑

k=0

wk

s− sk

]

−1

. (3)

For the polynomial interpolation to be a well-conditioned process, Gauss-Lobatto grid point sets sj = − cos(jπ/n), j =
0, · · · , n that are clustered at the endpoints of the interval are used. This choice yields the weights wj = (−1)jδj with

δj = 1/2 for j = 0, n and δj = 1 otherwise. E.g., the first order differentiation matrix then is given byD
(1)

ij = ℓ′j(si). Special

treatment is required for the occurring integrals, e.g. for the Hilbert transform we obtain, using integration by parts and (3)

g(Xi) = gi =
1

π

∫

∞

−∞

f(ξ)

Xi − ξ
dξ =

n−1
∑

j=1

Hijfj , Hij =
1

π

∫ 1

−1

ln |Xi − ξ(s)| ℓ′j(s) ds , Hn−i,n−j = −Hij . (4)
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Summary The Leading-Edge Vortex (LEV) is one of the primary mechanisms to achieve high lift forces on wings. Theoretical and 

experimental studies suggest the spanwise flow along a wing has a major role in the stabilization of LEVs over the upper wing surface. 

While this is well known for low aspect ratio (delta) wings we show that continuous spanwise flow is achievable for high aspect ratio 

wings, depending on on the wing planform. A two-dimensional potential flow model is developed here for Joukowski type airfoils with a 

LEV and a sink element at the vortex core representing the spanwise flow. The results reported provide significant insight for developing 

a full three-dimensional potential flow model of the LEV phenomenon about a varying sweep, large aspect ratio wing at post-stall angles. 

 
INTRODUCTION 

 

   Most designs of high lift wings require attached flow over the wing. Yet, separating the flow and forming a leading-edge 

vortex (LEV) offers much higher lift as well known for low aspect ratio wings. Over the years, two-dimensional potential 

flow studies have investigated the mechanism attributed to localizing LEVs about high aspect ratio airfoils as they offer a 

convenient and efficient way to predict aerodynamic performances. The first potential flow studies modeled the LEV as a 

point vortex element trapped about a flat plate (Saffman and Sheffield, 1977) and a Joukowski airfoil (Huang and Chow, 

1982). A different approach was proposed by Rossow (1978), who suggested attaching a vertical flap to the leading-edge 

region in order to generate the LEV while stabilizing it through suction applied at the vortex axis, in the spanwise direction. 

He reasoned that the LEV phenomenon is strongly coupled with a spanwise gradient of momentum that convects excess 

vorticity from the vortex core, thus preventing it from growing in strength and shedding. As a result, conically shaped 

vortices are formed, similar to those observed on delta wings (Brown and Michael, 1954). Rossow modeled the spanwise 

flow with a sink element and found it has a major role in positioning the LEV above the wing. However, the implementation 

of the flap concept to imitate the spanwise flow might be mechanically complicated for practical applications. 

   We suggest that by varying the wing shape, airfoil sections and the sweep and twist angles along the wingspan, one can 

control the spanwise flow, and thereby the localization and fixing of the LEV on a high aspect ratio wing. Here we present a 

steady, incompressible potential flow analysis, including computation of the forces and moments, for various Joukowski 

airfoils with a vortex-sink pair fixed over the leading-edge region. The results reported provide significant insight for 

developing a full three-dimensional potential flow model of the LEV phenomenon about a varying sweep, large aspect ratio 

wing at post-stall angles. 

 

FLOW MODEL 

 

   We consider a steady, inviscid, incompressible and irrotational flow with a free stream velocity U∞ around a Joukowski 

airfoil section with an angle of attack α, taken as part of a large aspect ratio wing with chord c. The potential around the 

airfoil is obtained by applying the Joukowski transformation (2z=+2/2) on a circle. A LEVSP (Leading-Edge Vortex-

Sink Pair) is defined by a stationary clockwise vortex ΓLEV and a sink Q located at the vortex core. A bound circulation Γ is 

generated by the airfoil providing the linear lift component. 

   Two boundary conditions are applied: a stationary LEVSP and the Kutta condition at the trailing-edge. A family of 

LEVSP equilibrium locations is computed for different combinations of angle of attack, airfoil shape and sink strength. 

Furthermore, forces on the airfoil, and moments about the airfoil center are calculated using the Blasius theorem. 

 

RESULTS 

 

   Our model for a Joukowski airfoil was first validated for the limiting case of a flat plate with no sink from Saffman and 

Sheffield (1977). Introducing the sink element at the vortex core resulted with two equilibrium branches, originating from 

the leading-edge, on which a LEV can be trapped about the plate. This resembles the results reported by Mourtos and 

Brooks (1996) and Xia and Mohseni (2012). The equilibrium curves reported in the papers above are valid for any value of 

the bound circulation Γ. Yet, a LEV is only relevant at a positive angle of attack; i.e. a positive bound circulation value. 

Thus, equilibrium locations having negative bound circulations are not valid for trapping the LEVSP for practical cases. 

Allowing only positive bound circulation values causes the range in which the stationary LEVSP can exist to be much more 

narrow, in the leading-edge region. 
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   Increasing the suction inside the LEVSP core resulted equilibrium locations that appear further away from the airfoil 

leading-edge and in smaller region (see Fig. 1a), where they are accompanied by a stronger LEV strength. This indicates 

that strong vortices need high amount of suction in order to be positioned about the airfoil, as is intuitively obvious. Yet, 

increasing the suction is also accompanied with higher drag, since the streamwise momentum of the fluid is further removed 

into the spanwise direction. Thus, the lift to drag ratio is reduced and the aerodynamic performance is degraded. Adding 

thickness t to the Joukowski airfoil was found to have negligible effect on the LEVSP equilibrium locations and the forces 

and moments generated about the airfoil. In contrast, adding camber  extended the region of LEVSP equilibrium locations 

in the streamwise direction and gave a higher lift to drag ratio (see Fig. 1c-d), accompanied with higher pitching moment. 

Increasing the angle of attack resulted the LEVSP equilibrium curves to move closer to the upper surface of the airfoil, and 

towards the leading-edge (see Fig. 1b), similar as reducing the suction in the LEVSP core. Higher angles of attack also 

resulted in higher lift to drag ratio, similar as adding camber or reducing the sink strength. Yet, higher pitching moment also 

accompanied when increasing the angle of attack, similar as increasing the camber or the sink strength. 

 

 
Figure 1: (a) LEVSP equilibrium locations for various sink strengths, including a closer view of the leading-edge region; (b) LEVSP equilibrium 

locations for various angles of attack; (c) Flow field about an uncambered (=0) and a cambered (=0.1c) airfoil, each with 0.05c thickness and a 

LEVSP located 10% from the leading-edge; (d) Lift to drag ratio along the LEVSP streamwise equilibrium locations for various airfoil shapes 

 

CONCLUSIONS 

 

   We investigated the possibility of fixing an LEV over various Joukowski airfoils by using a potential model with a 

vortex-sink pair about the leading-edge region. Results show two equilibrium branches, both exist around the leading-edge 

region, on which the LEV can be stationary. We found the equilibrium locations with high suction were correlated with strong 

LEVs; in order to convect the excess vorticity produced by the viscous flow into the spanwise direction. Moreover, increasing 

the angle of attack, adding camber or reducing the suction in the LEVSP core have all found to increase the lift to drag ratio. The 

results herein can serve as the basis for a three-dimensional potential flow model for designing an efficient large aspect ratio 

wing with lift enhancement through LEV.  
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LEADING-EDGE FLOW SEPARATION CONTROL WITH PLASMA ACTUATORS 
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Summary An experimental study into a use of a vectored wall-normal jet from dielectric-barrier-discharge (DBD) plasma actuator was carried 
out to control leading-edge flow separation over a NACA 0012 aerofoil at the chord Reynolds number of 20,000. Here the plasma jet with a 
momentum coefficient of Cμ = 0.25% was issued against the freestream along the aerofoil chord line, generating vortices which help reattach 
the separated flow. PIV results also suggest that the plasma jet has a virtual shaping effect in flow separation control.  
 
 

Experiments were conducted in an open-return low-speed wind tunnel at the University of Nottingham, whose test 
section is 1.5m x 0.3m x 0.3m with the turbulence intensity of 0.3%. The freestream velocity was U∞ = 3m/s, corresponding 
to the chord Reynolds number of 20,000. A NACA 0012 aerofoil of the chord length c = 100 mm and the span s = 250 mm 
was mounted in the wind tunnel through a rod at 25% chord. 

The dielectric-barrier-discharge (DBD) plasma actuator used in this study is composed of two exposed electrodes with a 
common ground electrode of 0.06 mm thick and 10 mm long, which are separated by a 0.14 mm thick Cirlex dielectric 
layer. This was placed at the leading edge of the aerofoil as shown in Fig. 1. A high-voltage power supply (PSI-
MCPG2503C) from KI Tech Ltd. was used to drive the plasma actuator at 5.5 kV peak-to-peak voltage at a frequency of 34 
kHz. The direction of the plasma jet could be changed by adjusting the voltages applied to each of the two exposed 
electrodes.  

A time-resolved PIV system from Dantec was used to investigate the flow around the aerofoil. This consists of a Litron 
LDY 302 PIV 100W Nd: YLF laser, two SpeedSense 9060 high-speed cameras and a computer. Olive oil particles with 
diameter of 1 μm were produced via a TSI seeder, which were uniformly spread across the test section. The cameras were 
set at a frequency of 2000 to capture 1000 image pairs without plasma, followed by 2000 image pairs with plasma and 
another 1000 image pairs without plasma. This allowed us to carry out a transient analysis of leading-edge flow separation 
control using plasma actuator. Image analysis was conducted with Dantec DynamicStudio 4.10 using Adaptive PIV method, 
which automatically adjusts the interrogation area according to local seeding densities.

 
Figure 1 Schematic of the DBD plasma actuator placed at the aerofoil 
leading edge. The red parts denote exposed upper electrodes while the 
green part represents the common ground electrode. 

 
Figure 2 Time-averaged velocity field with superimposed vorticity 
field of the plasma wall-normal jet in quiescent air. 
 
 

 
PIV measurements of flow around the aerofoil with plasma actuator were initially conducted in quiescent air to 

characterize the induced plasma jet. Figure 2 shows the distribution of time-averaged velocity vectors superimposed by 
vorticity contour of the plasma jet, demonstrating that a wall-normal jet is created in front of the aerofoil leading edge. Here, 
the wall-normal flow was produced when the wall jets from a pair of asymmetric plasma actuators collided with each other 
to give rise to a wall-normal flow [1]. Here, the momentum coefficient of the plasma jet Cμ = Fp/(0.5𝜌𝑈∞

2c) is 0.25%, 
where ρ is the air density, U∞ is the freestream velocity and c is the aerofoil chord length. The plasma jet momentum is 
given by Fp = ∫ 𝜌𝑈𝑗

2 d𝑙, where Uj is the plasma jet velocity. 
Figure 3(a) shows the streamlines around the aerofoil for the base flow, showing that there is a leading-edge flow 

separation at the angle of attack of 10°. This flow separation behavior agrees very well with the results in our previous test 
[2]. When plasma is activated, the separated flow is reattached as shown in Fig. 3(b). The corresponding vorticity maps are 
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given in Figs 3(c) and 3(d) for the base flow and with plasma, respectively. With plasma, the vorticity field is moved closer 
to the aerofoil surface as expected from the reattachment of leading-edge flow separation, see Fig 3(d). What is interesting 
to observe in Fig. 3(d) is a shift of the vorticity region away from the leading edge, suggesting that there may be virtual 
shaping of the aerofoil by the plasma jet, reducing the leading-edge curvature.  

Figure 4(a) shows that the change in vorticity flux with time per unit span, indicating that the vortex flux is increased by 
nearly 65% when plasma is activated. The increase in the momentum flux was only 40%, however. Here, the vorticity flux 
∫ 𝜔 𝑈d𝑦 and the momentum flux ∫ 𝜌𝑈2 d𝑦 were obtained by integrating the measured vorticity and momentum from y/c 
= 0 to 0.15 at x/c = 0.065 in the upstream of the natural flow separation point (x/c ≈ 0.13) at this angle of attack.  

An increase in the turbulent kinetic energy over the aerofoil in the downstream of x/c = 0.1 is evident (not shown here) 
when plasma is activated, suggesting that a mixing of the separated flow by vortices generated by plasma (see Fig. 3(d)) 
helped reattach the separated flow at the leading edge. 
 
  (a)              Base flow                             (b)            with plasma 

             
 (c)                                                    (d)        
                      
        
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Time-averaged flow field around NACA 0012 aerofoil for base flow (a and c) and with plasma (b and d) at the angle of attack of 10°.   
     

 (a)                                               (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Transient profiles at x/c = 0.065: (a) vorticity flux; (b) momentum flux. Activation of plasma took place at t = 0.05s. 
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BOUNDARY LAYER RECEPTIVITY TO ACOUSTIC NOISE IN TRANSONIC FLOWS
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Summary In this study we analyse the process of the generation of Tollmien-Schlichting waves in a laminar boundary layer on an aircraft

wing in the transonic flow regime. We assume that the boundary layer is exposed to a weak acoustic noise. We develop the receptivity

theory, assuming that the Reynolds number is large. In this case we were able to deduce an analytic formula for the amplitude of the

generated Tollmien-Schlichting wave.

INTRODUCTION

Reduction of the vehicle drag has been under a close attention of researchers for many years, and still remains one of the

central problems of aerodynamics. It is well established that a significant fraction of aircraft fuel consumption come from the

drag, which in consequence increases the cost of air travel and the impact on the environment. For today’s commercial air-

crafts, half of the total drag corresponds to skin-friction drag. And as laminar skin friction, in comparison to the turbulent skin

friction, is much lower, flow control through delaying boundary-layer transition has a potential to provide desired reductions.

However, to achieve this, one has to predict the position of the transition on the aerodynamic surfaces. This in consequence is

impossible without an accurate description of the receptivity process.

In aerodynamic flows, the laminar-turbulent transition, follows a scenario with a succession of well defined stages. At

first, the external perturbation, such as acoustic noise, penetrate the boundary layer and turn into the boundary-layer instability

modes: Tollmien-Schlichting waves and cross-flow vortices. In real flight conditions, the external perturbations are very weak,

and therefore, the initial amplitude of instability modes generated is small, and cannot cause the transition. Propagating further

downstream instability modes are amplified until the amplitude reaches a certain level. Then nonlinear effects come into play,

and a rapid transition to a turbulent state is observed.

The receptivity theory aims to establish a link between the external perturbations and the laminar-turbulent transition, and

serves the following purposes: to identify the perturbations that turn into instability modes, to calculate the initial amplitude of

the instability modes, and to devise the means to control of the transition process. The second of these tasks can be performed

using various mathematical tools, however, it is the asymptotic approach that proves to be instrumental in performing the first

and the third tasks.

The boundary-layer receptivity to acoustic noise in subsonic flows was first analysed by Ruban [2] and Goldstein [1],

where they highlighted importance of the “double-resonance” principle. It suggests that in order to observe the resonance

in fluid flows, not only the frequency of the external forcing should be close to the neutral frequency of the boundary

layer, but also wavenumber. Both authors demonstrated that the interaction of an acoustic wave with a wall roughness pro-

duces Tollmien-Schlichting waves in the boundary layer, and deduced an explicit formula for the amplitude of the generated

Tollmien-Schlichting wave.

In the present work, our attention is with the receptivity of the boundary layer to acoustic noise in transonic flows; the

latter represent the cruise flight conditions of modern passenger aircrafts. In our study we rely on the asymptotic description

of the Tollmien-Schlichting waves in transonic flow, given by [3].

PROBLEM FORMULATION

We start by considering a flow of a prefect gas past a two-dimensional aerofoil with uniform flow upstream. We assume that

there is a plane acoustic wave travelling parallel to the airfoil surface. The flow analysis is conducted using the compressible

Navier-Stokes equations, in the limit of large Reynolds number, Re. It is also assumed that the free-stream Mach number

differs little from one and is given as

M2

∞
= 1 +Re−1/9Q∞ ,

where Q∞ is an order one quantity and is referred to as the transonic similarity parameter. In this situation the resonance con-

ditions are achieved when the frequency of the acoustic wave is O(Re2/9) and the characteristic length of the wall roughness

is O(Re−1/3).
When acoustic waves penetrate the boundary layer, the Stokes layer forms on the wing surface. However, the Stokes

layer on it own is incapable to generate Tollmien-Schlichting waves. Therefore the acoustic wave has to come into interaction

with wall roughnesses, which are plentiful on a real aircraft wing. To satisfy the resonance conditions we shall assume

that longitudinal size of the roughness is estimated as ∆x = O(LRe−1/3) i.e. is comparable with the wavelength of the

Tollmien-Schlichting wave.

∗Corresponding author. Email: t.bernots@imperial.ac.uk
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Figure 1: Receptivity coefficient dependance on the frequency (a, b) and on the transonic similarity parameter (c, d).

Form this follows that the triple-deck region forms in the vicinity of the roughness and is composed of three tiers: the

viscous sublayer (Lower deck), the main part of the boundary layer (Main deck) and the potential flow region that lies outside

the boundary layer (Upper deck). All the three layers have the same longitudinal extent.

THE VISCOUS-INVISCID INTERACTION PROBLEM

Analysis begins with a region situated outside the boundary layer, where solution of the Navier-Stokes equations is sought

in the form of asymptotic expansions. One can show that the Navier-Stokes equations, in transonic limit, reduce to the wave

equation equivalent, that is, the Transonic Small Perturbation equation,

2
∂2p

∂x∂t
+Q∞

∂2p

∂x2
−

∂2p

∂y2
= 0.

This equation admits two traveling wave solutions with different phase velocities. The first wave has O(1) phase velocity

while the second O(Re−2/9) which is comparable with the phase speed of the the Tollmien-Schlichting wave in transonic

flow.

Pressure perturbations caused by the acoustic waves do not influence the main deck of the boundary layer and are merely

transmitted from the upper to the lower deck. In the lower deck flow is described by unsteady Prandtl boundary layer equations.

Here pressure perturbations perturb the flow field, which manifest itself as a displacement of the flow. This displacement

creates an additional pressure perturbations in the upper deck, which in consequence changes the displacement. This continues

until certain equilibrium is achieved. In order to find the relation describing this interaction, it is necessary to solve the

lower and upper deck equations simultaneously. Solution of this viscous-inviscid interaction problem leads to an expression

describing the Tollmien-Schlichting wave, which amplitude is proportional to the so-called receptivity coefficient.

CONCLUSIONS

The results of the analysis confirm that an effective generation of the Tollmien-Schlichting waves takes place when the

“double-resonance” principle is observed. This condition required that the frequency of the acoustic wave is tuned to the

frequency of the Tollmien-Schlichting wave, and in the Fourier spectrum of the steady perturbations produced by the wall

roughness there is a harmonic with the wavenumber that coincides with the wave number of the Tollmien-Schlichting wave.

In the case of small amplitude of the acoustic wave and the roughness height, the governing equations are solved in an

analytic form, and, as a result, an explicit formula for the amplitude of the generated Tollmien-Schlichting wave is deduced. It

can be expressed as the product of the receptivity coefficient and the Fourier Transform of the roughness shape calculated for

wavenumber of the Tollmien-Schlichting wave. The former does not depend on the roughness shape, and reaches maximum

when transonic similarity parameter Q∞ becomes zero or, equivalently, the free-stream Mach number is one.

The asymptotic approach used in this work is primarily intended to uncover the fundamental physical processes involved

in the first stage of the laminar-turbulent flow transition phenomena. From a number of comparisons of the triple-deck

theory with the Navier-Stokes simulations of the boundary-layer receptivity in subsonic flows we know that the triple-deck

predictions are rather accurate. Therefore the results of the work can be used as the initial conditions in the further studies of

the boundary-layer transition on aircraft wings.
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Summary Laboratory experiments were performed to quantify the spatial and temporal features of the turbulence over geophysical-scale to-
pography defined by large-scale wavy walls. High-resolution and high-frame-rate particle image velocimetry in a refractive-index-matching
channel was used to infer the distinctive dynamics of the flows in terms of the topography and Reynolds number. We place the attention
on the cases with 2D and 3D walls, where the 2D topography is defined by a sinusoidal wave in the streamwise direction with amplitude
to wavelength ratio a/λx = 0.05, while the 3D wall has an additional wave superimposed on the 2D wall in the spanwise direction with
a/λy = 0.1. The flow over these walls is characterized at Reynolds numbers Re ∼ 4×103 and 4×104, based on the bulk velocity and the
channel half height. Turbulence statistics, flow decomposition via POD and LES-like and compensated spectra are used to gain insights into
the topography modulation on the flow.

GENERAL

Flow over large-scale complex topography exhibits a rich dynamics strongly modulated by the characteristics of the terrain,
where multiscale processes control the scalar transport, momentum and energy exchange between the inner and outer layers.
From an environmental stand point, large-scale topographic features can even impact local weather and precipitation patterns
[1]. The flow over low-order large-scale wavy walls resembles that over natural terrains and, therefore, has been the subject
of numerous experimental [e.g., 2, 3], numerical [e.g., 4, 5] and theoretical [e.g., 6] studies.

The effect of increasing the topography complexity on the inner and outer flow is still far from being well understood
and characterized. Multiple studies have investigated the flow over organized roughness similar to a complex wavy wall with
superimposed waves [7, 8, 9]; however, the effect of incremental complexity has not yet been fully addressed and remains as
an outstanding subject of interest in turbulent boundary layer as well as geophysical-flow research [10]. This investigation
points towards addressing such gap that we aim to fulfill by using a RIM facility at the University of Illinois.

EXPERIMENTAL SETUP

The developing and developed flows over 2D and 3D wavy walls was experimentally studied using high-resolution and
high-frame-rate particle image velocimetry (PIV) in a 2.5 m long refractive index matching (RIM) channel with a 112.5 mm
× 112.5 mm cross section. A schematics of the setup is shown in figure 1. The 2D wall is characterized by a sinusoidal
wave in the streamwise direction x with a wavelength λx = 100 mm and an amplitude to wavelength ratio a/λx = 0.05.
The 3D wall has an additional wave superimposed in the spanwise direction y with a wavelength λy= 50 mm and the same
amplitude as the streamwise wave resulting in a/λy = 0.1. The geometry of both walls σ(x, y) is also shown in figures 1. For
the purpose of refractive index matching, the wavy walls were casted from urethane resins using hydrodynamically smooth
molds. The refractive index of the working fluid (NaI aqueous solution, 63% by weight) was carefully matched to that of the
walls rendering them nearly invisible, allowing for measurements to be made near the surface and within the geometry.

A planar PIV system from TSI consisting of an 11 MP (4000 × 2672 pixels), 12 bit, frame-straddle, CCD camera and a
150 mJ/pulse, double pulsed laser (Quntel) was used for the flow field characterization. A high-frame-rate PIV system will is
used to resolve the temporal structure of the turbulence. The system consists on two Phantom Miro 340 cameras with 12 GB
onboard memory, 2560 1600 pixes at 800 fps, and a dual cavity YLF laser with 25 mj per pulse at 1kHz pulse rate per cavity;
80 W. The flow was seeded with 14 µm silver-coated, hollow glass spheres.

REMARKS

We will discuss the impact of topographic changes on the statistics and structure of the turbulence in both developing and
developed regions. This information is being used to define flow control strategies at geophysical scale to modulate scalar
transport in natural environments.

∗Corresponding author. Email: lpchamo@illinois.edu
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Figure 1: Schematics of the experimental setup: (top) photograph of the flumewith the basic PIV components; (bottom) a
section of the 2D and 3D wavy wall with wall-normal planes.
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TWO-DIMENSIONAL HILL OF LOW ASPECT RATIO
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Summary We present here some preliminary results of an experimental study on the perturbation of a fully developed turbulent boundary
layer by a two-dimensional hill of low aspect ratio. Water flows were imposed over an asymmetric hill, with a relatively small curvature,
fixed on the bottom wall of a closed conduit. Particle image velocimetry (PIV) was used to measure the flow fields. For the flow upstream
of the hill, we found some usual characteristics of a turbulent channel flow, such as logarithmic regions and typical profiles of the xy
component of the Reynolds stress. Over the ripple, the maximum of the vertical component of the mean velocity is restrict to a narrow band,
above the ripple surface, for every longitudinal position toward the crest. We also found the region where the Reynolds stress is perturbed,
and the turbulent kinetic energy production was computed.

INTRODUCTION

Perturbations in boundary layers are frequently encountered in nature and industry. Some examples are airflows over hills,
water flows over river dunes, and liquid flows over sand ripples and dunes in closed conduits such as petroleum pipelines.
With the boundary layer perturbed, the distributions of velocities and stresses change along the flow. These new distributions
are important to understand the bed instabilities associated with sediment transport [1, 2], for example.

Many studies were made on the perturbation of a turbulent boundary layer by a low hill. Some of these studies are based
on asymptotic methods, where the turbulent boundary layer over a hill of small aspect ratio (height to length ratio of O(0.1))
is divided into two regions, which can be used to determined the perturbed flow [3, 4]. In the case of high Reynolds numbers,
the outer region, distant from the bed, is not in local equilibrium because the timescale for the dissipation of the energy-
containing eddies is much larger than the timescale for their advection. In the inner region, close to the bed, the timescale
for the dissipation of the energy-containing eddies is considered much smaller than the timescale for their advection, so this
region is in local equilibrium, allowing the use of turbulent model stress. For the case of moderate Reynolds numbers (∼ 104),
Franklin and Ayek [5] showed that the inner regions of the perturbed closed-conduit flow are not in local equilibrium, a least
for a two-dimensional hill with triangular shape. This happens because of the relatively large ratio between the vertical and
longitudinal flow scales (when compared with the aeolian case). This means that the asymptotic expressions for the perturbed
boundary layer based on local equilibrium conditions must be used with care in case of aquatic ripples of triangular shape.

This study presents the preliminary results of an experimental study on the perturbation of a turbulent boundary layer by
a two-dimensional hill. Closed-conduit water flows were imposed over an asymmetric hill with aspect ratio of O(0.1), and
the flow was measured by particle image velocimetry (PIV). The mean velocities and fluctuations were computed from the
acquired images, and the shear stress over the ripple could be determined.

EXPERIMENTAL SETUP

We used PVC plates of 7-mm thickness to cover the entire bottom of the channel in order to reduce the height and facilitate
the handling of the hill. To model the two-dimensional hill, a small bedform of wavy shape was fixed on a PVC plate in the
test section. The wavy bedform had the same scales as the aquatic ripples [1, 2, 6]. The bedform, of PVC, was painted in
black to minimize undesirable reflections. The employed flow rates were 8 and 10 m3/h. These flow rates corresponded to
cross-sectional mean velocities Ū of 0.32 and 0.40 m/s and to Reynolds numbers Re = Ū2Heff/ν of 2.75×104 and 3.5×104,
where Heff is the distance from the surface of the PVC plates to the top wall of the channel.

To obtain the instantaneous velocity fields of the flow we used PIV. The employed light source was a dual cavity Nd:YAG
Q-Switched laser, capable of emitting 2 × 130 mJ at 15-Hz. The power of the laser was fixed at 66 % of the maximum power
to assure a good balance between the image contrasts and undesirable reflection from the channel walls. 10-µm hollow glass
beads (S.G. = 1.05) were employed as seeding particles. To capture the images, we used a 7.4-µm × 7.4-µm (px2) CCD
(charge coupled device) camera with a spatial resolution of 2,048 px × 2,048 px and acquiring pairs of images at 4 Hz. The
total field employed was of 140 mm × 140 mm, with a magnification of 0.1, and the employed interrogation area was of 16
px × 16 px, corresponding to 1.09 mm × 1.09 mm. The computations were made with 50 % of overlap, corresponding to 256
interrogation areas. The test section was divided in five parts, for each part were acquired 3,000 pairs of images for both flow
rates, from which the fields of instantaneous velocity were computed in fixed Cartesian grids by the PIV controller software.

∗Corresponding author. Email: henriquepc@fem.unicamp.br
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RESULTS

The flow was measured in five different parts, the first one was upstream of the bedform. In this part, the flow corresponded
to a fully-developed turbulent channel flow. Using Matlab, the instantaneous fields were time averaged and the second-order
moments (fluctuation fields) were computed and time averaged. The time-averaged fields were then space averaged in the
longitudinal direction because the flow was fully developed. We encountered the typical characteristics of a fully-developed
turbulent channel flow, such as the logarithmic region for both walls (70 < y+ < 200, where y+ is the dimensionless vertical
coordinate, y+ = yu∗/ν, with u∗ being the shear velocity, and ν the kinematic viscosity) by considering a hydraulic smooth
regime [7], and the typical profiles of the xy component of the Reynolds stress. The same flow rates were used for the flow
over the ripple. The water stream is deflected by the ripple, and, close to the surface, the vertical component of the mean flow
v is no longer negligible. We observe in this region an increase of the longitudinal component of the mean velocity, u, as
the flow approaches the ripple crest, what is expected from the mass conservation. The vertical component, v, increases from
zero at the ripple surface, reaches a maximum and decrease to zero as we approach the upper wall. For every longitudinal
position the maximum occurs between 0.9 and 1.6 mm above the ripple surface. Franklin and Ayek [5] found, for a bedform
of triangular shape, that toward the crest the maximum of the vertical component becomes closer to the ripple surface (yd ≈ 2
mm, where yd is the distance between the ripple surface and the upper wall). The explanation for the difference in the position
of the maximum, for the vertical component, lies in the relatively small curvature of our bedform. Approximately 30 mm
downstream the crest, the flow begin to detaches and a thin layer with small velocities starts to form.

We found that the Reynolds stress is perturbed in the 50 < y+d < 250 region, where y+d = ydu∗,0/ν, with u∗,0 being
the shear velocity upstream the bedform. This region corresponds to the overlap sublayer of the unperturbed boundary layer
[7]. We also found that, longitudinally, the perturbation of the Reynolds stress decreases near the crest. Fig. 1a shows
some profiles of the xy component of the Reynolds stress, for Re = 2.75 × 104, in seven different longitudinal positions.
We computed the turbulent kinetic energy production (−u′v′∂u/∂y) for this region as indicated in Fig. 1b. Here u′ and v′

represents the longitudinal and vertical components of the velocity fluctuation, respectively. Most of the production occurs
downstream the crest and it is confined to small region, what is expected due the relatively small curvature of the bedform.
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Figure 1: a Some profile of the xy component of the Reynolds stress in dimensionless form upstream of the ripple crest: y+
d

versus −u′v′/(u2
∗,0).; b

Turbulent kinetic energy production.

CONCLUSIONS

We presented preliminary results of an experimental study on the perturbation of a liquid turbulent boundary layer by a
two-dimensional ripple in the hydraulic smooth regime. Upstream of the bedform, the usual turbulent closed-conduit profiles
were found. Over the ripple, we obtained different results for the maxima of the vertical component of the mean velocities,
when compared with previous studies. This can be explained by the small curvature of our bedform. For the xy component
of the Reynolds stress upstream of the ripple crest, the profile is perturbed in the region that corresponds to the overlap of
the unperturbed boundary layer. Owing to the relatively small curvature of the hill, the turbulent kinetic energy production is
confined to a small region downstream the crest.
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Summary This work aims to study experimentally the interaction of fibrous poro-elastic surfaces with wall-bounded turbulent flows. We
fabricate the coatings using Off-Stoichiometry-Thiolene-Epoxy (OSTE+) polymers and multidirectional UV-lithography. We assess the ef-
fects of these coatings on an overlying low-Reynolds number turbulent flow using a water-table facility and PIV measurements. In particular,
we focus on the modification of near wall turbulent structures in both space and time due to the presence of the poroelastic coatings. The
overall goal is to classify stabilizing and destabilizing fluid-structure interaction mechanisms of turbulent flows over poroelastic surfaces.

INTRODUCTION

Flows over slender, deformable and dense structures are ubiquitous in both nature and technological applications, ranging
from the flow over canopies and forests to the flow over the over the skin of organisms. In particular, surfaces found on
organisms are often filamentous and dense, inducing effectively a poroelastic surface. Although, increasing number of reports
[1, 5, 8] indicate that these surfaces interact with overlying flowing fluid in a favorable manner, the physical fluid-structure
mechanisms are not well understood. One particular interesting application of non-smooth, soft, permeable surfaces is to
reduce turbulent skin-friction drag. The most successful coatings for this purpose are inspired from the scales of the shark’s
skin [1, 2, 3] and from the surface of the lotus leaf [4] which has motivated the development of riblets for the former and
super-hydrophobic surfaces for the latter. In order to create a fundamental understanding of how poroelatic surface can be
used for flow control purposes, in this talk, we report on the interaction of complex anisotropic materials with wall-bounded
turbulent flows; especially, how the small features of complex surfaces affect global turbulence characteristics evolving on a
larger scale and vice versa. In this perspective, we fabricate a selected number of surface textures and characterize the flow
over them in an open channel flow facility.

EXPETIMENTAL SET-UP

The experimental setup consists of a water-table with an inclined glass plate as is sketched in figure 1. The water is
pumped from a downstream reservoir to an upstream reservoir, allowing the water to flow down the inclined glass plate. The
flow down the inclined glass plate is driven by gravity alone which allows one to calculate the wall shear stress τw as:

τw = ρghsinα (1)

where ρ is the density of water, g is the gravitational acceleration, h is the height of the water layer and α is the inclination
angle of the glass plate. The test section of the water table is made of a glass plate with length 230 cm over the streamwise
direction and width 56 cm and the height of the water layer is typically around 10 mm. Depending of the flow rate imposed
by the pump and of the inclination angle, the range of achievable friction Reynolds Number is between Reτ = 50 and
Reτ = 350.

Figure 1: Sketch of the water table set-up.
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Velocity measurements are achieved by Particle Image Velocimetry (PIV). The used LaVision system consists of a
ND:YLF laser (Litron Lasers, double-exposure, 30 mJ, 527 nm) which is mounted on a linear traverse to allows us to measure
2D velocity fields (Ux,Uz) over several spanwise plans. The flow is seeded by Glass Hollow Spheres with a mean size of 8-11
µm as tracer particles. A single camera (Imager Pro HS 4M; double-frame 12 bit CMOS with resolution of 2016×2016 pixels2

with a pixel size of 11×11 µm2) is placed in front of the water table. The 2016×387 pixels2 observation window corresponds
to physical sizes of 52×10 mm2. An adaptive cross-correlation processing is applied to an initial interrogation area of 64×64
pixels2 followed by a second interrogation area of 32× 32 pixels2 with a 50% overlap. Image pairs are acquired in a range of
rate between 200 Hz and 600 Hz.

MATERIALS

In order to fabricate surfaces with elastic high-aspect-ratio microstructures, a soft-lithography technique using elastomers
(e.g. PDMS) is appropriate, since it allows materials with adjustable elasticity. We use multidirectional UV lithography
to create filamentous structures with certain connectivity. In particular, we construct slanted filaments and 3D interlocked
filaments in Off-Stoichiometry-Thionele-Epoxy (OSTE+) polymer developed by the KTH Micro and Nanosystems group
[6]. In order to fabricate the filaments, the OSTE+ polymer is squeezed by the photomask and then exposed to a UV-lamp
for curing as illustrated in figure . The use of mirrors and blockage effects enable to create fibers anchored and interlocked
at different angles with a single single mask. The described fabrication is realized at the KTH Microsystem Technology
Laboratory.

Figure 2: (Left) Setup to manufacture the OSTE polymer filaments using multidirectional UV-lithography (Right) Example
of a manufactured slanted interlocked filaments (Scale bar is 30 µm)

APPROACH AND ONGOING WORK

For both the turbulent flow and the coating materials, we can define characteristic timescales. For the flow τf is related to
the frequency of the quasi-streamwise streaks, whereas for the poro-elastic material, τp is related to the time it takes for the
flow inside the material to reach an equilibrium due to an external forcing. By fabricating a selected number of coatings using
UV-lithography and exposing them to different turbulent flow conditions, we can vary these two timescales. This allows us to
compare the effect of the coatings on the flow and vice versa in each configuration e.g when τp << τf or when τp >> τf .
These investigations are ongoing and the results will be reported at the conference. This new understand of interaction between
turbulent flow structures and poro-elastic coatings will allow the design of filaments in order to reduce turbulent skin-friction
drag.
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Summary To evaluate the heating load of high-pressure capturing wings (HCW) at various design conditions, a series of numerical cases were 
carried out to study the shock wave/boundary layer interactions between the inclined shock wave compressed by the airframe and the HCW. 
The results show that the maximal value of the heat-flux on the lower surface of the HCW decreases with the increase of the blunt radius of the 
HCW, the backward position of the inclined shock wave, and the decrease of the Reynolds number. While it increases with the increase of both 
the Mach number and the half cone angle. Besides, the maximal value of the heat-flux on the lower surface of the HCW is significantly lower 
than the value on the stagnation point. The present results show that the HCW configuration should have a good application prospect.   
 

INTRODUCTION 

 
   A high-pressure capturing wing (HCW) is a kind of lift device, which can effectively improve the lift-to-drag ratio (L/D) 
of a high-speed flight vehicle with large volume [1]. A two-dimensional illustration for elaborating the principle of lift 
enhancement for a HCW configuration is sketched in Fig. 1. Here the body is the main part of the vehicle, the upper surface 
of the body is a wedge or a cone-shape typically. In according with the positions of the shock and the expansion waves, the 
whole flowfield can be divided into five regions that labeled from 1 to 5. The air pressure in region 1 is the freestream 
pressure, and the pressure in region 2 is higher than that in region 1 since the airflow is compressed by the body. When the 
airflow arrives in region 3, the pressure continues to 
increase because the HCW compresses the airflow once 
again. As the airflow leaves region 3 and enters in region 
4, the pressure gradually decreases due to the existence 
the expansion fan. The pressure in region 5 is 
approximately equal to the freestream pressure because 
the HCW is parallel to the direction of the freestream 
flow.  
   On the basis of the above analysis, we know that the pressure on the lower surface must be much higher than that on the 
upper surface of a HCW. Therefore, the HCW configuration can get a considerable lift augmentation, which benefits from 
the pressure difference on the lower and the upper surfaces. However, it is well known that the aerothermal problem must 
be well studied for any high-speed configurations. This is the motivation of this paper. In order to evaluate the heating load 
of high-pressure capturing wings (HCW) at various design parameters and freestream conditions, a series of numerical cases 
were carried out to study the shock wave/boundary layer interactions (SBLI) [2-4] between the inclined shock wave 
compressed by the airframe and the HCW. 
 

NUMERICAL RESULTS 

 

   To a HCW configuration, this problem presents that a conical 
shock acts on a cylinder wall. A typical flow structure is shown in Fig. 
2. The conical shock compressed by the body crosses over the bow 
shock compressed by the HCW, and interacts with boundary layer on 
the lower surface of the HCW. Then a separation bubble emerges and 
induces an impinging shock. Accordingly, the distribution of both the 
wall pressure and the wall heat-flux present complex variation.  
  To aim at studying the effect of design parameters and freestream 
flow parameters to the heat flux distribution, a series of two-
dimensional and axisymmetric cases were carried out numerically. A 
full three-dimensional structural grid was used to discretize the 
computational domain for each of above three configurations, in 
which algebraic transfinite interpolation methods with elliptic interior 
point refinement were utilized. Numerical solutions were obtained by 
solving the three dimensional compressible Navier-Stokes equations, 
with the use of a second order TVD finite-volume scheme for spatial 
discretization and a second order implicit time marching scheme, a realizable k-ε model was used in the computations. The 
results of the heat flux are presented in the dimensionless form: 

 
Fig. 1 Illustration of design principle of the HCW 

 
Fig. 2 A typical flow structure of the flowfield 

(pressure distribution) 
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where q is a heat flux, ρ∞ and U∞ are gas density and 
velocity in the unperturbed flow, respectively, cp is a 
specific heat of gas at a constant pressure, Tt is a 
total temperature of gas, and Tw is the wall 
temperature. 
    Fig. 3 shows the heat flux distributions on the 
lower surface of the HCW at different conditions. 
Note from these figures that the St presents different 
distributions with variation of each parameter. In 
general, the peak value of the heat flux is directly 
proportional to the cong angle. While it is inversely 
proportional to the Mach number, the blunt radius of 
the leading edge of the HCW, and the Reynolds 
number. In addition, it should be noted that the 
starting points in all curves are at the end of blunt 
arc. Compared with the value of the heat flux at the 
standing point, the peak value on the surface is 
lower by about an order of magnitude. This means 
that the aerothermal load of a HCW is acceptable 
under normal circumstances. 
 

CONCLUSIONS 

 
   In this paper, a preliminary study for aerothermal 
analysis of HCW was carried out. When the incident 
oblique shock directly acts on the HCW, a SBLI phenomenon appears. Thus, the value of the heat-flux on a HCW increases. 
Moreover, the peak value of the heat-flux varies with the cone-angle of the body, the freestream Mach number, the blunt radius 
of the HCW, and the Raynolds number. However, the maximal value of the heat flux induced by the SBLI is much lower than 
the value on the standing point. Thus, the present results show that the HCW should have a good application prospect. 
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Fig. 3 Variation of St with different conditions (top-left: 
different cone-angles; top-right: different Mach numbers; 

bottom-left: different blunt radiuses; bottom-right: different 
Reynolds numbers) 
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Summary When a boundary-layer instability mode propagates through a region of rapid distortion, its amplitude changes substantially
while at the same time a sound wave is radiated, both due to the ensuing scattering. This paper focuses particularly on the impact of a local
suction on an incident T-S wave by employing a Local Scattering Theory. The central idea is to introduce a transmission coefficient, defined
as the ratio of the T-S wave amplitude downstream of the scatter to that upstream. The mathematical description is based on the triple-deck
formulism, but in order to accommodate the acoustic field, the unsteady terms in the upper deck are retained. It is found that a suction slot
would suppress the oncoming T-S wave. The intensity of the radiated sound increases with the mass flux if the latter is not too large, but is
suppressed when the flux exceeds a critical value.

INTRODUCTION

The natural route of laminar-turbulent transition in boundary layer flows involves four successive stages: receptivity, linear
instability, nonlinear interaction and breakdown into turbulence. This process is affected significantly by surface imperfection-
s, which may appear at different locations and in different forms. The presence of an abrupt change induces a region of rapid
distortion on the mean flow, causing mainly three consequences of physical interest: (I) at the receptivity stage, the distortion
could interact with the free-stream disturbances to generate T-S waves; (II) in the linear instability region, the distortion could
interact with the oncoming T-S waves, thereby altering the amplitude of the latter and further affecting transition location
[1]; (III) acoustic waves are radiated to the far field if the flow is compressible [2]. These three issues can mathematically be
described by a recently-proposed framework, Local Scattering Theory.

The central idea of this framework is to treat the abrupt change as a scatter, and the wave activities in its vicinity as a
scattering problem, while in the relatively smooth regions away from the abrupt change, the disturbances evolve as instability
modes. Since the mean flow in the smooth regions varies slowly along the streamwise direction, the evolution of the dis-
turbances can be described by the classical linear stability theory or parabolized stability equations (PSE). These approaches
however cease to be valid when the perturbations propagate through a rapidly distorting mean flow that occurs over a length
scale comparable with the characteristic wavelength of the instability modes. A rational means to address this issue is to
formulate a local scattering theory, which can be done by employing the triple-deck formalism [1].

MATHEMATICAL DESCRIPTION

This paper focuses particularly on the application of the Local Scattering Theory to the scattering of T-S waves by
the mean-flow distortion induced by a local steady surface suction. The characteristic suction velocity is expressed as
Re−3/8U∞Vs(X), where Re is the Reynolds number based on the free-stream velocity U∞ and the distance of the suc-
tion slot to the leading edge, and X is the scaled variable in the triple deck theory. For illustration purpose, the suction
velocity is taken in calculations to be Gaussian, Vs(X) = Vs0 exp(−X

2/d2), where Vs0 is the suction velocity at the slot
center and d characterizes the slot width. We introduce the transmission coefficient T , defined as the ratio of the amplitude of
the disturbance downstream of the slot to that upstream. The disturbance in the lower deck takes the form φ̃(X,Y ) eiωT +c.c.,
where ω is the frequency, and φ̃ is a function of the streamwise variableX and the transverse variable Y in the lower deck.

Far upstream, the disturbance corresponds to an incoming T-S mode, and so φ̃ ∼ eiαX as X → −∞ with α being the
wavenumber. Far downstream, the perturbation relaxes back to a local T-S mode with a different amplitude, and so it behaves
like φ̃ ∼ T eiαX as X → ∞. In order to accommodate the acoustic field, we retain the unsteady second-order terms in
the upper deck, which play a leading-order role for acoustic radiation, as well as the influence of the radiated sound on the
near-wall perturbation [3]. The governing equation for the pressure then reduces to a Helmholtz equation, which leads to
a modified displacement-pressure relation. The latter is coupled with the linearized boundary-layer equations governing the
disturbance in the lower deck. Discretization of these equations and the modified pressure-displacement relation in a chosen
computational domain leads to a generalized eigenvalue problem,

Aφ̃ = T Bφ̃, (1)

where T is the eigenvalue of the system, A and B are coefficient matrices, and φ̃ is the unknown vectors representing the
velocities and pressure of the unsteady perturbation at each grid. As well as predicting the transmission coefficient, the solution
of the eigenvalue problem provides an adequate description of the near-wall hydrodynamic motion.
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Figure 1: The real (solid line) and imaginary (dashed line) parts of the disturbance amplitude for Vs0 = 0 (a) and Vs0 = −0.4
(b) with (ω,M,Re, d) = (0.8, 0.2, 106, 1.0).
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Figure 2: Acoustic pressure �(ps) for ω = 8.0, Vs0 = −0.4 and (M,Re, d) = (0.2, 106, 1.0).

NUMERICAL RESULTS

While the disturbance evolves exponentially in the regions far upstream and downstream, i.e. as X → ±∞, it undergoes
a sudden change in the vicinity of the suction slot. A typical result is shown in Fig. 1 for Mach number M = 0.2. Suction
turns out to produce a suppressing effect on the oncoming T-S waves. Correspondingly, the transmission coefficients are less
than unity. Further calculations show that the transmission coefficient T decreases with the suction velocity or the slot width.
For Vs0 = O(1), T can be smaller than 0.1, implying a significant delay on transition. Note that the physical suction velocity
normalized by U∞, is rather small for a large Reynolds number, and the mass flux of suction is also moderate.

The far-field sound can be computed by using the stationary-phase method. Fig.2 shows the far-field acoustic pressure for
M = 0.2. The dominant radiation is in the upstream direction, and an angle of silence of 77◦ is observed. This directivity is
found to be independent of the frequency and other parameters, however, the intensity increases remarkably with the frequency
and the width of the slot. It increases first with the suction velocity. Interestingly and significantly, a further increase of the
suction velocity suppresses radiation, and for the case with Vs0 = O(1), the radiated sound is very weak, indicating that the
gain of stabilizing effect does not cause an aeroacoustic penalty.

CONCLUSIONS

The Local Scattering Theory is applied to solve the scattering of the incident T-S wave by a local steady suction in a
subsonic boundary layer, and quantitative results for both the T-S wave amplitude and the radiated sound are obtained.
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Summary The Mach wave radiation give rise by the instability waves in a supersonic axisymmetric jet with Ma=2.1 is investigated. Near field 

of supersonic axisymmetric jet is computed by nonlinear disturbance equations ,while sound radiation in far field is computed by Wu method. 

The results are in good agreement with experiment data and DNS. Present study can analysis the Mach wave radiation both quantitative and 

qualitative. 
 

 
INTRODUCTION AND MOTIVATION 

 

   The study of sound radiated from supersonic jet has a long history and received renewed interest in recent years, for 

numerous technology application, in particular for the aviation industry. Recent theoretical investigations have described that 

instability waves, or in a broader sense large-scale orderly structures, constitute a dominant source of shear flow noise. In the 

supersonic jets, the role of supersonic modes in radiating Mach waves was confirmed by a series of experiments. Tam and 

Burton[1] applied the linear stability theory on relates the far-field sound to the growth and decay of instability waves in the 

jet flow. In predicting supersonic mixing noise, two prevalent approaches are Lighthill’s equation and the Kirchhoff surface 

method.  

Wu[3] present an analysis for nonlinear evolution of supersonic modes and the associated Mach wave radiation, based on 

asymptotic expansion in conjunction with the multiple-scale method. The goal of present study is the quantitative description 

of the radiated sound field, its prediction and its link to sound-generating structures in the supersonic jet flow. In this effort, 

we use nonlinear disturbance equations to simulate the instability waves of a supersonic axisymmetric jet and analyse the 

associated Mach wave radiation by using Wu’s Integration. This study aims at underlying mechanisms contained in the growth 

and decay of instability waves that give rise to intense Mach wave radiation quality as well as quantity.  

 

NUMERICAL SIMULATION 
 
   The governing equations are nonlinear, compressible, axisymmetric disturbance equations with the assumption of constant 

viscosity. Spatial derivative are discretized with 5th-order upwind finite-difference scheme for convective terms and 6th-order 

finite-difference scheme. Time advancement is with the three-order Rung-Kutta algorithm. 

A steady base flow is first computed from experimental fitting function in [1], for a Reynolds number Re = 70000, Mach 

number Ma =2.1, Prandtl number P r = 1. In a second step, nonlinear disturbance equations simulations are performed using 

the base flow above. To this end, non-reflecting boundary condition[2] is employeed at lateral boundary. The inflow condition 

is given by linear stability theory and extrapolation boundary condition is used for outflow. The evolution of only 

axisymmetric perturbations (m = 0) are computed, and symmetry conditions on the jet axis are imposed accordingly. 

To predict the Mach wave radiated by supersonic instability waves, the numerical method used in the currently study is nearly 

identical to the method used in [3], it is summarized only briefly. The Mach wave radiation wave is divided two asymptotic 

region: a near field and a far field. Using the asymptotic expansion and multiple-scale techniques in a supersonic jet, the 

acoustic pressure was expressed explicitly in terms of the amplitude function of the instability waves, which are calculated 

above, in each field. With analytical result, we known that a Mach wave propagates along the characteristics =constant, 

while its envelope propagates along the characteristics =constant.  

In order to compare with the experiment data in [1], the parameters of inflow instability wave are summarized in table 1. 

 

Table 1 The parameters of inflow instability wave 
   A0 

0.4 1.2560 1.6478 0.4985 0.0001 

 

 
RESULTS 

 

   Fig. 1 show us the numerical results of pressure contour in near field by using nonlinear disturbance equation. For a weak 

disturbance, its radiated Mach wave is obviously along the fixed line and energy concentrates in a region, here refer to as Mach 

beam. So that the Mach wave beam is perpendicular to the Mach wave front, and as if to emanate from the streamwise location 

where the amplitude of the instability mode is maximum. Fig. 2 is the pressure contours of Mach waves radiation by instability 
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waves in far-field, which computed by Wu method.  Mach wave beam could be seen clearly in Fig. 2. It also indicated that a 

Mach wave propagates along the characteristics , while its envelope propagates along the characteristics .  

              
Figure 1 Pressure contour of Mach waves radiated in near-field.   Figure 2 Pressure contour of Mach waves radiated in far-field. 

    
Figure 3 SPL calculation by Wu method.              Figure 4 SPL from experiment (Tam & Burtun) 

 

Comparisons of with present results and relevant experimental data are show in Fig. 3 and Fig. 4. The two are in a good degree of 

quantitative agreement.  

It can be note that the present analysis and solution can successfully predict the quantitative as well as qualitative features of the 

Mach wave radiation associated with supersonic instability waves. It must be pointed out that the analysis for the Mach waves are 

also valid for an instability wave packet. A more complete analysis of the wave packet will be presented at the Congress. 
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Summary The discrete modes and continuous spectra are essential to receptivity and instability of the hypersonic boundary layers. The 
coalescence between discrete modes and continuous spectra was studied with the non-parallel flow effects taken into account. Investigations were 
performed in Mach=4.5 flat plate boundary layers by solving the expansion of parabolized stability equations (EPSE). The stability analysis 
indicates that fast mode can cross the branch cuts of vorticity/entropy waves continuously, i.e., the fast mode is a normal mode of discrete spectrum. 
The unstable supersonic mode can also cross the branch cuts of slow acoustic waves continuously. It suggests that the coalescence between 
discrete modes and continuous spectra can be avoided by including non-parallel effects. 

 
INTRODUCTION  

 
   Stability of hypersonic boundary layer has been studied for many years. Fedorov & Khokhlov (2001) [1] revealed following 
three synchronization of the receptivity process in hypersonic boundary layers: 1) in the leading-edge region, fast mode and 
slow mode are synchronized with the fast and slow acoustic waves of the continuous spectrum, respectively. 2) Further 
downstream, the fast discrete mode is synchronized with the entropy and vorticity waves of the continuous spectrum. 3) The 
fast mode is synchronized with the slow mode near the lower neutral branch of the Mack second mode. In region 2, based on 
the linear stability theory (LST), the fast mode coalesces with vorticity/entropy waves of the continuous spectrum. The fast 
mode is treated as two different normal modes of discrete spectrum on two sides of the vorticity/entropy waves branch cuts. 
Detailed discussion of the characteristics of these spectra and the receptivity to entropy disturbance were given by Fedorov & 
Tumin (2003) [2]. Recently, the influence of high levels of wall cooling on the stability of hypersonic boundary layers was 
investigated by Bitter & Shepherd (2015) [3], in which the unstable supersonic mode synchronized with free-stream acoustic 
waves was identified. It is similar to the synchronization between fast mode and vorticity/entropy waves. 
   However, it is difficult for discrete modes to get through these branch cuts caused by continuous spectra using traditional 
stability analysis method. Fedorov (2011) [4] also proposed the question: “How should PSE and LST codes be modified to 
handle the coalescence of discrete modes with waves of continuous spectra?”. For this aim, accounting for the non-parallel 
flow effects, stability analysis is performed to investigate the coalescence between discrete modes and continuous spectra. 
The coalescence between fast mode and vorticity/entropy waves, and the coalescence between unstable supersonic mode and 
acoustic waves are studied by solving the expansion of parabolized stability equations (EPSE). 
 

MAIN RESULTS  
 
   In this paper, the non-parallel flows effects are taken into account by the EPSE. Details on the problem formulation and 
the governing equations are given by Yu et al. [5]. Considering the first order expansion, two different eigenvalues are obtained 
in the eigenvalue problem. The spatial growth rate of disturbance is defined as 

� = −�� + (���/��)/�� 
Where �� is the eigenvalue of EPSE, and (���/��)/�� stands for the distortion of the shape function ��. 
   The stability analysis is performed in a flat plate boundary layer and the flow parameters are chosen from Ref. 3 as: �� =

4.5, �� = ���
∗�∗/��

∗ = 2000, �� = 1500�, �� = 300�. 
   The variation of growth rates � with the frequency � is shown in Fig. 1(a). It can be seen that there are three branches 
(labelled ��, ��, and ��) of the LST curves which were analyzed by Bitter & Shepherd (2015)[3] . For the same frequency, 
two growth rates curves labelled � and � can be obtained by EPSE, which are shown in Fig. 1(a). We define the branch 
with larger −α� as ‘upper branch’ and the smaller one as ‘lower branch’. In the region c�~1, the lower branch of EPSE is 
discontinuous (labelled �� and ��), which is similar to the behavior of fast mode in LST. A new phenomenon can be seen 
that the upper branch of EPSE is continuous from �� > 1 to �� < 1 as frequency increases. To further investigate this new 
feature in EPSE, the real and imaginary parts of the complex phase speeds are plotted in Fig. 1(b). Two thick black lines are 
also shown in the figure which represent the branch cuts of continuous spectrum: the vertical branch near �� = 1 is the 
vorticity/entropy branch cuts while the nearly horizontal one corresponds to slow acoustic branch cut at � = 0.47. It can be 
seen that the LST branch and the lower EPSE branch both cross the branch cuts of vorticity/entropy waves, i.e. they are 
discontinuous. However, the upper branch of EPSE bypasses the branch cut of vorticity/entropy with the imaginary part of 
phase speed �� > 0 in the vicinity �� = 1. It makes the growth rate of this upper branch keep continuous near �� = 1. It 
suggests that the fast mode can cross the branch cuts of vorticity/entropy waves continuously by the EPSE method. 
   In Fig. 1(a), a sharp change in slope of LST and EPSE curves can be observed at �~0.47(��~1 − 1/��), owing to the 
unstable modes of LST and EPSE travel supersonically with respect to the free stream. Additional analysis of the supersonic 
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mode characteristics is available in Ref. 3. A new feature in the region �� < 1 − 1/�� is that there is a significant gap 
between growth rate curves of upper and lower EPSE branches. The upper EPSE branch’s �� > 0 while the lower one’s 
�� < 0, as shown in Fig.1 (b). These two branches correspond to the unstable supersonic mode and the damped supersonic 
mode, respectively, which have different growth rates and are discussed by Mack (1987) [6]. It can be seen in Fig.1 (a) that in 
the vicinity of point ��, the unstable supersonic mode of LST ceases to be a discrete mode, and a new mode emerges from 
the vicinity of point ��. These two points are synchronization points of supersonic mode and acoustic waves [3]. However, 
the upper and the lower branches of EPSE both exist when they pass through the synchronization points. Comparing �� − �� 
curves between EPSE and LST in Fig. 1(b), it can be clearly observed that the upper branch of EPSE crosses the slow acoustic 
branch cut at the point ��, which is far away from ��. The lower branch of EPSE passes below the slow acoustic branch 
point in the complex plane. Therefore, the growth rates of these two EPSE branches are continuous through the 
synchronization points, which indicates that the unstable supersonic mode can cross the branch cut of slow acoustic waves 
continuously. 

   
Figure 1. (a) Spatial growth rates. (b) Map of real and imaginary parts of phase speeds in the complex plane, Solid black lines correspond to the 
continuous spectra. 
 

CONCLUSIONS 
 
   The synchronism of discrete mode with continuous spectrum leads to a discontinuity in discrete modes, and this causes 
difficulties in stability analyses using the traditional local stability analysis method, based on the quasi-parallel flow 
assumption. In this study, non-parallel effects on the coalescence between discrete mode and continuous spectrum was 
investigated by EPSE method. The results indicate that fast mode can keep continuous when it crosses the branch cuts of 
vorticity/entropy waves of the continuous spectrum, i.e., the fast mode is a normal mode of discrete spectrum. In highly cooled 
hypervelocity boundary layers, the unstable supersonic mode can cross the branch cuts of slow acoustic waves continuously. 
The coalescence between discrete modes and continuous spectra can be avoided accounting for the non-parallel effects of the 
boundary layers. This may be helpful for the stability analyses and receptivity studies. 
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Summary Existing models for two-fluid laminar wakes fail to incorporate the effect of the boundary layer that is formed between parallel
streams with different velocities in their analysis. In this work, the impact of the boundary layer formed by two parallel streams flowing at
different velocities past a fixed obstruction is considered. The presence of the body perturbs the boundary layer flow. A model detailing
this scenario is developed and the results are compared with existing models. In particular, the limit in which a lighter fluid flows on top of
another stationary fluid with a much higher density so that the no-slip condition is approximately satisfied, is studied. This important case is
related to wall-wake flows which have been thoroughly researched thus providing a reasonably sound platform for comparative observation.

INTRODUCTION

A study on laminar two-fluid wake flows has been undertaken by Herczynski, Weidman and Burde [1]. In this inspiring
work, similarity solutions are derived for both the two-fluid classical wake and the wake of a self-propelled body for laminar
flows. The formation of a boundary layer between the two streams of fluid was not incorporated in this model because it was
assumed that the streams have the same mainstream speed. Generally, a boundary layer forms between parallel streams of
different densities and viscosities as described in the work by Lock [2]. Hunt developed a model for laminar wakes behind
obstacles in a boundary layer [3]. These wakes, which are called ‘wall-wakes’, are formed by an obstruction situated on a
boundary wall. The wall occupies the entire lower half of the plane and the fluid sticks to its boundary. The obstruction
perturbs the flow in the boundary layer.

The purpose of this work is to modify the existing model for the two-fluid laminar classical wake by including the effects
of the boundary layer formed by the two fluids flowing at different speeds. In the limit where the lower fluid is stationary
and has a significantly larger density, the no-slip condition is satisfied and a wall-wake develops. This special case is then
compared to the wall-wake model formulated by Hunt [3]. The situation where the two-fluids are flowing at the same speed
will also be investigated and compared to the work in [1].

MATHEMATICAL MODEL

Consider a planar two-dimensional two-fluid classical wake as illustrated in Figure 1. A fluid with density ρ1 and viscosity
µ1 initially occupies the top half of the plane. A fluid of density ρ2 and viscosity µ2 initially occupies the bottom half of the
plane. The two fluids are immiscible and have mainstream speeds of U10 and U20 respectively. The fluids flow past a thin
symmetric planar body aligned with the mainstream flow. The origin of the Cartesian coordinate system (x, y) is located at
a point on the trailing edge of the body. Define δ1 and δ2 to be the outer boundary layer widths of the top and bottom fluids
respectively in the undisturbed boundary layer flow. The effective half-widths of the top and bottom halves of the wake are
denoted by h1 and h2. We assume that max(h1, h2) � max(δ1, δ2) so that the wake is confined within a small region in
the outer boundary layer. The position of the unknown interface is at y = φ(x). The far-wake is divided into three regions:
the wake region (C) in which viscosity effects are important; the external flow or disturbed flow region (B) where viscosity
effects are negligible; and the mainstream flow region (A) where the disturbed flow returns to its upstream flow configuration.
The equations in the wake region will be derived. Matching conditions with region (B) will be required. The suffix i = 1 will
refer to the top fluid and the suffix i = 2 will refer to the bottom fluid.

The variables (Ui, Vi, Pi) denote the velocities and pressure in the undisturbed boundary layer flow upstream of the body.
Because the wake is confined within a small region in the outer boundary, the following simple shear flow assumption can be
implemented:

Ui = αi(y + βi), Vi = 0, i = 1, 2. (1)

A similar assumption was made in [3] where β1 = 0. In this current work the constants βi will be related to the expression
obtained in [2] for the flow speed at the interface of the fluids. In the wake region the flow variables are denoted by (ui, vi, pi).
The velocity deficit wi is defined as follows:

ui = Ui − wi, vi = vi, i = 1, 2. (2)

∗Corresponding author. Email: hutchinson.ash@gmail.com
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Figure 1: Two-fluid classical wake behind a thin symmetric planar body.

The pressure in the wake is determined by the flow in the disturbed flow region [3]. The dimensionless governing equations
in the wake region are (for convenience the original notation is kept)

α1
(y + βi)

)
∂wi

∂x
− vi

αi

α1
=
ρi ∂x

+
ν1 ∂y2

,
ρi

(
αi ρ1 ∂pi νi ∂

2wi ρ1 ∂pi
∂y

= 0, −∂wi

∂x
+
∂vi
∂y

= 0, i = 1, 2. (3)

At the interface y = φ(x) the velocity components and the tangential and normal stresses must be continuous. In the wake
region, the velocity deficit and its y derivative tend to zero as y approaches infinity. Any addition assumptions implemented
by Lock [2] and Hunt [3] will be used if required. A conserved quantity can be obtained in each region.

RESULTS

The Lie symmetry associated with the conservation law that generates the conserved quantity will be derived and the
invariant solution will be obtained. The results of this new model will be compared with existing models to establish its
validity.

CONCLUSIONS

The model developed in this work generalises two-fluid wake flows to allow for fluids that are travelling at different speeds.
It is consistent with existing models in certain limiting cases.
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MULTIPLE FAMILIES OF SOLUTIONS OF SECONDARY INSTABILITIES IN
HYPERSONIC FLOWS

Jianxin Liu1 and Jisheng Luo ∗1

1Department of Mechanics, Tianjin University, Tianjin, China

Summary The secondary instability was investigated in a Mach 4 flat-plate boundary layer with second mode primary disturbances by
numerical methodology. A new family called fundamental family of solutions was found which is the least stable secondary instability
when the amplitude of the primary mode instability reaches a threshold value such as 0.1. It is help for us to understand the fundamental
breakdown in hypersonic boundary layers.

MOTIVATION

The secondary instability mechanism is very important to the natural transition process dominated by streamwise insta-
bilities in boundary layers. Generally, the subharmonic secondary instability is considered as the least stable disturbance.
Herbert’s results[1] in an incompressible and Ng’s[2] in an compressible flow support this viewpoint. However, recent work
[3][4] observed that the fundamental secondary mode is the least stable one in boundary layers, such as . And the fundamental
(K-type) breakdown also was observed by the DNS[5]. It means that there is a gap between the recent results and the tradi-
tional viewpoint. For this aim, the secondary instability was investigated with a second mode primary instability in a Mach=4
flat-plate boundary layer.

RESULTS

The base flow can be written as U(x, y, z) = Ub(y) + Aû(y)ei(αx−ωt). With introducing a new coordinate system
x̃ = x − crt, ỹ = y, z̃ = z, the secondary disturbance can be written as q̃2 = eσteiβz̃eiϵα̃x̃

∑∞
j=−∞ q̂2,j(y)e

ijα̃x. Here, ϵ
is a detuning parameter. When ϵ = 0.5, the secondary waves are called subharmonic modes; when ϵ = 0, they are called
fundamental modes. The equations are a complex eigenvalue problem Lϕ = 0. For a given spanwise wavenumber β,
the unknown complex eigenvalue σ describes the instability of the secondary disturbance. More detailed description of the
secondary instability theory can be found in Ref. [2].

The investigations were performed in a Mach=4.5 flat-plate boundary layer. The parameters can be found in Ref. [2].
The primary mode is the Mack mode; the amplitude A is defined by the temperature perturbance and it is called AT . The
secondary instability is the subharmonic mode. The secondary stability analysis tool was validated by comparing to the results
in Ref. [2].

Figure 1 and Fig. 2 show the detuning parameter ϵ versus the secondary growth rates σr and the frequency shifts σi of
the secondary disturbance respectively. It can be seen that: (1) the least stable secondary disturbance is subharmonic. (2)
there is a new unstable fundamental solution which is not found in Ref. [2].(3) the family of solutions of the least stable
subharmonic secondary disturbance is different from the one of fundamental mode. (4) the frequency shifts of the least stable
subharmonic and fundamental secondary disturbance are both zero, i.e. the phase velocity of these least stable subharmonic
and fundamental modes are equal to the one of the second mode primary instability.

The new fundamental mode was investigated with different parameters. Figure 3 plots the spanwise wavenumber versus
the secondary growth rates with different amplitudes of the second mode primary instability. It can be seen that the range of
the unstable fundamental mode disturbances also becomes wider and wider with the amplitude of the primary mode instability
increasing. However, it is very different from the subharmonic mode discussed above that the spanwise wavenumbers of the
least stable fundamental mode instabilities also become larger. It should, however, be noted that the nonlinear effect is ignored
in our analysis when the amplitude A is large enough. It will make the growth rate a little different from the real value.

Then, the secondary instability was also investigated accounting for the nonlinear effect. For this aim, the base flows of the
secondary instability here were obtained by the nonlinear parabolic stability equations(NPSE). The amplitude here called Au
is defined by the amplitude of the streamwise velocity perturbance. Figure 4 plots the detuning parameter ϵ versus secondary
growth rates at A = 0.1. It can be seen that the least stable secondary instability is the fundamental one rather than the
subharmonic one as the amplitude of the primary mode instability is large enough. It means that the fundamental secondary
mode instability may have a larger amplitude in some case and will lead to a ”fundamental breakdown” as Fasel’s results??.
In addition, the least harmonic secondary mode instability is also another family.

∗Corresponding author. Email: jsluo@tju.edu.cn
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DISCUSSION AND CONCLUSION

The secondary instability was investigated with a second mode primary mode instability in a Ma=4.5 flat-plate boundary
layer. The results suggest that there are two families of solutions in the boundary layers which lead to the unstable secondary
instability. One of them was not found in the past research. The least stable fundamental secondary mode instability is from
this new family of solutions (called fundamental family). On the contrary, the least stable subharmonic secondary mode
instability is another family of solutions (subharmonic family). This feature is very different from that in a incompressible
boundary layer. The amplitude of the second mode primary instability is a important to the secondary instability in a hyper-
sonic boundary. When it is small, the least stable secondary instability in the flow is from the subharmonic family. However,
when the amplitude is large enough, the fundamental secondary mode instability becomes the least unstable one. This work
fill the gap of the past research.

In conclusion, the dominant family of solutions has a very direct relationship with the amplitude of the primary mode.
Future work will concentrate on the primary mode effect on the secondary instability accounting for the nonlinear process in
a real hypersonic boundary layer.

Acknowledgements This study is supported by the National Natural Science Foundation of China (Nos. 11332007 and 11402167)
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TENTATIVE EXPLANATION OF THE MECHANISM OF NOISE REDUCTION FOR 
TRAILING EDGE WITH CHEVRON

Caihong Su
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Summary Recently, chevron appears at the trailing edge of commercial aircraft jet engines, for example, jet engine of Boeing 787. 

It is believed to be for the noise reduction. So far, there is no theoretical explanations for its mechanism in published literatures, 

though there were papers for this purpose for the serration appeared at the jet exit. In this paper, a simplified model is proposed, 

to explore the possible cause of the noise reduction by chevron at the trailing edge of commercial aircraft jet engines. 

INTRODUCTION 

   Aircraft noise is an important issue, especially for commercial aircraft. Jet engine exhaust is one of the main sources 

during airplane take-off. One of the measure for noise reduction appears very recently is the use of chevron at the 

downstream end of the engine housing. According to experimental measurements, nearly 3dB of noise reduction during 

take-off can be achieved while only less than 0.5% thrust could be lost during cruise[1]. The first attention has been received 

on application level in mid 1990s. However, the understanding of the physical mechanism behind and the impact of 

chevrons on noise reduction still remains incomplete[2]. To date, the most popular explanation of its cause is that chevrons 

generate stream-wise vortices which enhance jet mixing, leading to the reduction of the amplitude of large scale structures 

in the flow field, and thus reducing the noise. However, they were mostly aiming at the case of chevron with sharp saw-

tooth. For smooth chevron as appeared on engines of Boeing 787, there could be another different mechanism. We believe 

that the existence of chevron may well change the stability characteristics of the mean flow downstream of the engine, so 

that the amplification rate of large scale vortices, which plays the dominant role of generating noise, may be significantly 

reduced. In this paper, a simplified model is proposed to show how it works. 

COMPUTATIONAL MODEL AND METHODS 

   For a real engine, the shear layer downstream of the engine is axis-symmetric. To simplify the computation and analysis, 

we consider a plane shear layer instead, which is formed downstream of an infinitely thin flat plate splitting two oncoming 

streams with Mach numbers 0.3 and 0.35 respectively. The length of the flat plate is assumed to be 2m, the average of the 

two oncoming flow velocities and other oncoming flow quantities are used to nondimensionalize the respective quantities. 

The Reynolds number so defined is 1.8 104. The oncoming temperture is 281.7K. The flow is assumed to be an ideal gas 

and the viscosity coefficient is comupted using Sutherland’s law. 

   The governing equations are compressible unsteady Navier-Stokes equations. A 5th order upwind and a 6th order 

central scheme are used to discretize the split nonlinear term and viscous term respectively. The 3rd order Runge-Kutta 

scheme is used for the time advancing. The computational domain starts from the trailing edge of the flat plate and extends 

far downstream. Grid points are clustered in the vicinity of trailing edge to make sure the required resolution can be 

achieved. In the wall-normal direction, mesh grids are stretched gradually from the wall towards the upper and lower 

boundaries. The wall is non-slip and isothermal whose temperatures on both sides are set to be 284K. The Blasius profiles 

are maintained at the inlet of the computational domain and sponge zones combined with characteristic boundary conditions 

are used for the top, bottom and outflow boundaries. For 3D cases periodic condition is used in the spanwise direction. 

   RESULTS AND DISCUSSIONS 

1. DNS: Generation of unsteady vortex 
   Unsteady vortex is found to appear starting from some distance downstream of the trailing edge as shown in Fig.1. 

Fourier analysis is performed for time squences of transverse velocities at three locations at the centerline. As shown in 

Fig.2(a), at x=0.002, very close to the trailing edge which locates at (0,0), the component with frequency 6~7Hz dominates. 

Downstream at x=0.06, another peak with frequency 23~24Hz emerges. This component overtakes the one with lower 

frequency and then plays a dominant role throughout the downstream region. The harmonic wave can also be observed. 

2. Linear stability analysis: wake mode and shear layer mode 
Spatial linear stability analysis is performed to search for the most unstable modes. In reality the flow is turbulence. 

However, since the profile of the basic flow has inflection points, so at least at the initial stage, inviscid instability plays the 

major role while the turbulence plays only a secondary role. So here we can ignore the turbulence as the first step. Two 

types of unstable modes, that is, wake mode and shear layer mode are identified as shown in Fig.3. Fig.4(a), (b) shows the 

variations of frequency and the growth rate respectively for the most unstable modes along x. We can see that at x=0.06 the 
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frequencies for the most unstable wave mode and shear layer mode are 6.67 and 23.4 respectively, which are in very good 

agreement with what we observed in DNS. And the shear layer mode has much bigger growth rate so that it overtakes the 

wake mode and plays a dominant role further downstream. 

Fig.1. Density contour at t=24.      Fig.2 Amplitude of Fourier components versus frequency (different colored lines refer to different      

time periods Fourier tranform performed): (a)x=0.002, (b) x=0.06, (c) x=0.49. 

    (a)    (b) 

Fig.3 Eigenfunctions of streamwise velocity at x=0.06.     Fig.4 The most unstable wave. (a) frequency, (b) growth rate. 

3. Preliminary results with chevron 
We consider one chevron with a sinuous shape shown in Fig.5. Since the streamwise velocity is much bigger than the 

other velocity components, the initial baseflow is approximated by the mean flow we have got without chevron, but with its 

origin shifted in x direction according to the curve of the chevron. The inlet of the computational domain is shown in Fig.5 

and its profiles are maintained during computation. Similarly, we performed Fourier transform for time sequencs of 

transverse velocity at (0.1,0) for several spanwise positions. And compare the result with the 2D case as shown in Fig.7. It 

can be seen that the existence of chevron reduces the amplitude of the dominant component. Also a temporal DNS at a 

given x is performed to search for the most unstable mode to compare its growth rate with its 2D counterpart. It shows that 

the growth rate also drops. More in-depth work is under way. 

       
Fig.5 Shape of chevron             Fig.6 Profiles at inlet         Fig.7 Fourier components for cases with/without chevron 

CONCLUSIONS 

   Vortex roll-up appears whose frequency is actually chosen by the stability characteristics of the mean flow. For the case with 

chevron, the dominant unstable mode is found to be less unstable compared with the case without chevron, which may just be 

the cause of noise reduction. 
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EFFECT OF A 3D SURFACE INDENTATION ON BOUNDARY LAYER STABILITY
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Summary Effect of a three-dimensional (3D) surface indentation on boundary layer stability is studied in a high Reynolds number (Re)
regime. Once the Tollmien-Schlichting (TS) wave undergoes a base flow (with/without a separation flow bubble) distorted by a 3D surface
indentation, the growth rate of the TS wave can be changed downstream and some interesting properties from the 3D indentation distortion
are observed. It is also found that under suitable indentation geometry parameters, it is observed that a global instability can be triggered,
which has a strong impact on boundary layer transition. In this paper, these instabilities are investigated and effect of a 3D surface indentation
is elucidated.

In a boundary layer, the primary unstable mode is a Tollmien-Schlichting (TS) wave which is a viscous instability. The TS
wave is receptive to surface roughness interacting with free stream disturbances and/or surface vibrations. Once the excited TS
wave propagates downstream and experiences a base flow distortion which is generated by a surface indentation, the growth
properties (energizing or weakening) of the TS wave can be changed. These properties are significantly influenced by 3D
effect of a base flow distortion. When a 3D separation flow bubble appears, 3D effect of the separation flow bubble on the TS
wave varies with respect to indentation geometry parameters, which is remarkably different from that of a 2D separation flow
bubble. This difference has a strong impact on the growth properties of the TS wave. Generally, the boundary layer transition
onset is prompted. Meanwhile, under suitable indentation geometry parameters, it is observed that a global instability can
be triggered, which also has a strong impact on boundary layer stability. In this paper, these instabilities are conducted and
effect of a 3D surface indentation is elucidated. The linear analyses of the TS wave growth properties are investigated by the
parabolic stability equations (PSE) and the triglobal stability is done by the time-stepper-based Arnoldi algorithm. Finally, a
DNS calculation is implemented to simulate the boundary layer transition.

(a)

(b)

(c)

Figure 1: Wall shear (a), the growth rate (b) of the TollmienSchlichting wave and harmonics calculated by nonlinear PSE (c).
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Summary A rigorous formal statement of the hypothesis of quasi-steady and quasi-homogeneous (QSQH) nature of the scale interaction in
the near-wall part of a turbulent boundary layer is proposed. This makes the corresponding derivations easier. Multi-objective optimisation
is applied to determine the cut-offs for the large-scale filter, which gave better results than the filters based on the known suggestions for the
cut-offs. Comparisons for a set of statistical characteristics obtained from the databases of direct numerical simulations of a plane channel
flow were performed. It was observed that the accuracy of the predictions based on the QSQH hypothesis improve as the Reynolds number
increases. The next step will be testing extrapolation from medium to high Reynolds numbers based on the QSQH approach.

Obtaining the flow properties in a near-wall turbulent boundary layer at high-Re is always a challenge due to insufficient
computing power and imprecise experimental devices. Recently, distinctive alterations to near-wall turbulence by outer large-
scale structures have been observed and confirmed in many experimental and numerical studies, see for example [1] and
references therein. Marusic et al. [1] proposed an empirical model, described by the expression:

u′
+

(y+) = αu(y+)u′OL +
(
1 + βu(y+)u′OL

)
u∗MHM(t+, x+, y+, z+), (1)

where αu(y+) and βu(y+) are universal Re-independent functions found empirically, prime denotes fluctuations, and the
subscript OL marks the large-scale filtered velocity measured by a second probe located further away from the wall, as
illustrated by Fig. 1(a). One can measure (or calculate) u′+(y+) and u′OL at a moderate Re and determine the statistical
properties of u∗MHM(t+, x+, y+, z+), which are expected to be Re-independent. This makes it possible to measure only u′OL
in the high-Re regime and determine the statistical properties of u′+(y+) from (1). However, since the statistical properties
of u′OL depend on Re, (1) with Re-independent αu, βu and u∗MHM is not compatible with the classical idea of universality of
near-wall turbulence, according to which

u = ūτu
∗(t+, x+, y+, z+) (2)

with Re-independent statistical properties of u∗. To resolve this, Chernyshenko et al. [2] proposed to replace (2) with

u = uτL(t, x, z)ũ

(
tu2τL
ν

,
xuτL
ν

,
yuτL
ν

,
zuτL
ν

)
, (3)

where uτL(t, x, z) is the large-scale-filtered friction velocity. This amounts to replacing the friction velocity ūτ with uτL(t, x, z)
in the definition of wall units. This can be justified by the the assumption that the effect of the large scales on the small scales
is quasi-steady and quasi-homogeneous. Chernyshenko et al. [2] showed that (1) can be derived from (3) with an additional
assumption that u′τL � uτL .

(a) (b)

Figure 1: (a) Probe setup; (b) Pareto front of large-large and small-small correlation coefficients, where each point represent
a combination of cut-off frequency and wave-numbers.

In fact, the QSQH hypothesis is a combination of two hypotheses, the first being that uτL(t, x, z) and ũ are statistically
independent for a fixed Re, and the second hypothesis being that ũ is independent of Re. We tested the first hypothesis by the
comparisons between various statistical properties and their QSQH predictions for one value of Re. The cut-off parameters of
the large-scale Fourier cut-off filter in the wave-number and/or frequency space were selected by multi-objective optimisation,
with one objective being the correlation coefficient between the large-scale velocity at the outer probe placed at y+ = 100
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and the large scale velocity at the probe in close vicinity to the wall, and another objective being the correlation coefficient
between the small-scale velocities at the same probes. Fig. 1(b) shows the Pareto front and the point we selected. We also
extended the analysis for the u′τL � uτL case by calculating the higher-order terms of the expansions. As a result, the first
hypothesis was found to be satisfactory within 100 wall units from the wall. A paper describing the test of the first hypothesis
is now under consideration.

An attempt to examine the second hypothesis was made on the basis of the data on ũrms available in the literature [3].
Extrapolating urms requires the value of 〈u′+τL

2
〉, which is not available from [3]. Fortunately, the QSQH theory predicts that

for u′τL � uτL in the main term of the expansion

D =
d

dy
log
(
u2rms

∣∣
Re1
− u2rms

∣∣
Re2

)
≈ d

dy
log

(
U(y) + y

dU

dy

)2

, (4)

where U(y) is the mean velocity. The comparison is given in Fig. 2(a). For the pair of higher Re values the agreement is quite
satisfactory, but for the pair of smaller values it is not, even though the qualitative behavior is similar. This might be in line
with the general idea that the applicability of the QSQH theory improves with Re increasing.

(a) (b)

(c) (d)
Figure 2: Comparisons: (a) the logarithmic derivative of the increment with Re of the rms fluctuation velocity, the QSQH
prediction (solid), the numerical data [3] for Re increasing from 1000 to 2003 (dashed) and from 2003 to 5186 (dot-dashed);
(b–d) curves are the theory (5), points are α0 (circle), α1 (square), α2 (plus), and α3 (star), DNS data for Reτ = 1000 (b),
[4], and 2000 (c) and 4000 (d), [5].

Another examination on the second hypothesis was based on the DNS channel flow databases [4, 5] with Reτ equal to
1000, 2000 and 4000. We derived that for four functions, α0(y) = 〈u′L(y)u′L(yo)〉/〈u′2L(y2o )〉

(
U(yo) + yo

dU
dyo

)
, α1(y) =

〈u′+τLu
′
L(y)〉/〈u′+τL

2
〉, α2(y) =

√
〈u′L

2(y)〉/〈u′+τL
2〉, and α3(y) =

√
〈u′L

2(y)〉/〈u′L
2(yo)〉

(
U(yo) + yo

dU
dyo

)
the higher-order

terms of the expansion in u′+τL are negligible, and the linearized QSQH theory gives the same expression

α0(y) ≈ α1(y) ≈ α2(y) ≈ α3(y) ≈ U(y) + y
dU

dy
. (5)

As shown in Fig. 2, the accuracy of QSQH predictions improves with increasing Re.
In a reasonably short term we hope to provide the procedure of extrapolating arbitrary statistical characteristics of near-wall

turbulence from medium to higher Re using the QSQH theory. This procedure will also be reported.References
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NONLINEAR INTERACTION OF THE FIRST MODE WITH THE SECOND MODE
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Summary The evolution of the second mode and the first mode was investigated using Parabolized Stability Equations (PSE) in Ma=6.0
flat-plate boundary layers. It is found that the growth of the first mode disturbance is significantly promoted by the nonlinear interaction
of the first mode disturbance, the second mode disturbance and a forced wave with the difference frequency. Enhanced by the nonlinear
interaction, the first mode is likely to play an important role in the transition of hypersonic boundary layers.

INTRODUCTION

Boundary layer transition has import implications for the aerodynamic design of hypersonic flight vehicles. According
to Linear Stability Theory (LST), there are multiple instability modes in hypersonic boundary layers. In recent years, many
researches has focused on the second mode (Mack mode) for its higher amplification rates. Sivasubramanian&Fasel (2014)
[1] numerically simulated a sharp cone boundary layer at Mach 6. They attributed the transition to fundamental breakdown
and oblique breakdown of the second mode instability. However, results from experiments (2003, 2008)[2, 3]suggested
that the first mode may also play an import role. Hotwire data was analyzed by the bispectal analysis method, and the
nonlinear interaction of the first and the second mode was identified in the hypersonic cone boundary layer transition process.
Unfortunately the experimental results were very limited, and few numerical results are available accounting for the interaction
of the first and the second mode instability. In this paper, a numerical simulation was performed in a Ma=6.0 flat-plate
boundary layer to study the interaction of the first and the second mode instability, hoping to clarify the role of the first mode
instability in the hypersonic boundary-layer transition.

MAIN RESULTS

The research was carried out in a Ma=6.0 flat-plate boundary layer using PSE. The free stream temperature is 80K and
the wall temperature is 520K. The Reynolds Number based on the boundary layer displacement thickness is 2.0× 104. At the
inlet a 2D second mode disturbance (3, 0) and a pair of first mode disturbances (1,±1) were introduced. Here mode (h, k) is
defined with h as the multiple of the fundamental frequency (ω = 0.5) and k as the multiple of fundamental spanwise wave
number (β = 1.0) . DNS was also performed to validate the results, and perfect agreement was achieved, as shown in Fig. 1.

At first, both the second (3,0) and first mode (1,1) disturbance evolve linearly. At about x = 200 , near the second mode
disturbance’s neutral point, the second mode reaches its peak amplitude(about 7% of the freestream velocity) and then decays.
In this area, the amplification of the first mode is firstly suppressed, and then significantly promoted by nonlinear effects. As a
result, the first mode disturbance overtakes the second mode. Further downstream, the stationary vortex (0,2) grows to be the
dominate mode, a characteristic of the first mode oblique breakdown[4]. At x = 330 the skin friction coefficient rises steeply
and reaches the turbulent estimate value close to the end of the computational domains, suggesting that the boundary layer
transition is triggered.

It is different from the previous research that both the second mode and first mode participate in the nonlinear process.
The crucial part in the process is that the first mode is promoted by its nonlinear interaction with the second mode. This is
confirmed by conducting an extra calculation, in which only the first mode, the second mode, and a forced wave with the
difference frequency were reserved and the second mode was forced according to the previous results. As shown in Fig. 2,the
interaction of the wave triad promotes the first mode disturbance (1, 1) significantly. The nonlinear process includes two steps
and is illustrated bellow by equation 1. It is noted that the nonlinear process is similar to the interaction of phase-locked modes
theoretically derived by Wu et al.[5] in incompressible boundary layers.

(3, 1)− (1, 1) → (2,−1); (3, 0)− (2,−1) → (1, 1) (1)

Two additional calculations were performed which corresponded to the fundamental resonance (FR) and subharmonic
resonance (SR) of the second mode respectively. In these simulations, the 2D second mode disturbance is the same as
the above case and the spanwise wave number of the oblique waves corresponding the largest secondary growth rate was
selected. Based to skin friction coefficient shown in Fig. 3, for the subharmonic resonance (SR) case x = 460 is the possible
transition location, and for the fundamental resonance (FR) case the possible transition location is x = 320. For nonlinear
interaction of the first and the second mode discussed above in this paper, the transition location is x = 330, much earlier than
the subharmonic resonance case and almost the same as the fundamental resonance case. This indicates that the nonlinear
interaction of the first mode and the second is likely to play a role in the process of hypersonic boundary layers.
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CONCLUSIONS

The interaction of the first mode and the second mode was studied in this paper. It is identified that the amplification of
the first mode will be greatly enhanced by the nonlinear interaction of a wave triad consisting of a second mode disturbance, a
first mode disturbance and a forced wave with the difference frequency. The nonlinear interaction makes the first mode more
likely to play an important role in hypersonic boundary-layer transition.

100 200 300 4000

0.5

1

1.5 PSE
DNS
Laminar
Turbulent Estimate

×

Figure 1: Streamwise development of (a) the maximum u-velocity disturbance (b) skin friction coefficient. Solid Lines: DNS
results. Symbols: PSE results

Figure 2: Evolution of the wave triad. Dashed
Line: Linear result. Solid Lines: All modes re-
served. Symbols: Only the wave triad reserved

×

Figure 3: Streamwise development of skin friction
coefficient of different transition routes.
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PERCOLATING REACTIVE WAVES:  FLAMES IN THE DISCRETE REGIME 
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Summary An overview of investigations into flame propagation in discrete systems is given.  Discrete effects become 
pronounced when the heat release time scale of a source is much less than the characteristic time of diffusion between sources.  
Under these conditions, flame propagation becomes dominated by local fluctuations in particle concentration, sharing many 
characteristics with directed percolation.  Attempts to model such systems using traditional, continuum models that assume a 
homogeneous media would result in erroneous predictions of flame dynamics.  Attempts to experimentally realize such systems 
are discussed, and the need for a microgravity platform with duration on the order of minutes is articulated.  Key experimental 
features of flames in the discrete source propagation regime are identified, and planning for an upcoming sounding rocket 
experiment is discussed. 
 

OVERVIEW 
 
   
   Historically, combustion is the first field in which solutions for self-sustained waves that propagate by activated release 
of an agent (i.e., heat, chemical species) that diffuses forward were identified.  The propagation of an advantageous gene 
[1] and spread of disease [2] through populations are further examples.  Classical models are continuum-based, assuming 
the excitable media to be spatially homogeneous.  However, a great many systems of interest have spatially discrete 
sources.  A forest fire, wherein the flame front must jump from tree to tree is an obvious example.  The spiral arms of 
galaxies have been conjectured to be self-propagating waves of star formation, wherein the shock wave from a newly 
ignited star results in the collapse of interstellar gas necessary to trigger star formation, which is an example of a medium 
with highly disparate scales.[3]  Calcium waves, a mechanism of intracellular signaling, are diffusive waves that propagate 
via activating discrete sources of Ca(2+) within a cell.[4]  All of these examples feature media wherein the spatial 
randomness of the media is likely to profoundly influence the propagation dynamics that any spatial averaging technique 
(necessary for a continuum-level description) will likely fail to capture. Recently, the recognition that discrete effects in the 
combustion of spatially random media can result in unique flame behavior, separate from more traditional heterogeneous 
media, has been articulated by Mukasyan and Rogachev.[5]  Development of this field has been motivated by flames in 
Self-Propagating High Temperature Synthesis (SHS or “Solid Flame”) and in low volatile fuel particulates suspended in a 
gaseous oxidizer. 
 
   The existence of a clean experimental system that exhibits source-to-source propagation is an outstanding challenge.[6]  
Ideally, such a system would use a large particle size (20 µm or larger) so that individual particles can be visualized using 
digital photography.  The creation of a suspension of large particles of this size is not feasible in the normal gravity 
environment.  In addition, in the discrete regime, flame speeds are limited by particle to particle diffusion, resulting in 
flame speeds that are on the order of cm/s.  Flame speeds less than about 20 cm/s are not feasible in the normal gravity 
environment due to the disruption of the flame by the buoyancy of the combustion products.  Thus, there exist two strong 
rationales for the necessity of utilizing the microgravity environment to examine flame propagation in particulate 
suspensions.  McGill University has led a 20 year investigation into the fundamental properties of flame propagation in 
dust suspensions utilizing the approximately 25 second duration of microgravity available onboard parabolic flight aircraft.  
The majority of the work performed over this period falls into a regime that is amenable to classical thermal flame theory, 
and including the discrete source effects is not necessary.[7]  Only recently has experimental investigation into the discrete 
regime been attempted.[8-10]  A study using a fuel that burns entirely heterogeneously (iron) in suspension in xenon-
oxygen mixtures exhibited a near independence of flame speed upon the oxygen concentration.  The ratio of the 
combustion time to the timescale of interparticle diffusion, giving the so-called discreteness parameter τc = tr/td = tr /(l2/α), 
where l is the interparticle spacing and α is thermal diffusivity, was estimated to be less than unity due to the low thermal 
diffusivity of the inert xenon component of the mixture.[9]  In effect, the flame speed becomes entirely bottlenecked by the 
interparticle diffusion time, such that even an infinitely fast burning fuel will yield a finite flame speed.  Use of helium 
(replacing the xenon) resulted in the discreteness ratio greater than unity, and the results confirmed that using an inert 
component with a large thermal diffusivity resulted in the expected square-root dependence of flame speed upon oxygen 
concentration.[9]  A more recent experimental investigation by Wright et al. [11] using a faster burning fuel (aluminum) in 
the normal gravity environment also confirmed the predicted independence of flame speed on oxygen concentration.  Both 
of these studies were severely limited in the range of particle sizes, concentrations, and flame speeds that could be explored 
due to the limited duration and poor quality of microgravity onboard parabolic flight aircraft. 
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Fig. 1 Schematic of flame propagation in discrete and 
continuum regimes. [11] 

 
 

 
 

 
 

Fig. 2 Photograph of flame propagating (from top to 
bottom) through a suspension of iron particles in gaseous 

oxidizer (20% oxygen/80% xenon), taken on board 
Canadian Falcon-20 parabolic flight aircraft. 

 
   The scientific rationale for better understanding of reactive wave propagation in the discrete regime has led the 
European Space Agency to select this investigation for a sounding rocket flight that will provide 12 to 14 minutes of 
extremely high quality microgravity, during which time approximately 36 separate flame propagation experiments will be 
conducted using iron particulate suspensions in microgravity.  Cameras onboard the payload will record the iron 
particulate concentration suspended in oxygen/xenon, the flame front structure, and the flame propagation speed.[12] 
 
   The definitive experimental validation of flame propagation in the discrete regime would firmly establish a third branch 
of combustion, distinct from homogenous (gas-phase) and heterogeneous (multi-phase) combustion.  This new regime is 
inherently statistical, such that local fluctuations in particle concentration can significantly influence flame front 
propagation, requiring concepts from statistical mechanics be adopted in modeling such flames. 
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Summary A shock-flame complex describes a combustion state involving the continuous interactions of a shock and a flame. These are
often but not always transient phenomena, and they often provide an environment that allows transition to detonation. Three types of
shock-flame complexes are described here: (1) a turbulent flame coupled to a leading shock; (2) a marginal detonation with an extended
reaction-zone structure; and (3) a dust-driven shock in a multiphase flow. These are contrasted and general features are described.

INTRODUCTION

The term shock-flame complex has been used to describe a range of combustion configurations describing continuous
interactions of a shock and a flame. This is often a transient state [1, 2, 3], but not always. Sometimes, after the complex has
developed, it exists for a substantial time or until the fuel is consumed. This paper briefly describes a subset of shock-flame
complexes which involve the coupled propagation of a shock and a flame. The first state arises when a turbulent flame couples
to a leading shock. The second is the close coupling that occurs in a detonation, but here we talk about the case of a marginal
detonation with an broad reaction zone structure. Finally, we describe a type of complex that can occur in a multiphase dust
flow that creates volatile gases and char.

EXAMPLES OF SHOCK-FLAME COMPLEXES

Turbulent Flames and Shock
Figure 1 is an illustration of a shock-flame complex consisting of a leading shock, followed by a turbulent, shock-laden

region of heated and compressed gas, followed by a turbulent flame [4]. The figure was taken from a simulation of the
evolution of a flame in a lean methane-air mixture. In the simulation, the final state if a shock-flame complex that travels down
the channel at about a velocity of approximately 0.5DCJ . It oscillates about this velocity somewhat, but does not undergo a
transition to detonation, either in the simulations or in comparable experiments. This complex is maintained by a combination
of the energy released from the turbulent flame, which is enhanced by shock-flame interactions, and a series of “explosions”
resulting from shock reflections from the obstacles in the channel. None of these explosions is strong enough to create a
spontaneous wave strong enough to transition to a detonation. They do, however, create a shock that is strong enough to
perturb the flame further and increase its energy release.

SFHCG
HCG

TFTF

Figure 1: Frame from a simulation of a turbulent flame generated in a mixture of lean methane and air at atmospheric
conditions in an obstacle-laded channel [4]. The complex is traveling from left to right. SF: shock front. HCG: region of
heated and compressed gas. TF: region of turbulent flame. Symmetry conditions on the upper boundary. Two temperature
scales: upper for unreacted fas and lower for reacted gas.

Marginal Detonations
The limiting case of a gas-phase detonation is the tightest form of coupling. In this case, the complex consists of a leading

shock, which heats and compresses material behind it in an reaction zone. An actual gas-phase detonation is comprised of
multidimensional, continuously changing and interacting shock and reaction-zone structures behind a leading shock front that
varies continuously and often cyclically in strength. The energy release behind the reaction zone is an autoignition process.
The “flame” is at a limit in which physical diffusion effects, such as thermal conduction and molecular diffusion, are of at
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most secondary importance. For low-pressure stoichiometric mixtures of gases diluted with inert gas, these structures repeat
in very regular fashions, creating the beautiful detonation cells that have been a scientific obsession for fifty years.

When the gas mixture is near the detonation limit, the shock-flame complex becomes even more complicated. Gamezo
et al. [5] reports experiments and simulations that show that the flame-shock structure consists of an overlay of the more
usual detonation structure of leading and transverse shocks, but now the reaction zones can become so large so that complex
interactions can occur in these zones. The are simultaneously three three kinds of detonation structure. The primary structure
causes the usual cells structure. The overdriven sections of the leading shock create secondary detonation cells that coexist
with primary cells. Finally, the transverse detonations produce a fine structure called transverse detonation cells.

Dust Explosions
Recent simulations of explosions created when a shock traverses a layer of coal dust show a different sort of shock-

flame complex that could, for example, develop in a coal mine [6]. Consider the case in which there is an initial natural-gas
explosion that eventually runs out of fuel. It then decays into a shock that propagates down a long tunnel. The tunnel floor
is covered with coal dust that accumulates from the mining operation. This shock lifts the dust, heats and compresses the air
behind it, and after a time, combustible material volatilize from the dust and begin to react. This can result in ignition centers
behind the shock, and these centers merge to form a turbulent flame behind the shock front. Figure 2 shows the results of a
simulation for a coal dust layer with a packing fraction of 47%. For this packing fraction and dust size, the leading shock
and the turbulent flame reach a state in which the distance between them levels off and remains essentially constant. For
lower packing fractions, (e.g., α = 1% in Fig. 2b) and therefore more easily dispersed dust, the dust flame contributes more
substantially to the explosion and continues to accelerate the shock. This could lead to a dust-driven detonation.
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Figure 2: Left panels: Three frames showing temperature and location of shock (white S) at three times. X-axis in in meters,
vertical axis is 5 cm. Dust packing is 47%. Right figure: Profiles of shock velocity as a function of time (ms) for two packing
fractions, upper curve 1%, lower curve 47%. See [6].

OBSERVATIONS AND CONCLUSIONS

A shock-flame complex describes a combustion state involving the continuous interactions of a shock and a flame. These
are often but not always transient phenomena, and they often it provide an environment that allows transition to detonation.
The three types of complexes described here cover a range of phenomena. One was the more standard example of a turbulent
flame and a leading shock, a situation which often produces conditions that lead to a detonation. At the opposite extreme,
there is what seems like a rather loose or distant connection (meters) between dust burning and a leading shock. In some
cases, such as high packing fraction of dust, this too will lead to a detonation after the complex travels far enough. The
marginal detonation structure is a complex overlay of what we already know about detonation cell structures. The important
point in that case is that very local over-pressures due to the secondary detonations in near-limit mixtures of natural gas can
be extremely high (greater than 150 MPa) and therefore damaging, as was actually observed in experiments in natural gas [7].
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Summary Direct numerical simulations of three dimensional isotropic turbulence-detonation interactions are conducted, based on 

Navier-Stokes equations and global one-step chemical reaction model. High-resolution bandwidth-optimized WENO scheme 

spatial discretization and total variation diminishing temporal integration are adopted for shock capturing. Comparative studies 

of turbulent inflow vertical and entropic forcing effects on the three dimensional detonation front and cellular structures are first 

conducted. It has been found that the turbulence field imposed has created small scale wrinkles embedded in the detonation front, 

apart from the large scale features of detonation without turbulence. The periodical movement of the triple points has been 

delayed and the length of the regular cellular structure increase under turbulent forcing. Effects of different inflow turbulence 

intensity and detonation strength on turbulence-detonation interactions are investigated in detail.  

 

INTRODUCTION 

 

   Renewed interests in advanced propulsion concepts have remarkably rekindled the research activities in detonation 

waves. Detonations are supersonic flow phenomena with leading shock waves that ignite premixed gas. The interaction of 

detonation waves with nonuniform flows is of interest for different applications in the technological and scientific areas 

including aerodynamics, propulsion, and astrophysics. Although the detailed structures and properties of the detonation 

have been extensively studied through experimental and numerical methods as well as theoretical approach, the detonation 

interacting with nonuniform flows has received considerably less attention.  

The simplest circumstance in which turbulence interacts with a detonation wave is concerned with the case of 

homogeneous, isotropic turbulence interacting with a detonation wave. Understandings of this problem have been greatly 

improved through the continuously developed theoretical studies based on the linear analysis
[1-3]

, however with its limits 

about the involved simplifications, such as the infinitesimally thin detonation neglecting of detonation reaction length scales, 

et al.. Furthermore, the detonation wave is known to be sustained by multi-dimensional interactions with the transverse 

waves, thus, the detonation wave front structure presents to be three-dimensional and complex, which needs further analysis. 

Predictive numerical simulations of detonations could be an alternative approach to deep insight into the detonation 

turbulence interaction, especially for the detonation wave structure and dynamics
[4]

.  

In the present study, a high resolution weighted essentially non-oscillatory (WENO) numerical method, with low 

numerical dissipation, high-order shock-capturing, has been developed for the direct numerical simulation (DNS) of 

turbulence-detonation interactions. Comparative studies of turbulent inflow vertical and entropic forcing effects on the three 

dimensional detonation front and cellular structures are first conducted. Effects of different inflow turbulence intensity and 

detonation strength on turbulence-detonation interactions are compared in detail. 

    

DNS SIMULATION 

 

   The simulations are performed in the reference frame of the steady ZND (Zeldovich, von Neumann, and Doering) wave. 

The mean flow is aligned with x direction, and periodic conditions are specified in the two other directions. The turbulent 

data superposed onto the mean flow at the inflow boundary of the computational domain corresponds to several developed 

turbulent fields obtained from preliminary simulations of time-decaying isotropic turbulence. The turbulent fluctuations are 

advected through the boundary using Taylor’s hypothesis.  

The detailed simulation of compressible turbulence requires numerical methods that simultaneously avoid excessive 

damping of spatial features over a large range of length scales and prevent spurious oscillations near shocks and shocklets 

through robust shock-capturing. Numerical schemes that were developed to satisfy these constraints include, among others, 

weighted essentially non-oscillatory (WENO) methods. In the current work, an eighth-order-accurate version of this scheme 

(WENO-BO4) is adopted to compute the convective terms of the governing equations. A simple eighth-order-accurate 

standard central difference scheme is employed to compute the viscous terms. The third order TVD Runge-Kutta multistage 

method is used for time integration. The detailed numerical methods and validations have been described in our previous 

work
[5]

. 

 

RESULTS ANS DISCUSSIONS 

    

The three dimensional detonation structures under different inflow conditions are shown in Fig.1, where the snapshots 

of the shock front and contours plots of the vorticity along the lateral boundaries are presented. The flow front shows 
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alternatively “convex” and “concave” shapes, which corresponds to Mach stem and incident shock, respectively. The 

detonation front switches between Mach stem and incident shock during the propagation of detonation. The strong coupling 

in the area of triple points makes the detonation overdriven locally and sustains the detonation by the transverse motion of 

these zones along the front. A regular cell pattern with diamond shape is formed by the trajactories of triple points. The 

diamond shaped cell pattern changes little with the inflow forcing, however the length of the cell is a little larger, due to the 

delay of the collision of triple points by inflow forcing. The incoming turbulence perturbs the detonation front beyond its 

“smooth” shape. It can be found that the turbulence field imposed has created small scale wrinkles embedded in the 

detonation front, apart from the large scale features corresponding to Mach stem and incident shock presented in the case 

without turbulence (Fig.1a). The detonation front appears corrugated due to the vertical inflow fluctuations as shown in 

Fig.1c,d, while much weaker for the entropic fluctuations shown in Fig.1b.  

 

 

Table 1 Computational parameters 

 

case 

Inflow 

M0 

Inflow 

Mt 

N= 

L1/2/λ0 

fluctuations 

A (M3.0Mt0.0) 3.0 0.0 1.0 No forcing 

B (EF3.0M
t
0.15) 3.0 0.15 1.0 Entropy forcing 

C (EF3.0M
t
0.25) 3.0 0.25 1.0 Entropy forcing 

D (M3.0M
t
0.15) 3.0 0.15 1.0 Vertical forcing 

E (M3.0M
t
0.25) 3.0 0.25 1.0 Vertical forcing 

F (M3.0M
t
0.25) 3.0 0.25 0.2 Vertical forcing 

G (M3.0M
t
0.25) 3.0 0.25 5.0 Vertical forcing 

                                                      

Fig.1 Instantaneous image of the detonation front and the 

vortex structures,(a) case A, (b) case C, (c) case D, (d) case E 

The vortex structure along the lateral boundaries can well exhibit the turbulent flow field downstream the detonation. It 

has been indicated that the detonation produces vortex-like features and essentially all propagating detonations show a wide 

range of behavior from laminar unsteady periodic behavior to chaotic instability with highly turbulent behavior. For 

detonation without inflow fluctuations as shown in Fig.1a, vortices are only generated by the collision of triple points. The 

counter-rorating vortex are generated after the collision of triple points, and then convected downstream. The flow field 

presents to be intermitent and the distance between the two rows of vortexes is related to the collision period of triple points. 

For the turbulence-detonation interactions as shown in Fig.1c, the generated vortex and the convected vortex interact with 

each other. The generated pairs of vortex can hardly been seen. For the entropy inflow forcing, the large scale pairs of 

generate vortex can still be found, however with smaller scales embedded in them.  

Pametric studies of different inflow turbulence intensity and detonation strength on turbulence-detonation interactions are 

also conducted. The detailed computational conditions are listed in Table 1, where 
0

λ is the Taylor scale of the inflow 

homogeneous isotropic turbulence and 
1/2

L  is the half-reaction distance of the initial detonation.  

 

CONCLUSIONS 

 

   Direct numerical simulations of three dimensional isotropic turbulence-detonation interactions are conducted, based on 

Navier-Stokes equations and global one-step chemical reaction model. High-resolution bandwidth-optimized WENO scheme 

spatial discretization and total variation diminishing temporal integration are adopted for shock capturing. Comparative studies 

of turbulent inflow vertical and entropic forcing effects on the three dimensional detonation front and cellular structures are first 

conducted. It has been found that the turbulence field imposed has created small scale wrinkles embedded in the detonation front, 

apart from the large scale features of detonation without turbulence. The periodical movement of the triple points has been 

delayed and the length of the regular cellular structure increase under turbulent forcing. Effects of different inflow turbulence 

intensity and detonation strength on turbulence-detonation interactions are also investigated in detail. 
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Summary The dynamics of detonation waves in arbitrary geometries can be modeled by the Bdzil-Stewart DSD framework, provided a
relation is known relating the shock speed dependence on geometric mass divergence behind the shock. We propose a novel test geometry
which permits to establish such a dependence unambiguously for gas phase detonations. It is shown that channels with an exponentially
increasing cross-section provide a constant mass divergence and a steady front speed below the CJ value. We find that predictions of the
wave speed using the classical ZND model do not agree with experiment, unless much lower effective activation energies are used, consistent
with previous observations in regards to the hydrodynamic structure of cellular detonations.

INTRODUCTION

The dynamics of detonation waves are intrinsically multi-scale. The reaction zone structure of detonation waves in gases
is turbulent [1], and controls the overall dynamics of detonations on much larger scales. At present, Direct Numerical Simu-
lations is restricted only to sub-components of the reaction zone structure, [2], due to the requirement of solving the complex
chemistry evolution in a non-equilibrium time-varying shock structure over length and time scales spanning in excess of
several orders of magnitude [3]. For this reason, large scale detonation dynamics are difficult to predict.

A generic feature of macroscopic detonation dynamics in complex geometries is the intrinsic dependence of the front
speed on the local mass divergence in the reaction zone, or, equivalently, the lead front curvature - the so-called D − κ
relation. Bdzil and Stewart, for example, have extended Whitham’s Geometrical Shock Dynamics theory to allow for the
prediction of detonation dynamics (known as Detonation Shock Dynamics), whereby the front evolution can be reconstructed
for arbitrary boundary conditions [4]. Unfortunately, the required intrinsic D−κ curves cannot be directly obtained from first
principles in a given gaseous system, due to the difficulties described above. For condensed phase detonations, the kinetics in
heterogeneous systems are not known and D − κ relations are also obtained from experiment.

In the present paper, we formulate a new experimental method for determining such a D − k relation for an arbitrary
reactive gaseous system, consisting of a diverging channel geometry that keeps the global rate of mass divergence constant.
Recognizing that a quasi-1D motion of a fluid in a channel with variable cross section A(r) has a source in the mass equation
of the form K = d(lnA)/dr, we consider a channel geometry with a constant logarithmic derivative K, i.e., a channel with
an exponentially shaped wall, also known as an exponential horn in acoustics. This provides a constant mass divergence at
any cross section of the channel. In this manner, a traveling wave solution (detonation) in quasi-steady state can be achieved.

RESULTS

The dynamics of detonations in a characteristic weakly unstable unstable (2C2H2 + 5O2 + 21Ar) and a highly unstable
(C3H8 + 5O2) mixture were monitored. The experiments were performed in a 3.5-m-long thin rectangular channel, 203-mm-
tall and 19-mm-wide. The last meter of the channel was equipped with glass windows allowing to visualize the flow evolution
via high-speed large scale shadowgraphy. Two different divergence sections were used, in order to correct the experimental
results for boundary layer wall losses. The diverging section consisted of either a long (1m long and K = 2.302 m−1)
or a short (0.5 m long and K = 4.605 m−1) exponential ramp. The mixture sensitivity was monitored by changing the

Figure 1: Evolution of the detonation front structure in an exponentially diverging 1-m-long channel in the propane mixture
at 10.3 kPa intial pressure (top) and 3.45 kPa (bottom).
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Figure 2: D −K curves for the two reactive systems investigated and comparison with model prediction (see text).

initial pressure. Experiments were performed for decreasing pressures until a self-supported detonation wave can longer be
established in the diverging section, marking the maximum possible divergence.

Figure 1 shows two examples of the front evolution in the propane-oxygen mixtures. The top figure shows the multi-headed
curved detonation front, as it progresses in the enlarging section and acquires the expected curvature due to the geometrical
divergence of the front. The bottom figure shows the detonation wave in a less sensitive mixture at a lower pressure, exhibiting
a larger reaction zone structure and a higher velocity deficit. In the reaction zone, the complex cellular structure of unstable
detonations can be observed [1].

The mean speed of the front recorded along the axis of the channel for all the experiments performed is shown in Figure
2 in the two tested mixtures normalized by the Chapman-Jouguet ideal speed. The abscissa is the rate of mass divergence
normalized by the calculated induction length at the corresponding pressure. Both mixtures have approximately the same
behavior, with maximum velocity deficits of approximately 20%. The limiting maximum mass divergenceK∆i beyond which
detonations are quenched is also similar for both mixtures, approximately 0.008 for the acetylene mixture and 0.005 for the
propane mixture. The experimental results of Figure 2 were also compared with the prediction obtained for the expected steady
state traveling wave solution with constant mass divergence (D-K curves). The model assumed a two-step decomposition of
a perfect gas, mimicking the chain branching behavior of real fuels, whose parameters were estimated via constant volume
ignition simulations using CANTERA and the SANDIEGO thermo-chemical database. The model formulation follows similar
arguments for eigenvalue detonations with frontal divergence found in the literature [4], which will be communicated at the
conference. The eigenvalue solution obeying the generalized CJ solution was obtained numerically.

For both mixtures, the computed D − k curves differ substantially from the experiments, particularly for the more un-
stable detonations in the propane mixtures. Surprisingly (perhaps coincidently), the correct limit is captured in the acetylene
mixtures, but clearly not the velocity deficits. This is the first successful unambiguous comparison between the ZND model
prediction with mass divergence and experiment.

The experimental data, however, can be used to formulate an empirical reaction model to be calibrated to the data. In
the context of the two step model considered in the present study, the model allows to adjust the global activation energy
and the ratio of the induction to reaction time. The first controls principally the velocity deficit attainable, while the latter
the maximum amount of loss at the limit[5]. Curve-fits obtained by calibration to the experimental data are also shown in
Figure 2. The significant result obtained is that the experiments are only compatible with much lower activation energies
than dictated by 1D chemical decomposition. For the acetylene the reduction is 26%, while for propane, the reduction in
the activation energy is by 70%! This makes a dramatic change in the overall detonation dynamics characteristics, which
we will address in future studies. The lower effective activation energies are not surprising, as it was already noted that the
enhancement of burning mechanism in turbulent detonations by turbulent mixing suppresses much of the thermal character of
the ignition mechanism, yielding effectively lower activation energies [1].
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Abstract The combustion of mixtures of two very different fuels sometimes leads to the formation of two-front flames with complex propagation 
and quenching behaviours. A simple, one-dimensional analytical model has been developed to explain previously obtained experimental results. 
The only interaction between the fronts considered is through the gas phase temperature. The model assumes that the reaction associated with 
each front starts at some ignition temperature and proceeds at a constant rate. The model predicts three different flame configurations: The fronts 
are either coupled, with both fuels burning within the same flame zone, de-coupled with a distinct preheat zone, or one of the fuels may not burn 
at all, playing the role of an inert additive. The results of the model are in very good qualitative agreement with experiments performed on hybrid 
aluminium-methane mixtures in narrow channels and explain the flame coupling/de-coupling through simple heat transfer considerations. 
 

INTRODUCTION 

 
   Multistage combustion, involving two or more interacting and competing chemical reactions, appears in many fuel 
systems. In some systems this leads to the formation of dual-front flames as, in gas mixtures [1] or in mixtures involving solid 
particle suspensions, used for example in solid propellants, where combustion properties vary considerably with the size of 
particles as well as with the presence of combustible gases in so-called hybrid flames [2]. A closer study of the propagation 
of such flames [3], using quenching distance measurements in narrow channels as a probing technique, has revealed a complex 
interaction between the gas (methane) reaction and suspension (micron-sized aluminium) reaction fronts. Depending on the 
relative concentration of the fuels and the amount of heat losses to the channel wall, both fronts either couple in a unique 
flame zone, de-couple, burning as separated fronts, or a fuel with too low a concentration may not burn at all, becoming an 
inert additive to the front formed by the other fuel. 
 

MODEL 

 

   The flame is represented as a one-dimensional steady-state structure propagating into an unburned mixture of an oxidizer 
and two fuels and is tracked by means of a single temperature profile. The model follows the temperature profile across the 
flame and as soon as the latter reaches a given ignition value, associated with each fuel, the respective reaction starts and 
proceeds at a constant rate for a given combustion time. The concentration of the first fuel is kept constant while the second 
one is varied. 
   In this simplified model, chemical transport is neglected and the mixture is assumed fuel-lean so that the depletion of 
oxidizer has no effect on the reaction rates. The system is then defined solely by the steady-state one-dimensional energy 
equation, which is solved analytically to obtain the temperature profile over the entire flame domain. This procedure also 
yields the propagation velocity of the flame as well as the distance between the two fronts. The calculations are performed for 
both adiabatic flames as well as for cases with heat losses, representing the heat losses to the narrow channels. 
    
 

RESULTS 

 
   The equations are solved for each of the flame configurations shown in Fig. 1 for adiabatic flames as well as for flames 
with different amounts of heat losses. The results show the flame speed dependence for each such case on concentration of 
the 2nd fuel φ. For simplicity, each flame configuration is associated with a colour: one-front with blue, two-front decoupled 
with red, and two-front coupled with green. The simplified formulation of the model allows the equations to be solved entirely 
analytically, which guarantees that all solutions for all parameter ranges are identified.   
   For each configuration, the adiabatic case is represented by a unique bold curve. As Fig. 1 shows, at low φ, only the 1st 
fuel can form a front, while the 2nd acts as an inert additive, and raising its concentration φ slows the overall flame until it 
cannot propagate (bold blue curve). If the 2nd fuel is reactive, however, at a critical concentration, the 2nd fuel can form its 
own front in the wake of the 1st one, and raising φ leads to the 2nd front approach the 1st one until they merge. The 2nd front 
enhances the speed of the overall flame (bold red curve). Raising φ further leads to the propagation of a coupled flame (bold 
green curve). 
   The presence of heat losses leads to the possibility of multiple solutions. Each flame curve is composed of two branches, 
a physical (solid curves) and an unphysical one (dashed curves). Both branches meet at a bifurcation. The curve linking these 
meeting points for all values of heat losses represents the quenching curve for both the one-front and the two-front flame. The 
behaviour of each flame is described by its physical branch.  
   Adding the 2nd fuel, i.e., increasing φ, has very different effects on both flames. For a given amount of heat losses, as φ 
increases, a one-front flame (curve C1) will slow down until it quenches whereas the two-front flame (curve C3) will appear 
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at a critical φ and its velocity will increase for higher φ. As the heat losses are increased, a lower value of φ is sufficient to 
quench the one-front flame (curve C2) while a higher φ is needed for the two-front flame to appear (curve C4).  
   As in the adiabatic case, for a given heat loss value, an increase in φ causes the two separated fronts in the flame to merge 
(transition from red to green curves). These two cases are separated by the front merging curve. As the heat losses are 
increased, this curve crosses the quenching curve. Thus, below a certain heat loss value, the flame quenches as two separated 
fronts, and above, it quenches as two merged ones.   
   For low ranges of heat losses, the red curves are wrapped around the blue ones which leads to three sets of bifurcations 
and a possibility of up to four solutions for a two-front flame for a given value of φ and the possibility of a second physical 
branch. 
   The results of Fig. 1 have been compared to the experimental findings of [3], described in the Introduction, and a very 
good qualitative agreement has been achieved. Despite the simplicity of its formulation, the model is able to recover all the 
behaviours observed in the quenching tests.  

 
Figure 1. Flame speed of one-front and two-front flames with respect to the concentration of the second fuel 

   
 

CONCLUSIONS 

 
   The complex behaviours observed in flames of some mixtures of different fuels have been qualitatively recovered by means 
of a simple analytical model based only on thermal considerations. In this light, the front coupling and de-coupling, observed in 
these systems, results mainly from the thermal interaction between the two fuels. These can either form fronts, which enhance each 
other, or due to low concentration and/or high heat losses, may fail to do so. In the latter case, the respective fuel hinders the 
propagation of the flame, increasing the heat capacity of the mixture and reinforces the effect of heat losses on the one-front flame.  
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Summary The front dynamics of a reactive wave in a system dominated by the spatial discreteness of the energy sources is 
explored via simulations in two dimensions. The system consists of randomly positioned point-like heat sources that are 
triggered when the temperature of a source reaches a prescribed ignition temperature, which then release heat. The width of the 
front (defined by deviation of the ignition temperature contour from mean position) is measured as a function of the elapsed time 
of propagation. While the front dynamics are complex due to the stochastic nature of the medium, by performing ensemble 
averaging over multiple realizations of the system, the power-law growth of the front can be measured. The results of front width 
exhibit a one-third power law scaling, consistent with the predictions of the Kardar-Parisi-Zhang model. This system may be an 
ideal experimental system to explore front roughening for flame propagation in discrete media. 
 

INTRODUCTION 
 
  The propagation of reactive waves in systems where the spatial discreteness of the media dominates the wave propagation 
has now been recognized as a new branch of combustion, “discrete combustion.”[1] This regime has a number of unique 
features that would not be predicted by classical flame theory, including the existence of a limit to propagation distinct from 
the thermodynamic limit and, in some cases, the ability to sustain propagation beyond the thermodynamic limit.[2,3] 
Experimental observation of flame speed independence upon oxygen concentration, a result that cannot be explained by 
classical flame theory, has provided the best evidence yet that this regime can occur in real systems.[4,5] Despite these 
advances, no detailed attention has been devoted to examining the dynamics of the reactive wave front structure. The closest 
effort to the present work is that of Provatas et al. [6], who examined kinetic roughening of flames in random media. Their 
work verified an approximate one-third power law growth of the flame front thickness, suggesting that their system 
belonged to the universality class of the Kardar-Parisi-Zhang interface equation. The system that studied, however, was a 
random chess-board pattern of reactive and nonreactive squares. Their system also featured Arrhenius reaction kinetics and 
a uniform Newtonian cooling across the entire domain. Direct experimental realization of this system would be challenging. 
  Point-like solid fuel particles in gaseous oxidizer suspension are a promising experimental system to observe discrete 
effects in the asymptotic limit of highly discrete sources.[4] This system can also be modelled via a simple analytic 
approach of superimposing Green’s functions to represent the heat release from prior sources and then solve for the ignition 
time of new sources.[4] Although the solution method is entirely analytical (i.e., no finite difference approximations are 
required), a computer is required when the number of sources becomes large (in this study, system with up to 25,000 
sources will be considered). The complete details of the model are given in Refs. [2,3]. 
   
 

RESULTS 
 
  The modelled system is described by two parameters: (1) The nondimensional ignition temperature 𝑇ign = �𝑇�ign − 𝑇0� �/
�𝑇f� − 𝑇0� �, where subscripts “ign”, “0”, and “f” denote the ignition, initial and adiabatic flame temperatures, respectively, 
and the tilde “~” denotes dimensional properties and (2) The nondimensional combustion 𝜏c = �̃�c/�̃�d , where �̃�c  is the 
dimensional combustion time over which the point sources release their heat and �̃�d is the inter-particle diffusion time, 
𝑙2/𝛼, where 𝑙 is interparticle spacing and 𝛼 is thermal diffusivity. The preliminary results reported here only considered 
𝜏c = 0, which is the case of a highly discrete system where inter-particle diffusion should dominate over combustion time. 
In this study, the average particle spacing is set to unity. 
  The simulations are conducted in a 2-D domain, with the width of the domain (direction perpendicular to flame 
propagation) equal to W = 100 particle spacings and the length of the domain (in direction of flame propagation) equal to 
L = 250. Periodic boundary conditions are used on the edges of the domain. The details of the initiation of the wave and 
visualizations of wave propagation are reported in [2,3]. 
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ANALYSIS 

 
  After a simulation is complete, the entire history (ignition time) of every discrete source is known. A grid is then created 
over the entire domain that is kept the same for the entire analysis, as shown in Fig. 1(a). For each time step, for each y 
position (i.e., all of the grid points along the length at a given height), the furthest grid point in the direction of propagation 
is found for which the temperature is greater than or equal to 𝑇ign. The temperature is obtained by summing the Green’s 
Function temperature contributions from all of the particles that have ignited at this point in time towards the temperature at 
that particular grid point. This point is shown as a red dot in the figure. Then, an average position is obtained by averaging 
the x-location of all of the red dots. This is shown as the red line. The front width is then obtained as a root mean square 
calculation of the distance between all of the red dots (front position at a specific height), and the actual averaged front 
position. This width value and front x-position value are recorded for all times considered. 
  The history of flame width for an individual run is quite noisy, and only via ensemble averaging can the growth rate of 
the front be extracted. Shown in Fig. 1(b) is the average of the front width extracted from averaging 20 simulations 
performed with different randomly generated sources. Note that a log-log scale is used so that power law behaviour can be 
identified. A linear fit to the data in Fig. 1(b) shows a power law growth rate of β = 0.3255, which is in excellent agreement 
with the value β = 1/3 = 0.333… predicted by the KPZ model. 

    
 

 
Fig. 1 (a) Method of extracting front width w from a simulation of a discrete source flame. (b) Front width as a function of 

time, plotted on log-log scale, for 𝑇ign = 0.05, L = 250, W = 100. Results shown are derived from an average of 20 
simulations. A linear fit to the data gives the exponent β describing the roughening of the front. 

 
CONCLUSIONS 

 
  The results presented here suggest that a reactive wave in a system of discrete, point-like sources may fall into the KPZ 
universality class. Such a system can be experimentally realized by using a fuel that reacts without volatilization, such as iron, in 
a medium with low thermal diffusivity (e.g., xenon). Such an experiment is scheduled to fly on the ESA MAXUS-9 sounding 
rocket in 2016 (“PERWAVES”) and may provide direct experimental confirmation of kinetic roughening of a flame front in a 
discrete source system. 
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DYNAMICS OF GAS-LIQUID INTERFACES IN HIGH-PRESSURE SYSTEMS

Joseph C. Oefelein∗1
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Summary This paper summarizes recent theoretical work aimed at explaining the dynamics of gas-liquid interfaces in high-pressure sys-
tems. Imaging has long shown that at certain high-pressure conditions, the presence of discrete two-phase flow processes becomes dimin-
ished. The molecular gas-liquid interface is replaced by a diffusion dominated shear-layer that evolves in the presence of exceedingly large
but continuous thermo-physical gradients. Analysis reveals that the two-phase interface breaks down not necessarily because of vanishing
surface tension forces, but because of thickened interfaces in a state of nonequilibrium due to the presence of thermal gradients and an
inherent reduction in the molecular mean free path.

INTRODUCTION

Figure 1: The regime diagram (left) describes conditions where n-dodecane
injected at a temperature of 363 K into nitrogen transitions to a dense super-
critical jet without drop formation. High-speed imaging of a dense supercritical
jet (top right) and spray (bottom right) illustrates the change induced as a func-
tion of different ambient conditions (Images on right courtesy of L. M. Pickett,
Sandia National Laboratories).

Research over the past decade has provided significant
insights into the structure and dynamics of multiphase flows
at high pressures [1–4]. There are two extremes that must
be considered. At subcritical, or certain supercritical oper-
ating pressures relative to the injected liquid component, the
classical situation exists where a well defined molecular in-
terface separates the injected liquid from ambient gases due
to the presence of surface tension. Interactions between dy-
namic shear forces and surface tension promote primary at-
omization and secondary breakup processes that evolve from
a dense state, where the liquid exists as sheets filaments or
lattices intermixed with sparse pockets of gas, to a dilute
state, where drop-drop interactions are negligible and dilute
spray theory can be used. When operating pressures exceed
the critical pressure of the injected liquid, however, the sit-
uation can become quite different. Under these conditions,
internal thermal gradients can form within the gas-liquid in-
terface due to a combination of thickening within the inter-
face and reduced molecular mean free path. The interfacial
structure enters the continuum length scale regime and disappears as interfacial fluid temperatures rise above the critical
temperature of the local mixture. Lack of inter-molecular forces, coupled with broadening interfaces, promote diffusion dom-
inated mixing prior to atomization. As a consequence, injected jets evolve in the presence of exceedingly large but continuous
thermo-physical gradients in a manner markedly different from classical assumptions.

Figure 2: Typical operating envelopes in advanced
Diesel, gas turbine, and gasoline direct injection
systems.

Detailed analysis suggests that the transitional changes described above are
controlled by the multicomponent nature of the gas-liquid interface [5, 6]. A key
output are regime diagrams for liquid injection such as the example shown in
Fig. 1. This figure shows results for n-dodecane injected at a temperature of 363 K
into gaseous nitrogen at varying ambient pressures and temperatures. The classi-
cal spray regime (highlighted in white) and diffusion dominated mixing regime
(gray) are found using a Knudsen number criterion based on the molecular mean
free path within the interface divided by the interfacial thickness (See Ref. [5]).
Ambient gas pressure-temperature traces, which span a set of conditions for dif-
ferent Diesel engine compression cycles, are shown as follows: (a) turbo-charged
(2.5 bar, 363 K), (b) medium-load (1.6 bar, 343 K), and (c) light-load (1 bar,
335 K). Fuel injection occurs at full compression conditions indicated by the three
respective end points. Note that only at light-load operation does there appear to
be a chance that classical fuel spray atomization takes place. These predictions
have been corroborated using imaging to visualize the features of dense-fluid jets
(top right image in Fig. 1) and classical spray atomization (bottom right image).

∗Corresponding author. Email: oefelei@sandia.gov
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DISCUSSION

Applying the theory to a variety of system specific operating conditions suggests that almost all modern high-performance
combustion devices operate over ranges of pressures and temperatures in the vicinity of, or across, the transitional regime [7,
8]. Figure 2 shows the typical operating envelopes associated with advanced Diesel, gas turbine, and gasoline direct injection
systems using n-dodecane, n-decane, and iso-octane as respective fuel surrogates. The diagram is constructed for liquid
injection temperatures from 300 to 363 K by normalizing the ambient gas pressure and temperature using the critical properties
of the liquid phase. The Classical Spray Regime is highlighted in green, the Supercritical Fluid Regime in blue, and the
Transitional Regime in red. Respective operating envelopes are indicated by the oval white areas. In each case the operational
envelopes cross into the Transitional Regime, which highlights the need study these regimes simultaneously.

Pressure (± 5 bar) 

Temperature 
(363 – 900 K) 

Liquid Core 

Turbulent Flow Structures 
500 m/s (yellow) – 50 m/s (blue) 

Figure 3: Three dimensional rendering liquid n-dodecane in-
jected into nitrogen at t = 200 µs. The red iso-surface marks
where density is 200 kg/m3, the blue iso-surface marks a Q-
criterion threshold that localizes coherent turbulent structures,
the bottom panel shows the temperature and rear the pressure.

To further understand the dynamics of high-pressure injection, the
large-eddy simulation technique has been applied using real-fluid ther-
modynamics and transport [9]. Liquid n-dodecane at 363 K is injected
into a quiescent gaseous mixture at 900 K and 60 bar, which are precisely
the same conditions represented by the medium-load compression trace
shown in Fig. 1. Results from a high-resolution case (2 µm spacing across
a 0.09 mm injector nozzle) are shown in Fig. 3 (see Lacaze et al. [9]). A
three-dimensional rendering of the injected fuel jet is shown in the cen-
ter. Fuel is injected from left to right. The red iso-surface marks the
central liquid core where large density gradients exist. These gradients
induce high shear forces through strongly coupled interactions between
turbulence and nonideal multicomponent thermodynamics and transport
processes. Instabilities form in these regions creating flow structures that
entrain air and generate intense turbulence. These structures are high-
lighted by the yellow (500 m/s) to blue (50 m/s) iso-surfaces. Molecular
diffusion completes the mixing, as shown by the more diffuse nature of
the temperature field in the lower panel (363 K in dark blue to 900 K in red). Significant variations in the local speed of sound
also occur. Scalar mixing within the shear-layer causes a strong decrease in the speed of sound, which reaches a minimum
of approximately 200 m/s in the shear region of the jet between 30 and 70 diameters downstream, compared to 1008 m/s
for the pure fuel jet at injection. The ambient speed of sound is approximately 600 m/s. The transonic variation generates
pressure fluctuations of approximately ±5 bar through compression-expansion effects. These pressure variations modify local
turbulent flow characteristics, which further enhance transient mixing processes.

CONCLUSIONS

Recent theory aimed at explaining what causes the widely observed transition from classical spray dynamics to dense-
fluid mixing in multiphase systems at high pressures suggests that it occurs due to nonequilibrium processes induced through
thickening of the gas-liquid interface combined with a significant reduction of the molecular mean free path. This allows
formation of temperature gradients within the interface, which ultimately leads to its disintegration. The resulting shear-layer
then evolves in the presence of exceedingly large but continuous thermo-physical gradients in a manner markedly different
from classical assumptions. Three regimes must be considered: (1) the Classical Spray Regime, (2) the Transitional Regime,
and (3) the Supercritical Regime. Applying the theory across a variety of system specific operating conditions suggests that
almost all modern high-performance combustion devices operate over ranges of pressures and temperatures in the vicinity of,
or across, all of these regimes. Moreover, both drops and nonideal dense fluid mixing can exist in the transitional regime,
which adds significant complexities to current modeling challenges. This highlights the need to understand both classical
spray and supercritical fluid phenomena simultaneously in modern devices.
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NUMBERS
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Summary A set of turbulent premixed flames is simulated to investigate the effect of Reynolds number on the flame characteristics. Em-
phasis is placed on the overall characteristics of the flame and on the fractal dimension of the flame surface. It is found that the flame length
decreases as the Reynolds number increases suggesting an increase of the turbulent flame speed with the Reynolds number. The fractal
dimension of the flame surface is 2.6 and does not show a significant dependence on the Reynolds number.

METHODS AND FLAME CONFIGURATION

The flame configuration consists of a slot jet surrounded by a coflow of burnt gases. This arrangement is similar to piloted
flames used in experiments. The jet consist of a methane/air mixture with global equivalence ratioφ = 0.7 and temperature of
800 K. These conditions were chosen since they are representative of gas turbines. The temperature and species concentrations
in the coflow correspond to the equilibrium state of the unburnt reactive mixture. The simulations are performed at 4 atm.

The bulk jet velocity is Ub = 100m/s, while the coflow has a uniform velocity of Uc = 15m/s. The jet Reynolds number
based on the slot width and the jet bulk velocity UbH/ν varies between 2800 and 22400. The variation of the Reynolds number
is obtained varying the jet slot width H between 0.6 and 4.8 mm. The flow is periodic in the spanwise (z) direction, open
boundary conditions are prescribed at the outlet in the streamwise (x) direction and no-slip conditions are imposed at the
boundaries in the crosswise (y) direction. The jet and the coflow are separated at the inlet by walls with thickness H/10 and
length 2H/3. Relevant parameters are summarized in Tab. 1.

The resolution for all the flames is set at20µm except for the highest Reynolds number case in which the resolution is
40µm. The simulation at Re=11200 has been performed with a resolution of40µm without observing significant differences
with respect to the case computed on the finer20µm grid. Therefore, we conclude that the results obtained for the Re=22400
case with the40µm grid can be used to assess the Reynolds number scaling shown in the present work.

Table 1: Parameters of the simulations.
Jet Reynolds Number, Re 2800 5600 11200 22400
Jet Bulk Velocity, Ubulk 100 m/s 100 m/s 100 m/s 100 m/s
Slot width, H 0.6 mm 1.2 mm 2.4 mm 4.8 mm
Grid Size 720×480×256 1440×960×256 2880×1920×512 2880×1920×512
∆x = ∆y = ∆z 20µm 20µm 20µm 40µm

Figure 1: Two dimensional cuts of the field of the mass fraction of atomic oxygen in the four flames simulated. The domain
is scaled with the slot width, H.

∗Corresponding author. Email: antonio.attili@kaust.edu.sa
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Figure 2: Left: mean temperature along the jet centerline for the four flames at different Reynolds numbers. The red horizontal
line marks the temperature value used to define the flame tip and the length of the flame. Right: length of the flame for different
Reynolds numbers, normalized with the slot width; the line is a power-law fit to the three cases with the highest Reynolds
number with the formRec with c = −0.4.

The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number
limit [1]. The species obey the ideal gas equation of state and all transport properties are computed with a mixture-average
approach. Combustion is modeled using a skeletal mechanism of 16 species and 73 reactions and is treated with finite-rate
chemistry.

RESULTS

Overall behavior and flame length
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Figure 3: Application of the box counting algorithm to the flameat
Re=11200. Number of boxes needed to cover the flame surface as
function of the box size (red dots). The blue line has a slope in the
log-log plot of -2.6, corresponding to a fractal dimension of 2.6. The
inset shows the same results compensated with the scalingr2.6 (pur-
ple star). The compensated results is shown also for a fractal dimen-
sion of 2.5 and 2.7 to assess the robustness of the results.

Figure 1 shows the mass fraction of oxygen in
the four flames at different Reynolds number. As ex-
pected, it is evident that the range of scale characteriz-
ing the fields increases with the Reynolds number. In
addition, the figure show that the length of the flames,
measured in terms of the slot width H, decreases as
the Reynolds number increases. A quantitative assess-
ment of the dependence of flame lengthLf on the jet
Reynolds number is presented in Fig. 2. The flame
length, normalized with the jet width H, decreases
significantly as the Reynolds number increases. This
is consistent with an increase of the turbulent flame
speed due to the increased flame surface area caused
by the larger Reynolds number.

Fractal dimension of the flame surface
The fractal dimension of the flame, identified by

the temperature isosurface T=1800 K, has been com-
puted with a box counting algorithm and it is shown in
Fig.3 for the flame at Re=11200. The analysis shows a
fractal dimension of the flame surface of 2.6, in agree-
ment with recent results obtained in different turbu-
lent premixed flames [2]. Very similar fractal dimen-
sions have been obtained for the flames at Re=5600
and 22400.

[1] Attili A. et al.: Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Comb. Flame 161:1849-1865, 2014.
[2] Chatakonda O.et al.: On the fractal characteristics of low Damköhler number flames. Comb. Flame 160:2422-2433, 2013.
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Summary The adjoint of the linearized reactive compressible flow equations is used to quantify ignition sensitivity in unsteady combustion.
The corresponding sensitivity gradients are used to map the boundary between successful and failed ignition. Owing to the ultimately binary
outcome (i.e., it succeeds or fails after some period), care must be taken to define an appropriate cost functional that both quantifies ignition
success and varies smoothly near its threshold. Such a cost functional is designed to measure early-time behavior, and an indicator function
identifies successful ignition. The approach is demonstrated in a homogenous reactor and a non-premixed shear layer. The line-search
algorithm is shown to automatically detect the ignition boundary from an initial set of modeling parameters within a few iterations. The
gradient information is used to construct a tangent space for mapping the ignition boundary subject to specific constraints.

BACKGROUND

The repeatable and accurate control of ignition in fuel-air mixtures has remained a key challenge in the design of many
practical combustion systems. In general, the initiation and propagation of a flame from a cold (non-reacting) mixture is sensi-
tive to the instantaneous flow conditions, local mixture fraction, and position, extent, and intensity of the ignition source. Due
to the large number of modeling parameters required to simulate unsteady combustion, detecting the source of uncertainty in
large-scale simulations is tedious and computationally intensive. Ignition probability maps of canonical flows (e.g., turbulent
jets and counterflow diffusion flames) generated experimentally are reported. Unfortunately, such a brute-force search is both
time consuming and expensive, problem specific, and does not illuminate underlying mechanisms. In recent years, adjoint
methods have been used to calculate sensitivity to an arbitrarily large number of parameters in turbulent flows, with a com-
putational cost that is only marginally greater than the primal solution [1]. Due to the binary outcome of ignition, sensitivity
gradients near its threshold are ill-defined, and thus special care needs to be taken to formulate a useful adjoint method in this
context.

APPROACH

In the present study, a space-time discrete-adjoint method recently developed for high-fidelity compressible turbulence
simulations [1] is extended to chemically-reacting mixtures. The compressible Navier-Stokes equations are solved in a high-
order finite-difference framework that satisfies the summation-by-parts property with the simultaneous-approximation-term
boundary treatment to ensure an energy estimate. The chemistry is described by a single-step irreversible Arrhenius reaction.
The thermal effect of ignition is modeled as a source term in the energy equation that is a function of position (x0, y0), radius
(rx, ry), time of peak power t0, duration τig , and applied power a. Here, x and y represent the streamwise and vertical
coordinates, respectively. Shock-induced vorticity at the location of the thermal deposition is modeled empirically as a source
term in the momentum equation that depends on a user-defined value of the Mach number of the resulting shock, M0.

To quantify ignition success, a burning index I is defined as

I =

∫
Ω

WZTdx, (1)

where Ω is the region occupied by the interior of the simulation domain, T is a non-dimensional temperature that varies from 0
in a cold non-reacting mixture to 1 at the adiabatic flame temperature, and WZ localizes the functional near the stoichiometric
surface. The cost functional is computed as J =

∫ t2
t1
rIdt, where t1 and t2 are the start and end times of the simulation, and

r windows the cost functional about the ignition transient. It was found that representing r as Gaussian with a peak value at
t0 and a standard deviation τig provides smooth gradients in J near the ignition boundary. However, the cost functional is
unable to detect whether or not successful ignition has occurred, and thus an indicator function is defined as the instantaneous
burning index at steady state, If ≡ I(t = t2). Using these two metrics, a backtracking line-search algorithm can find a set
of parameters on the ignition boundary. The adjoint solution is used to form a normal vector n̂ = ∂J

∂θ /‖
∂J
∂θ ‖ that provides a

direction to adjust the set of parameters. Once on the ignition boundary, the gradient obtained from the adjoint solution is used
to construct a tangent space at that point. Under specific guidance, the ignition surface can be mapped out from the identified
set of parameters.
∗Corresponding author. Email: jcaps@illinois.edu
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(a) Normal vectors n̂ = ± ∇J
‖∇J‖ . (b) Traversing the ignition boundary.

Figure 1: Ignition maps of the WSR configuration in θ = [a τig ]
T parameter space. Successful (red) and unsuccessful (blue) ignition.

(a) (b)

Figure 2: Localized ignition in a non-premixed spatially evolving mixing layer. (a) Mixture fraction (black lines), stoichiometric mixture (blue line), and
temperature (increasing from red to yellow) shortly after ignition. (b) Convergence of the burning index towards the ignition boundary.

RESULTS

The method is demonstrated in a homogeneous (zero-dimensional) well-stirred reactor (WSR), shown in Fig. 1. For this
case, 289 solutions were obtained to reveal the ignition behavior in a−τig parameter space. Figure 1(a) shows how n̂ obtained
from the adjoint solution points to the ignition boundary at each point in parameter space. In Fig. 1(b), the tangent space is
explored by updating τig with the constraint of minimizing a. This is achieved by defining a unit tangent vector t̂ such that
t̂ · n̂ = 0.

Identification of the ignition boundary is also demonstrated in the two-dimensional hydrogen–air mixing layer shown in
Fig. 2(a). The mixing layer consists of an upper stream of pure fuel (mass fraction YF = 1) with Mach number M = 0.6,
and lower stream of oxidizer (mass fraction YO = 0.233) with M = 0.1. The mixture is initially cold with a Reynolds
number based on the velocity difference and vorticity thickness δω of 500. Further details for a corresponding non-reacting
mixing layer under similar conditions are described elsewhere [2, 1]. Figure 2(b) shows convergence of I towards the ignition
boundary during the first 20 iterations of the line-search algorithm. It can be seen that convergence towards the ignition
boundary increases the ignition delay time.

This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administra-
tion, under Award Number DE-NA0002374. This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
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Summary The work is devoted to the numerical modeling of detonation propagation in rectangular channel filled hydrogen-air mixture with 
transverse concentration gradient. The statement of problem is based on experimental investigations, which were performed recently in 
Technical University of Munich. Modeling is implemented in two-dimensional statement with using detailed kinetics model of hydrogen 
combustion. The presence of deficiency propagation velocity of the detonation wave (DW) in a channel filled a mixture with transverse 
concentration gradient compared with one in the channel filled with a homogeneous mixture at the same average volumetric hydrogen 
concentration is consistent with the experimental data. The special mode of detonation propagation for channel filled hydrogen-air mixture with 
averaged volumetric concentration of hydrogen 40% and volumetric concentration of hydrogen 64.6% at the upper wall of the channel is 
revealed. In that mode, there is strong periodically arising transverse wave, which burns rich mixture at the upper part of the channel. 
 

STATEMENT OF THE PROBLEM 

 
   There are many numerical and experimental investigations of initiation and propagation detonation in homogeneous 
reactive mixtures. However, in accident scenarios and in the combustion chambers of detonation engines reactive mixtures 
can be inhomogeneous due to mixing processes: convection and diffusion. Propagation of the detonation in channel with 
transverse concentration gradient can be considered as one of the example propagation of detonation in real world. There 
are several experimental [1], [2] and theoretical [3] [4] investigations which devoted to that problem. In [2] two different 
modes single- and multi-headed of detonation propagation in channel filled hydrogen-air mixture with concentration 
gradients were revealed. Single-headed mode with one strong transverse wave in channel was obtained for the cases with 
special profiles of hydrogen concentration and averaged volumetric concentration of hydrogen in channel less than 30%. 
For those cases volumetric concentration of hydrogen at the bottom of channel is less than 9.5%. In present work we 
consider the statement of problem which based on the experimental work [2]. The propagation of detonation in rectangular 
two-dimensional channel with height 0.06 m and length 0.5 m filled by hydrogen-air mixture with transverse concentration 
gradients profiles from [2] is investigated. Detonation in the channel is initiated by explosion of stoichiometric hydrogen-air 
mixture at the left closed end of the channel. Two profiles of volumetric concentration of hydrogen for averaged volumetric 
concentrations 30% and 40% is presented on fig. 1. The computational domain consist of 75 millions cells. 
 

MATHEMATICAL MODEL AND NUMERICAL PROCEDURE 

 

   The mathematical model is based on Euler equations, which describe two-dimensional (2D) non-stationary flows of 
non-viscid compressible multicomponent reactive gaseous mixture, coupled with chemical kinetics model. Method of 
splitting with respect to physical processes, finite volume method and predictor-corrector time integration scheme are used 
for the numerical solution of the problem. The fluxes through the computational cells faces are calculated with Godunov's 
method. To enhance the accuracy of the numerical procedure the MUSCL approach with upwind-biased 3rd order scheme of 
interpolation and minmod limiter are used. The dependences of heat capacity and enthalpy of components from the 
temperature are approximated by the polynomial functions. For numerical investigations, we used high performance 
computing. Parallelization is performed by means of decomposition of a computational domain. The numerical 
investigations were implemented with the use of up to 3000 processor cores of multiprocessor systems MVS-100k (Joint 
Supercomputer Center RAS) and LOMONOSOV (Research Computing Center of the Moscow State University). The 
detailed description of the mathematical model, numerical procedure and parallelization technique can be found in [5]. The 
combustion of hydrogen-air mixture is modeled by detailed kinetics, which includes 22 reversible chemical reactions with 9 
components [6]. 
 

RESULTS OF CALCULATIONS 

 
   On fig. 2 computed smoke-foil records for the case of averaged volumetric concentration of hydrogen in channel 40% 
are presented. For that case, we revealed strong periodically arising transverse wave, which burns rich mixture at the upper 
part of the channel. The length of the period is about 0.12 m. At the bottom wall of the channel in the lean mixture, we can 
observe Mach stem, that corresponds to the calculation data from [3], [4]. For the case with averaged volumetric 
concentration of hydrogen in channel 30% cellular structure of the DW is more regular (see fig.3). It should be noted, that 
detonation cell size, obtained in our calculations, is smaller than in experimental data [2]. Propagation velocity DW is lower 
in a gradient mixture than in a homogeneous mixture at equal average hydrogen concentration. Deficiency of detonation 
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propagation velocity is about 2% in our calculations. The dynamics of developing strong transverse detonation wave in the 
upper part of the channel is presented on fig.4. At the upper part of the channel in fuel-rich mixture, a big unreacted pocket 
is generated before initiated strong transvers detonation due to the decoupling of leading shock wave and reaction zone. The 
strong transverse detonation wave propagates in the upper part of the channel where volumetric concentration of the 
hydrogen more than 50%. 

 
Figure 1. The initial profiles of volumetric concentration of hydrogen in channel. 

 

 
Figure 2. Cellular structure of DW for the case of averaged volumetric concentration of hydrogen in channel 40%. 

 

 
Figure 3. Cellular structure of DW for the case of averaged volumetric concentration of hydrogen in channel 30%. 

 

 
Figure 4. Gas temperature fields in Kelvin degrees at the successive time moments (time interval is 4 mcs). 
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Summary X-ray Computed Tomography (XCT) measurements are used to characterize a krypton-diluted methane-air Bunsen flame in three
dimensions. Multiple tomographic datasets are averaged in order to reduce noise in the recorded attenuation field. Internal attenuation fields
within the Bunsen cone give insight into thickening of the reaction zone as gas travels towards the top of the flame, and extraction of a
thresholded isosurface via Otsu’s method allows for 3-D visualization of the flame front. Results presented here reflect encouragingly on
the potential of XCT to provide powerful characterization of flame structure in three dimensions regardless of optical accessibility.

INTRODUCTION AND BACKGROUND

X-ray Computed Tomography (XCT) has the potential to allow for 3-D visualization of flame structure at high spatial
resolution, with short acquisition times, and without optical access. XCT is generally accomplished by measuring projections
of integrated X-ray attenuation at multiple angles around a subject and reconstructing a 3-D attenuation field using an im-
plementation of the inverse Radon transform as described in [1]. Common flat-panel detector systems can meet the 250 µm
criterion introduced by [2] to define the upper limit on resolution that could be reasonably expected to visualize the primary
reaction zone. Further, it would be unnecessary to estimate 3-D surface areas from 2-D images if 3-D field data on the loca-
tion of a wrinkled flame front were available. While XCT methods do have lower temporal resolution than planar laser-based
techniques, the potential for even time-averaged 3-D flame structure represents a potentially useful addition to the current
toolset of experimental combustion. The fundamental theory behind applying XCT to flame structure is based on the fact that
the number density of an inert, radiodense gaseous tracer such as krypton can be used to explicitly identify the location of
the flame front via the reduction in X-ray attenuation that occurs as number density of the radiodense tracer decreases with
increasing temperature. The goal of this study is to demonstrate the capacity of XCT to extract 3-D flame structure in an
experimental setting. For this reason, a canonical laminar Bunsen flame is used as a test case for illustrating not only the
viability of these physical concepts, but also the accessibility of associated imaging and analytic techniques.

METHODS

Experimental data for this study were obtained using the Stanford Tabletop X-ray Facility, consisting of a fluoroscopic
cone-beam X-ray source (CPI), flat-panel detector (Varian), and precision motion control system (Parker). The X-ray setup
was modified to allow for a steady flow of gas to be directed through an assembly that could be rotated in controlled fashion
by the motor. A Bunsen burner of 152.4 mm in length and 12.5 mm in diameter with an upstream flow straightener was
mounted to the motor apparatus. A premixed krypton-diluted methane-air Bunsen flame was established with mole fractions
of XKr = 0.339, XN2 = 0.455, XO2 = 0.121, XCH4 = 0.085, an overall flow rate of uo = 50 cm/s, Re = 600, and
corresponding Φ = 1.41. The flame was first lit and allowed to reach steady state before visual photographs were recorded to
enable comparison between the luminous visual profile and that extracted from XCT. A plastic tube of 95 mm in inner diameter
and 3 mm in thickness was then placed around the burner to shield the flame from ambient drafts while also making the flame
optically inaccessible. Fifteen tomographic datasets were acquired, with each set consisting of 625 projections over 360
degrees acquired in one minute of scan time. Scan parameters of 45 kVp peak tube voltage and 30 mA tube current were used
to maximize Signal-to-Noise Ratio (SNR). The flame was then extinguished and fifteen background datasets were obtained
to allow for subtracted attenuation measurements. Unless otherwise specified, differential attenuation data presented here
defines the difference between the projection-domain average of fifteen flame scans and that of the fifteen background scans.
Reconstructions were computed using the analytic Feldkamp-Davis-Kress filtered backprojection method with a Hamming-
windowed ramp kernel to eliminate high-frequency noise [1]. Additional data processing steps included standard ring-artifact
correction and projection-domain wavelet denoising to further reduce spurious high-frequency phenomena. The reconstruction
volume is 101 × 101 × 332 voxels with 0.2 mm isotropic spacing.

RESULTS AND DISCUSSION

As shown in Fig. 1, the XCT reconstruction yields a rich dataset from which a variety of conclusions can be drawn. In the
XCT data in Fig. 1(a), for instance, we observe a well-visualized flame cone with a profile that is substantially more linear
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Figure 1: Bunsen flame visualization (colormap for differential attenuation ∆µ in cm-1); (a) Vertical cross sections, visual and
mean XCT; (b) Axial XCT cross-section at height indicated by horizontal line in panel (a); (c) Flame front isosurface from XCT

than that of the visual contour and is relatively insensitive to the outer combustion zone characteristic of rich Bunsen flames.
This sharpness in the XCT outer contour in Fig. 1(a) occurs because the X-ray signal is by definition only affected by the
gas temperature and (to a small degree) krypton diffusion at the flame boundary, and thus what we are observing is a close
approximation of the cold gas cone suggested by [3] as the ideal contour to use for computation of the laminar flame speed. As
expected, SNR increases with the number of scans considered in the averaging procedure. Further, as one can observe from
the axial cross-section of Fig. 1(b), the attenuation within the inner cone becomes lower (a light blue color) as the mixture
crosses the flame front. This reaction zone region of higher temperature and lower krypton number density near the edges
of the flame cone (visualized here by the light blue regions) increases in extent towards the top of the flame as the diameter
of the flame cone decreases. These results also give insight into flame axisymmetry, as small deviations from axisymmetry
do indeed occur and are easily diagnosed by XCT as in Fig. 1(b). Another advantage of using computed tomography is the
capability to characterize results in full three dimensional space. Thus, we visualize the reaction front by thresholding the
XCT data using Otsu’s method to separate the burned gases from the unburned signal—extracting the attenuation isosurface
at the threshold pixel value yields a 3-D realization of the flame-front contour [4]. Notably, this non-parametric thresholding
technique requires no user input or modeling parameters while performing robustly over several trials. A 3-D flame front
visualization of this type is shown in Fig. 1(c), after application of a 3 × 3 × 3 median filter to ensure appropriate smoothness.
Such isosurfaces defining the location of the flame front in three dimensions would be particularly helpful in diagnosing such
critical quantities as flame structure, flame speed, and reaction zone thickness in experimental combustion studies.

CONCLUSIONS

We have demonstrated the applicability of XCT to characterization of a premixed krypton-diluted methane-air Bunsen
flame in three dimensions within an optically inaccessible environment. The ability of this diagnostic to supply data on
the location of the flame front and reaction zone thickness while assessing flame structure in a manner that is not confined
to axisymmetric configurations gives it distinct advantages over traditional experimental combustion techniques. Further
applications could include flame speed calculation via the total area method, measuring key turbulent combustion quantities
such as the reaction zone thickness, and obtaining 3-D, time-averaged visualizations of spatially complex flame fronts found
in a wide variety of configurations [2]. Future work should involve investigation of diluent effects on combustion chemistry
and flame structure along with optimization of the reconstruction methodology for low-contrast datasets.
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Summary This work experimentally quantifies the relationship between local reaction rate and flame thickness for turbulent premixed
flames in the corrugated flamelet and thickened preheat zone/thin reaction zone regimes using data from simultaneous 10 kHz tomographic
particle image velocimetry (TPIV), hydroxyl planar laser induced fluorescence (OH PLIF), and formaldehyde (CH2O) PLIF. Two novel
reaction rate metrics are presented, which are based on tracking fluid elements in a Lagrangian manner as they traverse from the flame
leading edge to the reaction zone. Results indicate that in the thickened preheat zone regime there is a reduction in residence time by nearly
20%, despite the flame being broader. A positive linear correlation is observed between a flame speed metric and flame thickness, which is
attributed to their mutual relationship with turbulent diffusivity.

INTRODUCTION

Past measurements of reaction rate in turbulent flames have been achieved through measuring scalar representations of
an important reaction pathway or via the local displacement speed. Scalar information can be obtained from planar laser-
induced fluorescence (PLIF) of the CH or HCO radical [1, 2], or through the product of OH and CH2O [3]. Such information
however is challenging for model development because the measurements are difficult to quantify and not directly related
to model inputs. Conversely, several studies have investigated the local displacement speed in turbulence premixed flames
[4, 5, 6] to quantify reaction rate. This method however is highly dependent on the particular isosurface being interrogated,
with negative local displacements speeds often reported despite the flame not exhibiting negative reaction rate [7]. Instead, it
is more informative to consider metrics of the total reaction rate experienced by a fluid element as it traverses the flame. The
use of Lagrangian paths inherently accounts for actual fluid trajectory and any changes to the flow-flame interaction.

This paper will present conditional statistics of two experimentally-derived metrics of local reaction rate in turbulent
premixed flames based on the tracking of theoretical Lagrangian particles (TLPs) through two turbulent premixed flames. In
doing so, this paper will describe the relation between flame structure and reaction rate in flames spanning from the laminar
flamelet to the thin reaction zone regimes.

EXPERIMENTAL SETUP

Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF were performed in a piloted premixed jet burner. The burner
consisted of a plenum, two turbulence generating plates, and a converging/diverging nozzle. The premixed methane/air main
flame issuing from the nozzle was stabilized using a non-premixed hydrogen pilot flame on a concentric grid of holes at the
nozzle exit plane. The flow and flame properties were such that Case 1 was in the corrugated laminar flamelet regime and
Case 2 was in the thickened preheat zone regime. Details of the experiment and diagnostics can be found in Ref. [8].

Four high-speed cameras were used to image the ca. 25 × 15 × 2.5 mm3 volume, illuminated by an Nd:YAG laser at
10 kHz repetition rate. The final vector field was calculated using an interrogation volume length of ca. 620 µm, with a ca.
155 µm spacing between vectors in all three dimensions. The temporal resolution was sufficient to capture the dynamics of
the smallest resolved spatial scales [8].

Two intensified high-speed cameras were used to image the OH and CH2O fluorescence at approximately 283.2 nm and
355 nm respectively. The formed laser heights were approximately 30 mm and 7.5 mm respectively. Mean signal-to-noise of
the two systems were approximately 6-35 and 2-3, the latter owing to the low fluorescence yield of CH2O.

RESULTS

Two metrics are proposed to characterize reaction rate. The first is based on the time required for a fluid element to traverse
the local flame structure, equivalent to the residence time of fluid elements in the flame (τc). The second simultaneously utilizes
the residence time and local flame structure to determine a flame speed metric (Si = di,0/τc, where di,0 is the fluid element
initial distance to the flame) for a given particle i.

Calculation of τc requires tracking of theoretical Lagrangian particles from the CH2O leading edge (equivalent to the
preheat layer leading edge) until they pass a flame surface based on Mie scattering tomography, which coincides with the
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region of rapid OH production albeit in 3D (equivalent to the region of high heat release). An example of this tracking for
Case 1 is shown in Fig. 1. Means residence times for Cases 1 and 2 are respectively 0.57 ms and 0.47 ms. Moreover, a positive
linear correlation exists between Si and di0, indicating an increase in reaction rate with flame broadening which is attributed
to an increase in turbulent diffusivity, as shown in Figure 2.

Figure 1: Example of particle tracking through the preheat layer for Case 1. Red circles denote centroid of control masses,
black circles denotes control masses that have passed the flame surface, green contours is the extent of the CH2O layer, and
grey isosurface is the Mie scattering surface. Top and bottom images correspond to the same time steps. One in three particles
shown for clarity

Figure 2: Joint PDF of flame speed metric Si versus di,0, normalized by sl and δl respectively, for (left) Case 1 and (right)
Case 2.
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Summary As emission standards continue to evolve, it is clear that future control strategies will involve the integration of 
combustion optimization, fuel refinement and advanced exhaust after-treatment technologies. WVU CAFEE continues to engage 
the challenge of future regulation in a multi-pronged approach, investigating advanced combustion regimes, alternative fuels, 
and next-generation emission control technology. Results presented herein summarize recent results and discuss future pathways. 
 
   Modern Compression Ignition Engines, commonly referred to as diesel engines, face many challenges with respect to 
meeting U.S. federal- and state-mandated exhaust emissions standards.  Additionally, these engines and their emissions 
control subsystems must comply with emissions standards for “useful life” periods of up to 435,000 miles all, while 
retaining the fuel efficiency and durability for which diesel engines are renowned. Since 1990, emissions standards of 
oxides of nitrogen (NOx) and particulate matter (PM) from heavy-duty diesel engines have decreased by approximately 97 
and 98 percent, respectively [1]. To meet these standards, engine manufacturers have developed complex engine and after-
treatment technologies. Diesel engines typically operate at a lean air-to-fuel ratio, one of the reasons for their superior fuel 
economy when compared to spark ignited engines that generally operate at stoichiometric air-to-fuel ratios. Lamentably, 
this lean operation is not conducive to the use of three-
way catalysts for NOx abatement and requires the use of 
more complex technologies such as selective catalytic 
reduction (SCR). Additionally, diesel engines 
predominantly feature direct injection and stratified 
combustion which can result in the formation of PM, 
which must be controlled with technologies such as a 
diesel particulate filter (DPF). 
   While, NOx and PM emissions have been steadily 
approaching near-zero levels, upcoming regulations will 
focus on reduction in fuel consumption and 
improvement of engine efficiency. Of the many 
pathways available for engine efficiency improvements, 
combustion optimization and advanced combustion 
strategies are one of the main focuses of next 
generation diesel engines. Closed loop combustion 
optimization techniques can benefit from improvements 
in miniature sensing technologies, while advanced combustion strategies can benefit from tailor made fuels that support low 
emissions and high efficiency pathways. One of the primary challenges of diesel engine combustion is to break the trade-off 
between PM and NOx. Concepts such as LTC, PCCI, and RCCI have demonstrated promise in this regard, however, 
fundamental understanding of fuel-air mixing, ignition delays and control of in-cylinder pressure rise rates are key in 
translation of such strategies to production platforms. WVU’s Advanced Combustion Laboratory, with an optical engine 
and a single cylinder heavy-duty engine platform is conducting fundamental research in combustion visualization and the 
role of fuel property effects. 
   In August 2011 the first federally mandated greenhouse gas (GHG) and fuel consumption standards for medium and 
heavy-duty vehicles were adopted [2].  The GHG portion of the standard pertains to carbon dioxide (CO2), nitrous oxide 
(N2O), and methane (CH4) exhaust emissions.  Phase 1 of these standards became applicable in 2014, with stringency 
increasing through Phase 2 which will cover model years 2021 through 2027.  The intersection of these standards with 
existing pollutant standards, especially for NOx emissions, present a challenge to manufacturers.  Technologies that reduce 
engine-out NOx emissions, such as exhaust gas recirculation (EGR), are typically associated with CO2 emission and fuel 
economy penalties.  Placing further reliance of NOx reduction on after-treatment systems can increase the consumption of 
reductants such as diesel exhaust fluid (DEF) for SCR systems, and present duty-cycle challenges with respect to fatigue 
and warranty concerns. 
   Bio-derived and alternative fuels present an opportunity to simultaneously reduce CO2, NOx, and PM exhaust 
emissions, compared to petroleum derived diesel fuel.  Although benefits in these exhaust constituents have been realized, 
increased carbon monoxide (CO) and hydrocarbon (HC) emissions have been observed during recent studies performed at 
WVU from i) biodiesel fuels investigated for the U.S. Navy and ii) dual-fuel diesel-natural gas retrofit kits for heavy-duty 
diesel engines.  Unfortunately, in many instances bio-derived diesel fuel is more costly to produce than petroleum derived 
diesel.  Additionally, there can be challenges related to the implementation of biodiesel in fueling systems designed for 

Figure 1 Historical trend of emissions standards for heavy-duty 
on-highway engines in the U.S. [4]. 
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petroleum based diesel fuel.  In addition to the availability from large scale natural gas reserves in the shale gas region, the 
production of bio-methane from biomass has significantly increased as well.  As of 2015 there were 645 operational 
landfill gas plants in the U.S.  Waste Management estimates renewable natural gas could provide 25% lower diesel fuel 
consumption in the state of California. However, alternative fuel approaches, such as dual-fuel diesel-natural gas 
compression ignition, and dedicated natural gas engines are often associated with high levels of CH4 exhaust emissions that 
are not easily reduced by after-treatment based on current CH4 catalysts technologies. Current research at WVU is focused 
on developing after-treatment technologies aimed at reducing tailpipe emissions of methane from heavy-duty natural gas 
engines. Reducing the global warming potential of natural gas vehicle exhaust is the key to promoting natural gas 
technology over traditional diesel technology. 
   Perhaps adding to the challenges that lie ahead, regulations for light-duty diesel engines differ from heavy-duty in that 
they are certified in a vehicle on a chassis dynamometer.  
Consequently light-duty diesel vehicles must meet the 
same standards as their gasoline counterparts with the 
same regulatory classification (tier and bin).  As 
emissions regulations progressed into the 21st century, the 
emissions reduction technologies for light-duty diesel 
vehicles had not commercially progressed as quickly as 
those for gasoline vehicles.  This resulted in very few 
vehicles offered as shown in the figure to the right.  
Introduction and improvement of NOx storage catalysts, 
also known as lean NOx traps, and SCR technologies has 
helped to increase light-duty diesel vehicle market-shares 
today.  Although, recent developments with Volkswagen 
may prove that NOx storage catalysts are not as efficient 
as claimed, leaving few options to SCR systems that 
typically occupy more space and require an additional 
fluid to be carried. These developments have also spawned 
regulatory agencies to announce future changes regarding 
future certification and compliance programs.  
 

CONCLUSIONS 

The compression ignition engine will remain the primary workhorse of the economy for the foreseeable future. However, 
currently available technology packages heavily depend on after-treatment systems to reduce regulated pollutants to the 
required low levels. This poses a challenge, especially for application subjected to lower engine operating loads such as 
drayage operation around ports, refuse hauling and urban driving, where after-treatment components experience lower than 
optimal thermodynamic exhaust gas conditions. In order to achieve high pollutant reduction efficiencies exhaust gas 
temperatures are being raised via thermal management strategies that in most cases adversely affect fuel consumption which 
stands in direct contrast to upcoming fuel economy requirements by the U.S. EPA. Additionally, projected improvements in 
thermal engine efficiencies will further escalate this problem by reducing exhaust gas temperatures. This discrepancy 
between improved energy efficiency and low emissions shows the need for a symbiosis between improvements in 
combustion strategies leading to reduced engine-out emissions rates, development of advanced fuels that enable and support 
advanced combustion regimes and finally, catalytic after-treatment systems that are capable of efficiently converting 
emissions during a broad range of exhaust temperatures. 
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THE DESCRIBING FUNCTION OF SWIRLED SPRAY FLAMES

Kevin Prieur1,2, Daniel Durox1, Thierry Schuller1, and Sébastien Candel ∗1
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Summary The dynamical response of flames is of central importance in combustion instability analysis. The response of swirl spray
flames considered in this article is determined experimentally in the form of a Flame Describing Function for various flames. Using a
generic injector comprising a swirler, a hollow cone pressurized injection unit and a diverging end cup it is shown that flame shapes are
markedly influenced by the end piece angle and that this parameter induces important changes in the describing function. This information
in combination with a dynamical model is used in a second stage to infer potential bands of instability in an annular combustor.

Dynamical phenomena appear in many modern combustion systems giving rise to large amplitude oscillations driven by the
unsteady flame response resonantly coupled by the acoustic eigenmodes of the system [1]. Much effort is being expanded
to predict such instabilities, design systems which are less sensitive to perturbations, derive solutions to reduce or suppress
oscillations [2]. One useful method has been to characterize the flame response through a transfer function (FTF) or in order to
capture some of the flame nonlinearities through a describing function depending on frequency and amplitude of the incident
perturbations (FDF) [2]:

F (ω, u′) =
Q̇′/Q̇′

u′/u
= G (ω, u′) eiϕ(ω,u′) (1)

This information combined with an acoustic network model or a Helmholtz solver is then used to determine regions of insta-
bility and limit cycle amplitudes. While premixed flame FDFs are well documented, this is not the case for swirl spray flames
despite their widespread use in applications like aircraft engines, thus motivating the present investigation. The experimental

(a)

Driver unit Driver unit

Quartz tube

Photomultiplier

MP1

MP2
Hot wire

Gaseous Gaseous

Liquid

(b)

G GL

A B

C D

(c)

A B

C D

Figure 1: (a) Schematic of the burner to determine the flame response. (b) Injector configurations. Case A: No cup is installed.
Case B: a 70◦ cup is installed. Case C: a 90◦ cup is installed. Case D: a 105◦ cup is installed. G stands for gas and L for
liquid. (c) Flame shapes with different injector configurations. Case A: injector without cup generates an M flame. Case B:
injector with 70◦ cup generates an amphora flame. Case C: injector with 90◦ cup generates a V flame. Case D: injector with
105◦ cup generates a corner flame.

configuration (Fig. 1(a)) comprises a plenum and a chamber (diameter dc = 68.5mm and a length lc = 150mm). Two driver
units are plugged on the plenum formed by a cylindrical duct of 300mm to modulate the gaseous flow. The injection system
linking the plenum to the chamber comprises a swirler, a convergent section followed by a divergent cup with a variable angle.
A simplex atomizer supplied with n-heptane at 9 bar generates a hollow cone spray. Detailed velocity profiles yield a swirl
number of 0.68 and a droplet SMD d32'25 µm. The four different injector configurations considered in this study (see Fig.
1(b)) induce notable changes in the mean flame shape (Fig. 1(c)) an indication of possible modifications in the dynamical
flame response.
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Flame dynamics
Flame Describing Functions are measured by modulating the air flow by the two driver units of 100W RMS connected to the
plenum. The amplitude u′ of the modulation is measured with a hot wire placed at 100mm from the back of the chamber.
The region is chosen in order to have a nearly flat velocity profile. Two microphones (MP1 and MP2) are placed at the same
position to evaluate u′ using a second method. A photomultiplier (PM) with an OH* filter records the flame emission and this
signal is used as a signature of the heat release rate. This sensor is tilted towards the injector position in order to capture the
entire flame luminosity no matter its shape. One finds a notable difference in the gain shape and in the phase slope between
the two configurations. The gain of the FDF in case A features two peaks at 600 and 1000Hz. In case B, the gain is much
flatter with a reduced peak at 600Hz. The phase of the FDF is nearly linear indicating the presence of a time lag. The
slope of the phase response changes significantly with the cup angle value. A theoretical modeling of annular combustors
provides necessary conditions for instability in the form of instability bands. According to this model when π < ϕ < 2π or
3π < ϕ < 4π, the configuration is potentially unstable. These data may then be used to examine azimuthal instabilities of an
annular combustor investigated at EM2C [4] which is now equipped with swirl spray injectors (MICCA-Spray).
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Figure 2: (a) and (b) Gain and phase of the FDF when the injector is mounted without any cup (conf. A), (c) and (d) Gain and
phase of the FDF when the injector is mounted with a 70◦ cup (conf. B).

Conclusions
Flame Describing Functions of swirling spray flames are determined experimentally. It is found that for the particular injec-
tion system investigated, the FDF does not change significantly with the amplitude level but that the gain and phase functions
notably change with the angle of the end piece divergent unit. It is found that the mean flame shape evolves with this angle
and this in turn changes the dynamical flame response. Potential bands of instability are inferred from an examination of
the measured phase response obtained in this single injector configuration leading to possible indications of instability in the
MICCA-Spray annular system equipped with multiple injector units.
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Summary Turbulent non-premixed swirl-stabilized flames were investigated in a gas turbine model combustor. Velocity and soot concen-

tration fields for propane/air combustion at three overall fuel-air equivalence ratios were studied. Stereoscopic particle image velocimetry

was used to acquire the three-dimensional velocity data in the combustor. The time-averaged soot volume fractions were obtained using the

technique of laser induced incandescence. The flow field and soot measurements were conducted separately, but under identical experimen-

tal conditions. The velocity measurements depicted the inner and outer recirculation zones, the boundaries of which showed high turbulence

intensity. The soot volume fractions showed a strong dependence on the overall fuel-air equivalence ratio. The combustor axis showed the

peak time-averaged soot concentration at nearly all axial heights.

INTRODUCTION

The widespread use of swirl-stabilized combustion systems has motivated research on their efficiency and environmen-

tal friendliness. Turbulent non-premixed swirl combustion is predominantly used in aircraft gas turbine engine combustors.

Non-premixed combustion can cause particulate (soot) formation, which are argued to have detrimental effects on engine com-

ponents, human health, and the global climate. Therefore, understanding of soot processes in technically relevant combustors

is vital to the design of high-performance, low-emission gas turbine engines [1, 2].

The current study focuses on swirling non-premixed turbulent propane/air combustion at atmospheric pressure. The time-

averaged velocity data and soot concentration distribution were measured at three overall fuel-air equivalence ratios (φ or ER):

0.47, 0.44 and 0.41. The fuel flow rate was held constant at 91 mgs−1. The experimental techniques of stereoscopic particle

image velocimetry (SPIV) and laser induced incandescence (LII) were utilized to measure the flow field and soot respectively.

Experiments were conducted separately but under identical conditions.

EXPERIMENTAL METHODOLOGY

Gas turbine model combustor: Combustor has dimensions of 94 mm × 94 mm × 114 mm. An axial jet of propane is

injected into a swirling jet of air. The air and fuel nozzles have coplanar exit planes (axial height y = 0 mm), hence premixing

of fuel and air is prevented. The combustor has 4 fused silica glass windows for optical access into the flame and to facilitate

the use of laser diagnostics.

Stereoscopic Particle Image Velocimetry: The three-dimensional velocity data was acquired using SPIV [3]. A laser

sheet illuminated the axial plane of the flow seeded with 1 μm titanium oxide particles. The illuminated flow was imaged

using two CCD cameras. The particle image pairs from both cameras were cross-correlated for velocity vector computation,

using the commercial software LaVision Davis 7.2.

Laser Induced Incandescence: A laser beam was focused and shot at the soot particles present at a point in the flame.

The broadband black-body radiation from the laser heated soot is recorded using photo-multiplier tubes at two different

wavelengths. Using the recorded signals, the temperature, volume fraction and primary particle diameter of soot at the

measurement location were computed [4].

RESULTS

For the reason of near-axisymmetry of the velocity field, one-half of the flow field are in Figs. 1 and 2. In Figure 1, the

mean axial Vy and the mean radial Vx velocities form the vectors, while the contour plot shows the mean tangential velocity

Vz. The mean velocity distribution shows the high velocity swirled inlet flow, and the inner and outer recirculation zones.

Figure 2 shows the distribution of turbulence intensity (TI), which is defined as the square root of turbulence kinetic energy k

and the magnitude of local mean velocity |−→Vm|. The boundaries of the recirculation zones, shown as dark lines in Figs. 1 and 2,

experience high turbulence intensity. The high TI is the cause for the rapid mixing of fresh inflowing fuel and air mixture, with

the hot recirculating products and chemically active species in the vicinity of the inner recirculation zone boundary (IRZB)

[1, 2]. Hence, IRZB is considered as the site for majority of the combustion as well as soot formation reactions. Further, the

mixing processes can transport the soot to the interior of the IRZ. Given the axisymmetry of the flow field, an axisymmetric

transport of the soot agglomerates from the IRZB to the combustor axis will cause the time-averaged soot concentration (fv)

∗Corresponding author. Email: sandipan.chatterjee@mail.utoronto.ca
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to peak near the combustor axis. The above hypothesis is supported by Fig. 3, where the radial profiles of fv show a peak

at the combustor axis (r = 0 mm) at all axial heights of y � 25 mm. Furthermore, the effect of lowering the overall fuel-air

equivalence ratio are shown in Figs. 4 and 5. The fv shows a near 50% drop for a 6% increase in air flow rate. However, the

general trends of the radial profiles of fv is nearly the same across the test cases.
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CONCLUSIONS

Swirl-stabilized turbulent non-premixed propane/air flames were studied experimentally in a gas turbine model combustor

for three overall fuel-air equivalence ratios. Stereoscopic particle image velocimetry and laser induced incandescence experi-

mental techniques acquired the time-averaged velocity and the time-averaged soot concentrations, respectively. Experiments

were conducted separately, but under identical conditions. The velocity field featured two recirculation zones, boundaries of

which show high turbulence intensity. Majority of soot was found in the interior of the inner recirculation zone. The soot

concentration showed a strong dependence on the overall fuel-air equivalence ratio.
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Summary Spatial maps of instantaneous phase difference between heat release rate and pressure oscillations is presented during non-
stationary behavior in a high-pressure, liquid-fueled gas turbine combustor. Using the Hilbert transform technique, simultaneous high-speed
OH∗ chemiluminescence images along with pressure oscillations data were analyzed to obtain the corresponding phase difference. The
results show that, for time periods with increasing amplitude pressure fluctuations, in-phase heat release rate and pressure oscillations
developed throughout the upstream portion of the combustor, which extended along the burner centerline and towards the downstream
portion of the combustor. This behavior is reversed during time periods with decreasing amplitude pressure oscillations.

INTRODUCTION

The phase difference (∆φp,q) between local pressure (p) and heat release rate (q̇) oscillations is important for understanding
why the pressure oscillation amplitudes increase, decrease, or remain constant [1, 2]. Whereas many studies have focused on
constant amplitude (stationary) conditions corresponding to the thermoacoustic limit cycle, relatively few investigations have
focused on non-stationary behavior [3, 4]. The present study aims at extending the experimental analysis of thermoacoustic
oscillations to local non-stationary behavior in high-pressure liquid-fueled flames that are relevant for aeronautical applica-
tions. Specifically, a heat release rate marker (OH∗ chemiluminescence) and the pressure are utilized to identify regions in
which the thermoacoustic phase difference changes prior-to and during changes in oscillation amplitude. This framework
does not require knowledge of the absolute heat release rate magnitude, and hence is robust to uncertainty in its measurement.
Thus, the presented framework provides a potential means for comparison with numerical simulations based on the temporally
evolving spatial distribution of in-phase and out-of-phase oscillation regions.

EXPERIMENTAL MOTHODOLOGY

The experiments were performed inside a liquid-fueled gas turbine combustor configuration. The combustor was installed
inside a high pressure vessel, which is equipped with fused silica window for optical access. The combustion chamber was
comprised of a single-piece of fused silica, having a square cross-section with a side length of L = 125 mm. The field of view
spanned almost the entire combustion chamber. The nozzle studied here had a dual co-annular air swirlers and multi-point
fuel injection, similar to that detailed in [5]. Simultaneous OH∗ chemiluminescence images and pressure measurements were
recorded at 200 kHz and 10 kHz, respectively. Signal in the emission range of the OH∗ chemiluminescence was isolated using
a bandpass filter with a center wavelength of 310 nm and a full-width at half-maximum of 20 nm.

RESULTS

For pressure oscillations with increasing amplitude, the |∆φp,q| fields transition from a relatively disorganized structure
to one with distinct regions of in-phase and out-of-phase oscillations. A typical pressure oscillation with increasing amplitude
along with the corresponding transition in the |∆φp,q| field is shown in Fig. 1(a) and Figs. 1(b-e), respectively. For this
behavior, the upstream portion (x/L < 0.4) initially features a mixture of in-phase and out-of-phase regions, which develops
into a coherent region of in-phase oscillations during the time sequence. Specifically, there exist transitions between an out-
of-phase region along the centerline and regions near the nozzle. There also is evidence of dynamics in the shear layer at
y/L > 0, which transitions between out-of-phase and in-phase p′ and q̇′ oscillations. In addition, a relatively large region of
in-phase oscillations occasionally develops in the downstream region of the combustor and along y/L ≈ 0 (Figs. 1(c)- 1(e)).
Hence, this behavior is characterized by the formation of a large coherent region of in-phase p′ and q̇′ oscillations in the
upstream portion of the combustor, which may extend into the downstream region.

Representative decreasing amplitude pressure oscillations as well as the corresponding sequence of |∆φp,q| field are
presented in Fig. 2(a) and Figs. 2(b-e), respectively. As shown in the sequence of phase difference fields, out-of-phase regions
are developed in the upstream portion of the combustor, which is accompanied by increasing coherence of the downstream out-
of-phase region. Comparison of the results presented in Figs. 2(b-e) and those in Figs. 1(b-e) suggests that the |∆φp,q| field
during time periods with decreasing pressure oscillation amplitude is similar to the reverse of the processes during increasing
pressure oscillations amplitude.

∗Corresponding author. Email: kheirkhah@utias.utoronto.ca
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Fig. 1: Development of a coherent region of in-phase oscillations at x/L < 0.4, which also extends into the downstream
portion of the combustor. The results pertain to pressure fluctuations with increasing amplitude.
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Fig. 2: Development of an out-of-phase region in the upstream portion of the combustor during a time period with decreasing
oscillation amplitudes.

CONCLUSIONS

Development of local phase difference between heat release rate and pressure fluctuations inside an aeronautical gas tur-
bine combustor was investigated experimentally. The experiments were performed using high-repetition-rate simultaneous
OH∗ chemiluminescence images and pressure measurements. The results show that, for increasing amplitude pressure os-
cillations, the upstream portion of the combustor becomes dominated by in-phase oscillations between heat release rate and
pressure fluctuations. This process is reversed for pressure oscillations with decreasing amplitude.
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Summary In the present work we investigate the flickering of planar jet diffusion flames as a global instability mode. Our study attempts to
give a quantitative description of the dynamics of the unsteady processes observed in line fires, which have recently been shown to play a
key role in their spread rate. Because the character of the instability is purely hydrodynamic, the flame can be described in the infinitely fast
reaction limit. The analysis permits the determination of the critical conditions, in terms of the Reynolds and the Froude number, for the
onset of the global instability, as well as its associated frequency. The analysis is extended to include spatially periodicity in the spanwise
direction. It is investigated if there is a spanwise wave number that maximizes the growth rate of the global instability mode, explaining the
spanwise undulations with peaks and troughs that prevail in realistic line fires.

Non-premixed flames are characterized by large density differences which, often times, lead to the development of instabilities
that are global in nature, affecting the entire flow field with a distinct frequency that scales with the macroscopic properties
of the flow. This is perhaps one of the most striking features of both jet flames and pool fires, which are known to “puff”
or “flicker” at a characteristic frequency [1]. The observed behavior is a result of a hydrodynamic global instability [2, 3]
associated with baroclinic vorticity production, leading to self-sustained oscillations that are independent of the external flow
perturbations. Despite the prevalence of this phenomenon, depicted in figure 1, there is not yet a full understanding of the
mechanisms of instability [1].

(a) (b)

(c) (d) (e)

(f)

Figure 1: Images of intermittent instabilities found in (a) puffing 0.3 gas burner fires [5], (b) large-scale acetylene ring burners
(c/o M. Finney, USFS), (c) cylinderical helium plumes [6], (d) non-buoyant light jets [7], (e) small interacting flames (c/o
Nakamura, TUT), and (f) planar liquid fires.

Although combustion scientists have been aware of the flame-flickering phenomenon for almost seven decades [8], the
first insightful stability studies are relatively recent. The role of buoyancy as the driving mechanism was recognized in the
theoretical analysis of Buckmaster and Peters [9], who postulated that the flickering was associated with a modified Kelvin-
Helmholtz instability of the annular flow induced by buoyancy in the envelope of hot gases surrounding the jet flame. Although
this early theoretical work assumed a convective instability, later experimental observations by Maxworthy [3] suggested that
the flame flickering phenomenon was associated instead with a globally excited oscillation forced by a region of absolutely
unstable flow near the base of the jet exit. These findings were later supported by DNS [10] and by local linear stability
analyses assuming nearly parallel flow [11, 12].

The line fire has received less attention than its axisymmetric counterpart. As can be seen figure 1(f), in these planar
flames, the flickering exhibits an additional feature, in the form of spanwise undulations with peaks and troughs, with a wave
length comparable to the flame height. This phenomenon is especially relevant in the context of wildfire spread, as forward
flame bursts often occur at the troughs of flame fronts [4].
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Figure 2: A model for the spanwise undulations often present in line fires.

In the present work, we investigate the flickering of laminar planar jet diffusion flames as a global instability mode.
This approach has recently been taken to study axisymmetric buoyant [13] and non-buoyant [14] jet diffusion flames. Small
perturbations in the form of temporal Fourier modes q̂(x, z)ei(ky−ωt) are added to a steady basic state of the flow. Here,
q̂(x, z) denotes the vector containing the two-dimensional fields of the flow variables, and k = 2π/λ is the wavenumber of
the spanwise spatial oscillations, as sketched in figure 2. The complex angular frequency ω = ωr + iωi is obtained as an
eigenvalue of the generalized eigenvalue problem formed by the linearized flow equations. The sign of the growth rate ωi

dictates whether the flow is globally stable or unstable, and ωr gives the associated oscillation frequency. As we consider the
instability to have a purely hydrodynamic character, the flame is described in the limit of infinitely fast combustion [15]. The
formulation contemplates realistic cases in which the Lewis number of the fuel is nonunity. Besides the Lewis number, the
Prandtl number, and the thermochemical parameters that appear in the formulation, the two fluid mechanical parameters that
control the flow are the Reynolds number and the Froude number. For the numerical solution of the steady base flow, as well
as the discretization of the eigenvalue problem, the finite element solver FreeFem++ is employed.

First, the scrictly planar case k = 0 is considered. The cricital conditions for the onset of global instability are sought
in the Reynolds-Froude number parameter plane for different values of the Lewis number and different values of the fuel
dilution ratio. Along the curve of the marginal stability, the spatial structure of the eigenfunctions associated with the leading
eigenmode shows whether the global mode is of the symmetric (varicose) or antisymmetric (sinuous) kind.

Finally, it is investigated whether there is a value of the spanwise wavenumber k 6= 0 for which the growth rate of the
global instability mode is maximum. This value of k would be the one prevailing in realistic conditions, explaining the
spanwise undulations with peaks and troughs often encountered in line fires.
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QUANTIFYING STOCHASTIC LIMIT-CYCLE PARAMETERS

FROM THE ADJOINT FOKKER-PLANCK EQUATION
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Summary Important parameters such as linear growth/decay rates in thermoacoustic systems can be identified based on acoustic pressure

signals, by taking advantage of turbulent-induced noise and making use of the Fokker-Planck equation. However, this kind of system

identification technique suffers from finite-time effects, e.g. band-pass filtering or low sampling rates. A new method based on the adjoint

Fokker-Planck equation is presented for identifying parameters in a robust and accurate way, even in the presence of finite-time constraints.

Gas turbines are prone to combustion instabilities that can lead to high-amplitude oscillations and reduce the lifetime of

mechanical parts. A common and practical way to mitigate these instabilities is to use passive control devices such as acoustic

dampers. The robust and efficient design of such dampers requires the knowledge of thermoacoustic linear growth/decay rates

at different operating conditions. While the measurement of decay rates in linearly stable conditions is fairly straigthforward

through the processing of pressure data, the measurement of growth rates in linearly unstable conditions is not possible using

the same method because the system adapts too quickly to varying conditions. One way to circumvent this difficulty is to

take advantage of the turbulent noise present in limit-cycle pressure signals and to apply system identification to the stochastic

process. Indeed, starting from the acoustic wave equation, one can derive a Langevin equation for the enveloppe A of the

acoustic pressure p(t) = A(t) cos(ωt + φ(t)), and the associated Fokker-Planck equation (FPE) that describes the evolution

of the probability density function (PDF) of the acoustic amplitude:

Ȧ = A(ν −
κ

8
A2) +

Γ

4ω2A
+ ζ = F(A) + ζ,

∂

∂t
P (A, t) = −

∂

∂A
(F(A)P (A, t)) +

Γ

4ω2

∂2

∂A2
P (A, t), (1)

where ν is the linear growth/decay rate, κ is the strength of the heat release source term nonlinear (cubic) saturation, and

ζ is a δ-correlated additive forcing of intensity Γ/2ω2. The drift coefficient D(1)(A) = F(A) and diffusion coefficient

D(2)(A) = Γ/4ω2 of the FPE are related to the first two moments of the conditional probability P (a, t+ τ |A, t):

D(n)(A) = lim
τ→0

D(n)
τ (A), D(n)

τ (A) =
1

n!τ

∫

∞

−∞

(a−A)nP (a, t+ τ |A, t)da. (2)

One can compute these coefficients through basic processing of pressure measurements (figure 1(b,c,d,e)), and perform model-

based fitting to identify the important governing parameters ν, κ and Γ [1].

In practice, however, one cannot compute exactly the limit for infinitesimally small time shift τ → 0, either because of

the finite sampling rate of measurement instruments, or because real-world noise is not strictly δ-correlated. In our case, the

most important reason is the presence of secondary peaks in the pressure frequency spectrum, which requires the signal to be

band-pass filtered (figure 1(a)), thus removing high-frequency contents in A(t). Therefore, only finite values τ ≥ τmin > 0

can be used to compute the finite-time coefficients D
(n)
τ (A) and to estimate the exact coefficients D(n)(A). Such finite-time

effects can significantly affect the estimation accuracy (figure 1(f)).

In this study, the method proposed in [2] is applied for the first time to real-world measurements to identify the governing

parameters of a thermoacoustic system undergoing a supercritical Hopf bifurcation. The finite-time coefficients D
(n)
τ (A) are

directly computed from the solution P †(a, t) of the so-called adjoint Fokker-Planck equation (AFPE), solved in time from

appropriate initial conditions P †(a, 0) = (a − A)n and evaluated at the values of interest (a, t) = (A, τ). This yields exact

values of D
(n)
τ (A) for any A and τ , provided the expression of D(1)(A), D(2)(A) that appear in the AFPE are correct.

Therefore, the following procedure allows one to extract the system parameters: choose a set of amplitudes A and time shifts

τ , and optimize the values of [ν, κ,Γ/4ω2] in the AFPE coefficients D(1)(A) and D(2)(A) so as to minimize the overall error

between the finite-time coefficients ̂D
(n)
τ (A) computed from measurements and the finite-time coefficients D

(n)
τ (A) obtained

with the AFPE.

The method is illustrated with acoustic data from a lab-scale combustion chamber, both in linearly stable and unstable

operating regimes. Band-pass filtering of the pressure signal restricts time shifts to finite values τ ≥ τmin = 0.06 s when

evaluating conditional moments. The optimization yields an excellent agreement between the drift and diffusion coefficients

estimated from data and those obtained from the AFPE (figure 1(g)), as well as between the stationary PDF constructed from

data and the PDF given analytically as P (A) ∝ exp[(4ω2/Γ)
∫

F(A)dA] and evaluated with the extracted optimal parameters

(figure 1(h)). This new method is expected to considerably enhance the robustness and accuracy of system identification for

practical, finite-time and/or filtered measurements.
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Figure 1: (a) Power spectral density of the acoustic pressure, before and after band-pass filtering. (b) Subset of a pressure signal p(t) and

its enveloppe A(t). (c,d, e) Conditional moments are evaluated by time-shifting the amplitude by τ , and evaluating the joint probability

P (a(t+ τ ),A(t)) and conditional probability P (a, t+ τ |A, t). (f ) For small values of the time shift τ ≤ τmin, finite-time drift coefficients

̂D
(1)
τ estimated from limit-cycle data (dots) diverge from the exact values D

(1)
τ calculated with the AFPE (lines). Here, band-pass filtering

of the pressure signal restricts the time shift to finite values τ ≥ τmin = 0.06 s. Symbols show D
(1)
τ for τ=0 (black), τ=0.14 (grey) and

τ=0.40 (white) (see also fig. 1(g)). (g) Exact drift coefficient D(1) (dashed line, τ = 0); exact finite-time coefficients D
(1)
τ calculated by

solving the AFPE (solid lines); finite-time coefficients ̂D
(1)
τ estimated from data with finite time shifts τ ≥ τmin > 0 (dots). Symbols

correspond to A=5.5, 6 and 7.5 (see also fig. 1(f)). (h) Stationary PDF obtained from limit-cycle data (histogram) and from the parameters

identified with the AFPE (line).
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Summary: Experiments were performed with propane- and methane-air mixtures in a 2D-Hele-Shaw burner to determine 
the characteristic scales of the premixed flame instability that can be used to define an evolution equation for the front. It is 
found that the most unstable wavelength, depending on the Lewis number of the mixture, and the linear rate of growth of 
perturbations, directly measured in the present experiments, have the same order of magnitude than those previously 
measured on planar flames propagating freely downwards in wide tubes. 

INTRODUCTION 
 
Combustion instabilities are of primary importance for turbulent burning in actual burners and there are some hopes so 

that they can be simulated using a model equation such as the Sivashinsky nonlinear equation first proposed in 1977 for the 
flame front propagation [1]. Large-scale flame front in a number of configurations were studied theoretically and 
numerically [2,3] in good qualitative agreement with the experiments [4]. However a quantitative comparison is hardly 
expected unless a 2D-flame can be observed. 

 To this end, we study a flame propagating in a Hele-Shaw burner where the flame dynamics is more easily recorded than 
in a cylindrical burner. The only parameters of the model are a cut-off wavelength λc and a characteristic growth rate σ of 
the most unstable perturbation with wavelength λmax~2λc. These parameters can be estimated knowing the unstable 
wavelength at the onset of instability for a planar flame propagating downwards [5], and some direct measurements of the 
rate of growth σ were performed as a function of the wavenumber of the flame perturbation [4,6]. But these values are not 
directly to be carried forward on the present configuration, since a point is to know whether the mechanism of instability 
can be described in the same way in a 2D configuration and for a 3D planar flame [7]. 

The burner consists of two glass plates 0.50 m wide and 1.5 m high, separated by a gap width of 5 or 10 mm. An acoustic 
damper, situated at the bottom, prevents the thermo-acoustic instabilities by damping the reflection of acoustic waves. After 
each run, the airflow is opened and maintained until the tube walls have cooled to ambient temperature. The flow of 
combustible, methane or propane, is then adjusted to the desired equivalence ratio and a 2D inverted V-flame is ignited at 
the top of the burner with a lighter. Closing the valve at the bottom of the burner then stops the flow and the downward 
flame propagation is recorded thanks to a high-speed camera (Fig. 1-2).  

EXPERIMENTAL RESULTS 
 
Experiments were performed with propane and methane-air mixtures whose dynamic properties are a priori known 

[5].  Near stoichiometric mixtures were diluted with nitrogen in order to reduce the growth rate of the perturbations and to 
improve the accuracy of the measurements. The initial flame contour appears relatively flat (Fig. 2), so Fourier analysis of 
the successive records of the flame contour can give access to the linear growth rate of the spontaneously excited 

Figure 1: Experimental set-up 
 

Figure 2: Flame front at successive moments 
separated from 16 ms (vertical scale expanded) 
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perturbations of the flame (Fig. 3). Using this procedure, we only access to the growth rate of large wavelengths of 
perturbations (Fig. 4, colored symbols) as the information on the domain of large wavenumbers is quickly hidden by the 
most unstable response of the flame. Introducing a plate with periodic bights a few centimeters above the burner exit, it is 
possible to force the flame response at the desired wavelength, so extending the measurements of the dispersion relation to 
larger wavenumbers k=2π/λ (Fig. 4, black symbols). A best parabolic fit through these data (blue line) compares favorably 
with previous measurements (large red symbol) and with the classical relation [5-7]: the slope dσ/dk at small wavenumber 
is close to the one calculated by considering only the Darrieus-Landau instability, and the general trends of this curve 
resemble the hypotheses used in Sivashinsky’s simulations. In particular, the large-scale cut-off wavelength is close to the 
one calculated with gravity effects, the small-scale cut-off wavelength is about half the most unstable wavelength, and its 
value varies with the equivalence ratio of the combustible mixture (not shown here) in relation with Lewis number effects 
[8].  

  

 
However, these wavelengths are slightly larger than those measured at the onset of instability of planar flames 

propagating downwards, probably because of 3D-effects that modify the 2D flame speed and the transverse flux, inducing 
changes in the expansion ratio that controls the rate of growth. 

CONCLUDING REMARKS 
 

These experiments confirm that the dynamics of 2D-flame that can be observed in a Hele-Shaw burner is analogous to the 
dynamics of planar flames previously described, with only small changes needed to correct the cut-off wavelength and the 
growth rate for 3D effects. It is thus probable that these flames could be relevantly simulated using a model equation such as 
the Sivashinsky's equation. 
 
Acknowledgements: This work was supported by the French National Research Agency under agreement ANR-14-CE05-
0006 and it has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project 
(ANR-11-IDEX-0001-02). 
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Figure 3: Spectrogram of successive flame contours 
with forcing at λ=15mm; propane-air, φ=0.7, δ= 0.21 

Figure 4: Measured growth rate of propane-air flame 
(φ=0.7, δ= 0.21) compared to the dispersion relation of 
Darrieus-Landau instability with (---) or without (---) 

gravity effects. See text for the meaning of the symbols. 
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Summary We demonstrate here the possibility to compare the evolution of an analytical flame corresponding to a pole solution of the
Sivashinsky equation with the evolution of an experimental flame. The experiment used as a benchmark consists of the propagation of a
quasi two-dimensional propane-air flame in a Hele-Shaw burner. A best approximation of the experimental flame at an initial time is first
calculated by fitting with a limited series of pole-based functions. The trajectories of the poles are then integrated numerically in time and
the evolution of the front they are representing is finally compared with the evolution of the experimental flame.

INTRODUCTION

Even when propagating in a medium initially at rest, premixed flames can undergo intrinsic destabilizations and folding
among which the Darrieus-Landau instability. As a consequence, the surface and velocity increase up to higher values that
fluctuate in time. These fluctuations result from nonlinear processes occuring on the flame surface, which can be described
as a succession of local singularities, called cusps, that are created and then compete and eventually merge. A Hele-Shaw
burner [1, 2, 3] appears to be an adequate apparatus for quantitative analysis of this dynamics in a quasi two dimensional
configuration. It allows comparison with the Sivashinsky equation [4], which is generally used as a description of the non-
linear dynamics involved in the instability. This equation can be derived in the limit of small unburnt to burnt gas expansion
ratios θ = ρu

ρb
and accounts for the evolution of the position φ(x, t) of the flame taken as a discontinuity. The extension to

larger expansion ratios, proposed by Joulin and Cambray [5] is used in this study in the following non-dimensional form :
φt + a

2φ
2
x = Ω

(
φxx

kc
+ I (φ, x)

)
. In this equation with unity laminar flame-speed, lengths have been rescaled by the width of

the flame front divided by 2π, kc stands for the non-dimensional cut-off wave number, the linear operator I (φ, x) corresponds

to multiplication by |k| in Fourier space, Ω = θ
θ+1

(√
θ2+θ−1

θ − 1

)
is Darrieus-Landau coefficient and a is taken from

Kazakov 2005 [6] where A = 2Ω
akc

= 1
kc

(θ+1)2(θ−1)
4θ2 .

According to Thual et al. [7] this equation admits exact, ”pole-decomposable”, 2π-periodic solutions in the form

φ = −A
N∑
n=1

{
ln

(
sin

(
x− zn(t)

2

))
+ ln

(
sin

(
x− z∗n(t)

2

))}
(1)

and each pole zn evolves according to the following coupled ODE’s :

żn = −Ω
∑
p6=n

1

kc
cot

(
1

2
(zn − zp)− isign (Im(zn))

)
(2)

In this work we propose to compare the flame front dynamics described by this set of ODE to the dynamics observed in a
real experiment.

POLE DECOMPOSITION OF AN EXPERIMENTAL FLAME FRONT

In order to compare the flame front evolution described by system (2) with an experimental flame front we should start with
conditions as close as possible to the conditions from which the Sivashinsky equation is derived (i.e small slope hypothesis).
A propane air flame (equivalence ratio 0.7) is thus ignited as an inverted V-flame on top of vertically oriented Hele-Shaw cell
(two glass plates 50cm large and 150cm high separated by a thin gap of 5mm) then the flow is stopped by closing the valve
at the bottom of the cell and a nearly planar flame starting is downward propagation. The evolution of the flame is recorded
using a high-speed camera (500fps). Figure 1a extracted from this sequence is a typical frame exhibiting 7 cusps. It is used as
reference front for fitting with decomposition (1) by way of Levenberg-Marquardt least-squares algorithm. The 126mm field
of view is chosen so that the right and left limits are sufficiently far from cusps and with horizontal tangent in order to better
satisfy the periodicity of the functions. Moreover in order to assure continuity between the right and left limits we rotated the
front by 0.025 radians. For such a flame, we assumed kc = 19.2 according to the linear growth rate measured from initial
flat interface. The minimum number of poles for a reasonable agreement for the shape was found to be 12. The locations of
these poles are represented by points under the frame, with vertical coordinate corresponding to their imaginary part. Poles
with small imaginary part in the complex plane induce physical cusps visible at the same abscissa. The resulting analytical
solutions are superimposed in red on the picture.
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FIGURE 1 – (a) Fitting of the flame front (top) and associated pole positions in the complex plane (bottom). (b) Evolution of
the experimental flame front. (c) Evolution of the pole solutions according to the system of ODE (2).

Evolution in time
The system of equations (2) corresponding to pole trajectories is integrated numerically in time starting from the solution

obtained above. We assumed θ = 6.4 and a laminar flame speed of 0.22m.s−1. These values could eventually be corrected
due to the heat and momentum loss in the Hele-Shaw cell. The evolution of the simulated front reported in fig 1c exhibits three
cusp mergings and favorably compares to the evolution of the experimental one reported on figure 1b at the same instants.

CONCLUSIONS

The quantitative agreement in time and length scale proves that although the Sivashinsky equation is derived in a small
expansion limit, it appears to be valid for real flames with expansions around θ = 6 with a good accuracy. Moreover, the
complex dynamics of the front can be reduced to the calculation of the trajectory of a limited number of pole pairs in the
complex plane (12 pairs for the evolution of a front with 7 cusps in our case). A perspective for this study would be to validate
the ability of this method to simulate premixed flame fronts for a wider range of gas mixtures and equivalence ratio.

This work was supported by the French National Research Agency under agreement ANR-14-CE05-0006, and it has been
carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-
02).
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Summary Based on new information obtained for free microjets, this study is aimed to explain some phenomena of flame evolution at 
round and plane propane microjet combustion in the presence of transverse acoustic field. It gives an overview of recent experimental 
results on instability and dynamics of jets at low Reynolds numbers and provides the recent advances in jet flow stability and combustion. 
Some clarification of the differences between top-hat and parabolic round and plane jet instability [1] is also given. 
 

INFLUENCE OF INITIAL CONDITIONS AT THE NOZZLE EXIT AND ACOUSTICS ON THE 
CHARACTERISTICS OF THE ROUND AND PLANE MACROJET EVOLUTION 

 
A round macrojet with top-hat mean velocity profile at the nozzle exit is prone to the Kelvin–Helmholtz instability in the form 
of ring vortices, whereas the round macrojet with parabolic mean velocity profile at the nozzle exit results in an extended 
laminar flow region and suppression of the vortices (see figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Influence of initial conditions at the nozzle exit on structure and characteristics of a round jet evolution: I,II - top-hat and 
parabolic mean velocity profiles, accordingly; a, b, c, d - macrojet cross sections, U0= 5 m/sec (Re = U0  d / ν = 6667). 

Plane macrojet with top-hat and parabolic mean velocity profile at the nozzle exit is prone to sinusoidal instability (see figure 
2). The round macrojet with parabolic mean velocity profile at the nozzle exit results in an extended laminar flow region and 
suppression of the ring vortices. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Sinusoidal instability of the plane macrojet with top-hat and parabolic mean velocity profile at the nozzle exit – I (a – under 
natural conditions, b - under external acoustic forcing at frequency f = 40 Hz).  Plane macrojet with top – hat mean velocity profile at the 
nozzle exit involve three independent of each other instability regions: 1 - two independent of each other narrow regions of strong 
velocity gradient near nozzle, 2 - region with parabolic mean velocity profile far downstream from a nozzle – II. 
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INFLUENCE OF INITIAL CONDITIONS AT THE NOZZLE EXIT AND ACOUSTICS ON THE 
CHARACTERISTICS OF THE ROUND AND PLANE MICROJET EVOLUTION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Round microjet flattening (f = 40 Hz) and bifurcation (a - f = 200 Hz, b – 1500 Hz) in a transverse acoustic field (nozzle 
diameter d = 200 mm) – I. Bifurcation scheme of the plane macrojet in a transverse acoustic field (nozzle: l = 36 mm, h = 200 mm):  
flow patterns in x-z planes at variation of the y coordinate (1, 2, and 3 correspond to y = 0, 15, and 18 mm, respectively), f = 150 Hz, 90 
dB – II. 

 
 

DIFFUSION COMBUSTION OF THE ROUND AND PLANE PROPANE MICROJET IN A TRANSVERSE 
ACOUSTIC FIELD 

   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Round (I) and plane (II) microjet flame bifurcation in a transverse acoustic field: nozzle No. 1, d = 0.5 mm, acoustics, f = 5 - 
7.5 kHz, U0 = 12.5 m/sec (I); nozzle No. 2, l = 2 mm, h = 200 m, acoustics, f = 1 – 3 kHz, U0 = 21 m/sec (II); without acoustics (a), with 
acoustics (b), A = 90 dB. III - Round microjet bifurcation (a), round propane microjet flame bifurcation (b), and shadowgraph image of a 
round propane microjet combustion (c). 
 

CONCLUSIONS 
 

Visualizations of conventional and combusting subsonic jet instabilities are presented. Features of structure and 
characteristics of subsonic round and plane macro- and microjets evolution depending on initial conditions at the nozzle exit 
and acoustic effect are shown. It is found, that round and plane propane microjets combustion in a transverse acoustic field 
result in flame bifurcation.  

This work was supported by the project of the President of the Russian Federation for Leading Scientific Schools (NSH- 
8788.2016.1), RFBR 16-07-00946, 16-08-00425 and 16-19-10330. 

References 
[1] Kozlov V, Grek GR, Litvinenko Y: Visualization of Conventional and Combusting Subsonic Jet Instabilities. Book Springer Briefs in Applied Sciences 
and Technology, 2016, p.126, ISBN: 978-3-319-26957-3 (Print), 978-3-319-26958-0 (Online). 
 
 

626



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

STABILITY CHARACTERISTICS OF PULSATING ONE-DIMENSIONAL DETONATIONS
USING A SIMPLE ANALOGUE
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Summary Results of asymptotic modeling of one-dimensional pulsating detonations using Fickett’s model with two-step chemistry, an
analogue of the reactive Euler equations, are compared to numerical simulations to better understand the stability boundary and unstable
modes of propagation. Two distinct modes of instability are observed. In the limit of large reaction-to-induction lengths, evidence suggests
a galloping detonation mode. At smaller reaction-to-induction lengths, increasing activation energy leads to a period-doubling bifurcation
cascade into chaos.

INTRODUCTION

The dynamics of detonations predicted by the Euler equations are quite complex. Direct simulation of chemical decompo-
sition in the framework of the one-dimensional Zel’dovich-von Neumann-Döring detonation model indicates a route to chaos
via period-doubling bifurcations [1, 2].

Recently, toy models have been formulated to gain better insight into these dynamics [3, 4]. These models use an extension
of Burgers’ equation with an added source term to account for energy release, first introduced by Fickett [5]. The models
reproduce the period-doubling bifurcation route to chaos previously predicted numerically using the Euler equations.

Such a route to chaos has never been observed experimentally. However, galloping detonations have been espied in
one dimension, and cellular detonations have been observed in two dimensions, maintaining characteristic quasi-periodic
dynamics. The discrepancy between the predicted chaotic dynamics and experiments may be due to the choice of reaction
model, which is the topic of investigation in the present study. Previous investigations focus on extensions of the square wave
model, with relatively thin reaction zones compared to the induction zone. In reality, multi-dimensional effects give rise to
a reaction zone which is systematically longer than the induction zone. For cellular detonations, hydrodynamic thicknesses
of the reaction zone have been reported to be approximately two orders of magnitude longer than the induction zone [6]. In
galloping detonations, the turbulent flame brush following the lead shock is also much thicker than the shock-flame separation
distance [7].

This study revisits the dynamics of detonations for the toy model introduced by Radulescu and Tang [3] in the limit of
an induction zone that is much longer than the reaction zone, and extends the investigation to a longer reaction zone. Both
numerical and asymptotic analyses have been performed, and are communicated below.

MODEL

Fickett’s model ∂tρ+ ∂xp = 0 was used, where p = 1
2 (ρ

2 + λrQr) with reactions consisting of a neutral induction period
followed by an exothermic reaction (subscripts i and r respectively) such that

ri = ∂tλi = H(1− λi)ki exp (Ea (D/DCJ − 1)) and rr = ∂tλr = (1−H(1− λr))H(1− λr)kr(1− λr)ν

where H is the Heaviside function, k = kr/ki is a reaction rate parameter which represents the reaction-to-induction length
ratio,Ea is the activation energy parameter,Q = 1, ν = 1/2,D is the detonation velocity and at steady stateD = DCJ =

√
Q.

Using the method of matched asymptotic expansions with small parameter ε = 1/Ea, a third-order-in-time evolution equation
was derived, approximating the solution to Fickett’s model:

3hτ − Fτ + ε

(
7− 4ν

4k(ν − 1)(2ν − 3)
(hττ + Fττ )− hττF − hτFτ

)
+ ε2

{(
9− 4ν

2k2(−1 + ν)(−3 + 2ν)(6− 8ν)

− 1

4k2(−1 + ν)(−3 + 4ν)

)
(Fτττ + hτττ ) +

3

4k(−3 + 2ν)
(Fτ + hτ )(Fττ + hττ )

}
= 0,

where F = − exp(−hτ ) is the length of the induction zone, h is the lead shock position, and τ = εt is the slowed time
variable. Numerically, the discretized system of equations was solved in the shock-fixed frame of reference using the first-
order Godunov’s method.

∗Corresponding author. Email: slauc076@uottawa.ca
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Figure 3: Period-doubling bifurcations of detonation velocity maxima (k = 5)

RESULTS

A parametric study was performed for different values of k and Ea comparing the asymptotic model to numerical simula-
tions. At low values of k and Ea, the detonation propagates steadily. The detonation becomes unstable and the shock velocity
oscillates when these parameters are increased. Figure 1 compares the analytical stability boundary found with the asymptotic
model to results obtained with numerical simulations, which are in good agreement. For large values of k, results show that
stability is controlled solely by Ea, whereas for low values of k, the stability boundary is a product of both k and Ea.

At high values of k, the asymptotic model and numerical simulations both follow the period-doubling route to chaos as Ea

is increased, as shown in figure 3. The asymptotic model shows that at lower values of k and increasing Ea, a galloping-type
behavior is recovered, as shown in figure 2. Long periods of slow propagation that near the quenched detonation velocity are
interrupted by the sudden acceleration of the shock front, followed by a slower speed reduction.

CONCLUSION

The present study recovered the characteristics of stability for one-dimensional pulsating detonations using Fickett’s model
with two-step chemistry, which was completed using asymptotic modeling and numerical simulations. Two modes of instabil-
ities were found, which are dependent on the ratio of the induction to reaction lengths. At large values, period doubling was
observed, whereas smaller values yielded galloping-type detonations at sufficient activation energies.
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Summary

INTRODUCTION 

 The work is devoted to the numerical modeling of heterogeneous combustion and other energy sources in porous objects with 
self-regulation of flow rate of the gas passed through the object. Such porous objects can arise from various natural or man-made disasters 
like self-ignition of peatlands or solid waste dumps, explosions at industrial or energy plants. Mathematical models and original numerical 
algorithms have been developed for the investigation of unsteady heterogeneous combustion of porous two-dimensional objects with one-
step chemical kinetics and time-dependent regimes of gas flow through three-dimensional porous objects with sources of energy release 
without detailed chemical kinetics; some 2D and 3D time-dependent problems have been solved numerically. It has been shown that the 
combustion waves can move complicatedly; the gas flows inside of the porous object can be complex. When the natural convection takes 
place, the vortex-type gas flows can occur in the combustion zone and in its vicinity. 
 

 
Combustion and other energy sources in porous media often arise as a result of various natural or man-made disasters. 
Porous media in terms of mechanics are soils, peat, debris of ruined buildings, solid waste dumps, etc. Heterogeneous 
combustion in porous media is due to the exothermic reaction between the fuel in the porous solid medium and oxidizer 
contained in the gas flowing through the porous object. Such combustion can appear after spontaneous self-ignition of peat 
or solid waste dumps (landfills), after explosions at industrial and power plants and so on. There are a lot of publications 
devoted to both solid and gas combustion in the filtration mode, among which we would especially like to emphasize the 
review article [1]. Zones of other energy release, which differ from combustion sources, can appear in porous media after 
the explosions at nuclear power plants (like Chernobyl NPP). The exploded unit of the Chernobyl NPP showed that the gas 
(air) cooling of such heat sources can be the only available counteraction method of the disaster [2]. 
A distinctive feature of the combustion and other energy sources arisen in porous media after disasters is that the flow rate 
of gas passed through the porous object is unknown a priori, and only the gas pressure at the object boundaries is known. In 
other words, the self-regulation of gas flow rate passed through the porous object takes place in a self-heating object. It 
should be noted that knowledge of the gas pressure at the object boundaries allows to model processes under both forced 
filtration and natural convection. The present work is devoted to the numerical investigations of the time-dependent gas 
flows through porous self-heating media with self-regulation of gas flow rate.  
 

MATHEMATICAL MODELS AND NUMERICAL METHODS 
 
Mathematical models, which are discussed in this paper, can describe the processes of heterogeneous combustion and other 
energy-release process in motionless porous objects, which have some impermeable non-heat-conducting borders and some 
boundaries opened to the atmosphere. The cold gas can flow into the open walls of the porous object; the gas can flow 
through porous medium and flow out. 
The mathematical models are based on the assumption of interacting interpenetrating continua [3] using the classical 
approaches of the theory of filtration combustion [1] and include equations of state, continuity, momentum conservation and 
energy for each phase (solid and gas). In the energy equation for solid component not only heat generation is taken into 
account but also the thermal conductivity and the intensity of the interphase heat exchange. In the energy equation for gas 
the homogeneous reactions are not considered. For describing the dynamics of gas, the equation of momentum conservation 
for porous media is used, which is more correct than the classical Darcy's equation and can be used in a greater range of 
Reynolds numbers [3]. The solid phase is assumed to be fixed, so the equation of motion for it degenerates. We assume that 
the perfect gas equation of state is valid and the dynamical viscosity of gas depends on temperature. 
When investigating the combustion in porous objects, we suppose that a solid porous substance consist of combustible and 
inert components, and the solid combustible material transforms into a gas in the reaction with gaseous oxidizer. 
Combustion processes are described by one-step chemical reaction of first order with respect to both arguments. The 
equation for oxidizer concentration is added; the changes in volume and weight of the phases are taken into account. 
When investigating the other energy-release process (for example, processes in porous objects with radioactive energy 
sources), the detailed chemical kinetics is not considered, and it is assumed that the heat evolution is directly proportional to 
the concentrations of the reagent whose rate of decay is directly proportional to the concentration itself. The volume and 
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weight of the condensed phase changes insignificantly, and these changes can be neglected. Such assumptions are valid, in 
particular, in the modeling of processes in the exploded unit of the Chernobyl NPP [2]. 
A distinctive feature of the considered models is that the gas flow rate and gas velocity at the opened boundaries of the 
porous object are unknown and have to be found from the solution of the problem. So we assume that at the object 
boundaries, which are opened to the atmosphere, we know gas pressure and the conditions of heat exchange. Also at these 
boundaries we know either gas temperature and (if the chemical kinetics is taken into account) the oxidizer concentration or 
conditions for gas temperature and oxidizer concentration depending on the directions of the gas flow. At the impermeable 
boundaries of the object the conditions of non-heat-conductivity and impermeability are known. 
The original numerical methods, which are based on a combination of explicit and implicit finite-difference schemes, have 
been developed for the investigation of unsteady heterogeneous combustion of porous 2D objects with one-step chemical 
kinetics and time-dependent regimes of gas flow through 3D porous objects with sources of energy release without detailed 
chemical kinetics. These methods are the development of earlier proposed numerical algorithms for modeling 1D problems 
of heterogeneous combustion in porous objects [4-5] and 2D problems of the other energy release in porous media [6]. 
According to the method the energy equations, momentum conservation equation and equation for oxidizer concentration 
are transformed into the explicit finite difference equations. The gas temperature, solid phase temperature, gas velocity and 
oxidizer concentration are determined from these equations. The continuity equation is transformed into the implicit finite 
difference equation. From this equation taking into account the perfect gas equation of state the gas pressure is determined 
using Thomas algorithm [7]. The effective gas density and the remaining unknown quantities are determined trivially from 
the perfect gas equation of state and other closure equations. 
 

MAIN RESULTS 
 
Some problems of time-dependent heterogeneous combustion and other energy release in porous objects of complex shape 
have been solved numerically using original algorithms for various locations of the ignition zones (for the combustion 
process) and various locations of the heat-releasing zones (for the process of energy release without detailed chemical 
kinetics). The numerical experiments have shown that the two-dimensional time-dependent waves of heterogeneous 
combustion in porous media propagate, as well as one-dimensional combustion waves [4-5], in two modes with different 
degrees of burnout of solid combustible material. At the same time, when the initial and boundary conditions in the porous 
object are non-one-dimensional, the combustion front can move complicatedly. 
When the forced filtration takes place, the gas, moving from inlet to outlet of the porous object, tends to go around the 
heated part and prefers to flow in the cold part of the object both for combustion and for the process of energy release 
without detailed chemical kinetics. In the case of the forced filtration, the combustion wave cannot reach every part of the 
porous object as a rule, so the size of burned-out part of the porous object depends on the location of the ignition zone and 
the pressure at the object inlet. It has been shown that the partial closure of the object outlet by means of top cover can 
strongly affect the process of heat release and can greatly increase the maximal temperature in the porous object. 
When the natural convection takes place, the combustion wave can go through the all parts of the object regardless of where 
the ignition zone was located as a rule, so all combustible material in each part of the object is burned, in contrast to forced 
filtration. In the case of the natural convection, the combustion waves can move in various directions depending of the 
location of the ignition zones. During the initial period of the process in the combustion zone and in its neighbourhood the 
vortex gas flows can occur. So, the gas can come into the porous object not only through its lower border, but through its 
upper border too, where gas pressure is less, as the pressure at the lower and upper boundaries of the porous objects 
corresponds to the atmospheric pressure at assigned heights. 
The work was supported financially by the Ministry of education and science of Russian Federation (project 
14.Y26.31.0003), the Russian Foundation for Basic Research (project 16-01-00103-a), the Far-Eastern Branch of the 
Russian Academy of Sciences (project 15-I-4-021). 
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Summary We study hydrodynamic aspects during a self-sustained thermoacoustic oscillation by means of a fully compressible CFD sim-
ulation. By coupling the CFD domain to state-space formulated impedance boundary conditions, an elongation of the plenum can easily
be realized without changing the computational grid. We obtain different states of self-sustained thermoacoustic oscillations by varying the
plenum length of the setup. Instantaneous flow fields reveal a vortex shedding at the burner plate of the investigated slit burner induced
by large velocity fluctuations. The vortices are transported downstream by convection and interact with each other and the flame front,
respectively. We observe that vortex-vortex and vortex-flame interactions influence the form of the thermoacoustic oscillations strongly.

INTRODUCTION

A profound understanding of thermoacoustic oscillations is important, as they can limit the operating range of combustion
devices like gas turbines. Kabiraj et al. [3] experimentally observed various types of complex self-excited thermoacoustic
oscillations in a Rijke burner by varying the flame position. A similar setup was numerically studied by Kashinath et al. [4].
In their work a G-Equation based model was used to carry out a bifurcation analysis with the flame position as a bifurcation
parameter. However, the proposed model was not capable of capturing important hydrodynamic effects such as e.g. vortex
shedding or vortex-flame interactions. Hence, only a qualitative agreement with experimental results can be expected. To
circumvent these shortcomings, a more realistic model is used in the present work that couples a fully compressible Navier-
Stokes approach with 2-step reaction scheme (AVBP, Cerfacs) to a low-order acoustic model at the boundaries. It takes the
acoustics as well as hydrodynamic effects into account and permits a detailed evaluation of instantaneous flow fields and the
therein resolved hydrodynamics during self-excited thermoacoustic oscillations. This coupled model was successfully cross-
validated in the work of Jaensch et al. [1] against a weakly compressible model, which takes the thermoacoustic feedback into
account via a coupled acoustic network model. While in [1] the focus was laid on time series analysis, in the present work we
investigate observed flow structures. We find that shed vortices and their interaction with the flame exhibit distinct non-linear
effects on the thermoacoustic oscillations which have to be considered in the formulation of suitable low-order models.

PROBLEM SETUP

The slit burner setup investigated is shown in Fig. 1. According to the experimental work of Kornilov et al. [5] the
working conditions are chosen: An inlet velocity of 0.4 m/s is imposed for a methane/air mixture with an equivalence ratio
φ = 0.8. The inlet temperature equals 293 K. A fixed temperature of 293 K is set for the plenum wall while the burner
plate and the combustion chamber wall have a fixed temperature of 373 K. On all walls no-slip conditions are applied.
Only one half of the flame is resolved in the CFD domain so a symmetry boundary condition is used. The acoustics of the
compressible CFD are coupled at the inlet and outlet to Characteristic Based State-space Boundary Conditions (CBSBC) [2].
These boundary conditions ensure that the CFD simulation exhibits a specified acoustic impedance and allow thus a virtual
extension of the plenum length LP1 (no need to modify the computational grid), whose acoustical behavior is crucial for the
thermoacoustic stability. Since complex flow phenomena are only present in close vicinity to the burner plate (LP2+LS+LC),
the impedance boundary conditions provide a computationally cheap method to take the acoustics of different plenum length
into account without resolving the fully compressible Navier-Stokes equations in this part of the setup. By continuously
elongating the plenum length LP1, the system can be driven from stable working conditions through different states of self-
sustained thermoacoustic oscillations. Two cases are shown here, see Tab. 1. Because oscillation amplitudes grow larger in
experiment L700 the CFD domain is stretched in this case to capture all relevant hydrodynamic- and combustion effects.

fu

R = 1
gd

LP1

duct
gd

R = 0CFD

LC

LP2 LS

Case LP1 LP2 LS LC cell size cells
L200 195 mm 5 mm 1 mm 20 mm 0.025 mm 65700
L700 685 mm 15 mm 1 mm 40 mm 0.025 mm 122300

Figure 1 & Table 1: Sketch of the investigated setup (left) and the respective length of two conducted experiments (right).
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RESULTS

L200: By looking at the time series of L200 (Fig. 2), we observe a period-2 oscillation for u′ and a period-1 oscillation
for Q′. Furthermore, u′ and Q′ are out of phase. u′ peaks when Q′ is minimal (see time instant (1)) and accordingly Q′

has its maximum during an intermediate minimum of u′ (4). The different types of oscillations as well as the phase between
Q′ and u′ can be explained by the flow fields at the respective time instants. When u′ peaks (1) the flame is expanded and
pushed downstream, resulting in an increase of flame surface and Q′ (2). At this instant a vortex is shed at the trailing edge
of the plate, imposing a constricting motion behind itself and traveling downstream with the flame front (3). u′ reaches here
an intermediate maximum. At instant (4) pinch off occurs. Q′ has its global maximum, while u′ reveals an intermediate
minimum similar to instant (2). Again a vortex is shed at the edge of the plate, but due to the previous pinch off the remaining
flame front is moving upstream, collides with the vortex and smears it out directly. Consequently the second vortex has only a
minor effect on the flame shape. In the following, the quickly shrinking flame surface yield a drastic decrease of heat release.

L700: The longer plenum in this case leads to more complex oscillations. The periodicity is gone butQ′ and u′ are still out
of phase. The oscillating amplitude is 7 times larger as in L200 and we find a rich hydrodynamical behavior. Two occurring
effects in this case are depicted. Firstly, increased oscillation magnitudes cause flashback phenomena and additionally shed
vortices at the leading edge of plate (1). These vortices mix unburnt gas into the region of burnt gas downstream of the
flame front, where the entrained fuel pocket is burnt in the following (not shown). Secondly, vortex-vortex interactions are
observable between the instants (2)-(4). The large inlet velocity at this time results in multiple detaching vortices that are
mutually interacting by ”vortex leapfrogging”. The upstream vortex in instant (2) overtakes the leading vortex in instant (3).
Vortex-vortex interactions have a definite impact on the flame shape and thus on the behavior of the thermoacoustic oscillation.
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Figure 2: Top: L200; Bottom: L700; Left: Time series of global Q′ and u′ at the inlet; Right: Fields at 4 distinct instants (see
time series) of CH4 mass fraction (upper half) and Q-Criterion (lower half); Isoline: Heat release; Arrows: Velocity.

CONCLUSIONS

Coupling a fully compressible CFD to low-order acoustic models at the boundaries allows to capture all relevant effects
during self-sustained thermoacoustic oscillations. Thus a detailed study of instantaneous flow fields and the therein resolved
hydrodynamics is possible with reasonable computational effort. We can show that detached vortices have a distinct non-linear
impact on the flame shape and consequently on the behavior of the thermoacoustic oscillation itself. These effects have to be
taken into account in the development of suitable and accurate non-linear low-order models.
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Summary The effect of both one- and two-dimensional spatial heterogeneities on the propagation of a detonation wave governed by 

single-step Arrhenius kinetics is computationally examined in this study. The reactive medium consists of a calorically perfect gas. The 

spatial heterogeneity can be introduced to the reactive medium as a piecewise-continuous distribution (e.g., Gaussian or step function) in 

the initial density or concentration of the reactant. In one-dimensional simulations, the resulting detonation velocity will be compared 

with that of an ideal Chapman-Jouguet detonation in a homogeneous medium with the same amount of energy release. The influence of 

the spatial heterogeneity on the detonation limits will also be computationally investigated by simulating two-dimensional detonations 

experiencing losses due to lateral expansion. 

 
INTRODUCTION 

 

   Detonation waves are supersonic combustion waves which consist of a leading shock wave propagating in an energetic 

medium followed by a zone of exothermic chemical reactions which are triggered by shock compression. The speed at 

which a detonation wave propagates in a medium with known chemical energy density can be accurately predicted by the 

classical Chapman-Jouguet (CJ) criterion, which is based on the assumption of a steady, one-dimensional detonation 

structure and a homogenous reactive medium. A large amount of experimental evidence of gaseous detonations dominated 

by a transient, multidimensional cellular or irregular structure have, however, been found in the past half century [1]. With 

activated chemical reactions (i.e., Arrhenius kinetics), Short and Stewart proved that the resulting detonation would be 

unconditionally unstable in two-dimensions [2]. The success of the steady, one-dimensional CJ criterion in predicting the 

propagation speed of a detonation wave with a highly complex, transient structure seems thus contradictory. Although this 

paradoxical situation was first articulated by Oppenheim in 1960 [3], a fully satisfactory explanation still eludes researchers.  
   In this study, the applicability of the CJ criterion on a detonation wave with a transient, irregular structure resulting from 

a spatially heterogeneous reactive medium will first be examined via one-dimensional numerical simulations. The effect of 

spatial heterogeneity on detonation limits will also be computationally investigated by simulating two-dimensional 

detonations experiencing losses due to lateral expansion. In these two-dimensional cases, the reactive system is modelled as 

a planar slab of detonable gases confined by a layer of inert material, where a critical slab thickness marks the propagation 

limit of detonation. In both one- and two-dimensional simulations, single-step Arrhenius kinetics with values of heat release 

and activation energy representing a realistic mixture of detonable gases will be incorporated. 

 

PROBLEM DESCRIPTION 

 

   The reactive system consists of an inviscid, calorically perfect gas. The gasdynamics of this system is described by the 

one- or two-dimensional reactive Euler equations in a lab-fixed reference frame. The reaction progress is monitored by a 

variable  , which represents the normalized concentration of the product. The reaction rate is governed by single-step 

Arrhenius kinetics, i.e.,                    . The pressure, density, and flow velocity are non-dimensionalized with 

respect to the initial state ahead of the leading shock front. Given a reactive system with a dimensionless energy density  , 

the CJ detonation velocity     can be calculated. The one-dimensional simulations are performed with     , activation 

energy      , and ratio of specific heats      . The pre-exponential factor         is arbitrarily chosen, so that 

the half-reaction-zone length is unity. 

  
Fig.1 Schematic representation of the problem. 
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   The one-dimensional reactive system is spatially discretized by concentrating the reactant into layers separated by inert 

gaps. The discretization is realized by initializing   as   in the reactive layers and   in the inert gaps as shown in Fig. 1. 

The spatial discreteness is described by a parameter      , where   is the reactive layer width and   the spacing 

between two consecutive layers. The energy density in each reactive layer is    , so that the average energy density of the 

overall medium is maintained at   while   is varied. As shown in Fig. 1, the detonation wave is initialized using a ZND-

structured wave propagating rightward at the ideal CJ velocity from the left end of the computational domain. 

 

RESULTS AND DISCUSSION 

 

   The simulation results of the instantaneous detonation velocity      are plotted as a function of the leading shock 

position in Fig. 2(a) and (b). As shown in Fig. 2(a), with     , the curve of      history for the continuous case 

(       and corresponds to the CJ velocity. As   decreases, the history of      exhibits fluctuations with increasing 

amplitude around or slightly above CJ velocity. In Fig. 2(b), after an initial increase,      relaxes to the CJ velocity with 

      and   equals twice the ZND half-reaction-zone length. The fluctuations in      become increasingly pronounced 

as   increases. With      , it can be identified in the velocity history shown in Fig. 2(b) that the leading shock travels 

at a significantly super-CJ speed in a reactive layer since the energy density there is twice the average value over the entire 

medium;      gradually decays to a speed below the CJ velocity in an inert gap since there is no energy release supporting 

its propagation. 

 

 
Fig. 2 History of the instantaneous detonation velocity normalized by     as a function of leading shock position with (a) 

     and various   and (b)       and various  . (c) Average detonation velocity normalized by     as a function 

of   (red circles, vs. top axis) and   (blue diamonds, vs. bottom axis). 

 

    In all simulations, the computational domain has to contain at least 15 reactive layers to observe quasi-steady 

propagation. The average detonation velocity      is measured as the leading shock travels over the last 5 reactive layers. 

As shown in Fig. 2(c), with     ,      is less than      different from     for      . As   further decreases, 

     increases significantly above    . Also shown in Fig. 2(c), with      ,      reverts to     for a heterogeneity 

size close to its half-reaction-zone length, reaches a maximum at     , and gradually decreases as   further increases. 

A similar non-monotonic effect of heterogeneity size on the detonation wave propagation is identified in the simulations of 

two-dimensional detonations propagating in a medium with sinusoidally distributed initial density [4].  

 

CONCLUSIONS 

 

   A one-dimensional reactive system representing a gaseous detonable mixture was simulated in this study. Spatial 

heterogeneity resulted in an average wave speed up to    greater than the ideal CJ velocity. This enhancing effect of 

heterogeneity on detonation speed is expected to enable detonation waves with losses to propagate beyond the limit that would 

be obtained in a homogeneous medium, and will be explored via two-dimensional simulations.  
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Summary The effect of the buoyancy-driven motion on the quasi-steady “slowly-reacting” mode of combustion of a gaseous mixture
enclosed in a spherical vessel with a constant wall temperature is addresed here. Following Frank-Kamenetskii’s (FK) analysis, combustion
is modeled by an overall Arrhenius reaction with large activation energy, resulting in a critical value of the vessel radius above which the
slowly-reacting mode of combustion no longer exists. In his buoyancy-free quasi-steady analysis the critical conditions were found to
depend on the value of the Damköhler number. For small values of Ra, temperature is given in the first approximation by the spherically
symmetric FK distribution, involving an axisymmetric annular vortex determined at leading order. The analysis is extended to investigate
the influence of convection on the resulting explosion limits through introduction of expansions for the flow variables in powers of Ra.

While the initial work of FK [1] addressed stagnant systems, for which the critical Damköhler number Dac is obtained
from the steady reaction-conduction balance, this is altered in the presence of buoyancy-driven convection, which necessarily
emerges in gaseous systems under normal gravity conditions as a result of the density differences induced by the chemical
reaction. The resulting characteristic velocities can be estimated to be of order vg = β−1ga2/ν, as follows from the balance
between viscous forces and buoyancy forces, with β the nondimensional activation energy and g and ν representing the
magnitude of the gravitational acceleration and the unperturbed value of the kinematic viscosity, respectively. Using vg to
scale the velocity reduces the continuity, momentum, and energy equations for the slowly reacting mode of combustion to

∇ · v = 0, (Ra/Pr) v · ∇v = ∇2v −∇p′ + φ ez, and Rav · ∇φ = ∇2φ+ Da eφ, (1)

where ez is the unit vector pointing upwards (against gravity) and p′ represents the pressure differences from the hydrostatic
value scaled with ρoga/β. A Boussinesq approximation has been employed in writing (1). The influence of the buoyancy-
induced motion on the associated temperature field is thus measured by the Rayleigh number, Ra = (β−1ga3)/(νDT ) with
the Grashof number, Ra/Pr, involving the Prandtl number Pr = ν/DT , similarly measuring convective transport in the
momentum equation. The description of the quasi-steady slowly reacting state accounting for buoyancy-induced motion is
obtained by integrating (1) with boundary conditions v = φ = 0 at the vessel walls. At leading order in the limit Ra � 1
the energy equation 1 reduces to the classical FK equation ∇2φ + Da eφ = 0, with the associated motion described from
the viscous-buoyancy balance ∇2v − ∇p′ + φ ez = 0, stemming from the momentum conservation equation in that same
limit. The small deviations from the FK solution resulting from the presence of slow fluid motion for Ra� 1 can be formally
addressed by expanding the different fluid variables in powers of Ra. Because of the extremely slow motion found at leading
order, it will be found that the resulting predictions, although formally applicable only for small values of Ra, remain accurate
even for quite large values of Ra. In principle, for many values of Da the asymptotic solution in the limit Ra � 1 can be ad-
dressed as the problem of computing the perturbations arising for a fixed value of Da. Such a strategy is inadequate, however,
near the turning point of the bifurcation curve giving the temperature at the center of the vessel as a function of Da because
there is no leading-order solution that can be perturbed for Da > Dac. Therefore a different perturbation scheme must be
adopted to enable corrections to Dac to be determined. For that reason, in the analysis outlined below we begin by prescribing
the temperature at the center of the vessel φo, corresponding to a value Da = DaFK of the associated FK Damköhler number
in the absence of convection (i.e. for Ra = 0). The problem is then posed as that of finding the perturbed Damköhler number
Da 6= DaFK that, for a given value of Ra� 1, results in a temperature at the center of the vessel equal to φo. It is evident, for
example from Fig. 1(a), that leading-order solutions exist for all values of φo.

Besides expansions for the different variables of the form

φ−φFK = Raφ1 + Ra2φ2 +O(Ra3), ω−ωFK = Raω1 + Ra2ω2 +O(Ra3), ψ−ψFK = Raψ1 + Ra2ψ2 +O(Ra3), (2)

the development requires introduction of an expansion for the Damköhler number Da = DaFK[1 + Raδ1 + Ra2δ2 +O(Ra3)],
where ω is the magnitude of the vorticity and ψ is the stream function, which is introduced to facilitate the description of the
motion. The terms in the above expansions are determined by solving sequentially the different problems that arise at different
orders in powers of Ra when introducing (2) together with the Damköhler number expansion into the equation for the vorticity
[obtained by taking the curl of the momentum equation in (1)] and the energy equation, with the condition φj = 0 applying at
all orders j = 1, 2, . . . , for the temperature perturbations at the center r = 0. Although a term proportional to Ra is included
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Figure 1: (a) The universal FK functions, u(λ) and w(λ), where u = Da r2eφFK , w = −rφ′FK and λ := φo − φFK is the
temperature drop variable. (b) Streamlines and isocontours of vorticity for Da = 3.322 for the FK vortex. (c) FK explosion
curve and modified explosion curves for Ra = 100, 200 and 300, accompanied by the auxiliary functions FFK and ΓFK/r.

in the expansion of Da for consistency with (2), it can be shown that this term is identically zero, so that the corrections to
the explosion curve φo − Da are of order Ra2. Introduction of spherical coordinates with origin at the vessel suggests the
definition of auxiliary variables such that

ωFK = − sin θΓFK/r, ψFK = sin2 θFFK, (3)

φ1 = cos θH1 +H1, ω1 = − sin θ cos θΓ1/r, ψ1 = sin2 θ cos θF1, φ2 = cos2 θH2 +H2, (4)

which reduces the problem to that of integrating a set of boundary value problems in the radial coordinate with corresponding
boundary conditions. To make the description universal, equidimensionality is leveraged from the resulting set of differential
equations (using a similar methodology as described in [2]), allowing to further reduce the problem to integrating an au-
tonomous system, ultimately enabling us to determine the factor δ2 as an eigenvalue of a second-order differential problem in
quasi-analytic form. The function δ2(φ0) can be used to evaluate the modified explosion curves

Da = DaFK(1 + Ra2δ2). (5)

This is illustrated in Fig. 3(c), which includes comparisons of (5) with results of numerical integration of (1) for Ra = 100, 200
and 300.
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Summary Propellant fires can be especially dangerous as the combusting materials are designed to liberate a large amount of energy in
a relatively small timescale. In any industrial fire, the size of the event is important knowledge as it can guide in the proper design of
equipments and facilities. This paper looks at the flame height of propellant fires through distance measurement of experimental tests video
recordings. It is found that by properly scaling the configuration variables, a simple relationship is obtained between the horizontal and
vertical dimensions of the event. The final result is coherent with the conclusions of previous studies involving a variety of other materials.

The ability to predict the size of an accidental fire is useful in planning the disposition of equipment, material and people
inside industrial buildings. A proper design should limit secondary ignition sources and ensure the safety of everyone around.
Because of its importance in safety problems, flame height has been studied extensively. A study published in 1961 proposes
the following general expression for the height of liquid pool fires [1]:

H = 1.7D (1)

In trying to obtain more general results, subsequent studies have used the power generation of the fires. One of the popular
dimensionless scaling of the power generation was developed by Zukoski [2]. More recent correlations have been proposed
by Quintiere et al. [3]. These last results use the chemical heat of combustion and Froude number to account for combustion
efficiency, source geometry and air entrainment more precisely.

A series of large scale open air burnings were performed on propellant samples ranging from 1 kg to 1000 kg [4]. Single
base (nitrocellulose) and double base (nitrocellulose and nitroglycerin) propellant formulations were used for these trials.
The events were captured on a Casio Exilim camera at a rate of 256 frames per second and a reference distance marker was
placed beside the sample. The footage captured for each fire was reviewed on a frame by frame basis using the Matlab Image
Processing Toolbox [5]. The width at the base and top of the fire and total height were noted. A photo of the setup and a
sample measurement plot of all trials are shown on Figure 1. When observing the initial and maximum base fire width, it is
observed that the fire plume often extends to a lateral width greater than the original propellant stack diameter. Three main
behaviors have been noted:

• Fireball generation and expansion – propellant stack engulfed by the fireball

• Steady growth with propellant grains projection – ignition by contact with projections

• Steady growth – closer to ideal surface flame spread

(a) Test setup

(b) Flame heights measurements for cases involving 68
kg (square marker), 136 kg (triangular marker) and 909
kg (circular marker) of single base propellant

Figure 1: Photograph of the test setup and plot of measured flame heights as a function of time for three single base fires.

∗Corresponding author. Email: frede pa@encs.concordia.ca
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(a) (b)

Figure 2: Comparison of the measured base fire plume diameter and total height. In these plots, the double base diameter data
is shown both in an unscaled (a) and scaled (b) format while the single base data is always unscaled. The triangular and square
markers represent two different single base propellants. The circular markers represents a double base propellant. Note that
the solid lines represent a linear regression through the corresponding data.

In the first case, the expanding fireball explains the larger values obtained. For the second case, the projected grains
ultimately collect outside of the propellant stack, which result in a larger apparent diameter. The third case is only observed
with slower burning propellants.

Using the recorded dimensional data for the test fires, it is possible to verify if a correlation between the fire height and
diameter can be found. The flame height and base diameter are compared in Figure 2a for all tested propellant types and
quantities. Note that Figure 2a contains all the data points from ignition to maximum for the test cases (as opposed to only the
maximum values). Not including the points beyond the maximum base diameter is a logical choice as the diameter will vary
when the fuel depletes and thus not yield reliable results.

Two families of points can be observed in Figure 2a. These families correspond to the single and double base propellants.
Linear regression lines are given for each family and show the slopes to be different. The main familly cases have slopes
varying from 2.41 to 2.71. The second familly has a slope of 1.45. In order to properly analyze the data, it is important to
visualize the main difference between the families. Other than differences in power generation, the second family (double
base case) has one important particularity: it is the only one for which the measured base diameter is larger then the actual
source diameter. For the other cases, the source diameter can become larger than the original diameter due to projections. In
keeping with the methodology of previous studies, it is the actual source diameter which should be considered when studying
the flame height. Correcting the double base data to account for the original base diameter yields what is shown on Figure 2b.
It can be observed that the diameter correction has the effect of merging the two families by increasing the double base slope
from 1.45 to 2.86. By taking an average slope of 2.63, all the tested case can be by a single flame height correlation:

H = 2.63D (2)

The observed variation in slope gives an indication of the error bound for this relation. With the obtained extremes, a variation
of ±9% is expected for the flame height. Given the fact that the test cases cover power generations relevant to most propellants
used, it is thus not necessary to go any further in this analysis. The simple relationship found here is precise enough to describe
relevant cases provided that the correct base dimension is used.
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Summary This paper numerically investigates ignition and combustion stabilization in supersonic droplet-laden shear flows. The spatially 
developing turbulent shear flow separates two hot air streams with different velocities and fuel droplets are injected at the flow inlet to form 
premixed reactive mixtures. Due to the high compressibility of the present supersonic shear flow, ignition occurs in the high-strain vortex-braid 
regions but the reactive mixtures entrained in the large eddies are difficult to be ignited at normal atmospheric pressure. Therefore, we increase 
ambient pressure and introduce oblique shock wave to achieve ignition enhancement and flame stabilization. The results show that the pressure 
perturbation in the combustion field is enhanced by combustion reaction and increase in internal pressure. The post-shock ignition kernel that is 
found to exist around the point of maximum temperature, depending on the profiles of the fuel concentration, temperature and Mach number 
across the shear layer. 

 
INTRODUCTION 

 
Spray combustion is utilized in many industrial devises including energy conversion devices and propulsion systems. 

Recently the design of combustion systems for supersonic propulsion faces difficulties associated with the high compressibility 
of the flow and the high flow velocity, which limits the residence time available for both fuel-oxidizer mixing and combustion. 
Combustion stabilization and flame anchoring in high-speed flows must depend on auto-ignition of the reactive mixture. The 
auto-ignition of fuel-oxidizer mixtures strongly relies on the temperature and the pressure, which affect the droplet evaporation 
and the chemical reaction rate. Therefore, the elevated temperature and the increasing ambient pressure in the highly strained 
shear layers facilitate auto-ignition in supersonic flows. The research on the effects of the ambient pressure on the droplet 
evaporation has shown the pressure dependence of droplet lifetime and increasing the pressure contributes to the increase of the 
chemical reaction rate. Local compression by shock waves impinging on shear layers promotes auto-ignition by raising the 
temperature and the pressure of the shocked gas, which is also the phenomenon addressed in this paper. 
 

FORMULATION 
 

The gas-phase is governed by the compressible Navier-Stokes equations together with species transport equations. The 
spray is sparsely dispersed and every single droplet is unaware of the existence of the other droplets. A finite difference 
methodology is used to discretize the conservative equations. An explicit third-order Runge-Kutta methodology is applied 
for time-integration. The non-viscous flux is evaluated via using a fifth-order adaptive central-upwind weighted essentially 
non-oscillatory (WENO) scheme for considering the efficiency of calculating smooth turbulent field and for resolution of 
shock-capturing calculation. For the calculation of droplet-phase, a fourth-order Lagragian interpolation method is 
employed to compute the physical quantities of gas phase at the droplet location. The position, velocity and temperature of 
droplets along trajectories are integrated by a third-order Adams scheme. The flow configuration is that of a spatially 
developing shear layer, as depicted in Figure 1, which is formed between a stream of high-speed air moving at velocity UA1 
and a stream of low-speed air moving at velocity UA2. The velocity ratio, rU=UA2/UA1, is 0.5 and the convective Mach 
number (Mc) based on the initial velocity difference is 0.4. Lp is the penetration length of droplets and δ is the shear layer 
thickness. Pure n-decane spray is injected at the center of the shear layer inlet. The droplets are initially randomly seeded, 
with a same size. The initial droplet velocity is identical to the local gas velocity and initial droplet temperature is 
Td=298.15K. Table 1 lists the inflow parameters and the cases performed in this study. The incident angle of oblique shock 
in Case C is 27°, hence the post-shock pressure equals with the ambient pressure in Case B. 

 
Figure 1. Schematic of a fuel spray in a two-dimensional turbulent shear layer. 

Table 1. Cases and computational conditions. 
Case Pressure (MPa) Temperature (K) Oblique shock  
A 0.1 1000 No 
B 0.2 1000 No 
C 0.1 1000 Yes 
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RESULTS AND DISCUSSTION 

 
   Figure 2 shows the general features of spray combustion field. It is observed that fuel droplets evaporate in the upstream 
region and the increase of ambient pressure do not have significant effects on the evaporation process and the penetration 
depth. Flame is formed in the high-strain vortex-braid regions for Case A and fuels vapors entrained in the large eddies are 
not consumed. The increase of ambient pressure accelerates the ignition obviously for Case B and fuel vapors combusted in 
a short distance, resulting in a stable flame formed in the large eddies. Shock-wave impingement also triggers ignition in 
supersonic flows to lead to establishment of premixed flames by raising the temperature and the pressure of the shocked gas.  
   Maximum dimensionless temperatures in the flow-field and fluctuations of pressure at probe P5 located at x/δ0=2000 are 
recorded, as shown in Figure 3. Here, T* 

ig is the auto-ignition temperature and  is the average of the maximum value. 
Ignition occurs in a short time for Cases A and B and the fluctuation amplitude of maximum dimensionless temperatures is 
much smaller than that of Case B. However, the fluctuations of pressure show that the fluctuation amplitude for Cases B 
and C is almost twice that of Case A. In addition, there is a phase difference of pressure fluctuations between Cases A & B 
and Case C due to the impingement of shock waves. 

(a) (b) 

 
(c) 

Figure 2. Instantaneous distributions of dimensionless gaseous temperature and fuel mass fraction, with blue isolines given by 
Ω=[0.015, 0.025, 0.035]: (a) Case A; (b) Case B; and (c) Case C. Here, the white dots indicate fuel droplets.
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Figure 3. Maximum dimensionless gaseous temperatures in the flow-field during five flow circles (left) and fluctuations 
of pressure at probe P5 during one flow circle (right).

 
CONCLUSIONS 

 
   In this study, effects of ambient pressure and shock-wave impingement on ignition and flame stabilization are investigated. 
Ignition in supersonic turbulent flows tends to occur around the points of peak temperature and pressure. The ignition dynamics 
is sensitive to intermittent fluctuations of turbulent flows. The increase of temperature and pressure contributes to stable the 
flame formed in large energetic eddies. 
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A VARIATIONAL FRAMEWORK FOR REACTIVE FLOWS AND SHOCK WAVES
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Summary For physical systems formulated within the framework of Lagrange formalism the dynamics is completely defined by only one
function: the Lagrangian. This concept successfully applies e.g. to Newtonian mechanics, quantum mechanics, electrodynamics and nuclear
physics. In continuum theories, however, many open problems remain up to date. In this paper is shown how reactive flows and shock waves
are embedded into the framework of Lagrange formalism: motivated by ideas formulated by Anthony [1], an existing Lagrangian of Seliger
and Whitham [2] for adiabatic baroclinic flow is extended towards flows with chemically reacting agents along the line of a systematic
procedure [3].

A key feature is the use of complex fields, invoking discontinuities of the Lagrangian for irreversible processes and therefore requiring an
extension of the general formalism. This allows for elaborating systems in thermofluiddynamics with discontinuities in general and with
shock waves in particular.

The present state of the theory and examples are shown.

PRELIMINARY WORK

Despite the great success of Lagrange formalism in classical mechanics, a convincing formulation of fluid dynamics,
especially thermofluiddynamics including irreversible processes, has not been established yet. The first contribution toward
this topic, although restricted to inviscid irrotational flows, was proposed by Clebsch [4], who found a variational formulation
based on the following potential representation of the velocity,

~u = ∇χ+ α∇β , (1)

known as Clebsch transformation [5].
Since viscosity leads to dissipation and therefore to the irreversible transfer of mechanical energy to heat, thermal degrees

of freedom have to be considered in order to remain consistent to Noether’s theorem which implies conservation of energy
for systems with time-translation invariance, because otherwise the time-translation invariance would have to be violated by
an explicit time-dependence. Seliger and Whitham [2] made a suggestion how to embed thermal degrees of freedom in a
variational formulation of fluid flow by the Lagrangian

` = −%
[
∂tχ+ α∂tβ − s∂tϑ+

~u2

2
+ e(%, s)

]
(2)

~u = ∇χ+ α∇β − s∇ϑ (3)

where e(%, s) denotes the specific inner energy, given in terms of the mass density %, specific entropy s, the three Clebsch
potentials χ, α, β and an additional potential ϑ. The meaning of the latter one becomes apparent by calculating the Euler
Lagrange equation with respect to s, giving the ‘potential representation’

{∂t + ~u · ∇}ϑ =
∂e

∂s
= T , (4)

for the temperature T , which has already been used three decades before by Van Dantzig, who termed the field ϑ as ther-
masy [6]. Although still restricted to adiabatic and therefore reversible processes, the Lagrangian (2) seems to be a momentous
step forward because of the rudimentary embedding of thermodynamics.

CHEMICAL REACTIONS WITH CONVECTION

By comparing the two potential representations (3) and (1), it becomes apparent that any kind of extension of the systems,
by additional degrees of freedom as well as by additional physical effects, requires an adjustment of the potential representation
By Scholle [3] a general explanation for the necessity to use different potential representation of the observables for different
physical systems is given along the line of a rigorous analysis of fundamental symmetries the Lagrangian has to fulfill, with
particular regard to Galilean invariance. In the same paper an easily manageable symmetry criterion for verifying Galilean
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invariance is derived, which finally leads to a general construction rules for Lagrangians. It is demonstrated that for fluid
systems with chemical reactions this criterion is fulfilled by a Lagrangian of the form

` = −%

[
∂tχ+ α∂tβ − s∂tϑ−

∑
i

ci∂tϑi +
~u2

2
+ F (%, s, ci, ϑ, ϑi, · · ·)

]
(5)

~u = ∇χ+ α∇β − s∇ϑ−
∑
i

ci∇ϑi (6)

containing as additional fields: (i) the concentration ci of the i-th constituent and (ii) its conjugated field ϑi which by variation
with respect to ci fulfills the evolution equation

{∂t + ~u · ∇}ϑi =
∂F

∂ci
= µi , (7)

with the chemical potential µi of the i-th constituent. Since the analogy to the thermasy ϑ and its evolution equation (4) is
obvious, ϑi is termed as chemasy subsequently.

DISCONTINUOUS LAGRANGIANS, IRREVERSIBLE PROCESSES AND SHOCK WAVES

The proposed Lagrangian (5) is obviously a generalization of Seliger and Whitham’s Lagrangian (2), but also a generaliza-
tion of another Lagrangian proposed by Anthony [1] for chemical reactions within a medium at rest, if thermasy and chemasy
are substituted according to ϑω = −Tϕ and ϑiω = −µiϕi by non-dimensional fields ϕ and ϕi which are interpreted as
phases of respective complex fields χ =

√
T exp(iϕ) and ψi =

√
µi exp(iϕi) related to heat and to the chemical constituents.

The constant frequency ω has to be introduced due to dimensional reasons. This alternative representation in terms of complex
fields can be understood as the inversion of Madelung’s idea [7] of reformulating the complex Schrödinger’s equation into
a hydrodynamic form. Depending on reversibility or irreversibility of the process the Lagrangian turns out to by continuous
or discontinuous. The latter case, in particular, is outside the scope of classical Lagrange formalism and therefore requires a
general analysis of variation based on a discontinuous Lagrangian as roughly sketched subsequently.

We consider in general a variational principle δI = 0 based on N independent fields ψi. The Lagrangian ` is assumed to
be discontinuous with respect to ψN = ϕ at fixed values ϕn, but continuous differentiable with respect to all other fields and
also with respect to the derivatives. In three-dimensional space, the discontinuities ϕ = ϕn become manifest along surfaces
Sn(t). From a physical viewpoint, these time-dependent inner boundaries are propagating shock fronts. By variation δI = 0,

~n ·
[

∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]
−
− ~n ·

[
∂`

∂∇ψi
− ~vs

∂`

∂ψ̇i

]
+

= 0 (8)

∇ϕ ·
[
∂`

∂∇ϕ
− ~vs

∂`

∂ϕ̇

]
−
−∇ϕ ·

[
∂`

∂∇ϕ
− ~vs

∂`

∂ϕ̇

]
+

= [l]− − [l]+ (9)

are obtained next to the usual Euler-Lagrange equations as matching conditions (8) and jump condition (9) for the fluxes at
each shock front. In above formulae ~n denotes the normal vector of the shock front and [· · ·]± indicates the limit of the
respective discontinuous expression by approaching from the front side or the back side of the shock.

CONCLUDING REMARKS

This methodical framework is at a early stage on the one hand but promises a high potential on the other hand. Especially
the choice of the function F in the Lagrangian (5) opens many perspectives toward many different problems related to reactive
flows and shock waves, also for the development of numerical codes.

References

[1] Anthony K.-H.: Hamilton’s action principle and thermodynamics of irreversible processes – a unifying procedure for reversible and irreversible pro-
cesses. J. Non-Newt. Fluid Mech. 96:291-339, 2001.

[2] Seliger R. L., Whitham G. B.: Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305:1-25, 1968.
[3] Scholle M.: Construction of Lagrangians in continuum theories. Proc. R. Soc. Lond. A 460:3241-3260, 2004.
[4] Clebsch A.: Ueber die Integration der Hydrodynamischen Gleichungen. J. f. d. reine u. angew. Math. 56:1-10, 1859.
[5] Lamb H.: Hydrodynamics. Cambridge University Press, 1974.
[6] Van Dantzig D.: On the phenomenological thermodynamics of moving matter. Physica 6:673-704, 1939.
[7] Madelung E.: Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik 40:322-326, 1927.

642



 

 

a)Corresponding author. Email:hhteng@imech.ac.cn. 
 

XXIVICTAM, 21-26 August 2016, Montreal, Canada 

INITIATION CHARACTERISTICS OF OBLIQUE DETONATION WAVES IN HYDROGEN-

AIR MIXTURE  
 

Honghui Teng1a), Hoi Dick Ng2&Zonglin Jiang1 
1
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 

Beijing, China 
2
Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, Canada 

 
SummaryThe initiation features of two-dimensional, oblique detonations from a wedge in a stoichiometric hydrogen-air mixture are 
investigated via numerical simulations using the reactive Euler equations with detailed chemistry. A parametric study is performed to analyze 
the effect of inflow pressure P0, and Mach number M0 on the initiation structure and length. Quantitatively the initiation length decreases with 
increasing M0, primarily due to the increase of post-shock temperature. The effect of M0 on initiation length is independent of P0, but given the 
same M0, the length is found to be inversely proportional to P0. Theoretical analysis based on the constant volume combustion (CVC) theory is 
also performed, which are close to the numerical simulations in the case of high M0 regardless of P0, demonstrating that temperature is the key 
parameter affecting the initiation. Decreasing M0, the CVC theory breaks down, suggesting a switch from chemical kinetics-controlled to a 
wave-controlled gasdynamic process. 
 

INTRODUCTION 

 
In recent years, the idea of using oblique detonation waves (ODW) for high efficiency propulsion systems have generated 
great interest in the development of air-breathing hypersonic aircrafts [1]. This hypersonic propulsion concept not only has 
the advantages of the scramjet, but also achieves high thermal cycle efficiency through the detonation mode of combustion 
[3]. However, for proper design and operation of ODW engines, it is critical to predict the necessary conditions and 
understand the mechanism behind the ODW initiation from a wedge. 
Classical theory on ODWs simplifies the structure into an oblique shock wave with a post-shock energy release zone 
attached to the wedge. The formation of oblique detonations was first analyzed numerically by Li et al. [2], who observed a 
structure composed of a nonreactive oblique shock, an induction region, a set of deflagration waves, and the oblique 
detonation surface. This abrupt, steady, oblique shock-to-detonation transition by a multi-wave point is confirmed 
experimentally, and the formation of unstable cellular structures on the established oblique detonation surface are also 
revealed numerically downstream of the kink-like, oblique shock-to-detonation transition [3]. 
In this work, numerical simulations are conducted to further investigate the initiation characteristics of ODW from a wedge. 
As shown from [4], both aerodynamic and mixture thermodynamic properties greatly influence the initiation of detonation. 
As such, a parametric study is performed here using two bifurcation parameters: the incident Mach number M0, and inflow 
pressure P0. Most of the previous studies used simplified chemical reaction models, mainly the one- or two-step irreversible 
Arrhenius-type, temperature dependent kinetic model. The influence of M0 is analyzed in almost every of these 
investigations, but the effect of inflow pressure P0 is seldomly discussed due to the use of simplified chemical kinetic 
models. To address this drawback, ODWs in a stoichiometric hydrogen-air mixture are investigated here with detailed 
chemistry. The effect of both M0 and P0 on the initiation characteristics are analyzed, by looking at the variation of a 
characteristic length scale describing the initiation process. 
 

COMPUTATIONAL DETAILS 

 

The presence of a wedge in supersonic inflow induces first an oblique shock wave (OSW). For a high inflow Mach number 
causing a high post-shock temperature behind the OSW, an exothermic chemical reaction begins, leading to the formation 
of an oblique detonation wave (ODW). For the computation, the coordinate is rotated to the direction along the wedge 
surface. The analysis is based on the 2D, multi-species, Euler equations, with an H2/O2 chemical mechanism for high-
pressure combustion [5] is considered. This mechanism involves 27 reversible elementary reactions among the 8 species H2, 
O2, H2O, H, O, OH, HO2, and H2O2, with 5 non-reacting species, N2, Ar, He, CO, and CO2. The governing equations are 
discretized on Cartesian uniform grids and solved with the DCD (Dispersion-Controlled Dissipation) scheme [6] with 
Strang’s splitting. A stoichiometric hydrogen-air mixture with H2:O2:N2 = 2:1:3.76 is used. Because of the multi-scale 
nature of the phenomena, both the computational domain and mesh scale are adjusted. In this study, the numerical grid 
resolution used for different cases varies from a coarsest mesh of 64 m to the finest mesh of 2 m. The results are also 
examined to ensure that the ODW initiation structure is unaffected by the influence of mesh properties. 
 

NUMERICAL RESULTS  
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Twelve cases are simulated to study the initiation characteristics of oblique detonations, with incident Mach number M0 = 
10.0, 9.0, 8.0, 7.0 and inflow pressure P0 = 1.0, 0.5, 0.2 atm. The present numerical results demonstrate that the two 
transition patterns, i.e., an abrupt transition from a multi-wave point connecting the oblique shock and the detonation 
surface and a smooth transition via a curved shock, depend strongly on the inflow Mach number, while the inflow pressure 
is found to have little effect on the oblique shock-to-detonation transition type. The present results also reveal a slightly 
more complex structure of abrupt transition type in the case of M0 = 7.0, consisting of various ignition processes in the 
shocked gas mixtures 
To further quantify the effect of these two parameters, a characteristic initiation length, Lc, is considered for the following 
analysis. The initiation length is defined along the flow stream direction, parallel with the x-axis. It starts from the oblique 
shock and terminates at the end of the induction zone, i.e., the location at which the temperature increases over 10%. Note 
that the lengths are different depending on the distance from the wedge, and thus, for convenience, the characteristic length 
of initiation is given by the maximum value for each case of (M0, P0), always located on the wedge surface. For a given P0, 
Lc decreases when M0 increases. The decrease in Lc with increasing M0 can be explained by the increase of post-shock 
temperature. Moreover, we notice that Lc is almost inversely proportional to P0. the inverse proportionality gives a relatively 
good zero-order characterization of the initiation length as a function of inflow pressure. 
Following our previous work [7], a theoretical approach based on constant volume combustion (CVC) theory is used to 
estimate Lc with post-oblique-shock conditions. This theoretical approach assumes a flow structure where near the wedge, 
the mixture is completely burned, and pressure build-up and the formation of pressure waves are weak. The initiation is thus 
assumed to be kinetically-controlled. First, the post-oblique-shock specie densities and temperature are used to simulate 
CVC to obtain the reaction time required to attain a mixture temperature with 10% increase from its post-shock value. The 
initiation length Lc is then calculated by multiplying the time with the post-oblique-shock particle velocity. Despite a simple 
formulation, this analysis provides a predictive approach for the general structure of oblique detonations. For P0 = 0.2 atm, 
both results are in good agreement. It appears more difficult to predict the initiation length in the case high P0 using this 
simplified chemical kinetic approach. Overall, theoretical results are close to numerical ones in the case of high M0 
regardless of P0. When M0 decreases, the present theory deviates faster in the case of high P0. 
 

CONCLUDING REMARKS 

 
Two-dimensional, oblique detonations induced by a wedge were simulated to study the initiation structure and length with 
differing inflow Mach number M0 and pressure P0 in a stoichiometric hydrogen-air mixture. Analysis of the characteristic 
initiation length, defined along the flow stream direction, parallel with the x-axis from the oblique shock and terminating at 
the end of induction zone, shows it to decrease with increasing M0 primarily due to the increase in post-shock temperature, 
and the effect of M0 on the initiation length is independent of P0. The present numerical results also show that given a M0, 
the initiation length is roughly inversely proportional to P0. 
Chemical kinetic calculations based on constant volume combustion (CVC) theory were performed to estimate the initiation 
length and compared with numerical simulations. Overall, theoretical results from chemical kinetic calculation are shown to 
be close to the numerical ones for all cases of high M0 regardless of P0, demonstrating that the temperature is the key 
parameter and the initiation is kinetically-controlled. In contrast, at lower M0, theoretical results for high P0 diverge faster 
than those of low P0 due to the non-monotonic behavior of the induction kinetics at elevated pressure from the explosion 
characteristics of hydrogen. The complex, gasdynamic structure in the case of low M0 eventually causes the breakdown of 
CVC theory predictions. The onset of deviation between the theoretical estimation with the numerical results indirectly 
provides an indication of the transition mechanism from an ignition- (or kinetically-) controlled process to a wave-
controlled gasdynamic initiation phenomenon.  
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Summary Shock-boundary layer interactions in hypervelocity flows have been demonstrated to be sensitive to nonequilibrium, with the
macroscopic features of the flow responding to changes in the molecular processes. Experiments are carried out examining interactions over
double-wedge and double-cone geometries while varying the freestream oxygen content from nitrogen to air. Time-resolved high speed
schlieren and chemiluminescence imaging, together with vibrational temperature measurements, quantify the response of flow features as a
function of the thermochemical state.

INTRODUCTION

Shock-boundary layer interaction (SBLI) can induce flow distortion, create flow separation with loss of control author-
ity, and, particularly in high enthalpy conditions, result in severe heating rates due to flow impingement. In hypervelocity
flows, SBLI predictions have been demonstrated to be very sensitive to the choice of thermochemical model. State-of-the-
art simulations and experiments showed universally poor agreement in high enthalpy (>5 MJ/kg) air flows with significant
thermochemical activity, in spite of good agreement at lower enthalpies [1]. For example, simulations predict a decrease in
separation length with increasing freestream enthalpy, but this is not observed experimentally [2]; experiments measured three
times less nitric oxide in the freestream than predicted [3]. Unraveling the fluid-thermochemical coupling in highly nonequi-
librium environments is an extremely challenging problem due to the disparity in both the spatial and temporal scales, even
if the flow is laminar. Shock interactions which respond on the measurable macroscale to changes in the molecular processes
provide valuable diagnostic tools for studying the inter-scale energy exchange.

Experiments are carried out in the Hypervelocity Expansion Tube (HET) [4]. The facility has the flexibility to achieve
a range of test gas conditions while minimizing freestream dissociation. Our approach is to vary the oxygen content in the
freestream from nitrogen to air, while maintaining the other flow parameters to within 2%, with the goal of examining the
response of the shock configurations and chemiluminescence in different regions of the interaction. We also measure the
vibrational temperature of post-shock nitric oxide (experimental setup described in more detail in Sharma et al. [5]).

EXPERIMENTAL SETUP

A 25-55 degree double-cone and 30-55 degree double-wedge model are sting mounted in the HET. The model config-
urations are designed to match the cone-angles of previous studies for directly comparable measurements [1, 2, 6]. More
details on the models can be found in Swantek and Austin [7]. Freestream conditions are calculated using one-dimensional
gas dynamics assuming equilibrium flow through the facility operation. The chemical composition of the test gas was: nom-
inally pure nitrogen (we note there is some residual oxygen even after the facility is evacuated, estimated at 2%), 30%, 50%,
80% percent oxygen, and air. The percent oxygen refers to the content relative to air, which corresponds to 100% using our
nomenclature. Equilibrium post-shock conditions are listed in Table 1.

Schlieren images are captured using a pco.1600 Cooke camera (exposure 1 µs) and the system is illuminated by Xenon
437B nanopulse system. Chemiluminescence images are obtained using the same camera in a repeat experiment with no light
source and with a 4 µs exposure. Vibrational temperature measurements of nitric oxide are made at selected points using
emission spectroscopy in the experimental setup described in more detail in Sharma et al. [5].

Table 1: Calculated equilibrium post-shock conditions for HET tests. % O2 is relative to air at 100%.

% O2 T∞ p∞ ρ∞ N2 N O2 O NO
K kPa kg/m3

0 5201.8 47906.8 2.989e-02 9.268e-01 7.323e-02 0.000e+00 0.000e+00 0.000e+00
30 4840.1 48684.8 3.153e-02 8.346e-01 2.961e-02 2.457e-04 1.290e-01 6.614e-03
50 4551.0 49271.1 3.323e-02 7.778e-01 1.316e-02 1.283e-03 1.950e-01 1.269e-02
80 4136.0 50154.4 3.634e-02 7.012e-01 3.411e-03 9.148e-03 2.608e-01 2.540e-02

100 3956.9 50626.1 3.806e-02 6.595e-01 1.738e-03 2.150e-02 2.836e-01 3.357e-02
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a) b) c)

Figure 1: Overlaid schlieren and chemiluminescence (false color) images of SBLI over a double-wedge geometry from two
repeat experiments in a) nitrogen, b) 80% O2 content of air, and c) air.

a) b)

Figure 2: a) Lead shock location. b) NO vibrational temperature measurements downstream of the bow shock.

RESULTS

Overlaid schlieren and chemiluminescence images indicate changes in extent of thermochemical reactions with varying
freestream oxygen, Figure 1. In all cases, there is chemiluminescence signal behind the bow and separation shocks, but not
the oblique shock, with the greatest signal in the region of flow impingement on the second wedge. In the nitrogen case,
the separation shock interacts with the bow shock and the separation length is greatest. As expected, the bow shock standoff
distance decreases with increasing oxygen content, and the region of greatest chemiluminescence signal is reduced.

An edge detection algorithm was applied to the schlieren images from repeat experiments, Figure 2a). The bow shock
standoff distance decreases with increasing oxygen content as discussed above. An interesting feature of the data is that up to
50% O2, the standoff distance is the same as the nitrogen case to within the experimental measurements. A transition in the
location of the bow shock is apparent between 50 and 80% O2. We compare this transition in shock location with post-shock
temperature measurements obtained using emission spectroscopy, Figure 2b). The vibrational temperature in nitrogen (with
2% residual O2) and 50% O2 are similar, while a decrease in the temperature is measured in the 80% case towards the lower
temperature in air. We are further investigating this apparent transition between 50 and 80% O2 content.

This work was funded by AFOSR FA 9550-15-1-0288 with Dr. Ivett Leyva as program officer.
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Summary In this work we investigate the influence of dense gas effects on compressible wall-bounded turbulence. Direct numerical
simulations of supersonic turbulent channel flows are performed both for air and PP11, a heavy fluorocarbon representative of dense gases.
Using different thermodynamic models, a parametric study on the bulk Mach and Reynolds numbers is carried out. In the dense-gas flow,
friction heating effects are reduced due to the much smaller coupling between thermal and kinetic fields. The location of peak values for the
premultiplied spectra of thermodynamic variables changes and the characteristic size of the observed turbulent structures is closer to that
observed in incompressible turbulence.

Turbulent flows of dense gases represent a research field of great importance for a wide range of applications. Dense gases
are usually defined as single-phase fluids with complex molecules, at pressure and temperature conditions of the same order
of magnitude of their thermodynamic critical point (see, e.g., [1] and reference cited therein). In the transonic and supersonic
regime, they may exhibit nonclassical phenomena, in particular for the family of Bethe–Zeldovich–Thompson (BZT) fluids,
which may exhibit expansion shocks in particular thermodynamic conditions [2]. In this work we investigate the influence
of dense gas effects on compressible wall-bounded turbulence. Specifically, we carry out direct numerical simulations of
supersonic turbulent channel flows of a BZT heavy fluorocarbon, namely PP11 (C14F24). The results are compared with those
of perfect gases.

The thermodynamic behaviour of PP11 is modelled through two different equations of state: Van der Waals (VDW),
which is computationally inexpensive and provides a qualitative description of the main effects of interest, and the more
accurate and complex Martin-Hou (MAH) equation. The VDW model is supplemented by a power-law for computing the
transport properties, whereas the Chung-Lee equation is used in conjunction with the MAH model. For comparison, we also
performed the simulations for a typical diatomic gas (air) and for a perfect gas with a specific heat ratio characteristic of heavy
fluorocarbons (γ = 1.0125). The influence of dense gas effects is evaluated by means of a parametric study at various bulk
Reynolds numbers (ReB = 3000÷ 12000) and bulk Mach numbers (MB = 1.5 ÷ 3.). Calculations are based on a in-house
code [3] solving the compressible Navier-Stokes equations with high-order dispersion-relation preserving schemes. The code
has been preliminarily validated against reference results for supersonic channel flows of a perfect gas [4]. The computational
grids are chosen in order to ensure a good spatial resolution in all directions, i.e., δx+ = 10−18, δy+ = 0.5−0.8, δz+ = 4−8.
For high Reynolds number cases, grids of ∼ 5× 108 points are considered.

Sample results are presented in figure 1 for air and PP11 with the MAH model. Several considerations are in order. First of
all, the specific heat ratio of the gas has a strong influence on the results. For the dense gas, γ is close to 1 instead of 1.4, which
leads to very different average profiles of the thermodynamic quantities, due to the fact that the Eckert number for the heavier
gas is much smaller and the coupling of thermal and dynamic effects weaker. This reduces the friction heating considerably.
We also observe significant variations of the Prandtl number through the flow. Due to weak dynamic and thermal coupling,
velocity profiles for the dense gas flow are much less sensitive to Mach variations and collapse in the logarithmic region,
unlike the case of air. Figure 2 shows the spanwise premultiplied energy spectra for v and T . The spectrum of v is similar
for both the PFG and the dense gas, with peak values moving towards lower wavenumbers as y+ increases. The temperature
spectra are rather different: the peak is shifted towards higher k+z and lower y+. Figure 3 shows isosurfaces of the Q-criterion
coloured with the streamwise velocity in the case MB = 3 and ReB = 7000 for the two thermodynamic models considered.
Air exhibits quite large eddy structures because friction heating leads to an increase of the temperature and viscosity, and
thus to a larger Kolmogorov length-scale. For the dense gas, the reduced coupling leads to much smaller structures and the
behaviour is closer to the incompressible one. We will present a detailed study of the influence of dense gas effects on the
evolution of kinematic and thermodynamic variables, and we will study the energy budgets and the statistical features of the
turbulent structures.
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Figure 1: Velocity u+, density ρ and temperature T profiles along the channel. Top: air. Bottom: PP11 (MAH). Solid lines:
MB = 1.5, Dashed lines: MB = 3.0. Red: ReB = 3000, green: ReB = 5000, blue: ReB = 7000, black: ReB = 12000.

(a) k+z E+
vv (b) k+z E+

TT

Figure 2: Spanwise premultiplied energy spectra for case MB = 3, ReB = 12000. Left: air, Right: PP11(MAH).

Figure 3: Isosurfaces of Q criterion coloured with the streamwise velocity in a supersonic compressible turbulent channel
flow with MB = 3 and ReB = 7000. Top: air; bottom: PP11 (MAH).
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Summary The decay of compressible homogeneous isotropic turbulence for dense gases is studied by means of Direct Numerical Simula-
tions. A family of heavy fluorocarbons, which exhibit non-classical phenomena, is considered. The thermodynamic behavior of the fluids
is modeled by the politropic Van der Waals or the five-term Virial Martin-Hou equations of state, and the results are compared to those
obtained for a thermally and calorically perfect gas.

Turbulent flows of dense gases, i.e. gases with high molecular complexity working at thermodynamic conditions of
the general order of magnitude of the liquid/vapor critical point, are of interest for a wide range of applications, including
industrial and technological processes, aerospace propulsion or energy production. An interesting family of dense gases
is represented by the so-called Bethe-Zel’dovich-Thompson (BZT) fluids, heavy polyatomic compounds characterized by a
region of negative values of the Fundamental Derivative of Gas Dynamics Γ [1], in which non-classical phenomena such
as rarefaction shock-waves, mixed shock/fan waves and shock splitting are expected to occur (e.g., see [2] and references
therein). In this work, the influence of dense gas and BZT effects on the decay of Compressible Homogeneous Isotropic
Turbulence (CHIT) is analysed by means of Direct Numerical Simulation (DNS), and the results are compared with those
obtained for perfect gases (PFG). The compressible Navier–Stokes equations are solved by means of a tenth-order accurate
centered scheme for the discretization of the convective fluxes, supplemented by a high-order nonlinear artificial viscosity term
(inspired from [3]) of 9th-order accuracy in smooth flow regions. A Ducros-type sensor [4] is used to minimize dissipation
errors introduced by the artificial viscosity. The flow solver has been validated against literature results for both inviscid and
viscous CHIT computations available in the litterature. To account for dense gas effects, the simple polytropic Van der Waals
(VDW) equation of state (EoS) and the more complex Martin-Hou (MAH) EoS are used, in conjunction with a power law of
the temperature for the specific heat at constant volume in the ideal gas limit. The VDW EoS is computationally inexpensive
compared to more complex thermodynamic models, and provides a reasonable qualitative description of the main effects of
interest. Transport properties are modelled via a simple power-law of the temperature when using the VDW EoS, whereas
the accurate Chung-Lee-Starling model [5], which takes into account correction terms for the dense gas region, is used in
conjunction with the MAH EoS. The fluid under investigation, a heavy fluorocarbon referred-to as PP11 (chemical formula
C14F24) , is predicted to exhibit BZT effects for thermodynamic conditions near (but outside of) the critical region [6].
To initialize the isotropic turbulence field, divergence-free initial conditions with no density fluctuations were assumed. A
Passot-Pouquet-type initial spectrum is considered and the peak wavenumber is fixed to k0 = 2. Turbulent Mach numbers
from 0.2 to 1.0 are investigated using mesh resolutions ranging from 1283 to 7683. For the chosen initial thermodynamic
conditions, relatively close to the critical region, part of the flow evolves in the inversion zone and the fluid compressibility
exhibits large variations throughout the flow. This leads to larger density and speed of sound fluctuations than in a perfect
gas with a similar specific heat ratio. Additionally, in the dense gas the speed of sound varies non monotonically with the
density, leading to remarkable differences in turbulence decay. At high turbulent Mach numbers, the occurrence of eddy
shocklets is possible, which strongly modify turbulence structure. In the neighborhood of eddy shocklets, indeed, the pressure
is highly correlated with dilatation, and the production of dilatational dissipation increases, leading to a conversion of kinetic
energy into internal energy. However, for BZT fluids working in regions where Γ < 0, the second law of thermodynamics
requires that compression shocks cannot form; hence, locally, the occurrence of compressive eddy shocklets is not physically
admissible, whereas expansion shocklets are allowed. Fig. 2 shows a comparison of the ratio of the local velocity divergence
to its RMS value θ/θrms for fluid PP11 modeled with PFG, VDW and MAH EoS. This quantity has been widely used ([7, 8])
to detect regions in which eddy shocklets may occur. Isosurfaces at θ/θrms = −3 (strong compressions) and θ/θrms = 3
(strong expansions) are plotted. In the dense gas case, extremely strong expansion regions are present, whereas compressions
are shown to be weaker than in the PFG case. Both of the thermodynamic models under investigation give similar qualitative
results, even if the VDW models tends to overestimate dense gas effects with respect to the more realistic MAH model.
Finally, a statistical analysis of the turbulent structures is performed to show up the differences between dense and perfect
gases. Precisely, a study in the plane of the second and third invariants of the deviatoric part of the velocity gradient tensor is
carried out. Preliminary results show that the universal behavior found in compressible and incompressible turbulence (i.e.,
[9]) is globally recovered also in the dense gas regime, as shown in Fig.2. However, when conditioned on the local dilatation
value, the p.d.f.s in strong expansions tend to exhibit a branch aligned along the left part of the null discriminant curve, due to
the non-classical phenomena occurring in negative Γ regions.
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Figure 1: Ratio of dilatation to RMS dilatation for PFG (left), VDW (center) and MAH (right) EoS for fluid PP11 at t = τ .
Top: θ/θrms = 3 (strong expansions), bottom: θ/θrms = −3 (strong compressions).
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Figure 2: Left: P.d.f.s of dilatation to RMS dilatation for PP11 with PFG, VDW and MAH EoS at t = 2τ forMt,0 = 1. Right:
Comparison of log10 pdf(R∗, Q∗) for PFG and MAH models.
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Summary The linear shock-refraction response to an incoming perturbation is investigated for a fluid modelled with a non-ideal equation
of state close to its thermodynamic liquid-vapour critical point. Fluids with large heat capacities (dense vapours) are shown to produce
shocks with highly selective transmission properties based on the upstream Mach number. This selectivity could fundamentally modify the
post-shock turbulence kinetic energy in shock/turbulence interactions.

INTRODUCTION

Dense vapours are single-phase fluids with high heat capacities with respect to their molecular mass (typically, organic
compounds). They are used as working fluids in Organic Rankine Cycles (ORCs) for energy-conversion on low-temperature
heat sources. Dense vapours are known to depart from the ideal-gas model in ORC expanders, where they operate near the
liquid-vapour saturation curve. A typical outcome is the significant decrease of the sound speed which makes the expander
flow highly supersonic [1]. Non-ideal compressible gasdynamic has been extensively studied mainly for its nonclassical shock
formation process (e.g admissible expansion shocks) which enforces constrains on turbine blade design [1].

In most applications shocks are formed in a surrounding turbulent flow. In ideal gas, shocks interacting with weak turbulent
flows have been known to generate strong thermo-acoustic waves. Ribner [2] demonstrated using a Linear Interaction Analysis
(LIA) how a shock interacting with a 0.1% turbulence intensity could result in a 120 dB noise downstream of the shock. The
LIA has recently been confronted favourably against expensive ideal-gas three-dimensional direct numerical simulations of
shock turbulence interactions [3]. A remarkable prediction of the post-shock turbulence intensity was achieved, confirming
the suitability of the linear framework in this context.

Although the linear-stability properties of shock fronts in non-ideal gases are known to produce different properties com-
pared to that of an ideal-gas shock [4], there exists no theoretical study on the interaction of a turbulent flow field with a shock
in such non-ideal media. This study is a first step in that direction. A linear analysis of a non-ideal gas shock interacting with
an incoming fluctuating flow is performed and the shock-refraction properties are investigated.

METHOD AND RESULTS

Methodology
A detailed theoretical analysis of the non-classical compression shock admissibility problem, for dense vapours, is per-

formed. It provides a family of base flow suitable for a linear perturbation analysis, in the spirit of Ribner’s pioneering
development. Explicit formula for the refraction coefficients of incoming linear waves are obtained for shocks modelled with
an arbitrary equation of state (EoS). Detailed analyses of the effects of the near thermodynamic critical point (TCP) region are
investigated when the EoS models a fluid with complex molecules (dense-gas regime).

Theoretical results are then compared with direct numerical simulations (DNS) of the compressible Euler equations for
a gas modelled with a van der Waals EoS. A new solver based on high-order Dispersion Relation Preserving (DRP) finite
difference centred schemes together with optimised filter shape in wave number space was developed. A shock-capturing
technique based on a new artificial viscosity defined from analytical solutions of the one-dimensional viscous-shock structure
was formulated. It allows for direct control of the numerical shock thickness, providing a simple way of reducing spurious-
wiggles amplitude. The new approach is crucial when shocks are considered near TCP Hugoniot locus where classical
approaches can fail to capture the discontinuity.

Results
Geometrical interpretations of the refraction properties in the pressure/specific-volume diagram were built based on the

analytic shock-refraction coefficients derived in the linear framework. The change of curvature of the Hugoniot line is found
to be a key parameter in the transmission coefficients. An asymptotic equivalence between Hugoniot lines and isotherms is
demonstrated in the context of a dense gas in the limit of cv/R going to infinity. Strong non-ideal gas effects (e.g local maxima
and discontinuous admissible path in both the post-shock Mach number and the eigen-mode amplification coefficients) are
found in this limiting case for which there exists a saddle point on the Hugoniot line at the TCP (originating from inter-
molecular forces). The linear response for increasing large but finite values of cv/R (e.g for PP10 with cv/R = 78.2) departs
from the ideal-gas behaviour and approaches this limit relatively well (Figure 1).
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TCP effects induce large variations in the shock-refraction coefficients for small changes in the upstream Mach number (up
to the appearance of jumps when the Hugoniot line is discontinuous, Figure 1b). These sharp response effects are illustrated in
two-dimensional numerical simulations of shocks impinged by a low-density Gaussian pulse (Figure 2). It is possible to direct
the incoming energy more into the acoustic or the vortical post-shock Euler eigen-modes with an arbitrary small change in the
incoming Mach number. Such selective effects are not possible in ideal gas and should be considered in turbulent numerical
modelling and/or for practical application involving non-ideal gas compressible dynamics of dense vapours close to critical
conditions.
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Figure 1: Typical non-ideal gas effects obtained for a van der Waals gas with increasing molecular complexities. The pre/post-
shock conditions are close to the thermodynamic critical point (p1/pc = 0.55 and T1/Tc = 1.00).
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Figure 2: Refraction of a low-density pulse (in white) on a shock at T1/Tc = 1.00 and p1/pc = 0.55 for PP10 modelled as a
van der Waals gas (cv/R = 78.2) and very small variations in the incoming Mach numbers. The colouring is such that both
the dilatation rates and vorticity field are made visible. More energy goes into the acoustic modes (left) and the vortical modes
(right).
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Summary The present study concerns a fully compressible Smoothed Particle Hydrodynamics scheme for multiphase flows. It is validated
against a one-dimensional multiphase shock-tube flow, with known analytical solution, and it is applied to a hypervelocity impact experi-
ment. It is found that the new scheme can accurately simulate the propagation of shocks and offers improved results in the simulation of
hypervelocity impacts between bodies of high-density ratios.

INTRODUCTION

Various alternatives have been studied for the simulation of weakly compressible multiphase flows with Smoothed Particle
Hydrodynamics (SPH) [1, 2, 3, 4]. Typically, particles of unequal masses are employed in SPH, such that the mass ratio of
the particles depicts the density ratio of the phases. For the standard SPH fully compressible scheme —where the smoothing
length needs to adapt to the large variations of density— particles of equal masses are advised [5]. Thus, the ratio of initial
densities dictates the discretization length per phase, which implies computational and geometrical restrictions [6, 7]. Schemes
based on number-density can accommodate particles of unequal masses and therefore offer a robust alternative. The present
study validates a number-density scheme against a one-dimensional multiphase shock-tube problem with known analytical
solution, and also applies the scheme to the simulation of a hypervelocity impact experiment. Hypervelocity impacts [8] are
essentially processes of solids under extreme compression. In case of different materials the problem becomes a multiphase
compressible problem.

RESULTS AND DISCUSSION

The fully compressible multiphase SPH scheme of [6] has been developed by varying the density estimate ρi = mi

∑
j Wij(hi),

as prescribed by the variational SPH framework of [5, 9]. The variation of the smoothing function W is taken without ne-
glecting terms attributed to the variation of the smoothing length hi ≡ h(ni), where ni is the local number density.

Liquid-gas shock tube
The first test is a liquid-gas shock tube of initial density and pressure ratio 1/20 and 1/100 respectively, with discontinuous

parameters for the stiffened-gas equation of state [7]. In Fig.1, we plot the SPH results versus the exact results (red line) at
t = 2.3 × 10−3 s. The convergence of the SPH scheme for 200, 400 and 800 particles per unit length is shown in the inset
plots (blue, magenta and black dots respectively). A timestep of ∆t = 1 × 10−8 s is used for the highest resolution.
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Figure 1: Density (log scale) and pressure of the liquid-gas shock-tube test at t = 0.0023s. Magnitudes are in SI units.
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Figure 2: Density in kg/m3 for the Al-Pb hypervelocity impact, at t = 0 and t =21µs.

Hypervelocity impact
The second test is one of the hypervelocity impact scenarios studied —experimentally and with older SPH schemes— by

[8], and concerns materials with a density ratio of approximately 1/6. A lead (Pb) sphere of radius R = 5 mm impacts an
aluminum 2024 (Al) plate of thicknessD = 1.5 mm at U = 6.85 km/s. Our number-density scheme models the hydrodynamic
response of media. For solids, which also exhibit material strength, the effect of deviatoric stresses on acceleration and internal
energy has been derived from variational principles and the use of number density. An upcoming publication deals with this
task and discusses the differences with the standard or other approaches (e.g. [10]). We use the Mie-Grüneisen equation of
state [11] with data from [12] and [13]. For material strength we use a simple Von Mises yield criterion with data from [8].
The timestep is ∆t = 5 × 10−5 µs, bounded by the CFL citerion [11]. The geometry is discretized by taking 10 particles per
mm, which results in N = 25184 particles. The initial problem set-up is shown in Fig.2. The initial distance of the plate
from the projectile is such that it is covered by the projectile in 1µs. The material distribution 20µs after impact is depicted
in Fig.2, when the ratio of length-to-width of the debris cloud is recorded for validation by [8]. We find the latter value to be
1.48, which is in good agreement with the experimentally observed 1.56, especially compared to the computational value 1.16
of [8]. Regarding the resulting opening of the plate, we find it to be 27 mm, with the experimental value being 26 mm, and the
result of [8] being 30 mm. Finally, the energy loss of the scheme is 0.002% of its initial value, in contrast to the energy loss of
3.1% mentioned in [8]. Our finding is in good agreement with the conservative system which is solved. This good agreement
is attributed to the variational consistency of the scheme and the structure of the artificial dissipation terms.
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Summary The behaviour of steady transonic dense gas flow is essentially governed by two nondimensional parameters characterising the
magnitude and sign of the fundamental derivative of gas dynamics (Γ) and its derivative with respect to the density at constant entropy
(Λ). The resulting response to external forcing is surprisingly rich and studied in detail for the canonical problem of 2D flow past compres-
sion/expansion ramps.

MOTIVATION

The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by
Bethe [1]. However his calculations based on the Van der Waals equation of state indicated that the latter type of shock is
possible only if the ratio cv/R (where cv and R denote the specific heat at constant volume and the universal gas constant
respectively) is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was
contested by Thompson (see Thompson [6]) and coworkers who showed that this required condition for the existence of
rarefaction shocks is indeed satisfied for a large number of Fluorocarbon vapours. For these vapours the ratio cv/R far exceeds
the critical value so that the required condition for the existence of rarefaction shocks is satisfied in the general neighbourhood
of the thermodynamic critical point. For a detailed review see Kluwick [5]. This finding spawned a burst of theoretical studies
elaborating on the unusual and often counterintuitive behaviour of flows with rarefaction shocks present. These produced both
results of a fundamentally theoretical character (addressing, among other issues, questions of admissibility and existence) but
also results suggesting the practical importance of rarefaction shocks including the observation that the entropy increase and
thus losses resulting from weak rarefaction shocks may be much smaller than those associated with compression shocks in
perfect gases.

Expectations were high that the first experimental observation of a rarefaction shock was just around the corner providing
verification of the accumulating theoretical predictions. Unfortunately, however, attempts to reach this goal by means of
classical shock tube experiments have so far failed. Studies analysing the reasons for this failure have been carried out by a
number of research groups resulting in a much better understanding of the thermodynamic properties of possible fluids and
identifying a new family of siloxanes as testing fluids (see Colonna, Guardone & Nannan [3]). Finally, and most importantly,
the properties of vapour mixtures have recently been investigated by Guardone, Colonna, Casati & Rinaldi [4] allowing for
the optimisation of experimental work as well as leading to new practical applications. Therefore we think that the time is ripe
for a second round of experiment efforts to settle the long standing question ”do rarefaction shocks exist?” but more than this
to further explore the unusual behaviour of dense gas flows theoretically. The results presented here aim to contribute to our
understanding of dense gas flows for a practically realisable flow setup.

OUTLINE

Analytical studies of dense gas flows have in the past mainly concentrated on 1D unsteady flows. In contrast to such flows
which are of strictly hyperbolic type 2D steady flows are of mixed type, i.e. hyperbolic or elliptic depending on whether the
Mach number M is larger or smaller than one. In 1D unsteady flows it is not necessary to distinguish between the properties
of shock polars and characteristics as they agree automatically as long as changes of the entropy are negligible small. In
contrast, for the case of 2D steady flows, however, the construction of shock polars has to be considered separately and their
connection with characteristics deserves special attention. To provide insight into the more complex flow behaviour is the
aim of the present investigation. In this connection we note that 2D steady flows have been treated already in Cramer and
Tarkenton [2] but as the authors approach was predominantly a numerical investigation the present analysis is considered to
close a ”hole” in our understanding of such flows. To make things as clear as possible it is necessary to keep the geometrical
complexity as simple as possible. A generic problem which satisfies this requirement is given by supersonic flow past a
compression/expansion ramp. Specifically we assume that the corner of the ramp is located at the origin of a Cartesian
coordinate system (x, y), that the upstream flow u∞ = (u∞, 0) is aligned with the x - axis and the corner geometry is: y =
0, x < 0; y = δax, x > 0. Here the parameter a = O(1) while the positive parameter δ with δ � 1 ensures that the subsequent
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Figure 1: Fan, compound shock-fan and single shock structures for K1 > 0 and K2 > 0 in hodograph plane ( charac-
teristic, shock polar, - - - Rayleigh lines) and with the resulting flow geometry ( wavefronts, shocks). Results are
presented for K2 <

3
2K1

and Γ∞ > 0.

flow generated around the corner is a small perturbation of the uniform flow. Introducing suitably nondimensionalised and
scaled quantities ξ, η, ũ, ṽ in place of x, y, u, v the problem under consideration can be cast into the form

J(ũ)ξ + ṽη = 0, ũη − ṽξ = 0. (1)

The boundary conditions on η = 0 become

ṽ = 0, ξ ≤ 0, ṽ = a sgn(Γ∞), ξ > 0. (2)

The function J(ũ) in (1) is given by

J(ũ) = −K1ũ− ũ2 +
K2

3
ũ3 (3)

and measures the perturbed mass flux where K1, K2 are the similarity parameters

K1 =
M2
∞ − 1

(δΓ∞)
2
3

, K2 =
δ

2
3 Λ∞

Γ
4
3∞

. (4)

Here M∞,Γ∞,Λ∞ denotes the freestream Mach number and the values of the thermodynamic quantities Γ,Λ evaluated
in the unperturbed flow. Also we require K1 > 0 (supersonic flow) while K2 ≷ 0 depending on the signs of Γ∞,Λ∞.
Characteristics of (1) are given by the integral curves of

dṽ

dũ
= ±

√
K1 + 2ũ−K2ũ2 = ±

√
−dJ
dũ

(5)

and shock polars in the hodograph (ũ, ṽ) plane are given by

[ṽ]

[ũ]
= ±

√
− [J ]

[ũ]
. (6)

Equations (5), (6) provide the necessary information to construct solutions of the problem posed. Equation (3) suggests that
five parameter ranges ofK2: K2 < − 1

K1
, − 1

K1
< K2 < − 3

4K1
, − 3

4K1
< K2 < 0, K2 = 0, K2 > 0 have to be distinguished.

This reflects the fact that, in contrast to classical gasdynamics, the perturbation mass flux J(ũ) is not a monotonic function of
the perturbed velocity if K2 is nonzero. As an example, Figure 1 displays results for K2 > 0. In this parameter range shock
solutions exist which lead to a reduction of the velocity and give qualitatively similar results to those observed in perfect gases.
These shocks are not included here. In contrast to the classical case however an additional branch of the shock polar is seen
to exist for ũ > 0 and to connect with the characteristic describing accelerated flows. Increasing values of the downstream
velocity (and associated with a non-monotonic variation of the parameter a then causes a transition from a centered wave fan
(a) to a wave fan terminated by a sonic rarefaction shock (b) and finally to a single rarefaction shock (c).
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Summary We investigate the interaction of an oblique shock-wave with a turbulent boundary-layer at a free-stream Mach number of
Ma∞ = 3.0 and a Reynolds number based on the incoming momentum thickness of Reθ0 = 14000 by means of wall-resolved large-eddy
simulations (LES). Previous numerical studies (both LES or DNS) mainly focused on weak interactions at rather low Reynolds numbers
up to around Reδ0 ≈ 50 ⋅ 103. We extend the numerical database to strong interactions with massive mean-flow separation at a Reynolds
number of Reδ0 ≈ 203 ⋅ 103. A direct comparison of simulation and experiment is given in terms of mean and unsteady wall-pressure
measurements. The low-frequency unsteadiness is studied in more detail by linear spectral analysis (power spectral density, coherence and
phase), as well as modal decomposition techniques (dynamic mode decomposition in 2D and 3D).

INTRODUCTION

Shock-wave/boundary layer interactions (SWBLI) frequently occur in flows of technical interest, such as supersonic air
intakes, turbo-machine cascades, helicopter blades, supersonic nozzles, and launch vehicles. SWBLI are often critical for the
vehicle or machine performance, since the interaction region is a main source of maximum mean and fluctuating pressure
loads acting on the underlying structure [1]. Of particular concern is the low-frequency unsteadiness observed in SWBLI
with mean boundary-layer separation, imposing additional fatigue loading on the structure and possibly exciting surface panel
flutter, which endangers structural integrity.

Over decades, researchers studied SWBLI both experimentally and numerically, and confirmed the existence of such low-
frequency motions associated to the separation shock. Despite the general agreement of characteristic frequency scaling [2],
the exact mechanism that explains the disparity between the characteristic frequency of energetic scales associated to the
incoming turbulent boundary-layer and the shock oscillation frequency, which is typically two or three orders of magnitude
lower, still remains an open question.

INVESTIGATED SETUP AND NUMERICAL METHOD

The topology studied in this work is an oblique shock-wave impinging on a flat plate turbulent boundary-layer. The
shock is generated by a 19.6○ wedge at a freestream Mach number of Ma∞ = 3.0. The Reynolds number based on the inlet
boundary-layer thickness is Reδ0 = 203 ⋅ 103. Table 1 summarizes the main flow parameters, which are consistent with recent
experimental studies [3]. Experiments for this case were conducted in the trisonic wind tunnel at the German Aerospace
Center (Cologne), which is a blow-down facility with a closed test section of 0.6 × 0.6m.

We conduct wall-resolved LES: The compressible Navier-Stokes equations in conservative form are solved using the
Adaptive Local Deconvolution Method (ALDM, [4]) for discretizing the convective fluxes, which provides a physically con-
sistent subgrid-scale turbulence model for implicit LES. Employing a shock sensor to detect discontinuities, ALDM can
capture shock waves while smooth waves and turbulence are propagated accurately without excessive numerical dissipation
[4]. Diffusive fluxes are discretized using a 2nd order central difference scheme, and a 3rd order Runge Kutta scheme is
used for the time integration. The high Reynolds number and the strong interaction lead to a total number of 364 ⋅ 106 cells.
Additionally, the long integration time of approximately 246Lsep/U∞, which is needed to enable spectral analysis, make this
study computationally expensive.

Ma∞ T0 p0 φ U∞ θ0 Reδ0
1 Reθ0

2

3.0 273.7 [K] 582 [kPa] 19.6 [○] 594 [m/s] 0.28 [mm] 203 ⋅ 103 14 ⋅ 103
1 Reδ0 = U∞δ0/ν∞; 2 Reθ0 = U∞θ0/ν∞, θ0 = ∫

δ0
0

⟨ρ⟩⟨u⟩
ρ∞U∞

(1 − ⟨u⟩
U∞
)dy

Table 1: Flow parameters.
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Figure 1: Schematic of the oblique SWBLI investigated in this study.
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Figure 2: (a) Skin friction ⟨Cf ⟩ (b) and wall-pressure ⟨pw⟩/p∞ evolution. (—) LES, (●) experimental static data, (▵) mean
experimental Kulite data. (c) Weighted power spectral density at xs. (—) LES, (—) experiment.

PRELIMINARY RESULTS
Figure 1 visualizes the SWBLI by means of contours of the instantaneous density gradient magnitude on an xy-plane,

indicating the strong character of the interaction and the presence of a large area of separated flow. Isosurfaces of time-
averaged streamwise vorticity indicate the presence of pairs of counter-rotating Görtler-like vortices, which emerge close to
the reattaching shear layer. Similar vortices are often found in compression-ramp configurations. Surface-streamlines show
distinct saddle and nodal points along the reattachment line, while further downstream footprints of streamwise vortices can
be identified.

A more quantitative description of the flow is given in Fig. 2. The mean skin friction evolution (Fig. 2(a)) shows a large
separated flow region of Lsep = 15.5 δ0 length. The gray shaded area indicates time-averaged minimum and maximum values
observed over the spanwise direction. It highlights an increased spanwise variation of ⟨Cf ⟩ close to the mean separation
location and a strong modulation after reattachment due to the presence of Görtler-like vortices. The mean wall-pressure
evolution ⟨pw⟩/p∞ is shown in Fig. 2(b) and validated against experimental data. The pressure increase associated with the
impinging shock is felt approximately 12 δ0 upstream of the theoretical inviscid impingement location, ximp. Within the
initial part of the separation bubble (xs < x < ximp), a significant pressure plateau is observed, indicating the presence of a
strong interaction. Numerical and experimental data for the pressure evolution are in good agreement, confirming the ability
of our LES solver to correctly predict SWBLI at high Reynolds numbers. Finally, the unsteadiness of the reflected shock
is addressed in Fig. 2(c), where we show numerical and experimental power spectral densities evaluated close to the mean
separation location. Both spectra agree well and predict a low-frequency unsteadiness in the range StLsep = 0.03 . . .0.05,
which is consistent with previous findings [2].

The preliminary results show a good agreement between experiment and numerics for both mean and unsteady aspects of
the SWBLI. Thus, we are confident that our LES is accurate and will enable us to gain deeper insight into the low-frequency
unsteadiness once advanced post-processing techniques are applied, which is currently under investigation and will be part of
the talk.
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Summary We discuss the effect of the Riemann flux in implicit large eddy simulations carried out with the discontinuous Galerkin (DG) method 
at very high Reynolds numbers. The study is based on a set of computations of the inviscid TGV (Taylor-Green vortex) test problem spanning 
different grid sizes and polynomial orders. Inviscid cases have been chosen so that the isolated effects of the Riemann solver could be 
assessed in a scenario that mimics that of under-resolved computations at very high Reynolds numbers. Comparisons are made mainly 
between the Lax-Friedrichs and Roe solvers and significant differences are found, especially for higher-order solutions. An explanation 
based on dispersion-diffusion (eigensolution) analysis [1] is proposed as to why Riemann solvers that take into account the complete set of 
physical eigenvalues consistently via upwinding are expected to display a more accurate and robust behaviour for DG-based implicit LES 
over a wider range of Mach numbers. 
 

INTRODUCTION, MODEL PROBLEM AND TEST CASES CONSIDERED 
 

Compressible flow simulations carried with the discontinuous Galerkin (DG) method over the years have indicated that 
the choice of the Riemann solver is not very important, especially at higher-order discretizations. As a result, nowadays the 
DG community uses the Lax-Friedrichs flux very often due to its simplicity and reduced computational cost. Here, we point 
out that for under-resolved computations, the Riemann flux choice can be quite important regarding both numerical stability 
and solution quality. Discussion is based on a set of simulations of the inviscid Taylor-Green vortex (TGV) problem. 

The Taylor-Green vortex flow was introduced in [2] as a model problem for the analysis of transition and turbulence 
decay. The test problem was originally proposed for the incompressible Navier-Stokes equations in a cubic domain with 
triply-periodic boundary conditions. Here we adopt a modified version of the initial conditions which is suited for 
compressible flow solvers, as done in [3], so that the Euler equations (representing inviscid flow conditions) are solved 
within [-π,π]3 at a baseline Mach number of 0.1. In the present study, even though the Euler equations are simulated directly, 
the presence of numerical dissipation is expected to make results consistent with the non-singular solution of the viscous 
TGV problem in the limit of zero viscosity, provided that enough small scales are captured by the DOFs employed. 

The evolution of the TGV flow at high Reynolds numbers (say, higher than 103) can be characterized by three distinct 
phases, see e.g. [4]. During the first phase dissipation effects can be neglected and vortex lines begin to fold and stretch first 
by pressure gradients and then via three-dimensional vortex interactions, but still through a well-organized (non-chaotic) 
process. In the second phase transition takes place, whereby non-linear effects intensify and small-scale energy grows rapidly 
through the cascade mechanism leading to a peak in overall dissipation. Finally, in the third phase the TGV flow tends to a 
more homogeneous state of decaying turbulence, where energy decays monotonically towards zero. 

The overall behaviour described above has been captured quite well by our stable computations, with minor differences 
being observed upon DOF refinement. The base set of test cases addressed here relied on Lax-Friedrichs and Roe fluxes (in 
their original form), which are arguably the most popular solvers currently used in compressible DG formulations. This base 
set of simulations is given in Table 1, where each column corresponds to the number of polynomial modes M = P + 1 used, in 
which P is the polynomial order, and each row corresponds to the number of degrees of freedom Ndof = Nel M 

3 employed, Nel 
being the total number of elements. Equispaced grids (of cubic elements) have been used. The values in the core of Table 1 
represent, for each test case, the number of elements per direction, namely Nel 

1/3. 
 

Table 1: Test cases’ discretization parameters, also differentiating stable/unstable cases 

 
 

Within Table 1, the cases in green ran successfully with both Roe and Lax-Friedrichs. The cases in orange crashed with 
Lax-Friedrichs, but ran successfully with Roe. The remaining ones (in red) crashed with both fluxes. Such results clearly 
indicate that, for the problem considered, Roe's solver yields a more robust discretization when compared to Lax-Friedrichs. 
This is counter-intuitive since the former is known to be less dissipative than the latter (in well resolved computations). All 
the cases that crashed yielded reasonable results (with no signs of numerical instability) until the time of crash, which took 
place consistently within the transitional phase of the TGV flow. This lack of robustness, found especially for the higher-
order discretizations, has been verified not to be related to time-step restrictions or aliasing errors. Typical CFL numbers 
employed (based on the acoustic wave speed) are in the order of 0.1 and an increased number of quadrature points ( Q = 2 M ) 
has been used to ensure consistent integration of the cubic non-linearities of the compressible Euler equations. Experiments 
conducted to rule out these factors consistently showed the time of crash to be practically insensitive to time-step reductions 
or to a further increase in the number of integration points. A subtle cause of crash is suggested in what follows. 
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SOLUTION QUALITY, TRUNCATION ERRORS AND NUMERICAL INSTABILITY 
 

Energy spectra at different phases of the flow and typical transitional/turbulent structures are shown in Figs 1a and 1b, 
respectively. The energy spectra on the left-hand side of Fig 1a show that near the dissipation peak (attained around t = 9) 
there is an inertial region following the -5/3 slope, consistent with previous DNS of the TGV at high Reynolds numbers [5]. 
The right-hand side plot of Fig 1a makes clear that Lax-Friedrichs allows for an unphysical build-up of small-scale energy at 
the final phase of the flow (which begins around t = 14), along which energy distribution is maintained. The vertical dotted 
line in Figs 1a,b is an estimate of the effective resolution power of the DG scheme [1], after which non-negligible numerical 
error (diffusion in particular) takes place. Another feature very clear in the spectra is that the large scales of Lax-Friedrichs 
computations are less energetic. It is believed that this results from a spurious energy drain caused by the over-energetic small 
scales via a more intense eddy viscosity-like mixing effect. The flow structures in Fig 1b support this reasoning. We note that 
Fig 1b shows flow structures near the end of the transitional phase (at t = 7) where independent eddies are more easily seen, 
and that large/small-scale differences between the fluxes only intensify as time progresses (Fig 1a). These results concern the 
cases computed with Ndof = 2273 and M = 4, but the main features observed are common to all the test cases in Table 1. 
 

 
Fig 1a: Comparison of 3D energy spectra obtained using Roe 

and Lax-Friedrichs solvers at t = 9 (left) and t = 14 (right) 

 
Fig 1b: Comparison of turbulent flow scales (via the Q-criterion) 

obtained using Roe (left) and Lax-Friedrichs (right) solvers 
 

An explanation as to why the Lax-Friedrichs solver induces an accumulation of small-scale energy is proposed as follows. 
Roe’s formulation uses the correct eigenvalues when upwinding (for all the equations), while Lax-Friedrichs uses instead the 
spectral radius alone (|u| + c, in 1D). This results in over-upwinding for the momentum equations due to the upwind ratio β = 
(|u| + c) / |u| > 1. Note that β increases as the Mach number is reduced. DG’s spectral distribution of numerical diffusion (linear 
estimates) are given in Fig 2 for M = 4 polynomial modes and different ratios β. There is a critical ratio βC above which non-
smooth dissipation characteristics take place. For M = 4, βC ~ 2.18 corresponding to MachC ~ 1/(βC-1) ~ 0.85. Lax-Friedrichs 
computations below MachC may therefore display adverse effects owing to non-smooth features in DG’s truncation error. 
Further inspection showed that MachC increases with the discretization order (e.g. MachC ~ 2 for M = 9). Roe’s flux does not 
have this problem since its unit upwind ratio does not change with the flow’s Mach number. This might as well be the cause 
of Roe’s superior robustness for the inviscid TGV, since small-scale wiggles may facilitate non-positivity and thus instability. 
 

 
 

Fig 2: Numerical diffusion in wavenumber space (Lax-Friedrichs flux for M = 4) as Mach number is reduced from 0.9 to 0.8 (left to right) 
 

CONCLUSION 
 

An assessment of Riemann solver performance for DG-based under-resolved simulations at very high Reynolds numbers 
has been conducted through simulations of the inviscid Taylor-Green vortex problem. The main conclusion is that Riemann 
solvers that take into account the complete set of physical eigenvalues consistently via upwinding are expected to display a 
more accurate and robust behaviour for DG-based implicit LES over a wider range of Mach numbers. 
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Summary Turbulence structure and statistics of the subgrid scales (SGS) in the context of Large Eddy Simulations (LES) are studied after 
the interaction with a shock wave. Recent high resolution shock-resolved Direct Numerical Simulations (DNS) [1] show that, when there is a 
large separation in scale between turbulence and the shock width, the interaction can be described by the Linear Interaction Approximation 
(LIA). By using LIA to alleviate the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than 
previously possible. Here, results with Reλ ~180 are used to investigate the structure of post-shock turbulence. In particular, the interaction with 
the shock leads to a local axisymmetric flow state. In turn, this induces an Ms dependent symmetrization of the SGS dissipation PDF and a large 
increase in its variance. This corresponds to significant enhancement in size of the regions and magnitude of backscatter. 
 
   The interaction of shock waves with turbulence is an important aspect in many types of flows, from hypersonic flight, to 
supersonic combustion, to astrophysics and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock 
width is much smaller than the turbulence scales, even at low shock Mach numbers, Ms, and it becomes comparable to the 
molecular mean free path at high Ms values. When there is a large-scale separation between the shock and turbulence, viscous 
effects become negligible during the interaction. If, in addition, the turbulent Mach number, Mt, of the upstream turbulence is 
small, the nonlinear effects can also be neglected during the interaction. In this case, the interaction can be treated analytically 
using the linearized Euler equations and Rankine-Hugoniot jump conditions. This is known as the Linear Interaction 
Approximation (LIA) [2]. However, due to the high cost of simulations for the parameter space close to practical applications 
and difficulties with accurate measurements close to the shock, previous studies have demonstrated only limited agreement with 
LIA. Recently, Ryu and Livescu [1], using high resolution fully resolved DNS extensively covering the parameter range, have 
shown that the DNS results converge to the LIA solutions as the ratio δ/η where δ is the shock width and η is the Kolmogorov 
microscale of the upstream turbulence, becomes small. The results reconcile a long time open question about the role of the LIA 
theory and establish LIA as a reliable prediction tool for low Mt turbulence-shock interaction problems. Furthermore, when there 
is a large separation in scale between the shock and the turbulence, the exact shock profile is no longer important for the 
interaction, so that LIA can be used to predict arbitrarily high Ms interaction problems, when the Navier-Stokes equations are no 
longer valid and fully resolved DNS are not feasible. 
 
   The shock-turbulence interaction has been traditionally studied in an open-ended domain, with the turbulence fed through the 
inlet plane encountering a stationary shock at some distance from the inlet. This approach is very expensive even when a shock-
capturing scheme is used and limited to low Reynolds numbers. However, the range of the achievable Re values can be 
significantly increased if, instead, one uses the LIA theory to generate the post-shock fields. In order to generate full 3-D post-
shock fields, Refs. [1,3] have extended the classical LIA formulas, which traditionally have been used to calculate second order 
moments only. Using this procedure, Refs. [1,3] have shown profound changes in the structure of post-shock turbulence, with 
significant potential implications on turbulence modelling. 
 
   High Re post-shock DNS data are generated by first performing triply periodic forced compressible isotropic turbulence (IT) 
simulations using the linear forcing method [4]. This forcing method has the advantage of specifying the Kolmogorov 
microscale and ratio of dilatational to solenoidal kinetic energies, χ, at the outset. Here, we present results from simulations with 
Reλ~180, χ<0.01 (quasi-vortical turbulence) and Mt=0.05. The resulting turbulence fields are passed through the generalized LIA 
formulas [2,3] to obtain the post-shock turbulence data. In order to examine the properties of the subgrid scales, the post-shock 
data is filtered using a Gaussian filter.   
 
   The usual picture of an energy cascade typically holds in a statistically-averaged sense, it does not always describe the local 
behaviour of a turbulent flow. The turbulent dissipation is actually the difference between two energy fluxes, a "forwardscatter", 
corresponding to the classical energy cascade, and the "backscatter", a reversal of this process in which energy is transferred 
from the small scales back to the large scales. In LES approaches, the SGS backscatter acts as a source term in the kinetic energy 
equation and poses significant difficulties in maintaining stable computations [5]. Many of the simple SGS models do not 
account for backscatter and properly describing this phenomenon is an active area of research [5]. 
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Figure1: Distribution and magnitude of backscatter in a) IT and b) after the interaction with a Ms=4 shock wave. Blue regions 
correspond to positive εSGS, while green to yellow to red denote regions with increasing magnitude of negative εSGS.  
 

 
Figure 2: a) PDF of SGS dissipation (εSGS) for IT and post-shock turbulence. Negative values are associated with backscatter. b) 
Ratio of points with backscatter as a function of the shock Mach number.  
 
   The interaction with the shock wave preferentially amplifies the transverse components of the rotation and strain rate tensors 
together with an Ms dependent symmetrization of the PDF of the longitudinal derivative of the velocity components, consistent 
with a tendency towards a local axisymmetric state [1,3]. Thus, the strain rate tensor contribution to the subgrid dissipation is 
expected to become more symmetrical as Ms increases, resulting in a significant increase in regions with negative εSGS or 
backscatter. Indeed, Figure 1 compares the distribution of backscatter between IT (Ms=0) and after the interaction with an Ms=4 
shock wave. In IT, fowardscatter dominates, but backscatter increases significantly after the interaction with the shock.  
 
   Figure 2a) compares the PDF of εSGS between IT and post-shock data at several Ms values. In IT, the regions with 
backscatter and the magnitude of the negative εSGS are limited and the PDF is strongly skewed towards positive values. 
However, post-shock turbulence exhibits a more symmetrical PDF and a strong increase in the variance at higher Ms values. This 
indicates that both the number of points with backscatter and the magnitude of backscatter increase, in an Ms dependent manner, 
after the interaction with the shock. The number of points with backscatter increases fast at small Ms values and seems to reach a 
plateau slightly below 40% of the total number of points at Ms≈4 (Figure 2b). These are profound changes in the structure of 
turbulence due to the interaction with the shock wave, which pose important challenges for subgrid modelling of this flow. 
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Department of Energy NNSA under Contract No. DE-AC52-06NA25396. Computational resources were provided by the LANL 
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Summary This paper demonstrates the use of metamodeling techniques for bridging scales in a multiscale modelling framework. 
For the problem of the interaction of a shock wave with a cloud of particles, unknown source terms appear as momentum/energy 
exchange terms between the two phases in the momentum and energy equations of the respective phases in the macroscopic 
description of the system. In order to close the system of equations, resolved mesoscale numerical experiments are performed and 
the unknown momentum/energy exchange terms are explicitly computed using the Dynamic Kriging method (DKG). The 
metamodel may be used “on-the-fly” for computing the sources in a macroscale computation. 
 

INTRODUCTION 

 
   The simulation of the interaction of shock waves with clouds of particles is a multiscale modelling problem. The 
macroscale model comprises a set of computational particles, each of which are agglomerates of real physical particles; the 
computational particles are modelled as points in the flow field and are coupled to the flow field via momentum and energy 
exchange terms which appear as source terms in the momentum and energy equations of the respective phases (for example 
consider the Particle Source in Cell Method [1]). The source terms are typically obtained from semi empirical experimental 
correlations [1]; these provide closure to the macroscopic model.  
  Because physical experiments are expensive and may be only conducted in a limited parameter space, an alternative to 
experimental correlations is to calculate the closure terms explicitly from resolved mesoscale computations. In this work, the 
authors demonstrate the use of metamodeling techniques to compute closure laws from numerical experiments. A metamodel, 
or a model of a model, is constructed from a set of resolved mesoscale computations and is shown to provide a numerical 
closure law as surrogates to semi-empirical models. Once the metamodel is constructed, instead of performing mesoscale 
computations “on-the fly” at every macroscopic time step, the metamodel may be evaluated for obtaining the closure terms 
in a macroscale computation at every instant of time. This method therefore also obviates performing a large number of 
mesoscale computations at each time instant of the macroscopic simulation as in typically done in a concurrent coupling 
multiscale modelling approach and therefore reduces the computational cost significantly.  

In the next section, the mesoscale system is described and a procedure for constructing a metamodel for drag force using a 
Dynamic Kriging Method (DKG) [2] is explained. Following this, a metamodel for the momentum exchange term (i.e. the 
drag force on the particles) is presented as an example. 
        

CONSTRUCTION OF METAMODELS FOR DRAG FORCE FROM MESOSCALE COMPUTATIONS 

 
The mesoscale computational domain consists of cylinders embedded in a flow field as shown in Figure 1. The cylinders 

are modelled as rigid and static, while the surrounding flow field is assumed inviscid and are modelled by the unsteady 
compressible Euler equations. The system of equations are solved using a massively parallel in-house Eulerian flow code, 
SCIMITAR3D [3]. The drag on the immersed cylinders is computed by integrating the pressure on the cylinders. The average 
drag force is the mean drag of all the cylinders in the flow field; this mean drag force, FD which is a function of Ma and φ is 
used for constructing a numerical drag law using the DKG method. The DKG method is essentially an interpolation technique, 
which constructs a metamodel from a given number of realizations of a numerical experiment. The convergence of the method 
and its suitability for metamodeling in a multiscale framework has been studied previously by the authors [4]; in the current 
work, the method is used to construct a drag law from a set of mesoscale computations performed using SCIMITAR3D.  

In order to “train” the DKG method, numerical experiments are conducted. Each numerical experiment involves the 
computation of FD for a given Ma and φ. The values of Ma and φ are varied over ranges of 1.1 to 3.5 and 5% to 20% 
respectively. Several such experiments are conducted and the DKG method is then used to construct a metamodel for FD. 

 
RESULTS AND DISCUSSIONS 

 

Figure  shows a numerical drag law constructed using the DKG method from mesoscale computations. For a given Ma, 
FD increases with increasing φ. This is because the area of the cylinder increases with increasing φ and the pressure acts over 
larger area. Similarly for a given φ, Figure  also shows that FD increases with increasing Ma. This is because there is a higher 
pressure jump across the shock for a higher value of Ma; this increases the pressure difference along the cylinder and the 

665



pressure drag increases. The drag hypersurface may be probed at any point “on-the-fly” in course of macroscale computations 
to provide closure laws to macroscale systems.   

 

 
 

CONCLUSIONS 

 
   The present work demonstrates the construction of numerical closure laws from mesoscale experiments using metamodeling 
techniques. In the macroscopic description of the interaction of shock waves with a cloud of particles, unknown terms appear as 
sources in the momentum and energy equations of the respective phases. Typically, semi-empirical experimental correlations are 
used to model the source terms to provide closure to the system. In the present work, the authors demonstrate the use of metamodels 
generated from resolved mesoscale computations as surrogates to semi-empirical closure laws. As an example, a numerical 
momentum-exchange (drag) law is constructed from mesoscale computations and is presented in the current work. This may be 
used in a macroscopic system to close the system of equations. 
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Figure 1. Description of the mesoscale computational experiment; the mesoscale experimental set up comprises 

41 static cylinders each of radius, r, inscribed in a unit square. A right moving shock of strength, Ma impinges on 
the array of cylinders. The volume fraction, φ, of the array is given by φ = 41πr2. The given plot shows the 

numerical Schlieren image for Ma = 3.5 and φ = 20.6%. 
 

 
Figure 2.  Metamodel of FD as a function of Ma and φ computed from 24 mesoscale computations; the mesoscale 
computations are performed at the locations marked by the red dots in the parametric space. 
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Summary The structure of a gas-dynamic shock wave at hypersonic conditions is of great interest. The Navier–Stokes–Fourier formulation

is known to yield incorrect shock profiles even at moderate Mach numbers. This is an excellent test problem for extensions of such equations

for flows with large gradients since accurate experimental results are available. We present a second order formulation of the constitutive

equations based solely on continuum theory. Results of the second-order theory applied to the shock structure are obtained for monatomic

and diatomic gases over a large range of Mach numbers and are compared to experimental results.

INTRODUCTION

The shock wave structure [6] is important in the analysis of certain hypersonic flows. It is well-known that the Navier–

Stokes–Fourier (NSF) equations do not represent the shock structure well [3], even at moderate Mach numbers, M ≥ 2 [7].

As Fig. 1 shows, the equations predict values for shock thickness which are unrealistically small. Hence the shock structure

has often been investigated both experimentally and theoretically to gain a better understanding of non-equilibrium flows.
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Figure 1: Experimental results [1] and NSF predictions of the reciprocal of shock thickness as a function of Mach number for

Argon.

There have been many efforts to extend the theory, most of them based on perturbation expansions of the Boltzmann

equation. A well-known expansion is the Chapman-Enskog expansion which yields the so-called Burnett equations [8, 9, 12,

10, 5, 7], where second order terms are retained. Grad’s 13-moment theory [4] is based on an expansion based on moments.

Such efforts have been largely unsuccessful for a variety of reasons. The exception has been Bird’s Monte Carlo simulation

[2] using a simple repulsive intermolecular force law. His results show very good agreement with Alsmeyer’s experimental

data [1] over a large Mach number range. Nevertheless, it is clear that Monte Carlo simulations are impractical in realistic

engineering applications. We present a second order formulation of the governing constitutive equations based solely on a

continuum formulation.

Results of the second-order equations applied to the shock structure are obtained for monatomic and diatomic gases over

a large range of Mach numbers and are compared to experimental results.

METHODOLOGY AND RESULTS

The NSF equations represent a continuum theory based on linear relations between thermodynamic forces and fluxes. In

a strong shock wave, the forces are large and the failure of the NSF equations can be attributed to deviations from the linear

Newtonian and Fourier laws. Subsequently, the computation of the shock structure, particularly at the large Mach numbers

encountered in hypersonic flows, has provided an excellent opportunity to find extended theories.

∗Corresponding author. Email: paolucci@nd.edu
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We begin by assuming that the constitutive quantities of Helmoholtz free energy, entropy, heat flux, entropy flux, and stress

tensor are functions of the independent basic fields consisting of density, density gradient, stretch (or rate of strain) tensor,

temperature, and temperature gradient. Subsequently, applying the principles of equipresence, frame-invariance, isotropy, and

thermodynamic principles (including the 2nd law of thermodynamics), we arrive at the most general representations of the

constitutive quantities of a fluid based on the 2nd order theory.

APPLICATION TO SHOCK WAVE

The general constitutive results of the second-order theory, in conjunction with the conservation equations for mass, linear

momentum, and energy, are applied to the problem of the one-dimensional shock structure. The constitutive equations for

the fluid, in addition to the known transport properties, also introduce one additional viscosity and two additional thermal

conductivities which generally depend on density and temperature. In this case, the scalings used for the new thermophysical

properties reflect Truesdell’s dimensional invariance principle [11]. Results are obtained for monatomic and diatomic gases

over a large range of Mach numbers and are compared to experimental results as shown in Fig. 2. More specifically, in addition

to shock thickness, we also compare density and temperature distributions.
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Figure 2: Experimental results and 2nd order theory predictions of the reciprocal of shock thickness as a function of Mach

number and density distribution at M = 9 for Argon.

CONCLUSIONS

We derive general forms of constitutive equations based on 2nd order continuum theory. Such equations are generally

valid and are essential for non-equilibrium flows where large gradients occur in the flow field, such as in hypersonic flows.

Results of the second-order theory are applied to the solution of the shock structure at various Mach numbers where it is

well-known that the NSF equations yield inaccurate results. Specific results for shock thickness, and density and temperature

distributions for monatomic and diatomic gases are presented and compared with experimental data.
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Summary We simulate flow phenomena that involve both fluids and elasto-plastic solids. The numerical model is the same for all materials
and can handle high-speed flows, large deformations, frictionless contacts and plasticity. Hyperbolicity of the hyperelastic neohookean
model is granted thanks to an explicit computation of the characteristic speeds. The plastic model satisfies a classic entropy inequality and
we prove that it leads to a decrease in norm of the stress deviator tensor. Numerical illustrations of the method include air-helium, water-air
shock interactions in three dimensions. A supersonic projectile-shield impact beyond the yield limit is presented.

EULERIAN MODEL

This model was introduced in the literature thanks to several authors [4, 8, 7, 2, 3]. We follow here the formulation
presented in [5] and extend it to plasticity modelling. The equations of mass, momentum, deformation and energy conservation
are given by 

∂tρ+ divx(ρu) = 0

∂t(ρu) + divx(ρu⊗ u− σ) = 0

∂t(∇xY ) +∇x(u · ∇xY ) = 0

(ρe)t + divx(ρeu− σTu) = 0

(1)

The physical variables are the density ρ(x, t), the velocity u(x, t), the total energy per unit mass e(x, t) and the Cauchy stress
tensor σ(x, t). Here Y (x, t) are the backward characteristics that for a time t and a point x in the deformed configuration, give
the corresponding initial point.

We assume that the internal energy per unit mass ε = e− 1
2 |u|

2 is the sum of a term accounting for volumic deformation
that depends on ρ and entropy s, and a term accounting for isochoric deformation depending on the modified left Cauchy-
Green tensor B given by B(x, t) = [∇xY ]−1[∇xY ]−T /J

2
3 (x, t), J(x, t) = det([∇xY ])−1. A general constitutive law that

models gas, fluids and elastic solids is given by

ε(ρ, s,∇xY ) =
κ(s)ργ−1

γ − 1
+
p∞
ρ

+
χ

ρ0
(Tr(B)− 3) (2)

where the first term accounts for a perfect gas, the second for a stiffened gas (e.g. water) and the third for a neohookean elastic
solid. According to the formula σ = ρ ∂ε∂F F

T , where F = [∇xY ]−1, we obtain the stress tensor from the constitutive law.
Here κ(s) = exp (s/cv) and cv , γ, p∞, χ are positive constants that characterize a given material.

The characteristic speeds of this quasi-linear model are Λ =
{
u1, u1, u1 ±

√
α1

ρ , u1 ±
√

α2

ρ , u1 ±
√

α3

ρ

}
, where α1, α2

and α3 are the roots of a given third order polynomial. It can be shown that the necessary conditions for hyperbolicity, i.e.,
α1 > 0, α2 > 0 and α3 > 0, are actually satisfied for the neohookean model considered.

Plasticity describes the deformation of a material undergoing non-reversible changes of shape in response to applied forces.
The deformation is the composition of a plastic and an elastic deformation [6]. Introducing the backward characteristics for
elastic and plastic deformations denoted by Y e and Y p and taking the gradient of the relation Y (x, t) = Y p(Y e(x, t), t), we
get [∇xY ] = [∇xY p][∇xY e] and the total deformation gradient F is given by F := [∇xY ]−1 = [∇xY e]−1[∇xY p]−1 :=

F eF p. Let us define the deviatoric part of the stress tensor dev(σ) = σ − Tr(σ)
3 I . Experimentally plasticity occurs when

the stress exceeds a critical value. The yield function of von Misses fVM (σ) = |dev(σ)|2 − 2
3 (σy)2 defines a yield surface

fVM (σ) = 0 where σy is the plastic yield limit. We restrict ourselves to the case of perfect plasticity where σy is a constant.
The Eulerian form of the evolution equation for the plastic deformation tensor F p writes ∂t(F p) + u · ∇xF p = LpF p

where Lp is the constitutive law which defines the plastic deformation rate. From the deformation tensor equation we have
that [∇Y e] = [F e]−1 = F pF−1 verifies ∂t(∇Y e) + ∇x(u · ∇Y e) = Lp[∇Y e]. A constitutive law for plasticity [7, 1] is
defined by Lp = 1

χτ [∇Y e]dev(σ)[∇Y e]−1, where χ is the shear modulus and τ is relaxation time of the plastic process.
Finally, the conservation equations with plasticity are the same except for the deformation equation that is now

∂t(∇xY e) +∇x(u · ∇xY e) =
1

χτ
[∇xY e]dev(σ) (3)
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Beyond yield, plasticity appears as a source term in the equation of deformations and can be seen as a penalization of the
deviatoric part of σ. The internal energy depends only on elastic deformations ε = ε(F e, s) and hence the stress tensor is
given by σ = ρ ∂ε

∂F e [F e]T . When plasticity occurs, entropy is increasing according to ρ∂ε∂s (∂ts+ u · ∇s) = 1
χτ |dev(σ)|2 ≥ 0.

Also, we can prove that the plasticity model is such that ∂t(|dev(σ)|2) ≤ 0 beyond the plasticity limit.

A NUMERICAL ILLUSTRATION

We have extended the scheme described in [5] to model elasto-plastic flows. The scheme is based on a sharp-interface
locally non-conservative approximate Riemann solver that has been validated in 2D and 3D. Here we show a 2D test case
where an iron circular projectile is impacting onto an aluminium flat plate fixed to the upper and lower boundaries of the
computational domain. The initial horizontal velocity of the iron projectile is 1000m.s−1. The physical parameters for the
different materials are found in the literature and the computational domain is [−0.3, 0.7]× [−0.4, 0.4]m. The computation is
performed on a 2000× 1600 mesh with 144 processors. Homogeneous Neumann conditions are imposed on the left and right
borders and embedded on the top and bottom.

Figure 1: Iron round projectile on an aluminium shield in air. Schlieren image and von Mises
criterium at t = 1.04ms

The results are presented
in Fig. 1 with a Schlieren
image (bottom) and the von
Mises criteria |dev(σ)|2 −
2
3 (σy)2 (top) at a time step
corresponding to an highly
deformed plastified state. A
longitudinal wave propagat-
ing in the plate is followed
by a shear wave that causes
the plasticity of the mate-
rial. We can observe that
the plate, initially stright, is
strongly deformed and forms
a long filament; the projec-
tile, initially round, is con-
siderably flattened. Shock
waves and contact discon-
tinuities charcterise the air
flow.

In the proposed presen-
tation we plan to discuss
how these numerical tools
can improve the study of
new and surprising phenom-
ena that are unattainable
by traditional theoretical ap-
proaches and hazardous and expensive to investigate in a laboratory.
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Summary The lecture will review the results obtained on the transonic buffet at ONERA during the past ten years by theoretical, numerical and 
experimental means. 

Airfoil buffet is one of the most important compressibility-based problems which limit the performance of transonic and 
supersonic vehicles. Buffet may develop in all flow regions where shock waves are present (i.e. on airframe lifting surfaces 
and on rotating blades) and is a major factor limiting load capacity and efficiency of cruising civil aircrafts. Buffet control,
which could enlarge  flight envelopes and lead to significant energy savings, is a major goal to accomplish. Important 
efforts in applied and fundamental research need to be done in the future to get to this point. Relevant domains are flow 
stability, unsteady CFD and experiments in transonic/supersonic facilities.  

We present a synthesis of the research conducted on this subject in the Fluid Mechanics and Energetics branch of ONERA 
over more than a decade. Experiments were conducted on two types of geometries: 2D airfoils (Jacquin et al., 2005, 2009) 
and swept wings (Molton et al., 2013). 2D airfoil buffet may be considered as rather academic regarding applications. 
However, the 2D case has revealed that the buffet mechanism coincides with the onset of a global flow instability controlled 
by the free stream Mach number and the angle of attack (Crouch et al., 2007). This is proved by using a combination of the 
stability theory based on perturbing a steady flow field obtained from the Reynolds averaged Navier-Stokes equations, see 
figure 1. The global mode obtained in this way mixes high frequency Kelvin-Helmholtz-type oscillations located in the 
separated viscous flow region downstream of the shock and low frequency oscillations of the Euler flow. The theory and 
experiment show good agreement for the 2D buffet onset conditions, including the critical angle of attack and the buffet-
onset frequency. While 2D global stability is not sufficient to understand the nature of the mechanism, it paves the way to 
closed loop control strategies (Sartor et al., 2015).  

In the case of 3D airfoils, experiments show that the buffet develops in a restricted region on the wing. Global stability of 
such 3D flows are envisaged but are not yet feasible due to the limitation of current method in terms of memory 
requirements. Experiments show that 2D and 3D buffets can be delayed using an open loop control based on mechanical or 
fluid actuators (Molton et al., 2013). Now, nearly 2D (i.e. low swept angle) wings come to the forefront when laminar 
transonic regimes are considered, that is when cross flow transition must be avoided as it is the case for several advanced 
high speed aircraft projects. Recent investigations of the laminar buffet on a 2D airfoil have been conducted at ONERA in 
the framework of a European-Russian project. They reveal that the 2D buffet is strongly sensitive to the incoming boundary 
layer state: in the case where the boundary layer is laminar, buffet is weaker and the onset frequencies are moved to larger 
values, see figure 2. Global stability analysis of this flow is under way and its full simulation by a LES (Large Eddy 
Simulation) approach becomes tractable thanks to the laminar nature of the boundary layer upstream of the shock, even if 
this will still require the use of the largest available computing capacities.  

Overall, the talk will illustrate how challenging the understanding of the buffet physics remains. 
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Figure 1 - Buffet onset on a turbulent profile at 0.735M  in turbulent conditions: (a) base flow horizontal velocity field with 
RANS solution for an angle of attack 3.5 , (b) eigenvalue spectra for various angles of attack and 0.73M  (Sartor et al., 
2015).

Figure 2 - Laminar / turbulent profile at 0.735M , 4 : trailing edge pressure spectra with tripped (turbulent regime) and 
untripped (laminar regime) boundary layer.
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Summary It is known that large scale structures play important role in the growth of supersonic mixing layer, and a great deal of experimental 
works focused on the characteristics and functions of large scale structure in the past, unfortunately, little experiments have been conducted on 
the spatial evolution of these structures up to now, which may be helpful to solve the issues of growth rate. In the present study, the evolution of 
large scale structures of the planar supersonic mixing layer at convective Mach numbers of 0.25, 0.5 and 0.7, respectively formed by the 
streams with the responding Mach number combination of 2.0 & 1.5, 3.0 & 2.0 and 2.0 & 0.6, is visualized using a planar laser Mie scattering 
(PLMS) technique. The instantaneous images at convective Mach number of 0.25 are respectively obtained by seeding ethanol vapor as a 
marker in one stream in each experiment, and those at convective Mach numbers of 0.5 and 0.7 were obtained by seeding the ethanol vapor in 
the stream of Mach number 2.0. The results show that the spatial evolution of large scale structures is comprised primarily of three parts, which 
is in some degree consistent with the structural investigations of linear stability theory. The different growth rates of large scale structure in the 
three parts suggest that only one coefficient used as previous investigations is not enough to represent the growth rate of supersonic mixing 
layer. Specific issues regarding the description of growth rate are discussed in detail.

INTRODUCTION

The growth rate has been extensively studied for both supersonic mixing layer and subsonic mixing layer. In 1974, Brown 
and Roshko[1] found large scale structures in the experiments of subsonic mixing layer, and according to the feature of 
spatial evolution of the large scale structure, chose one coefficient to describe the growth rate of subsonic mixing layer, then 
deduced the equation of variance of growth rate. In 1980s, Papamoschou and Roshko[2] also found the large scale structure 
in the schlieren results of supersonic mixing layer experiment. Since then, great efforts[3] [4] [5]were taken to try to obtain 
a result of the growth rate of supersonic mixing layer similar to that of subsonic mixing layer. But, until now, there still exist 
some inconsistence on the variance of growth rate[6]. It is now known that large scale structures play very important role in 
the growth of supersonic mixing layer, and a great deal of experimental works focused on the characteristics and functions 
of large scale structure in the past, but a little has been conducted on the spatial evolution of these structures up to now, 
which may be helpful to solve the issues of growth rate.
In the present study, the evolution of large scale structures of the planar supersonic mixing layer at convective Mach 
numbers of 0.25, 0.5 and 0.7 will be visualized and the spatial evolution features of the structures will be discussed in 
details. 

Experimental facility and techniques
   The experimental facility is a blow-down type, two-stream, supersonic mixing wind tunnel, which is combined with a 
hypersonic wind tunnel by replacing its nozzle section. The overall gas flow schematic and the wind tunnel schematic are 
shown in Fig. 1and Fig. 2. The Mach of both streams can be supersonic or subsonic, and the maximum Mach number can 
reach 4.0 with run time of more than 10 minutes. For the present studies, three Mach number combinations were tested, and 
the Mach number of upper stream is bigger than that of lower stream.
   A Cartesian coordinate system with its origin at mid-span of the tip of the nozzle plate defines the streamwise direction x, 
the transverse direction y and the spanwise direction z. The test section is 360×30×55mm in the streamwise ( x), the 
transverse ( y ) and the spanwise ( z ) directions, respectively. The height for both streams at the tip of the nozzle plate is 
15mm, and the thickness of the tip is 0.2mm. The flow path of the two streams is almost symmetric in structure with the 
same height of 80mm for perforated plate and the sections of honeycomb and nets. Optical windows on the top of the test 
section provides the path for the laser sheet shining from outside. The upper and lower test section walls are adjustable and 
allow for the setting of the streamwise pressure gradient; the upper wall of test section is converged about 0.3 degree in 
order to obtain constant streamwise pressure in the present study. During the run of the facility, two streams come from two 
air sources with total pressure values of 10.0MPa and 2.0MPa, respectively, after the regulating valves, the pressure of both 
streams reach the values needed for corresponding Much numbers, then passing through perforated plate and the sections of 
honeycomb and nets, the two streams are regulated in flow quality, and meets at the tip of nozzle plate after passing the 
nozzles of themselves, thus a supersonic mixing layer is formed. The specific conditions for the present study are given in 
Table 1.

Table 1 flow parameters of the three convective Mach numbers
Mc 0.25 0. 5 0.7

M1,M2 2.0 1.5 3.0 2.0 2.0 0.6
T1,T2 (K) 143.3 199.3 106.43 165.56 165.56 277.99
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a1,a2 (m/s) 283.0 290.0 207.51 258.8 258.8 335.37
U1,U2 
(m/s)

480.0 424.5 622.53 517.62 517.62 201.22

r= U2/U1 0.884 0.83 0.39
Experimental results and discussions
   The typical images at Mc=0.5, 0.7 are shown in Fig.1 and Fig.2. I t can be seen from Fig. 8 and Fig.9 that the structures in 
the mixing layers at Mc=0.5, 0.7 differ in scale, incline angle, number of feature structures and size increase along the 
streamwise direction, but both these structures have the same evolution course in the supersonic mixing layer, namely, a 
nonlinear evolution course of large scale structure.

Fig. 8 Mie scattering image at Mc=0.5

Fig. 9 Mie scattering image at Mc=0.7
The above Mie scattering images also show that with the increase of convective Mach number, the evolution course of the 
supersonic mixing layer become shorter, and the number of feature structures decreases.
   On the basis of the height of the structures in the three sections in the stream of Ma=1.5, three fitting curves with different 
slopes, shown in Fig.3 are obtained for describing the growth course of the large scale structure, which, on the point of view 
of structure, can be used represents the growth course of the supersonic mixing layer, just as that of subsonic mixing layer. 

Fig.3 Fitting curves of the structures in the three sections

CONCLUSIONS

   The large scale structure of the supersonic mixing layer is found to evaluate through three sections: the first section with no 
apparent structure growth, the second section featured by structure nonlinear growth such as breaking -up, coupling and so on, 
and the third section of the structure which can be seen in the schlieren image. Three fitting curves with different slopes 
corresponding the three sections are obtained for describing the growth course of the large scale structure. These results are 
helpful to understand that only one coefficient may be not enough to describe the growth rate of the supersonic mixing layer 
completely.
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SHEDDING INTERMITTENCY IN A SHOCK WAVE-LAMINAR BOUNDARY LAYER
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Summary The interaction between an oblique shock wave and a laminar boundary layer has been studied using Direct Numerical Simula-
tions at M = 2.25 for a shock angle β = 33.1◦. For these shock conditions, the boundary separates and forms a large recirculation bubble.
Unlike in the turbulent case, the vortices created in the shear layer are found not to be uniformly distributed along the spanwise direction
because of a strong shedding intermittency.

INTRODUCTION

In the aeronautical and aerospace industries, the flow configurations where an incident oblique shock wave impinges upon
a boundary layer are very common. Under certain circumstances (High Mach number, large shock angle. . . ), the interaction
between the incident shock wave and the boundary layer may create an unsteady separation bubble. This bubble, as well
as the subsequent reflected shock, are known to oscillate in a low-frequency streamwise motion that can spread over several
tenth of the boundary layer thickness [6]. The origin of those oscillations, however still unclear, has been related either to
the shedding of vortices in the mixing layer downstream of the separation [1], or to the turbulent structures in the incoming
boundary layer [3]. Most of the previous studies however dealt with turbulent boundary layers and only a very few of them
considered the laminar case [5]. A campaign of Direct Numerical Simulations has then been performed for laminar boundary
layers, in which no incoming structures are encountered. The aim of this study is to reduce the possible causes of unsteadiness
to the sole vortex shedding, and see if the streamwise motion still appears.

NUMERICAL METHODS

The simulations have been performed using an in-house parallel (MPI) Finite-Volume based DNS/LES solver developed
at LIMSI-CNRS [7]. A Monotonicity-Preserving shock-capturing scheme, based on the Lax- Wendroff method through a 7th
order accurate coupled space and time approximation is used for the convective fluxes. The diffusive fluxes are discretized
by a second order centered scheme. The freestream and shock conditions (M = 2.25 and β = 33.1◦) have been chosen
to be identical to those of Pirozzoli and Grasso [4]. The incoming boundary layer is created using a 4th order polynomial
interpolation of the Blasius profile. The computational domain is discretised using M = 840 × 100 × 128 cells and extents
over D = 300δ0 × 30δ0 × 30δ0. The subsequent resolutions in wall units are ∆x+ = ∆y+ = 15 in the streamwise and
spanwise directions respectively. In the wall-normal direction, a 3% geometrical stretching is applied so that the first cell is
located at ∆z+wall = 1 and 35 points are located in the inlet boundary layer.

RESULTS

The vortical structures obtained by the DNS are represented in Fig. 1. As expected, under the influence of the oblique
shock wave, the laminar boundary layer separates and creates a large separation bubble. It then undergoes transition towards
turbulence in the shear layer just upstream of the reattachement point and relaxes to a fully turbulent state a few boundary layer
thicknesses further. The very first simulations showed that the separation bubble is subjected to a streamwise motion even
with no vortical structures in the incoming boundary layer [2]. This result tends to prove that this motion is mainly due to the
vortex shedding occuring in the shear layer. On the other hand, the separation bubble has been found to only move upstream
and not oscillate around an equilibrium position. One of the most interesting results concerns the vortical shedding in the shear
layer. Unlike in its turbulent counterpart, where vortices are uniformly created along the spanwise direction, the laminar case
paradoxically exhibits a very irregular shedding pattern. Coherent structures from two differents timesteps are represented in
Figure 2. On the right-hand side, the shedding is uniform over the spanwise direction. On the other hand, the leftmost side of
the figure shows the presence of a vortex-free region, in which the shedding no longer occurs, that will eventually be convected
downstream. This region, which origin is still unknown, is of critical importance since it is responsible for the occurence of a
very low-frequency peak on the power spectrum. A thorough investigation is currently in progress in order to find the physical
explanation to that shedding intermittency.

∗Corresponding author. Email: guillaume.fournier@ufrst.univ-evry.fr
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Figure 1: Vortical structures in the interaction region, represented by Q criterion isosurfaces and coloured with the streamwise
velocity. The shock system (translucent gray) is made visible by isosurfaces of the divergence of the velocity.

Figure 2: Isosurfaces of the Q-criterion at two differents time steps.

CONCLUSIONS

Direct Numerical Simulations have been performed for the interaction between an oblique shock wave and a laminar
boundary layer developing along a flat plate. The aim of this study is to conclude with respect to the possible causes of the
streamwise motion of both the recirculation bubble and the reflected shock. Previous studies linked those oscillations to either
the turbulent structures in the incoming boundary layer or the vortex shedding in the shear layer. By considering a laminar
boundary layer, the turbulent structures have been suppressed. It has been shown however that even if no oscillations have yet
been found, the recirculation bubble is moving upstream, indicating that this motion is more likely due to the vortex shedding.
Finally, a strong intermittency of the shedding has been evidenced, leading to the presence, in the flow, of large vortex-free
regions responsible for very low-frequency phenomena.
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Summary It is shown, using the curved shock theory, that the flow near the leading edge of a doubly curved wedge can choke to force the
shock to detach from the wedge. It is then observed that the fluid-mechanical process involved in the detachment of an oblique shock from
a plane or curved surface and the termination of regular reflection on a plane or curved surface have the same underlying causes. This leads
to a new criterion for regular-to-Mach reflection transition based on this ‘local choking.’ Numerical experiments are carried out to explore
the possibility that transition to Mach reflection can be induced by streamwise and transverse wall curvature.

Curved shock theory (CST) [1] is used to show that the flow behind attached shocks on doubly curved wedges can have
either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the
two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach
from the wedge. This ‘local choking’ can pre-empt both the maximum deflection and the sonic criteria for shock detachment.
Analytical predictions for detachment by local choking are supported by CFD results obtained with an adaptive unstructured
Euler solver Masterix [2].

Figure 1a demonstrates shock detachment from a wedge caused by streamwise curvature of the wedge surface. The top
and bottom wedge angles are equal, but the bottom wedge is curved. Figure 1b shows an annular ring-wedge that has no
streamwise curvature. Shock detachment is caused by lateral curvature and flow contraction on the inner surface. In both
cases detachment has occurred at wedge angles below the maximum flow deflection angle as well as below the sonic shock
angle as proven by the attached flows on the opposing wedge surfaces.

Our investigation of shock detachment from a plane or curved wedge has led to a study of the classical, more complicated
and more interesting, regular reflection termination conditions because the detachment of a shock from a wedge has, as its
cause, the same limiting flow conditions (e.g. excessive flow turning; subsonic post-shock flow) as does the termination of
regular reflection of an oblique shock wave. In the regular shock reflection situation the flow behind the incident shock,
approaching the reflecting shock, sees the reflecting surface as a freestream flow would see a flow-deflecting wedge. This
implies that the fluid-mechanical process involved in the detachment of an oblique shock from a plane or curved surface and
the termination of regular reflection on a plane or curved surface have the same underlying causes. The two flow disruptions
are governed by the same equations and, at their termination, have the same values of independent parameters and boundary
conditions, including surface curvature.

In the study of transition, some resolution between differences in theory and experiment is required as noted by Sudani
et al. [3] who state that “...transition from regular to Mach reflection occurs significantly below the maximum deflection

a b

Figure 1: (a) Local choking caused by flow curvature in planar flow at Mach 1.7 over −16.5◦ wedge on lower surface with
streamwise curvature of −1; shock is detached. Upper wedge, at +16.5◦ is flat and supports an attached shock; (b) Shock
detachment on lower surface by local choking on 30◦ circular wedge at Mach 3. Local choking caused by lateral convergence.
Shock is attached on upper 30◦ wedge surface.
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condition”. Using the curved shock theory, a formula is derived for the length of curved wedge or cylindrical surface required
to produce a locally choked flow at the leading edge or behind a reflected shock. CFD analysis predicts detachment if the
surface exceeds this length. Thus the curvature and length of the post-reflection surface becomes a transition criterion that can
pre-empt the previously posed classical criteria.

CFD studies of regular-to-Mach reflection transition on curved surfaces are carried out to examine the validity of the newly
proposed transition criterion. A solid ring with the profile based on an M-flow streamline [4] is placed into supersonic stream
to produce a straight converging axisymmetric shock. The shock interacts with an axial straight or curved cylinder. In the
course of a computation the radius of cylinder is changed very slowly to obtain a sequence of quasi-steady states displaying
transition from a regular reflection (RR) to a Mach reflection (MR). The possibility of a RR-MR hysteresis induced by the
variation of cylinder radius is also explored. Similar studies are performed using the shock from a cone reflecting off a concave
cylindrical surface.

These results provide an explanation for how shock detachment from a wedge and termination of RR can be caused by local
choking which allows for the possibility that transition to MR can be induced by streamwise and transverse wall curvature, in
turn, leading to an explanation for a long standing paradox in reconciling experiment and theory of RR termination.
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Summary Detailed simulations of inert, multi-dimensional, viscous, shock tube experiments are undertaken. From these simulations,
distinct regimes of shock boundary layer interaction are observed. These regimes show a dependence on the composition of the test gas and
the Mach number of the incident shock wave. From these simulations, it is suggested that tailoring the incident shock Mach number could
reduce the inhomogeneity in the flow and increase the operable range in chemical kinetic experiments.

INTRODUCTION

Shock tubes are a primary tool for chemical kinetic measurements, providing ignition delay times, species time-histories,
and elementary reaction rates [1]. They replicate constant-volume reactors to high accuracy for test times up to the millisecond
range, allowing for idealized zero-dimensional modeling of the combustion process.

There has been increased interest in recent years for chemical kinetics measurements in shock tubes within the negative
temperature coefficient (NTC) region due to advancements in extending shock tube test times [1, 2]; the NTC region refers to
a non-monotonic ignition delay time curve with respect to temperature for a given fuel. Boundary layer effects can influence
the ignition properties for fuels exhibiting NTC characteristics due to an increased sensitivity to fluctuations in the test gas,
which can give rise to weak ignition [3, 4]. Hence, the regimes of interaction of the shock wave with the boundary layer must
be understood in order to circumvent weak ignition. Therefore, the objective of this work is to employ detailed simulations to
study regimes of the shock boundary layer interaction (SBLI) relevant to reaction kinetic experiments in shock tubes.

SET-UP OF THE DETAILED SIMULATIONS

For the detailed simulations, the flow-field is described by the two-dimensional, viscous Navier-Stokes equations:

∂U

∂t
+

∂

∂xj

(
Fc

j − Fv
j

)
= 0 , (1)

where U is the state vector, and Fc
j and Fv

j are the convective and viscous fluxes. These vectors have the following definition:

U = [ρui, ρet, ρYn]
T , (2a)

Fc
j = [ρujui + pδij , uj(ρet + p), ρYnuj ]

T , (2b)

Fv
j = [τij , uiτij + qj , ρYnVjn]

T
, (2c)

for i, j ∈ {1, 2} and n ∈ {1, . . . , NS}, where NS is the number of chemical species. The total internal energy is denoted by
et, τij is the viscous stress tensor using Stokes’ hypothesis, Vjn is the diffusion velocity of species n, qi is the heat-flux vector,
and the mass diffusion is described by a multi-component diffusion model with thermal and pressure diffusion. The ideal gas
law is used as the state equation.

The governing equations are solved using a block-structured adaptive mesh refinement (AMR) method, which is imple-
mented in the object-oriented framework AMROC (Adaptive Mesh Refinement in Objective-oriented C++) [5, 6]. The com-
putational domain consists of a symmetric two-dimensional planar shock tube. The computational mesh consists of stretched
cells with a minimum cell height of 18.75 µm, corresponding to approximately 80 cells across the boundary layer at the end of
the simulation; three levels of mesh refinement are used. The flow-field is initialized by a moving shock using normal-shock
relations [7] at a sufficient distance away from the end wall to ensure boundary layer development. Cases are selected to span
the SBLI regimes for an n-heptane mixture with an equivalence ratio of φ = 0.5, a test temperature of T5 = 700 K, and a test
pressure of p5 = 2.7 bar. The n-heptane mixture is diluted with either 78.3% nitrogen or argon, and for both diluents, three
initial temperatures (T1 = 300 K, 400 K, and 500 K) are examined; n-heptane is selected as the fuel due it’s prevalent NTC
characteristics.
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Figure 1: Comparison of different initial temperatures on the quality of the flow field. Snapshot taken after shock wave reflects
from the end wall (right side).

RESULTS AND DISCUSSION

Pseudocolor plots of the temperature field for each simulation are shown in Fig. 1. The figure demonstrates that for both
the nitrogen and argon diluted mixtures, the severity of the SBLI decreases as the initial temperature increases (i.e., as the
strength of the incident shock decreases). Nitrogen is shown to yield a much more inhomogeneous flow for comparable
conditions than argon; this is due to the lower heat capacity ratio for the nitrogen mixture.

Three different regimes of SBLI are depicted in Fig. 1. For the lowest incident shock Mach number cases (i.e., T1 = 500
K in nitrogen and T1 = 400 and 500 K in argon), the flow is shown to be free of large-scale structures emanating from the
separated boundary layer. However, as the incident shock Mach number increases (i.e., T1 = 400 K in nitrogen and T1 = 300
K in argon), the periodic ejection of roller vortices is shown. This is attributed to the decreasing timescale of the hydrodynamic
instability of the separated flow with increasing incident Mach number. Finally, in the highest incident Mach number case
in nitrogen (i.e., T1 = 300 K), a clear bifurcation structure manifests. In this scenario, the separated boundary layer cannot
navigate the pressure rise and is contained within a stagnation bubble over which a triple-shock structure forms [8].

The results of the detailed simulation suggest that preheating the mixture may provide an opportunity for reducing some of
the inhomogeneity in the flow field by weakening the incident shock wave. Although the feasibility in obtaining a uniformly
heated test gas and chemical effects such as fuel pyrolysis may make the application of this strategy difficult, a preheated test
gas could expand the operation range of shock tubes.

CONCLUSIONS

The character of the interaction of a reflected shock wave with the boundary layer requires understanding to circumvent
weak ignition. Detailed simulations of a shock tube flow over a range of conditions demonstrate three regimes of SBLI, which
depend primarily on the mixture and the incident shock Mach number. An intermediate regime between shock bifurcation
and quiescent flow is found, which could lead to weak ignition in sensitive mixtures. Additionally, the simulations show that
tailoring the Mach number of the incident shock could reduce the inhomogeneity in the test gas.
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Summary This paper examines the interaction of a mixing layer separating two supersonic streams with an oblique shock approaching
from the faster stream with an incident angle sufficiently small for the resulting post-shock flow to remain everywhere supersonic. The
interaction region, including the shape of the resulting curved shock, is described by integrating the Euler equations in the post-shock region
formulated in characteristic form subject to the Rankine-Hugoniot jump conditions at the shock front, thereby accounting for the influence
of the post-shock flow in the computation of the shock curvature. The results are used to investigate the accuracy of Whitham’s rule for
computing the shape of the shock wave in these scenarios.

The interaction of an oblique shock with a shear layer constitutes a fundamental problem in compressible-flow theory.
These interactions occur, for instance, in combustion chambers of supersonic combustion ramjets (scramjets), where shocks
generated in the air stream at wedged walls and fuel injectors impinge on the mixing layer surrounding the fuel jets downstream
from the injection point [2]. Although the flow is typically turbulent in these high-Reynolds-number applications, analyses of
laminar flows have been shown to be instrumental in providing insightful information pertaining to mixing augmentation [3]
and enhanced chemical reaction leading to ignition [4] behind the curved shock.
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Figure 1: (a) Sketch of the model problem; (b) black curves: numerical results corresponding toM ′∞ = 10 with σ∞ = 20o and
σ∞ = 30o for different values of M ′−∞, blue curves: predictions obtained using Whitham’s rule by integration of Moeckel’s
equation (3), red curves: incident angle for the transmitted shock σ−∞ obtained by computation of shock reflection on a
contact surface; (c) results corresponding to M ′∞ = 10, M ′−∞ = 5, and σ∞ = 20o including distributions of deflection angle,
Mach number, and dimensionless temperature and pressure (scaled with their uniform upstream values); the inflection point
of the shock front is indicated with a dot.

We consider a laminar mixing layer separating two supersonic parallel streams with Mach numbers M ′∞ and M ′−∞ <
M ′∞, as indicated in Fig. 1(a). An oblique shock generated in the faster stream, with initial incident angle σ∞, impinges on
the mixing layer at a given location. As a result of the interaction with the nonuniform flow, the shock front curves, giving
a distribution of incident angle σ(z) that varies across the mixing layer. The computation of σ(z) constitutes a complicated
free-boundary problem involving the integration of the Euler equations downstream from the shock, with the conditions
immediately behind the shock determined by application of the Rankine-Hugoniot relations. If the post-shock flow remains
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supersonic everywhere, then the Euler equations can be formulated in characteristic form, with three different characteristic
lines crossing any given point. The entropy is conserved along the streamlines, a condition that can be expressed in the form

dp

p
− γ

2

d(M2)

1 + γ−1
2 M2

= 0, on
dz

dx
= tanλ, (1)

where p is the pressure, M is the Mach number, and λ is the (counterclockwise) local angle of deflection of the streamlines
with respect to the horizontal. On the other hand, manipulation of the conservation equations of continuity and momentum
provides the two additional characteristic equations [1]

dp

p
± γM2

√
M2 − 1

dλ = 0, on
dz

dx
= tan(λ± µ), (2)

where µ = sin−1 (1/M) is the angle of inclination of the two Mach lines relative to the local flow direction, as depicted
in Fig. 1(a). The integration along the streamlines and along the C+ characteristic lines dz/dx = tan(λ + µ) starts at the
shock, with corresponding initial conditions evaluated from the Rankine-Hugoniot relations, including the jump of pressure
p/p′∞ = Fp(M

′, σ), the clockwise flow deflection ν = Fν(M
′, σ), and the post-shock Mach number M = M(M ′, σ), with

λ = −ν at the shock. On the other hand, the C− characteristics originate in the shocked stream above the mixing layer, so that
the associated uniform values of p∞ (> p′∞) and λ∞ = −ν∞ must be used as initial conditions in the integration, which must
be continued until the C− characteristic line intersects the shock, providing the information needed at each point to determine
the shock curvature dσ/dz.

To the best of our knowledge, the problem formulated above has never been solved. Previous computations (see e.g. [5])
incorporate instead the approximate analytic method developed by Moeckel [6] for determining the shock shape σ(z). As
explained by Whitham [7], Moeckel’s method amounts to applying the relation dp/p = γM2dλ/

√
M2 − 1, corresponding

to the C− characteristic line, along the shock front, a condition that yields

dσ

dM ′
= −Ap + γM2Aν/(M

2 − 1)1/2

Bp + γM2Bν/(M2 − 1)1/2
, (3)

as a local expression for the shock curvature, where the factors Ap = 1
Fp

∂Fp
∂M ′ , Bp = 1

Fp

∂Fp
∂σ , Aν = ∂Fν

∂M ′ , and Bν = ∂Fν
∂σ

can be evaluated explicitly in terms of σ and M ′ from the Rankine-Hugoniot relations. In Moeckel’s simplified approach,
integration of (3) with initial condition σ = σ∞ atM ′ =M ′∞ provides σ(M ′), thereby determining σ(z) for a given upstream
Mach-number distribution M ′(z).

Sample results corresponding to the upstream Mach-number distributionM ′ =M∞− 1
2 (M∞−M−∞)[1− tanh(5z)] are

shown in Fig. 1(b) and 1(c). As can be seen in Fig. 1(b), Whitham’s rule, which gives the blue curves, tends to overpredict the
resulting incident angles. For the specific conditions selected, the resulting overpredictions are however quantitatively small.
Our computations also reveal that the variation of σ(z) is non-monotonic, resulting in a curved shock front with an inflection
point, corresponding to a local maximum of the incident angle, indicated by a dot in Fig. 1(c). The inflection point is located
near the lower boundary of the mixing layer. The non-negligible deflection occurring farther down, in the region where the
upstream Mach-number profile is nearly uniform, is due to the interactions of the C− characteristics with the shock, resulting
in a decrease of the incident angle. The value of σ eventually approaches the value σ−∞ corresponding to the transmitted
wave, which can be determined in terms of M ′∞, M ′−∞ and σ∞ by considering the outer regular-reflection problem, in which
the mixing-layer appears as a contact surface, giving the red curves represented in Fig. 1(c).
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Summary Experiments at different pressure ratios are conducted on a Truncated Ideal Contour nozzle operating under over-expanded

conditions. A system permitting synchronised data acquisition of internal pressure signals and external velocity fields is implemented.

Preliminary results display a strong flapping motion of the external jet. This motion is seen to be maximised for a specific nozzle pressure

ratio. On the other hand, internal pressure signals reveal the existence of highly organised pressure fluctuations of great amplitude in

the separation region which are linked to specific azimuthal modes. Furthermore, the first azimuthal mode has been associated with the

generation of side-loads. The characteristic dynamics of the external jet are linked to the dominant modes observed inside the nozzle to

try to unravel its connection with the generation of side-loads.

INTRODUCTION

The nozzles operating under over-expanded regimes (Pe < Patm) are characterised by oblique shocks emanating into

the flow-field to adapt the exhaust flow to the ambient pressure (?). ? described that depending on the nozzle geometry two

flow separation regimes exist for over-expanded nozzles: Free Separation Shock, FSS and Restricted Separation Shock,
RSS. Truncated Ideal Contour, TIC, nozzles only display, FSS separation regimes. During this operational regime large

structural asymmetric forces referred to as side-loads take place. Studies by ????? have suggested that side-loads in

the FSS regime are a result of oscillations of the internal shock pattern within the nozzle. Nonetheless, the causes of

the asymmetric pressure fluctuations remain unclear. This abstract suggests to explore the coupling between the internal

pressures and external flow filed as a method to characterise the internal shock oscillation.

EXPERIMENTAL FACILITIES AND SET-UP

The tests presented are conducted at the S150 cold blow down supersonic wind tunnel at Pprime Institute in Poitiers. A

reduced scale Truncated Ideal Contour Nozzle is utilised as it guarantees an FSS separation structure. The Mach number of

the full flowing flow is 3.5. The nozzle is equipped with 18 flush-mounted pressure transducers Kulite XCQ-062. The range

of the sensors is of 1.7 bar absolute. The sensitive element has a diameter of 1.7 mm which allows the acquisition of good

spatial resolution. The cut-off frequency of the sensors is around 40 kHz which guarantees a good temporal resolution.

In order to obtain quantitative information of the jet a 2D-2C Particle Image Velocimetry, PIV, system is utilised. The

acquisition as well as the initial post-processing analysis is done in DaVis 8.1 Software from LaVision. Finally, tests are

performed such that the PIV snapshots and the pressure measurements are synchronised; hence, permitting the correlation

between the internal and the external jet dynamics.

RESULTS
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Figure 1: Prms along the nozzle for several

NPR. Normalised by total pressure, P0.L is the

distance between the col and the nozzle exit.

PIV together with pressure measurements show a large amplitude jet beat-

ing around NPR=9. These observations are in agreement with the findings

by ??.It should be recalled that the flow unsteadiness while in the FSS regime

is strongly dependant on the NPR (?). Figure 1 depicts the evolution of the

Prms along the nozzle for several NPR. Despite the sparse resolution of the

pressure transducers, it can be seen that the highest pressure fluctuations oc-

cur at a nozzle pressure ratio of 9. These results together with the PIV vector

fields confirm that for the given nozzle and range of NPR tested the highest

pressure fluctuations occur at NPR=9. Moreover, the data suggests that the

internal shock occurs between x/L = 0.481 and x/L = 0.574.
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Internal Flow
To further analyse the flow inside the nozzle the azimuthal contribution of wall pressure fluctuations is studied. To do

so, the time-space dependant pressure signal is firstly decomposed into azimuthal Fourier modes,

p(x, θ, t) =
N
∑

m=−N

pm(x, t)eimθ, (1)

where N is the number of pressure transducers available. Therefore, the axi-symmetric pressure fluctuation modes

correspond to m = 0 while the asymmetric ones correspond to m = 1. Symmetry considerations suggest that only modes

m ± 1 can contribute to the generation of side-loads. Once the azimuthal Fourier modes are obtained the PSD for each

pm(x, t) can be obtained. The results are displayed in figure 2 for x/L = 0.667.
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Figure 2: First 4 azimuthal modes at x/L = 0.667
positions.

It can be seen that for St < 0.2 the spectra is dominated by the

axi-symmetric mode 0. This suggests that the low frequency unsteadi-

ness comprised in the separated region contains mainly axi-symmetric

pressure fluctuations. On the other end of the spectra, for St > 2, no

dominating mode can be observed, thence, it consists of a highly dis-

organised pressure field; which is to be expected since high frequency

fluctuations could be related to finer stochastic turbulent scales. Finally

analysis of frequencies 0.2 < St < 2 shows that the spectra is dom-

inated by distinct peaks, each of which attributed to a specific mode

number. The most energetic peak is the one corresponding to mode

m = 1. Thereby, entailing that, for the given NPR, the pressure fluc-

tuations within the separated region are very well organised. It can be

further argued that, because the mode with the highest energy content

is asymmetric, side-loads are being generated.

External Flow

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/L

y
/
L

 

 

0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x/L

y
/
L

 

 

Figure 3: POD modes 1 and 2. The co-

ordinate origin corresponds to the nozzle

exit centre

In order to be able to couple the dominant internal pressure modes with the

dominant external modes an energy based modal decomposition is done on the PIV

velocity fields. The velocity field is decomposed into temporal and spatial modes

using a POD analysis,

u(x, t) =
N
∑

n=0

αn(t)φn(x), (2)

The results of the snapshot POD analysis (?) are presented in figures.3(a) to

3(b). Note that the first 4 modes represent about 30% of the total fluctuating en-

ergy. The figures expose that the velocity field presents some preferred organiza-

tion. Mode 1 and 2 form a pair representing some kind of vertical motion of the

entire jet. Hence, both the external flow field and the internal pressure field are

dominated by coherent organisation.

CONCLUSIONS

In conclusion, the experimental measures have shown that both the in-
ternal nozzle flow and the exiting jet are dominated by well-organised
structures. Moreover, a clear dominant asymmetric azimuthal mode has
been found to characterise the flow and could be playing a significant
role in the creation of side-loads. Finally, a survey of the effect of
NPR on the anti-symetric mode is underway and will render completeness
to the descriptions of the observed azimuthally organized pressure fluctua-
tions.
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Summary: Preliminary measurements on the modulation of a sonic flow have been conducted by increasing the temperature 
at a sonic throat with the help of a plasma discharge. For a perfect gas, the flow rate being proportional to the inverse of the 
square root of the temperature at a constant settling chamber pressure, the jet flow rate should be able to be varied. In view of 
flow control actuator design, the frequency is then no limited by any mechanical constraint. The discharge can be either 
continuous or pulsed at high frequencies. The influence of the settling chamber pressure and electrode gap distance have been 
investigated. For an aerodynamically steady actuation, the jet flow rate can be reduced down to 70% of its nominal value 
(30% of flow rate reduction), the best effectiveness being obtained with a dc discharge. However, better potential efficiency 
is expected with a high current pulse discharge. 

 
Introduction In most cases, active flow control requires high frequency actuators. Particularly for high velocity 

(eventually supersonic) flow control configurations, high frequency and high authority (in terms of flow rate) are required 
([1], [2]). Usual pressurized flowing jets have a high potential but they are limited in terms of frequency (up to typically a few 
hundred of Hz). In this project, we developed a new flowing jet driven by a plasma discharge. The principle is to increase the 
temperature at a sonic throat located upstream of the jet exit with the help of a plasma discharge located at the throat (Fig. 1). 
For a perfect gas, the flow rate being proportional to the inverse of the square root of the temperature at a constant settling 
chamber pressure, the jet flow rate can be varied.  

The aim of the present study is to quantify the maximum mass flow reduction that can be obtained by different types of 
discharges ignited in the vicinity of the sonic throat. Three different power supplies are used (Fig. 2). The first power supply 
is a DC one. In this case, the discharge is either switched off or switched on and both cases are compared. The second power 
supply is composed of the DC power supply followed by a high voltage switch transistor, allowing us to pulse the discharge 
with small duration high current pulses. Finally, the last study deals with a pulse discharge with long duration small current 
pulses. As far as the flow itself is concerned, two parameters have been varied, namely the settling chamber pressure and the 
distance between the electrodes. The aerodynamic effects are observed by considering the flow rate measured by a direct flow 
meter and the temperature of the jet measured by a thermocouple. 
 
Actuator design. In the present configuration, a single 0.95-mm-diameter cylindrical hole is used. The settling chamber 
pressure can be adjusted from 1.4 up to 5 bar (the theoretical minimum pressure for sonic condition being 1.893 bar). The 
electrical characterization of the system is not given here, the main focus being on the discharge effect on the flow modulation. 
Details on the electric data can be found in [3]. Fig. 3 shows the evolution of the parameter PTQ /=Γ where T is the total 

temperature and P the pressure in the settling chamber. This parameter should be constant when the flow is sonic at the throat 
( Γ = 2.8 10-8 m² under the present conditions). From the figure, it can be observed that the flow rate follows the isentropic 
theory for the natural as well as for the plasma actuated flows [4].  
 
Major results of the plasma activation. Figure 3 shows also the air jet temperature T and the thermal power Pth versus 
discharge power Pd for several pressure values in the DC mode. First, one can observe that both quantities increases nearly 
linearly with the power injected by the discharge inside the flow. Secondly, the jet temperature reaches about 650°K for P = 2 
bar and Pd = 200 W. 

 

 

 
 

 
Fig.1. Schematic of the plasma pulsed jet actuator. 

 
Fig. 2. Schematic of the electrical setup. 
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The thermal conversion efficiency η, defined as the ratio between the thermal power and the discharge electrical power, 
increases from 32−37% at 1.4 bar (not a sonic condition) to 48−50% at 2.8 bar, with a mean value equal to 41% for P = 2 bar. 
As shown on Fig. 4, the value of the gap between electrodes is important if the discharge power is considered but less in the 
conversion effectiveness, excepted a light effect for a gap equal to 1 mm. The reduction of the flow rate being the major goal 
of the study, the results are plotted in Fig. 5 in terms of discharge power and temperature ratios. The results are compared 
with the theoretical law corresponding to a pure thermal effect TTQQ // 00 = . First, one can see that a flow rate reduction 

down to 70% can be achieved. , Moreover, it seems that a better efficiency can be expected for a high current pulse discharge. 
 
 

   
  

Fig. 3. Γ vs pressure (left), temp. vs discharge power (center) and thermal power vs discharge power (right). Gap = 3 mm. 

  
Fig. 4 . Influence of the electrode gap (DC power supply) and thermal power vs electrical power (P =2 bar). 
 

  

Fig. 5. Mass flow ratio versus temperature ratio (left) and mass flow ration vs discharge (right). Gap = 3 mm, P = 2 bar. 
 
       

CONCLUSION 
 

   We present a new method to control a sonic flow by introducing an electric discharge at the throat. The effect of the plasma is 
essentially a thermal one. Reduction up to 30% of the mass flow rate can be obtained, opening new perspectives for high authority, 
high frequency actuators in view of active flow control without any mechanical part. 
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FLOW VISUALIZATION OF HIGH-SPEED CAVITY FLOWS

Yang Zhang∗1 and Lou Cattafesta2

1,2Florida A&M University and Florida State University, Tallahassee, Florida, 32310

Summary Experimental investigations are conducted on cavity flows at Mach 0.6. Flow visualization techniques, including surface oil flow,
two- and three-component Particle Image Velocity (PIV), along with fluctuating surface pressure measurements are performed on a full-span
and a finite-span cavity with a length-to-depth ratio (L/D) of 6 but different width-to-depth ratios (W/D) of 3.85 and 2, respectively. The
results provide comparisons between these two kinds of cavity flows showing that they share some global flow features. However, higher
velocity fluctuations and pressure fluctuations are observed in the full-span cavity.

INTRODUCTION

Flow over cavity structures can generate intense pressure fluctuations inside the cavity that can cause damage to its con-
tents. The open-cavity flow mechanism can be briefly described as follows: a shear layer forms as the flow detaches from
the cavity leading edge, the shear layer impinges on the cavity trailing edge and generates an acoustic source that radiates
waves which propagate upstream. These waves initiate disturbances in the shear layer through a receptivity process. This
overall feedback process can produce strong resonances, known as Rossiter modes[1], and broadband pressure fluctuations.
Cavity flow oscillations encountered in practical applications, like weapons bays and landing gear wells, all have rigid side-
wall boundaries. However, in wind tunnel tests, cavity models usually have full-span widths to facilitate improved flow
visualization, and sidewalls with a no-slip boundary condition are neglected to reduce the computational resources needed to
adequately resolve the flow near the walls. Although the mechanism of open-cavity oscillations is similar for different cavity
geometries, the flow structures and pressure loads inside the cavity can be quite different. In the current study, both full- and
finite-span cavity geometries are tested at Mach 0.6, and flow visualizations present similarities and differences between these
two kinds of cavity flows.

EXPERIMENTAL METHODOLOGIES

Figure 1: Cavity models. Full-span (left) and finite-
span (right). Units are in mm.

The experimental investigations are carried out in the pilot wind tun-
nel located at the Florida Center for Advanced Aero-Propulsion at the
Florida State University. The schematics of the cavity models with main
dimensions and coordinate system are shown in Figure 1. Kulite un-
steady pressure transducers are instrumented along the centerline of the
cavity for the fluctuating surface pressure measurements. A cavity floor
piece without any holes is used for the flow visualization tests. For the
oil flow visualization, a mixture of mineral oil and fluorescent pigment
is applied on the cavity floor surface, which forms a surface-streamline
pattern that fluoresces under UV light. Two- and three-component PIV
measurements are conducted at the centerline plane (z/D = 0) of the full- and finite-span cavities to measure the velocity
fields, respectively. An Evergreen Nd:YAG laser (EVG00200) is pulsed at a repetition rate of 15 Hz. A laser sheet of approx-
imately 1.5 mm thickness is formed through a series of optics. A two-axis scheimpflug setup enables the Imager sCMOS
cameras to peer over the opaque sidewall of the finite-span cavity and focus on the seeding particles illuminated in the field of
interest[3]. Approximately 1000 image pairs are acquired for each case and processed using DaVis 8.2.1 software.

RESULTS AND CONCLUSIONS

Figure 2: Surface pressure fluctuations
measured along the centerline.

The non-dimensional power spectral densities (PSD∗ .
= 10 log10

U∞×Pxx

L×q2∞
)[2]

of surface pressure fluctuations are provided in Figure 2. Higher pressure fluctu-
ations are observed towards the downstream cavity wall. Rossiter mode II is the
dominant mode, and the resonance frequencies are very similar in both cases. The
high level peaks (Rossiter mode II and III) in the full-span cavity are significantly
reduced in the finite-span cavity, but the low level peaks at higher Strouhal number
(St) are enhanced.

∗yz12b@my.fsu.edu
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Figure 3: Surface oil flow patterns. Full-span cavity (left) and finite-span cavity (right).

Surface oil flow patterns are presented in Figure 3. The back flow induced by the main recirculation occupies the majority
of the cavity floor. Two vortices on the front floor appear in both cases. A separation line is observable when the two
recirculation regions meet near x/D = 1 in the full-span cavity. However, this separation line is less evident in the finite-span
cavity. These recirculation regions agree with the PIV measurements discussed below.

In Figures 4(a) and (b), the ensemble-averaged streamlines indicate there are three recirculation regions in the full-span
cavity; the primary one is in the middle of the cavity while two smaller ones are in the front and rear corners, respectively. It is
quite different in the finite-span cavity case, in which the primary recirculation almost occupies the entire cavity, and a much
smaller one is partially observed in the front corner. The contours of ensemble-averaged velocity components show that the
flows are similar. However, the flow is clearly more three-dimensional in the finite-span cavity. The contours of turbulence
kinetic energy (Figures 4(c) and (d)) and Reynolds stress (Figures 4(e) and (f)) show that the high turbulence in the mid plane
of the full-span cavity is greatly reduced in the finite-span cavity.

One of the reasons to study cavity flows is to suppress the oscillations. The three-dimensionality of the cavity flow field
can have great influence on the flow and on the control approach. In particular, the appropriate control strategy for the full-
span cavity may not be optimal for the finite-span case. However, the full-span cavity case serves as a good starting point for
implementing flow control.

(a) Contour of 〈u/U∞〉 with streamlines overlaid (b) Contour of 〈u/U∞〉 with streamlines overlaid

(c) Contour of turbulence kinetic energy, 1
2
(u′2 + v′2)/U2

∞ (d) Contour of turbulence kinetic energy, 1
2
(u′2 + v′2)/U2

∞

(e) Contour of Reynolds stress
〈
u′v′/U2

∞
〉

(f) Contour of Reynolds stress
〈
u′v′/U2

∞
〉

Figure 4: Flow properties of full-span cavity (left) and finite-span cavity (right).
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Summary We experimentally investigate the structure of a laser-induced underwater shock wave, which is often modelled as spherically 
symmetric. We measure plasma formation, shock wave expansion, and pressure in water using a combined measurement system. The pressure 
measurements reveal that the distribution of peak pressure is non-spherically-symmetric while pressure impulse distributes symmetrically for a 
wide range of experimental parameters. With considering high-resolution nanosecond-order image sequences of plasma and shock waves, we 
model the structure of a laser-induced shock wave as a collection of spherical shocks originated from multiple plasmas. The model is found to 
rationalize both spherically-symmetric distribution of pressure impulse and non-spherically-symmetric distribution of peak pressure. 
 

INTRODUCTION 
 

A laser-induced underwater shock wave is of great importance in low-invasive medical treatments, such as shock 
wave lithotripsy[1] and drug delivery for cytoplasmic molecules[2]. The pressure distribution of the shock wave has been 
often regarded as spherically symmetric (so-called a spherical shock)[3]. However, there are several reports that the 
spherical-shock model is not applicable. Sankin et al.[4] measured pressure peaks for a shock at various positions and deter- 
mined that the peak pressure at a point in the direction perpendicular to the laser beam is more than twice as high as that in 
the direction of the laser. Vogel et al.[5] reported that the shape of a shock wave is not spherical due to conical plasma 
formation. Although aforementioned results were reported, a model for the shock wave has still been under discussion. 

This research investigates experimentally the structure of a laser-induced shock wave. Such an experiment is 
crucial but challenging since the time scale for generating the shock is very short; the time scale for plasma growth is in a 
few nanoseconds and the shock velocity in water is approximately 1,500 m/s. To the best of the authors’ knowledge, we for 
the first time measure plasma growth, the expansion process of the shock, and pressure in water simultaneously. 
 

EXPERIMENTAL SETUP 
 

Figure 1 shows the experimental setup. A 532 nm, 6 ns laser pulse illuminates a point inside a water-filled glass 
tank (100×100×450 mm) through an objective lens, which results in generating an underwater shock wave. In the 
experiments we vary magnification of objective lens (5× [N.A. 0.1], 10× [N.A. 0.25], 20× [N.A. 0.25], MPLN series, 
Olympus co., Japan) and laser energy (2.6 mJ, 6.9 mJ, 12.3 mJ). The setup uses two hydrophones (Muller Platte-Gauge, 
Muller Co.) to measure pressure in water. Both hydrophones are placed 5 mm away from the focal point of the laser, one of 
which is set in the direction of the laser beam (θ = 0◦ direction) and the other in the direction perpendicular to the laser beam 
(θ = 90◦ direction). For recording plasma formation, we utilize an ultra-high-speed camera (Imacon 200, DRS Hadland Co.) 
with up to 200×106 fps (5 ns time interval) and a 1200×980 pixel array. For obtaining images of shock waves, we use 
another ultra-high-speed video camera (Kirana, Specialized Imaging Co.) with up to 5×106 fps and a 924×768 pixel array, 
which is synchronized with a laser stroboscope (SI- LUX 640, Specialized Imaging co., UK), the repetition rate of which is 
also up to 5×106 Hz. We use a digital delay generator (Model 575, BNC Co.) to synchronize the laser, the hydrophones, the 
cameras, and the stroboscope. We repeat measurements under the same experimental conditions more than three times. 
 

RESULTS AND DISCUSSION  
 

The measurement results with the 10× objective lens are shown in figure 2. The plasma emit lights in an elongated 
area, the major axis of which is in the direction of the laser beam as shown in figure 2(i). A laser-induced bubble then 
expands from a point where the plasma was formed (figure 2(ii)). Non-spherical shock is observed at t = 0.4 µs while the 
shock looks a single spherical shock at t = 2.4 µs (see Fig. 2(iii)). However, enlarged images in figure 2(iii)θ=0◦ and θ= 90◦ 
show two shock waves for θ = 0◦ and the single shock wave for θ = 90◦. The pressure in water measured at different 
positions are shoen in figure 2(iv). We find two peaks for θ = 0◦ and a single large peak for θ = 90◦, which is approximately 
1.3 times higher than that for θ = 0◦. This dependence of the peak pressure on the angle θ is consistent with the report by 
Sankin et al.[4]. Here, we compute the pressure impulse for θ = 0◦, P0, and that for θ = 90◦, P90. The definition of the pressure 
impulse is 

 
where p is the shock pressure and t is the elapsed time. The pressure impulse is calculated for t = 2.5 to 4.5 µs, where time 
for plasma formation (<10 ns) is totally covered. Remarkably, as shown in figure 2(iv), P0 reasonably agree with P90. 
Furthermore, both pressure impulse and peak pressure are examined for all the other experimental conditions. It is found 
that even if peak pressure in θ = 0◦ and 90◦ differ significantly, the P0 is in good agreement with the corresponding P90 

P =

Z
pdt
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within the experimental uncertainty for a wide range of experimental parameters. The order of pressure impulse in this study 
is similar to drug delivery systems for cytoplasmic molecules[2]. 

In order to rationalize aforementioned results, we now propose a physical model for the structure of the laser-
induced shock wave: The shock consists of multiple spherical shock waves as shown schematically in figure 3. In this 
model, each spherical shock wave originates from the corresponding plasma formation. In addition, we assume that the 
superposition principle is applicable: the net pressure produced by multiple shock waves which reach at the same position is 
the sum of the pressures obtained by the individual shock waves. This assumption reasonably works if the shock wave has 
pressure lower than approximately ︎ 100 MPa[5] where the shock behaves acoustically. Analogous phenomenon to this may 
be the surface wave after multiple stones are thrown into a quiescent liquid bath (the so-called Huygens–Fresnel principle). 

This model successfully rationalizes both pressure peak of the shock (i.e. multiple pressure peaks for θ = 0◦ and the 
single large peak for θ = 90◦) and the pressure impulse (i.e. pressure impulse for θ = 0◦ is equal to that for θ = 90◦) for a wide 
range of experimental parameters. It should be noted that this model includes the well-known spherical-shock model. The 
origin of the elongated plasma is expected to be multiple spots of plasma even if just a single plasma or a bubble is observed 
as shown in figure 2. In addition, The model for the multiple shock structure may possibly rationalize the results reported in 
previous research. For instance, Sankin et al.[4] reported that a shock wave emitted from the elongated plasma has an angular 
variation of pressure distribution. Although the shape of the shock wave appears to be spherical, the elongated plasma shape 
might cause a multiple shock, as observed in the present experiments (see figure 2), which would lead to a non-spherically- 
symmetric pressure peak of the shock.              

It is known that the nonlinear effect arises when the shock pressure is larger than 100 MPa[5], i.e. the liner 
superposition in this model is not applicable. However, spherically symmetric distribution of pressure impulse found in our 
study indicates that the nonlinear effect on the initial shock pressure is negligible or spherically symmetric in our 
experimental conditions. Thus the superposition model might be still applicable to rationalize results for both peak pressure 
and pressure impulse. 
 
 

  
(Left) Figure 1: Measurement system consisting of two ultra-high speed cameras and two pressure sensors. An ultra-high speed video camera records laser-

induced shock waves and bubbles at up to 5×106 fps with a synchronized laser stroboscope. Plasma luminescence is captured by another ultra-high speed video 
camera at up to 200×106 fps. Temporal pressure evolution is measured by two hydrophones. One hydrophone is arranged in the direction of the laser beam (θ = 0◦) 
at a stand-off distance of 5 mm from the laser focal point, while the other hydrophone is at right angles to the hydrophone (θ = 90◦) at the same stand-off distance. 
(Center) Figure 2: Measurement results for a laser-induced underwater shock wave obtained with a 10× objective lens. (i) Plasma luminescence at t = 5 ns after the 
laser is fired. The image is captured by an ultra-high-speed video camera at 200 Mfps. (ii) Shock waves and bubbles at t = 0.4 µs imaged with an ultra-high speed 
video camera at 5 Mfps. (iii) Shock waves at t = 2.4 µs measured with an ultra-high-speed video camera at 5 Mfps. Enlarged images for the areas of θ = 0◦ and θ = 
90◦ are also presented. (iv) Shock pressure measured by the two hydrophones arranged at θ = 0◦ (red line) and θ = 90◦ (blue line) with respect to the laser direction. 

Integrations for the pressure with respect to the elapsed time indicate pressure impulses. 
(Right) Figure 3: Schematic of a multiple structure model for a laser induced underwater shock wave. Multiple plasmas emit multiple bubbles and spherical shock 

waves. In a linear system, the shock pressure at a certain point is the sum of spherical shock pressures that reach the same point. 
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Summary This study examines the effect of upstream disturbances on the unsteadiness of a 3D shock-wave boundary-layer 
interaction generated by a swept-ramp in a Mach 2 flow. A number of diagnostic techniques are employed, including surface 
flow visualization, planar laser scattering, high-speed planar PIV, high-resolution planar PIV and stereo PIV. Previous work in 
this facility has identified a correlation between upstream disturbances and unsteadiness in 2D interactions. However, swept 
ramp interactions exhibit an “open” separated flow that does not recirculate. Open interactions are likely have significantly 
different unsteadiness mechanisms in comparison to 2D interactions. This work is part of an on-going study that seeks to better 
understand driving mechanisms of low-frequency unsteadiness in 3D interactions. 
 

The Facility and Experiment 
 
Experiments are conducted in the University of Texas at Austin blowdown supersonic Mach 2 wind tunnel. Stagnation pressure 
and temperature are 261±7 kPa and 292±5 K respectively with a free stream velocity of 510 ms-1, a boundary layer height of 
12.5 mm (based on U99) and a unit Reynolds number (based on freestream conditions) of Re∞=38×106 m-1. Further 
information on the tunnel conditions can be found in [1]. The ramp has a 30o sweep and 22.5o compression angle which 
generates a swept interaction which grows in the spanwise direction, as shown in Figure 1. The ramp is fitted with a single 
fence on the upstream ramp location in order to prevent contamination with the side walls. The surface flow visualization 
has been conducted using mineral oil mixed with a fluorescent dye which is fluoresced with a UV lamp and recorded at 30 
FPS. The high-resolution (2k x 2k) PIV is taken at 5Hz and the high-speed PIV is taken at 50 kHz. The PIV plane shown in 
Figure 1 is at 10% the boundary layer height. High speed alcohol PLS was also conducted at 10 kHz.  
 

The Time Averaged Structure 
 
The time-averaged structure of the interaction is shown in Figures 1 and 2a. Figure 1a shows the surface features extracted from 
surface flow visualisation of the entire tunnel floor with certain features of the interaction superimposed. Figure 1b shows the 
same image with the PIV field of view super imposed. The interaction is clearly 3D, it shows a clear non-linear region at the 
most upstream location of the ramp with the interaction becoming conical and growing linearly in the spanwise direction. 
Significant cross flow is apparent in both the surface flow visualisation and time-averaged PIV. The time-averaged distribution 
gives the impression of a relatively steady interaction with features that are in good agreement with the general literature [2], [3]. 
 

 
Figure 1 – Annotated surface flow visualization (left) with u-velocity contour overlaid (right) for comparison. White dotted lines 
are highlighted streak lines. Shaded white region shows region of reverse flow estimated from surface streak-lines. 

The Instantaneous Structure 

691



 
Figure 2 shows a comparison between the time-averaged and instantaneous surface flow visualisation. The instantaneous 
structure is very different to the average, showing significant local separation-line distortion and relatively weak cross-flow 
(three dimensionality) in the separation region relative to the average. Casual inspection of Figure 2b shows large elongated 
super-structures in the boundary layer of high- and low-velocity which appear to correlate with the separation-line position. 
It has been shown [1], [4] that the speed of the incoming boundary layer has a strong influence on the 3D separation line 
position. High speed regions survive the adverse pressure gradient longer pushing the separation line downstream, while 
low speed region survive it for less time moving the separation line upstream. The presence of these super-structures has 
been seen before [5]–[7] in this facility and in incompressible flows [8]. The distortion of the separation line caused by these 
superstructures is very similar in size to the unsteadiness region inferred from the RMS of the time-averaged distribution, 
suggesting it is a very significant mechanism. Comparison with the x-z plane high-resolution PIV with the x-y plane high-
speed PIV at z=0 suggests that approximately 60% of the unsteadiness amplitude appears to correlate with the velocity of 
the inflowing boundary-layer.  
 

  
(a) (b) 

Figure 2 –u-velocity component in the x-z plane. (a) Time-averaged. (b) Instantaneous. Velocity has been normalised by the free 
stream velocity (510 ms-1). Black solid line shows the surrogate separation line. Black dotted line shows the average separation 
line. 
 

Conclusions 
 
This study finds a strong correlation between the location of the separation line and the velocity of the incoming boundary-
layer for a swept-ramp interaction at Mach 2. The high degree of local distortion to the separation line and the low 
instantaneous cross flow could be interpreted as implying that the three dimensionality is relatively diminished and that this 
3D interaction might share similarity with the 2D case. However, this conclusion is speculative and requires further 
investigation. In future work, we will make extensive use of arrays of fast-response pressure measurements to explore the 
correlation among fluctuations in the upstream boundary layer, the separation shock foot, and the reattachment region. 
Furthermore, disturbances will be imposed in the upstream boundary layer using an array of pulsed microjets, which will be 
pulsed at frequencies ranging from 1 to 10 kHz. The effect of the pulsed microjets on the interaction dynamics will be 
explored with the fast-response pressure measurements and PIV.  
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Summary Kelvin-Helmholtz (KH) instability is central to shear flow mixing and is known to be suppressed in compressible flows. The
objective of this work is to investigate the effect of perturbation wavenumber on the degree of suppression of the KH instability in high-
speed shear flows. We demonstrate that the degree of suppression decreases with increasing the initial perturbation wavenumbers.

INTRODUCTION

Kelvin-Helmholtz (KH) instability occurs at the interface between two fluid streams of different velocities. The ex-
perimental/numerical investigations and modal analyses of the compressible KH instability clearly demonstrate significant
suppression [1,2]. The physical suppression mechanism underlying the stabilizing effect of compressibility on KH instability
has been explained recently [3]. We further that work to demonstrate the influence of wavenumber perturbation on the degree
of suppression. In the incompressible flows, shear effects dominate the interface flow dynamics causing monotonic roll-up of
vorticity and mixing between the two streams, leading to the KH instability. However, the instability mechanism in sufficiently
compressible flows is fundamentally different. In high-speed flows, compressibility forces the dominance of dilatational rather
than shear dynamics at the interface, leading to the segregation of the flow domain into dilatational interface layer (DIL) in
the middle and the outer regions in the far-field. We utilize the results of transient stability analysis and numerical simulations
to explain the degree of suppression mechanism within the DIL.

LINEAR ANALYSIS

We consider the linear stability of a steady, planar, parallel free-shear layer with the base velocity field of u = (U1(x2), 0, 0),
where x1, x2 and x3 are taken to be streamwise, normal and spanwise directions. The flow and thermodynamic variables are
decomposed into base and perturbation fields: q(ρ, ui, p)=q̄ + q′ where q = q(ρ,u,p); density−ρ; velocity field−u and
pressure−p. Note that a planar shear layer invokes that ∂p̄/∂xi = 0 and ∂ūi/∂xi=0. We assume an inviscid, ideal gas,
p = ρRT at uniform Temperature (T ), where γ is the specific heat ratio. It is important to examine the evolution of the
perturbation field in a reference frame advecting with the unperturbed flow. Thus, the following coordinate transform is in-
voked: X1=x1-

∫ t
0
U1dξ, X2=x2 and X3=x3. To understand the suppression mechanism of KH instability by compressibility,

investigating the change in the character of p′ by u′2 is essential [3]. To identify the non-modal stabilization mechanism [4] of
KH instability and modeling transition to turbulence in compressible flows, we explain the transient suppression mechanism
by employing a linear initial value analysis rather than the previous eigenvalue analyses [5,6] . Hence, we examine the tem-
poral evolution of the two-dimensional perturbation mode of the type: q = q̂(X2, t)e

iκX1 , where (̂.) is the Fourier amplitude;
κ is the wavenumber; and q̂(X2, 0) satisfies the free-stream boundary conditions. The linearlized perturbation equations are
rearranged in the form of wave (hyperbolic) equations with source terms [3]:

M2
g

∂2û∗2
∂t∗2

=
∂2û∗2
∂x∗2

2
+ (û∗2S

∗ − û∗1)S∗ +
i

κ

p̂∗

γu0
S, (1)

M2
g

∂2p̂∗

∂t∗2
=
∂2p̂∗

∂x∗2
2
− p̂∗ + 2i

u0ρ̄

κp̄
û∗2S, (2)

the relevant parameter to characterize compressibility effects on perturbation field, gradient Mach number, Mg , is defined by

Mg ≡
S

ā0κ
, (3)

where ā0 =
√
γp̄/ρ̄ is the speed of sound. S ≡ ∂X2

U1 is the shear rate of the base velocity and S∗ ≡
∫ t
0
S(X2)dξ. The

independent variables are normalized as follows: t∗ ≡ St and x∗2 ≡ κX2, where κ is the magnitude of the perturbation
wavenumber. The normalized pressure and velocity amplitudes are: p̂∗ ≡ p̂/p and û∗i ≡ ûi/u

0, respectively, where u0 is
the root mean square of the initial perturbation velocity. At high speeds (Mg > 1), p′ evolution is described by the non-
homogeneous wave equation (2) and pressure propagates through the flow field at a wave speed proportional to 1/Mg . It is
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immediately evident that u′2 is coupled as a harmonic oscillator, also attains the wave-like character in compressible flows.
The changing sign of u′2 in a compressible shear layer has a profound effect on perturbation kinetic energy and spanwise
vorticity. The analysis of the reduced mathematical equations demonstrate that spanwise vortex structures roll and un-roll
repeatedly. Furthermore, perturbation energy production is alternately positive and negative. Such behavior will necessarily
result in stabilization of the flow nearby the interface of two streams.

NUMERICAL SIMULATIONS

We test the validity of the theoretical analysis by performing a sequence of three-dimensional simulations of perturbation
evolution in a temporally evolving mixing layer at different convective Mach number Mc ≡ ∆U/2ā= 0.7, 1.0, and 1.2. The
hyperbolic base velocity field, u, and the sinusoidal perturbation velocity field are identified: u=(∆U/2 tanh(0.5x2/δ

0
m), 0, 0),

where δ0m is the initial momentum thickness of the mixing layer. To examine how the initial Mg can characterize thickness of
the DIL, we examine the evolution of perturbation field at different κ and S in equation (3) at a fixed Mc.

Figure 1: Contour plots of pressure perturbation of a mixing layer at the initial Mc=1.2, for (a) κ = 1 (b) κ = 2. The
dilataional interface layer is indicated by the dash line.

DISCUSSION

The difference between KH instability of compressible and incompressible flows is explained through the change in the
character of pressure. In the incompressible flows, shear-driven motion of pressure leads to the merging, roll-up of the vortices
and more circulation at the interface of two streams. While in the compressible flows, there is a dilatation-driven oscillatory
which separates the two streams. The interface layer acts as a physical structure for channelling the flow and guiding the
pressure waves. There is some sort of active feedback mechanism within the DIL where the source terms, the right-hand
sides of the equations (1)-(2), set up an oscillation within the DIL. The pressure gradient in the outer regions travels with
the oblique to the high pressure gradients inside the interface layer. When and where the DIL starts forming are investigated
through the numerical simulation and linear analysis. Dynamics of the evolution of the DIL depends on the local value of
the gradient Mach number. As wavenumber of the initial perturbations increases, the thickness of the DIL decreases at a
fixed convective Mach number as shown in Fig. 1. This is in agreement with the the equations (1)-(2), as the effect of
compressibility diminishes, as Mg → 0, resulting in the sustained growth of perturbation vorticity and kinetic energy.
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Summary The occurrence of the streaks was detected in the flat plate boundary layer at Mach 2.5. They arise due to the 
interaction of the weak shock waves with the flow in the vicinity of blunted leading edge. The process is accompanied by 
increasing of the local skin friction as well as the pulsation amplitude in the boundary layer. Here this simple case is discussed in 
comparison to the similar results obtained before in the boundary layer of the flat delta wing. 
 

INTRODUCTION 

 
   The transition mechanisms in a supersonic boundary layer are largely dependent on the level of disturbances in the free 
flow. For example, conventional supersonic wind tunnels have the measurable level of acoustic pulsations in the test section 
[1, 2], which leads to the early laminar-turbulent transition. The effect of acoustic pulsations on the turbulence origin in a 
supersonic boundary layer was mainly investigated for flat plate [3, 4]. In some cases, in addition to acoustic pulsations 
there are the quasi-stationary perturbations in the form of weak shock waves in the test section of the wind tunnel that can 
affect models too. We have detected the abnormally high levels of mass flow fluctuations in the boundary layer of the plane 
delta wing, which achieved up to 20% of the local value of the mass flow [5]. The cause of these high-intensity disturbances 
could be attributed either to the impact of external Mach’s wave on the boundary layer along the attachment line of the 
leading edge of the delta wing, or to its interaction with bow shock. To test this, the excitation of disturbances by weak 
shock waves in the boundary layer of delta wing were experimentally investigated in [6] at Mach numbers 2, 2.5, 4, but the 
radius of the side edge was several times greater than one used in [5]. The studied cases therefore corresponded to subsonic, 
near sonic and supersonic leading edge. It has found out that the mass flow pulsation reached 12-15% and varied only 
slightly from the flow conditions. Thus, the effect of the interaction of the incident weak shock wave with the bow shock 
can be not very significant. The streaks occurrence was always detected in the boundary layer. 
   Since the results presented in [5, 6] are the only confirmation of the disturbance excitation, it is necessary to further 
investigate in detail other relevant cases. In experiments presented here, we used the flat plate with blunted leading edge at 
Mach 2.5, as the disturbance excitation is several times less for the model with a sharp leading edge. 
 

SET-UP OF THE EXPERIMENTS 

 

   The experiments were conducted in a supersonic wind tunnel T-325 of the Institute of Theoretical and Applied 
Mechanics at Mach 2.5 and unit Reynolds number Re1 = 5×106 m-1. The flat plate had a cylindrical leading edge with the 
bluntness radius of 2.5 mm. To create a pair of weak shock waves, 2D sticker is glued on the sidewall surface of the test 
section upstream of the model as it is presented in Fig. 1. Dimensions of the sticker were 0.13 or 0.26 mm in thickness, 15 
mm in width and about 150 mm in length. In this case, pair weak 
shock waves are generated to free flow by the front and rear 
edges of the 2D surface irregularity, similarly to data published in 
[6]. To measure the flow characteristics, constant temperature 
anemometer (CTA) was used. Hot-wire sensors made from 
tungsten wire were 10 µm in diameter and about 1.6 mm in 
length. The overheat loading of the wire was about of 0.8, so that 
the measured disturbance on 95% was coincident to the mass 
flow pulsations (m´). To measure the pressure distribution over 
the model surface, a Preston tube is used.   
         Figure 1. Experiment set-up. 
 

RESULTS 

 
   Pulsations of the supersonic flow in the test section of the T-325 have normal distribution for the amplitude that does not 
correspond to their interaction in a free flow. Generated by two-dimensional sticker, the disturbance in the free flow has 
local non-linear properties, which are characterized by significant deviation of the amplitude distribution from the normal 
probability density. It was checked by the hot-wire measurements of the spanwise pulsation distribution in the free flow at 
x = -10 mm upstream from the leading edge. An example of the measurements for 0.13 mm sticker is shown in Fig. 2. 
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    Figure 2.    Figure 3.    Figure 4. 
   Here, there are sharp peaks in the spanwise distribution of the mass flow disturbances in the neighbourhood of weak 
oblique shocks generated by the 2D sticker on the sidewall surface. Under the experimental conditions, the sidewall 
boundary layer was turbulent with thickness of about 12 mm. The maximum in the pulsation distribution at z = 10 mm 
corresponds to a wave from the front edge of the sticker and z = 0 is the centreline of the flat plate. As for the mass flow 
distribution, the relative value of ρU (z) reminds well-known N-wave, the amplitude of which is about ±3 % relative to the 
mean value of the mass flow in free flow. 
   The results of the hot-wire measurements in the flat plate boundary layer at x = 90 mm and y = 0.7 mm, where y is 
normal to the flat plate coordinate, are shown in Fig. 3 together with results for undisturbed artificially free flow. It is 
typical response of the supersonic boundary layer to these artificial disturbances, which is similar to results published in 
[5, 6]. Just only, the pulsation amplitude has less value and reaches approximately 8-10%. Not considering here the 
statistical features of the disturbances, it is necessary to mention that there was mainly the low-frequency pulsation 
excitation in the boundary layer. Defects of the mean flow in the spanwise direction indicates the existence of a pair of 
vortices in the boundary layer. It is interesting to know how they changed the skin friction. 
   We consider here only data obtained using the sticker of 0.26 mm in thickness on sidewall of the test section, which 
produces the more intensive amplitude of the weak shock waves in comparison with the data shown in Fig. 2. As an 
indicator of the skin friction, Preston’s tube measurements over the flat plate surface are used. Relevant pressure 
distributions obtained for the various coordinates is shown in Fig 4. In order to have an arbitrary scale of the obtained 
values, the figure also includes the data on the pressure distributions of the submerged weak jet that is intentionally blown 
into the boundary layer through a surface aperture of 0.42 mm in diameter at z = 0 and x = 35 mm. It was found out that at 
the downstream distance up to 100 mm from the leading edge the boundary layer remains laminar, despite of the existence 
of stationary vortices and their significant influence to the skin friction. These data confirm one of the features of evolution 
of the perturbations mentioned in [6]. The spanwise scale of the stationary perturbations in boundary layer generated by the 
external weak shock waves was not almost changed downstream. Perhaps, the disturbances have “streaky structures” 
features downstream in the supersonic boundary layers [7]. 
 

CONCLUSIONS 

 
   The origin of the streaks were detected in the flat plate boundary layer at Mach 2.5. They arise due to the interaction of the 
weak shock waves with the flow in the vicinity of blunted leading edge. The process is accompanied by increasing of the local 
skin friction as well as the pulsation amplitude in the boundary layer. The data are similar to the results obtained before in the 
boundary layer of the flat delta wing [5, 6]. The results are suitable for the CFD code verification. 
   This work is supported by the Russian Foundation for Basic Research (grant number 16-01-00743). 
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Summary Shock wave reflection from concave surfaces including a purely cylindrical concave reflector and a composite one consisting of
a concave cylindrical arc transitioning to a straight inclined surface is the subject of the present study. A combined – theoretical, numerical
and experimental – approach is used. The main attention is given to the transition from a Mach reflection to a regular reflection. New
theoretical predictions of the transition are based on the information on the corner signal propagation obtained from numerical simulations
via an original signal tracking technique. Numerical simulations are carried out using the Euler and Navier-Stokes models. State-of-the-art
time-resolved optical flow visualization is employed in shock tube experiments. The obtained results and conclusions significantly alter the
current state of knowledge about the phenomena.

The paper presents work aiming at the re-examination of the current state of knowledge regarding initially planar shock
reflection from concave surfaces. A concave cylindrical surface as well as a composite surface consisting of a concave
cylindrical arc followed by a straight wedge are considered. The emphasis is on the transition from a Mach reflection (MR) to
transitioned regular reflection (TRR). Combined – theoretical, numerical and experimental – studies are undertaken.

The recent (2007) state-of-the-art in this research area is summarized in [1]. Analytical and experimental results from [1]
regarding the MRR-TRR transition on a cylindrical concave surface are shown in Fig. 1a. Our numerical results obtained with
an adaptive unstructured finite-volume Euler code Masterix [2] are plotted in Fig. 1a as well (‘CFD’). It is seen that the MR-
TRR transition is predicted to happen at appreciably higher wall angles as compared to the experimental results from [1]. It
is conjectured that the discrepancy between the present numerical simulation and the experimental results is primarily caused
by insufficient optical resolution rather than viscous effects which manifest themselves mainly via effective modification of
local wall angle due to boundary layer displacement. According to [1] and our numerical modeling, the triple point trajectory
is tangential to the reflecting surface prior to transition. This results in very small Mach stems over a rather wide range of
wall angles and poses significant challenges for optical diagnostics. This fact is illustrated by Fig. 1b,c showing an instant
when the Mach stem height is ∼ 0.0016R, where R is the radius of curvature of the reflecting surface. Therefore, to clarify
the issue, new experimental observations are undertaken with the cylindrical concave model of larger radius and up-to-date
high-resolution imaging; details of the experimental setup may be found in [3].

The previous theoretical treatment [1] is based on two main assumptions: (1) the MR-TRR transition takes place when the
corner signal generated at the leading edge of the reflecting surface is no longer capable of catching up with the reflection point;
(2) the corner signal velocity is evaluated using the flow parameters behind the incident shock, assuming that the reflected
shock is weak. The three modifications of the theory shown in Fig. 1a differ in the additional assumption on the path which
the corner signal follow. None of the three theories provide satisfactory agreement with the numerical findings for the entire
range of Mach numbers. Examination of our numerical flowfields shows that the above-mentioned second assumption seems
to be in significant error at later stages of the interaction, prior to transition, when the reflection shock becomes stronger.

We use the numerical signal tracking technique proposed in [4] to observe signal propagation and obtain more accurate
information on the velocity and front geometry of the corner signal and its propagation path. In this technique, signals are
considered as infinitesimally weak sound waves propagating with the local speed of sound relative to the flow and being carried
by the flow itself as well. The tracking is done at the end of each time step as a postprocessing procedure. Since no actual
disturbance is introduced to the flow, the technique is as accurate as the numerical flowfield itself. Information on the corner
and other signals provides further insight into the gasdynamics of the refection process and allow us to improve the existing
theories predicting the MR-TRR transition angle by more accurately accounting for physics of corner signal propagation.

In the second part of the paper, a combination of a concave cylindrical surface (an arc) and a straight wedge is considered
with the aim of investigating how such a concave wedge tip may alter the resulting reflection pattern. It was numerically
demonstrated in [5] that the resulting reflection pattern established far away from the wedge tip (regular or Mach reflection)
may differ depending on whether the reflecting wedge has a straight or concave tip. Parametric studies in [6] showed that the
effect is observed for shock Mach numbers corresponding to the dual solution domain (where both Mach and regular reflection
are physically admissible) and wedge angles ranging from the sonic angle to a value slightly lower than the von Neumann
angle, i.e., within the most part of the dual solution domain. The first experimental demonstration of the effect for a concave
tip wedge with the radius of curvature R = 12 mm and a straight wedge with the same angle was published in [6].

In the present paper, experiments for the wedge tip radius as low as 4 mm are presented. It is demonstrated that even with
such a small tip the above-mentioned effect is observed, i.e., minute variations in geometry may lead to different reflection
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a b c

Figure 1: a Analytical (γ = 1.4), experimental and numerical predictions of MR-TRR transition on the concave cylindrical
surface; b, c A CFD result for shock Mach number Ms = 3.0 (γ = 1.4) and an instant close to MR-TRR transition. The
Mach number distribution is shown: b entire flowfield, the reflection seems to be regular; c magnified image near the reflecting
surface revealing true nature of the reflection.

patterns and hence different dynamic and heat loads. The resulting reflection is of iregular type (see Fig. 1a,b) in the presence
of the small concave tip while a straight wedge with the same angle produces a regular reflection. The above-mentioned signal
tracking technique [4] is also used to study the propagation of the corner signal front as illustrated in Fig. 2c. Information
about the velocity of the corner signal and its path is therefore obtained from numerical experiments and used in an analytical
treatment to predict the regular-to-Mach reflection transition angle for wedges with concave tips. Furthermore, numerical
simulations using the Navier-Stokes equations are carried out for selected cases. The study of the influence of viscous effects
is essential because in most shock tube experiments high Mach numbers (> 2) can be achieved only at low pressures in the
test section. As a result, the Reynolds number based on the tip radius R can be as low as 15,000 for R = 4 mm.

a b c

Figure 2: a, b Shadowgraph movie frames for the wedge angle θw = 52◦, the concave tip radius R = 4 mm, and the nominal
shock Mach number Ms = 3.0. The frame a shows the flowfield near the tip; a small Mach stem is already discernible. The
frame b shows a well-developed irregular reflection close to the end of the wedge; c Inviscid CFD simulation by an adaptive
unstructured finite-volume code Masterix of shock wave (Ms = 3.0) reflection from a straight wedge with the wedge angle
θw = 52◦, with corner signal tracking. The corner signal front at the displayed time moment is shown with a thin solid line
running along the reflected shock and then coming to the surface well behind the reflected point, i.e., the signal is not catching
up with the reflection point. This corresponds to the regular nature of the observed shock reflection.
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Summary A modified orthogonal collocation method is proposed for reduction and real-time solution of one-dimensional distributed-
parameter system models. The method uses Lagrange polynomials as trial functions and sets the nodal points to coincide with the collocation
points. Maple™ is used to illustrate the application of the method for real-time simulation of compressible flow in a diesel particulate filter.

INTRODUCTION
Limited time and storage play a key role in computational aspects of computer simulations. Design optimization and

advanced controller development require accurate but fast computer models. This is challenging to achieve with a distributed-
parameter model governed by (nonlinear) partial differential equations (PDEs) with variables changing in time and space.
There are several approximation schemes by which the spatial domain of such a model can be discretized and the governing
PDEs can be reduced or converted into a system of ordinary differential equations (ODEs) that can be solved efficiently. The
commonly-used numeric approaches, such as finite difference and finite element formulations, are computationally expensive
and hide the physics of the model. Black box techniques such as look up tables and neural networks are fast but offer no
access to model parameters. Neither of these methods are therefore suitable for model-based design and control. Symbolic
reduction methods, such as weighted residual schemes and variational principles [1], on the other hand can both expose model
parameters and be computationally efficient. Symbolic simplification algorithms of computer algebra packages, such as
Maple™ and Mathematica®, can be employed along with these symbolic reduction schemes to derive very efficient models.
Developed symbolic models are expected to run significantly faster than current numeric-based approaches. In addition,
further reduction of these symbolic models by the use of model order reduction schemes, such as the proper orthogonal
decomposition, is possible.

OBJECTIVE
The main goal is to develop the mathematical theories and computer algorithms necessary to symbolically reduce the

governing PDEs of various one-dimensional (1D) distributed-parameter models to a system of symbolic ODEs. Such a tool
would have a wide range of applications, e.g. in automotive applications for modeling engine manifolds, drive belts, and
after-treatment components. The work is based on using a specific form of the method of weighted residuals (MWR) and
harvesting the power of symbolic computation in Maple™ to achieve computational efficiency.

METHODOLOGY
The MWR is a general method of symbolically reducing PDEs to ODEs. It is based on expanding the unknown solution

as the finite summation of a set of known trial spatial functions multiplied by unknown time-varying coefficients. The ap-
proximate solution is substituted into the PDE to form a residual. Then using a (complete) set of known weighting functions,
the weighted integrals of the residual are set to zero to derive a set of ODEs from which the unknown coefficients can be
computed. The weighting functions can be chosen in many ways and each choice corresponds to a different MWR. The
Galerkin method is one of the best known approaches where the weighting functions are chosen to be the trial functions. The
method forces the residual to be zero by making it orthogonal to each member of a complete set of functions. The method,
however, is not suitable for nonlinear PDEs where the integrals of the weighted residual cannot be calculated analytically
and may result in a very complex system of ODEs if a numerical integration has to be used. In the collocation method, the
weighting functions are chosen to be the displaced Dirac delta functions, reducing the integration over a domain to evaluation
at a point inside the domain. Thus, the method forces the residual to be zero at some specified collocation points and, since
no spatial integration is required, it drastically reduces the drudgery of setting up the problem. It has proved to be suitable for
nonlinear PDEs and as accurate as the Galerkin approach provided a higher-order approximation is used.

In the collocation method, the low-order approximation results depend on the choice of collocation points. There are
choices of collocation points which make the calculations more dependable and accurate. The orthogonal collocation method
(OCM) [1, 2] uses a set of N orthogonal polynomials, up to order (N − 1), as trial functions and the roots of the (N + 1)th
orthogonal polynomial (of order N) as collocation points. The residual function is therefor forced to contain the (N + 1)th
orthogonal polynomial as a factor, because its zeros are set to match the roots to the (N+1)th polynomial. Due to orthogonality
relations, the OCM has an accuracy that is comparable to that of the Galerkin method [2].

It is interesting that the OCM approximate solution depends only on the collocation points and not on the form of trial
polynomials, which can therefore be selected to expedite the reduction procedure. This work is based on applying two
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adjustments on trial polynomials. First, Lagrange polynomials of order (N − 1), based on N nodal points, are used as
trial functions to ensure that the unknown coefficients have the same physical meaning and order of magnitude (they would
represent the solution at the nodal points). This helps in smoothing the behavior of the final ODEs. Second, the N nodal points
of the Lagrange polynomials are set to coincide with the N collocation points. As shown in the following, this significantly
simplifies the form of the final ODEs.

For illustration, consider a 1D PDE: f(y, ẏ, y′, x, t) = 0 (1), where f is a general nonlinear function (boundary conditions
are neglected for simplicity of description), x and t are the spatial coordinate and time, y = y(x, t) is the unknown solution,

and ẏ and y′ are time and spatial derivatives of y. The approximate solution is: ȳ(x, t) =
N∑
i=1

Yi(t)Li(x) (2), where Yi(t) = Yi

are unknown coefficients and Li(x) are the Lagrange trial polynomials with nodal points x̂j : Li(x) =
N∏

j=1,j 6=i

x− x̂j
x̂i − x̂j

(3).

Note that: Li(x̂j) = δij (4), where δij is the Kronecker delta. Substitution from (2) into (1) results in the residual function:

R(Yi, Ẏ i, x, t) = f(
N∑
i=1

YiLi(x),
N∑
i=1

Ẏ iLi(x),
N∑
i=1

YiLi
′(x), x, t) (5), where Li

′(x) is the spatial derivative of Li(x). The

final ODEs are obtained by forming weighted residuals (the residual function evaluated at the collocation points x̄j) and setting

them equal to zero: Wj(Yi, Ẏ i, t) = R(Yi, Ẏ i, x, t)|x=x̄j = f(
N∑
i=1

YiLi(x̄j),
N∑
i=1

Ẏ iLi(x̄j),
N∑
i=1

YiLi
′(x̄j), x̄j , t) = 0 (6).

The ODEs in (6) are the reduced form of the PDE given in (1). Now, by recalling (4), for the case where the nodal points
of the trial Lagrange polynomials are the same as the collocation points (x̂j = x̄j), the set of ODEs in (6) would reduce to:

Wj(Yi, Ẏ i, t) = f(Yj , Ẏ j ,
N∑
i=1

YiLi
′(x̂j), (x̂j), t) = 0 (7). A comparison between the ODEs in (7) and (6) indicates that the

method results in a set of ODEs which are decoupled to a great extent and are therefore significantly less expensive to solve.

RESULTS AND CONCLUSIONS
To compare the proposed OCM against the Galerkin method and other OCMs with different trial polynomials, these

methods are implemented in Maple™ as a seventh-order approximation (N = 7) and are used to reduce the PDEs associated
with the compressible gas flow inside an unloaded wall-flow diesel particulate filter (DPF) [3]. The equations are simplified
1D Navier-Stokes equations for the DPF inlet and outlet channels, along with the pressure-drop equation for the wall-flow
and the appropriate thermodynamics and ideal gas relations [3, 4]. These are combined into a set of 4 nonlinear PDEs which
are then reduced to a set of 28 ODEs (including the time derivative of the boundary conditions). The DPF parameters are
those given in [4]. The inlet velocity starts from zero and exponentially increases to reach its final value at t = 10(s). The
initial conditions are zero velocity and ambient pressure throughout the DPF channels. The obtained ODEs are integrated
from t = 0(s) to t = 50(s) by employing the “Rosenbrock” procedure in Maple™. For each method the required simulation
time (averaged over 5 runs on a desktop PC equipped with an Intel® Core™ i7-4790 @ 3.90 GHz CPU and 16 GB of RAM,
running the 64-bit Windows 10) and the range of variations of the coefficients in the velocity and pressure extensions (i.e.

Vi(t) and Pi(t) in v̄(x, t) =
N∑
i=1

Vi(t)Li(x) and p̄(x, t) =
N∑
i=1

Pi(t)Li(x), as a measure of ODEs well-conditionedness) are

measured and reported in the following table. Clearly the proposed method gives rise to a set of ODEs which can be solved in
real-time. Regardless of the employed reduction method, a very good agreement with the results in [4] is observed.

Reduction Method CPU Time (s) Range of Vi (m/s) Range of Pi (kPa)

Proposed OCM with Lagrange polynomials and x̂j = x̄j 9.3 [0, 25] [101, 105]
OCM with Lagrange polynomials and equidistant x̂j 44.6 [0, 25] [101, 105]
OCM with Legendre polynomials 128.6 [−12, 13] [−0.2, 105]
Galerkin method with Lagrange polynomials and equidistant x̂j 547.3 [0, 25] [101, 105]
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Summary The aim of this study is to provide a reduced control-oriented model for transient, non-isothermal, quasi one-dimensional gas
flow inside channels of varying cross-sectional area. The orthogonal collocation method is applied to transform the governing system of
PDEs to an equivalent system of ODEs utilizing symbolic computations; the derived ODEs are then solved using a numerical integrator.
This study can be applied to the flow of ideal gases in channels, ducts, engine manifolds, etc...

INTRODUCTION

Control oriented models for internal compressible flows, for the most part, are lumped models that consider the whole
spatial geometry as a single node. In the proposed model, the spatial variation is considered with an aim of making a real time
simulation that has approximates a real flow in a better fashion.

THEORETICAL BACKGROUND

System of Equations
It is considered that the fluid in the system is a prefect fluid that follows the ideal gas law. The friction is included in the

model by applying the friction factor. The equations are modelled in terms of the velocity u, pressure p, and temperature T .
Also, the specific heat cv , hydraulic diameter D, friction factor f , ideal gas constant R, and specific heat ratio γ are included.
The independent variables are the distance along the length of the channel x, and the time t.

The system of governing partial differential equations that govern compressible internal flow in channels with varying
cross-sectional area is given in equations (1–3) [2].

∂p

∂t
=
p

T

∂T

∂t
− p∂u

∂x
− u∂p

∂x
+
up

T

∂T

∂x
− up

A

dA

dx
(1)

∂u

∂t
= −1

2

∂u2

∂x
− RT

p

∂p

∂x
− fρuu |u|

2D
(2)

∂T

∂t
= −u∂T

∂x
− (γ − 1)T

(
u

A

dA

dx
+
∂u

∂x

)
+

q

cv
+

fu3

2Dcv
(3)

The system of equations is simplified by considering the substitution of variables α = ln(T ) and β = ln(p) after dividing
equation (1) by p and equation (3) by T .

Method of Orthogonal Collocation
To be able to use orthogonal collocation effectively, the distance along the channel is normalized to vary between 0 and

1 by applying x∗ = x/L. In the considered method of orthogonal collocation, the space derivatives are found by applying
a Lagrange interpolating polynomial fit, and differentiating the polynomial with respect to space at the different collocation
points. Thus, an arbitrary variable φ is expanded as shown in equation (4), the Lagrange interpolating polynomial is given
in equation (5), and the derivative approximation is derived in equation (6) [1]. The collocation points are the roots of the
corresponding Legendre polynomial of order N + 2 considering that N is the number of internal nodes.

φ̂(t, x∗) =
N+2∑
i=1

li(x
∗) φ(t)|x∗=x∗

i
(4) li(x

∗) =
N+2∏
j=1
j 6=i

x∗ − x∗j
x∗i − x∗j

(5) ∂φ̂(t, x∗)

∂x∗
=

N+2∑
i=1

dli(x
∗)

dx∗
φ(t)|x∗=x∗

i
(6)

The space derivatives in the PDE system (1–3) are evaluated symbolically using Maple™. The system of three PDEs is
transformed to a system of 3(N + 2) ODEs that is solved using a variable time step Rosenbrock solver.

CASE STUDY

A converging circular pipe with a linearly decreasing diameter is considered in this analysis. The inlet pipe diameter is 11
cm and the outlet diameter is 4 cm, the overall length of the pipe is 1 m, there is a heat loss of 150 W/m, and the friction factor
is considered to be 0.03. The gas constant and specific heat ratio are 287 J/kg-K and 1.4 respectively. The flow is simulated
for 10 seconds.

*Corresponding author. Email: akeblawi@uwaterloo.ca
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Initially, the flow starts from rest, at a prescribed uniform boundary pressure of 100 kPa and temperature of 300 K. The
boundary conditions are that the velocity at the outlet of the pipe is 60.4 m/s, and the pressure and temperature at the inlet of
the pipe are 200 kPa and 450 K respectively. The changes from the initial conditions to the final boundary conditions follow
an exponential smooth function in time.

RESULTS AND CONCLUSIONS

To be be able to quantify grid independence of this study for the orthogonal collocation method, the steady state spatial
mean and outlet pressure and temperature are reported in table (1). For convenience, the computational time for each case is
also recorded. It is noticed that the system becomes grid independent within the first decimal place at 16 nodes. The spatial
variation of velocity and temperature is provided in figure (1) at time values of 0, 0.02 till 0.15 with an increment of 0.01, 0.2
till 1 with an increment of 0.2, 2, 3, 4, and 10 seconds. The flow velocity and temperature profiles in the plots move upwards
as time passes. It is noticed that the spatial variation in the system varies smoothly with the variation in boundary conditions.

Outlet Values Average Values

Number of Nodes CPU Time (s) Temperature Pressure Velocity Pressure Temperature

4 0.36 448.36 1.972× 105 27.50 1.990× 105 449.390
6 0.69 448.099 1.968× 105 22.76 1.993× 105 449.631
8 25 448.093 1.968× 105 22.29 1.994× 105 449.658
10 2.13 448.093 1.968× 105 22.10 1.994× 105 449.667
12 2.86 448.093 1.968× 105 22.01 1.995× 105 449.672
14 3.75 448.093 1.968× 105 21.96 1.995× 105 449.675
16 4.78 448.093 1.968× 105 21.92 1.995× 105 449.677
18 6.03 448.093 1.968× 105 21.91 1.995× 105 449.678

Table 1: Grid Independence Results
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Figure 1: Plots of Flow Parameters at Different Time Stamps

The proposed method has an acceptable computational time of around 5 seconds for 16 nodes implying that the simulation
was done faster than real time. Moreover, it is found from the grid independence study that a lumped model has a deviation in
velocity computations greater than 25% from the results of a model that considers spatial variation.
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Summary Due to the scramjet isolator suffering from the severe aeroheating problem at a long time fly, this paper studied the influence of wall 
heat transfer on flow characteristics and performance of a scramjet isolator by numerical simulation. The results show that shock train is 
affected by the dual mechanism of isolator wall temperature and airflow total temperature. Shock train length increases with ratio of wall 
temperature to total temperature. To predict shock train length of practical design with more accuracy, the parameter involved wall heat transfer 
is introduced to improve Waltrup and Billig correlation [1]. 
 

INTRODUCTION 
 
   A scramjet isolator module with an optimal length is required to house the shock train induced by heat release in a combustor 
and prevent engine unstart. Various researchers [1-2] have investigated shock train behavior in constant-area rectangular and 
round ducts, but these results are obtained using room-temperature supply air, taking no account of wall heat transfer. At real 
flight conditions, a serious heat transfer exists in the isolator [3]. The few available researches [4-6] do not well elucidate this 
influence. This paper focuses on effects of wall heat transfer on shock train in the scramjet isolator by numerical simulation. 
 

NUMERICAL DESCRIPTION 
 
   Numerical simulations were performed on a two dimensional domain, which includes a nozzle with the exit Mach number of 
2.5 (Ma1=2.5) and an isolator with height H of 50mm and length L of 600mm. The full N-S equations for two-dimensional 
turbulent flow were solved by the finite volume method. The turbulence model of k-  SST was employed to close the governing 
equations. To guarantee the credibility of numerical results, a comparison between numerical and experimental results was also 
made at the conditions of Tt=1500K, Pt=1.0MPa, =1.33 and Tw=300K, shown in Fig. 1, where Tt, Pt,  and Tw denotes total 
temperature, total pressure, specific heat ratio and wall temperature, respectively. It can be seen that numerical results are in 
agreement with the experimental data, specially the start location of shock train, in spite of some scatter being present. 
 

a)  

b)  
Fig. 1 Numerical verification at the conditions of Tt=1500K, 
Pt=1.0MPa, Ma1=2.5, =1.33 and Tw= 300K; a) Mach contours, b) 
wall pressure distributions. 

a)  

b)  
Fig. 2 Mach contours for different wall temperatures and backpressures at 
Tt=1500K, Pt=1.0MPa, Ma1=2.5 and =1.33; a) Pb/P1=4.8, b) Pb/P1=6.2.

 
RESULTS AND DISCUSSION 

 
   Figure 2 shows Mach contours for different wall temperatures at the conditions of Tt=1500K, Pt=1.0MPa, Ma1=2.5 and 
=1.33. A similarity exists in shock train pattern for different wall temperatures, but a remarkable difference exists in shock train 

length at the same back pressure. With an increase of wall temperature, the starting position of shock train moves upstream and 
shock train length increases. However, this tendency is contrary to the tendency given by Waltrup and Billig relationship [1] (see 
Eq. (1)). In Eq. (1),  denotes the boundary layer momentum thickness expressed by Eq. (2) and reduces with an increase of wall 
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temperature (see Fig. 3). Consequently, wall temperature effect cannot be elucidated by the only parameter  involved wall 
temperature effect in Eq. (1).  

1 22 4
1

1 1 02 2 1 1

1 Re
50 1 170 1 (1) , 1 (2)b b

s Ma P P u u dy
P P u uH

 

 
Fig. 3 Variation of boundary layer momentum thickness with wall temperature.

 
Fig. 4 A comparison of numerical data against those from Eq. (3).

 
Table 1 Shock train length s for different wall and total temperatures at Pt=1.0MPa, Ma1=2.5 =1.33 and Pb/P1=4.8 

 Tw(K) 300 500 700 900 Adiabatic wall 

Tt=1500K Tw/Tt 0.2 0.33 0.47 0.6 1 

s(mm) 250 261 270 279 296 

Tt=1000K Tw/Tt 0.3 0.5 0.7 0.9 1 

s(mm) 256 277 284 294 295 

1

12 4 21

1 1 0.182 2 1 1
1

1.7 2.4 11.91 Re
1 1

50 1 170 1 (3)
( )

b b

w

t

s Ma
P P

T P PH
T  

   To figure out the dimensionless parameter elucidating wall heat transfer effect, a further computation is performed at the 
conditions of Tt=1000K, Pt=1.0MPa, Ma1=2.5 and =1.33, shown in Table 1. It can be observed that shock train length is almost 
identical for different total and wall temperatures when the ratio of wall temperature to gas total temperature is approximately the 
same. Additionally, shock train length increases with the ratio of wall temperature to gas total temperature, coinciding with the 
findings of Lin et al. [4]. 
   To improve the accuracy of Eq. (1) in predicting shock train length of practical design, a correlation is further performed 
based on numerical data. Considering data correlating Eq. (1) from the cold flow experiments with =1.4 while our data from the 
high enthalpy flow tests with 1.33, the proposed relationship denoted by Eq. (3) also involves specific heat ratio. The degree of 
success obtained in the correlation Eq. (3) is shown in Fig.4. Some scatter is present, but Equation (3) covers more physical 
influencing factors, not only considering wall heat transfer, but accounting for specific heat ratio. Need of special note, it needs 
to be further perfected by experimental data. 
 

CONCLUSIONS 
 
   Numerical tests were performed on a two dimensional domain including a nozzle and an isolator study effects of wall heat 
transfer on shock train in a scramjet isolator. It is found that wall heat transfer in determining shock train behavior can be 
characterized by the ratio of wall temperature and gas total temperature. Furthermore, a modified correlation is proposed for 
predicting shock train length of practical design, which covers the more influencing factors such as the ratio of wall temperature 
to total temperature and specific heat ratio.  
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Summary We use Background Oriented Schlieren (BOS) and Particle Shadow Velocimetry (PSV) to study the shock structure and 
the flow field in a supersonic axisymmetric jet. We can visualize the regions of maximum density and those of maximum change 
in the density.  
 

INTRODUCTION 

 
We have been studying a supersonic axisymmetric air jet for several years with various techniques that give information about 
different aspects of the jet.  
With Rayleigh scattering we visualized the shock structure and we obtained information about the local density fluctuations 
and the sound emission pattern inside and outside the flow. With Particle Shadow Velocimetry (PSV) we obtained the mean 
velocity field. With hig- speed schlieren and shadowgraph we also visualized the shock structure and part of the turbulence, 
and through Background Oriented Schlieren (BOS) were able to determine the index of refraction field that is proportional to 
the density field. In this paper we emphasize the latest results obtained through PSV and BOS. 
 

EXPERIMENTAL SET-UP AND TECHNIQUES 

 

The jet is produced by the discharge of compressed air at about 5.5 atm into to the atmosphere (at Mexico City’s altitude it is 
about 0.8 atm) through a 4mm axisymmetric straight duct with a length of 8cm; that is, the nozzle is not convergent-divergent. 
However, we have determined the mean transverse size of the flow and there is a contraction a few millimeters outside the 
nozzle. The Mach number is about 1.2. We have observed an apparently stationary shock structure both with Rayleigh 
scattering, and with schlieren and shadowgraphs.  
PSV is a novel technique (proposed by Estevadiordal 2005), that relies on the shadow cast by the seeds and not on their Mie 
scattering properties. It uses the same cross correlation as Particle Image Velocimetry (PIV). The width of the studied region 
was determined by the correlation depth instead of the width of the light sheet. This notion is very important in micro PIV; it 
depends on the optics of the camera and the wavelength of the light. In our experiment, the video camera recorded at 7200 
fps, with a resolution of 778x776 pixels. The time interval between frames was 320 ns with an exposure time of 880 ns. We 
designed a device to inject the particles and were able, in spite of the speed and size of the flow, to obtain homogeneous 
seeding with titanium dioxide particles that have a relaxation time of 7.2 x 10-6 seconds.  
BOS (proposed by Meier 1999) is used to measure the change in the index of refraction through the apparent displacement of 
a known background pattern with and without the flow. The change of the index of refraction and the displacement in a 
transparent gas are related through a Poisson equation that is obtained using principles of optics. The changes in the index of 
refraction and in the density are proportional, and can be related through the Gladstone Dale equation, but the required constant 
is not easily obtained for our experimental conditions. The BOS technique was validated in free subsonic flows of carbon 
dioxide and acetylene. The difference between our values and those that appear in tables was of 0.005%. For the supersonic 
flow, the camera recorded at 1000fps with a resolution of 1280 x 800 pixels. The resolution obtained with the BOS is of 47 
pixels per millimeter.  
 

RESULTS 

 
With the combination of PSV and BOS we can relate the shock structure with the mean density (proportional to the index of 
refraction) and velocity fields. The mean values are obtained through averages of a hundred images. High-speed videos show 
that the shock structure is actually fluctuating but more studies have to address this question. 
The first two figures show an image of the shock structure and the corresponding index of refraction field for an exit pressure 
of 5.4 atm. The third figure is the superposition of both. It is interesting to notice that he region of maximum change in the 
density is slightly above the region of maximum density. 
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The next figure corresponds to the shock structure at an exit pressure of 4.6atm. 

 
 
 

In the oral presentation these images will be compared with the velocity fields obtained with PSV.  
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Olivier Liot1, Julien Salort1, F. Seychelles1, J.F. Pinton1,2, Y. Gasteuil2, and Francesca Chillà∗1

1Laboratoire de Physique, ENS de Lyon, Université de Lyon, CNRS, Lyon, France
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Summary Turbulent thermal convection is a complex problem, the flow is forced at almost all scales, because of the presence of both
large scale circulation and small scale plumes. Moreover the difference of density induced by temperature adds an ingredient in the basic
equations of the flow, so that turbulence could be different from the case of pure mechanical forcing. Mixing is in principle different and
probably increased because of the structure of the plumes. Moreover the entire flow is not homogeneous (at least at large scales) and the
statical behavior can be influenced by the large scale flow. One way to probe all these specific effects is to use a Lagrangian point of view,
measuring, for example, Lagrangian transport of velocity and temperature, or heat flux and acceleration, as we will show.

INTRODUCTION

Because of the difficulty of the problem, Lagrangian studies in turbulent thermal convection are just in their beginning.
The first pioneer works are those of Gasteuil et al.[1], who first measured the Lagrangian heat flux using a smart particle
at Ra ∼ 1010, and of Schumacher et al. [2] who using numerical simulations measured the Lagrangian accelerations at a
Rayleigh number of 109. Afterwards, first measurement of Lagrangian acceleration was performed by Ni et al [3]. In the
present work, we report new experimental results obtained with a highly improved smart particle capable to measure for 24
consecutive hours.
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Figure 1: Lagrangian vertical Nusselt NuLz for Ra = 5× 1010. Trajectories are undersampled for more readability.

NUSSELT NUMBER MEASUREMENTS

The convection cell is a rectangular box of size 41.5 cm X 41.5 cm and 10.5 cm of width. The walls are of 2.5 cm-thick
PMMA. Both plates consist in 4 cm-thick copper plates coated with a thin layer of nickel. The bottom plate is Joule-heated
while the top plate is cooled with a temperature regulated water circulation. Plate temperatures are controlled by PT 100
temperature sensors. The working fluid is deionized water. The bulk temperature is fixed at 37.05 ◦C and Prandtl number
is 4.6. The particle is a 2.1 cm-diameter capsule containing temperature instrumentation, a radio-frequency emitter, and two
batteries. Four cylindrical thermistors (0.8 mm in length, 0.4 mm in diameter, 230 kΩ, with a response time of 0.6 s in water)
are mounted on the capsule wall protruding 0.5 mm into the surrounding flow. The emitter sends a signal proportional to
the temperature. The temperature signal is recovered on the fly by a stationary receiver. The capsule has been redesigned

∗Corresponding author. Email: francesca.chilla@ens-lyon.fr
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to receive two batteries to extend the working time which can now reach up to 1000 turnover times. The particle trajectory
is synchronously recorded with a digital camera placed in front of the large face of the cell. Post-processing differentiation
allows for the velocity measurement.

Because of the shape of the container, the overall flow is almost 2D, meanwhile the small scale structures as plumes are
3D. The global Nusselt number is about 250 and so the boundary layers are about 800 µm. So because of its size, the sensor
never see the boundary layers, but it can enter and well measure the mixing zone between the boundary and the bulk or the
bulk itself. Thanks to the joint measurements of velocity and temperature, it is possible to infer the Lagrangian Nusselt number
which has a vertical and an horizontal component. The vertical Nusselt reads :

NuLz =
H

κ∆T
(T (t)− 〈T (t)〉t) vz(t), (1)

and its lagrangian map is shown in the figure 2.
The mean feature is that the transport is essentially organized in a sort of “vertical jet” , a gathering of plumes which flows

all along the wall showing that the contribution of the bulk is very weak at this Rayleigh number.

VELOCITY AND TEMPERATURE STATISTICS

Another major result concerns Lagrangian statistics. The Lagrangian distribution function of temperature is not gaussian
and exhibits exponential tails. This is different from the Eulerian PDF usually found in the bulk at similar Rayleigh number.
That indicates that exponential tail are due to the large fluctuations linked to plumes that are confined near the walls and near
the plates. The fluctuations of temperature exhibits also an interesting feature, their Lagrangian power spectrum exhibits a
power law as f−2.5 which do not correspond to any theoretical model. We presently do not have a quantitative explanation,
also if inhomogeneity of the flow could be the fundamental ingredient of this feature and more studies are underway.
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Figure 2: (a) Normalized histogram of the Lagrangian temperature fluctuations and (b) Power spectrum of the temperature
fluctuations at Ra = 3.5× 1010.

CONCLUSIONS

Smart sensors can give new insight in turbulent thermal convection. The possibility to have a Lagrangian measurement
of temperature leads to a better understanding of the structure and properties of the scalar field. Moreover, such a sensor can
explore the whole bulk and make possible both the study of inhomogeneity on turbulent statistics and the interaction between
large scale flow and plumes.
We thanks Smart Inst industry for collaboration in the developing of the particle.
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HEAT AND MOMENTUM TRANSPORT IN HORIZONTAL CONVECTION
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Summary In horizontal convection systems heat is supplied and removed through a single, top or bottom, surface of a fluid layer. For such
systems we derive limiting scalings for the Reynolds number and for the convective heat transport, measured by the Nusselt number, with
the input parameters, which are the Rayleigh number, Prandtl number and the aspect ratio of the convection cell. The theoretical findings
are supported by Direct Numerical Simulations for a wide range of the Rayleigh and Prandtl numbers.

HORIZONTAL CONVECTION

Horizontal convection (HC) [1] is a paradigm system to study heat and momentum transport in such flow configuration
systems, where heating and cooling are applied to different parts of the same horizontal surface of a fluid layer. This type
of convection is relevant in many geophysical systems, in particular, in the large-scale ocean circulation, and in process
engineering.

The HC flows are determined mainly by the Rayleigh number Ra ≡ αg∆L3/(κν), the Prandtl number Pr ≡ ν/κ and
geometrical characteristics of the cell like the length-to-height aspect ratio Γ = L/H and the relative areas of the heated and
cooled surfaces compared to the bottom area. Here ν denotes the kinematic viscosity, κ the thermal diffusivity, α the isobaric
thermal expansion coefficient of the fluid, g the acceleration due to gravity, L is the length and H the height of the convection
cell and ∆ ≡ (T+ − T−) with T+ the temperature of the heated part of the bottom and T− the temperature of the cooled part
of the bottom, see Fig. 1.

THEORETICAL SCALINGS IN HORIZONTAL CONVECTION

The Rossby model [2] for the scaling with Ra and Pr of the mean heat flux, measured by the Nusselt number Nu ≡
−〈∂T/∂z〉+/(∆/L), suggests Nu ∝ Ra1/5Pr0, i.e. independence from Pr. Here z is the vertical coordinate, T the tem-
perature and 〈·〉+ denotes the averaging over the heated part of the bottom and in time. The proportionality Nu ∝ Ra1/5 is
supported by several numerical and laboratory experiments in non-turbulent HC, while the independence of Nu from Pr is
not. The Rossby scaling is based on the assumptions of the laminarity and boundary-layer determinacy of the flow.

The universality of the Rossby scaling seems to be very questionable, since the HC flows are observed to become more
turbulent with increasing Ra [3]. Thus, in [4] it was shown with variational analysis that the upper bound of the scaling
exponent β in HC equals 1/3 and this allows scalings different from that by Rossby. We refer the regime with the upper
bound limiting scaling Nu ∝ Ra1/3 as the ultimate regime in HC. To date, the ultimate scaling has not been observed in
experiments or simulations, probably due to the limitedRa-range of the conducted numerical and experimental investigations.

In [5] we applied to the case of HC the approach by Grossmann and Lohse [6], which originally was developed for
Rayleigh–Bénard convection (RBC) [7, 8]. The resulting model suggests various known and new limiting scaling laws in HC
with smooth transitions between the various regimes.

Figure 1: Scheme of a horizontal convection setup together with the streamlines for the Rayleigh number 1010 and Prandtl
number 1, as obtained in the DNS. 1/10 of the bottom is heated (left, T = T+, red), while the other 1/10 of the bottom is
cooled (right, T = T− < T+, blue). The other walls and the rest of the bottom are adiabatic. Adopted from [9].

∗Corresponding author. Email: Olga.Shishkina@ds.mpg.de
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RESULTS OF DIRECT NUMERICAL SIMULATIONS

In [9] we reported the Prandtl- and Rayleigh-number dependencies of the Reynolds number Re and the Nusselt number
Nu for HC, based on our Direct Numerical Simulations (DNS) using the computational code GOLDFISH, as in [10]. The com-
putational domain is of the aspect ratio L/H = 10 and is sketched in Fig. 1. The computational mesh resolves Kolmogorov
and Batchelor scales as required in DNS [11]. For laminar HC we find that Re ∼ Ra2/5Pr−4/5, Nu ∼ Ra1/5Pr1/10 with a
transition to Re ∼ Ra1/2Pr−1, Nu ∼ Ra1/4Pr0 for large Pr. In [9] the studied Ra varies from 3 × 108 to 5 × 1010 and
Pr from 0.05 to 50. The obtained result were found to be in perfect agreement with the scalings, derived in [5] for laminar
regimes.

DNS results for higher Rayleigh numbers, where horizontal convection becomes transitional and turbulent, show that the
Nusselt number scalings with the Rayleigh number follows the theoretical scalings for turbulent regimes, as predicted in [5].

CONCLUSIONS AND ACKNOWLEDGEMENTS

A theoretical model [5] for the heat and momentum transport scalings with Rayleigh and Prandtl numbers in horizontal
convection will be presented at ICTAM 2016. This is an extension of the Grossmann and Lohse approach [6] to the case
of horizontal convection. The model suggests multiple scaling regimes, including in particular the Rossby scaling and the
ultimate scaling proposed in [4], with smooth transitions between different regimes. Our DNS results for a wide range of the
Rayleigh and and Prandtl numbers support the theoretical fundings [5] for laminar [9] and turbulent regimes.

OS is grateful to Eberhard Bodenschatz, Siegfried Grossmann, Detlef Lohse and Sebastian Wagner for the support, useful
discussions and their contributions to this study.

OS gratefully acknowledges the Leibniz Supercomputing Centre (LRZ) for providing computing time and the Deutsche
Forschungsgemeinschaft (DFG) for financial support under the grant Sh405/4 – Heisenberg fellowship.
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Summary Short-period oscillations on convection rolls in Rayleigh-Bénard convection affected by a horizontal magnetic field confined in 
moderate aspect ratio box were invested experimentally. Detailed measurements of temperature and velocity fluctuations corresponding to the 
oscillations elucidated that the oscillation around its onset is two dimensional and may be originated in absolute instability of recirculation 
vortices formed flow separations due to large inertia of the main convection rolls restricted by Lorenz force.  
 

INTRODUCTION 

 
   For Rayleigh-Bénard convection in a liquid metal layer with a moderate aspect ratio of five under a horizontal magnetic 
field, our research group found recently spontaneous flow reversals on quasi-two dimensional rolls, which are arranged 
parallel to the magnetic field, accompanied by skewed-varicose instability [1]. Here the circulation direction of the rolls 
changes with duration times being much longer than circulation time of the convection rolls. The appearance of the reversal 
is determined by Rayleigh number, Ra and Chandrasekhar number, Q [2] defined as 

Ra = gTL
3/(), (1)            Q = BL

2/(), (2) 

where ,,,, are respectively, bulk modulus, kinematic viscosity, thermal diffusivity, electric conductivity, and 
density of a test liquid metal, and g, T, L, B are respectively, gravity acceleration, vertical temperature difference and 
height of the fluid layer, and intensity of the magnetic field. The fraction of Ra/Q is a measure for the ratio of the buoyancy 
to the Lorenz force. The flow reversals occur around Ra/Q = 10 as transitions between four-rolls and five-roll conditions [2, 
3]. Increasing of Ra/Q also induces short-period oscillations on steady, quasi-two dimensional rolls for smaller Ra/Q 
conditions, where the period of the oscillation is close to the circulation time [2, 3]. Detailed velocity profile measurements 
using ultrasonic velocity profiling (UVP) elucidated that the flow reversals are accompanied by the short-period oscillations 
[2, 3].Numerical simulations revealed complex, fine vortex structures, which may induce the oscillations, surrounding the 
primary convection rolls [4]. Relations between the flow reversals and the short-period oscillations are still unclear. This 
study thus focuses on the onset and development of the short-period oscillations toward a detailed understanding of the 
phenomena in this system including flow reversals.  
  

EXPERIMENTAL SETUP AND MEASUREMENTS 

 

    The experiments were performed at Hokkaido University (HU) and HZDR with different setups having common 
dimensions and configurations as shown in Fig. 1. The fluid layers are sandwiched by two copper plates for realising 
isothermal boundaries at the top and bottom, and surrounded by resin sidewalls for both thermal and electric insulation. The 
temperature difference T was adjusted by water circulations inside the copper plats and monitored by temperature probes 
embedded in the plates. Size of the fluid layer is 200  200 mm2 in sides and height L = 40 mm resulting in a corresponding 
aspect ratio of 5. The setups adopted different test fluids, liquid gallium at HU and Ga67In20.5Sn12.5 at HZDR. A coil system 
to generate quasi-uniform magnetic field at HU has smaller intensities (120 mT) than that used at HZDR (700 mT), but a 
somewhat better uniformity (2 % at HU and 5 % at HZDR). We confirmed that the different test fluids and the coil systems 
do not cause essential difference on the flow regimes [3]. Time variations of instantaneous velocity profiles and temperature 
fluctuations were measured by UVP and temperature probes, respectively, in the both institutions. Multiple sensors were 
mounted on the vessels, but Fig. 1 shows only the specific sensor arrangement used for the flow measurements presented 
here.    
 

RESULTS AND DISCUSSIONS 

 
    Typical temperature fluctuations with decreasing Q at fixed Ra around the onset of the oscillations are shown in Fig. 2, 
where Ra = 2.5  104 and Q is varied from 4.4  104 to 2.7  104. The temperature signal shows regular oscillations at larger 
Q (Fig. 2 (a), Q = 3.4 104), where the spectral analysis on the fluctuations provides a single frequency component. The 
fluctuation takes a nonlinear development with appearance of an additional frequency component, whereas the amplitude of 
the main component becomes small (Fig. 2 (b), Q = 4.9 103). Fig. 3(a) shows a variation of the phase difference between 
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the fluctuations measured by the probes T1 and T2 arranged parallel to the magnetic field as shown in Fig. 1(a). The 
difference is almost zero at larger Q values, and the fluctuations are in-phase, namely the convection rolls aligned parallel to 
the magnetic field show two-dimensional oscillations unlike the theoretical prediction [5]. The phase takes a difference with 
decreasing Q because of the appearance of an additional frequency component indicating a three-dimensional behaviour of 
the rolls. A similar behaviour is also observed for the velocity field. Fig. 3(b) shows a variation of the phase difference on 
the velocity fluctuations measured by UV1 and UV2 at x = 50 mm near the onset of oscillation. The variation also 
departures from zero with decreasing Q in spite of the different parameter range, Ra = 1.5  105, 2.4  104 ≤ Q ≤ 1.6  105. 
To explore the origin of two-dimensional oscillations, we investigate the shape of the convection rolls from the recorded velocity 
profiles. Fig. 4(a) shows an averaged velocity profile measured by UV1 at Ra = 1.5  105 and Q = 5.0  104. Alternative positive 
and negative curves represent individual rolls, thus there are six rolls arranged parallel to the magnetic field. The curves are not 
symmetric and considerably deformed, especially around the places where the flow detaches from the top and bottom boundaries, 
x ~ 0, 65, 130, and 190 mm considering that the measurement line places near the bottom. In comparison with numerical 
simulations shown in Fig. 4(b), where the vortices are represented by 2nd invariant of the velocity gradient [4], the deformation 
may represent the existence of secondary, fine vortices indicated by white arrows in the figure, and also schematically shown in 
Fig. 4(c). In this configuration, the three-dimensional motion of the rolls is restricted by Lorenz force, and the rolls have 
relatively larger rotation speed and inertia. This may provide flow separations as shown in the figure. Such a ‘recirculation 
bubble’ is unstable and provides vortex shedding like von Karman vortices behind a cylinder. The Reynolds number estimated 
from the size of recirculation bubble and rotation velocity of the rolls provides a reasonable value for the onset of vortex 
shedding. 

CONCLUSIONS 

   We investigated short-period oscillations in MHD-Rayleigh-Bénard convection. Detailed measurements of temperature and 
velocity fluctuations elucidated that the oscillation is two-dimensional and originated in instability of recirculation vortices. 

          
Fig. 1 (a) top and (b) side view of the schema of experimental apparatus            Fig. 2 Typical temperature fluctuations at Ra = 2.5  104 

 
Fig. 3 Variations of the phase difference of (a) temperatures between T1 and T2 at Ra = 2.5  104, and (b) velocity between UV1 and UV 2 at x 
= 50 mm for Ra = 1.5  105 

 
Fig. 4 (a) Mean velocity profile measured by UV1 at Ra = 1.5  105 and Q = 5.0  104 (R/Q = 3.0), (b) vortex structure represented by 
numerical simulation at Ra = 1.0  105 and Q = 3.2  104 (R/Q = 3.1) and, and (c) schematic illustration of vortex structures 
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Summary: In this talk I will present new experimental measurements of the large-scale circulation (LSC) dynamics in rotating Rayleigh-Bénard
convection. In cylindrical samples we probe the angular orientation  and the flow strength  of the LSC, through measurements of the
azimuthal fluid temperature profile. We report linear retrograde precession of  driven by constant Coriolis force in an unprecedented large
Rossby number range (10 Ro 314). Enhanced precession speed is observed when Ro 70 that is ascribed to stochastic cessation
dynamics.  A  New  oscillatory  state  of  the  LSC  appears  when  the  flow  is subjected to modulated rotations. Both  and  exhibit
periodic oscillations in the modulation frequency. We present a LSC model that predicts accurately the oscillation amplitudes and phases.

Introduction

     In rotating turbulent Rayleigh-Bénard convection (RBC), the nature of the main flow structure, a large-scale
circulation (LSC), is determined by the Rayleigh number Ra= TL3 , the Prandtl number Pr= , the Rossby number
Ro=( T/L)1/2/2 ,  and  the  aspect  ratio  of  the  sample  cell.  Here   is  the  thermal  expansion  coefficient,  g  is  the
gravitational acceleration,  and  the thermal diffusivity and kinematic viscosity, respectively, T is the temperature
difference between the top and the bottom of the sample,  is the sample rotating velocity, and L is the height of the sample.

Retrograde rotation of the large-scale circulation at large Ro numbers

   Figure 1a depicts the LSC flow structure in a cylindrical sample cell with an aspect ratio 1.0. We determine the
orientation of the LSC plane  by fitting the azimuthal temperature profile Ti (i=0,…,7) measured at eight points on the
sidewall at the mid-height level of the cell, with a sinusoidal function: Ti =T0 + cos(i /4 ), (i = 0, ..., 7). In doing so both
the LSC temperature amplitude  and the azimuthal orientation  are determined. Over the entire Ro range studied (1 Ro

314), retrograde precession of the LSC circulating plane is observed. Time series (t) for several Ro are shown in Fig.1b
for Ra = 8.24×109 and Pr = 4.38. When Ro increased the mean rotating rate decreases monotonically. However, the
ratio of the LSC precession speed, , experiences a complicated Ro-dependence in the range 1 Ro 10. When
Ro increases appears to be proportional to  when 10 Ro 70, yielding =0.13 independent of Ro. For Ro 70, 
gradually increases with increasing Ro and reaches a value near 0.42 for Ro=314 .
   Through further data analysis we find that in short time scales normal diffusive motion with a constant drift velocity in
the retrograde rotation presents the main dynamical feature of (t). The diffusivity of  increases when the LSC amplitude 
decreases during cessation events, as predicted by a LSC dynamical model [3]. We show that it is the stochastic cessation
dynamics that enhances the precession speed of the LSC at large Ro numbers.

Fig. 1 (a) Sketch of the LSC structure in rotating turbulent RBC indicating the LSC angular orientation  and and thermal
amplitude . (b) Results for the LSC precession velocity ratio  as a function of 1/Ro. Solid circles: data for from [1] with

Ra=8.97×109, Pr=4.38; Open circles: data adapted from [2] with Ra= 8.9×1010, Pr=4.38 and = E is the spinning rate of the
Earth; Open squares: present data. The error bars indicate the standard deviations. Inset: Examples of the time series of (t) for

Ro = 13.1 (red), 18.2 (orange), 39.4 (green), 59.0 (magenta) and 236 (blue).
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Oscillations of the large-scale circulation with rotational modulation

    We present measurements of the LSC dynamics when the flow is subjected to librating rotations. Our studies are focus
on the dynamical response of the LSC azimuthal velocity when the fluid acceleration is created by oscillating Coriolis
force, and the time-dependent LSC thermal amplitude  driven by oscillatory viscous boundary layers. During these
measurements the rotating velocity of the sample varies according to = 0[1+ cos( t)], with 0=0.104 rad/s and =0.212.
So Ro varies periodically in the range 0.31 /Ro 0.51. The normalized modulation rate 0 ranges from 0.025 to 1.0.

Oscillations of the LSC azimuthal orientation 
   Figure  2a  shows  a  time  series  of  the  detrended  orientation  d(t)= (t *t for 0 =  0.1.  d(t) exhibits clear
oscillations at the modulation frequency. Typical power spectra of d(t),  given in Fig. 2c, show a main peak at f =  in a
background spectrum falling off as f 2, the latter corresponding to a diffusive meandering of the LSC in the azimuthal
direction.

Fig. 2 Time traces for the LSC detrended orientation d (a) and the thermal amplitude  (b). Results for 0 = 0.1 [4].

Oscillations of the LSC thermal amplitude 
The time series of (t) is also found to consist of oscillations in a random-fluctuation background. An example is

plotted in Fig. 2b for 0 = 0.1, with its power spectrum given in Fig. 2d, wherein higher harmonics appear at f
=(2 ,…,5 ) in addition to the main peak at the frequency of modulation.

We determine the phases and amplitudes for both )(t and (t) in this oscillatory state. We find that when  increases
fluid acceleration driven by oscillating Coriolis force causes an increasing phase lag in )(t . Oscillation of )(t  with
maximum amplitude occurs at a finite modulation frequency. Such a resonance-like phenomenon is interpreted as a result of
optimal coupling of (t) to the modulated rotation velocity [4].

Conclusions

   New dynamical  phenomena of  the  LSC flow in  turbulent  RBC appear  in  the  presence  of  Coriolis  force.  We study the
azimuthal rotation of its circulating plane and its thermal amplitude with large or time-varying Ro. We show that a large-
scale flow model provides predictions of the observed flow dynamics including the LSC linear retrograde rotation and the
oscillations both in and . Some of the observed phenomena are still unexplained and remained to be further investigated.
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Turbulent thermal convection over rough surfaces with varying roughness size
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Summary We present experimental study of turbulent thermal convection over rough surfaces with varying roughness size. It is found that
the local temperature fluctuations measured at the cell center and near the sidewall change significantly with the increase of the roughness
parameter λ, which is defined as the ratio of the height of the pyramid-shaped roughness element over the width of its base. The change
of the local temperature fluctuations occur concomitantly with the change of the global heat transport law of the system, i.e. the Rayleigh
number Ra dependence of the non-dimensional heat flux Nusselt number Nu. Detailed examinations of the local temperature time series
indicate that the changes are brought into by the changes of plume dynamics which is supported by the observation that the dissipative
power Q increases with the increase of λ.

INTRODUCTION

Turbulent thermal convection, which finds numerous examples in nature, such as in the atmosphere, the ocean and the
mantle of the Earth. In the laboratory, turbulent thermal convection is usually studied in a simplified model system, i.e.
the Rayleigh-Bénard convection where a fluid layer is confined between two horizontally parallel plates strongly heated
from below and cooled from above [1, 2, 3]. As many convection phenomena in nature occur over rough surfaces, it is
thus interesting to investigate turbulent thermal convection in convection cells with rough surfaces, which has been done in
experiments and numerical simulations [4, 5, 6, 7, 8, 9, 10]. Although the effects of roughness have been studied extensively,
the effects of roughness geometry and distribution on turbulent convection attract less attention in previous studies. To the
best of our knowledge, the only experimental investigation of roughness distribution on turbulent thermal convection was
done in [6] in which glass spheres with different diameter were glued to the conducting plates. Owing to the poor thermal
conductivity of glass, there existed unknown and possibly significant thermal resistance between the conducting plates and the
roughness elements making the situation much more complex, which prompts us to study the geometrical effects of roughness
on turbulent thermal convection using directly machined roughness elements on plates.

THE EXPERIMENTS

The experiments were carried out in cylindrical convection cells with Plexiglas sidewalls. The wall-roughness was directly
machined tiny pyramids arranged in a square lattice form on both the top and bottom plates. The height of the roughness
elements was 8 mm. The width of the base of each pyramid was varied from 16 mm to 2 mm. Thus, the roughness parameter
λ, as defined by the ratio of roughness height to the base width, was from 0.5 to 4.0. Totally for sets of plates with λ =
0.5, 1.0, 1.9, and 4.0 were used in the study. The convection cell had a diameter D of 19.2 cm and a height H of 20.0 cm.
Thus the aspect ratio Γ was nearly unity. Flourinert FC770 fluid with Pr = 23.34 was used in the experiment. By varying the
temperature difference ∆T applied to the top and bottom plates, we achieved Ra from 4× 109 to 2× 1011. The temperature
of the top (bottom) plate was monitored by four (five) thermistors embedded into it. The sampling rate of those temperature
measurements was 1.6 Hz. The local temperatures at the cell center and ∼1 cm away from the sidewall were measured using
two tiny thermistors with a time constant of 0.03 s. The sampling rate of the local temperature measurements varied from 32
Hz to 128 Hz depending on Ra. To obtain sufficient statistics, measurement at different Ra lasted at least 12 hours.

RESULTS AND DISCUSSION

It is found that, surprisingly, the local temperature fluctuations change significantly with different λ, i.e. with the increase
of λ, the magnitude of the local temperature fluctuations increases. The power law scaling relation of the normalized tem-
perature fluctuations changes with the increase of λ as well. Detailed examination of the temperature time series implies that
these changes come from the changes of thermal plume dynamics: With the increase of λ for a plate with fixed diameter, the
number of roughness elements increases, and the increased roughness elements also means increase of the “plume emitters”.
Thus for larger λ, more thermal plumes will be emitted. There has been evidence that the thermal plumes emitted from nearby
heat sources will form plume clusters or large plumes[11]. These large thermal plumes are more able to maintain their “heat”
(or temperature difference with the background fluid) during their migration from one plate of the convection cell to another,
leading to changes in both the magnitude of the temperature fluctuations and its Ra−dependence.

∗Corresponding author. Email:kxia@phy.cuhk.edu.hk
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Figure 1: Dissipation power Q measured at the cell centre (a) and the sidewall (b) for different roughness parameter λ.

To quantify the change of the plume dynamics, we calculate the dissipative power Q introduced in [13]. which is defined
as:

Q = σT /σT ′ ×H2/κ (1)

where σT =
√

(T − 〈T 〉)2 and σT ′ =
√

(T ′ − 〈T ′〉)2 with T ′ being the time derivative of the local temperature T and κ
the thermal diffusivity of the convecting fluid. The measured Q as a function of Ra for different λ is shown in figure 1.
It is seen that with the increase of λ, the dissipation power Q increases, suggesting that the plume dynamics has changed.
Similar change of the dissipation power Q was interpreted as the change of plume dynamics [13]. As thermal plumes are the
main heat carriers in turbulent thermal convection, the changes of plume dynamics will surely change the heat transport of
the system, which is confirmed by the measured change of the power relation between Nu and Ra. Since thermal plumes
self-organize themselves into a coherent large-scale circulation (LSC), the change of plume dynamics, should also be reflected
from the LSC dynamics. The measured Ra dependence of the Reynolds number Re associated with the LSC also changes
with increase of λ.

CONCLUSION

We have demonstrated that simple manipulation of the surface roughness geometry in turbulent thermal convection can
significantly modify the local temperature fluctuations as well as the heat transport. The changes lie in the change of plume
dynamics, reflected by the dissipative power. With the increase of roughness parameter λ, defined as the ratio between the
roughness height and the roughness base width, the thermal plume emissions enhances, leading to the enhancement of the
local temperature fluctuation and the heat transport.
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Summary A novel method is proposed to provide bounds on energy dissipation for stress-driven flows. The particular approach is based
upon the fact that the background method for establishing bounds on emergent quantities for fluid flows typically requires the solution of an
infinite dimensional variational problem. We show how such a problem can be rigorously relaxed so that a feasible solution can be found
by instead solving an associated finite-dimensional convex optimization problem. In particular, we make use of Semidefinite-Programming
methods, for which established and efficient solution methods are available. We apply this new technique to compute near-optimal upper
bounds on the dissipation coefficient for stress-driven shear flows, improving previously known bounds by more than 10 times.

INTRODUCTION

Figure 1: Stress-driven flow.

Turbulent flows typically exhibit enhanced transport, mixing and/or dissi-
pation compared to steady flows, but an accurate characterization of their prop-
erties is challenging due to their dynamic complexity. Given the computational
cost of full numerical simultion in chaotic, highly turbulent regimes is pro-
hibitively costly, a common approach is to attempt to prove rigorous scaling
laws which attempt to express emergent flow properties such as dissipation or
transport as a functions of the forcing parameters, for example, Reynolds num-
ber, boundary conditions or body forces.

In this paper, we will consider the particular case of a flow driven by a stress
on its upper surface, shown in Figure 1. It is assumed that the fluid occupies
a cell [0,Γx] × [0, 1], is periodic in the x direction and satisfies no-slip boundary conditions on the lower surface. Such a
flow is of interest in physical oceanography as a model of the effect of wind blowing over a fluid surface. In non-dimensional
variables the velocity field u = (u1, u2) can be shown [2] to satisfy

ut + u · ∇u +∇p = ∇2u, ∇ · u = 0,

with boundary conditions u|z=0 = 0, ∂u1

∂z

∣∣
z=1

= Gr, u2|z=1 = 0. Here, Gr is the Grasshoff number which acts as the
control parameter determining the magnitude of the shear force driving the flow. An emergent quantity of interest [3] for this
flow is the nondimensional dissipation coefficient Cε := Gr/u(1)2 where u(1) is the space-time average of the x-velocity
component u1 over the upper surface of the flow domain.

It is known [2] that the dissipation rate is lower bounded by Cε ≥ 1/Gr, which corresponds to the laminar solution
u` = Gr zex, indicated in Figure 1. The interesting case is therefore to provide an upper bound on the dissipation coefficient
and this can be achieved using the background method [1]. In particular, suppose that the flow field is decomposed as
u = φ(z)ez + u′ where φ(z) is the background profile. If φ can be chosen to satisfy φ(0) = 0, φ′(1) = Gr and is such
that the quadratic form Qφ(u′) :=

∫ 1

0
‖∇u′‖2 + 2dφdz uw dx dz is positive for all time-independent vector fields u′ = (u,w)

satisfying suitable homogeneous boundary conditions, then it can be shown [3] that the dissipation coefficient is bounded from
above by

Cε ≤ Gr3B(φ)−2, where B(φ) := 2Grφ(1)− ‖dφ/dz‖22. (1)

The best dissipation bounds achievable with this method are therefore obtained by constructing φ(z) such that it maximizes
B(φ) while satisfying the specified boundary and integral inequality constraints. The established approach is to attempt to
solve the Euler-Legrange equations [1] for the background profile. However, for the flow in question, such an approach is
highly challenging due the mixed Neumann/Dirichlet boundary conditions. We therefore propose a novel method of con-
structing φ, motivated by the work of the authors in [4].

BACKGROUND PROFILE CONSTRUCTION VIA SEMIDEFINITE PROGRAMMING

Our approach is to relax the infinite dimensional positivity constraint Qφ ≥ 0 by deriving a sufficient condition for it
which is finite dimensional and can consequently be verified computationally. To this end, we perform series decompositions
of the functions involved. Invoking periodicity, we first take a Fourier transform u′ =

∑
k ûk(z)eikx in the x direction. Next,

in view of the need to enforce Neumann boundary conditions at the upper surface, it is convenient to perform Legendre series
∗Corresponding author. Email: a.wynn@imperial.ac.uk
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decompositions of both the background profile φ and the z-dependent functions û(k). Consequently, Qφ can be decomposed
as a sum of quadratic forms, each corresponding to a particular wavenumber k, and it can be proven that each such form can
be lower-bounded in the following manner

Qφ(u′) =
∑
k

Qφ,k

(
û(k)

)
≥
∑
k

 û
(k)
1

...
u
(k)
N

>Mk(φ)

 û
(k)
1

...
u
(k)
N


︸ ︷︷ ︸

finite dimensional part

+

tail terms︷ ︸︸ ︷
c (1− κN‖φ‖1) ‖ũ(k)‖22 .

Here, (ûi
(k))Ni=1 are the first N Legendre coefficients of u(k), ũk is the tail of this function relating to the (infinitely-many)

remaining Legendre coefficients, each Mk(φ) is a real symmetric matrix which depends linearly on φ and c > 0. Such a
decomposition makes efficient and rigorous computer-assisted verification of the lower bound possible: (i) positivity of the
finite dimensional part corresponds to positive definiteness of the matrices Mk(φ), and due to their linear dependence on φ,
well-established [5] and efficient methods exist to search for functions φ for which this is true; (ii) the tail term is positive
so long as ‖φ‖1 ≤ κ−1N and it can be shown that κN = O(N−3) for the considered shear flow, meaning that this condition
can be made negligible by increasing the the size N of the finite-dimensional term; (iii) the boundary conditions upon φ and
the term B(φ) that, in view of (1), we wish to maximize are easily recast in terms of the Legendre coefficients of φ, which
become the variables of the optimization problem; and (iv) it can be proven that only finitely many wavenumbers k need to
be checked. In summary, Qφ ≥ 0 can be proven by constructing a background profile which enforces positive definiteness of
a finite collection of matrices while at the same ensuring that its norm ‖φ‖1 is not too large. The importance of this result is
that the search over such functions to find the one which maximizes B(φ) (hence providing the best bound on Cε) results in
an optimization problem which has the general form of a Semidefinte Program (SDP), for which established solution methods
[5] are available.

RESULTS AND CONCLUSIONS

Background profiles arising from the solution of the finite-dimensional SDP for 103 ≤ Gr ≤ 105 are shown in Figure 2
(left) for the aspect ration Γx = 2. The corresponding upper bounds on Cε for Γx = 2, 3 are shown in Figure 2 (right) together
with the lower bound Cε ≥ Gr−1 corresponding to the laminar solution. In particular, as Gr → ∞ the computed bound can
be seen to be an order of magnitude improvement on Cε ≤ 1/16 = 0.0625 recently proven in [3]. The form of the background
profile is influenced, in view of (1), by the competing aims of maintaining φ close to a constant value (to minimize ‖dφ/dz‖2)
while simultaneously satisfying the boundary conditions. The asymmetry of the boundary conditions can be observed in the
asymmetry of the background profiles. This methodology can also be applied to the 3D problem and achieves a similar order
of magnitude improvement to the upper bound on Cε to previously known results. In conclusion, we have proposed a novel
method, based on convex optimization, to computationally assist the proof of bounds on emergent flow properties.

Figure 2: Background profiles (left) and associated bounds on Cε (right).
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Summary Mixed convection in a cuboidal convection cell is studied under variation of the aspect ratio Γxz = L/H in the range 0.2 
≤ Γxz ≤ 4 at Pr ≈ 0.7, Re ≈ 8.6∙103, Ra ≈ 2.4∙108 and Ar ≈ 4.5 by temperature measurements at certain locations. It is shown that 
the evaluation of dipole moments from the local temperatures leads to a quantity, which possibly indicates the formation of 
large-scale structures. Further it is found, that the number of convection rolls, which are formed in the sample, is less or equal in 
mixed convection as compared to pure thermal convection for all investigated Γxz.  
 

INTRODUCTION 
 
   The influence of the aspect ratio Γ on the flow structures and heat transport of pure thermal convection or Rayleigh-
Bénard convection in cubically shaped containers has been analysed frequently [1][2][7][8]. Van der Poel et al. [7] 
considered a wide range of aspect ratios (0.23 ≤ Γ ≤ 13) in two-dimensional thermal convection. They presented, among 
others, the number of large-scale convection rolls as a function of Γ. Chong et al. [1] as well as Wagner and Shishkina [8] 
studied the impact of Γ on the flow in a cuboidal container in the range from unity to very thin samples. Thereby, they 
found different arrangements of the large-scale structures and other phenomena like “super plumes” or pumping effects. At 
a fixed aspect ratio of Γ = 5, mixed convection has been studied in a cuboidal convection sample by Schmeling et al. [5][6] 
and Kühn et al. [4]. The current study addresses aspect ratio variations in mixed convection, which has not been studied 
systematically yet. 

 
CONVECTION SAMPLE & MEASUREMENT TECHNIQUE 

 
   The cuboidal convection sample has a length L = 2.5 m, a width W = 0.5 m and a height H = 0.5 m, i.e. an aspect ratio 
of Γ = 5:1:1. It allows for investigation of mixed convection by superposition of pure thermal convection, induced by a 
temperature gradient between the cold top and warm bottom plate, and forced convection, generated by a pressure gradient 
between air inlet (vent) below the ceiling and air outlet above the floor of the sample. The working fluid is air at ambient 
pressure. Both vents span the full length of the sample, see Fig. 1 (left) and for more details [5][6]. 
 

   
Fig. 1 Sketch of the convection sample with dots marking the positions of the temperature probes mounted to the sidewalls 

(left). Laser smoke visualization for Γxz = 3.5 with super imposed sketch of the large-scale convection rolls (right). 
 

   Variation of the aspect ratio was realized by installation of two separation walls within the convection sample. They are 
placed symmetrically to the centre of the sample and can be moved in x direction. Hence, the aspect ratio between length 
and height of the sample, Γxz, can be varied, while the aspect ratio between width and height, Γyz = W/H = 1, is kept 
constant. In addition to the geometry, three dimensionless numbers, namely the Prandtl, Reynolds and Rayleigh number, 
define the studied flow cases. The latter are further characterized by the Archimedes number 𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃∙𝑅𝑅𝑅𝑅2
. For detailed 

definitions and interpretations, the reader is referred to [5][6].  
   Eight temperature probes are installed at the movable separation walls in a similar way as described by [3]. 
Additionally, more than 70 temperature probes monitor the temperature of heating and cooling plates, in- and outflowing air 
as well as ambient air temperature. Complementary to the temperature measurements, smoke visualizations are conducted. 
 

RESULTS 
 
   To characterize the flow cases, resulting from different Γ, a dimensionless temperature is used. It is defined by 
Θ𝑖𝑖 = 𝑇𝑇𝑖𝑖−𝑇𝑇𝑖𝑖𝑖𝑖

𝑇𝑇ℎ−𝑇𝑇𝑐𝑐
 and calculated using the local temperature of a probe Ti as well as the global temperatures of the hot plate Th, 
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the cold plate Tc and the inflowing air Tin. It must be noted that the colours of the markers in Fig. 2 (top left) correspond to 
those in Fig. 1 (left). Whenever multiple dots appear for one Γ, two measurement runs were conducted for the same settings. 
It is observed that for Γ = 0.2, 0.5, 3 and 3.5, almost symmetric temperatures are observed at the left and the right probes. 
This means that either no, or an even number of thermal convection rolls, whose rotation axis is mainly oriented in y-
direction, is superimposed to the forced convection roll. In contrast, for Γ = 1, 1.5, 2, 2.5 and 4. Odd numbers of thermal 
convection rolls are reflected by different temperatures of the right and left probes. 
   To summarize this behaviour, a quantity 𝜒𝜒 is defined by 𝜒𝜒 = ∑ Θ𝑖𝑖 ∙ 𝐴𝐴𝚤𝚤��⃗4

𝑖𝑖=1 , following the definition of the dipole 
moment in classical electrodynamics. Here, 𝐴𝐴𝚤𝚤��⃗  denotes the vector from the central position of the measurement plane to the 
probe. The length of 𝜒𝜒, is only determined by the temperature gradient. Meanwhile, the orientation points towards the 
higher temperature. This means, for cases with no thermal convection roll or those with a single roll state (Γ < 3), this vector 
points in the direction of the fluid motion in the lower measurement plane. Contrarily, for Γ ≥ 3, low inclinations of the 
orientation of 𝜒𝜒 with respect to the y-axis point to an even number of convection rolls, whereas high inclinations indicate 
an odd roll number state. Fig. 1 (right) shows the laser smoke visualization for Γ = 3.5, recorded in a vertical plane at 
y = 11 cm, that is, close to the front temperature probes. The cold fresh air, seeded with the smoke, descents in the centre 
region and separates above the heating plate. Accordingly, two convection rolls are established in the sample as depicted by 
the arrows. This visualization confirms the interpretation of the small inclination of 𝜒𝜒 (Fig. 2, right) for Γ = 3.5 as an even 
number convection rolls.  
   Comparison with the pure thermal convection studies presented in [7] reveals, that in mixed convection (MC) less or 
equal convection rolls are established as compared to thermal convection (TC) for all investigated Γ, see Fig. 2 (bottom 
left). Thus, by superimposing forced convection on thermal convection states with less convection rolls are stabilized.  

                 

Fig. 2 Normalized temperature Θ for the lower four probes (top left) and number of convection rolls (bottom left) as a 
function of Γ. Arrangement of the "dipole moment" using the lower four probes depicted for nine different Γ (right). 

 

The upper temperature probes, not shown for the sake of brevity, reveal in general a similar behaviour as the lower probes 
just at lower temperature levels. However, for Γ = 0.5 and Γ = 1, the orientation of the dipole moment was found to point 
towards the rear left probe, in contrast to the lower probes where it points to the rear right probe. This finding corresponds 
very well a state, which occurs as one extremum of the twisting mode of the large-scale circulation, as described by [3]. 
 

CONCLUSIONS 
 

   We presented results of an experimental study on the variation of the aspect ratio in mixed convection. A simple quantity 𝜒𝜒 
is found to serve as an indicator for the number of convection rolls in combination with smoke visualizations. It was found 
that the number of convection rolls is lower or equal in mixed convection as compared to pure thermal convection for all 
investigated aspect ratios. From this, we conclude that the superimposed forced convection stabilizes states with less convection 
rolls. Measurements with more temperature probes installed in the long sidewalls and for a wider Archimedes number range are 
in progress and will be presented at the conference.   
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Summary Frequency spectra obtained from the measurements of intensity and angle of arrival (AOA), in axially homogeneous buoyancy 
driven turbulent flow are presented. The highest gradient based Rayleigh number (Rag) in the experiments is about 8109, the Reynolds number 
based on Taylor microscale (Re) is 210 and the Schmidt number (Sc) is 605. The measurement techniques used are  Shadowgraphy for 
intensity measurement, deflections of narrow laser beams for AOA measurements and background oriented schlieren (BOS) in obtaining the 
displacement fields. All these techniques jointly are used for the first time in this type of study. The spectra of the measured AOAs and intensity 
are compared respectively with those of displacements (from BOS) and relative intensity (I) derived from displacement fields. The observed 
asymptotic scalings of the spectra are also compared with the scalings obtained from the theoretical relations from the literature. 
 

INTRODUCTION 

 
Refractive index (RI) inhomogeneities in the turbulent atmosphere cause the fluctuations in the propagating light waves. 
The effect is not desirable e.g. in ground-based astronomical observations, laser communication etc. while optical 
scintillation has been useful in remotely sensing the normal wind component, rain rates, drop size distributions etc. and in 
the measurement of fluxes of heat, momentum and humidity in the atmospheric surface layer. There are however, not many 
studies of light propagation in laboratory generated turbulence. In this work, we present the frequency spectra obtained from 
the measurements of intensity and AOA of parallel light propagating through the buoyancy driven turbulent flow, created in 
a long vertical tube. This flow [1, 2] has some unique features: zero mean, axial homogeneity and turbulence production 
solely due to buoyancy. Also, the non dimensional flux and Reynolds numbers are orders of magnitude higher than those in 
the classically studied Rayleigh-Benard convection for similar Rayleigh and Prandtl numbers [2, 3]. All these features make 
this flow suitable for the study of light propagation through turbulence. Theoretical relations for intensity and AOA spectra 
in the literature [5] are obtained assuming Kolmogorov-Obukhov (KO) scaling in the RI spectrum. Whether any other (e.g. 
Bolgiano-Obukhov, BO) scaling is observed in the buoyancy driven turbulence, is the motivation of the present study. 
 

EXPERIMENTAL SETUP 

 

The experimental set up used to create the turbulent flow comprised of an open ended long (L/d~10) vertical tube, 
interconnecting two fairly large tanks. Density difference across the tube ends was created using brine and fresh water. The 

Rayleigh number defined based on the linear mean density gradient is given by, Rag =
g

ρ0

(
dρ̅

dz
)d4

υα
. At high enough Rayleigh 

numbers, Nusselt and Reynolds number scalings are obtained as, Nu~(RagPr)1/2  and Re~Rag
1/2

Pr−1/2respectively [2, 
3], which are predicted by the mixing length model proposed by Arakeri et al. [1]. These scalings also correspond to the 
‘ultimate regime’ of turbulent convection. 
The intensity and angle of arrival measurements were carried out in the 
middle portion of the tube, where the flow was axially homogeneous. 
Three measurement techniques were used  laser shadowgraphy, 
deflection of the narrow laser beams and BOS to obtain respectively the 
instantaneous intensity, AOAs and displacement fields. Schematic of the 
setup used in shadowgraphy is shown in Figure 1. The setup used in the 

deflection of narrow laser beams was 
same as that used in shadowgraphy, 
except that the collimated laser beam 
was passed through an opaque mask 
having equispaced grid of holes, creating multiple narrow laser beams. In BOS, the mask 
was replaced by synthetic PIV image, backed by a diffuser plate and a halogen lamp was 
used as light source. It is easy to show that the displacements obtained from BOS are 
proportional to the AOAs. 
 

THEORETICAL BACKGROUND 

 
The log amplitude and the phase of the propagating wave are decomposed into the mean 
and the fluctuating part as, log 𝐴 = log �̅� + 𝜒 and 𝑆 = 𝑆̅ + 𝑆′ respectively. The log 

 
 
Figure 1. Schematic showing top view of the 
setup used in laser shadowgraphy  

 
 
Figure 2. Displacement of the 
ray at the exit plane  
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amplitude fluctuation χ is related with the intensity (I) by [4], 𝜒 = log (
𝐴

�̅�
) =

1

2
log (

𝐼

𝐼̅
). For the wave propagated in the x-

direction over distance L through the turbulent medium having refractive index field 𝑛(𝑥, 𝑦, 𝑧), the fluctuations of AOA in 
the horizontal (y) and vertical (z) directions are [5, 6], 𝛼𝑦

′ = ∫
𝜕𝑛′(𝑥,𝑦,𝑧)

𝜕𝑦
𝑑𝑥

𝐿

𝑜
 and 𝛼𝑧

′ = ∫
𝜕𝑛′(𝑥,𝑦,𝑧)

𝜕𝑧

𝐿

𝑜
𝑑𝑥 respectively. The 

AOA is the net deflection of the light ray. For a light ray, the two AOAs obtained from the displacements of the ray from 
the nominal trajectory are, 𝛼𝑦 =

𝛿𝑦

𝐿
 and 𝛼𝑧 =

𝛿𝑧

𝐿
. For narrow laser beam images, the AOAs are calculated by replacing the 

two displacements by the intensity weighted centroids (𝑦,̅ 𝑧̅). A quantity proportional to the relative intensity change sensed 
in shadowgraphs can be obtained from the displacement fields as ℐ = ∫

1

𝑛
(

𝜕2𝑛

𝜕𝑦2 +
𝜕2𝑛

𝜕𝑧2)
𝐿

0
𝑑𝑥. 

 

RESULTS AND DISCUSSION 

 

From the theoretical relations for frequency spectra of 
intensity and AOA for homogeneous, isotropic turbulent 
medium (assumed to be following KO scaling) developed 
by Tatarski [5], the asymptotic scalings for the low and 
high frequency ranges can be obtained as f 0 and f -8/3 for 
intensity spectra and f -2/3 and f -8/3 for the AOA spectra. By 
modifying the theoretical relations for BO scaling, the 
corresponding asymptotic scalings are obtained as f 0 and  
f -12/5 for the intensity and f -2/5 and f -12/5 for the AOA 
spectra. 
Figure 3(a) shows the frequency spectra of intensity 
fluctuations, obtained from the shadowgraphs for different 
Rayleigh numbers. The spectra approach a constant value 
(f 0 scaling) for low frequencies, while they seem to follow 
f -12/5 scaling in the high frequency range. They are in 
qualitative agreement with the spectra of the relative 
intensity I, derived from displacement fields, shown in 
Figure 3(b). 
Frequency spectra of horizontal AOA and horizontal 
displacement fields (obtained from BOS) for different 
Rayleigh numbers are shown in Figures 3(c) and (d) 
respectively. The asymptotic scalings in the low and high 
frequency ranges in this case seem to be f -1/3 and f -8/3 
respectively. Figures 3(e) and (f) show the frequency 
spectra of vertical AOA and vertical displacement fields 
and the asymptotic scalings are f -2/5 and f -12/5 respectively 
in the low and high frequency ranges. 
It was found thus that the asymptotic scalings of the 
intensity and vertical AOA spectra follow BO scaling more 
closely. The horizontal AOA scaling in the high frequency 
range is closer to KO scaling, while the low frequency 
asymptotic scaling f -1/3, is unknown and may be associated 
with the inhomogeneity of the flow in lateral direction. 
 

 

 

References 

 

[1] Arakeri J. H., Avila F. E., Dada J. M. and Tovar R. O.: Convection in a long vertical tube due to unstable stratification-a new type of turbulent flow? 
Current Science, 79(6), 859–866, 2000.  

[2] Cholemari M. R. and Arakeri J. H.: Axially homogeneous, zero mean flow buoyancy driven turbulence in a vertical pipe. J. Fluid Mech., 621, 69–
102, 2009. 

[3] Pawar S. S.: Axially homogeneous turbulent convection at high Rayleigh numbers: scaling laws for flux and spectra. PhD Thesis, Indian Institute of 
Science, Dept. of Mech. Engg., Bangalore, India, 2015. 

[4] Tatarski V. I.: Wave propagation in a turbulent medium. McGraw Hill Book Company, Inc., 1961. 
[5] Tatarski V. I.: The effects of the turbulent atmosphere on wave propagation. Israel program for scientific translations Ltd., 1971. 
[6] Chandrasekhar S.: A statistical basis for the theory of stellar scintillation. Monthly notices of Royal astronomical Soc., 112(5), 475–483, 1952. 

 
(a)    (b)   

 
       (c)     (d) 

 
      (e)      (f) 
Figure 3. Frequency spectra of fluctuations of (a) intensity obtained 
from shadowgraphs, (b) quantity I derived from displacement 
fields of BOS, (c) horizontal AOA, (d) horizontal displacements, 
(e) vertical AOA and (d) vertical displacements for various 
Rayleigh numbers (All spectra are for the location y = 0). 
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FLOW IN A DUAL HEATED CHANNEL  
 

M. Z. Hossain1a) & J. M. Floryan1 
1
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada 

 
SummaryThe drag reduction in a horizontal channel exposed to a spatially"periodic heating along the upper and lower walls has been 
analyzed. It has been shown that the drag reduction increases by up to a factor three when compared with the drag reduction achieved 
using one"wall heating. This increase is possible only when both heating patterns have a proper relative position. 
 
 

INTRODUCTION 

 
In a channel flow, the friction between the fluid and the bounding solid wall creates drag, and the development of 
techniques for its reduction attracted a lot of interest in recent years. One relatively new technique developed by Hossain 
and Floryan [1] is the use of spatial heating patterns which create a buoyancy field leading to the formation of a system of 
separation bubbles. The fluid trapped inside bubbles rotates due to the actions of horizontal density gradients and, thus, 
provides a propulsive force which contributed to the fluid pumping. The bubbles also isolate the stream from the direct 
contact with the bounding walls and, thus, reduce friction acting on the stream. The main objective of this article is to study 
the system response when both walls of a horizontal channel are heated and to determine positioning of the heating patterns 
which lead to the largest drag reduction.  

 

PROBLEM FORMULATIONAND RESULTS 

 
Consider steady flow of a fluid confined in a channel bounded by two parallel walls extending to ±∞ in the x"direction and 
placed at a distance 2h apart from each other with the gravitational acceleration g acting in the negative y"direction, as 
shown in Fig.1. The flow is driven in the positive x"direction by a pressure gradient. The fluid is incompressible and 
Newtonian. The lower and the upper walls are subject to the periodic heating patterns with the phase difference Ω between 
them. The resulting walls' temperatures have the forms 2/x)cos((x)θL α= , 2/)xcos((x)θU Ω+α= ,where subscripts L and 
U refer to the lower and upper walls, respectively, θLand θU denote the relative temperatures of the lower and the upper 
walls, respectively, and α is the wavelength of the heating. 

 
 

Figure 1. Sketch of the system configuration.  
 
In the above u0 is the reference Poiseuille flow. To denote the strength of the reference flow, the Reynolds number Re is 
defined based on the channel half"height. The upper and lower wall heating intensities are expressed by the periodic lower 
and upper Rayleigh numbers Rap,L and Rap,U, respectively. The relevant field equations consist of the continuity, Navier"
Stokes and energy equations supplemented with the proper boundary conditions and the fixed flow rate constraint. This 
system is solved using a spectral discretization with Fourier series and Chebyshev collocation method [1]. The imposed 
heating changes the shear stress distribution which results in change in the pressure gradient, e.g.

A/Re)2(Rep mean +−=∂∂ x/ . The effectiveness of the heating is judged by comparing A with the isothermal pressure 

gradient "2Re (or by comparing A/Re with "2). 
 

The flow topologies resulting from the application of the imposed dual heating are illustrated in Fig.2(a"b). It can be seen 
that the size of the separation bubbles as well as the intensity of the motion inside the bubble depend on the phase shift 
between both heating patterns; they are largest for Ω = 0 and smallest for Ω = π. This result demonstrates potential for 
increase of the drag reduction through the judicious selection of Ω. The flow topologies display the up/down symmetries 
combined with the horizontal phase shifts. Ω = π produces a simple symmetry without any phase shifts. Topologies with the 
up/down symmetries and the proper phase shifts have the same global characteristics, e.g. the same drag reduction. 

"1 

x,u 

y,v 
+1 

θU(x) = 0.5cos(αx+ Ω) 

θL(x)=0.5cos(αx) 

g u0(y) 
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  (a)       (b)    (c)         (d) 
Figure 2. (a"b) Flow topology for the sinusoidal heating patterns applied at both walls with Rap,L = Rap,U  =1000, Re = 5, α 
= 2.5, Pr = 0.71, and for the phase shifts Ω = 0 (Fig. 2a), π (Fig.2b).Figure 2. (c"d) Shear stress distributions at the lower 
(Fig.2C) and upper (Fig.2d) walls for selected values of the heating wave numbers α for Ω = 0, Re = 1. The solid, dashed"
dotted and dashed lines correspond to the two"wall heating, the lower"wall heating and the isothermal channel, respectively.  
 

 
  (a)                      (b)                  (c)  
Figure 3. Variation of the pressure"gradient correction A as a function of (a) the heating wave number α for Rap,L = Rap,U  = 
1000, Re = 5and selected phase angles Ω;(b) the Reynolds number Re for selected heating intensities Rap = Rap,L = Rap,U for 
α = 2.5, and  Ω = 0;(c) the Rayleigh number Rap = Rap,L = Rap,U for Ω = 0, and α = 2 (thick solid lines) and α = 3 (thick 
dashed"dotted lines).   
   
Variations of the pressure gradient correction as a function of α are illustrated in Figure 3(a).The drag reduction is clearly 
visible but its magnitude rapidly decreases for α’s which are either too large or too small.  A significant increase of the 
drag reduction, as compared with what can be achieved using the single"wall heating, is clearly demonstrated but only if one 
uses proper phase difference between both heating patterns. This increase may reach up to 300%. Use of the improper phase 
difference significantly weakens this effect and can lead to drag reduction smaller than that which can be achieved using the 
one"wall heating. The effect the Reynolds number on the pressure gradient corrections are illustrated in Fig.3(b). The 
correction increases linearly for small Re, the growth saturates at Re ≈ 6 and is followed by a rapid decrease. Such 
variations occur for all Rayleigh numbers considered with the higher drag reduction achieved for higher values of Rap. The 
effectiveness of the heating intensity can be judged using data displayed in Fig.3(c). The pressure gradient correction 
initially increases proportionally to Rap. The growth eventually saturates and the further increase of Rap results in a 
reduction rather than any further increase of the pressure gradient correction. The reader may note that it is possible to 
create pressure gradient correction which is larger than the isothermal pressure gradient, i.e., it is possible to use wall 
heating to pump the fluid without the use of any externally applied pressure gradient. 
 

CONCLUSIONS 

 
The pressure"gradient"driven flow in a horizontal channel exposed to sinusoidal heating at the upper and lower walls, with a 
phase shift Ω between them, has been investigated for fluids with the Prandtl number Pr = 0.71. It has been found that that 
the intensity of convective effects strongly depends on the phase shift between the upper and lower heating patterns.  
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HIGH RAYLEIGH NUMBER CONVECTION WITH DOUBLE DIFFUSIVE FINGERS

Matthias Kellner1 and Andreas Tilgner∗1

1Institute of Geophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Summary Rayleigh-Bénard convection experiments observe a large scale circulation up to the highest Rayleigh numbers accessible to

experiments. Here, it is shown that this organization at large scales is disrupted by a relatively small perturbation in double diffusive

convection. Experiments reported here show that the large scale circulation disappears in favor of double diffusive fingers even if the total

density stratification is unstable and the buoyancy introduced by the stabilizing agent is two orders of magnitude smaller than the buoyancy

force due to the destabilizing agent. Another spectacular change in the large scale flow pattern occurs if the flow splits into several layers

stacked upon each other. This is observed in the oceans, and this effect has been reproduced in our experiments.

An electrodeposition cell is used to sustain a destabilizing concentration difference of copper ions in aqueous solution

between the top and bottom boundaries of the cell [1, 2]. The resulting convecting motion is analogous to Rayleigh-Bénard

convection at high Prandtl numbers. In addition, a stabilizing temperature gradient is imposed across the cell. Even for

thermal buoyancy two orders of magnitude smaller than chemical buoyancy, the presence of the weak stabilizing gradient has

a profound effect on the convection pattern because double diffusive fingers appear and replace the usual convection roll.

Fingers are narrow vertical columns in which fluid is moving vertically. They require a stabilizing temperature and a

destabilizing salt concentration gradient. They allow convective transport even if the total density stratification is stable.

Fingers form because heat diffuses more rapidly than ions. According to the commonly accepted picture for finger formation,

narrow fingers should not appear if the stabilizing temperature gradient is weak enough so that density increases with height

due to the destabilizing salinity gradient. In this case, a convection roll of the same form as observed in ordinary Rayleigh-

Bénard convection is expected. These convection rolls have in order of magnitude the same width and height and therefore

suffer less from dissipative losses as long and narrow fingers. One naively expects convection rolls to supercede fingers as

long as the fluid is top heavy. However, fingers appeared in the experiments even for unstable density stratifications.

Fingers are a form of convection distinct from a convection roll and convection undergoes a genuine transition as control

parameters are varied and the system switches from fingers to rolls. Remarkably, the ion transport at the transition is larger

than without an opposing temperature gradient.

The experiments are compatible with two different mechanisms triggering the transition from finger to roll convection.

Finger convection is replaced by an ordinary convection roll either if convection is fast enough to prevent sufficient heat

diffusion between neighboring fingers, or if the thermal buoyancy force is less than 1/30 of the compositional buoyancy force.

The size of these fingers and the flow velocities are independent of the height of the cell, but they depend on the ion

concentration difference between top and bottom boundaries as well as on the imposed temperature gradient. The scaling of

the mass transport is compatible with previous results on double diffusive convection.

Ongoing experiments focus on another modification of the large scale circulation introduced by double diffusive effects:

If the experimental cell is high enough, the flow splits into three layers, with a usual convective layer sandwiched between

two finger layers. When this occurs, new scaling laws hold for the ion transport.
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BOUNDARY LAYER FLUCTUATIONS AND THEIR EFFECTS ON MEAN AND VARIANCE
TEMPERATURE PROFILES IN TURBULENT RAYLEIGH-BÉNARD CONVECTION

Yin Wang1, Xiaozhou He2, and Penger Tong∗1

1Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China

Summary We report direct measurements of the mean temperature
profile θ(z) and temperature variance profile η(z) near the lower
conducting plate of a specially designed quasi-two-dimensional cell
for turbulent Rayleigh-Bénard convection. Near the thermal bound-
ary layer (BL), the measured θ(z) is found to have a universal scaling
form θ(z/δ) with varying BL thickness δ, and its functional form
agrees well with the recently derived BL equation by Shishkina et
al.. The measured η(z), on the other hand, is found to have a scaling
form η(z/δ) only in the near-wall region with z/δ ≤ 2. Based on
the experimental findings, we derive a new BL equation for η(z/δ),
which is in good agreement with the experimental data. The experi-
ment clearly demonstrates the effect of BL fluctuations.

Recent studies of the thermal boundary layer (BL) for the
Rayleigh number Ra ≤ 1012 showed that the measured
(and DNS calculated) θ(z) has the classical Prandtl-Blasius-
Pohlhausen (PBP) form only when the vertical distance, ξ ≡
z/δ, from the conducting plate normalized by the thermal BL
thickness δ is in the region ξ ≤ 0.6. Deviations of θ(z) from
the PBP form were found when 0.6 < ξ < 4. The deviations
were attributed to BL fluctuations resulting from intermittent
eruption of thermal plumes from the BLs, and they still exist
after a dynamical rescaling method was applied to the mea-
sured θ(z) [1]. More recently, Shishkina et al. [2] considered
the effect of BL fluctuations and included the temperature-
velocity correlation function, ⟨δvδT ⟩t, into the BL equation
for θ(z), where δT and δv are, respectively, the local tem-
perature and vertical velocity fluctuations. When the Prandtl
number Pr = ν/κ > 1, where ν and κ are, respectively, the
kinematic viscosity and thermal diffusivity of the convecting
fluid, Shishkina et al. obtained an analytical form of the mean
temperature profile [2]

θ(ξ; c) ≡ Tb − ⟨T (ξ)⟩
∆b

=

∫ ξ

0

(1 + a3η3)−cdη, (1)

where ∆b ≡ Tb − T0 is the temperature difference across the
BL with Tb and T0 being, respectively, the temperature of the
bottom plate and at the cell center. In the above, c ≥ 1 is
a parameter which satisfies the condition a = Γ(1/3)Γ(c −
1/3)/[3Γ(c)] and changes with Pr. When c → ∞, θ(ξ;∞)
approaches the PBP form for laminar BLs without BL fluctu-
ations.

In this talk, we will report direct measurements of the
mean temperature profile θ(z) and temperature variance pro-
file η(z) ≡ ⟨[T (z, t) − ⟨T (z)⟩]2⟩t near the lower conducting
plate in RBC. The convection cell is a specially designed ver-
tically orientated thin circular disk, as sketched Fig. 1. The
large-scale flow in the circular plane of the convection cell has
a fly-wheel-like structure with a mean rotating speed U0 along

Figure 1: Sketch of the experiment setup for the measure-
ment of the local temperature profile near the lower conduct-
ing plate. The black arrows indicate the direction of the large-
scale flow in the circular plane of the cell. The red arrows
indicate the velocity components and spatial coordinates used
in the experiment.

a fixed orientation. Compared to the large-scale flow in a con-
ventional upright cylinder, this quasi-two-dimensional (2D)
flow has a geometry more closely satisfying the assumption
of the boundary theory for a 2D flow over an infinite horizon-
tal plane. These simplifications allow us to have a stringent
test of the theory. The convection experiment is conducted in
the thin disk and its large-scale flow rotates counterclockwise
with the velocity components and spacial coordinates indi-
cated in Fig. 1. The cell has a diameter D = 188 mm and
thickness W = 20 mm, and thus the corresponding aspect
ratio Γ ≡ L/D = 0.11. The top (and bottom) 1/3 of the
circular sidewall is made of copper, and their temperature is
controlled at an accuracy of 10 mK. Other walls of the cell
are made of Plexiglas. Here the Rayleigh number is defined
as Ra ≡ αg∆TD3/(νκ), where g is the gravitational ac-
celeration, ∆T is the temperature difference between the two
copper surfaces, and α is the thermal expansion coefficient
of the convecting fluid. Two working fluids are used in the
experiment, one is distilled water (with Pr = 4.4) and the
other is a 20 wt.% aqueous solution of glycerin (Pr = 7.6).
A movable thermistor of diameter 0.3 mm and time constant
10 ms is used to measure the temperature profile T (z) along
the central axis of the cell. The accuracy of the temperature
measurement is 5 mK and that of the spatial movement z is
50 µm. Another thermistor of the same type is placed at the
cell center to measure T0. Recent studies [3] have shown that
this system possesses the key features of turbulent convection,
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Figure 2: Normalized mean temperature profile θ(z) as a
function of z/δ. The measurements are made near the lower
conducting plate for different values of Ra and at fixed Pr =
7.6. The solid and dotted lines are, respectively, the calculated
θ(ξ; c) using Eq. (1) with c = 2.1 and c = 1. The dashed line
shows the PBP profile for Pr = 7.6.

which have been observed in the upright cylindrical cells.
Near the BL, the measured θ(z) is found to have a univer-

sal scaling form θ(z/δ) when the values of δ are varied in the
Ra range studied (1.5 × 109 ≤ Ra ≤ 1.5 × 1010). Figure 2
shows the measured θ(z) near the lower conducting plate for
different values of Ra and at fixed Pr = 7.6. All of the mea-
sured θ(z) curves collapse onto a single master curve once
z is normalized by the BL thickness δ. Similar scaling was
also found for the measured θ(z) in the upright cylinders [4]
and rectangular cells [5] with Ra ≤ 1011. It is seen that the
measured θ(z/δ) is well described by Eq. (1) with c = 2.1
(solid line), which deviates from the PBP form (dashed line)
in the region 0.6 ≤ ξ ≤ 2. Similarly, we measure θ(z) in
water (Pr = 4.4), which is also found to be well described
by Eq. (1) with c = 1.8.

While the deviations of the measured θ(z) from the PBP
form are clearly visible, they are nonetheless small and are
only shown in the region 0.6 ≤ ξ ≤ 2. The temperature vari-
ance profile η(z), on the other hand, is a direct measure of
BL fluctuations and equals to zero for laminar BLs without
fluctuations. Figure 3(a) shows the measured η(z) as a func-
tion of distance z for different values of Ra. In the plot, η(z)
is normalized by its maximal value η0 and z is normalized
by δ. In the region ξ = z/δ ≤ 2, all the measured η(z)/η0
curves collapse onto a single master curve, which has a sin-
gle peak at ξ0 ≃ 0.78 ± 0.05. A similar single-peaked η(z)
was also found in the upright cylinders [6, 7] and rectangu-
lar cells [5]. Beyond ξ > 2, the measured η(z)/η0 does not
scale with z/δ anymore. Instead, it scales with z/D, where
D is the cell diameter, as shown in Fig. 3(b). It is seen that
all the measured η(z)/η0 curves superimpose with each other
in the region 0.008 ≤ z/D ≤ 0.15. Figure 3 thus reveals a
sharp transition to a new scaling regime at ξc = (z/δ)c ≃ 2
or equivalently z/D ≃ 0.008.

The scaling behavior of the measured η(z)/η0 is a unique
property of the thermal BL in turbulent Rayleigh-Bénard con-
vection, and one has not yet found an equation to describe the
function form of η(z)/η0. Based on the above experimental
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Figure 3: Normalized temperature variance profile η(z)/η0
as a function of the normalized distance (a) z/δ and (b) z/D.
The measurements are made near the lower conducting plate
for different values of Ra and at fixed Pr = 7.6. The
vertical lines in (a) and (b) indicate the transition distance
ξc = (z/δ)c ≃ 2 or equivalently z/D ≃ 0.008.

results, we derive a new BL equation for η(ξ) and obtain a
numerical solution of η(ξ) for Pr > 1, which is found to be
in an excellent agreement with the experimental data. More
details about the derivation of the equation and the fitting to
the experimental data will be given at the oral presentation.

We thank E. Ching for useful discussions. This work was
supported in part by RGC of Hong Kong SAR under Grant
No. 16305214 (P.T.). X.H. acknowledges the support through
the China Thousand Young Talents Program.
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BOUNDARY LAYERS IN TURBULENT RAYLEIGH-BÉNARD CONVECTION: 
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Summary We present the fully three-dimensional boundary layer flow field in turbulent Rayleigh-Bénard convection in air. The experiments 
have been performed in the large-scale convection facility ‘Barrel of Ilmenau’ and cover a parameter range in Rayleigh number between 
𝑅𝑅 = 108 and 𝑅𝑅 = 1012. The aspect ratio was kept constant at 𝛤 = 1 and the Prandtl number is 𝑃𝑃 = 0.7. Using a tomographic Particle 
Image Velocimetry set-up the fully three dimensional velocity field at the lower surface of the cooling plate has been measured. In our talk we 
will show first results of these measurements that are still being in progress. We will discuss as well statistical properties of the near-wall flow 
field, like profiles of all three components of the mean velocity and the fluctuations, the vorticity and the Reynolds stresses as the dynamics of 
the boundary layer like time series of the boundary layer thickness or the temporal evolution of the wall shear stress. 
 

INTRODUCTION 
 
   Rayleigh-Bénard (RB) convection in an infinite fluid layer heated from below and cooled from above is a canonical 
problem of turbulence research [1,2,3]. It represents a great variety of heat transfer problems as diverse as atmospheric and 
oceanic circulation, room ventilation or convection in the outer Earth’s core. Although RB convection has been 
comprehensively investigated over the past two decades, our knowledge of the flow field in the vicinity of both the heated 
bottom and the cooled top plates at very high Rayleigh numbers, 𝑅𝑅 = �(𝛽𝛽∆𝑇ℎ3)/(𝜐𝜐)�, is limited to local statistics or 
the two-dimensional velocity field in a single plane. This is partially due to the fact that a simultaneous measurement of all 
three velocity components in more than a single point is an extremely challenging task. However, data obtained from planar 
Particle Image Velocimetry (PIV) measurements [4] as well as recent direct numerical simulations [5] show that the near 
wall transport of heat and momentum cannot be fully understood without that information. In order to answer that question 
and to provide a set of reference data for the validation of computational results we perform a series of tomographic PIV 
measurements covering a wide range in Rayleigh number between 𝑅𝑅 = 108 and 𝑅𝑅 = 1012. While the Rayleigh number 
was varied, the aspect ratio and the Prandtl number were kept constant at 𝛤 = 1 and 𝑃𝑃 = 0.7.  
 

EXPERIMENTAL SET-UP AND MEASUREMENT TECHNIQUE 
 
   The measurements have been undertaken in a large-scale RB experiment, called the ‘Barrel of Ilmenau’. This RB cell 
with a diameter of 𝐷 = 7.15 m and a maximum thickness of the fluid layer of ℎ = 6.30 m is filled with air and currently 
the only one where Ra numbers up to 𝑅𝑅 =  1012 can be set and the boundary layer is sufficiently large (of the order of 20 
mm) to probe the flow field with commercial measurement techniques. In order to realize Ra numbers below 𝑅𝑅 = 1011 
various insets with diameters of 𝐷 = 2.50 m and 𝐷 = 0.90 m can be placed between the heating and the cooling plates. A 
detailed description of the facility can be found in [6]. Figure 1 shows the set-up of the tomographic PIV measurement. 

 
 

Figure 1: Set-up of the tomographic PIV system to measure the three-dimensional flow field  
in the boundary layer below the cooling plate. 
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   The measurements volume is located below the center of the cooling plate, where a sapphire window provides the 
optical access for the cameras. Due to its high thermal conductivity (about 20 times better than mineral glass) the 
temperature at the lower surface of the window equals the temperature of the cooling plate very well and local convection 
effects can be excluded. The size of the measurement volume amounts to a cuboid with a base area of 5 cm by 5 cm 
(parallel to the orientation of the plate surface) and a depth of about 2 cm (normal to the orientation of the plate surface). 
The measurement volume is illuminated by a 100 mJ double pulse Nd:YAG Laser which can fire 100 times per second. 
Small tracer droplets of various sizes between 0.5 µm and 5 µm will be tested to find an optimum between a good visibility 
(larger particles scatter more light) and a good ability to follow the flow (smaller particles better follow the flow). The 
camera system consists of four highly sensitive sCMOS cameras with a resolution of 2560 x 2160 pxs² and a maximum 
frame rate of 25 double frames per second. Series of 10.000 frame sets – each of them consists of four double frames – at a 
frame rate of one frame set per second has been acquired to study the long-term statistics of the flow. In order to analyse the 
dynamics of typical boundary layer quantities shorter time series of 1.000 frame sets with the maximum rate of 25 per 
second have been captured. 
 

RESULTS  
 
   A first preliminary result of a test measurement is plotted in Figure 2. The graph shows the local vorticity 𝜔𝑧 =
𝜕𝜕/𝜕𝜕 − 𝜕𝜕/𝜕𝜕 along with selected streamlines of the three-dimensional velocity field. In our talk we will present final 
results of the tomographic PIV measurements for the entire range in Ra number between 𝑅𝑅 = 108 and 𝑅𝑅 = 1012. We 
will discuss a selection of the statistical properties of the near-wall flow field, like e. g. profiles of all three components of 
the mean velocity and the fluctuations, the vorticity and the Reynolds stresses as well as the dynamics of the boundary layer 
like time series of the boundary layer thickness or the temporal evolution of the wall shear stress. 
 

 
Figure 2: Instantaneous vorticity field 𝝎𝒛 = 𝝏𝝏/𝝏𝝏 − 𝝏𝝏/𝝏𝝏 [1/s] along with selected streamlines of the near wall velocity field.  
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Summary We study the effects of polymers on heat transport in turbulent Rayleigh-Bénard convection using direct numerical simulations.
We find that for small Weissenberg number, which is the ratio of the polymer relaxation time to the typical time scale of the flow, heat
transport is reduced but for sufficiently large Weissenberg number, heat transport is enhanced. Our generalization of the classical boundary
layer theory to flows with polymers has demonstrated that polymer stretching gives rise to a space-dependent effective viscosity. By carrying
out the generalized boundary layer analysis using the effective viscosity profile computed from the numerical data, we provide a theoretical
explanation of the observed transition of heat reduction to heat enhancement when Weissenberg number is increased.

INTRODUCTION

In turbulent Rayleigh-Bénard (RB) convection, a fluid constrained between two horizontal plates is heated from below and
cooled from above. The system is controlled by the Rayleigh and Prandtl numbers, Ra = αg∆TH3/(κνs) and Pr = νs/κ,
where α, νs and κ are respectively the volume expansion coefficient, kinematic viscosity, and thermal diffusivity of the fluid,
∆T is the temperature difference, H is the distance between the top and bottom plates, and g is the acceleration due to gravity.
The bulk flow without the boundary layers is believed to be a good approximation of the ultimate regime at large Ra. To
study the effect of polymers in this case, we have performed direct numerical simulations (DNS) of homogeneous turbulent
thermal convection with polymers using periodic boundary conditions [1], and found that polymers enhance heat transport.
At variance with this result, experiments on turbulent RB convection at moderate Ra [2, 3] reveal that polymers reduce heat
transport and the amount of reduction increases with polymer concentration. To account for these experimental findings, we
have generalized the classical Prandtl-Blasius-Pohlhausen (PBP) theory to study heat transport by boundary-layer flow with
polymers [4, 5]. Our work demonstrated that polymer stretching gives rise to a space-dependent effective viscosity. When
the effective viscosity is non-zero only within a region very close to the plate, heat transport is reduced and the amount of
reduction increases with polymer concentration as observed in the experiments. The above studies lead us to the idea that how
heat transport is affected is determined by the specific details of the polymer stretching, and motivates our present DNS study.

NUMERICAL SIMULATIONS AND RESULTS

In Boussinesq approximation, the equations of motion for RB convection with polymers are

∂tua + u⃗ · ∇⃗ua = −∇ap+ νs∇2ua +∇bTab + αg(T − T∗) δaz (1)

∂tT + u⃗ · ∇⃗T = κ∇2T (2)

where u⃗ is the velocity field with components ua, a = x, y, z, with x and y along the horizontal directions and z along
the vertical direction, p is the pressure, and T is the temperature field with T∗ being the mean temperature averaged over
time and space. We have used the repeated indices summation convention and the density of the fluid is taken to be 1. The
polymeric stress tensor Tab depends on how much the polymer chains are stretched. For the Oldroyd-B model, Tab(r⃗, t) =
νp [Rab(r⃗, t)− δab] /τ , where νp is the polymer contribution to the zero-shear viscosity of the polymer solution and τ is the
relaxation time of the polymers. Let d⃗ be the end-to-end distance vector of a polymer chain, the conformation tensor Rab is
the ensemble average of dadb normalized by the equilibrium value of the ensemble average of d2a/3, and is governed by

∂tRab + u⃗ · ∇⃗Rab = ∂cuaRcb +Rac∂cub − (Rab − δab) /τ . (3)

Periodic boundary conditions are imposed at the lateral planes whereas fixed-temperature and no-slip boundary conditions
are used at the top and bottom plates. The DNS is performed at Ra = 1.7 × 105 and Pr = 7. The Weissenberg number is
defined by Wi ≡ τUc/H , where Uc =

√
αg∆TH . Heat transport is measured by the Nusselt number, which is defined by

Nu ≡ (⟨uzT − κ∂zT ⟩A)/(κ∆T/H), where ⟨· · ·⟩A denotes an average over a horizontal plane and time. Nu0 denotes the
value for the case without polymers. For Wi = 2 we observe a small reduction in heat flux with δNu = Nu − Nu0 < 0
while at Wi = 5 and Wi = 15, δNu > 0 and the heat flux is enhanced. Thus we observe a transition from heat reduction to
enhancement as Wi is increased.

∗Corresponding author. Email: ching@phy.cuhk.edu.hk
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measures the effective viscosity of polymers for different Wi; the results for Wi = 2 are multiplied by 2 for clarity purpose.

In the presence of Oldroyd-B polymers, the classical Prandtl-Blasius boundary layer equation for velocity becomes [4, 5]

ux∂xux + uz∂zux = νs∂
2
zzux + νp∂z (Rxz) /τ . (4)

Here x denotes the direction along the plate and z is the direction perpendicular to the plate, and ux → U as z → ∞. The
mainstream velocity U plays the role of the large-scale mean flow velocity in turbulent RB convection. Introducing the stream
function Ψ(x, z) ≡

√
ν0xUϕ(ξ) where ξ ≡ z

√
U/(ν0x) and ν0 = νs + νp, we obtain

2∂ξ{[1 + g(ξ)]ϕξξ}+ ϕϕξξ = 0 , (5)

where ϕξ denotes ∂ξϕ, g(ξ) ≡ νeff(ξ)/ν0 − 1, and νpRxz(ξ)/τ ≡ νeff(ξ)∂zux, together with the boundary conditions
ϕ(0) = ϕξ(0) = 0 and ϕξ(∞) = 1. Writing the temperature field T (x, z) as T0 + (T1 − T0)θ(ξ) where T1 and T0 are
respectively the temperatures at z = 0 and z → ∞ (corresponding to the cell center in turbulent RB convection), then we have

2θξξ + Pr ϕθξ = 0 (6)

with the boundary conditions θ(0) = 1 and θ(∞) = 0. The generalization of the PBP theory to boundary layer flows
with polymers thus shows that the effect of polymer can be represented by a space-dependent effective viscosity νeff(ξ) or
g(ξ). We can now use our DNS to get a quantitative computation of νeff(ξ). The energy dissipation rate due to viscosity is
ϵp(z) = ⟨−ua∇bTab⟩A and the rate of energy transfer to the polymers is ϵp(z) = ⟨−ua∇bTab⟩A. Thus we define νeff(z)/νs ≡
ϵp(z)/ϵ(z) and obtain g(ξ) ≈ νeff(ξ)/νs − 1 with ν0 ≈ νs and ξ = z/λt, where λt is the thermal boundary layer thickness.
We capture the general shape of g(ξ) by a simplified form: g(ξ) = µξ for ξ ≤ ξm and g(ξ) = µξm ≡ A for ξ ≥ ξm and use
Eqs. (5) and (6) with this simplified form of g(ξ) to study how heat flux depends on ξm and A. Two clear features emerge:
there is a transition from heat reduction to heat enhancement for all values of A and, most importantly, heat enhancement
occurs for ξm > 1. This result beautifully matches our DNS results: for Wi = 2 the maximum in g(ξ) occurs at ξ < 1 and
heat reduction is observed while for both Wi = 5 and 15 the maximum occurs at ξ > 1 and heat enhancement is observed.

CONCLUSIONS

Using DNS we have found a transition from heat reduction to heat enhancement in turbulent RB convection with polymers
when Wi is increased. We have carried out an analysis using the generalized PBP boundary-layer theory with a space-
dependent effective viscosity computed from the DNS data, and provided a physical way to understand the transition.
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Summary We present the results from direct numerical simulations of Rayleigh-Bénard (RB) convection of Rayleigh number 106 ≤ Ra ≤
1010, Prandtl number 4.38 and width-to-height aspect ratio 1/32 ≤ Γ ≤ 1. Our results suggest that the power law is more rational to be
fitted conditionally according to the three regimes classified by Chong et al.[1] as they are under different physical mechanisms on heat
transfer. For instance, in regime II heat transport is accomplished by a single, or a few, system-sized plume(s), whereas in regime I it is
carried out by fragmented plumes. Therefore, in contrast to RB flow at Γ = 1 (in the explored Ra range), there is no pure power-law scaling
between Nusselt number Nu and Ra whenever the convective state straddles over different regimes.

INTRODUCTION

Rayleigh-Bénard (RB) convection is the classical model for studying turbulent thermal convection which is the phenomena
ubiquitously existing in nature. In brief, the configuration of this model is a fluid layer heated from below and cooled from
above by parallel plates (see, for example, reviews [2, 3]). The relevant input parameters in RB convection are the Rayleigh
numberRa = αg∆TH3/νκ, Prandtl number ν/κ, aspect-ratio of the container Γ (here only the width-to-height aspect ratio is
varied), while the relevant response parameters are the Nusselt number and Reynolds number. Here ∆T represents the imposed
temperature difference over the cell height H while ν, κ, α and g represents the kinematic viscosity, thermal diffusivity,
thermal expansion coefficient and gravitational acceleration. One focus on RB flow is the study of scaling properties on global
heat transfer, and preferentially the power-law relation of Nu-Ra. Previously, most of the experimental or numerical results
were done in cylindrical cell with Γ around one or done with very large Γ for the asymptote of planetary convection. However,
a comprehensive study for Γ << 1 is lacking until the recent works by Huang et al. [4] and Chong et al. [1]. Their result
can be summarized as: Three regimes are classified for RB cell with Γ ≤ 1. Regime I is the classical regime in which Nu
is insensitive to the change in Γ; Regime II is the plume-controlled regime in which thermal plumes condensation occurs,
leading to the enhanced heat transfer efficiency; Regime III is reached when Nu starts to drop sharply beyond regime II.
There are actually different underlying physical mechanism in these regimes. For instance, heat transport is carried out no
longer by fragmented, individual thermal plumes but by a single, or a few, system-sized giant plumes formed through coherent
structure condensation[1] when turbulent flow fully enters regime II. It implies that fitting of the power-law relation between
Nu and Ra to the data should be done conditionally on each regime rather than the whole parameter range. The present study
complements the previous work by investigating the global Nu-Ra relation in the three regimes separately.

NUMERICAL SET-UPS

We simulate the incompressible RB flow with dimensionless Navior-Stokes equations and heat equation within the Boussi-
nesq approximation. The equations are expressed as:

∂u/∂t+ u · ∇u +∇p = ν∇2u + θz, (1)

∂θ/∂t+ u · ∇θ = κ∇2θ, (2)

∇ · u = 0, (3)

Here the non-dimensionalization is done by using the free-fall velocity, H and ∆T . After the non-dimensionalization,
the cold plate is fixed at the value -0.5 while the hot plate is fixed at 0.5, and the sidewalls are adiabatic. For velocity
boundary conditions, no-slip and impermeable boundary conditions are adopted. The design of meshes is based on the paper
by Shishkina et al. in which non-uniform meshes are used with finer grid near the boundaries. The data were collected when
the RB flow reached statistical steady state which is judged by convergence of Nu.

∗Corresponding author. Email: kxia@phy.cuhk.edu.hk
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RESULTS

The Nusselt numberNu against Rayleigh numberRa for three different Γ is shown in fig. 1(a). As three different regimes
has been classified by Chong et al. [1] for Γ < 1, it leads us to distinguish the data under different regimes by using different
symbol styles (open symbol for regime I, crossed symbol for regime II, closed symbol for regime III). In contrast to having a
pure scaling at Γ = 1 with exponent 0.30, separate scaling ranges are markedly noted for Γ = 1/8 cases due to the regimes
crossover. However, when Γ reaches 1/32, it becomes apparent that a power law over two decades in Ra can be fitted by
power law with the exponent 0.49 (fitted by data lying in regime III). To better distinguish the scaling exponents at Γ = 1 and
Γ = 1/8, the compensated Nu is plotted against Ra as shown in fig. 1(b). Now, it is clear that the exponent for data in regime
II at Γ = 1/8 is 0.28 which is different from that at Γ = 1.
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Figure 1: Nu versus Ra for Γ = 1/32, 1/8 and 1 in (a). Note that the three regimes is based on Chong et al. [1]. Here the
black line is the fitting of Γ = 1 data while the blue line is the fitting of Γ = 1/32 data. Compensated Nu versus Ra for
Γ = 1/8 and 1 in (b). The red line is the fitting of Γ = 1/8 data within regime II (crossed symbol) while the black line is the
fitting of Γ = 1 data

CONCLUSIONS

We have fitted the Nu-Ra scaling exponent exponents conditionally on the three regimes classified by Chong et al.[1].
Pure scaling law is found at Γ = 1 with exponent 0.30 where the data points entirely lie in regime I. But no pure scaling law
can be found over the whole parameter range at Γ = 1/8, whereas power law can be fitted conditionally on regime II which
gives the exponent of 0.28. When Γ becomes 1/32, two decades ofRa lying in regime III allows us to observe the new scaling
exponent 0.49.
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Summary: The theory of continental drift by Elder [1] suggests that continents exert a thermally insulating effect on the mantle convection
underneath thus modify its large-scale flows, and in turn the continents are driven by the convective flows into cyclic motion [2]. We study
through laboratory experiments the dynamics of a free boundary floating on top of turbulent flows that undergo thermal convection. Depending
on its relative size, the free boundary either oscillates periodically or becomes locally trapped over an upwelling flow. These phenomena can be
understood preliminarily by a low-dimensional model that elucidates how the large-scale flows response to, and in turn, dictate the free
boundary motion.

Experimental apparatus and method
   Figure 1a presents a schematic drawing of the thermal convection apparatus. The convection tank has an aluminium
bottom plate and an open surface. Its inner dimensions are 60 cm (L) long, 7.8 cm (W) wide, and 11.3 cm (H) in height. The
container is filled with deionized water. The bottom plate is heated uniformly with a foil heater and the fluid is cooled from
its open surface, which is exposed in a laminar air-hood. During our experiments, the temperature difference across the fluid
is maintained at a constant T = 12.0 K. The convection flows are characterized by two control parameters, i.e. the
Rayleigh number Ra = 1.1×109 and the Prandtl number Pr = 4.4.
   Introduced to the fluid surface is a floating boundary, which is free to move about along the container’s long axis X, is
made of a Plexiglas plate with length l. The coverage ratio, CR = l/L varies from 0.2 to 0.8. A shadowgraph, projected by a
nearly parallel beam of light sent through the convection tank from behind, reveals the ow pattern on the translucent
screen.

Fig. 1 (a) Schematic diagram of the apparatus. See text for details of the various components. (b) Time series of the free boundary’s position.
From top to bottom: results for CR = 0.3, 0.4, 0.5, 0.6 and 0.7, respectively. Results reported in [3].

Dynamics of the free boundary --- oscillatory or trapped states
When the free boundary is on top of the fluid surface, it exerts a sizeable thermal perturbation to the underlying fluid

by reducing the local heat loss of the connective system. This effect is often referred to as the “thermal blanket effect.”
Under this effect, a two-roll flow structure typifies the main feature of the flow field, with downwelling flows on the two
sides that are separated by an upwelling flow (Fig. 1a). We observe that such a free-boundary-convection coupled system is
unstable for small boundaries: as the boundary lies on the top of the convective fluid, it is driven about and oscillates
between the two sidewalls of the tank. The rst 3 panels of Fig. 1b show the position of the boundary center X as a function
of time. When the coverage ratio increases from 0.3 to 0.5, the oscillation period of X becomes progressively shorter and
more regular. These results imply that larger boundaries give greater thermal perturbation to the convection flows, causing
shortened periods with increased regularity.
   The free-boundary-convection system presents a different dynamical state if the coverage ratio exceeds 0.6. We observe
that in this state the free boundary ceases oscillating between the two sidewalls. Instead, it appears to be trapped in the
central area of the convection sample, making only small excursions in both directions randomly. Flow visualization shows
that when the boundary lies on top of the upwelling it is passively driven by the randomly passing hot plumes entrained by
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the large-scale flow. The exact excursion of the boundary, both in direction and amplitude, depends on the detailed position
and size of the passing plumes. The last series of Fig. 1b shows the time series of the boundary in such a trapped state.
   If the coverage ratio is chosen as 0.6, we observe dynamical intermittency between the two states. Boundary oscillation
and localization appear alternatively as shown in panel 4 of Fig. 1b.

Interpretation of the two dynamical states --- a numerical model
The transition between the two distinct dynamical states can be well explained by a one-dimensional model [3]. The

model captures the important mechanism to elucidate the interactions between the free boundary and the convective flows
underneath. Through the thermal blanketing effect, the presence of the boundary modi es the ow structure below; in turn,
the ow exerts a viscous drag that causes the free boundary to move. Both the oscillatory state and the trapped state are
found from this model, depending on the boundary size. The model also offers details on the transition between the states,
and shed insights onto this coupled system without the need for full-scale fluid dynamics simulations. Recently, this simple
model is used to explain the dynamics of a free boundary interact with and driven by turbulent thermal convection in an
annular tank [4]. The model provides quantitative predictions of the boundary motion in good agreement with our
experimental observations.
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Summary Spontaneously arising zonal flows in Rayleigh-Bénard convection are studied by direct numerical simulations of horizontally
periodic flows between free-slip boundaries. The phenomenon is studied in 2D flows and in 3D flows that are rendered horizontally
anisotropic by rotation about a distant horizontal axis. In the 2D case, zonal flows appear to be inevitable for sufficiently large Rayleigh
number (Ra), and their portion of the total kinetic energy approaches 100% as Ra → ∞. In the 3D anisotropic case, zonal flows develop at
large Ra when the anisotropy is sufficiently strong. Convection in the presence of zonal flow can be either bursting or sustained depending
on the Prandtl number. Zonal flow significantly suppresses vertical heat transport, causing the growth of the Nusselt number with increasing
Ra to slow and sometimes to reverse.

2D SIMULATIONS

The 2D simulations that will be addressed have been reported in [1]. The qualitative differences between convection with
and without spontaneously arising zonal flows are apparent in the example temperature fields of figure 1. In the talk, quan-
titative differences between each state will be described, including differences in the parameter-dependence of key integral
quantities such as the Nusselt number.

Figure 1: Instantaneous temperature fields from simulations of convection without zonal flow (left) and in which zonal flow
has spontaneously developed (right). Warm fluid is light and cool fluid is dark.

3D SIMULATIONS

The 3D simulations that will be addressed have been reported in [2]. Prandtl and Rayleigh numbers are fixed while the
uniform horizontal rotation rate is varied. Zonal flows arise when the rotation rate is sufficiently large. Rotation breaks the
symmetry between cyclonic and anticyclonic zonal flows, both of which are observed. Zonal flow significantly reduces heat
transport and increases intermittency, but not as much as in 2D convection at the same Rayleigh and Prandtl numbers.
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Summary Low-dimensional models of thermal convection can allow us to study the essential dynamics of the flow in simplified form, and to
produce empirical estimates using only a few parameters. Low-dimensional representations of convection can be constructed systematically
by writing numerical or experimental measurements as summations of a set of appropriate basis functions. For Boussinesq convection in a
cylinder, those basis functions should be defined in cylindrical coordinates, vector-valued, divergence-free, and complete. Here we present
such a basis set, the vector cylindrical harmonics. We demonstrate that they have the desired characteristics, show their use for representing
measurements, and point out their potential for low-dimensional convection models.

MOTIVATION: MODELING CONVECTION IN LIQUID METAL BATTERIES

Thermal convection occurs anywhere a fluid is heated from below with sufficient power, and convection plays a key role
in ocean currents, climate models, astrophysical flows, combustion, chemical processing, and jet propulsion, among many
other systems. We are particularly interested in convection in liquid metal batteries, a new technology capable of storing large
amounts of energy on world electrical grids at very low cost. Convection occurs because the batteries are hotter than their
surroundings, and convection drives mixing, which affects battery charge/discharge speed as well as battery lifetime.

We are developing low-dimensional models of convection in liquid metal batteries in order to predict mixing, and there-
fore battery performance, using the limited information available about an operating battery. We want to capture essential
dynamics of convection with as few parameters as possible. Low-dimensional models can be built systematically from em-
pirical measurements by representing those measurements as summations of appropriate basis functions, then truncating the
summation to a desired number of modes. For convection of a nearly-incompressible fluid in a cylinder, we require basis
functions that are defined in cylindrical coordinates, vector-valued, and divergence-free. We also require that the set of basis
functions be complete, that is, that their sums can represent any arbitrary incompressible flow. Such basis functions could also
represent magnetic fields in cylindrical coordinates, since magnetic fields always have zero divergence.

THE VECTOR CYLINDRICAL HARMONICS

We have devised a basis set that has the desired characteristics; we call them the vector cylindrical harmonics. Their
construction proceeds in analogy to the construction of the vector spherical harmonics [1], which have similar characteristics

Figure 1: Examples of toroidal and poloidal vector cylindrical harmonics. Each mode is characterized by a azimuthal
wavenumber n and an axial wavenumber k, both of which are positive integers. Toroidal modes are denoted T k

n and poloidal
modes are denoted Sk

n. Suffixes “c” and “s” indicate sine or cosine modes, respectively. Each mode is plotted on a cylinder
of radius 1, with direction indicated by arrows and speed indicated in color. Brighter colors signify higher speed.
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but are defined in spherical coordinates. First, we seek to solve Laplace’s equation ∇2Φ = 0 in cylindrical coordinates.
Its scalar solutions are necessarily complete because of the Sturm-Liouville form of the equation [2]. Using separation of
variables in cylindrical coordinates, we can show that the solutions are Φ =

∑
n,k C

k
n, where

Ck
n(ρ, ϕ, z) = < (Jn(−ikρ) cosnϕ cos kz) , (1)

written in terms of the cylindrical coordinates (ρ, ϕ, z), with Jn being Bessel functions of the first kind. Each mode Ck
n is

identified by two positive integers, the azimuthal wavenumber n and the axial wavenumber k. Though we have written cosines
in Eq. 1, sines also solve Laplace’s equation, as do products of a sine and a cosine. To specify, we will denote the various
possible modes with “c” and “s” suffixes, e.g., C2s

3c = <(J3(−i2ρ) cos 3ϕ sin 2z). We call the Ck
n the scalar cylindrical

harmonics.
We can use the Ck

n to construct incompressible vector-valued functions by appending a unit vector and calculating curls.
We define the toroidal vector cylindrical harmonics as

T k
n = < (∇× ρ̂Jn(−ikρ) cosnϕ cos kz) ,

where ρ̂ is the unit vector in the cylindrical radial direction. Likewise we define the poloidal vector cylindrical harmonics as

Sk
n = < (∇×∇× ρ̂Jn(−ikρ) cosnϕ cos kz) .

Again, either cosines or sines provide solutions, and we will use suffixes to specify when necessary. Together, the T k
n and Sk

n

form a basis set that can be used to represent incompressible vector fields in cylindrical coordinates. Because each T k
n and

Sk
n is constructed from a curl, its divergence is automatically zero. We expect that the T k

n and Sk
n together form a complete

vector-valued set because the Ck
n are complete for scalars, but we have not proved it rigorously. A few vector cylindrical

harmonics are plotted in Fig. 1.

REPRESENTING MEASUREMENTS WITH VECTOR CYLINDRICAL HARMONICS

Having explicit forms for the vector cylindrical harmonics, we can represent numerical or experimental measurements as
summations of the modes. Suppose a convection flow field u is measured at N locations xj (1 ≤ j ≤ N ). Then we can write

u(xj) =

Nn∑
n=1

Nk∑
k=1

(
αk
nT

k
n (xj) + βk

nS
k
n(xj)

)
, (2)

for some coefficients αk
n and βk

n. IfNn = Nk =∞, a suitable choice of the αk
n and βk

n can always satisfy Eq. 2 exactly. When
the mode count is finite, the particular αk

n and βk
n that best fit the data can be determined via linear least-squares projection [3].

We will show examples of representing convection flow fields in terms of the vector cylindrical harmonics, and quantify the
fidelity of the representation as it varies with mode count.

FUTURE WORK AND APPLICATIONS

Once convection flows can be represented as a list of coefficients
{
αk
n, β

k
n

}
, numerical or experimental measurements

can be used to build empirical models. We will discuss strategies for constructing models and consider how their accuracy
depends on mode count and on measurement resolution in both space and time. Those strategies are equally applicable to
any vector-valued quantity in cylindrical geometry, including convection of fluids other than liquid metal, magnetic fields in
liquid metal batteries, and magnetic fields in other cylindrical systems. We will discuss potential applications in these and
other contexts.
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Summary We measure flow tracer trajectories in turbulent rotating convection using both experiments and direct numerical simulations.
This Lagrangian viewpoint provides unique possibilities for diagnostics. We present tracer acceleration statistics and geometrical statistics
of the trajectories, both displaying an intimate relation with the coherent structures found in this flow.

Introduction
Large-scale buoyancy-driven flows abound in nature. The rotation of celestial bodies subsequently shapes these flows. We

study the interplay of buoyant forcing and rotation in a model system: rotating Rayleigh–Bénard convection (RRBC), the flow
between two rotating horizontal plates driven by heating from below and cooling from above. The strength of the thermal
forcing is quantified by the Rayleigh number Ra = gα∆TH3/νχ, where g is the gravitational acceleration, H the vertical
separation of the plates and ∆T the applied temperature difference, and α, ν and χ are the thermal expansion coefficient,
kinematic viscosity and thermal diffusivity of the fluid, respectively. The Prandtl number σ = ν/χ characterizes the fluid.
Finally, to quantify rotation we shall use the Rossby number Ro =

√
gα∆T/H/2Ω.

It is well-known that rotation stabilizes the flow, i.e. a larger thermal forcing Ra is required to enact convection under
rotation [1]. In the turbulent regime the main change in flow phenomenology is from a domain-filling large-scale circulation
driven by thermal plumes at low rotation rates to an ensemble of vortical columns at high rotation rates [2]. We want to
understand these changes. We employ a Lagrangian viewpoint: we go with the flow, follow individual flow tracers and
monitor their trajectories. This is done with both experiments and direct numerical simulations (DNS). In this contribution we
present the effect of rotation on statistics that can only be obtained using a Lagrangian viewpoint, namely tracer acceleration
— indicating the force on fluid parcels — and geometrical statistics of the trajectories (curvature and torsion), expected to be
related with the flow structures.

Experimental setup
The setup is displayed in figure 1. The cylindrical convection cell of equal height and diameter H = D = 200 mm is

placed on a rotating table. The working fluid (water) is heated electrically from below. At the top, cooling water is circulated
through a transparent cooling chamber, maintaining a constant temperature. Four cameras mounted above the cell are used
to track the motions of tracer particles in regions within the cell. From these 3D trajectories we can calculate velocity and
acceleration. The operation conditions are Ra = 1.28× 109, σ = 6.7 and 0.1 ≤ Ro ≤ ∞.

Numerical setup
In the DNS we employ the well-known Verzicco code for convection in a cylindrical domain [3]. The positions of tracer

particles are updated using local flow velocities from trilinear interpolation and third-order Runge–Kutta time-integration.
The governing parameters are chosen to match the experimental conditions. In figure 2 some example trajectories are shown,
revealing the vortical columns in the flow at Ro = 0.1.

Figure 1: Experimental setup.
Figure 2: Tracer trajectories from DNS at Ro = 0.1.
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Figure 3: Vertical-acceleration PDFs at the center of the cell (left) and near the top plate (right), at several Ro.
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Figure 4: PDFs of curvature κ as a function of Ro.

Acceleration statistics
Tracer acceleration displays different behavior depending on the position where the data is collected. We compare vertical

accelerations in a volume at the center of the cell to the same data collected in a volume close to the top plate in figure 3. The
vertical-acceleration PDFs at the center display a steady reduction in width as rotation is increased (Ro is reduced) towards a
nearly exponential distribution. Conversely, close to the top the width is maximal around Ro = 2.5, exactly the Ro at which
an abrupt and major flow transition takes place from the so-called large-scale circulation, a domain-filling convection roll,
to an ensemble of vertically oriented vortex tubes [4]. The cause of the transition is the activation of the so-called Ekman
boundary layers, which enhance convective heat transfer by Ekman pumping.

Curvature statistics
From the tracer trajectories we can also calculate the instantaneous curvature κ = |u × u̇|/|u|3, where u is the instanta-

neous tracer velocity. It is related to the geometry of the trajectories. In figure 4 curvature PDFs are plotted for several Ro.
Remarkably, the PDF shape does not change under rotation, nor does it deviate from the shape reported for homogeneous
isotropic turbulence [5]. Just the peak of the PDFs are shifted. The peak shift towards larger κ for reduced Ro indicates that
the characteristic size of the flow structures (inverse curvature) is actually decreasing.
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RAYLEIGH-BÉNARD CONVECTION

K. Chandrakar, K. Chang, D. Ciochetto, D. Niedermeier, W. Cantrell, R. A. Shaw∗

Department of Physics, Michigan Technological University, Houghton, Michigan, USA

Summary Cloud formation through isobaric mixing of water vapor in turbulent Rayleigh-Bénard convection is studied in the Michigan Tech
Pi Chamber (aspect ratio, diameter over height, of 2). Steady-state cloud conditions are achieved, allowing reliable sampling of turbulent
time series of air velocity, temperature, water vapor concentration, and cloud droplet size distribution. The water vapor and temperature
measurements allow for quantification of the turbulent fluctuations of water vapor supersaturation. For large temperature differences (high
Rayleigh number), the droplet size distributions exhibit a pronounced large-drop tail reminiscent of drizzle formation. This opens the door
for controlled, laboratory studies of aerosol-cloud-drizzle interactions.

THE PI CHAMBER

We have developed a laboratory facility for studying cloud formation in turbulent Rayleigh-Bénard convection: the Pi
Chamber, height 1 m and diameter 2 m. It is capable of pressures ranging from 1000 to ≈ 100 mbar, and can sustain temper-
atures of +40 to −55 ◦C. Temperature differences between the floor and ceiling of up to approximately 20 K are achievable,
yielding Rayleigh numbers of order 109. Clouds can be generated during turbulent convection by maintaining water saturated
conditions at the top and bottom boundaries. Specifically, glass fiber filter paper covers the top and bottom thermal panels
and can be connected to water reservoirs to ensure long-lifetime liquid (or ice) boundaries. Due to the nonlinearity of the
Clausius-Clapeyron equation, isobaric mixing between cold and warm water-saturated air results in water vapor supersatu-
ration. When cloud condensation nuclei (CCN) are present in the chamber, clouds form in supersaturated regions, and with
fixed thermodynamic conditions the cloud conditions can persist for long times (hours to days). We can thus explore how the
microphysical properties respond to aerosol input, and the relative roles of growth by condensation and collision-coalescence.

Coarse turbulence in the chamber is characterized utilizing a sonic anemometer for the three air velocity components and
a Lyman-alpha hygrometer for water vapor concentration fluctuations. Resistance thermometers (RTDs) with ≈ 1 second
response time provide the mean temperature profile and a linear array of thermistors is used to measure fast temperature
fluctuations. The cloud droplet size distribution and derived quantities like number density and liquid water content are
measured with a phase-Doppler interferometer (PDI); this instrument also provides two velocity components for the sampled
cloud droplets.

MIXING CLOUDS IN TURBULENT RAYLEIGH-BÉNARD CONVECTION

The experiment reported here generated steady-state cloud conditions for more than 10 hours. A three hour subset of the
time series is shown in Fig. 1. The top panel is the air temperature measured by those RTDs closest to the floor and the ceiling
respectively, showing that the convection is indeed stationary in time. Note that the mean temperature difference between
the two sensors is about 2 K. The temperature fluctuations detected by the lower RTD are larger compared to the fluctuations
measured by the upper one as the former sensor is closer to the heated floor panel. The second panel of Fig. 1 depicts the
supersaturation based on the water vapor partial pressure determined from the Lyman-alpha measurements (at 20 Hz), and
the saturation vapor pressure which is based on the temperature measurement closest to the Lyman-alpha instrument. Here it
is clearly observed that fluctuations in temperature and especially in water vapor concentration lead to a randomly, strongly
varying supersaturation. The mean supersaturation is approximately 5%, compared to typical supersaturation in atmospheric
clouds not much above 1%. The third panel shows the vertical velocity component measured by the sonic anemometer at
20 Hz. From its power spectrum, averaged over a time interval of 4 minutes, the turbulent kinetic energy dissipation rate was
calculated (panel 4) as a measure for the degree of turbulence inside the chamber. It is in the same range as observed in the
cloudy boundary layer in the mid-latitudes (Siebert et al. 2006). The bottom panel shows the cloud droplet number density
and the liquid water content, as derived from the PDI. We note that the fluctuations here are rather large, due to the limited
sampling statistics over a broad size distribution, but the values are steady within that range.

Table 1 summarizes the flow properties of the turbulent mixing cloud. All properties represent averages over the three hour
time interval. W represents the mean vertical velocity. The root-mean-square (rms) average of the vertical velocity fluctuations
is w′ = 〈w2〉1/2. The energy dissipation rate is estimated in two ways. First, we use the relationship ε = (S2/C)

3/2/r, where
S2 = 〈δw2(z, r)〉 is the second moment of the velocity increment, δw(z, r) = w(z + r) − w(z), 〈·〉 is the spatial average, z
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Figure 1: Time series of temperature, supersaturation, vertical velocity, turbulent kinetic energy dissipation rate, cloud droplet
number density, and liquid water content for a steady-state mixing cloud.

Table 1: Turbulence parameters calculated from measurements during the steady-state turbulent mixing experiment.

Boundary W w′ ε1 ε2 L η τη λ Rλ
condition (cm s−1) (cm s−1) (m2 s−3) (m2 s−3) (cm) (mm) (s) (cm)

wet 4.2 5.4 1.1×10−3 2.7×10−3 8.8 1.1 0.27 1.6 55

is the vertical position, r is the separation distance, and C = 2.1 is the Kolmogorov constant. Second, we obtain the integral
of the dissipative spectrum k2E(k), which for isotropic flow must yield

∫
k2E(k) dk = 2 ε/(15 ν).

The integral length, L, is estimated by integrating the correlation function 〈w(z + r)w(z)〉/w′2. The Kolmogorov length
and time scales are given by η = (ν3/ε)1/4 and τη = (ν/ε)1/2. We obtain the Taylor scale through the relation λ =
(15 ν w′2/ε)1/2. The Taylor Reynolds number of the flow is given by Rλ = w′ λ/ν. The latter four calculations are based on
the ε value which was determined from the integral of the dissipative spectrum. The Taylor Reynolds number is in the range
of values determined in other Rayleigh-Bénard convection experiments (Ni et al. 2012).

DISCUSSION

The droplet size distribution reveals a mean droplet diameter of approximately 25 µm, with a large droplet tail extending
beyond 60 µm, which can be considered the drizzle range. Under these very strong gradient conditions the mean supersatu-
ration is several percent, and based on the diffusional growth law we estimate that droplets starting with a diameter of 1 µm
could grow to about 40 µm in diameter after one minute. To what extent the number of CCN together with condensation and
collision-coalescence in the turbulent environment account for the determined droplet size distribution is a matter of current
investigation. It is worth noting that this mode of cloud formation, allowing steady cloud microphysical conditions for times
much greater than typically available in an expansion chamber, opens up a number of experimental possibilities. In particular,
aerosol-cloud-drizzle interactions thought to be important for regulating low cloud amounts in the earth’s boundary layer, can
be explored.

The work was supported by the U.S. National Science Foundation grant. D. Niedermeier acknowledges support from the
Alexander von Humboldt Foundation during the time this research was carried out.
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Summary We present experimental studies of higher order flow modes in turbulent thermal convection in cells of aspect ratio (Γ) 1 and 0.5.
We found that in both Γ = 1 and Γ = 0.5 cells the first mode, which corresponds to the large-scale circulation (LSC), dominates the flow,
the remaining higher order modes are very weak . While during the cessation/reversal the second mode (quadrupole mode) dominates the
flow. The experiment reveals that the second mode and the remaining higher order modes play important roles in the reversal/cessation of
the LSC. In addition, it is found that the usually-referred cessation event is not the cessation of the entire flow but only the cessation of the
first mode (LSC).We also show direct evidence that the first mode is more efficient for heat transfer.

INTRODUCTION

Thermal convection is ubiquitous in nature and many engineering applications. Rayleigh-Bénard convection (RBC) is
a model system for the study of the thermal convection problem [1-4]. In previous studies, attentions were mostly paid
to the single-roll structure (LSC), i.e. the dipole mode of the convective flow (the ascending flow and the descending are
separated azimuthally by 180◦). It is a natural question whether higher order modes exist? Examples of such modes are
the quadrupole mode (ascending flow and descending flow appear alternately and separated azimuthally by 90 degrees, Fig.
1 (b)), the sextupole mode (ascending flow and descending flow are separated azimuthally by 60 degrees, Fig. 1 (c)) and
even the octupole mode ( ascending flow and descending flow are separated azimuthally by 45 degrees, Fig. 1 (d) ). Recent
numerical and experimental studies found that the higher order modes indeed exist [5-8]. While their dynamics, their roles in
the cassation and reversal of the LSC, the relationship between different Fourier modes and heat transfer are not known.

In this paper we present an experimental study of the first and a few higher order flow modes in convection cells with
aspect ratios 1 and 0.5. The convection cell is similar to those used in previous experiments [9]. The working fluid is water
while Prandtl number remained to be around 5.0. We use the multi-temperature-probe method to measure the orientation and
the strength of the flow [9]. Applying the Fourier transform to the azimuthal temperature profile T (φ) at any time instant
would give the amplitude/strength of the first four modes: A1, A2, A3 and A4. Repeat this process to the time trace of T (φ) ,
the time traces of amplitude/strength of the four modes A1(t), A2(t), A3(t) and A4(t) are obtained. Similarly the time traces
of the orientation of the four modes are obtained.

RESULTS AND DISCUSSION

We firstly study the behaviour of the high order modes during cessation/reversal events. It is found that during a rever-
sal/cessation the amplitude of the second mode and the remaining modes experience an increase then followed by a decrease,
which is opposite to the behavior of the amplitude of the first mode — it decreases to almost zero then re-bounds. In addi-
tion, the total amplitude of the flow does not drop too much which reveals that the usually-referred cessation event is not the
cessation of the entire flow but only the cessation of the first mode (LSC).

(a) (b) (c) (d)

Figure 1: The cartoons show the mid-height cut of (a) the first mode (dipole mode, or LSC), (b) the second mode (quadrupole
mode), (c) the third mode (sextupole mode) and (d) the fourth mode (octupole mode) of the flow in the convection cell, viewed
from above. Dots represent up-going flow and crosses represent down-going flow.
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Figure 2: Left: The ratio between the time averaged energy contained in the ith mode 〈Ei〉 and the time averaged total energy
of the flow 〈Etotal〉 as function of Ra for Γ = 0.5. Right: the same quantity but averaged only during reversals.

We then calculate the ratio between the time averaged energy contained in the ith Fourier modes 〈Ei〉 and the time averaged
total energy of the flow 〈Etotal〉, where 〈Ei〉 = 〈Ai

2〉, and 〈Etotal〉 = 〈E1〉 + 〈E2〉 + 〈E3〉 + 〈E4〉 [5,7-8]. We found that in
Γ = 1 cells, overall the first mode, which corresponds to the large-scale circulation (LSC), dominates the flow. The remaining
higher order modes are very weak, each contains less than 4% of the total flow energy. In Γ = 0.5 cells, as shown in Fig. 2
(a), overall the first mode is still the strongest but less dominant, the second mode becomes stronger which contains 13.67% of
the total flow energy and the third and the fourth modes are also stronger. With a large number of measured cessation/reversal
events in Γ = 0.5 cells, we are able to obtain the statistical properties of the higher order modes during a cessation/reversal.
To study the amplitude of the different mode during reversals, we calculated the relative weight of ith mode’s energy —
〈Ei〉/〈Etotal〉 during reversals. It is found that during the reversal of the LSC, the second mode dominates, containing about
half of the total flow energy, as shown in Fig. 2 (b). This finding reveals that the second mode plays an important role in the
reversal of the LSC.

We in addition measured simultaneously the instantaneous heat transfer efficiency (Nu(t)) and amplitudes of the different
modes and show directly that the first mode, which is more coherent, produces higher heat transfer efficiency. It reveals that the
global heat transfer is controlled by the internal flow states and a more coherent flow is able to transfer heat more efficiently.
Our results show that under nominally identical control parameters (Ra, Pr and Γ) and boundary conditions, the turbulent flow
can assume different internal states, and this may be detected by the global transport properties (here the instantaneous heat
transfer efficiency (Nu(t)). Although the difference in Nu when the flow is in different internal states is very small, this finding
may provide a way to control heat transfer by manipulating the internal flow states. It also provides an example of how the
global properties of a fluid system is directly linked to its internal flow states.
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grant no. 403712) and the Peacock Plan of Shenzhen Municipal Government (through contract no. KQCX20130627094615415).
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Summary  It is known that the application of periodic heating along the walls results in drag reduction in pressure-gradient driven flow. 

The heating creates a buoyancy field that leads to the creation of separation bubbles which separate the stream from the bounding walls. 

The strength of this effect is of practical interest for heating with wave numbers O(1) and for flows with small Reynolds numbers [1]. 

This analysis is focused on the determination of the role played by surface corrugations in a heated channel. The results suggest that a 

significant increase of the drag reduction can be achieved by placing the grooves in a proper relative position with respect to the heating 

pattern. 

 

INTRODUCTION 

 

   In the super-hydrophobic effect, gas bubbles become trapped in surface micro-pores, effectively reducing the shear stress 

as shear between the liquid and the solid is replaced by shear between the liquid and the trapped gas [2]. The presence of 

liquid and gas phases and a proper surface topography are required to create this effect. It has been shown that imposing a 

correct pattern of heating-cooling at the walls can create a qualitatively similar effect [3]. A proper distribution of the 

buoyancy force leads to the formation of separation bubbles which isolate the stream from direct contact with the bounding 

walls and, at the same time, fluid rotation inside the bubbles provides a propulsive force. This effect is active in single phase 

fluids and does not require special surface topography. In the present study, the effects of a combination of surface 

topography and distributed heating are studied with particular attention paid to the potential for reduction of the pressure 

gradient required to drive a prescribed flow rate through such a conduit. 
 

PROBLEM FORMULATION AND RESULTS 
 

   Consider a channel formed by two horizontal corrugated plates whose geometries are illustrated in Fig. 1 where half of the 

mean channel opening ℎ has been used as the length scale.  
 

 

Figure 1. Schematic diagram of the flow system 
 

   In the above, 𝑦𝑏  and 𝑦𝑡   are the amplitudes of the corrugations at the lower and upper plates, respectively, 𝐶 stands for 

the phase shift between the upper and lower corrugations, and  denotes the corrugation wave number which is the same as 

the heating wave number. The gravitational acceleration 𝑔 is acting in the negative y-direction. The steady, incompressible 

flow of a Newtonian fluid is driven in the positive x-direction by an externally imposed pressure gradient. The fluid has 

thermal conductivity 𝑘, specific heat 𝑐, thermal diffusivity 𝜅 = 𝑘 𝜌𝑐⁄ , kinematic viscosity 𝜈, dynamic viscosity µ, thermal 

expansion coefficient 𝛤 and variations of the density 𝜌 that follow the Boussinesq approximation. All material properties 

are evaluated at the reference temperature. 

   The lower and upper walls are subject to a spatially periodic heating resulting in the temperatures shown in Fig.1. The 

intensity of the uniform heating component is expressed in terms of the uniform Rayleigh number 𝑅𝑎𝑢𝑛𝑖 =
𝑔𝛤ℎ3𝑇𝑢𝑛𝑖 (𝜅𝜈)⁄  , the amplitude of the lower periodic heating is expressed in terms of the lower periodic Rayleigh number 

𝑅𝑎𝑝,𝐿 = 𝑔𝛤ℎ3𝑇𝑝,𝐿 (𝜅𝜈)⁄ , the amplitude of the upper heating is expressed in terms of the upper periodic Rayleigh number 

𝑅𝑎𝑝,𝑈=𝑔𝛤ℎ3𝑇𝑝,𝑈 (𝜅𝜈)⁄ , 𝑇𝑢𝑛𝑖 is the difference between the mean temperatures of the lower and upper walls, 𝑇𝑝,𝐿 and  𝑇𝑝,𝑈 

are the peak-to-peak amplitudes of the lower and upper periodic heating components, respectively, and 𝜅𝜈 (𝑔𝛤ℎ3)⁄  has 

been used as the temperature scale. Positions of the upper and lower heatings with respect to the groove locations are 

expressed using the phase shifts 𝑇𝐿 and 𝑇𝑈 where the former refers to the lower wall while the latter refers to the upper 

wall. The relevant field equations consist of the continuity, Navier-Stokes and energy equations supplemented with the 

proper boundary conditions and the fixed flow rate constraint. This system is solved using a spectral discretization 

combined with the Immersed Boundary Conditions (IBC) method [4] to account for the irregularity of the flow domain. The 

pressure gradient correction A is defined as  𝜕𝑝 𝜕𝑥⁄ |𝑚𝑒𝑎𝑛 = 𝑅𝑒(−2 + 𝐴 𝑅𝑒⁄ ) and positive values signal drag reduction. 
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   Figure 2 displays the flow and temperature fields. The buoyancy force creates separation bubbles at low Reynolds 

numbers. Increase of Re initially decreases the size of the bubbles and, eventually, eliminates them completely. 
 

(a) (b) (c) 

Figure 2. Flow and temperature fields for  = 2, 𝑃𝑟 = 0.71, 𝛺𝑇𝐿 = 𝜋 2⁄ , 𝛺𝑇𝑈 = 𝜋 2⁄ , 𝛺𝐶 = 0, 𝑦𝑡 = 𝑦𝑏 = 0.05, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑅𝑎𝑝,𝑈 =

 𝑅𝑎𝑝,𝐿 = 500 for Re =1 (Fig.2a), Re = 20 (Fig.2b) and Re = 1000 (Fig.2c). Dashed (dashed-dotted) lines correspond to the positive 

(negative) isotherms. The stream function and the temperature have been normalized with their maxima. 
 

   Figure 3a illustrates variations of the pressure gradient correction as a function of the phase shift between the corrugation 

and the heating. It can be seen that the correction changes from positive to negative as a function of 𝑇𝐿. The addition of 

grooves may either significantly decrease the pressure gradient required to drive the flow or increase this pressure gradient 

depending on the phase shift. The drag reduction may increase by a factor of 10 when compared with the smooth channel 

exposed to the same heating if a proper phase shift is used. Figure 3b illustrates variations of the pressure-gradient 

correction as a function of the wave number and demonstrates that  2 is the most effective. Figure 3c illustrates variations 

of the pressure-gradient correction A as a function of 𝑅𝑒 and demonstrates the decrease of the magnitude of the drag 

reduction as Re increases. 
 

 

  
   (a)       (b)    (c) 

Figure 3. Variation of the pressure-gradient correction A as a function of a) the phase difference between the corrugation and the 

heating 𝛺𝑇𝐿 for 𝑅𝑒 = 1, and  = 1; b) the heating and corrugation wave number   for 𝑅𝑒 = 1, and  𝛺𝑇𝐿 = 𝜋 2⁄ ; c) the Reynolds 

number 𝑅𝑒 for  =  2, and  𝛺𝑇𝐿 = 𝜋 2⁄ . Other parameters are 𝑅𝑎𝑝,𝐿 = 1000, 𝑅𝑎𝑝,𝑈 = 0, 𝑅𝑎𝑢𝑛𝑖 = 0, 𝑦𝑡 = 0, 𝛺𝑇𝑈 = 0, and 𝛺𝐶 = 0. 

 

CONCLUSIONS 
 

   The reduction of pressure losses in a pressure-driven flow in a heated channel with wall corrugations has been analyzed. 

Detailed results have been presented for the Prandtl number 𝑃𝑟 = 0.71 which well approximates the properties of air. It has 

been shown that the use of a proper phase shift between the heating pattern and the corrugation pattern results in a 

significant reduction of pressure losses. 
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Summary We perform a systematic analysis of heat transfer in a counter-current three dimensional convective exchanger, when the in-
let/outlet influence is fully taken into account as is the longitudinal diffusion in the exchanger and the inlet/outlet tubes. The analysis,
carried out for constant fluid properties and using generalized Graetz mode decomposition consider the various influence of the fluid/solid
diffusivity, the imposed convection, inlet/outlet far-field conditions, and lateral boundary conditions. In all cases we found an optimal Péclet
number for the cold or hot efficiency. This study open new perspectives for micro-heat exchangers where moderate convection provides the
best efficiency and compactness.

Conjugate counter-flow heat-exchangers are widely used in thermal and building energy, chemical, and many other in-
dustrial applications [5]. In the recent years, efforts have been dedicated to design micro-heat exchanger for micro-cooling
systems associated with high power density micro-chips.Compactness, efficiency, and performance are indeed all-together
crucial in many contexts and different strategies have been proposed to search for optimal designs.

In many cases, for highly convective regimes are considered, the influence of longitudinal diffusion inside the exchanger
is neglected. Similarly, a fully developed convective outlet condition [6] is generally chosen. The aim of this contribution is to
revisit this problem when taking into account the full influence of inlet/outlet coupling as well as longitudinal diffusion based
upon a new theoretical formulation [3, 4, 1]. Optimal transfer is obtained for moderate convective effects, which a aposteriori
justifies to consider full convection/diffusion couplings.

GOVERNING PROBLEM

We consider laminar convection-diffusion arising in a fluid having constant properties. Fully developed solution of Navier-
Stokes momentum equations in cylindrical tubes oriented along direction z are given by the Poiseuille longitudinal velocity
vH,C = vH,C(r) ez = ±(3VH,C/2)

(
1− (r/R)2

)
ez where VH —resp. VC– stands for the average velocity in the hot —

resp. cold — tube, where R is the tube radius and ez is the unit vector along z direction. In most of the case VH = VC
(balanced configuration).

Following previous studies [6], we define the stationary flux balance in three dimensions for dimensionless temperature
T ? = T/T−∞H

PeH,Cv
?(ξ?)∂z?T ?− (∂2x? + ∂2y? + ∂2z?)T ? = 0, in Fluid

(∂2x? + ∂2y? + ∂2z?)T ? = 0, in Solid
(1)

At infinity, hot/cold inlet/outlet tubes have homogeneous temperatures T±∞H,C . T−∞H and T+∞
C are the known imposed tem-

peratures at hot inlet tube (z → −∞) and cold inlet tube (z → +∞). T+∞
H and T−∞C are unknowns outlet conditions,

standing for temperatures at hot outlet tube (z → −∞)) and cold outlet tube (z → +∞)). In most cases we study balanced
configurations T−∞H = −T+∞

C . Thermal conductivity in the solid is kS whilst, in the fluid it is kF . All inlet/outlet tubes
fulfill lateral homogeneous Neumann boundary conditions, whereas the exchanger fulfills a Robin lateral boundary condition.
A schematic view of a full exchanger is depicted Figure 1 (b).

THEORETICAL FORMULATION AND NUMERICAL IMPLEMENTATION

Main equation (1) refers as the extended Graetz problem which is an extension of a classical class of PDE problems in
which one can decompose the temperature field on a basis of eigenvalues and eigenvectors which are called in the literature
Graetz modes and Graetz eigenvalues. On previous contributions [3, 4, 1] it was proven that equation (1) on general configu-
rations can be written as an ODE d

dzφ(z) = Aφ(z) and that matrix A satisfies self-adjointness and compacity which allows
a similar spectral decomposition as in classical case. Following this mathematical framework, a numerical method based
on Graetz modes was developed in [2]. Since we use a generalyzed Graetz-mode decomposition, all longitudinal variations
are analytically known. Then, providing proper continuity coupling conditions between hot/cold inlet/outlet tubes and the
exchanger part by minimizing a functional (see [2] for the more details) and correct eigenvalues sequences and eigenvectors,
one can compute the dimensionless temperature field T ? at very low computational cost.

∗Corresponding author. Email: fplourab@imft.fr
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RESULTS

Here, we mainly focused the discussion on hot and cold efficiency defined as εH ≡
T−∞H −T+∞

H

T−∞H −T+∞
C

and εC ≡
T−∞C −T+∞

C

T−∞H −T+∞
C

.
εH = εC in balanced configurations. A systematic exploration of the problem having seven dimensionless parameter has been
performed. Here, we focus on the influence of the main parameters on the efficiency. We therefore explore the influence of
the Péclet number, the exchanger dimensionless length L?, the conductivity ratio kS/kF , and the Biot number Bi (which is
related to the lateral Robin boundary condition of the exchanger). In all cases we found an optimal Péclet number Peo for the
efficiency associated with moderate convection, i.e, 6 < Peo < 12.

When the Péclet number rises, so does the transfer performances, at the cost of very low efficiency. Elongated exchangers
reduce the lost of efficiency but they also result in poor compactness. Performance degradation at high Péclet number are
related to convective leaks at the outlets. Figure 1 (a), display the behavior of hot efficiency versus Péclet number, for various
Biot numbers. One can observe an optimal efficiency at moderate Péclet which is poorly sensitive to largeBi variations. Figure
1 (c) is the corresponding 2D longitudinal section in (x, z) plane of the temperature field at optimal Péclet for Bi = 10−1.

(a)

Peo

(b)

(c)

Figure 1: (a) Hot efficiency against Péclet for Bi = 10−3, 10−2, 10−1, 1, 101, 102, 103. Inset figure is Péclet at maximum
hot efficiency against log(Bi). (b) Perspective view using real size of full exchanger. (c) Longitudinal temperature fields at
optimal Péclet on Peo = 8, L? = 20, Bi = 10−1 (red dot in (a)). We have rescaled the horizontal z? axis for the inset figures
to reach a 1:1 aspect ratio.

CONCLUSIONS

We perform a systematic study of a parallel convective exchanger from analyzing the influence of physical, mechanical,
and thermal parameters when properly taking into account the influence of inlet/outlet as well as longitudinal and transverse
diffusion within the solid. Using a Generalized Graetz mode decomposition, we analyze the exchanger efficiency and per-
formance, in many operating conditions. Our results show that moderate convection provides optimal efficiency. We believe
these results to be of general scope for many other counter- flow exchanger geometries. We also have interesting results
concerning the fully-developed regime when the convection is large and/or the exchanger is elongated. As a perspective, the
use of Generalized Graetz mode decomposition could allow some systematic exploration of the exchanger geometry.
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Summary The Generalized Integral Transform Technique (GITT) is employed in the solution of nonlinear convection-diffusion problems 
by incorporating the convective effects into the chosen eigenvalue problem that forms the basis of the proposed eigenfunction expansion. 
The aim is to improve convergence behavior of the eigenfunction expansions, especially in the case of highly convective formulations, in 
comparison against the traditional approach of adopting a purely diffusive eigenvalue problem. The developed methodology is then 
illustrated for both linear and nonlinear, one-dimensional and multidimensional Burgers equations. 

INTRODUCTION AND ANALYSIS 

   The present work considers the application of the Generalized Integral Transform Technique (GITT) [1-2] in the 
solution of a class of linear or nonlinear convection-diffusion problems, by incorporating the convective effects into the 
chosen eigenvalue problem that forms the basis of the proposed eigenfunction expansion. The aim is to markedly improve 
convergence behavior of the eigenfunction expansions, especially in the case of highly convective formulations, in 
comparison against the traditional approach via a purely diffusive eigenvalue problem, by directly accounting for the 
relative importance of convective and diffusive effects within the eigenfunctions themselves. Through a straightforward 
transformation of the original convection-diffusion problem, basically by redefining the coefficients associated with the 
transient and diffusive terms, the convective term is merged into a generalized diffusion term with a transformed space 
variable diffusion coefficient. The generalized diffusion problem then naturally leads to the eigenvalue problem to be 
adopted for deriving the eigenfunction expansion in the linear situation, as well as for the appropriate linearized version in 
the case of a nonlinear application. The resulting eigenvalue problem with space variable coefficients is then solved through 
the GITT itself, yielding the corresponding algebraic eigenvalue problem upon selection of a simple auxiliary eigenvalue 
problem of known analytical solution [3]. The GITT is also applied in the solution of the generalized diffusion problem, and 
the resulting transformed ordinary differential equations system is solved either analytically, for the linear case, or 
numerically for the nonlinear formulation. The developed methodology is here briefly illustrated for both linear and 
nonlinear applications, both in one-dimensional and multidimensional formulations, as represented by examples of Burgers 
equation. 
   The adoption of convective eigenvalue problems in the integral transforms solution of transient convection-diffusion is 
here analyzed first by considering a fairly general nonlinear one-dimensional formulation: 

(1) 

where u(x)  is a characteristic linear representation of the convective term coefficient, while the remaining of the nonlinear 
convective operator (or of any other operator) is incorporated into the nonlinear source term, P(x,t,T ) . Problem (1) can be 
readily rewritten as a generalized diffusion problem, through a simple transformation of the diffusive and transient terms as: 

(2) 

where, 

  (3.a-e) 

   Equation (2) is a special case of the nonlinear diffusion problems that have been extensively handled through the GITT 
[1-2], but are here treated through an eigenfunction expansion basis that includes convective effects through the 
characteristic convective term coefficient, u(x) . The self-adjoint eigenvalue problem with space variable coefficients to be 
considered would then be given by the following equation: 
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(4) 

which can be readily solved by the GITT itself [3], yielding the corresponding algebraic eigenvalue problem. The extension 
of this analysis to multidimensional problems is straightforward, but is here omitted due to space restrictions. 

RESULTS AND DISCUSSION 

   The illustration of the proposed procedure is started with the analysis of the one-dimensional Burgers equation, both in 
linear and nonlinear formulations [4], which allows for the analysis of the transformation procedure on the eigenfunction 
expansion convergence behavior. The following functional forms for the coefficients are considered: w(x)=1, k(x)=1, 
d(x)=0, u(x)= u 0+bT(x,t). Table 1 illustrates the convergence behaviour of the eigenfunction expansions for T(x,t), with u0=10, 
b=0 (linear problem) and b=5 (nonlinear problem). Clearly, from those columns associated with the use of the convective 
eigenvalue problem (Conv.), one may clearly observe the marked gain in convergence rates in comparison to the diffusive 
alternative (Diff.), even for the nonlinear situation, when the convective eigenvalue problem does not account for the full 
influence of the nonlinear convection term. Table 2 provides a convergence analysis for T(x,y,t) in the two-dimensional Burgers 
equation, with u0=10, v0=1, b=0 (linear problem), again reconfirming the excellent convergence behaviour of the expansions that 
follow the convective basis proposal.  

Table 1 – Convergence analysis of eigenfunction expansions with convective and diffusive eigenvalue problems in the solution 
of the one-dimensional Burgers equation in both linear and nonlinear formulations. 

N 
u0=10, b=0 (linear problem) u0=10, b=5 (nonlinear problem) 

T(0.5,0.05) 
Conv. 

T(0.5,0.05) 
Dif. 

T(0.9,0.01) 
Conv. 

T(0.9,0.01) 
Dif. 

T(0.5,0.05) 
Conv. 

T(0.5,0.05) 
Dif. 

T(0.9,0.01) 
Conv. 

T(0.9,0.01) 
Dif. 

2 0.386565 0.462380 -1.81418 0.430194 0.286084 0.360552 -1.43571 0.450501 
4 0.379714 0.356180 0.200342 0.653885 0.276093 0.249478 0.409794 0.688207 
6 0.379716 0.388818 0.704696 0.726450 0.276946 0.287617 0.762698 0.781085 
8 0.379716 0.375350 0.738297 0.748564 0.276724 0.271688 0.791899 0.812893 
10 0.379716 0.382043 0.738805 0.750988 0.276796 0.279440 0.794770 0.816583 
12 0.379716 0.378270 0.738798 0.746579 0.276769 0.275180 0.794446 0.810758 
14 0.379716 0.380596 0.738798 0.741232 0.276781 0.277753 0.793992 0.803719 
16 0.379716 0.379064 0.738798 0.737306 0.276774 0.276080 0.793768 0.798590 
18 0.379716 0.380126 0.738798 0.735361 0.276778 0.277236 0.793735 0.796028 
20 0.379716 0.379359 0.738798 0.735074 0.276775 0.276386 0.793817 0.795626 

Table 2 – Convergence analysis of eigenfunction expansions with convective and diffusive eigenvalue problems in the solution 
of the two-dimensional Burgers equation in linear formulation. 

N 
u0=10, v0=1, b=0 (linear problem) 

T(0.5,0.1,0.01) 
Conv. 

T(0.5,0.1,0.01) 
Diff. 

T(0.1,0.1,0.01) 
Conv. 

T(0.1,0.1,0.01) 
Diff. 

T(0.9,0.1,0.05) 
Conv. 

T(0.9,0.1,0.05) 
Diff. 

10 0.516515 0.485608 0.110953 0.133233 0.108255 0.097938 
20 0.491783 0.501325 0.135094 0.155057 0.108368 0.102400 
30 0.493395 0.497816 0.140490 0.137969 0.108368 0.106297 
40 0.493082 0.492352 0.141373 0.145203 0.108368 0.108567 
50 0.493041 0.491333 0.141533 0.139425 0.108368 0.109549 
60 0.493100 0.494026 0.141569 0.140748 0.108368 0.109946 
70 0.493122 0.495103 0.141574 0.140942 0.108368 0.109924 
80 0.493123 0.495309 0.141574 0.140974 0.108368 0.109922 
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STUDY OF HEAT-TRANSFER COEFFICIENT ON HYPERSONIC BOUNDARY LAYER
FLOW OVER A FLAT

Chao LIU, Wei CAO a)

Department of Mechanics, Tianjin University, Tianjin, China

Summary Method of computing convective heat transfer coefficient is examined by the numerical study on hypersonic boundary layer flow
over a flat plate. For the similar solutions existing in hypersonic boundary layer flow for the variable specific heat, the heat flux on isothermal
wall is calculated and being served as a standard to examine the accuracy of the method . The results showed that reference enthalpy method is
more applicability than reference temperature method for variable specific heat. Then, using the formula above as the wall temperature
condition, the DNS is conducted from an initially given temperature to adiabatic temperature for one meter long flat with incoming flow Mach
number 4.5. According to the calculation results, we found that the temperature and heat flux on the wall associated with time and distance to
the flat front edge.

Motivation

In most cases, wall temperature condition is assumed to be isothermal or adiabatic condition in the computation of the
location prediction of transition and turbulence of supersonic flow in the past, that is reasonable in the cases when the Mach
number is not very large and gas temperature is not Significant. But when the vehicle flies with hypersonic, the gas
temperature in the boundary layer will rise significantly[1-3]. For instance, in flat plate boundary layer flows, if the wall
condition is adiabatic and the Mach number is 5, the gas temperature near the wall can reach 5.2 times the temperature of
the coming flow. Wall temperature condition should be assumed to be convective heat transfer condition, which is more
suitable for the vehicle flies with hypersonic. Boundary layer flow stability is likely to be different from the cases used
isothermal or adiabatic condition. It is a new problem to be worth studying.

In this paper,the method of calculating heat transfer coefficient[4,5,6] is examined by Blasius similar solution for
variable specific heat[7,8]. Then, the DNS is conducted from an initially given temperature to adiabatic temperature for one
meter long flat. The wall condition is the convective heat transfer condition of the formula which has been verified.

Main Results

Lots of examples are calculated to examine the accuracy of the method computing convective heat transfer coefficient.
For the cases of oncoming flow Mach 1-10, isothermal wall condition, considering the effect of real gas or not, heat transfer
coefficient calculated by the Blasius similar solution is shown in Fig.1. It is found that the values calculated considering the
effect of real gas should be taken as the standard to examine the applicability of the method. The heat transfer coefficient
calculated by the reference enthalpy and the reference temperature method , respectively, are compared with the standard
values as shown in Fig.2. It is found that the results calculated by reference enthalpy method is close to the standard values
and their relative errors are small enough to be accepted. Therefore, we use the convection heat transfer formula calculated
by reference enthalpy method as the wall boundary conditions for direct numerical simulation (DNS).

Using the wall conditions of convective heat transfer, DNS is used to calculate the compressible boundary layer of a flat
plate during the wall temperature rises from a given temperature to the adiabatic temperature. The model is a one-meter
long thin metal plate with a thickness of 2mm. Free stream parameters are taken corresponding to 5km altitude ones and
Mach number is 4.5. A no-slip, convective heat transfer wall was chosen for wall boundary condition. Adopting the
assumption of the thin metal flat plate that temperature distribution along normal direction tends to be uniform, ignore heat
conduction along the flow direction and considering only air-to-wall convective heat transfer.

The results of DNS show that, neither the isothermal nor the adiabatic condition is the suitable wall temperature
condition in most part of the heat transfer process. At the initial moment, the wall heat flux is only related to the heat
transfer coefficient formula. According to the calculation results of a certain section from leading edge of the plate, we can
estimate the heat flux and temperature at different locations of the wall at any time. At 23.917 seconds, the wall heat flux of
DNS and estimation is shown in Fig.3. We tried to estimate the time from the wall temperature of different location points
to reach a certain temperature without the DNS results. The time of DNS and estimation that wall temperature rises to 4
times the free stream temperature is shown in Fig.4. Therefore, there must be a formula to calculate the wall temperature
and heat flux through wall position, time, and any other parameters.

Conclusion

The convection heat transfer coefficient calculated by reference enthalpy method are in good agreement with the
numerical results considering variable specific heat, which can be used as convective heat transfer boundary condition on
a)Corresponding author Wei CAO, Professor, E-mail: caow@tju.edu.cn
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hypersonic boundary layer flow over a flat plate. Using the boundary conditions, DNS results show that wall temperature
will take a long time to rise to the adiabatic temperature, during this period take isothermal or adiabatic wall condition is not
appropriate. According to the results of the estimation and DNS comparison, we can infer that there must be a formula to
calculate the wall temperature and heat flux by wall position, time, and any other parameters.

Fig. 1 Comparison of heat transfer coefficient calculated by
Blasius similar solution considering the effect of real gas or
not, respectively.

Fig.3 At time 23.9s, comparison of heat flux on the wall
between estimated values and DNS results.

Fig. 2 Comparison of heat transfer coefficient calculated by
reference enthalpy method, reference temperature method
and Blasius similar solution considering effect of real gas.

Fig.4 The comparison of time between estimated values
and DNS results when the wall temperature is 4 times of
the free stream temperature.
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COMPUTATION OF HEAT FLUX IN THE STAGNATION POINT FOR A COLD WALL WITH 

HIGH SPEED FLOW  
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Summary In order to get the exact heat flux in the stagnation point numerically, direct numerical simulation (DNS) is performed to solve 

Navier-Stokes equations for hypersonic blunt cone flow with Mach numbers 4.5, 6 and 8. The convective terms are calculated using fifth order 

WENO schemes. To study how the parameter properties affect the stagnation heat flux, the comparisons were given between constant and 

variable specific heat ratio taken respectively. The basic flow is obtained at isothermal wall condition and then the heat flux in the stagnation 

point by Fourier heat conduction law. We also compute and analyze the proportions of various kinds of items in the energy equation at different 

point on the axis. Basing on this, we manage to develop a method to get the stagnation point heat flux by virtue of calculating some item such as 

convective heat transfer. 

 
INTRODUCTION 

 

The heat flux in the stagnation point for a cold wall means that high speed flow moves to the stagnation point in very 

short period time, heat transfer to solid being ignored and the solid surface temperature maintained unchanged. It may be 

treated as a fixed temperature, while the amount of heat flux to the wall are usually so large that it was much concerned in 

the engineering area. Only to accurate calculating heat flux can provide us with reliable basis for the requirement in 

hypersonic vehicle thermal protection design. There are many researches about the calculation of stagnation point heat flux, 

especially, several engineering calculation formula have been put forward and widely applied in practical engineering [1-3]. 

There are also a lot of experiments and calculation research about the stagnation point heat flux. But the results are 

difference among calculation results and the experimental or actual flight case. It is key problem how to get the exact heat 

flux in the stagnation point. 

In the paper, Direct Numerical Simulation (DNS) is performed for blunt cone flow with Mach numbers 4.5, 6 and 8, the 

air parameters adopted the gas corresponding to the altitude of 30km. Oncoming flow gas temperature equal to 226.7K. Air 

treated as perfect gas. For isothermal wall boundary conditions, the basic flow field is obtained by using DNS for constant 

and variable specific heat ratio taken respectively in order to study how the parameter properties affect the stagnation heat 

flux. 

 

MAIN RESULTS 

 

Figure 1 shows one meridian plane of the sphere nose cone and coordinate system. The nose radius is 0.0059m and 

oncoming flow Mach 4.5. The angle of attack is zero and symmetry conditions adopted along the polar axis. In order to validate 

the code, for adiabatic wall boundary conditions, the stagnation temperature was consistent to the theoretical results. In addition, 

the results are also verified by checking the grid independence to get appropriate grid size. 

 

 
Fig.1 Schematic of the sphere nose cone and coordinate 

system 

 
Fig.2 For adiabatic wall the total temperature entropy 

along polar axis

 

757



 
Fig.3 For isothermal wall the total temperature entropy 

along polar axis 

 
Fig.4 For isothermal wall the heat flux along polar axis

 

As well known that the thickness of the shock wave is a very small, and the velocity gradient and temperature gradient are 

high inside the shock wave. There is an assumption that when the fluid passed through the shock wave, it is an adiabatic 

irreversible process. For adiabatic wall condition the total temperature remains constant and the entropy remains constant before 

and after shock but a jump near the shock, shown in Fig.2. And the temperature computed at stagnation point is equivalent to the 

theoretical one. Whereas for isothermal wall conditions, the total temperature and entropy are decrease as near to the wall 

because of heat loss being transferred to the cold wall, shown in fig 3. It showed that the assumption is reasonable. 

By analyzing the distributions of the flow field near the stagnation point, the distribution of heat flow with different rules in 

different boundary conditions has been found. For the adiabatic wall boundary conditions, from Figs.2 it is clear that the total 

temperature and entropy of gas remains constant; for isothermal wall boundary conditions, Figure 3 shows the total temperature 

was decreased near the stagnation point, entropy was diminished, meanwhile heat was given off, then, through comparative 

analysis the numerical value between total enthalpy difference and released heat we found that the error is 0.7%. After this, by 

comparing the numerical value of the heat flux in the stagnation point by Fourier heat conduction law between constant and 

variable specific heat ratio taken respectively, we found that the latter result is              , which lower than the former 

             . Figure 4 shows the heat flux along polar axis by Fourier heat conduction law and convective heat-transfer 

equation, we can see heat flux by convective heat-transfer equation have the same value at some point with the stagnation point 

by Fourier heat conduction law, for isothermal wall the temperature gradient is great in the stationary point, which make a 

difference for accurate calculation of stagnation point of heat flux, to avoid this, we manage to develop a method to get the 

stagnation point heat flux by virtue of calculating some item such as convective heat transfer. 

 

CONCLUSIONS 

 

Through numerical simulation for supersonic flow around blunt cone, and comparing the corresponding result from 

calculation with adiabatic wall and, the following conclusion can be made:  

For isothermal wall conditions, the total temperature and entropy are decrease as near to the wall because of heat loss being 

transferred to the cold wall. Amount is in agreement with the decrement of total Enthalpy. The assumption that holds for an 

adiabatic irreversible process when the fluid through the shock wave. Considering the thermal physical properties have the 

impact on the stagnation point heat flux, the heat flux in the stagnation point with variable specific heats is below the value with 

constant specific heat. 
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Summary Natural convection in a cubical enclosure with differentially heated horizontal sectors mounted on its opposing lateral walls is 

investigated. We focus on the effect of different relative locations of these isothermally heated and cooled sectors. Finite volume method on a 

uniform staggered grid is used and the asymptotic steady state results are obtained from the transient governing equations. Among the different 

cases considered the highest heat transfer rate is obtained when the sectors are located in the Middle-Middle fashion. The possible mechanisms 

causing the three dimensional effects are highlighted.   

 
INTRODUCTION 

 

   Buoyancy induced flows in differentially heated enclosures are of immense importance in many engineering 

applications such as electronic cooling devices, heat transfer through double glazed windows, etc. There has been 

considerable recent interest in such flows when the heating is done partially. The characteristics of heat dissipation due to 

partial heating are significantly different from those corresponding to complete heating. In fact the locations of the partially 

active regions play a crucial role in optimizing the resulting heat transfer. Several works in two dimensional differentially 

and partially heated cavities have been undertaken (for example see Valencia and Frederick [1]). However there is always a 

need of three dimensional simulations to understand the most realistic physical situation and to validate the results. Very 

few studies have discussed partial heating in three dimensional enclosures (see Frederick [2], Ishihara et al. [3] and Ben-

Cheikh et al. [4]).  In this work, we have made a numerical study of three dimensional natural convection induced by 

partially active sectors mounted at various locations on the opposing lateral walls of a cubical enclosure.     

 

PROBLEM ANALYSIS  

 

   The physical configuration consists of a fluid filled cubical enclosure with sides of length L kept vertically. A Cartesian 

coordinate system having its origin at one of the bottom corners and aligned with the enclosure walls is used so that the 

gravity acts along the negative z axis. The sectors measuring half of the height of the enclosure lateral walls at y=0 and L 

are kept at a higher temperature Th (heater) and a lower temperature Tc (cooler) respectively making the enclosure walls 

partially active. The remaining parts of the end walls and all other enclosure walls are insulated. The midheights of the 

heated and cooled sectors are fixed at z=L/4, L/2 and 3L/4 respectively from the bottom wall, corresponding to bottom, 

middle and top positions. Thus we consider an enclosure with six different heater-cooler locations, viz., (i) Bottom-Bottom 

(BB), (ii) Bottom-Top (BT), (iii) Top-Bottom (TB), (iv) Top-Top (TT), (v) Middle-Middle (MM) and (vi) Middle-Bottom 

(MB). This set up drives a convective roll, rising along the heater and sinking along the cooler and having its axis along the 

x direction. Hence the fluid flow at x=L/2 can be well approximated to be two dimensional.  

   The governing equations for the three dimensional, laminar and incompressible flow are those corresponding to 

conservations of mass, momentum and energy with the Boussinesq approximation. These equations were 

nondimensionalized suitably leading to the parameters Ra, the Raykeigh number and Pr, the Prandtl number. The 

appropriate boundary conditions are =1 at the heater, =0 at the cooler, /n=0 at the insulated regions and U=V=W=0 at 

the enclosure walls. The average Nusselt number Nuav is calculated at the surface of the heater and is defined as 

(1/AH)Nu(X,Z) dX dZ with Nu(X,Z)=/Y and AH representing the area of the heater.   

   A numerical solution was found through the finite volume method by employing a fully implicit time marching scheme.  

For this a staggered uniform grid was used to implement the SIMPLE algorithm [5]. The power law scheme was used to 

handle convective and diffusive terms. The resulting set of discretized equations was solved by the line-by-line Tri-

Diagonal Matrix Algorithm (TDMA). The iterative procedure was terminated when some predefined condition was 

satisfied. A numerical code was written to implement the above iterative procedure. A good agreement between the results 

produced by this code and the earlier results was noticed. The 82
3
 grid was used throughout as it produced grid independent 

results.   

 

RESULTS  

 

   Computations were carried out for a wide range of parameters, viz., 10
3 Ra10

7
 and 0.054 Pr 9. However limited 

results for the BT and MM cases alone have been reported here for want of space. Figure 1(a,b) shows the isothermal 

surfaces within the enclosure for Ra=10
5
 and Pr=9. One may notice the similarities between the overall isothermal surface 

distributions of the BT case and a fully differentially heated one. The entire enclosure is thermally more active in the MM 

case compared to the others. The velocity vectors are plotted in Fig. 1(c,d) at plane sections X=0.5 (midwidth) and X=0.05 
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(near lateral wall). Streamtraces are included in the midwidth section in order to highlight the flow pattern. A clockwise 

rotating flow pattern is observed, however with different strengths. In the BT case a comparatively higher contrast in 

velocities between the up and down flows near the active regions can be noticed. As Pr increases the simple unicellular flow 

pattern deforms into a stronger cell with two centers.   

(a)                    (b)                   (c)                     (d) 

Fig. 2 Streamtraces of velocity field ((a) BT Case, (b) MM Case) for Ra = 10
5
 and Pr = 9; Iso-surfaces of U in the 

transverse direction ((a) BT Case, (b) MM Case) for Ra = 10
7
 and Pr = 0.71 (Contour levels: -12 (blue), 12 (green)) 

In order to understand possible axial flows, streamtraces originating from the lateral walls are considered. They resembled 

toroidal patterns on both sides of the enclosure. In many cases these patterns extend well into the cavity even up to the 

cavity midwidth showing a high degree of penetration of disturbances (see Fig.2(a,b)). For those situations, the isosurfaces 

of U corresponding to the BT and MM cases are displayed in Fig. 2(c,d) when Pr=0.71 and Ra=10
7
. The overall heat 

transfer rate across the enclosure was evaluated after the fluid flow reached a steady state. In general Nuav assumed its 

highest value for the MM case and lowest value for the TB case. Moreover the computed average Nusselt numbers were 

found to obey a power law depending on the positions of the partially active sectors.   

CONCLUSIONS

  The study leads to the following important conclusions. Among the different cases considered the BT case exhibits highest 

velocities. The flow pattern of the MM case looks almost identical with that of the BT case but with weaker velocities. The 

enclosure is thermally more active in the MM case. The TB case makes the enclosure the most inactive one for higher Ra. Three 

dimensional effects come into picture only when convection is strong enough. For high Ra, the transverse component of velocity 

shows its presence over a larger volume in the BT case. The highest and lowest heat transfer rates are obtained for the MM and 

TB cases respectively.   
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Summary The impact of the three heat transfer modes on the thermal diode potential of parallelogrammic air-filled enclosures stacked
between two isothermal vertical walls is assessed for different parametric cases. Focusing on a single enclosure in this paper, it is found that
the thermal diode potential significantly decreases when conduction and radiation are taken into account in comparison with the classical
problem of the pure-convection cavity.

INTRODUCTION AND PHYSICAL CASE

Natural convection in closed cavities has been investigated in numerous occasions over the past decades [1, 2]. More
specifically, several papers have dealt with the impact of the inclination angle of the upper and lower walls of the cavity (φ)
which was shown to strongly affect the convection heat transfer [1, 3]. Because of the density variations resulting from the
temperature distribution, the convective motion of the fluid is much more vigorous when the vertical hot wall is located below
the cold wall (positive φ) while a hot wall higher than the cold one (negative φ) can even lead to stratification in the cavity
(Figure 1) and, ultimately, to a purely conductive heat transfer in a stagnant fluid. The fact that the convective heat transfer
may be much higher in a direction than the other has suggested that such a cavity could be used as a thermal diode. Due
to this attractive behavior, the differentially heated inclined cavity became the matter of several studies [3]. However, most
of these studies have treated the case of a single cavity with adiabatic upper and lower walls, considering exclusively the
convection heat transfer. Only a few studies have considered radiation and conduction even if it has been shown that under
certain conditions, they can be quite significant [4, 5].

The present study considers the combined convection, conduction and radiation heat transfer in an enclosure composed
of an air-filled cavity between two half-partition walls located above and below the cavity, as shown in Figure 2. The energy
transfer is generated by the vertical walls which are maintained isothermal at specified hot (TH ) and cold (TC) temperatures.
The upper and lower walls of the enclosures are allowed to be inclined by an angle (φ) ranging from −60◦ to 60◦ with respect
to the horizontal and they are considered adiabatic when there is no conduction involved. For cases with conduction, the solid
partition walls added to the cavity are allowed to have two different thicknesses (t) and two different thermal conductivities
(ks). Moreover, all four inner surfaces of the cavity may radiate and three different emissivities (ε) are considered. As the
inclination angle varies, the height (h) of the cavity and the distance between the hot and cold walls (L) remain equal to
each other, leading to an aspect ratio of 1. The Rayleigh number considered is 5 · 105 (which corresponds to a temperature
difference of about 30◦C across a 6 cm wide cavity) and the Prandtl number is 0.71. In these conditions, the convective flow
may be assumed laminar.

The physics at play is studied through steady, two-dimensional numerical simulations using ANSYS FLUENT [6]. The
Boussinesq approximation is used, which means that the physical properties of the fluid are taken as constant, except for
density variations in the buoyancy term. To compute the radiation heat transfer, a Surface-to-Surface model is used, meaning
that the surfaces are gray and diffuse and that the air is a nonparticipating medium.

To compare the heat flow (q′′) between different parametric cases, Nusselt numbers are defined. They are evaluated using
a reference heat flux which is equivalent to a conduction heat transfer in the fluid as described in Equation (1). Moreover, to
quantify the thermal diode potential for the different investigated cases, the diode parameter ξ is defined in Equation (2).

Figure 1: Isosurfaces of temperature and streamlines for
air-filled cavities with adiabatic upper and lower walls and
isothermal vertical walls (the hot wall is located on the left).

Figure 2: Adiabatic cavity without partition walls (left) and
adiabatic cavity with upper and lower partition walls (right).

∗Corresponding author. Email: thierry.villeneuve.2@ulaval.ca
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Figure 3: Nusselt numbers as a function of the inclination
angle of the enclosure for a case without partition walls and
without radiation (black curve) and for a case with t/h = 0.1,
ks/kf = 10 and ε = 0.9 (red curves). Figure 4: Diode parameter ξ for different parametric cases.

Nu =
q′′

q′′ref
=

q′′

kf · (TH−TC)/L
(1) ξ =

Nutot
∣∣
φ=60◦

Nutot
∣∣
φ=−60◦

(2)

RESULTS AND CONCLUSION

The reference case is the cavity with adiabatic upper and lower walls (without solid partition walls and without radiation),
in which the only heat transfer mode involved is convection. As shown in Figure 3 (black curve), a negative inclination
angle leads to a reduction of the heat transfer in the cavity compared to the φ = 0 case. The high asymmetry of the curve
qualitatively demonstrates the thermal diode potential that is discussed in other works [1, 3]. For this specific configuration,
the thermal diode potential is ξ = 10.8.

In order to assess the impact of the conduction heat transfer, solid partition walls are added to the pure-convection cavity
discussed above. Obviously, taking conduction into account results in an increase of the total Nusselt number in the enclosure.
Most importantly, it is interesting to note that conduction tends to decrease the thermal diode potential, as shown in Figure 4
(green bars). For very thin partition walls having a low conductivity, the value of ξ is slightly reduced. However, for thicker,
but still thin, partition walls having a higher conductivity, the effect is much more accentuated.

The impact of radiation on the thermal diode potential is considered using an adiabatic cavity without partition walls
where the inner surfaces have nonzero value of emissivity. It is found that the effect of radiation is even more important than
conduction. Indeed, as shown in Figure 4 (blue bars), for a surface emissivity as low as 0.1, the thermal diode potential falls
from 10.8 to 4.4, with all other parameters remaining constant.

In order to observe the combined effect of the three heat transfer modes on the thermal diode potential, an enclosure
with solid partition walls and with radiation is considered. As shown by the red curves in Figure 3, for a case with t/h =
0.1, ks/kf = 10 and ε = 0.9, the three heat transfer modes each account approximately for the same fraction of the total
Nusselt number. Since the asymmetry of the total Nusselt number curve comes mainly from the convection heat transfer, it
is no surprise that the thermal diode potential is strongly reduced (from 10.8 to around 2) when the three-mode problem is
considered (Figure 4).

In conclusion, the conjugate heat transfer through a parallelogrammic air-filled enclosure has been investigated. It has
been shown that the thermal diode potential is significantly weakened if the three heat transfer modes are considered. Thus,
in order to accurately investigate the physics of the problem, one must consider the three heat transfer modes combined since
conduction and radiation are not negligible. Work in progress is devoted to the analysis of the interaction between each of the
heat transfer modes and to the thermal diode potential in an infinite stack of enclosures.
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Summary The non-Oberbeck-Boussinesq (NOB) effects on flow reversals in two-dimensional (2D) Rayleigh-Bénard convection (RBC) are 
studied by direct numerical simulation. The Prandtl number is fixed to 0.71. The flow reversals are triggered by NOB effects when Rayleigh 
number (Ra) is approximately in the range of 105 ≤ 𝑅𝑎 ≤ 1.5 × 107. Once the NOB effects are included, the flow pattern of only one 
dominant roll, becomes unstable and turns into its symmetric counterpart while the flow circulates clockwise and counter-clockwise in turn, i.e. 
reversal. The parameter range where flow reversals occur is considerably affected by temperature differential ε. It is found the flow reversals 
are led by the growth in size of the single cold corner roll, and two kinds of physical mechanisms are identified to be responsible for the corner 
roll's growth: baroclinicity and asymmetry of buoyancy force.  
 

INTRODUCTION 

 
Cessation-led reversal in which the LSC sometimes stops and subsequently restarts randomly in a different direction has 

been exhibited by many experiments and numerical simulations [Brown & Ahlers, 2006; Sugiyama et. al., 2010; Chandra & 
Verma, 2013; Podvin & Sergent, 2015 and references therein]. The influence of NOB effects on flow dynamics and heat transfer 
in turbulent thermal convection has been extensively studied in recent years [Ahlers et. al., 2008; Sameen et. al., 2009; 
Sugiyamma et. al., 2009; Horn et. al., 2013 and references therein]. Implicitly or explicitly, all the aforementioned work shows 
no reversals when NOB effects are considered. In this study, considering NOB effects for a perfect gas, we show the scenario of 
flow reversals in a 2D RBC and corresponding physical mechanisms from the perspective of vortex dynamics are analysed as 
well. 
 

GOVERNING EQUATIONS 

 

The governing equations under low Mach number limit of compressible Navier-Stokes (NS) equations are statements of 
conservation of mass, momentum and internal energy added by a state equation of a prefect gas. The non-dimensional low-
Mach-number NS equations are cast in the form of Cartesian tensor 

 
𝜕𝜌

𝜕𝑡
+ (𝜌𝑢𝑗)

𝑗
= 0, 𝑝 = 𝜌𝑇 

𝜕𝜌𝑢𝑖

𝜕𝑡
+ (𝜌𝑢𝑖𝑢𝑗)

,𝑗
+ 𝜋,𝑖 = (

𝑃𝑟

𝑅𝑎
)

0.5

𝜏𝑖𝑗,𝑗 +
1

2𝜖
(𝜌 − 1)𝑛𝑖 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢𝑗𝑢𝑖,𝑗) = (

1

𝑅𝑎𝑃𝑟
)

0.5

(𝑘𝑇,𝑗)
,𝑗

+ Γ
𝑑𝑝

𝑑𝑡
 

 

Here, the comma notation for spatial derivatives is adopted, for example, 𝜋,𝑖 = 𝜕𝑖𝜋. 𝜋 is hydrodynamic pressure. Γ =
(𝛾 − 1) 𝛾⁄  measures the resilience of the fluid. The flow system is governed by three dimensionless parameters which are 
temperature differential 𝜖 = ∆�̂� 2⁄ Δ�̂�0, Rayleigh number 𝑅𝑎 = Δ�̂�𝑐�̂��̂�2�̂��̂�3/�̂�0�̂��̂� and Prandtl number 𝑃𝑟 = �̂�𝑝�̂�/�̂� = 0.71. 
 

RESULTS AND DISCUSSION 

 
Figure 1 shows plots of Nu as a function of Ra for various temperature differentials. In general, two kinds of flow patterns are 

identified, one is P11 and the other is P12, where the number in subscript represents the number of rolls in the (𝑥, 𝑦) directions, 
respectively. For P11, this flow pattern is unchanged in most of times within the range of 106 ≤ Ra ≤ 107. Figure 1(a) shows, 
under Oberbeck-Boussinesq (OB) approximation, P11 remains unchanged in the range of 105 ≤ Ra ≤ 5 × 107and no flow 
reversal is found. When ϵ is increased to 0.2, seen in figure 1(b), in the range of 106 < 𝑅𝑎 ≤ 9.25 × 106 P11 becomes 
unstable, in the range of 9.5 × 106 ≤ Ra ≤ 1.1 × 107 P11 can turn into its symmetric pattern and back, with the flow 
circulating clockwise and counter-clockwise in turn with long periods, i.e. flow reversals occur, represented by the symbols ‘+’. 
As shown in figure 1(b)-(d), grey dashed lines represent that the flows are unstable due to the growth of the cold corner roll and 
which would all turn into pattern P12 finally indicated by green solid symbols. It is conjectured that sometimes, in the phase space, 
the trajectory of a pair of P11 passes by the stable pattern P12 and then attracted by the stationary point or limiting cycle of P12. 
Moreover, it is easy to find that multiple solutions co-exist in the most computing range and hysteresis phenomena are observed 
as 0.2 ≤ 𝜖 ≤ 0.6. In figure 1(d), it is noteworthy that with strong NOB effects two symmetric patterns P11 could switch back 
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and forth caused by the cold corner roll’s growth between Ra = 3 × 106 and 4 × 106, with an unstable intermediate pattern 
P12. In short, as ϵ ≥ 0.2, in a wide range of 𝑅𝑎, flow pattern P11 is unstable because of the corner roll’s growth and flow 
reversals emerge. Interestingly, due to the co-existed flow pattern P12, the flow reversal sometimes will be broken ending up with 
flow pattern P12. 

 

 
 

  

 
Fig 1. Log-log plots of 𝑁𝑢 as a function of 𝑅𝑎 for various temperature differentials. (a) under OB approximation; (b) with 
weak NOB effects, i.e. ε = 0.2; (c) with moderate NOB effects, i.e. ε = 0.4; (d) with strong NOB effects, i.e. ε = 0.6. 
Blue symbols ‘+’ denote flow reversals occur continuously, while the grey dashed lines denote that there are no flow 
reversals whereas the growth of corner roll exists. 
 

Intuitively, it is the single cold corner roll’s growth in size that is responsible for the flow reversals. In this study, we 
particularly study the flow reversals from the perspective of vortex dynamics. The results show that the synergy of the 
baroclinicity and asymmetry of buoyancy force caused by NOB effects could reasonably explains why the single corner roll 
grows and eventually replaces the LSC, resulting in flow reversals.  
 
This work is supported by National Natural Science Foundation of China (11402262, 11232011, and 11572314), the 
Fundamental Research Funds for the Central Universities. 
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Summary Large Eddy Simulations using an eddy-viscosity and a scale similarity subgrid-scale model are performed in comparison with
Direct Numerical Simulations in order to assess the models’ capabilities with respect to relaminarization effects. The considered case of
mixed convection in a vertical channel is adopted from Kasagi & Nishimura [1] and shows distinct features in the flow close to the heated
and cooled channel walls caused by buoyancy. An analysis of the development of coherent structures is performed in order to discern the
models with regard to relaminarization effects occuring on the heated channel wall as observed in DNS.

INTRODUCTION

It is of great interest in many engineering applications to simulate turbulent mixed convection, i.e. the combination of
forced and natural convection, at high Rayleigh and Reynolds numbers. Since simulations of such highly turbulent flows are
still not within reach for Direct Numerical Simulations (DNS), reliable turbulence models are needed. Research on Large
Eddy Simulations (LES) has yielded a variety of modeling approaches for the approximation of subgrid-scale (SGS) stresses
for the momentum equation. Although, only a few of them are applicable to buoyancy driven flows. One turbulence model
for the heat flux vector in the filtered Navier-Stokes equations (NSE) has been proposed by Peng & Davidson [2]. This model
is formulated in analogy to an eddy-viscosity model for the SGS stresses in the momentum equation. Additionally, in [4] a
dynamic scale similarity model was developed to approximate the turbulent heat transport in Rayleigh-Bènard convection.
In the present study, both approaches are applied in LES of mixed convection in a vertical channel in comparison to DNS
performed with the same finite-volume method and to the spectral DNS by Kasagi & Nishumura [1]. The objective is to
benchmark these different dynamic modeling approaches and to analyse their potentials with respect to the prediction of flow
relaminarization in mixed convection.

COMPUTATIONAL DETAILS

A vertical channel flow with differentially heated walls driven by an upwards pressure gradient at friction Reynolds number
based on the channel height and the friction velocity Reτ = 291 and a Grashof number of Gr = 9.6 · 105 is considered. In
the LES, the filtered incompressible Navier-Stokes equations (NSE) are solved together with the Boussinesq approximation.
A finite volume method based on a fourth-order spatial interpolation technique adapted from Feldmann & Wagner [3] in
combination with a second-order Euler-leapfrog scheme for the temporal integration and Chorin’s projection method for
the velocity – pressure coupling is employed. A grid with equidistantly distributed nodes in the streamwise and spanwise
directions is used. The wall-normal grid resolution is non-uniform in order to account for the high velocity and temperature
gradients close to the walls. The channel domain extends Lx = 2.5πδ in streamwise direction and Ly = πδ in spanwise
direction, with δ being the channel height. The grid resolution for the DNS is sufficiently high with a grid spacing in wall
units of ∆+

x = 4.4639, ∆+
y = 3.5711 in streamwise and spanwise directions, respectively. The spacing in wall-normal

direction is provided by a hyperbolic tangent function leading to 0.258 < ∆+
z < 4.453.

ANALYSIS

Figure 1 shows the mean streamwise velocity profile obtained in the DNS with the finite volume method in comparison
with the data by Kasagi & Nishimura [1]. With an integral deviation of 1.288% with regard to the mean velocity, the finite
volume DNS is deemed reliable as reference for the assessment of SGS models in the present study. The mean velocity profile
is asymmetric about the channel centerline with a maximum close to the heated channel wall. This indicates that the friction
Reynolds number at the heated wall is higher than at the cooled wall. Figure 2 shows profiles of the rms velocity fluctuations,
which are generally speaking higher close to the cooled than to the heated wall. This is unexpected and in contradiction to the
eddy-viscosity ansatz which assumes higher fluctuations on the side with higher gradients. This counter-intuitive behaviour
is therefore interpreted as the result of buoyancy induced flow relaminarization close to the heated wall. Figure 3 shows
the instantaneous streamwise velocity fluctuations u′ at z+ = 14.5 on the left and z+ = 276.5 on the right. The velocity
fluctuations are organized in streaky structures and exhibit a more uniform behaviour close to the heated wall (left picture)

∗Corresponding author. Email: tim.wetzel@dlr.de

765



−1 −0.5 0 0.5 1
0

5

10

15

20

z/δ

u∗

heated cooled

Figure 1: Mean streamwise velocity profile (solid line: DNS,
dashed line: Kasagi & Nishimura [1])
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Figure 2: Profiles of rms velocity fluctuations (solid lines:
DNS, dashed lines: Kasagi & Nishimura [1]; top: urms,
middle: vrms, bottom: wrms)

Figure 3: Coulour contours of the fluctuating streamwise velocity at z+ = 14.5 (left) and z+ = 276.5 (right) showing streaks.

while they are much more disrupted close to the cooled wall (right picture). This is another indication of the relaminarization
effect, which is also reflected the instanteous flow field. Thus, the here considered case is perfectly suited for studying the
performance of SGS models in case of flow relaminarization.

OUTLOOK

Eddy-viscosity SGS models are known to be dissipative in comparison to scale similarity models. Thus, it is expected that
LES based on eddy viscosity SGS models will predict a faster decay of the aforementioned streaky structures. This hypothesis
will be examined in detail and presented at the conference.
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Summary The interaction between large-scale circulations and unstable thermal plumes of air in a horizontally partitioned rectangular 
enclosure is investigated numerically. Both a hot and a cold plume flows originated at the central vent in the partition are formed when the wall 
temperature difference (ΔT) of the upper and the lower parts of the enclosure keeps a constant. When ΔT is larger than a threshold value, the hot 
plume is unstable to a small-scale sinuous wave mode with high frequency, while the two symmetric convection circulations in the lower cavity 
are taken place by a large-scale circulation, whose strength varies with a low frequency. With the increase of ΔT, different spatiotemporal 
evolution scenarios are revealed, and it is concluded that the large-scale low-frequency circulations play important roles at high 
temperature differences.  
 

INTRODUCTION 
 

The buoyancy-induced flow through a vent in a horizontal partition between two cavities is a basic model for many 
applications in daily life and industries (e.g. nature ventilation, cooling of electronic units and fire dynamics). The temporal 
evolution of fluid with different initial temperatures confined to separate adiabatic enclosures has been extensively studied 
[1, 2, 3], and several flow regimes are revealed, i.e. the conduction, the counter-current, and the oscillatory flow regimes. 
Recently, the bidirectional flow exchange between the enclosures was simulated with a Non-Boussinesq variable density 
approach [4]. In most previous studies, the walls are treated as adiabatic boundaries, and hence all phenomena are transient 
and the convection will decay to a static state eventually.  

In this paper, the enclosure walls are assumed to be isothermal except the vent, whose walls are still adiabatic. 
Consequently, the thermal convection always sustains and then the model becomes convenient to study the interaction 
among different flow structures.  

 
PHYSICAL MODEL AND RESULTS 

 
We consider the air convection in two square cavities with the same length of 0.2 meter, connected with a vent of 10 

mm wide and 3mm high (Fig.1). The wall temperature of the upper cavity is set as 293K, which is smaller than that of the 
lower cavity with a constant temperature difference ΔT. Air is treated as an ideal gas, and the temperature dependences of 
its physical parameters follow NIST database. The two-dimensional flow field is solved with FLUENT and several 
evolution scenarios of flow patterns are found with the increase of the temperature difference as follows.  

 
Figure 1 Transient streamlines and contour of temperature at (a) ΔT=43K, (b) ΔT=45K, (c) ΔT=50K, (d) ΔT=60K and (e) ΔT=70K. 

 
(a)The Conduction Regime (ΔT≤43K) 

For small ΔT, there is almost no flow across the vent, as the buoyancy force is not strong enough to overcome the 
viscous force in the vent. All the heat is transferred solely by conduction for this regime. In another word, the vent acts like 
a heater plate for the upper cavity, which is similar to the Bénard convection problem (Fig. 1a). The flow is steady and each 
cavity has two roll cells, which are symmetric about the vertical middle line. The flow patterns in this regime are similar as 
those observed previously for adiabatic walls. 
(b) First Symmetry Breaking and the Bi-Oscillation Convection (ΔT=45K) 
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When the temperature difference is increased to 45K, the symmetric roll cells in the lower cavity are taken place by a 
large and asymmetric circulation, while the hot plume becomes unstable to a sinuous wave mode with a wave length about 
one-sixth of the circulation scale (Fig.1b). The time series of temperature measured at the vent centre is used to calculate 
the power spectrum as shown in Fig.2 (a), where 0.584Hz and its harmonics correspond to the oscillating hot plume. The 
two convection cells in the upper cavity oscillate with the plume and keep statistically symmetric. It is worth to note that 
there is another peak with a low frequency 0.131Hz in the spectrum, which is caused by the strength oscillation of the 
large-scale circulation in the lower cavity. Therefore, this flow phenomenon is called as bi-oscillation convection and to 
our knowledge hasn’t been reported before.  

 
(c) Second Symmetry Breaking (ΔT=50K) 

As shown in Fig.1(c), the waving hot plume tilts at ΔT=50K, and the statistically symmetric cells in the upper cavity 
become asymmetric. In the meantime, the superharmonics of the high-frequency oscillation are strengthened (Fig.2b).  
 
(d) Tri-Oscillation Convection (ΔT=60K) 

As ΔT is increased to 60K, a new phenomenon is observed. By carefully examining the simulation movies, we find that 
the tilt angle of the hot plume varies very slowly and quasi-periodically, leading to the third peak with a frequency of 
0.046Hz in the spectrum (Fig.2c). The flow field as shown in Fig.1(d) is governed by three oscillation mechanisms, the hot 
plume wave, the plume-angle oscillation and the strength oscillation of the bottom circulation, and hence is named as the 
tri-oscillation convection.   

 
(e) Counter-Current Convection 

When the temperature difference is increased further (ΔT=70K), the two cells in the upper cavity are replaced by a 
large-scale circulation rotating in the same direction as the bottom one. Consequently, counter currents occur at the vent 
(Fig.1e), and the oscillating manner of the whole flow field is dominated by these large-scale circulations (Fig.2d). In 
addition, both the high-frequency wave and the tilt-angle oscillation of the hot plume are suppressed by the circulation in 
the upper cavity. 

 
Figure 2 Power spectra of temperature measured at the vent centre for (a) ΔT=45K, (b) ΔT=50K, (c)ΔT=60K and (d)ΔT=70K. 

 
CONCLUSIONS 

   By numerically simulating the thermal convection in a horizontally partitioned enclosure, a sequence of symmetry breaking is illustrated, 
and several new phenomena ( the bi-oscillation convection and the tri-oscillation convection) are revealed. The interaction mechanisms between 
the small-scale plume wave and the large-scale circulations shown in this paper are expected to be helpful in the understanding of the large-
scale motions in turbulent convection flows. 
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NUMERICAL SIMULATION OF A NEAR FIELD PLUME FROM A DUCT 
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Abstract Plumes are present in nature and industry. In this study, a near field plume rising from a duct is investigated using 
direct numerical simulation. The results show that the development of the near field plume may be identified to three stages: 
a starting stage, a transitional stage and a fully developed stage. The transient features in the development of the near field 
plume are characterized. Further, the dependence on the Rayleigh number of heat transfer of the near filed plume is 
quantified. 
 

INTRODUCTION 

 

Buoyant plume may be easily found in nature and industry. Industrial activities often result in a great number of 
pollutants discharged into the atmosphere and hydrosphere such as rivers, lakes and ocean in the form of jets or plumes [1]. 
A plume is fluid motion which is driven purely by buoyancy derived from density inhomogeneity and supplied at its heating 
origin. The fact that plumes may originate from a point or a line source, can have a sustained or 'one-shot' heat input 
(thermals), can be steady (the stem) or starting (the cap), and can be turbulent or laminar. A great number of corresponding 
substantial research progresses have been reviewed in the literature [2-3]. 
 

NUMERICAL PRODECURES 

 

The 2D numerical method was adopted to simulate the near field plume rising from a duct. Figure 1 presents the 
schematic of the computational domain of 12×24 and boundary conditions. The inlet boundary in the duct is defined as 
pressure-inlet with a temperature difference between the inlet and the environment (T). The sidewalls of the duct are 
assumed as adiabatic and no slips. The remaining boundaries are specified as open boundaries where the normal gradients 
of velocity and temperature are zero. 
 

 
Fig. 1. Schematic of computational domain and boundary conditions 

 
The transient flow is governed by Navier-Stokes and energy equations with the Boussinesq approximation, which were 

implicitly solved using a finite-volume algorithm. The convective term was discretized using the QUICK scheme and the 
pressure-velocity coupling was implemented using the SIMPLE algorithm. The time term was segregated using a first-order 
implicit scheme. Under consideration of the computing time and accuracy the grid system of 400 (H) × 700 (L) and time 
step of t = 0.19 were adopted in the subsequent calculations after the grid and time step dependence test.   
 

TRANSIENT FEATURE OF THE NEAR FILE PLUME FROM THE DUCT 

 
For the purpose of obtaining insights into the development and transient feature of the plume rising from the duct, a 

number of numerical simulations for different Rayleigh numbers were performed in this study. 
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Fig. 2 Isotherms (contours from 0.05 to 0.9 with an interval of 0.5) of the plume rising from the duct for Ra = 105, Pr = 0.7 

and A = 1. (a) at t = 72. (b) at t = 126. (c) at t = 190. (d) at t = 1000. 
 

Figure 2 shows the development of the near field plume from the duct. The thermal boundary layer appears above the intlet 
boundary after start-up and then the plume forms. The plume front rises from the duct and a clearly mushroom-like cap results, 
as seen in Fig. 2(a). As the plume front moves downstream, the mushroom cap becomes larger and a stem or trailing plume 
appears (see Fig. 2b). With the increase of time, the plume front moves out of the computational domain and the starting stage 
ends. In the transitional stage, the plume stem displays firstly puffing and then flapping phenomena. With the development of the 
plume stem, the flapping becomes clear, as seen in Fig. 2(c). As time increases further, the disturbance of the plume decreases 
and the plume from the duct ultimately enters into the fully developed stage with regular flapping in the plume stem at the fixed 
height, which is shown in Fig. 2(d). 
 

CONCLUSIONS 

 
In this paper, a near filed plume induced by heated air from a duct is numerically investigated. The results show that 

the development of the near field plume may be identified to three stages: a starting stage, a transitional stage and a fully 
developed stage. The transient features in the development of the near field plume are characterized. The dependence on the 
Rayleigh number of heat transfer of the near filed plume from a duct has been on the way. 
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Summary We study the effect of gravity on soap bubble and show that it becomes dominant above the critical size a2/e0, where e0 is the

mean thickness of the bubble and a =
√
γ/(ρg) the capillary length (γ stands for vapor-liquid surface tension and ρ for the liquid density).

The shape which minimizes both surface and gravitational energies for a given volume is derived theoretically and compared to experiments.
The different asymptotic regimes are discussed. Finally, the analogy with large inflatable structures is presented.

PRESENTATION OF THE PROBLEM

Soap films and soap bubbles have a long scientific history since Robert Hooke [1] first called the attention of the Royal
Society and of Newton to optical phenomena [2]. Concerning the shape of soap bubbles, it is classically obtained by minimiz-
ing the surface energy for a given volume and thus reduces to a sphere. The weight is always neglected and it is the purpose
of this article to discuss its effect (figure 1).

➤

➤
➤
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➤

h

θ
e0

Figure 1: Presentation of a ”giant” soap bubble and definition of its radius,R, and height,H . (Here,R = 1.09 m,H = 0.97 m)

For liquid drops, the transition from a spherical cap drop to a puddle occurs when the gravitational energy, ρgR4 (R is
the typical size of the drop), becomes of the same order as its surface energy γR2. That is for a drop size of the order of
the capillary length a =

√
γ/ρg (γ is the liquid-vapor surface tension and ρ the liquid density). Typically, this transition is

observed at the millimetric scale [3].
If we look for the same transition in soap bubbles, we expect the gravitational energy, ρR3e0g, to become of the order of

the surface energy, γR2, at the typical size ` ∼ a2/e0 (e0 stands for the mean thickness of the film). Thanks to the iridescence,
the mean thickness can be evaluated to a few microns and the light-heavy transition is thus expected at the metric scale.

MODEL AND COMPARISON

The shape of the bubble is described by the pressure equation

∆P = −2

[
γ +

1

2
ρge0h

]
κ+ ρge0 cos θ, (1)

∗Corresponding author. Email: clanet@ladhyx.polytechnique.fr

774



In this equation, ∆P is the difference of pressure between the inside and the outside of the bubble, e0 is the thickness of the
bubble, h the local height, θ the local angle between the bubble surface and the horizontal direction and κ the mean curvature
of the interface. The above equation is subjected to the boundary condition θ = π/2 at h = 0. For small bubbles (H/`� 1),
this equation shows that the effect of gravity is negligible and the bubble has indeed a constant curvature, ∆P = −2γκ,
corresponding to a sphere of radius R = 2γ/∆P = H . The influence of gravity arises when the term ρge0h becomes of the
order of γ, that is when H ∼ `. This effect flattens the bubble as shown in figure 2 where we present the reduced height of the
bubble H/` as a fonction of the reduced radius R/`. The spherical limit (H/` = R/`) is plotted with a solid black line. We
observe that soap bubbles remain spherical up to R/` ≈ 0.5. Above this limit, the height is lowered by gravity.

Remarkably, the analysis of equation (1) also reveals that the bubble height does not saturate to a maximum value ∼ ` in
the limit of large volumes. While the aspect ratio H/R is found to decrease for larger bubbles, the height continues to grow
indefinitely. This is in stark contrast to the case of large liquid drops, which do not reach heights beyond the capillary length.

Figure 2: Comparison between the experimental shape of soap bubble (circles), the spherical limit (black solid line) and the
shape derived from equation (1).
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BUBBLE COALESCENCE AT ANY REYNOLDS NUMBER

John R. Lister∗1 and James P. Munro1

1Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, UK

Summary When two bubbles touch, a hole is formed in the fluid sheet between them, and surface tension acting on its tightly curved edge
drives radial flow which quickly pulls the hole wider. We present similarity solutions for the thickness of the fluid sheet and the velocity
profile, which show that the radius of the hole increases as rE ∝ t1/2 for any Reynolds (Ohnesorge) number. Remarkably, the initially
quadratic profile of the sheet allows for an exact solution in which inertia and viscosity have the same scalings with time and remain in
fixed proportion. Numerical solution of the third-order set of ODEs determines the prefactors and profiles. Asymptotic analysis of the
compressional boundary layer structure in the inviscid limit formally justifies and brings new insight to earlier ad hoc ‘blob’ models. There
is excellent agreement with full Navier–Stokes simulations and experimental data from Paulsen et al. [1]

INTRODUCTION

Drops and bubbles are important in many industrial, environmental, biological and geophysical settings, and the processes
of drop/bubble breakup and coalescence are essential to the determination of the size distributions, which is of practical
interest. But breakup and coalescence are of great interest in their own right as examples of free-surface flows in which the
change in topology is associated with a singularity in the curvature, which leads to the possibility of universal self-similar
behaviour near the singularity.

In this paper we present solutions to the problem of coalescence, focusing on the case of two bubbles. The gas inside
the bubbles can be considered to be of sufficiently low density and viscosity that it is dynamically passive. Hence the fluid
dynamics is dominated by the motion in the thin sheet of fluid between the bubbles as surface tension acts on the edge of the
hole in the sheet formed when the bubbles touch. The work is motivated by experimental observations by Paulsen et al. [1]
and is described in more detail in Munro et al. [2]

BUBBLE COALESCENCE

Consider spherical bubbles of radius a, brought into contact in fluid of density ρ and viscosity µ. The Ohnesorge number
is defined by Oh = µ/(ρaγ)1/2, where γ is the surface tension. We assume the system is axisymmetric with coordinates (r, z)
and let rE(t) be the radius of the hole in the fluid sheet between the coalescing bubbles. We analyse the early behaviour for
rE � a.

z

rhE

rE

bubble

bubble

O(hE)

rounded tip

u(r,t) h(r,t)

Figure 1: Schematic section through the axisymmetric problem, showing the fluid sheet of thickness h(r, t) exterior to the
bubbles and the velocity u(r, t) in the radial direction. The edge of the sheet has radial position rE and thickness hE , and is
rounded over a length scale hE � rE . Surface tension exerts a radial force 2γ on the rounded edge.

From the initial geometry, the fluid sheet has lengthscale rE in the radial direction and r2E/a� rE in the axial direction, and
so we expect the velocity to be predominantly radial. Moreover, the sheet is bounded by free surfaces, so we expect the radial
velocity u(r, t) to be constant over the thickness h(r, t) of the sheet (see figure 1). Hence we use the radial extensional-flow
equations:

ρh
Du

Dt︸ ︷︷ ︸
Inertia

= γh
∂κ

∂r︸ ︷︷ ︸
Capillary

+
2µ

r

∂

∂r

[
rh

(
u

r
+ 2

∂u

∂r

)]
︸ ︷︷ ︸

Radial Stress

−2µh

r

(
2
u

r
+
∂u

∂r

)
︸ ︷︷ ︸

Hoop Stress

,
∂h

∂t
= −1

r

∂

∂r

(
ruh

)
(1a, b)

with initial conditions h(r, t)→ r2/a and u(r, t)→ 0 as t→ 0+ at fixed r, and with boundary conditions

2γ = −γhκ (rE, t)− 2µh

(
u

r
+ 2

∂u

∂r

)∣∣∣∣
rE

and u(rE, t) =
drE
dt

. (2a, b)
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Figure 2: (a) Solution for ηE from the similarity equations (4) and (5) (solid line), from full Navier–Stokes simulations [2]
(circles), and experimental data from [1] (points, boxes indicate error bars). Dashed lines: asymptotic theory for the limits
Oh� 1 and Oh� 1. (b) Similarity thickness profiles H(η) for Oh = 0.01, 0.03, 0.1, 0.3, 1 and 3, and for the limit Oh =∞.
(c) Velocity profiles U(η) for the same values of Oh, with η and U both scaled by ηE .

Equation (2a) balances the capillary force 2γ from the rounded tip with the radial stress at the edge of the sheet. (The hoop
stress and inertia are negligible at the edge.) The O(2/h) curvature at the edge of the sheet is much larger than the curvature
elsewhere, which allows us to neglect κ in (1a, 2a). Perhaps surprisingly, there is then an exact similarity solution of the form

h = (γt/µ)H(η), u = (aγ/µt)
1/2

U(η), r = (aγt/µ)
1/2

η, (3)

in which the viscous and inertial terms retain the same relative magnitude. Equations (1) and (2) become a system of ODEs:

1

4Oh2

(
−1

2
U − 1

2
ηU ′ + UU ′

)
= U ′′ +

U ′

η
− U

η2
+
H ′

H

(
U ′ +

U

2η

)
, H ′ = H

(
1 + U ′ + U

η
η
2 − U

)
, (4)

U = 1
2ηE and H(U/ηE + 2U ′) = −1 at η = ηE, H ∼ η2, ηU → 0 as η →∞, (5)

where primes denote derivatives. This third-order system has two boundary conditions at the edge ηE and two boundary
conditions at infinity, which also determine the edge position ηE . Numerical solutions for ηE , H(η) and U(η) are shown
in figure 2. The similarity solution gives good agreement with experimental data from [1] and full-scale Navier–Stokes
simulations in [2].

There are limiting regimes with ηE ∼ (32/3)1/4Oh1/2 for Oh� 1 and ηE ∼ 0.8908 for Oh� 1. For Oh� 1 the solution
has the form of a thickened toroidal ring that is expanding and sweeping up fluid that is still at rest; all of the mass in the
accumulating ring moves at essentially the speed of the edge of the sheet. Even though the ring has a short radial lengthscale
in similarity variables, the dimensional solutions are still long and thin for sufficiently early times as h ∝ t, r ∝ t1/2 by (3).
The equations can be analysed asymptotically, and give a formal justification for the ad hoc ‘blob’ model of Keller [3].

PERSPECTIVES

We have solved the problem of bubble coalescence, and the theory agrees well with experiment. The case of drop coa-
lescence, when the dynamics are dominated by the viscosity in the drops, has a very different flow structure and theoretical
considerations [4, 5] give rE ∝ t ln t rather than t1/2. Recent experiments [1, 6] allowed these ideas to be tested and chal-
lenged. We anticipate that the talks in this ICTAM session will demonstrate continuing interest in a fascinating field.
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THE MOTION OF A CLOSELY FITTING VESICLE IN A TUBE
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Summary The motion of a lipid bilayer vesicle through a narrow, cylindrical tube is modeled theoretically. The vesicle is treated as a sac of
fluid enclosed by a thin, elastic sheet that admits resistance to bending deformation. The governing equations of viscous flow are simplified
in the “quasi-parallel approximation” and solved numerically. The pressure drop across the vesicle is found to increase when the reduced
volume is decreased or confinement is increased. The “critical tube radius,” below which the vesicle cannot pass through the tube without
rupturing, is determined as a function of reduced volume. Under high confinement, bending resistance can be neglected and an asymptotic
solution is developed, in the spirit of F. P. Bretherton’s original work on bubble transport [1], using singular perturbation methods. In this
limit, vesicles of all reduced volume approach a spherocylindrical shape and the pressure drop scales inversely with gap thickness.

INTRODUCTION

In aqueous environments, lipid bilayers self-assemble to form closed, microscopic structures – so-called “vesicles” –
that can encapsulate and transport molecular cargo, e.g. pharmaceutical drugs [2]. Squeezing a vesicle through a narrow
constriction significantly increases the internal pressure and membrane tension, which can subsequently lead to poration and
rupture of the bilayer [3]. Recent work with cells has shown that mechanically-induced poration by controlled squeezing can
enhance the permeability of the membrane, enabling the uptake of macromolecules for targeted delivery applications [4].

Although the role of fluid stresses in deforming a vesicle during passage through a narrow channel is understood quali-
tatively, a rigorous theoretical model is absent in the current literature. Such models exist for bubbles [1,5,6], rigid particles
[7], elastic particles [8], and red blood cells [9] and fall under the class of “resistance problems” in which the desired output
is the relationship between the pressure head ∆p and particle translation speed U . Previous efforts to develop a quantitative
theoretical description of the mobility of vesicles and red blood cells in tubes have yielded useful insight into the connection
between hydrodynamic stresses and membrane mechanics [9,10,11]. However, in all of these studies a form for the particle
shape is typically assumed a priori, thus neglecting the full free boundary problem.

The objective of the present work is to develop a simple but rigorous theoretical description of the motion of a neutrally
buoyant vesicle in a tube of circular cross section. Symmetry about the tube axis is assumed a priori, thus reducing the
problem to the solution of fields along the contour of the membrane. By solving the equations of viscous flow together with
the equations of mechanical equilibrium for a thin shell, the shape as well as the local distribution of pressure and membrane
tension can be calculated over a range of geometries and flow conditions. In particular, the critical geometry corresponding to
membrane rupture can be determined.

THEORY

The problem under consideration is the translation of a neutrally buoyant vesicle at a speed U through a circular tube
containing a Newtonian fluid of viscosity µ. The nominal radius R of the vesicle is defined such that the surface area of
the membrane is 4πR2 and the enclosed volume is 4

3πR
3v, where 0 < v ≤ 1 is the vesicle’s “reduced volume;” both the

surface area and enclosed volume are assumed to be fixed quantities. In this work, R, µ, and U are set equal to unity, which
is tantamount to rendering all variables dimensionless with respect to these characteristic scales.

In cylindrical coordinates (x, σ, φ), the equations of motion and continuity can be solved under the “quasi-parallel approx-
imation” to yield differential equations for the gap pressure p along the tube axis x and the membrane tension γ along the
meridional coordinate s of the membrane:

dp

dx
=

8

a2 − r2

(
2Qa− a2 − a2 − r2

2 log (r/a)

)(
a2 + r2 +

a2 − r2

log (r/a)

)−1

, (1a)

dγ

ds
=

1

4

dp

dx

(
2r +

a2 − r2

r log (r/a)

)
+

1

r log (r/a)
, (1b)

where a is the tube radius, σ = r(s) is the radial position of the membrane and Q is the volume flux per unit circumference
through the gap. Eq. (1) was also derived in [9] for red blood cells. Supposing the bending moment in the bilayer is 2κc, then
p and γ are related by balancing normal stresses across the membrane:

1

r

d

ds

(
r

dc

ds

)
= κ−1(γc− 1

2p)− 2cc̄2, (2)
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where c is the mean curvature, c̄ is the deviatoric curvature, and κ is the bending stiffness (measured in units of µUR2). For
a given choice of v, a, and κ, Eqs. (1)-(2), together with the appropriate boundary conditions and integral constraints, may be
solved numerically for the dependent variables as well as Q (an eigenvalue) and S (a free boundary).

RESULTS
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Figure 1: (a) Representative solution for the shape contour r (black curve), gap pressure p (blue curve), and membrane tension
γ (green curve) plotted against the axial coordinate x for v = 0.9, ac/a = 0.89, and κ−1 = 49. (b) The pressure drop ∆p
plotted against the reduced volume v for κ−1 = 1 and various values of ac/a.

Local profiles of the shape contour, gap pressure, and membrane tension are calculated over a wide range of the parameters
v, a, and κ. As κ→ 0 or∞, two asymptotic limits are reached corresponding to very strong and very weak fluid stress relative
to the bending stiffness of the membrane. Decreasing the reduced volume (i.e. deflating the vesicle) results in higher drag for
the same degree of confinement; the limit v = 0.61 corresponds to the reduced volume for a red blood cell.

The critical radius ac corresponding to rupture is found to satisfy the cubic equation,

a3c − 3ac + 2v = 0. (3)

The vesicle shape in the limit a→ ac approaches a spherocylinder and the membrane is well described by an isotropic tension,
in agreement with recent experimental observations [11]. Asymptotic analysis in the small clearance ε furnishes the scaling
∆p ' 2L/(εa) in the limit a→ ac, where L ' 2(a−1

c − ac) is the length of the cylindrical segment.

CONCLUSIONS

A rigorous theory describing the motion of vesicles in tubes has been developed over a wider parameter space than has
been reported for red blood cells. The pressure distribution along the membrane mimics that of a rigid particle of the same
shape, and the corresponding tension distribution indicates the front nose as a potential site for poration. An asymptotic theory
has been developed in the limit a→ ac, where ac has been shown to be a function of reduced volume.
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LASER GENERATED NANO-BUBBLES AROUND NANO-PARTICLES
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Summary On the basis of a free-energy model coupled to compressible hydrodynamics we discuss the formation of nanobubbles around

heated nano-particles. In particular, we show that nanoscale specificities like the Kapitza resistance at the particle-liquid interface or the

ballistic heat transport inside the nano-bubble play a key role in the bubble formation and controls its size.

Ballistic

   flux
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nano−particle

R
np

R
G

Laser beam

Vapor bubble

liquid water

Figure 1: Schematic view of the system

The vapor nanobubbles generated around overheated nanoparticles

are very peculiar objects. They are generated in extreme conditions by in-

tense and short duration laser pulses (femtosecond or nanosecond pulses),

that may induce very localized hot spots (thousands of kelvins on few

nanometer particles). These bubbles are very transient effects, they grow

and collapse in few tenth of nanoseconds. However, the pressure wave

generated during their production is intense enough to allow very promis-

ing medical applications (cancer diagnosis and possible therapy [1]). A

control of the mechanisms that drive their production is thus an important

issue for these applications. It is also an important issue from the point of

view of physics since it is an example of phase transition induced in ex-

treme out–of–equilibrium conditions where the usual nucleation-growth

scenario has no time to occur, as already discussed in [2] and showed in

molecular simulations [3], or using the free energy functional approach

used in this paper [4]. It is however tempting to use ordinary equilibrium

thermodynamics to predict the bubble formation threshold or to inves-

tigate the bubble growth and collapse kinetics. We showed in previous

papers that a good criterion for the bubble production is the crossing of the spinodal line 1 or 2 nm away from the nanoparticle

surface [4], a result confirmed by Molecular Dynamics (MD) simulations [3], and the possibility to use the Rayleigh-Plesset

formalism to treat the growth and collapse kinetics. This good behavior is due to the very fast equilibration of water molecules

at the nanometer scale: Although the fluid is globaly very far from its equilibrium state close to the nanoparticle, as illustrated

by the strong temperature gradient observed in this region (hundred of Kelvins per nanometers [5]), a local equilibrium ap-

proximation is still possible, that gives the possibility of a local thermodynamic treatment of the bubble. However, due to the

nanometer scale of the bubble, thermal transport inside the bubble has a particular nature. From the work of Knudsen in the

early nineties it is known that below the mean-free-path of the molecules, the thermal transport is ballistic, and not diffusive

because the molecules have no time to collide. For water vapor, the mean-free-path in saturation conditions at atmospheric

pressure is around 86 nm, we can expect that the thermal transport in a bubble with a radius below this value is essentially

ballistic. Another important feature is the existence of a thermal resistance at the particle-liquid interface, the Kapitza resis-

tance, that produces a temperature discontinuity at the interface. This effect is usually neglected for macroscopic systems, due

to the smallness of the associated Kapitza length. However, the thermal resistance becomes an important effect for nanometer

scale systems, it delays the thermal transfer between the particle and the fluid. Taking into account these specificities is the

goal of our model. The precise formulation has already been the subject of a publication so we shall restrict the discussion

to the main ingredients here. The model is based on the conservation equations (mass, momentum and energy) and we solve

the dynamics of the three important fields: density ρ(r, t), velocity v(r, t) and temperature T (r, t) around a spherical gold

nanoparticle (GNP), as schematically represented in Fig. 1. To account for the liquid-vapor phase transition in the momentum

equation, we use a density functional approach based on the van der Waals bulk free energy with an additional square gradient

term to account for the finite thickness of the interface at the nanometer scale. The resulting pressure tensor is a function

of the local density in the fluid, ρ(r, t) and its gradient:Pαβ =
[

PVdW − wρ∆ρ+ w
2
(∇ρ)2

]

δαβ + w∂αρ∂βρ. Here, PV dW

is the pressure obtained from the van der Waals theory. The parameter w fixes the interface thickness as well as the surface

tension. This parameter has been adjusted to match the surface tension of water at room temperature (T = 297 K). δαβ is the

Kronecker symbol, and ∂α is a derivative with respect to the spatial coordinate in the direction α. ∆ is the Laplace operator.

The two parameters a and b of the van der Waals theory have been chosen so that the density of the liquid phase at T = 297 K

corresponds to the density of water, and the critical temperature is Tc = 647.3 K.

∗Corresponding author. Email: thierry.biben@univ-lyon1.fr

780



1000 1500 2000 2500 3000

Laser fluence (J.m
-2
 )

50

100

R
G

,m
ax

 (
n
m

)

Experiments: Siems et al.

α=0
α=0.003
α=0.0035
α=0.004
α=0.005

No ballistic flux

Increasing ballistic flux

Figure 2: Maximum radius of the bubbles: comparison with experiments

The boundary conditions at the nanoparticle

interface are the key ingredients of the model.

The Kaptiza resistance is introduced through

the thermal conductive flux at the particle-liquid

interface:

φc = G(Tnp − Ts), (1)

where G is the thermal conductance of the

GNP-water interface (G ≃ 90 MWm2K−1for

liquid water), Tnp is the nanoparticle tempera-

ture and Ts is the temperature of the fluid in con-

tact with the GNP. In the vapor phase the con-

ductive flux becomes very small, G is divided

by a factor of nearly 20 meaning that the vapor

bubble is a good insulator, as expected. How-

ever, due to the small size of the bubble at the

onset of vaporization it is necessary to include

in the model the ballistic nature of the ther-

mal transfer in the vapor phase at the nanometer

scale by adding the ballistic flux φb:

φb = αρs

√

2k3B
m

(

T 3/2
np − T

3/2
G

)

, (2)

where ρs is the vapor density in contact with the particle, m is the mass of a water molecule, kB is the Boltzmann constant

and TG is the temperature at the surface of the bubble, defined as the Gibbs position of the liquid-vapor interface. The

physical meanning of this expression is simple: in the vapor phase, molecules evaporated at the liquid-vapor interface with a

temperature TG are carying a kinetic energy proportional to kBTG with a velocity proportional to
√
kBTG in the direction of

the GNP. These molecules are reaching the surface of the GNP and are re-emitted in the opposite direction with a temperature

Tnp leading to the difference T
3/2
np − T

3/2
G . This scenario is sketched in Fig. 1 by the blue and red arrows. Since Tnp is much

larger than TG, the net energy flux goes from the GNP to the bubble surface, that is warmed up by this incoming ballistic

flux. The prefactor is not trivial, but from dimensional analysis it is proportional to a density, we took the contact density

between the vapor and the GNP as a reference (ρs in equation (2) ). More complex is the parameter α, a dimensionless

accommodation coefficient that plays a key role in the following. A kinetic theory argument shows that α should be in the

range 0.002 ≤ α ≤ 0.004, and a direct comparison between our model and the experiments presented in [6] show that a value

α = 0.0035 gives a good estimate of the bubble sizes (see Fig. 2). It is important to note that without the ballistic flux, the

bubbles remain very small (few nanometers of thichness). With the ballistic flux, they can reach more than 100nm.

It is surprising that such a low value of α is able to produce such a large effect. Our model shows that there is a threshold

in the value of the ballistic flux that allows the ballistic flux to inflate the bubbles. Below this value, the bubbles remain small.

Another very important parameter is the laser pulse duration: short and intense pulses (femtoseconds) are able to produce

large bubbles, but the nanoparticle does usually not survive to the experiment. Longer pulses (10 nanoseconds or more) but

with lower intensities can produce a full series of small bubbles before the ballistic flux is large enough to bypass the threshold

and inflate a large bubble. Finally the model gives also access to the pressure wave generated by the laser pulse, that is

produced close to the onset of the bubble formation, and which intensity is of great relevance for applications.

It is our scope to discuss these non-trivial effects during the presentation.
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THE RESIDENCE TIME OF A DROP ON A SPOKED MACROTEXTURE 
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Summary When a water drop impacts a superhydrophobic surface, it can bounce [1].  Recently, it has been shown that the contact time can be 
reduced by incorporating ridged macrotextures on the surface [2-4].  When non-parallel macrotextures are present, they intersect to create 
spoked junctions.  It is expected that these junctions would affect the impact of the drop; yet existing models disagree on how many droplets 
might be produced and the time for these droplets to clear the surface.  Here we show that the overall residence time depends on the number of 
spokes if there are less than 2 or more than 5.  We develop a physical model that rationalizes our experimental results and also demonstrate 
that the phenomenon observed for macrotextured, superhydrophobic surfaces extends to macrotextured, wettable surfaces above the Leidenfrost 
temperature. 
 

INTRODUCTION 
 
   When drops impact on a surface at moderate Weber numbers, they typically spread out and create a thin film.  If the 
surface is non-wetting, the liquid film will recoil to such an extent that the drop will recoil, or bounce, from the surface.  
The time that the drop resides on the surface is dominated by the recoil time, which depends predominantly on the surface 
tension, density, and size of the drop, and only weakly on the impact velocity [1].  For macroscopically smooth and flat 
surfaces, drops typically maintain axisymmetry and only leave the surface once the retracting film reaches the centre of the 
drop.  However, if the surface is macroscopically textured, the film reaction may no longer be axisymmetric providing the 
opportunity for the film to fragment and more rapidly detach from the surface [2].  Different mechanisms have been 
suggested to rationalize the reduction in contact time [2-4] and these mechanisms lead to different predictions on how the 
residence time might scale with macrostructure geometry.  Additionally, prior studies exploring the breaking of symmetry 
with macrotextures have been restricted to superhydrophobic surfaces.  Here we explore the dynamics when impacting 
drops land on a sufficiently hot surface so that they reside on a cushion of their own vapour.  The addition of macrotexture 
spokes is explored and related to the residence time. 
 
 

METHODS 
 
 An aluminium block is milled so that there are raised macrotextured spokes that radiate from a central point.  
These ridges are approximately 100 microns high and all other features from the milling process are less than 10 microns 
(Fig. 1).  Blocks are made with varying number of spokes ranging from zero to six.  In each experiment, the milled 
aluminium is heated above the Leidenfrost temperature.  A drop of water is released from different heights above the 
surface, and the impact dynamics of the drop are recorded with a high-speed camera. 
  

 
RESULTS AND DISCUSSION 

   
We find that the residence time varies with the number of spokes on the surface.  We find that the maximum 

extension of the film is different for the film covering the spokes than the film away from the spokes (Fig. 1, top row).  
Additionally we find that the film rapidly retracts into a radial array of ligaments before breaking up (Fig. 1, bottom).  The 
overall reduction in contact time and number of fragmented drops can be related to this shape changeover.  A physical 
model based on a centre-assisted recoil framework can be developed to rationalize the results. 
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Figure 1.  A drop impacting non-wetting surfaces with different number of spokes (n = 3, 4, 5, and 6, each corresponding 
to a column in the figure).  Images at maximum spreading (top row) and initiation of breakup (bottom row) illustrate the 
rapid retraction along each spoke. 
 
 
 

CONCLUSIONS 
 

We have investigated the residence time for drops impacting a macrotextured surface with a number (n) of radial 
spokes that is heated above the Leidenfrost temperature.  For a flat surface (n=0) and ridged surface (n=2), the results 
match those described in the literature for superhydrophobic surfaces [2,4].  For other numbers spokes, the residence times 
do not follow the existing models proposed in the literature.  Instead, predicting the residence time requires a physical 
model – which we have developed – that accounts for the change in shape during the retraction. 
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Summary This paper investigates bubble oscillating near a deformable sphere with different materials. The boundary-element method (BEM) 
is used to simulate the bubble growth, contraction and collapse near the deformable sphere. The finite element method (FEM) is used to 
calculate the sphere response to the fluid pressure induced by the bubble oscillating. The interaction of the oscillating bubble and the 
deformable sphere is simulated via the coupled BEM-FEM.  A good agreement between the numerical simulations and experimental 
observations is achieved.  Parametric studies are further carried out for the oscillating bubble near the deformable sphere with different 
material properties.  The results show the influences of the sphere stiffness, the bubble-sphere size ratio, and the relative distance of the bubble 
and the sphere, on the bubble collapse and the sphere deformation. From the results obtained, some insights to the problem of an oscillating 
bubble near a deformable sphere are deduced. 
 

INTRODUCTION 

 
   The interaction of an oscillating bubble with an elastic membrane or a sphere is a complex phenomenon that is highly 
relevant to medical applications. This is because when laser, shock waves, or ultrasound in applied in clinical treatment, 
bubbles are often formed at the target area or around its vicinity. In view of the need to minimize the destructive effects of 
bubble pressure on the deformable structure or to utilize it in medical and clinical therapies, a profound understanding of the 
interaction between a bubble and a deformable structure with different material properties becomes a requirement. 
   Various coupled boundary element and finite element methods have been developed for bubble-structure interactions [1-3]. 
Turangan et al. [4] studied a non-equilibrium bubble placed next to a (stretched) membrane.  Ohl et al. [5] conducted low-
voltage spark bubble experiments and adopted a boundary-element method (BEM) model to predict the dynamics of oscillating 
bubbles placed near a thick layer of elastic biomaterial.  Gong et al. [6] studied the physical behavior of the interaction of a 
spark-generated bubble and an elastic rubber beam numerically and experimentally. In their study, the scaling law for spark-
generated bubbles and underwater explosion bubbles [7] was used to get the parameters for the spark-generated bubble.  
Although the results reported have shown good agreement with the experiments, there is no study involving 3D numerical 
simulations of a cavitation bubble beside a finite element representation of a deformable sphere to the best knowledge of the 
authors. The present work addresses this and investigates the interaction of an oscillating bubble and a deformable sphere, both 
numerically and experimentally.  The experiments were carried out using high-speed photography for the observations of the 
spark-generated bubble dynamics as well as the elastic sphere deformation.  The numerical simulations were accomplished by 
coupling a three dimensional boundary element (BE) potential flow code with an explicit finite element (FE) structural solver.  
Furthermore, the interaction of an oscillating bubble and a deformable viscoelastic sphere is explored with the coupled BE-FE 
code incorporating a viscoelastic model [8], which can be useful for potential application in biomedicine. 
 

MODELLING OF AN OSCILLATING BUBBLE NEAR A DEFORMABLE SPHERE   

 

   In this study, the boundary-element method (BEM) is used to simulate the bubble growth, contraction and collapse 
near the deformable sphere, in which the scaling law for spark-generated bubble and underwater explosion bubble [7] is 
employed to get the initial parameters for the oscillating bubble.  For a bubble with a prescribed maximum radius Rm, the 
small equivalent charge weight W can be determined by    3Rmvref KRgppDW  . Here, D is the initial distance from 
the bubble centre to the free surface, KR is the charge parameter,  is the density of the fluid, pref and pv are the reference 
pressure and the vapour pressure, respectively. On the other hand, the dynamics of the deformable sphere in response to the 
oscillating bubble is simulated via the finite element method (FEM).  For the rubber like elastic material, the Blatz and Ko 
model with the simplified strain energy         12132 21/2

31    JJGW  is employed for this simulation, which 
had been used for a rubber beam response to sparkle-generated bubble in our previous work [6].  In strain energy equation, 
G is the shear modulus, and is the Poisson ratio. J1 and J3 are the invariants defined as: 2

3
2
2

2
11  J , and 3213J  , 

where  and are the principal stretch ratios of the deformation at the point considered.  For the viscoelastic 
material, a Zener type viscoelastic model is used [8] with the shear modulus in the form of )exp()()( 0 tGGGtG   , 
where G0 is the dynamic shear modulus, G  is the static shear modulus and  is a decay constant. The deformable sphere 
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is modelled using 6912 hexahedral elements and the wet surface of the elastic sphere is modelled by 1728 triangle shell 
elements. The wet surface is a layer that covers the deformable sphere and contacts with the fluid.    

In the numerical simulation, the pressure in the fluid domain induced by the bubble are calculated using the BE fluid 
code and then given as input to the FE structural solver, from which the fluid pressure is applied on the wet surface of the 
deformable sphere.  The FE structural solver then calculates the displacements of the deformable sphere, which are then 
returned as input for the fluid solver with the bubble.  From the complete simulation, we can obtain two sets of results: one 
set includes the bubble growth, contract and collapse; the other set includes the deformable sphere response to the pressure 
induced by the bubble oscillating. For more details on the simulation methods, readers may refer to the references [3, 6, 8, 
and 9]. 
  

RESULTS AND DISCUSSIONS 

 
We first present the numerical results obtained in comparison to the empirical images from our experiments. Due to the 

two-paper limitation, only one of the comparison results is shown in Fig.1. The reasonable comparison results allow us to 
examine the effects of a stand-off distance and a size ratio between the bubble and the sphere on their interaction; and also 
extend our simulations for further explorations of the influence from the sphere elasticity and viscosity on the interaction 
between the bubble and the sphere. The simulation results show that the stand-off distance and the size ratio have significant 
effects on both the bubble collapse and the sphere deformation; the sphere elasticity in certain range has significant effects 
on the sphere deformation but has little influence on the bubble size; the sphere viscosity affects both bubble collapsing and 
solid deformation, and also attenuates the pressure induced by the bubble around the bubble collapse time. From the results 
obtained, some insights to the problem of an oscillating bubble near a deformable sphere are deduced, which can be useful 
for potential applications in biomedicine.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Comparison between the numerical simulations and the experimental images. The rubber sphere (left) has a radius of Re = 4.30 mm, 
shear modulus of G = 312 kPa, and density of ρ = 1170 kg/m3.  The spark-generated bubble, with the initial spark point at H = 6.71 mm away 
from the rubber sphere centre, expands to its maximum volume (Rmax = 4.30) at t = 760 μs. 
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COALESCENCE BETWEEN TWO CONVEX LIQUID SURFACES
Zhen Jian, Fan Yang, Erqiang Li, Sigurdur T. Thoroddsen ∗

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Summary Coalescence between two convex surfaces is investigated in experiments and in numerics by a code called Gerris. This problem
can be determined by two dimensionless numbers: the Ohnesorge numberOh = µl/

√
ρlσDb and the size ratio between droplet and bubble

α = Dd/Db. The fast dynamics is captured by an ultra-high-speed camera (Phantom V2511) at the recording speed 35 kfps with a
896 × 768 resolution. Three different liquids as deionized(DI) water, glycerin 25% and glycerin 50% with different size ratios α were
studied. As the droplet coalesces with the surface, two vortex rings are generated symmetrically at the tip of the liquid bridge. They grow
in time and form a mushroom-like structure. A secondary droplet inside the bubble is also observed in simulations.

INTRODUCTION

Coalescence between two convex surfaces of the same liquid is investigated experimentally and numerically in this article.
A gas bubble of diameter Db, density ρg and viscosity µg is immersed in a liquid pool. A same liquid droplet of smaller
diameter Dd, density ρl and viscosity µl is located inside the bubble and released from rest on the bubble. The process has no
external velocity scale, as it starts from rest and it occurs in a small temporal and spatial scale. We assume that gravity does
not play a significant role in the coalescence dynamics and the dynamics is due to competition between surface tension and
viscous forces. The problem can be determined by two dimensionless numbers: the Ohnesorge number Oh = µl/

√
ρlσDb

and the size ratio between the drop and the bubble α = Dd/Db. The Navier-Stokes equation considering surface tension σ is
set ρdu

dt = −∇p+ µ4u + σκδn. The effects of the Ohnesorge number Oh and the size ratio α were studied. Numerically, it
is solved axisymmetrically by a code called Gerris, which is a partial differential equation solver for multiphase flows based
on the finite-volume discretization and an adaptive tree-structured mesh as an open source software[1].

EXPERIMENTAL STUDIES

Figure 1: Snapshots of coalesced interface. Time interval between frames is ∆t = 0.00114286s. Top row: glycerin 50%, α =
0.5; middle row: DI water α = 0.6; bottom row: snapshots of simulations, DI water α = 0.6.

In experiments, the bubble was realized by a hemisphere convex liquid surface. To capture the fast dynamics following
the liquid contact, an ultra-high-speed camera (Phantom V2511) was used, which can provide up to 25 kfps recording
speed at 1280 × 720 HD resolution and as high as 1000 kfps at reduced resolution. 35 kfps with 896 × 768 resolution
was chosen in our experiments. Bubble diameter Db was kept constant at 4.8 mm. Three different liquids as deionized(DI)
water, glycerin 25% and glycerin 50% were used, which corresponds to the Ohnesorge number Oh = 0.00241, 0.00521 and
0.01677 respectively. The size ratio α took: 0.5, 0.6, 0.7, 0.8. A small amount of dye was added to the droplet to obtain a
good illustration of the interface profile. As droplet contacts with the liquid surface, a liquid bridge between the droplet and
the pool is immediately formed and grows in size against a thin air layer. Meanwhile, the droplet falls into the pool and two
vortex rings are generated symmetrically at the tip of liquid bridge. They grow in time and form a mushroom-like structure
(see Fig.1), which is also observed in coalescence between two concave surfaces [2].

∗Corresponding author. Email: sigurdur.thoroddsen@kaust.edu.sa
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NUMERICAL INVESTIGATIONS

As shown in Fig.2, the velocity of the tip of the liquid bridge decreases in time, the motion of the droplet is mainly along
the coalescence axis (see Fig.3). As the size ratio increases, the velocity of the tip increases and the size of the vortex ring
increases as well. From Fig. 3, we can observe that the initial droplet is not entirely coalesced into the liquid pool. Following
the first contact, a hole (liquid bridge) is formed on the bubble and grows in size. After certain time, the separated thin gas
layers can connect to each other again. A daughter droplet is formed inside the bubble and oscillates; the mushroom-like
structure continues to develop in the pool (see Fig.3). For small size ratios, vortices are observed to be formed successively
after the two primary vortices and enter into the primary one (see case of α = 0.3 in Fig.3 (pink line) ). Two small vortex
rings of opposite sign are formed and expand along the bubble surface, which creates a thin liquid layer (liquid from the drop)
covering the bubble surface (see case of α = 0.5 in Fig.3 (green line)).
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Figure 2: Velocity of the tip of the liquid bridge vs width of the liquid bridge for different size ratios α = 0.5, 0.6, 0.7, 0.8.
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Figure 3: Evolution of droplet interface in time for different size ratios α at Oh = 0.00246957. Time interval between figures
is ∆t = 0.0825614s.

CONCLUSIONS

In this article, we investigate the coalescence between two convex liquid surfaces by experiments and numerical simula-
tions. The system is determined by two dimensionless numbers: the Ohnesorge number and the size ratio. Different scenarios
are observed on varying these two numbers. Following the contact between droplet and pool, the drop falls into the pool and
two primary vortex rings with opposite sign are observed by experiments and confirmed in simulations. The two vortices are
symmetric to the coalescence axis and form a mushroom-like structure. With a larger size ratio, the tip of the thin gas layer
between the drop and the pool retracts faster and results a larger vortex ring. In simulations, more dynamics are found and we
have a clear view of the dynamics of gas layer and inside the drop, which is not observed in experiments due to transmittance.
Besides the primary vortices, a pair of vortices is also observed and expand along the bubble. The droplet is not entirely
coalesced with the pool, a secondary droplet is formed and oscillates inside the bubble.
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SOAP FILM DYNAMICS UNDER CONTINUOUS DEFORMATION

R. E. Goldstein1, Adriana Pesci 1, and H. K. Moffatt ∗1
1DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

Summary This paper will report on progress in our study of possible topological transitions of a soap film bounded by a deformable wire
(or set of wires), with particular attention to the jump of a one-sided Möbius-strip soap film to a two-sided disc. Attention will be focussed
on the nature of the boundary singularity that occurs in this case, and the manner in which this singularity is resolved.

BACKGROUND

A soap film bounded by a wire in the form of a closed curve, or a set of such wires, may be two-sided (like a disc) or
one-sided (like a Möbius strip). Under static conditions, the soap film is a minimal-area surface on which the mean curvature
is everywhere zero. When the wire configuration is slowly and continuously deformed, the surface may become unstable
and may then jump to a topologically different configuration. The simplest example is the catenoid bounded by two circular
wires, initially close to each other, which becomes unstable at a critical separation when the wires are pulled slowly apart, and
which then jumps to two discs spanning the wires separately. In this case, the topological transition involves a singularity at
an interior point of the surface, i.e. in the bulk of the fluid.

Figure 1: Soap film just after collapse; here, the local twist of the Plateau border on the wire and the associated local twist of the soap-film
surface are revealed by optical reflection.

THE MÖBIUS STRIP TRANSITION

We have studied a similar situation when the film has initially the form of a Möbius strip. This may be created by twisting
a circular wire, folding it back on itself to form (nearly) the double cover of a circle, and dipping it in soap solution; if the
resulting two-sided disc is removed by pricking, a one-sided Möbius-strip soap film remains. The Plateau border of this film
(i.e. the curve where the projection of the soap film meets the boundary wire) is doubly linked with the center-line of the wire.
If the wire is now slowly unfolded and untwisted back towards a circle, then at a critical stage the soap film surface jumps to a
two-sided surface, topologically a disc. This jump occurs through a singularity on the boundary wire (Fig. 1), when the linking
number of the Plateau border and the wire centre-line jumps from 2 to zero (Goldstein et al. 2010). Different aspects of this
type of phenomenon have been explored in a series of recent papers (Goldstein et al. 2014a, b, Pesci et al. 2015). Collapse is
in general localised near a systole (i.e. a non-contractable closed curve of minimum length on the surface) (Fig. 2), and if the
systole is linked with the boundary wire, then collapse occurs to a point on the boundary. We have determined the instability
threshold for the one-sided minimal surface of Meeks (1981) (Fig. 3), in good qualitative agreement with experiment; in this
situation, the systole passes near the maximum of the unstable eigenmode.

∗Corresponding author. Email: hkm2@cam.ac.uk
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Figure 2: Systole and contours of unstable eigenmode at instability threshold for the incomplete Meeks minimal surface.

Figure 3: The incomplete Meeks minimal surface and its instability threshold; the critical value of the unfolding parameter is r0 ≈ 0.545.

WORK IN PROGRESS

On the assumption that the final stage of collapse of the hole of the Möbius strip is controlled by surface tension and fluid
inertia, dimensional analysis shows that this collapse proceeds at speed v ∼ (σ/ρ)1/3(tp− t)−1/3 where tp is the singularity time,
σ is the surface tension of the film, and ρ its density. If the wire has radius a, the singularity is resolved when tp−t ∼ (a3ρ/σ)1/2.
The work to be presented aims (i) to confirm the dependence on wire radius, (ii) to analyse the thin-film evolution on the wire
surface, and (iii) to describe the viscous mechanism by which the singularity is resolved.
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107(51), 21979–21984.

Goldstein, R. E., McTavish, J., Moffatt, H. K., and Pesci, A. I. 2014a. Boundary singularities produced by the motion of soap films. Proc. Natl. Acad. Sci.,
111, 8339–8344.

Goldstein, R. E., Huppert, H. E., Moffatt, H. K., and Pesci, A. I. 2014b. Instability of a gravity current within a soap-film. J. Fluid Mech., 753, R1.

Meeks, W. H. III. 1981. The classification of complete minimal surfaces in R3 with total curvature greater than −8π. Duke Math. J., 48(3), 523–535.
doi:10.1215/S0012-7094-81-04829-8. http://projecteuclid.org/euclid.dmj/1077314779.

Pesci, A. I., Goldstein, R.E., Alexander, G.P., and Moffatt, H. K. 2015. Instability of a Möbius strip minimal surface and a link with systolic geometry. Phys.
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SIZE AND VELOCITY OF JET DROPS FOLLOWING BURSTING BUBBLES

Thomas Séon∗1, Luc Deike2, Elisabeth Ghabache1, Stéphane Popinet1, and Stéphane Zaleski1
1Université Pierre et Marie Curie & CNRS, Institut Jean Le Rond d’Alembert, Paris, France

2Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

Summary Bubbles lying at a free surface usually burst and eject myriads of droplets. A quantitative description of these bursting bubble
aerosols constitutes a major issue in oceanography. Indeed, this would enable to improve our knowledge of sea spray aerosols, which is
crucial to better understand air–sea interactions. Focusing on the bubble bursting, from the collapsing cavity to the jet drop ejection, we
show a comparison between experimental results and numerical simulations. In this context, the jet velocity and the drop size are presented
as functions of the relevant dimensionless parameters. The results are then discussed in the light of both their fundamental applications in
the understanding of the phenomena and their quantitative implications in air–sea interactions.

OBJECTIVE AND PRINCIPLE OF EXPERIMENTS AND SIMULATIONS

Introduction
Sea spray, which transports dissolved gases, salts, surfactants, and biological materials in the atmosphere, is largely at-

tributed to aerosols produced by an estimated 1018 to 1020 bubbles that burst every second across the oceans [1, 2, 3]. Two
distinct types of droplets are involved, based on two different mechanisms during bubble bursting [4]. When the thin liquid
film – the bubble cap – separating the bubble from the atmosphere disintegrates, film drops are produced [5] with radius mainly
less than 1µm. The resulting opened cavity (see Fig.1) then collapses and a jet emerges producing jet drops by breaking up
[2, 6]. This latter mechanism accounts for the majority of sea spray aerosol particles in the atmosphere with radius between
1 and 25 µm [3]. The last sixty years have witnessed a number of laboratory studies documenting jet drops properties [2, 4],
but a complete comprehensive picture of the mechanisms at play in bubble bursting is still lacking and the size and velocity
distributions of the jet drops for a given bubble size distribution is yet unknown.

Objectives
In this talk, experimental and numerical results on bursting bubbles will be presented together. After a brief presentation of

the mechanism, we will show that the comparison of the results from these two methods is quite good up to drop detachment
(see Fig.1), thus cross-validating the numerical and experimental approaches. The jet velocity and drop size measurements,
along with their variations as functions of the control parameters, will allow us to reach two different objectives : improve our
understanding of fundamental mechanisms at play in bubble bursting (capillary wave collapse, influence of the bubble shape,
roles of liquid properties ...) and quantify the proportion of the jet drop size distribution in the general sea spray aerosol.

Experimental setup and numerical simulation
Our experiment consists in releasing a gas bubble from a submerged needle in a liquid and recording the upward jet after

the bubble bursts at the free surface. Different needle diameters (5< Φ (µm) < 1800) allow us to create bubbles with radii (R)
ranging from 300 µm to 5 mm. The liquids used in this study include water-glycerol-ethanol mixtures with varying viscosity,
surface tension and density. The bubble collapse, jet dynamics and drop size are analyzed through extreme close-up ultra-fast
imagery. Macro lenses and extension rings allow us to record with a definition reaching 5 µm per pixel. Images are obtained
between 10000 and 150000 frames per second using a digital high-speed camera.

Numerically, we solve the axisymmetric, two-dimensional, two-phase, incompressible Navier Stokes equations accounting
for surface tension and viscous effects using the open source solver Gerris ([7]), based on a quad/octree adaptive spatial
discretization, multilevel Poisson solver. The interface between the high density liquid (water) and the low density gas (air)
is reconstructed by a Volume Of Fluid (VOF) method. We initialize the liquid-gas interface with the theoretical shape of the
cavity left by a bursting bubble of radius Rb . We use the adaptive mesh of Gerris to solve the collapsing dynamics at very
high resolution, with a grid size up to an equivalent of 163842, which is necessary to obtain numerically-converged results.
The ejection velocity of the jet and the resulting droplets can then be analyzed and compared to the experimental results.

PRESENTATION OF EXPERIMENTAL AND NUMERICAL RESULTS

Figure 1 illustrates a typical jetting event following a bubble bursting at a free surface in water. The top sequence shows
the free surface view while the bottom one displays the underwater dynamics. The first image of the top sequence shows
a static bubble lying at the free surface. The film separating the bubble from the atmosphere then drains and bursts leaving
an unstable opened cavity. The bottom sequence displays capillary waves propagating along this cavity and focusing at the
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0 ms 1.7 ms 2.3 ms 2.8 ms 3.3 ms 3.9 ms  4.4 ms 4.9 ms 1mm

0 ms  0.52 ms 0.84 ms 0.92 ms 0.96 ms 1.00 ms 1.04 ms 1.08 ms 1mm

Figure 1: Experimental time sequences superposed with numerical profiles of a typical jetting event following a bubble
bursting at a free surface of water. The top sequence shows the bubble bursting event above the free surface, while the bottom
sequence displays the bubble under the free surface during the collapse.The bottom sequence takes place between the first
two images of the top sequence. Space scale is on each sequence and times are shown on the snapshots with the same origin.
Bubble radius is Rb = 915µm.

bottom. These collapsing waves give rise to a high-speed vertical jet shooting out above the free surface as observed on the
top sequence. The jet then fragments into droplets due to Rayleigh-Plateau destabilization generating an aerosol of one to
ten droplets [4]. On the two sequences, the cavity and jet profiles computed with numerical simulation have been added, we
observe a very good superposition of the numerical profiles with the experimental images up to drop detachment. In the course
of the talk we will also present very consistent quantitative comparisons of the jet velocity or drop size [8].

Armed with this new tool, we study the normalized jet velocity variation with the relevant dimensionless numbers for a
much larger range than possibly reachable experimentally. In particular, this allows us to decrease continuously the Bond
number (Bo = ρgR2

b

γ with Rb the bubble radius and ρ and γ respectively the density and the surface tension of the liquid) from
∼ 1 to 0 [9]. We observe that Bo=0 gives different results than even very small Bond numbers. This is because the shape
of the bubble changes slightly [8], modifying somewhat the way the capillary waves propagate (lower sequence of Fig.1).
This little change of capillary wave path has a strong influence on the jet dynamics. We look at the fine-scale dynamics, and
in particular the collapse, of the capillary waves in order to explain this sensibility of the jet dynamics on the cavity shape.
We then present the experimental and numerical data on the drop size as functions of the control parameters, in particular
the bubble size. Finally, by convoluting the jet drop size as a function of the bubble radius, with the size distribution of the
bubbles generated upon a wave breaking event [10, 11], we obtain the jet drop size distribution generated by bursting bubbles
following wave breaking. In a typical sea spray aerosol population we are then able to determine the respective parts of the jet
drops and film drops.
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Summary Onsager’s variational principle gives us a general framework to describe non-equilibrium phenomena in the linear response
regime. It has been used to derive the hydrodynamic boundary conditions for the moving contact line in two-phase flows. In this paper,
we first discuss the moving contact line in immiscible two-phase flows, and then discuss the moving contact line in one-component van der
Waals fluids.

ONSAGER’S VARIATIONAL PRINCIPLE

Onsager discovered a fundamental symmetry in the thermodynamic description of irreversible processes for which he was
awarded the Nobel Prize [1, 2]. Based on Onsager’s reciprocal symmetry, Onsager’s variational principle can be outlined as
follows. Consider an isothermal system described by a set of coarse-grained variables α ≡ {αi}. The free energy is given by
F = F (α) and the rate of change of the free energy is Ḟ (α, α̇) which is linear in the rates {α̇i}. The dissipation function is
half the rate of free-energy dissipation, given by Φ(α̇, α̇), which is quadratic in the rates {α̇i}. The action (called Rayleighian)
is

R =
∂F

∂αi
α̇i +

1

2
ζijα̇iα̇j ,

where the first term on the right-hand side is Ḟ and the second term is Φ(α̇, α̇), which is in a quadratic form with the friction
coefficients ζij forming a symmetric and positive definite matrix. Minimization of R with respect to the rates {α̇i} gives the
kinetic equations

− ∂F

∂αi
= ζijα̇j ,

which describe the balance between the reversible force −∂F/∂αi and the dissipative force linear in the rates. For a closed
system, the entropy shall be used instead of the free energy. In fact, the variational principle is formulated based on the entropy
consideration.

THE MOVING CONTACT LINE PROBLEM

The moving contact line problem has been an unsolved classical problem in continuum hydrodynamics for decades. The
contact line denotes the intersection of the fluid-fluid interface with a solid wall. When one fluid displaces the other, the
contact line moves along the wall. It has been well known that the moving contact line is incompatible with the no-slip
boundary condition — the latter leads to a non-integrable singularity in viscous dissipation. As shown by Dussan V. and
Davis [3], under the usual hydrodynamic assumptions, namely incompressible Newtonian fluids, smooth rigid solid walls,
impenetrable fluid-fluid interface, and the no-slip boundary condition, there is a velocity discontinuity at the moving contact
line, and the tangential force exerted by the fluids on the solid bounding surface in the vicinity of the moving contact line
is infinite. The heart of the moving contact line problem lies in the boundary condition(s) at the fluid-solid interface. In
particular, molecular dynamics (MD) simulations showed that fluid slip indeed occurs at the moving contact line. Numerous
models have been proposed over the years, but none have been able to give a quantitative account of the fluid slip measured in
MD simulations. In fact, there has been a lasting debate over the boundary conditions for a fluid flowing past a solid surface.
In recent years, the Newtonian flows in confined geometries have received much attention, and numerous research efforts have
shown that fluid slip occurs at the solid boundary in many circumstances.

MOVING CONTACT LINE IN IMMISCIBLE TWO-PHASE FLOWS

MD simulations have proven to be instrumental in investigating the fluid dynamics in the molecular scale vicinity of
the moving contact line. Through analysis of extensive MD data, we found that the fluid slip measured in nanoscale MD
simulations is governed by the generalized Navier boundary condition (GNBC). The GNBC states that the relative slip velocity
between the fluid and the solid wall is proportional to the total tangential stress — the sum of the viscous stress and the
uncompensated Young stress; the latter arises from the deviation of the fluid-fluid interface from its static configuration. By
combining the GNBC with the Cahn-Hilliard hydrodynamic formulation for immiscible two-phase flows, we have obtained a

∗Corresponding author. Email: maqian@ust.hk

792



continuum model for moving contact line hydrodynamics. Its numerical implementation has produced continuum solutions
in quantitative agreement with MD simulation results [4]. We have also shown that the GNBC can be derived in a variational
approach based on Onsager’s variational principle [5].

MOVING CONTACT LINE IN ONE-COMPONENT VAN DER WAALS FLUIDS

The moving contact line also exists in one-component two-phase fluids, i.e., liquid-vapor systems. Compared to the
immiscible binary fluids, the liquid-vapor systems allow the contact line to move solely through phase transformation (evap-
oration/condensation), and mathematically, there is no stress singularity due to the no-slip boundary condition applied at the
solid surface. There have been several studies of the moving contact line in liquid-vapor systems by the use of diffuse-interface
models subject to the no-slip boundary condition. The diffuse-interface models have been developed for one-component flu-
ids and binary fluids, with the interface intervening between the two bulk phases represented by an interfacial region of finite
thickness. The order parameter, which is the density for one-component fluids or the composition for binary fluids, assumes
distinct constant values in each bulk phase and undergoes rapid but smooth variation in the interfacial region. In our con-
tinuum hydrodynamic model for the moving contact line in immiscible two-phase flows, the GNBC is combined with the
Cahn-Hilliard diffuse-interface modeling for binary fluids [4, 5]. The diffuse-interface modeling can also be applied to the
study of contact-line motion in one-component liquid-vapor systems, with the fluid slip at the solid surface fully taken into ac-
count. The dynamic van der Waals theory has recently been presented for one-component fluids. It provides a general scheme
of two-phase hydrodynamics involving liquid-vapor transition in non-uniform temperature fields [6]. We have combined the
dynamic van der Waals theory for the hydrodynamic equations in the bulk region with Waldmann’s method for formulating
the boundary conditions at the fluid-solid interface [7, 8]. Our derivation focuses on the balance equations for various fluxes
and the positive definiteness of local entropy production. We have derived the hydrodynamic boundary conditions at the fluid-
solid interface, which are able to describe velocity slip, temperature slip (Kapitza resistance), and the cross coupling between
mechanical and thermal processes [8]. Numerical simulations have shown that the contact line can move through both phase
transition and boundary slip, with their relative contributions determined by a competition between the two coexisting mech-
anisms in terms of entropy production [7]. Recently numerical studies have been carried out for droplet motion driven by a
thermal gradient on solid substrates [9] and bubble growth on heated substrates in pool boiling [10].

CONCLUDING REMARKS

We would like to point out that the framework presented above for modeling two-phase flows at solid surfaces, from bulk
equations to boundary conditions, can be generalized for modeling other fluid-solid interfacial phenomena. In this regard,
Onsager’s variational principle has proved to be powerful and successful for describing coupled irreversible processes in the
linear response regime.
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Summary The liquid/solid boundary condition and the stick-slip motion of a three-phase contact line represent complex problems where
our understanding is incomplete. We have performed a series of experiments that address these issues using a quartz crystal microbalance
(QCM). Our first experiment focuses on the evaporation of a sessile drop. The stick-slip motion of the contact line manifests as a sharp
increase in frequency of the QCM, followed by a sharp decrease, whereas the dissipation displays a single sharp peak. QCMs pre-cleaned
in an oxygen plasma environment exhibited a significantly reduced occurrence and magnitude of these features. Second, a drop of liquid
is grown on the QCM in the presence of a second, ambient liquid. The liquids are chosen so that their bulk effects on the QCM frequency
and dissipation are identical in the presence of no-slip. Deviations from the conventional theory are identified as anomalous interfacial
dynamics, such as slip.

The fluid mechanics of a drop on a solid surface is controlled by the motion of the contact line, as well as the boundary
condition at the solid surface, which may vary near the contact line. We have performed a number of experiments exploring
both the bulk boundary condition at the interface between a solid and liquid, as well as the stick-slip motion of a three-phase
contact line. Our measurements are acquired using an ultra-sensitive technique based on a quartz crystal microbalance (QCM).
A QCM is a shear-wave oscillator formed from a very thin piece of quartz crystal. Two electrodes, often made of gold, are
sputtered or evaporated onto each side of the crystal. The crystals are excited by applying an AC voltage at the mechanical
resonant frequency of the oscillator, where the fundamental mode is typically f0 ≈ 5 MHz. The amplitude of the oscillation
will depend on the amplitude of the applied voltage, and is typically a few nanometers or less. Thus the speed of the surface
is usually 1-10 cm/s. Due to the high quality of the quartz crystal, there is very little internal dissipation. In vacuum, QCMs
can attain quality factors of 106 or more.

Upon immersion in a liquid, the transverse oscillations of the quartz couple to the liquid near the surface. The shear waves
radiated by the crystal travel into the liquid, but are damped by the viscosity of the liquid. The characteristic decay length of
the oscillations is known as the penetration depth δ =

√
2η/ωρ, where ω is the angular frequency of the oscillations, η is

the dynamic viscosity of the liquid, and ρ is the liquid density. For a 5 MHz crystal immersed in water, δ ≈ 240 nm. The
local shear in the liquid occurs over this length scale, so that typical shear rate for a low viscosity liquid such as water is ≈
105 s−1. This coupling to the liquid has two effects on the crystal. First, the quartz oscillator behaves as if it has been loaded
with an amount of mass equal to the area of contact multiplied by the penetration depth. Second, the crystal experiences
viscous dissipation in the liquid. Both the frequency and quality factor will shift, and the 1st-order shifts are predicted to be
proportional, yet opposite in sign:

∆f

f0
= − f

1/2
0

n1/2πRQ
(πηρ)

1/2
, ∆Q−1 =

2f
1/2
0

n1/2πRQ
(πηρ)

1/2
. (1)

Here n is the odd harmonic number and RQ is the acoustic impedance of quartz.

s

Figure 1: Linear velocity pro-
file inside a fluid near a solid
surface.

Some of our experiments with the QCM are designed to measure bulk slip occurring at
the interface between a liquid and a solid. The simplest model for molecular slip is known
as Navier slip, which extends the point at which a linear velocity profile becomes zero near
the solid surface to a position inside the solid. This is shown in Fig. 1. The distance below
the surface at which the fluid velocity would be zero is known as the slip length s. More
complicated interpretations of slip can involve non-Newtonian behavior just nanometers
away from the solid surface [1], or the presence of a thin gas film smaller than the mean free
path at ambient conditions [2]. In order to resolve the nature of the fluid/solid interaction
and the slip length, precision experimental techniques are necessary such as total internal
reflection microscopy [3] or atomic force microscopy [4], and each technique spans different
ranges of stress and shear rates.

There have also been a number of studies which investigate interfacial slip using a QCM
[5–10]. However, interpreting deviations from equation 1 is very difficult since the crystal frequency is sensitive to stress,
temperature, and also is somewhat history dependent. If slip is occurring at the interface, it would be nearly impossible to
measure with confidence by depositing a droplet directly from an ambient air environment. To overcome this limitation, we
have developed a pseudo-differential measurement in order to isolate anomalous effects at the liquid/solid boundary due to
slip. Upon immersion into an ambient fluid, a sessile drop of a second fluid will be grown on the QCM electrode using a small
needle. According to equation 1, if the product of the viscosity and density of the fluids is constant, then each fluid should
affect the crystals motion in the same way. If there is slip in either fluid, there will be deviations from the simple prediction.
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Figure 2: Changes in frequency and resistance
during the deposition and evaporation of a water
drop in air (a), and during the growth of a water
drop surrounded by undecane. Both experiments
are performed on the gold surface of a QCM.

Let’s first look at the response of the QCM to the evaporation of a
water drop. Figure 2a shows typical data for a 10µl water drop on the
gold surface of the QCM in an enclosed air environment. The change in
circuit resistance, ∆R is proportional to ∆Q−1, and has been scaled so
that changes in frequency and resistance should lie on top of one another,
according to equation 1. The change in resistance and frequency track
each other almost perfectly, as predicted. The constant of proportionality
is approximately 5×10−7 Ω−1, and is related to properties of the quartz,
not the liquid. Upon deposition, there is a large increase in −∆f/f0
and ∆R (note the frequency axis is inverted). Liquid has been deposited
on the crystal, resulting in an increase in mass (decrease in frequency)
and excess dissipation (increase in resistance). The drop first undergoes
a regime of shrinkage where the contact area with the surface is mostly
constant, as indicated by the plateau between t = 15 and 30 minutes.
During this time the contact angle is decreasing. After t = 30 minutes,
the solid contact area of the drop then begins to shrink until the liquid has
completely evaporated.

There are several spikes in both the frequency and resistance which
are associated with the stick-slip motion of the receding contact line. The
frequency first decreases, then sharply increases, while the resistance
shows a single sharp peak. QCM’s which have been pre-cleaned in an
oxygen plasma environment show significantly less pinning events. In
principle, the size of these features allow us to quantitatively measure the
pinning forces on the contact line. This requires a model for how a force
applied to the surface of the QCM affects both its frequency and dissi-
pation. Although we do not currently have such an analytical model, we
note that our data is consistent with a slow build-up of tangential force
on the crystal as the contact angle decreases, then a regime of high dis-
sipation as the contact line lurches to a new position, and finally a slow
relaxation back towards the equilibrium contact angle.

Now we turn our attention to more sensitive, pseudo-differential mea-
surements which are designed to measure interfacial slip. Preliminary data from the growth of a water drop in this experiment
can be seen in Figure 2b. The water drop is grown in an ambient fluid, undecane, which has the same density-viscosity product
as water at 48◦C. There is a sharp change in the data as the drop is grown, and then both curves flatten out when growth is
ceased. The data is scaled with the same constant of proportionality used in Figure 2. The technique is very sensitive, note
that the changes here are ≈ 100 times smaller than Figure 2a. According to Eqn. 1, these two curves should be superimposed,
yet surprisingly, both the frequency and resistance increase. Since ηwρw = ηuρu, these effects are due to anomalous behavior
occurring the interface. Taken at face value, the change in frequency would suggest a slip length at the water/gold interface of
≈ 5 nm, assuming that the undecane does not experience interfacial slip since it strongly wets the gold.
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Summary We study the motion of droplets in a confined, micrometric geometry, by focusing on the lubrication film effect on droplet
velocity. When capillary forces dominate, the lubrication film thickness evolves non-linearly with the capillary number due to the viscous
dissipation between the meniscus and the wall. However, this film may become thin enough (tens of nanometres) that intermolecular forces
come into play and affect classical scalings. Our experiments yield highly resolved topographies of the shape of the interface and allow us
to bring new insights into droplet dynamics in microfluidics. We report the novel characterization of two dynamical regimes as the capillary
number increases: (i) at low capillary numbers, the film thickness is constant and set by the disjoining pressure, while (ii) above a critical
capillary number, the interface behaviour is well described by a viscous scenario. Considering this, we propose a refined model to predict
the droplet velocity.

DROPLET DYNAMICS

Droplet-based microfluidics is a growing field of research in both academic and industrial issues. Systems are getting
more and more complex, in the perspective of integrating combined functionalities (generation, merging, sorting, breaking...)
requiring an accurate synchronization for automated systems. The synchronization addresses the issue of predicting droplet
velocity while it is carried by a continuous phase of, say, imposed flow rate. Up to our knowledge, despite the importance of
such a question, this issue is not addressed in the literature in confined geometries at microscales. Predicting droplet velocity
call for a full knowledge of the dissipation mechanisms at play, this requires determining the full 3D profile of a travelling
droplet, mostly close to the walls.
Since the historical work of Taylor & Saffman, our understanding of bubbles/droplets displacement in confined geometries
have been steadily refined. For example, the work of Bretherton [1] was the first to describe the influence of the lubrication
film (i.e. the thin film lying between a meniscus and a wall) on the motion of a slender inviscid bubble. Far from the
meniscus, in the flat region, the film reaches a uniform thickness h∞, related to the bubble velocity through the capillary
number Ca = µfUd/γ, where Ud is the bubble velocity, µf the viscosity of the continuous phase, and γ the surface tension.
More precisely, when Ca� 1, the thickness of the film follows hBreth = 1.34 r Ca2/3, where r is the radius of the capillary
tube. Subsequent studies refine this scaling argument [2], e.g. to take into account the influence of surfactants in the outer
phase. In those cases, the power law is not affected, but numerical prefactors are introduced in the expression of h∞ [3].
However, this scaling can be modified by the droplet viscosity [4] leading to thicker films than the Bretherton case.
From these laws on the lubrication film thickness, one can derive the velocity ratio β, taking into account the different sources
of dissipation. Doing so, Dangla, Baroud and Gallaire derived the following expression [5] (DBG formula):

β =
Ud

Uf
=

2

(1 + λ) + α1h
−1/2
∞ + α2h

−1
∞
. (1)

where λ = µd/µf is the viscosity ratio, Uf the outer fluid velocity, α1 and α2 prefactors depending on geometrical parameters.
Among the literature cited above, most of the works on film thicknesses or droplet velocitites were conducted with mil-

lifluidic experiments. However, the typical velocities and lengthscales involved in droplet-based microfluidics would lead to
lubrication films so thin that intermolecular forces should come into play, and the classical macroscopic predictions based on
Bretherton’s model are expected to fail [6].

We report an experimental characterization of h∞ with two dynamical regimes as the capillary number increases, see
Fig.1.a: (i) at low capillary numbers, the film thickness is constant and set by the disjoining pressure, i.e. intermolecular forces
come into play, while (ii) above a critical capillary number Ca∗, the interface behaviour is well described by a Bretherton-like
viscous scenario [7] in which the viscosity of the droplet strongly influences the lubrication film thickness. We also show
at the transition that there is a difference between the interfacial velocity and the droplet velocity. This is possible using a
micellar solution and taking advantage of the surfacic patterns emerging from the oscillating shape of the disjoining pressure
(see Fig.1.b). Tracking those patterns allow recovering the interfacial velocity. The scalings obtained for h∞ lead to a mobility
β which is constant in the disjoining pressure regime and is expected to scale with the DBG formula. We show that this model
in the capillary regime (Ca > Ca∗) does not recover the experimental results as the dissipation is overestimated. The expected
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Figure 1: a) Local film thickness as a function of the capillary number. (•): Experimental data. For 3 ·10−5 < Ca < 5 ·10−5,
two thicknesses coexist: ( ) hmax and (�) hmin.b) Spatial plot of the film thickness, for Ca = 3.4 · 10−5. hmax is coded in
red and hmin in light blue. Note that the color scales is adjusted in order to enhance the pattern contrast.

velocity is lower than what is observed, i.e. the droplet goes too fast. We propose a refinement of the DBG model by taking
into account both the viscosity ratio of the two phases (the importance was evidenced in the investigation of h∞) and the
interfacial velocity, evidenced for Ca ∼ Ca∗ in the measurement of h∞, as a boundary condition for the interface. Doing so
allows building a new model with only one fitting geometrical parameter which recovers well our experiment (see Fig.2).

Figure 2: Velocity ratio β as a function of the capillary number. (•): Experimental data. The blue lines are obtained by fitting
the data with the interfacial velocity model, with the same fitting parameter.
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DYNAMICS OF LEAKY DIELECTRIC DROPS IN STRONG ELECTRIC FIELDS:
BOUNDARY ELEMENT SIMULATIONS

Debasish Das1 and David Saintillan ∗1
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Summary The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic
electrohydrodynamic phenomena best described by the well known Melcher-Taylor leaky dielectric model [1, 2]. In this work we develop
a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of
drops in electric fields. The inclusion of charge convection in our simulations permits us to investigate dynamics in the so-called Quincke
regime of strong electric fields, in which experiments have demonstrated symmetry breaking bifurcations leading to spontaneous rotation
[8]. Most previous simulations have neglected charge convection or assumed axisymmetric drop shapes which prevents investigation of
Quincke rotation in drops. Our numerical simulations show excellent agreement with experiments [9]. We also extend Taylor’s small
deformation theory [1] to include the transient shape deformation, charge relaxation and convection terms in the leaky dielectric model.

INTRODUCTION

The electrodynamics of liquid droplet subject to an electric field is a classic and rich problem governed primarily by
the interplay of electric and viscous stresses at the interface between the two immiscible liquids. In his pioneering work,
Taylor showed that when the drop and the suspending fluid medium are allowed to have finite conductivities, surface charges
can generate on the interface which in turn can drive circulatory currents inside and outside the drop. Taylor [1] derived an
expression for a discriminating function Φ(R,Q, λ) that predicts whether the drop attains a prolate or an oblate shape, and also
calculated the drop deformation D = (L − B)/(L + B) correct to first order in electric capillary number CaE = aε1E0/γ,
where L, B are the length and width of the drop, respectively, and γ is the interfacial surface tension. Taylor’s deformation
parameter D represents deviations from sphericity and the electric capillary number captures the ratio of electric to capillary
forces. Here, E0 is the applied electric field, a is the original drop radius, ε and σ are the fluid permittivity and conductivity
respectively. Throughout this article, subscript 1 and superscript + shall refer to the fluid medium while subscript 2 and
superscript − shall refer to the drop. R = σ1/σ2, Q = ε2/ε1 and λ = µ2/µ1 are the conductivity, permittivity and viscosity
ratios. Melcher and Taylor [2] developed a more complete model applicable for leaky dielectric drops, in which charge
conservation on the drop surface is expressed as

∂q

∂t
+ Jn · JK + ∇s · (qu) = 0, x ∈ S. (1)

where, q = ε1E
+
n − ε2E−

n is the interfacial charge density, Jn · JK = σ1E
+
n − σ2E−

n is the jump in electric current, u is
the interfacial velocity and S is the drop-fluid interface. There have been numerous simulations [4, 7] based on this model to
reproduce experimental results [5]. However, most of these simulations have either neglected charge convection or assumed
axisymmetric drops shapes. Making either or both of these assumptions prevents observation of Quincke rotation of drops.
The novelty of our work lies in the formulation of a boundary element method for the full Taylor-Melcher leaky dielectric
model in 3D domain including transient charge relaxation and convection terms, which enables us to predict Quincke rotation.

PROBLEM FORMULATION

We consider a neutrally buoyant leaky dielectric drop suspended in a fluid medium with no net charge. The electric
problem is governed by Laplace’s equation while the flow problem is governed by Stokes’ equation. We use standard boundary
element method to solve these two equations [6]. Towards this purpose, we discretize the surface of the drop into 6-nodes
curved elements using successive subdivision of an icosahedron. We briefly summarize the numerical method here. At any
given point in time, we obtain the normal component of the electric field, E+

n and E−
n , from the interfacial charge distribution

q on the drop surface using a regularized boundary integral equation and Gauss’s law. Once the electric field is known we can
compute the Maxwell electric stress on the surface. The electric TE and viscous stress TH balance the surface tension acting
on the drop.

J
(
∆TE + ∆TH

)
· nK =

2κmn

CaE
, x ∈ S, (2)

where κm is the mean curvature and n is the unit normal vector. The interfacial velocity is then computed from the hydro-
dynamic force on the surface using the boundary integral equation for Stokes flow [3]. The charge conservation equation
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is then advanced in time using a second order Runge-Kutta scheme. In order to validate our more complicated 3D simula-
tions, we also perform axisymmetric simulations. Additionally, we also use small deformation theory to obtain two coupled
ODEs for the shape deformation D and the interfacial charge that are integrated in time. We only present the results of the
semi-analytical theory and omit the details here for brevity.

RESULTS

The electrohydrodynamics of drops is completely characterised by five dimensionless parameters namely, R, Q, λ, CaE
andMa = 2µ1/(ε1τmwE

2
0) known as the Mason number, which denotes the ratio of viscous to electric forces and involves the

Maxwell-Wagner relaxation time τmw. Our simulations show excellent agreement with the experimental results of Salipante
and Vlahovska [8] and Lanauze et al. [9].
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Figure 1: Comparison of numerical simulations with experiments

CONCLUSIONS

We have developed a three-dimensional boundary element for studying the electrohydrodynamics of drops in strong elec-
tric fields. Our numerical simulations predicts transient drop deformations accurately when compared to experimental re-
sults. Our simulations also enabled us to predict the transition from Taylor regime characterized by oblate-shaped drops and
quadrupolar flow fields to the Quincke regime characterized by titled drops and rotational flows as the electric field strength is
increased. Our simulation method can be easily extended to study the electrohydrodynamics of arbitrary shaped rigid objects,
deformable objects like vesicles and pair interactions as well. Our novel small deformation theory also works extremely well
for small drop deformations and captures the transient behavior accurately; we are currently investigating its extension to
study droplet pair interactions.
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Summary Superhydrophobicity relies on the maintenance of air cushions on structured hydrophobic surfaces buried underwater. 
However, the water-air interfaces are subject to instabilities induced by various mechanisms, leading to the wetting transition from a 
Cassie-Baxter to Wenzel state. In this work, the wetting transition on submerged microtextures under a hydrostatic or flow condition is 
studied. Confocal microscopy technique is used to observe the dynamic evolution of the water-air interfaces. The whole wetting transition 
process is monitored, and the classic CB, Wenzel states and an intermediate metastable state are directly observed. A diffusion-based 
mode is developed to predict the evolution process of metastable states under both hydrostatic and flow conditions. The acceleration of air 
diffusion by a convection regime to is captured, which is well described by a scaling law. The current work reveals the underlying 
mechanism of wetting transition on submerged structures and provides a longevity prediction of underwater superhydrophobicity. 
 

INTRODUCTION 
 
   Superhydrophobic surfaces with remarkable properties have promising applications in many fields such as self-cleaning 
and drag reduction [1]. The existence of air cushions on structured hydrophobic surfaces buried underwater in a Cassie-
Baxter (CB) state is the key mechanism to realize superhydrophobicity. However, many factors cause the instabilities of the 
water-air interfaces and induce the transition from a non-wetted CB to fully wetted Wenzel state along with the loss of 
superhydrophobicity. Understanding the CB-to-Wenzel transition and the dynamic evolution of the metastable states is 
critical for the design of CB-based superhydrophobic structures. 
   Various experiments have investigated the CB-to-Wenzel transition and metastable states in two typical situations, i.e., 
hydrostatic and flow conditions. When submerged in still water, air cushions decay on superhydrophobic surfaces, as 
induced by air diffusion. When structured surfaces are exposed in a flow field, the longevity of the air cushions will 
decrease with increasing flow rate because of the promoted air diffusion. Although previous attempts have been made to 
capture the dynamic transition process, a controlled, sufficiently resolved measurement to establish a quantitative 
understanding is currently absent under both hydrostatic and flow conditions, which is the focus of the present work. 
 

EXPERIMENTAL SETUPS 
 
   Based on the confocal microscopy technique, we built up experimental setups to observe the dynamic wetting transition 
process on submerged microstructured surfaces in still water and channel flow field, respectively. As shown in Fig. 1, for 
the hydrostatic condition, the sample was mounted on the bottom of a sealed chamber. A water immersion objective right 
above the sample was protruded and sealed in the chamber to observe the evolution of menisci under different hydrostatic 
pressures. A similar setup was used for the channel flow condition, but with a rectangular channel of high aspect ratio (10: 
1), through which the liquid flowed circularly. Here, only relatively low flow rate range (less than 12 mm/s) was 
investigated. The sample was embedded in the bottom of the channel with an optical window right above. The surrounding 
pressure was changed by regulating pressure in the water tank connected to the channel. 
 

 
Figure 1. Schematics of the experiment setup for direct observation of the wetting transition process under a hydrostatic 
condition. 
 

RESULTS 
 
Wetting transition under hydrostatic condition 
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   In still water, the wetting transition on structured hydrophobic surfaces submerged underwater is mediated by air 
diffusion under different hydrostatic pressures. Due to the compressibility of entrapped air in the cavities, a depinned 
metastable state can be established in-between the CB and Wenzel states [2]. Especially for the metastable state, the 
impalement of the meniscus was monitored by recording the increase of the sagging depth over time under different 
hydrostatic pressures [3], as shown in Fig. 2(a). A diffusion-based theoretical model is used to interpret the evolution 
process of the metastable states. A similarity law along with a characteristic time scale is derived which governs the lifetime 
of the air pockets and can be used to predict the longevity of underwater superhydrophobicity [2]  

 
2

0

G D

( ) / ( ),
/

hh t A r t
H H K RT t

 (1) 

where h(t) is the sagging depth, A is the meniscus area, H and r are the height and the radius of the micropore, respectively, 
h0 is the initial sagging depth, KG is Henry’s constant, T is the surrounding temperature, R is the universal gas constant and 
tD is the characteristic time scale, equal to G G G,0 G[ / ( )]( / )p p sp Hl D where pG is the gas partial pressure inside the micropore, 
pG,0 is the gas partial pressure at atmospheric pressure, s is the saturation degree and l is the diffusion length which is 
constant in still water. Fig. 2(b) shows that all the experiment data collapse on the curve predicted by the similarity law, 
indicating the simple model captures the main mechanism controlling the longevity of the air pockets, namely, gas diffusion 
under a pressure gradient across a thin boundary layer adjacent to the interface. 
 

Figure 2. Experimental results and theoretical predictions under hydrostatic conditions. (a) Experimental measurement of 
the dynamic evolution of the normalized sagging depth under different liquid pressures. (b) Normalized sagging depth as a 
function of normalized time in the metastable states. 
 
Wetting transition under channel flow condition 
   The instability of water-air interfaces is deteriorated under fluid flow conditions, as the promoted air diffusion from 
entrapped air cavities into bulk water in a convection regime advances the wetting transition. We directly observed the 
meniscus evolution in both pinning and depinned states at several low Reynolds numbers (Re). If the meniscus is initially 
pinned at the pore corners under a relatively low liquid pressure, low flow rates will not cause the wetting transition but 
accelerate the process from one stable state to another. If the meniscus has already depinned before it is subject to flow, the 
evolution rate of metastable states will increase with Re. This positive correlation indicates that the air diffusion is enhanced 
by increasing the flow rate, as reflected by the decrease of the diffusion length l. Consider the diffusion length l as a 
function of Re instead of a constant under hydrostatic conditions. Eq. 1 can also be used to predict the diffusion rate under 
flow conditions. Intriguingly, a 1/3-power law between l and Re was discovered experimentally, that is, 

 1/3(Re) Re ,l k   (2) 
where k is constant related to flow conditions. The power low agrees well with the analysis about boundary diffusion 
problems in flow channels [4]. 
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VELOCITY MEASUREMENTS IN DRAINING FOAM FILMS

J. Seiwert1, R. Kervil1, S. Nou1 & I. Cantat1a)  
1Institut de Physique de Rennes, Université de Rennes 1, Rennes, France

   Summary Foam film drainage under gravity is a key ingredient controlling foams and bubbles stability. It has been shown by Mysels  et al. in 
a pioneering work [1] that the drainage time is proportional to the film width, which was qualitatively explained at that time by the dominant 
role of the menisci at the film boundaries. This implies a complex flow within the draining film that we measure here for the first time using a 
tracer-free innovative velocimetry technique. Fluorescein is added in the film and a dark spot is photo-bleached. This spot then acts as a perfect 
passive tracer during fractions of second, before disappearing by diffusion or mixing. We evidence the lateral part of the film moving upward 
and the central part moving downward and we propose scaling laws for the associated velocities [ 2]. 

INTRODUCTION
   Foam films are stable because surface tension gradients induce a net force on the trapped solution and balance the gravity 
[3]. The velocity within the film, relatively to the interface, is a simple Poiseuille flow, with a typical velocity given by 
the Reynolds prediction vR=ρgh2/η, with ρ the fluid density, g the gravity, h the local film thickness and η the fluid viscosity. 
If h is of the order of 1 micron, this Reynolds velocity is of the order of 10 μm/s which is much lower than the measured  
velocities. The velocities in the film are thus controlled by the interface velocities, which are governed by much more  
complex physical processes, involving the rheological properties of the surfactants. The experimental and theoretical study 
of the gravity drainage process may thus shed a new light both on foam stability and on surfactant dynamics. 

EXPERIMENTAL SET-UP 
   Our measurements rely on a fluorescent labeled surfactant solution (sodium dodecyl sulfat (SDS) 10 g/L, fluorescein 
sodium 0.1 g/L, glycerol 10 % wt). A dark spot is photo-bleached and its trajectory is recorded. This is repeated in time  
during the whole life time of the film, and at many location, in order to obtained the velocity field in the whole film as a  
function of the time. The successive positions of a dark spot are shown in the figure. 

RESULTS 
   The velocity fields shows an downward velocity of the order of 1 mm/s in the central part of the 1 micron thick film (one 
second after its formation). Refine measurements in the first millimetre close to the lateral meniscus evidence an upward  
velocity that  may reach  10  mm/s.  This  coincide  with  an  observable  pinching of  the  film,  in  contact  with  the  lateral  
meniscus. This marginal pinching has been described theoretically by Aradian et al.  [4] and arises from the capillary 
suction in the meniscus.  
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INTERPRETATION
   The total flux of interface across an horizontal line is close to zero, thus validating the assumption of conserved interface area 
during the flow. With this assumption, the velocity field in the film can be deduced from the force balance on an elementary 
piece of foam. It is govern schematically by the following processes: the film near the meniscus get thinner because of the 
capillary suction,  and its mass per unit area (2D density) is thus smaller than in the middle of the film. An Archimede-like force 
arises from this 2D-density discrepancy, based on gravity and surface tension gradient, at the origin of the upward motion. 
Finally the surface viscosity induces a friction between the fluid moving upward and the fluid moving downward and governs 
the velocity scales.    
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ROLE OF NATURAL CONVECTION IN THE DISSOLUTION OF SESSILE DROPLETS
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Summary The dissolution process of small (initial (equivalent) radius R0 < 1 mm) long-chain alcohol (of various types) sessile droplets in
water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density
of the alcohol-water mixture is then considerably less as that of pure water, giving rise to buoyancy driven convection. The convective flow
around the droplets is measured, using micro-particle image velocimetry (µPIV) and the schlieren technique. When non-dimensionalizing
the system, we find a universal Sh ∼ Ra1/4 scaling relation for all alcohols (of different solubilities) and all droplets in the convective regime.
Here Sh is the Sherwood number (dimensionless mass flux) and Ra the Rayleigh number (dimensionless density difference between clean
and alcohol-saturated water). This scaling implies the scaling relation τc ∝ R

5/4
0 of the convective dissolution time τc, which is found

to agree with experimental data. We show that in the convective regime the plume Reynolds number (the dimensionless velocity) of the
detaching alcohol-saturated plume follows Rep ∼ Sc−1Ra5/8, which is confirmed by the µPIV data. Here, Sc is the Schmidt number. The
convective regime exists when Ra > Rat, where Rat = 12 is the transition Ra-number as extracted from the data. For Ra ≤ Rat and smaller,
convective transport is progressively overtaken by diffusion and the above scaling relations break down.

INTRODUCTION

Conventional wisdom says that oil and water do not mix. However, some oily liquids, e.g. long-chain alcohols, are
slightly soluble in water. When a droplet of such an alcohol is placed in a bath of water, it will slowly dissolve. Figure 1
shows an example of a sessile 1-hexanol droplet in water for which the dissolution time τ was about 3 hours. Considering this
long dissolution time, it may seem plausible to assume that mass transport away from the droplet is governed by diffusion.
Equivalent to the diffusion driven mass transport from small gas bubbles [1] or small sessile droplets [2] the relevant time-scale
would in this case then be given by

τd =
R2

0ρd

2D∆c
∼ R2

0 (1)

where R0 is the initial equivalent radius of the droplet, D the diffusion constant of the alcohol in water, ρd is the density
of the droplet material, and ∆c is the difference between the saturated concentration cs at the droplet interface and the
(undersaturated) concentration c∞ < cs far away from the drop. However, for the 1-hexanol droplet with an initial radius
R0 = 0.7 mm, one finds τd ≈ 11 hours, which is much longer than the 3 hours observed experimentally. In this work we
reveal the reason for this discrepancy. We show that above a transition solutal Rayleigh number, which corresponds to the
buoyancy of the alcohol-water mixture, which is lighter than the surrounding clean water, the solute is mainly transported
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Figure 1: (a) Snapshot of a dissolving long-chain alcohol droplet (1-hexanol) in water. The dotted black line indicates the
location of the silicon substrate, which mirrors part of the droplet. The footprint radius Rfp and the contact angle θ are
indicated. (b) Evolution of the aforementioned parameters in time, along with the volume V of the droplet and the equivalent
radius R = (3V/2π)

1/3. All parameters have been normalised by their initial values: V0 = 750 nL, Rfp,0 = 0.825 mm,
R0 = 0.708 mm, and θ0 = 72◦.
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Figure 2: (a) Rate of mass loss as a function ofR for droplets of different alcohols. The mass loss rates are ordered as a function
of alcohol solubility, with 1-pentanol and 1-octanol being the best and least soluble alcohols, respectively. (b) Sherwood
number as a function of Rayleigh number. The plot shows the mean value and the spread for a total of 70 measurements on
droplets with initial volumes 2 nl ≤ V0 ≤ 1200 nl. Since the Ra-number depends both on the droplet size and its material
properties, large Ra−number droplets are easily made using large droplets of 1-pentanol, whereas low Ra droplets are best
studied using small droplets of the poorly soluble 1-heptanol and 1-octanol.

away in a single steady plume above the droplet. Knowledge of the flow structure allows us to derive scaling laws for both the
dissolution rate and the plume velocity in the convective regime, which are in good agreement with experiments. Finally, as
the droplet shrinks and its Rayleigh number drops below the transition value, a transition occurs in which convection dies out
and is overtaken by diffusion.

METHOD AND UNIVERSALITY OF THE DISSOLUTION PROCESS

We combine imaging of the droplet to extract the droplet size and shape with qualitative schlieren imaging and quantita-
tive micro-particle image velocimetry (µPIV) to directly visualize the concentration field and flow around slowly dissolving
droplets of various types of long-chain alcohols in clean water. A snapshot of a droplet and its dissolution dynamics, which
takes place in the stick-jump mode [2], is shown in figure 1. The droplet mass loss as function of droplet size is shown in
figure 2a for various droplets of different liquids. Given the different solubilities of these liquids, the dissolution rate covers
more than 4 orders of magnitude. Nonetheless, the dissolution process, when expresses in terms of the Rayleigh number and
Sherwood number (figure 2b), is universal, showing a diffusive regime in which Sc is independent of Ra, and a convective
regime Sc ∼ Ra1/4. In this convective regime the life time of the droplet can be derived to obey

τc =

(
νρ4dR

5
0

gβc∆c5D3

)1/4

∼ R
5/4
0 , (2)

which is found to be in excellent agreement with our data.

OUTLOOK

The observed convection and associated increase in mass transport also applies to the dynamics of a growing CO2 bubbles
in supersaturated water [3]. Presently, we are studying the dissolution of droplets consisting of mixtures of two liquids
with different solubilities and the dissolution and growth of arrays of interacting droplets. In particular, growth process of
competing droplets are intriguing [4].
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Summary We study the interaction between sessile drops on a soft substrate. When millimetric liquid drops run down a soft, vertical
surface under gravity, we notice deviation of their trajectories from straight line as two drops approach each other. Remarkably, if the wall
is very thick drops always attract and coalesce, whereas two similar drops on a thin layer give rise to a short-ranged repulsion. We develop
force-distance curves from experimentally measured drop trajectories and perform a free energy minimisation that unravels the underlying
mechanism of drop-drop interaction. Importantly, we show that the interplay between capillarity and bulk elasticity of the soft substrate
governs the nature of the interaction force.
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Figure 1: Drops interact as they run down a soft surface under gravity. A) Snapshots of two drops on a thick substrate as
they attract and coalesce. Solid lines represent drop trajectories. B) Two similar drops on a thin substrate repel and move
away from each other. Time stamps accompanying the snapshots show the slow motion of drops. Coalescence corresponds
to t = 0s. C) Measured interaction velocity as a function of shortest distance d between contactlines. Black points represent
attraction, whereas red points show repulsion.

Small objects, trapped at a liquid interface tend to form clusters: a phenomena popularly known as ‘Cheerios effect’ in
reference to the aggregation of breakfast cereals floating on milk [1]. Deformation of the liquid interface due to the floating
particles gives rise to the interaction force. Recently, this mechanism has been exploited for targeted self-assembly and
patterning at the microscale [2, 3]. Here we study the opposite situation. Interaction of liquid drops sitting on a soft solid
interface. Surface tension of the liquid drop causes a non-local deformation of the underneath solid: pulling the substrate up
at the contactline, forming a ridge and pushing it down inside the drop due to Laplace pressure. The ratio of solid surface
tension to substrate elastic modulus (γs/G) gives the radial extent of this deformation around the drop. Figure 1A), B) shows
snapshots from experiment. Ethylene Glycol (γ = 47 mN/m) drops of different volume run vertically down a soft surface
made of silicone gel (DOW Corning CY52-276, shear modulus G = 276 Pa) under the action of gravity. As two drops

∗Corresponding author. Email: s.a.karpitschka@utwente.nl
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come in close proximity, they develop a horizontal velocity component. Interestingly, this interaction velocity is attractive
for very thick substrate and repulsive on thin ones. In figure 1 C) we plot the horizontal velocity as a function of shortest
distance d between two contactlines. Due to dissipation inside a soft material, velocity of drops on soft substrate is orders of
magnitude smaller than their rigid counterpart. Rheology of the soft material relates velocity to interaction force at the drop
contactline [4]. We also develop a 2D variational formulation using linear elasticity to understand the interaction mechanism.
In equilibrium, solid surface tension γs regularises the substrate deformation by forming a Neumann’s triangle at the three
phase contactline. Figure 2 shows substrate deformation due to a single drop and equilibrium contact angles. Presence of a
second drop breaks the equilibrium configuration. We assume interaction between nearest contactlines only and find that the
interaction force arises as the imbalance of Neumann’s condition along the horizontal direction at the contactline,

Fint = γ cos θ + γs` cos θs` − γsv cos θsv. (1)

Here θ, θsv , θs` are the new liquid, solid-vapor and solid-liquid contact angles simultaneously. In our experiments, γsv =
γs` = γs. Equation 1 can be interpreted as the rotation of the solid ridge at the contactline from equilibrium. As we
superimpose the deformation of a second drop onto the profiles shown in fig. 2, due to the nonzero slope of the already
deformed substrate the ridge gets rotated. γs/G governs the slope of the deformed surface and hence Fint, whereas γ/G only
affects the magnitude of the interaction force.

Finally, we address the attractive/repulsive nature of the interaction. Figure 2 shows that the substrate deformation is quite
different for thick and thin case. For the thick substrate (figure 2A), the deformation decays monotonically. Whereas, thin
substrate (figure 2B) shows a dimple (position of zero slope) around the drop and distance of the dimple from the contactline
depends on the substrate thickness. For the thick case, a second drop always sits on a uphill (positive slope), resulting in
an attractive force. Whereas in the thin limit, for large separation distance d, the second drop sits on a downhill (negative
slope) and feel a repulsion. As the slope changes its sign, for very small distance the force is attractive. In short, we just need

A) B)

Figure 2: Deformation of the soft substrate due to a single drop. The dashed line shows the unperturbed flat surface. A) An
elastic half space B) A thin substrate attached to a rigid base at the bottom.

the slope of the deformed substrate due to single drop to calculate the interaction force. This robust mechanism inspires an
axisymmetric calculation of deformation around a drop of circular footprint and distribution of the interaction force along the
contactline.

In the presentation, we shall discuss experimental force measurement, give physical interpretation of the equations derived
from energy minimisation and compare theoretical and experimental force-distance curves. We believe this solid analogue of
the ‘cheerios effect’ will be crucial in understanding cell-cell interaction on soft substrates and influence drop condensation
on soft, thin films.
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 FREEZING VORTEX RINGS INTO SHAPED PARTICLES 
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Summary A miscible drop falling into a quiescent liquid bath forms a vortex-ring-like shape which evolves before eventually dissipating. This 
talk reports on controlling a crosslinking reaction that occurs upon contact of the drop with the buffer bath to ‘freeze’ the vortical formations 
into particles. Remarkably, the gelation reaction can be controlled with precision to yield a range of differently-shaped particles. The particles 
can be mass produced by an electrospray technique and are attractive for a number of applications, including cell-encapsulation and cell-free 
protein production. Reaction and mixing timescales compete during particle formation. A phase diagram is reported that shows how to tune this 
competition to obtain particles of a desired shape. 
 

PARTICLE SHAPES 

 

   The size and shape of hydrogel ‘particles’ is primarily controlled by the electrospraying voltage. A classic scaling law, 
which is valid for liquids with relatively low viscosities and electrical conductivities, indicates an inverse power function 
relationship between droplet diameter (d) and voltage (V)1: 

 𝑑 ~ 𝑉−1/3 
In experiment, droplet size is observed to decrease with increasing voltage according to this scaling. 

 

SHAPE CONTROL 

 
   To understand the controllability of particle shape, a series of experiments and simulations were conducted to study how 
the properties of the drop before impact and after immersion dictate the development of the vortex structure. On impact, 
drop deformation is resisted by interfacial tension while, after immersion, particle formation depends on a rate of mixing by 
invasion of vorticity into vorticity-free regions relative to the rate of reaction. Pre-impact ballistics is controlled by Weber 
(We) and Ohnesorge (Oh) numbers (equivalently, Weber and Reynolds) while post-impact vorticity invasion and reaction is 
controlled by (a different) Reynolds (Re) and Damköhler (Da) numbers,2,3,4, defined as  

 𝑊𝑒 ≡
𝜌𝑣2𝑑

𝜎
, 𝑂ℎ ≡

𝜇

√𝜌𝑑𝜎
, 𝑅𝑒 ≡

𝜌𝑎𝛾

𝜇
, 𝐷𝑎 ≡

𝑘𝐶

𝛾
 

where material parameters in We and Oh refer to the drop liquid (pre-impact) and those in Re refer to the bath liquid (post 
impact).  Specifically, ρ is liquid density, v impact velocity, d drop radius, μ dynamic viscosity, and σ the surface tension. 
Also, 𝑎𝛾 is the rate of formation of interfacial area 𝑎 between regions with and those without vorticity while k represents the 
reaction rate constant and C the concentration of binding sites. Rate 𝛾 is a strain rate estimated from the  
simulation results. In summary, We and Oh numbers characterize the strength of inertia and viscosity relative to surface  
tension of the impacting drops, Re characterizes the rate of area formation by vorticity invasion, 𝑎𝛾, relative to rate of  
resistance by kinematic viscosity, 𝜇/𝜌, and Da characterizes the rate of cross-linking, 𝑘𝐶, relative to the strain rate, 𝛾. 
 

PHASE DIAGRAM 

 

Figure 1. Schematic shapes (axis-of-revolution, dotted) that evolve after a falling drop penetrates an air/bath interface 
(dotted line) and during the subsequent vortex ring formation and spreading (left to right): teardrop (2nd from left) ; jellyfish 
(4th); cap (5th); and donut shape (7th or 8th). Gelation within bath by crosslinking reaction yields particles of similar shapes. 
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   In the experiments the droplet 
fluid is a solution of clay 
nanoparticles in water with 
droplet viscosity varied over two 
orders of magnitude by adding 
glycerol. The bath liquid is a 
solution of water with salt of 
various concentrations – the 
viscosity of the bath liquid does 
not change much from that of 
pure water. The density of the 
bath solution is also close to that 
of the droplet liquid. 
Dimensionless groups We, Oh, Re 
and Da are controlled as 
described above. However, under 
these conditions an alternative to 
the bath Re number is the 
drop/bath viscosity ratio, 
𝜇𝑑𝑟𝑜𝑝 𝜇𝑤𝑎𝑡𝑒𝑟⁄ 4, rationalized by 
the noting that the drop We and 
Oh numbers can be replaced by 
the drop Re and Oh numbers and 
that the drop/bath Re ratio controls 
mixing, which simplifies to the 
viscosity ratio. Moreover, droplet Oh 
changes for the experiments reported only by drop viscosity since the drop size is fixed. 
   Results of particle shapes obtained in the experiments are plotted as symbols on the 𝜇𝑑𝑟𝑜𝑝 𝜇𝑤𝑎𝑡𝑒𝑟  ⁄ versus We phase 
diagram, Figure 2. Regardless of viscosity ratio, an impacting droplet with inertia above We ~ 45.7 cannot be frozen. This 
empirical limit is marked by the vertical green line. Additional lines on the phase plot are contours of constant Da using the 
correlation, 𝐷𝑎 = 𝑐𝑜𝑛𝑠𝑡 𝑂ℎ0.5(𝜇𝑑𝑟𝑜𝑝 𝜇𝑤𝑎𝑡𝑒𝑟  ⁄ )

0.5
𝑊𝑒−0.5, where 𝑐𝑜𝑛𝑠𝑡  is evaluated empirically. The lines of constant Da 

are seen to partition the shapes. Simulations were also performed, and the results matched well with the experiments and the 
correlation. Note that the progression with decreasing Da in Figure 2 – Teardrop-Cap-Jellyfish-Donut – follows the 
progression with increasing time in Figure 1 with one exception – the Cap and Jellyfish shapes are flipped between the two 
progressions. This is correct and the reason will be explained in the talk. 
 

CONCLUSIONS 

 
The gelation reaction of vortex formations into shaped particles is reported, along with a phase diagram giving shape control. 
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Figure 2. Diagram illustrating experimental results for particle shapes frozen 
during vortex ring evolution for different parameters. Results of simulations using 
a phase-field approach are shown as red stars. 
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FROM THE ONSET OF ELECTROSPRAY AND DISINTIGRATION OF
LEAKY-DIELECTRIC DROPS TO STEADY CONE-JET
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Summary We describe the disintegration of a leaky-dielectric drop from the unsteady phenomenon giving rise to the first ejected droplet
to the steady cone-jet mode of electrospray. We summarize the differentiated scaling laws of the two limiting regimes for the relevant
quantities and show their validation from comparison with both numerical simulations and experimental data.

Under certain conditions, a leaky-dielectric drop subject to a strong electric field ejects a thin liquid ligament, which issues
a stream of tiny drops (Fig. 1). The masses and charges of those droplets are essentially determined by the liquid properties,
and reflect the electrohydrodynamic history leading to them. The first droplet produced by this unsteady process is particularly
important due to its very small diameter d1 and large electric charge q1 (per unit volume). After this first phase of the ejection
process, the system reaches spontaneously a quasi-steady regime characterized by a natural (intrinsic) flow rate Q∗, electric
current I∗, and droplet diameter d∗, which essentially depend upon the liquid properties too. If a flow rate Q ≥ Q∗ is
prescribed by, for instance, injecting liquid across a feeding capillary, the above quasi-steady process gives rise to the steady
cone-jet mode of electrospray, which emits droplets of diameter d that transport the electric current I . While the unsteady
ejection of the first droplet is affected by charge relaxation effects, the bulk charge density is negligible in both the quasi-steady
and steady regimes. The complete understanding of the transition from the first unsteady process to the steady cone-jet mode
opens new avenues for the conception of global (e.g. atmospheric) predictive models and innovative technologies using the
liquid ejecta.

The parameters which essentially characterize this electrohydrodynamic problem are the liquid density ρ, viscosity µ,
surface tension σ, electrical conductivityK, and electrical permittivity εi, as well as the environment electrical permittivity εo.
From these parameters, one defines the characteristic length do = (σε2o/ρK

2)1/3, velocity vo = (σK/ρεo)
1/3, electric field

magnitude Eo = (σ/doεo)
1/2, electric charge qo = εoEod

2
o, and intensity Io = σρ−1/2ε

1/2
o , and the intrinsic dimensionless

numbers δµ = ρdovo/µ and β = εi/εo. The unsteady ejection of the first droplet consists in a self-similar ultra-fast collapse
of the droplet’s tip where charge relaxation plays a relevant role [1]. In the final state of this process, inertia, axial viscous
stresses, electrostatic suction, and surface tension balance, which leads to the universal scaling laws [1]

d1 = doδ
−1/3
µ β5/12 , q1 = qoδ

−2/3
µ β7/12 , (1)

for the first droplet diameter d1 and its electric charge q1, which were derived and validated in Ref. [1] (Fig. 2).
The unsteady process described above is followed by a quasi-steady regime characterized by a natural (intrinsic) flow rate

Q∗ and droplet diameter d∗. The scaling laws for these two quantities are [2]

Q∗ = Qoδ
−1
µ , d∗ = doδ

−1/2
µ and Q∗ = Qoβ , d

∗ = doβ
1/2 (2)

when the viscosity and polarization force becomes dominant, respectively. These two scenarios arise for βδµ < 1 and
βδµ > 1, respectively. In both cases, the conservation of mass, momentum, energy, and electric charge leads to the scaling

d∗ = do(Q
∗/Qo)

1/2 and I∗ = Io(Q
∗/Qo)

1/2 . (3)

Figure 3 shows the experimental values for the ratio Q∗/(Qoβ) as a function of (βδµ)−1. For (βδµ)−1 > 1, the minimum
flow rate is essentially independent of β over two orders of magnitude of the parameter (βδµ)−1. The minimum value of
Q∗/(Qoδ

−1
µ ) is approximately unity for all the liquids of this interval, and thus the validity of the scaling law (2)-left is shown

even for large values of δµ.
Finally, if a flow rate Q ≥ Q∗ is imposed by injecting liquid across a feeding capillary, the above quasi-steady process

gives rise to the steady cone-jet mode of electrospray characterized by the droplet diameter d and electric current I . The
scaling laws (3) also provide the values of these quantities, i.e., d = do(Q/Qo)

1/2 and I = Io(Q/Qo)
1/2. These scaling laws

have been widely validated from comparison with experiments [3].
This work is supported by the Spanish Ministry of Economy through Grant No. DPI2013-46485
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Figure 1: (Left) Numerical simulation of the droplet ejection for δµ = 5 and β = 5 and 60. The color indicates the magnitude
of the electric field (red/blue corresponds to high/low values of that quantity). (Right) Experimental images of the first ejected
droplets of 1-Octanol produced with 3000 kV. The labels indicate the droplet number.
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Figure 2: Diameter d1/do versus ζd = δ
−1/3
µ β5/12 (left) and electric charge as a function of ζq = δ

−2/3
µ β7/12 (right) of the

first ejected droplet obtained from numerical simulations (open symbols) and experiments (solid symbols) [1]. The dashed
lines correspond to the fits d1/do = 0.6 ζd and q1/qo = 0.2 ζq .

Figure 3: Q∗/(Qoβ) as a function of (βδµ)−1 [2].
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IN LIQUID METALS  

 
Gunter Gerbeth1a), Martins Sarma1, Ilmars Grants1,2, Imants Kaldre2, Andris Bojarevics2 

1Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany 
2Institute of Physics, University of Latvia, Salaspils, Latvia 

 
Summary Cavitation in liquid metals is supposed to provide conditions for the desired homogeneous dispersion of nanoparticles, 
leading for metal matrix nano-composites to improved mechanical properties. A contactless magnetic field approach to induce 
cavitation in liquid metals is demonstrated, and first results on the dispersion of nanoparticles in various metal samples are given. 
 

INTRODUCTION 
 
   Acoustic cavitation by power ultrasound is widely used for the purpose of nanoparticle dispersion in room temperature 
liquids. There are also numerous experimental reports demonstrating that power ultrasound facilitates the dispersion of 
nanoparticles in a molten metal. So far, this technique has been applied for the production of metal matrix nano-composites 
(MMNC) of light metal alloys [1,2]. Being extremely violent on the micro-scale, the cavitation degrades also the vibrating 
surface transmitting the ultrasound into the liquid. A contactless technique for cavitation excitation is, therefore, desirable, 
in particular for high-melting liquid metals such as steel for which no ultrasonic transducers exist with a reasonable life-time 
in the molten metal. A contactless excitation of cavitation is possible by superposition of induction heating with a steady 
axial magnetic field. This combination creates an alternating radial magnetic body force in a cylinder [3]. The irrotational 
part of this force produces pressure oscillations. This contactless magnetic excitation of cavitation was first demonstrated 
recently [4]. Our experiment is designed to maximize the induction currents and, thus, allow to keep the static field 
moderate. We continue our studies [4] by considering the cavitation inception condition in molten stainless steel and in 
various Al alloys. Results on the dispersion of SiC and TiN nanoparticles in various liquid metals will be presented.    
 

THEORETICAL BACKGROUND 
 
   Consider an infinite liquid metal cylinder of radius a in a uniform magnetic field with a steady and an alternating 
component  

( )( ) .z
ti

z erb+B= eB ω     (1)

   The alternating component of the magnetic field induces an azimuthal current, which in combination with the static 
axial field creates an oscillating radial force. This force is curl-free and, therefore, is balanced by an oscillating pressure 
field. Suppose the frequency ω is high enough to cause a strong skin-effect (σωμ0a

2 >> 1, where σ and μ0 are the electric 
conductivity and magnetic permeability of the metal, respectively), yet low enough to form a long acoustic wave with a 
wave length much larger than a. Additionally suppose that the alternating field component is much smaller than the steady 
one (bA << Bz) where bA = |b(a)|. Under these conditions the alternating magnetic pressure is uniform in the bulk and has the 
amplitude [4]  

.
0μ

AzbB
=p  

   (2)

   Acoustic cavitation is recurring non-linear growth and subsequent collapse of small bubbles due to the oscillating 
pressure in the liquid. In an ideal liquid, where transient voids are only created by thermodynamic fluctuations, the critical 
tension is comparable to the yield strength of metals. Such tension is out of reach for power ultrasound. Thus, the observed 
beneficial effects of power ultrasound in metal casting [1,2] depend on size and density of cavitation nuclei, which is largely 
unknown and uncontrolled. As bubbles start to cavitate, they emit their own sound containing characteristic sub-harmonics 
f0/n, where f0 is the drive frequency and n = 2,3… [5,6]. We use this property for the identification of cavitation inception. 
 

EXPERIMENTAL SET-UP 
 
   Experiments are either made in a cell with a free liquid metal surface or an evacuated cell (p0 < 400 Pa) as shown in Fig. 
1. The latter consists of a quartz tube 5 and water cooled copper caps 3. The cell is placed in a 82 mm wide vertical gap of 
an electromagnet. Water cooled copper screens 8 are used to protect the ferromagnetic pole shoes 9 from the induced 
currents. The refractory side support 6 accomodates vertical variations of the magnetic pressure. The electromagnet 
provides a magnetic flux density of up to 0.5 T in the experimental volume, and the maximum inductor current r.m.s value 
is IAC = 1300 A that corresponds to bA = 0.130 T. The AC frequency is f0 = 14.7 kHz. 
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   Four piezoelectric sensors 4 are glued at the surface of the bottom cap for 
the purpose of sound detection. The electric signal from these elements is 
acquired by a digital oscilloscope at 3.2 s temporal resolution in packets of 
5000 measurements. More details of the setup are given in Ref. [4]. The sample 
1 is placed between two water cooled replaceable vertical supports 2 (diameter 
20 mm). This configuration allows to increase the induction current without 
overheating the sample. Besides, it constrains the sample to the space in 
between.  
   A multitude of samples have been processed up to now. Cavitation onset 
has clearly been detected for tin, zinc and aluminum [4]. Meanwhile several 
aluminum alloys and the commercial non-magnetic stainless steel SAE 304 
have been processed as well. In addition, many tests with the addition of 
various nano-particles such as SiC, Y2O3, TiN, etc. have been performed.  

 
Fig. 1: Scheme of the experimental set-up. 

 
RESULTS 

 
   The onset of cavitation has been clearly observed in all liquid 
metals mentioned above at pressure oscillations (2) in the range of 
28…48 kPa. Figure 2 displays the transient sound spectrum in case of 
an Al+Pb sample. The static magnetic field induction was 0.5 T. The 
inductor current was varied stepwise: raised to 1200 A at t = 590 s and 
sustained for about 10 minutes. The first short burst of an f0/2 sub-
harmonic was observed at t = 610 s. A continuous cavitation signal 
with pronounced f0/2 and f0/4 modes set in after some delay at t = 850 
s. Recently, additional experiments have been realized with an 
increased value of the steady magnetic field Bz using a 
superconducting magnet of up to 5 T. First results will be shown in 
the presentation. 

 

 
Fig. 2: Temporal dependency of the sound power spectrum in 
case of aluminium with lead. Depth of the logarithmic colour 

palette is 40 dB. 
   The results on the dispersion of the various types of nanoparticles 
in the liquid metals are more diverse due to influences of material 
compatibilities, possible chemical reactions and the interfacial tension 
between particles and melts, as well as various approaches of 
nanoparticle insertion into the melts. For the latter our main approach 
consists in using MMNC with an elevated particle concentration 
prepared by the powder metallurgical route, and melting it together 
with the pure metal. Promising results have been obtained recently for 
SiC as well as TiN nanoparticles in Al melts (see Fig. 3 with 
dispersed 100 nm SiC particles in Al-Mg, obtained in the experiments 
with a superconducting magnet), whereas for Y2O3 particles in steel 
melts there was evidence for chemical reactions and the occurrence of 
further compounds in the solidified sample. More detailed results will 
be given in the presentation.   

 

 
Fig. 3: SiC particle doped Al-6%wt.Mg. a) Particles are 
concentrated at the grain boundaries; b) fully dispersed 

nanoparticles within the metallic grains. 

 
CONCLUSIONS 

 
   A contactless route based on magnetic field action has been demonstrated for the purpose of causing cavitation in liquid 
metals. This cavitation is the main clue to avoid agglomeration or to break-up agglomerated compounds of nanoparticles in 
metal melts. Systematic studies on the dispersion of various nanoparticles in various metal melts are going on. 
 
References 
 
[1] Cao G., Konishi H., Li X.: Recent developments on ultrasonic cavitation based solidification processing. Int. J. Metalcast. 2: 57–68, 2008. 

[2] Li X., Yang Y., Weiss D.: Theoretical and exp. study on ultrasonic dispersion of nanoparticles. Metall. Sci. Technol. 26: 12–20, 2008. 
[3] Wang Q., et al.: Direct generation of intense compression waves in molten metals. J. Mater. Sci. Technol. 19: 5–9, 2003. 
[4] Grants I., Gerbeth G., Bojarevics A.: Contactless magn. excitation of acoustic cavitation in liquid metals. J. Appl. Phys. 117: 204901, 2015. 
[5] Neppiras E.A.: Acoustic cavitation. Phys. Rep. 61: 159–251, 1980. 
[6] Cramer E., Lauterborn W.: Acoustic cavitation noise spectra. Appl. Sci. Res. 38: 209–214, 1982. 

813



 

 

a) Corresponding author. Email: hefeng@tsinghua.edu.cn. 
 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada  

THE CHARACTERISTICS OF DROPLETS IMPACTING ON CLOSED-CELL 

HYDROPHOBIC SURFACES 
 

Rui Zhang1, Feng He1a) & Pengfei Hao1 
1School of Aerospace Engineering, Tsinghua University, Beijing, China 

 
Summary Super-hydrophobic surfaces with different shapes of closed-cell micro-pits are designed in this paper to study the influences of 
factors such as solid fraction, cell size and depth to critical pressure and droplet rebounding property. Droplets impacting on open-cell 
textured surfaces undergo a transition from the Cassie state to the Wenzel state whereby the surface gets impregnated by the liquid and 
temporarily loses its super-hydrophobicity. Cassie-to-Wenzel transition would induce the loss of super-hydrophobicity and the so-called 
self-cleaning effect of the substrates since a Wenzel state would lead to a strong increase of adhesion and friction properties. Owing to the 
preservation of air cushion in the micro-pits, droplets impacting on closed-cell micro-structured surfaces can undergo a “mixed state” 
instead of transferring into Wenzel state. Proper design of closed-cell micro-structured surfaces can delay the so-called Cassie-to-Wenzel 
transition and maintain hydrophobicity and water-repellency even under high-speed droplets impact. 
 

INTRODUCTION 

 
   Droplets impacting on solid surface, which consists of interesting physical phenomena and obsesses scientists all the 
time, is commonplace in nature and relevant for many industrial and technical applications, playing important roles in ink-
jet printing, spray coating and cooling, forensic science, aircraft and power-line designing.  

Designing of ice-repellent surface is of more application value than studying deicing strategies after ice accumulation. 
Much attention has been paid to sessile droplets or static liquid film resting on super-cooled surface[1,2]. Nevertheless every 
icing process undergoes the collision between the drop and surface before ice nucleation begins. Early experiments and 
study have demonstrated that drops impacting on super-hydrophobic substrates would experience a harmonic spring-like 
behaviour—impacting, spreading and bouncing[3,4]. However, when the impact velocity increases, splashing arises from the 
breakup of a fine liquid sheet that is ejected radially along the substrate before receding breakup appears. Most recent 
studies focus on the dynamic behaviors of droplets impacting on super-hydrophobic substrates with smooth surfaces, rough 
surfaces and surfaces structured with regular micro-posts. However, closed-cell textured surfaces with micro-pits performed 
much better repellency against drop impact due to their improved mechanical and pressure stability. 

Since the collision of droplets and substrates can induce the CWT transition from non-wetting to wetting state[5], another 
essential indicator for designing anti-icing surfaces is to have high static pressure stability and dynamic pressure stability, 
that is the substrate should preserve super-hydrophobicity even after high speed droplets impacting. Lidiya et al.(2010) 
[6]emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface geometries(such as bricks or 
honeycombs) is significantly higher than that of open-cell structures(such as posts) due to the confinement of air underneath 
the droplet in closed cells. This paper designed closed-cell micro-structured silicon surfaces with varied cell pitch, cell depth 
and solid ratio. The OTS self-assembled membrane technology was used for long lasting hydrophobic treatment. The 
impact behaviors and pressure stability under different falling height of the droplets are studied here.  
 

MATERIALS AND METHODS 

 

Materials preparation  

Different shapes of closed-cell micro-structured silicon surfaces in this work were fabricated using the etching 
technology which are honeycombs, squares and triangles, as shown is Fig. 1. Micro-posts structured surfaces with the same 
solid fraction were prepared as the control group. All the micro-structured surfaces were treated with Octadecyl trifluoro 
silane to improve the wetting property. The static and dynamic contact angle on the as-prepared substrates was measured 
from needle water drops of 5μL with a Standard Contact Angle Goniometer. 
 

         

(a)             (b)             (c) 
Fig.1. Microscopic structure of three different shapes of closed-cell microstructure surfaces:  

(a) honeycombs; (b)squares; (c)triangles 
 
Experimental setup 
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Droplet impacting studies were performed on closed-cell and open-cell micro-structured hydrophobic surfaces at 
different speeds. Water droplets of ~8μL at room temperature are generated from a fine capillary tube equipped with a 
syringe pump from varied heights and fall onto the sample substrate positioned in a desiccator chamber. The temperature 
and humidity in the chamber are controlled constant to reduce the condensation on the substrates. The dynamics of droplet 
impact was recorded by a high-speed camera (Fastcam Mini UX100, Photron) at the frame rate of 5,000 fps with a shutter 
speed 1/25,000s. After each experiment, the substrate were dried using the air blower to remove the residue of water drops. 
 

RESULTS AND DISCUSSIONS 

 
In Fig.2. we could see clear air bubbles in the wetted region of the micro-pits surface under high-speed impact, which 

weaken the adhesion resistance and result in easy rebound. Cassie-to-Wenzel transition is presented in the wetted region of 
micro-posts surface and impalement occurs as a result. 

 

(a)                  

0ms           1ms            2ms             5ms           16ms 

(b)                  

0ms           1ms             2ms            5ms           16ms 
Fig.2.Dynamic behaviours of droplet with velocity of 5.2m/s impacting on (a) micro-post structured surface and (b) micro-

pit structured surface 
 

When droplets impact on textured surfaces, the main force that hinders the wetting of microstructure is the capillary 
forces [7]. According to mechanical equilibrium, we can obtain the equilibrium pressure Peq ~cosθ/a. The contact angleθ 
has an upper limit, namely the advancing contact angleθa. Ifθ>θa , the three-phase contact line will spontaneously slide 
downward along the walls of the pits/posts. Therefore, the critical “sliding” impalement pressure is obtained as Pcrt ~ cosθa 

/a~ηcosθa. Here we define the ratio of perimeter and areaη=L/S (ηh>ηs=ηt). Therefore the critical pressure of the 
honeycombs is the maximum. We can also conclude that the critical pressure increases as the cell size decreases. 
 

CONCLUSIONS 

 
We have presented a systematic experimental and theoretical study of the dynamic process of water droplets impacting 

on micro-pits and micro-posts structured surfaces by analyzing a broad range of wetting and bouncing behaviours including 
critical pressure, wetting area, contact time and so on. Compared to open-cell surfaces, the closed-cell micro-structured 
surfaces present a better rebounding property under high-speed drop impacts.  

Micro-post surfaces are easily wetted by impacting droplets and the wetted area is larger than their counterparts, where 
wetting and adhesion are synchronous. By comparison, the micro-pits can preserve the air cushion better, which acts as a 
spring upon droplets impact, effectively preventing the Cassie-to-Wenzel transition and resulting in a “mixed state”. 
Adhesion does not occur simultaneously with wetting and the bouncing performance depends on the initial kinetic energy, 
wetting and resistance characteristic and the remaining kinetic energy. The smaller and deeper the cell is, the better 
bouncing behaviour the micro-pit structured surface performs. 
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Summary Small drops impinging on soap films flowing at an angle exhibit three fundamental post-impact dynamics regimes: (a) the
drop pierces through the film, (b) it coalesces with the flow, and (c) it bounces off the surface. During impact, the drop deforms along
with bulk elastic deformation of the film. The system thus presents the rare opportunity to explore in-tandem effects of bulk elasticity
and hydrodynamics. For shallow angles of film inclination, bounce-off regime predominates. We outline the analytical framework to
characterize the impact dynamics. The model assumes a deformable drop and a deformable three-dimensional film, and invokes phase
space based parametric analysis. Results can offer a significant step towards optimizing interactions between a spray and a flowing liquid.
Findings for the bounce-off case also indicate a momentum transfer leading to vortex dipole shedding, along with capillary wave generation.
Such an impulsive regime can be relevant for biolocomotion of water-walking animals.

INTRODUCTION

Figure 1: Simple artistic representations of the three major
regimes when drops impinge on a soap film.

In problems of mechanics, soap films are typically idealized as a two-
dimensional system. However, if we track the dynamics of small drops
impinging into a flowing film, the three-dimensionality of the film ma-
terial becomes significant. During the impact, the drop shoots into the
film and deforms it leading to bulk elastic forces being induced upon the
drop. This works in tandem with the interfacial tension. Quite notably,
the problem also includes hydrodynamic effects (like shed vortices) ow-
ing to the shear layers generated from the relative motion between the
gravity-driven drop and the film flow. The impacts can be broadly classi-
fied into: (a) the falling energy of the drop is high enough to make it tunnel down through the film (piercing regime), (b) the
drop hits the film surface and moves downstream with the background stream (coalescence regime), and (c) it hits the film
surface, moves downstream for a finite time, and then bounces off the surface (designated as the bounce-off regime).

Figure 2: (a) The panels (i), (ii), and (iii) have been
adapted from [1]. Panel (i) shows a natural water strider
(Gerris remigis). Panels (ii) and (iii) represent the distor-
tion of the interface when the strider is static at the air-water
interface. Scale bar is 1 cm. (b) A representative impact as
observed in our experiments.

We perform a series of experiments where the drop hits the film surface at
shallow angles (< 10◦). Bounce-off regime is predominant when the angle
subtended between the pre-impact drop trajectory and the film plane is that
small. A quasi-2D projection of the resultant impact is remarkably similar
(see Fig. 2) to certain aspects of the impulsive interaction observed in water
strider locomotion at air-water interface, as studied by Hu et al. [1].
Our work can be schematized into: (1) experimental visualization of drops
impacting the film at shallow angles, and (2) developing a mathematical
model to identify the parameter space for the observed bounce-off regime.
Comparison of the model predictions with experimental observations is cru-
cial towards validating the model idealizations.

EXPERIMENTAL PARAMETERS AND OBSERVATIONS
We have done a detailed experimental study of droplet impacts on a soap
film flow, for a number of inclination angles of the film and heights of fall
of the drop. Fig. 3(a) depicts an artistic rendering of our experimental setup.
The design involves gravity-driven soap film flow (under a constant poten-

tial head) channeled through a slightly inclined wired network. Drops are impinged into the film via a syringe injection system.
Film thickness measures approximately in the order of 40–50 microns and the averaged drop diameter is approximately 1.2
mm. The film length is 194 cm and its width is 5 cm. The soap solution has a concentration of 2.5% by volume in deionized
water. The drops are also made from deionized water. We have 48 bounce-off data-points obtained for 3 different heights of
free descent for the drop, combined with 8 angles of film inclination for each, with 2 trials in each orientation. The imag-
ing techniques used include observing thickness fluctuations (through interferometry) and flow fluctuations (through particle
tracking velocimetry). Digital high speed cameras (Vision Research Phantom v641) have been used for front and side imaging
of the impact, with typical imaging speed range of 4500–6000 frames s−1. As stated above, we mostly observe the bounce-off
regime for smaller angles of film inclination. However, for higher angles of impact, puncture of the film leading to the drop
tunneling through becomes a more common occurrence [2]. It should be noted that a larger drop size significantly complicates
the dynamics leading to a pinch-off regime where a part of the drop connects with the flow and is sheared away while the
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Figure 3: (a) An artistic rendering of the experimental setup. (b) Representative experiment depicting the bounce-off regime (the line of sight is almost
in plane with the soap film, and has been imaged from the side). (c) Vortex dipole and waves shed by the impacting drop. (d) Outlines of the mathematical
idealization. The details are discussed in the section for model analysis. Note that θ in these sketches is the inclination angle of the film to the vertical.

rest of the drop mass tries to track an inertial trajectory. Such an interaction is beyond this work’s purview. Fig. 3(b) shows
a representative bounce-off case, imaged from the side with the line of sight being almost in-plane with the film. The front
image in Fig. 3(c) shows the vortex dipole shed by the drop when it is in contact with the background film flow.

MODEL ANALYSIS

Figure 4: Phase space representation for the bounce-off regime.
The solid red circles indicate the parametric location of the experi-
mental data-points.

The mathematical model to track the drop impact on the film entails
static analysis of the drop after it has impinged into the film, thereby
deforming itself (it spreads out on the film surface) and also the film.
It is assumed that the falling energy of the drop has been used up to
deform the film material and it is at rest for an infinitesimal time.
Our analysis captures this stationary point and considers the forces
that are acting on the drop. Similar modeling techniques, albeit for
different problems of drop impacts have been adopted before, for
example by Chappelear [3] where he studied vertical drop impacts
and entrance in a liquid bath. To capture the parameters necessary
for the bounce-off regime, the resultant force component perpen-
dicular to the film plane should exceed zero. This gives the force
criterion: Fσ(rs)+FE(rs)+ [FB(rs)− FW ] sin θ = F(rs, θ) > 0.
Here Fσ is the interfacial tensile force component perpendicular to

the stream, FE is the bulk elastic force component (assuming linearized elastic deformation transverse to the film flow), FB is
the buoyant force, FW is the drop weight, and rs is the spread radius of the intersectional periphery of the drop on film plane.
Phase space representation
Fig. 4 shows the phase space representation depicting the physical parametric bounds that lead to a bounce-off. The region
enclosed by the curves is determined from the force criterion on F(rs, θ). Ratio rs/r0 quantifies the spreading of the drop as
it impinges into the film surface, with r0 being the pre-impact radius of curvature of the drop. For phase sub-region II, the
higher angle of inclination would lead to a sagging of the film and that results in flow from peripheries on to the test section.
The complication is beyond the scope of this work. In phase sub-region III, rs < r0 defies the experimental observation
that the small drops mostly spread out on impact. Phase sub-region IV consists of negative angles of inclination and is just a
“mathematical construct” owing to the dependence of F on θ. Thus, the predicted model region for the observed bounce-off
regime is only phase sub-region I, colored green. Its vertical extent is tentatively marked by the dashed line at 20◦ inclination.
However, it is an open question as to at what angle the film sagging becomes appreciable (resulting in contamination of the
impact region from peripheral flows) and this demarcation is just a rough estimate. Comparison with experiments turns out
satisfactory as all the experimental data-points, except one, could be located in the predicted phase domain.
Concluding remarks: Momentum transfer and physical applications
A final component of this work compares the momentum transfer from the drop to the film with the locomotion characteristics
of water-walking animals. From the particle tracking velocimetry data, the shed vortex dipole is found to carry a mean
momentum of order 10−7 N-s. It fits well with vortex momentum calculated from Bühler’s theory [4] for water insect
locomotion, which predicts the mean momentum transfer to the shed vortices as 1.48 × 10−7 N-s. This correlation suggests
that this impulsive regime may indeed be relevant for investigating the locomotion of water striders.
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Summary The maximum diameter a droplet that impacts on a surface will attain is the subject of 
controversy, notably for high-velocity impacts of low-viscosity liquids such as water or blood. We 
study the impact of droplets of simple liquids of different viscosities for a wide range of surfaces, 
impact speeds, and impact angles. We show that the spreading behavior cannot simply be predicted by 
equating the inertial to either capillary or viscous forces, since, for most situations of practical interest, 
all three forces are important. We determine the correct scaling behaviors for the viscous and capillary 
regimes and, by interpolating between the two, allow for a universal rescaling.  
 
 
 

 
 
 
 
We show that all drop impact, can be rescaled on a universal curve given by intertial, capillary and 
viscous forces. This is in fact a crossover regime, and so simple scalings do not work. We also include 
impacts for different impact angles that can be rescaled on the same curve by doing a simple 
geometrical correction for the impact angle. Also, for a complex fluid like blood (see image), we show 
that the shear-thinning properties do not affect the maximum diameter and only the high-shear rate 
viscosity is relevant. With our study, we solve a long-standing problem within the fluid-dynamics 
community: We attest that the spreading behavior of droplets is governed by the conversion of kinetic 
energy into surface energy or dissipated heat. Energy transfer into internal flows marginally hinders 
droplet spreading upon impact. We also demonstrate that dynamic wetting plays an important role in 
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the spreading at low velocity, characterized by the dynamic contact angle at maximum spreading. In 
the energy balance, we account for the dynamic wettability by introducing the capillary energy at zero 
impact velocity, which relates to the spreading ratio at zero impact velocity. Correcting the measured 
spreading ratio by the spreading ratio at zero velocity, we find a correct scaling behaviour for low and 
high impact velocity. The influence of the liquid as well as the nature and roughness of the surface are 
taken into account properly by subtracting the spreading ratio at zero velocity 
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Summary We perform water drop impact experiments on a solid cold substrate for temperature ranging from 20 to −60◦ C. Different
behaviors are observed depending on the impact parameters and the substrate temperature. In particular, cracks are observed when the solid
substrate is cold enough. We identify different crack propagation corresponding to dynamical fractures at intermediate low temperature and
quasi-static fracture propagation at very low temperature. A phase diagram is obtained that is interpreted using classical fracture theory.

INTRODUCTION

Drop impact is now an iconic problem of fluid mechanics, concentrating many key-features of multiphase flows [1, 2].
Drop impact exhibits large surface deformation with high stresses, surface flows instabilities and liquid break-up, and it is
present in many physical situations ranging from atomization process in combustion to raindrop erosion, from drop printing
or coating to models for meteorite impacts. In the present work, we investigate experimentally the dynamics of drop impact
on a very cold substrate such that the liquid (water here) would solidify for this substrate temperature. Such configuration is
present in the context of ice formation for aircrafts [3] or liquid metal coating [4]. Since the solidified splat of ice created by
the impact experiences high shrinking due to the thermal shock, we study here the different cracks patterns that can be formed.

(a)
-25°C

(c)
-46°C

(b)
-33°C

5 mm

5 mm

5 mm

t = 0 s t = 8 ms t = 1.1 s t = 2.7 st = 0.2 s

t = 0 s t = 8 ms t = 2.476 s t = 2.480 st = 0.2 s

t = 0 s t = 8 ms t = 0.2 s t = 0.7 st = 0.1 s

Figure 1: Snapshots of the drop impact dynamics on cold surface at different substrate temperature, with D = 3.9 mm and
U0 = 2.4m · s−1. In each case, a solidification front can be observed on the t = 0.2 s figure. For the case (a) T = −25◦, no
crack are present, while different cracks patterns are formed for the two other cases. While a complex cracks pattern appear
suddenly for T = −33◦, a netweork of orthogonal cracks appear step by step for T = −46◦.

EXPERIMENT

We study the impact of a drop of water (diameter D = 3.9 mm) falling by gravity on a steel substrate so that the impact
velocity is thus close to the free fall U0 ∼

√
gH where H is the falling height. The temperature of the substrate can vary

typically from room temperature to −60◦ C. It is reached by plunging a large cube of metal (radius 10 cm) into a liquid
nitrogen bath until the desired temperature is reached. The whole experiment is made into a controlled atmosphere box in
order to avoid frost formation on the substrate. Because of the small impact time (of the order of D/U0), we can consider
that the substrate is at constant temperature during the dynamics, but the small area beneath the spreading drop where thermal
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exchanges are present. The drop dynamics is visualized using two high-speed cameras that allow simultaneous side and
top views. A typical sequence of the impact dynamics is shown on figure 1 for three different temperature. For relatively
low temperature (T = −25◦), right after the impact, the drop spreads rapidly on the substrate until it reaches its maximal
extension. No retraction of the drop is further observed since it is pinned on the solid substrate because of ice formation on
the substrate. Later a solidification front is observed on the surface until the whole liquid splat is solid. When the substrate
temperature is decreased, this general dynamics for the drop impact survives but with important changes during and after the
solidification. Firstly, for intermediate temperature, the solidification front appears earlier, and the maximum spreading radius
decreases slightly. Then, a dramatic change is observed for low enough temperature (here for T ∼ −33◦) some time after
the solid splat is formed. Indeed, while the splat is solid, a very dense crack pattern appear suddenly between two successive
images. When increasing the frame rate acquisition in order to estimate the speed of propagation of the cracks, we obtain
that this value is varying between 800 and 1000m · s−1, which is a fraction of the Rayleigh wave speed. Moreover, high
frequency sequences show that the crack patterns propagates from a localized emission point. As the substrate temperature
still decreases further on (T ∼ −46◦), the crack patterns and dynamics exhibit a strong transition: the cracks appear more
rapidly after the impact but in successive steps so that the cracks patterns are very different.

ANALYSIS

Varying the velocity impact and the substrate temperature, we have obtained a phase diagram identifying the three main
domains of the impact output: no cracks, fast (sudden) craks and slow (by step) cracks, see figure 2. In the presentation, we
will analyse this phase diagram using energetic argument [5, 6].

CONCLUSION

Using drop impact on solid substrate, we obtain different cracks patterns by varying the impact conditions and the substrate
temperature. Since the drop spreading can be control by changing its dynamical parameters, it can be used to investigate and
further on to control the cracks patterns of thin structures.

H
 (c

m
)

T (°C)

No crackFastSlow

Figure 2: Phase diagram for the cracks pattern as the substrate temperature and the drop impact velocity (here noted by H the
height of drop fall) vary.
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Summary: We experimentally investigate the use of topographical features and spatially varying wettability (with moderate receding 
contact angle) to fill and confine a linearly deposited sequence of overlapping micro-droplets (30 µm in diameter) into a stadium-shaped 
well region (Figure 1). Our experiments determine the parameter regimes for which droplet lines are contained within shallow wells (~1 
µm depth) and, moreover, reveal that the presence of topography results in the formation of contact line cusps during fluid redistribution 
.On surfaces with wettability variations, controlled wetting resulting in accurate fluid positioning is achieved without any extreme 
deformation of the contact line. We extend a previously developed quasi-static lubrication model that predicts the post-impact, drop by 
drop evolution of a liquid line on a flat substrate [1] to include topographical and wettability patterns. The model is shown to reproduce 
the overall experimental features accurately.  

 
 

INTRODUCTION 

 

   Sequential droplet deposition using inkjet printing technology spans applications from tissue engineering to 
microelectronics. It relies on the high-precision deposition of material on a target substrate via droplets printed at 
predetermined locations. However, compared to photolithography, inkjet printing alone often results in 
insufficient accuracy of the fabricated product so that its practical applications remain limited. Hence, hybrid processes 
involving photolithographic treatment of the substrate coupled to inkjet deposition are commonly employed in industry to 
achieve high resolution products. In order to evaluate the full potential of the inkjet printing technique for microfabrication, 
the underlying physical processes need to be understood, and predictive models are required for the deposition, coalescence 
and spreading of multiple droplets on variety of substrates. 
 
In the current study, we both experimentally and numerically investigate the deposition of equally spaced, overlapping 
droplets on substrates with geometrical and chemical patterns. Using high speed imaging technique, we visualize the drop 
by drop deposition process on the substrates and based on the observations we extend, a previously developed numerical 
model [1]. Its predictive capabilities are discussed through a quantitative comparison between experiments and theory for 
wells combining topography and wettability variations used in the microelectronic industry. 
 

EXPERIMENTS 

 

The experimental facility (Figure 1) has been designed to record bottom views using a Photron Fastcam SA5 digital high-
speed camera fitted with long distance magnifying optics (Navitar) at 100-1000 fps. After droplet deposition, side view 
image is recorded to measure the thickness of the deposited morphology. A drop on demand printhead (SX3, FUJIFILM 
Inc.) is used to generate droplets with deposition frequency 60Hz-200Hz. The printhead is mounted on a linear motion stage 
(Aerotech – ANT95 L) for accurate positioning of droplets. The inter drop distance (δ) is varied by changing the droplet 
deposition frequency and printhead speed. Substrates with stadium shaped pixel wells are provided by CDT (Cambridge 

Display Technology).  
 

NUMERICAL MODEL 

 

We extend the Model-I derived by A. Thompson et. al [1] to include the effects of geometric and chemical patterning. We 
assume that there is no viscous resistance to the fluid movement within the deposited morphology and fluid arranges itself 
so that pressure is spatially uniform. Under the thin film approximation, the pressure is linked to the interface curvature by 
the Young-Laplace equation as: 
                     𝐏(𝒕) = −𝝈𝜵𝟐(𝒉 − 𝑩)   (1)   
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Where h(x,y) is the height distribution of the deposited fluid interface and B(x,y) is topographical description of the 
substrate. For a known value of the deposited fluid volume, we determine both h(x,y) and P(t) through 
 
                         𝑽 = ∬(𝒉 − 𝑩) 𝒅𝒙 𝒅𝒚   (2)  

The contact line motion is defined by the following spreading law: 

  �⃗⃗� . 𝒅�⃗⃗� 

𝒅𝒕
= 𝑼(𝜽) = {

(𝜽 − 𝜽𝑨(𝒙, 𝒚))𝑼𝟎             𝜃 > 𝜃𝐴

 (𝜽𝑹(𝒙, 𝒚) − 𝜽)𝑼𝟏             𝜃 < 𝜃𝑅

 

𝜃 ≈ −𝑛. 𝛻ℎ. Here �⃗�  is the 2D unit normal directed out of the footprint of fluid interface on the substrate, 𝜃𝐴(𝑥, 𝑦) and 
𝜃𝑅(𝑥, 𝑦) define the spatial variation of the advancing and receding angles on the substrate (chemical patterning). 𝑈0 and 𝑈1 
are calculated experimentally. 
 

CONCLUSION 

 

   We separately evaluate the effects of geometrical and chemical patterning on the controlled wetting during sequential 
droplet deposition. The interaction between the contact line and the shallow geometrical features leads to the extreme 
deformation of the contact lines locally (Figure 2). Similar observations were also made in the experimental study by R. 
Seemann et.al [2]. The wettability patterning on substrates proves to be an effective method to achieve high resolution 
features by controlled wetting. The extended model is shown to reproduce the overall experimental features accurately and 
its predictive capabilities are discussed through a quantitative comparison between experiments and theory.  
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(a) (b) 

Figure 2: (a) Morphology of the deposited droplets on 
a flat substrate (b) Formation of the cusps as a result of 
the interaction between the shallow topographical 
features with the contact line  
 

Figure 1: Schematic representation of experimental setup 
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Summary The Leidenfrost effect is studied for drops on a superheated yet non-volatile liquid pool, and contrasted with the more classical 
situation implying a solid substrate. Experiments reveal the absence of a critical superheat for drops to “levitate” over the roughness-free liquid 
surface, even when the latter is significantly deformed (i.e. for large drops). Inspired from a previous work, a theoretical model is presented 
which compares fairly well to experiments without any fitting parameter. Contrary to the case of a solid substrate, the vapor film here does not 
appear to form chimneys, even for large drops. The evaporation dynamics is also studied, and scaling laws are discussed versus classical ones. 
 

INTRODUCTION 
  
   It is common knowledge that a water drop released over a sufficiently hot surface does not contact the plate nor boils but 
rather “levitates” over a thin vapor film generated by its own evaporation. Although discovered in 1756 [1] and widely 
studied in connection with heat transfer (cooling) technologies, this so-called Leidenfrost effect is the subject of a renewed 
interest nowadays (for a recent review, see [2]), partly in view of new perspectives in the field of microfluidics. Indeed, as 
the small thermal conductivity of the vapor layer slows down the phase change process, while its low viscosity confers a 
large mobility to the drop, the control and manipulation of Leidenfrost drops (envisaged as contactless micro-reactors for 
chemical synthesis/analysis) turns out to be possible using ratchets or other surface structures, external fields, ...  
   Most of the attention has been focused on the case of Leidenfrost drops over a hot solid substrate however, and in that 
case the threshold temperature above which the drop does not contact the plate is significantly higher than the boiling 
temperature (e.g. for water on polished aluminum, the Leidenfrost temperature is about 150°C [3]). This critical superheat is 
notably affected by the roughness of the solid substrate, and also by its thermal properties. In order to separate these two 
effects, it is therefore of primary interest to study the Leidenfrost effect over a pool of liquid, the free surface of which being 
truly smooth down to molecular scales. 
   In addition to the question of the critical superheat, it is also interesting to study the shape of the underlying vapor film 
as a function of the two main control parameters of the problem: the superheat and the drop size (or its volume). Indeed, in 
the case of a solid substrate, it is known that this vapor “cushion” generally displays a pocket/neck structure [4], such as 
seen in Fig. 1. Importantly, when the radius of the drop (as viewed from the top) exceeds about four times the capillary 
length, the central vapor pocket pierces the liquid upwards and forms a “chimney”, as also observed experimentally [3].  

 
Figure 1: Calculated shapes of water drops of various sizes (dimensionless radius of 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5) in 
Leidenfrost state over a flat solid substrate superheated by ΔT=270K above the boiling point of water (100°C). All lengths are 
scaled by the capillary length (2.5 mm for water at 100°C). Reproduced from Sobac et al. [5]. 

METHODS 
 
   Experiments are conducted using drops of ethanol on a pool of silicone oil maintained at a constant temperature thanks 
to a heating plate, a PID controller and a thermocouple that is immersed in the pool close to its surface. Sufficiently viscous 
silicone oils can be heated up to roughly 200°C and are practically non-volatile as compared to other liquids at these 
temperatures. The boiling temperature of ethanol is 78°C, hence the superheat ranges from 0°C to more than 100°C. The 
depth, length and width of the liquid pool are more than ten times larger than the drop radius to avoid finite-size effects. 
   On the theoretical side, the axisymmetric model used here is based on the model described in [5] for solid substrates, 
which was successfully validated by direct fitting-parameter-free comparison with the earlier interferometric measurements 
of the vapor cushion shape by Burton et al. [4]. It is also similar to the model proposed by Snoeijer et al. [6] in that it 
assumes an equilibrium (Young-Laplace) shape for the upper part of the superhydrophobic-like drop, but includes a more 
realistic description of the (heat-conduction-limited) evaporation and vapor flow underneath the drop. The lubrication-type 
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formulation of this low-Reynolds number flow is similar though more general than that proposed by Pomeau et al. [7], 
enabling in particular to study drops of sizes comparable to the capillary length. An important difference with all previous 
models is clearly related to the deformation of the pool free surface, here assumed to be governed by a quasi-static balance 
between capillarity, gravity and pressure excess in the vapor film. The resulting system of ODE’s is solved by a finite-
difference method, using numerical matching between the upper and lower drop shapes (and similarly for the pool surface). 
    

RESULTS AND DISCUSSION 
 
 Figure 2(left) shows a drop of ethanol over a pool of silicone oil maintained at 79°C, i.e. just above the boiling temperature 
of ethanol (78°C), hence demonstrating the absence of measurable critical superheat in this roughness-free situation. The 
surface deformation produced by a drop of the same size on a pool at 118°C is shown in Fig. 2(center), and the extracted 
profile is compared to the prediction of the theoretical model in Fig. 3(right), showing a rather satisfactory agreement.  
 

 
 

 
Figure 2: Left: An ethanol drop (of radius 1.2 mm) on a pool of silicone oil V20 heated at 79°C, just above the boiling point of 
ethanol (78°C). Center: View from underneath the pool free surface, for a 1.2 mm ethanol drop on a pool of silicone oil V20 at 
118°C. Right: Comparison of model predictions with the free surface shape extracted from the center experimental picture (sizes are 
rescaled by the capillary length of ethanol, namely 1.5 mm at 78°C). 

  
Figure 3: Left: Calculated shapes of ethanol drops of various sizes (dimensionless radius of 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4) 
in Leidenfrost state over the free surface of a pool of silicone oil V20 heated at 118°C. All lengths are scaled by the capillary length 
(1.5 mm for ethanol at 78°C). Right: maximal pool surface deformation as a function of drop radius R (seen from above). 

   Figure 3(left) presents the calculated shapes of drops of sizes ranging from 0.2 to 4 times the capillary length for the same 
experimental conditions. While the upper part of the drop does not exceed a certain height, the deformation of the pool free 
surface increases with the drop size, and its maximal value at the center is satisfactorily compared to experimental measurements 
on Fig. 3 (right). A rather thin vapor film is visible between the drop and the pool, and even though a neck exists close to the 
edge, no pronounced vapor pocket is predicted as was the case for a solid substrate (see Fig. 1). No evidence of vapor pocket or 
chimney has been found in experiments either, although it has turned out to be difficult to generate droplets larger than three 
times the capillary length. Finally, results have also been obtained about the evaporation dynamics of drops on a bath, and about 
scaling laws for the typical dimensions of the vapor film under the drop. These results will be presented during the Conference. 
   The authors are grateful to Jacco Snoeijer for promising discussions on further modeling, and thankfully acknowledge the 
financial support of BELSPO (IAP 7/38 Micro-MAST project), ESA-BELSPO (PRODEX Heat Transfer Project), and of the 
Fonds de la Recherche Scientifique – FNRS. This research is also carried out under the umbrella of COST Action MP1106.  
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Summary We carry out a joint experimental and computational investigation of the settling of spheres made of various materials across the
horizontal interface separating two viscous fluids. Over a wide range of conditions, the spheres tow a column of the upper fluid through the
lower one for a while. Considering three situations characterized by markedly different inertia-to-viscosity and viscosity ratios, we show
that this tail may exhibit strikingly different long-term evolutions. We identify the underlying mechanisms and discuss them in connection
with several canonical phenomena, especially the instabilities of sheared viscous interfaces and those of stretched viscous threads.

INTRODUCTION

The situation in which a rigid body settles through a horizontal interface separating two layers of fluid with comparable
densities and otherwise at rest is encountered in a wide variety of applications ranging from environmental sciences (ashes
released in volcanic eruptions, sedimentation of marine snow,...) to engineering (coating processes, phase detection in oil
industry). This flow configuration is known to give rise to two strikingly different behaviours [1]. The regime in which
viscous and capillary effects dominate frequently yields a flotation configuration in which the body is stopped nearby the
interface until the film located ahead of it is entirely drained. In contrast, when capillary effects are small enough and/or
inertia effects are large enough, the interface deforms more easily, so that the body may fall across it, then towing a tail of the
upper fluid while settling into the other. Although the first configuration has been extensively studied because of its relevance
with respect to coalescence, much less is known about the tailing configuration, except in the Stokes limit [2]. We focused
on that configuration in the regime in which inertia, viscosity and capillary effects all matter. To better understand the basic
hydrodynamic processes that contribute to the development and later the retraction of the tail, we carried out an extensive
investigation of this generic problem, based on a combination of experiments and direct numerical simulations.

METHODS AND PROBLEM DEFINITION

Experimentally, single rigid spheres made of various materials were released well above an interface separating a layer
of water or of a mixture of glycerin and water, and an upper, slightly lighter, layer of silicon oil. A detailed evolution of the
sphere motion and of the interface shape was obtained using a high-speed video camera and image processing techniques.
Computations were carried out by solving the full Navier-Stokes equations with a Volume of Fluid approach combined with
an Immersed Boundary Method to follow the sphere and enforce the no-slip condition at its surface.
The problem is governed by five dimensionless parameters, among which the Archimedes (Ar) and Bond (Bo) numbers which
compare gravitational effects to viscous and capillary effects, respectively, and the viscosity ratio of the two fluids (λ) were
varied by several orders of magnitude. The solid-to-fluid density contrast (ζp) and the fluid density contrast (ζ) were only
varied by one order of magnitude. Depending on the value of these parameters, a variety of flow regimes, settling velocity
evolutions and short- and long-time tail dynamics was observed. In this talk we shall focus on three specific configurations
that we find illustrative of the richness of the dynamics that take place in these systems.

THE CONICAL-BLOB AND BULGE-COROLLA REGIMES

When the lower fluid is much less viscous than the upper one (λ � 1), only slightly heavier (ζ � 1), and inertia effects
are moderate (Ar . 10), the tail first takes a long, conical shape until pinch-off occurs slightly above the top of the sphere.
The latter then continues to settle while carrying a drop of the upper fluid, the volume of which may be of the same order as
or even larger than its own volume. The tail then retracts without breaking, in agreement with previous observations with very
viscous pre-elongated drops [3]. The blob at the the bottom of the tail recedes with a velocity of the order of that predicted by
the inviscid Taylor-Culick-Keller model but may exceed it by nearly 40%, owing to buoyancy effects resulting from the fluid
density contrast ζ. A different scenario takes place when inertia effects are strong enough (Ar & 10). Here a small bulge forms
at the film surface in the rear region of the sphere and evolves in a series of skirts that develop along the tail and propagate
upstream (left sequence in figure 1). Detailed examination of the evolution of the initial disturbance and comparison with the
case of air bubbles crossing a similar fluid-fluid interface, in which this scenario has never been observed [4], suggest that the
instability at work is similar to those observed at the interface between two shearing fluids. The thin oil film encapsulating the
sphere being much more viscous than the outer fluid and the wavelength of the amplified disturbance being much larger than
the film thickness, the phenomenon is reminiscent of the long-wave viscous instability described by Yih [5].
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Figure 1: Left sequence: A steel sphere with Ar = 9.2 and Bo = 0.46 settling through a silicon oil/water interface with
λ ≈ 2. 10−3, ζ = 0.03. Right sequence: a Teflon sphere with Ar = 23.1 and Bo = 1.9 settling through a silicon oil/water-
glycerin interface with λ ≈ 0.84, ζ = 0.26; experimental images have been magnified by a factor of 1.4 with respect to
computational snapshots; colors in the computational sequence refer to the magnitude and sign of the azimuthal vorticity.

THE CYLINDRICAL-BEADS REGIME

A strikingly different phenomenology takes place for O(1) viscosity ratios and Bond numbers, O(10−1) fluid density
contrasts and O(10) Archimedes numbers. In that regime, the thick initial basis of the column gently thins down and a long
cylindrical tail develops for a while. At some point it is about to break at its very top but, as the computations reveal, the neck
reopens owing to the restoring effect of the standing wave system that develops since the early stages of the tail formation on
the initial plane of the interface. After pinch-off eventually occurs at the back of the sphere, an end-pinching process takes
place, in line with the findings of [3]. The tail bursts into an essentially bi-modal series of mother and satellite droplets along
the scenario described in [6] (right sequence in figure 1). The size of the primary droplets that form during this process agrees
well with Tomotika’s predictions [7].

CONCLUSIONS

A joint experimental and computational investigation of the settling of a sphere across a horizontal fluid-fluid interface
allowed us to identify a series of markedly different crossing scenarios. In particular, the long-term evolution of the light fluid
column towed by the sphere follows strikingly different routes, depending on λ and Ar and, in a more subtle manner, on the
other three dimensionless parameters. The driving mechanisms at work in these late evolutions turn out to be closely related
to canonical situations examined so far in very different contexts, especially those of sheared viscous films or the retraction of
viscous or inviscid threads.
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Summary The forced radial expansion of a spherical liquid shell by an exothermic chemical reaction is a prototypical configuration for the
explosion of cohesive materials in three dimensions. The shell is formed by the capillary pinch off of a thin liquid annular jet surrounding
a jet of reactive gaseous mixture at ambient pressure. The encapsulated gas in the resulting liquid bubble is a mixture of hydrogen and
oxygen in controlled relative proportions, which is ignited by a laser plasma aimed at the center of the bubble. The strongly exothermic
combustion of the mixture induces the expansion of the hot burnt gas, pushing the shell radially outwards in a violently accelerated motion.
That motion triggers the instability of the shell, developing thickness modulations ultimately piercing it in a number of holes. The capillary
retraction of the holes concentrates the liquid constitutive of the shell into a web of ligaments, whose breakup leads to stable drops. We offer
a comprehensive description of the overall process, from the kinematics of the shell initial expansion, to the final drops size distribution as
a function of the composition of the gas mixture, the initial shell radius and thickness.

INTRODUCTION

Capillarity is the familiar manifestation of the cohesion of Liquids. Since Laplace (1805), we know that intense attractive
forces between the molecules bridge the small with the large since they shape liquid/vapor interfaces (meniscii, liquid bridges,
bubbles, drops etc...) at macroscopic scales through the concept of surface tension. In some situations however, liquids
disgregate, following the neologism of R. Clausius (1862), meaning that they fragment by the action of deformations whose
intensity competes with that of cohesion forces [1]. We consider here a liquid bubble encapsulating a hydrogen/oxygen gas
mixture [2], fragmenting by the sudden deflagration of the mixture, and we offer a comprehensive description of the overall
process, from the kinematics of the shell initial expansion, to the final drops size distribution as a function of the composition
of the gas, and the initial shell radius and thickness of the bubble.

PRINCIPLE AND OBSERVATIONS

The shell is formed by the capillary pinch off of a thin liquid annular jet surrounding a jet of reactive gaseous mixture
at ambient pressure. The encapsulated gas in the resulting liquid bubble is a mixture of hydrogen and oxygen in controlled
relative proportions, which is ignited by a laser plasma aimed at the center of the bubble (Fig. 1a). The strongly exothermic
combustion of the mixture induces the expansion of the hot burnt gas. The flame radius is

rf = ṙf t (1)

where ṙf is the flame velocity (Fig. 1b). This expansion motion pushes the liquid shell radially outwards in a violently
accelerated motion so that its radius is

R

R0
= 1 +

1

4

(
rf
R0

)3

(2)

This super-accelerated motion (R ∼ t3) triggers a Rayleigh-Taylor type instability of the shell, developing thickness modula-
tions, which ultimately puncture the shell in a number of holes. This happens a time t? after the mixture ignition, corresponding
to an instability radius R(t?) given by

ṙf t?
R0
∼We−1/4 and

R(t?)

R0
− 1 ∼We−3/4, where We =

ρ ṙ2fh

σ
(3)

The mean distance between the holes is given by the most amplified instability wavelength as (Fig. 1c)

λ

R0
≈ 2π

We3/4
, (4)

The capillary retraction of the holes concentrates the liquid constitutive of the shell into a web of ligaments, whose breakup
leads to stable drops. These are distributed in size d as [3]

Γν(x = d/〈d〉) =
νν

Γ(ν)
xν−1 e−νx, (5)
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Figure 1: (a) Fragmentation of a liquid shell with initial radiusR0 = 2.5 cm by the combustion of a hydrogen/oxygen mixture,
showing sequentially the shell expansion, the onset of the shell piercing at t = t?, the nucleation and coalescence of the holes,
the formation of a web of ligaments, and finally the breakup of the ligaments in a dispersion of droplets. (b) Detail of the
flame front propagation inside the liquid shell. (c) Holes rims collisions, ligaments destabilization, and drops formation.

with an index ν function of the ligaments initial corrugation, itself depending on the holes density while the mean droplet size
〈d〉 simply results from mass conservation

〈d〉 ∼
√

2λh

π
, (6)

thus completing the description of this problem in which the fragments distribution is the result of a competition between
deformation, breakup and cohesion [4].

CONCLUSION

A spherical liquid shell expanded by the deflagration of the gas mixture it encloses is a prototype of explosive fragmenta-
tion relevant to a collection of phenomena spanning over a broad range of length scales, among which are: Exploding blood
cells in the human body, spore dispersal from plants, boiling droplets, underwater explosions, magma eruption in volcanoes.
The objective of the present study is to illustrate a fragmentation scenario in a particular instance where each step can be
documented and rationalized with certitude: We depict successively the dynamics of the flame in the gas, inducing that of
the shell itself, the stability of the shell in its radially accelerated motion and its final disintegration into stable fragments.
All steps, from the initial state to the final dispersion of droplets, are described quantitatively, and rationalized by simple but
accurate arguments. The connexion with generally admitted lumped descriptions in fragmentation will be made.
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Summary PHYSALIS is a physics-based method for the numerical simulation of fluid flows with many suspended spherical particles. After
a brief exposition of the method, we present results on the sedimentation of thousands of particles, illustrating in particular the presence of
concentration waves, and on the random rotation of a fixed particle in an incident turbulent flow.

Progress in computational capabilities – and specifically in the realm of massively parallel architectures – render possible
the simulation of fully resolved fluid-particle systems. This development holds the promise of major improvements in the
physical understanding and modelling of these systems when the particle size is not small and their concentration appreciable.
This work starts with a brief overview of thePHYSALIS method for the solution of the incompressible Navier-Stokes equations
with finite-sized spheres, and then describes the results of several simulations.

PHYSALIS starts from the simple observation that, due to the no-slip condition, the flow near a solid particle differs very
little from a rigid-body motion and it can, therefore, be linearized about such a motion. Thus, after a simple change of
the dependent variables from the original velocityu and pressurep to modified velocityũ and pressurẽp, the momentum
equation can be reduced to a Stokes-like form in the immediate neighborhood of each particle. An exact analytic solution of
this equation exists in the form

ũ (r, θ, ϕ) =

∞
∑

l=0

l
∑

m=−l

Almũlm (r) Y m
l (θ, ϕ) , p̃ (r, θ, ϕ) =

∞
∑

l=0

l
∑

m=−l

Blmp̃lm (r) Y m
l (θ, ϕ) , (1)

Here(r, θ, ϕ) are local spherical coordinates with origin at the particle center andY m
l are spherical harmonics. The functions

ũlm andp̃lm are simple algebraic functions ofr known analytically. The no-slip condition at the particle surface is satisfied
exactly due to the form of the functions̃ulm whatever the order of truncation of the infinite summations. The time-dependent
Lamb’s coefficientsAlm andBlm account for an arbitrary flow in the neighborhood of the particle and are simply related to
the force, couple, and higher-order multipoles associated with the particle. The expressions (1) are used as a “bridge” from
the particle surface to the closest grid nodes, away from which the full Navier-Stokes momentum equation is solved by a finite

Figure 1: Snapshot of 2048 particles sedimenting under gravity; |u∗| and|w∗| are the fluid and particle velocities normalized
by the single-particle terminal velocity. Color indicates the magnitude of the vertical velocity. The left panel is the fluid
velocity and the right panel the particle velocity.

∗Corresponding author. Email: prosperetti@jhu.edu
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difference method. The Lamb coefficients are determined iteratively by matching the local solution (1) to the finite-difference
solution. Advantages of the method are the spectral convergence of the expansions in (1), which permits the use of a relatively
coarse discretization without loss of accuracy, the use of a regular Cartesian grid in spite of the curvature of the particle
boundaries and the information on forces, couples and higher-order multipoles directly available from the Lamb coefficients
with no need for further computations.

An example of the possibilities offered byPHYSALIS is shown in figure 1, taken from a recent paper [1]. Here 2048
spheres settle under gravity in a computational domain with no-slip lateral walls and periodicity in the vertical direction; the
mean particle volume fraction is 20%. The figures show the fluid (left) and particle (right) vertical velocities after statistical
steady state has been reached. The grid has 8 mesh lengths per particle radius and the summations in (1) contain 49 terms.

The particle Galileo numberGa = ν−1
(

|ρp/ρf − 1| 8a3g
)1/2

, with ρp andρf the particle and fluid densities, respectively,a
the particle radius andg the acceleration of gravity, equals 49.

Results of this type contain a wealth of information and one of the challenges is to find useful way to extract them. We
have found that the use of the Fourier series is a useful tool to extract information related to the particles. For example, let
α(z, t) be the particle volume fraction averaged over horizontal planes. The Fourier expansion of this quantity is given by

α(z, t) = v

∞
∑

ℓ=−∞

nℓ(t)e
−ikℓz , with nℓ(t) =

1

LxLyLz

〈

Np

∑

α=1

eikℓzα(t)

〉

. (2)

Herev is the particle volume,Lx, Ly andLz are the dimensions of the computational domain andkℓ = 2πℓ/Lz; the sum
is over all theNp particles, located atzα(t), and the angle brackets indicate horizontal averages. A similar method can be
used to extract the horizontally averaged vertical particle velocityw(z, t). A space-time representation ofα(z, t) andw(z, t)
obtained in this way is shown in figure 2 where the color is the magnitude of the function. These results were obtained from
a simulation similar to that of figure 1 except that fully periodic boundary condition were imposed on all the boundaries
of the domain; there were 500 particles with a mean volume fraction of 8.7%,Ga = 75 andρp/ρ = 3.3. It is evident that
there are upward-propagating concentration waves in the system, with the higher velocities coinciding with higher volume
fractions. Several other features can be extracted from such simulations such as the dynamics of particle tetrads, clustering
and multi-particle statistics.

Another interesting example of the application ofPHYSALIS concerns the random rotation of a fixed particle in an incident
turbulent flow. One finds, for example, that, while the flatness of the three components of the hydrodynamic couple is
significantly larger than for a Gaussian (about 3.8 forReλ = 47.2,Rep = 150,ρp/ρ = 2, a/ηk = 16,a/ℓ = 0.38 witha the
particle radius,ηk the Kolmogorov length andℓ the integral length scale), the flatness of the angular velocity is close to the
Gaussian value of 3.

Acknowledgment: This study has been supported by NSF grant CBET 1335965.
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Figure 2: Space-time diagrams of the particle volume fraction(left) and vertical particle velocity (color indicates the magnitude
of the function) for the sedimentation of 500 particles; note the upward-propagating concentration waves.
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Summary In this paper, 3D direct numerical simulations of gas-assisted atomization are performed to investigate the spray formation
mechanisms. The shear between the gas and liquid jets introduces breakups of the liquid and turbulent flows in the gas. Particular attention
is focused on the effect of grid resolution on the turbulence and spray characteristics.

INTRODUCTION

Gas-assisted atomization is commonly seen in many industrial applications and natural phenomena. In a typical configura-
tion of gas-assisted atomization, the breakup of a slow liquid jet is assisted by a fast coflowing gas jet. Due to the large velocity
difference between the liquid and gas jets, a Kelvin-Helmholtz instability develops at the gas-liquid interface. The resulting
wavy structure on the interface grow temporally and spatially, which eventually leads to significant breakup and atomization
of the liquid jet. Despite the substantial previous theoretical, numerical, and experimental research efforts on gas-assisted
atomization [1], the underlying mechanisms (in particular in three-dimension) that leads to spray formation remain unclear.
The interaction between the turbulence and the interfacial flows is still poorly understood [2]. In order to better understand
the mechanisms of spray formation, in this work we simulate a model of the quasi-planar experiment of [3].

SIMULATION METHODS AND SETUP

The computational domain is a box of dimensions Lx × Ly × Lz , where we inject two streams, liquid and gas, separated
by a solid plate of size `x× ey×Lz through the boundary at x = 0, with velocities Ug and Ul. The thickness of the liquid and
gas streams are H and H − ey , respectively. The dimensions of the box are Lx = 16H and Ly = 8H and Lz = 2H . If the
physical parameters, such as the large liquid-to-gas density ratio, exactly as in the experiments [3] is used, then it is impractical
to fully resolve down the smallest physical scales with the current computational power. Therefore, here we choose a set of
parameters that allow faster and easier simulations while still placing the flow in the high-speed atomization regime. The
values of the corresponding dimensionless parameters are given in Table 1, using standard notations.

M = ρgU
2
g /(ρlU

2
l ) r = ρl/ρg m = µl/µg Reg,δ = ρgUgδ/µg Weg,δ = ρgU

2
g δ/σ RegρgUgH/µg

20 20 20 1000 10 8000

Table 1: Key dimensionless parameters. The thickness of the gas boundary layer above the separator plate is denoted by δ.

We solve the Navier-Stokes equations for incompressible flow with sharp interfaces and constant surface tension. The
fields are discretized using a fixed regular cubic grid, and use a projection method for the time stepping to incorporate the
incompressibility condition. The interface is tracked using a Volume-of-Fluid (VOF) method with a Mixed Youngs-Centered
Scheme to determine the normal vector and a Lagrangian-Explicit scheme for the VOF advection. Curvature is computed
using the height-function method. Surface tension is computed from curvature by a well-balanced Continuous-Surface-Force
method. The whole method is implemented in the a free code PARIS [4] and described in [5, 6].

The simulations are performed on three grids called M0, M1 and M2, so that Mn has H/∆x = 32 × 2n points in the
liquid layer. An approximate steady state is reached at about Ugt/H = 200 and the simulations are then continued until
Ugt/H = 400. For the M2 mesh, the simulation was perfomed using 2048 processors and the total simulation time is about
5 × 105 CPU hours. The results presented correspond to the M2 mesh, unless stated otherwise.

RESULTS

A global view of the atomizing liquid jet is shown in Fig. 1 (a), and a closeup of the vortical structures arising from the
gas-gas and the gas-liquid mixing layers is shown in Fig. 1 (b). The interface is unstable due to the shear between the gas and
the liquid and an interfacial wave develops. The interfacial wave grows and forms a thin liquid sheet which in turn breaks
into ligaments and droplets. The unbroken part of the liquid sheet eventually reattaches to the domain bottom. Turbulence
develops from the mixing layers and the downstream flow becomes fairly violent and chaotic.

∗Corresponding author. Email: stephane.zaleski@upmc.fr
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(a) (b)

Liquid

Gas Separator plate

Figure 1: (a) The atomizing jet. (b) Turbulent vortical structures in the primary breakup region.
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Figure 2: Turbulence and atomization characteristics: (a) TKE; (b) liquid volume fraction; results of (c) TKE and (d) liquid
volume fraction obtained by different mesh resolution; (e) droplet-size distribution.

The statistical characteristics of the turbulent multiphase flows are investigated by averaging the data obtained from DNS.
The average flow field is two dimensional, depending only on x and y. Therefore, averaging is conducted temporally and
spatially (in the z direction) and the results of turbulent kinetic energy and average liquid volume fraction are shown in Fig. 2
(a) and (b). The TKE of the gas-liquid mixing layer is observed to be more intense than that of the gas-gas mixing layer. The
average liquid jet core and the spreading liquids can be seen in the contour of liquid volume fraction. The open angle of the
liquid spray is measured about 14.9 degrees.

Finally, we examine the effect of grid resolution on the TKE, the liquid volume fraction, and the droplet size PDF, see
Fig. 2 (c), (d), and (e). It is seen that the results of TKE and liquid volume fraction obtained by M1 and M2 meshes agree
well at different streamwise locations, indicating that the fine mesh M2 used is sufficient to capture the major characteristics
of turbulent multiphase flows. It is also shown that the grid resolution requirement is more demanding for droplet size
distribution. The size distributions of large droplets for different meshes are in good agreement. Nevertheless, to capture the
small droplets formed a fine mesh has to be used. Even the finest mesh used here seems to be insufficient to capture all the
small droplets formed. At last, the highly skewed log-normal distribution, is shown to well capture the size distribution profile.
To better resolve the formation of these very small droplets, a finer mesh is required and this is relegated to future works.
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Summary Geometry is found to play a critical role in the evaporation kinetics and flow dynamics of volatile sessile drops of pure 
liquids and binary mixtures. In non-spherical drops, the coffee ring effect leads to a spatially uneven pattern along the contact 
line with high-concentration of particles observed at the “corners”. This contrasts to the homogeneous ring stain observed in 
spherical drops. The local and overall evaporation rates are found to change accordingly. The spontaneous onset and growth of 
thermocapillary instabilities in more volatile drops also becomes spatially dependent. In this case, “corners” become the areas 
where the instabilities are first detected, i.e. the most unstable regions. Finally, a segregation process is observed during the 
alcohol depletion in water-ethanol drops. This phenomenon, once again, is governed by geometry. All the observations are 
rationalized in terms of the contact-line curvature. 
 

The evaporation of a liquid droplet on a solid substrate is 
a common physical phenomenon encountered in a vast variety 
of situations; it is therefore unsurprising that it has received 
significant attention in the literature. This is an intricate two-
phase problem whose most significant ingredients include 
phase change, contact-line dynamics, non-uniform geometry 
and a complex Marangoni effect resulting from not only 
spatially but also temporally varying gradients of temperature 
(and of solutal concentration in binary mixtures). Due to the 
intricacy of these phenomena, the study of volatile sessile 
drops has thus been restricted to spherical configurations for 
the most part to take advantage of axisymmetry to simplify the 
problem to 2D. In most real-life situations, however, spherical 
sessile drops are the exception rather than the rule. We thus 
revisit milestone investigations dealing with the bulk flow [1], 
evaporation kinetics [2], stability [3], and binary-mixture 
dynamics [4] of spherical sessile drops and extend their scope 
to the poorly understood and largely unexplored case of non-
spherical geometries. Experiments and numerical simulations 
are combined to illustrate the findings of our work [5,6].  

Fig. 1 illustrates the different pattern left by a drying drop 
of coffee when the contact area is (a) spherical and (b) 
triangular. In accordance with the explanation offered by 
Deegan et al. [1], mass conservation leads to a radially 
outwards flow towards the contact-line which results into the 
typical uniform ring stain pattern (Fig. 1a). When the contact 
area is triangular (Fig. 1b), however, the pattern shows darker 
regions at the “corners” (larger contact-line curvature). This 
also indicates that corners are areas where the local 
evaporation rate is higher and where there emerge preferential 
evaporation-driven currents in the bulk flow. The overall 
evaporation rate also depends on the drop shape. These 
experimental finding show good agreement with the 
accompanying numerical simulations. 

We then consider drops of a liquid with higher vapour 
pressure. Sefiane et al. [3] discovered the spontaneous 
emergence of thermocapillary instabilities in spherical drops 
of FC-72, ethanol and methanol while no thermal motion was 
observed for water drops. Fig. 2 shows the onset and growth of 
these instabilities in ethanol drops with different shapes. 

 

 
 

Fig. 1 - Different stains left by a (a) spherical and a (b) non-
spherical sessile drop of coffee. As expected, the coffee 
particles form a uniform ring stain when the contact area 
circular. However, in a drop with triangular contact area the 
particles accumulate preferentially at the “corners” of the 
contact area. Similar observations are made with other non-
spherical geometries. Figure c depicts the contact line of the 
fundamental drop shapes considered in this investigation. The 
corresponding contact angle 𝜃 and contact-line curvature 𝜅!" 
distributions are illustrated in g. (Reproduce from [6]). Figure 
e illustrates the thermal distribution and bulk flow of a non-
spherical drop calculated by means of direct numerical 
simulations in 3D. (Reproduced from [5]).   
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In the spherical case (Fig. 2a), the initial temperature distribution is almost concentric until the thermal gradient along 
the interface becomes supercritical and the drop develops petal-like thermal fluctuations that travel in the azimuthal 
direction. The shape, size and direction of propagation of these instabilities change as the drop dries. This behaviour 
changes in non-spherical drops. For instance, in triangular drops (Fig. 2d) the initial flow shows a well defined three-fold 
structure and, as the drop evaporates, the thermal fluctuations are first observed at the corners while the rest of the drop flow 
is stable. Eventually thermocapillary instabilities plague the whole drop but these experiments show how some regions are 
more stable than others in irregular drops, i.e. there is a previously unknown spatial dependence in the instability threshold.  

Finally, we consider drops of binary mixtures. Using PIV, Christy et al. [4] have recently discovered the existence of 
three stages in the evaporation process of spherical water-ethanol drops. We revisit their experiments using IR 
thermography and also considering non-spherical geometries (Fig. 3). Initially the flow is subject to very chaotic solutal-
driven interfacial turbulences. As evaporation goes on, the IR images show that the turbulences, which give a measure of 
the ethanol concentration, become localized at some region near the contact line while the rest of the interfacial thermal 
field appears to be at rest (similarly to what is observed for pure water). In spherical drops, the segregation point moves 
around the contact line and its final location cannot be predicted. In non-spherical drops, on the other hand, we find that the 
segregation point is governed by geometry and always coincides with the point with minimum contact-line curvature.  
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Fig. 2 – IR images showing the temperature distribution (top 
view) of evaporating sessile drops of ethanol. Non-spherical 
geometries lead to spatially non-uniform onset and growth of 
thermocapillary instabilities. The instabilities always grow first 
(last) where the contact-line curvature is maximum (minimum). 
The contact-line curvature is 𝜅!" = 0.42 mm!!  in (a) and 
ranges between 0 ≤ 𝜅!" ≤ 2.5 mm!!  in (b-d). Figures (e-g) 
show drops with other principal curvature combinations 
supporting this observation. (Reproduced from [6]) 

 Fig. 3 - IR images illustrating the ethanol depletion occurring in 
evaporating sessile drops of binary mixtures (25% vol ethanol, 
75% vol distilled water) with different shapes. The interfacial 
turbulences give a measure of the ethanol concentration.  In non-
spherical drops, the segregation area always corresponds to the 
region where the contact-line curvature 𝜅!" is minimum. Figures 
(e-h) show other shapes with different principal curvature 
combinations (namely, positive-positive, zero-positive, negative-
zero, negative-negative). (Reproduced from [6]) 
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Summary In this work, we investigate numerically the mechanisms of the dust cloud formation that occurs when a helicopter hovers near
the ground. We use a numerical approach that combines Large-eddy simulation of the flow field with Lagrangian particle tracking. The
wake generated by the helicopter is modeled as a round impinging jet perturbed by a sequence of periodically forced azimuthal vortices.
Particles are initially placed on a thin layer just above the ground. Particle resuspension occurs as the large-scale vortices strike the ground.
We characterize statistically the local interaction between the particles and turbulence, as well as the tendency of particles to segregate and
concentrate preferentially in specific flow regions. We also clarify the role of the periodic and stochastic fluctuating velocity and vorticity
on the inception of particle resuspension.

INTRODUCTION

When hovering near arid grounds, the rotor of helicopters generates a downward jet that interacts with the soil and induces
resuspension of sand grains, dust or dirt. This phenomenon, called helicopter brownout (HB), can be dangerous because it
drastically reduces the pilot’s vision during landing. To mitigate the impact of HB, a detailed knowledge of the turbulent
flow field generated by the recirculating rotor downwash, and of the particle resuspension mechanisms is needed. Due to
the simplicity of the configuration and the similarity to the rotor-wake flow, the round impinging jet can be used as a model
of the wake of a rotorcraft hovering near the ground. The Kelvin-Helmholz instability in the jet shear-layer generates an
array of azimuthal vortices, which are advected by the jet and impinge on the ground. These embedded large-scale vortices,
representing the rotor-tip vortices, are found to dominate this flow [1]. When the vortex ring approaches the ground it creates
locally an adverse pressure gradient in the radial direction; a counter-rotating secondary vortex ring is formed, and the inter-
action between the large-scale vortices and the near-wall flow plays an important role in the heat and momentum transfer. The
secondary instability of the vortices forms rib-like structures that rise up into the free-stream, and can be related to the dust
cloud formation in HB [1]. In this work, we investigate precisely the resuspension of dust particles resulting from their inter-
action with the flow structures that develop along the jet. To this aim, we use a numerical approach that combines Large-eddy
simulation (LES) of the flow field with Lagrangian particle tracking.

CONFIGURATION AND METHODOLOGY

We exploited a LES database of a forced round impinging jet [1] to compute the detailed statistics of inertial particles
transported by the turbulent carrier flow. The air jet, whose Reynolds number based on the jet diameter D = 0.1 m and the
mean jet velocity U0 = 10 m/s is 66,000, has outlet-to-target wall distance H/D = 1, and is excited at a frequency of 75 Hz.
This configuration matched the experiments in Ref. [2]. Assuming one-way coupling between fluid and particles, a swarm
of Np = 50, 000 particles of size dp =20 µm is tracked using Lagrangian approach, in which the dynamics of particles is
computed as:

dxp

dt
= up,

dup

dt
= F (1)

with xp, up, and F are the particle position, velocity, and the overall forces exerted by the fluid on the particles, respectively.
The drag, buoyancy and Saffman lift forces are considered. Further details on the Lagrangian particle tracking can be found
in Ref. [3]. The particles are initially randomly distributed in a thin layer just above the ground. They are allowed to evolve
from the initial state for 30 forcing periods to reach statistically steady state. Statistics are then collected for further 24 forcing
periods. This time interval is long enough to obtain reliable results on ejection rates and other Eulerian statistics.

RESULTS

The particles concentrate preferentially around the primary vortices after being ejected from the surface (Fig. 1 (a)). The
regions corresponding to the vortex cores are almost completely depleted of particles, as was also observed in other multiphase
flow studies [5]. In the present configuration, the particles reach up to z/D = 0.9, and may affect the pilot’s visibility during
HB. Particles cluster also in the azimuthal direction θ (Fig. 1 (b)). The separation between the particle clusters in θ corresponds
to π/12 wavelength that was found to be a primary mechanism for the instability of the ring vortex [1].
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HEALING CAPILLARY FILMS

Z. Zheng1, M. A. Fontelos ∗2, S. Shin3, M. C. Dallaston4, D. O. Tseluiko5, S. Kalliadasis6, and H. A. Stone7
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2Instituto de Ciencias Matemáticas, CSIC, Madrid, Spain
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Summary We investigate, by means of theoretical arguments, numerical simulation and numerics, the closing of a circular cavity (healing)
in a thin liquid film. We assume that the process is dominated by capillary forces. The final stages of the evolution can be described by
means of self-similar solutions to the problem. A comparison with experimental data is also presented.

INTRODUCTION AND MAIN RESULTS

We study the healing process of a viscous thin film driven by surface tension. Such phenomena occur in lots of physical and
industrial processes [1], [2]. The effect of surface tension suggests a fourth-order nonlinear partial differential equation that
has completely different behaviours from the nonlinear diffusion equation for the buoyancy-driven processes. The novel part
of this study is to seek a self-similar solution for the fourth-order equation that describes the dynamics of the film thickness.

We consider a converging thin film driven by surface tension in axisymmetric geometry. We assume that the air-fluid
interface is long and thin, so the flow is mainly one-dimensional, and the lubrication approximation holds. We assume that
initially viscous fluid of height h̃0 fills the gap between r̃0, the location of a lock gate, and r̃out, the location of an outer
boundary; or equivalently, the thin film spreads toward the origin (r̃ = 0) from an initial condition that takes the form of a
step function. After defining dimesionless variables, one can obtain the following partial differential equation:

∂h

∂t
+

1

r

∂

∂r

(
rh3

∂

∂r

(
1

r

∂

∂r

(
r
∂h

∂r

)))
= 0. (1)

We now look for a self-similar solution for equation (1) of the form

h(r, t) = (t0 − t)αf

(
ξ ≡ r

(t0 − t)β

)
, (2)

where t0 denotes the dimensionless time for the (circular) front of the air-fluid interface to reach the origin (r = 0). Imme-
diately, from dimensional analysis, the form of solution (2) suggests that α = (4β−1)

3 , and we can rewrite equation (1) as an
ordinary differential equation (ODE):

− (4β − 1)

3
f + βξ

df

dξ
+

1

ξ

d

dξ

(
ξf3

d

dξ

(
1

ξ

d

dξ

(
ξ
df

dξ

)))
= 0. (3)

We look now at a distance R from the center of the hole. Since fluid has to enter through r = R in order to fill the hole, a
certain flow rate J = 2πrh3 ∂

∂r

(
1
r
∂
∂r

(
r ∂h∂r

))
has to be established and it is natural to assume that it is constant near t0. This

leads to an exponent β = 2
5 . On the other hand, the contact line must move with a nonzero velocity v = h2 ∂

∂r

(
1
r
∂
∂r

(
r ∂h∂r

))
.

Numerical evidence suggests the presence of a region near the contact line where such condition implies β ≈ 0.48 . . ..

Numerical evidence
We solved (1) with no flux boundary condition at r = 10 and an initial step at r = 1. The evolution is sketched in figure

1(a). In figure 1(b) we represent the same profiles rescaled according to the similarity exponent β = 2
5 and comparison with

the similarity solution obtained from equation (3).

EXPERIMENTS

Laboratory experiments have been designed and conducted to verify the self-similar solutions we obtained from the theo-
retical model. We first prepare a clean oil-wetting slide glass as the flat substrate. We then place a Teflon container above the
slide glass which forms a non-wetting circular outer boundary. A plastic cylinder is then placed at the center of the circular
area created by the Teflon container, and used as a cylindrical lock gate in our experiments.

∗Corresponding author. Email: marco.fontelos@icmat.es
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Figure 1: Time evolution of the profile shape from direct numerical simulation: (a) raw data; (b) rescaled data. The collapse
of the profile shapes occurs near the location of the propagating front. The black curve represents the prediction from the
self-similar solution with β = 2/5.
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Figure 2: Time evolution of the shape of the fluid-fluid interface: (a) raw experimental data, and (b) rescaled experimental
data.

In each experiment, we first fill the gap between the lock gate (plastic cylinder) and the outer boundary (Teflon container)
with a viscous fluid (e.g., silicone oil). Upon the removal of the lock gate, the fluid film spreads toward the center, driven by
surface tension. A digital camera (Nikon 7100) is placed right above the setup, and takes pictures of the healing thin films
from the top. The propagating front appears to be circular, and we can measure the radius of the circular front r̃f (t̃) as a
function of time t̃.

We use different silicone oils with varying viscosities (e.g., 100 cst, or 500 cst) as the working fluid. In our post-
experimental data analysis, based on the calibration, we are able to conduct the interface shapes h̃(r̃, t̃) at different times
t̃. The profile shapes from a representative experiment are shown in figure 2a. Silicone oil of viscosity µ ≈ 100 cst and
surface tension γ ≈ 20 mN/m was used in this experiment. The time for the front to reach the origin is t̃ ≈ 40 s. The rescaled
profile shape based on our theoretical arguments is also shown in figure 2b. The theoretical prediction from the self-similar
solution is also plotted as the black curve in figure 2b.
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TAYLER INSTABILITY IN LIQUID METAL COLUMNS AND LIQUID METAL BATTERIES
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Summary This paper investigates the Tayler instability in an incompressible, viscous and resistive liquid metal column and in a model of
liquid metal battery. We perform detailed comparisons between numerical simulations and some simplified theoretical models, both in the
linear and nonlinear regimes. We present the first direct numerical multiphase simulation of the Tayler instability in a model battery. (Key
words: Liquid Metal Batteries, Energy storage, Multiphase flows, Magnetohydrodynamics).

INTRODUCTION

Energy storage is a key societal challenge that hampers the development of renewable energies. One bottleneck is the
development of highly efficient large scale batteries. A breakthrough has recently been made by Sadoway et al. [1], based
on the assembly of three liquid layers composed of a low density liquid metal electrode, a medium density electrolyte and a
heavier liquid metal electrode. This setting yields high reaction rates in electrochemistry [2]. Moreover, these batteries do not
use any solid active material and are thus immune to cracking and degradation over time, contrary to conventional batteries.
The self-segregating nature of the assembly (using gravity) and the use of low-cost materials make liquid metal batteries
(LMBs) promising candidates for almost unlimited scalability which is essential for economic competitiveness. Large scale
LMBs are however prone to magnetohydrodynamic instabilities. For instance, the Tayler instability induces flows that could
disrupt the stratified three layer state. We investigate this problem in an incompressible, viscous and resistive liquid metal
column and in a model of liquid metal batteries.

ANALYTICAL AND NUMERICAL RESULTS

We perform detailed comparisons between numerical simulations and some simplified theoretical models, both in the
linear and nonlinear regimes, in a cylindrical column of radius R and height H . The problem depends on three control
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Figure 1: Critical radius Rc vs. aspect ratio h for Tayler instability (TI) in Mg-based LMBs for the three J0-scenarios. Risk
of TI only in batteries with R ≥ Rc. Yellow zones are estimated dimensions of LMB prototypes shown in insert (AMBRI).

parameters: the Hartmann number Ha = 0.5µ0J0R
2
√
σ/ρν measuring the charge/discharge current density and comparing

the Lorentz and the viscous forces, the magnetic Prandtl number Pm = σµ0ν and the aspect ratio h = H/R. We identify
the timescale that is well adapted to the low-Pm regime and find the range of Hartmann numbers where this approximation
applies. Above a threshold Hac independent of Pm, the Tayler instability gives rise to a non-axisymmetric flow with velocity
UT (associated to a Reynolds number Re = UTR/ν). The scaling law Re ∼ Ha2 for the amplitude of the Tayler destabilized
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(a) Initial condition (b) Ha = 47.3, Bz

blobs
(c) Ha = 47.3, velocity
field

Figure 2: Tayler instability in a LMB of aspect ratio h = 5.74: (a) initial condition, (b)-(c) just before the pinch of the
electrolyte layer at Hartmann number Ha = 47.3. Bz contours visualize ±10% of the maximum and minimum value, velocity
field vectors are colored by Uz . The top and bottom interfaces are visualized by isosurfaces of two level sets Φ1 = 0.5 (yellow)
and Φ2 = 0.5 (green).

flow is explained using a weakly nonlinear argument. Depending on the possible current density J0, instability arises in the
top layer of a Mg-based battery for a radius R ≥ Rc reported in figure 1.

We also calculate a critical electrolyte height above which the Tayler instability is too weak to disrupt the electrolyte layer.
Applied to present day Mg-based batteries, this criterion shows that short-circuits can occur only in very large batteries.

CONCLUSION

Preliminary results (see figure 2) based on a new multiphase algorithm implemented in our locally-developed MHD code
called SFEMaNS [3] demonstrate the feasibility of direct numerical multiphase simulations of the Tayler instability in a
model battery. We refer to [4] for more details. Finally LMBs seem to be immune to Tayler instability in practice but thermal
convection which is inevitable in this system needs to be investigated in the future.
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BUBBLE-BASED ACOUSTIC MICROPROPULSION: MIXING AND ADVANCED
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Summary Acoustic microswimmers present great potential for microfluidic applications and targeted drug delivery. Here we introduce
armoured microbubbles (size range, 10-20 m) made by three-dimensional microfabrication which allows the bubbles to last for hours even
under forced oscillations. The acoustic resonance of the armoured microbubbles is found to be dictated by capillary forces and not by gas
volume, and its measurements agree with a theoretical calculation. This flow, a consequence of steady streaming in the fluid, can reach 100
mm/s. A collection of devices is fabricated and can be used inside microchannels for efficient mixing. Complex shapes are also achieved,
with devices containing multiple bubbles. A direct application is to build multidirection microswimmers, each bubble having a different
resonance frequency that can be excited by scanning frequencies with the broadband acoustic source.

INTRODUCTION

Microswimmers have been widely used over the past decade for payload carrying and mixing in microchannels. Bubble-
based acoustic microswimmers can achieve high velocity thanks to the efficiency of bubble microstreaming. Microfabrication
allows to build hollow objects that, when immersed in water, contain a bubble actuated with an acoustic source. The bubble
vibration (see fig. 1(b)) generates a steady flow (acoustic streaming), due to the non-linear response of the fluid, that can be
used for propulsion. This mechanism has been used at the 50-100 µm scale, in two-dimensional (2D) microchannels with
contact piezo-transducers [1]. Here, the technique we use, two-photon polymerisation, allows us to build three-dimensional
objects at the 10-20 µm scale (see fig. 1(a)). Contactless acoustic sources are prefered in order to scan frequencies and excite
the bubble at its resonance, enhancing the efficiency of the streaming.

Figure 1: (a) SEM image of a capsule of radius r = 9µm and aperture radius a = 5µm on a pole of length H = 10µm; (b)
schematic of the bubble first vibration mode; (c) streamlines generated by device (a) submersed in water (viewed from below)
at transducer’s frequency ftransd = 320 kHz and acoustic pressure Pac = 9.2 kPa; (d) theoretical streamline prediction.

PROPULSION: CAPILLARY RESONANCE AND STREAMLINE PREDICTIONS

Free bubbles have well predicted resonance frequencies. In the case of an encapsulated bubble with an aperture like ours,
the origin of the resonance is related to that of a Helmoltz resonator, with the additional ingredient of the capillary restoring
force. Previous experiments showed that the capillary effects are dominant over the physics of the gas inside the bubble. At
the 10-20 µm scale, the resonance frequency then depends on the aperture radius, and not on the volume of gas inside the
bubble. Modeling the encapsulated bubble as a rigid sphere with an oscillating cap, and a purely capillary restoring force,
we are able to predict the resonance as well as the generated 3D streamlines [2] (see fig. 1(c-d)). Near the resonance, the
streaming is very efficient and can reach thousands of body lengths per second.

COLLECTION OF PROPULSORS: MICROFLUIDIC APPLICATIONS

A new automated fabrication process allows us to fabricate a great number of objects on the same sample. On fig. 2(a)
we show 120 capsules arranged in a pyramid shape and the associated streamlines. It is also possible to complexify the shape
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(c) 

Figure 2: (a) Pyramid of capsules; (b) streamlines generated by triple capsules; (c) mixing with three active capsules inside a
Y-shaped microchannel.

of the capsules, with several cavities, to make a triple capsule (see 2(b)). An interesting application is to fabricate capsules
arranged so that the generated flows induce mixing in a Y-shaped microchannel with two liquids (see 2(c)).

ADVANCED SWIMMERS

A capsule mounted on a ballast is able to swim easily a 1 mm/s in a single direction [2], see fig. 3(a). We are able now to
build an object with several cavities of different aperture radii in order to activate them independently by scanning frequencies.
Such a device (see fig. 3(a)) consists of a cube acting as ballast with four cavities pointing in each horizontal direction. The
goal is to guide the swimmer in a given direction by changing the excitation frequency towards the resonance of the cavity
pointing in the opposite direction. Our theoretical model is able to predict the resonance frequency of all those cavities. On
fig. 3(b) we see that when excited at the resonance frequency of the largest cavity, it is here that the streaming is the most
efficient.

(b) (c) 

20 µm 

(a) 
50 µm 

≈1 mm/s 

Figure 3: (a) Single direction swimmer actuated at 320 kHz, 5.6 kPa; (b) CAD software cut image of an advanced swimmer
with 4 cavities; (c) streamlines generated by such a swimmer at 320 kHz, the resonance frequency of the largest cavity.
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Summary Understanding the various effects of micro and sub-micron roughness on dynamics of micro-droplet is of interest for many
industrial applications such as aerospace industries, spray coating, etc. In this paper, numerical modeling of roughness topology through
series of micro arrays is performed to explore the direct effect of surface roughness on super-hydrophobic enhancement, droplet penetration
depth, and droplet restitution coefficient. The comparative study is performed on smooth hydrophobic surface and three rough surfaces
following similar pattern with varying width to pitch ratio. The intrinsic contact angle of 111◦ is applied to all surfaces. Mimicking the
impact of cloud particles, the droplet size of 20 µm with terminal velocity of 1.6 m.s−1 is opted in this study. The simulation successfully
captured different stages of a bouncing drop and the air beneath droplet . It was observed that decreasing the width to pitch ratio of arrays,
will results in higher droplet mobility, and higher apparent contact angle.

INTRODUCTION

Surfaces with designed microscopic roughness possess remarkable non-wetting properties, and extensive attention is drawn
recently by the micro and nano-technology research communities [1, 2, 3] into development of the materials, aiming at
finding new ways of controlling solid surface-fluid interface properties. Although according to the Young’s correlation, a flat
surface with a contact angle approaching 180◦ could theoretically be possible, no physical evidence have been reported that
demonstrates this situation. Theoretical models describing the influence of surface roughening with respect to the wetting
properties of the surface have been introduced earlier by (i)Wenzel [4] , and (ii) Cassie-Baxter [5]. A large number of
numerical investigations on droplets-surface interaction has been reported, but they are based the outcome of impact on smooth
surfaces with intrinsic contact angles [7, 8]. However, the outcome of micro-droplet impact on roughened surface is different
from that on smooth surface. Due to the impact force, the liquid penetrates into the micro-cavities, and exhibits different
wetting scenario on textured surface.It is known [9] that topology of roughness can control interplaying parameters associated
with surface wettability, such as capillary pressure and viscous dissipation rate. Unfortunately due to some uncertainties,
such as penetration depth, geometrical configuration of recoiling droplet and the complicated viscous dissipation rate, a direct
theoretical and experimental investigation of the bounding behavior of the droplet on roughened surface is difficult.

METHODOLOGY

The Navier stokes equation expressing flow distribution of the liquid and the gas, coupled with the Volume of Fluid (VOF)
method for tracking the interface between the liquid and the gas are solved numerically using finite volume methodology.
In VOF model [6], tracking of the interface is modeled by solving continuity equation for one of the two phases in each
computational cell at every time steps. The governing equations for continuity and momentum are,

~∇.~V = 0 (1)

∂ρ~V

∂t
+ ~∇.(ρ~V ~V ) = −∇.

[(
p+

2

3
µ∇.~V

)
I + µ

[
∇~V +

(
∇~V

)T]]
︸ ︷︷ ︸

Stress Tensor

−σ~∇.

(
~∇α
|~∇α|

)
~∇α︸ ︷︷ ︸

Continuum Surface Force

(2)

Where second term represents the continuum surface force model which is of great importance in modeling of small sized
droplet as one driving force during recoiling stage. As Bond number is too small it is evident that the effect of the gravitational
force is negligible. In terms of finding the interface, a modified VOF method is used which has additional convective term :

∂α

∂t
+ (~V ~∇)α+ ~∇.( ~Vrα(1− α)) = 0 (3)

where α is the VOF volume fraction scalar function which is used to calculate the viscosity(µ), and density(ρ), as weighted
averages based on the distribution of the liquid fraction, The Kistler’s correlation [10]is used to calculate the dynamic contact
angle in each time step, θd = fH [Ca + f−1

H (θe)] Surface roughness is modeled as a series of patterned micro arrays (Fig1)
with constrained pitch size (l), but varying array width (W) in contact.
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RESULTS & DISCUSSION

Figure1. representing the cross sectional view of a micro-droplet in maximum spreading stage on micro arrays with squared
pattern. As shown in the Figure, droplet has partially penetrated into the micro grooves. The penetrated volume, geometrically
preserves its spherical shape, due to the effect of surface tension. The entrapment of air helped droplet on sustaining the energy
of rebounding. The presence of air pockets is captured, and is shown in red shaded area.
Figure2, the normalized kinetic energy of the droplet are calculated by integration over the entire computational domain
during impact and recoiling process for different surface models. As shown in the graph (a), most of the kinetic energy of
the droplet has been dissipated due to the maximum area in contact with the smooth surface. This caused droplet to remain
on the surface after the least number of oscillation. The same scenario is repeated for the textured surface with 1µm arrays
where the solid fraction decayed the kinetic energy of droplet gradually. In graphs(c-d), droplet is partially penetrated into
the spaces between arrays before it detaches from the surface. It is observed that droplet onto smallest arrays, undergoing
more number of oscillations. However reducing the size of arrays results in reducing the maximum spreading diameter, and
reducing the contact time of the bouncing drop. The coefficient of restitution started increasing as the with to pitch ratio of
arrays is reduced.

Figure 1: Presence of air pockets beneath micro-
drop between the arrays, shaded red.

Figure 2: Normalized Kinetic energy of the impinging Micro-droplet
on; a)smooth surface, and roughed surfaces b)W=1µm, c)W=0.75µm,
d)W=0.5µm

CONCLUSIONS

The numerical simulation of the impact of a micro-droplet onto a smooth and roughened surfaces is performed using a
volume of fluid method. Considering low wettability of the material, droplet start rebounding from the surface at some point
by direct modeling of micro roughness. The simulation successfully captured the effect of the air beneath droplet inside micro
grooves, which increased the apparent contact angle, and reduced surface energy level. The pillars width is found to control
both the contact time and the maximum spreading diameter of the droplet, making it one interesting design parameter for
textured surfaces.
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WAVE INDUCED FLUCTUATIONS IN THE GAS-PHASE OF A STRATIFIED AIR/WATER
PIPE FLOW
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Summary The combination of PIV, conductance probing and hot wire anemometry allows us to obtain deeper insight into the physical
mechanisms that govern stratified gas-liquid pipe flows. In this paper, we turn our attention towards one of such mechanisms; wave-induced
fluctuations in the air velocity field and we raise two questions that will hopefully be answered in future analysis of the present data set.
Gas-phase PIV was achieved by using water droplets to seed the gas-phase and provides us with instantaneous and phase-averaged velocity
profiles. Conductance probes measured interface elevation at two positions in the axial direction, while a hot-wire probe measured air
fluctuations at a set of points between the interface and the pipe wall. This combination of techniques demonstrates clearly how a deformed
interface obliges the gas flow to fluctuate at the same frequency as the dominating interfacial wave components.

INTRODUCTION

In the petroleum industry, the widespread use 1D models is due to the need of computation cost efficiency and also
because this approach has provided acceptable predictions of global flow parameters such as the pressure drop and liquid
hold-up, [1]. The non-uniform nature of the velocity profile, either in the gas or liquid phase is represented by a shape factor
times the ensemble averaged velocity, cgug or clul, for gas and liquid, respectively. When it comes to predicting transitions
from stratified to slug flow caused by unstable wave growth [5], 1D models have traditionally been combined with viscous or
non-viscous Kelvin Helmholtz analysis [2]. This paper is meant as an introduction to the sort of analysis possible to achieve
now that a phase-averaging routine as been developed since previously published results, see f.ex [3].

EXPERIMETNAL TECHNIQUE

The experimental work presented in this paper was conducted at the Hydrodynamics Laboratory, University of Oslo. The
lab facilities dispose a 31 m long horizontal acrylic pipe with an internal diameter of 100 mm. The two-phase test fluids are
air and water at atmospheric pressure with an average temperature of 22◦C. At the pipe inlet, honeycomb flow straighteners
are placed right before and after the contact point between the air and water in order to dampen secondary flows. More details
about the flow loop and the mentioned measuring instruments can be found in [3]. The main test-section combines three
different experimental techniques: i) Simultaneous two-phase PIV. Water micro droplets 5-10 µm in diameter were injected
at the pipe inlet to seed the gas-phase. This approach minimalizes any impact on the surface tension of the water layer. In
this paper, we only focus on gas-phase results, ii) interface elevation measurements using conductance probes (CP) and, iii)
gas-phase Hot-Wire anemometry (HW).

RESULTS AND DISCUSSIONS

We study an air/water flow determined by the superficial velocity combination, Usg = 2.0m/s and Usl = 0.1m/s or in
terms of bulk velocities; 3.4m/s and 0.24 m/s, respectively. This combination led to a mean liquid height of Hl = 42.3mm
and relatively regular two-dimensional waves at the interface with the following characteristics: wave amplitudeArms = 3.14
mm, dominating wave length λD = 0.21m and dominating wave speed cD = 0.79m/s.

Figure 1 shows the power spectral density (psd) of the interface elevation time series η(t) plotted together with low-
frequency part of the psd of the air velocity fluctuations measured by a hot-wire probe placed at three different positions from
the interface. The figure shows the dominant wave component causes both the axial and wall normal air velocity components
to fluctuate at exactly the same frequency. In fact, the vertical velocity component near the interface even perceives both the
first and second dominating wave component.

With the help of PIV, we can actually see, in terms of instantaneous velocity fields, how the deformed interface causes
the air flow to fluctuate, see fig. 2. Above a wave crest, the velocity is generally larger than above a trough. That is because
the area above a crest is smaller than above a trough, and thus by means of mass conservation, the waves induce dynamic
fluctuations on the air. By taking the average of velocity profiles above all crests and trough of 1000 PIV realizations,
we obtain the phase-averaged velocity profiles shown in fig. 3. The semilogarithmic highlights the difference between
crest/trough velocities and also unveils a logarithmic behavior in the interfacial boundary layer. This raises a question: How
does this affect the momentum transfer to the waves, [4]? We then compute profile coefficients for crest and troughs separately,
c = 1

AfU2
bf

∫
Af
u2dA, which in this specific case, are: ccr = 1.05 and ctr = 1.12, for crest and trough, respectively. This

yields a relative difference of approx. 6.5%. Should this difference be incorporated in the stability analysis of [2]?
∗Corresponding author. Email: awalaa@math.uio.no
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Figure 1: PSD of interfacial waves plotted against gas-phase velocity spectra measured at three different vertical positions
(49, 29 and 9 mm) from the interface with hot wire. On the right side is the U-component hot wire spectrum, while on the left
side is V-component. The wave and hot wire spectra are scaled with ρl and ρg , respectively.
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Figure 2: Velocity vectors (in pixels) averaged over 4 IW above a crest (right) and a trough (left) showing the fluctuations .
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Figure 3: Phase-averaged velocity profiles above crests and troughs, linear plot (left) and semilog plot (right).
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LASER HEATING AND EVAPORATION OF A LEVITATED WATER DROP 
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Summary Single water drops with initial diameter of approximately 1-mm are acoustically levitated and subject to laser radiation from a 1070 
nm cw laser with mean irradiance of 530 W/cm2. Effects of the radiation on the drop are measured using high speed video, and a beam profiler 
measures the corresponding effects of the drop on the laser beam. Turbulent convection within the drop is visible from the video, unlike what 
has been seen in prior laser heating experiments using smaller drops. Phase change begins immediately upon initiation of the laser strike, with 
no obvious sensible heating period. The drop evaporation rate is measured, and shows good agreement with a simple 1-D laser heating model.    
 

INTRODUCTION 
 
   The U.S. Navy is actively developing both offensive and defensive technologies related to the use of lasers in warfare. 
For the Navy, the complexity of a maritime environment poses particular challenges for laser propagation due to high 
probabilities of liquid water in the form of fog, rain, or sea spray along the beam path. Several previous studies have 
examined laser heating effects on water droplets with diameters less than 100 microns [1], but less is known about laser 
interactions with larger drops with diameters upwards of 1-mm. At this size, geometric optics may be used to describe the 
beam propagation through the drop, and convection within the drop is expected to play a much more important role. Current 
interest in this problem lies in both predicting the laser’s effect on the drop, including the evaporation rate and the fate of the 
subsequent water vapor, and in understanding the drop’s effect on the transmission of the laser beam.       
 

EXPERIMENT 
 
   To quantify the effects of a high energy NIR laser on a water drop, a series of experiments were conducted using 
acoustic levitation to isolate single water drops from solid boundaries, preserving a near-spherical drop shape and allowing 
a free path for the laser. Levitation was achieved using a tec5™ acoustic levitator, which creates a standing wave between a 
fixed transducer and an adjustable reflector. Using the acoustic pressure at the nodes, the levitator is capable of stabily 
supporting drops up to approximately 2.4-mm in diameter [2].  
   The water samples used in the present data are tap water, with an absorptivity of 14.1 m-1 at 1070-nm measured using a 
Jasco NIR spectrometer. The light source is an IPG continuous wave fiber laser with a wavelength of 1070-nm, power of 
105 W, and a beam diameter of approximately 5-mm. Drop imaging is achieved using a Hamamatsu ORCA Flash2.8 
CMOS scientific camera with a Navatar macro lens. The Hamamatsu is equipped with an IR filter to protect the instrument, 
and extra ambient lighting is supplied through either a pair of 500W halogen bulbs or a pair of 500W equivalent LED 
spotlights. After passing through the drop interrogation region, the laser beam passes through an optical wedge and a series 
of ND filters before the beam is profiled using a Spiricon beam profiler with 1600 x 1200 pixels at full resolution. A 
schematic of the experimental setup is shown in Fig. 1 below, and a sample drop image is shown in Fig. 2. 
 
 
    
 
 
 
 
 
 
 
 
 
            Fig. 1 – Experiment schematic                       Fig. 2 – Nearly-spherical drop in levitator  
 
   The experiments shown here consist of drops with an initial size of approximately 1-mm, centered on the laser beam, 
which is operating at full power of 105-W. The levitator causes some distortion of the drop, making the horizontal diameter 
slightly larger than the vertical diameter. The range of major to minor drop diameter for these experiments is typically H/D 
≈ 1.05, and this value tends towards 1.00 as the drop evaporates and shrinks. Experimental runs typically last 40-sec or 
more, assuming the drop is not lost from the levitator. When placing the drop in the levitator, care is taken to reduce the 
probability of introducing trapped gases inside the drop, which result in instability of the drop during irradiation.              
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RESULTS  
 
  A few interesting qualitative results have been found from observing the drop evaporation. First, strong convective 
processes within the drop are visible during and after irradiation. Small vapor bubbles within the drop arrange along vortex 
lines, and can be seen circulating in an apparently turbulent manner. The speed of this circulation has not been quantified, 
but the dissipation of kinetic energy within the drop after the end of the laser strike is also observable. This is in contrast to 
laser heating of aerosols, which is characterized by either a slow diffusive heating regime dominated by thermal diffusion, 
or a fast, explosive regime controlled by the pressure wave from fluid that has exceeded the superheat limit. A second 
observation is that when the ellipticity of the sphere is particularly large (due to tuning or “over-tightening” of the levitator’s 
reflector) vapor bubbles can be seen escaping from the top of the drop as would be expected with nucleate boiling. This has 
not been observed with more spherical drops.  
   Unexpectedly, vaporization appears to begin immediately after the beginning of the laser strike, with no clear sensible 
heating phase. Because the drops are initially at room temperature, some delay in the onset of phase change (determined 
from the rate of change of the drop size) was expected. The irradiance of the laser, with a mean value of approximately 530 
W/cm2, is unlikely to provide enough energy for any part of the drop to reach the superheat limit in the first few seconds of 
exposure, or for the drop as a whole to reach saturation within the same timeframe. Along with the observation of vigorous 
mixing within the drop, this is therefore a somewhat surprising finding.      
   From the video data of the irradiated drop, major and minor drop diameters were calculated throughout the process to 
produce a time history of drop volume. Figure 3 below shows the results from eight different runs, each lasting 40-s or 
more. The run-to-run repeatability is good, suggesting that changes in absorptivity from one liquid sample to the next are 
small. The outliers in the data are due to instability of the drop within the levitator. Occasionally during a laser strike, likely 
due to the formation and release of a vapor bubble, the drop will shake or oscillate around the acoustic node for a second or 
two before stability is re-established. Because these movements are very fast, the drop images can appear blurry and 
measurement accuracy of drop size is temporarily reduced. The decay in drop size vs time is not exponential, so it is 
characterized with a half-life value found to be 18.3-s for the laser at full power. This number agrees with a half-life of 20-s 
calculated from a simple 1-D numerical model that assumes uniform irradiance, an initially saturated drop, and 
approximates the drop as a thin film normal to the incoming laser (see Fig. 4).        
 
   
 
 
 
 
 
 
 
 
 
 
  Fig. 3 – Drop volume vs time for eight water samples         Fig. 4 – Comparison of data and 1-D model 
 

CONCLUSIONS 
 

   Acoustic levitation is a promising method for the study of laser heating of spherical water drops. Results show good sample-
to-sample repeatability, and agreement with a simple 1-D model. Effects of drop size and irradiance on convection within the 
drop require further study, as does the effect of the drop (and the escaped water vapor) on the beam profile. 
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Abstract The mechanisms of electrostatic suppression of the Leidenfrost state in an evaporating droplet with finite electrical conductivity is 
studied theoretically and experimentally. Using linear stability analyses for 2D and axisymmetric models of the electrohydrodynamic flow, the 
minimum voltage required for the suppression of the vapor gap (Leidenfrost effect) between the drop and hot surface is determined as a 
function of their voltage and temperature differences and the physical properties of the liquid and vapor. The dynamics of the liquid-vapor gap 
depends on the interplay of a destabilizing electrostatic force and stabilizing capillary and evaporation-driven hydrodynamic forces. The critical 
voltage required for Leidenfrost suppression is found to increase with both the droplet volume and the surface temperature. The critical 
wavelength of the applied perturbation is of the order of the droplet dimensions. There is very good agreement between theoretical predictions 
and experimental measurements. 
 

INTRODUCTION 
 
 Boiling heat transfer is vital to several industrial processes like steam generation, desalination and distillation. In the 
film boiling regime, the heat transfer is significantly smaller than in the nucleate boiling regime due to the formation of a 
vapor layer at the solid-liquid interface (Leidenfrost effect). This vapor layer severely degrades heat transfer and causes 
surface dryout, which results in temperature excursions1-3 that can cause equipment failure. Electrostatic elimination of the 
vapor layer increases heat transfer in film boiling by more than an order of magnitude. The suppression process happens 
upon application of voltage due to electrostatic attraction between the liquid drop and solid surface. The critical voltage for 
the attachment of the droplet to the surface appears to occur when fluctuations at the liquid-vapor interface amplify to 
bridge the gap4 (Fig. 1).   

 
 
FIG. 1. Illustration of Leidenfrost state suppression of a 100 µL 2-propanol droplet on a 360°C surface.  a) Leidenfrost 
state with a visible vapor gap. b) At the threshold voltage, (65 Volts) liquid fingers protrude towards the surface. c) 
Enhanced suppression of the Leidenfrost state at a higher voltage (130 Volts). 
 
The competition between electrostatic forces and capillary forces along with pressure buildup beneath the droplet due to 
evaporation will determine whether these fluctuations are damped or amplified and also the minimum voltage requirements 
which will lead to the growth of these instabilities. These instabilities bridge the vapor gap at a critical or threshold voltage 
leading to liquid-solid contact. There have been studies on instabilities of thin films used in electrohydrodynamic 
patterning5-6, but no study has been done on electrostatic suppression of the Leidenfrost state. Here we predict the influence 
of concentrated interfacial electric fields on interface instabilities and develop an analytical model to predict the conditions 
to collapse the vapor gap and suppress the Leidenfrost state. 
 

METHOD 
 
   The 2D model illustrated in Fig. 2 is used to analytically investigate the instabilities on the liquid-vapor interface upon 
application of voltage differences between drops and the solid surface. The purpose is to find the critical voltage that results 
in the growth of those instabilities (initiation of Leidenfrost suppression). Energy and momentum balances are applied to 
determine the initial vapor gap thickness in the system. An evolution equation for the liquid-vapor interface is then written 
under the conditions of approximately constant drop volume and electric field present only across the vapor gap. The 
interface evolution is assumed to be unaffected by flow inside the liquid drop and gravitational and van der Waals forces are 
negligible.  Finally, we perform a linear stability analysis to analyze the behavior of the perturbed interface. 
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FIG. 2. Two-dimensional model to investigate evolution of liquid-vapor interface 

 
   

PRELIMINARY RESULTS  
 

Fig. 3a shows the neutral stability curve for non-dimensional electrowetting number 2 2 2
0 0 13E vapN V h A L    for 

varying capillary number 4 5
1 03CN A L h  (Fig. 3a) for the 2D model; here 0 vap  is permittivity of the vapor, V is 

voltage, h0 is nominal gap thickness, A1 is evaporation rate,  is viscosity of the vapor,  is interfacial tension and L is 
length of the droplet. When the dimensionless wave number k is high, stabilizing capillary forces dominate. For low k  
evaporation effects dominate as the stabilizing mechanism. The critical voltage CritV  is set by the minimum EN . Fig. 3b 
depicts the variations of CritV for different surface temperatures and droplet volumes. CritV is found to increase with 
increasing surface temperatures and modestly so with droplet volumes. Very good agreement is found between theoretical 
predictions and experimental observations. Fig. 3c shows a comparison of the experimental and predicted values of CritV for 
a 5µL drop at different surface temperatures. The two plots show good agreement, qualitatively as well as quantitatively. 
Analysis using axisymmetric flow models will also be presented.  

 

 
 

FIG. 3 a) Neutral stability curve ( EN vs k ). b) CritV versus droplet volume for different surface temperatures.  c) CritV
versus surface temperature for a 5µL drop.  
 

CONCLUSIONS 
 

   The present work lays the foundation for electrically tunable boiling heat transfer and offers a powerful tool to control 
boiling heat transfer in the film boiling regime. Using a simplified 2D and axisymmetric flow models we predicted the 
critical voltage required to suppress the leidenfrost state through an extensive linear stability analysis. The critical voltages 
obtained were in the range of 60 – 80 Volts which are in very good agreement with values obtained from experiments. The 
analysis accurately predicted the qualitative dependency of the critical voltage on surface temperature and droplet volume.  
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Summary Mass transfer between a slender drop and a viscous liquid in shear and extensional creeping flows has been theoretically studied. 
The problem is governed by three dimensionless parameters: the capillary number (Ca), the viscosity ratio () and the Peclet number (Pe). 
As the shear or extension rate increases, the drop becomes thinner, longer, the surface area increases, leading to larger mass transfer rates. 
 

INTRODUCTION 
 

High viscosity liquids such as polymer melts, are generally processed in rotary equipment which can generate shear or 
extensional flow. A drop present in these types of flows will deform and if the strength of the flows exceeds some critical 
value, the drop may even break. For incompressible Newtonian fluids under creeping flow conditions (Re = 0), the 
deformation problem is governed by two dimensionless parameters: the capillary number (Ca) and the viscosity ratio (): 
drop over external fluid. At Ca << 1, the drop is considered to be a slightly deformed sphere. This report is dedicated to 
slender drops only, these are obtained at Ca >> 1 and  << 1. A summary of this fundamental topic having many industrial 
applications can be found in excellent reviews by Rallison [1] and Stone [2]. 

The first one to suggest a theory for a slender drop flow was G.I. Taylor [3]. He considered a slender drop in 
axisymmetric extensional creeping flow, where the cross section of the drop is circular. The theory, that was refined by 
Acrivos and Lo [4] and others suggests that the slender drop has a parabolic radius profile with pointed ends. Hinch and 
Acrivos [5] developed a model for a slender drop in simple shear and creeping flow with the assumption that the drop has a 
circular cross section. The theory predicts an S-shaped drop with pointed ends. Both models for extensional and shear flows 
predict: (a) as the capillary number increases, the drop becomes thinner, longer and its surface area increases; (b) the critical 
capillary number needed for breakup increases as the viscosity ratio decreases.  

Mass transfer between slender drops and viscous liquids can be found in several industrial applications such as: polymer 
melt devolatilization, the production of polymeric foam materials, the production of glasses, and more. Since mass transfer 
is proportional to the surface area of the drop, we can expect slender drops to be very efficient in mass transfer operations. It 
is the purpose of this report to review as well as present new results to the subject of mass transfer with slender drops. In 
axisymmetric extensional flow we present recent theoretical studies by Favelukis [6-7] for both large and small Peclet 
numbers. In simple shear flow, we have past theoretical and experimental results at large Peclet numbers (Favelukis et al., 
[8-9]) and we suggest here an expression for small Peclet numbers. 

 
FLUID MECHANICS 

 
Figure 1 shows slender drops (R/L << 1), having a local radius R and a half-length L. The undisturbed motion, is 

axisymmetric extensional flow (vr = -Er/2, v = 0, vz = Ez) and simple shear flow (vx = Ey, vy = 0, vz = 0). The problem is 
governed by the capillary number: Ca = Ea/ and viscosity ratio:  = in/. Here in and  are the viscosity of the drop and 
of the external fluid respectively, E > 0 is the extension or shear rate, a is the radius of sphere of equal volume, and  is the 
surface tension. The dimensionless parameters can be reduce from two to one O(1): Gext = Ca1/6 and Gshear = Ca2/3. 

 

                    
Figure 1: Left: A slender drop in an axisymmetric extensional flow; Right: A slender drop in a simple shear flow. 

 
Figure 2 describes the deformation curve with L*ext = L/(aCa2) and L*shear = L/(aCa1/2) both with O(1). In an extensional 

flow, the deformation curve contains a lower stable branch and an upper unstable branch. The two branches are separated by 
a bifurcation turning (breakup) point at G = 0.148, and no stationary drop can exists beyond this point. In shear flow, 
stationary drops can be found for every value of G, with the breakup point at G = 0.0519. 
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Figure 2: Deformation curves. Left: axisymmetric extensional flow; Right: simple shear flow. 

 
MASS TRANSFER 

 
The differential binary mass balance in the continuous phase, at constant density and diffusion coefficient (D) is governed 

by the Peclet number, the ratio of convection to diffusion: Pe = Ea2/D. When Pe  , the thin concentration boundary layer 
approximation is valid, while Pe  0 suggests diffusion only with a thick concentration boundary layer. 

 
Large Peclet numbers (Pe  ) 

In axisymmetric extensional flow, an exact analytical solution is presented in Favelukis [6]. The solution can be found by 
applying the theory of Lochiel and Calderbank [10] for axisymmetric bodies of revolution, with the only requirements being 
the shape and the tangential surface velocity of the drop. In simple shear flow, an order of magnitude model was suggested 
by Favelukis et al. [8], which was experimentally confirmed by bubble dissolution and growth experiments ([8-9]): 
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Where D/akSh   is the average Sherwood number (average flux), A* = A/4a2 is the dimensionless surface area, and 
their product is the mass transfer rate. In extensional flow,  = 2 (G = 0) denotes an inviscid drop (bubble), while  > 2 a 
viscous drop. For both types of flows, as the shear or extension rate increases, the rate of mass transfer also increases. 
 
Small Peclet numbers (Pe  0) 

In axisymmetric extensional flow, the shape of the drop is an approximated slender spindle suggesting the usage of 
bispherical coordinates. The electrostatic capacity of a spindle was obtained by Payne [11] and others. Making use of the 
analogy between electrostatics and diffusion, both governed by the Laplace equation, Favelukis [7] recently obtained the 
exact solution involving conal functions. It was found that the diffusion around a slender prolate spheroid (rounded ends), 
Szegö [12], gives an excellent approximation to the exact solution (pointed ends). As a result, for shear flow, we suggest: 
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The first eq. (2) is valid for inviscid ( = 2) and viscous ( > 2) drops. The second eq. (2) corresponds to an inviscid drop 
(G = 0, L* = 3.45), while the last eq. (2) represents a viscous drop at the breakup point (G = 0.0519, L* = 4.71). As expected, 
for both shear or extensional flows, as the capillary number increases, the rate of mass transfer also increases. 

 
CONCLUSIONS 

 
Mass transfer between a slender drop and a viscous liquid in shear and extensional creeping flows has been theoretically 

studied at small and large Peclet numbers. For both types of flows and regimes, as the shear or extension rate increases, the 
rate of mass transfer also increases. Slender drops, having large surface area, can offer very high mass transfer rates. 
 

References 
 

[1]  Rallison J.M.: The Deformation of Small Viscous Drops and Bubbles in Shear Flows. Ann. Rev. Fluid Mech. 16: 45-66, 1984. 
[2]  Stone H.A.: Dynamics of Drop Deformation and Breakup in Viscous Fluids. Ann. Rev. Fluid Mech. 26: 65-102, 1994. 
[3]  Taylor G.I.: Conical Free Surfaces and Fluid Interfaces, in: Proc. 11th Int. Congr. on Appl. Mech., Munich, Springer, Berlin, pp. 790-796, 1964. 
[4]  Acrivos A., Lo T.S.: Deformation and Breakup of a Single Slender Drop in an Extensional Flow. J. Fluid Mech. 86: 641-672, 1978. 
[5]  Hinch E.J., Acrivos A.: Long Slender Drops in a Simple Shear Flow. J. Fluid Mech. 98: 305-328, 1980. 
[6]  Favelukis M.: Mass Transfer around Slender Drops in an Extensional Flow: Inertial Effects at Large Pe. Can. J. Chem. Eng. 93: 2274-2285, 2015. 
[7]  Favelukis M.: On the Diffusion from a Slender Drop in an Extensional Flow: Inertial effects at Zero Pe. Colloids Surf. A. in press, 2015. 
[8]  Favelukis M., Tadmor Z., Talmon Y.: Bubble Dissolution in Viscous Liquids in a Simple Shear Flow. AIChE J. 41: 2637-2641, (1995). 
[9]  Favelukis M., Tadmor Z., Semiat R.: Bubble Growth in a Viscous Liquid in a Simple Shear Flow. AIChE J. 45: 691-695, (1999). 
[10] Lochiel A.C., Calderbank P.H.: Mass Transfer in the Cont. Phase around Axisymmetric Bodies of Rev. Chem. Eng. Sci. 19: 471-484, 1964. 
[11] Payne L.E.: On the Axially Flow and the Method of Generalized Electrostatics. Q. Appl. Math. 10: 197-204, 1952. 
[12] Szegö G.: On the Capacity of a Condenser. Bull. Am. Math. Soc. 51: 325-350, 1945. 

853



a)Corresponding author. Email: jackyff@sjtu.edu.cn.

XXIV ICTAM, 21-26 August 2016, Montreal, Canada

EFFECTS OF ATMOSPHERIC PRESSURE ON WATER ENTRY OF HYDROPHOBIC 
SPHERES

Zhaoxin Gonga), Yongliu Fang, Hua Liu, Jie Li, Ying Chen, Chuanjing Lu 

Department of Engineering Mechanics, MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, 
Shanghai, China 

Summary We report an experimental study of water entry of a hydrophobic sphere, which is initially released by an electromagnet and freely 

falls downward in a sealed equipment. The sphere firstly impacts the water surface and generate a splash, then a cavity is developed when the 

sphere moves inside the water, and finally a jet is formed after the cavity pinch-off. Here, the effects of atmospheric pressure on such water 

entry phenomena are presented. Our work especially demonstrates its influence on the splash shape, the surface seal and cavity moving velocity.

INTRODUCTION 

When a sphere enters water with certain impacting velocity, the phenomena of interests are splash, cavity and jet, as shown 

in Figure 1. Splash refers to the water curtain above the free surface, cavity is the gas attached to the sphere and formed by 

the air entrainment, and jet here means the re-entrance jet after the pinch-off of the cavity. The first research on water entry

can dates back to 1897, when Worthington & Cole investigated spheres impacting onto liquid surfaces using single-spark 

illumination photography. With the developments in experimental techniques and numerical simulation schemes, there are 

notable progresses on understanding the mechanism and characteristics of the water-entry cavity in the past decades. The 

behaviours of splash, cavity and jet are determined by various factors, such as sphere diameter, impacting velocity, water 

depth, surface coating, vacuum degree and so on. Here, we pay attention to the effects of atmospheric pressure on water 

entry of hydrophobic spheres. 

Figure 1. phenomena of a sphere entering water: splash, cavity and jet. 

EXPERIMENTAL SETUP 

Experiments are conducted in a octagonal water tank with 800mm diameter and 1400mm height and filled with 764mm 

height of water. A 500mm long hollow cylinder is placed on the top of the water tank and a electromagnet is  contained on 

its cover. The sphere is initially suspended from the electromagnet. The air pressure inside the water tank is adjusted by a 

vacuum pump. The sphere is made up of cast steel and coated with hydrophobic material. The pressures at the top of the 

water tank are measured by a pressure gauges. A high speed camera is used to record the sphere motion and the images are 

taken at 1000frames/sec. The sphere used in our experiments is with 29mm diameter and 100g mass. The contact angle of 

the hydrophobic sphere is 134o. The impacting velocity is 4.7m/s.

RESULTS 

Several atmospheric pressure conditions are tested to observe its impacts on the splash, cavity and jet during the sphere 

entering water process. It can be concluded that the atmospheric pressure effects on the sphere trajectory can be neglected. 

In all cases, the sphere slightly accelerates at first, then almost keeps constant velocity, and shortly before cavity pinch-off, 

the sphere starts decelerating. The most obvious effects is on the splash, which height and width varies with the atmospheric 

pressures. Besides that, when the pressure above the water surface approaching vacuum, there is no surface seal, i.e. the top 

of the splash cannot merge and form a dome-shape space. The surface seal affects the jet performances. The cavity pinch-

off happens at the same time for all cases , which agrees well with previous studies. After the pinch-off, the cavity are 

divided into two parts, one is moving upward and generates jets into the splash, and the other is moving downward and 

generates jets inside the cavity. The upward velocity decay significantly shortly after the pinch-off, whereas the downward 

velocity changes relatively slowly.  
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CONCLUSIONS 

A series of experiments results are presented to study the water entry problems of hydrophobic spheres. We describe the 

water entry process in detail and demonstrate the effect of atmospheric pressure on the hydrodynamics phenomena, 

including splash, cavity and jet .  
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Summary Experimental investigations of oscillations of an aerosol were carried out for tubes with various geometry on end in shock-wave and 
shock-free modes near resonance frequencies. Numerical concentration of aerosol droplets monotonously decreases with time. With increase of 
intensity of oscillations, these times decrease. The dependence of the time scale of sedimentation of aerosol in closed tube and time scale of 
clearing of aerosol in an open tube on the excitation frequency likewise exhibits a nonmonotonic pattern. It is established, that presence of a 
flange slows down process of the sedimentation of aerosol. Reduction of internal diameter of a flange results in increase in the time scale of 
sedimentation of aerosol. The time scale of sedimentation of aerosol in the closed tube is 2-4 times, time scale of clearing of aerosol in an open 
tube is 6-12 times and a partially open tube is 5-10 times lower than at natural depositing. 
 

INTRODCTION 

 
   Different multiphase media are the main working fluids in a number of power-generating equipments, apparatus of 
chemical technology. One of acute problems of thermophysics and mechanics of multiphase systems is investigation of 
wave processes. Basic models of wave dynamics of multiphase media and some related results are given in monograph [1]. 
The acoustic coagulation of aerosols, which is accompanied by agglomeration of small particles or droplets under the effect 
of acoustic waves, is a well-known phenomenon treated in detail in the monographs [2, 3] and in other publications. Widely 
employed is a system of the type of resonance tube, in which the excitation of the medium near resonance causes the 
emergence of highly nonlinear pressure waves up to periodic shock waves at resonance. The behaviour of the aerosol with 
its nonlinear oscillations in tubes near resonance frequencies was studied in experimental works [4-12]. The main nonlinear 
effect was accelerated coagulation and deposition of the droplets of machine oil and tobacco smoke [4], oleic acid droplets 
[5], smoke particles produced by the combustion of an incense stick [6], and droplets obtained from liquid Di-ethyl-hexyl-
sebacate (DEHS) [7-12] on the tube walls. The geometric diameter of the aerosol droplets and particles was 1–10 μm [4, 5], 
0.3 μm [6], and 0.863 μm [7-12]. This work is aimed at experimental study of the features of sedimentation of the 
oscillating aerosol (with a droplet diameter of less than 1 μm) near the resonance frequencies in tubes of different lengths 
with various geometry on the end in the shock-wave and the shock-free modes. 
 

RESULTS 

 

   Experimental investigations of oscillations of aerosol were carried out for different length of tubes in a shock-wave and 
shock-free modes near to subharmonic and natural resonances. Di-ethyl-hexyl-sebacate C26H50O4 was used as the working 
fluid to generate aerosol. The majority of droplets have the geometric diameter 0.863 μm. As experiments have shown, the 
concentration of droplets monotonically decreases with time. Moreover, under natural deposition a slower decrease in the 
aerosol concentration with time takes place. In the closed tube, this process includes the coagulation of aerosol droplets 
upon their coalescence and sedimentation on the tube walls. The time of variation of concentration is the time scale of 
sedimentation of aerosol. In the open and the partially open tubes, the monotonic process of the decrease in concentration 
with time includes mainly the coagulation of aerosol droplets, their sedimentation on the tube walls, and the unsteady 
discharge of aerosol from the open end of the tube in the form of a pulsating jet. Therefore, we will refer to the 
characteristic time of this process as the time scale of clearing of the aerosol.  
   The obtained dates were used to determine the time scale of sedimentation of aerosol and the time scale of clearing of 
aerosol as a function of frequency and amplitude of piston travel for different values of the tube length. The dependence of 
the time scale of sedimentation of aerosol and the time scale of clearing of aerosol on the excitation frequency exhibits a 
nonmonotonic pattern. This pattern of the dependence is attributed to the fact that the amplitude of forced oscillation of 
aerosol increases when resonance is approached and this leads to a decrease in the time scale of sedimentation of aerosol 
and the time scale of clearing of aerosol. At resonance, the amplitude reaches its maximal value; accordingly, the time scale 
of sedimentation of aerosol and the time scale of clearing of aerosol is minimal. Behind resonance, the amplitude decreases; 
as a result, the time scale of sedimentation of aerosol and the time scale of clearing of aerosol increases.  
   We will examine the data on the dependence of the time scale of coagulation and deposition of aerosol on the intensity 
of aerosol oscillation. It is known that, in a tube, the amplitude of pressure oscillation of the medium at resonance is 
proportional to ε = l/L [13]. Therefore, a decrease in the tube length or raising the amplitude of the travel piston causes an 
increase in the amplitude of pressure oscillation and, accordingly, of intensity of oscillation. The increase in ε leads to 
reduction of the time scale of sedimentation of aerosol in the closed tube and time scale of clearing of the aerosol in the 
open tube.  
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   It is possible to note that the time scale of the sedimentation of aerosol in closed tube is 2-4 times, and the time scale of 
clearing of aerosol in open tube is 6-12 times and in partially open tube is 5-12 times less than time scale of natural 
deposition in the absence of oscillations. Effective coagulation of aerosol droplets and their deposition in the tube due to the 
secondary flow in the manner of two toroid vortices is observed [13], formed as a result of the nonlinearity of the resonant 
oscillations. 
   In addition, the influence of the flanges at the passive end of the tube on the process of the clearing of aerosol is studied. 
It is shown that the decrease of the internal diameter of the flange results in an increase the time scale of clearing of aerosol 
that reaches a maximum value in the case of the closed tube. This is due, firstly, to the significant influence of the unsteady 
discharge of aerosol from the open end of the tube, and secondly, with the approach of the investigated excitation 
frequencies of aerosol in an open tube to its resonance frequency [14, 15]. Note that the time scale of clearing of aerosol in 
an open tube with the flange is longer than in an open tube without a flange. This is because an open tube with a flange, 
which is in connection with the tube forms a right angle, the consumption on the formation of vortices near the outlet 
section, is greater than in the tube with the rounded open end [16]. 
 

CONCLUSIONS 

 
   It is shown that the presence of oscillations leads to acceleration of sedimentation of aerosol. The increase in intensity of 
the oscillations, caused by increase of amplitude of piston travel or a decrease of the tube length, leads to reduction of 
process time. The time scale of the sedimentation of aerosol in closed tube is 2-4 times, and the time scale of clearing of 
aerosol in open tube is 6-12 times and in partially open tube is 5-12 times less than time scale of natural deposition. It is 
established, that presence of a flange slows down process of the clearing of aerosol. Reduction of internal diameter of a 
flange results in increase in the time scale of clearing of aerosol. The nonmonotonic pattern of the dependence of the time 
scale of sedimentation of aerosol in a closed tube and the time scale of clearing of aerosol in an open tube on the frequency 
of excitation with a minimal value at resonance frequencies has been found. 
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Abstract Experiments were carried out using a custom-built facility to determine the loading on a model nuclear steam generator tube array 
during a simulated Main Steam Line Break accident. The working fluid was refrigerant R-134a. Measurements were taken of temperature and 
pressure during the fluid transient and high-speed videos from synchronised cameras were used to help understand the related flow physics. 
Sudden depressurisation was created using a rupture disc that opened fully in a few milliseconds. Parametric studies were undertaken to 
investigate the effects of varying initial conditions and liquid levels. The results provide valuable insights into the two-phase flow physics 
during such an event and have significant potential for benchmarking numerical code development as well as predicting tube loading. 
 

INTRODUCTION 
 
   This paper presents the results of an experimental study of two-phase flow transients following sudden depressurisation 
from a pressurised subcooled liquid state. While the overall purpose of the research was to determine the fluid loading on 
the U-bend tubes of a nuclear steam generator during a simulated Main Steam Line Break (MSLB), an understanding of the 
physics of the fluid transient phenomena must first be developed. Indeed, such an understanding is useful for a wide range 
of applications including the design of boilers, refrigeration systems, desalination equipment, cryogenic systems, the 
transfer and storage of liquefied gases, and pressurised water nuclear reactors. The authors are unaware of any similar 
thorough experimental investigations of the relevant phenomena published in the open literature.  
 

EXPERIMENTS 
 
   The present experiments were carried out using R-134a which, for the present purposes, scales well with steam-water 
transients. The experimental rig consists of a vertical 15.2 cm diameter pipe reservoir that contains quiescent pressurised 
liquid, a test section that contains the model tube array, a rupture disc that produces the sudden depressurisation upon 
opening, and a downstream vacuum reservoir of sufficient volume that the downstream increase in pressure during the 
transient has no effect on the results. The rupture disc opens in a couple of milliseconds and presents no obstruction to the 
flow after rupture. The vertical rig is shown schematically at the right side of Fig. 1 without the large vacuum tank at the 
downstream pipe exit. Each experiment consisted of drawing the rig down to a vacuum upstream and downstream of the 
rupture disc, charging the liquid reservoir to the desired volume and pressure, initiating the transient, and monitoring the 
dynamic temperatures and pressures at the 3 axial locations on the pipe as numbered in Fig. 1. All instruments were 
carefully validated, calibrated and synchronised. High-speed videos from two synchronised cameras above and below the 
test section permitted visualisation of the flow to assist in understanding the flow physics. Parametric studies were carried 
out to study the effects of varying the initial liquid volume and its free surface level relative to the tube bundle. 
 
Overview of experimental results 
   The research objective was to provide a unique and reliable dataset and to perform analysis that supports the major two-
phase fluid phenomena observed. The accurate inclusion of two-phase fluid effects in numerical simulations is one of the 
main areas for improvement in present 
computational modelling tools. The 
rapid depressurisation process is 
initialised by the propagation of a 
rarefaction wave from the point of disc 
rupture. The fluid is subsequently 
depressurised and transitions into a 
superheated metastable state, which 
triggers an extremely rapid boiling 
process. 
   A sample set of pressures measured 
in a typical experiment is presented in 
Fig. 1. In the first 10 ms, a pressure 
wave propagates rapidly at the speed of 
sound. The arrival of the wave is 
recorded at different times because of  

Figure 1. Sample fluid pressures measured during a transient experiment 
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the locations of the pressure sensors 
relative to the rupture disc. This is 
followed by a period of vigorous 
phase transition in which the ratio of 
vapour-to-liquid in the pressure 
vessel increases rapidly. At the same 
time, the two-phase fluid mixture is 
discharged through the open rupture 
disc due to the pressure difference 
between the pipe and the downstream 
vacuum tank. A quasi-steady choked 
flow condition is established beginning at about 100 ms. At about 600 ms, the pressures everywhere in the system begin to 
equalise until equilibrium conditions are established, signalling the end of the transient. Around 1 second following the 
opening of the rupture disc, the 14 litre liquid inventory is essentially completely boiled off. 
   The specific details of the initial wave propagation behaviour depend on the initial liquid level in the pressure vessel. 
Wave velocity measurements indicated that the tube bundle had no discernible influence on wave propagation. The two-
phase mixture accelerates rapidly towards the discharge plane. The velocity of the accelerating front was traced using high-
speed images and pressure signals. Since the pressure ratio between the upstream pipe and the vacuum reservoir is very 
high, the flow becomes choked in the early stages of the transient. This critical flow condition establishes the maximum 
possible discharge mass flow rate. The velocity was found to approach the single-phase vapour speed of sound at higher 
void fractions. 
   The initial rapid depressurisation of the liquid proceeds to a minimum pressure that is lower than the initial saturation 
pressure, as shown at about 9 ms in Fig. 1. Following this point, the pressure recovers to a pressure amplitude that typically 
remains steady for the next several hundred milliseconds. The recovery in the pressure amplitude is caused by rapid 
expansion and growth of the vapour phase. An analysis of the transient thermal phenomena was made possible by 
measurements from fast response thermocouples. The expected equilibrium saturation temperatures computed from local 
pressure measurements were compared to the measured transient temperatures. The results indicated a significant amount of 
thermal non-equilibrium between the liquid and vapour phases. The liquid was observed to remain in a prolonged 
superheated state, whereas the vapour temperatures rapidly dropped towards saturated thermodynamic conditions. 
   Flow pattern visualisations provided interesting insights into the physical mechanisms of phase transition, vapour 
growth, and transient fluid regime development. A sample image sequence of the rapid vapour growth filmed is shown in 
Fig. 2. The images show that the generation of vapour occurs mainly at the solid-liquid pipe wall boundaries. The vapour 
that is generated grows radially into the liquid bulk and rises upwards towards the vacuum reservoir. The bubble velocities 
and growth rates were significantly under-predicted by theoretical pool boiling models. 
   The pressure amplitude during the transient is determined by the net effect of the rate of vapour generation, which 
produces an increase in pressure, and the rate of fluid discharge, which results in a decrease in pressure. The effects of the 
initial conditions were found to be as follows. The rate of phase transition and the amplitude of pressure recovery in these 
experiments were mainly influenced by the rate and mechanism of vapour generation. Larger initial interfacial surface area 
between the two phases resulted in greater heat and mass transfer, which promoted faster phase transitions and higher 
pressures. The volume of liquid in the pipe determines to a certain extent the transient pressure amplitudes and the duration 
of the discharge. When the initial liquid inventory is smaller, less vapour is generated, and the overall pressure amplitudes 
are lower. Smaller liquid inventories also produce shorter transients. The inclusion of the tube bundle restricted the rate of 
fluid discharge, resulting in smaller departures from non-equilibrium conditions compared to full-bore pipe transients. 
 

CONCLUSIONS 
 

   The general two-phase flow phenomena can be summarised as follows. The initial rapid transient stages directly following 
the sudden pressure release are dominated by unsteady acoustic phenomena. Significant liquid flashing to vapour develops a few 
milliseconds later and the mass flow rate of the discharging fluid increases rapidly. This is a period of strong thermodynamic 
non-equilibrium. Subsequently, the upstream pressure stabilises and remains steady for a few hundred milliseconds, which 
indicates that the two-phase flow is choked during this time. The duration of this quasi-steady discharge stage depends strongly 
on the initial liquid level in the reservoir and the restriction to the flow imposed by the tube bundle in the test section. The 
upstream pressure tapers off when the liquid inventory is reduced sufficiently that the pressure level cannot be maintained by 
vapour generation. The results of this study provide a basic understanding of the transient flow physics during a rapid 
depressurisation such as caused by a MSLB, generate the data required for related numerical code development, as well as create 
the basis for predicting the steam generator tube loading during such an event. 

 
Figure 2. High-speed flow visualisation sequence of bubble growth – 50 ms time step, 10 mm grid 
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ROTATIONAL SAPERATION IN BINARY DROPLET COLLISON 
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Summary We have studied experimentally the collision regimes between two identical droplets made of alkane or water. In contrast to five 

typical regimes generally known, i.e., (I) coalescence after minor deformation, (II) bouncing, (III) coalescence after substantial deformation, 

(IV) reflexive separation, and (V) stretching separation, we have found additional regime named as (VI) rotational separation. This regime 

is characterized by separation of a merged droplet with a scenario different from that reported in previous studies. In comparison with the 

existing models, interpretation is provided based on the resultant of the momenta in the reflexive and rotating masses of the merged droplet. 

Separation may happen if this resultant overcomes the restraining of the surface and viscous forces. The three types of separation can thus 

be unified into one model and the inconsistency among previous models could be eliminated. 

 
INTRODUCTION 

 

   The collision dynamics between two droplets has been widely studied in near decades [1-5] due to its significance in 

various disciplines of nature and practical interests. The outcomes of droplet collision are illustrated in Fig. 1, showing 

characteristic transitions from (I) coalescence after minor droplet deformation to (II) bouncing, to (III) coalescence after 

substantial droplet deformation, and to (IV) temporary coalescence followed by separation of primary binary droplets and 

further formation of satellite droplets when a governing dimensionless parameter of Weber number is increased. It is defined 

as We = lU2D/, where U is the relative velocity, D the diameter of the droplet, and l and  respectively the density and 

surface tension of the liquid.  

Another key factor dominating the collision is the impact parameter, B = /D, where  is the projection of the separation 

distance between the droplet centers in the direction normal to the vector U. Thus B = 0 indicates head-on collision and B = 1 

means grazing condition. If We is sufficiently large, with increase of B, two distinct scenarios of separation after merging of 

droplets have been reported. That is, (IV) reflexive separation due to the reflection of colliding masses and (V) stretching 

separation at large B caused by stretching of temporarily coalesced masses that are however not aligned in a collinear path. 

The models proposed to predict the transition boundary from regime (III)-(V) were referred to the competition between the 

rotational [1] or stretching [2-4] energy to the surface energy. These predictions are somehow not consistent with each other 

and the accuracy may degenerate in different studies. In this work we investigate a new regime diagram according to the 

experimental finding as shown in Fig. 2(a) and 2(b) and this could eliminate the inconsistency raised in previous studies. 

 

  
 

EXPERIMANTAL METHOD 

 

   The experimental setup was similar to that described in Refs. [5] and [6]. Two identical droplets were generated by nozzles 

that were triggered by the vibration of piezoelectric plates. They were made to impinge onto each other with adjusted angles 

of the colliding path. Time-resolved images were either taken through stroboscopy synchronized with the droplet generation 

circuit or recorded by a high-speed CMOS digital camera (X-StreamTM Vision, XS-4), which supported a maximum 

resolution of 512512 pixels with 5100 frames per second (fps). The shutter of the high-speed camera was synchronized with 

a LED lamp that can support the shortest duration of 1 s, so as to capture images with sufficiently small exposure and 

adequate light intensity while avoiding slurring due to background scattering. In contrast, for high spatial resolution, a standard 

CCD was used to take droplet pictures as the motion was synchronized with the stroboscopic light. However, this technique 

might not readily render desired points on the regime diagram; thus the high-speed camera system was implemented. 

 

RESULTS AND DISCUSSION 

 

   Decane, dodecane, tetradecane, hexadecane and water droplets with two different diameters (0.3 and 0.6 mm) have been 

tested, for which the new regime diagram was recorded and shown in Fig. 2(a) and 2(b). Specifically in Fig. 2(a), as B is 

Fig. 1 (a) The typical regime 

diagram of hydrocarbon at 1 atm 

[4]. (b) Definition of parameters 

in binary droplet collision. (c) 

Schematic scheme of the 

reflexive portion (cross hatched) 

for the colliding droplets [1]. 
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increased, the collision outcome can be compared for the marked points and shown in Fig. 3. These results all demonstrate 

the existence of a new regime (VI) of separation, and a strip of coalescence regime between regime (V) and (VI). The 

sequential images in Fig. 3(c) show that the coalesced droplet is stretched out in the same manner as reflexive separation but 

eventually separated after a rotation of about 3/4 in phase difference. This is distinct from the known scenarios of reflexive 

and stretching separation regimes. In Fig. 2(b), the minimum value of We on the transition boundary from regime (III) to (VI) 

is defined as Wer and is compared to Wec, as shown in Fig 2(c). It indicates that Wer linearly increases with Ohnesorge number, 

which is defined as 𝑂ℎ = 𝜇𝑙/√𝜌𝑙𝐷𝜎, where 𝜇𝑙 is the viscosity of the liquid. This tendency is similar to that of the model 

proposed in [4], whereas the values and the slope of the regression line of Wer are higher than Wec. This reveals that the 

mechanism leading to the variation of regime (V) from (VI), intercepted by (III), may relate to the dominance between the 

momentum in the rotating masses, which originally move toward the trajectories of the colliding droplets, and the momentum 

in the reflexive zone (Fig. 1c) of the merged droplet which can lead to oscillation. If the resultant of these momenta is large 

enough to overcome the surface and viscous forces, separation happens. This model would unify the mechanisms interpreted 

by the models based on rotational energy [1] and on stretching kinetic energy [2-3], respectively; thereby the discrepancy 

could be elucidated. 

 

 
Fig .2 (a) Regime diagram for water droplets with 0.6 mm diameter. ○: coalescence, ╳: separation, ＊: bouncing. (b) The 

new regime diagram of alkanes. (c) Comparison of Wec and Wer with the model based on energy conservation [4]. 

 

 
Fig. 3 Different sequences of water droplet collision with 0.6 mm diameter for points j-p (We, B) in Fig. 2(a). (a) j (25.8, 

0.177), (b) l (25.7, 0.374), (c) m (25.9, 0.377), (d) n (26.5, 0.463), (e) p (26.0, 0.551). 

 

CONCLUSIONS  

 

   In this work, a new regime of droplet separation following temporary coalescence is investigated. This phenomenon can 

be related to the competing dominance between the resultant of the momenta and the restraining of the surface and viscous 

forces. To eliminate the inconsistency raised in previous studies, we have been deriving a model which includes the reflexive, 

rotational, and stretching kinetic energies for comprehensive interpretation of three patterns of separations.  
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Summary An experimental study is carried out to measure the acoustic force on aerosol particles as a function of their size and quantify
deviations, for very small particles, from the acoustophoresis theory established when the fluid is treated as a continuum. To do so, the size
distribution is acquired as a function of position in a flow-through resonator. Considering the size range of the aerosols investigated and the
mean free path of air molecules, the acoustophoretic phenomenon reported here falls in the transition and molecular regimes. An electrostatic
transducer is used to generate a standing wave in the 50-80 kHz frequency range, concentrating the particles at the pressure nodes. A section
of the flow is then sampled isokinetically and sent to the analysis system which provides quantitative data on size distribution. The results
demonstrate the possibility of performing acoustic separation on aerosols with particle diameters as small as 100 nm.

INTRODUCTION

The use of ultrasonic standing wave to manipulate the position of particles suspended in a liquid in a microfluidic channel,
i.e. acoustofluidics, is now a mature technique capable of performing advanced tasks such as sorting according to size,
compressibility and density of particles [1]. For the last two decades, these developments in microfluidics have been driven
mainly by life science applications as a tool for the treatment of cell or particle suspensions [2]. The adaptation of advanced
acoustic manipulation techniques developed in the liquid phase to gaseous media can potentially bring desirable capabilities
for a wide range of other scientific and industrial applications. However, there are limitations imposed by the nature of the
gaseous media such as molecular effect at submicron length scales, high attenuation of acoustic energy in gases and the
effect of turbulence which need to be taken into account. The acoustic separation of aerosols, especially at submicron scales,
has received very limited attention from the research community relative to liquid suspensions and only a few works have
addressed this situation experimentally. For instance, Anderson [3] and Budwig [4] studied the manipulation of micron size
particles in an acoustic field using optical techniques and compared it with a theoretical model. Recently, Imani & Robert
[5] investigated the separation of submicron solid particles in a flow-through resonator using a light scattering technique and
quantified the efficiency of the process.

EXPERIMENTAL SETUP

With the work presented here, we aim to provide an experimental characterization of the acoustic separation of submicron
aerosols in gases. The experimental setup consists of a rectangular acoustic separation channel, 30 mm wide and with a
variable height (H) adjustable from 0 to 20 mm. A commercially available electrostatic broadband transducer is flush mounted
in the bottom surface, generating ultrasound standing waves at frequencies in the 50 kHz to 80 kHz range with sound pressure
levels up to approximately 155 dB (re 20 µpa). The side walls and a part of the reflector, exactly above the transducer, are made
of Plexiglas and glass to provide optical access to the separation region along two perpendicular axes. A fluidized bed seeder is
used to introduce a polydispersed suspension of TiO2 particles in the acoustic channel and the size distribution measured using
a Scanning Mobility Particle Sizer (SMPS, GRIMM 5410, with 11–1110 nm measurement range in 44 channels). To bring
the particles flowing at a specific location in the resonator to the SMPS system, a section of the flow is sampled isokinetically
between adjustable plates with spacing of 1 mm, as shown in Fig. 1 a). A laser sheet is inserted from the top to illuminate
the channel mid-plane, parallel to the flow direction and just downstream of the transducer, thus revealing the nodal pattern
in the resonator through light scattering. A tuning procedure [5] is used to find the resonance frequency that results in the
best separation of particles, with a sample picture shown in Fig. 1 b) inverted for clarity with darker shades denoting regions
with higher particle number density. The visualisation of the nodal pattern formed in the resonator ensures that the sampling
slit captures the desired portion of the flow. In the example of Fig. 1 b), the channel height is approximately 6.86 mm and the
excitation frequency is 75 kHz, resulting in a 3λ

2 standing wave with three particle enriched-bands across the channel located
λ
4 , 3λ

4 and 5λ
4 from the transducer face.

∗Corresponding author. Email: ramin@mech.kth.se
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Figure 1: a) Schematic representation of the experimental setup. Inset shows a magnified view of the independently adjustable
plates making the sampling slit. b) Visualisation of particle distribution within the channel using laser light scattering with
75 kHz excitation frequency, c) Time resolved signal of the particle number density for 300 nm diameter particles, acquired
with the SMPS system. d) Relative change in the number density for different particle sizes.

RESULTS

Preliminarily experiments were performed to validate the sampling and analysis techniques with the sampling slit posi-
tioned λ

2 from the reflector when a 3λ
2 standing wave is established in the channel, probing the flow at a pressure antinode,

where the number density is expected to decrease when a standing wave is present in the channel. For these measurements,
the sound excitation was turned on and off at time intervals of 2 minutes (50% duty cycle), for 40 minutes of total acquisition.
Fig. 1 c) shows an example of the raw time-resolved signal for number density of 300 nm diameter particles. Jumps in particle
concentration are clearly visible when the sound is turned on and off. To assess the effect of acoustic for particles of different
sizes, a simple separation metric was defined as the difference between the particle number density with and without sound
excitation divided by the particle number density without sound excitation. The procedure was repeated while monitoring dif-
ferent particle sizes. Results are presented in Fig. 1 d) for the 100 nm to 600 nm size range, with the error bar representing the
standard deviation in the separation metric, showing a clear separation of TiO2 aerosols, measured here for the first time for
distinct particle sizes. The trend observed reveal that smaller particles appear to be more difficult to separate. This is expected
from the equilibrium of forces on the suspended particles, dominated here by the primary axial radiation force and Stokes
drag. The primary axial radiation force scales with the volume of the particles, while the Stokes drag scales with the particles
radius. Therefore, the net force responsible for particle displacement to the pressure nodal planes is expected to decrease with
the square of the particle radius. The trend observed in Fig. 1 d) confirms that the acoustic separation of smaller particles is
indeed more difficult, but the dependence could not be quantitatively verified mainly because the 1mm thick sampling slit
used results in significant spatial averaging. This will be addressed in future works.

CONCLUSION

The results demonstrate for the first time the size-resolved acoustic separation of submicron solid aerosols in the 100 nm
to 600 nm size range. This hints that there might be critical size below which acoustic separation is impossible for a given
acoustic pressure amplitude. It is reasonable to assume that the acoustic separation of particles with diameters on the order of
100 nm may not be properly modelled when the fluid is as a continuum as the flow around the particles falls well within the
transition regime. The preliminary results presented here highlights desirable improvement to the facilities to be implemented
in future works, such as increased temporal stability for the particle generation system and higher spatial resolution for the
aerosol sampling that will result in a quantitative evaluation of the acoustic force as a function of particle size.
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THE EFFECT OF INHOMOGENEOUS MOBILITY ON IMMISCIBLE HELE-SHAW FLOW
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Summary We investigate immiscible radial displacement in a Hele-Shaw cell with an inhomogeneous mobility using two coupled high
resolution numerical methods. A Cartesian periodic perturbation in the Hele-Shaw plate separation gives rise to an inhomogeneous mobility,
which we explore in a high capillary number regime. Under Cartesian periodic geometry, secondary tip splitting instabilities are significantly
altered and different fingering structures are formed around an initially symmetric interface. Viscous fingers are sharpened when aligned
with the periodic grid, as the fingers travel in regions of high permeability that accelerate the finger fronts. Fingers displacing at 45◦ to the
axes show close resemblance to their uniform cell counterparts due to the homogeneity of the plate perturbation at the length scale of the
interfacial displacement.

INTRODUCTION

During the immiscible displacement of a high viscosity fluid by the radial injection of a low viscosity fluid in a Hele-Shaw
cell, interfacial instabilities can evolve forming complex viscous fingering patterns. Hele-Shaw cells are often used to provide
insight into the more complex problem in porous media, whereby effects such as inhomogeneous permeability and wetting
conditions play a significant role in the interface evolution. A spatially varying permeability can be considered in a Hele-Shaw
cell context as a variation in the plate separation, giving rise to an inhomogeneous fluid mobility. Recently, several analytical
and experimental works have shown that small changes in the plate separation in a Hele-Shaw cell can have significant effects
on the interface evolution, allowing the control and suppression of fingering instabilities [1].

In rectilinear Hele-Shaw flows at low capillary numbers, the fingering instability can be completely suppressed in a con-
verging cell if the capillary number is below a critical value [2]. This is due to the increase in transverse curvature in the flow
direction that helps to stabilise the interface. When the capillary number is raised, the fingers are sharpened, as the finger
fronts are more strongly accelerated than the finger sides [3]. In diverging cases, the front is decelerated leading to stubbier,
less ramified fingers. These experimental findings have been confirmed by linear stability theory that analyses the growth
rate and finger morphology at early time stages for small perturbations [1][4]. However, to fully understand the non-linear
finger interactions and late stage interfacial evolution in radial Hele-Shaw flow subject to a variable plate separation requires
extensive numerical simulation [4].

This short paper uses recently developed numerical methods to analyse late stage finger tip-splitting instabilities at high
capillary number in periodic Hele-Shaw geometry, providing insight into the effects of inhomogeneous mobility on immiscible
displacement.

THEORETICAL MODEL

For the flow in a Hele-Shaw cell, the depth averaged pressure P and 2D Darcy velocity u in each fluid region l can be
expressed through Darcy’s law: uli(x) = −Ml(x)∂Pl

∂xi
. The mobility Ml is related to the fluid viscosity µl and plate spacing

b(x) by: Ml(x) = b(x)2/12µl. The flow field satisfies conservation of mass, which takes into account the varying plate
separation: ∂(b(x)uli)/∂xi = 0. At the interface between the fluids, the kinematic matching condition requires continuity
of normal velocity, whilst the dynamic condition requires a jump in pressure equal to the capillary pressure. Substituting the
Darcy velocity into the conservation of mass, and splitting the plate spacing, mobility and pressure into homogeneous (−) and
perturbed (∼) components we form the following equation:

ml(x)
∂2p̃l
∂x2i

+ml(x)
∂2pl
∂x2i

+
∂m̃l(x)

∂xi

∂p̃l
∂xi

= −∂m̃l(x)

∂xi

∂pl
∂xi

(1)

Where, ml(x) = b(x)Ml(x). Equation (1) represents a convection-diffusion transport equation, with a steady-state
pressure field that must be solved in order to evaluate the 2D Darcy velocity at the interface. The inhomogeneous source
term on the RHS of (1) can be found through the evaluation of the homogeneous pressure, which we constrain to satisfy
Laplace’s equation.

Equation (1) is solved to find the perturbed pressure using a strong form radial basis function finite collocation (RBF-FC)
method with adaptive quadtree dataset that makes use of the symmetry of the problem and equivalent boundary conditions [5].
The homogeneous pressure is represented by the sum of a double layer potential density and a source injection term, which
is solved using a boundary element method shown in [6]. Taking the normal derivatives of the pressure components at the
interface, the normal interface velocity can be reconstructed and the interface advanced with a forward euler time stepping
procedure.

∗Corresponding author. Email: Henry.Power@nottingham.ac.uk
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Figure 1: (a) Interface plot at t = 40 for the periodic and uniform cell. — Cartesian periodic cell,- - - Uniform cell. (b)
Interface plots at ∆t = 5 increments from t = 0 to t = 40 for the periodic case overlaying the plate separation variation, b̃(x).

PERIODIC GEOMETRY RESULT

Here, we present interfacial displacement results for a 2D periodic Hele-Shaw cell geometry with a variation in plate
spacing as: b̃(x) = As

4 (cos(fs(x1)) + cos(fs(x2)) − 2) where, As is the wave amplitude and fs is the wave frequency. For
the case presented here we take fs = 5, As = 0.00025 and r0 = 5 cm. We use a low mobility ratio between the fluids
M1/M2 = 10, with the global capillary number Cag = 2500. Cag = r0Q/γM2, where Q is the injection flux,γ is the surface
tension between the fluids and r0 is the unperturbed bubble radius.

In Figure 1(a), the interface plots for the periodic cell and a corresponding uniform cell (b̃(x) = 0) can be seen. The
finger evolving in the periodic cell at 45◦ to the horizontal (and corresponding symmetric fingers) has a completely different
bifurcation mode to the fingers travelling parallel to the x- and y-axis. The fingers travelling parallel to the axes have been
sharpened significantly due to continued acceleration of the finger tips, whereas the 45◦ finger has a very similar structure to
the uniform case. The capillary number is large in the case presented here, meaning the transverse curvature has very little
effect on the overall finger evolution.

The time evolution of the fingers with respect to the variation in plate separation are shown in Figure 1(b). The fingers
parallel to the axes generally have their tips in regions of higher mobility compared to the sides of finger fronts as the interface
displaces with time. This means that the homogeneous velocity is larger around the tip, creating a larger source term and
perturbed velocity, sharpening the finger. This behaviour is similar in nature to the sharpening of the fingers in the rectilinear
case presented by [3]. The sharpening of the fingers in the present case and the case in [3] are both caused by locally high
sources of perturbed pressure that act to add a larger perturbed velocity to the finger tips compared to the sides.

For the finger that is displacing at 45◦ to the x-axis we see a morphology very similar to the uniform case. The bifurcation
is only slightly different to the uniform case as the finger travels through both a peak and a trough in the cell separation
before bifurcating. The 45◦ degree finger evolves in a cell whose plate spacing can be considered homogeneous at the scale
of displacement, with a small perturbation term slightly altering the finger shape. However, the fingers parallel to the axes
evolve in a highly inhomogeneous environment, where the tips travel through regions of high permeability (like a fracture)
compared to the sides, resulting in highly sharpened fingers. The result in Figure 1 shows the significant differences in finger
morphologies that can occur when the plate separation varies non-uniformly with respect to the flow direction.
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Summary In this contribution we use the Boundary Element Method to study the stability of a viscous conducting and charged drop,
submmitted to rotation at constant angular momentum. This droplet is considered to be contained in another viscous and insulating fluid. Our
numerical simulations show that the Rayleigh fissibility ratio at which charged drops become unstable decreases with angular momentum.
We have also considered neutral drops subject to an electric field, in this case the critical value of the field which destabilizes the drop
increases with rotation. Concerning equilibrium shapes, approximate spheroids and ellipsoids are obtained and the transition values between
these two families of solutions is described.

DESCRIPTION OF THE MODEL

We are interested in the evolution, stability and equilibrium configurations of a viscous and conducting drop surrounded by
another viscous and insulating fluid. Both fluids rotate about a common axis (e.g. the z axis) with constant angular momentum
L and are assumed to be incompressible. We consider the following two situations: in the first, the droplet has an amount of
charge Q distributed over its surface, and in the second, the drop is neutral and subject to a uniform external electric field of
magnitude E∞ along its axis of rotation. In this contribution we will study the case where viscous forces dominate inertial and
Coriolis forces. This regime is known as Stokes flow and is characterized by Reynolds number� 1 and Ekman number� 1.
Thus we have Stokes system: {

−∇Π(i) + λi−1∆u(i) = 0 , inDi (t)

∇ · u(i) = 0 , in Di (t)
, (1)

where D1(t) is the region enclosed by the droplet and D2(t) that of the surrounding fluid, λ = µ2

µ1
, µi is the viscosity of fluid

i, u(i) is the velocity field of fluid i and, supposing that ρ2 � ρ1,

Π(1) = p(1) − %1
L2

2I2
r2axis , Π(2) = p(2).

Where ρi is the density of fluid i and I is the moment of inertia of the drop.
We also impose that the normal component of the velocity is continuous across the boundary:

u(1) · n = u(2) · n ≡ u · n , (2)

and the kinematic condition:
vn = u · n , on ∂D (t) , (3)

with vn being the normal velocity of the free boundary.
Now, since the drop is considered an ideal conductor, the potential V must be constant inside and at the drop’s surface,

and all the charge is located at the boundary. The electric potential satisfies the Laplace equation:
∆V = 0 , in D2 (t)

V = V0 , in ∂D (t)

V → −E∞z +O(|r|−1) , as |r| → ∞
, (4)

and V0 has to be chosen so that the total charge is Q. At the boundary of the drop the surface charge density σ is given by
the normal derivative of the potential, σ = −ε0 ∂V∂n , with ε0 the permittivity of the surrounding fluid and n is the outward unit
normal to the surface of the droplet. At the surface of a conductor, the repulsive electrostatic force per unit area is:

Fe =
ε0
2

(
∂V
∂n

)2

n =
σ2

2ε0
n ,

To solve (1) we set a balance between viscous stresses and capillary, electrostatic and centrifugal forces at the interface of
both fluids: (

T (2) − T (1)
)
n =

(
2γH− %1

L2

2I2
r2axis −

σ2

2ε0

)
n , on ∂D1 (t) , (5)
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NUMERICAL SOLUTION

We use the Boundary Element Method (BEM) to solve (1) and (4) with the boundary conditions (2), (3) and (5). More
precisely, in each time step we use the BEM to solve a boundary integral equation (obtained from (1)) that describes the
velocity of the drop’s interface. In order to do this we need to calculate the mean curvature and the surface charge density
(solving (4)) at each node of the surface mesh as well as the moment of inertia of the drop. Once the velocity field is known,
we can move the boundary mesh in the normal direction (the tangential component of velocity is not considered because it
only redistributes the nodes over the boundary) with an Euler explicit scheme. The algorithm is implemented to be adaptive,
since a good resolution is needed in regions of the mesh where singularities develop.

DISCUSSION

In the presentation we will discuss the evolution and stability of axisymmetric rotating drops in electric fields and the
effects of rotation on dynamic Taylor cones, regarding the latter it is worth noting that when the drop becomes unstable, a
two-lobed structure forms where a pinch-off occurs in finite time or dynamic Taylor cones (in the sense of [1]) develop, whose
semiangle, for small L, remains the same as if there was no rotation in the system. Finally, a 3D stability analysis is conducted
for charged rotating drops or rotating drops immersed in an electric field. In figure 1 we depict the diagram that summarize
this analysis.
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Figure 1: Sketch of the bifurcation diagram summarizing numerical results (symbols) for the transition points between differ-
ent regimes obtained with the full 3D model.

Note: Most of this work has been published in [2] and [3].
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Summary The interaction among a water hammer and the motion of a gas-liquid interface is of great importance in various fluid systems. We 
recently reported a simplified model for clarifying the interaction. However, the most dominant event (i.e. the pressure wave propagation) of the 
model has not been experimentally verified. This study measures the pressure near the interface in order to experimentally reveal the 
mechanism of the interface motion. We impact a liquid-filled container and generate a pressure wave in a liquid. The pressure impulse in the 
early stage of the wave propagation event is compared with the maximum volume of cavitation bubbles. Remarkably, a linear relation between 
the pressure impulse and bubble volume is found. The trend is the same as the relation between the interface velocity and the bubble volume we 
beforehand reported. It indicates that the pressure impulse decides the motion of the interface.         
 

INTRODUCTION 
 
   Impacting a container partially filled with a liquid leads to interesting motion of a gas-liquid interface [1]. Antkowiak et 
al. [2] reported that a focused liquid jet emerges from a curved interface. They assumed the incompressible fluid and then 
described velocity field and pressure field near the interface based on the “Pressure Impulse Approach”. Recently, we 
investigated that the influences of the water hammer on the motion of the interface [3]. We reported two characteristic 
motions: (i) the periodical vibration of the interface caused by the reflection of pressure waves; (ii) the jet velocity 
increment due to the cavitation appearance. The jet velocity can be up to twice faster than that of the jet with no cavitation. 
Both phenomena are obviously related to the effect of water hammer and hence “Pressure Impulse Approach” was not 
applicable. We paid attention to the propagation of pressure waves before jet formation and proposed simplified model for 
describing phenomena. Especially we considered that the scaling law, which is based on the maximum volume of bubbles, 
is applicable to explaining the jet velocity. We showed that the jet velocity increases linearly as the bubble volume increases. 
The model [3] reasonably describes the motion of the interface.  
   However, pressure in the liquid, which is an essential part of the model, has not been measured directly. The 
measurement of pressure near the interface is meaningful for understanding the detailed mechanism of the interaction 
between the jet motion and cavitation. In this study, we construct a new experimental setup in order to measure pressure in 
the liquid. We calculate the pressure impulse near the interface and compare it with the bubble volume. Finally, we revisit 
the scaling law [3] and give an interpretation on the mechanism of the jet velocity increment.                      
 

MODEL 
 
   The model [3] is based on the water hammer theory assuming linear waves since the pressure perturbations are small 
enough [4]. In the model, we consider a stationary test tube filled with the liquid. One end of the test tube is closed and the 
other end has the interface. The tube is suddenly accelerated by the impact and then starts to move with the velocity V. At 
this moment, a pressure wave generates in the liquid. Pressure waves continue to propagate in the liquid (Figure 1a). The 
pressure of the pressure wave p can be estimated as p=ρcV, where ρ and c are the density and the sound speed, respectively.  
   When cavitation nuclei exist in a liquid and pressure in the liquid becomes negative (state 3 in Figure 1b), cavitation 
may occur. During bubble expansion, pressure in a liquid relaxes from negative to atmospheric pressure. Expansion wave 
propagating through the liquid is attenuated during pressure relaxation. When the expansion wave in state 3 is completely 
attenuated, the interface holds faster speed than the tube bottom (Figure 1b, green line). Based on the model, the maximum 
jet velocity is twice larger than that of the test tube. The model indicates that the dominant factor for deciding the jet 
velocity increment is the extent of pressure relaxation at state 3.             
 

EXPERIMENTAL SETUP 
 
   The aim of this experiment is to investigate the relation between the pressure impulse and the bubble volume. Thus, here 
we do not record the jet. Our experimental setup is shown in Figure 1c. We fill the glass test tube (inner diameter d=8.0 mm, 
length L=90 mm) with pure water (density ρ=1,000 kg/m3, sound speed c=1483 m/s). The shape of the free surface is almost 
flat since we aim to easily capture the reflection of pressure waves. We strike the tube bottom and move the tube with the 
velocity V. The tube velocity V, which is only the controllable parameter, is varied from 0.076 m/s to 0.596 m/s. We insert a 
hydrophone probe (Mueller Instruments) near the interface (60 mm from the tube bottom) and measure the pressure. 
   Cavitation bubbles are illuminated by a LED light and filmed by a high-speed camera (Photron, Fastcam SA-X), whose 
frame rate and spatial resolution are 100,000 f.p.s. and 0.1 mm/pixel, respectively. Matlab image processing is applied to 
compute the bubble volume. The experiment is repeated 5 times for each condition.      
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RESULTS AND DISCUSSION  
 
   Typical time histories of pressure are shown in Figure 2a. Blue and red lines show the case with no cavitation (V=0.154 
m/s) and the case with cavitation (V=0.366 m/s), respectively. Vertical and horizontal axes show the pressure in gauge 
normalized by water hammer pressure ρcV and the time normalized by a time scale L/c, respectively. The pressure of the 
first peak is p~ρcV for both cases. When cavitation does not occur (blue line in Figure 2a), pressure waves continue to 
propagate in the liquid. When cavitation occurs (red line in Figure 2a), the pressure goes back to the atmospheric pressure. 
The timing for starting pressure relaxation fairly matches with that of bubble appearance. It implies that the pressure 
relaxation is caused by cavitation, which agrees with the model [3]. 
   The relation between pressure impulse P and the bubble volume Ω is presented in Figure 2b. According to that the 
motion of the interface is dominantly characterized by the event until the end of state 3 in Figure 1a, we calculate P as the 
integration of pressure from t=0 to t=4L/c. Each marker presents the mean value for the same tube velocity V and error bar 
shows the standard deviation.  
   When cavitation does not occur, pressure impulse P is nearly equal to zero (blue marker in Figure 2b). On the other 
hand, when cavitation occurs (red marker in Figure 2b), pressure impulse P increases with bubble volume Ω. It indicates 
that the extent of pressure relaxation is described by bubble volume Ω. If the revisiting discussion in previous study [3] is 
allowable, we mention that the jet velocity may be decided by the pressure impulse P in the early stage (t~4L/c) of the event.               
 

CONCLUSIONS 
 

   In this paper, we experimentally revisit the effect of a water hammer on the motion of the interface. We construct a new 
experimental setup based on the model [3] in order to measure pressure near the interface. We find that the proportional relation 
between the pressure impulse P and the bubble volume Ω, which was not discussed in the previous study [3]. According to this 
relation, the jet velocity is supposed to be decided by the pressure impulse P in the early stage (t~4L/c) of the event. 
   This work was supported by JSPS KAKENHI Grant Number 26709007. 
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Figure 1: (a) x-t diagram of the wave propagation model for the case with no cavitation [3]. (b) x-t diagram for the case with cavitation. Red line shows a 
compression wave and blue line shows an expansion wave in the x-t diagram. (c) the schematic of our experimental setup.  

 
Figure 2: (a) typical time histories of pressure near the free surface (L=60 mm). Red marker shows the data with cavitation and blue marker shows the data with no 
cavitation. Dashed lines show the water hammer pressure ±ρcV. (b) the pressure impulse P vs. the bubble volume Ω.   
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Summary Oscillation and pinchoff of axisymmetric droplets are studied numerically using the model of axisymmetric vortex sheets with
surface tension in inviscid fluids. Droplets are initially at rest and biconcave, and then evolve under the action of surface tension. Oscillation
of a droplet is observed for a sufficiently small depth of the initial dent. For a large value of this depth that causes the high curvature of a
vortex sheet, however, it pinches off at two points and breaks into two end-droplets and a satellite droplet. We observe that a significantly
small satellite droplet is generated for the smallest depth of the initial dent within the region where pinchoff occurs.

FORMULATIONS

There have been many numerical studies on the motion of axisymmetric droplets with the boundary integral method. In
the present paper, we examine the time evolution of axisymmetric droplets of high curvature by using the boundary integral
method and numerical techniques of high accuracy developed in [1] and [2] recently. In our simulations, biconcave droplets
with different depths of the dents are released from rest and evolve under the action of surface tension. We observe the
oscillation of the droplets or their pinchoff in a finite time depending on their depth of the initial dent. Our main purpose is to
find the relation between the initial shape (and initial distribution of mean curvature) of the droplets and their final state.

We consider the irrotational motion of two inviscid, incompressible fluids of the same density in R3 separated by a closed
smooth surface S. For simplicity, let the densities be equal to 1. The governing equations for the fluid velocity u and pressure
p in R3\S are the Euler equations, the equation of continuity and the condition of no vorticity written as

∂tu+ (u ·∇)u = −∇p, ∇ · u = 0, ∇× u = 0, in R3\S, (1)

where t is the time, and the external forces are neglected . In addition, there are three boundary conditions given by

[u]S · n = 0, [p]S = τκ, on S, u → 0 as |(x, y, z)| → ∞. (2)

Here, n is the unit normal vector of S towards the outer fluid, κ is the mean curvature of S, and τ is the surface tension
coefficient. Brackets [·]S give the jump of physical quantities across S. The first condition in (2) is the kinematic boundary
condition on S, which forces S to move with both fluids. The second condition, called the Laplace-Young boundary condition,
represents the effect of surface tension on S. The last condition is the far-field condition for the fluid velocity.

Figure 1: Axial symmetry and parametrization.

We assume that the flow possesses axial symmetry. That
is, in cylindrical coordinates (r, φ, z), all the physical quan-
tities are independent of the azimuthal coordinate φ and de-
pend only on r, z, and t (see Fig.1(a)). Therefore, the fluid
velocity u can be written as

u = ur(r, z, t)er + uφ(r, z, t)eφ + uz(r, z, t)ez, (3)

where er, eφ, and ez are unit vectors in the r, φ, and z
directions, respectively. The flow without swirl defined by
uφ(r, z, t) ≡ 0 is assumed. The time evolution of the shape
of the axisymmetric free boundary S is specified by the mo-
tion of a curve on the plane of φ = const. called a plane
curve. To introduce a Lagrangian representation, we define
the following mappings with the parameter α ∈ [0, π]:

X(α, t) = (z(α, t), r(α, t)), µ(α, t) = −[ϕ]S(X(α, t), t), (4)

where X(α, t) is the location of a point on S specified by α and t, and ϕ is the velocity potential satisfying u = ∇ϕ. An
example of the parametrization of initial plane curve of a droplet is shown in Fig.1(b). Upper and lower points of the curve
on the z axis correspond to α = 0 and α = π for all t, respectively. The curved arrows along the plane curve in the right half
plane indicate the direction of increasing α.

∗Corresponding author. Email: k.kazuki@acs.i.kyoto-u.ac.jp
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If the definition ∂tX =
1

2
lim
h→+0

(u(X + nh, t) + u(X − nh, t)) is adopted, the equations governing the time evolution of

X(α, t) and µ(α, t) are expressed as
∂tz(α, t) =

1

2π
p.v.

∫ π

0

µ′
α

1

ρ2

[
F (λ)− (z′ − z)2 + r2 − r′2

ρ21
E(λ)

]
dα′,

∂tr(α, t) =
1

2πr
p.v.

∫ π

0

µ′
α

z′ − z

ρ2

[
F (λ)− (z′ − z)2 + r2 + r′2

ρ21
E(λ)

]
dα′,

∂tµ(α, t) = τκ

(5)

where, for example, z and z′ are values at α and α′ respectively, and the subscript α implies the differentiation with respect
to α or α′. Here, ρ21 = (z′ − z)2 + (r′ − r)2, ρ22 = (z′ − z)2 + (r′ + r)2, F (λ) and E(λ) are the complete elliptic integrals
of the first and second kind, and λ2 = 4r′r/ρ22. The symbols p.v. in front of integrals indicate that they are interpreted as the
principal value integrals.

NUMERICAL RESULTS

We employ the Crank-Nicolson discretization used in [1] for the time integration and the modified dBM approximation
proposed in [2] for the evaluation of the singular integrals in (5). Initial shapes of droplets at t = 0 can be determined by giving
θ = tan−1(rα/zα), the tangent angle to a plane curve for all α, with a uniform grid spacing satisfying |Xα|(α, 0) = const.
The initial condition used in the present study is written as

θ(α, 0) =
π

2
+ α− 0.5 sin 2α−A sink 2α, µ(α, 0) = 0, L(0) = L0, (6)

where L(t) is the length of the plane curve at the time t. The constant A in (6) determines the depth of the initial dent. For
positive A, the resulting shape of the droplet is biconcave. Larger k yields higher curvatures near the points where the sign of
the curvature of a plane curve changes. The second condition of (6) means that the droplet is initially at rest. In the present
paper, we show a few results for τ = 2, k = 1, and L0 = 2π.

For A = 0, the shape of the droplet oscillates, similarly to the motion of a droplet obtained in [1] for a different initial
condition. Its initial shape has no dent, and it repeats the deformation between this initial shape and the shape of a capsule (see
Fig.2(a)). ForA =0−0.4125, the droplet still oscillates, but high curvatures corresponding to the pinching near (z, r) = (0, 0)
are observed for A close to 0.4125. For A =0.421−0.5, the droplet pinches off at two points on the symmetric axis and
breaks into two end-droplets and a satellite droplet. For smaller A within this region, the size of the generated satellite droplet
is smaller, and the pinchoff time is larger. As an example illustrating this property, the shapes just before the pinchoff for
A = 0.421 and A = 0.5 are shown in Figs.2 (b) and (c) respectively. For A = 0.421, the sizes of the satellite droplet in the z
and r directions are 0.076 and 0.014 respectively and the pinchoff time is t = 2.39, while for A = 0.5 the sizes are 1.20 and
0.19 and the pinchoff time is t = 1.81.

Figure 2: Initial shapes (dashed lines) and axially elongated shapes (solid lines) at t shown in the figures : (a) A = 0, (b)
A = 0.421, and (c) A = 0.5.

We will also show results for k larger than 1 in the presentation.
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Summary We show and characterize the relative importance of the coiling and whipping instabilities of an electrified liquid jet, which dictate 
the dynamic path of the jet among three regimes include “coiling jet”, “whipping jet” and “straight jet”.  

.INTRODUCTION 
   The dynamics of an electrically charged jet is fascinating with enormously rich underlying physics and wide 
applications1,2. The applied electric stress deforms the liquid interface into a jet, which either breaks up into droplets or 
elongates, enabling the production of nano-sized particles or fibers3. The application of an electric field enables multiple 
unstable modes. For example, the repulsion between surface charges has been known to trigger the whipping instability1,2. 
The tangential stress to which the surface charges are subjected can induce the “liquid coiling instability”4. The whipping 
instability of electrified jets and the coiling of un-charged jet have been extensively investigated separately1–3,5–7. However, 
the transition from a charged coiling jet to a whipping one has not been systematically reported. Moreover, few 
comprehensive studies are available, to describe the relative importance of the coiling and whipping instabilities when a 
liquid jet is electrified. To address these, we have characterized the onset of the coiling and whipping instabilities for liquid 
jets as the charging voltage is tuned. We show that a critical capillary number and a representative electro-capillary number 
determine the dynamics of the charged jet, among regimes of “coiling jet”, “whipping jet” and “straight jet” (Fig.1).  

EXPERIMENTS 
   We formed a straight jet of glycerine in paraffin oil by a metallic nozzle (dnozzle~0.92mm), and the aspect ratio of the jet 
was controlled by the volumetric flow rate and the distance between the nozzle and substrate (L~10mm). The straight jet 
was charged by connecting the nozzle and substrate to a high voltage power supply (Fig.1 (a)). The interfacial tension of the 
system was tuned by varying the concentration of the surfactants, Tween 20 and Span 80, in glycerine and paraffin oil, 
respectively. The dynamic behaviors of the jet is visualized and recorded by a using a high-speed camera (Phantom V 9.1) 
coupled with a zoom lens (Nikon).       

RESULTS 
   When a straight jet is charged with an increasing voltage, it accelerates towards the substrate connecting the opposite 
electrode and thus thins. The subsequent impact of the jet with a solid substrate requires a dramatic deceleration that gives 
rise to a compressive stress, resulting in jet bending at a sufficiently large compression (Fig.1(b)). Thus, charging a liquid jet 
can trigger the coiling instability, where a jet starts to rotate steadily7. A coiled jet has more interfacial area than a straight 
one, which is resisted by the interface tension. The electric compression relative to the interfacial tension can be 
characterized by the capillary number of the jet, Ca=µv/γ, where µ,v and γ are the viscosity, velocity and interfacial tension 
of the liquid jet respectively. We show that with increasing applied charging voltage, which corresponds to an increasing Ca, 
coiling occurs as Ca reaches a magnitude of ~101 (Fig. 2(a)).      
   Meanwhile, when a charged jet is subjected to an electric field, charges migrate from the bulk to the interface and 
accumulate. The surface charge density rises sharply as the applied voltage increases. As a result, the repulsion between 
surface charges becomes significant. When the charge repulsion dominates surface tension which is stabilizing, the liquid 
jet develops a lateral instability and starts to whip violently and chaotically8 (Fig. 2(b)). In this manner, the whipping 
instability is induced. The charge repulsion relative to surface tension can be characterized by an electro-capillary number, 
εε0E2aaverage/γ, where ε, ε0, E, aaverage are the permeability of vacuum, the dielectric constant of the liquid, the applied electric 
field strength, and the initial average radius of the straight jet, respectively. Experimentally, the electro-capillary number 
increases with the increase of the applied electric field. When εε0E2aaverage/γ is on the order of 100, we observe a transition 
from a stable jet to a whipping jet (Fig. 2(b)). To summarize the effect of electric charging, we characterize the dynamics of 
the liquid jet using a phase diagram with axes of Ca and εε0E2aaverage/γ shown in Fig. 3(a). With increasing charging voltage, 
both Ca and εε0E2aaverage/γ increase. The relative importance of these two numbers dictates the dynamic path of the charged 
jet. For instance, if a critical Ca is reached, the jet first enters the “coiling” regime; as the charging voltage increases further, 
the jet starts to “whip” (Fig. 3((b)). However, if a critical εε0E2aaverage/γ is attained before Ca, a straight jet directly start to 
“whip” without any observable “coiling” (Fig. 3(c)).   
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Figure 1. Schematic showing (a) a straight jet in insulating oil is charged by high-voltage (hv) power supply, and the possible dynamic 
behaviors of the jet, including (b) coiling jet, and (c) whipping jet.   

 
Figure 2. (a) The capillary number Ca as a function of the applied potential gradient E. Open symbols denote “coiling” (insert: top); filled 
symbols denote “straight jet” (insert: bottom). Red, pink, blue and purple colors denote liquid lecithin from soy bean, glycerine with 10wt% 
tween20, polyglycerolpolyricinoleate and tween20 respectively; shapes of symbols correspond to different volumetric flow rates. Purple 
arrows indicate the transition from “straight jet” to “coiling jet”; (b) The electro-capillary number εε0E2aaverage/γ as a function of the 
applied potential gradient E. Open symbols denote “whipping jet” (insert: top); filled symbols denote “straight jet” (insert: bottom). Red, 
pink and blue colors denote interfacial tensions of 3.5mN/m2, 1.5 mN/m2 and 0.8 mN/m2 respectively; shapes of symbols correspond to 
different volumetric flow rates. The scale bar is 2mm. Blue arrows indicate the transition from “straight jet” to “whipping jet”. Both 
diagrams are obtained with the nozzle diameter~0.92mm and a distance between the nozzle and the substrate, L~10mm. 

 
Figure 3. (a) A phase diagram of an electrically charged liquid jet: The top, bottom left and right are “whipping jet” (open red symbols), 
“straight jet” (filled pink symbols) and “coiling jet” (filed purple symbols) respectively. Arrows indicate the dynamic path of the liquid jet; 
A series of high speed images showing (b) a transition from “straight jet” to “coiling jet” and then to “whipping jet”; The scale bar is 
2mm. (c) a transition from “straight jet” to “whipping jet” directly. The phase diagram is obtained with L~10mm.  

CONCLUSIONS 
   We have studied the dynamic behaviors of an electrically charged jet in an axial electric field. We show that as the charging 
voltage increases, both coiling and whipping instability can be triggered. We emphasize the relative importance of two 
dimensionless numbers, Ca and εε0E2aaverage/γ, which dictates the dynamic path of the jet as the charging voltage increases. 
Our results enrich the physical understanding of an electrically charged jet, and enable the control of jet behaviors for 
applications such as electrohydrodynamic 3D printing and patterning.        
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Summary The deformation of toroidal drop in an axisymmetric compressional viscous flow (also known as bi-axial extension) is studied 
making use of boundary integral equations. It is demonstrated that the initially circular torus cross section first deforms to a shape close to 
elliptic. Then, depending on the governing parameters and initial shape, the torus collapses to the center, expands indefinitely or assumes 
a stationary shape.  

 

INTRODUCTION 

 
   Non spherical droplets are of interest in various areas, and recently also as potential carriers of drugs (Champion et al., 
2007) or building blocks for more complex assemblies (Velev et al., 2000). Toroidal drops are known since the experiments 
by Plateau (1854) in rotating fluids. Such geometry is obtained also when a drop, falling free in a viscous fluid, experiences 
a finite surface deformation which develops into a toroidal form (Kojima et al., 1984; Baumann et al., 1992; Sostarecz & 
Belmonte 2003).  
   Zabarankin et al (2013) studied on the deformation of viscous drops in an axisymmetric compressional viscous flow and 
showed that the drops deform to steady shapes until critical condition (intensity of the flow characterized by the capillary 
number, Ca) are obtained. At supercritical capillary number, a fast thinning occurs near the middle of the drop, forming a 
nearly flat layer enclosed by a large bulbous ring. This shape continues to stretch and thin until the width of the layer 
become so small that intermolecular forces will lead to its break up and formation of liquid torus. Zabarankin et al (2015) 
simulated the deformation of such tori, embedded in viscous compressional flow, for a special case of equal viscosity of the 
phases. In the present study, the case of arbitrary viscosity ratio is considered.  
 

FORMULATION OF THE PROBLEM 

 
   Consider a drop of volume 34 3l  (equal to that of a sphere with radius l) and viscosity drop

  that is embedded in an 
unbounded viscous flow with viscosity  . In the absence of the drop, the ambient fluid is subject to an undisturbed flow: 
u = G (x1e1+ x2e2 - 2x3e3), where .x1; x2; x3 is a Cartesian coordinate system with the basis .e1; e2; e3 and G is a constant shear 
rate, characterizing the intensity of the flow. We assume a creeping flow, i.e. the velocity and pressure fields satisfying the 
Stokes equations. Under this assumption, the governing parameters are the viscosity ratio drop

   denoted by   and the 

capillary number, Ca Gl  , with  being the interfacial tension. The initial shape of the drop is assumed to be a torus 
with circular cross-section and major radius R, as depicted in figure 1. 

 
 
FIGURE 1. Toroidal drop: R and a are the major and minor radii respectively. The cross section of the torus is shown 
in the rz half-plane in the cylindrical coordinate system (r;  , z), where the z-axis is the axis of revolution. 
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RESULTS 

 
  Dynamic deformations of toroidal drop in the compressional flow, with initially circular cross section, are studied making 
use of Boundary Integral Equations. It was shown that the initially circular torus cross first deforms to a shape close to 
elliptic. Then the torus either collapses to the center, or expands indefinitely. If the capillary number is below some critical 
value Cacr ( ) , a stationary state is possible as well. For moderate Ca, the cross section of stationary torus is close to ellipse. 
As 0Ca  , the eccentricity of this stationary ellipse tends to zero. When the initial R > Rcr(Ca,  ), the torus expands 
indefinitely and gradually assumes a circular cross section. It reflects the ever growing local curvature of the cross section 
perimeter which renders the tension forces there increasingly dominant. For R < Rcr(Ca,  ), the torus collapses toward the 
axis of symmetry. When the radius of the inner interface shrinks, the local surface surrounding the gap at the axis of 
symmetry deforms into a cylindrical shape. With time, a circular depression develops about the symmetry plain — 
indication that some of the outer fluid remains trapped within this dimpled shape, and that the contact (and perhaps 
coalescence) of the torus may occur above and below this symmetry plain. These 3 scenarios are illustrated in figure 2. In 
this figure, the cylindrical radius r and initial major radius of the torus are scaled by the radius of the equivalent sphere l, 
while   denotes time scaled by 1/G. 

 
FIGURE 2. Dynamic deformations of initially circular cross section of toroidal drop at Ca = 0.16, 1.   

(a) R=0.86, (b) R=0.85236, (c) R=0.852 
 
For super critical capillary number and sufficiently low initial major radius, the resulting dynamics has a different character. 
The initial circular cross section deforms to a highly asymmetric egg shape. Then, either the extended inner circular tip of 
the torus collapses to complete contact, or the torus expands until it is sufficiently far from the axis of symmetry, at which 
stage the cross section becomes gradually circular again. For higher supercritical values of Ca, after an initial short lived 
deformation of the cross section into elliptical shape, the drop keeps on flattening and attains very thin shapes that might be 
susceptible to collapse and disintegration. If this does not happen, with further toroidal expansion, the circular small cross 
section is regained. These examples reflect the dominance of the distorting viscous stresses upon the interfacial tension. 
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Summary Telluric planet formation involved the settling of large amounts of liquid iron coming from impactors into an ambient viscous
magma ocean. Planetary initial state was largely determined by diffusive exchanges of heat and elements during this iron rain. Current
models often assume that the metal rapidly equilibrated as drops of single capillary size settling at the Stokes velocity. But the dynamics
is more complex, and influenced by the large viscosity ratio between the metal and ambient fluid. We study this two-phase flow using a
model experiment, where a balloon of heated liquid metal is popped at the top of a tank filled with viscous liquid. We explore the relevant
planetary regimes, including the whole range of viscosity ratios. High-speed videos allow determining the statistics of drop sizes, shapes,
and velocities. Measures of the temperature decrease during settling allow defining a global turbulent diffusion coefficient, confronted to
current analytical models.

INTRODUCTION AND METHOD

As described in detail in the seminal study of [1], telluric planets formed progressively by accretion, initially of grains,
then of planetesimals with growing sizes, made mostly of silicate and iron. At some stage of planet accretion, heat generated
by large impacts resulted in melting in the proto-planet surface, allowing the denser metallic compound already present, as
well as the metal brought by further impacting planetesimals, to separate and settle in the form of drops down to the bottom
of the magma ocean (the so-called “iron rain”). The gravitational energy released in this process was enough to raise the core
temperature by several thousand degrees; thus, also considering radiogenic and impact heating, the early core was entirely
liquid. The initial thermochemical state of planets was mostly determined by exchanges of heat and chemical elements (i.e.
siderophile vs. lithophile) taking place during this iron rain, where the surface of exchange between the main iron and silicate
compounds was large. Up to now, most models of planet formation don’t account for fluid mechanics: they assume that
the whole metal rapidly equilibrated with the whole amount of melted mantle. Other models account for simplified fluid
dynamics of the iron rain, supposing for instance that all drops had the same radius given by the capillary length and settled
at the corresponding Stokes velocity with no further mixing. The fluid dynamics of iron sedimentation and fragmentation is
much more complex, and influences the effective exchange coefficients as well as the amount of mantle effectively seen by
the metal. It has been the subject of a renewed interest in the planetary sciences community, combining analytical models,
simulations and experiments (e.g. [2, 3]). But the key ingredient of the large viscosity ratio between the metal and the viscous
ambient fluid has been mostly ignored up to now, while it is known from studies of rising gas bubbles to play a significant role
in the dynamics (e.g. [4]).
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Figure 1: sketch of the experimental set-up (left) and two examples of the observed sedimentation and fragmentation processes
for identical initial metal blobs (right). Only the viscosity of the ambient fluid is changed between the two experiments, with
pure water on the left and a mixture of water and Ucon oil on the right, leading to a viscosity ratio of 0.5 and 500 respectively.
Each picture shows the liquid metal blob at two times following the balloon piercing at t = 0.
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Figure 2: example of temperature measurements during one experiment (left), and systematic study of the equivalent blob
surface (divided by the initial blob surface) as a function of the Reynolds number for a fixed viscosity ratio of 500 (right).
Dotted lines highlight the linear interpolation of experimental results (red squares) and measured dispersion.

Our purpose is to develop a global understanding of the real dynamics of the iron rain, and provide on this basis a reliable
set of parameterization, directly useable in planet formation models. As skeched in figure 1, our study relies on an experimental
approach, consisting in popping a balloon filled with heated metal liquid (i.e. Galinstan) at the top of a large tank filled with
a viscous liquid (i.e. mixtures of Ucon Oil and water). The set-up is capable of reaching the relevant planetary dynamical
regimes, with a fully turbulent flow and a Weber number above the critical value for breakup. It also tackles for the first time
almost the whole range of realistic viscosity ratios. High-speed video recording from the side of the tank determines the global
dynamics of drops and drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also test the classical
analytical model of thermal turbulent diffusion during settling, by measuring the global temperature decrease of the Galinstan
blob during its descent using thermocouples (figure 2).

RESULTS AND CONCLUSIONS

Our first conclusion is directly visible in the pictures of figure 1: while the mean settling of a metal blob does not depend
on the ambient viscosity (i.e. our study is indeed in the Newtonion regime), the fragmentation dynamics strongly depends on
the ratio between the ambient and internal viscosities. A low viscosity ratio leads to the standard formation of an “iron rain”,
with a Gamma distribution of drop sizes [5]. But a large viscosity ratio leads to the overall stabilisation of large blobs with a
significantly distorded surface. It is then expected that these different behaviors lead to different equilibration scalings.

The classical approach of equilibration consists in quantifying temperature exchanges by considering diffusion across a
turbulent boundary layer scaling as the square root of the Péclet number (e.g. [3]). To assess this model, we systematically
measure the temperature decrease of the metal blob during settling in our tank, which we express in the form of an “equivalent
blob surface”, i.e. the surface of exchange necessary to explain the measured temperature decrease while using the turbulent
boundary layer diffusive scaling. The evolution of this equivalent surface, non-dimensionalized by the initial blob surface,
is shown in figure 2 for a fixed viscosity ratio 500: it exhibits a linear scaling with the Reynolds number, with a factor 12
increase in the most extreme case reached by our set-up. The same results, now non-dimensionalized by the total surface of a
model iron rain, provide a factor 1.6 increase, smaller but still significant.

In conclusion, our experimental model confirms the primordial role of the viscosity ratio on the fragmentation and ex-
changes dynamics of a settling metal blob, even in the Newtonian regime where the ambient viscosity is supposed to be
unimportant. Using systematic experiments, we propose new scalings laws regarding the evolution of the turbulent diffusion
coefficient as a function of the Reynolds number and viscosity ratio. Building upon a better understanding of the sedimenta-
tion and fragmentation processes provided by our fluid mechanics approach, more relevant models of planet formation based
on a reliable dynamical ground will be developed.
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Summary The thin lubrication film around bubbles moving in microchannels was measured using an optical interference method, and the 
three-dimensional profile of the lubrication film around the bubble was obtained experimentally. The minimum film thickness of the axial 
section in the downstream direction was found to agree well with the prediction of the Bretherton equation; while the minimum film thickness 
in the across-stream direction was found to be proportion to the capillary number as the film thickness was decreasing. When the lubrication 
film was broken, adhesion of the droplets occurred and it was demonstrated to have potential application on the breakup of the emulsion droplet.  
 

THIN LUBRICATION FILM AROUND DROPLET IN MICROCHANNELS 

 
   The droplets/bubbles flowing in microchannels are either in wetting or in a lubrication configuration. In the former, the 
droplet/bubble contacts the inner surface of the microchannel, while in the latter, the droplet/bubble is encapsulated in the 
continuous phase and a thin lubrication film separates the droplet/bubble from the channel surface. The dynamics of this 
lubrication film was firstly studied by Bretherton [1], and the film thickness h is theoretically derived to have a relationship 
with the capillary number Ca as h ~ Ca

2/3 for a long bubble moving in a square capillary. In experiments, it is difficult to 
distinguish the wetting status when the lubrication film was very thin, for example, in the scale of 10-1~101 m. Moreover, 
in a channel with noncircular cross section the lubrication film varies in both directions of downstream and cross-stream, so 
it is still a challenge to get the three-dimensional profile of the film through the microscope.  
 
Method to measure the thin lubrication film 

   A polydimethylsiloxane (PDMS) microfluidic device is fabricated to generate bubbles in a microchannel using a flow 
focusing method [2]. The flow rates of the fluids are controlled by syringe pumps, and the size of the bubble is adjusted by 
the flow rate ratios of the continuous phase to the dispersed phase. An optical interference method is adopted to measure the 
thickness of the lubrication film between the moving bubble and the channel wall. A monochromatic green light with a 
wavelength of 550 nm is used as the incident light. When the incident light is shown through the glass it undergoes a 
division of amplitude, with one beam reflecting directly back from the semi-reflective layer while the other passes through 
the lubricant film before being reflected back from the bubble surface. This latter beam has thus travelled two times the 
lubricant film thicknesses further than the former reflected beam. Therefore, the two beams are out of phase and on 
recombination they interfere, constructively or destructively, to form light and dark interference fringes, respectively.  
   According to the image of the interference pattern, the thickness of the lubrication film can be calculated according to 
the relative optical interference intensity (ROII) method [3], after the zero film thickness is calibrated [4]. Therefore, the 
thickness of the lubrication film can be acquired according to the relative intensity of each fringe in the interference pattern. 
From the acquired interference fringe patterns, the three-dimensional profile of the lubrication film can be established from 
the interference fringe patterns.  
  
Lubrication film thickness vs. capillary number 

   In our experiments, we change the capillary number Ca in two different ways. One is to change the flow velocity of the 
continuous water phase by the syringe pump, and the other is to increase the viscosity of the aqueous solution by changing 
the concentration of glycerol dissolved in water. The resultant Ca was in the range of 10-6-10-4. With the measured 
minimum thickness hmin of the lubrication film under different Ca, the relationship between hmin and Ca was acquired. In the 
downstream distance, the minimum lubrication film thickness hmin-x increases as the Ca increases. The best fit line in the 
log-log plot has a slope of 0.63, which agrees well with the predicted relationship hmin ~ Ca

2/3 according to Bretherton 
equation. In the cross-stream direction, the best fit line of the film thickness has a slope of 0.92. This deviation is considered 
to be caused by the tangential-convection according to the analysis by Wong et al [5] that the relationship between hmin-y and 
Ca is derived as hmin ~ Ca

1.  
 

BREAKUP OF LUBRICATION FILM AND ADHESION OF DROPLET 

 

   When the lubrication film was broken under a low Ca, the adhesion of the droplet would occur. This adhesion would 
also be induced for the oil-in-water droplet when the surface of the microchannel was hydrophobically treated. The 
experiments of the droplet adhesion were performed in a microfluidics device where oil-in-water emulsion droplets were 
generated and transported through a section of hydrophilic-to-hydrophobic square capillary with controlled moving speed. 
The adhesion of the droplets on the hydrophobic surface was observed as the oil-in-water emulsion droplets were flowing 
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into the hydrophobic part of the capillary. The oil-in-water emulsion droplets dyed in red adhered on the hydrophobic 
surface and the emulsion droplets broke, the oil phase occupied the channel surface and the water phase was encapsulated 
by the oil phase to form the water-in-oil emulsion droplets.  
 

Critical Ca for the breakup of lubrication film 

   The droplet adhesion was found to be affected by the flowing speed and the droplet size. In the experiment, we 
gradually reduced the flowing velocity, and the critical velocity to induce the adhesion was measured. Then, we changed the 
size of the droplets and found the critical velocity of adhesion increased as the droplet size increased. The critical Ca for the 
adhesion was then acquired as Ca ~ (D/d)3/4, where D is the drop size and d is the channel size [6]. This experiment result 
was consistent with our theoretical analysis. 
 

Adhesion of droplets to break emulsions 

   Here, we demonstrate how to use droplet adhesion to recycle the ingredient materials of emulsions in microfluidics. In 
some applications, the materials of the emulsions are valuable and so recycling is needed. However, typically the emulsions 
are very stable and not easily broken down to two separated phases. As a specific example, for a typical oil-in-water 
emulsion system, the collected emulsion droplets still remain an emulsion and the oil droplets are mixed with the water 
phase. However, when we use the technology of droplet adhesion illustrated above, then below a critical speed the oil 
emulsion droplets formed in the hydrophilic region will break up in the hydrophobic region. Thus, we can separate the oil 
phase from the water phase and collect the pure oil phase from the original emulsion fluids.  
 

CONCLUSIONS 

 
   In this work, we used the optical interference method to reveal the profile of the thin lubrication film around the 
droplet/bubble moving in the microchannels. The measured film thickness validates the Bretherton equation experimentally. The 
breakup of the lubrication film was also investigated and it was found to obey the rules of Ca ~ (D/d)3/4. The surface wetting 
induced adhesion of the emulsion droplets in the microchannel was demonstrated to be used in the breakup of the emulsions.  
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Summary The expressions of the radial oscillation and translation of two encapsulated bubbles in an ultrasound field are derived analytically
based on a potential flow with a viscous correction. The in-plane stress and bending moment of a viscoelastic membrane are balanced on
the interface of the bubble with the hydrodynamic traction. The history force, in addition to the quasisteady viscous drag, is calculated
by numerical solving the vorticity equation in toroidal direction. The translations of two bubbles agree with the prediction by Bjerknes’
theory in the attractive or repulsive movements under specific driving frequency. The encapsulating membrane shows more damping than
the shear-free gas bubble due to the no-slip condition on encasulating membrane.

INTRODUCTION
In the applications of contrast-enhanced agents and drug-carrier capsules, encapsulated bubbles do not exist independently.

Surrounding bubbles affect the behavior of each bubble. The interaction of two gas bubbles without encapsulation has been
well studied. The pioneer work traces back to that of Bjerknes in 1906 [1]. The famous secondary Bjerknes force is the reason
of motion of a bubble due to fluid acceleration caused by the volume oscillations of another bubble. The coupled pulsation
and translation were studied in recent decades [2,3]. The effects of the shape oscillation are included in the theoretical work
of Takahira et al. [4] and in numerical work by Pelekasis et al. [5,6] and Chatzidai et al. [7]. Most of the previous work
on encapsulated bubbles focused on the single encapsulated bubble [8-10]. Our work in this paper focuses on the translation
motion of two encapsulated bubble.

BASIC EQUATIONS
The dynamics of two bubbles suspended in an unbounded fluid are studied. We establish an axisymmetric coordinate

system with the symmety axis connecting the centres of the two bubbles. In the following equations, the subscript i denotes
the one bubble, and j = 3 − i denotes the other one. Only the equations for the bubble i are written, while the equations for
the bubble j are equivalent with the i and j exchanged.

The bubbles are coated by a viscoelastic membrane, characterized by the surface modulusGsi, the bending modulusGbi,
the membrane viscosity μsi, and the Poisson ratio υsi.

We consider nonlinearity in radial motions Ri, which yields the Rayleigh-Plesset like equation:
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where ρ is the liquid density, μl the liquid viscosity, Γ the polytropic index. The surface tension term with coefficient γ is
kept here to include the gas bubble case and will be zero for encapsulated bubble. The last four terms on the left hand side of
the equation represent the effect of the other bubble and the translations. q0i = −ṘiR

2
i is a coefficient from velocity potential.

L is the distance between two bubbles. vi is the velocity of the bubble center. vri = vi − q0j/L
2 is a reference velocity. The

right hand side of the equation is the membrane force.
The equation of translational motion is:
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where Vb = 4πR3
i /3. The left hand side of the above equation represents the inertia the added mass. The first term in the right

hand side is the Bjerknes force. The second term is the drag force, in which Ti(Ri, t) is the toroidal component of vorticity,
obtained by numerical solving
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with the boundary condition Ti → 0 as ri → ∞. Ti on the bubble surface is determined by satisfying the tangential force
balance as
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where b1i is the movement of material points along the bubble interface, satisfying the no-velocity-jump condition as:

−
3

2
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∫

∞
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Ṙib1i
Ri

. (5)

The toroidal field Ti(Ri, t) can be also solved under the Stokes flow. For shear-free gas bubble, the RHS of (4) is zero.
Accordingly, we can obtain the Levich drag 12πμlRivri. For no-slip rigid sphere, the RHS of (5) is zero, from which we
obtain the drag force 6πμlRivri + 6πμlR

2
i vri/χi, where χi is the thickness of boundary layer. For the above equations, the

readers are referred to [11] for a detailed derivation.
RESULTS

Both gas bubbles and encapsulated bubbles are investigated. For gas bubbles, the coefficient of surface tension is chosen
as γ = 0.0729 N/m. For encapsulated bubbles, the elastic modulus is Gs = 0.5N/m, the bending modulus is Gb = 2× 10−13

N·m, and the membrane viscosity is μm = 10−8 kg/s.
According to Bjerknes’ theory, two bubbles will move away from each other when the driving frequency is between the

two natural frequencies ω01 < ωd < ω02; otherwise, the two bubble will attract to each other at ωd < ω01 or ωd > ω02.
To validate this theory, we choose two bubbles with R01 = 10 μm and R02 = 5 μm. We plot the final distances between
the two bubbles after 20 driving cycles versus the driving frequencies in Fig. 1. For gas bubbles, the zeroth-order natural
frequencies are ω01 = 2π × 0.34 MHz and ω02 = 2π × 0.72 MHz, respectively. We can see that the two bubbles attract each
other when the driving frequency is smaller than both of the natural frequencies. When the driving frequency approximates
to the smaller natural frequency, i.e. ωd = ω01, the distance has a minimum. After this minimum, the relative translation
becomes repulsive. When the driving frequency approaches the other natural frequency, i.e. ωd = ω02, the two bubbles
repel to a maximal distance. After this maximum, the translational motion of the bubbles returns to a weak attraction. For
encapsulated bubbles, the zeroth-order natural frequencies are ω01 = 2π×0.51 MHz and ω02 = 2π×1.28MHz, respectively.
Similar to the gas bubbles, the distance approaches to minimum/maximum near the two natural frequencies respectively.
However, the magnitudes of the translation is smaller than those of gas bubbles. The reason is that the no-slip interface on the
membrane enhances the viscous dissipation and the resultant history force is comparable to the quasisteady viscous drag or
even overwhelm it.
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Figure 1: The final distance after 20 driving cycles at different driving frequencies with driving amplitude ε = 0.1. R01 =
10 μm, R02 = 5 μm.
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EXPERIMENTAL INVESTIGATION OF SLUG FLOW IN A PIPE SUBJECTED TO
FLUID INJECTION AT THE WALL
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Summary The present work investigates experimentally the changes on the properties of horizontal gas-liquid slug flows subject to fluid
injection at the wall. Measurements include data on global parameters including flow rates and pressure drop for ten different conditions. A
Shadow Sizer system is used to determine the geometric and kinematic properties of the flow. Three flow transpiration rates are discussed,
v++
w = vw/Um = 0.0, 0.0005 and 0.001. The effects of flow transpiration induce bubble break-up and large changes in the passage frequency

and characteristic lengths of unit cells. The work introduces modifications to single-phase wall injection models and unit cell models for
gas-liquid slug flow to propose a unified theory capable of dealing with the effects of wall injection on slug flow. All theoretical predictions
are compared with the experimental data.

INTRODUCTION

The uniform injection of fluid into flows bounded by porous walls is normally referred to in literature as transpiration.
This is a problem of great industrial interest, whose typical examples include the thermal protection of walls, filtration or the
production of oil in horizontal or vertical wells.

For laminar flow, analytical solutions to the Navier-Stokes equations can be obtained to find the dependence of the velocity
components and pressure on position coordinates, pipe dimensions and fluid properties. For turbulent flow, the search for
analytical solutions is much complicated by the natural requirement of closure. However, some authors have shown [1, 2] that
some simple algebraic closure hypotheses and perturbation arguments can be used to find local analytical solutions.

The occurrence of a second flow phase – gas – is frequent in many cases of interest, in particular, in flow conditions typical
of slug flow. Thus, a problem of great practical relevance is the description of slug flow subject to fluid transpiration at the
wall.

The purpose of the present work is to perform reference experiments in horizontal pipes with flow injection at the wall for
single- and two-phase (slug) flow patterns. Measurements of global flow rates and pressure drop are obtained for ten different
experimental conditions. The properties of the two-phase flow are measured through a Shadow Sizer system and laser-based
sensors.

To extend the theoretical single-phase results to slug flow, unit cell models are considered.

THEORETICAL BACKGROUND

A law of resistance for rough pipes with wall transpiration can be introduced as shown in [3]. Define Re++ = R/ks,
v++
w = vw/Um and Ak = B − 512 v++

w . It follows immediately that

1 =

√
f

2
√
2
(2.5 ln(Re++) +Ak − 3.75)+ v++

w (1.56 ln2(Re++) + (1.25Ak − 4.68) ln(Re++) +
A2

k

4
+ 1.86Ak +5.47). (1)

where f denotes the friction coefficient, Um the bulk velocity and vw the injection velocity.
In unit cell models, a typical structure is postulated to repeat itself moving down a pipe. Provided a reference frame exists

where the liquid and gas phases are considered to travel in a fully developed state with about the same velocity, the flow
randomness can be encapsulated in models with fixed or stochastic cell lengths. In the present work, we consider the unit cell
models of [4] and [5].

Uniform mass injection through a pipe wall alters the pressure drop due to the acceleration of the slow moving fluid. The
pressure drop resulting from wall shear is also affected through a dual effect: the fluid injection increases the mixture velocity
of the flow but decreases the liquid friction coefficient.

Since the length of the unit cell is unknown and the mixture velocity depends on the amount of liquid that is transpired
through the wall, an iterative scheme needs to be used to find the flow properties, which now obviously change from cell to
cell. In the extension of the models of [4] and [5] to transpired walls, the addition of mass needs to be considered accordingly.
The friction coefficient also needs to be modified due to its dependence on the injection rate and bulk velocity.

∗Corresponding author. Email: jbrloureiro@mecanica.coppe.ufrj.br
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EXPERIMENTS AND RESULTS

The experiments were conducted in a 15 meter long porous pipe (31.75 mm in diameter) with uniform fluid injection at
the wall. The test section consisted of three concentric stainless-steel tubes, assembled as shown in Fig. 1.

Figure 1: Test section: a) main pipe dimensions, b) geometric arrangement.

The total pressure losses are compared with predictions obtained through the models of [4] and [5] in Fig. 2. For the lower
liquid and gas flow rates the agreement between theories and experiments is within 26% in error. For the highest flow rates,
the maximum difference reaches 38%. It is clear that for the lower gas flow rates the theoretical results for both injection rates
slightly under predict the experimental data (by a maximum of 10%). For the highest gas low rate, the extended models of [4]
and [5] over predict the data by 12%.

Figure 2: Pressure drop predictions for two-phase slug flow with and without wall transpiration.
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Summary All-aqueous droplets have promising potential in biomedical applications such as enzyme encapsulation. However, it remains 

difficult to generate water-water droplets with a narrow size distribution, a high degree of control over droplet size and a high generation 

frequency. We propose a robust method to generate all-aqueous droplets of a relatively small size (~ 10 microns), at an ultra-high rate (several 

kilohertz), and with a high size uniformity (c.v. less than 1%). Our technique is based on the shearing of the droplet phase off of the interface of 

a jet, which is flowing at a significantly higher speed than the continuous phase. We anticipate that by generating size controllable water-water 

droplets in a rapid and scalable manner, this technique will inspire new application of all-aqueous emulsion droplets. 

 
INTRODUCTION 

 

   Through addition of incompatible additives, such as polymers and salts, a single-phase aqueous solution can separate 

into two immiscible aqueous phases, enabling the possibility to form water-in-water emulsions. Current technology has thus 

far only been able to form water-water droplets with a relatively large size of around 20 µm to 200 µm
1, 2

 and typically at 

low production rate of a few tenths to a few droplets per second. Emulsification by homogenization results in a high 

production rate but does not yield size uniformity
3
. All-aqueous droplet makers typically require the introduction of external 

disturbances, such as piezoelectric actuation
4
 and mechanical perturbation

2, 5, 6
. We develop a novel robust technique to 

produce water-water emulsions with the elimination of the current limitation on size, size uniformity and generation rate.   
    

RESULTS 

 

   In all our experiments, we propel a fast aqueous jet from the nozzle into an aqueous continuous phase. The aqueous-

aqueous interface is characterized by an ultralow interfacial tension
7
. As the flow rate of the jet is increased, three distinctive 

dynamic regimes are classified: namely Jetting, Jet-folding and Droplet-Shearing. When the inner flow rate is higher than the 

outer flow rate, a stable expanding jet is formed in the Jetting regime. When the inner flow rate is increased to Qi = 13 ml/h, the 

jet surface starts to fold and becomes corrugated in the Jet-Folding regime. When the inner flow rate is further increased to Qi = 

25 ml/h, the corrugations of the interface eventually shear the outer phase into droplets within the jet phase in the Droplet-

Shearing regime. The resultant droplets follow the flow of the jet and propagate downstream.  

 
Figure 1: Phase map (Left) and microscopic images (Right) of the three regimes at a fixed outer flow rate Qo = 30 ml/h. 

Droplet-Shearing, Jet-Folding and Jetting regime, Qi = 30, 25, 12 ml/h (Top to bottom). Scale bars are 100 µm. 

 

   The transition from a stable jet to an unstable one, followed by the formation of small droplets of the outer phase fluid occurs 

at a fixed inner flow rate for a wide range of outer flow rate tested (Qo = 5 ml/h to 30 ml/h), as shown in the phase map of the 

two-phase system in Figure 1. Here, we demonstrate using a fast propelling inner jet phase to produce small outer phase droplets. 

This method of droplet generation can result in droplets with size significantly smaller than the nozzle size which is 59 µm.  

   We further investigate the droplet size dependence on the flow rates. When the inner flow rate is increased from Qi = 25 ml/h 

to 30 ml/h at a fixed outer flow rate of Qo = 20 ml/h, the droplet size decreases from (15.2 ± 0.1) µm to (12.1 ± 0.1) µm. These 

droplets have a low size polydispersity of 0.8 %. Hence, the droplet size can be tuned simply by adjusting the relative velocity of 

the inner and outer phases. 
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Figure 2: Trains of droplets generated from multiple zones, Qi = 30 ml/h and Qo = 20 ml/h. Scale bar is 100 µm. 

 

   Moreover, the droplet generation rate follows the frequency of the interfacial corrugation and is significantly higher than 

other existing microfluidic approaches for forming water-water droplets. For example, the droplet generation rate can be as high 

as over 5000 Hz per one shearing zone when the flow rates of the inner and outer phases are Qi = 30 ml/h and Qo = 20 ml/h 

respectively. At a sufficiently high inner flow rate, multiple shearing zones are developed and distributed at different radial 

positions on the jet interface (Fig. 2). All shearing zones have almost the same droplet generation rate with a slight deviation of 

1.3%. Therefore, the total droplet generation rate can be numbered up. 

 

DISCUSSIONS 

 

   The stable Jetting regime has been studied extensively. Hence, we focus on the Jet-Folding regime, which arises when 

the inner flow rate exceeds a certain threshold value. When a fast jet is ejected into a continuous phase in a microfluidic 

channel, a huge velocity difference is created at the interface of the inner and outer phases. The mean velocity difference 

between the jet phase and the continuous phase exceeds 1 m/s. The interface is destabilized and thereafter the outer fluid is 

sheared off at the interface and breaks up into droplets within the jet. We notice that the transition from a stable jet to a 

folding one is insensitive to the variation in the outer flow rate, since the jet diameter is significantly smaller than the 

channel diameter. Variation in inner flow rate will significantly alter the jet velocity while the variation in outer flow rate 

will not significantly change the velocity of the outer phase. Ultra-fast droplet generation is realized for two reasons. Firstly, 

the high frequency of corrugation at the interface, which is on the order of kilohertz, sets the high droplet generation 

frequency. Secondly, droplets are emitted simultaneously at different radial planes at the interface of the jet. The parallel 

generation allows multiplication of the droplet generation rate within a single jet.  

    

EXPERIMENTS  

 

  Glass capillaries are used to construct the microfluidic device. A round capillary which is tapered to have a nozzle size of 

around 60 µm is inserted into a square capillary with an inner dimension of around 1.1 mm. The aqueous two-phase system 

(ATPS) is formed by phase separation of a mixture of 9.7 wt% sodium carbonate (Na2CO3) and 23.285 wt% Poly(Ethylene 

Glycol) with a molecular weight of 4000 Da (PEG 4000). The bottom and top phases are injected into the round and square 

capillaries to form the inner and outer phases respectively. The interfacial tension of this ATPS is 1.99 mN/m. The flow 

rates of the inner and outer phases range from 1 ml/h to 30 ml/h. In all the experiments, the co-flow system is in a jetting 

regime where the velocity of the inner phase is much higher than that of the outer phase. This provides a huge velocity 

contrast between the inner and outer fluids. Microscopic images are taken using a high speed camera (FASTCAM SA4, 

Photron) connected to a microscope (AE2000, Motic).  

 

CONCLUSIONS 

 

   We show a robust method to shear off tiny droplets with a size of around ten microns with high generation rate, based on a 

sufficiently large velocity difference between the liquid phases and the possibility to have multiple shearing zones. We anticipate 

this technique to be highly adoptable in various applications that require mass production of all-aqueous emulsions. 
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Abstract The development of numerical method for soap bubble dynamics is of academic significance to understanding the underlying 
physics of the foams. In this study, we propose an efficient, robust and accuracy numerical method for simulating the dynamics of dry 
foams, including macroscopic evolution of membranes and its rupture on microscopic scale. The main feature of the method is its simplicity in 
implementation, both for the macroscopic interface advection and microscopic drainage. Regarding the interface advection we use a recently 
developed multi-region level-set method with high order discretization schemes while for drainage equation we use smooth particle 
hydrodynamics (SPH) to solve it. And the remesh method is employed to maintain the conservation during interface evolution and suddenly 
topology change. The results show the success in capturing the dynamics and rupture of soap cluster. 
 

INTRODUCTION 

 
   Although the Reynolds number of soap bubbles is relatively low and the flow usually keeps laminar, the interconnected 
interface of the soap foams is complex and encounters frequent topology change during membrane rupture which leads to 
challenges in developing numerical method for solving this type of flow mechanics. A typical soap bubble cluster is 
composed of thin liquid membrane (also known as lamella), Plateau borders (multi-lamella junction) and gas inside/outside 
the lamella. Under the surface tension effect, the macroscopic motion of the lamella network always try to approach the 
minimal surface energy state. Inside the lamella, the liquid is governed by the gravity and curvature which make the 
thickness of the lamella alter, leading to a sudden rupture once the lamella is too thin. Therefore this phenomena breaks the 
balanced state of the interface network, which need find a new equilibrium under surface tension effect. The total system is 
driven by the interplay of the two types of dynamics with disparate time and space scales which allow us use the scale 
separation when investigate the bubble cluster dynamics [1]. Recently Saye and Sethian [1] developed a multiscale 
framework for soap bubble dynamics. They use voronoi implicit interface method [2] and finite element method for 
interface advection and drainage equation, respectively. However the frequent mesh generation for the finite element 
method is time consuming. In this manuscript we present another multiscale framework with each part different with Saye’s 
method to simulate the soap bubble dynamics more efficiently. 
 

NUMERICAL METHODS 
 

The method developed in this paper is based on the idea of scale separation proposed by Saye and Sethian [1] who suggest 
using different equations at different scales of foams. The whole simulation includes rearrangement, drainage, and rupture. 
 
Rearrangement 

In this stage, the surface tension and gas dynamics rearrange the global geometry of soap foam cluster in order to get an 
equilibrium with minimal surface energy. In this process, if we only care about the geometry of bubble cluster, it is not necessary 
to fully resolve the thin liquid film and its mass is neglected, which eliminates the difficulty in capturing the interface network. 
Here we can couple the multi-region level-set method with weakly compressible Navier-Stokes equations. Like voronoi implicit 
interface method [2], the multi-region level-set method uses only an unsigned level-set value 𝜙 and an additional phase 
indicator 𝜒. The interface evolution is based on the idea that away from singularities this evolution is identical to the motion of 
region-boundary while in singularities additional operators are required to determine how the singularities move. So instead of 
the interface of the multi-region system, we prefer to capture the evolution of the boundary of each region (Fig.1a). Obviously 
singularities are never resolved, but they never affect the adjacent resolved interface segments, therefore numerically it is not 
necessary to consider the motion of these points in an explicit manner, instead the operator only need determine the changes of 
𝜙 and 𝜒. This method will automatically degenerate to traditional in two-phase region, while in the multiple junctions this 
method it need three simple operators to capture the advection: 

𝜙𝑛+1 = ℐ𝜙 (ℰ𝜙(ℛ(𝜙, 𝜒))) ,      𝜒𝑛+1 = ℐ𝜒 (ℰ𝜙(ℛ(𝜙, 𝜒)))  

Where the operators ℰ, ℐ, and ℛ indicate the evolution, interaction, and reconstruction in multiple junctions. The function of ℛ 
is to locally reconstruct the signed distance level-set field by judging the sign of all cells in the stencil or invoke re-initialization 
procedure. After local reconstruction, the evolution is determined by ℰ, depending on the spatial and temporal discretization 
scheme. Then we consider at every cell center, the point has an interaction with the region if it is located at the stencil of the 
current cell. Thus the boundary of region is evolved by the interaction. All the interaction of the neighbouring regions need be 
considered (see Fig.1c). To choose one region from all the candidates, we consider the dominating interaction belongs to the 
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region and its ghost (grey part in Fig.1c) which lead to minimal signed distance, that is to say under this interaction, the cell 
center is closest to the corresponding region-boundary. 

Afterwards, the multi-region level-set method is coupled with Navier-Stokes equations: 

𝜕𝐔

𝜕𝑡
+ ∇ ∙ 𝐅𝑐 = ∇ ∙ 𝐅𝑣 + 𝜎𝜅𝛿𝐧 

In order to obtain high accuracy, both level-set advection and NS equations are solved by WENO scheme and second-order 
TVD Runge-Kutta time integration. A multi-material multi-resolution solver is developed based on our previous two-phase 
multi-resolution solver [3].  

                 
Fig.1. A schematic representation of multi-region method.        Fig.2. Four-bubble cluster dynamics 
 

Drainage 

Assuming the lamella network is in macroscopic equilibrium, the drainage process is studied by solving the thin-film 
equation derived in [1]: 

𝜕𝜂

𝜕𝑡
+

1

𝜇
∇𝑠 ∙ (𝜎𝜂3∇𝑠((𝑘1

2 + 𝑘2
2)𝜂 + ∆𝑠𝜂) + 𝜌𝐠𝑠) = 0 

𝜕𝜆

𝜕𝑡
+

𝐶Δ

𝜇

𝜕

𝜕ℓ
(−

1

2
(√3 −

𝜋

2
)

1/2

𝜎𝜆1/2𝜕ℓ𝜆 + 𝜆2𝜌𝑔𝑡) = 𝑆 

However these equations are defined in curved surface, requiring high quality mesh generation every macroscopic tem step 
which reduce the computational efficiency dramatically. Here we use meshless SPH method to solve the issue. Another issue is 
that since the equations are high-order nonlinear PDE implicit scheme is usually more suitable. Here we employ an operator-
spitting scheme [4] for solving SPH.  

Once the thickness becomes too small, the rupture stage is triggered and this phenomenon is completed immediately. Thus 
we just delete the corresponding region in the multi-region method and use re-initialization to re-calculate the new level-set 
fields. 
 

RESULTS AND CONCLUSIONS 

 
For simplicity, the gas exchange across permeable membranes and Marangoni forces at the liquid-gas interface are 

neglected in our simulation. Symmetric boundary condition is applied. The CFL number is set as 0.6 and the resolution of 
the simulation is ℎ = 1/256. Initially, four soap bubbles are evolved from an artificial configuration to an equilibrium state, 
as shown in the first row of Fig.2. Then region 1 breakups, after sometime, the second equilibrium is attained under the 
surface tension force, see the second row of Fig.2. Then region 2 breakups and the similar process is observed for the 
remaining two bubbles.  

In summary we propose a multiscale framework that can capture the foam dynamics in an efficient and robust manner. 
The framework is composed of multi-region level-set method, weakly compressible NS solver and SPH method. The result 
shows its ability to capture the dynamics of bubble cluster and its rupture.  
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Summary Understanding the dynamics of cavitation bubbles and the shock waves emitted by their collapse in and near viscoelastic
media is important for various naval and medical applications, particularly in the context of cavitation damage. Although not fully
understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension. Addi-
tionally, the influence of the shock on the material and the response of the material to the shock are not well known. A novel Eulerian
numerical method for simulating shock and acoustic wave propagation in a Zener-like viscoelastic media is leveraged. The method
is high-order accurate, solution-adaptive and based on a weighted essentially non-oscillatory scheme for shock capturing. Validation
results and studies for two-dimensional simulations of the bubble collapse dynamics will be presented. Three-dimensional studies of
the bubble collapse dynamics for various experimental studies of viscous and viscoelastic media will also be presented.

INTRODUCTION

Understanding the mechanics of shock waves in viscoelastic media is important for various naval and medical appli-
cations, particularly in the context of cavitation-induced damage. Two examples are erosion to drag-reducing elastomeric
coatings along propellers and therapeutic ultrasound such as histotripsy. Histotripsy uses high-amplitude (100 MPa peak
positive pressure, -25 MPa peak negative pressure) and high-frequency (MHz) ultrasound waves to destroy tissue. The
local and transient pressure changes may lead to the formation of cavitation bubbles that grow and then violently col-
lapse, thus producing shock waves that propagate in the surrounding medium. Although not fully understood, the damage
mechanism combines the effect of the incoming pulses and cavitation (bubble oscillation and collapse) produced by the
high tension. The constitutive models describing these materials are non-trivial and include effects such as (nonlinear)
elasticity, history (relaxation effects) and viscosity. Thus, the influence of the shock on the material and the response
of the material to the shock are poorly understood. For medical applications, understanding these mechanism will be
invaluable to the further the development of histotripsy as a therapy tool for treating malignant tissues. For naval research,
understanding the shock wave influence and the response of the coating on the shock wave can further technological
developments on propeller and rudder design to mitigate cavitation damage.

A finite-difference numerical approach is proposed for simulating shock and acoustic wave propagation in multi-
component flows including Zener-like viscoelastic media [9]. The governing equations are conservation of mass, momen-
tum, energy in a Eulerian framework. For closure, an equation of state and a constitutive relations are used to determine
the pressure, heat flux and stress tensor, respectively. All of the media is modeled using the stiffened equation of state.
This equation is used to describe compressible flow phenomena in liquid and dense gases. An interface-capturing ap-
proach is used to represent compressible phenomena interacting with different materials. For the constitutive equation,
the generalized version of the Zener model, which captures the viscous, elastic stresses and relaxation frequencies is used.
Although strains can not be readily calculated in an Eulerian framework, strain rates, however, can be. Thus, we perform
a temporal differentiation of the constitutive relation to readily calculate strain rates as spatial velocity gradients. As a
result, additional evolution equations for the elastic component of the stresses are used in the numerical model.

NUMERICAL METHODS

For the time marching, we use the fourth-order Runge-Kutta scheme. For the spatial flux discretization, we implement
the sensor presented by Henry de Frahan et al. [5] for finite elements and adapted to finite differences by Alahyari Beig et
al. [1]. The sensor identifies smooth and discontinous regions that contain material interfaces, shockwaves, or both. For
smooth regions, the convective fluxes for the equations are calculated using the fourth-order finite difference scheme [8].
For regions with discontinuities, the finite-volume approach presented in Johnsen and Colonius [7] is leveraged with the
HLL Riemann solver for upwinding [4]. The fifth-order weighted essentially non-oscillatory (WENO) scheme [6] is used
for the reconstruction of the primitive variables. The source terms in the system have first and second order derivatives.
The first order derivatives are calculated using a finite-difference fourth-order discretization. Similarily, for the second
order derivatives (e.g., diffusion and source terms), the finite-difference fourth-order discretization is used.

RESULTS

Two-dimensional results of single and multiple shock-induced bubble collapse problems will be presented at the
meeting. Using the two-dimensional canonical bubble collapse problem [2], the re-entrant jet velocity during the collapse
and total bubble collapse time numerical results are compared with the experimental results to validate the numerical
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Figure 1: Bubble collapse setup initial condition analogous to the two-dimensional experiments by Bourne et al. [3]

method. The material properties of the gel of the study are comparable with the two-dimensional experiments by Bourne
et al. [3] and Swantek et al. [10]. The initial condition of the problem is presented in Fig. 1, half of the domain is simulated
given the symmetry of the problem. Moreover, the problem will also be used to study effect of elasticy and viscoelasticity
on the single shock-induced bubble dynamics by increasing the shear modulus of the surrounding medium. The pressure
contours for the two-dimensional simulations of the water and a Kelvin-Voigt-like material withµ = 50mPa s andG =
1.1MPa are presented in Fig. 2 showing the effect of viscoelasticity on the bubble dynamics. An initial bubble radius of
3mm and pressure ratio of 250 was be considered for these simulations.

(a) time=30µs (b) time=32µs (c) time=36µs

Figure 2: Pressure contours for the 2D shock-induced bubble collapse problem. Top contours: water case. Bottom
contours: Kelvin-Voigt-like material withµ = 50mPa s andG =1.1MPa. Black dashed lines: bubble initial condition.
Black solid lines: approximate locations of the bubbles’ interfaces.

The first frame show the viscoelasticity delaying the formation of the re-entrant jet (bottom contour) that is visibly
formed in the water case (top contour). As a result, the re-entrant jet velocities and time of the bubble collapsing are
reduced relative to the water case seen in the second frame. The third frame shows that, despite the shock wave generated
from the bubble collapse is delayed, the pressure response between the two cases to be similar between water and a
Kelvin-Voigt-like material at this shear modulus [9]. Different single and multiple bubble and compliant viscoelastic
surfaces configurations where the acoustic impedance and bubble-bubble interactions effect the resulting pressure and
temperatures from the bubble dynamics will also be presented at the meeting.
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Summary When a drop is deposited onto a moving wall, it can steadily levitate. The lubrication pressure generated inside an air film between 
the drop and the wall plays a crucial role for the levitation. In this paper, based on our experiments, we for the first time report the three-
dimensional pressure distribution under the levitating drop. The pressure distribution is calculated by two different methods: One method 
computes the pressure distribution by applying lubrication theory. The other method estimates the pressure by a balance with surface tension 
and hydrostatic pressure. We find that the areas for positive or negative pressure agree well between the two methods. It experimentally 
confirms that the lubrication pressure steadily balances the surface tension of the deformed free surface of the levitating drop.  
 

INTRODUCTION 
 
   When a drop is deposited onto a static wall, it touches the wall. However, when onto a moving wall, it can steadily 
levitate (see figure 1 and our movie: https://www.youtube.com/watch?v=VFpPb8WsaVE). It has been confirmed that the 
drops can levitate in a wide range of wall velocity, viscosity, and drop size. The non-coalescence phenomenon is expected 
to be used in liquid transportation without contacting the wall of transport pipe, or significantly affects the efficiency of ink-
jet printer. Towards implementation, it is hoped to clarify the mechanism of the levitating drop. 
   There exists an air thin film between the levitating drop and the moving wall. Lhuissier[1] et al. computed the air film 
shape by a balance between surface tension, hydrostatic pressure, and pressure generated inside the air film. They conducted 
the two-dimensional numerical calculation, but did not experimentally verify the balance in three dimensions. As a result, 
the numerical shape of the air film qualitatively agreed with the experimental result, but only in two dimensions. 
   In our study, we consider the three-dimensional pressure distribution generated inside the air film. We measure the air 
film shape, and then calculate the pressure distribution by two different methods. One method computes the pressure 
distribution by applying lubrication theory. The other method estimates the pressure by a balance of the force acting on the 
bottom of the levitating drop. From comparison of the two pressures, we experimentally indicate the relation between the 
pressure generated inside the air film and the shape of the gas-liquid surface. 
 

EXPERIMENT 
 
   The experimental setup in our study is schematized in figure 2(a). A hollow glass cylinder with diameter 200 mm rotates 
on its axis in the horizontal direction with constant circumferential velocity U = 1.57 m/s. A drop is deposited onto the inner 
wall of the cylinder, and then it is steadily levitated. The air film shape under the drop is measured by using interferometric 
method. Monochromatic incident light with wavelength 630 nm through coaxial zoom lens reflects off the drop’s bottom 
and the wall respectively, which makes interference fringes. We obtain an image of the fringes with a high-speed camera 
(FASTCAM SA-X, Photoron). In this experiment, we use the drop of silicon oil (surface tension σ = 20.9 mN/m, density ρ 
= 960 kg/m3, and viscosity ν = 100 cSt) with diameter 1.98 mm.  
 

PRESSURE DISTRIBUTION 
 
   We calculate the pressure distribution p generated inside the air film based on three-dimensional measurement by two 
difference methods.  
   On the one hand, by applying lubrication theory, the gauge pressure p is given by motion equation of the air film[2] [3]  

𝜕
𝜕𝑥

ℎ!

𝜇
𝜕𝑝
𝜕𝑥

+
𝜕
𝜕𝑦

ℎ!

𝜇
𝜕𝑝
𝜕𝑦

= 6𝑈
𝜕ℎ
𝜕𝑥

 

where h and µ respectively stand for the thickness and the dynamic viscosity of the air film and the coordinates {x, y, z} are 
shown as figure 2(b). Boundary condition gives atmospheric pressure to the rim of the thin film area (diameter dt). It was 
verified that the weight of the drop agreed with the lift force calculated by integrating the lubrication pressure p[3]. 
   On the other hand, Lhuissier[1] et al. described Laplace’s equation considering a balance between the force by surface 
tension, the hydrostatic pressure and the lubrication pressure at the drop’s bottom. We combine the equation of the balance 
with the pressure by the drop’s weight pg into  

2𝜎(𝜅! − 𝜅) + 𝛥𝜌𝑔 𝑧! − 𝑧 𝑐𝑜𝑠 𝜃 + 𝑥! − 𝑥 𝑠𝑖𝑛 𝜃 = 𝑝 − 𝑝! 
where κ, Δρ and θ stand for the mean curvature of the drop, the density difference between the air and the liquid, and the 
angular position to the gravity. {x0, y0, z0} and κ0 respectively stand for the coordinates and the mean curvature at the rim of 
the thin film area, that is, x0 = dt/2, y0 = 0, z0 = h(x0, y0) (see figure 2(b)).  
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   Now, we state the method deciding pg. The shape of the levitating drop mostly agrees with that of the sessile drop with 
contact angle of 180° [3]. It is thought that the weight of the levitating drop acts on contact area where the sessile drop 
touches the wall. Within the contact area, we give pc of the drop’s weight divided into the contact area (diameter dc). 
Atmospheric pressure is given at the rim of the thin film area, and line interpolation is performed between the rims of the 
thin film area and the contact area. 
 

COMPARISON 
 
   Figure 3(a, b) shows the pressure distribution by different two methods, respectively. We verify that the lift force by 
integrating the lubrication pressure quantitatively agrees with the drop’s weight. The both pressure distributions have 
positive pressure in a whole range of the thin film area and negative pressure near the downstream rim of the thin film area. 
In three dimensions, the two pressure distributions show quite qualitative agreement although the orders of the negative 
pressure are different due to the limit of the interferometric method. The surface tension of the gas-liquid surface 
dominantly affects the pressure distribution at the drop’s bottom. Therefore, it is experimentally verified that the agreement 
between the two pressure distributions decides the steady shape of the free surface of the levitating drop.  
 

CONCLUSION 
 

   We calculate with the three-dimensional pressure distribution generated inside the air film by two methods. One method 
computes the pressure distribution by applying lubrication theory. The other method estimates the pressure by the balance of the 
force acting on the drop’s bottom. In three dimensions, the two pressure distributions show quite qualitative agreement that 
positive pressure widely ranges within the thin film area and negative pressure exists near the downstream rim of the thin film 
area. We experimentally indicate that lubrication pressure steadily balances the surface tension of the deformed free surface of 
the levitating drop. 
   This work was supported by JSPS KAKENHI Grant Number 26709007. 
 
References 
 
[1] Lhuissier, H., Tagawa, Y., Tran, T. and Sun, C., Levitation of a drop over a moving surface, Journal of Fluid Mechanics, Vol. 733 (2013), R4. 
[2] Tipei, N., Theory of lubrication: with applications to liquid- and gas-film lubrication (1962), Stanford University Press, pp.144-151. 
[3] Saito, M., Tagawa, Y., Lift force acting on a levitating drop over a moving wall, Transactions of the JSME (in Japanese), 81, No. 825, p.15-00059 (2015).  
 

Fig.2 Schematic views of (a) the experimental setup and (b) the levitating drop. 

Fig.3 Pressure distributions (a) by applying lubrication theory and (b) by a balance of the force at the drop’s bottom. 

Fig.1 Side view of a steadily levitating drop. 
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Summary Coupling wetting and elasticity is of fundamental importance to the physics of wetting in general. It also plays an increasingly
relevant role in many technological applications. One such potential application involves particles at interfaces, where the softness enhances
their stabilising effects on emulsions. Here we present a novel simulation approach where the fluid phases are simulated adopting a free-
energy lattice-Boltzmann method [1], while the deformable elastic structure is modelled with a finite element representation. The coupling
between the solid and fluid dynamics is handled through an immersed boundary method [2]. The approach is validated by simulating the
statics and dynamics of soft particles at liquid-liquid interfaces.

MOTIVATION

Flexible materials are ubiquitous in nature and cover a wide range of length scales. At microscopic scales, surface-tension
forces are extremely important, and the interplay with elasticity has a pivotal role in determining the structural stability and the
dynamic response of deformable materials. For example, softness of particles enhances their stabilising effects on emulsions
[3]. The same applies to fibrous systems where, in addition, elasticity has a strong impact on the stability of the liquid
morphologies [4]. While a wide range of simulation techniques is already present in the literature, there is a growing need for
a numerical platform able to couple fluid dynamics, solid mechanics and capillary forces.

SIMULATION TECHNIQUE

In our approach we employ the lattice-Boltzmann method to incorporate fluid dynamics, combined with a recently de-
veloped ternary model based on a Landau free energy functional [1]. Deformable boundaries representing the surface of soft
materials (either shells or bulk) are introduced with a finite element approach [2], while the coupling of the fluid momentum
is provided by the immersed boundary method [5]. The key aspect of our approach is the coupling mechanism for the surface
tensions that relies on the thermodynamic properties of the free energy approach, by confining one of the fluid phases to the
interior of the deformable object.
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Figure 1: (a) Coupling between the three fluids and the deformable membrane: one of the fluids is assigned to the interior of
the soft object. (b) Sketch of a deformed soft particle at an interface.
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WETTING OF SOFT PARTICLES

Soft particles are of primary importance for a variety of applications ranging from the production of food and cosmetics
to the synthesis of pharmaceuticals. For example, particles at the interface between two fluids can be employed to replace
surfactants [6]. To illustrate the potential of our numerical approach, we will show preliminary simulation results of soft
particles at a fluid-fluid interface (cf. Fig. 1b), compared to recent experimental and numerical investigations [7, 8].
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Summary Development in spray technology requires more basic understanding on primary breakup mechanism. Insight concerning this issue 
can be gained by studying the properties of waves that appear on the surface of the jet during the breakup process. In an effort to elucidate the 
primary breakup of liquid jets injected transversely into a gaseous flow, a three-dimensional temporal linear stability analysis is developed. A 
characteristic equation accounting for the growth of columnar waves is obtained and the instability dynamics is parametrically investigated in the 
presence of capillary, viscous, and aerodynamic forces. 
 

INTRODUCTION 

 
   Due to the enhanced mass and momentum exchange between two perpendicular streams, a liquid jet injected into a gaseous 
crossflow (LJICF), liquid sprays in transverse flows have a wide application in a number of industrial systems including fuel 
injection and thermal spray [1, 4, 9]. Theoretically, the flow of a gas over streaming of a liquid causes instabilities at the 
interface and the growth of these instabilities leads to breakup of the liquid jet into smaller droplets and increasing the surface 
area, which enhances the mixing of the liquid and the gas. 
   The experimental results show that subjecting a liquid column to a gradually increasing crossflow velocity, four regimes are 
formed: column breakup, bag breakup, multimode breakup, and shear breakup [2, 3]. By increasing the gas velocity through these 
regimes, the wavelength of surface waves and the size of ligaments and droplets decreased. For small crossflow velocities, which 
is the focus of this work, the ratio of wavelength to jet diameter is greater than or approximately equal to unity. In the column 
breakup regime, the liquid jet column is somehow deformed to yield an ellipsoidal and kidney cross section [3] and deflected in 
the direction of the crossflow. The increased drag forces due to the flattened shape of the liquid jet enhances deflection in the 
crossflow direction and eventually causes to break. Numerical simulations [10] show that two types of disturbances exist on the 
jet windward surface: (I) the azimuthal disturbances which leads to the 
surface breakup and (II) the axial disturbances leading to the breakup of 
column. Experimental and numerical studies have shown that the surface 
breakup is the dominant breakup process in the high crossflow velocities [1, 2, 
3] and the surface breakup of a jet can be a result of the shear instability on the 
jet lateral sides. For type (II) the evolution of the jet surface show that the 
column breakup occurs due to propagation of the long waves on the 
windward surface of the jet. With distance down the jet, these waves grow 
on the surface until sufficiently amplified to break up the liquid column.  
   Due to the motion and interaction of the jet and the gas phase, the flow 
structures involved in the LJICF problem are very complex. Experimental 
techniques are not able to completely visualize and quantify the breakup mechanism and, on the other hand, numerical simulation 
of this problem requires a considerable amount of computational resources. However, theoretical models are able to capture the 
essential physics and can facilitate the experimental and numerical studies through parametric studies. The analysis of primary 
atomization of liquid jets using linear theory is generally well established [4, 5, 6, 7, 8], however, for to support columnar breakup 
mechanism of LJICF no theoretical investigation has been reported [10]. This work is aimed to provide this part.  

 

PROBLEM DESCRIPTION AND GOVERNING EQUATIONS 

 
   Due to the complexity of the flow field inside and around the liquid jet, in order to tract the theoretical analysis, it is 
assumed the boundary layer thickness is very thin compared to the jet radius and there is no separation of the boundary layer. 
Additionally, it is assumed that the length scale of baseflow liquid jet velocity Wl in the axial direction is much larger than 
the one for axial wavelengths of interface disturbance. This assumption eliminates requirement of developing a complicated 
multiscale stability analysis. Furthermore, our analysis of the instabilities is applied to the region sufficiently close to the 
nozzle where the liquid jet deflects negligibly and assumed to preserves its nearly cylindrical shape.  
   For a nonturbulent viscous liquid jet, as illustrated in Fig. 1, the three-dimensional cylindrical coordinate system (r,θ,z) 
corresponds to the velocity vector (u,v,w), i.e. z-direction is aligned with the direction of liquid jet. The jet cross section is 
described by r and θ coordinates as shown in Fig.1. The liquid jet with density ρl, dynamic viscosity μl and surface tension σ 
is issuing with a uniform axial velocity Wl from a round nozzle with radius R through a viscous and incompressible gas with 
density ρg, dynamic viscosity μg, streaming with velocity Ug.  
   In order to carry out an instability analysis, a baseflow for the transverse jet needs to be defined. Since no steady exact 
solution to the Navier-Stokes equations exists for the baseflow of this three-dimensional flow field, we make use of the viscous 
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potential flow model [8]. The complete set of equations includes conservation equations for mass and momentum, which by 
introducing the velocity potential ϕ, reduces to Laplace's equation. Based on above assumptions, the potential solution of flow 
around a solid cylinder can reasonably represent the external baseflow about the liquid jet as, 

.cos)(
2


r

RrUgg   (1) 

For liquid baseflow it is assumed that there is only a uniform axial velocity and the other velocity components are zero.  
   The stability analysis is carried out by decomposing any instantaneous flow-field quantity ψ into a baseflow (mean) 
quantity, and a disturbance (fluctuating) quantity. Following the classic normal mode analysis, the disturbances, denoted as 
(.'), are expanded into normal modes through 
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where k and m are the real-valued axial and azimuthal wavenumber, and α=αr+iαi is the complex-valued frequency, with real 
and imaginary components corresponding to the frequency of the Fourier wave and the exponential growth rate, respectively. 
By substituting the normal modes into the governing equations, subtracting the baseflow, and linearizing the resulting 
perturbation equations, two generalized wave equations are formed. The solution for perturbed viscous potential flow for 
liquid and gas, considering that the solution must exist at r=0 and r→∞, is then sought in the form of  
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where Im and Km are the mth order modified Bessel functions of the first and second kind, respectively. The boundary 
conditions to be applied at the interface require that there is no net flux of mass across the interface and that the normal stress 
is continuous. These kinematic and dynamic boundary conditions are employed as. 
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where η is interface displacement as η= η0ei(kz+mθ)+αt with initial value of η0 and τrr is the normal stress tensor which its pressure 
term is obtained using Bernoulli’s equation and equation (1). Linearized expansion of equation (2) using equation (3) yields 
two homogeneous equations which their nontrivial solution yields a local dispersion relation as D (k,α)=0. The coefficients 
of this equation are function of velocity and physical properties of fluids. In the next section, the instability dynamics is 
parametrically investigated by using the roots of this equation. 
 

RESULTS AND DISCUSSION  

 
   In the following, the effect of surface tension, viscosity, and aerodynamic forces on the perturbation dynamics of a liquid 
jet in crossflow is investigated. The ratio of these forces identifies the dimensionless groups: liquid Weber number, gas Weber 
number, and Ohnesorge number as 
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respectively. Additionally, we introduce momentum flux ratio q=Wel/Weg, density ratio Q=ρg/ρl, and viscosity ratio β=μg/μl. 
   For the case of zero crossflow velocity (stagnation surrounding fluid), the results obtained from the present formulation 
are compared with results by Avital [5] for viscous coflow case. The excellent agreement serves as verification of the 
developed stability formulation. By increasing the crossflow velocity, the instability growth rate is increased. The cut off 
wave number is a weak function of the crossflow velocity. Instability is maximum at windward direction and minimum at 
lateral direction. Linear hydrodynamic instability analysis is able to capture the main physics in the primary breakup step. 
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Abstract: This paper presents an experimental study of the dynamics of a rising oil droplet in water. The motion is associated 
with path, velocity and shape instabilities. In this work, the former two instabilities have been studied. A three-dimensional 
visualization of the trajectory of the rising droplet has been presented.  A stereo-PIV analysis was conducted on the system for 
visualization of the velocity field generated by the motion of the droplet. Two distinct type of trajectories were observed and the 
liquid droplet were found to follow two types of paths - straight and zig-zag. Helical paths were not observed in our study. 
Vorticity plots calculated from the velocity field are used to explain the observed trajectories. 
 

INTRODUCTION 
 
The droplet motion of one immiscible fluid within a continuum phase of another fluid is of great importance in several 
industrial and technological applications such as extraction of liquid–liquid mixture, breakup of emulsions, pipeline 
transportation of liquid–liquid mixture, and in the oil industry where oil and water are often produced and transported 
together. Droplet rise in an immiscible liquid is a complex phenomenon because unlike the motion of solid particles in 
liquids, the no-slip velocity condition does not hold true in this case. What further compounds the problem are the 
associated path, velocity and shape instabilities [2]. 
Several computational and experimental studies have studied the phenomenon of rising droplets in water [2-4]. In a recent 
work, Albert et al. [2] conducted an extensive computational study of a high viscosity liquid droplet rising in water. Chaotic 
helical trajectories associated with the motion of bubbles [5] were not observed in their study. An experimental 
investigation related to the phenomenon of rising droplets in water, similar to the one studied computationally in [2] was 
conducted, using a highly viscous fluid (~320 cP). The aim of this study is to visualize the flow field induced due to a rising 
droplet in quiescent water using stereo-PIV and its relation with the droplet trajectory. The trajectory of the rising oil 
droplets was traced in three dimensions using two digital cameras positioned perpendicular to each other, in a separate 
experiment under the same conditions. 
 

EXPERIMENTAL PROCEDURE 
 

Oil of viscosity 320 cP was injected into a water tank (24 cm x 30 cm x 31 cm) seeded with 
neutral buoyant glass particles. An infusion pump connected to a nozzle was used to control the 
flow rate and the following experiments were performed in succession for each droplet: 
Droplets in the size range 2.4 to 2.6 mm were generated using a needle of internal diameter 0.18 
mm and a flow rate of 1 ml/hr while larger droplets (4.0 to 4.2 mm) were produced using a 
needle of diameter 0.65 mm and a flow rate of 5 ml/hr.  
Experiment 1: Two digital cameras 1 and 2 (1280 x 720-pixels resolution, 60 fps) were placed 
at 90° to each other with sufficient illumination to track the trajectory of the coloured oil droplet 
in two mutually perpendicular planes. 

Experiment 2: After Experiment 1 was performed, liquid was allowed to settle overnight and stereo-PIV measurements 
were taken to visualize flow field around the rising droplet under identical experimental conditions. The reason for not 
performing both the experiments simultaneously was the practical difficulty associated with taking pictures from digital 
cameras with the laser firing simultaneously.  

 

OBSERVATIONS 
  
The size of droplets generated depends on the nozzle diameter and the flow rate of the pump. Different trajectories were 
observed for droplets of different sizes. As shown in fig. 2(a), smaller droplets of size range 2.4 mm to 2.6 mm follow an 
approximately vertical path with slight oscillations while larger droplets of size range 4.0 mm to 4.2 mm. initially moved 
linearly and then follow a zig-zag trajectory (fig. 3(a)). The plane of zig-zag motion differed for each droplet and cannot be 
ascertained beforehand. However, the nature of the trajectory for a droplet of a particular size was found to be the same after 
multiple runs. The height at which the oscillations began and the shape of the path obtained were nearly the same for a 
droplet of a given size. The phenomena of smaller droplets rising linearly and larger droplets exhibiting a zig-zag trajectory 
has also been reported by Albert et al. [2]. The velocity field for the droplet moving in a linear fashion shows a small 
component of velocity (~ 1 mm/s) in the Z-direction as illustrated by the yellow patches in fig. 2(b) whereas for the case of 
the larger droplets (fig. 3(b)), the Z-direction velocities vary from approximately -10 mm/s (blue region) to 5 mm/s (red 
region). The zig zag motion of the larger droplet induces both positive and negative values of the Z-velocity. In this case, 
the droplet was found to move out of the X-Y plane at x = 40 mm which is depicted by a large velocity in the Z-direction. 

Fig. 1: Experimental 

Setup 
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 2(a) 

(in cm) 

 3(a) 

(in cm) 

The vortices formed in 2(c) have strengths ranging from nearly -2.3 s-1 (blue) to 1.3 s-1 (orange) and are smaller in size while 
in (fig. 3(c), region b), because of the larger size of the droplet, the vortices spread over a larger area. Interestingly, the 
region where the larger droplet leaves the X-Y plane (x=40 mm), an unpaired vortex of strength (~1.2 s-1, fig. 3(c), region c) 
was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSIONS 

 
The rectilinear rise of smaller droplets is consistent with the observation of low velocities in the Z-direction. The existence 
of oscillations (Fig. 3(b)) in the trajectory for larger droplets is justified by the presence of a large velocity component in the 
Z-direction associated with the flow field near the droplet. The rising droplet pushes the liquid ahead while the liquid behind 
it is sucked into droplet wake. A pair of counter-rotating vortices were observed for smaller droplets (see Fig. 2(b), region 
a). Similarly, for larger droplets, an unsymmetrical wake region was clearly visualized and two vortices tilted opposite to 
each other were observed (see Fig. 3(b), region b). The wake region was also visualized via vorticity plots (see Figs. 2(c) 
and 3(c)) which indicate that larger droplets leave behind a larger disturbed area. Also, a shorter extent of impact was 
observed ahead of the droplets. It is speculated that the unsymmetrical wake region behind the larger droplet is responsible 
for the movement of the droplet away from the plane of the laser sheet as shown in Fig. 3(b). Some authors [3] believe that 
the onset of zig-zag motion must be due to superposition of the droplet shape oscillation and its translational oscillation. It 
was argued that the existence of deformation will change the effective area of the drag force, causing unbalanced force 
couples on the drop and making the drop rotation and further deformation, and finally leading to oscillations [3]. 
. 

CONCLUSIONS 
 
Smaller droplets (2.4 to 2.6 mm) were found to rise in an approximately straight path whereas larger droplets (4.0 to 4.2 mm) 
followed a zig zag trajectory. Chaotic helical trajectories associated with bubble motion were not observed in this study. Due to 
their zig zag motion, larger droplets were found to move out of the laser plane. An unsymmetrical wake region with counter-
rotating vortices oblique to each other was observed for larger droplets. Stereo-PIV results indicated a large Z-velocity 
component associated with the flow field near the droplet when it begins its oscillating. The zig zag motion of the larger droplet 
induces both positive and negative values of the Z-velocity. 
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Figs. 2: (a), (b) and (c) show the trajectory, velocity field in X-Y plane (with Z-velocities indicated by background colors) and the vorticity plot respectively for the smaller droplet while figs. 3(a), (b) and (c) 
show the corresponding data for larger droplets. Reference vector: U=0.01 m/s. 
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Summary The dripping-to-jetting transition of a co-flow has been extensively studied. Jetting often occurs due to a sufficiently large inertial 
force for a non-viscous jet or a considerably large viscous force for a viscous jet. However, in an aqueous two-phase system (ATPS) with an 
ultra-low interfacial tension, the force required to overcome the tension to form a jet is significantly smaller. We show that the viscous force of a 
non-viscous jet can be sufficient to induce jetting. The dripping-to-jetting transition is governed by the sum of viscous and inertial force instead 
of by any of them alone.  
 

INTRODUCTION 

 
   Weber number and Capillary number of the inner phase describe the balance of inertial and viscous forces, respectively, 
against interfacial force. It is known that a widening jet is achieved by a large inertial force that compensates for the 
interfacial force; hence this transition is often characterized by the Weber number of the inner phase Wei approaching 
unity1-3. In another extreme case where the viscosity of the inner phase is high, the dripping-to-jetting transition is instead 
indicated by the Capillary number of the inner phase Cai approaching a tenth4. While these parameters serve well in 
characterizing the transition for oil-water systems, which generally have a relatively higher interfacial tension than aqueous 
two-phase systems (ATPSs), they fail to characterize the transition for water-water system. We revisit the dripping-to-
jetting transition in a core-annular flow in a microfluidic glass capillary channel by replacing oil-water systems with an 
aqueous two-phase system. We discover that the dripping-to-jetting transition of such ATPS is attributed to the combined 
effect of inertial and viscous force of the inner phase.  
    

RESULTS AND DISCUSSIONS 

 

 
Figure 1: Microscopic images of two-phase microfluidic flow. Dripping and Jetting regimes. Scale bars are 200 µm. 

 
   We consider the transition of a widening jet. Figure 1 shows the typical microscopic images of dripping and jetting. 
Dripping-to-jetting transition occurs when the inner flow rate is increased to a certain threshold value. Firstly, we notice that 
the threshold inner flow rate can be as low as 50 µl/h. At this flow rate, the inertial force alone is not sufficient to overcome 
the interfacial tension. Interestingly, we find, for ATPSs with low interfacial tension, the transition is not characterized by 
either Wei ~ 1 (Figure 2a) or Cai ~ 0.1 as expected for oil-water systems. Instead, it is represented by (Wei + Cai) ~ 1, as 
shown in the phase map in Figure 2b.  

 
Figure 2: (a) Phase map of Wei against the Capillary number of the outer phase Cao. Dashed line is the literature dripping-

to-jetting transition from Ref. 1. Solid line is the transition found for our ATPS. (b) Phase map of (Wei + Cai) against Cao. 

    
   In case of low interfacial tension system like ATPS, the interfacial force is so weak that the dripping-to-jetting transition 
typically occurs at extremely low inner flow rate (Qi = 50 µl/h in some cases). At such low flow rate, both the inertial and 
viscous forces of the inner phase are very minute; and the Reynolds number of the inner phase Rei, which characterizes their 
relative importance, is in the range of O(-2) and O(0) (see Figure 3). To better describe the dripping-to-jetting transition for low 
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interfacial tension systems which yields such a wide distribution of Rei throughout the transition, we propose adopting the sum 
of inertial and viscous forces relative to the force of interfacial tension, i.e., Wei + Cai, with the rationale illustrated as follows.  

 
Figure 3: Rei against Qi. The Reynolds number of the inner phase spans two decades as the inner flow rate 

increases.  
 
   At a low viscosity of the inner fluid of 1.79 mPa.s, the viscous force observed at a low flow rate of Qi = 50 µl/h is 
sufficient to overcome the interfacial tension and cause jetting. Hence, despite the low viscosity, viscous force of the inner 
phase may still become dominant. Meanwhile, as the inner flow rate is increased, the inertial force increases significantly. 
The Reynolds number of the inner phase Rei indeed increases by ten-fold as the flow rate is increased. Since the transition 
takes place in this range of inner flow rate for which Rei varies significantly, meaning the relative importance of viscous 
force and inertial force is changing, we believe the dripping-to-jetting transition is best characterized by the combined value 
of Weber and Capillary numbers of the inner phase.  
 

EXPERIMENTS  

 
  The microfluidic devices are made of glass capillaries. A round glass capillary is tapered into desired nozzle size of ~ 40 
µm and is placed into a square capillary with an inner size of around 1 mm. An additional untapered round capillary with an 
inner diameter of ~ 600 µm is put inside the square capillary enveloping the tapered nozzle to further reduce the channel 
dimension. All capillaries are co-axially aligned. The aqueous two-phase system (ATPS) is prepared by dissolving 10.27 wt% 
of sodium citrate with 10.91 wt% of Poly(Ethylene Glycol) with a molecular weight of 8000 Da (PEG 8000) in deionized water. 
After phase separation, a PEG-rich top phase and a salt-rich bottom phase are obtained. The interfacial tension of the ATPS is 
0.013 mN/m, as measured by a spinning drop tensiometer (SITE 100, Krüss). The bottom and top phases are fed into the square 
and tapered round capillary as the inner and outer phase respectively. The viscosity of the inner phase is 1.79 mPa.s, measured 
with a viscometer (MicroVisc, RheoSense). The inner and outer flow rates are Qi = 5 µl/h to 1 ml/h and Qo = 50 µl/h to 5 ml/h. 
The two-phase co-flow is monitored by an inverted microscope (AE2000, Motic) and a high speed camera (V9, Phantom). 
 

CONCLUSIONS 

 
   This study has revealed a unique situation of the breakup dynamics in aqueous two-phase co-flow where the interfacial 
tension is ultra-low. Even the jet phase is not highly viscous, the viscous force of the inner phase together with the inertial force 
cause jetting at a very low inner flow rate. This work demonstrates the need for a different treatment of the dripping-to-jetting 
transition for liquid-liquid systems with an ultra-low interfacial tension. 
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COATING
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Summary Confined convective assembly coating based on the evaporation of a colloidal suspension including nanoparticles is investigated
numerically solving the conservation equations of mass, momentum, and energy in the liquid-gas phases, the vapor mass fraction in the gas
phase, and the particle concentration in the liquid phase. A sharp-interface level-set method for tracking the liquid-gas interface is extended
to include the effects of phase change, contact angle and particle deposition. The computation demonstrates particle accumulation near the
contact line. The present method is proved to be applicable to investigation of the effect of plate velocity on the particle deposition pattern
in the confined convective coating.

INTRODUCTION

Convective assembly coating has been extensively investigated as a novel fabrication method for micro- and nano-
structures in the last decade, as reviewed by Wang and Zhou [1]. The convective assembly has been further improved employ-
ing a confined geometry, such as between two parallel or non-parallel plates [2, 3], for rapid and well-controlled fabrication
of micro film structures. However, a general predictive model for the confined convective coating has not yet been developed
due to the complexity of the evaporating interface phenomena coupled to the heat and mass transfer in the liquid-gas phases
and the particle deposition near the liquid-gas-solid contact line.

Recently, numerical simulations were performed for sessile droplet evaporation and particle deposition using body-fitted
moving-grid methods [4], finite elements methods [5], a volume-of-fluid method [6] and a level-set (LS) method [7]. Very
recently, Lee and Son [8] developed the LS method for analysis of liquid evaporation and particle deposition in dip coating.

In this work, the LS method is further extended for computation of the particle deposition in confined convective coating.
Numerical techniques are developed for implementation of evaporation, contact line motion and particle deposition on a
moving substrate.

NUMERICAL ANALYSIS

The present numerical approach is based on the sharp-interface LS method for liquid film evaporation and particle distri-
bution in dip coating developed in our previous work [8] and extended for the confined convective coating. The liquid-gas
interface is tracked by the LS function ϕ, which is defined as a signed distance from the interface. The positive sign is chosen
for the liquid phase and the negative sign for the gas phase.

The conservation equations of mass, momentum and energy in the liquid and gas phases, vapor mass fraction (Yv) in the
gas phase, and particle volume fraction (Yp) in the liquid phase can be expressed as

∇ · u = βṁn·∇α (1)

ρ̂(
∂u

∂t
+ uf · ∇uf ) = −[∇p+ (σκ− βṁ2)∇α] + ρ̂g +∇ · [µ̂∇u+ (∇uf − βṁn∇α)T ] (2)

ˆ(ρc)(
∂T

∂t
+ uf · ∇T ) = ∇ · λ̂∇T if ϕ ̸= 0; T = TI if ϕ = 0 (3)

∂Yv
∂t

+ ug · ∇Yv = ∇ · D̂v∇Yv if ϕ < 0; Yv = Yv,I if ϕ = 0 (4)

∂Yp
∂t

+ ul · ∇Yp = ∇ · D̂p∇Yp if ϕ > 0; −ṁYp = ρlD̂p∇Yp · n if ϕ = 0 (5)

Here, the subscript f denotes the liquid phase (l) for ϕ > 0 and the gas phase (g) for ϕ ≤ 0. The discontinuous step function
α, the interface normal n, and the interface curvature κ are evaluated from the LS function. The velocity uf (ul or ug) for
each phase is extrapolated into the entire domain (or a narrow band near the interface) from the real velocity.

The temperature TI and vapor fraction Yv,I at the interface (ϕ = 0) and the evaporation mass flux ṁ are simultaneously
determined from the following coupled equations for the mass and energy balances at the interface and the thermodynamic
relation

ṁ =
n · ρgD̂v∇Yv
(1− Yv,I)

=
n ·
[
(λ̂∇T )ϕ>0 − (λ̂∇T )ϕ<0

]
hlg

Yv,I =
Mvpv,sat(TI)

Mvpv,sat(TI) +Ma [p∞ − pv,sat(TI)]
(6)
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The LS function ϕ is advanced and reinitialized as

∂ϕ

∂t
= −(ul +

ṁ

ρl
n) · ∇ϕ; ∂ϕ

∂τ
=

ϕ√
ϕ2 + h2

(1− |∇ϕ|) if |ϕ| ≥ h/2 (7)

The boundary conditions at the bottom wall (y=0) are as follows:

u = uw, v = 0, T = Tw,
∂ϕ

∂y
= − cos θw,

∂Yv
∂y

= 0, D̂p
∂Yp
∂y

= kdYp (8)

RESULTS AND DISCUSSION

Numerical simulation is performed for the evaporation of a colloidal suspension between a lower moving plate and an
upper stationary plate. The results are plotted in Fig. 1. The computation demonstrates liquid circulation due to plate
movement, vapor expansion caused by non-uniform evaporation and particle accumulation near the contact line.

Figure 1: Colloid evaporation in convective coating: velocity, vapor fraction and particle concentration fields.

CONCLUSIONS

Numerical simulations were performed for the particle deposition in a confined convective coating condition using a
sharp-interface level-set method modified to include the evaporation at the liquid-gas interface, the contact line movement
and the particle deposition. The present computations demonstrated that the plate velocity significantly affects the liquid film
formation and particle deposition thickness. The present LS method is proved to be applicable to investigation of the effect of
plate velocity on the particle deposition pattern in the confined convective coating.
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Summary Drop oscillation has long since been considered as the possible parameter to influence the penetration depth of vortex rings. 
However, for the simplicity, the conventional knowledge about drop oscillation on drop impact is restricted only on the 2nd mode without 
higher modes. Here, we demonstrated that this neglect has caused the contradictory ambiguity about the oscillation effect on transport 
phenomena over hundred years. In fact, instead of theoretically complex nonlinear expressions, a combination of both 2nd and 3rd oscillation 
modes are enough to describe the general characteristics of drop oscillation in practice and also are necessary to explain its induced outcomes. 
We therefore derive a theoretical prediction for ring penetration so as to highlight a quantitative design guideline for efficient transportation and 
mixing across free liquid surface. 
 

AMBIGUOUS “DROP SHAPE” FOR DROP-INDUCED VORTEX RING PENETRATION   
 
   Vortex formation is omnipresent after a drop has impacted and merged into liquid surface [1]. Among different 
observations, some reported that the deepest penetration appeared when the drop shape at impact was vertically prolate [2,3], 
but some others indicated that it occurred for drops with spherical shape oscillating from (vertically) oblate to prolate [4,5]. 
This puzzle of contradictory arguments was attributed to the incomplete oscillation parameter used in the past [6]. 
Observation of the outer shape is always the most direct way to describe the oscillation of a drop. The theoretical time-
varying outer shape of a drop can be written [7] as  

0
2

( , ) 1 ( ) (cos ) ,n n
n

R R C P   




  
  


 (1) 

where R0 is the undisturbed drop radius, θ is the polar angle and Pn is the associated Legendre polynomial. The coefficient 
Cn(τ) represents the amplitude coefficient of the n-th oscillation mode with respect to R0. To get a better and quantitative 
understanding of the oscillating drop, Fig. 1(a) shows the experimental images of an oscillating drop after pinch-off, 
compared with truncated summations of different oscillation modes (mode 2 only is denoted as S1, summation of mode 2 
and mode 3 as S2 and so forth). It shows clearly that mode 2 alone (S1) could not correctly describe the outer shape of a real 
drop with strong non-symmetric oscillations (see photos at the bottom row). Importantly, there is no significant difference 
from the comparisons of S2 and truncated results of more terms (cf. the rows with respect to S2, S3 and S4); the results of S2 
(red dashed contours) overlap experimental images in a quite satisfactory manner, as shown in the last row. This reveals that 
the characteristic oscillation of a drop, to a first approximation, can be well represented by the two-term summation of the 
first two modes for general analysis. It brings about the advantages of drop shape description that the effects of gravity, 
aerodynamic resistance and nonlinear behaviors of drop could be negligible since all of them are excluded in the theory. On 
the other hand, the drop shape in consideration of superposition of at least oscillation mode 2 and mode 3 is deemed 
necessary for understanding the oscillatory outcomes. In the literature, drop shape parameter, axis ratio e (= b/a, see the 
inset of Fig. 1(b)), is the most frequently used; however, it can only reflect the characteristics of oscillation mode 2. 
Alternatively, the newly proposed oscillation index Oi (= b1/R0) can fully reflect the dynamics of drop with higher 
oscillation modes [6]. To demonstrate the incompleteness of using e to describe the outcomes of oscillating drops, values of 
the penetration depth L of the vortex ring by drops with different diameters (1.66 mm < D < 6.25 mm), impacting onto the 
same liquid pool, were carefully measured after significant improvement of measuring techniques [8]. These values were 
represented as circles with different sizes in Figs. 1(b) and 1(c), where Δτ denotes the time difference between e or Oi at 
drop impact and those at peaks (em or Oi,m), and T2 denotes the oscillation period of mode 2. The less the Δτ, the closer the 
drop shape at impact approaches to the peaks of shape parameters (em or Oi,m).. It shows clearly that Oi,m predicts the timing 
of the maximum penetration depth (Lmax, red circles, in which one Lmax regards to one drop size) much more precisely than 
em since Lmax distributes much narrower with respect to Oi (-8% ~ 6%) than e (-27% ~ 6%). 

 
Fig 1. (a) Decomposition analysis of an oscillating drop. (b) Relation between the axis ratio e and the penetration depth L of 

vortex rings. (c) Relation between the oscillation index Oi and the penetration depth L of vortex rings.  
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Fig. 2 Relation of Oi, We and penetration depth 

L of drop-induced vortex rings. 
Fig. 3 Phase diagram of local (Lm) and absolute 
(Lmax) max. penetration depth of vortex rings. 

 
INFLUENCE OF DROP OSCILLATION AND PREDICTION OF RING PENETRATION   

 
Fig. 2 shows a counter-intuitive fact that the penetration depth of drop-induced vortex rings decreases with Weber 

number We (= ρVD2/σ, where ρ, V, and σ are the density, impact velocity, and surface tension of drop, respectively). It 
implies that the drop with higher impact velocity (higher We) does not lead to deeper penetration depth. Instead, the Lmax 
(solid circles) has a positive correlation regarding to OiD/λ, where λ is the capillary length of liquid drops. Since OiD/λ 
equals b1/(λ/2), this ratio reveals how significantly the drop oscillates, especially as b1 larger than λ/2 (or OiD/λ > 1). It can 
be concluded that the vortex ring penetrates more into the pool as drop size increases due to the magnification of oscillation. 
   Rather than only taking the Ohnesorge number Oh (= μ/(ρσD)1/2, where μ stands for the viscosity of drop), which 
determines whether a vortex ring forms [9], and We into account as shown in Fig. 3, we derived a theoretical prediction of 
the local peaks of Oi based on the Newton’s law and drop oscillation theory to pin down the key influential parameters for 
the maximum penetration depth of vortex rings. As a result, the velocity Vp for each peak p of Oi can be obtained as follows: 
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(2) 

where VT and V0 correspondingly denote the terminal and initial velocities of drops after pinch off, and Toi (= 3T2T3/(T2+T3), 
where T3 is the oscillation period of mode 3) and oi are the period and phase angle of Oi, respectively. The experimental 
results, including data from literatures [3,4], as well as the predicted lines are compared in the phase diagram as shown in 
Fig. 3, and the local and absolute maximum penetration depths of vortex rings (Lm and Lmax) can be well-predicted by Eqn. 
(2). It not only reveals the preference of drop shape with Oi-peak for upgrading the penetration depth but also highlights the 
quantum-like distribution of maximum penetration depth of vortex rings in the (Oh, We)-plane due to drop oscillation. 
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STEADY ELECTROROTATION OF A DROP IN A CONSTANT ELECTRIC FIELD
Alexander Tyatyushkin∗1

1Institute of Mechanics, Moscow State University, Moscow, Russia
Summary The electrorotation of a drop of a viscous weakly electrically conducting polarizable liquid suspended in another viscous weakly
electrically conducting polarizable liquid immiscible with the former as well as the electrohydrodynamic flow inside and outside the drop
in a constant electric field is theoretically investigated. The influence of the surface electric conductivity is taken into account. The surface
tension of the drop is regarded as sufficiently large in order to neglect the deformation of the drop when calculating the electric field and
flow. The governing equations and boundary conditions are written down. The used methods and the obtained results are described. The
expressions for the intensity of the electric field, velocity, and pressure inside and outside the drop are written down for the case when the
viscosity of the drop is much greater than that of the surrounding liquid. The obtained results are summarized and discussed.

INTRODUCTION

Under certain conditions, weakly electrically conducting bodies rotate under action of an applied constant electric field.
The study of this interesting phenomenon, called electrorotation, has a long history (see [1] and [2]). Melcher and Taylor [1]
investigated theoretically the electrorotation of a solid cylinder, Jones [2] investigated the electrorotation of a solid spherical
particle. He, Salipante, and Vlahovska [3] studied the electrorotation of a fluid drop. The present work is devoted to the
theoretical investigation of the influence of the surface conductivity on the electrorotation of a drop and to the calculation of
the corrections arising due to the finite viscosity of the drop.

PROBLEM ABOUT THE STEADY ELECTROROTATION OF A DROP

Setting: subject of the investigation, equations, and boundary conditions
Consider a spherical drop of radius a in a constant uniform electric field with intensity ~Ea. The viscosity, electric conduc-

tivity, and dielectric permittivity of the liquid inside the drop are ηi, λi, and εi. The drop is suspended in a liquid with viscosity
ηe, electric conductivity λe, and dielectric permittivity εi. The surface tension and surface electric conductivity of the interface
between the liquids are σs and λs. The Reynolds number is so small that the convective acceleration can be neglected, and σs
is so high that the deformation of the drop can be neglected.

The system of equations for the velocity, pressure, and electric field intensity, ~v = ~v(~r), p = p(~r), and ~E = ~E(~r), consists
of the continuity and Navier–Stokes equations for a steady flow of an incompressible fluid in the low Reynolds number
approximation, the Maxwell’s equations in the electrohydrodynamic approximation [1] for a constant electric field, and the
constitutive relations

∇ · ~v = 0, −∇p+ η∆~v = 0, ∇ · ~D = 0, ∇× ~E = 0, ~D = ε ~E, ~j = λ~E. (1)

Here, η = ηi, λ = λi, and ε = εi inside the drop, η = ηe, λ = λe, and ε = εe outside it, ∇ is the nabla operator, ∆ is the
Laplacian, ~r is the radius vector with the origin at the center of the drop, · and × denote the scalar and vector products.

The boundary conditions on the interface between the liquids include the impenetrability and no-slip conditions, the
conditions for the jumps of the normal and tangential components of the stress vector,

~n× (~v|i × ~n) = ~n× (~v|e × ~n) = ~vs, [~v]s × ~n = 0, [p]s = −2σs
a
, −

(
~n×

{[
2η (∇~v)

S
]
s
· ~n
})
× ~n = qs ~Es, (2)

the continuity condition for the tangential component of the intensity of the electric field, and the conditions for the jumps of
the normal components of the electric induction and of the density of the electric current,

~n×
(
~E
∣∣∣
i
× ~n

)
= ~n×

(
~E
∣∣∣
e
× ~n

)
= ~Es,

[
ε ~E
]
s
· ~n = 4πqs,

[
λ~E
]
s
· ~n = −∇s ·

(
λs ~Es

)
−∇s · (qs~vs) . (3)

Here, A|i and A|e denote the values of the quantity A on the interface between the liquids approached from inside and outside
the drop, respectively, [A]s = A|e − A|i denotes the jump of the quantity A at the interface when moving from the inside to
the outside, ∇s denotes the surface nabla operator, ~n is the external normal unit vector at a given point of the interface, ∇~f
denotes the dyadic product of the nabla operator and the vector field ~f = ~f(~r), T̂ S denotes symmetric part of the tensor T̂ .

The boundary conditions at infinity have the form

~v → 0, p→ p∞, ~E → ~Ea as r →∞, (4)

where p∞ is the pressure at infinity.
Besides, ~v(~r), p(~r), and ~E(~r) should be bounded for all the bounded values of ~r.
∗Corresponding author. Email: tan@imec.msu.ru
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Solution: used methods and obtained results
The electric filed intensity, velocity, and pressure are sought for in the form of series with vector and tensor coefficients

for which some relations are obtained that allow one to determine these coefficients. With the use of these relations, the
coefficients are sought for in the form of asymptotic expansions over the parameter η∗ = ηe/ (ηe + ηi), the smallness of
which corresponds to the sufficiently large viscosity of the drop with respect to that of the surrounding liquid. The terms of
the dimensionless expansions up to the first order with respect to η∗ are found in the explicit form.

For sufficiently small values of the parameter η∗, the intensity of the electric field, pressure, and velocity are as follows

~E =


~Ea −

~d

r3
+ 3

~d · ~r ~r
r5

, r > a,

~Ea −
~d

a3
, r < a,

p =


4ηeV a

2

r3

(
3~b · ~r

r
~c · ~r

r
−~b · ~c

)
+ p∞, r > a,

14ηiV r
2

a3

(
3~b · ~r

r
~c · ~r

r
−~b · ~c

)
+

2σs
a

+ p∞, r < a,
(5)

~v =


a3

r3
~Ω0 × ~r + 2V

a4

r4

(
~b ~c · ~r

r
+ ~c ~b · ~r

r

)
− 2V

(
a2

r2
− a4

r4

)
~b · ~c ~r

r
+ 2V

(
3
a2

r2
− 5

a4

r4

)
~b · ~r

r
~c · ~r

r

~r

r
, r > a,

~Ω0 × ~r + V

(
5
r3

a3
− 3

r

a

)(
~b ~c · ~r

r
+ ~c ~b · ~r

r

)
− 2V

(
r3

a3
− r

a

)
~b · ~c ~r

r
− 4V

r3

a3
~b · ~r

r
~c · ~r

r

~r

r
, r 6 a,

(6)

where

~d = κa3 ~Ea + γa3 ~Ea ×
~Ω0

Ω0
, κ = χ− 4πλeγ

εeΩ0

λ∗

ε∗
, γ =

8πηeΩ0

εeE2
a

, λ∗ = 2 +
λi
λe

+
2λs
aλe

, ε∗ = 2 +
εi
εe
, χ =

3− ε∗

ε∗
, (7)

V =
1

10

εeE
2
aa

8π (ηe + ηi)
, ~b = χε∗

~Ea

Ea
+ ε∗

~d

a3Ea
, ~c =

~Ea

Ea
−

~d

a3Ea
, (8)

Ω0 =
4πλe
εe

λ∗

ε∗

√
E2

a

E2
c

− 1, ~Ω0 · ~Ea = 0, Ec =

√
32π2λeηe

3ε2e

λ∗2

ε∗ − λ∗
. (9)

Calculating the surface normal force arising under action of the electric field and flow with the use of (5) and (6) and
analyzing its dependence on the normal vector on the surface of the drop, one concludes that this normal force tends to deform
the spherical drop into an ellipsoid the principal axes of which are determined by the following unit vectors

~l1,2 = cosφ1,2
~Ea

Ea
+ sinφ1,2

~Ea

Ea
×
~Ω0

Ω0
, ~l3 =

~Ω0

Ω0
, (10)

where
φ1 =

1

2
arctan

2 (45− 19ε∗) γκ + 19ε∗ (1− χ) γ

19ε∗ (χ+ κ − χκ) + (45− 19ε∗) (κ2 − γ2)
, φ2 = φ1 +

π

2
. (11)

SUMMARY AND DISCUSSION

Note that, according to (9), the angular velocity of the electrorotation, ~Ω0, is determined only if the intensity of the applied
electric field is more than some critical value,Ec, and the latter is determined only if ε∗−λ∗ = εi/εe−λi/λe−2λs/(aλe) > 0.

The expressions for ~Ω0 in (9) and ~E and p at r < a in (5) are written down with accuracy up to the terms of zeroth order and
those for p at r > a and ~v in (5) and (6), up to the terms of the first order with respect to η∗. These expressions together with
(10) and (11) describe the phenomenon of the drop tilt [3].

With accuracy up to the first order with respect to η∗, ~Ω = ~Ω0 + η∗~Ω1, where

~Ω1 = − 1

50

[
16τ∗η
τ∗λ

λ∗
(
λ∗2 + τ∗2λ ε∗2

)
ε∗2

+
15λ∗2 + 9τ∗2λ ε∗2

ε∗2

]
τ∗η
τ∗3λ

~Ω0, τ∗η =
4πηeΩ0

εeE2
a

, τ∗λ =
εeΩ0

4πλe
. (12)

The found corrections of the first order with respect to η∗ for ~E, and p at r < a are not written down because they are too
cumbersome for the present article. With accuracy up to the first order with respect to η∗, the drop possesses not only the
electric dipole moment, ~d, but also some electric octupole moment, and the normal surface force tends to deform the drop not
precisely into an ellipsoid but to give it a more complex shape.
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INVESTIGATION ON THE BREAKUP MECHANISM OF THE LIQUID JET UNDER 

LONGITUDINAL DISTURBANCE 

 
Zhenyan Xia
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SummaryThe research on the breakup mechanism of the liquid jet is not only a traditional fluid mechanics problem, but also a topic with great 
theoretical research value and engineering application background. A liquid jet experimental system mainly consist ing of liquid jet driving 

system, exciting system and photographing system has been designed and established. A longitudinal vibration produced by the vibration 

exciter applied on the nozzle, and the effects of vibration frequency and vibration amplitude on the breakup of the liquid jet were investigated. 

 
EXPERIMENTAL S YS TEM 

 

A schematic diagram of the experimental apparatus is presented in Fig.1. Fluid from a reservoir was pumped through a 

flowmeter into the nozzle, and the flow range is 8.5ml/min~500ml/min. The nozzle is fitted to the vibration exciter and is 

vibrated longitudinally. The vibration frequency and vibration amplitude of sine wave vibration are controlled by an signal 

generator and a power amplifier. Photron SA1.1 high-speed camera is used to obtained the shadowgraph images of the 

liquid  jet. The frame rate is 5000fps and the frame resolution is 10241024 p iexls. The Glycerol-water mixtures are used as 

test fluids with the mass fraction of 60% g lycerol concentrations. The physical properties is shown in table1.  
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Figure.1 schemat ic diagram of the experimental apparatus 

 

Tab.1 Physical properties  

Liquid  Density(kg/m
3
) Viscosity(mPa.s) Surface tension(mN/m) 

60%glycerol 1.12 10
3
 10.8 64 

 

RES ULTS  

 

Fig.2 shows that the variation of the breakup length with vibration frequency under different jet velocities. It is apparently 

that as the increasing of the vibration frequency, the breakup length first decreases and  then increases. In addition, the value 

of the vibration frequency under which the breakup length is the most shortest decreases as the increase of jet velocity.  

The effect of vibration amplitude on the liquid jet is shown in Fig.3(a). It can be observed that as the increasing of the 

vibration amplitude, the satellite drop let is moving closer to the forward  main droplet(vibrat ion amplitude A=0.01~0.5cm/s), 

and eventually the satellite drop let merges with the forward main droplet and disappears(A=0.6cm/s~0.9cm/s). Moreover, 

the increase of the vibration amplitude can lead to the decrease of the breakup length. In order to quantitatively investigat e 

the effect of the vibration amplitude on the breakup length, the breakup length under different v ibration amplitudes is 
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extracted and the vibrat ion tendency is shown in Fig.3(b). It  can be seen that when the vibrat ion amplitude is small, the 

breakup length decreases acutely as vibration amplitude increases. 

-200 0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

B
re

a
k
u

p
 l
e

n
g

th
 L

b
（

m
m
）

Vibration frequency f（Hz）

 U=2.5m/s

 U=2.86m/s

 U=3.86m/s

 
Figure 2 Variation of the breakup length with the vibration frequency under different jet velocities(d=0.9mm, v ibration 

amplitude A=0.35cm/s) 
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(a)                                                  (b) 

Fig 3(a)The image of the liquid jet under different vibrat ion amplitudes(d=0.9mm, f=300hz, U=1.57m/s);(b)The variat ion of 

the breakup length with the vibration amplitude(d=0.9mm, f=300hz) 

 

CONCLUS IONS  

 

With the increase of the vibration frequency, the breakup length of the liquid jet first decreases and then decreases. The re 

exists a vibration frequency under which  the breakup length is the shortest. Moreover, the increase of the vibrat ion can lead  

to the decrease of the breakup length. 
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CAN FREQUENCIES BE PREDICTED FROM MEAN FLOWS?
RZIF FOR THERMOSOLUTAL CONVECTION
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Summary Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study
2D thermosolutal convection driven by opposing thermal and solutal gradients, in which branches of traveling waves (TW) and standing
waves (SW) are created simultaneously by a Hopf bifurcation. We find that the TW of thermosolutal convection have the RZIF property,
meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose
imaginary part corresponds very closely to the nonlinear frequency. In contrast, this is not the case for the SW. This difference can be
attributed to the fact that the temporal power spectrum for the TW is peaked, while that of the SW is broad, and we show why this is so. We
demonstrate that the frequency of any quasi-monochromatic oscillation can be predicted from its temporal mean.

The von Kármán vortex street generated in the wake of a circular cylinder is one of the archetypical hydrodynamic insta-
bilities. Because it arises from a Hopf bifurcation, its frequency at onset is necessarily the imaginary part of the eigenvalue
responsible for the bifurcation. However, away from the bifurcation, the frequencies differ substantially from those obtained
from linear stability analysis, and so even quite close to onset, standard stability analysis of steady base flows dramatically
fails to predict observed oscillation frequencies. However, it has been found that linear stability analysis, not of the base state,
but of the temporal average of the nonlinear flow, yields an eigenvalue whose imaginary part corresponds very closely to the
nonlinear frequency [1, 2, 3, 4] and whose real part is virtually zero, which can be interpreted [3] as the marginal stability
of the mean flow. We call this the real-zero imaginary-frequency property, or RZIF [5]. The RZIF property has been further
studied and extended by a number of researchers. It has been shown [6] that RZIF can be analyzed by means of a weakly
nonlinear expansion and that RZIF is not verified by the oscillatory flow over a square cavity. The mean flow in the cylinder
wake has been calculated without time integration merely by assuming the RZIF property [7]. Another recent investigation
[8] proposes a generalization of this property for turbulent flows.

RZIF has been investigated primarily for open flows and almost exclusively the cylinder wake. Here and in [5] we report
on an investigation of RZIF in thermosolutal convection [9, 10], motion driven by an unstable density gradient, which is caused
in turn by independently imposed gradients in the temperature and concentration of a fluid. In a domain which is horizontally
spatially periodic, branches of traveling waves (TW) and standing waves (SW) emerge simultaneously at a Hopf bifurcation
[9]. We calculate these two temporally periodic states numerically via a 2D time-stepping code (imposing reflection symmetry
to calculate the otherwise unstable SW). Instantaneous temperature fields are shown in figure 1 and phase portrait projections
are shown in figure 2 (left). We then carried out linear stability analysis of the conductive state and of the temporal mean of
the TW and the SW. The resulting eigenvalues are shown in figure 2 (middle). where it can be seen that the TW are an ideal
case of RZIF, but the SW do not have this property. RZIF can easily be shown to result from a highly peaked spectrum of the
nonlinear oscillations. Writing the governing equations in the abbreviated form ∂tU = LU + N (U,U) and decomposing
U = U +

∑
n6=0 une

inωt, where U is the mean flow and ω is the nonlinear frequency, the component u1 satisfies

iωu1 =
[
Lu1 +N (U,u1) +N (u1,U)

]
+
∑

m6=0,n

N (um,u1−m) ≡ LUu1 +N1 (1)

If |um| � |u1|, then N1 is much smaller than the other terms of (1), and so u1 is an eigenvector of LU with eigenvalue
0± iω, i.e. the RZIF property is satisfied. To explain why the temporal spectrum is highly peaked for TW and not for SW, as
shown in figure 2 (right), we consider the nonlinear interaction∇ψ ×∇Θ between the streamfunction ψ and the temperature
perturbation Θ, with a temporal phase difference ∆.

TW :
ψ(x, z, t) = ψ1 sin(kx− ωt) sinπz
Θ(x, z, t) = Θ1 sin(kx− ωt+ ∆) sinπz

}
=⇒ ∇ψ ×∇Θ =

πk

2
ψ1Θ1 sin ∆ sin 2πz

SW :
ψ(x, z, t) = ψ1 sin kx sinωt sinπz
Θ(x, z, t) = Θ1 cos kx cos(ωt+ ∆) sinπz

}
=⇒ ∇ψ ×∇Θ =

πk

4
ψ1Θ1 [sin ∆ + sin(2ωt+ ∆)] sin 2πz

Thus, for TW the nonlinear interaction generates a mean flow but no second temporal harmonic 2ωt, while for SW, the
nonlinear interaction generates both a mean flow and a second temporal harmonic.

∗Corresponding author. Email: laurette@pmmh.espci.fr
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Traveling waves

Standing waves

Figure 1: Temperature field at four successive instants for traveling waves (above) and standing waves (below) for thermoso-
lutal convection at the same parameter values, P = 10, L = 0.1, S = −0.5, and r = 2.5.

Figure 2: Left: phase portraits of traveling waves (above) and standing waves (below). The conductive state and the mean flow
are represented by squares and triangles respectively. Traveling waves (TW) execute oscillation in a plane about the mean
flow, while the motion of the standing waves (SW) can be seen to contain a second temporal harmonic. Middle: Frequencies
(above) and growth rates (below) associated with TW and SW. Linearization about the conductive state (blue) and about the
mean flow (red). Measured (exact) nonlinear frequencies and zero (marginal) growth rate (black). For TW, linearization about
the mean flow yields the exact results as shown by resemblance of red and black curves; this is not the case for SW. Right:
temporal spectrum is far more highly peaked for TW than for SW.
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Summary This presentation provides theoretical foundations for the use and meaning of a stability analysis around a mean flow. Considering
a Reynolds decomposition of the flow field, the Fourier transform of the fluctuation field is found to be equal to the product of the resolvent
operator by a turbulent forcing term. If the dominant singular value of the resolvent is much larger than all others, then the Fourier transform
of the fluctuation field is directly related to the dominant optimal response mode of the resolvent. In the case of weakly non-parallel flows,
the spatial structure of this mode may be approximated by a local spatial stability analysis based on parabolized stability equations (PSE).
Results are illustrated for the case of a turbulent backward facing step.

INTRODUCTION

Turbulent flows are encountered in a wide variety of industrial applications, and they often present low frequency unsteadi-
ness. One of the main goal is the prediction of the unsteady features of those flows, such as the characteristic frequencies or
the spatial stucture of the unsteadiness. A substantial quantity of studies has been devoted to the use of stability theory to
achieve this goal. The classical linear stability theory around a steady base flow fails to do so, by not accounting for the
nonlinearities that have a strong influence on the unsteady behavior of the flow. However, there are many papers showing
that those nonlinear effects may be factored in by using the time averaged field (the mean flow) instead of the base flow. For
example, in the cylinder case, a linear stability analysis around the mean flow gives excellent prediction of the vortex shedding
frequency, even far from criticality [1]. The same approach has been successfully used for amplifiers, i.e. flows that present
a broadband spectrum originating from convective instabilities that amplify the external background perturbations. For in-
stance, Gudmundsson et al. [2] focused on turbulent round jets: using an array of microphones, they experimentally measured
the pressure fluctuations outside the jet shear layer and showed that the pressure amplitude and phase of the data accurately
matched predictions from a local stability analysis around the mean flow. Those examples are just a part of the large number
of studies that acknowledge the capability of a mean flow stability analysis to predict the unsteady features of a turbulent flow.
On the other hand, a formal justification for the well-foundedness of such an approach is still wanting, and only few studies
have been carried out to adress this question. Among these, Sipp et al. [6] focused on self-excited systems which present a
strong dominating frequency (ocillator flows). They showed that, in the vicinity of the bifurcation threshold, if the mean flow
harmonic dominates the second harmonic, a global linear stability analysis around the mean flow yields a marginally stable
mode whose frequency matches the natural frequency of the flow. Recently, Turton et al. [7] more generally demonstrated that
if the flow exhibits monochromatic harmonic oscillations, then the linearized operator around the mean flow indeed exhibits a
purely imaginary eigenvalue equal to the frequency of the flow. This criterion has even been considered by Mantič et al. [4]
to build a self-consistent model of cylinder flow that predicts the frequency of the vortex shedding for Reynolds numbers up
to 110. But the conclusions of those studies cannot be extended to the more general case where a flow presents a broadband
spectrum. The present study aims at providing, in the case of a flow field presenting a broadband spectrum and not just a peak,
mathematical foundations to justify the efficiency of a mean flow stability approach to predict the spatio-temporal features
of a flow field. It is an extension of the work of McKeon et al. [5], based on the optimal response modes computed from
a singular value decomposition of the resolvent operator. Yet, they restricted their analysis to a turbulent pipe configuration,
which is invariant (homogeneous) in the streamwise direction. Hence, the mean flow was constant in the streamwise direction
and all fluctuating quantities were Fourier-transformed in this direction. In so far, only a local stability analysis was required.
In the present study, we consider more general configurations, in particular open-flows which are not invariant in the stream-
wise direction, such as backward-facing step or jet configurations. Finally, we also aim at elucidating the link between the
global stability results and those provided by local stability approaches, such as spatial stability or PSE (parabolized stability
equations, see Herbert et al. [3]) analyses.

THEORY

We consider the equation governing the fluctuations of the flowfield around the mean-flow. This equation involves the
linearized Navier-Stokes operator around the mean-flow and a non-linear driving term, which is usually unknown. Performing
a Fourier transform of this equation, a singular value decomposition of the Resolvent operator provides a rank 1 approximation
for the Fourier mode û in the form:

û(x, ω) ≈ ũ1(x, ω)µ1(ω)〈f̃1(ω), f̂(ω)〉 (1)

∗Corresponding author. Email: denis.sipp@onera.fr
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Figure 1: Streamwise velocity of the mean flow.

Figure 2: Comparison between û · û computed from the simulation (a), the optimal response ũ1 · ũ1 (b), and the field
reconstructed with PSE (c), for ω = 5.5 and two-dimensional perturbations β = 0.

This approximation holds if the first singular value is much larger than the others. In this equation, (µ1, ũ1, f̃1) are the
dominant optimal gain, response and forcing of the singular value decomposition, while f̂ stands for the Fourier transform of
the above mentioned unknown driving term. Hence, this shows that the Fourier mode is directly proportional to the dominant
optimal response. We will further show that this mode may straightforwardly be approximated by a PSE analysis.

RESULTS

We consider the case of a two-dimensional backward facing step. We performed an unsteady 3D simulation at Re =
57460. A 2D mean flow was obtained by averaging the results in time and over the spanwise direction (see figure 1). The
configuration being invariant in the spanwise direction, Fourier modes of the fluctuation field depend both on the frequency
ω and on the spanwise wavenumber β. The resolvent operator therefore also depends on β and we expect that the Fourier
mode û(ω, β) is proportional to ũ1(ω, β) if µ1(ω, β) � µ2(ω, β). In the following, we will focus on two-dimensional
perturbations (β = 0), for which the spanwise component u′3 is null. It was found that the first singular value µ1 is several
orders of magnitude larger than all others. Therefore, at a fixed frequency, the Fourier mode û is supposed to be proportional
to the dominant optimal response ũ1. We will now check this assertion by comparing the Fourier mode û(ω, β = 0) to the
optimal response ũ1(ω, β = 0). We have checked that the norm of û(ω,x) compares well with the norm of the first optimal
response ũ1(x, ω) for several frequencies. Figures 2a and 2b illustrate, for example, the similarity between those two fields
for ω = 5.5. Finally, figure 2c shows the result obtained from a PSE analysis. We observe a strong similarity between this
field and the two others.
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NEW SCENARIO OF TURBULENCE THEORY AND WALL TURBULENCE 
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Summary:  New general scenario of turbulence theory is proposed and applied to wall turbulence. The theory introduces a new wave field 
supported by a mathematical theorem, and predicts transverse traveling waves. The predictions are consistent with characteristic features of wall 
turbulence observed in experimental studies. There is a dynamical mechanism in streaky wall flows to excite a wave field, and there exists an 
energy channel from the flow field to the wave field. Traveling waves predicted by the theory are characterized by two scales of wave-length 
and damping-length, whose significance is discussed in relation to the two large scales of LSM and VLSM observed in experiments. The waves 
are accompanied with a new mechanism of energy dissipation, i.e. a new law of internal friction analogous to the Joule effect of electric current. 
Bulk energy dissipation is expressed in a form analogous to those of eddy-viscosity. 

WALL TURBULENCE AND NEW FIELD 

    Large scale features is one of the main subjects in the study of wall turbulence such as boundary layer flows or pipe 
flows. Studies of pipe flows in the past decades have revealed that, at transition to turbulence, the flow supports transverse 
traveling waves with cross-stream modes. A new scenario of turbulence theory [1] is proposed by introducing a new field 
into the turbulence field. The theory supports transverse traveling waves. Significance of this formulation rests on a 
mathematical theorem and formulation by [2 a ,b], stating that a conservation law of current flux implies existence of fields 
governed by Maxwell-like equations, which supports transverse traveling waves. Along with the fields, a new dissipation 
mechanism of energy is introduced with the action of an internal friction (Joule-like effect).  

From numerical studies of pipe-flow and wall-bounded flows [3 a, b, c], it is found that transverse traveling waves are 
generated by the help of body forces (i.e. introducing external agents), although final results are obtained without such 
forces. It is not clear why such a complex procedure is required in the study of natural phenomena. A stability analysis of 
channel turbulence [4] found existence of a disturbance wave-mode observed in the experiments. However, in order to 
obtain such a wave, a variable turbulent eddy viscosity had to be used instead of the constant molecular viscosity. Turning 
our attention to the drag coefficient, empirical laws must be used for fully developed pipe turbulence. These may imply that 
the current theory fails to predict the pipe turbulence adequately. 

A wind-tunnel experiment of boundary layer flows [5] verified delay of transition to turbulence by a worked-out design 
on the wall enforcing streaky flow in the wall layer. In wall turbulence, there are ample experimental evidences of streaky 
large-scale structures: LSM (large-scale motions) and VLSM (very-large-scale motions) [6a, 6b, 7], which are character-
ized with streamwise streaks and long meandering structures. The LSMs are considered to be created by the vortex packets 
consisting of hairpin structures, while question of how the scale VLSM is mechanically generated remains open. 

With a streamwise energy spectrum  with respect to a wave number , the pre-multiplied streamwise spectra 
 have two peaks at LSM of 1  and at VLSM of 15  (where  is the pipe radius and 

the streamwise scale), and decays beyond VLSM. The energy spectrum  takes a scaling form  in the 
wavenumber section between the two scales, while  at higher 's.

Here, the newly introduced field is called Transverse-Wave field, TW-field in short. Two dynamical mechanisms are 
newly found: a mechanism exciting the TW-waves and the other a channel supplying energy to the TW-field. This is 
studied by a model equation:  derived from the present theory described in the next 
section.  The LHS is a wave equation describing a transverse traveling wave of  (a fluid-electric field defined below). 
The second term on RHS is a damping term, while the first is a term exciting the wave and supplying energy to the TW-
field by extracting from the flow field .

Most importantly, the TW-field accompanies its own mechanism of energy dissipation due to a fluid-Joule effect. This 
effect is caused by a drift current , newly introduced to the new field, where  is a fluid-resistivity.  The fluid-
Joule loss is given by . The Joule loss  can be written in a form analogous to the viscous rate of 
dissipation. In fact, using  and , we have 

,             
The Joule viscosity  is analogous to the eddy-viscosity. Here, the velocity is the speed  of transverse wave in 
turbulence and the length is the damping distance .

NEW SCENARIO OF TURBULENCE THEORY 

A new scenario of turbulence theory is formulated here without self-contradiction by introducing a new TW-field, which 
is governed by fluid-Maxwell equations, because conservation of the current is a basic property of fluid turbulence. 
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(i)  Governing Equations:  In order to represent the TW-field, we introduce a four-vector potential  depending 
on time  and space coordinates . Then the TW-field is governed by the following fluid-Maxwell 
equations: 

    
      

where  is the density,  the current flux of fluid, -  the fluid-electric field, and  the fluid 
magnetic field. First pair of equations (1a, b) are satisfied identically by the definitions of  and . From the second pair 
of equations (1c, d), it is readily shown that the current conservation equation, , is satisfied identically on 
the assumption that both of secondly-differentiable fields  and  exist. By analogy with the electromagnetism, we 
assume  and  with  and  being field parameters. Transverse waves are naturally supported by the 
system of a . In turbulence too, transverse waves are accommodated by the following system. From a ,
the following conservation equations of energy and momentum are immediately derived:  

, where

where d + h ) is a field energy density, is fluid-Poynting-vector (TW-energy flux), and 
is a field momentum, and  is fluid-Maxwell-stress, where  is the velocity of transverse waves. The 

right hand sides of (2a) and (2b) are energy source (or loss) and fluid-Lorentz-force reaction, respectively. 
Whole field consists of Fluid Flow (FF) and TW- field.  Energy equation of the whole system is given by 

       
where  is the internal energy of fluid, and is the FF-energy flux, with  the viscous stress tensor,  the 
temperature and  the thermal diffusivity.  

The FF-momentum equation is given by , where . There are 
interaction terms on the RHS of this and (2b), which cancel out by adding both equations side by side. Thus we 
obtain the momentum equation of whole field:  

.

(ii) Dissipation: Our system is dissipative. The current flux is represented as , where the term is a 
convection current, while is a drift (or conduction) current. This is a fluid-Ohm's law. Then, the fluid-Joule heat is 
given by 

A fluid particle (i.e. a mass  of a macroscopic scale) is a soft cluster of an immense number of molecules and its 
macroscopic velocity  is the motion of the center of mass. Its macroscopic mass flux is . If the fluid particle is  
exposed to strong acceleration (like in turbulence), it is very likely that its mass flux is forced to deviate from the value 

, and may be modified by an additional term . The drift current  is regarded to be inherent in turbulent medium.  
Owing to this dissipative heat, the equation for the entropy  is described by  

where  is the convective derivative and  the viscous heat. The second term is new due to the Joule heat.  

Conclusion: The present scenario is successfully applied to pipe turbulence, by predicting traveling waves having two 
characteristic scales of a wave-length  and a length  of wave damping. Significance of  and  is discussed in 
relation to the two large scales, LSM and VLSM, of wall turbulence. 

Perhaps, most remarkable outcome of the present scenario is the dissipation due to the fluid-Joule effect caused by the 
drift current. Its magnitude is comparable with models of eddy viscosity. Note that the fluid-Joule effect is derived 
analytically from the basic governing equations, while the eddy viscosities are not like that. 
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Summary The stabilities of an annulus flow with an external helical magnetic field is studied theoretically and numerically by using the 
quasi-static approximation. For the case with zero axial pressure gradient, it is shown numerically that when the Reynolds number is 
larger than a threshold value, the helical magnetic field will yield a right-handed traveling-wave instability. At higher Reynolds numbers, 
the first wave mode is superposed by a secondary anti-symmetric helical wave mode, which travels in the opposite direction of the first 
one. Linear stability analysis is carried out, and the critical parameters of the most unstable mode are consistent quantitatively with the 
numerical observations. Furthermore, when a finite axial pressure gradient is applied to guarantee a zero axial flow rate, the annulus flow 
is found to be more unstable than the case with zero axial pressure gradient. 
 

INTRODUCTION 
The magneto-rotational instability (MRI) was firstly studied in a Taylor-Couette flow by Velikhov[1], and now is of 

particular interest in astrophysics, where it is thought to be the main formation mechanism of stars in the accretion disks [2]. 
Recently, a helical magnetic field is proposed theoretically by Hollerbach & Rüdiger [3], and the critical Reynolds number 
of MRI can be reduced to O(103). The corresponding experiment was conducted with “PROMISE” facility by Stefani et 
al.[4]. In experiments, the cylinders may not be completely electrically isolated from each other. Priede [5] assumed that the 
endcap was perfectly conducting and the radial voltage drop between the cylinders was constant as ignoring the resistance 
of the sliding liquid-metal contact between the inner cylinder and the endcap. Consequently, a base state composed of an 
upward flow along the inner cylinder and a return one along the outer cylinder was obtained.  

Different from these previous studies, in this paper the effect of a helical magnetic field on an annulus flow between 
differentially co-rotating cylinders with the same electrical potential (i.e. both cylinders are electrically connected to the 
ground) is investigated. 
 

NUMERICAL SIMULATIONS 
The radius of the outer cylinder Ro is twice as much as that of the inner cylinder Ri, and they rotate with angular 

velocities Ωo and Ωi, respectively. In this paper Ωo /Ωi = 0.27 > (Ri /Ro)2 = 0.25, the threshold value for centrifugally stable 
state according to the viscous extension of the Rayleigh criterion, hence the flow is hydrodynamically stable without 
external magnetic field. A constant axial magnetic field Bz and a purely azimuthal magnetic field Bθ(Ri/r) are imposed. The 
latter can be produced by a constant axial electric current flowing through the center rod of the cylinders and was studied 
numerically in our recent paper [6]. Another parameter is β = Bθ /Bz, the ratio of the azimuthal magnetic field to the axial 
magnetic field. It is assumed that the magnetic Prandtl number and the magnetic Reynolds number are much smaller than 1. 
Consequently, the quasi-static approximation is applied. In addition, the inner and outer cylinders are perfectly conducting 
and connected electrically to the ground, hence their electric potentials always keep zero. 

We used the radius of the inner cylinder Ri as the length scale, Bz as the scale of the magnetic field, and ΩiRi as the 
velocity scale. The scales of pressure, electric potential, and electric current density are ρRi

2Ωi
2, Ri

2ΩiBz, and σRiΩiBz, 
respectively, where ρ and σ are the density and the electrical conductivity of the fluid, respectively. The Reynolds number 
and the Hartmann number are defined as Re ≡ Ri

2Ωi/ν and Ha ≡ BzRi(σ/νρ)1/2, respectively. Two kinds of basic flows are 
considered: one with a zero axial pressure gradient (BF1) and the other with a zero axial flow rate (BF2). 

 
Fig1. (a)The instantaneous iso-surfaces of ur = ±0.02 in a part of the computational domain at Re = 850 for BF1. The iso-

surface of ur = ±0.01 at Re = 600 is shown in (b) as a reference. 
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The governing equations are solved numerically using the highly conservative finite difference scheme studied by 
Krasnov et al.[7]. The radial point distribution is clustered toward the cylinder walls as r = 1 + 0.5[1 + tanh(Hζ)/ tanh(H)], 
where H = 1.5 and −1 < ζ < 1 is the transformed coordinate, in which the grid is uniform. Periodic conditions are used at 
the top and the bottom boundaries. In order to simulate the flow structures for infinitely long cylinders, different axial 
lengths (i.e. 2π, 3π, 4π, 6π and 12π) are tested. In addition, two sets of grid sizes in the azimuthal, radial and axial directions 
[nθ, nr, nz]=[192, 64, 512] and [256, 96, 768] are tested as well for the flow at Re=850 with the axial length of 12π. It was 
found numerically that the azimuthal and axial wave numbers of the first and the secondary unstable modes were the same 
for the two sets of grids and a relative difference of the mean total disturbance kinetic energy was less than 1.3%. Therefore, 
the mesh [nθ, nr, nz] = [192, 64, 512] and the axial length 12π are used in the simulations. We choose Ha = 7.8 and β = 5.37, 
the parameters used in laboratory experiments by Stefani et al.[4]. 

For the case of zero axial pressure gradient (BF1), it is found that the flow becomes unstable first to a right-handed 
helical travelling wave as shown in Fig.1(b), and at higher Reynolds number a secondary left-handed wave appears (Fig.1a), 
travelling in the opposite direction of the first one. By extrapolating the volume-averaged kinetic energy as Re<600, we get 
the critical Reynolds number of the first instability is 500.2. 

 
LINEAR INSTABILITY ANALYSIS 

In order to understand the onset mechanism of these helical travelling waves, linear stability analysis is carried out. By 
introducing the normal mode (v′, ϕ′, p′) ~exp[i(kzz+kθθ−ωt)], we obtain an eigenvalue problem, which is discretized over 65 
Chebyshev-Gauss-Lobatto collocation points, and solved with the QZ function in Matlab. kzkθ<0 and kzkθ>0 correspond to 
the right-handed and the left-handed helical modes, respectively. 

 
Fig.2 The neutral curves for the case with zero axial pressure gradient in (a) kz-Re plane and (b) ω-Re plane. 

As shown in Fig.2, the critical Reynolds number is 500.23, which agrees very well with the numerical value 500.2, and 
other critical parameters (kθ, kz, ω) = (3,−3.35, 0.394) are consistent as well with (3,−3.33, 0.402), the simulation data of the 
first helical travelling wave obtained at Re = 510.  

The linear stability of the base flow with zero axial flow rate (BF2) is studied as well, and the most unstable mode is still 
the right-handed travelling wave mode with a critical Reynolds number of 202.47, which is much smaller than the BF1 
value 500.23. In addition, the critical azimuthal wavenumber is changed from 3 of BF1 to 1 of BF2, and the axial phase 
velocity of the critical right-handed wave mode is positive for BF2 but negative for BF1.  
 

CONCLUSIONS 
   Different from the previous studies of the helical MRI, in this paper both cylindrical walls are assumed to be electrically 
connected with the ground and two kinds of base flows are considered. The base flow without the axial pressure gradient 
(BF1) is vulnerable to a right-handed helical travelling wave, which is explained as the most unstable mode based on the 
linear stability theory. When an axial pressure gradient is exerted to guarantee a zero axial flow rate, the annulus flow 
becomes more unstable than the BF1 case. These results are expected to be helpful in understanding the helical MRI where 
the annulus is closed by insulating endcaps. 
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Summary The boundary layer above a flat plate exposed to free-stream turbulence becomes turbulent through the initiation of turbulent

patches that spread as they are advected downstream. In order to model and describe the intermittency factor (a measures of the fraction

of space that is filled with turbulence) we combine results on the receptivity of the boundary layer with nonlinear concepts developed

in internal flows. The model gives a physically motivated expression for the spatial distribution of spot nucleation events that is then

integrated into a probabilistic cellular automaton. The free parameters are fixed by fits to numerical simulations. The model reproduces

the spatial variation of the intermittency factor for different turbulence levels. The results show how the recent theoretical progress on

transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary layers flow.

INTRODUCTION

The Blasius boundary layers shows a linear instability to the formation of Tollmien-Schlichting waves far down the

plate and a transition that is not connected with a linear instability further upstream [1,2]. This second transition requires

finite amplitude perturbations, and can be triggered, e.g., by free stream turbulence. A similar phenomenology is observed

in plane Couette and pipe flow, where the transition could be explained with the appearance of exact three-dimensional

coherent structures [3]. It has been possible to study how the phase space is organized, and how this determines the

conditions under which the bypass process is the more dominant one, with the linear instability confined to a small set of

initial conditions.

MODELLING THE TRANSITION

In the case of the boundary layer, we have already calculated one key structure, the state that is intermediate between

laminar and turbulent, the edge state [4]. Its stable manifold separates perturbations that return to laminar from those

that trigger a turbulent spot. In the present study we extend this concept to describe the probability that an incoming

perturbation nucleates a turbulent spot and use it to derive the intermittency factor.

Figure 1: Visualization of turbulent spots in the LES data. (a) The untreated LES data. The colors indicate the level of tur-

bulence by measuring the wall-normal velocity gradient at the wall. Dark blue indicates low intensities, the bright regions

higher intensities. (b) Digitized LES data where only laminar (white) and turbulent (black) regions are distinguished.

These data are then used to extract the parameters for the cellular automaton model.

∗Corresponding author. Email: henning@mech.kth.se
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For the implementation and test of this model for boundary layers, we appeal to the successful modeling of shear

flows with probabilistic cellular automata and concepts from directed percolation. We fit a cellular automaton to the data

from a large eddy simulation by discretizing space, time and the turbulent intensity to obtain a discrete map that has two

states, laminar (white) and turbulent (black), see Figure 1. Within this automaton we can now model the breakdown of

the laminar flow and the spreading of turbulent spots. Observables like the intermittency factor, the number of turbulent

spots and their width calculated from the DNS and the automaton model are in very good agreement (Figure 2).

Figure 2: Comparison of statistics between the LES data (black) and the probabilistic cellular automaton (blue). (a)

Intermittency factor. (b) Number of spots at every downstream position. (c) Width of independent spots in units of the

domain width as a function of downstream position.

CONCLUSIONS

The results show how the receptivity of the boundary layer, which to a large extent is a linear or weakly nonlinear

process, can be combined with the nonlinear concept of a threshold curve to explain the spot nucleation mechanism. When

the nucleation model is introduced into the constructed simple cellular automaton the simulation data is fully reproduced.

The results demonstrate how the understanding that has been obtained for parallel, internal flows can be extended to the

much wider class of spatially developing boundary layers.
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Abstract. The stability analysis for the three-dimensional Taylor-Couette flow with triangular lobed inner cylinder is 
considered. The numerical simulations using a finite volume solver are carried out to characterize the transition to the two 
first bifurcations: the Taylor Vortex Flow (TVF) and Wavy Vortex Flow (WVF) regimes. The critical parameters such as 
the Reynolds number and wave number signaling the onset of Taylor vortices are determined. It is found that a 
destabilization of the Taylor vortices results from the application of a non-constant gap width along the radial direction and 
the vortical structures are more pronounced compared to the classical system. 
 

INTRODUCTION 
 
The flow between two concentric cylinders, which is termed as Taylor–Couette flow, has been the subject of considerable 
studies since the pioneering work of Taylor [1]. Although this flow is well known today theoretically and experimentally, 
applying some modifications on the shape of either the inner or outer cylinder opens the way to develop new generations of 
electrical rotating machineries or advanced reactors for dynamic membrane filtration. Soos et al. [2] investigated both 
experimentally and numerically the Taylor–Couette flow with a lobed inner cylinder. This new device, much less studied, 
was designed in order to improve the performance of classical Taylor-Couette (CTC) bioreactors in cell cultivation. Indeed, 
the authors indicated that the lobed configuration drastically reduces the shear rates and deforms the vortices, and therefore 
improves the mixing in the vortex core. More recently, Li et al [3] studied numerically the lobed Taylor Couette (LTC) 
system with eccentric inner cylinder for the synthesis of nanopowders. These investigations are limited to the specific flow 
conditions of a turbulent LTC flow. No attention has been paid up to now to the transition process in such system. 
The present work is concerned with the CFD modelling of the LTC flow having the same cross-section geometry as in the 
experiments of Soos et al [2]. The motivation of this study, in addition to its connection with the classical Taylor-Couette 
system, is to gain basic understanding of the transition from circular Couette flow (CCF) to Taylor vortex flow (TVF), and 
then to the Wavy Vortex Flow (WVF) and to analyze the effect of inner cylinder cross-section on the transition process. 
 

PROBLEM DESCRIPTION AND NUMERICAL METHOD 
 
The classical device (CTC) is composed of two coaxial cylinders of height H=160mm, inner radius R1=62mm and gap 
width d=8mm (Fig.1a). The aspect ratio of the system is then fixed to Γ = 20 and the radius ratio η = 0.886. The inner 
cylinder rotates with constant angular velocity 1 while the outer one remains stationary. The flow is controlled by the 
Reynolds number Re = Ω1R1d/ν, where ν is the kinematic viscosity. The lobed configuration considered here is the 
triangular model with minimum and maximum gap widths of dmin and dmax respectively (Fig.1b). To characterize the effect 
of the inner cylinder radius variation, a new parameter  is defined as:  = dmax/dmin. Here, dmin=8mm and  is varied from 1 
(CTC) to 3. Because of the non-constant gap between the cylinders in the LTC system, two local Reynolds numbers may be 
defined: Remin = R11 dmin / ν and Remax= R1m1 dmax/ ν respectively, where R1m= R1-(dmax -dmin). 
The three-dimensional Navier-Stokes equations are solved using a finite volume approach. A third -order MUSCL scheme 
is used to discretize the convective terms in the momentum equations. For the pressure-velocity coupling, the PISO 
algorithm is employed. The mesh is uniformly distributed in the azimuthal and axial directions and refined near the 
cylinders in the radial direction for a total of 112 000 cells. No-slip boundary conditions are imposed at the walls.  
 
 
 
 
 
 

 
 

    (a) CTC          TVF             WVF 
              (Re = 1.05 Rec1)      ( Re = 1.22 Rec1) 

 

 
 
 
 
 
 
 
    (b) LTC           TVF             WVF  
               (Re = 1.06 Rec1)      ( Re = 1.4 Rec1) 

Figure 1. Contours of the axial velocity in a (r, ) plane at z=H/2 
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MAIN RESULTS 

 
The critical parameters, the Reynolds number (Rec) and the axial wave number (κc), corresponding to the first instability 
(TVF) for CTC (=1) are found to be 122.8 and 3.14 respectively. This flow regime is characterized by the axially piled of 
20 vortices occurring over the cylinder height. It is in perfect agreement with the values found in previous experiments [4].  
 

 
 
 
 
 
 
 
 
 

 
         

            (a)                            (b)  
Figure 2. (a): Critical Reynolds number and (b) dimensionless 

critical axial wave number versus gap ratio . 
  Figure 3. Dimensionless torque G* against the 

inner Reynolds number. 
 
For the LTC system, Figure 2a presents the variation of the first critical Reynolds numbers Recmin and Recmax with the gap 
ratio . It is shown that the minimal Reynolds number value (Remin) decreases rapidly until Recmin = 87.42 for  =3 with a 
rate of 28.81%. On the other hand, the maximal value Recmax substantially increases with the gap ratio . For =3, the 
critical Reynolds number reaches its maximum value of 202.66, corresponding to a growth rate of 65.03% significantly 
delaying the transition to the first instability compared to the classical case. In addition, one can note that the critical 
maximum Reynolds number evolves quasi linearly with  in a pronounced positive slope of 39.12. From Figure 2b, it can 
be seen that the axial wave number decreases with the gap ratio. The axial waves number passes from 3.14 (20 vortices) for 
=1 to 2.1 (12 vortices) for =2.5-3. The axial wavelength exhibits sensitiveness to the variation of the gap shape.  
The torque has been evaluated along the inner cylinder for a wide range of the inner Reynolds number and is shown in 
Figure 3. Two cases are considered, the CTC and LTC-14 corresponding to =1 and 1.75 respectively. The critical 
parameters for the primary (TVF) and secondary (WVF) transitions are indicated by a discontinuity in both the slope and 
magnitude of the torque curve. For the classical case, one can see that the position of the second mode (WVF) is reached at 
Rec2 = 144.85=1.18 Rec1, in good accordance with the measurements of Andereck et al. [4] where the transition TVF-WVF 
was obtained for 1.17 Rec1. In the lobed system, this regime occurs at Rec2 = 129.33=1.33 Rec1. Thus, one can note that the 
TVF in the LTC can sustain longer than in the CTC by 12.71%. From Figure 3, one can also see that the gradient of the 
torque-speed relationship in the TVF regime is 3.2 times the laminar value. This result was observed by Cole [5]. In the 
LTC case, the TVF gradient is 2.71 times the laminar one. As the Reynolds number is further increase above the Rec1 value, 
the second change in slope corresponding to the onset of wavy vortices is less pronounced. The WVF gradient of the CTC 
case is 1.165 (0.9751 in the LTC case) times the TVF gradient. 
 

CONCLUSION 
 

The transition to the first (TVF) and second (WVF) instability regimes has been considered numerically in a novel geometry of 
Taylor-Couette system with a lobed inner cylinder. The results obtained show that the transition behaviors depend strongly on 
the gap shape. The threshold for the first transition from CCF to TVF is accelerated comparatively to the classical case. A 
similar behavior is also obtained for the transition to the WVF regime. 
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Summary The aim of this abstract is to present a global stability analysis of a shock wave boundary layer interaction which triggers the
transition from a laminar to a turbulent state and leads to a separation bubble. The base flow is computed using the k − ω model with the
SST correction and the transition model of Langtry. The global stability analysis and the sensitivity analysis take into account not only the
laminar and turbulent variables but also the variables leading to the transition process.

INTRODUCTION

Shock wave/ boundary layer interactions play a predominant role in high-speed aerodynamics. Conditions for which they
induce deterioration of the flow need to be understood in order to design efficient and robust vehicles. Typically a deficient
SWBLI flow can be responsible for additional drag, wall heating and unsteadiness. Recent interest for laminar flow adds
another item to this list, since in this case it is often seen that the boundary layer becomes turbulent at the shock location.
The lower resilience of a laminar boundary layer compared to a turbulent one justifies fears that the transition triggered
by SWBLI may lead to dramatic flow situations, the most dangerous one being a strong unsteadiness that would initiate a
structural forcing. As a consequence this paper analyses the stability of a generic oblique shock wave interacting with a
laminar boundary layer at M=1.6 with the aim of describing the fate of small perturbations to the flow and the triggering
of flow unsteadiness. Interactions with a turbulent BL has been accomplished by Sartor [3], in a fully laminar setting (no
transition) by Robinet [1] and in the transitional case by Spalart [4], Sansica [2] and Windle [5]. In particular Windle shows
that a RANS computation can resolved Kelvin-Helmoltz instability in a case of a TSWBLI.

Stability analysis of SWBLI have been accomplished by Sartor [3]. For a normal shock wave on a transonic wing, Sartor
showed, using a RANS baseflow, that a global unstable mode is associated with the buffet of the shock. Importantly the global
mode comes out only if the turbulent viscosity is also perturbated. This shows that a linearization of the full RANS equations
is required in order to model correctly the dynamics of such flows.

The present paper deals with including a transition model in the stability analysis methodology. To the author knowledge,
the perturbation of a RANS system including the transition model has never been made. This work is carried out using the
k − ω menter with the SST correction turbulence model and the Langtry transition model. This transition model has been
chosen because it performs well in the configuration investigated here and because it is well suited to the perturbation method.

The paper is organized as follows . The first part presents the baseflow. Finally, we will perform the global stability
analysis, including a sensitivity analysis.

FLOW CONFIGURATION AND COMPUTED BASEFLOW

The computation consists in a nozzle which imposes a Mach number of 1.62 in the test section (Figure 1). The lower part
of the test section (BC) represents the flat plate and is modelled by an adiabatic wall. The upper part of the test section (DG)
is deformed (EF) to create the shock wave, and is modelled by a wallslip condition. The line (GA) is a subsonic injection
condition and (CD) is a supersonic outflow condition.

The steady solution of the RANS system has been found using the compressible solver elsA, developed at ONERA, with
a second-order finite volume methods and a local time-stepping strategy. In figure 2 is shown the ρk field of base flow.
The dashed line represents the incident shock wave. Continues lines are streamlines. One can see a separation bubble. The
transition takes place after the impact of the shock. The turbulent kinetic energy reaches a maximum close to the reattachement
point.This is in qualitative agreement with [5].

STABILITY ANALYSIS

For both stability and sensitivity analysis, we have first considered the conservatives variables (fixed µt), then we have
added the variables of the turbulence model (fixed γ), and finally we have considered the all set of variables (complete). For
the Global stability analysis, one can see on figure 1 that in the 3 different cases, the flow remains globally stable. The least
stable modes are related to the accoustic of the nozzle and are of no interest for our purpose. Since the flow is globally stable,
it is interesting to look at the noise amplifier behaviour of the flow. This is made by a sensitivity analysis.

In figure 4 are shown three different curves obtained maximizing the kinetic energie. One can see a pike at 30kHz for
the three curves. The amplitude of this peak grows with the number of variables. One can see a gain much higher at lower
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Figure 1: Scheme of the computational domain. The line
GA represents the subsonic injection, the line CD the su-
personic outflow, the line BC adiabatic wall. The other
lines are wallslip conditions

Figure 2: ρk field of the base flow. The dashed line repre-
sents the incident shock wave. Continues lines are stream-
lines

Figure 3: Spectrum in fixed µt (squares), fixed γ (trian-
gles) and complete cases (circles). ω is the frequency of
the mode, and σ it’s growth rate

Figure 4: Sensitivity spectrum in fixed µt (squares), fixed
γ (triangles) and complete cases (circles). f is the fre-
quency of the mode and E = fλ, λ being it’s gain

frequency (8.8kHz) in the complete case. This shows that the coupling between the transition model and the other equation of
the system can emphasize a specific dynamics. Nevertheless, one can ask whether this dynamics is related to the physic or to
the numerical modeling of the transition. To answer this question, the optimal forcing and response are also studied.

CONCLUSIONS

In the next few weeks, the mesh convergence of the sensitivity analysis will be tested. The influence of a free parameters
which have been introduced to defined a derivative will be studied as well. Once the mesh convergence is reached, and this
last analysis completed, a parameter analysis will be made on the angle of the shock.
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USING INFLEXION POINTS TO STABILIZE BOUNDARY LAYERS
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Summary We propose strategies for modifying a basic velocity profile so as to make it more stable. It is found that small modifications
can produce very large increases in the critical Reynolds number for linear instability. What is especially surprising is that these stabilizing
modifications create inflexion points in the profile. Our usual understanding of boundary layer stability suggests that introducing an inflexion
point will be destabilizing, as it will create an inviscid instability. We use Orr-Sommerfeld calculations to show that while this destabilization
does indeed take place at very large Reynolds numbers, there can be a simultaneous strong stabilization at lower Reynolds numbers.
Recognising that some inflexional profiles can be very stable opens up possibilities for new stabilization strategies for transition delay.

THE PROBLEM

This paper is concerned with delaying the laminar-turbulent transition that occurs in boundary layers that form over
aerofoils. Although there are many mechanisms, not all well understood, that can be involved in the transition process, we
focus attention on perhaps the simplest of these, the linear amplification of waves, which forms the basis of the widely used
‘en-method’. According to this linear theory, inflectional velocity profiles, like those produced by adverse pressure gradients
and cross-flows, are most unstable and have low critical Reynolds number, Rec, while favourable pressure gradients and the
asymptotic suction profile, which produce flows with no inflexion points, and are much more stable. Indeed, strong favourable
pressure gradients often create laminar flow near stagnation points, and suction is successful in stabilizing boundary layers.

These observations suggest that linear stability theory provides a useful rough guide to transition prediction, even though
receptivity, nonlinearity and transient growth mechanisms would be needed for a more detailed transition analysis. The
observations also suggest that modifications to a profile that significantly increase Rec could delay transition. Large enough
flow modifications, like suction, can achieve stabilization, but there may be an excessive cost in creating large modifications.
Our goal is to identify relatively small flow modifications that nonetheless produce significant inreases in Rec.

It seems likely that the easiest part of the flow to modify is the flow closest to the wall. But if we only modify the flow
near the wall then we will typically introduce an inflexion point. For example, in a region close enough to the wall, the
basic velocity profile is approximately linear. Any localized deviation from the linear profile produced by a modification
must necessarily produce at least one inflexion point since the modified profile asymptotes back towards the unmodified linear
profile as distance from the wall increases. Therefore, localized modifications to a profile near the wall would appear to make
unpromising candidates for stabilization since they create inflexion points.

However, we show that near-wall modifications can produce large increases in Rec even when producing inflexion points.

RESULTS

We illustrate the approach by stabilizing the Blasius boundary layer profile, UB(y), where the wall is at y = 0, the
parallel flow approximation is made, and the flow has been nondimensionalized using the freestream velocity and displacement
thickness. For Blasius flow Rec ≈ 519 according to Orr-Sommerfeld theory. This flow is a relatively challenging test case
because it is the most unstable non-inflexional profile of the Falkner-Skan family, and, because it has zero curvature at the
wall, it is highly susceptible to having inflexion points created by even small near-wall flow modifications.

The flow modification needs to be realizable in a physical flow. Consider the modification produced by a wall-jet

Um(y) = ujy
2 exp(−y/d) (1)

where uj > 0 characterizes the strength of the wall jet, and d gives a measure of the thickness of the jet. When d is small the
jet thickness isO(d), and its velocity isO(d2) when uj = O(1), thus giving a small flow modification. However, U ′′m = O(1),
and since curvature is important to stability, this allows the small modification to have a significant effect on Rec.

The modification (1) has inflexion points at y/d = 2 ±
√
2, and for small d the combined profile U = UB + Um has

inflexion points at approximately the same places since UB is approximately linear near the wall. Graphs of Um and U ′′m are
shown in figure 1 (a) and (b).

In figure 1 (c) and (d) we show examples of the Blasius profile modified by the wall jet, i.e. U = UB + Um and the
curvature of the modified profile U ′′. There is only one inflexion point produced in this case (the one near y/d = 2 +

√
2 in

Um has been eliminated by the stronger negative curvature of the Blasius profile). The appearance of the inflexion point in the
modified profile, U , produced by adding this wall jet, creates an inviscid instability, which is obviously a destabilizing effect.

∗Corresponding author. Email: j.j.healey@keele.ac.uk
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Figure 1: (a) The wall-jet flow modification (1) for uj = d = 1 and (b) its second derivative also for uj = d = 1. (c) The
dashed line is the unmodified Blasius profile, UB , (uj = 0) and the solid line is the wall-modified profile U = UB + Um for
uj = 1, d = 0.23; (d) shows the second derivatives of the curves in (c).

Figure 2: Neutral curves for wall-modified Blasius profiles for d = 0.3. The curve with lowest Rec is for the Blasius profile,
uj = 0. The curves with increasing Rec have uj = 0.333, 0.5, 0.667, 0.833, 1, respectively. The dashed line marks the
critical Reynolds number for stagnation point flow.

However, this is only an asymptotic prediction — it tells us that as Re → ∞ there will be a finite band of unstable
wavenumbers corresponding to the inviscid instability. Since no such instabilty exists for the Blasius profile, there is destabi-
lization at large enough Re. But stabilization is still possible at lower Re.

Questions concerning finite parameter values are not easily addressed within an asymptotic framework alone, and require
a complementary numerical study. We have therefore obtained numerical solutions of the Orr-Sommerfeld equation for the
modified profile U = UB + Um. Figure 2 shows a family of neutral curves for a fixed value of d and a range of values of uj .

CONCLUSIONS

In fact, very strong stabilization is obtained at lower Re, even though the modification introduces an inflexion point. The
destabilization predicted in the inviscid limit due to the inflexion point only sets in for Re > 22, 000. The critical Reynolds
number for linear instability can be pushed above 20, 000, which is well above that for stagnation point flow.

Of course, some words of caution should be noted: we don’t yet know if the modification increases transient growth
mechanisms, nor how strong nonparallel effects are for the modified profile. The modification will decay with downstream
distance and is likely to evolve on a shorter length scale than the Blasius profile, but on the other hand, atRe ∼ 20, 000 viscous
diffusion of the modification will be weak. A more serious difficulty might be how a wall jet with the correct stabilizing
characteristics can be introduced to a physical flow. Nonetheless, the stabilizing effect of a modification that produces an
inflexion point is so strong, and yet counter-intuitive, that this seems to be a promising area for further investigation.
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NONLINEAR OPTIMAL COHERENT STRUCTURES IN TURBULENT CHANNEL FLOW
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Summary Nonlinear optimal coherent structures have been computed in the turbulent channel flow at Reτ = 180. A scale separation
has been obtained suitably choosing the optimization time scale characterising the inner and the outer region dynamics. The optimization
provides wavy streaky structures in the inner region and hairpin vortices in the outer one at the target time. The time evolution of the hairpin
optimal vortices has been analysed to understand its role in sustaining turbulence.

The main goal of this work is to show that the near wall coherent structures, observed in fully developed wall bounded
turbulent flows, could be obtained as the result of an energy optimization process as it is observed in transitional flows [1]. In
particular, here we focus on a non-linear global optimization, looking for finite-amplitude optimal coherent structures in the
turbulent channel flow at Reτ = 180 [2].

The equations governing the motion of the coherent perturbations of a turbulent mean flow have been proposed in [3], and
are reported here:

∂ũ

∂t
+∇ũ · ũ+∇U · ũ+∇ũ ·U = −∇p̃ +

1

Re
∇2ũ−∇ · (< u′u′ >) +∇ ·

(
(ũũ) + (u′u′)

)
, (1)

where ũ represent the coherent part of the perturbation, U is the turbulent mean flow, and u′ is the background noise. The
last two terms in equation (1) represent the phase average of the random fluctuation tensor and the Reynolds stress tensor (i.e.,
the time average of the perturbations of the mean flow obtained as the sum of the coherent and fluctuating parts), respectively.
Since the main purpose of this work is to study the finite-amplitude coherent structures characterising turbulence, we assume
that the term < u′u′ > is negligible, namely means that the variance of the probability distribution of the non-coherent part
of the perturbation is rather small. On the contrary, concerning the Reynolds stress, both contributions to the tensor are taken
into account, being evaluated by DNS computation.

Using this formulation, we compute the coherent structures which maximise the energy growth E(T )
E0

, for a fixed time
horizon T , where:

E =

∫
V

(
ũ2 + ṽ2 + w̃2

)
dV. (2)

This problem is solved by using the Lagrange multiplier technique coupled with a direct adjoint iterative procedure considering
equation (1) as a constraint.

Concerning the choice of the optimization time, we focus on two distinct time scales existing in bounded turbulent flow,
namely the inner and the outer one, associated with two spatial regions characterized by a different kind of flow dynamics: i)
low and high speed streaks with typical dimension of λ+z ≈ 80− 100 and λ+x ≈ 1000 surrounded by counter rotating vortices
spaced of λ+z ≈ 50 with a length of λ+x ≈ 100 − 200; ii) hairpin vortices of different size and type, respectively [4]. The
choice of the time scale associated with these two regions can be addressed in several ways as in [5, 6]. Here, we have chosen
as target time the eddy turnover time at y+ ≈ 20 for the inner region, and the one at centreline for the outer region, obtaining
respectively T+ ≈ 80 and T ≈ 31.

The results of the nonlinear optimization at these two target times are shown in figure 1. Concerning the optimization for
the inner scales, as one can note in the left panel of figure 1, the optimal coherent structure is characterised by streamwise-
elongated streaks, which show a wavy modulation, inducing the formation of spots of counter-rotating vortices on their two
sides. This structure is very similar to that obtained using a local linear optimization (see [5]) with similar parameters, except
for the streamwise modulation and the presence of localised spots which are typically due to non-linear effects. This optimal
structure well represents the streaky structures observed near the wall in turbulent bounded flow, having a spanwise spacing
λ+z ≈ 100, supporting the idea that such structures can be considered as quasi optimal ones.

Concerning the optimal structures for the outer scale, they result in hairpin packets surrounding large scale streaks (see
right panel of figure 1). Two different kinds of hairpin vortices can be distinguished: i) a smaller one linked to the presence
of long low speed streaks starting to break down and allowing the side-by-side counter rotating vortices to join into a non
symmetric arch; ii) a bigger one involving the varicose instability of two near streaks, leading to the merging of two counter
rotating near-vortices in a bigger symmetric hairpin.

The dynamics of the outer optimal structure has been analysed looking at the evolution of the coherent perturbation from
t = 0 up to 10 Topt. The vortex dynamics involved into the hairpin formation is investigated, and its role into self sustaining
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Figure 1: Optimal perturbation for T+ ≈ 80 (left) and T ≈ 31 (right) with E0 = 10−2. Isosurface of negative streamwise
velocity (green) and Q-criterion coloured with streamwise velocity (blue positive, red negative).

turbulence is enlightened. In particular, looking at the production and dissipation terms extracted from the energy equation
obtained from equation (1) we have observed a strong initial energy growth until the formation of the largest hairpin vortices
at a short time, which corresponds approximately to the target time (see figure 2, right frame). Then a breakdown of the large
scale structures towards the smallest ones is observed, and a chaotic behaviour, typical of turbulent flows, starts to appear,
inducing a balance between dissipation and production which is able to maintain the turbulence. The time evolution of the
energy budget terms is shown in figure 2. The robustness of this structures has also be confirmed comparing the time scales
and the spatial ones with those found in the literature for DNSs or experiments on turbulent channel flows.

Figure 2: (Left) Time evolution of total production (PTot) versus dissipation (D). (Right) Time evolution of total production
(PTot) dissipation (D) and energy (E).

Thus, the main result of this work is to characterize optimal finite-amplitude coherent perturbations in a fully turbulent
shear flow, whose structure mimics the statistical properties of the flow near the wall.
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Summary We performed direct numerical simulations of flows between two concentric cylinders, which flow is driven by a steady 
sliding motion of the inner cylinder in the axial direction. We parametrically investigated intermittent turbulence in the transitional 
regime for different radius ratio η. We found that the reducing Reynolds number (Re) from fully-developed turbulent state gave 
rise to organized large-scale structures, where localized turbulence and laminar coexisted with some spatial regularities. For η = 
0.8, a helical pattern of laminar-turbulent structure occurred at Re = 375 and this structure sustained its shape until Re = 337.5. For 
η = 0.5 and 0.1, although the flow became laminar at Re = 375, the laminar patches were observed for η = 0.5 at higher Reynolds 
numbers. The localized turbulence observed for η = 0.1 was intermittent only in the axial direction, which was similar to a turbulent 
puff in pipe flow. 
 

INTRODUCTION 
 
   Subcritical transition of wall-bounded flow exhibits characteristic structures of localized turbulence, such as the puff in 
pipe flows and the turbulent band/stripe in planar shear flows. Those structures are expected to play a key role in sustaining 
localized turbulence at very low Reynolds numbers close to the lower critical value for sustaining turbulence. Sliding Couette 
flow (SCF) is a flow between two concentric cylinders and driven by the inner cylinder, which slides in the axial direction. 
With a very low radius ratio η = ri/ro (ri, inner radius; ro, outer radius), SCF can be regarded as a flow like the pipe flow, while 
SCF with η → 1 becomes the plane Couette flow. According to a linear stability analysis [1], SCF is linearly stable against 
axisymmetric perturbations for η > 0.1415, while the flow encounters axisymmetric instability, i.e., upper stability boundary, 
at very large Reynolds numbers (Re > 105) for η < 0.1415. With respect to the lower critical boundary below which no 
fluctuation can survive, we require three-dimensional simulation and nonlinear analysis considering non-axisymmetric 
perturbation. Deguchi et al. [2] determined the lower critical Reynolds number (global Reynolds number ReG) obtaining finite-
amplitude non-axisymmetric solutions. They reported ReG of 255.4, 256.7, and 288.7 for η = 1, 0.5, and 0.1, respectively. As 
for the plane Couette flow, many recent attentions have been paid to the turbulent band/stripe occurring near the lower critical 
Reynolds number [3-5]. The turbulent band is a large-scale transitional structure that spontaneously emerges for ReG ≤ Re ≤ 
380, where ReG = 324 ± 1 [4], and reveals their regularly-organized oblique pattern. Such a state accompanied by band/stripe 
is intrinsic for the subcritical transition of various planar shear flows [5]. Our present interests are in the subcritical transition 
process and the organized large-scale transitional structures in SCF, a non-planar shear flow. One may expect that the 
transitional structures occurring in SCF would be similar to either puffs or bands dependently on the radius ratio. 

In this work, we perform direct numerical simulation (DNS) on SCF for η = 0.1, 0.5, and 0.8. By reducing the Reynolds 
number gradually, we research the transitional structure variation from featureless turbulence to laminar regime. The value of 
ReG is also investigated for each radius ratio. The present parametric knowledge of the SCF in terms of the transitional 
structure may allow us to bridge together the limiting cases of the pipe flow and the plane Couette flow. 
 

DIRECT NUMERICAL SIMULATION 
 
   The test field we considered here is an incompressible flow through an annular section between two concentric cylinders, 
which driven by a steady sliding motion of the inner cylinder. The tested radius ratios are 0.1, 0.5, and 0.8. The gap between 
the cylinders is denoted as h. The Navier-Stokes equation described in the cylindrical coordinate system is used and we 
employ the finite difference method for spatial discretization. The computational domain corresponds to the whole annular 
section and has a streamwise (x) length of 102.4h with a periodic boundary condition. The number of grids is Nx × Nr × Nθ = 
1024 × 64 × 256 for η = 0.1 and 0.5 with the non-uniform radial mesh, but we use 512 grid points in the circumferential 
direction (θ) for η = 0.8 because of a wider domain. The control Reynolds number is Re = Uwh/4ν, where Uw is the inner wall 
speed and ν the kinematic viscosity. For reference, the friction Reynolds number defined below will be also presented: 

Re𝜏𝜏 =
𝑢𝑢𝜏𝜏,aveℎ

2𝜈𝜈
, 𝑢𝑢𝜏𝜏,ave =

𝜂𝜂𝑢𝑢𝜏𝜏,inner + 𝑢𝑢𝜏𝜏,outer

𝜂𝜂 + 1
. 

 
RESULTS AND DISCUSSION 

 
   Firstly, we have performed DNS of SCF at a moderate Reynolds number of Re = 750, at which the flow exhibits featureless 
turbulence. The friction Reynolds numbers are Reτ = 34.2, 49.0, and 51.1 for η = 0.1, 0.5, and 0.8, respectively. By using 
those flows as initial fields, the flows at lower Reynolds numbers were obtained. Figure 1 shows a typical flow field in the 
transitional regime for η = 0.8, where we can see clearly the spatial patterning of localized turbulence. The highly-fluctuating 

929



region is unevenly distributed, taking a form of single band oblique to the streamwise direction. The angle of obliqueness is 
about 27° and the streamwise interval is about 50h, which are consistent with those in the plane Couette flow [3-5]. This 
turbulent band coiling around the inner cylinder is named here “helical turbulence”. The helical turbulence has been also 
found in the annular Poiseuille flow [6]. By decreasing the Reynolds number, we found the helical turbulence sustains until 
Re = 337.5 (Reτ = 24.1) and decays at 325. This scenario and the estimated ReG are consistent with the case of plane Couette 
flow, even with a curved and closed geometry in the spanwise (azimuthal) direction. 

If the radius ratio is reduced, the helical turbulence seems hard to exist because of the spanwise extent is too narrow. The 
spanwise domain length is only 9.4h at the gap center with η = 0.5, being shorter than the expected interval of the turbulent 
band. As a result, the intermittent flow of η = 0.5 exhibits laminar patches, as shown in Fig. 2(a). One may find out a fuzzy 
helical pattern that tilts in the opposite direction compared to the helical turbulence in Fig. 1. However, the turbulent region 
becomes intermittent only in the streamwise direction as the Reynolds number decreases further. The laminarization for η = 
0.5 occurs at 375, which is much higher than the case of for η = 0.8. A much small radius ratio of η = 0.1 does not allow the 
helical turbulence to occur. In this case, the observed transitional structure is like a puff in the pipe flow, as seen in Fig. 2(b). 
The number of turbulent patches were found to increase and decrease via splitting and decaying, as similarly to the pipe flow. 
In our present simulations, any turbulent puff cannot survive for a long period at Re = 400. If normalized by the hydraulic 
equivalent diameter (4h), this lower critical Reynolds number is 1600 and much lower than the well-known threshold, e.g., 
2040, for the pipe flow.  
 

CONCLUSIONS 
 
   We found that the transitional structure of sliding Couette flow would take forms of helical bands and puffs for high and low 
radius ratios, respectively. The transitional flow accompanied by the helical turbulence undergoes laminarization at a low Reynolds 
number, resulting in a ReG value similar to the plane Couette flow. Below η = 0.5, the puff-like structure emerges and the flow 
becomes laminar at Re = 375–400. This critical value is much lower than the corresponding threshold of pipe flow. 
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Fig. 1 Instantaneous flow field of a sliding Couette flow (SCF) for Re = 375 (Reτ = 27.1) and η = 0.8. Contour shows the wall-normal velocity in the x-z (or x-θ) 
plane at the gap center of annular section: red, ur > 0.03Uw; blue, ur < −0.03Uw. The spanwise coordinate z is equivalent to θ(ri + ro)/2. The mean flow is from left to 
right. The flow has reached a statistically steady state. 

 

(a)  

(b)  
Fig. 2 Same as Fig. 1, but (a) for Re = 387.5 (Reτ = 27.8) and η = 0.5, and (b) for Re = 400 (Reτ = 19.3) and η = 0.1. 
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Summary The flow over a smooth sphere is experimentally investigated for 1.5 × 105 ≤ Re ≤ 5.5 × 105 via unsteady force and 2–D
Particle Image Velocimetry(PIV) measurements. For Re > 3.3× 105, it is observed from the force measurements that the drag coefficient
significantly reduces with increase in Re. This phenomenon, popularly known as the drag crisis, occurs in the critical flow regime due
to the transition of the boundary layer over the sphere from laminar to turbulent state. The statistics from the force measurements reveal
that the fluctuations in the force coefficients increase with Re in the subcritical regime. A steep fall in the fluctuations is observed in the
critical regime. The normal Reynolds stresses in the separated shear layer, from the PIV measurements, are found to be one order lower in
magnitude for the supercritical regime in comparison to the subcritical regime.

INTRODUCTION

The phenomenon of drag crisis, which is observed for the flow past a bluff body, has been of continued interest for the
fluid mechanics community. Several experimental and numerical studies have been carried out till date for understanding
its mechanism and analyzing its impact on flow properties. Drag crisis is characterized by a sudden decrease in the drag
coefficient of the body due to the transition of the boundary layer from a laminar to turbulent state. This leads to a delayed
flow separation from the surface which subsequently reduces the size of the wake and increases the base pressure. Achenbach
[1] proposed four flow regimes based on the nature of the CD vsRe curve for flow past a sphere: (i) subcritical regime - where
the drag coefficient is almost independent of the Reynolds number and maintains a constant value of approximately 0.5, (ii)
critical regime - where a rapid drop in the drag coefficient,i.e., the drag crisis is observed with the minimum CD measured at
the critical Reynolds number, (iii) supercritical regime - where the CD is observed to increase slowly with Re and the point of
transition of the laminar boundary layer to a turbulent state remains fixed at a particular azimuthal angle and (iv) transcritical
regime - where the CD is seen to increase due to the upstream shift of the point of boundary layer transition with an increase
in Re.

Norman and McKeon [2] measured the statistics of the force coefficients in the range 5×104 ≤ Re ≤ 5×105 and showed
that the standard deviation of the lateral forces increased rapidly with increasing Re in the subcritical regime. On increasing
Re further, the fluctuations are seen to jump to a lower value in the critical regime and remain approximately constant for
supercritical Re. However, no explanation was provided for the abrupt change in the force fluctuations. In the present study,
we attempt to investigate this abrupt fall in the force fluctuations, as the flow regime changes from subcritical to supercritical,
by performing unsteady force and 2–D PIV measurements.

RESULTS AND DISCUSSIONS

Figure 1(a) depicts the variation of the mean force coefficients with the Reynolds number. Similar to what is reported in
the literature, CD tends to be almost constant in the subcritical regime after which it suddenly falls in the critical regime. In
the early supercritical regime, the CD is almost constant, following which it gradually starts increasing with Re. The present
results show an excellent agreement with the results in the literature [1],[3](not shown here). CL and CS , which represent
the lateral force coefficients on the sphere, are negligible in the early subcritical regime and gradually increase in magnitude
as the Re approaches the critical regime. Norman and McKeon [2] also reported non–zero magnitude of lateral forces in the
critical flow regime and attributed it to the minute manufacturing imperfections existing on the sphere surface. A change in the
direction of the lateral forces is observed at Re = 3.5× 105, which indicates the randomness in the orientation of the resultant
lateral force in the critical flow regime. As the Re increases in the supercritical regime, the lateral force coefficients decrease
in magnitude. Measurements were also carried out after rotating the sphere about the freestream axis at arbitrary angles to
check for a bias in the lateral plane. On rotation, even though the magnitude of CL and CS changed, the resultant lateral force
coefficient remained same, irrespective of the rotations at a particular Re.

The standard deviation of the three force coefficients, calculated for various Re, is shown in Figure 1(b). The lateral
force fluctuations are almost four times larger than the drag fluctuations in the subcritical regime. In the critical flow regime,
maximum drag and lateral force fluctuations occur at nearly the same Re, following which they jump to a lower value.
However, the jump in the CD fluctuations is very small compared to that of CL and CS . Such an observation suggests a
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Figure 1: Flow past a sphere: (a)variation of the mean force coefficients with Re. (b)variation of standard deviation of
the force coefficients with Re. (c) ur ′ur ′/U2

∞ stresses and (d) uθ ′uθ ′/U2
∞ stresses for subcritical Re = 3.08 × 105. (e)

ur ′ur ′/U
2
∞ stresses and (f) uθ ′uθ ′/U2

∞ stresses for supercritical Re = 4.28× 105.

change in the flow physics near the shoulder of the sphere as the flow separation from the surface changes from laminar to
turbulent. Once in the supercritical regime, the force fluctuations remain nearly constant with Re.

To investigate the physics behind decrease in lateral force fluctuations, we conducted 2–D Particle Image Velocimetry
(PIV) measurements in a planar cut near the sphere surface for both subcritical and supercritical Re. Figures 1(c) and (d)
show the non-dimensionalized radial (ur ′ur ′/U2

∞) and tangential Reynolds stresses (uθ ′uθ ′/U2
∞) at a subcritical Re =

3.08 × 105. The contour plots depict the unsteadiness after the flow separates as a laminar boundary layer. The radial
Reynolds stresses increase in magnitude along the separated shear layer, as a result of which we see the unsteadiness near the
surface of the sphere. On the other hand, the tangential Reynolds stresses have a maximum value near the shoulder, where the
flow separates from the sphere, and these stresses eventually decrease in magnitude along the shear layer downstream. The
corresponding Reynolds stresses for supercritical regime are shown in Figure 1(e) and (f) at Re = 4.28× 105. In comparison
to the laminar flow separation in the subcritical regime, the turbulent separation occurs at a greater azimuthal angle, the wake
size is reduced and the unsteadiness close to the sphere surface decreases for the supercritical regime. Figure 1(e) shows that
moderate values of radial Reynolds stresses are observed along the separated shear layer, while the stress levels are seen to
be low near the sphere surface downstream. Similarly, the tangential Reynolds stress distribution for the supercritical flow
regime depicts a decrease in the unsteadiness in the separated shear layer, when compared with the subcritical regime. This
shows that the unsteadiness near the sphere surface decreases when the laminar separation changes to a turbulent separation
after the drag crisis. This decrease in the unsteadiness near the sphere shoulder can be correlated with the abrupt decrease in
the lateral force fluctuations, shown in Figure 1(b), as the Re increases from subcritical to supercritical regime.

CONCLUSIONS

The present study explores the variation in the flow physics in the vicinity of a sphere for the Re range 1.5× 105 ≤ Re ≤
5.5 × 105 via force measurements and 2–D PIV. As the Re increases from subcritical to supercritical regime, it is found that
the Reynolds stresses near the sphere surface decrease along with the reduction in the lateral force fluctuations in the critical
regime.
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Summary The exact coherent structures that are connected with the transition to turbulence usually extend across the full height of the
shear layer. Using scaling ideas for the Navier-Stokes equation that combine length and Reynolds number, we show how such large scale
structures can be morphed into coherent structures at the Kolmogorov scale at high Reynolds numbers. We present the structure and
dynamical properties of several families of exact coherent solution with different degrees of spatial localization.

INTRODUCTION

From a dynamical systems point of view, the transition to turbulence is connected with the appearance of persistent, non-
trivial structures in the state space of the system. They are exact 3-d solutions to the Navier-Stokes equations with often
simple temporal patterns, known as exact coherent structures (ECS). In some cases, like convection, they appear in sequences
of bifurcations from the laminar state, in others, like pipe flow, they appear in saddle-node bifurcations that are not connected
to the laminar profile. Since the identification of the first ECS in plane Couette flow [1], many further examples have been
documented in a variety of flows. The study of these solutions, combined with the use of methods from dynamical systems
theory, has improved our understanding of the emergence of turbulence in linearly stable flows [2]. In addition to the spatially
extended ECS there are others that are localized in one or several directions [3, 4, 5, 6, 7] and that can contribute to an
understanding of the spatio-temporal behavior of turbulence close to onset.

Many of the currently available ECS can be traced over a wide range in Reynolds numbers, but they all remain ’large’ in the
sense that they reach across the full width of the shear layer and often do not develop small scale structures. These states can
therefore not capture the small scale dynamics of turbulent flows, other states must take over. Among the few studies that have
addressed the scaling of ECS with increasing Reynolds number, the one by [8] stands out because it indicates how structures
on small scales can be obtained asymptotically for large Reynolds numbers. Here, we present a general approach which allows
to transfer ECS from large to small scales and demonstrate it for the case of plane Couette flow. For the numerical simulation
we use the Channelflow-code [9].

RESCALING OF EXACT SOLUTIONS

The starting point for our solutions are ECS that are localized in the normal direction. Then a reduction in height, together
with a reduction in the streamwise and spanwise scales, reduces the influence from the walls and opens up the path towards
ECS on smaller scales. However, the change in length scales also mandates a change in Reynolds number. Specifically, we
take a flow field ~u0 that is an ECS at Reynolds number Re0 and form the flow field

~uλ = λ~u0(~x/λ), (1)

which is rescaled by a factor λ in all spatial directions. The Navier-Stokes equation is invariant under this transformation if
the Reynolds number is adjusted according to Re = λ−2Re0. The scaling invariance is broken by the presence of walls, but
their influences becomes weaker if the solutions maintain their scaling properties. Therefore, the scaled solutions provide very
good initial conditions for a Newton search for ECS of this scale, at the higher Reynolds number.

RESULTS

Using the described rescaling, we were able to identify several families of exact solutions in PCF. In figure 1a) a family of
equilibrium solutions located in the center between the walls is shown. The visualized solutions differ by factors of 2, while
the corresponding Reynolds number increase by factors of 4. Although the scaling is not perfect due to the weak wall-normal
localization, the vortex structures which are visualized in the figure are almost identical but at different scales. The solutions
are reminiscent of the states studied by Deguchi [8].

The stability of the states follows from the linearized equations, which have a similar scaling. We find that all states
are unstable but they only have a small number of unstable directions. In particular, for the lower branch the number of

∗Corresponding author. Email: Stefan.Zammert@gmail.com

933

sophie
Typewritten Text
______________



a)

102 103 104 105 106

Re

0.00

0.05

0.10

0.15

0.20

D
∗

b)

Figure 1: ECS on different scales and for different Reynolds numbers. (a) Visualization of the exact solutions using iso-
surfaces Q = 0.0015. The Reynolds numbers are, from left to right, 3, 375, 13, 500, 54, 000 and 216, 000. For each state
the spanwise and streamwise wavelength decreases by a factor of 2, and the Reynolds number increases by factors of 4. (b)
Bifurcation diagram of the four states shown in panel a). On the ordinate the total dissipation divided by the area (streamwise
times spanwise wavelength) of the computational domain is shown.

superharmonic instabilities of the states and also their growth rate is retained by the rescaling. In a subspace with span-
wise reflection symmetry sz : [u, v, w](x, y, z) = [u, v,−w](x, y,−z) and rotation symmetry sxsy : [u, v, w](x, y, z) =
[−u,−v, w](−x,−y, z) the lower branch of the states has one unstable direction and is an edge state [10].

In figure 1b) the bifurcation diagram of the solutions is shown, with the dissipation rate along the ordinate. The bifurcation
diagram indicates an increasing number of states of different scales that populate the state space. The widest solutions appear
at the lowest Reynolds numbers, and with increasing Reynolds number smaller solutions appear. By construction, it is possible
to map the solution curves onto each other by an appropriate rescaling: this mapping becomes asymptotically exact for large
Reynolds numbers, and the deviations at low Reynolds numbers are connected with the influence of the walls in the normal
direction.

In addition to the ECS shown in figure 1, we have identified further families of ECS that are streamwise and spanwise
localized, as well as travelling waves that are located close to the walls.

CONCLUSIONS

The families of ever more localized states presented here show how exact coherent structures at high Reynolds numbers
can be constructed. The reduction in scales and the fact that their instabilities are retained by the rescaling suggests that many
results obtained at low Reynolds numbers and on large scales can be transferred to high values of Re and small scales. These
ECS will play a key role in extensions of the dynamical systems approach to turbulence from the transition region towards
fully developed turbulence.
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Summary Near-wall turbulene is autonomously sustained by oherent strutures omposed of low-speed streaks and streamwise vorties.

If these strutures disappear suddenly, turbulene annot be sustained, leading to laminarization. Performing diret numerial simulations,

we measure mean lifetimes of loalized turbulene in plane hannel �ow by hanging the spanwise length of the periodi domain to

investigate their dependene on the number of oherent strutures. It is found that the mean lifetime at a ertain value of Reynolds number

inreases exponentially as a funtion of the number of oherent strutures. This indiates that eah oherent struture ontributes to the

lifetime independently.

INTRODUCTION

In plane Poiseuille �ow, although it beomes linearly unstable at a �nite ritial Reynolds number, transition to turbulene

an our by suf�iently large disturbanes even at lower Reynolds numbers. In this system, therefore, it is dif�ult to identify

the route to turbulene in omparison to a sequene of bifurations in superritial transitions, and it has long been an open

question.

One of the most ruial breakthroughs for this problem is the disovery of the lifetime of turbulene (see, for example,

Shmiegel and Ekhardt 1997). Flow in between immediate deay of disturbanes and persistent turbulene (at least for

observable time) is alled transitional �ow. Reent works have suggested that the lifetime inreases as the double exponential

funtion of the Reynolds number (Hof et al. 2008, Avila et al. 2010). Goldenfeld et al. (2010) interpreted the double-

exponential behavior with the Reynolds number using an extreme distribution theory.

In transitional plane Poiseuille �ow and transitional plane Couette �ow, initial turbulene is loalized in two diretions,

both streamwise and spanwise diretions, and is alled a turbulent spot (Centwell et al. 1979). At higher Reynolds num-

bers, stripe patterns of turbulene alled turbulent bands an be observed (Tsukahara et al. 2005). Although suh loalized

turbulene is also transient (Shi et al. 2013，Xiong et al. 2015), there are no detailed measurements of lifetimes sine the

effet of the spanwise length of turbulene auses the problem more omplex than in pipe �ow. In this paper we fous on the

number of oherent strutures ontained in transient turbulene. We hange it by imposing distint spanwise lengths of the

omputational domain, and identify the ontribution to the lifetime whih has been suggested by Goldenfeld et al. (2010).

SETTINGS

NUMERICAL METHOD

We onsider inompressible �ow with the onstant bulk veloity U driven by spatially onstant body fore between

two parallel plates separated by a distane 2h. The x, y and z axes of the Cartesian oordinate system are taken in the

streamwise, wall-normal and spanwise diretions, respetively. In the diretions parallel to the plates, x and z diretions,

periodi boundary onditions is imposed with period Lx and Lz , respetively. In the wall-normal diretion, no-slip and

impermeable onditions are imposed. This system is governed by the inompressible Navier-Stokes equations in a non-

dimensional form using the harateristi distane h and enter-line veloity of laminar �ow Uc = 3U/2. The Reynolds

number is de�ned by Re = hUc

ν
= 3hU

2ν
= 3

2
Rem, where ν is the kinemati visosity. For spatial disretization we use

a spetral Galerkin method, Fourier series in the x and z diretions and Chebyshev polynomials in the y diretion, and the

aliasing error is removed for all diretions. These equations are integrated by using a Crank-Niolson method for the visous

term and a 2nd-order Adams-Bashforth method for the others. The streamwise period is set to be Lx = 100, and this length
may be onsidered to be suf�ient for a single puff. We vary the spanwise period Lz in the range of 0.5 ≤ Lz ≤ 5 and

the aspet ratio A is de�ned by A = Lz/2. The maximum wave numbers in the x and z diretions and the maximum order

of polynomials in the y diretion are set to be (533, 47, [(64A − 1)/3]), where [·℄ means Gauss' symbol. We �x the time

inrement at ∆t = 0.01.

LIFETIME MEASUREMENT

We investigate the dependene of the lifetime of a turbulent puff on Rem and A. The lifetime is de�ned by wondering

duration lose to haoti invariant sets in phase spae before laminarization, whih may be the unique stable solution for

Rem of our survey. As initial onditions we prepare a lot of turbulent puffs at different Rem, same as the method in Avila

et al. (2010). If some of the orbits from these initial onditions are trapped around some wondering state, we an estimate

the harateristi time sale to esape from it, the lifetime. The 512 veloity �elds taken at every 5 time interval at a spei�

(moderate) value of the Reynolds number are used as a set of initial onditions.
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We measure the time of death of eah turbulent puff and investigate the time dependene of the survival probability.

Turbulent puffs are judged to be deayed when streamwise skin frition beomes less than 1.05 times of laminar �ow,

〈|dux/dy|wall〉 /3 ≤ 1.05, where 〈·〉 is an average over the walls.
Measurements of the lifetime are terminated at tc = 500. These distributions are supposed to be exponential, P (t) =

exp(−t/τ). The maximum likelihood estimate for mean lifetimes τ for ensored data, Type 2 ensoring in Lawless (1982), is

given by

τ̂ =
1

r

{

r
∑

i=1

(ti − t0) + (n− r) (tr − t0)

}

, (1)

where ti(i = 1, 2, . . . , r) are the r smallest lifetimes observed until tc, t0 < t1 < t2 < · · · < tr < tc.

RESULT

The lifetime is a monotonially inreasing funtion of the Reynolds number and the aspet ratio A. We on�rm the

dependene on the Reynolds number is �tted well by the double exponential funtion τ = exp {exp (aRem + b)}. In the

following we investigate the dependene on the aspet ratio A.
Let us onsider independent and idential sites whih stand side by side in the spanwise diretion and may be regarded as

the minimal unit aommodating one low-speed streak. Turbulene is sustained by eah site omposed of a low-speed streak

and an assoiated streamwise vorties, and disappears when all sites deay at the same time. If the lifetime of a site equals to

be τ0, the lifetime of a turbulent puff, whih has N sites inside itself, beomes τN0 . If we suppose that N is proportional to

the aspet ratio A,

ln (τ) ∝ A. (2)

Figure1 shows the logarithm of the estimated lifetime ln (τ) as a funtion of the aspet ratioA. Equation(2) seems to be true if

transient turbulene has the higher lifetime. The relationship betweenN sites and the lifetime suggests that, in a �nite domain,

turbulene is transient even if the Reynolds number is muh higher. Turbulent bands an be onsidered to be persistent sine

they have many sites.
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Figure 1: The dependene of the lifetime on the aspet ratio A. (a): Plots of the logarithm of the lifetime ln(τ) at various
value of A. The Reynolds number at eah point is distinguished by means of olors ranging from 700 to 1350. (b): Plots
at Rem = 1000. For A ≥ 1.4, measurements are terminated at tc = 1000. Solid-line represents the approximate funtion

ln (τ) = cA, where c ≃ 5.85.
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Summary The wake and its instabilities behind rotating sphere and a simplified model of propeller were investigated for moderate Reynolds 
numbers, in a low- velocity water channel. We observed different vortex structures with LIF method and the velocity field was measured with 
PIV. The influence of rotation speed on vortex shape and size was analysed. The explored range of Reynolds number was from 0 to 400 and the 
swirl or rotation parameter Ω was not higher than 4 for the sphere and 2 for the rotor. For non-rotating bodies, is very well know the existence 
of various flow regimes with axisymmetric base flow, pairs of stationary counter-rotating vortices, and unsteady vortex shedding with hairpins. 
We described the occurrence of new regimes in presence of rotation with lower and higher helical modes. In this talk new results about the non-
linear evolution of the instability modes are presented. 
 
Introduction 
 
 Many experimental and numerical researches were carried out to describe the phenomenon of wakes and 
instabilities behind 3D bluff bodies. The structures created by fluid instabilities past spheres, cubes, disks and models of 
propeller have been investigated by our group[1-4]. This paper presents the first experimental results concerning wakes 
and its instabilities behind rotating sphere and a model of propeller.  For static bodies, it is well known the existence of three 
main regimes, depending on Reynolds number. The initial regime is an axisymmetric base flow in the case of the sphere 
with a bifurcation with two counter-rotating streamwise vortices (CRV) with a planar symmetry between each other, at Re = 
212. After a second transition, at Re = 270, two CRV evolve into hairpin, unsteady periodic vortex shedding. When rotation 
is introduced[5-6], in the case of two counter-rotating vortices, one of them becomes stronger and another one is weakened 
and is observed the phenomenon of “frozen” spiral and subsequent unsteady behavior.   
 
Experimental details  
 

 
 The experimental set up consists of a low-velocity 
water channel of 86 cm length and with a cross-section of 
10 cm x 10 cm. Both, the sphere and propeller were fixed by 
a rigid thin hollow tube (d=0,2cm) connected to a brushless 
electric motor and a dye input. The pipe axis was aligned 
with free stream direction.  The motor was also located 
inside the channel, around one meter behind the support. 
The water stream achieved the velocity up to 4 cm/sec. 
 To perform flow visualization, fluorescein dye was 
injected through the slits in the objects, using Laser Induced 
Fluorescence (LIF) techniques. For velocity measurements, 
Particle Image Velocimetry (PIV) was adopted and the 
video camera was capable of recording images with the 
frequency of 15 Hz. Tracer particles, with the diameter 
around a few µm, were seeded in the water.  For the velocity 
field calculation, the program used cross-correlation method 
and multi-pass iteration. Laser slices, perpendicular to the 
flow, were located at the distance of 2,5 diameter of the 
object (where we found maximum amplitude of the velocity 
perturbations), which is around 0,5 diameter behind the 
recirculation zone, in order to evaluate the streamwise 

vorticity behind the bodies. The Reynolds number range was up to 1000 with the possibility of steps increment of ΔRe 
equal to 2 and the swirl or rotation parameter Ω was not higher than 4 for the sphere and 2 for the rotor, with steps of ΔΩ 
                     
a Corresponding author,E-mail:wesfreid@espci.fr 

  

Figure 1: Visualization of the wake behind the 
sphere for Re = 250 (left) and Re =300 (right)as 

a function of Ω 
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equal to 0.1. This fine change in the flow parameters let us to perform very detailed description of the frequencies and the 
non-linear evolution of the instability fluctuations. The rotor was built from three identical propellers, which thickness was 
0,06 cm. The blade width was 0,3 cm. In both cases of rotor and sphere, the diameter was 2 cm. 
 
Results 

 
 The investigation was focused on different regimes of 
wakes behind bodies, changing the swirl parameter Ω, which is the 
ratio of the maximum azimuthal velocity of the object to the free 
streamwise velocity, to explore the influence of rotation.  In the case 
of the sphere (Figure 1), different structures are observed for Re = 
250 and Re = 300. In particular, for Re=250, the steady flow (Ω=0) 
becomes a “frozen” flow up to Ω=0,2. With the increment of the 
swirl parameter, low helical frozen wake appears. The next images 
presents unsteady flow, which changes into high helical, when 
Ω=1,2. 
 Having the possibility to perform detailed measurements of 
the bifurcation branches of perturbation, we study the modification 
of the content of the azimuthal modes of enstrophy, obtained by 
polar Fourier decomposition. We present in our talk the first 
experimental evidence of the changes of the mean mode of 
homogeneous or global vorticity induced by the nonlinear 
interaction of the fluctuating perturbations. One example of this 
behavior is observed in the figure 2, showing in the axisymmetric 

mode of vorticity (azimuthal mode m = 0) this nonlinear anticyclonic contribution due to the presence of instabilities, at 
different Reynolds numbers. 
 In addition, we present on the figure 3, a flow visualization and the measurements of the streamwise vorticity and 
its spatio-temporal reconstruction, for the case of a rotating rotor with three blades at Ω = 1, with indication of the CRVs 
twist, where is observed as the negative vortex is pushed to the middle of the wake and surrounded by positive ones.  
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Figure 2: Dimensionless enstrophy of 
mode=0 as a function of Ω and Re 

Figure 3: The visualization, instantaneous streamwise vorticity and its spatio-time 
reconstruction for the simple rotor, at Ω = 1  
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Summary A new formalism is introduced that allows to identify the wavemaker regions of linear instability eigenmodes of nonparallel open
shear flows. The formalism is based on a decomposition of the governing linear operator into locally acting components that extract the
localized dynamics. The unique contribution of the local dynamics to the global dynamics of an eigenmode is identified and computed by
an orthogonal projection with the adjoint eigenmode. It is demonstrated, for the example of a spring-mounted cylinder in uniform flow, how
this analysis can be used to motivate a physical discussion on the frequency selection of fluid/solid eigenmodes.

INTRODUCTION

We are interested in identifying wavemaker regions of linear instabilities, i.e. the regions in physical space which contribute
most strongly to the temporal dynamics of an instability. In open shear flows, due to the non-normality of the Navier-Stokes
operator [1], this region corresponds neither to the most energetic location of an eigenmode q, nor to the most receptive region
to external forcing, identified with the associated adjoint mode q†. A commonly used characterization of the wavemaker
region for instabilities in spatially developing flows is due to Giannetti & Luchini [2]. These authors investigated where local
feedback mechanisms have the strongest impact on an hydrodynamic instability by considering a structural sensitivity analysis
of the underlying eigenvalue problem (3). The analysis consists in modifying the structure of the linearized Navier-Stokes
equations by introducing an artificial local feedback in the momentum equations. The resulting eigenvalue variation δσ is
linearly related to the structural modification via the adjoint eigenmode, and the following upper bound for the eigenvalue
variation is obtained as

|δσ(x0)| < |q†(x0)| · |q(x0)| (1)

where x0 indicates the feedback location. Defining the wavemaker region as the region where local feedback mechanisms
induce the largest eigenvalue variation, it is then identified by overlapping the direct and associated adjoint modes.

Wavemaker identification is now a widely used analysis tool in hydrodynamic instability studies, but the approach de-
scribed above suffers from a major drawback. When perturbing the eigenvalue problem in order to identify a local feedback
mechanism, artificial coupling mechanisms are introduced, which are absent in the original dynamics, but which might have
a large effect on the eigenvalue variation. Without means to distinguish between intrinsic and artificial local feedback mecha-
nisms, the inequality (1) only guarantees that local feedback mechanisms are unimportant for the global dynamics in regions
where the overlap between adjoint and direct modes is weak. In regions of strong overlap, the large eigenvalue variations may
arise from either intrinsic or artificial feedback.

A new wavemaker formalism is proposed in this study that is claimed to identify the local feedback action of the original
linear operator. Rather than considering structural operator modifications, the approach relies on a decomposition of the
governing operator L as the sum of local operators L0 that represent the dynamics at a given point x0. The product of
this local operator with the eigenmode of interest is then decomposed onto the full basis of eigenmodes. The contribution
from local feedback acting in x0 to the global temporal dynamics is determined by an orthogonal projection, by way of
multiplication with the adjoint global mode. As a result of this analysis, we obtain the equality

σ =

∫
D
q†∗(x0) · (Lq)(x0) dx0, (2)

where the integrand is proven to be the unique contribution of the local dynamics to the temporal dynamics of the global
eigenmode. Interestingly, by separating the real and imaginary parts in the above equality, the analysis allows to discriminate
between local contributions to the frequency selection on the one hand, and to the temporal growth rate on the other hand. The
new formalism is detailed in this abstract. Results of this wavemaker analysis will be shown in the talk for the fluid-structure
instability at the origin of the vortex-induced vibration of a spring-mounted cylinder.

∗Corresponding author. Email: olivier.marquet@onera.fr

939



Figure 1: Frequency selection for a fluid/solid mode in the spring-mounted cylinder configuration at the Reynolds number
Re = 43 in (a) the large mass limit ρ = 1000 and (b) the small mass limit ρ = 0.01. When varying the solid-to-fluid density
ratio ρ, the frequency selection changes in nature and in space. The imaginary part of (7) for the fluid operator is displayed.

FORMALISM

Consider a linear hydrodynamic perturbation in normal mode form, q′ = q(x) exp(σt) + c.c., where σ = λ + iω is a
complex quantity, of which the real and imaginary parts respectively represent the temporal growth rate and frequency of the
mode with spatial structure q(x). These modes are obtained by solving the eigenvalue problem

σ q(x) = Lq(x), (3)

where L is a linear operator, obtained from a linearization of the Navier-Stokes equations around a steady state in a spatial
domain D. In order to investigate which regions of this domain mostly contribute to the temporal dynamics of an eigenmode,
we first decompose the linear operator into localized spatial components as

L =

∫
D
L0 dx0, (4)

where the operator L0 acts on an eigenmode and extracts its local dynamics at the location x0. It is mathematically defined
by (L0q)(x0) = (Lq)(x0) and (L0q)(x) = 0 for x 6= x0. In order to specifically determine the contribution of the local
dynamics in x0 to the global dynamics of an eigenmode q, the product of the local operator with the eigenmode is expanded
in the basis of eigenmodes,

L0 q = σ0 q+
∑
j>1

σj qj , (5)

where σ0 and σj are complex coefficients that depend on the location x0. Since q is an eigenmode of L but not of L0,
the coefficients σj are non-zero and the sum in the above relation does not vanish. The coefficient σ0 expresses the unique
contribution of the local dynamics, represented by L0, to the global dynamics of the eigenmode. In order to obtain the
numerical value of σ0, the adjoint eigenmode q† is first computed as the solution of the eigenvalue problem

σ∗ q†(x) = L† q†(x), (6)

and the orthogonal projection of the decomposition (5) via the adjoint eigenmode then yields the complex coefficient

σ0 =

∫
q†∗ (L0 q) dx = q†∗(x0) (Lq)(x0). (7)

Inserting the operator decomposition (4) into the eigenvalue problem (3) yields, after straightforward manipulation and use of
(5), the identity

σ =

∫
D
σ0(x0) dx0. (8)

This is the unique decomposition where the integrand represents unambiguously the contribution of the local dynamics to
the temporal evolution of a global eigenmode. Such formalism extends straighforwardly to eigenvalue problems arising in
fluid/structure interaction problem. It will be used to determine the respective contributions of the fluid and solid dynamics to
the temporal dynamics of fluid/solid eigenmodes obtained for the example of a spring-mounted cylinder in uniform flow.
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Summary To obtain a better understanding of the mechanism of wave breakdown into high-frequency hairpin eddies (which was 
identified as appearance of high-frequency spikes in the waveform of velocity fluctuation) in boundary-layer transition initially caused by 
the growth of Tollmien-Schlichting waves, development of pulse-like disturbances superposed on a convecting three-dimensional local 
high-shear layer artificially generated in laminar boundary layer was examined experimentally. In the flow immediately prior to the 
appearance of high-frequency spike, the group velocity of a wave-packet originating from the pulse disturbance was found to be almost 
equal to the convection velocity of the high-shear layer. This caused the disturbance to continue growing on the high-shear layer with 
strong frequency-selectivity, just like in an absolutely unstable flow. 
 

INTRODUCTION 
 

Boundary-layer transition starting with linear growth of Tollmien-Schlichting (T-S) waves has been studied by many 
authors and now our understanding of the transition process and the underlying mechanisms have been much advanced. 
However, a question regarding the mechanism of high-frequency breakdown of the primary T-S wave into small-scale 
hairpin vortices, which is identified as onset of spikes in the waveform of velocity fluctuation [1, 2], is still remained open. 
A few theoretical models have been proposed on the mechanism of very fast and frequency-selective growth of high-
frequency spikes [3, 4], but they could not explain the actual phenomenon sufficiently. We revisited this fundamental 
problem here. In the present paper, a convecting local three-dimensional high-shear layer was generated artificially by 
means of periodic sucking/blowing with low frequency through a hole in a laminar boundary layer to realize a transition 
stage similar to the breakdown stage of high-shear layer in a well-controlled manner. Then, a pulse-like disturbance was 
introduced (superposed) on the convecting high-shear layer. and its development into high-frequency spikes was followed 
up. Particular focus was on the relationship of convection velocity of high-shear layer and the propagation (group) velocity 
of such localized disturbances. When the convection velocity of high-shear layer coincided to the group velocity of wave 
packet, we may expect a possibility of rapid and frequency-selective growth, like as in an absolutely unstable flow [5, 6]. 
 

EXPERIMENTAL SETUP 
 
The whole experiment was conducted in a wind tunnel with a rectangular test section of 300 × 200 mm2 in cross section. 
The turbulence in the free-stream, measured at the upstream end of the test section, is less than 0.15% of U∞. A boundary-
layer plate of 4 mm thick and 540 mm long was set in the test section.  A small hole of 4 mm in diameter was drilled at the 
spanwise center, 280 mm downstream of the leading edge, and was connected to a loudspeaker by a vinyl hose. By 
periodically injecting and sucking air through the hole, the forcing system could produce a local three-dimensional high-
shear layer away from the wall, which convected downstream. By adjusting a input current to the loudspeaker, we could 
realize various stages of breakdown of the high-shear layer into small-scale (high-frequency) hairpin vortices, i.e. a stage 
just prior to the onset of high-frequency spike, 1-spike stage, 2-spike stage, etc. As for the coordinate system, x is the 
streamwise distance, measured from the leading edge, y the normal-to-wall distance, and z the spanwise distance. The free-
stream velocity was fixed at 4 m/s. The forcing frequency for producing the high-shear layer periodically was 20 Hz and the 
pulse-like disturbance was superposed on the primary wave (20 Hz). The streamwise velocity, th time-mean and fluctuation 
components of which are denoted by U and u respectively, is measured with a constant temperature hot-wire anemometer. 
 

EXPERIMENTAL RESULTS 
 
Fig. 1 illustrates waveforms of u-fluctuations at a location x-x0 = 60 mm for two different excitation amplitudes (of 20 Hz) 
without any pulse-like disturbance. Here, x0 = 280 mm, the x-position of the hole. We could see onset of high-frequency 
spikes in the waveform, just like the spike stage observed in the transition process of Klebanoff type when the initial 
disturbance (forcing) amplitude exceeded some critical value. We focused on the flow just before the appearance of high-
frequency spike, and introduced a pulse-like disturbance mentioned above to follow up its development in detail. Fig. 2 
illustrates the velocity profiles at the spanwise center (z = 0) in one forcing period T (= 1/20 s), measured at x-x0 = 30 mm. 
We see that a local high-shear layer whose forward part was lifted up away from the wall is formed, which is very similar to 
that observed in the transition process [1, 2]. The local high-shear layer was intensified and moved gradually away from the 
wall as the primary wave grew downstream. When a pulse disturbance was given into this high shear layer by superposing it 
to the primary wave, the disturbance could develop with a form of wave packet on the high-shear layer, as shown in Fig. 3. 
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The frequency of growing disturbance coincided with the frequency of spikes (see Fig. 1) appearing as the initial amplitude 
of the primary wave was increased. Besides, the wave packet propagated downstream at a group velocity Cg of about 0.57-
0.59U∞ over x-x0 = 30 mm to 60 mm (which was estimated as the propagation velocity of the packet envelop). On the other 
hand, the convection velocity Cs of the high-shear layer increased downstream because the high-shear layer moved away 
from the wall. For instance, Cs was about 0.37U∞ and 0.55U∞ at x-x0 = 30 mm and 60 mm, respectively. Thus the high-
frequency wave packet tended to propagate at the same velocity as the convection velocity Cs so that it could continue to 
undergo strong amplification due to inflectional instability.  
 

CONCLUSIONS 
 

In the present experiment, a local three-dimensional high-shear layer was directly generated in a laminar boundary layer to 
model the late stage of secondary three-dimensional instability in transition initially caused by growth of Tollmien-Schlichting 
waves, and a localized disturbance (wave packet) was introduced there to examine the high-frequency instability of high-shear 
layer leading to breakdown into small-scale hairpin eddies. In the flow just prior to the appearance of hairpin eddies which was 
identified as high-frequency spikes in the waveform of velocity fluctuation, the group velocity Cg of the localized disturbance 
(wave packet) introduced was found to be very close to the convection velocity Cs of the high-shear layer. Thus, in the reference 
frame moving at the convection velocity Cs the wave packet could always stay on the high-shear layer and continue to grow by 
the inflectional instability, like as in absolutely unstable flows. The frequency of growing disturbance was found to be the same 
as that of high-frequency spikes. 
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Fig. 1. Waveforms of velocity fluctuations at x-x0 = 60 mm for different forcing amplitudes (20 Hz). (a) Just 
prior to onset of high-frequency spikes. (b) After onset of high-frequency spikes. 

Fig. 2. Instantaneous velocity profile in one forcing 
period at x-x0 = 30 mm without pulse disturbance. Fig. 3. Development of high-frequency wave packet 

in the convecting high-shear layer. 
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Summary Direct numerical simulations of spectral method were performed to study relaminarizing turbulent structures in 
Poiseuille flow under stable density stratification. In the case of small computational domain, the turbulence attenuated with increasing 
effect of stable stratification, and relaminarization occurred on one wall side at Ri > 0.30 where the turbulence remain on the other wall. Here, 
Ri is the bulk Richardson number defined by bulk mean velocity. On the other hand, in the case of large computational domain, 
relaminarization on one wall side was not observed and large scale intermittent flow structure appeared at Ri > 0.17. Also, turbulent stripes were 
observed at Ri = 0.56. Therefore, the flow dynamics in SB and LB were different from each other. The flow structure of the turbulent stripe was 
similar to the ones in turbulent Poiseuille flow in transitional regions without any external forces. 

 
INTRODUCTION 

 
   Turbulence under stable density stratification is observed in the atmosphere at night, in the oceans, and in the industrial 
systems. Hence, stably stratified turbulence is important for both physics and engineering. Hence, we focus on the 
relationship between stratification and the shear effects. Garg et al. [1] and Iida et al. [2] carried out direct numerical 
simulation (DNS) with relatively small computational domain and confirmed that the turbulence in horizontal Poiseuille 
flows is attenuated by stable density stratification. Iida et al. [2] also clarified that an internal gravity wave becomes 
dominant in the channel center, and strong stratification causes relaminarization on one wall side, whereas turbulence still 
remains on the other wall. On the other hand, García-Villalba et al. [3] carried out DNSs in a large computational domain, 
and found a very large scale intermittent flow structure consisting of turbulent and spotty quasi-laminar regions in stably 
stratified turbulent Poiseuille flow. However, the flow structures under stable stratification have not been studied 
systematically with the change of the stratification. Authors [4] performed DNSs of stably stratified Poiseuille flow and 
showed that the turbulent stripe consisting of turbulent and quasi-laminar bands appeared in large computational domain. 
This turbulent stripe was also found in turbulent channel flows consisting of open channel flows [5,6] and Couette flow [7] 
with moderate stratification. In this study, we performed DNSs to examine the turbulent structure in Poiseuille flows with 
stable density stratification, and clarified the flow structure more in detail to compare the flow structure in two 
computational domains. 
 

NUMERICAL PROCEDURE 

 
   The objective flow is a Poiseuille flow, which is bounded by parallel walls consisting of an upper hot wall and a lower 
cold wall and is driven by a constant pressure gradient. The numerical method used in this study was the same as that used 
by Iida et al. [2] and previous research [4]. The governing equations were the incompressible Navier–Stokes equation with 
an added buoyancy term using a Boussinesq approximation, and continuity and energy equations. DNSs of the equations 
were carried out by the spectral method, using Fourier series in the streamwise x (= x1) and spanwise z (= x3) directions and 
a Chebyshev polynomial expansion in the wall-normal direction y (= x2). The boundary conditions were periodic for the x 
and z directions and non-slip at the walls. For dealiasing, the 3/2 rule was adapted for both spatial discretizations. Time 
advancement was carried out by the Crank–Nicolson method for the viscous terms and the second-order Adams–Bashforth 
method for the nonlinear and buoyancy terms. All calculations were carried out at a Reynolds number of 

150δ ν= =
e e

Re u  and Prandtl number of 0.71ν= =Pr a . Here, 
e

u , δ , ν  and α  are the characteristic velocity at 
the mean pressure gradient, the channel half width, the kinetic viscosity, and thermal diffusivity, respectively. The 
computational domains in the x-, y-, and z-directions are 5 2 2πδ δ πδ× × (SB) as in [1], of a 128 129 128× ×  grid system 
and 20 2 10πδ δ πδ× × (LB) of a 512 129 512× × grid system. As an initial condition, fully developed flows at 

150=
e

Re were calculated in advance. The Grashof number ( )
3 22β δ ν= ∆ΘGr g  was then systematically increased as 

shown in Table 1. Here, g , β , and ∆Θ are the gravitational acceleration, the volumetric expansion coefficient, and the 
temperature difference between the hot and cold walls, respectively. Hereinafter, all parameters are normalized by 

e
u  and 

ν  ; normalization is indicated by the superscript + . 
 

RESULT AND DISCUSSION 

 
   Table 1 show the flow statistics of our results, consisting of flow rate (bulk Reynolds number) 2 δ ν=

m m
Re U , friction 

coefficient 
22τ ρ=f w mC U , and bulk Richardson number 2= mRi Gr Re  as a function of Gr  in both cases of SB and LB. 

Here, 
m

U , τ
w

, and ρ are the mean velocity in the entire channel, the wall shear stress, and the density, respectively.  
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Table 1 Computational conditions and basic statistics in small computational domain. 
SB LB 

eRe  Gr  
m

Re  f
C  Ri  m

Re  f
C  Ri  

0.00  4579 38.58 10−×  0.00 4522 38.70 10−×  0.00 
513 10×  4771 37.91 10−×  0.06 4715 38.06 10−×  0.06 
544 10×  5129 36.84 10−×  0.17 5100 36.93 10−×  0.17 
572 10×  5466 36.02 10−×  0.24 5408 36.15 10−×  0.25 
5100 10×  5766 35.41 10−×  0.30 5605 35.76 10−×  0.32 
5150 10×  6532 34.22 10−×  0.35 5849 35.27 10−×  0.44 
5175 10×  6599 34.13 10−×  0.40 5927 35.13 10−×  0.50 
5200 10×  6751 33.95 10−×  0.44 5976 35.06 10−×  0.56 

150  

5300 10×  7497 33.20 10−×  0.53 5924 35.12 10−×  0.85 
 

(a)  (b)  

Figure 1 Instantaneous distributions of high- and low-speed fluids in the near-wall region and the vortical structure 
identified by the second invariant of the velocity gradient tensor 

, ,0.5 ′ ′= − i j j iII u u  over the entire channel in LB. The black 
iso-surfaces correspond to 0.05+ =II . The red to blue contours correspond to 3 to 3+′ = −u . (a) 0.17Ri = . (b) 0.56Ri = . 
 
Present results show good agreement with the results of Iida et al.[2] using a fine grid. The flows were relaminarized by the 
stratification, so that the increase of m

Re and decrease of fC  were raised. It is noted that the deviation of the flow rate 
m

Re  between SB and LB becomes significant in the case of Ri > 0.3, where the one-wall-side turbulence which was 
observed in SB as reported by Iida et al. [2] was not shown here. 
   Figure 1 illustrates the instantaneous flow structure in the case of LB for Ri = 0.17 and Ri = 0.56. At Ri = 0.17, 
intermittent flow structure is clearly observed as reported by García-Villalba et al. [3]. The week turbulent regions tended to 
incline from streamwise direction. This intermittent flow structure was not observed at this Reynolds number flow without 
the stratification. At Ri = 0.56, one-wall-side turbulence were obtained in the case of SB. High- and low-speed fluids exist 
upstream and downstream of the turbulent region where many vortical structures were clustered. The turbulent regions 
formed stripe pattern, which is called turbulent stripe. Hence, the flow structure of the turbulent stripe was similar to the ones 
in turbulent Poiseuille flow in transitional regions without any external forces [7,8]. As a result, the turbulent stripe appears at 
higher Reynolds numbers to impose the stable density stratification in Poiseuille flows. Moreover, one-wall side turbulence 
was not observed when the turbulent stripe appeared in LB. Hence, the flow dynamics were not similar between SB and LB. 
 

CONCLUSIONS 

 
   Direct numerical simulations were performed to study the turbulent structure in Poiseuille flow under stable stratification. In 
the case of SB, the turbulence attenuated with increasing effect of stable stratification, and relaminarization occurred on one wall 
side at Ri > 0.30. On the other hand, in the case of LB, relaminarization on one wall side was not observed consistently and large 
scale intermittent flow structure appeared at Ri > 0.17. Also, V-shape turbulent stripes were observed at Ri = 0.56. Therefore, the 
flow dynamics in SB and LB were different from each other. The flow structure of the turbulent stripe was similar to the ones in 
turbulent Poiseuille flow in transitional regions without any external forces. 
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FLOW TRANSITION OF NEUTRALLY BUOYANT SUSPENSION
BETWEEN CONCENTRIC CYLINDERS
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Abstract: Experiments were performed to observe the flow transitions when a neutrally buoyant non-Brownian suspension of rigid particles in
Newtonian fluid rotated in the annulus between two concentric cylinders. For pure fluid and very dilute suspensions, the flow transitioned from
Taylor Vortex Flow (TVF) into Circular Couette Flow (CCF) as the Reynolds number (Re) of the inner cylinder was reduced. By contrast, for
suspension concentrations between 5% and 20% particles, the flow transitioned from TVF into Spiral Vortex flow (SVF) and eventually into
CCF. This indicates appearance of SVF under inner cylinder rotation only, a behaviour not seen for single-phase fluids. The initial transition
was moved to a significantly lower Re, when the effective viscosity was considered. The transition values of Re corresponding to both TVF-
SVF and SVF-CCF ware observed to reduce with increase in particle concentration indicating earlier onset of instability.

Understanding of flow transition and instabilities of particle-laden fluids (suspensions) is useful in developing predictive
models for multiphase flows in industries and nature. Most of the past work on suspension flows was focused in Stokes and low
Reynolds number (Re) regimes. Efforts to understand flows of suspensions close to and beyond the transition Reynolds number,
Re, for various flows has received only slight attention1,2.

We have performed experiments with neutrally buoyant non-Brownian suspension in the Taylor-Couette geometry to
understand the effect of particles on various flow transitions. This flow represents an extremely well-studied baseline case for the
pure fluid, and we make use of existing theory to guide our efforts 3,4,5.  The particle phase was made up of PMMA particles
(212 µm < dp <250 µm) and the fluid phase was a glycerin-water mixture, with minute amount surfactant added to reduce bubble
adhesion to particles. A very small volume of mica flakes (flat particles of large dimension 50 microns) was added for
visualization of flow structures. The Taylor-Couette set up consists of concentric cylinders placed inside a cooling jacket to
maintain temperature at 20oC. The annular gap was filled with the suspension. The outer acrylic cylinder (diameter do=114 mm)
was held fixed at all times while the inner solid aluminum cylinder (diameter, di=100 mm) was rotated. The annulus gap (a) was
7 mm and the ratio of height of the inner cylinder to the annulus gap (L/a) was 20.5. The radius ratio (di/do) was 0.88 and the
annulus gap to particle diameter ratio (a/dp) was 30.3. For pure fluid, Taylor vortices appeared at the top and bottom walls with
Circular Couette Flow (CCF) in the middle and eventually filled the whole annulus length at a transition Re of 120 in accordance
with linear stability theory. For a suspension, as Re (based on annulus gap, velocity of inner cylinder and the bulk viscosity of the
suspension, using Krieger and Dougherty correlation6) was increased slowly, significant migration of particles was observed
from the central CCF region into the Eckman vortices near the top and bottom boundaries resulting in non-uniform concentration
profile along the annulus length before the transition Re was reached. To avoid migration effects in determining transitions, for a
given particle concentration of the suspension,, initially, the inner cylinder was rotated at a Re corresponding to Taylor Vortex
flow (TVF) until the steady state was established. The inner cylinder Re was then decreased at a small acceleration of dRe/dt ≈ -
0.01 (t is the time non-dimensionalized with viscous time scale) until the flow transitioned to CCF. The experiment was repeated
for dRe/dt ≈ -0.005 to make sure the results are independent of the acceleration applied.


Figure 1: Space-time diagrams for 15% suspension. Vertical and horizontal axes are annulus length and time, respectively.
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Figure 2: Reynolds number of CCF-SVF and SVF-TVF transitions for various suspension concentrations.

For a typical suspension concentration of  steady TVF was established at Re=123. Figure 1 shows the space-time
diagrams at different Re as the Re was reduced. It was observed that the TVF was stable for 123>Re>111, the flow transitioned
from TVF into Spiral Vortex Flow (SVF) at Re≈111. For 111>Re>102, SVF was observed to be stable. A mixed state of spiral
and wavy-TVF filling parts of the annulus length was observed in this range of Re. At Re≈102, SVF transitions into CCF. The
flow was observed to be CCF for Re<102. The experiment was repeated for suspension concentrations 0%<and the
results are plotted in figure 2. For pure fluid and very dilute suspensions, the TVF transitioned into CCF with reducing Re.
whereas, for suspension concentrations between 5% and 20 %, TVF transitioned into SVF which eventually transitioned into
CCF at lower Re. Also, as the suspension concentration was increased from 0% to 20%, both TVF-SVF and SVF-CCF transition
Re reduced considerably from TVF-CCF transition Re of pure fluid.

CONCLUSIONS

We observed an earlier onset of instability with increasing suspension concentration and the appearance of new stable SVF
state between TVF and CCF compared to pure fluid. A remarkable feature is that the initial (lowest-Re) instability of the flow is
to spiral vortex flow (SVF) under conditions of only inner cylinder motion. Note that for pure fluid case with rotating inner
cylinder and stationary outer cylinder, the first instability transitions CCF into TVF and the SVF does not appear at all in the full
range of Re5. For pure fluid case, the SVF appears only when the two cylinders are counter rotating 4,5. Our results indicate that
the viscosity alteration alone is not sufficient to account for the influence of the particles, and the normal stresses are quite weak
at loadings of 20% solids or smaller. The particle-scale Reynolds number (Rep=dp

2 γ/4 ν, where γ is the shear rate and ν is the
kinematic viscosity of the fluid) had value of Rep ≈0.03. At particle level, though the flow is near the Stokes regime and roughly
force and torque-free, the surface traction moment (stresslet) from particles may contribute to a change in the instability relative
to the pure fluid. The weak inertia may play a role, as suggested in an examination of laminar to turbulent transition of
suspension flow in pipes2.
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THERMOELECTRIC CONVECTION IN DIELECTRIC LIQUIDS 
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Summary The stability of a dielectric liquid confined in a cylindrical annulus with a radial temperature gradient and an alternating electric 
tension shows the existence of different modes (thermal modes, hydrodynamic modes, electric modes and columnar modes) depending on the 
relative importance of the electric tension and the temperature difference. A comparison is made with the stability of the corotating Couette-
Taylor flow with a radial temperature gradient where the centrifugal buoyancy replaces the dielectrophoretic force.  
 

INRODUCTION 
 
   Flows in cylindrical annulus are encountered in many applications and represent hydrodynamic prototypes of closed 
flow systems. The cylindrical annulus has the advantage of the existence of a large group of symmetries that can be broken 
when a control parameter is varied and then lead to the occurrence of new states. For this reason, the Couette-Taylor flow 
between differentially rotating annulus has drawn much attention for the investigation of the transition to turbulence [1]. 
When a radial temperature gradient is added, the centrifugal force competes with the Archimedean buoyancy and new 
bifurcations states occur that are different of the isothermal case: helicoidal vortices become critical and their inclination 
angle depends on the temperature gradient [2, 3, 4].  When a dielectric liquid is confined in a cylindrical annulus with a 
radial temperature gradient and an alternating electric tension, it undergoes the combined action of the Archimedean 
buoyancy and the dielectrophoretic force due to the coupling between the electric field E


 and the variation of the electric 

permittivity with the temperature [5]. The present paper presents the results from the stability analysis of the flow of a dielectric 
liquid in the field of the Earth gravity and the dielectrophoretic force. This force dominates over the Coulomb force when the 
field frequency is much larger than the inverse of the fluid characteristic times [5].  
 

FLOW EQUATIONS 
 
We consider a dielectric liquid with density r, a kinematic viscosity ν and an electric permittivity ε in an infinite-length 
cylindrical annulus of inner radius a and outer radius b so that the gap width is d = b - a. The dielectrophoretic force 

ε∇−=


2

2
1 Ef DEP  can be seen as a buoyancy force if one introduces the electric gravity defined as follows :  
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where ε0 = 8.85 10-12C2/(N.m2) is the vacuum permittivity.  The density and the electric permittivity are assumed to be 
linear functions of the temperature:  

( ) ( )[ ] ( ) ( )[ ]refrref TTeTTTT −−=−−= 1;1 00 εεεαrr  . 
For an incompressible fluid, viscous dissipation and Joule heating may be neglected under certain circumstances [4]. In the 
Boussinesq approximation, the governing flow equations read  
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where the electric field is supposed to vary in time so quickly so that its effective value can be considered as deriving from a 
potential φ and  the reduced pressure Π is given by  
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The boundary conditions at the cylindrical surfaces are  
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Figure : Cylindrical annulus with a radial temperature gradient and a high frequency electric tension : a) cross-section of the 
flow patterns, b) stationary columnar vortices, c) electric modes (stationary helicoidal vortices).   
 
The base flow is characterized by the axisymmetry with a vertical velocity component zerWu  )(= , a temperature profile 

( ) ( )[ ] ηη ln1ln rrT −= and an electric tension given by ( ) ( )[ ] ( )eTTerT ref −−−= 1ln1ln .  

Scaling the lengths by the gap width d, the time by d2/κ  and the temperature by the temperature difference between the 
cylindrical surfaces δT = T1-T2, one gets the flow control parameters :  
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As the Grashof number Gr and the electric Rayleigh number L depend both on the temperature difference δT= T1-T2, L can 
be replaced by the dimensionless electric tension: refE VVV /0=  with rrefV εεrνκ 0= being a characteristic tension 
that depends only on the fluid thermal and electric properties. Therefore Gr and VE are independent parameters. 
 

RESULTS 
 
The linear stability analysis was performed in order to determine the critical parameters and the nature of the critical modes 
for different values of Pr, δ  and η. Four critical regimes:  
1) For weak values of the electric potential VE, critical modes are oscillatory either axisymmetric for (η > η∗) or non-
axisymmetric for (η < η∗) where η∗ depends on values of Pr. The threshold Rac of these modes is almost constant with 
respect to VE. These modes may have large wavenumber for small values of Pr (hydrodynamic modes) or small 
wavenumber for large values of Pr (thermal modes).   
2) For large values of the electric potential VE, critical modes are steady and non-axisymmetric. The threshold decreases 
with VE and vanishes for ( )η= c

EE VV . These modes are associated with the thermo-electric instability encountered in the 
microgravity conditions [2]. 
3) For intermediate values of VE, the critical mode is a stationary critical mode with zero axial wavenumber and finite 
azimuthal wavenumber. This mode corresponds to columnar vortices, similar to those obtained in a differential heated 
cylindrical annulus in a solid body rotation and a heated outer cylinder [6]. 
4) Nonlinear stability analysis has shown that the electric modes are supercritical. 

 
CONCLUSIONS 

 
The stability of the flow of a dielectric liquid confined in a cylindrical annulus subject to a combined action of the Archimedean 
force and the dielectrophoretic force has been performed for a wide range of the control parameters. The results may be tested in 
experiments in zero-G flight during parabolic flight campaigns. 
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Summary On the base of a generic Apollo capsule geometry, the present work focuses on the influence of high-temperature gas effects on
the flow around the windward side of the blunt body. By means of Direct Numerical Simulations and Linear Stability Analysis, the influence
of chemical dissociations and non-equilibrium on the stability of the boundary layer will be investigated.

INTRODUCTION

In order to ensure a safe atmosferic reentry, capsules are equipped with ablative Thermal Protection Systems (TPS) to
protect and insulate the vehicle. In the realisation of a TPS, the prediction of the laminar-turbulent transition of the boundary
layer on the capsule surface is a crucial issue. In the turbulent regime, the heat-transfer rate at the wall can be much higher than
the one occurring in the laminar regime. However, in spite of the multi-decennial experience in hypersonic flows, there is still
no effective and reliable method to predict transition. Although the flow is laminar in the first phase of typical return paths,
with transition moving from back to front with decreasing altitude, the design of current TPSs is based on a fully turbulent
boundary layer, followed by an increase of capsule weight and manufacturing costs [1]. A further challenge in the prediction
of hypersonic transition arises because of the presence of high-temperature gas effects [2]. To this regard, Direct Numerical
Simulations (DNS) represent a valuable investigation tool, as wind-tunnel experiments at reentry conditions matching all
relevant dimensionless parameters including the Damköhler number are extremely difficult.

The presented work is part of a joint effort to investigate laminar-turbulent transition on the high-enthalpy boundary layer
of a generic Apollo capsule geometry and it focuses on the influence of the high-temperature effects, such as molecular
dissociation and thermal non-equilibrium. DNS are performed for both an axisymmetric case (angle of attack 0o) and a three-
dimensional geometry (angle of attack 24o). By means of the linear stability analysis (LSA), it is shown how the stability
properties of the flow considerably depends on the gas model adopted in the simulation. In fact, the inclusion of chemical
reactions and non-equilibrium effects may lead to a premature destabilisation of the flow and, possibly, to an early transition.

RESULTS

Computation of the base flows
A simulation database of boundary-layer flows has been generated, including various freestream conditions and different

gas models (ideal gas, chemical/thermal equilibrium as well as non-equilibrium). DNS, based on the finite-volume code
NSMB, are performed with a second-order central difference scheme on a simulation grid consisting of 26.5 ·106 points. With
regard to reentry missions, a realistic scenario at Ma = 20 at an altitude of H = 57.7 km has been chosen. The influence
of chemical dissociation and thermal non-equilibrium on the flow is fully investigated and quantified and an analysis of the
boundary-layer properties is performed in view of a first characterisation of the base-flow stability.

Due to the strong flow deceleration induced by the shock ahead of the capsule, the boundary layer remains subsonic to
transonic (Fig. 2a). Therefore, no acoustic instabilities are expected. Moreover, the absence of a generalised inflection point
in the boundary-layer profiles anticipates the stability of the boundary layer with respect to inviscid modes, independently of
the gas model. However, in the case of reacting gas a significant decrease of the temperature and velocity values and of their
respective gradients is observed. The inclusion of chemical non-equilibrium determines a further reduction of the temperature
gradient (Fig. 2b). This behaviour will affect the stability of the boundary layer.

Comparison with experimental data
Direct numerical simulations at wind-tunnel conditions have been performed to validate the method used to generate the

base flows (Fig. 1). Experimental data in the case of cold flow (i.e. ideal gas) are retrieved from the experimental campaign
conducted at the Ludwieg-tube in Braunschweig, Germany, whereas data for a high-temperature reacting flow have been
provided by the Japan Aerospace Exploration Agency (JAXA) [3].

Linear stability analysis
The LSA of the base flows is performed to provide a preliminary estimation of the frequency spectrum of those perturba-

tions which are more likely to induce the laminar-turbulent transition. Although no unstable modes were found, the analysis
revealed that in the case of reacting gas the damping rate of the stable modes is much less pronounced than for the ideal gas.
The incorporation of chemical non-equilibrium further reduces the stability of the boundary layer (Fig. 2c).
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Figure 1: Quantitative comparison between experimental and numerical heat flux (based on the code NSMB) at cold flow
conditions (a) and at high-temperature reacting-flow conditions (b).

(a) (b) (c)

Figure 2: (a) Symmetry plane coloured by the value of the Mach number; (b) comparison of the wall-normal component of
the temperature gradient in equilibrium and in non-equilibrium conditions and (c) growth rates of linear perturbations for
different gas models. The values in the case of ideal gas are much lower than the ones of reacting gas and are not represented
here.

CONCLUSIONS

For the angle of attack of 0 and 24 degrees, Direct Numerical Simulations have been undertaken to investigate the in-
fluence of the chemical and thermal modelling on the steady base flow of a generic Apollo capsule geometry. The linear
stability analysis revealed that the inclusion of high-temperature gas effects considerably reduces the stability of the boundary
layer in the wind-ward side of the capsule. These results highlight the importance of including chemical reactions and non-
equilibrium in the investigation of the perturbation growth in the boundary layer of reentry capsules and it lays ground for
future investigations on roughness-induced transition.
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Summary This experimental study explores the effect of temporal forcing on gaseous transverse jets, quantifying jet response via optical 
diagnostics. Low level sinusoidal jet excitation is observed to significantly affect structural and mixing characteristics for transverse jets with 
convectively unstable jet shear layers under unforced conditions. Such excitation, especially in a frequency range close to the fundamental, is 
found to attenuate the cross-sectional asymmetry naturally occurring in such unforced jets. There is also improved molecular mixing for excited 
jets with more symmetric cross sections. Yet when the transverse jet’s upstream shear layer is absolutely unstable in the absence of forcing, 
sinusoidal jet excitation barely affects jet structure or mixing, even with a very high forcing amplitude and wider range of forcing frequencies. 
Different forcing methods, e.g., creating alternative temporal waveforms for jet excitation, are clearly required to control the structural and 
mixing characteristics of transverse jets based on these differing instabilities. 
 

BACKGROUND AND CONTEXT OF PRESENT STUDIES 

 
   The transverse jet or jet in crossflow (JICF)1 ,2  is a canonical flowfield that has been studied for several decades, 
principally for its extensive applications in engineering propulsion systems3. Extensive prior studies of such jets in the 
absence of external forcing4,5,6 have documented a transition in the jet’s upstream shear layer from convective to absolute 
instability as the jet-to-momentum flux ratio J and/or jet-to-crossflow density ratio S are brought below approximately 10 
and 0.40, respectively. JICF structural characteristics have also been studied in relation to shear layer stability 
characteristics7, in part because of the potential contribution of shear layer vortical structures to formation of the well-
known counter-rotating vortex pair (CVP) associated with the jet cross-section and its possible role in improving transverse 
jet mixing as compared with that for a free jet2. It is observed7 that as J decreases for the flush-injected transverse jet, 
initiation of upstream shear layer vortical structures occurs closer to the jet exit. As J is reduced below the transitional value 
of 10, a relatively symmetric CVP is observed under equidensity and low density conditions. On the other hand, at higher 
momentum flux ratios, e.g., J = 41, the flush-injected, equidensity JICF is observed to have delayed shear layer vorticity 
rollup, consistent with a weaker, convective instability, in many cases creating an asymmetric cross-section. Such 
asymmetries diminish as the jet density is reduced and absolute instability in the shear layer is achieved. 
   As noted above, the transverse jet is generally considered to be a better mixer than is a free jet8, where typical mixing 
metrics include scalar concentration decay, jet spread and penetration, and the probability density function (pdf) associated 
with the scalar field. The implications of JICF structure and instability characteristics on molecular mixing have been 
studied in recent experiments9, employing acetone PLIF to quantify traditional mixing metrics as well as jet centerplane- 
and cross-section-based Unmixedness under diffusion-limited flow conditions. In general, absolutely unstable jets are 
observed to create improved mixing with crossflow as compared with convectively unstable jets, yet with a few exceptions, 
notably those associated with jet-crossflow density differences. 
   Achieving improved mixing via active flow control can take advantage of the relationships among JICF shear layer 
instabilities, structure, and mixing parameters. Earlier studies10 on strategic excitation of the JICF show that sinusoidal 
excitation of convectively unstable jets can significantly enhance jet penetration and spread, while such excitation of 
absolutely unstable jets has little impact on jet response. In contrast, square wave excitation10,11,12 at prescribed temporal 
pulsewidths associated with optimal vortex ring formation 13  dramatically alters jet penetration and spread, even for 
absolutely unstable transverse jets. It is of interest in the present studies to utilize more extensive optical diagnostics to 
examine the effect of strategic JICF forcing on jet structural characteristics and, in particular, on molecular mixing. 
 

EXPERIMENTAL APPROACH AND SAMPLE RESULTS 

 
   The present transverse jet experiments are performed in a low-velocity wind tunnel, utilizing non-intrusive PLIF of 
acetone vapor seeded in the jet fluid, which consists of mixtures of nitrogen and helium. The excitation source for PLIF is a 
dual cavity Q-switched Nd:YAG laser (Litron Nano L PIV); details on the optical diagnostics may be found in prior 
studies7,9. Several alternative jet injectors, including a contoured nozzle and straight pipe, are used to create jets issuing into 
a crossflow of air for a range of jet-to-crossflow momentum flux ratios J (5 ≤ J ≤ 41) and density ratios S (0.35 ≤ S ≤ 1.0) at 
a fixed jet Reynolds number, Rej=1900. Axisymmetric excitation for the JICF is applied below the injection system via a 
loud speaker, which can create sinusoidal oscillations or, with control11, temporal square wave oscillations in the jet 
velocity. Hot wire anemometry is used to match the root-mean-square (RMS) of the jet excitation, Uj,rms, at the jet exit 
among different excitation conditions for the range of jet and crossflow conditions explored here. 
                     
a) Corresponding author. Email: ark@seas.ucla.edu  
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                   (a)                                            (b)                                            (c)                                            (d)                                                     (e) 

             
 
                   (f)                                            (g)                                            (h)                                             (i)                                                     (j) 

             
Figure 1. PLIF imaging and quantification of centerplane-based Unmixedness for equidensity transverse jets (S=1.00) for J=41 (top row) and J=5 (bottom 
row). Excitation conditions correspond to Uj,rms=0.07 m/s at ff=1400 Hz, with a mean jet exit velocity of Uj ~ 6.5 m/s. Results correspond to PLIF imaging 
of: (a,f) the instantaneous unforced jet centerplane, (b,g) the instantaneous forced jet centerplane, (c,h) the averaged cross-section of the unforced jet at 
downstream location x/D=10.5, and (d,i) the averaged cross-section of the forced jet at x/D=10.5. Centerplane-based Unmixedness as a function of the 
unforced jet’s centerline trajectory location sc/D, for various forcing frequencies (500-2000 Hz) and in the absence of forcing, is shown in (e) and (j) for J = 
41 and 5, respectively. 
 
   Representative results for the influence of sinusoidal jet excitation are shown in Figure 1. Data in the top row of the figure 
correspond to J=41, where the unforced jet’s upstream shear layer is convectively unstable, and in the bottom row, to J=5, 
where the unforced jet is absolutely unstable. The RMS of the jet perturbation is matched at Uj,rms=0.07 m/s, approximately 
1% of the mean jet velocity Uj, for all forcing conditions. Spectral characteristics of the upstream shear layer of the unforced 
equidensity jets with acetone seeding show that the fundamental frequency of the instability, fo, is approximately 2000 Hz 
for J=5 and in the range 1600-1900 Hz for J=41. Sinusoidal excitation of the J=41 JICF at a forcing frequency ff=1400Hz is 
seen to create a much more rapid initiation of rolled-up vortices closer to the jet exit (Fig. 1(b)) than those naturally 
occurring in the unforced jet (Fig. 1(a)); such forcing also attenuates the degree of natural asymmetry in the cross-sectional 
structure (c.f. Figs. 1(c,d), with averaging over 500 images). A relatively symmetric cross-sectional structure is observed for 
the forced JICF at J=41 for excitation frequencies in the range ff=1400-2500 Hz, relatively close to the jet’s fundamental 
frequency in the absence of forcing; outside of this range there is less influence of forcing on the jet’s cross-sectional 
structure for a matched Uj,rms. Centerplane-based Unmixedness for this convectively unstable JICF in Fig. 1(e) shows a 
rather significant enhancement of the mixing (i.e., a lowered Unmixedness) for excitation in this symmetry-inducing 
frequency range. This result is particularly interesting given that Unmixedness is computed based on centerplane images 
such as those in Figs. 1(a,b), rather than cross-sectional images in Figs. 1(c,d). In contrast, sinusoidal excitation of the 
absolutely unstable JICF at J = 5 has less of an impact on both centerplane (Figs. 1(f,g)) and cross-sectional structural 
characteristics (Figs. 1(h,i)). In turn, the jet’s mixing characteristics for J = 5 are relatively minimally influenced by forcing, 
especially in the farfield region (Fig. 1(j)), irrespective of forcing frequency. Clearly, alternative modes of excitation are 
required to control the degree of mixing for absolutely unstable jets in crossflow, as also documented in this study. 
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LOCAL AND GLOBAL INSTABILITY OF BUOYANT JETS AND PLUMES 
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Summary The local and global linear stability of buoyant jets and plumes has been studied as a function of the Richardson 
number Ri and density ratio S in the low Mach number approximation. Only the m = 0 axisymmetric mode is shown to become 
globally unstable, provided that the local absolute instability is strong enough. The helical mode of azimuthal wavenumber m = 1 
is always globally stable. A sensitivity analysis indicates that in buoyant jets (low Ri), shear is the dominant contributor to the 
growth rate, while, for plumes (large Ri), it is the buoyancy. A theoretical prediction of the Strouhal number of the self-sustained 
oscillations in helium jets is obtained that is in good agreement with experimental observations over seven decades of 
Richardson numbers. 
 

INTRODUCTION 
 
 Buoyant jets and plumes occur in a wide variety of environmental and industrial contexts, for instance fires, accidental gas 
releases, ventilation flows, geothermal vents, and volcanic eruptions. Understanding the onset of instabilities leading to 
turbulence is a research challenge of great practical and fundamental interest. Somewhat surprisingly, there have been relatively 
few studies of the linear stability properties of buoyant jets and plumes, in contrast to the related purely momentum driven 
classical jet. In the present study, local and global stability analyses are conducted to account for the self-sustained oscillations 
experimentally observed in buoyant jets of helium and helium-air mixtures [1].  
  

FORMULATION AND METHODOLOGY 
 
 The flow is assumed to be governed by the compressible Navier-Stokes equations in the low Mach number approximation, 
a feature that allows for large density variations but filters out acoustic waves. In the limit of small density variations, this 
system reduces to the Boussinesq approximation. The steady axisymmetric base flow is obtained by resorting to the 
Newton-Raphson technique for given hyperbolic tangent axial velocity and density profiles at the inlet. Let R denote the 
inlet radius, ρj and Uj the inlet density and axial velocity and ρ∞ the outer density. The most important parameters of the 
problem are then the Richardson number Ri = gR(ρ∞ - ρj)/(ρjUj

2) and the density ratio S = ρ∞ /ρj with Ri and S in the range 
10-4 < Ri < 103 and 1 < S < 7. At low Richardson numbers, buoyancy forces are much smaller than inertia forces, in which 
case the base flow is referred to as a buoyant jet, while at large Richardson numbers, buoyancy is dominant and the base 
flow is said to be a plume. The pure jet and pure plume are reached in the limit Ri = 0 and Ri = ∞ respectively. 
 The linearized system of partial differential equations associated with the non-parallel base flow then gives rise to a two-
dimensional eigenvalue problem in the axial and radial directions, where the eigenvalue is the complex circular frequency  
ω = ωr + iωi of frequency ωr and temporal growth rate ωi. A suitable finite-element discretization of the system followed by 
the implementation of a shift-invert scheme then leads to the determination of the eigenvalues and associated two-
dimensional eigenfunctions. The same methodology is applied to the locally parallel base state at each axial station to 
compute the eigenvalues ω of the local instability problem as a function of axial wavenumber k and azimuthal wavenumber 
m. The convectively/absolutely unstable nature of the base flow is then readily determined as shown in [2] and [3].  
 

LOCAL AND GLOBAL INSTABILITY CHARACTERISTICS 
 
For buoyant jets (low Ri), the axisymmetric m = 0 global spectrum typically displays a single unstable discrete frequency, 
whereas for plumes (large Ri), it is composed of several unstable discrete modes with a maximum growth rate and 
corresponding frequency that are larger by two or three orders of magnitude. The local and global instability results may be 
summarized in the Ri – S state diagram displayed in Figure 1. As the density ratio S and the Richardson number Ri increase 
along a diagonal line, the base flow changes from locally convectively unstable (white region) to locally absolutely unstable 
(blue and red regions) as the zero absolute growth rate neutral curve (thin line) is crossed. As the streamwise extent of the 
absolutely unstable domain reaches a critical size, the base flow becomes globally unstable (red region) as the neutral global 
stability curve (thick line) is crossed. Buoyant jets (low Ri) successively experience all three qualitative states as S increases 
while plumes are much more unstable and exhibit a rapid transition to global instability. The dip in the global neutral curve 
at intermediate Ri’s is due to a shift from an inertia driven instability mechanism for buoyant jets to a buoyancy dominated 
mechanism for plumes. No globally unstable discrete frequency is obtained for the m = 1 helical mode, but the downstream 
sponge region needs to be carefully tuned in order to stabilize the continuous spectrum, as in classical jets. A local stability 
analysis [2] in the Boussinesq approximation framework (S close to unity), recently reported that the m = 1 mode is the only 
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one to become absolutely unstable. It may be concluded that the magnitude of the absolute growth rate is then too weak to 
drive an unstable global mode.   

 

 
Figure 1: Instability regions and associated neutral curves in Ri – S plane (log-log scale) for the axisymmetric mode m = 0 at 

Reynolds number 200. White region: locally convectively unstable; Blue region: locally absolutely unstable; Red region: 
globally unstable (and absolutely unstable).   

 
A sensitivity analysis on the relative contributions to the global growth rate and frequency of shear, buoyancy and other terms in 
the linear dynamical operator, reveals that shear is the dominant factor for the global instability of buoyant jets while buoyancy 
becomes dominant for plumes. 
 

GLOBAL FREQUENCY AND SELF-SUSTAINED OSCILLATIONS 
 

 Light jets have been known for some time to give rise to axisymmetric self-sustained oscillations. Prior theoretical 
investigations have relied on local stability approaches, thereby implicitly assuming that the base flow is weakly non-parallel. 
The predictions of the global analysis are compared in Figure 2 with the experimental observations of Cetegen & Kasper [1]. 
The blue line represents the empirical formula resulting from experiments and the red line the theoretical prediction of the 
present study.  
  

 
 

Figure 2: Strouhal number St = ωr/2π versus Richardson number (log-log scale) in the range 10-4 < Ri < 103: Comparison 
between prediction of global stability theory (blue line) and experimental observations of Cetegen & Kasper [1].   

 
 The linear global mode theory is seen to closely agree with the observations over 7 decades of Richardson numbers. For 
buoyant jets (low Ri), the Strouhal number is almost constant with Ri, while for plumes (large Ri), it continuously increases. 
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WAKE DEVIATION BEHIND A FLAPPING FOIL :
A SYMMETRY-BREAKING BIFURCATION

Damien Jallas∗1, Olivier Marquet1, and David Fabre2

1ONERA, The French Aerospace Lab, Fundamental and Experimental Aerodynamics Department (DAFE)
2Université de Toulouse, INPT, UPS - Institut de Mécanique des Fluides de Toulouse (IMFT)

Summary The mean deviation of the time-periodic wake observed behind flapping foils is investigated with a two-dimensional linear
stability analysis. A method preserving the spatio-temporal flow symmetry imposed by the foil motion is specifically developed to determine
the non-deviated flow. A Floquet stability analysis of this time-periodic flow then shows the existence of an unstable real Floquet mode for
a pitching frequency corresponding to the onset of the mean wake deviation.

INTRODUCTION

At moderate Reynolds numbers, several flow regimes are observed in the wake of flapping foils depending on flapping
frequency and amplitude [1]. When increasing one of the parameters, the pattern of the time-periodic wake evolves from the
classical Bénard-von Karman vortex street, characteristic of drag regimes, to the reverse Bénard-von Karman vortex street,
characteristic of propulsive regimes [2]. For even larger flapping frequencies, a deviation of the vortex street from the stream-
wise direction, shown in Figure 1(b), has been observed experimentally on pitching foils [3] and captured in two-dimensional
simulations of heaving foils [4]. Recently, a linear stability analysis of the time-periodic wake have been performed to investi-
gate the three-dimensional destabilisation of the wake [5]. The objective of the present study is to explain the wake deviation
as a two-dimensional instability of the time-periodic wake. Flow configuration and results of unsteady direct simulations are
first described. The numerical method, based on a damping of the flow component breaking a spatio-temporal symmetry, is
presented and used to obtain the time-periodic non-deviated flow. Its stability is then investigated by performing a Floquet
stability analysis.

FLOW CONFIGURATION AND UNSTEADY SIMULATIONS

We investigate the incompressible viscous flow around a foil immersed in a fluid of uniform upstream velocity. The
geometry of the foil is a half-cylinder closed by a triangle, as in the experimental investigation [3]. All the variables are made
non-dimensional using the diameter and the upstream velocity. The non-dimensional chord is equal to 4.6 and the Reynolds
number is fixed to Re = 255. The pitching motion imposed at the center of the cylinder is a sinusoidal law characterised by
the non-dimensional amplitude A = 1.07 and a varying non-dimensional frequency f .
A snapshot of the vorticity for f = 0.45 is displayed in Figure 1(b) and shows the deviation of the vortex street from the
streamwise direction. At this fixed flapping amplitude, we observed deviation of the wake for flapping frequencies greater
than fc ∼ 0.4. The critical frequency obtained numerically is larger than the critical frequency fc ∼ 0.3 reported in the
experimental investigation [3]. We suspect that such a discrepancy is due to confinement effects.

(a)

(b)

(c)

Figure 1: (a) Norm of the complementary part as a function of time at f = 0.45. Spatial distribution snapshot of the vorticity
behind the pitching foil for different values of the damping coefficient at f = 0.45. (b) χ = 0 and (c) χ = 0.2.

∗Corresponding author. Email: damien.jallas@onera.fr
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FLOW SYMMETRY PRESERVING METHOD

For large flapping frequencies, the time-periodic wake is deviated and the flow breaks the following spatio-temporal sym-
metry ωz(x, y, t) = −ωz(x,−y, t + T/2) satisfied for small flapping frequencies. The numerical technique developed here
preserves the above symmetry by damping the symmetry-breaking component of the flow. The flow field q is decomposed
as the sum of the symmetric component qs, which respects the above symmetry condition, and a symmetry-breaking compo-
nent qc. Introducing such decomposition into the incompressible Navier-Stokes equations and extracting the symmetry and
symmetry-breaking terms gives the system of coupled equations

∂qs
∂t

+Rs(qs, qc) = 0
∂qc
∂t

+Rc(qs, qc) = −χBqc

where the original nonlinear operator R = Rs + Rc is decomposed into its symmetry and symmetry-breaking component.
The second equation describes the linear dynamics of the symmetry-breaking component qc around the unsteady symmetric
component qs. The source term −χBqc is introduced in this equation to suppress the symmetry-breaking component. An
appropriate choice of the damping coefficient χ leads to the stabilisation of the second equation and ensures the suppression
of the symmetry-breaking component. When qc vanishes, the operator Rs is equal to the operator R and the solution qs
satisfies the original equation. Figure 1(a) displays the magnitude of the complementary component as a function of time, for
the flapping frequency f = 0.45 and the damping coefficient χ = 0.2. The method is activated for t > 45. The damping
of the complementary component is clearly visible and transforms a deviated wake in Figure 1(b) at t = 40 into a stabilised
wake in Figure 1(c) at t = 110.

(a) (b)

Figure 2: (a) Spectrum of the Floquet multiplier µ at f = 0.4. The leading Floquet mode is µ1 ' 1.046. (b) Leading Floquet
multiplier modulus as a function of f .

FLOQUET STABILITY ANALYSIS

The linear stability of the time-periodic flow computed in the previous section is adressed here with a Floquet analysis.
Forty Floquet multipliers, corresponding to the growth of Floquet modes over one flapping period, are displayed in Figure
2(a) for the frequency f = 0.4. One real Floquet mode (black circle) is outside the unit circle, showing that the time-
periodic base flow is unstable and its period is not modified by the instability. The Floquet multiplier of largest magnitude has
been determined and is shown in Figure 2(b) for several flapping frequencies. The Floquet mode gets unstable for a critical
frequency 0.39 < fc < 0.4. It is expected to break the spatio-temporal symmetry of the flow. The analysis of this mode
and its time-averaged component is an on-going work necessary to further explain the onset of the wake deviation by a linear
symmetry-breaking instability.
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LONGITUDINAL VORTICES AND THEIR SECONDARY INSTABILITY ON SWEPT WING  

Victor Kozlova) & Stepan Tolkachev 
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS Novosibirsk, Russia 

 
Summary In the study, the development of stationary and secondary disturbances excited by cylindrical and two-dimensional roughness 
elements were investigated using hot-wire anemometry and liquid crystal thermography. A pair of stationary vortices forms behind the 
cylindrical roughness element and modifies the boundary layer by destabilizing it. The used experimental techniques allowed us to find the area 
of maximal receptivity to the roughness location away from the attachment line. It was shown, that two-dimensional roughness element has a 
destabilizing effect on disturbances, induced by cylindrical roughness element. Also the two-dimensional roughness element is able to excite 
the stationary structures, and then the secondary disturbances, whose frequency range is lower than in the case of stationary vortices excitation 
by cylindrical roughness element. 
 

It is well known that swept wing boundary layers are subject to the so-called cross-flow instability, which leads to 
formation of vortices prone to a secondary instability [1]. The aim of this work is to investigate further the role of localized 
roughness on the process of laminar-turbulent transition on the swept wing under favourable pressure gradient condition. 
For this purpose hot-wire anemometry was used in combination with liquid crystal thermography. 

Experimental conditions 
The experiment was carried out in the low-turbulent wind tunnel –324 in the Institute of Theoretical and Applied 

Mechanics SB RAS. The cross section of the working area is 1000 1000 mm, its length is 4000 mm. Flow turbulence 
degree was laess than 0.03%. Free stream velocity varied within the range of  U  = 4.2 – 14.6 m/s and was monitored with 
the Pitot-Prandtl tube connected to electronic manometer. The swept wing model (Fig.1.) had sweep angle 45°. To prevent 
separation on the upper side of model angle of attack was set up -16.1°. To exclude a laminar separation on the down side of 
the model, the flow there was tripped with an array of 15 mm height cones put on the position of airfoil maximal thickness. 
In the diffuser of wind tunnel, a loudspeaker was mounted for creating acoustic field. For excitation of longitudinal vortices 
cylindrical roughness elements with diameter 1.6 mm, height 0.4 mm, 0.7 mm and 1 mm were used. Also for this purpose 
two-dimensional roughness element was used with length 200 mm, width 15 mm and height varied from 0 mm to 1.6 mm.  

 
Fig.1. Experimental setup. 

Combining of hot-wire anemometry and liquid crystal thermography techniques allowed us to choose the most effective 
regimes and investigate them quantitatively. 

 
Results 

Roughness element located at the leading edge excited a pair of counter rotating vortices, one of which decayed due to 
the presence of crossflow. The position of maximal cross-flow receptivity to the position of roughness element on the 
leading edge and it was on 55.1° from the line of airfoil symmetry. Increasing of roughness height or flow velocity are 
destabilizing factors for the cross-flow instability (Fig.2.). For investigation of secondary disturbances we have chosen the 
following configuration: roughness element with height 0.8 mm on the position 55.1° from the line of airfoil symmetry. 
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Fig.2. The region of maximum susceptibility to the roughness on the leading edge of an swept wing: the position of 

roughness elements (a); characteristics of susceptibility for stationary and secondary disturbances (b); and visualization of 
longitudinal structures behind roughness elements (c). 

Two-dimensional roughness element was placed on the flat part of the wing model near the joint of cylindrical to flat 
part of the airfoil. Starting from 0.91 mm of roughness height it created longitudinal structures with wavelength 4 mm. 

In the position of stationary vortex core, high-frequency wavepacket of the secondary disturbances appears. Depending 
on the flow velocity, different scenarios of secondary disturbance development occur. At small velocity (7.7 m/s) no 
wavepacket was observed. At moderate velocity (10.4 m/s) the wavepacket appeared and developed through linear stage 
(amplitude growth without change of spectra shape), nonlinear stage (growth of low frequency part of the spectra) to 
turbulence. At quite high velocity (13.2 m/s) appearance of super harmonics of wavepacket was observed followed by the 
grows of frequencies of the rest of the spectra. 

Using low-amplitude acoustic field (70 dBA) to excite controlled disturbances, their phase velocity defined in linear 
regime was 0.55U  and sharply increased in the nonlinear regime to 0.63U . The position of change of the phase velocity is 
in a good agreement with a point of deviation of amplitude growing from exponential law. 

Experiments with high-amplitude acoustic field (85 dBA) showed appearance of additional longitudinal structures in 
case of localized roughness element and in case of two-dimensional roughness element. 

 
Fig.3. Influence of two-dimensional roughness height h2d on the stationary structure development: a) h2d = 0 mm; 

) h2d = 0.91 mm; ) h2d = 1.3 mm. 

 
CONCLUSIONS 

 
This work is a further step to understand process of laminar-turbulent transition on the swept wing. Experimental 

techniques, used in this work could be used for defining the position of maximal receptivity in respect to the roughness 
element position. 

 
This work was supported by the project of the President of the Russian Federation for Leading Scientific Schools (NSH-
-8788.2016.1), RFBR 15-08-01945 and 16-19-10330. 
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NONLINEAR TEMPORAL DYNAMICS OF AXISYMMETRIC WAVEPACKETS IN
SUBSONIC JETS

Onofrio Semeraro1, François Lusseyran ∗2, Peter Jordan3, and Luc Pastur4
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2LIMSI, CNRS, Université Paris-Saclay, Orsay, France

3Institute PPrime, Université de Poitiers, Poitiers, France
4LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

Summary It is well established that turbulent jets are characterized by large-scale coherent structures. These structures exhibit a remarkable
spatio-temporal coherence, despite turbulence. In this work, we analyse from the qualitative point of view the temporal dynamics of
axisymmetric, coherent structures educed from experimental, subsonic iso-thermal jets. We use the data presented by Breaky et al. [2],
where time-series describing the temporal behaviour of the wavepackets are extracted at different locations along the streamwise direction
of the jet. The final goal of the contribution is assessing to what extent non-linear models can reproduce the temporal dynamics of the
coherent structures and analysing the resulting dynamics from a qualitative point of view.

INTRODUCTION AND EXPERIMENTAL SETUP

As demonstrated in the experiments by Mollo-Christensen [7] and by Crow & Champagne [3], turbulent jets are char-
acterized by large-coherent structures, exhibiting a remarkable spatio-temporal coherence. These observations have been
further corroborated in recent years: indeed, it has been recognized that these structures can be modelled as linear or nonlinear
instability wavepackets, obtained as solution of instability analysis based on appropriate steady solutions (for instance, the
meanflow of the turbulent jet). The comparison between linear or nonlinear instability wavepackets and the large coherent
structures of turbulent jets is typically verified a-posteriori, by directly comparing the experimental/numerical results with the
stability analysis. A complete account of recent studies is contained in the review by Jordan & Colonius [5].

A last, important aspect is the associated acoustic far-field of these jets: it has been found that the dominating components
of the acoustic field are correlated with these low-frequency structures (see, for instance [4]). In this sense, the analogy
between the wavepackets in turbulent jets and the instability waves is particularly appealing as it might provide explanations
for the basic mechanisms of the sound generation in turbulent jets and - possibly - strategies for the control of the acoustic
radiation.

Our contribution enters into this framework as a follow-up of the investigations by Breaky et al. [2]; in [2], the analysis
of the sound-field radiating at low-angles is performed by relating the radiation to the near-field pressure fluctuations. The
setup of the experiment is shown in Fig. 1a, while a scheme of the ring of microphones used for the investigation is sketched
in Fig. 1b. The experiment runs at Mach numbers Ma = 0.4 − 0.6. For our investigation, we consider the time-series
associated with axisymmetric wavepackets, educed using the azimuthal ring of microphones and post-processed by mean
of proper-orthogonal decomposition (POD) analysis. In particular, we study the runs at Ma = 0.6 and Reynolds number
Re = 5.7× 105, at different locations along the streamwise direction (0.5 < x/D < 8.9).

(a) Nozzle and installed ring. (b) Sketch of the 7-ring near-field array.

Figure 1: Experimental setup for the analysis of turbulent, subsonic jets. Adapted from [2].

∗Corresponding author. Email: francois.lusseyran@limsi.fr
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Figure 2: Time-series as a function of time and streamwise locations x/D.

TEMPORAL DYNAMICS: PRELIMINARY RESULTS AND PERSPECTIVES

In Fig. 2, the temporal behaviour associated with the wavepackets is shown as a function of time t = t∗U/D, adimension-
alised with the velocity U and the diameter of the nozzle D, and the streamwise direction. By means of nonlinear dynamical
system tools by Kantz and Schreiber (see [6]), the temporal dynamics is characterized by computing the embedding dimension
and the correlation dimension d at each position in x/D. A thorough parametric analysis is carried out over several param-
eters for assessing the convergence of our results; for instance, a minimal time-windows t ≈ 2500 is identified by studying
the convergence of d as a function of time (Fig. 3a). It is shown that upstream positions are characterized by a more complex
dynamics. Despite the dimension d is rather small, the analysis of the qualitative dynamics requires a modelling step for
identifying the essential dynamics underlying the system. The identification is performed by producing nonlinear polynomial
models of the time-series, by mean of the nonlinear auto-regressive-moving-average (N-ARMA) algorithm, see [1]. In Fig. 3b,
the resulting phase-space portrait is shown for a N-ARMA model of the time-series extracted at location x/D = 5.75, using
delayed temporal-coordinates along y and z.

A qualitative analysis of the attractor will be completed and the control-oriented application of the linear and nonlinear
models will be discussed. In particular, the possibility of using linear models for the description of the input-output behaviour
of the system will be highlighted.

Acknowledgments The authors wish to acknowledge Luis A. Aguirre for sharing his system identification package and Christophe Letel-
lier for fruitful discussions. This work is supported by the Agence Nationale de la Recherche (ANR) under the ”Cool Jazz” project, grant
number ANR-12-BS09-0024.
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Figure 3: Correlation dimension at 3 different locations, as a function of the time-window of analysis (a), and phase-space
portrait of a N-ARMA model based on the measurements at x/D = 5.75, (b).
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DIRECT NUMERICAL SIMULATION OF THE TURBULENT FLOW INSIDE A SIMPLIFIED
STAGE OF HIGH-PRESSURE COMPRESSOR
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1Laboratoire M2P2, Aix-Marseille Université, Marseille, France
2Mechanical Engineering Department, Université de Sherbrooke, Sherbrooke, Québec, Canada

Summary The present work reports high-order direct numerical simulations (DNS) of the turbulent flow inside a simplified stage of high-
pressure compressor. The geometry corresponds to the experimental set-up of Owen and Pincombe [4] and Farthing et al. [1]. The axial
Reynolds number is fixed to Re = 5300, while five values of the Rossby number are considered: Ro = 1, 2, 4, 40 and +∞. For Ro = +∞,
the main flow along the axis is similar to a round jet with packets of helicoidal turbulent structures. A vortex stretching mechanism generates
elongated structures in the axial direction. A secondary flow is produced inside the cavity with a main recirculation. For Ro = 2 and 1,
modes 1b and 2b are obtained respectively, coexisting with type 1 and type 2 instabilities developed along the disks.

INTRODUCTION

The present objective is to investigate by high-order DNS the turbulent flow inside a simplified stage of high-pressure
compressor (Fig.1a). Such flows, encountered in various types of gas turbine, are the site of important mechanical and thermal
constraints. The compressor is composed of two disks of radius b separated by an interdisk spacing s. Two cylindrical pipes
of radius a and length h1 and h2 respectively are located from either side of the cavity. The hydrodynamic fields depend
on two parameters: the axial Reynolds number Re = 2aUb/ν, based on the axial velocity Ub imposed at the inlet, and the
Rossby number Ro = Ub/(Ωa), where ν is the kinematic viscosity of the fluid and Ω the rotation rate. The geometrical and
physical parameters correspond to those considered experimentally by Owen and Pincombe [4] and Farthing et al. [1]. These
authors were the first to characterize by velocity measurements the four flow regimes appearing in such a cavity: Mode 1a
is characterized by a non-axisymmetric vortex breakdown (VB) and the appearance of an oscillating jet within the cavity for
20 < Ro < 100; Mode 2a is characterized by an axisymmetric VB and occasionally, an oscillation of the main flow inside the
cavity for 2.6 < Ro ≤ 20; Mode 1b is characterized by a non-axisymmetric VB and a flickering flame effect inside the cavity
for 1.5 < Ro ≤ 2.6; Mode 2b is characterized by an axisymmetric VB and occasionally, a re-entry of fluid for Ro ≤ 1.5. For
a detailed state-of-art, the reader can refer to the review of Owen and Long [3].

NUMERICAL METHOD

The Navier-Stokes equations written in primitive variables are discretized in cylindrical coordinates using a second-order
semi-implicit temporal scheme. The pressure-velocity coupling is overcame through a projection scheme reducing the equa-
tions into a set of Helmholtz and Poisson equations solved by a diagonalization technique. The spatial discretization is
achieved by fourth-order compact schemes in the radial and axial directions and Fourier series in the tangential direction. The
axis singularity is treated by the method proposed by Sandberg [5] extended to the fourth-order. A multidomain approach
based on the continuity influence matrix technique has been coupled with an hybrid MPI/OpenMP parallelization [2].

A turbulent velocity profile calculated in preprocessing is imposed at the inlet, while convective conditions are imposed at
the outlet. In the non-rotating (resp. rotating) case, the cavity is decomposed into 4 (resp. 7) subdomains with 7.5 (resp. 13.1)
millions of nodes. The time step is fixed to 10−3s (Ro ≥ 40) and 5× 10−4s (Ro ≤ 4).

RESULTS

The Reynolds number is fixed to Re = 5300, while five values of the Rossby number are considered: Ro = 1, 2, 4, 40 and
+∞. The geometrical parameters are fixed to G = s/b = 0.533, a/b = 0.1, h1/b = 0.5 and h2/b = 0.97.

In the non-rotating case (Ro = +∞), the main axial flow is strongly influenced by the sudden enlargement due to the
cavity. Fluid impinges the second disk, which creates a large recirculation bubble within the cavity, whose center is located
at (z − h1)/s ' 0.54 and r/b ' 0.678, in good agreement with the experimental value [4, 1]. Smaller recirculations
appear also at each corner between the disks and the shroud. The flow generated at the pipe inlet is highly turbulent with
some turbulent structures dissipated before the cavity inlet (Fig.1b). Helicoidal turbulent structures are formed around the
axis and then advected by the main axial flow. Thinner structures under the form of elongated axial structures produced by

∗Corresponding author. Email: sebastien.poncet@USherbrooke.ca
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a vortex-stretching phenomenon roll up around them. For Ro = 40, the flow structure is very close to the one obtained
without rotation. The main difference lies in the high tangential velocity values at r/b ≈ 0.13 due to the formation of a free
vortex. For Ro ≤ 4, the flow within the cavity is very similar to the flow inside a rotating cavity with a superimposed radial
outflow. Two boundary layers, known as Ekman layers, develop on the disks. They are separated by a central inviscid region
in quasi solid body rotation. The tangential velocity varies in the radial direction there: the pressure gradient is balanced by
the centrifugal force. Figure 1c shows that the mode 1b corresponding to a flickering flame effect is recovered for Ro = 2.
The fluid enters the cavity because of the oscillating jet and leaves it through a large arm. The oscillating jet presents two
characteristic frequencies (2πf)/Ω: 2.71 and 7.26. For Ro = 1 and 2, two types of Ekman layer instabilities appear along
the disks (Fig.1d). Type 2 instabilities, related to the effects of Coriolis and viscous forces, develop, for 0.2 < r/b < 0.5, as
negative counter-rotating spirals. Their angle α varies with r in the range [−22,−5.5]◦ (resp. [−14,−5.4]◦) forRo = 1 (resp.
2). The normalized wavelengths λ/δ are equal to 19.04 and 20.02 for Ro = 1 and 2 respectively, where δ = 0.6

√
ν/Ω is the

Ekman layer thickness. Type 1 instabilities are observed for 0.1 ≤ r/b ≤ 0.2. This inviscid instability appears under the form
of positive spirals characterized by a normalized frequency (2πf)/Ω equal to 2 and 6.2 for Ro = 1 and 2 respectively.

(a) (b)

(c) (d)

Figure 1: (a) Schematic representation of the system; (b) Isosurfaces Q = 1 of the Q-criterion colored by the radius r for
Ro = +∞; (c) Isovalues of uz/Ub = 1 for Ro = 2; (d) Isovalues Q = 0.01 of the Q-criterion colored by r for Ro = 1.

CONCLUSIONS

High-order DNS have been performed in a simplified stage of high-pressure compressor corresponding to the experiments
of Owen and Pincombe [4] and Farthing et al. [1]. The axial Reynolds number has been fixed to Re = 5300 and five values
of the Rossby number have been considered: Ro = 1, 2, 4, 40 and +∞. For Ro = +∞, the main flow close to the axis is
similar to a round jet with packets of helicoidal turbulent structures. This axial flow produces also a secondary flow inside the
cavity with a main recirculation. For Ro = 1 and 2, modes 1b (oscillating jet) and 2b have been obtained respectively. Both
coexist with spiral patterns developed in the disk boundary layers under the form of type 1 and type 2 instabilities.
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Large-scale flow modes in turbulent Rayleigh-Bénard convection

Robert Kaiser∗and Ronald du Puits
Institute of Thermodynamics and Fluid Mechanics, Technische Universitaet Ilmenau, Ilmenau, Germany

Summary The modes of the global flow structure in turbulent Rayleigh-Bénard convection in air (Pr = 0.7) at various aspect ratios between
1 ≤ Γ ≤ 4 were studied experimentally. By the use of an infrared camera, high resolution distributions of the local wall heat flux at the
surface of the heated bottom plate were measured. The data reveals a spot of enhanced heat flux, which is correlated to the down-welling
motion of the fluid. Based on this, the position of the large-scale vortex can be identified. Varying the height of the fluid layer, a critical
aspect ratios of Γcrit = 1.65 was found for the transition from a single vortex to a double vortex structure, which agrees very well with
previous experimental and numerical investigations if one takes into account a Rayleigh number dependency of that quantity.

INTRODUCTION

A model experiment to study thermally driven flows in nature and technology is the Rayleigh-Bénard set-up. In this
canonical flow, a horizontally infinite fluid layer is heated from below at a constant temperature Th and cooled from above
at a constant temperature Tc under the gravitional acceleration of the Earth g. The entire set-up is fully described by three
dimensionless input parameters. The Rayleigh numberRa characterizes the thermal driving forceRa = βgH3(Th−Tc)/(aν)
with β as the thermal expansion coefficient. The Prandtl number Pr is defined as the ratio of the momentum diffusivity ν and
the thermal diffusivity a. The third parameter, the aspecto ratio Γ, emerge from the vertical confinement in experiments and
describes the geometry of the convection cell as the ratio of the horizontal dimension D compared to the vertical dimension
H . The main interest is the convective heat flux q̇c from the bottom to the top plate expressed as the Nusselt number Nu =
q̇cH/(κ(Th − Tc)), which is defined as the ratio of the convective heat flux compared to pure heat conduction through the
fluid layer. Here, κ is the thermal conductivity of the fluid layer.
In the last three decades, a lot of experimental apparatuses were built up to scan systematically the Ra − Pr parmeter space
with respect to Nusselt scalingNu ≈ Raγ1Prγ2 [2]. At the same time, several theories were evolved to predict the convective
heat flux by an estimation of γ1 and γ2 [5]. While the measurements were conducted in convection cells with aspect ratios
equal or smaller than one, the theoretical predections are derived for Γ → ∞. Therefore we performed measurements of the
convective heat flux locally on the heating plate at various apect ratios between 1.1 ≤ Γ ≤ 4 by keeping the Rayleigh number
virtually constant 4 · 1010 ≤ Ra ≤ 4 · 1011. In order to understand the aspect ratio dependency, local measurements of the
wall heat flux has been conducted with highly spatial resolution using infrared thermography.

EXPERIMENTAL FACILITY AND MEASUREMENT TECHNIQUE

The measurements were performed in the large-scale convection facility called the Barrel of Ilmenau. Inside this upright
cylinder, air at ambient pressure (Pr = 0.7) is confined between two horizontal plates with a diameter of D = 7.15 m. The
vertical distance of the plates can be continuously changed from H = 0.15 m to H = 6.30 m, while the temperature differ-
ence can be set up to 60 K. Based on this boundary conditions, a Rayleigh number variation from Ra = 108 to Ra = 1012 is
achievable. For detailed information of the convection cell, we refer to [6].
The processes of the heat transport is investigated in the vicinity of the heating plate using an infrared camera, see figure ??.
Therefore, a thin layer of well-known heat conductivity, commonly called slab, is coated on the surface of the temperature reg-
ulated bottom plate [3]. While the temperature of the lower surface of the slab is maintained at the heating plate temperature,
the free surface is cooled by the near wall flow phenomena which is observed with a high resolution infrared camera (640x480
pxs2). All measurement runs were performed for 5h with a sampling rate ig 1Hz. Based on this measurement technique,
the two-dimensional wall heat flux is calculated with highly spatial and temporal resolution and the global heat flux can be
investigated as the sum of all underlaying local transport processes near the heating plate [7].

RESULTS

First of all, the measurement results show that the local wall heat flux is distributed strongly inhomogeneous on the heating
plate, whereas a variation of up to 30% of the spatial and temporal average is observable, see figure ??. Based on previous
investigations combining infrared thermography and planar PIV in a slender rectangular convection cell [7, 8], the near wall
flow field along one large-scale vortex could be divided into three characteristics flows: the impinging jet (down-welling fluid),
the plate parallel shear flow (central region) and the boundary layer deflection (up-welling fluid). Especially the impingement
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on the heating plate of the down-welling fluid causes a spot of enhanced heat flux and the position of the large-scale vortex
can be identified. Based on the time resolved data set for 1 ≤ Γ ≤ 4, the transitional behaviour of the modes of the global flow
structure is investigated by the calculation of the averaged life-time of either one large-scale vortex or two smaller vortices.
The critical aspect ratio is given by the equal probability of both structures and appears at Γcrit = 1.65. This result is in good
agreement with a previous estimation by du Puits et al. [1]. They measured the profiles of the horiztonal velocity components
inside the boundary layer near the cooling plate and observed a velocity reduction of 20% between 1.47 < Γ < 1.89. By
linear interpolation of the averaged horiztonal velocity, a critical aspect ratio of Γcrit = 1.68 was estimated. Furthmore,
Bailon-Cuba et al. [4] performed serveral direct numerical simulations at moderate Rayleigh numbers and various aspect
ratios. Using the global Nusselt number Nu(Γ), critical aspect ratios of Γcrit = 2.5 at Ra = 107 and Γcrit = 2.25 at
Ra = 108 were calculated. If a Rayleigh number dependency is considered, all experimental and numerical results are in very
good agreement.
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Summary We suggested the new prediction parameter for drag reduction effect of the spanwise wall-oscillation control based on both the
acceleration and shear rate in the wall-normal direction, which is available for the larger oscillation time-period (T > 150). Additionally, we
conducted direct stability analysis on spanwise-oscillatory turbulent-channel. The present results suggest that the wall oscillation affects on
the transient growth rate, while it does not quantitatively correlate with the control performance. The drag reduction effect of the spanwise
wall-oscillation is not dominated only by the linear transient behavior of the streak.

PROBLEM SETTING

Spanwise wall-oscillation control for friction-drag reduction [1] have been discussed about its performance and mechanism
for the past few decades. The control achieves a considerable drag reduction rate [2]. It still attracts attention about the drag-
reduction mechanism in order to improve the methods. Prediction methods for the drag reduction rate had been suggested
[3, 4, 2, 5]. The drag reduction is correlated with a parameter combination of height from the wall, acceleration scale or
penetration length scale of the Stokes layer for the cases of high frequency oscillation, which the time period is T < 150.
However, that is not true for the cases of low frequency oscillation. In the present report, we suggest the new dominant
parameter for the drag reduction, basically to use the acceleration and shear rate in both time and wall-normal directions. We
calculate the parameter by the theoretical laminar solution of the second Stokes problem [6] (as shown in Fig. 3 (b)) and
compare with computation results obtained by previous papers [7, 8].

On the other hand, several trials to make a connection with streak modification to drag reduction have been conducted in
these years [9, 10, 11, 12]. The secondary instability of streak is considered to be a significant part to maintain turbulence
[13]. Duque-Daza et al. (2012) showed that there was a good qualitative correlation between the change in streak growth
and drag reduction in streamwise-travelling spanwise oscillatoru channel by solving the initial value problem for linearized
Navier-Stokes equations. Hack et al. (2015) referred that the flow was stabilized due to the weaker non-modal growth when
bypass mechanisms were dominant, although transition could be promoted due to fast growth of the modal instability at large
amplitude oscillation. In the present study, we conduct direct stability analysis on spanwise-oscillatory turbulent channel flow
as shown in Fig. 1. We include the unsteady turbulence effect on the analysis to discuss the transient dynamics more precisely,
which is dominated by the new prediction parameter.

CONTROL PERFORMANCE & NEW PREDICTION METHOD

The bulk mean velocity, Ub, is increased in the spanwise-oscillatory channel under constant pressure gradient, ∂p̄/∂x. The
amplitude of the oscillation is W0 and the time period is T . All variables are normalized by the viscous wall unit in the paper.
The increase of Ub is described in Fig. 2 (a) obtained by [7, 8]. There are the optimal oscillation time period around T = 75
for each oscillation amplitude W0. Relationship of the increase, ∆Ub, and the acceleration of the oscillating spanwise shear
rate,

∣∣∂2 ⟨w⟩ /∂y∂t∣∣, at y(= yd) = 13 as the transient effect is represented in Fig. 2(b), which is described in Eq. (1). This
new prediction method is available for the cases of large time period (T > 150).∣∣∂2 ⟨w⟩ /∂y∂t∣∣ = 2

√
2π/T · exp (−yd/δ) , δ =

√
T/π (1)

DIRECT STABILITY ANALYSIS ON OSCILLATORY TURBULENT CHANNEL

In the direct stability analysis on the spanwise-oscillatory turbulent channel flow, variables, fi, are decomposed in the
phase-averaged and the perturbation, ⟨fi⟩ and fi”, respectively. The resultant linearlized Navier-Stokes equations and the
continuity equation of the perturbation in the oscillatory turbulent-channel are given in Eqs. (2), which includes the total
viscosity defined as νT (= ν∗T /ν

∗) = 1 + νt.

∂ui”/∂t+ ⟨uj⟩ ∂u”i/∂xj + u”j∂ ⟨ui⟩ /∂xj = −∂p”/∂xi + ∂/∂xj(νT∂u”i/∂xj) (2)
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Figure 1: Schematic of the
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channel.
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Figure 2: (a) The increase of bulk mean velocities under spanwise oscilla-
tion, ∆Ub, those are obtained by [7, 8]. (b) Relationship of ∆Ub and the
acceleration effect of the spanwise shear rate,

∣∣∂2 ⟨w⟩ /∂y∂t∣∣, at y = 13.

Since the oscillatory base-flow ⟨ui⟩ is homogeneous in x and z direction, all perturbations are expressed in Fourier space
as f”i(x, y, z, t) = f̂i(y, t)e

i(αx+βz). Here, the hat superscript represents the Fourier coefficient, which is time dependent,
while α and β denote the streamwise and spanwise wave numbers, respectively. We obtain the maximum transient growth
rate Grate of the kinetic energy for each combination of (α, β) and the target time, τ . The computation method is expanded
for that of a certain wave number from that of other papers [14, 15]. The program code is validated based on comparison with
other papers [16, 17].

We show the oscillatory base-flow in Fig. 3 and Grate in Fig. 4 for the inner optimal mode of turbulent channel, (α, β) =
(0, 31.4), which scale corresponds to that of streak (λz(= 2π/β) = 100) at Reτ = 500. We compare Grate for controlled
cases starting from four different phases of oscillation, those time periods are T = 16, 75 and 250. At a glance, the change
in linear growth in spanwise-oscillatory turbulent-channel does not quantitatively correlate with the control performance.
The growth rates with the oscillation of T = 16 are mostly affected for any target times than those of other cases (Fig. 4
(a)), although the increase of Ub of that case is not larger than others (Fig. 2). Further discussions will be described in the
presentation.
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Figure 3: Oscillatory
base-flow, ⟨w⟩, based
on the theoretical so-
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Figure 4: Transient maximum growth rate, Grate, for controlled cases starting from four
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Summary Direct numerical simulations of rotating turbulence driven by an external force are performed. In strongly rotating systems, the
flow in the statistically steady state has a coherent cyclonic vortex (a Taylor column), and is two-dimensional and anisotropic. In weakly
rotating systems, the flow in the statistically steady state is in the three-dimensional isotropic Kolmogorov turbulence regime. The two-
dimensional anisotropic flow and a three-dimensional isotropic Kolmogorov turbulence are bistable at the system’s angular velocities in a
range. The transitions between the two flow regimes are discontinuous, when the angular velocity is increased or decreased. This hysteretic
behavior can be understood by stability of the cyclonic vortex.

INTRODUCTION

In the rotating turbulence, the crossover of two-dimensional (2D) turbulence in strongly rotating systems and three-
dimensional (3D) turbulence in weakly rotating systems was numerically observed in Ref. [1]. In the 2D turbulence, the
cyclonic vortices emerge more than the anticyclonic vortices, and such asymmetry strongly depends on the external force
and the boundary condition (e.g., Ref. [2]). The cyclonic vortices are stable for small perturbation [3]. Initial-condition de-
pendence of formation of the cyclonic vortices was also found in our preliminary simulations. In this work, the transition
between the 2D flow and the 3D flow in the statistically steady states is numerically investigated through variation of the
angular velocity of the system’s rotation.

NUMERICAL RESULTS

The governing equations for the velocity u of the incompressible fluid are the Navier–Stokes equation with the Coriolis
term and the divergence-free condition:

∂

∂t
u + (u · ∇)u + 2Ωez × u = −∇p+ ν∇2u + f , ∇ · u = 0, (1)

where the rotation axis is taken as the z axis, and the angular velocity of the system’s rotation is denoted by Ω. The kinematic
viscosity is expressed by ν. The external force f is given by the three-dimensional two-component force of a steady Taylor–
Green type f = f0(cos kfx sin kfy sin kfz, sin kfx cos kfy sin kfz, 0), where kf = 2. The periodic boundary condition with
the period (2π)3 is employed, and the standard pseudo-spectral method with the aliasing removal by the phase-shift method
and the spherical truncation is used.
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Figure 1: (a): zz component of anisotropy tensor vs. angular velocity. The red curve (Ω ↘) and the blue curve (Ω ↗)
respectively show the zz components, when the angular velocity decreases from Ω = 7 and increases from Ω = 3. The error
bars represent the standard deviation due to the time variation. (b): energy spectra of the bistable states at Ω = 5.

The zz component of anisotropy tensor bzz = 1/3− 〈u2z〉/〈|u|2〉 is used to evaluate the anisotropy of the system. (Fig. 1
a) At Ω = 3, bzz ≈ 0.1, which comes from the anisotropic external force of the Taylor–Green type. When the angular velocity
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(a) (b)

Figure 2: Isosurfaces of ωz = 4
√
〈ω2

z〉 (red) and ωz = −4
√
〈ω2

z〉 (blue) for Ω = 5, where the 2D flow and the 3D flow are
bistable. (a): 2D flow, and (b): 3D flow. The speed |u| on the z = 0 plane is represented by color map.

is increased from Ω = 3, bzz decreases to 0, where the flow is 3D and almost isotropic. It jumps in the range of 5.5 < Ω < 6
to 0.3, where the flow is almost 2D and strongly anisotropic. At Ω = 7, bzz ≈ 0.3 owing to the strong rotation. When the
angular velocity is decreased from Ω = 7, bzz slowly decreases. In the range of 4 < Ω < 4.5, bzz drops sharply, representing
the abrupt transition from the 2D anisotropic flow to the 3D isotropic flow. In the range of 4.5 / Ω / 5.5, the two regimes,
the 2D anisotropic flow and the 3D isotropic flow, are bistable. The transitions between the 2D flow and the 3D flow show
hysteretic phenomena.

The energy spectra at Ω = 5, where the 2D flow and the 3D flow are bistable, are shown in Fig. 1(b). It is worth noting
that in both spectra, the Kolmogorov spectrum, E(k) ∝ k−5/3, is observed at the large wavenumbers in the inertial subrange.

The difference is significant at the wavenumbers smaller than the forced wavenumber
√

3kf ≈ 3. The accumulation at the
small wavenumbers in the 2D flow is caused by the inverse cascade. Once the accumulation is built up, the accumulation acts
like the energy source. In the 3D flow, the energy supplied by the external force is almost completely transferred to the large
wavenumbers owing to the forward cascade, and the accumulation is weak. The 2D flow has more energy than the 3D flow
has all over the wavenumbers. The fact indicates that the hystereses for other quantities all over the wavenumbers similar to
the one shown in Fig. 1(a) can be observed.

The accumulation of the energy at k = 1 in the 2D flow indicates one large vortex in the periodic box. In fact, the
isosurface of z component of vorticity ωz in the real space shows the cyclonic vortex aligned along the rotation (z) axis, which
is a Taylor column, as drawn in Fig. 2(a). The cyclonic vortices make strongly sheared regions between the vortex and its
images due to the periodicity, where small-scale 3D structures are produced. The external force of the Taylor–Green type in
the present study develops vortices every 2π/(2kf) length in the horizontal directions in the periodic box. We can observe the
3D vortices due to the external force if the Taylor column is not formed as shown in Fig. 2(b).

At the transition from the 3D flow to the 2D flow, the strong cyclonic vortex is formed over the external force. On the other
hand, at the transition from the 2D flow to the 3D flow, the coherent cyclonic vortex collapses into pieces. The creation and
annihilation of the coherent cyclonic vortex cannot be continuous for the variation of the system’s angular velocity. Therefore,
the transitions exhibits the hysteresis. This hysteresis robustly exists, though the fluctuations due to turbulence are large.
Similar hysteresis appears also for the variation of the amplitude of the external force.

CONCLUSIONS

Direct numerical simulations of forced rotating turbulence were performed, and the dependence of the statistically steady
flow on the initial conditions is investigated. When the angular velocity of the system’s rotation is small, the flow regime is in
a 3D Kolmogorov turbulence. On the other hand, when the angular velocity is large, the flow in the statistically steady state
has a coherent 2D cyclonic vortex. The transitions between the 2D flow and the 3D flow are discontinuous when the angular
velocity is increased or decreased. In other words, it exhibits the hysteresis which can be understood by the stability of the
coherent cyclonic vortex.
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Summary: The approximate but analytical solution of the viscous Rayleigh-Taylor instability (RTI) has been widely used recently in 
theoretical and numerical investigations due to its concept clarity. In this letter, a modified analytical solution of the growth rate for the viscous 
RTI of incompressible fluids is obtained based on an approximate method. It is confirmed numerically that its accuracy is significantly 
improved in comparison to the previous ones in the whole wave number range for different viscosity ratios and Atwood numbers. Furthermore, 
this solution is expanded for viscous RTI including the concentration-diffusion effect. 
 

INTRODUCTION 
 

The linear Rayleigh-Taylor instability (RTI) of viscous fluids was first studied by Harrison [1], and its implicit 
dispersion relation was simplified by Bellman and Pennington [2] to obtain an approximate but analytical solution of the 
linear growth rate, where the viscous effect is shown explicitly. Later on, this solution was expanded to include the 
concentration diffusion [3]. It should be noted that clear discrepancies between the molecular dynamics simulations and the 
linear theory for different viscosities were observed both at the low wave number region [4] and at high wave numbers [5], 
and hence the dispersion relation hasn’t been verified completely. In addition, the approximate solutions were found to 
deviate from the exact values with a maximum error about 12% [6]. However, due to their clarity and ease of use, the 
approximate solutions have been used recently in numerical and theoretical studies of the late-time growth of a single mode, 
the accel-decel-accel profile, multiphase flow, and the Knudsen-number dependence [7-10]. The main motivation of this 
paper is to propose a new explicit solution of the implicit dispersion relation with better accuracy and verify it for fluids 
with different viscosities in the whole wave number range. 

 
 THEORETICAL AND NUMERICAL RESULTS 

 
The implicit dispersion relation for two-dimensional incompressible and viscous RTI is as follows,  

[g(𝜌𝜌2 − 𝜌𝜌1)𝑘𝑘 + (𝜌𝜌1 + 𝜌𝜌2)𝑛𝑛2]𝑀𝑀 + 4𝑛𝑛𝑘𝑘 = 0,                            (1) 

𝑀𝑀 =
1

𝜇𝜇1𝑘𝑘 + (𝜇𝜇2
2𝑘𝑘2 + 𝜌𝜌2𝑛𝑛𝜇𝜇2)1/2 +

1
𝜇𝜇2𝑘𝑘 + (𝜇𝜇1

2𝑘𝑘2 + 𝜌𝜌1𝑛𝑛𝜇𝜇1)1/2 

where ρ, μ, g, k and n are the fluid density, the dynamic viscosity, the absolute value of gravity, the wave number and the 
linear growth rate of normal mode, respectively. The subscript 1 and 2 correspond to the light and the heavy fluids, 
respectively. A=(𝜌𝜌2 − 𝜌𝜌1)/(𝜌𝜌2 + 𝜌𝜌1) is the Atwood number. By assuming ρ1n<<μ1k2, ρ2n<<μ2k2, Bellman and Pennington 
[2] simplified the above equation to an explicit manner and obtained its analytical solution N (an approximate value of n), 
 

𝑁𝑁 = �𝑔𝑔𝑘𝑘𝑔𝑔 + 𝜈𝜈2𝑘𝑘4 − 𝜈𝜈𝑘𝑘2,                                    (2) 
 

where ν=(μ1+μ2)/(ρ1+ρ2). However, this simplification leads to a maximum error of 12% [8].  

 
Fig.1 The dimensionless growth rate 𝑛𝑛∗as a function of the dimensionless wave number 𝑘𝑘∗: 

(a) 𝜈𝜈1 𝜈𝜈2 = 0.5,𝑔𝑔 = 0.3⁄ ; (b) 𝜈𝜈1 𝜈𝜈2 = 10,𝑔𝑔 = 0.65⁄ . 
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In order to improve the accuracy of this solution, the contribution of n to M is not ignored completely but estimated by 
replacing n with N. Consequently, we get 

[g(𝜌𝜌2 − 𝜌𝜌1)k + (𝜌𝜌1 + 𝜌𝜌2)𝑛𝑛2]𝑀𝑀1 + 4𝑛𝑛k = 0                            (3) 

𝑀𝑀1 =
1

𝜇𝜇1𝑘𝑘 + (𝜇𝜇2
2𝑘𝑘2 + 𝜌𝜌2𝑁𝑁𝜇𝜇2)1/2 +

1
𝜇𝜇2𝑘𝑘 + (𝜇𝜇1

2𝑘𝑘2 + 𝜌𝜌1𝑁𝑁𝜇𝜇1)1/2 . 

The analytical positive root of this explicit equation is: 
 

𝑛𝑛 = �𝑔𝑔𝑘𝑘𝑔𝑔 + 𝑄𝑄2 − 𝑄𝑄， Q = 2𝑘𝑘/(𝜌𝜌1 + 𝜌𝜌2)𝑀𝑀1                            (4) 
 

The two-dimensional, incompressible N-S equations are solved by a projection method in Cartesian coordinates to examine 
this new solution. VOF method and the multi-grid method are used to track the interface and solve the pressure Poisson 
equation, respectively. Parameters are dimensionalized by the character length and time scales (ν2/g)1/3and (ν/g2)1/3, 
respectively. The aspect ratio of the computational domain is 1:4, and the uniform mesh 1024x4096 is found to be fine 
enough to calculate the initial growth stage of a one-wavelength cosine interface perturbation.  

In Fig.1 the approximate solutions are compared with the numerical simulations (triangle). It is illustrated that at 
different viscosity ratios and Atwood numbers, Eq.(2) has a maximum error (about 12%) near the maximum growth rate, 
while the present analytical solutions (Eq.4) consistent with the numerical simulations very well in the whole wave number 
range with a relative error less than 1%. In addition, it is the first time to our knowledge that the dispersion relation of RTI 
for fluids with different viscosities is verified successfully.  

When the concentration-diffusion effect is included, Duff et al. [3] developed an approximate theory based on Eq.(2) by 
assuming that ν𝜖𝜖 was so small to be neglected and then the viscous and the diffusive effects were independent, where 
𝜖𝜖 = 2(𝐷𝐷𝐷𝐷)1/2, a length scale at the diffusivity D and the elapsed time t. The diffusion effect includes two parts: the dynamic 
diffusion effect-broadening the density transition zone between the fluids, decreasing the effective Atwood number, and 
then reducing the linear growth rate; the static diffusion effect – reducing the amplitude of the mean density perturbation. 
Based on the above ideas, Duff et al. derived the following approximate growth rate: 

n = �𝑔𝑔𝑘𝑘𝑔𝑔 𝜓𝜓⁄ + 𝜈𝜈2𝑘𝑘4 − (𝜈𝜈 + 𝐷𝐷)𝑘𝑘2,𝑎𝑎 = 1 𝑘𝑘𝜖𝜖,⁄                             (5) 
where 𝜓𝜓 is a function of a and A. Obviously, this solution inherits the maximum error (about 12%) from Bellman’s 
solution N (Eq.2). Therefore, it is convenient to improve its accuracy by replacing the contribution of the viscous part with 
the proposed solution as follows:  

n = �𝑔𝑔𝑘𝑘𝑔𝑔 𝜓𝜓(𝑎𝑎,𝑔𝑔)⁄ + 𝑄𝑄2 − (𝑄𝑄 + 𝐷𝐷𝑘𝑘2), 𝑎𝑎 = 1 𝑘𝑘𝜖𝜖, 𝜖𝜖 = 2(𝐷𝐷𝐷𝐷)1/2⁄ .                     (6) 
It can be seen from Eq.(5) and (6) that both the momentum diffusion (viscosity) and the concentration diffusion tend to 
stabilize RTI. The coupled N-S equation and the concentration equation are solved numerically as well at different Prandtl 
numbers, and it is confirmed that the growth rates predicted by Eq.(6) agree with the simulation results better than those of 
Eq.(5). 
 

CONCLUSIONS 
 

The implicit dispersion relation of viscous RTI is solved by an approximate method to obtain an analytical solution of the growth 
rate, which is at least one order of magnitude more accurate than the Bellman solution. According to the numerical simulations, 
the maximum relative error is reduced from 12% to less than 1%. In addition, this solution is extended successfully to include the 
concentration-diffusion effect. Because of its explicit manner and ease of use, these solutions are expected to be used to validate 
numerical schemes and to include more effects, e.g. the electromagnetic effect and the thermal diffusion. 
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Summary: This work is focused on experimental studies of promoting flow instability with a weakly ionized transient plasma in the corner 
separation zone of a compression surface within a hypersonic boundary layer. Optical measurements have been successfully performed using a 
high-speed Shack-Hartmann sensor to quantify a characteristic frequency of flow perturbations at different locations in the flowfield and the 
plasma impact on the spectrum of disturbances in the boundary layer and in the separation bubble. It was shown that the near-surface plasma, 
generated at a frequency of repetition higher than a dominant natural frequency of perturbations in the boundary layer (the first mode F1), 𝑓 =
100 𝑘𝐻𝑧 >  𝐹165 𝑘𝐻𝑧, lead to a significant intensification of the amplitude of the high-frequency disturbances in the range of 𝐴 ⁄ 𝐴0  = 2 −
8. The plasma effect was negligible or insignificant at excitation frequencies below F1. 
 

INTRODUCTION 

   The need for tripping of a hypersonic boundary layer is motivated by the control of flow instabilities and, consequently, 
a steering of processes of laminar-turbulent transition and separation [1-2]. Particularly, for airframe-integrated scramjet 
engines, the forebody ahead of the inlet is designed to process and pre-condition the flow that will be ingested by the air inlet. 
Turbulent flow is desirable at the entrance to the inlet to mitigate flow separations on compression ramps and prevent air inlet 
unstarts. This issue stimulates development of various boundary layer tripping methods to promote turbulent flow in order to 
properly scale the engine flight test results to future full-scale vehicles. It is suggested that the most effective tripping 
mechanism requires the formation of streamwise vorticity within the boundary layer [3-4]. Typically obstacles, moving 
elements, or non-steady gas jets are used to promote transition on the forebody. Recently, a thermal type of BL management 
was considered to be feasible [5]. 
   The intense, localized, rapid heating produced by plasmas in pulsed electric discharges produce strong shock waves which 
can considerably modify supersonic flows over blunt bodies. The energy transfer from the electric field to the electrons is 
almost instantaneous while the transfer of energy from the electrons to the gas molecules goes through a series of processes: 
vibrational excitation, dissociation, and ionization followed by relaxation. Basically, rapid near-adiabatic heating results in an 
abrupt pressure jump in the current filament. This suggests that rapidly heated regions located near aerodynamic surfaces 
could be used to force various instabilities in shear layers and jets. The key benefit of localized plasma actuators, compared 
to mechanical and acoustic actuators, is that they uniquely combine a wide range of operation frequencies with large forcing 
amplitude [6-8]. Multiple plasma actuators can be independently controlled by varying the repetition rate, duty cycle, and the 
phase, making it possible to trigger and amplify specific flow instabilities. As a result, significant flow field changes can be 
produced at a relatively small energy cost to operate plasma actuators.  
   The objective of this work is to perform a feasibility study on the steering effect of a weakly ionized transient plasma on 
the corner separation zone of a compression surface with a hypersonic boundary layer. Specific tasks of current experiments 
included: (1) - experimental study of the dynamics of the gas pressure/density disturbances realized in the zone of flow 
separation with upstream generation of transient plasma; (2) - experimental demonstration of the BL receptivity to plasma-
based gas perturbations in supersonic/hypersonic flow. 
 

TEST DESCRIPTION 

   The diagram of the test arrangement is shown in Fig. 1a. The experiments were performed in the high-enthalpy ACT-1 
facility at the University of Notre Dame under the following test parameters: Mach number 𝑀 = 4.5 (at nozzle exit); 
Reynolds number 𝑅𝑒𝐿 = 107(m-1); stagnation pressure 𝑃0  =  0.8 Bar; stagnation temperature 𝑇0  =  300 𝐾 and 1800 𝐾; 
flow enthalpy from ℎ ∙ ṁ10 𝑘𝑊  (cold flow) to 50 𝑘𝑊  (hot flow). The model has length 𝐿 = 229 𝑚𝑚, width 𝑊 =
102 𝑚𝑚, and thickness 𝐻 = 19 𝑚𝑚. It consists of a base plate with a sharp leading edge with 𝛼 = 15. The compression 
ramp is formed with a second plate of equal thickness and a ramp angle 𝛼 = 20. The test duration was 𝑡 < 1 𝑠 including 
the arc operation (in the hot regime) for 0.3 𝑠 and the plasma operation for 0.1 𝑠 within the flow. A photograph of the 
experimental model is shown in Fig. 1b. The model was equipped with a ceramic insertion where multiple plasma generators, 
using the Shallow Cavity Discharge design [9] and working at frequencies 𝑓 = 50 𝑘𝐻𝑧 and 100 𝑘𝐻𝑧, Fig.1c, were arranged 
in the spanwise-direction upstream of the ramp. Instrumentation and data acquisition included: flow perturbation 
measurements made by a high-speed wavefront sensor; schlieren visualization; fast cam imaging; and electrical measurements 
of the discharge parameters. Aero-optical measurements were performed using a high-speed Shack-Hartmann Wavefront 
Sensor [10]. The laser beam was expanded to a 50 𝑚𝑚 diameter collimated beam and passed along the spanwise direction 
over the corner region of the model in the test section. After exiting the test section, the beam is reflected off the return mirror, 
which sends the beam along exactly the same path from which it came. The returning beam is split off using a cube beam 
splitter, sent though a contracting telescope which reduces the beam size to 12 𝑚𝑚 in diameter and goes into a high-speed 
Phantom v1610 digital camera. The camera had a 70 × 60 lenslet, 0.3 𝑚𝑚 pitch array attached to it. After passing through 
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the lenslet array, the beam was split into subaperture beams and focused on the camera sensor, creating a series of dots. To 
achieve the high sampling rate, only a small, 128 × 64-pixel portion of the image was sampled at 531,645 𝐻𝑧 for 4 
seconds. This image size corresponds to a 15 × 7 𝑚𝑚 measurement region over the model, with 1.2 𝑚𝑚 spacing between 
dots. 

a.  b.  c. 
Fig. 1. Experimental arrangement: a – test layout; b - photograph of the model with plasma generator in 𝑀 = 4.5 flow; c - 
principal schematic of plasma BL actuator based on Shallow Cavity Discharge [9].  
 

TEST RESULTS 

   After a series of measurements it was found that the plasma generation affects the spectrum of the flow perturbations only 
slightly if the repetition frequency is less than the dominant frequency of the first-mode instability, 𝐹1 = 60 − 80 𝑘𝐻𝑧. For 
a plasma frequency greater than F1, the plasma effect is significant. Figures 2a and 2b show data for plasma actuation 
frequencies of 50 and 100 𝑘𝐻𝑧, respectively. Every test included 0.1 𝑠 of spectrum analysis prior to plasma actuation, 
0.1 𝑠 with plasma operation, and 0.1 𝑠 after the plasma has turned off (to ensure there was no shift of flow parameters during 
operation).  
   At 𝑓 = 50 𝑘𝐻𝑧, the plasma effect is really small in most areas (Fig. 2a). Some effect is visible in the shear layer, point 
A3. Amplitudes of high-frequency disturbances (> 80 𝑘𝐻𝑧) appear to increase. At the plasma repetition frequency 𝑓 =
100 𝑘𝐻𝑧 (Fig. 2b), the plasma effects were observed at all points except A4 located above the corner separation zone. 
Amongst the points observed in this test the maximal effect of the plasma was detected for the flowfield zone close to a root 
part of the ramp-related shock. It results in an amplification of the amplitude of gas perturbations, 𝐴/𝐴0 = 2 − 8, in a wide 
range of spectra including high-frequency oscillations 𝑓 > 100 𝑘𝐻𝑧. 

a.  b. 
Fig. 2. Spectra of flow disturbances with plasma on and off. a – plasma excitation 𝑓 = 50 𝑘𝐻𝑧; b – plasma excitation 𝑓 =
100 𝑘𝐻𝑧. Points for the analysis: BL2 – in boundary layer upstream the corner; A2-A4 – in separation bubble 𝑦 = 2, 3.2 
and 4.4 𝑚𝑚 from the model surface, respectively. 
 

CONCLUSIONS 

   The current results of the study of using a transient electrical discharge for the control of boundary layer transition in a high-
speed flow demonstrate the following:  
- the hypersonic BL is highly receptive to repetitive plasma generated near the surface upstream of the separation zone; 
- active tripping of a hypersonic BL using electric discharges with a frequency of repetition 𝑓 >  𝐹1 is certainly feasible; 
- the high potential of aero-optical techniques to perform non-intrusive, high-frequency (up to 1 MHz), spatially-resolved 

measurements of flow structure and dynamics. 
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Lorenzo Siconolfi1, Paolo Luchini ∗2, Vincenzo Citro2, Flavio Giannetti2, and Simone Camarri1
1Dipartimento di Ingegneria Civile ed Industriale, Università di Pisa, Via Girolamo Caruso, 56122 Pisa, Italy
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Summary We apply a WKBJ approximation to 2D and 3D bluff-body wakes. A correction term to the classical saddle-point estimation of
the eigenfrequency is here calculated through a robust complex-plane extrapolation procedure based on rational Chebyshev approximation.
Such correction is shown to decrease the error in the estimated eigenvalue by about an order of magnitude. Both the direct and adjoint
global-mode structures are determined from local stability properties and compared with results obtained from a full 3D global stability
analysis. Results show excellent agreement between the numerical global solution and its local approximation.

INTRODUCTION

Huerre & Monkewitz [1], Chomaz et al.[2] and Monkewitz et al.[3] discussed in detail the connection between local and
global dynamics in spatially-developing open flows by means of a WKBJ asymptotic analysis. In particular, they explained
the occurrence of an unstable global mode in terms of the local properties of the flow field, highlighting the role of a region of
absolute instability and identifying a precise location in the streamwise direction which acts as a wavemaker for the entire field.
Such an asymptotic approach is justified whenever the streamwise variations of the base flow are slow over a typical instability
wavelength. Nevertheless, pushing the approximation to the limit of its validity, [4] and [5] applied the local analysis to the
wake of a circular cylinder obtaining reasonable results compared to a global 2D stability computation. The aim of the present
work is twofold: first, we will show that by including a higher order correction terms, the local approach is able to provide very
accurate estimation of the global eigenfrequency, reducing the error by about one order of magnitude; second, we will show
that the asymptotic analysis can be used to analyze 3D flow configurations, such as wakes behind bluff bodies, obtaining good
results compared to a full 3D stability analysis at a highly reduced cost. Such approach could be useful for large parametric
studies when many computations are needed. Moreover, following Juniper & Pier [6], we will also rebuild from the local 2D
stability properties the 3D shape of the direct and adjoint global mode. The structural sensitivity obtained from the local and
global approach will be compared and discussed.

PRELIMINARY RESULTS

For flows depending an all spatial directions the global stability approach consists in considering the entire domain and
looking for eigensolutions of the form û(x)exp{−iωglob.t}. On the other hand, if the base flow changes over a slow stream-
wise scale X = εx, then, the dynamics can be retrieved using a weakly non-parallel approximation [7]. In particular, the
perturbation can be decomposed by using a WKBJ approximation as follows:

q = exp{i(ωt− θ(X))/ε}
∞∑

n=0

qn(X, y, z)ε
n

where qn is a vector coefficient and θ(X) is the complex phase. The homogeneous eigenvalue problem for q0 determines a
dispersion relation of the form ω = D(k,X) where k = dθ/dX .

Reference ω (|ωglob − ωloc|)/|ωglob| Type

Giannetti and Luchini (2007) 0.750+0.013i - Global analysis
Pier (2002) 0.785+0.091i 11.40% Local analysis
Juniper and Pier (2014) 0.791+0.083i 10.83% Local analysis
Present (without correction) 0.750+0.084i 9.49% Local analysis
Present (with correction) 0.729+0.012i 2.80% Local analysis

Table 1: Leading eigenvalue for the flow past a circular cylinder at Re=50. Comparison between the global eigenvalue and the
eigenvalue obtained by using the local theory.

∗Corresponding author. Email: luchini@unisa.it
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Figure 1: Contour plot of direct leading global mode calculated by using the (a) full 3D analysis and (b) the two-dimensional
local analysis on the wake asymmetric wake of the sphere. Here, we show the real part of û, i.e. the streamwise component,
at Re = 275.

Huerre & Monkewitz [1] showed that, in presence of a finite region of absolute instability, the dispersion relation provides
an estimate for the global mode frequency via the saddle-point criterion

ωg = D(ks, Xs) with
∂D

∂k
(ks, Xs) =

∂D

∂X
(ks, Xs) = 0.

Such formula is based on the analytic continuation of the dispersion relation in the complex-X plane. In the present work we
will show that including higher order WKBJ correction terms greatly improves the accuracy of the estimated global eigenvalue.

Since the base flow is not known in the complex plane a delicate step of the procedure is the analytic prolongation of
the dispersion relation. A robust extrapolation procedure based on rational Chebyshev approximation is here used to obtain
a precise determination of the complex saddle point and the calculation of frequency corrections. Results will be shown first
for a classical 2D example (the flow past a circular cylinder, table 1) and then for a genuine 3D flow (the flow past a sphere,
figure 1).

References

[1] Huerre P., Monkewitz P. A.: Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22:473-537, 1990.
[2] Chomaz J.-M., Huerre, P., Redekopp, L.: A frequency selection criterion in spatially developing flows. Stud. Appl. Maths 84:119-144, 1991.
[3] Monkewitz, P. A., Huerre, P., Chomaz, J.-M.: Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251:1-20, 1993.
[4] Pier, B.: On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458:407-417, 2002.
[5] Giannetti F., Luchini P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581:167-197, 2007.
[6] Juniper M. P., Pier B. The structural sensitivity of open shear flows calculated with a local stability analysis. Eur. J. Mech. B/Fluid 49:426-437, 2015.
[7] Chomaz J.-M.: Global instabilities in spatially developing flows: Non-normality and Nonlinearity. Annu. Rev. Fluid Mech. 37:357-392, 2005.

980



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

SENSITIVITY OF THE RAYLEIGH AND ORR-SOMMERFELD EQUATIONS TO CHANGES
IN BASE FLOW
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Summary Inviscid and viscous stability analysis is performed on mean velocity profiles obtained from large-eddy simulations. The effects
of changes in reverse flow magnitude, inflexion point location, and maximum second derivative are analyzed with respect to their resulting
effects on stability behaviour. It is found that the velocity profile second derivative is the dominant parameter, with changes thereof resulting
in non-negligible shifts in peak growth rate and frequency, whereas the other two velocity parameters result in much less pronounced
changes in stability behaviour.

INTRODUCTION
Low Reynolds number flows (Rec < 500, 000) over airfoils are prone to boundary layer separation. The flow over these

configurations can exhibit complex behaviour, such as post-separation shear layer transition to turbulence and reattachment to
the airfoil surface. The unstable shear layer undergoes transition due to amplification of instabilities. The understanding of
these instabilities and their growth mechanism is therefore very important for airfoil performance prediction and the applica-
tion of flow control strategies. Hydrodynamic stability is typically investigated using linear stability analysis. The perturbation
amplitude, ṽ(y), is given by the Orr-Sommerfeld equation (OSE),(

U − ω

α

)(d2ṽ
dy2
− α2ṽ

)
− d2U

dy2
ṽ = − i

αRe

(
d4ṽ

dy4
− 2α2 d

2ṽ

dy2
+ α4ṽ

)
, (1)

where U is the mean flow, ω is the real radial frequency, and α = αr + iαi is the complex wavenumber. By assuming an
inviscid instability mechanism, this idealization reduces Eqn. (1) to the Rayleigh equation,

(αU − ω)
[
d2ṽ

dy2
− α2ṽ

]
− αd

2U

dy2
= 0. (2)

During a recent study evaluating the flow behaviour over a low-Reynolds number airfoil at Rec = 100, 000 using large-
eddy simulation (LES) and wind tunnel experiments[1], it was found that the computed stability characteristics exhibited
large variations despite very good agreement in the base velocity profiles. LES, which provides a very fine boundary layer
resolution, can be preferable to experiments as the much coarser resolution of the latter has been shown to affect the resulting
stability profiles[2]. This present study is a preliminary attempt to isolate and quantify the individual contributions of the flow
reversal magnitude, the maximum value of the second second derivative, and the location of the inflexion point, towards the
growth rate spectrum as calculated by the Rayleigh and Orr-Sommerfeld equations.

COMPUTATIONAL METHODOLOGY
Chebyshev Collocation Method

A Chebyshev collocation approach is employed to solve Eqns.(1) and (2). An algebraic mapping function, f (η), is
used to transform the semi-infinite domain of the shear layer profile, y ∈ [0,∞), to the domain η ∈ [−1, 1] in which the
Chebyshev polynomials are defined. The vertical velocity fluctuation in (1) and (2) is expressed as a Chebyshev polynomial
series, ṽ(η) =

∑N
n=1 anTn(η), where Tn(η) is the nth Chebyshev polynomial of the first kind. The Chebyshev expansions

are substituted in (1) and (2) with boundary conditions ṽ(±1) = ṽ′(±1) = 0. Both cases yield polynomial eigenvalue
problems[3] with matrix coefficients, Cj . The eigenvalue problem is reformulated using a companion matrix method to yield
a complex generalized eigenvalue problem, which is solved using the QZ algorithm. In the spatial instability formulation, the
unstable eigenvalues are those which assume negative values, −αi.

Mean Velocity Profiles
A hyperbolic tangent velocity profile[4] was used to fit the LES data.

U(y)

Ue
=

tanh[a1(y − a2)] + tanh(a1a2)

1 + tanh(a1a2)
+ a3

y

a2
exp

[
−1.5

(
y

a2

)2

+ 0.5

]
, (3)

where a1, a2 and a3 are the fit parameters and Ue is the edge velocity. This curvefit follows the finely-spaced LES data very
well with a least-squares residual of R = 0.0001 for the base profile. The base velocity data was altered to independently
change the flow reversal magnitude, inflexion point, and maximum second derivative by a relative amount of ±30%. Care
has been taken to minimize as best as possible any secondary modifications in the velocity profile while altering the desired
parameter.

∗Corresponding author. Email: paul.ziade@mail.utoronto.ca
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Figure 1: Inviscid stability profiles with altered base velocity parameters. :−30%, :±0% (base pro-
file), :+30%.

RESULTS
Linear stability analysis was performed on the base and modified velocity profiles (Figure 1 and Table 1). Of note is that

change in reverse flow magnitude has a minimal effect on the resulting stability profile. Moderate changes in growth rate
magnitude but not peak frequency are seen with a change of inflexion point location. The largest changes in growth rate and
frequency are due to changes in the maximum second derivative of the velocity profile. Changes in d2U/dy2 shift the stability
profiles in the f − αi plane by non-negligible amounts and widen/shrink the spectrum of unstable frequencies. Solutions to
viscous instability demonstrate lower absolute growth rate magnitudes but very similar relative changes due to changes in base
velocity profile (Table 1).

min(U) Inflexion Point 2nd Derivative
−30% +30% −30% +30% −30% +30%

∆(αi) -3%/-3% +4%/+3% -18%/-20% +11%/+11% -24%/-24% +25%/+25%
∆(f) +3%/0% +3%/0% -3%/-3% -4%/-3% -15%/-15% +15%/+15%

Table 1: Relative change in peak growth rate and associated frequency due to changes in base velocity profile parameters by
±30%. Inviscid (blue font), viscous (red font).

CONCLUSIONS
The flow reversal magnitude, inflexion point location, and maximum second derivative were analyzed independently in

order to quantify their respective contributions to instability. It was found that, for both viscous and inviscid analysis, the
dominant factor affecting the stability curve (peak growth rate and associated frequency) is the maximum second derivative of
the velocity profile, while the inflexion point location and reverse flow have much less pronounced effects. This preliminary
analysis is to be extended and generalized by repeating this study with different curve fitting methods and velocity profiles.
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MICROPARTICLES EFFECTS ON THE STABILITY OF AN AIR-WATER INTERFACE.
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Summary When air is pushed inside a Hele-shaw cell containing a viscous liquid above a critical capillary number, Saffman Taylor instabil-
ity leads to the formation of fingers, a phenomenon known as viscous fingering. Here Saffman-taylor experience is revisited when partially
wettable hydrophilic particles are lying on the walls. It is shown that the presence of the particles leads to the reverse situation wherein
liquid pushed inside a cell filled with air results in a fingering instability at low capillary number. This capillary-driven instability is due to
the integration of particles to the interface resulting from interfacial energy minimization. Both axisymmetric and rectangular geometries
are considered in order to quantify this phenomenon.

INTRODUCTION

Since the work of Saffman-Taylor [1] on the instability of an interface between two immiscible fluids, there has been
an unprecedented growth of literature in this field. Developing viscous fingering as an instability occurs whenever a low
viscosity fluid displaces a high viscosity fluid. Beside the beauty of the structures and the experiments, this great deal of
attention is explained by the daily life applications, such as, flow in porous media[2], the flame propagation[3], and growth
of bacterial colonies[4]. On the other hand, no instability occurs when we inject a highly viscous fluid in a low viscous one.
Nevertheless, this case is of importance in cleaning processes when bacteria, spores, dust or particles are prensent on surfaces.
We experimentally study this case in presence of micro-particles.

MATERIALS AND METHODS

Two geometries are used for this investigation: (i) a radial Hele-Shaw cell and (ii) a rectangular tube (see Fig.1). The first
cell (i) is made of two circular glass of 50mm radius. They are centred and placed on top of each other, separated by a narrow
gap, typically between 0.1 and 1mm. We lye a bed of roughly shaped Rilsan (Polyamide 11) particles of 15m radius, on the
surfaces. DI Water is injected by a syringe pump to the cell through a hole drilled at the center of the bottom plate at constant
flow rates (2,20,200 or 2000 ml/h). the evolution of the liquid-air interface was recorded with a CCD camera. The second set
of experiments (ii) were performed in a rectangular Borosilicate capillary tube of height H = 0.40 mm and width W = 10H .
After cleaning the inner walls, they were covered by Rilsan (Polyamide11) particles by gently blowing them into the chan-
nel with an air jet. Water was injected through the tube at a constant flow rate Q = 0.1 ml/h, corresponding to a capillary
numberCa = µlQ/(γGLWH) = 2.38×10−7, while recording the dynamics of the moving meniscus as described previously.

Figure 1: Schematic of the experimental setup: water is injected into air using a syringe pump either between two parallel
plates (radial Hele-Shaw cell) or inside a rectangular tube. Micro-particles were deposited on the surfaces prior to water
injection.

∗Corresponding author. Email: bihi.ily@ufl.edu
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Figure 2: Images showing a time sequence of the interfacial instability in a radial Hele-Shaw cell with a plate spacing of 150
µm, C = 0.45, flow rate Q = 2000 ml/h and [t0, t1, t2 = 0, 5, 31s].

Figure 3: Image showing the interface instability ”Semi-armoured bubbles” in a rectangular capillary tube with capillary
number Ca = 2.38× 10−7. The air appears dark gray and the water is light gray.

RESULTS

This study examines the influence of the micro-particles on the stability of the water-air interface. We show that the
particles clings to the liquid interface, leading to a non-linear interfacial pattern formation. Diffrent structures of patterns
(Fig.2,3) are reported depending on three key parameters: the concentration of particles, the gap between the plates and the
flow rate. It was found that the emerging patterns develop fingers,labyrinths or a deposition of a liquid film ahead of the
meniscus, similar to what was observed previously in cylindrical tubes [5]. We then focus on two aspects of the instability: (i)
The critical radius where the instability appears. (ii) The characteristic lengths obtained from these patterns. This instability is
driven by interfacial energy minimization. Once liquid/air meniscus is entirely covered by particles collected from the walls,
it will expand in an asymmetric way to increase the surface to volume ratio and incorporate new particles encountred by the
meniscus. Two models are developed to predict the two resulting parameters (i) and (ii) based on the balance between the
space available on the meniscus with the area needed to accomodate additional particles encountered by the liquid-air interface
during its motion. The models captures the qualitative trends and matches all the experimental data. Therefore we can predict
the conditions of the stability of the interface.

CONCLUSIONS

This work demonstrate that the presence of partially wettable particles on the walls can dramatically affect the dynamics
of a liquid interface that is injected into a Hele-Shaw cell filled with air. Different pattern structres emerge, eventough in
absence of microparticles the air-water interface in stable. The destabilization of the interface occurs due to interfacial energy
minimization, which requires that all particles intersected by the meniscus are collected.
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STABILITY OF FLOW IN A DIVERGING-CONVERGING CHANNEL AT MODERATE
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Summary Flow in a diverging-converging channel of moderate amplitudes has been studied. The analysis is carried out up to Reynolds
numbers resulting in the formation of secondary states. The first part of the analysis is based on a two-dimensional model and demonstrates
that reducing the corrugation wavelength results in the appearance of an unsteady separation whose onset correlates with the onset of the
travelling wave instability. The second part of the analysis is based on a three-dimensional model and demonstrates that the flow dynamics
are dominated by the centrifugal instability over a large range of geometric parameters, resulting in the formation of streamwise vortices.
The critical Reynolds number for the vortex onset initially decreases as the groove amplitude increases but an excessive increase leads to
reduction of the centrifugal forces. The flow dynamics under such conditions are dominated by the onset of the travelling wave instability.

INTRODUCTION

It is known that presence of grooves results in the appearance of two instability modes. The first one is the travelling
wave mode [1, 2] which, in the smooth channel limit, connects to the classical Tollmien-Schlichting (TS) wave. This mode
is driven by shear and is responsible for the transition from stationary to oscillatory states and, eventually, to aperiodic states
[3]. The second mode has the form of streamwise vortices and its existence has been documented both experimentally [4] and
numerically [1, 5]. It is attributed to the centrifugal forces associated with the groove-imposed changes of the stream direction.
This mode connects in the smooth channel limit to a Squire mode and, thus, one may argue that the centrifugal effect amplifies
(and modifies) a suitable Squire mode [5]. This instability becomes critical in channels with a certain class of grooves.

The onset of the two-dimensional, travelling wave instability is well discussed in the literature (see e.g., [2, 6]) and its
dependence on the geometric parameters is known for small amplitude grooves [2] and for selected large-amplitude grooves
[1, 6]. The centrifugal instability has been studied less frequently, primarily due to its three-dimensional character. Some
limited investigation of both modes only for a single corrugation wavelength λ = 3 and with amplitudes large enough for
the recirculation zone to form within troughs is given in [1]. Full range of corrugation wavelengths, but limited to small
amplitudes is investigated in [5]. Critical conditions leading to both types of instabilities have been investigated in [2]. It was
shown that the two-dimensional travelling wave is dominant for small amplitudes but is quickly overcome by the centrifugal
instability as soon as the corrugation amplitude is increased. The conclusions are similar to those given in [1] indicating that
while moderate corrugation amplitudes result in the centrifugal instability being dominant, their increase results in a larger
separation zone which brings back the travelling wave instability.

PROBLEM SPECIFICATION

The main focus of this work is mapping of the dynamics of flow in a converging-diverging channel with the groove wave
number varied from α = 10 (short wavelength grooves) to α = 0.5 (long wavelength grooves) which covers the full range of
wavelengths of practical importance. The analysis is limited to moderate groove amplitudes, i.e. S < 0.2, and relies on DNS
based on the spectral finite-element method in the (x, y)−plane combined with the Fourier decomposition in the spanwise
direction, as implemented in NEKTAR++ [7].

yu = 1− Scos(αx)

yl = −1 + Scos(αx)

λ = 2π
α

2S

-1

1

x

y

(a) (b) (c) (d)

Figure 1: Geometry of the channel (a). Development of the recirculation zone for α = 3, Re = 2300, at corrugation
amplitudes S = 0.075 (b), S = 0.150 (c) and S = 0.225 (d)

∗Corresponding author. Email: sgepner@meil.pw.edu.pl

985



0.05 0.1 0.15 0.2

0.5

1.5

2.5

3.5

4.5

5.5

δ = 1

δ = 1.5

δ = 1.2

δ = 1.8

S

R
e c
r
it
·1
0
−
3

2 4 6 8 10

0.5

1

1.5

2

Recrit

α

R
e c
r
it
·1
0−

3

0.7

0.8

0.9

Q
Qref

Q
Q

r
e
f

0.06

0.1

0.2

Scrit

S
c
r
it

(a) (b)

Figure 2: Variation of critical the Reynolds number necessary for the onset of a 3D vortices and a competing 2D wave
instability with various wavelengths δ as a function of the groove amplitude S for α = 3 (a). Variations of the minimum
critical Reynolds number, the corresponding critical corrugation amplitude Scrit and the corresponding reduction of the flow
rate as function of the corrugation wave number α (b).

The analysis is divided into two steps, with the first one focused on the two-dimensional dynamics and presenting flow
properties up to the formation of secondary states. Issues of particular interest are the onset and growth of the separation zone
(see figure 1b, c), particularly the unsteady separation (figure 1d) and the drag penalty associated with the grooves.

The second step involves analysis of three-dimensional dynamics and identification of conditions when it precedes the two-
dimensional dynamics (see figure 2a). Determination of conditions leading to the onset of streamwise vortices is of particular
interest. Still, there has been little research committed to it. The process of vortex creation can be interfered with by the
travelling waves. It is thus important to establish conditions where such vortices are likely to dominate the system dynamics.
Figure 2a displays variations of the critical Reynolds number as a function of the groove amplitude required for the onset of the
travelling waves (of various wavelengths δ) and for the onset of the vortices for α = 3. At small amplitudes it is the travelling
wave that dominates having a smaller Recrit. For both instabilities an initial monotonic decrease in Recrit is observed as
S increases, with the centrifugal instability quickly becoming dominant. i.e. having smaller Recrit. Further increase of S
eventually reverses the character of variations of Recrit for vortices with Recrit increasing as growing recirculation prohibits
the flow from producing enough of the centrifugal effect. As a result, the travelling wave becomes dominant again.

Here we view configuration which can amplify vortices at the smallest Re as being the most effective for designing an
efficient mixing device. Figure 2b displays variations of the minimum critical Reynolds number and the corresponding critical
corrugation amplitude Scrit, as functions of the corrugation wave number. Depending on α, the minimum Recrit changes
from 300 to 2200 and Scrit changes from 0.22 to 0.06. The cost of creating vortices can be expressed in terms of the flow
rate reduction caused by the grooves. The flow rate reduction corresponding to the use of the optimal configuration varies as
a function of α from 30% to 11% (see figure 2b).

CONCLUSIONS

Both two- and three-dimensional flow dynamics at previously uninvestigated flow conditions have been studied. Formation
of various possible secondary states has been considered, respective critical conditions have been determined and compared.
Obtained results provide basis for the identification of the most effective geometric configuration for the generation of the
vortices and possible application in designing efficient mixing devices operating at low Reynolds number regimes.
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SECONDARY INSTABILITIES OF GÖRTLER VORTICES

IN HIGH -SPEED BOUNDARY LAYER FLOWS
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SummaryGörtler vortices developed in laminar boundary layer experience remarkable changes when the flow is subjected to compressibil-
ity effect. In the present study, fiveMa numbers, covering incompressible to hypersonic flows, atMa = 0.015, 1.5, 3.0, 4.5 and6.0 are
specified to illustrate this compressibility effect. Görtler vortices in subsonic and moderate supersonic flows (Ma = 0.015, 1.5, 3.0) are
governed by the conventional wall-layer mode (mode W). In hypersonic flows (Ma = 4.5, 6.0), the trapped-layer mode (mode T) becomes
dominant. This difference maintains and intensifies downstream leading to different scenarios of secondary instabilities. The secondary
instabilities of Görtler vortices set in when the resulting streaks are adequately developed. The secondary perturbations become unstable
downstream following the sequence of sinuous mode type I, varicose mode and sinuous mode type II indicating an increasing threshold
amplitude. Onset conditions are determined for these modes. The above three modes each can have the largest growth rate under the right
conditions.

INTRODUCTION

Görtler instability [1], known as the centrifugal instability of boundary layer overa concave wall, arises due to the imbal-
ance between the centrifugal force and the wall-normal pressure gradient. The streamwise-oriented, counter-rotating vortices
(Görtler vortices) are consequently generated, maintained and can be significantly intensified downstream promoting flow
transition. Most of early studies are conducted within the framework of incompressible flows (see reviews, e.g., by Floryan
[2] and Saric [3]).

For hypersonic Görtler flows, the most significant flow feature is the existence of the temperature adjustment layer near
the upper edge of the boundary layer which gives rise to the trapped-layer mode (mode T, disturbances rest in the layer near
the upper edge of boundary layer). This mode becomes the most dangerous when theMa number is larger than a critical
value, e.g.,Ma ≥ 4. The present study, thus, attempts to investigate, comprehensively to clarify the effect ofMa number on
the secondary instability with mode T being the governing mode.

METHODOLOGY

The local normal mode analysis (LST) and nonlinear parabolized stability equations (NPSE) are used for the generation of
the base flows. The secondary instability is then performed in a Bi-Global framework of the normal mode analysis. Detailed
formulation and numerical treatments can be found in the authors’ previous papers [4, 5].

RESULTS AND DISCUSSIONS

Spatial development of G̈ortler vortices
Nonlinear development of Görtler vortices for the five groups of Mach numbers (Ma = 0.015, 1.5, 3.0, 4.5 and6.0) and

three wavenumbers (B = β/Re= 0.5, 1.0 and2.0× 10
−3) are performed.

Figure 1: Nonlinear development of Görtler vortices and the formation of low- and high-speed streaks. Contour plots of
the streamwise velocity are withinRe ∈ [520, 720]. Contour levels= 0.1, 0.2, · · · , 0.9. Global spanwise wavenumber
B=1.0× 10

−3. (a)Ma = 1.5, (b)Ma = 3.0, (c)Ma = 4.5, (d)Ma = 6.0.

It can be found in Fig.1 that the counter-rotating streamwise vortices carry the fluids with high momentum & low tem-
perature towards the wall and fluids with low momentum & high temperature to the reverse direction exerting thelift-up
mechanism. The boundary layer streaks, also the thermal streaks, form as a result. One can observe the changes in the
boundary layer due to the increase in theMa number:

∗Corresponding author. Email: fs-dem@tsinghua.edu.cn
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Secondary instabilities of G̈ortler vortices
A global view of the normalized disturbanceus (under subharmonic conditions) of the varicose mode, sinuous mode type

I and sinuous mode type II is provided in Fig.2. Onset conditions for the five Mach numbers are obtained in Table.1. Results
are based on the spanwise wavenumberB = 1× 10

−3.

Figure 2: Contour surfaces of the normalized streamwise velocity perturbationsus at Ma = 1.5, B = 1.0× 10
−3, Re= 700.

The surfaces colored yellow and blue indicateus = 0.1 and−0.1, respectively. (a) Varicose mode; (b) Sinuous mode type I;
(c) Sinuous mode type II.

Mach number Sinuous-I Sinuous-II Varicose
Ma = 0.015 28% 59% 41%
Ma = 1.5 31% 63% 45%
Ma = 3.0 31% 63% 44%
Ma = 4.5 9% / /
Ma = 6.0 5% / /

Table 1: Onset conditions of the secondary instability modes measured by the streak amplitudeA(u). Spanwise wavenumber
B = 1× 10

−3.

CONCLUSIONS

The development of Görtler vortices acts to strengthen the boundary layer streaks regardless of the Mach number. In the
current study, the streak amplitudeA(u) keeps growing downstream (before the right-branch regime is reached). The sinuous
mode type I becomes unstable first, followed by the varicose mode and then the sinuous mode type II.

Mach number affects Görtler vortices in two aspects. (1) The growth rate of primary Görtler mode decreases with Mach
number. The streaks are thus weakened. (2) Increase inMa gives rise to the trapped-layer mode (mode T) for the primary
instability. This mode has its disturbances detached from the wall. As a result of the above changes, conventionalmushroom
structures are replaced bybell-shaped structures leaving the near-wall region an unperturbed area. The difference in the pri-
mary instability leads to a deserved and remarkable change on the secondary instability. In subsonic and moderate supersonic
flows, varicose and sinuous (type I and type II) modes can both be responsible for the transition process. The sinuous mode
type II, whose disturbances concentrate near thestemof themushroom, is demonstrated to have the largest growth rate when
the streak amplitude is large. However, it is missing in existing studies. The relationship between the dominance of sinuous
or varicose modes and the primary wavelength in incompressible flow [6] is no longer valid in hypersonic flows. The sinuous
mode becomes the most dangerous regardless of the spanwise wavelength whenMa > 3.
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Summary The present study reveals a role of flow instabilities in the spatially developing disturbance induced by a synthetic jet device (SJ)
with an optimum actuation frequency, which improves a separation-control capability around an airfoil. For this purpose, a high fidelity
flow computation (large-eddy simulation) is conducted, where the chord Reynolds number and angle of attack are set to be 63,000 and 12
[deg], respectively. The linear stability analysis is conducted to detect an unstable mode of the wall-normal fluctuation in the separation
controlled flows. In the well-controlled flows, the harmonics of the input fluctuation directly enhances the Kelvin-Helmholtz instability
which linearly develops in the separated shear layer, followed by higher- and lower-frequency modes that are triggered by the most unstable
modes (nonlinear growth regime). The process above effectively enhances a turbulent transition and generation of large-scale coherent
vortices.

INTRODUCTION AND PROBLEM SETTINGS
Recently, microdevices for separated-flow control have been investigated because they attain low energy consumption,

simple structures, and offer active control for unsteady flow fields compared with conventional devices such as “steady jet”
and “vortex generator”. This paper focuses on a “synthetic jet” device (SJ)[2], which is regarded as one of the most effective
and promising microdevices. The SJ consists of a cavity with a connected orifice. The bottom of the cavity oscillates with a
small amplitude, which generates periodic blowing and suction flow from the orifice. The induced flow fluctuates a separated
shear layer near the SJ, and then the fluctuation is amplified as it convects downstream. Finally, the entire separated flow
is modified to the attached one. However, the detail of the present separation-control mechanism has not been adequately
clarified from the viewpoint of the relation between a chordwise-momentum injection and turbulent flow structures generated
near the airfoil surface, which results in the gap of an optimum actuator condition of the SJ among several researchers. For
example, the optimum actuation frequency F+ (a nondimensional frequency normalized by the chord length and freestream
velocity) has been separately shown to be F+ = 1[5] and F+ = 10[4] due to a lack of consistent explanation on the
separation-control mechanism. The present study conducts a highly-accurate unsteady flow computation[3], i.e., a large-eddy
simulation (LES), which can correctly resolve turbulent statistics inside the deforming cavity as well as the external flows
around an airfoil. The sixth-order compact scheme is adopted for spatial discretization, and a deforming grid is used for the
SJ cavity[1] (total number of the grid points is approximately 30 million). In this study, the relation between the optimum
actuation frequency and the momentum injection methods in the separation-controlled flows is investigated from the viewpoint
of a shear-layer instability and spatial growth of the disturbance introduced by the SJ.

CHORDWISE-MOMENTUM EXCHANGE IN THE CONTROLLED FLOWS
Figure 1(a) shows the effect of the actuation frequency F+ on the control capability (the lift-to-drag ratio), where the

optimum actuation frequency is localized in between F+ = 6.0 and 20 for both of strong (Cμ = 2.0 × 10−3) and weak
(Cμ = 2.0× 10−5) input cases. In these well-controlled flows, the instantaneous flow field of Fig.1(b) shows strong turbulent
vortex structures over an airfoil as well as inside the SJ cavity, where the isosurfaces of the second invariant of the velocity
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Figure 1: Characteristics of the separation-controlled flows: (a) effects of F+ on the lift-to-drag ratio; (b)instantaneous flow
field (Cμ = 2.0 × 10−3, F+ = 6.0); (c)phase decomposition of the Reynolds stress of the controlled flow.
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gradient tensor is shown. The laminar-separation bubble (LSB) is generated near the leading edge, and the smaller LSB
exhibits a strong suction peak at the leading edge, which results in the better capability (CL/CD). On the other hand, Fig.1(c)
shows the phase decomposition of the Reynolds stress, which is decomposed into the periodic and turbulent component, i.e.,
u′w′ = ũw̃ + u′′w′′. The present decomposition indicates that the chordwise momentum exchange is mainly achieved by the
turbulent component of the Reynolds stress (−u′′w′′), which is generated by the turbulent vortices. Therefore, one of the key
mechanism for the separation control is the turbulent structure so that the promotion of the turbulent transition is important
for the improvement of the control capabilities.

LINEAR STABILITY ANALYSIS ON THE SPATIAL DEVELOPMENT OF DISTURBANCE
The LST is conducted to extract the linear unstable mode in the spatially developing disturbance (wall-normal fluctuation)

in the separated-shear layer near the leading edge, which is assumed to be u′
n = ûn exp[i(αx − ωt)] (α = αr + iαi). The

spatial growth rate αi can be also computed from unsteady data of the LES. Figure2(a) shows the comparison of LST and
LES results of αi, where both are corresponding to each other at x/ch = 3%. This indicates that the linear instability regime
appears near the leading edge even in the separation-controlled flow. On the other hand, the higher- and lower-frequency
modes are enhanced at x/ch = 5%, which indicates the region where the nonlinear growth regime begins. The higher-
and lower-frequency modes promotes a turbulent transition and generation of coherent vortex structures (see top figures of
Fig.2(a)), respectively. Note that the coherent vortex entrains the turbulent vortex structures over the airfoil, which is the
another key for the chordwise-momentum exchange[3]. Figure2(b) apparently shows the comparison of αi between the LST
and LES results on the St-x plane. The power spectrum density (PSD) of the fluctuation is visualized in Fig.2(c). The higher-
and lower-frequency modes are triggered by the well-developed linear instability mode (LST), which indicates that the LST
mode should be excited in the upstream position. In the controlled flows with an optimum actuation frequency, the LST mode
is introduced by the harmonics of the actuation frequency F+ as well as the lower-frequency mode is given by disturbance of
actuation frequency F+.
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Figure 2: Comparison of LST and LES results in the spatial growth rate in the controlled flow (Cμ = 2.0× 10−3, F+ = 6.0):
(a)top figure shows the phase-averaged field, and bottom figures show the spatial growth rate −αi at x/ch = 3 and 5%;
(b)spatial growth rate on the St-x plane; (c)spatial development of the PSD of wall-normal fluctuation obtained from the LES
data. CONCLUSIONS

The high-fidelity LES has been conducted on the separated flow control using the SJ around an NACA0015 airfoil. The
followings have been newly represented: 1) the chordwise momentum injection is mainly achieved by turbulent vortex struc-
tures over the airfoil based on the phase-decomposition of the Reynolds shear stress, which are entrained by spanwise coherent
vortex structures periodically generated and convecting downstream; 2) the linear growth regime of the spatially-developping
disturbance from the SJ was verified by a linear stability theory (LST) in the separation-contolled flows; 3) based on the
unsteady flow data of the LES, the spatial growth rate of disturbance from the SJ exhibits linear- and nonlinear-growth regime
sequentially. 4) the optimum actuation frequency around F+ = 6.0 to 20 directly excites a generation of large-scale coherent
vortices (lower-nonlinear growth regime) as well as promoting a turbulent transition by introducing harmonic modes of F+

(higher-nonlinear growth regime).
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Summary Energy conversion in the Taconis oscillations is numerically studied from the Lagrangian point of view. By solving the 
axisymmetric compressible Navier-Stokes equations, spontaneous thermoacoustic oscillations in a closed cylindrical tube are observed when a 
strong temperature gradient is imposed along the tube axis. The ratio of the high wall temperature near both ends of the tube to the low wall 
temperature of the central part is fixed at 15. Temporal evolution of dynamical and thermodynamical properties of fluid particles in the 
fundamental mode oscillation of a standing wave and the second mode oscillation is obtained from the field data. The state of the fluid particle 
is represented on a pressure-volume diagram. Fluid particles moving near the tube end perform a nearly cyclic transformation in both modes. 
When displacement of fluid particles is large, a regular pattern is not found on a pressure-volume diagram.  
 

INTRODUCTION 

 
   Thermoacoustic oscillations in a long tube which spontaneously occurs when a strong temperature gradient is imposed 
along the tube axis are called the Taconis oscillations. Rott [1] succeeded in obtaining theoretical stability curves for the 
Taconis oscillations of a helium gas in an open-closed tube. The stability curves were confirmed later by the experiments of 
Yazaki et al. [2]. In their experiments they used tubes with both ends closed, and the central part of the tube is cooled and 
both ends are kept hot at room temperature. We [3-6] have numerically studied the Taconis oscillations in a 2D rectangular 
tube and a cylindrical tube with both closed ends.  

In the previous paper [6], we showed that steady oscillations in a closed tube are observed in a certain range of ξ which 
is the ratio of the length of the hot part to that of the cold part. Three oscillation modes are observed: the second mode in 
which pressures at both ends oscillate in phase, a shock-wave mode and the fundamental mode in which pressures at both 
tube ends oscillate pi out of phase.  

In the present paper, we study the energy conversion in the Taconis oscillations from the Lagrangian point of view.  
 

FORMULATION AND NUMERICAL METHOD 

 

   We performed numerical simulations of the Taconis oscillations of a helium gas in a cylindrical tube with both closed 
ends. The tube wall temperature of the regions near the tube ends is kept at TH=300K and that of the central part at TC=20K. 
The temperature of the end walls is TH=300K. The temperature ratio TH/TC is 15. The illustration of the temperature 
distribution on the tube wall along the tube axis is presented in Fig.1. The temperature distribution has a linear gradient 
between the hot part and the cold part. The tube length L is 280mm and tube radius r0 is 0.756mm. The length of the interval 
with finite temperature gradient Δl is 7.5mm. The ratio of the length of the hot part to that of the cold part is defined as ξ= 
2l/(L-2l). In the present paper, we show the results for the length ratio ξ =0.4 and 1.0. Because the ratio of the radius to the 
length of the tube r0/L is small enough (2.7×10-3), we assume that the flow motion is axially symmetric around the tube axis.  

 
Figure 1. The temperature distribution on the tube wall. 

 
   The governing axisymmetric compressible Navier-Stokes equations of a perfect gas are solved with the block 
pentadiagonal matrix scheme. For the time integration, the second-order accurate three-point backward implicit scheme is 
employed. Fourth-order accurate central differencing is used for the convective terms, and second-order accurate three-point 
central differencing for the viscous terms. 

We use a rectangular grid system consisting of 300 points along the tube length and 34 points in the radial direction. The 
grid points are clustered near the side wall and the end walls of the tube in order to resolve the motion in the boundary layer. 
The non-slip and isothermal boundary conditions are applied to the tube wall. A pressure gradient in the normal direction of 
the wall is assumed to be zero because the pressure gradient is negligible in the viscous boundary layer. Variables are 
normalized with respect to the appropriate combination of the tube length L, the density ρ0= 0.167kg/m3 and the sound 
speed a0 = 1004m/s.  
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RUSULTS 

 
   For the fundamental mode oscillation (ξ = 1.0) and the second mode oscillation (ξ = 0.4), temporal evolution of 
dynamical and thermodynamical properties of fluid particles is obtained from the field data. Fluid particles start from 
various points in a tube. The state of the fluid particle is represented on a pressure-volume diagram. In Fig.2, position (a) 
and a pressure-volume diagram (b) are presented for fluid particles which start from (z=0.1, r=0.2) and (z=0.4, r=0.2) during 
three periods of the fundamental mode oscillation. 

            
(1a) position      (1b) p-V diagram         (2a) position              (2b) p-V diagram  

Figure 2. Position and pressure-volume diagram of the fluid particles starting from (1) (z=0.1, r=0.2) and (2)( z=0.4, r=0.2) 
 
Starting points of both fluid particles are near the tube axis. The fluid particle which starts in the cold region (2) moves 
toward the hot region, then it moves upward near the tube end as in the other fluid particle (1). The motion near the tube end 
corresponds to a cyclic transformation on a pressure-volume diagram. This cycle is performed in a counterclockwise 
direction, which means that the total work done is negative. The state of fluid particles moving near the end tube is similar 
also in the second mode oscillation.  
   Figure 3 presents position (a) and a pressure-volume diagram (b) for a fluid particle during two periods of the 
fundamental mode oscillation. This fluid particle begins to move at a point (z=0.4, r=0.5) which is between the wall and the 
axis in the cold region. It moves across the finite temperature gradient region (z=0.25) and goes upward.  

        
(a) position              (b) p-V diagram 

Figure 3. Position and pressure-volume diagram of the fluid particle starting from (z=0.4, r=0.5). 
 
This is one example in which a fluid particle has large displacement and does not perform a cyclic transformation on a 
pressure-volume diagram. In the second mode oscillation which has smaller pressure amplitude than the fundamental mode 
oscillation, fluid particles starting from a point in the cold region do not have so large displacement as the fundamental 
mode oscillation. 
 

CONCLUDING REMARKS 

 
   Fluid particles moving near the tube end perform a nearly cyclic transformation on a pressure-volume diagram. When 
displacement of fluid particles is large, a cyclic transformation is not found on a pressure-volume diagram.  
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Summary: A numerical modelling of thermo-vibrational instabilities in supercritical fluids is performed under zero-gravity conditions. The 

model is based on a new formulation where the density is calculated from the continuity equation (mass conservation is achieved at a machine 

precision). The numerical results are compared with experimental data in zero-gravity conditions based on magnetic compensation field 

(levitation). They show excellent agreement. Stability diagrams will be shown as a function of different given parameters (amplitude, 

frequency, heating rate, proximity to the critical point).  
 

INTRODUCTION 
    

   The liquid-gas critical point on the phase diagram represents a singular equilibrium state, beyond which the boundary 

between the liquid and gas phases no longer exists and the fluid becomes supercritical. As one approaches the critical point, 

some peculiar thermo-physical properties emerge such as the heat of vaporization approaches zero, the constant-pressure 

specific heat increases substantially along-with diverging compressibility [1]. When these fluids are subject to thermal 

quench (or heating) along with longitudinal vibrations of frequencies of the order 10-50 Hz [2-5], the dynamic response of 

the fluid has been observed to originate in the boundary layers. A number of intriguing phenomena have been observed in 

literature when near-critical fluids are submitted to longitudinal vibrations such as the layering of the gas-liquid phases [2], 

or the acceleration of the gas-liquid phase transition dynamics [3]. 

   The experiments pertaining to super-critical fluid subjected to vibrations under weightlessness have been performed 

using CO2 on-board a sounding rocket (see [2] for details). These experiments have reported the appearance of fingers 

which shows destabilization of thermal boundary layer under the aforementioned conditions. Amiroudine and Beysens [4] 

were the first to perform numerical study for supercritical fluids subjected to vibrations and observed the fingering structure 

in the thermal boundary layers with different proximities to the critical point. It was found that fingering wavelength and the 

vibrational Rayleigh number (𝑅𝑎𝑣 = 
(𝐴𝜔𝛽𝑃𝛿𝑇𝑒)

2

2𝜈𝐷𝑇
 ) decrease as a power law with the distance in temperature to the critical 

point. Gandikota et al. [5] then performed numerical simulation with supercritical hydrogen subjected to longitudinal 

vibrations. They evaluated the effect of vibrations using three different combinations of boundary conditions thus providing 

insight into the mechanisms of corner, parametric and Rayleigh vibrational instability. 

 The work mentioned so far in the literature has assumed a linear equation of state being valid near the critical point. This 

poses limitations on the quench (or heating) conditions that may be considered in the numerical study (assumed to be 10% 

of initial temperature distance from critical point in [5]). The purpose of this study is to evaluate the effect of longitudinal 

vibrations not limited by temperature conditions. This has been achieved using a numerical model which does not require 

any equation of state and directly calculates properties from NIST data base. The numerical results are first validated with 

the experimental results followed by detailed analysis for different heating conditions, different proximities to the critical 

point and different vibrational parameters (frequency and amplitude). 

 

PROBLEM DESCRIPTION AND MATHEMATICAL MODEL 

 

   The problem to be investigated consists of supercritical Hydrogen at its critical density filled in a 2-D square cavity of 

length ℎ = 7𝑚𝑚  subjected to longitudinal vibrations 𝐴 sin 𝜔𝑡  (shown in Fig. 1). The problem is mathematically 

modelled using Navier-Stokes equations comprising of conservation of mass, momentum and energy which can be 

described as following (see [6] for more details), 

  

{
  
 

  
 𝜌

𝐷𝑽

𝐷𝑡
= −∇[𝑃0 − 𝛿𝑡(

1

𝜒𝑇
+

𝛽𝑃
2𝑇

𝜌𝐶𝑣𝜒𝑇
2)∇. 𝑽 − 𝛿𝑡

𝛽𝑃
𝜌𝐶𝑣𝜒𝑇

)∇. 𝝓] + 𝜌𝐴𝜔2𝑠𝑖𝑛 𝜔𝑡 𝒊 +  ∇. [𝜇(∇𝑽 + ∇𝑡𝑽 −
2

3
∇. 𝑉𝐼)̿]

𝜌𝐶𝑣
𝐷𝑇

𝐷𝑡
=  ∇. (𝑘∇𝑇) −

𝛽𝑃𝑇

𝜒𝑇
∇.𝑽

𝜌 = 𝜌0𝑒−𝛿𝑡∇.𝑽

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ∶  𝛽𝑝, 𝜒𝑇 , 𝐶𝑣 , 𝜇 𝑎𝑛𝑑 𝑘

 

 

993



Here 𝑃0 and  𝑇0 are the equilibrium pressure and temperature at a defined time instant. The thermo-physical properties are 

calculated directly from NIST database while the density is evaluated directly from the continuity equation. These equations 

are solved numerically by a home-made code (Thetis [6]).  
 

RESULTS AND DISCUSSION 
 

The amplitude of vibrations varies from 0.2 to 5 mm while the frequency varies from 2 to 50 Hz. The initial temperature in 

the study is varied from 10 mK to 1K from critical point and walls are subjected to different heating rates. 

Fig. 2 shows an example of our numerical results in comparison with experimental data in zero-g (based on the magnetic 

field levitation, see details about experimental set-up in [7-8]) when the cell is subjected to vibrations with an amplitude of 

0.875 mm and frequency of 20 Hz (Ti=33.739 K). The wall boundary condition used in the numerical simulation 

corresponds to a cubic polynomial fit to experimental values. Owing to the vertical symmetry only upper half of the cell has 

been shown. One can observe that the numerical results match closely with the experimental data. Further, if one tries to 

superimpose the two figures, the height of the fingers matches within a reasonable accuracy. The appearance of fingers is 

attributed to Rayleigh vibrational instability which appears due to Bernoulli like pressure difference (∆𝑝 ≈ 𝜌𝑐∆𝑉
2 =

 𝜌(
∆𝜌

𝜌𝑐
)2𝐴2𝜔2) in thermal boundary layers. The results show that the present model is thus able to predict instabilities without 

any constraint on the heating rate. With an increase in the distance from the critical point, the number of fingers decreases 

while their amplitude grows faster. The latter is attributed to that fact that diffusion time increases significantly as we move 

closer to the critical point thereby causing a delay in the growth of instability in the thermal boundary layer. A stability 

curve will be presented for different proximities to the critical point, different values of frequency and amplitude and 

different heating rates.  

CONCLUSIONS 

 

   A numerical simulation with a mathematical model based on the determination of the density from the mass conservation 

equation and thermophysical properties from the NIST database has been performed. The results show a fingering structure in 

the thermal boundary layer and confirmed with the experimental results based on the magnetic field levitation. Stability diagrams 

will be shown as a function of the different parameters described above. 
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Summary We consider the effect of pressure fluctuations on the evolution of Richtmyer-Meshkov (RM) flows. The pressure fluctuations 

are induced by non-uniformities in the fluid bulk and are modeled as a time dependent acceleration with the power-law exponent (-2). We 

consider a large scale periodic coherent structure of bubbles and spikes in a two-dimensional RM flow, and obtain asymptotic solutions 

describing nonlinear dynamics of the structure using group theory analysis. We show that regular asymptotic solutions describing the bubble 

dynamics form a one-dimensional family. The family can be parametrized by the curvature of the bubble front. The stability of the family 

solutions is analyzed. The physically significant solution in the family is interpreted as the stable solution with the maximum velocity. The 

associated flow fields in the vicinity of the bubble tip indicate the formation of vortices and the presence of shear at the interface, which 

may lead to cascading of energy to smaller scales. 

INTRODUCTION 

 

Richtmyer Meshkov (RM) instability develops when a shock refracts at the interface between fluids with different acoustic 

impedances. In the incompressible limit, it may occur when a light fluid impulsively accelerates a heavy fluid. These 

instabilities hold one of the keys to understanding a variety of physical phenomena occurring in a wide range of length and 

time scales. Sharp density gradients occur in phenomena such as inertial and magnetic confinement fusion, supernova 

explosions, flames, formation of salt domains etc. Developing a reliable theoretical framework to describe the turbulent 

mixing in these processes is one of the fundamental objectives of doing such studies. 
 

The interfacial dynamics is often decoupled into small and large scales. At large scales, the instabilities lead to a coherent 

structure of bubbles and spikes in the plane normal to the direction of the acceleration. At small scales, there are secondary 

instabilities and vorticities which may lead to the formation of singularities, thereby making the non-linear evolution fairly 

complicated and chaotic at these scales. Considerable progress has been made in the mathematical modelling of the large 

scale coherent structure. 

 

             SMALL SCALE DYNAMICS IN THE BULK: PRESSURE FLUCTUATIONS 
 

It is traditionally believed that in RMI, the non-uniformities in the small scale dynamics is confined to the vicinity of the interface, 

and the bulk dynamics is uniform at small scales. However, recent simulations [2] have indicated that small-scale dynamics in the 

indeed exist in the bulk of RM flow. Figures 1a and 1b clearly show these non-uniformities in the form of hot spots and reverse 

cumulative jets. These non-uniformities induce pressure fluctuations, which may have significant impact on the morphology and 

the dynamics of RM bubbles. In this work, we study the effect of pressure fluctuations on nonlinear evolution of RMI. In the 

process, we study the impact of small scale non-uniformities on the large scale coherent structure, and show that pressure 

fluctuations have significant impact on morphology and dynamics of RM bubbles. 

 

 

 

    

 

 

 

 

 

 

 

 

 
(a) Temperature from 4000 K(blue) to 8000 K(red)                   (b)  Pressure from 1011Pa (blue) to 2 × 1011 Pa (red)      

                 
Figure 1: RMI small scale structures obtained using SPH simulations (Stanic et. al., 2012)                  

 

 

 

 

 

995

mailto:akbhowmi@andrew.cmu.edu
Home
Text Box
XXIV ICTAM, 21-26 August 2016, Montreal, Canada



PROBLEM FORMULATION AND GOVERNING EQUATIONS 

 

We consider 2D flow of heavy and light ideal incompressible fluids separated by an interface. We further assume that the 

flow is irrotational at scales comparable to the large scale coherent structure. The resulting system of equations in the potential 

approximation for the heavy and light fluid bulks are 

       𝛻2Φℎ/𝑙 = 0,        (1) 

 (𝜌
𝜕Φ

𝜕𝑡
+

𝜌

2
|∇⃗⃗ Φ|

2
+ 𝜌(𝑔(𝑡) +

𝜕𝑣

𝜕𝑡
) 𝑧)

ℎ/𝑙
= −𝑃ℎ/𝑙.           (2) 

where Φ  is the flow potential, 𝜌  is the mass density. 𝑔(𝑡)  is the effective acceleration term caused by pressure 

fluctuations. 
𝜕𝑣

𝜕𝑡
 is a non-inertial term appearing as a consequence of being in the rest frame of the bubble tip, where 𝑣 is the 

bubble tip velocity. The indices ℎ and 𝑙 represent heavy and light fluids respectively. The boundary conditions assume no 

fluid motion at large scales far away from the interface, and are given by 

     �⃗� Φ = −𝑣  ,    𝑧 = ±∞.             (3) 

The conditions of mass and momentum conservation at the interface are given by, 

          (𝜌 (
�̇�

|�⃗⃗� 𝜃|
+ �⃗� Φ. �̂�))

ℎ/𝑙

= 0         (4) 

𝑃ℎ = 𝑃𝑙                                                       (5) 

 

    MODELLING OF PRESSURE FLUCTUATIONS: TIME DEPENDENT ACCELERATION  

 

The effect of pressure fluctuations is contained in the acceleration term 𝑔(𝑡). These pressure fluctuations may not be due to 

dissipation and diffusion effects because they seem to occur at scales larger than the dissipative or diffusive scales. Thus the 

pressure fluctuations may be scale invariant, and could be modelled by a scale invariant function such as the power law, i.e. 

𝑔(𝑡)~ 𝑡𝑎. In this work, we consider 𝑔(𝑡) = 𝐿𝑔/𝑡
2 because the resulting asymptotic solutions are of the form 𝑣 ~

1

𝑡
, which 

is the same as the case of no fluctuations [1].   

 

  ASYMPTOTIC SOLUTIONS FOR RM EVOLUTION WITH PRESSURE FLUCTUATIONS 

 

We solve for the tip velocity and the velocity fields and show that the solutions may be convergent and are asymptotically 

stable. The details of the approach shall be presented later. The solution for the tip velocity 𝑣 as shown in figures 2a and 2b, 

bring out the essential features of the morphology of the RM bubble. The plots are at different Atwood numbers 𝐴 =
𝜌ℎ−𝜌𝑙

𝜌ℎ+𝜌𝑙
 

The solutions form a one parameter family, parametrized by the bubble curvature 𝜁1 . The physically significant solution 

corresponds to the maxima of these curves. Thus, RM bubbles are flat for small fluctuations and curved for large fluctuations.  

 

 

        

 

 

 

 

       

        
(a) Small pressure fluctuations                      (b) Large pressure fluctuations 

   Figure 2: Tip velocity as a function of curvature for large and small pressure fluctuations 

 

CONCLUSIONS 

 

Qualitative and quantitative distinctions in the solutions for small and large pressure fluctuations indicate that the solutions exhibit 

sensitivity to pressure fluctuations and this is one of the key results of our work. This clearly demonstrates that small scale structures 

in the bulk may have significant impact on the dynamics at large scales. The solutions also indicated the presence of shear and the 

formation of vortices at the interface, which provides a mechanism for energy cascade to smaller scales at the interface possible 

giving rise to small scale structures at the interface via mechanisms such as Kelvin Helmholtz instability.  
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INTERMITTENCY OF LAMINAR SEPARATION BUBBLE DURING DRAG CRISIS IN
FLOW PAST A CIRCULAR CYLINDER
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Summary This work explores the phenomenon of drag crisis in flow past circular cylinder: a significant reduction in drag with increase in
Re due to transition of boundary layer from laminar to turbulent state. The incompressible flow equations are solved using a stabilized finite
element method for 1 × 104 ≤ Re ≤ 4 × 105, in three dimensions. The computations successfully capture the phenomenon. It is shown
that the drag crisis is accompanied with appearance of a Laminar Separation Bubble (LSB). The intermittent nature of the LSB during the
transition is explored. In addition to the streamlines, the LSB may also be tracked via filtered Reynolds stress and fluctuations in surface
pressure.

INTRODUCTION

Understanding the phenomenon of drag crisis in flow past a circular cylinder has relevance in several engineering applica-
tions. It has been a subject of research in the past via experimental and numerical studies. The boundary layer on the cylinder
transitions from a laminar to turbulent state during drag crisis. The flow can be broadly classified in four regimes as a function
of Re: sub-critical, critical, super-critical and trans-critical ([1], [3] and, [4]). In the sub-critical regime (Re < 2 × 105) the
boundary layer is laminar until separation and, the mean coefficient of drag (CD) is almost constant with Re. In the critical
regime (2 × 105 ≤ Re ≤ 4 × 105) the laminar boundary layer separates near the shoulder of cylinder. The separated shear
layer undergoes transition to a turbulent state and reattaches to the surface of the cylinder ([2]), leading to the formation of
a Laminar Separation Bubble (LSB). The reattached turbulent boundary layer separates further downstream. As a result, the
wake is narrower and base suction pressure higher, leading to a rapid reduction in CD with increase in Re. In the supercritical
regime (Re ≥ 4 × 105) CD increases with increase in Re. The main objective of the present work is to understand the
phenomenon of drag crisis. Does it occur abruptly, or is it a relatively gradual process that occurs over a range of Re? We
attempt a statistical analysis of the computed flow to understand the intermittent nature of the LSB.

RESULTS AND DISCUSSIONS

Figure 1(a) shows the variation of CD with Re from the present computations along with their comparison from earlier
studies. We observe that both two- and three-dimensional simulations predict drag crisis. The range of Re for which the flow
lies in the critical regime is very similar from the two sets of computations. This suggests that the phenomenon itself is largely
two-dimensional. Of course, the three-dimensional effects are quite significant as indicated by the difference in CD in the
sub- and super-critical regime from the 2D and 3D computations. However, the mechanism of transition in a span-averaged
sense appears to be two-dimensional. Compared to the measurements from experiments, the present results predict the drag-
crisis at a slightly lower Re. Results are also shown in Figure 1(a) for the Large Large Eddy Simulation (LES) with a static
Smagorinsky model to account for the subgrid scales. Compared to results from model-free computations, these results are in
closer agreement with the experimental data. Since the model-free computations also capture the essential trend, therefore, all
the analysis in this work is carried out for data from model-free computations. Both, the computational and experimental data
in Figure 1(a) shows that the variation of CD with Re during the transition is smooth, and not abrupt. We explore the changes
in the flow during transition.

The instability of the separated shear layer and its subsequent rolling up into vortices plays a major role in the reattachment
of the boundary layer and formation of LSB. To study this we need to filter out the activity due to the Karman shedding that
has a much lower frequency compared to the activity of the shear layer. For the same, consider the time variation of the
span-averaged surface coefficient of pressure CP (θ, t) at different Re. We compute a moving average of CP (θ, t): C̃P (θ, t)
over a time window of size Tk/10, where Tk is the time period of the Karman shedding. This averaging filters out the shear
layer activity while retaining the vortex shedding effects. By subtracting C̃P (θ, t) from the original signal, we compute the
rms of the fluctuations that correspond to shear layer activity: ˜C ′

PC
′
P (θ, t). Figure 1(b) shows a space-time diagram of the

variation of ˜C ′
PC

′
P (θ, t) for Re = 1.5 × 105. The flow is in the transitional regime at this Re and undergoing drag-crisis.

Figure 1(d) shows the streamlines for the moving time-averaged flow that are also span averaged at two time instants that are
marked in figure 1(b). These figures reveal the co-relation between the presence/absence of LSB with the level of fluctuations
due to shear layer activity as observed in ˜C ′

PC
′
P (θ, t). At t = t1 the fluctuations in the figure 1(b) are high at θ ≈ 105o
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Figure 1: Flow past a cylinder: (a) variation of the mean drag coefficient with Re, (b) space-time diagram of the rms of the
fluctuations ˜C ′

PC
′
P (θ, t) subjected to high pass filter at Re = 1.5 × 105, (c) variation of the intermittency factor (1 − If )

with Re in solid line. Also shown in broken line is the span- and time-averaged drag coefficient. (d) Close-up views of the
streamlines for the span- and moving time-averaged flow at two time instants marked in (b).

but relatively low at θ ≈ 250o. Correspondingly a LSB can be seen in the time-averaged streamlines shown in figure 1(d)
on the upper shoulder of the cylinder. At t = t2, an LSB appears on both the upper and lower shoulder of the cylinder.
Correspondingly, high fluctuations in ˜C ′

PC
′
P (θ, t) can be seen at θ ≈ 105o and θ ≈ 250o. This demonstrates that high

fluctuations in ˜C ′
PC

′
P (θ, t) correspond to increased shear layer activity and formation of LSB. As seen from figure 1(b), the

high fluctuations in ˜C ′
PC

′
P (θ, t) appear in bursts. The space-time diagram is utilized to compute the Intermittency factor, If .

An LSB exists on the shoulder if ˜C ′
PC

′
P (θ = 105o or 250o, t) exceeds a certain threshold value. The concept of intermittency

is very well established in transitional flows where it represents the fraction of time that the flow is in a turbulent state. In
the present work, If represents the fraction of time during which LSB appears in the flow. Figure 1(c) shows the variation of
1− If and CD with Re. This figure clearly shows the correlation between 1− If and CD. In the subcritical regime If ≈ 0,
indicating LSB does not appear in the flow. In the early stages of critical regime, If starts increasing from a zero value and
reaches unity towards the end of the critical regime. This shows that LSB appears intermittently during the regime of drag
crisis and its frequency of appearance increases towards the end of drag crisis. Thus it can be said that in the transitional
regime during the drag crisis, the flow fluctuates between laminar and turbulent states. The laminar state is associated with
larger drag and is devoid of LSB. The turbulent state has a lower drag and is associated with an LSB. The average drag at any
Re depends on the relative time spent in the two states.

CONCLUSIONS

The numerical simulations capture the drag-crisis. The Laminar separation bubble (LSB) is found to exhibit an intermittent
behaviour. This nature of LSB is utilized to explain the gradual change in CD in the transition regime during drag crisis as
opposed to a sudden decrease in drag at a certain Re.
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SECONDARY OPTIMAL PERTURBATION GROWTH IN HARTMANN CHANNEL FLOW

Shuai Dong∗1, Dmitry Krasnov2, and Thomas Boeck2

1School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, China
2Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany

Summary The algebraic growth of secondary optimal perturbations in a channel flow with a transverse magnetic field is investigated. Linear
growth of perturbation on the streaky base flow is calculated by iteratively solving the direct and adjoint governing equations. For small
amplitude streaks evolving on the channel flow, the secondary optimal perturbations resemble the primary ones. For large amplitude streaks
cases, there is still residual interaction between the top and bottom Hartmann layer at relatively high Hartmann number. The optimal
streamwise wavenumber is found to be finite and scaled with the thickness of the Hartmann layer.

INTRODUCTION

Hartmann channel flow is the prototype of many MHD flows in the casting and material processing industry. When the
conducting liquid is passing through two unbounded plate in the presence of a constant transverse magnetic field, the core of
the flow becomes flat and two electromagnetic boundary layers, i.e., Hartmann layers, develop at the walls perpendicular to
the magnetic field. The thickness of the Hartmann layer δ is scaled as the inverse of the Hartmann number Ha. The stability
of the Hartmann channel flow usually can be determined by the local Reynolds number R with δ as the length scale. A recent
experiment identified transition in the Hartmann layers at critical local Reynolds numberRc ∼ 380 [1]. Theoretical work with
normal mode linear stability analysis overestimate this value. It is two orders of magnitude higher than that of experiment [2].
Recent developments in non-modal stability theory revealed that the transient growth, or algebraic growth of perturbations
may play a significant role in the so-called sub-critical transition of shear flows [3]. We study this topic by means of a transient
linear perturbation analysis using channel flow with unsteady streaks as the basic state.

FORMULATION OF THE PROBLEM

The Hartmann channel flow is considered in the present study, i.e., an incompressible electrically conducting fluid between
two infinite parallel plates in the presence of an uniform transverse magnetic field. The flow is driven by the pressure gradient
and the mass flux is maintained constant. A constant and uniform static magnetic field is oriented along the wall-normal z-axis.
With the assumption of low magnetic Reynolds number, the nondimensional governing equations and boundary conditions
are:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+

Ha2

Re
(−∇ϕ× ez + (u× ez)× ez) , (1)

∇ · u = 0, (2)
∇2ϕ = ∇ · (u× ez) , (3)

u = v = w =
∂ϕ

∂z
= 0 at z = ±1, periodicity in x and y directions. (4)

Here ez ≡ (0, 0, 1) is the unit vector of the applied magnetic field and x, y, z denote the streamwise, spanwise and wall-
normal directions, respectively. The nondimensional parameters in equation (1) are the Reynolds number Re ≡ UL/ν and
the Hartmann number Ha = L/δ, where δ denotes the Hartmann layer thickness, δ =

√
ρν/σB2. The local Reynolds

number is then defined as R = Uδ/ν = Re/Ha.
For the analysis of secondary perturbations, the governing equations (1–3) are linearized around the modulated Hartmann

flow U(y, z, t). The secondary linear perturbations take the form up(x, y, z, t) = 1
2 [û(y, z, t) exp(iαx) + c.c.], where α

denotes the streamwise wavenumber and c.c. denotes the complex conjugate. An energy norm is then defined as E(t) ≡∫
(ûû∗ + v̂v̂∗ + ŵŵ∗)dydz, thus the ratio of E(t) and the initial value E(0) is the perturbation energy amplification factor

G(t) = E(t)/E(0).
Using a Lagrangian formalism, the maximum value of G for given parameters Gmax(Re,Ha, T, α) is determined via

optimization constraints, which are enforced by the adjoint fields [3]. The optimal perturbation and amplification at time T
are obtained by an iterative scheme, in which forward integration of the linearized governing equation is followed by backward
integration of the corresponding adjoint equations. For comparison of secondary growth at different values of Re and Ha, we
require a comparable velocity amplitude of the developed streak. Thus, an energy amplitude A is defined as A = E0/EB,
where EB is the mean kinetic energy of the Hartmann channel flow. The value of ARe2/Ha is decisive and must remain
constant between different cases for comparison.
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Figure 1: Amplification of perturbations with small α evolving on modulated channel flow with lower amplitude streaks,
symmetric (left) and antisymmetric case(right). The parameters are Ha = 10 at R = 500(symbols) and R = 300(lines).
Different line(symbol) corresponds to different value of rescaled α, which is increased from top to bottom.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

τHa/Ha
ref

G
II

 

 
Ha=10
Ha=20
Ha=30

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5

τHa/Ha
ref

α op
t H

a/
H

a re
f

 

 
Ha=10
Ha=20
Ha=30

Figure 2: Maximum of secondary perturbation energy amplification (left) and the corresponding optimal wavenumber αopt

(right) for higher amplitude streaks at R = 300 and Ha = 10, 20, 30.

Fig.1 shows the rescaled optimal secondary amplification GII(R/Rref)
2 as function of the rescaled time τR/Rref for cor-

responding rescaled wavenumbers αR/Rref , andRref = 300. The rescaled amplifications of perturbations coincide at the two
Reynolds numbers R = 300 and R = 500. This scaling behaviour is in agreement with that of primary optimal perturbations
[4]. There are no apparent differences between the modulation by antisymmetric and symmetric primary perturbations, that
implies the secondary perturbations are localized in the top and bottom Hartmann layers. For higher amplitude streaks, the
scaling is not valid due to the strong modulation of channel flow. The maximum value of secondary perturbation energy and
the corresponding optimal wavenumber αopt are shown in Fig.2, as a function of time τ for R = 300 and different Ha. The
maximum of energy amplification increases as the Hartmann number is increased from Ha = 10 to Ha = 30. The small
differences in GII between Ha = 20 and Ha = 30 indicate that the perturbations become localized at the walls for Ha = 30.
The optimal wavenumber αopt is approximately proportional to Ha at larger values of τ .
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FLOW STRUCTURE IN A ROTATING CYLINDER WITH FLUID
AND A FREE LIGHT BODY AT VIBRATION
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Summary A system of two quasi-concentric cylinders at rotation is studied experimentally. The gap between the cylinders is filled with
a fluid. The outer cylinder (cuvette) is installed horizontally and brought to rotation, the inner cylinder (core) is lighter than the fluid and
occupies a steady position on the rotation axis due to the centrifugal force. The action of transversal vibration on the system leads to the
excitation of core inertial oscillations, steady streaming generation in the Stokes layers and core differential rotation. Heavy particles are
added into the fluid to study the flow in the annulus. The core oscillations make the sedimented particles redistribute on the cylinder wall
surface forming a regular pattern, azimuthal rings periodic along the rotation axis. The spatial period of the pattern depends on the regime
of the core motion.

INTRODUCTION

A flow in an annulus between two concentric independently rotating cylinders, known as Couette–Taylor flow, possesses
a large number of regimes [1]. One of the most known is a pattern of vortices periodic along the axial coordinate – Taylor
vortex flow. Oscillations of the outer cylinder, e.g. librations, lead to the excitation of inertial waves in the fluid [2]. Circular
oscillations of a free cylindrical core in a rotating cylinder lead to steady flow generation and spinning of the core [3]. The
study of Couette–Taylor flow is a key to understanding the physics of interior of planets and stars [4] and a promising approach
for industrial application [5].

EXPERIMENTAL RESULTS

A system of two quasi-concentric cylinders at rotation is studied experimentally. The gap between the cylinders is filled
with a fluid. The outer cylinder (cuvette) is installed horizontally on the platform of an electrodynamic vibrator and is brought
to rotation about its axis with the rate Ωr by a stepper motor. The inner cylinder (core) is lighter than the fluid and occupies a
steady position on the rotation axis due to the centrifugal force. The core rotates with the rate Ωs. Heavy particles are added
into the fluid to study the flow structure in the annulus.

Figure 1: Regular pattern of heavy particles of different size – aluminium flakes, polymeric spheres, and carbon – deposited
on the wall of the outer cylinder. Cuvette rotation rate Ωr = 113.6 rad/s, vibration angular frequency Ωv = 251.3 rad/s,
vibration amplitude bv = 0.30 mm, differential rate of core rotation ∆Ω = 33.9 rad/s

The action of transversal vibrations on the system leads to a resonant excitation of the core inertial oscillations of circular
polarization. This leads to a steady streaming generation in the Stokes layers. Depending on the direction of oscillations, either
they are prograde or retrograde with respect to the cavity rotation, the steady flow is directed positive or negative relative to
the cavity. Accordingly, the free core is entrained by this flow in an average differential rotation, either leading or lagging.
The mechanism of steady flow generation in this system is theoretically explained in [6]. In Figure 1, the pattern photograph
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is presented for the case when the core oscillates in the prograde direction and its rotation is leading. In the annulus, a strong
azimuthal flow is present, which moves faster than the cavity wall.

At simultaneous oscillations and differential rotation of the core, the sedimented particles redistribute on the cylinder wall
surface, forming a regular pattern: azimuthal rings periodic along the rotation axis (Figure 1). This indicates the occurrence
of a regular system of toroidal vortices. This phenomenon is observed for both leading and lagging differential rotation of the
core. Depending on the dimensionless frequency of vibration (n ≡ Ωv/Ωr), the spatial period of the pattern changes and the
rings of particles may become wavy. At high oscillation amplitude of the core, the large particles are washed to the end-walls,
and the aluminium flakes visualize small-scale patterns (spatial period of the order of ten times the boundary layer thickness)
periodic along the axis.

Analysis of the pattern wavelength and Reynolds numbers makes it possible to suggest two mechanisms of vortex gen-
eration. First, since the core is oscillating, the propagation of inertial waves should be considered, which may lead to the
redistribution of the particles in the points of wave reflection. Second, at sufficiently high values of the Reynolds numbers, the
Taylor instability should be taken into account. In a certain range of experimental parameters, a coexistence and an interaction
of the two mechanisms is possible, which makes the problem quite complicated. Different types of the sub-scale structure of
the particle rings are found, which supports the idea of a competition between two mechanisms of flow generation.
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Summary It is known that the boundary layer over concave surfaces can be unstable to centrifugal forces, giving rise to counter-rotating
vortices, aligned in the streamwise direction. The effects caused by these vortices distort the hydrodynamic and thermal boundary layer
profiles, and they may modify the heat transfer rates. Results of a numerical investigation of the effects of Goertler vortices on heat transfer
enhancement from a boundary layer flow over walls of variable curvature are reported. Fully concave, concave-flat and concave-convex
configurations are considered. The results provide evidence that one may effectively decrease heat transfer rates of a transitional flow by
changing curvature.

INTRODUCTION

The laminar-turbulent transition phenomenon and its effect on heat transfer have been investigated for several decades. The
literature relating to this subject is covered by different types of approaches, whether analytical, numerical or experimental.
The first study regarding the effects of Goertler vortices on heat transfer was conducted by [3]. The experimental study
[4] compares the enhancement in heat transfer in Goertler flow with turbulent values, proving that the enhancement in heat
transfer in Goertler flow can be higher than the one in turbulent flows. In [5], experimental results of streamwise variation
of the Stanton number on heated flat and concave walls with three different favorable streamwise pressure gradients at Mach
number 0.015 show one increase up to 110% in the Stanton number due to the presence of the Goertler vortices. Studies
related to nonlinear spatial stability computations for walls with variable concave curvature were published in [1], where is
studied numerically the influence of variations in the curvature using the parabolized disturbance equations. Results presented
in [2] show that steady Goertler flow can increase the heat transfer rates to values close to the values of turbulence, without the
existence of a secondary instability. In the present paper we extend some analyses of [1] by discussing the effects of curvature
variations on heat transfer rates.

PROBLEM FORMULATION AND RESULTS

The problem is modeled through a Navier-Stokes system equations written in vorticity-velocity formulation. The go-
verning equations are complemented by the specification of boundary conditions. A simulation code was developed and
implemented using a high-order, pseudo-spectral numerical simulation method. Further details can be seen in [2]. The
schematic diagram of the computational domain is illustrated in Fig.1.

Figure 1: Computational domain Figure 2: Cases of wall curvature distributions studied

The nonlinear simulations were made adopting the same physical parameters of the classical experiment [6]. We con-
sider the radius of the concave surface R∗ = 3.2 m, the free stream velocity U∗∞ = 5 ms−1, and the kinematic viscosity
ν∗ = 1, 5 × 10−5 m2s−1. For analysis of heat transfer we verify the evolution of the spanwise–average Stanton number in
the streamwise direction, where this nondimensional parameter is defined as Stx = Nux

PrRex
. Nux, Rex and Pr denote the

Nusselt, Reynolds and Prandtl numbers and they are defined byNux = ∂T
∂y

∣∣∣
wall

L
Te−Tw

, where Te and Tw are the temperature
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values outside from the thermal boundary layer and at the wall, Rex =
U∗∞x

∗

ν∗ and Pr = ν∗

α∗ , where x∗ is a plate characteristic
length and α∗ is the thermal diffusivity of the fluid.

Figure 2 illustrates the cases of wall curvature distributions studied. These distributions are modeled by the function κ
κ0

,
where κ0 and κ represent the curvature at x = 1 and x position respectively and they are similar to the functions presented in
[1]. The evolution of the spanwise–average Stanton number in the streamwise direction for each of the curvature distributions
is shown in Fig. 3. The first distribution of curvature to be analysed is a classic case where the curvature is fully concave,
i.e., k

k0
= 1. The second case studied displays a wall consisting of a concave section attached to a flat section by a section

with continuous variable curvature. They are modeled by k
k0

= 1
2 − 1

2 tanh[3(x − 12.77)]. For the last case analysed, we
consider concave circular plate attached to a convex circular one of the same radius 1

k0
by a section with continuously variable

curvature. The function representing the curvature distribution is given by k
k0

= − tanh[3(x − 10.752)]. For each case of
curvature variation three Prandtl numbers were considered, Pr = 0.72, Pr = 1.0 and Pr = 7.07. As can be seen in Fig

(a) Pr = 0.72 (b) Pr = 1.0 (c) Pr = 7.07

Figure 3: Streamwise evolution of the spanwise-averaged Stanton number for λz = 0.18. Transitional results are compared
with laminar and turbulent boundary layer theoretical Stanton functions.

3 all cases of wall curvature distributions are showing the spanwise-averaged Stanton number for the Goertler flow similar
to laminar flow at region until Rex ∼ 2.25 × 105 (x ∼ 7). For the cases illustrated in the Fig.3, items (a) and (b), the
intensification of rate of heat transfer caused by the Goertler vortice can be observed from Rex ∼ 3.0 × 105 (x ∼ 10). In
the first case, where the curvature distribution is fully concave, at the Rex around 4.0× 105 (x ∼ 12.5), the Stanton number
reaches higher values than the turbulent ones. In the cases where the curvature is changed, we can observe that the centrifugal
effect caused by the concave curvature is turned off, resulting in a decrease in heat transfer rates. For concave/flat wall this
decrease can be seen from Rex = 4.0 × 105 (x = 12.75), and from Rex = 3.75 × 105 (x = 10.75) on the concave/convex
curvature distribution. Fig 3 (c) displays results with Pr = 7.07. In this case the Stanton numbers for the transitional flow
does not reach the Stanton values obtained in turbulent flow in any of the curvature distributions. This behavior is expected
since the thermal boundary layer is thicker than the hydrodynamic boundary layer, therefore the influence of Goertler vortices
is smaller.

CONCLUSIONS

Results show that the case of concave/convex curvature has effects of stability on Goertler vortices generated by the
concave curvature. Thus there is evidence that the convex curvature can be most useful for the control of a laminar flow. This
was also happen for concave/flat wall, but with a lower intensity. Considering the fully concave curvature distribution it was
observed that the steady Goertler flow can increase the heat transfer rates to values higher than the turbulent ones.
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Summary The paper presented the results on the generation and development of the wave train in uniform and spanwise modulated boundary 
layer at Mach 2. A swept-wing model was used in the experiments. In 3D boundary layer the oblique breakdown mechanism is detected, which 
previously observed only in a supersonic boundary layer on flat plate. It was obtained that in the spanwise modulated boundary layer the 
oblique breakdown mechanism occurs at lower values of the longitudinal coordinate x. 
 

INTRODUCTION 

 
   For fluid mechanics, the laminar-turbulent transition in supersonic 3D boundary-layer flows is one of the most important 
issue. In ITAM SB RAS, which has low-turbulence wind tunnel T-325, controlled experiments on a 45° swept wing were 
carried out. First of all, detailed hot-wire measurements of unstable wave trains propagating at free-stream Mach number 
M = 2 were performed [1]. Most recently, the experimental validation of predicted nonlinear mechanism of subharmonic 
resonance on smooth swept wing was achieved [2]. From data available to us we can state that the subharmonic resonance 
plays a major role in transition in swept wing boundary layer with roughness. But not only subharmonic resonance 
mechanism will cause a transition to turbulence. Another nonlinear mechanism is oblique breakdown mechanism obtained 
earlier on flat plate [3, 4]. Using the distributed roughness near the leading edge it was able to intensify the mechanism of 
oblique breakdown in the boundary layer on the flat plate [5]. In this paper, similar experiments on the smooth swept wing 
and swept wing with roughness were presented. 
 

EXPERIMENTAL SETUP 

 
   The experiments were conducted in the Т-325 low noise supersonic wind tunnel of ITAM SB RAS at M = 2 and unit 
Reynolds number Re1=7×106 m−1 in experiments on the smooth model and Re1=5×106 m−1 in experiments on the model 
with roughness. A swept-wing model was used in the experiments. The model had a sweep angle of 45° and a slightly 
blunted leading edge of radius 0.2 mm [1]. A sketch of the experimental model and the coordinate systems are shown in 
Figure 1; dimensions are given in mm. The model was fixed in the central plane of the test section at approximately zero 
angle of attack. A source of localized artificial disturbances was built in the model [6]. Controlled pulsations have been 
generated using high-frequency glow discharge in a chamber and they were injected into the boundary layer through an 
aperture 0.4 mm in diameter in the upper surface of the model. A sine-wave generator and amplifier with transformer output 
were used to produce high voltage at a frequency of 10 kHz. The actuator work at frequency 20 kHz that enabled artificial 
perturbations to be excited at frequencies of 10 and 20 kHz in the boundary layer. The square stickers from a scotch tape 
were applied to induce the spanwise modulation of mean flow in the boundary layer. The sizes of labels were 3 mm × 3 
mm, the height in both case was 60 microns. Some details concerning to the coordinate systems and location of the stickers 
are shown in Figure 1. The wind tunnel has an automated measuring system that allows determining the flow parameters in 
“real time”. The flow disturbances were measured by a constant-temperature anemometer (CTA). A tungsten hotwire of 10 
µm in diameter and 1.6 mm in length was used. The pulsation measurements were synchronized with a disturbance source 
and sine wave generator by a special device in a computer-automated measurement and control crate. The AC and DC 
signals from the CTA were written to the PC using a 12-bit analog-to-digital converter with sampling rate 750 kHz and by 
DC voltmeter, respectively. Four time traces of 65536 points in length were measured and written to file in each space 
position of the hotwire. 

 

X

Z’Z

56,6 mm

U
=45

40 mm Glow
discharge

 
Fig. 1. A sketch of the swept wing and coordinate systems 

used; (a) – side view; (b) – plan view; (1) marks the 
disturbance source. 

Fig. 2. Model of the swept wing with roughness. 
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   Mean and pulsation characteristics of the flow were obtained after data processing using a standard technique [1]. The 
mean flow distortion was determined by using the ratio between the relative change of the average mass flow and relative 
change of mean voltage output from CTA [5]. 
 

RESULTS 

 
   The source of controlled disturbances introduced pulsations at frequencies f = 10, 20, 40 kHz in the supersonic boundary 
layer. However, disturbances at 40 kHz attenuate downstream whereas those at 10 and 20 kHz have grown. Figure 3,a 
shows the amplitude β′-spectra of the controlled disturbances for the fundamental frequency f = 20 kHz on the smooth swept 
wing. The greatest amplitude growth is observed at β′ = 1.21 rad/mm, which correspond to linear development of unstable 
waves. In sections x = 70, 80 mm the amplitude growth at β′ = -0.88 rad/mm is occurred. The presence of additional peak in 
the amplitude spectra for the fundamental frequency cannot be explained in terms of subharmonic resonance. It is likely 
formed by nonlinear interaction between stationary and travelling waves. 
   For occurring oblique breakdown mechanism synchronism condition must be satisfied: 

f1+f2=f3 
α1+α2=α3 
β1+β2=β3. 

   Dispersion relations αr′(β′) are estimated from phase β′-spectra and these results are shown in Figure 3,b. For f = 10, 20 
kHz the dependence αr′(β′) are seen to be close to the linear ones. For f = 0 kHz the line αr′(β′) is drawn parallel to those at 
frequencies f = 10, 20 kHz. The arrows on the plot indicate the increasing waves. From these data we consider that 
nonlinear amplification of disturbances in 3D supersonic boundary-layer is described well by oblique breakdown 
mechanism. 
   In experiments on the swept wing with roughness the greatest amplitude growth is observed at β′ = 1.19 rad/mm 
(Figure 3,c). In sections x = 40, 50, 60 mm the amplitude growth at β′ = -0.6 rad/mm is occurred. This additional peak in the 
amplitude spectra for the fundamental frequency formed by nonlinear interaction between stationary and travelling waves - 
oblique breakdown mechanism. 

   
Fig. 3. (a) Amplitude β′-spectra of disturbances. f = 20 kHz, smooth model; (b) Dispersion relations αr′(β′). f = 20 kHz, 
smooth model; (c) Amplitude β′-spectra of disturbances. f = 20 kHz, model with roughness. 
 

CONCLUSIONS 

 
   In uniform and non-uniform flows in 3D boundary layer the oblique breakdown mechanism is detected, which previously 
observed only in a supersonic boundary layer on flat plate. Thus, subharmonic and oblique breakdown are the mechanisms of 
weakly nonlinear interaction in 3D supersonic boundary layer, similar to the case on a flat plate. It was obtained that in the 
spanwise modulated boundary layer the oblique breakdown mechanism occurs at lower values of the longitudinal coordinate x. 
The results are suitable for the CFD code verification. 
This work has been supported by the RFBR grant 16-31-00290, 16-01-00743. 
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Summary We present a stability analysis of a pipe flow with particle suspension. Particles are considered solid, spherical, heavy with an
unique size and density. The particles are, in our physical model, modelled as a continuous phase and for the fluid-particles interactions
only the Stokes drag is taken into account, the other forces being neglected. We first use a linear stability analysis to study the influence of
the addition of particles to the global stability of the flow. Single phase pipe flows have been proven to be globally stable for any Reynolds
number, we find that this is also the case for particulate pipe flows. The effect of particles varies with the concentration and the size of the
particles, but it remains relatively weak. Then a nonlinear transient growth analysis allows us to look for the optimal perturbation triggering
turbulence and the effects of particles.

Pipe flow is a classical problem in fluid dynamics. The simplicity of geometry and relevance to industry and engineering has
made it one of the main research topic in fluid dynamics. Thus a lot of knowledge has been accumulated, yet research is
mostly focused on single phase flows. The characteristics of laminar and turbulents flows and the conditions for the transitions
from one to the other has been a major source of interest for decades because of the wide range of applications. Today the
transition for single phase shear flows is relatively well understood and little is known for flows having differents phases, and
the focus on this topic has risen recently in the scientific community.
One of the major difficulty in simulating a particulate laden flow is the modeling of particles. The representation of a high
number of discrete entities and accompanying boundary layers is very expensive and limits the possibilities. In order to
circumvent the problem, instead of modeling particles as discrete entities, we parametrize them with continuous variables,
much like the fluid. A similar model is used in [Klinkenberg et al., 2011] for a study of channel flows. Because it requires
a lot less computational power than a realistic description of particles, this model is not as constrained as the complete
description of particle. The drawback is that this representation is not always physically realistic. For small particles and low
volumic concentration the model should give a good approximation but it is supposed to break if those parameters increase
too much. The system of equations for our model is :

∂u

∂t
= −∇p

ρ
− (u.∇)u + ν∇2u +

KN

ρ
(up − u)

∂up
∂t

= −mN(up.∇)up +KN(u− up)

∂N

∂t
= −∇(Nup)

∇.u = 0

With u and up the velocity fields for the fluid and particles, p the pressure, ρ the density of the fluid and ν its viscosity. N is
the concentration of particles and m the mass of one particle, so mN represents the mass of the particles per unit volume. K
is the Stokes drag defined such as K = 6π r ρ ν with r the radius of a particle.

We used in a first time a linear stability analysis to study the influence of the addition of particles to the global stability
of the flow. The equations for the perturbation leads to a modified Orr-Sommerfeld problem. Linear stability analysis have
been carried out extensively for single phase pipe flows. It is well known that the pipe flow is linearly stable to very high
Reynolds numbers and it is theorised that pipe flows are always linearly stable. We find the same result for particle laden pipe
flows, but the addition of particles does affect the temporal growthrate of the perturbation, effect which varies linearly with the
particle concentration. While the increase of the effect with the particle concentration is consistent with our model, it is likely
that the linearity is due to the physical model and the absence of nonlinear effects rather than to physical effects. The impact
on the flow also depends on the particle size as seen in the figure below. Is represented the normalised growthrate (particles
have a stabilising effect on the flow if is superior to 1, destsabilising otherwise). against SR, a nondimensional Stokes number
proportional to the square of the particle radius for several Reynolds number and a mass concentration of 10% :
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Figure 1: Evolution of the energy (f=0.1, α = 1)

In the limit of very small particles, the particles behave as passive tracers only affect the linear stability by modifying the
global density of the flow. In the limit of larges particles, the fluid and particles velocities are decoupled (the Stokes drag is
converging towards 0) so the particles do not affect the growthrate of the perturbation. This last property is the opposite of
what is physically expected and illustrates the limit of our model. Intermediate sized particles have a stabilising effect on the
flow with a peak so we have a “optimal” particle size for a given set of Reynolds number Re and perturbation wavelength
α. The amplitude of the effect is also inversely proportional to the Reynolds number. The optimal value follows a simple
heuristic formula, expressed here in terms of a Stokes number SR :

SRpeak(Re, α) ≈
1.85√
Reα

(1)

Then a nonlinear transient growth analysis is done to obtain further results. The method for nonlinear transient growth in
our work has been defined in [Pringle and Kerswell, 2010]. Our code is a modified version of the DNS code for pipe flows
created by Dr Willis ( [Willis, 2015] ). It can be used in two different ways, either a perturbation is given, and the program
looks at how it evolves with time, or for a given time T it find the optimal perturbation, producing the maximal growth at
that time. The analysis is still ongoing, but first results seems to indicate stronger effects than in the linear model. For initial
perturbations with a small energy (less than 1% of the mean flow) and stable cases the addition of particles still do not make an
important difference. Whereas for unstable cases, when transition happens, the general behaviour is similar but the difference
in energy between single phase and particle laden flows are more important. Thus we expect particles to play a role in the
transition in the boundary cases.
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Summary A technique has been proposed to increase flow mixing in annuli through efficient vortex generation. Corrugations 
in the form of axisymmetric ribs have been placed at the walls to modulate the axial flow in a manner which leads to 
centrifugal instabilities which result in the formation of streamwise vortices. This technique results in only a small increase 
in the pressure drop, unlike other vortex generation methods. A spectral algorithm based on Fourier and Chebyshev 
expansions has been used to study the stationary state and its stability. Due to the irregularities of the boundaries, the 
immersed boundary conditions (IBC) method has been used to enforce the flow boundary conditions. The effects of 
geometric and flow parameters on the pressure losses and on the stability characteristics have been thoroughly investigated. 
Characteristics of both the vortex mode and the travelling mode of instability, as well as the region of dominance of each 
mode, have been determined. 
 

INTRODUCTION 

 
Axial flow between two concentric cylindrical shells (annulus) is widely encountered in applications, e.g. flow in tubular 
heat exchangers, movement of drilling mud in oil and gas wells, heavy oil extraction industry, fuel cells, etc. [1]. The main 
objective of this study is the identification of conditions which lead to the formation of vortex instabilities which can be 
used to increase mixing. It is known that radial mixing in flows with vortices can increase by an order of magnitude when 
compared with flows without vortices [2]. As the same system is subject to the travelling wave instability, one needs to 
know its characteristics in order to avoid interference with the formation of vortices. Thus, we are interested in the 
determination of conditions where the vortex instabilities dominate.  
 
 

PROBLEM FORMULATION AND RESULTS 

 
Steady, pressure-gradient-driven axial flow of viscous incompressible fluid in an annulus extending to    in the z-
direction is investigated. The flow field is described using the cylindrical system of coordinates with z, r and   
corresponding to the axial, radial and circumferential directions, respectively. With the transverse, sinusoidal ribs placed on 
both cylinders, the annulus geometry is described by four geometric parameters:   - radius of the inner cylinder, S-rib 
amplitude,  -rib wave number (rib wavelength       ) and  - phase shift between ribs at the inner and outer cylinders 
(Fig. 1). 
 

 
Figure 1. Axisymmetric annulus with sinusoidal transverse ribs. 

 

The mass flow rate through the ribbed annuli is kept the same as through the smooth annuli (reference flow) and pressure 
losses are assessed by determining the added pressure gradient (denoted by A) required to maintain this flow rate. After 
solving the mean flow and determining the velocity and pressure fields ( ⃗  and P), a disturbance field of the form     

[ ⃗            (       )              (       )]  [   (   )   (   )] 
 (        ) 

is introduced. In the above equation,      and    are the z-periodic amplitude functions,   and M are the axial and 
circumferential disturbance wave numbers, respectively, and   is the complex frequency. The solution of the relevant 
eigenvalue problem leads to the determination of  . Figures 2 to 4 illustrate the effects of geometric parameters on the 
pressure losses. It can be seen that an increase of     S,   and   increases the losses (Fig.2 and Fig.4). Variations of the 
phase difference   are relevant only for ribs with small  ’s (Fig. 3). It can also be seen that in the case of      the 
pressure losses approach losses found in channels with the same ribs (Fig. 4). 
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Figure 2. Variation of the ratio of the 
pressure gradient correction A to the 
reference flow pressure gradient as a 
function of    and S for   =1 and 
Re=1000. Solid, dashed, dot lines indicate 
 =0,   ⁄ ,  , respectively. 

Figure 3. Variation of the ratio of the 
pressure gradient correction A to the 
reference flow pressure gradient as a 
function of   and   for S=0.015, 
Re=1000. Solid, dashed lines 
indicate   =1, 10, respectively. 

Figure 4. Variation of the ratio of the 
pressure gradient correction A to the 
reference flow pressure gradient as a 
function of    and    for S=0.015 and 
Re=1000. Solid, dashed, dotted lines 
indicate  =0,  ⁄ ,  , respectively.  

 
Figure 5 illustrates the flow topology resulting from the introduction of vortices. The formation of these vortices can be 
affected if the onset of the travelling wave instabilities precedes the onset of the vortices. Therefore, the favorable 
conditions are defined as those for which the critical Reynolds number for the onset of the vortex mode is smaller than the 
critical Reynolds number for the onset of the travelling wave mode. Such conditions are identified using grey in Fig. 6, 
which displays variations of the Recr for both instability modes as functions of the rib amplitude and the rib wave number. 
These results show that an increase of   beyond 4 does not have a significant effect on the reduction of Recr required for 
the formation of the vortices. However, since an increase of   increases the pressure losses (Fig. 2), one can conclude that 
    represents the optimal rib wave number for the formation of vortices. We use the term “optimal” to signify the rib 
wave number which gives the smallest critical Reynolds number for the formation of the vortices and which, at the same 
time, produces the smallest pressure drop. 
 

 

  
Figure 5. Topology of the disturbance velocity field 
associated with the formation of vortices in an 
annulus with     ,    ,        ,    , 
M = 5 at the onset (          ). 

Figure 6. Variations of      as a function of   and   for the onset 
of the travelling wave (solid lines) and the vortex instabilities (dashed 
lines) in an annulus with      and    . The thick line separates 
zones of dominance of the travelling wave and the vortex modes of 
instability. 

 

 

CONCLUSIONS 

 
Characteristics of flow in ribbed annuli have been studied to identify conditions leading to the formation of streamwise 
vortices without interference from the travelling waves. It was shown that the rib amplitude should be large enough for the 
vortices to dominate over the travelling waves. It was also observed that the rib wave number should not be larger than 4 in 
order to avoid excessive pressure losses. Finally, the annulus with the phase shift of  =  (a converging-diverging annulus) 
was shown to offer the most favorable conditions for the generation of vortices. 
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DETECTION OF A LOGARITHMIC SINGULAR POINT BEHIND AN AIRFOIL MODEL AT 
LOW REYNOLDS NUMBERS 

 
 

Shohei Takagi1a), Yasufumi Konishi2, Nobutake Itoh1, Masahito Asai1 and Shigeru Obayashi2 
1Department of Aerospace Engineering, Tokyo Metropolitan University, Hino, Tokyo, Japan 

2Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan 
 
Summary Regular-vortex formation behind circular cylinders or 2-D blunt bodies is associated with the global instability of the wake, 
which selectively induces a monochromatic disturbance. The complex ray theory predicts that the monochromatic disturbance is selected 
at the logarithmic singular point in the wake of a flat plate, which corresponds to the turning point in the global theory. Experiments at 
low Reynolds numbers were performed to detect this singularity behind an airfoil-shaped model in a low–turbulence wind tunnel. The 
onset of the global mode with extreme frequency selectivity and much larger spatial growth rate than that of convective instability was 
observed in the recirculation region very near the trailing edge of the model. 
 

INTRODUCTION 
 
It is known that regular-vortex formation behind circular cylinders or 2-D blunt bodies is associated with the so-called 
global instability of the wake, which selectively induces a monochromatic disturbance [1, 2]. The complex ray theory [3] 
also shows that this instability and the frequency selection may be explained from the viewpoint of a logarithmic singularity, 
which corresponds to the turning point in the global theory and is associated with the recirculation region of the wake. 
However, the fact that the singular point is located in a complex extension of the streamwise coordinate with a small 
imaginary part leads to a question as to how the singularity manifests its effects in the real flow field experimentally 
observed. Main objectives of the present study are experimentally to detect a reflection of the singular point and to 
investigate the spatial structure of the monochromatic disturbances. An airfoil-shaped model was deployed in order to 
increase the critical Reynolds number up to the one order of magnitude higher than that of blunt models and to allow 
accurate measurements in the velocity range of 3-6m/s.  

 
EXPERIMENTAL SETUP 

 
All experiments were conducted in the low-turbulence wind tunnel at the Institute of Fluid Science, Tohoku University, 
Japan. The test section is a closed octagonal shape with a diagonal length of 290 mm. Residual turbulence level in free 
stream to the free stream velocity U0 is approximately 0.03% at 5m/s, consisting of the frequency components lower than 
100Hz. A constant-temperature anemometer was used to measure mean and fluctuating velocities. An NACA0010 airfoil 
model, made of stainless steel, was used, whose chord length c and maximum thickness t are 24mm and 2.4mm, 
respectively. The airfoil model at no incidence was vertically set in the middle of the test section. The freestream velocity 
U0 was varied from 3 to 6m/s, corresponding to Reynolds numbers of approximately 460-920, based on U0 and t. As for the 
coordinate system, X and Y are taken in the streamwise and transversal directions. The origin of X and Y are placed at the 
trailing edge of the airfoil. 
 

EXPERIMENTAL RESULTS 
 
Figures 1a and 1b illustrate power spectra at the peak positions of fluctuating velocity components across X=20mm at U0 
=3m/s and X=12.5mm at 5m/s, respectively. In Fig.1a, two peak components approximately at 60Hz and 250Hz are 
observed. The former may be due to mechanical vibration of the hot-wire support, and the selective peak at 250Hz 
accompanies slightly broad side-lobe components around the peak. Also, Figure 1b represents an extremely sharp line 
component at 480Hz and also its higher harmonics. There is no comparison in amplitude between Figs 1a and 1b at each 
peak frequency, showing that the wake-instability mechanism between two cases is obviously different. So, we measured 
profiles of mean and fluctuating velocities across the wake at various X locations varying free-stream velocities.  

Figure 2 shows distributions of the maximum rms values of the most amplified component uf normalized by U0 against X. 
At U0 =3m/s and 4m/s, the most amplified components exponentially grow in the streamwise direction, indicating that the 
wake instability is convective. However, when U0 exceeds 4.5-5m/s, the spatial growth rates are drastically increased by 
abrupt growth of a monochromatic disturbance as shown in Fig.1b. This implies that such abrupt growth may be attributed 
to existence of the logarithmic singularity near the trailing edge of the model.  

Considering that the anemometer output is rectified for reverse flow, we made an attempt to estimate the magnitude of 
reverse flow by fitting a curve U/U0=1- UD exp(-0.69315(Y/h)m) on the measured mean velocity profiles, where h is the half-
value-half-width of each mean velocity profile. Figure 3 presents UD versus X at various U0. At lower than 4.5m/s, UD 
 

1a) Corresponding author. Email: pantaka@tmu.ac.jp 
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monotonically increases in the downstream direction, while UD for the cases exceeding 5m/s is slightly negative or almost 
zero between X=2 and 3.5mm, indicating that a small-scale reverse flow exists. It is important to point out that the first 
appearance of a monochromatic disturbance is located in the recirculation region. 
 

CONCLUSIONS 
 

Experiments with the use of an airfoil-shaped model at low Reynolds numbers were found to be successful in switching the 
wake from subcritical to supercritical states by means of a slight Reynolds-number increase. In contrast to the subcritical 
wake dominated by growing disturbances of broad-band frequencies, the supercritical wake exhibits a sharp line spectrum 
of disturbances after its strong frequency selection. Another remarkable feature of the supercritical wake is that the selected 
component has a much larger spatial growth rate than the one experienced in convective instability. It could be concluded 
that a singular point exists near the middle portion of the recirculation region and manifests its effect in both formation and 
abrupt spatial growth of the global mode. 
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Fig.1 Power spectra of fluctuating velocity in the wake behind an NACA0010 airfoil model. 
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Fig.2 Distributions of maximum rms values of most-
amplified component against X at various free-stream 

velocities U0(m/s). 
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Fig.3 Distributions of maximum velocity defect UD against 

X at various free-stream velocities U0(m/s). 
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Summary The authors present the results obtained during a numerical investigations of the Tylor-Couette flow in configurations of aspect 
ratios 11.75 and 3.76, different radii ratios and end-wall boundary conditions. The main purpose of the research is to investigate the 
influence of geometrical parameters and end-walls boundary conditions on the flow structure, the torque fluctuations and its total values. 
The results are discussed in the light of Brauckmann, Eckhardt [1] and Dong [2] data obtained with periodicity condition in axial 
direction. The results are compared also with Wendt [3] experimental results. For the cavity of aspect ratio 3.76 the authors study the 
laminar-turbulent transition for the radii ratio from the range: 0.375 - 0.821. The authors have found that the transition from the three-cell 
structure to the one-cell structure occurs only for the lower ratios Computations are performed for Re up to 3100. All presented results 
have been obtained with the use of DNS/SVV method in which an artificial viscous operator is added to Laplace operator to stabilize the 
computational process for higher Reynolds numbers. 
 

RESULTS AND NUMERICAL APPROACH 

 
   With the increase of Reynolds number in the Taylor-Couette flows we observe a series of successive bifurcations 
leading from the cylindrical Couette flow to the periodic Taylor vortex flow, then to a state with waves developed on the 
vortices, and finally, to a turbulent Taylor vortex flow. Literature on the Taylor-Couette flow is very extensive and different 
configurations are considered. The main purpose of the investigations of the phenomena which occur in the Taylor-Couette 
flow is to answer the fundamental question concerning transitional and turbulent structures, their origins and their role in 
creating stresses. This knowledge can help to control the boundary layer flow in more complex industrial configurations. 
The Taylor-Couette flows are governed by Reynolds number defined on the basis of the rotational speeds of the cylinders 
Re1 = (R2-R1)R11/ and by the geometrical parameters: aspect ratio = H /(R2-R1) and radii ratio = R1/R2. The 
dependence of the flow structure on the control parameters were analyzed in many papers (among others in Eckardt et al. 
[4]). In the present work we study the Taylor-Couette flow using DNS/SVV (direct numerical method/spectral vanishing 
viscosity method) in the cavity of rotating inner cylinder and stationary outer one with the symmetric and asymmetric end-
wall boundary conditions. In the study we focus on influence of the end-walls boundary conditions, as well as,  and  on 
the flow structure, the torque distributions, the radial profiles of the mean angular velocity, the mean angular momentum, 
the Reynolds stress tensor components and the thickness of the boundary layers. The obtained results are analyzed in the 
light of data published in [1, 2] in which the authors, presented results obtained in similar cavities but with periodicity 
condition in axial direction. The results we also compare to the experimental results published in [3]. 
   In the paper two groups of the flow cases are discussed. In the first one the computations have been performed for the 
cavity of aspect ratio 11.75, = 0.9 (with the symmetric and asymmetric end-wall boundary conditions) and for Reynolds 
number up to 3100. These results are compared with numerical data published in [1] obtained by DNS for =0.71 and with  
data obtained for cavity of = 0.93 published in [3]. In connection with the theoretical analysis carried out in [4] we 
consider the local transverse angular momentum current ]R/)R/v(R/vv[R)t,Z,,R(j r

3  
  and its averaged 

values  
t),R(A)t,Z,,R(jJ ]R/)R/v(R/vv[R t),R(At),R(Ar

3   over concentric cylindrical surface,  
where vr and vϕ denote the radial and azimuthal velocity components. The velocity decomposition to the turbulent velocity 
and the mean velocity allows to analyze contribution of the turbulent term t),R(Ar

3 R/'v'vR   , the mean convection 

term t),R(Ar
3 R/vvR    and the viscous term ]R/)R/v( t),R(A   to the total J .  We analyze the spatial 

fluctuations of the local torque which show different characteristics near the cylinders and in the middle section of cavity as 
well as, the influence of aspect ratio on the 

lamJ/J . The influence of   we investigate by keeping constant Re and , 
and by increasing and decreasing slowly Γ, with = 0.2. This analysis is performed for the symmetric and asymmetric 
end-wall boundary conditions, and for two Reynolds numbers Re=150. Figure 1 presents the exemplary results obtained for 
configuration of aspect ratio 11.75 and = 0.9 from which, among others, we can see that the maximum of the torque takes 
place at the bottom rotating disk (r = -1). 

         In the second part, we analyze the influence of the radii ratio  on the flow structure and statistics obtained in the cavity 
of aspect ratio = 3.76. For the configuration of aspect ratio  = 3.76 and = 0.375 with a rotating inner cylinder and 
bottom disk, and with a stationary outer cylinder and top disk the sequence of events occurring with the increasing Re is as 
follows: The three-cell structure is fully formulated at Reynolds number Re = 77 (the odd number of vortices is a 
characteristic feature of the Taylor-Couette flow with the asymmetric end-wall boundary conditions, Mullin, Blohm, [5]). At 
slightly larger Re (about 270) the middle vortex is squeezed by the growth of the top and bottom vortices, and finally at Re 
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= 281 the transition from a steady three-cell structure to a steady one cell-structure takes place. The transition to 
unsteadiness occurs at Re = 492 (six spiral vortices have been found of the dimensionless azimuthal wavelength a = 8.6). 
After this transition with increasing Re we observe gradual development of the boundary layers on both cylinders and disks. 
The development of these boundaries is the main area of our interest: we analyze the axial and radial distributions of the 
Reynolds stress tensor components, the thickness of boundary layers and many structural parameters useful for modeling 
purposes. For small Reynolds numbers the results are compared to those published in [5]. The procedure of the transition 
from three-cell structure to one-cell structure takes place for = 0.375 and 0.524. With further increase of  ( = 0.615, 
0.756, 0.821) the classical Taylor-Couette scenario with consecutive bifurcations is observed. For higher Re ( =0.375) we 
observe vortices which appear very close to the inner cylinder as thin negative spiral patterns (they roll up in the opposite 
direction to the rotation of the inner cylinder). For  = 0.821 we also study the influence of temperature field on the flow 
structure and the distributions of the Nusselt number.   
  All presented numerical results have been obtained with the use of DNS/SVV method with meshes of 4-12 million 
collocation points. In the numerical approach the time scheme is second-order semi-implicit, which combines an implicit 
treatment of the diffusive term and an explicit Adams- Bashforth scheme for the non-linear convective terms. The spatial 
scheme is based on a pseudo-spectral Chebyshev-Fourier-Galerkin collocation approximation. All dependent variables have 
been obtained by solving Helmholtz equation. In the DNS/SVV method an artificial viscous operator is added to Laplace 
operator to stabilize the computational process for higher Reynolds numbers, Severac, Serre [6].  The precision of 
computations is checked by convergence analysis (we analyze 

lamJ/J obtained for different resolutions) and by analyzing 

parameters   )R,(,)r(,)z( 1/21/21/2 along the inner and the outer cylinders. From the identification techniques based on 
the pointwise analysis of the velocity gradient tensor we chose the 2 criterion, which represents the topology of vortex 
cores very well. 
 

 

 
           a)                           b)                        c)                              d) 

Figure 1. a) The iso-surfaces of the 2 near the outer cylinder (1/4 of cylinder), Re=2475, b) the axial distribution (along the outer cylinder) 
of the local transverse angular momentum current averaged in time and in azimuthal direction, and normalized by its laminar value for the 
circular Couette flow denotes here by ,G z denotes the dimensionless axial coordinate, c) the radial profiles of the total current Jω 
normalized by its laminar value, r  denotes the dimensionless radial coordinate, d) the radial profiles of the mean angular velocity and 
the mean angular momentum, = 11.75, = 0.9. 
 
References 

 

[1] Brauckmann, H., Eckhardt, B.: Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re D 30000. J. Fluid Mech., 
718, 398, 2013. 

[2] Dong, S.: Direct numerical simulation of turbulent Taylor-Couette flow. J. Fluid Mech., 587, 373, 2007. 
[3] Wendt, F.: Turbulente Strömungen zwischen zwei rotierenden koaxialen Zylindern. Ing.-Arch., 4, 577–595, 1933. 
[4] Eckhardt, B., Grossmann, S., Lohse, D.: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid 

Mech., 581, 221–250, 2007. 
[5] Mullin, T., Blohm, C.: Bifurcation phenomena in a Taylor-Couette flow with asymmetric boundary conditions. Phys. Fluids, 13, 136, 2001. 
[6] Severac, E. and Serre, E.: A spectral viscosity LES for the simulation of turbulent flows within rotating cavities. J. Comp. Phys., 226, 2, 1234, 

2007. 
 

1016



XXIV ICTAM, 21-26 August 2016, Montreal, Canada 

SLIDING COUETTE FLOW IN RIBBED ANNULI 
 

Hadi Vafadar Moradi
*a) 

& Jerzy M. Floryan
*
 

 *Dept. of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada 
 

Summary.  The flow in an annulus driven by the axial movement of one of the cylinders has been studied. The stationary cylinder has 

been fitted with axisymmetric ribs. It has been shown that the flow is subject to a centrifugal-force-driven instability giving rise to 

the formation of axial vortices. The critical stability conditions have been determined for a wide range of geometries of practical 

interest. Reduction of the annulus’ radius leads to qualitatively different flow responses depending on the position of the cylinder 

driving the flow. The critical Reynolds number is reduced and the range of the rib wave numbers that are capable of inducing the 

instability is increased when the outer cylinder drives the flow. The trend is reversed when the inner cylinder drives the flow.  
 

INTRODUCTION 
 

Flow between two concentric cylinders sliding with respect to each other in the axial direction is referred to as the 

sliding Couette flow (SCF) [1]. SCF occurs in a wide range of situations, e.g. piston-cylinder systems, a train moving 

through a tunnel, a catheter injected in a blood vessel, coating technology, etc. Since it is known that a vortex instability 

can be created in the planar Couette flow either through the use of transverse ribs [2] or through the use of wall 

transpiration [3], we wish to determine if a similar instability can be created in SCF. The main objective of this study is, 

therefore, the determination of conditions leading to the formation of such an instability, if at all possible. 
 

PROBLEM FORMULATION AND RESULTS 
 

Steady flow of an incompressible viscous Newtonian fluid confined between two concentric cylinders extending to  

in the z-direction is considered. The flow, which is driven by the sliding motion of the outer cylinder with a constant 

velocity U in the positive z-direction, while the inner cylinder is kept at rest, is referred to as SCF. We modify the inner 

cylinder through addition of sinusoidal axisymmetric ribs (see Fig. 1). The stationary flow in the modified annulus is 

represented as a superposition of the SCF and modifications generated by the ribs. Introduction of the stream function 

defined in the usual manner leads to a single fourth-order partial differential equation which is discretized using the 

Fourier-Chebyshev spectral method [4]. The Immersed Boundary Conditions method (IBC) is employed to resolve the 

problem associated with the irregularities of the geometry [5]. 
 

 
Figure 1: Sketch of the flow geometry - axisymmetric annulus with sinusoidal transverse ribs placed at the inner cylinder. 

 

While the above flow modifications are caused directly by the ribs, additional changes may be caused indirectly through 

the formation of secondary flows. Conditions which lead to the onset of such flows and the determination of their form 

can be deduced using linear stability theory [2]. Unsteady, three-dimensional disturbances of the form

 are superposed on the mean flow where  is the 

disturbance velocity vector,  are the unknown modal functions, stands for the real wave number in the axial 

direction, M denotes an integer wave number in the circumferential direction, and  is a complex 

amplification rate whose real part stands for the frequency and whose imaginary part represents the amplification rate of 

the disturbances. Subtraction of the mean flow and linearization lead to the disturbance equations which form an 

eigenvalue problem. This problem has to be solved numerically [2]. 

The flow topology associated with the vortices for flow in an annulus with ,  and 

 is well illustrated in Fig. 2A displaying iso-surfaces of the axial vorticity component. The formation of streaky 

structures aligned in the axial direction and being modulated by the ribs is clearly visible. The streaks are located close 

to the inner (ribbed) wall. The conditions which determine the appearance of the vortex instability can be expressed in 

terms of a critical Reynolds number , i.e. the minimum Reynolds number required for the onset of the instability for 

a given geometry of the annulus. Results displayed in Fig. 2B illustrate the role played by both  and . In general, 

when outer cylinder drives the flow, an increase of  for a fixed  stabilizes the flow with annulus for  being 

the most stable. The situation is reversed when the flow is driven by the inner cylinder. It can also be seen that the 

reduction of  stabilizes the flow. This is associated with the fact that the use of the long wavelength ribs reduces the 

streamwise flow modulations which, in turn, weaken the centrifugal force until it is unable to support the instability. 

Increase of  also stabilizes the flow but the mechanics of this process is different. In this case the troughs are filled in 

with the separation bubbles and the stream lifts up above the rib peaks. As a result, the fluid movement becomes nearly 

                                                           
a)
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rectilinear, weakening the centrifugal force field. Figure 2C shows variations of  as a function of the rib wave 

number and  when flow is driven by the outer cylinder. It can be seen that an increase of  increases the range of  

capable of flow destabilization and expands the range of  where the instability may occur. For , the 

instability may occur in the limit of  (channel flow) but only for a narrow range of rib wave numbers, i.e. 

; reduction of  with  fixed leads to a huge expansion of this range. These results also demonstrate 

that the reduction of  has a strong destabilizing effects as the critical Reynolds number can be reduced from 

 for  down to  for  while, at the same time, the most effective rib wave number shifts 

from  3.5  to  10. Results presented in Fig. 2D illustrate the effect of the increase of the rib amplitude. The use 

of taller ribs amplifies the flow modulations, increases the centrifugal force field and, as a result, reduces the critical 

Reynolds number.  

The ribbed wall can be viewed as hydraulically smooth as long as it is unable to create a system bifurcation. It is 

convenient to introduce the global critical Reynolds number, , which corresponds to the minimum of  over all 

rib wave numbers for the specified rib amplitude and the annulus curvature.  has a very simple dependence on  if 
 is fixed as illustrated in Fig. 2E. These curves define the upper limit of  which guarantees the flow stability. As the 

flow is stable for conditions below these curves for any rib distribution, the cylinders with such ribs can be viewed as 

hydraulically smooth. A general correlation of the form  

provides a very good approximation of  which guarantees the flow stability for all  and  considered. 
 

   
(A)  (B) (C) 

  
(D) (E) 

Fig. 2: Disturbance flow topology associated with the vortex instability (Fig. 2A), variations of  as a function of different 

geometric parameters (Fig. 2B, C, and D), and variations of the global critical Reynolds as a function of ribs amplitude (E). 
  

CONCLUSIONS 
 

The Couette flow in an annulus formed by two co-axial cylinders, one of which is fitted with axisymmetric ribs, has 

been studied. Linear stability analysis shows that the flow undergoes transition to a secondary state, resulting in the 

formation of pairs of counter-rotating axial vortices. In the case of flow driven by the movement of the outer cylinder 

with the inner cylinder being ribbed, the flow is destabilized by reduction of , with the lowest critical Reynolds 

number corresponding to the smallest  considered, i.e. . The range of the rib wave numbers capable of flow 

destabilization expands at the same time. In the case of the flow driven by the movement of the inner cylinder with the 

outer cylinder being ribbed, the flow is stabilized by a reduction of  and the range of  capable of flow destabilization 

decreases at the same time. The most unstable configuration corresponds in this case to . Conditions when the 

ribbed annulus can be viewed as being a hydraulically smooth annulus have been determined.  
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CONVECTIVE INSTABILITY OF THE BOUNDARY LAYER UNDER SOLITARY WAVES

Joris C. G. Verschaeve∗and Geir K. Pedersen
Department of Mathematics, University of Oslo, Norway

Summary The stability of boundary layers under surface and internal solitary waves has been investigated. The parabolized stability
equation method has been used in order to compute the neutral curves and amplification factors for this flow. A direct numerical simulation
has been performed in order to validate the results by model equations. As a main result the instability is found to be of convective type
opposed to what has been assumed in literature so far. A range of cases has been investigated for surface and internal solitary waves.

INTRODUCTION

The stability of the boundary layer under a solitary wave has been investigated experimentally or by direct numerical simula-
tion in several works, see for instance [4, 2, 1]. These works suggest that the nature of the instability is of absolute type but
report diverging critical Reynolds numbers. A study on the linear stability of boundary layers under solitary waves suggesting
that the instability is of convective type has been performed in [3]. In the present paper, we shall also elaborate on some of the
results in the latter work.

Given the fully nonlinear inviscid solution for this flow, the boundary layer equations are solved numerically. Using this
boundary layer solution, the parabolized stability equation method has been used in order to compute the neutral curves and
amplification factors for this flow. The amplications of the perturbation have been verified by comparison to a direct numerical
simulation using a high order accurate solver.

RESULTS

The boundary layer under surface solitary waves is controlled by two parameters, the Reynolds number and the wave elevation.
On the other hand, for the internal solitary wave of a two fluid system, the ratio of the density of the two layers and the
respective height of the two layers are additional parameters. Qualitatively, the boundary layer profiles are similar for both
cases. They display an acceleration region in front of the crest and a deceleration region in the rear of the crest, cf. figure 1
(LEFT). As a main result, we find that in the rear of the wave crest, the boundary layer displays amplification of perturbations
for all Reynolds numbers considered, which ought to be expected due to the inflection point in the profile in this region, cf.
figure 1 (RIGHT). However, for small surface elevations and small Reynolds numbers the total amplification is rather weak,
implying that, depending on the background level of noise in experiments or direct numerical simulation, the perturbation
might or might not grow to such levels to be observable. This contributes to an explanation of the different results in the
literature concerning the critical Reynolds numbers obtained by experiments or direct numerical simulation. As the signal
to noise ratio is less favorable for internal solitary wave experiments compared to surface solitary wave experiments, the
perturbations in the boundary layer of internal solitary waves are expected to be observable for amplifications factors much
lower than for the corresponding surface solitary waves.

CONCLUSIONS

By means of the parabolized stability equation, amplification factors and neutral curves are computed for the boundary layer
under solitary waves. A range of cases is considered for surface and internal solitary waves. The results obtained in this
study suggest that the appearance of instabilities for lower Reynolds numbers depends strongly on the level of the initial
perturbations/noise in the experiments/direct numerical simulation. Control of the perturbations is thus a prerequisite in order
to obtain repeatable results in experiments or simulations.

∗Corresponding author. Email: joris@math.uio.no
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Figure 1: LEFT: Surface elevation η and profiles of the horizontal velocity component in the boundary layer under a surface
solitary wave moving from right to left. The profiles have been multiplied by 40. The moving horizontal coordinate ξ has been
scaled by the water depth, whereas the normal coordinate y has been scaled by the boundary layer thickness. The value at
y = 0 of the profiles shown corresponds to the position ξ, where the profile has been taken. The horizontal velocity vanishes
at y = 0 in order to satisfy the no-slip boundary condition. RIGHT: Amplification of the critical perturbation in the boundary
layer under surface solitary waves of different amplitude ε, for a Reynolds number Re = 2/δ = 2500.
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Changwei Yang1, Feng He1a), Zhanyou Lin1, Jiawei Liu1, Xiwen Zhang1, & Pengfei Hao1 
1School of Aerospace Engineering, Tsinghua University, Beijing, China 

 
Summary Airflow movement is one of the most important physical factors greatly influencing contaminants transmission in aircraft cabin. 

Since various perturbations are hard to control and experimental measurements are hard to handle in full-size aircraft cabin, the researches on 

instantaneous characteristics are seldom reported. In this work, PIV experimental investigations on the structural stability of velocity fields in a 

bidirectional ventilated cabin mock-up are conducted. It indicates that the velocity field is obviously unstable and there are coherent auto-

oscillation of the large-scale flow structures in this cabin mock-up. The spatial and temporal behaviors of the large-scale flow structures and the 

evolution of topological characteristics of the velocity fields are presented. The structural stability theory is also used to further interpret the 

unstable phenomena of the velocity fields. Our present findings can serve as a base for forthcoming study of contaminants transmission and a 

simplified model for problem of cabin ventilation. 

 

INTRODUCTION 

    

As a result of the popularity of air transportation and the growing mobility of people, more and more people are 

travelling by commercial airplanes. The air quality, especially the air safety, in aircraft cabin has been the focus of many 

passengers and crews [1]. Airflow movement is one of most important physical factors greatly influencing the contaminants 

transmission in aircraft cabin environment [2]. Although many measured and computational results showed that the airflows 

in aircraft cabins were highly unsteady or even unstable in various aircraft cabins, most of the existing studies mainly 

focused on the time-averaged air distributions. Since various perturbations are hard to control and experimental 

measurements are hard to handle in full-size aircraft cabin, the researches on instantaneous characteristics of velocity fields 

are seldom reported [3, 4]. 

 

EXPERIMENTAL SETUP AND METHOD 

 

Fig. 1(a) shows the aircraft cabin model of Boeing 737-200 in Ref. [4]. Fig.1 (b) and (c) show the schematic of 

simplified cabin mock-up and PIV measurement setup. There are two opposing inlets close to the ceiling and two outlets 

close to the bottom of the mock-up. One hundred diffusers are distributing uniformly in each inlet over the full depth 

(D=400mm). The size of the each diffuser is 20mm×2mm. In order to research the structural stability of velocity fields in 

this type of cabin, various perturbations are removed as much as possible. The geometries are created symmetrical with the 

symmetrical surface. As shown in Fig.1 (d), (e) and (f), the velocity distribution along the X and Y directions is determined 

by hot wire. The velocities is set at fixed and symmetrical with the middle plane. The PIV (Laser model: YAG double pulse 

laser. CCD model: REDLAKE MegaPlus II. Laser power: 200 mJ/pulse) is used to obtain the velocity field. 

 

    
(a)                               (b).                                    (c).    

          
(e)                              (f)..                                     (g) 

Fig. 1. (a)One row aircraft cabin model of Boeing 737-200 [4]. (b)Three dimensional schematic of the bidirectional cabin mock-up and PIV setup. (c) 

Cross-section of cabin mock-up at 0.5D and the corresponding sizes in millimeter. (d)The Cartesian coordinates used for determination of the velocity 

magnitude of inlets by hot wire. The velocity magnitudes along (e) the X direction and (f) the Y direction. The black lines and points stand for the velocity 
magnitudes on the left side. And the pink lines and points stand for the velocity magnitudes on the right side. 
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RESULTS AND DISCUSSION 
 

Fig. 2 depicts the large-scale flow structures in the cross section of visual field (CSVF) of CCD. There are obvious large-

scale swing motions of the air flow in the cabin mock-up. The topological characteristic and structural stability analysis of the 

velocity fields [5] are shown in Fig.3. There are one saddle point (SP) and one half saddle points (HSP) in the CSVF. Moreover, 

one hetero-clinic orbit, connecting the SP and HSP exists in the CSVF. According to the third condition of Peixoto theorem [6], 

when there is a hetero-clinic orbit connecting saddle points in a two-dimensional vector field, it is not a structurally stable system. 

In this case, a sufficient perturbation, such as a small unequal velocity of two sides' diffusers, could destroy the hetero-clinic orbit 

and cause complicated bifurcation of the velocity field. The unstable velocity field is the intrinsic features in this bidirectional 

cabin. The instantaneous spatial and temporal behaviors of the large-scale flow structures and the dependence of the flow 

structures on the Reynolds number Re would be presented in our full paper. 

 

 
Fig. 2. The large-scale flow structures in the cross section of the ventilated aircraft cabin mock-up. 

 

 
Fig. 3. The topological characteristic and structural stability analysis of the velocity field. 

 

CONCLUSIONS 

 

   In this paper, the detailed instantaneous information and evolution of velocity field in a bidirectional ventilated cabin mock-

up are investigated by PIV measurement. We can conclude that: 

1) Although the boundary conditions are set at fixed and symmetrical with the middle plane as much as possible, the 

instantaneous velocity fields in aircraft cabin mock-up display intrinsic obvious continuing quasi-periodic large scale instabilities. 

2) The instantaneous flow fields are very complicated due to the coexistence and interaction of the large-scale flow 

structures and turbulent fluctuations. Repeated reversal of the velocity components in the horizontal and longitudinal 

directions exist universally. The instantaneous spatial and temporal behaviors of the large-scale flow structures and the 

dependence of the flow structures on the Reynolds number are also studied. 

4) The Peixoto theorem well interprets the mechanism of such unstable flow fields in this generic aircraft cabin mock-up. 

5) The alteration of topological characteristics in the bidirectional ventilated muck-up allows the lateral airflow movements 

carrying infectious gaseous contaminants to move across the middle plane and influence the opposite region. This is a reasonable 

mechanism explanation of gaseous contaminants transmission in aircraft cabin. 
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Summary The evolution of the artificial pulsed wave packet in laminar flat-plate boundary layer was experimentally studied by hot-wire 
measurements at M=2. The localized disturbances were generated by pulsed glow discharge. The angle of the spreading and the velocity of 
propagation downstream of the wave packet were estimated. Also, wave analysis was provided. It was found, that for different frequencies the 
most unstable waves are oblique. 
 

INTRODUCTION 

 
   For solving the problem of laminarization the detailed knowledge of the mechanisms of laminar-turbulent transition are 
required. At present it is generally recognized that the onset of turbulence is connected with the loss of stability of the initial 
laminar flow. There are many experimental and theoretical studies of the stability of subsonic boundary layer. However, the 
stability of supersonic boundary layer is much less studied. 
   The study of the evolution of artificial controlled perturbations allows find out the wave characteristics of the boundary 
layers. The commonly used method of the actuation of controlled perturbations in the supersonic experiment is the high-
frequency electric glow discharge. This method has proved to be effective in the study of the stability of supersonic 
boundary layer. The linear and nonlinear theories of hydrodynamic stability were proved by this method [1, 2]. However, 
this method allows the study the evolution of narrowband disturbances while natural laminar-turbulent transition is 
associated with the evolution downstream of fluctuations consisted of a wide range of frequencies and wavenumbers excited 
by freestream turbulence. Therefore the study of the evolution of broadband disturbance (wave packets) is perspective.  
   The first experimental studies of wave packet propagation in boundary layer were provided at low speed of flow [3]. 
The evolution of wave packet generated by a short-duration pulse through a small hole in the surface of the flat plate was 
investigated by hot-wire measurements. These measurements compared very well with results obtained from the theoretical 
model which represented the wave packet as a superposition of individual disturbances for all frequencies and spanwise 
wave numbers of the most unstable linear waves [4]. At high speeds of flows the method of the excitation of artificial wave 
packets is actively developing. The evolution of wave packets in the hypersonic boundary layer of nozzle was 
experimentally studied in [5]. The measurements were taken along the axial line of the nozzle using surface pressure 
transducers. The linear and non-linear growth of wave packets and their transformation into turbulent spot were founded. 
The spectra of wave packets corresponded with the second mode of instability which, as known, is the most unstable at 
hypersonic flow. The evolution and transformation into turbulent spots of wave packets is shown as a continuous process. 
Also, the method of wave packets is widely used in numerical study of laminar-turbulent transition [6-8]. 
   The goal of this work is to experimentally study the evolution of wave packet in laminar supersonic flat-plat boundary 
layer at Mach number of flow M=2. 
 

EXPERIMENTAL SETUP 

 

   The evolution of wave packets in the supersonic boundary layer was studied on flat plate model. The experiments were 
carried out in the quiet supersonic tunnel T-325 of ITAM SB RAS at Mach number M=2 and unit Reynolds number 
Re1=6 106 m-1. Artificial localized disturbances were actuated by pulsed electric glow discharge between isolated 
electrodes located 30 mm from leading edge on the surface of model. Pulsations in the boundary layer were measured with 
the help of constant temperature hot-wire anemometer. Hot-wire probe from tungsten with 10 micron in diameter and 1.5 
mm in length was used. The measurements were carried out with overheat of the probe wire to 0.8. The hot-wire 
measurements were synchronized with glow discharge ignition. Ensemble-averaged fluctuation traces were computed for 
320 disturbances to increase the signal-to-noise ratio. All data in this work were obtained in layer with maximum level of 
natural boundary layer pulsation.  
 

RESULTS 

 

   Contour lines mass flow pulsations of the wave packet in the plane (z, t) measured at the different distance from the 
leading edge of the flat plate x = 60, 80, 100 mm are shown in figure 1. The wave packet has a three-dimension structure. It 
is obtained that the wave packet is expanded in the spanwise direction (z). The estimates of the angle of the spreading of the 
wave packet were done. It was found that the half-angle spanwise spreading of the wave packet is about 5 . It is close to the 
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experimental data of a linear development of controlled wave 
trains generated by high-frequency discharge. The leading edge of 
the wave packet propagates with a velocity about 0.9 U , the 
speed of the trailing edge is about 0.3 U . 
   In addition, the spectral analysis of the evolution of wave 
packet was made. Time and spatial Fourier transforms were done 
for five transverse sections: x=60, 70, 80, 90 and 100 mm. The 
distributions of the normalized amplitude from the inclination 
angle of the wave vector  for frequencies f=8, 10, 12, 14 kHz are 
shown in figure 2. For each frequency amplitude was normalized 
on the maximum value at initial (x=60 mm) transverse section. As 
can be seen, for different frequencies the most unstable waves are 
oblique. This corresponds with the theory results for compressible 
shear layers. Also, the phase velocities were estimated too. For 
these frequencies it was obtained that Сx 0.6÷0.7. 

 
Fig. 2. The distributions of the normalized amplitude from the inclination angle of the wave vector for different frequencies. 

 
CONCLUSION 

 
   The evolution of single wave packet generated by pulsed glow discharge in supersonic boundary layer was 
experimentally studied by hot-wire measurements. It was found that a pulsed glow discharge generates three dimensional 
wave packets. The wave packet spanwise spreading was observed. The spectral analysis of the evolution of wave packet 
showed that the most unstable waves have big inclination angle. 
   The obtained experimental data may be useful for verification of numerical models. 
   This work is supported by the Russian Foundation for Basic Research (grant number 16-31-00388). 
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Summary Within the framework of two-dimensional incompressible Euler equations, we study stability of the system composed of an 
inner free circular cylinder, the fluid with circular streamlines around the cylinder, and an exterior cylindrical wall. A dispersion relation 
is obtained for different mean flows realized between the cylinder and the wall: potential flow, flow with constant vorticity and flow with 
weakly decreasing/increasing vorticity. Exact solutions of the dispersion relation are provided and analyzed. It is shown that unlike the 
unbounded problem, the heavy cylinder in this case becomes unstable even in the potential flow. The sheared instability which is 
characteristic feature for the unbounded problem for the flow with decreasing vorticity, is realized in the bounded case not only for 
decreasing, but also for increasing vorticity. Arnol’d theorem is used to perform the energy study of the stability loss in the system. 
 

INTRODUCTION 
 
   Instabilities of three-dimensional vortices play a key role in the problem of turbulence onset. One of these instabilities, 
so called shear instability, is related to the energy transfer to the vortex core from the critical layer, which appears due to 
core oscillations in the circulation flow (Fig.1a). In particular, this kind of instability could be responsible for turbulization 
of the “atmosphere” of a solitary vortex ring for high Reynolds numbers [1]. 

  
    a)      b) 

Fig.1 a) A scheme of stability loss of vortex ring core oscillations due to energy transfer from the mean flow to the 
oscillations via a system of multiple critical layers; b) a free cylinder in a circulation flow of the fluid bounded by an 

external cylindrical wall, 2D. 
 
   Difficulties of studying the shear instability in vortex circulation flows are relating to the fact that it appears only for 
curved vortex filaments, while cylindrical vortex flow is stable for any monotonically decreasing (non-increasing) vorticity 
profile. It is known that two-dimensional oscillations of a Rankine vortex (a circular vortex with constant vorticity in an 
infinite potential circulation flow) are neutrally stable. Since any non-increasing vorticity distribution in infinite flow is 
stable [2], a circular vortex with constant vorticity keeps its stability after being placed in a circulation flow with decreasing 
vorticity. Shear instability could appear in 2D simple system if rigid cylinder being placed instead of the Rankine vortex in 
streamlining circular flow. Ref. [3] studied an oscillator composed of a circular cylinder with elastic fixation streamlined by 
a potential or vortical circulation flow with decreasing vorticity in the infinite fluid. It is shown that unlike Rankine vortex 
oscillations, oscillations of this system can be unstable. The flow seems to be simplest two-dimensional flow where the 
shear instability can be realized. 
   The mechanism of shear instability, which is related with the interactions of oscillation of discrete spectrum with critical 
layer perturbations, takes place also in a plane-parallel flow. It could realized due to interaction of surface waves of the sea 
and the shear flow over the surface of the sea with the wind [4,5]. However, in this case the flow has a different topology in 
comparison with the circulation flow around a vortex core. Therefore it is difficult to transfer the results of studying water 
wave appearance to the processes of perturbation evolution in a flow with vortical filaments. Besides, the flows with 
circular streamlines have an advantage in a mathematical description of such effects, because they allow for nontrivial 
potential flow with a weak shear, which in its turn allows obtaining exact solutions as approximations to the potential one. 
In a plane-parallel flow, the changing velocity necessarily assumes the strong shear or a trivial case of potential flow with 
zero velocity. 
   Thus, a theoretical study of the shear instability is enabled by a system composed of circular rigid cylinder with elastic 
or free fixation, streamlined by a circulation flow. Unlike the case of a cylindrical vortex, which oscillations have negative 
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energy; oscillations of an elastic heavy cylinder have positive energy, which allows the shear instability to be realized in this 
simple two-dimensional system due to the positive energy flux from the critical layer to the oscillations. 

 
FORMULATION OF THE PROBLEM  

 
   Experimental investigation of the instability mechanism implies finiteness of the flow region. However, in [3] the shear 
instability of an elastic cylinder in a circulation flow has been obtained for the infinite flow. This brings about a stability 
problem of a flow in a “cup” of large but finite radius, when the flow is bounded on the one hand by the wall of an exterior 
fixed cylinder, and on the other hand by a movable circular cylinder inside (Fig.1b). It turns out that limitation of the system 
size by the cup wall results in appearance of one more kind of instability, which is realized already in a potential flow and 
can mask the shear instability. 
   The objective of this work consists in investigation of stability of a free (not fixed) cylinder related with the finiteness of 
the circulation flow, as well as analysis of system parameters which allow the shear instability to be discerned from the 
other instabilities for its further experimental investigation.  
 

MAIN RESULTS 
 
   Two cases are considered: potential flow and weakly vertical flow. For these cases, the dispersion relation is obtained, 
its analytical roots are determined, and the instability regions are found. In case of a potential flow around a cylinder in a 
bounded fluid, a new instability related with the finiteness of the flow region is obtained. This instability is characteristic 
only for the flows with external boundaries and is absent for potential flows in infinite fluid. The instability region appears 
for sufficiently heavy cylinders. For an arbitrary large radius of the cup, always there is a region of parameters for which the 
flow will be unstable. An energy study is also performed accordingly Arnol’d approach [6,7], which shows that for the 
entire region of unstable parameters the energy of perturbations identically vanishes. For region of stable parameters, there 
are two branches of dispersion curve, one with positive energy, and the other with negative energy. 
   Addition of weakly decreasing vorticity in the potential flow gives rise to the shear instability, known from the problem 
of the infinite flow [1,3]. However, in the bounded case the situation is complicated by the onset of the instability in the case 
of potential flow, which persists for weakly vortical flow as well, albeit for heavy cylinders. Therefore this instability can be 
avoid by considering cylinders with moderate masses. Another problem might be related with the new instability on the 
lower branch of the dispersion curve (unlike the infinite case, this branch is not trivial). However, for decreasing vorticity 
this instability is not realized. The instability on the lower branch does exist, but only for increasing vorticity when there is 
an energy flux not from but to the critical layer.  
 

CONCLUSIONS 
 

   Therefore, the analysis of the described two-dimensional case allows establishing new instabilities in a simple system 
composed of two cylinders and a circulation flow between them, and giving them a physical interpretation. Besides, the results 
demonstrate how the shear instability, which is important for three-dimensional vortices (vortex rings), can be realized in an 
experiment.  
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ARRESTED BUBBLE RISE IN A NARROW TUBE

Jens Eggers1 and Catherine Lamstaes1

1Department of Mathematics, University of Bristol

Summary If a large air bubble is placed inside a vertical tube closed at the top it will rise, displacing the fluid above it. However, Bretherton

found that if the tube radius, R, is smaller than a critical value Rc = 0.918 `c, where `c =
√
γ/ρg is the capillary length, there is no

solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation
by studying the unsteady bubble motion for R < Rc. We find that the minimum spacing between the bubble and the tube goes to zero in
limit of large t like t−4/5, leading to a rapid slow-down of the bubble’s speed U ∝ t−2. As a result, the total bubble rise in infinite time
remains very small, giving the appearance of arrested motion.

A very common and useful observation, for example in the biological sciences, is that the flow of liquid out of a narrow
capillary can be arrested by sealing off the top or bottom (for example using a finger). This is illustrated in the sequence on
the right of Fig. 1: a capillary of inner radius R = 1.9 mm is closed off at the bottom. As a result, a column of water remains
suspended above an air bubble (munch longer than the radius of the tube) at the bottom, without any apparent motion, even
over long periods of time.

If however the tube is slightly wider, as seen on the left of Fig. 1, a bubble rises steadily, as liquid is allowed to pass
through a thin film surrounding the bubble. Such constant-speed solutions are possible only if the radius of the tube is larger
than a critical value Rc = 0.918 `c [1]. The question we address in this paper is how it is possible that no more liquid is
allowed to flow past the bubble if R < Rc. This is surprising, since a liquid is not able to support a constant shear stress, as
would a solid.

To study this question, we solve the dynamical equation for the film thickness h(x, t), which reads in dimensionless form:

∂h

∂t
+ [h3(κx − 1)]x = 0. (1)

Here κ is the curvature of the interface, and the following term comes from gravity. If R > Rc, any solution of (1) converges
toward a solution of traveling wave type. If R < Rc, the minimum film thickness goes to zero in infinite time, as shown in
Fig. 2. We show that the local solution close to the point of touchdown x0 has the similarity form:

h(x, t) = t−4/5H(ξ), ξ = (x− x0)t
2/5. (2)

The similarity exponents are determined by matching the local solution (2) to the static front of the bubble on one hand, and
to a film solution on the other hand, the latter representing a balance of surface tension, gravity, and viscosity. As a result, the
minimum film thickness is described by

hmin ≈ 1.39`1/5c (η/γ)
4/5

(Rc −R)−1/2t−4/5. (3)

Since the motion of the bubble is controlled by the amount of fluid which can pass by the minimum, the speed goes to zero
rapidly, as described by

U(t) ≈ 2.97ν/(gR(Rc −R)1/2)t−2. (4)

Thus even in infinite time, the bubble travels only a short distance, given the appearance of the bubble motion having stopped
altogether.
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Figure 1: A home experiment illustrating the motion of long bubbles in tubes filled with water (using coffee as a colorant),
closed off at the end. Based on the surface tension of water, Rc ≈ 2.5mm. On the left, a bubble rises steadily in a tube with
inner radius R = 2.9 mm. On the right, no motion is detectable even over a long period in a tube with R = 1.9 mm.
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Figure 2: Plot of the film height h(x, t) as found from (1) for R = 0.794 at time t = 0 (dotted curve), log10(t) = 3.02 (dashed
curve), log10 t = 4.50 (dashed-dotted curve) and log10 t = 7.02 (solid line).
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DROP SPREADING WITH RANDOM VISCOSITY
Feng Xu and Oliver E. Jensen∗

School of Mathematics, University of Manchester, UK
Summary This study addresses the influence of stochastic heterogeneity in thin-film flows of biological liquids. We consider the manner
in which the spreading of an inhaled aerosol droplet over the liquid lining of a lung airway is regulated by intrinsic non-uniformities in the
liquid film. One source of variability is associated with the distribution of biochemical constituents that influence the physical properties
of the film, and which may themselves be transported by the spreading flow. We investigate this through a model problem in which a
drop spreads over a Newtonian film having viscosity that depends on the concentration of a passive solute. Using PDE simulations and a
surrogate ODE model that exploits physical insights into mass transport across the drop’s contact lines, we quantify the variability in drop
spreading rates in terms of the statistical properties of the initial solute distribution.

INTRODUCTION

Many biological systems have intrinsic spatial heterogeneity which, because of the difficulty of experimental measurement,
may (at best) be estimated in terms of a few statistical variables. Ideally, transport processes in such environments must then
be characterized in terms of distributions, requiring initial uncertainties to be propagated through a mechanistic model in
order to quantify the likely variability of outcomes. In the present study we examine such a problem involving liquid transport
in a lung airway, focusing on constitutive heterogeneity of the liquid film. Lung mucus has complex rheological properties
that are regulated by mucin proteins released from goblet cells distributed within the airway epithelium. We investigate how
the spatial heterogeneity of the mucus layer, associated with non-uniform mucin distributions, influences the spreading of an
inhaled aerosol droplet over the airway liquid lining. This study provides a vehicle to explore techniques that complement
expensive stochastic simulations, by exploiting physical understanding of the flow structure to derive low-order “surrogate”
models that capture both the dominant physics and the variability of outcomes.

THE MODEL PROBLEM

We work in the framework of lubrication theory and assume that the drop and underlying mucus layer have Newtonian
rheology. The mucus viscosity is assumed to depend on the concentration of a dissolved solute that is transported passively
within the liquid. We derive coupled PDEs for the film thickness and cross-sectionally averaged solute concentration, assuming
that diffusion is sufficient to suppress gradients across, but not along, the film. The drop spreads under the action of surface
tension over a precursor mucus layer, regularising the singularity at the moving contact line. The initial solute distribution is
a Gaussian random field with prescribed variance and correlation length, represented numerically using a Karhunen–Loève
expansion.

Complementing Monte Carlo simulations of the PDE system, we derive a reduced ODE formulation of model when the
precursor film is thin, extending previous asymptotic methods to account for solute transport. An analysis of characteristics
shows that the solute distribution is stretched beneath the bulk of the drop, while being compressed in a region close to each
advancing contact line, as illustrated in Figure 1.

RESULTS

Spreading rates are strongly influenced by the viscosity of the liquid in the neighbourhood of the contact line. When the
solute variance is small, the initial solute distribution near each contact line turns out to have a long-lived influence. In this
instance we derive explicit predictions of the variance of drop centre location and width, showing how the former decreases,
and the latter increases, as the correlation length of the initial solute distribution increases, consistent with previous studies
of drop-spreading on rough surfaces [1]. The solute field concertinas within the contact line region so that, when the solute
variance is larger, fluctuations in viscosity encountered by the advancing contact line influence the local contact line speed.

CONCLUSIONS

While the model is subject to a number of strong assumptions, it reveals how spatial fluctuations in film properties influ-
ence the speed of an advancing contact line and quantifies the variability of spreading rates. The problem is characteristic
of situations in which different physical processes, acting over distinct lengthscales, lead to only a subset of features of the
underlying stochastic distribution being “sampled” by the flow, a feature that can be exploited in deriving low-order represen-
tations of the dynamics. The influence of additional heterogeneities in airway liquid lining flows, associated with non-uniform
spatial domains, will also be discussed.

∗Corresponding author. Email: Oliver.Jensen@manchester.ac.uk
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Figure 1: Simulations showing (a) film thickness H and (b) a realisation of the solute distribution M at initial (dashed) and later
times (solid), as functions of position X. The film viscosity is regulated by M, which is stretched beneath the bulk of the drop
but compressed near each contact line. Insets near each contact line in (a) show how the drop connects to a precursor film.
The viscosity distribution within each contact-line region plays a dominant role in the spreading dynamics. The viscosities at
the initial (A, B) and later (A’, B’) contact-line locations are indicated in (b).
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Summary A fluid-dynamical model for surfactants and anti-surfactants based on the concept of surface excess (rather than simply surface

concentration) is formulated and analysed. In particular, this model predicts a novel instability which occurs for anti-surfactants but not for

surfactants.

In recent years there has been considerable progress on the mathematical modelling of solutions of surfactants. Surfactants

are solutes which preferentially accumulate near the free surface and reduce the surface tension of the solution. Mathematical

models for surfactants in which the surface tension is taken to be a decreasing function of the surface concentration of surfac-

tant have been applied with considerable success to a wide variety of different physical systems (see, for example, Craster and

Matar [1]).

However, there are other solutes, (such as, for example, salt dissolved in water) which preferentially deplete near the free

surface and increase the surface tension of the solution. Such solutes are sometimes called “anti-surfactants” and cannot be

modelled simply by considering the surface tension to be a function of the surface concentration. Instead a promising approach

is to take the surface tension to be a function of the surface excess, an appropriate measure of the difference between bulk

and surface concentrations. Thus, in the present work we construct a fluid-dynamical model for anti-surfactants based on the

concept of surface excess which reduces to the classical model for surfactants when the surface concentration much larger than

the bulk concentration, but has qualitatively different behaviour for anti-surfactants when the surface concentration is much

smaller then the bulk concentration. In particular, this model is consistent with the Henry and Gibbs isotherms in surface-bulk

equilibrium.

We use this model to analyse the stability of a quiescent layer of solution and demonstrate the occurrence of a novel

instability which occurs for anti-surfactants but not for surfactants.

In addition, we formulate and analyse an asymptotically reduced version of the model applicable to thin layers of anti-

surfactants and use it explore the complex non-linear dynamics which this system can display. In particular, the derive and

analyse semi-analytical similarity solutions which capture and elucidate aspects of the long-time behaviour of such systems.

Finally, some of the many possible directions for future work will be indicated.
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AXISYMMETRIC SELF-SIMILAR RUPTURE OF THIN FILMS WITH GENERAL
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1Department of Chemical Engineering, Imperial College London, London, UK
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Summary A thin film coating a dewetting substrate may be unstable to perturbations in the thickness, which leads to finite time rupture.
The self-similar nature of the rupture has been studied by numerous authors for a particular form of the disjoining pressure, with exponent
n = 3. In the present study we use a numerical continuation method to compute discrete solutions to self-similar rupture for a general
disjoining pressure exponent n. Pairs of solution branches merge when n is close to unity, indicating that a more detailed examination of
the dynamics of a thin film in this regime is warranted. We also numerically evaluate the power law behaviour of characteristic quantities of
solutions in the limit of large branch number.

FORMULATION

A thin film on a dewetting substrate is dominated by the effects of surface tension and van der Waals forces. Invoking the
lubrication or thin film approximation [3], the thickness of the film h(x, t) may be modelled by the (dimensionless) equation

∂h

∂t
= −∇ ·

[
h3∇

(
∇2h+ Π(h)

)]
, Π(h) = − 1

nhn
. (1)

As long as n > 1, the disjoining pressure Π(h), which captures the effect of van der Waals forces, destabilises the film.This
leads to finite time rupture, where h vanishes at a point or line at time t0. Assuming axisymmetry and self-similarity near a
rupture point (r = 0), the film thickness may be expressed as h(r, t) = (t0 − t)αf(ξ), ξ = r/(t0 − t)β , where f satisfies the
following ordinary differential equation

−αf + βξf ′ = −1

ξ

[
ξf3

(
f ′′ + 1

ξ f
′
)′

+ ξf2−nf ′
]′
, f ′(0) = f ′′′(0) = 0, f ∼ cξα/β , ξ →∞. (2)

The similarity exponents α and β are simple functions of the exponent n, while the far field condition is derived from the
assumption of quasi-steadiness away from the rupture point. The conditions at ξ = 0 are required for symmetry and bound-
edness of the solution at the origin.

For n = 3, it has been shown that (2) has a discrete family of solutions, which may be characterised by the scaled film
thickness at the origin f0 = f(0). Previously, these solutions have been computed numerically, using a shooting method [7],
and Newton iteration on a discretised boundary value problem [5]. In each case, the numerical computation is highly sensitive
to an initial guess (the right-hand initial condition for shooting, or the initial guess of the Newton scheme, respectively). The
selection mechanism in the plane symmetry (line-rupture) version of (2) was explored in [1], where the exponential asymp-
totics of the large branch-number (equivalent to small f0 was performed). The plane-symmetric version has also recently been
resolved numerically [4] using the continuation algorithms implemented in the open source package AUTO07p [2].

The purpose of the present study is two-fold: firstly, we compute discrete solutions to (2) using numerical continuation,
which has been shown to be highly effective on the plane-symmetric version of this problem [4]. Secondly, numerical
continuation allows us to compute the discrete solution branches as the disjoining pressure exponent n is varied.

NUMERICAL CONTINUATION

The idea behind numerical continuation is to compute a solution to a boundary value problem that features a number of
parameters, then gradually vary one or more of those parameters, using the previous solution as an initial guess (say, in a
Newton iteration) to compute the new solution. The smooth dependence of the solution on parameters may thus be harnessed.
The parameters in question may be model parameters, or artificial parameters introduced for numerical expediency, as we use
here.

∗Corresponding author. Email: m.dallaston@imperial.ac.uk
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Figure 1: (a) The artificial parameter δ2 as a function of the scaled film thickness at the origin f0; The roots δ2 = 0 correspond
to solutions of (2). (b) The first six solution branches vs the disjoining pressure exponent n. Pairs of solution branches merge
near n = 1. (c) Discrete solutions f0 vs solution index N ; solutions appear to asymptote to ∝ N−1/n for large N .

As a starting point, we note that when n = 3, (2) has the exact solution fe(ξ) = c
√
ξ satisfying the far field conditions,

but not the conditions at r = 0. We thus introduce the artificial parameters δ1 and δ2 into the boundary conditions, as well as
an approximate left hand boundary location ξ0 � 1, and enforce the conditions

f(ξ0) = f0, f ′(ξ0) = δ1, f ′′′(ξ0) = δ2.

(the far field boundary conditions are also enforced at a large but finite value ξ = L). Given appropriate values of δ1 and
δ2 , fe(ξ) also satisfies these boundary conditions, so may be used as an initial guess in our computation. Using numerical
continuation, we now take δ2 and δ1 to zero, allowing f0 to be free in each case. Now as ξ0 is taken to zero, we approach a
solution to the original problem (2).

The introduction of the artificial parameters also provides a systematic way of computing the other members of the discrete
family of solutions. For δ1 = 0 and ξ0 > 0 we allow f0 to vary, letting δ2 be free. The curve of δ2 against f0 oscillates around
δ2 = 0, each intersection corresponding to a solution of (2). This approach is similar to that used for the plane symmetric
problem [4], although in our case the variation of the artificial parameters in the boundary conditions cannot take place on
ξ = 0 due to the coordinate singularity.

Finally, after finding the discrete solutions for n = 3, we continue in n to trace out discrete solution branches.

RESULTS

In figure 1a we plot the curve of the artificial parameter δ against f0 for n = 3, showing the selection of discrete solutions
where δ2 = 0. In figure 1b we plot the discrete branches of solutions, characterised by f0, over a range of values of n.
The most interesting phenomenon we observe is the merging of pairs of branches at a value n > 1 as n decreases. Thus,
for small values of n, the branch with largest f0 (the only which is stable [5]) disappears. The dynamical behaviour of the
time-dependent problem (1) in this regime is therefore of further interest, something which we intend to explore further by
numerical computation of (1).

In addition we compute the relationship between f0 on the discrete solution branches and the index N of the branch
(starting with the largest value asN = 1), particularly in the limit thatN is large. As shown in figure 1c, the discrete values of
f0 appear to behave as∝ N−1/n as N →∞ for n = 3, 4 and 5. When n = 3, the far field coefficient c behaves as N−0.43, as
previously computed [6, 4]. The relationship between these numerically observed power laws, as well as the connection with
the asymptotic result of [1], is ongoing work.
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DRAINAGE OF A THIN FILM OF BINGHAM FLUID BETWEEN TWO VISCOUS
NEWTONIAN DROPS UNDERGOING A HEAD-ON COLLISION

Sachin Goel1 and Arun Ramachandran∗1

1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

Summary The drainage of a film of Bingham fluid between two colliding Newtonian drops differs from that of a Newtonian film in three
principal ways. First, drainage rates are slower for yield stress films as compared to Newtonian films of the same viscosity. Second, the
spherical regime of drainage is characterized by higher curvatures in the film region, and it transitions to the dimpled regime at times later
than the Newtonian case. Third, the Bingham film can freeze completely at a critical thickness, hf , which counterintuitively, is independent
of the force pushing the drops against each other. The results suggest that for a given shear rate, coalescence will occur at a slower rate, and
will be completely hindered above a critical drop size.

Keywords: Bingham fluid, film drainage, coalescence, emulsion

INTRODUCTION

Figure 1: Schematic of the flow problem.

In this work, we consider the canonical problem of the drainage of
the thin film of Bingham fluid between two spherical, Newtonian drops
pushed against each other under the action of an external force. The only
prior research to have studied this problem is the analytical work due
to Jeelani and coworkers [1] [2]. Unfortunately, these results have been
obtained from a simplistic lubrication analysis for nearly planar films, or
for dimpled films with ad-hoc assumptions about the film shape. In this
work, we have performed detailed numerical simulations of the evolution
of the shape of a thin, Bingham film with an immobile interface based on
the lubrication equations, and we compare our trends with existing work
on the drainage of Newtonian films.

METHOD AND RESULTS

Consider two Newtonian drops each of radiusR suspended in a Bing-
ham fluid of yield stress τ0 and viscosity μ [see Fig. 1]. The interfacial
tension between the two fluids is γ, and the interface is assumed to be
immobile. The drops are pushed into contact by a force F acting on each
drop, which results in the formation of a film in the contact zone with a

thickness profile h in the cylindrical co-ordinates r and z, as shown in Fig. 1. Ultimately, the film can be rendered unstable
by an attractive van der Waal’s force characterized by a Hamaker constant A. The governing equations for the drainage of
the film are the same as has been derived in previous works [3,4], except that the depth-integrated flow rate of the fluid in the
radial direction is given by

q∗r = −Ca
h∗3

12

∂p∗

∂r∗

[

1− 3

2

τ∗0
τ∗

+
1

2

(

τ∗0
τ∗

)3
]

H (τ∗ − τ∗0 ) , (1)

where, r = r∗RCa1/2, p = p∗γ/R, τ = τ∗(γ/R)Ca0.5, h = h∗RCa, and H is the Heaviside step function. The capillary
number, Ca, is defined as F/(γR).

In Fig. 2, we compare the evolution of the shape of a Newtonian film [Fig. 2(a)] and a Bingham film with τ ∗
0 = 0.1 [Fig.

2(b)] for Ca = 10−3 and a dimensionless Hamaker constant of A∗ = A/
(

4πγR2
)

= 10−10. The shapes are shown until the
point of thin-film instability, which occurs at t∗ = 217.5 and t∗ = 262.8 for the Newtonian and Bingham cases, respectively,
where t = t∗Rμ/(γCa0.5). As is obvious, at the same Ca and A∗, the drainage of the Bingham film is slower than that of the
Newtonian film. However, what may be noticed is that just prior to the instability, while the Newtonian film has dimpled, the
Bingham film is still spherical, implying that the time spent in the spherical regime is much greater in the latter case. In spite
of this and the fact the spherical films are expected to drain faster than dimpled ones, unexpectedly, the Bingham film drains
more slowly.

∗Corresponding author. Email: Arun.Ramchandran@utoronto.ca
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Figure 2: The shapes of the draining (a) Newto-
nian and (b) Bingham fluid, as functions of time.

At sufficiently high Ca, the Bingham film does flatten and dimple,
but when this happens, the shear stress in the film decreases with time. If
the yield stress is large enough, film drainage can be arrested completely
below a critical thickness, hf . A scaling analysis reveals that this thick-
ness varies as τ20R

3/γ2, and our simulations verified this. Interestingly,
this trend is independent of the force F . These and other counterintuitive
trends will be explained in detail in the presentation.

CONCLUSIONS AND IMPLICATIONS

The introduction of a yield stress not only slows down the rate of
drainage, but also modifies the shape of the film during the drainage pro-
cess, increasing the time spent by the film during the spherical regime.
The retardation of drainage, coupled with the arresting of drainage be-
yond a critical yield stress and capillary number for a given drop size
and interfacial tension, implies that the coalescence of two drops collid-
ing with each other due to an imposed shear can be strongly mitigated
for a Bingham suspending fluid relative to a Newtonian one of the same
viscosity.
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PATTERN FORMING INSTABILITIES IN MECHANICALLY VIBRATING THIN FILMS

Michael Bestehorn∗and Sebastian Richter

Department of Theoretical Physics, Brandenburg University of Technology, Cottbus, Germany

Summary Thin liquid films with a free surface on a planar horizontal substrate are examined. The substrate is subjected to oscillatory

accelerations in normal direction. The description is based on the longwave approximation including inertia effects which are important

due to the large velocities imparted by external vibrations. The linearized system is studied using Floquet analysis. Pattern formation in the

nonlinear regime is computed numerically from an integrated model of two (three) coupled PDEs for the thickness and the flow rate of the

fluid in two (three) spatial dimensions. The treatment can be systematically extended to multi-layer systems of stratified inmiscible liquids.

BASIC EQUATIONS

Lubrication approximation

Consider a thin liquid film with a free surface on a planar horizontal solid substrate in the gravity field g. The average

thickness of the film is d. Its kinematic viscosity ν, its surface tension γ and its density ρ are assumed constant. The velocity

field is denoted by ~vh and vz for the horizontal and vertical components, respectively. The fluid is subjected to vertical

harmonic accelerations of the substrate located at z̃ = Ã cos(ω̃t̃) . We adopt the usual scaling in the lubrication approximation

[1] (variables with a tilde are dimensional) ~x = ~̃x/ℓ, z = z̃/d, t = (ν/d2) t̃ where ~x = (x, y) denotes the horizontal

coordinates and ℓ is a typical horizontal scale (wavelength). Expanding the dependent variables of the Navier-Stokes eqs.

with respect to powers of δ = d/ℓ ≪ 1, one finds in the accelerated frame of reference at zero order

∂t~vH + (~vH · ∇)~vH + vz∂z~vH = ∂2

z~vH −∇
(

G (1 + a(t))h− Γ∇2h
)

, (1)

where h(~x, t) is the local film thickness, ∇ and ∇2 are the horizontal gradient and Laplacian, respectively. The dimensionless

numbers are the Galileo number G = gd5/(ℓ2ν2) and the inverse capillary number Γ = γd5/(ℓ4ν2ρ). The normal acceler-

ation results in a virtual force a(t) = Aω2ν2/(gd3) cos(ωt + ϕ) with the dimensionless amplitude A = Ã/d. We assume

periodic boundary conditions (b.c.) in the horizontal directions. In the normal direction, we have at the substrate (z = 0)

~vH = 0 and ∂z~vH = 0 at the free surface z = h(~x, t). The surface itself is determined by the kinematic boundary condition

∂th+∇ · ~q = 0 (2)

where we already introduced the local horizontal flow rate ~q(x, y, t) =

∫ h(x,y,t)

0

dz ~vH(x, y, z, t).

Reduced model

The system consisting of Eq. (1) and the kinematic boundary condition Eq. (2) forms a set of 3D partial differential

equations. Assuming ~vH = 3~q(zh − 1

2
z2)/h3 (closure), multiplying (1) by the weight function W (z) = zh − 1

2
z2 and

integrating over z across the film yields a set of 2D partial differential eqs. for ~q and h (for details see [2])

6

5

(

∂t~q +∇ ·Q−
1

7

~q (∇ · ~q)

h

)

= −
3

h2
~q − h∇

(

G(1 + a(t))h− Γ∇2h
)

(3)

with the matrix Qij = (9/7)qiqj/h. Note that weighting Eq. (1) with other polynomials yields different coefficients in Eq.

(3), [3].

NUMERICAL RESULTS

Linearized system

Linearization of (2,3) around the quiescent state with a flat interface h = 1 + ηk exp(ikx), q = qk exp(ikx), yields a

linear algebraic system for the deviations from which the flow rate qk can be eliminated. A damped Mathieu equation

6

5
η̈k(t) + 3 η̇k(t) + k2

(

G(1 + a(t)) + Γk2
)

ηk(t) = 0 (4)

is obtained for the surface deflection ηk. A solution of (4) is found by the Floquet analysis with ηk(t) ∼ exp(λkt)wk(t) and

a periodic function wk. A negative real part of all λk is crucial for the stability of the flat film. Fig.1 shows the marginal lines

∗Corresponding author. Email: bestehorn@b-tu.de
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Reλk=0 in the k-A plane for a certain silicone oil, together with direct numerical results of the linearization of (2,3). The

agreement is excellent.

k [1/mm]

Aω2
/g

~~

~

5 Hz

10 Hz

Fig.1: Marginal growth rate Reλk = 0. The parameters are

for silicone oil with ν = 5 · 10−6m2/s, ρ = 920 kg/m3, γ0 =
0.02N/m, d = 0.7 mm, and two different frequencies ω̃/2π =
10 Hz (red), ω̃/2π = 5 Hz (blue). The solid lines result from

the Mathieu Eq. (4), The dashed curves are found by direct

numerical solution of Eq. (1). the regions of instability are

located inside the tongues.

Nonlinear pattern formation
Solving the full system Eqs. (2,3) numerically, we have always found square patterns in the subharmonic range and hexag-

onal patterns in the harmonic one, in agreement with [4]. For multi frequency excitation with certain frequency and amplitude

ratios also quasi-periodic structures can be seen (fig.2, right frame) [5].

Fig.2: Various surface patterns, depending on frequency and kind of excitation.

MULTY-LAYERS

The model (2,3) can be systematically extented to a system of N stratified layers of inmiscible liquids separated by N
deformable interfaces. Let hi be the depth and ~qi the local flow rate of layer i, then the system of 3N PDEs reads

∂t~qi +∇ ·Q
i

=

N
∑

j

Aij(h1..hN )~qj − hi∇Pi (5)

∂thi +∇ · ~qi = 0 (6)

with the generalized pressures Pi(h1, ..hN , t) and the matrices

Q
i
=

∫

hi

dz ~viH ⊗ ~viH .

To compute Q as a function of hi and ~qi, a closure via the Karman-Pohlhausen approach can be used [6]. This work is

currently under progress [7].
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Summary It is known that there are two types of wavy motions in a liquid layer covered by surfactant: (i) transverse capillary-gravity
waves; (ii) longitudinal waves caused by the surfactant advection and tangential stresses generated by the inhomogeneity of the surfactant
concentration. We derive and investigate, analytically and numerically, the general dispersion relation, which describes both wavy modes.
We study the parametric excitation of both kinds of waves by heat flux modulation or vibration (i) in the case where there is no instability
in the absence of parameter modulation; (ii) in the case of a pre-existing oscillatory instability. The nonlinear development of instability
modes is analysed in the framework of the longwave asymptotic approach.

We consider a horizontal liquid layer with the free surface covered by insoluble surfactant. The liquid is subjected to a
transverse temperature gradient directed downward (heating from below) or upward (heating from above). The surface tension
of the liquid depends on both the temperature and surfactant concentration. Two types of wavy motions are possible in that
case: (i) transverse capillary-gravity waves; (ii) longitudinal waves generated by interfacial tangential stresses caused by the
dependence of the surface tension on the concentration of the surfactant adsorbed on the interface [1]. Without heating, both
kinds of waves decay due to the viscous dissipation, but they may develop spontaneously if a temperature gradient is applied.

The existence of a longitudinal oscillatory mode and the possibility of its instability can be easily revealed in the case
where the transverse waves are suppressed by a strong gravity (infinite value of the Galileo number), hence the surface can
be considered as non-deformable. In the limit of a small wavenumber (k � 1) and vanishing Biot number, one obtains an
analytical expression for the growth rate Λ(k),

Λ/k2 =
1

96
{M − 48L− 12N − 48± [192(ML− 48L− 12N) + (48L + 12N −M)2]1/2]},

where M , L, and N are the Marangoni number, Lewis number, and elasticity parameter, correspondingly. An oscillatory
instability takes place if N > 4L2/(1− L) as

M > Mosc = 48 + 12(4L + N).

Analytical expressions for the dispersion relation in the implicit form f(Λ, k) = 0 can be found also for finite values of the
Galileo number G, specifically, in the longwave limit and in the opposite limit, when the wavelength is small with respect
to the layer thickness. In the latter case, one can clear distinguish between transverse waves with the dependence of the
frequency ImΛ on the wavenumber k similar to that for usual capillary-gravity waves, and longitudinal waves with a quite
different frequency dependence. In a certain interval wavenumber a mixing and even a reconnection between two oscillatory
modes is observed. An example of the competition between two instability modes in a layer heated from below is shown
in Fig. 1. Both kinds of waves can be excited by a parameter modulation, e.g., by vibration [2] or temporal modulation of
the heat flux on the surface [3]-[5]. In the former case, the Galileo number G in the gravity normal stress on the surface is
replaced with G[1−F sin(2ωt)], where F is the dimensionless ratio between the forcing-induced acceleration and the gravity
acceleration. In the latter case, the base temperature profile in the layer is changed as Tb(z) = T̄b(z) + T̃b(z), where T̄b(z) is
the stationary linear profile, while the non-stationary component of the temperature profile is given by the formula

T̃b(z) = Re
[(

ae
√
2iωz + be−

√
2iωz

)
e2iωt

]
,

where a and b are some constants. Above-mentioned parameter modulations create subharmonic and harmonic “tongue-like”
instability zones. Near the pre-existing stability curves, one observes the appearance of parametric instability “bubbles”.

In the longwave limit we derive nonlinear equations governing the waves excited by the parametric instabilities.
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Figure 1: Dependence of the growth rate on the wavenumber k. (a) The instability growth rate ReΛ(k) and (b) the frequency
ImΛ(k). Blue color lines correspond to Marangoni instability, red color lines corresponds to capillary-gravity waves. Param-
eters of the problem:the Marangoni number M = 10, the Galileo G = 5, the Prandtl number P = 0.01, the elasticity number
N = 0.1, and the Lewis number L = 0.01.
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SHEARED FALLING FILM FLOWS: AN EXPERIMENTAL AND NUMERICAL STUDY
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Summary We document experimentally and numerically the influence of a counter-current turbulent gas stream on a falling liquid film flow.

Though only qualitative, the proposed one-sided modelling is able to retrieve qualitatively the experimental observations: enhancement of

wave amplitude, lowering of phase velocity and reduction of the number of capillary ripples.

INTRODUCTION

Sheared and falling liquid films have been the subject of numerous experimental and theoretical studies in the recent past

[1, 2, 3, 4]. This renewed interest stems from the wide range of applications of this type of flow in chemical engineering.

Indeed, falling films still constitute the state-of-the art technical solution for multiphase chemical reactors, evaporators or

distillation columns [5, 6] as their intrinsic dynamics is well known to intensify heat and mass transfer. The presence of

nonlinear waves in interaction is probably the key element for the intensification mechanisms in such flows as the onset of

rolls and backflows promote transfers and wave merging generates an efficient mixing. This work is devoted to the analysis

of a counter-current gas-liquid film flow in an inclined channel. Our purpose is to consider how travelling waves generated at

the free surface of the film by the classical Kapitza instability mechanism are affected by the gaseous turbulent flow.

EXPERIMENTS

A devoted experimental set-up has been constructed consisting of a glass plate above which a plexiglas channel is placed.

The glass plate is inclined at an angle β with the horizontal plane (3◦ ≤ β ≤ 18
◦). A falling water film flow is controlled

by means of a gear pump and a collection tank thus ensuring a constant inlet liquid flow rate, whereas a fan generates a

counter-current air stream. Special care has been taken for the construction of the inlet and outlet sections in order to limit the

interaction of the gas and liquid flows to the middle section of the plane at which saturated travelling waves are observed on

the liquid film. The frequency of the travelling waves is controlled by means of a temporal forcing at the liquid inlet. The film

height is measured via a one-point CCI (confocal chromatic imaging) technique. Figure 1 presents a series of wave profiles

for different speeds of the gas stream. As the gas speed is raised, the amplitude of the wave humps increases whereas the

number of capillary ripples preceding each hump is reduced. The speed, and consequently the wavelength of the wave, drop

with the onset of the air stream.

CONSTRUCTION OF TRAVELLING WAVE SOLUTIONS

Travelling wave solutions, i.e. waves which remain stationary in their moving frame, have been found numerically. The

approach is one-sided as a constant interfacial shear stress is assumed at the gas-liquid interface. A pseudo-spectral approach is

followed where a projection of the unknowns onto Chebyshev polynomial functions is performed and the primitive equations

are evaluated at the Gauss-Lobatto points, which results in the elimination of the normal coordinate. By invoking a penalization

method to account for the continuity of the stresses at the free surface, an autonomous dynamical system of large dimension

is obtained. Travelling wave solutions are then obtained as Hopf bifurcations of the Nusselt flat-film solution by means of

a predictor-corrector continuation method (ATO07p software [7]). Figure 1 compares numerical travelling-wave profiles to

experimental data. As the experimental pressure drop is unknown, the comparison remains qualitative. A good agreement is

found at a relatively low superficial gas speed. However, the constant shear stress assumption is insufficient to retrieve the

experimental results at larger values of UG.

CONCLUSION

The influence of a shear exerted by a gas stream on a falling liquid film has been documented experimentally and nu-

merically. Though only qualitative, the proposed one-sided modelling is able to retrieve qualitatively the experimental ob-

servations: enhancement of wave amplitude, lowering of phase velocity and reduction of the number of capillary ripples. A

better agreement to the experimental observations may be achieved through the Benjamin-Miles approach [2, 3] and will be

the subject of future work.
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Figure 1: Left: CCI measurements of wave profiles at different superficial speeds UG (liquid Reynolds number RL = 34,

canal height e = 18 mm, inclination angle β = 5
◦ and frequency f = 2.8 Hz). Right: Travelling-wave solutions to the

primitive equations assuming a constant shear stress (top: τi = 0; middle: τi = −0.1 Pa ;bottom: τi = −0.3 Pa).
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Summary We present a detailed and systematic computational and experimental study of the hydrodynamics of solitary waves on peri-
odically excited falling liquid films. We also offer a novel scaling for inertia-dominated falling liquid films that allows for a self-similar
characterisation of the shape and dispersion of solitary waves in the films and unravels the main hydrodynamic mechanisms that dominate
the dynamic behaviour of such waves. Furthermore, our results yield new insight pertaining to the onset of flow recirculation in the moving
frame of reference of the waves, the flow reversal due to capillary effects as well as mechanisms related to capillary ripples preceding the
main solitary humps that cause a significant reduction in film height and speed.

INTRODUCTION

A falling liquid film is an open-flow hydrodynamic system that is convectively unstable to long-wave disturbances and
exhibits a rich variety of spatiotemporal structures, including a sequence of wave instabilities and transitions which are generic
to a large class of hydrodynamic and other nonlinear systems. Due to their typically low flow rates resulting in low pressure
drops but also small thermal resistance and large contact area, falling films are utilised in a wide spectrum of engineering
applications, such as evaporators, heat exchangers and chemical reactor columns. When applying a periodic excitation with
a sufficiently large amplitude, interfacial waves form as a result of the long-wave instability mechanism. A secondary modu-
lation instability eventually transforms the primary wave field into fast solitary waves. These solitary waves have a dominant
wave hump typically preceded by capillary ripples. If inertia is sufficiently high, solitary waves exhibit a separation of scales
between the front of the main wave hump, where gravity, viscous drag and surface tension balance, and the tail of the wave,
characterised by a balance between gravity, viscous drag and inertia [1]. This leads to a strongly non-parabolic velocity profile
at the front of the solitary wave [2, 3], including a recirculation zone in the main wave hump in the moving frame of reference
and flow reversal underneath the wave trough, which have a significant impact on the heat and mass transfer in the film.

Despite considerable research efforts in recent decades, many aspects of solitary wave dynamics still elude us. Using
direct numerical simulation (DNS) [4, 5] and detailed experimental measurements [2] we have recently conducted an extensive
synergistic computational-theoretical-experimental study to elucidate the hydrodynamics and characteristics of solitary waves
in falling liquid films [3, 6]. Here we present some recent and largely unexpected findings with regards to the physical
mechanism and hydrodynamics of solitary waves and their relation to the shape and the non-linear dispersion of the waves.

PARAMETRISATION AND SELF-SIMILARITY OF SOLITARY WAVES

Consider a liquid film flowing down a planar inclined substrate with angle β with respect to the horizontal. The equilibrium
(flat) film height, referred to often as the Nusselt film height, is hN = 3

√
3µ q/(ρ g sinβ) and the corresponding average film

velocity, referred to often as the Nusselt velocity, is uN = g sinβ ρh2N/(3µ), where q is the flow rate per unit length and µ,
ρ and g are the liquid viscosity, liquid density and gravity, respectively. Using the pressure scales corresponding to the three
dominant physical effects, namely inertia, viscous stresses and surface tension, the flow can be parameterised by the Reynolds
number Re = ρ hN uN/µ and the Weber number We = ρ hN u

2
N/σ, where σ represents the surface tension coefficient.

However, these dimensionless groups do not take the driving mechanisms of solitary waves into account.
An interfacial wave evolving from a long-wave perturbation is always unstable (for all Re) on a vertically falling liquid

film (β = 90◦) and stable on a horizontal liquid film (β = 0◦) [1]. Consequently, since the horizontal component of velocity
does not contribute to sustaining the solitary wave, a fully-developed solitary wave is only affected by the vertical component
of the velocity, leading to the driving Nusselt velocity u∗N = uN sinβ. By substituting u∗N for uN, we can then define a driving
Reynolds number Re∗ and driving Weber number We∗ [6].

Using Re∗ and We∗ to parameterise the shape and dispersion of solitary waves leads to a self-similar characterisation of
the asymmetry d/λ ∼ 1/

√
We∗ – where d is the distance between wave crest and wave trough, and λ is the wavelength –

and the wave speed c ∼
√
Re∗ of the solitary wave. Figure 1a shows an example of the wave speed c as a function of driving

Reynolds number Re∗ for a water film with different surface tension coefficients σ and on substrates with different inclination
angles β. The correlation of c and Re suggests that the dispersion of solitary waves in the inertia-dominated regime is mainly
influenced by inertia, whereas frequency dispersion (i.e. due to surface tension and gravity) has no significant influence.

∗Corresponding author. Email: f.denner09@imperial.ac.uk
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Figure 1: Wave speed and film height as a function of Reynolds number for different periodically excited falling liquid films.

HYDRODYNAMICS OF SOLITARY WAVES

As mentioned earlier, the hydrodynamics of solitary waves are governed by a complex interplay of inertia, viscous stresses
and surface tension. If inertia is sufficiently high, a recirculation in the main wave hump can be observed in the moving frame
of reference and the flow separates from the substrate leading to flow reversal underneath the wave trough in the laboratory
frame of reference. Our results suggest that the onset of flow recirculation inverts the long-wave instability mechanism and,
thus, reduces the equilibrium wave height. For example, Fig. 1b shows experimental measurements of the height of the crest
of solitary waves hmax with excitation frequency f = 7 s−1 on a falling aqueous glycerol film on a substrate with β = 20◦ as
a function of Reynolds number Re, where the maximum film height is observed just before the onset of flow recirculation at
Re ≈ 46. With regards to the flow separation and reversal underneath the wave trough, Chakraborty et al. [7] reported that
the flow reversal is bounded by a lower and an upper limit with respect to the Reynolds number. At low Reynolds numbers the
curvature at the wave trough and the ensuing pressure gradient are too small to induce flow reversal, whereas at high Reynolds
numbers the low-pressure region in the vicinity of the wave trough is not able to reach the low-velocity region close to the
substrate, which is necessary for the onset of flow reversal, as shown by our results.

The minimum film height hmin (i.e. at the trough immediately downstream of the main wave hump) adopts a minimum
with respect to the Reynolds number Re , which coincides with a stagnation of the corresponding net wave speed c0 = c−uN,
i.e. the speed of the solitary wave relative to the film. For instance, Fig. 1c depicts hmin and c0 as a function of Re for
a vertically falling water film with excitation frequency f = 50 s−1, where the minimum in hmin and the stagnation of c0
for Re ≈ 100 are clearly discernible. This phenomenon occurs at Reynolds numbers just below the threshold at which an
additional capillary ripple develops. At higher Reynolds numbers (Re & 100 in Fig. 1c) the number of capillary ripples
preceding the main hump increases, along with an increase of the minimum film height hmin and the net wave speed c0.

CONCLUSIONS

We have conducted an extensive computational and experimental study of the hydrodynamics of solitary waves in period-
ically excited falling liquid films, revealing new insights into the complex physical mechanisms that govern solitary waves,
such as the long-wave instability mechanism and the complex interactions between solitary waves and capillary ripples. These
observations should have important consequences with respect to maximising heat and mass transfer in the film, where the
depth of the wave trough and the increased mixing associated with flow recirculation and flow separation play a crucial role
(see e.g. [8]). Furthermore, by introducing a novel scaling derived from the Nusselt flat film solution based on the driving
physical mechanisms, we have unraveled an unexpected self-similarity of the shape and dispersion of solitary waves.
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EXPERIMENTAL CHARACTERIZATION OF 2D TRAVELING WAVES IN LOW KAPITZA 

LIQUID FILM DOWN A VERTICAL WALL 
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1
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Summary:  Two-dimensional waves travelling on a vertical falling, low Kapizta (Ka=4.6) liquid film are characterized using Light 
Absorption (LAbs) and Laser Tomography (LT), in the low Reynolds number regime (Re=1-8). The waves are produced by introducing 
sinusoidal flow rate pulsations of controlled frequency (in the range 12-18 Hz) and amplitude (6-12% of the mean). The measurements, 
spatially and temporally resolved, include thickness profiles and wave celerity, non-dimensionalized using the Skhadov scaling. 

 

INTRODUCTION 

 
   The evolution of a 2D travelling wave is a fundamental test case for validating theoretical and numerical models for 
liquid film flows. As the wave profile reaches a steady state in a reference frame moving at the wave velocity, analytical 
models can be formulated as a system of Ordinary Differential Equations (ODEs) and the wave evolution can be analyzed in 
the framework of dynamical system theory [1]. Saturated waves are typically produced experimentally by forcing the flow 
at frequencies much lower than the natural film cut-off frequency (e.g [2-3]). However, most of the experiments concern 
high Kapizta liquid such as water or alcohols (Ka~ O(103)), while little attention has been payed to low Kapitza liquids such 
as organic oils or paint (Ka~ O(1)). This paper presents the optical characterization of 2D traveling waves on a film of 
Dipropilene Glycol (Ka~4), using two optical techniques: the Light Absorption (LAbs) and the Laser Tomography (LT).  

 

METHODOLOGY 

 
The liquid film facility developed at the von Karman Institute (VKI) is shown in Fig.1a. It consists of a closed loop in which 
the liquid falls along a vertical test section and is recirculated, by a volumetric pump, into a pneumatic chamber.  In this 
chamber a controlled pressure pulsation is introduced by a system of rotating butterfly valves, which open and close the 
inlet and the discharge lines of compressed air. This results in a pulsating Poiseuille flow in the distributing channel 
supplying the test section, and thus in a pulsating liquid film whose flow rate is linked to the measured pressure oscillation 
by a transfer function [4]. The experimental setups for the LAbs and the LT techniques are shown in Fig.1b and 1c. 
 

 
Figure 1: a) Liquid Film Facility developed at the VKI, b) Set up for LAbs measurement, c) Set up for LT measurements. 
 

The LAbs technique relates the film thickness to the amount of light it absorbs from a backlighting source. The set up 
include an array of LEDs, an Opal PLEXIGLAS screen and a CMOS camera synchronized with the LEDS. To maximize 
the absorption, a colorant is diluted in the liquid. The measurement consists in acquiring a set of transmittance images 
(Fig2a, top) and computing the corresponding thickness using the Beer-Lambert’s law, being the total amount of light 
availailable and the liquid absorbance coefficient provided by a calibration. This method is 2D and time resolved, with 
sensitivity and uncertainty adjustable by a suitable choice of the colorant concentration [4]. A typical snapshot is proposed 
in Fig.2a, bottom. 
 
The LT technique measures the film thickness from planar laser induced images, taken on a plane perpendicular to the test 
section and aligned with the stream-wise direction. The setup include a laser sheet and a CMOS camera, equipped with 
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zoom lens and optical high-pass filter, placed on one side. The image processing consists in recontrasting and edge 
enhancement (Fig. 2b, top), and gray-level gradient analysis, to locate the liquid interface in each image column. This 
method is 1D and time resolved, and needs no calibration. A typical measurement snapshot is proposed in Fig.2b, bottom. 

 

 
Figure 2:  a) Example of gray scale transmittance image (top) and corresponding film thickness reconstruction (bottom) 

b) Example of edge processed LT image and corresponding interface tracking (bottom). 
 

RESULTS 

 

Measurements of the film thickness,  , are scaled with respect to the Nusselt thickness               , while the wave 
celerity, obtained by cross-correlating wave profiles in time, is scaled with respect to kinematic wave speed    

    . The 
flow regime is defined in terms of reduced Reynolds number                  . Fig.3a shows the evolution of the 
wave maxima/minima (     ) as a function of  , for several perturbation frequencies. Besides a slight overestimation for 
the LT, both measurements show an asymptotic behavior of    (      ) and a slight growth of   . Fig.3b plots the 
corresponding wave celerity, which is growing for lower perturbation frequency and is weakly affected by  . 
 
 

 
Figure 3: 3) Maxima/Minima thickness and (3b) wave celerity XX as functions of the reduced Reynolds Number. 
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ON THE COMPUTATION OF VISCOUS FORCES NEAR THE MOVING CONTACT LINE

S. Afkhami ∗1, S. Zaleski2, S. Popinet2, A. Guion3, and J. Buongiorno3
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Summary We present a numerical modeling of partially wetting plate withdrawn from a liquid reservoir at small capillary numbers in
situations where a dynamic contact line at a certain height forms. We show that the main part of the dissipation on the plate arrises from the
viscous friction near the contact line region. Previously, we showed in [J. Comp. Phys., 228:5370–5389, 2009] that the computed viscous
dissipation on the plate depends on the mesh resolution. Here we investigate the effects of viscosity ratio on the calculation of viscous
friction near the contact line region. We use an adaptive flow solver to focus the computations on contact line region. We discuss the
computations of frictional drag close to the contact line region when varying the mesh resolution and the viscosity ratio.

NUMERICAL MODEL

We consider a computational domain 0 ≤ x, y ≤ 1, with fluid 1 occupying y < 0.35 and fluid 2, y > 0.35 (see Fig. 1(a)). We use GERRIS
[2-4] to numerically solve the Navier-Stokes and continuity equations, ρDu/Dt = −∇p+∇·

[
µ
(
∇u +∇u>

)]
+γκδsn+ρg, ∇·u = 0,

respectively, where D/Dt = ∂t + u · ∇, ρ = ρ1C + ρ2(1−C), and δsn = ∇C. Here, u is the velocity field, p the pressure, ρ the density,
µ the viscosity, γ the surface tension, κ the interface curvature, n the normal to the interface (pointing from fluid 1 to fluid 2), δs the delta
function centered at the interface, g the gravitational acceleration, and C(= 1 in fluid 1 and 0 in fluid 2) the color function. The location
of the interface is determined from where the density jumps in value and is updated according to Dρ/Dt = (∂t + u · ∇) ρ = 0. We solve
this equation using a volume of fluid interface tracking method [1,2]. We use a volume wighted averaging and a harmonic mean averaging
method for the computation of the viscosity in an interfacial cell, µ = µ2C + µ2(1− C), 1/µ = 1(µ2C) + 1/(µ2(1− C)), respectively.

RESULTS AND DISCUSSIONS

Consider a solid plate (x = 0) withdrawn from a fluid reservoir, as illustrated in Fig. 1(a), with a velocity Vs = 1. We fix the capillary
number, Ca = µ1Vs/σ = 0.01, the Reynolds number, Re = ρ1VsL/µ1 = 1 (L is the size of the computational domain), the capillary
length, lc =

√
σ/(ρ1g) ≈ 0.3, the density ratio, ρ1/ρ2 = 100, and vary the viscosity ratio, µ1/µ2, the mesh resolution, with the maximum

mesh size ∆, and the equilibrium contact angle θeq. The results are computed to the stationary state, t→∞.

Here we report on the computation of the shear rate near the contact line region to shed light on the nature of the contact line friction force.
We vary the viscosity ratio as well as the contact angle to understand the effect of the surrounding fluid and the surface wetting on the
viscous dissipation. In Fig. 1(b), we plot the shear rates along the solid boundary. First, we show that the results depend on the mesh size.
As shown, the maximum shear rate near the contact line is significantly increased by only doubling the mesh resolution. We note that further
mesh refinement will lead to logarithmic divergence of the shear rate. When the viscosity ratio is increased, it appears that the maximum
shear rate at the contact line only increases slightly. However, the location of this maximum shear rate is changed noticeably when changing
the viscosity ratio. Interestingly, changing the equilibrium contact angle appears to have an insignificant effect on the maximum shear rate
at the contact line. In Fig. 1(c), we show that using a volume weighted averaging versus a harmonic mean averaging can shift the location of
the maximum shear rate, but it has no significant effect on the value of the maximum shear rate near the contact line. Figure 2 illustrates the
flow fields near the contact line, at stationary state, when varying the viscosity ratio and the equilibrium contact angle. The streamline plots
show a major shift in the stagnation point near the contact line when varying the viscosity ratio; i.e. for µ1/µ2 = 1, it is on the interface,
while for µ1/µ2 = 50, it is inside liquid 2. The plot also shows the split streamlines in liquid 2. We observe that the angle of the split
streamline varies when varying the viscosity ratio and the equilibrium contact angle.

CONCLUSIONS

We study the dynamics of moving contact lines for fluids with a large viscosity contrast. We report on the computation
of the shear rate exerted by the solid wall on the liquid near the contact line region, and compare the results when varying
the mesh size, viscosity ratio, and the equilibrium contact angle. We show that the shear rate diverges with mesh refinement.
Interestingly, changing the equilibrium contact has no significant effect on the maximum shear rate at the contact line. The
results of the flow topology suggest that for high viscosity ratios, a stagnation point near the contact line resides in the bulk,
while for low viscosity ratios it is on the interface. This mechanism can be responsible for the difference in the bending of the
interface and the topology of the flow close to the contact line.

∗Corresponding author. Email: shahriar.afkhami@njit.edu
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Figure 1: (a) Schematic of the withdrawing plate, initially at t = 0, and at the stationary state t → ∞. (b) Stationary state
shear rates at mesh resolutions ∆ = 1/256 (�) and ∆ = 1/512 (�), for µ1/µ2 = 1 (black) and µ1/µ2 = 50 (green). (c)
Volume weighted averaging (red) versus harmonic mean averaging (green), µ1/µ2 = 50.
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Figure 2: The flow fields near the contact line, at stationary state. The streamlines depict the slip of the contact line along
the wall, as well as the parabolic flow field in fluid 1 and the split streamlines in liquid 2. (a) µ1/µ2 = 1, θeq = 60◦, (b)
µ1/µ2 = 50, and θeq = 60◦, and (c) µ1/µ2 = 50, θeq = 90◦. ∆ = 1/512.
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2D VERSUS 1D MODELS FOR THIN FILM FLOWS
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Summary The present paper first develop by using Prandtl shift system of coordinate an efficient tool for computing simple asymptotic
expansion of 3D flow of thin films over a general non flat topography. 2D related two equations models are thus presented and generalize
those classicaly obtained on plane surface. An asymptotic framework is also presented in order to elaborate simplified 1D two (or 3)
equations models when the topography of the 2D models presents characteristics of 1 dimensionnal channel with general shape of cross
sections. In the special case of Shallow water equations of hydraulic the new models are compared to the classical one used in standart
hydraulic

ASYMPTOTIC EXPANSION OF THIN FILM FLOW OVER ARBITRARY TOPOGRAPHY

The motion of a thin liquid film of a viscous laminar fluid over a general topography is considered. For a flat substrate,
general framework for deriving asymptotic expansion (with respect to the small parameter h/L where h is the characteristic
hight of the flow and L a characteristic longitudinal length) is presented eg in [1]. Recently Charru and Luchini [2], Boutounet
et al [3] have used Prandtl shift to build asymptotic expansion and one or two equations models for 1 dimensionnal flow over
arbitrary one dimensionnal topography. By using technics such as those developped in [4] a new asymptotic expansion of all
fields (velocity, pressure...) is build in the case of a general 2D topography. It generalizes the one given in [1] and reference
therein.

1D FLOW OVER 2D TOPOGRAPHY

When the arbitrary topography presents some features involving one dimensionnal channel of arbitrary shape eg in the
case where the bottom surface b (x, y) is given by an equation of the form

Z = b(x, y) = B0b0

( x
L

)
+ h0ϕ

(
x

LX
,
y

Ly

)
a theory is proposed to build asymptotic expansion of 1D flow along the xline.

Figure 1: transverse section

One dimensionnal averaged two equations models are derived over such topography.

∗Corresponding author. Email: vila@insa-toulouse.fr

1052



CASE OF SAINT VENANT EQUATIONS

In the special case of Saint Venant hydraulic equations which writes in 2D
ht + (hu)x + (hv)y = 0

ut + uux + vuy + ghx = g
(
−Zx −

u

C2hm

√
u2 + v2

)
vt + uvx + vvy + ghy = g

(
−Zy −

v

C2hm

√
u2 + v2

) (1)

one dimensional averaged models are build, they takes the form
St +Qx = 0

Qt +

(
Q2

S

)
x

+ gHxS +R (H)Hx = gS

(
I − Q |Q|

C2
hRhS2

)
(2)

In the case of U shaped channel R (H) = 0, and these models are those classicaly used in hydraulics. It is proven that
unless the channel is U schaped, additionnal terms in R(H) arises and are needed to get consistency of 2D averaged models
with 1D models. A special care is taken for the case of small Froude number. A new class of nonlinear models is presented,
they requires an additionnal third equation to achieve first order consistency of 1D averaged models with 2D equations.
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Summary In this note, we introduce a new extended formulation of the so-called Euler-Korteweg equations. This formulation allows to
design a numerical scheme with entropy stability property under a hyperbolic CFL condition in the multi-dimensional setting. We apply
this strategy to perform fast and accurate numerical simulations of capillary thin films. We focus on the roll-wave phenomenon and wet-dry
front both modeled by the shallow water equations with surface tension.

THE EULER-KORTEWEG EQUATIONS AND EXTENDED FORMULATION

The Euler-Korteweg equations are written as

∂t%+ div(%u) = 0, ∂t(%u) + div(%u⊗ u + p(%)IRn) = div(K), (1)

where % denotes the fluid density, u the fluid velocity, p(%) the fluid pressure and K the Korteweg stress tensor defined as

K =

(
%div(K(%)∇%) +

1

2
(K(%)− %K ′(%))|∇%|2

)
IRn −K(%)∇%⊗∇%.

with K(%) the capillary coefficient. These models comprise liquid-vapor mixture [3], superfluids [4] or regular fluids at suffi-
ciently small scales (think of ripples on shallow waters) [5]. In classical fluid mechanics, the capillary coefficientK(%) is cho-
sen constant. The system (1) admits additional conservations laws. In particular, the conservation of total (kinetic+potential)
energy reads:

∂t

(%
2
|u|2 + E

)
+ div

(
u
(%

2
|u|2 + E + p(%)

))
= div

(
F (%)(∇wu−∇uw)− (F (%)− %F ′(%))(div(w)u− div(u)w)

)
,

with E = F0(%) + 1
2K(%)|∇%|2 and F0 the classical potential energy in Euler equations. The main issue in the numerical

simulations of (1) is to preserve or, at least, dissipate this total energy. Following the strategy of [1], we introduce a “good”
additional unknown, homogeneous to a velocity. We denote this additional velocity w = ∇ϕ(%) with

√
%ϕ′(%) =

√
K(%).

We also define F (%) so that F ′(%) =
√
K(%)%. The Euler Korteweg system admits the extended formulation

∂t%+ div(%u) = 0,

∂t(%u) + div(%u⊗ u) +∇p(%) = div(F (%)∇wT )−∇ ((F (%)− %F ′(%))div(w)) ,

∂t(%w) + div(%w ⊗ u) = −div(F (%)∇uT ) +∇ ((F (%)− %F ′(%))div(u)) ,

(2)

Note that we performed a reduction of order and the second order term is skew-symmetric: this latter property plays a central
role in the design of numerical schemes which dissipate the generalized entropy E +

%

2
|u|2.

NUMERICAL SIMULATIONS OF THIN FILM FLOWS

As an application, we carried out a numerical simulation of a thin film falling down an inclined plane. A consistent shallow
water model [2] is given by

∂th+ div (hu ) = 0, (3)

∂t(hu) + div (hu⊗ u) +∇(p(h)) +

(
g sin(θ)

ν

)2

∂x

(
2h5

225

)
e1 = S(h,u) +

σh

ρ
∇(∆h). (4)

with p(h) = g cos(θ)h2/2 and S(h,u) = gh sin(θ)e1 − 3νu/h and e1 the first vector of the canonical base directed
downstream. Here g is the gravity constant, ρ, ν, σ are respectively the fluid density, kinematic viscosity and surface tension

∗Corresponding author. Email: pascal.noble@math.univ-toulouse.fr
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whereas θ is the inclination of the plane. We picked the values found in [5]. The convection terms are treated explicitly
whereas the second order terms and the source term are treated implicitly: since both terms are only founds in the equations
for u and are linear with respect to u, the implicit step is linear. Moreover, we can prove that the scheme is entropy stable
under a hyperbolic CFL condition (in contrast to classical approach where the stability condition reads δt = O(δx2)). We
first carried out a numerical simulation of the original experience in [5] but imposed periodic boundary conditions in both
directions. The numerical scheme is second order accurate both in time and space: we implemented IMEX type strategy [6]
to reach order two and implicit capillary and source terms.

Figure 1: Numerical simulation of a roll-wave in presence of surface tension. On the left: one dimensional roll-wave without
transverse perturbations. On the right: a two-dimensional roll-wave

In order to test the robustness of the scheme, we also carried various numerical experiments of a drop falling down a plane in
order to deal with wet/dry fronts. For that purpose, we introduced a precursor film with a thickness of 1.0× 10−5mm.

Figure 2: Drop falling down an incline plane (θ = 60o) at time t = 0 and t = 1s. The fluid density, kinematic viscosity and
surface tension are respectively ρ = 1.0× 103 kg.m−3, ν = 1.0× 10−6m2.s−1 and σ = 67× 10−3 kg.s−2.
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Summary This contribution explores the familiar process of crêpe making whereby a fixed amount of batter is deposited on a pan and cooked. 

We treat the crêpe as a gravity current and solve the corresponding equation for a non-isothermal fluid on a rotating surface. We show that 

imparting a rotating motion of the pan can improve the coverage and uniformity of the resulting crêpe, as observed in practice. The modelling 

framework presented here can be applied in the wider context of surface coatings. 

 
INTRODUCTION 

   Crêpes, unlike pancakes, are best appreciated when uniformly thin and most aesthetically pleasing when perfectly 

circular. Achieving these goals is, however, not necessarily easy to the inexperienced cook because as the batter spreads, it 

cooks at the same time and if the pan is left horizontal, the batter tends to solidify before reaching uniformly the rim of the 

pan. There are two strategies known to the authors to circumvent the issue. The first involves using a blade to force spread a 

uniform layer of batter on the pan in a process reminiscent of blade coating. The other strategy, preferred by the authors, 

consists in tilting the pan in a swirling motion and force the batter to spread preferably in the downslope direction of the 

span. As soon as this tilting is initiated, the axial-symmetry of the problem is broken and one cannot help but wondering 

what is the optimal swirling motion one should aim for to achieve an optimally thin and round crêpe. This contribution is a 

preliminary attempt at solving this very mundane yet interesting, practical problem using mathematical modelling and 

numerical simulations.  

 

MODELLING FRAMEWORK 

   In order to tackle this problem, the batter layer is treated as a gravity current spreading over a surface whose inclination 

varies over time. The liquid viscosity is assumed to be a function of the temperature in order to model the solidification 

process. Gravity currents have received considerable attention in the past and an excellent account of the current knowledge 

can be found in [1]. To leading order in the liquid film aspect ratio, the momentum and energy conservation equations 

applied to an incompressible liquid film of reduce to: 

x-momentum: 𝜕

𝜕𝑧
 (µ

𝜕𝑢

𝜕𝑧
 ) =

𝜕𝑝

𝜕𝑥
− 𝑔𝑥 

y-momentum: 𝜕

𝜕𝑧
 (µ

𝜕𝑣

𝜕𝑧
 ) =

𝜕𝑝

𝜕𝑦
− 𝜌𝑔𝑦 

z-momentum: 
−

𝜕𝑝

𝜕𝑧
− 𝑔𝑧 = 0 

Mass:  𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

Energy: 𝑑2𝑇

𝑑𝑧2
= 0 

where (𝑢, 𝑣, 𝑤) is the velocity vector, 𝑝 the pressure, 𝑇 the temperature, 𝜇(𝑇) is the temperature-dependent batter 

viscosity, 𝜌 the density, and (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧) are the components of the acceleration of gravity vector projected on the 𝑥, 𝑦, 𝑧 

axis, respectively. The coordinate system (𝑥, 𝑦, 𝑧) is attached to the pan but the rotation of the pan is assumed sufficiently 

slow that centrifugal or Coriolis forces may be neglected. The batter layer is bounded by the 𝑥 − 𝑦 plane from below and 

the surface ℎ(𝑥, 𝑦, 𝑡) from above. As the pan rotates, the orientation of the acceleration of gravity vector changes with 

respect to time. We represent the cyclic rotation of the pan by two angles 𝜃(𝑡) and 𝛽(𝑡) such that 𝑔𝑥 = 𝑔 sin 𝜃, 

𝑔𝑦 = 𝑔 sin 𝛽, and 𝑔𝑧 = 𝑔 cos 𝜃 cos 𝛽. The pan is assumed to be at a fixed temperature of 𝑇𝑠 and the upper surface of the 

batter subject to convective heat transfer with the surrounding atmosphere at temperature 𝑇∞ with a convective heat 

transfer coefficient ℎ𝑐 . Accordingly, 𝑘
𝜕𝑇

𝜕𝑧
|

𝑧=ℎ
= ℎ𝑐(𝑇∞ − 𝑇(ℎ)) where 𝑘 is the thermal conductivity. The governing 

equations above are subject to the no-slip boundary condition on the pan and a shear free boundary condition at the free 

surface which is subject to the passive atmosphere. Various models may be assumed for the variation of the viscosity with 

temperature, see [2,3] for example. We adopt here an exponential model such that: 

𝜇(𝑇) = 𝜇0𝑒−𝛼𝑇 
 

Integration of the x- and y- momentum equations with respect to 𝑧 yield the velocity field in terms of the pressure gradient 

which can be seen to be hydro-static from the z-momentum equation. Plugging this velocity field in the continuity equation 

integrated over the film thickness yields the following partial differential equation for the crêpe thickness ℎ(𝑥, 𝑦, 𝑡):   
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𝜕ℎ

𝜕𝑡
+ ∇ ∙ (

𝑒𝛼𝑇𝑠𝜌𝑔ℎ3

𝜇0(𝐴′𝛼)3
(2𝑒𝐴′𝛼 − (𝛼2𝐴′2

+ 2𝐴′𝛼 + 2)) (cos 𝜃 cos 𝛽 ∇ℎ − (sin 𝜃 𝑖 + sin 𝛽 𝑗))) = 0 

where 𝐴′ =
ℎ𝑐(𝑇∞−𝑇𝑠)

𝑘

ℎ
+ℎ𝑐

. In the following and for the sake of illustration, we choose the following values for the parameters 

𝜌=1000 kg/m
3
, 𝜇0=2 Pa.s, 𝛼=10

-4
 K

-1
, 𝑘=1.2 W.m

-1
.K

-1
, ℎ𝑐 =5 W.m

-2
.K

-1
, 𝑇∞= 200 

o
C, 𝑇𝑠 =20 

o
C. In this preliminary 

modelling attempt, the cooking of the batter is represented by an increase of the viscosity with a decreasing temperature, an 

unrealistic representation of the true process but at this early stage, the intent is merely to introduce a temperature-dependent 

solidification process.  

The governing equation is solved in the Finite Element Multiphysics modelling software COMSOL. The computational domain, 

representing a circular pan, is a disk of radius 12.5 cm. Natural boundary conditions are applied at the boundary and the batter is 

initially a flat disk of thickness 𝐻0=2.5 cm and radius 5 cm. In order circumvent the singularity which arises at the wetting front, 

the gravity current spread on a precursor film of thickness 𝐻0/1000. Typical meshes have on the order of 6,500 quadratic 

elements which lead to good convergence and agreement with experimental measurement for the spreading on a flat, horizontal 

surface.             

               

RESULTS 

   The cyclic rotation of the pan is imposed by letting 𝜃(𝑡) = 𝐴1 sin 𝜔1𝑡 and 𝛽(𝑡) = 𝐴2 sin(𝜔2𝑡 − 𝜋
2⁄ ) where 𝜔1, 𝜔2 

are the angular frequencies and 𝐴1, 𝐴2 are the amplitudes of the tilting motion. These parameters are optimized in 

COMSOL to maximize an objective function 𝐼 representative of the closeness of the solidified batter layer to the optimal 

thickness ℎ𝑜𝑝𝑡 = 𝑉
𝐴⁄  where 𝑉 is the initial volume of batter and 𝐴 is the cross-section of the pan. Accordingly, the 

objective function is 𝐼 = ∫ (ℎ − ℎ𝑜𝑝𝑡)
2

𝑑𝑥𝑑𝑦
𝐷

. The Nelder-Mead algorithm is used for the optimization process.  

 
Figure 1: Top-view of the spreading batter on a circular pan. The top picture sequence shows the spreading on a flat, horizontal surface 

and the bottom sequence shows the spreading on a rotating surface. Times from left to right are: t=0.2 s, t=1 s, t=2 s, t=5 s 

 

The top picture sequence shows that on a flat, horizontal surface, the gravity current spreads radially and solidifies before 

reaching the rim of the pan. The corresponding value of the objective function is 1.41e-5 m
3
. The lower picture sequence 

shows the spreading when a swirling motion is imparted to the pan. The pan is periodically rotated about the x-axis and the 

y-axis. The batter is seen to reach the edge of the pan. The optimized application of rotation leads to an improved coverage 

of the pan and the corresponding value of the objective function is 1.06e-5 m
3
. Over ~50 runs, the optimal parameters were 

found to be 𝐴1=51.6
o
, 𝐴2=45.8

o
, 𝜔1 = 2.77 rad.s

-1
, and 𝜔2 = 2.96 rad.s

-1
, a set of values specific to this case. 

This preliminary study shows, as intuitively guessed, that imposing a rotating motion to the pan can improve the coverage 

and uniformity of the crêpe and the developed modelling framework should be relevant in the wider context of coatings.                    

 

References 

[1] Leal L.G.: Advanced Transport Phenomena. Cambridge Series in Chemical Engineering, 2010. 

[2] Sansom A., King J.R., Riley D.S.: Degenerate-diffusion models for the spreading of non-isothermal gravity currents. J. Eng. Math. 48: 43-68, 2004.    

[3] Bercovici D.: A theoretical model of cooling of viscous gravity currents with temperature-dependent viscosity. Geophys. Res. Let. 21: 1177-1180, 1994. 

1057



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

CAPILLARY EFFECTS AND SHORT-SCALE INTERACTION IN A WEAKLY VISCOUS

SUPERCRITICAL OVERFALL

Bernhard Scheichl ∗1,2 and Robert I. Bowles3

1Institute of Fluid Mechanics and Heat Transfer, Technische Universität Wien, Vienna, Austria
2 AC2T research GmbH (Austrian Center of Competence for Tribology), Wiener Neustadt, Austria

3Department of Mathematics, University College London, United Kingdom

Summary We consider a thin liquid film past a semi-infinite horizontal plate under the action of gravity acting vertically, surface tension,

and relatively low viscosity. This scenario comprises a manifold of effects at play, given the two disparate length scales involved: distance

from jet impingement generating the layer to the trailing edge of the plate, height of the film. The yet not fully understood behaviour of

a developed viscous film near the edge and previous studies on bores and hydraulic jumps in weakly viscous horizontal layers stimulate

the present investigation. In sharp contrast to these, here the flow remains supercritical, and isolated regimes of strong viscous–inviscid

interaction are dictated by the short length scale rather than the common shallow-water approximation. Specifically, we show how viscosity

produces standing waves upstream of localised interaction and how weak capillarity modifies drastically the potential-flow singularity close

to the edge, which in turn affects crucially its viscous regularisation.

MOTIVATION AND SCOPE

Higuera [1] was the first who elucidated in detail the asymptotic structure of a steady developed viscous liquid film as this

passes the plate edge in the configuration given in the summary under the assumption of shallow-water theory and supercritical

initial conditions. He showed how the film undergoes a hydraulic jump, for a developed film meaning transition from super-

to subcritical film at a streamwise scale that measures the distance from its initial stages to the edge, before it finally becomes

critical in the sense of the Burns–Lighthill criterion for long waves. However (and as he conceded), the type of singularity the

solution of the thin-film equations terminates in at the edge is not unambiguous. An alternative to the one proposed in [1] is

provided by the expansive singularity in freely interacting hypersonic boundary layer (BL) flow as already pointed out in [2].

In addition, it is not fully understood how the flow becomes strongly interactive and how Higuera’s singularity accommodates

to the situation of a very supercritcal film and the associated shortening of the streamwise scale at play around the edge.

This contribution is devoted to the clarification of this issue, where we address the problem from the viewpoint of the high-

Reynolds-number (Re) limit. Then a BL forms in an otherwise uniform flow, and the associated separation of scales gives

rise to a myriad of intriguing phenomena not encountered in developed flow. Specifically, the short scale becoming essential

and finally provoking localised strong viscous-inviscid interactive is given by the shallow-water parameter, ǫ, rather than the

largeness of the Froude and/or Weber numbers, as in the investigation [3] of strong hydraulic jumps in a developed film. Also,

the situation is unlike that in the preceding study [4] where those were considered in the high-Re and long-wave limit. Hence,

our study is a paradigm for genuine short-scale interaction and the associated plate-normal momentum transfer in such flows

as its generation is imprinted by the potential flow falling off the edge. The flow is then governed by the reciprocal forms G
and T of the squared Froude and the Weber number, respectively, apart from the asymptotic parameters ǫ ≪ 1 and Re ≫ 1, the

latter formed with the speed Ũ and heigth H̃ of the unperturbed film and reduced by ǫ. The flow is critical/sub-/supercritical

in the sense adopted in shallow-water theory for G =/>/< 1. Let us tacitily refer to figure 1 (a) subsequently: the flow

velocity and Cartesian coordinates x, y are non-dimensional with Ũ and H̃; the long scale is thus represented by 1/ǫ.
We first justify strict supercriticality of the flow, then envisage the short-scale characteristics of the weakly/strongly in-

teractive BL flow by advanced asymptotic techniques. As an exciting finding, a triple deck (TD) structure having an extent

of O(1) emerges at a distance −x = O(ln ǫ). This new TD allows for the destabilising effect of viscosity and the generation

of stationary waves upstream but their suppression downstream of it. Also, the solutions of the BL equations form a singu-

larity at and thus a further interactive stage around the edge. We finally use this surprisingly rich flow picture to approach the

situation of a developed flow addressed in [1] by letting ǫ (the plate) to become so small (so long) that strict supercriticality is

questioned and local critical conditions do or do not point to the terminal structure of the BL close to the edge.

POTENTIAL-FLOW LIMIT: THERE IS NO STEADY SUBCRITICAL WATERFALL

We commence the investigation by analysing the potential flow falling off the edge, parametrised by G where first T ≪ 1
is assumed as in [1]. Interestingly, though posing a fundamental member of closely related (more complex) ideal-fluid flow

problems of great importance in hydraulics, cf. [5], converged numerical solutions to it are rare and not reliable at all for

G > 1. This is not so surprising as one commonly associates subcritical flows with standing waves far upstream, which here

∗Corresponding author. Email: bernhard.scheichl@tuwien.ac.at
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Figure 1: (a) flow configuration; (b) δ0 = 0: G > 1 can be double-valued for T < 1/3 (µ = 0), µ jumps as G exceeds 1 (T = k = 0).

conflict with the required approach towards uniform flow. Moreover, in the aforementioned related situations solutions have

been observed to exist if G does not exceed some critical value Gc < 1. Proving existence of such a threshold with sufficient

rigour and determining its value analytically has not been successful so far. However, we demonstrate that Gc = 1 holds for

the classical downfall problem; this value might even be lower if a sill or dent modifies locally the horizontal surface.

If q denotes the flow speed, the proof essentially exploits the extremal properties of ln q in consideration of the isotaches

and their possible branching points. We first show that the detached streamline has negative curvature, i.e. bends towards the

direction of gravity, throughout. Evaluating the global momentum balance in horizontal direction then yields the remarkable

result G < 4. In particular, the flow past a flat plate is shown to be strictly accelerating, which in combination with its far-

upstream variation finally yields G ≤ 1. For T ≥ 0, the latter is algebraic for G = 1 and purely exponential otherwise, and

our restriction to the as appealing as geometrically simple overfall scenario includes the delicate near-critical case G → 1−.

The first part of that proof implies forced flow detachment at the edge for T = 0. With q equal to q0 :=
√
1 + 2G there in

this limit, we find the position z := x+ iy very close to the edge as a function of the complex flow potential, w, in the form

q0z̄ ∼ w−ic1w
3/2−

9c21w
2

16
−

[

2c1G

5q3
0

( i lnw

π

+1
)

+ic2

]

w5/2−T

[

3c1
2q0

( i lnw

π

+1
)

+id

]

w1/2+O
(

w3 lnw, T 2w−1/2
)

(1)

for w → 0, T → 0. Here we have z̄ := z − xd, actual detachment at some z = xd(T ) = O(T lnT ), and undetermined co-

efficients c1(G) > 0, c2(G), d(G). Resolving the non-uniformity of (1) proves a delicate matter; see [5] and the relevant

references therein. At the critical stage z = O(T ), the procedure involves the (non-unique) solution of the celebrated dock

problem by the Wiener–Hopf method. One finally finds the bottom streamline detaching at a stagnation point z = xd and an

angle ∼ −αc1T
1/2 lnT with the plate. This and the solution to the separation problem given in [5] differ by the number α > 0

and the logarithmic term, which crucially affecting its viscous modification by the aforementioned second interaction process.

UPSTREAM BOUNDARY LAYER AND SHORT-SCALE INTERACTION

The exponentially varying short-scale disturbances imposed far upstream of the trailing-edge region |z| = O(1) interact

strongly with the BL if the rescaled reference wavelength Λ := ǫRe3/2 is kept fixed. They satisfy the dispersion relation

Λ1/3 δ0 ∼ χ δ1, [δ0, δ1] := [λ− (G− Tλ2) tanλ, λ4/3(G− Tλ2 + λ tanλ)], χ := Γ( 1
3
)(2/3)2/3β−5/3 .

= 7.2059. (2)

for steady weakly viscous linear gravity–capillary waves with wavenumbers k := ℑλ and damping rates µ := ℜλ > 0;

β
.
= 0.4696 is the wall shear rate of the unperturbed Blasius BL. The imposed, purely non-oscillatory perturbations are recov-

ered for Λ ≫ 1; for G > 1 they could also be strictly oscillatory: see figure 1 (b). Even slightly subcritical flows might be pos-

sible given the weak damping of these inviscid waves. The localised nonlinear lower-deck pocket associated with the new TD

absorbs the waves upstream of it and described by (2) and achieve consistency with the overall flow structure by shedding the

non-wavy potential-flow perturbations downstream. Accordingly, the generalised Fourier transforms −A, P of the displace-

ment function and the induced pressure perturbations, respectively, satisfy the interaction law ikA(k) = P(k) (δ0/δ1)(ik).
The current efforts are directed towards resolving the trailing-edge singularity for Λ ≪ 1 and the new TD. Specifically,

we expect the limit G → 1 to reveal how the long-wave TD structure in [6] governing transcritical flow resides in our setting.
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Summary Multiphase flow of water and supercritical CO2 in porous media is central to the geologic sequestration of CO2 within saline aquifers. 
The coupled flow dynamics of CO2 and brine in geologic media must be better understood, particularly at the pore scale, as pore-scale processes 
represent a critical component of accurately predicting large-scale migration of injected CO2. In this work, the pore-scale flow interactions of 
water and liquid/supercritical CO2 are being quantified in 2D heterogeneous porous micromodels at reservoir-relevant conditions (i.e., 80 bar, 
20°C), in an attempt to accurately mimic the process of CO2 injection into saline aquifers. The initial results show that the dominant CO2 flow 
paths have very complex spatial configuration, which highlights the importance of the local pressure (e.g., capillary) gradient in CO2 front 
migration.  
 

INTRODUCTION 
 
   Carbon capture and sequestration (CCS) is a viable technique for reducing carbon emissions from large CO2 sources, such 
as fossil fuel thermal power plants [1]. An important stage in the CCS process is the injection of supercritical CO2 into saline 
aquifers, which are porous formations saturated with brine, and thus CO2 must displace the resident brine during and post 
injection. At reservoir conditions, the CO2 is in either a liquid or supercritical state, and thus less dense and less viscous than 
the resident brine. These conditions therefore lead to complex displacement patterns as the CO2 infiltrates the pore space, 
particularly the onset of fingering phenomena driven by the balance between viscous and capillary effects [2]. Our 
fundamental understanding of the coupled flow dynamics of CO2 and brine in geologic media is still limited. This is 
particularly true at the pore scale, despite pore-scale processes representing a critical component of accurately predicting 
large-scale migration of injected CO2. 
   To this end, fluorescent microscopy and the micro-PIV method are simultaneously employed to capture the pore-scale 
flow dynamics of liquid/supercritical CO2 infiltration into water-saturated 2D heterogeneous porous micro-models at reservoir 
conditions (80 bar, 20 °C). These results provide valuable insight into flow processes at the pore scale in natural rock.  
 

EXPERIMENTAL METHODS 
 
   The micromodels used in these experiments were fabricated from silicon, with the porous matrix formed from the reprint 
of the pore structure of real sandstone as shown in Figure 1 [3].  
 

 
Figure 1: Schematic diagram (to scale) of the micromodel with the green region indicating the imaging field of view. 
 
   The coupled flow of water and CO2 through the micromodel is accurately controlled by two high-pressure syringe pumps. 
One pump is connected to the inlet (i.e., the left port) of the micromodel and is used to push the supercritical CO2, while the 
other pump is connected to the exit (i.e., the right port) to withdraw water as well as maintain the back pressure of the flow 
system. In order to keep the micromodel from breaking at reservoir-relevant pressures, i.e., 80 bar, the micromodel is placed 
within an overburden pressure cell, whose pressure is controlled by a third high-pressure syringe pump. Fluorescent 
microscopy and the micro-PIV method are simultaneously employed by seeding the water phase with fluorescent particles 
and tagging the CO2 phase with a fluorescent dye of a different spectral emission. Doing so allows for simultaneous 
measurement of the spatially-resolved instantaneous water velocity field and quantification of the instantaneous spatial 
configuration of both phases [4]. 

7.1 mm 

Flow direction 

Water CO2 
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INITIAL RESULTS 
 
   The initial results provide a unique view of the flow dynamics during the migration of the CO2 front, the evolution of 
individual menisci and the growth of dendritic structures, so-called fingers [2, 4]. Before the CO2 front arrives, the test section 
features a steady single-phase flow of pressurized water, which is predominantly from left to right owing to the driving 
pressure gradient (Fig. 2a). During the CO2 infiltration process, CO2 suddenly breaks through the resident water, forming 
fingers which grow in directions both along and normal to the bulk pressure gradient, and even against the bulk pressure 
gradient, indicative of capillary fingering (Fig. 2b). The complex spatial configuration of each fluid phase highlights the 
importance of local pressure gradients in CO2 front migration. Although results are not shown here, experiments at a much 
higher flowrate (i.e., 0.05 ml/min or 10 times higher), and thus a much higher capillary number, show that the CO2 fingers 
grow predominantly in the bulk flow direction, which suggests that the flow is more likely dominated by viscous fingering 
(vs., capillary fingering) as the capillary number increases [2].  
 

 
Figure 2: Sample flow fields (80 bar, 20 °C, 0.005 ml/min) before CO2 front arrives (a) and after it passes (b), showing water 
velocities as color contours; CO2 and silicon grains as white and dark, respectively. 
 

CONCLUSIONS 
 

   Fluorescent microscopy and micro-PIV have proved to be powerful tools to quantify of the flow interactions of supercritical 
CO2 and water under reservoir-relevant conditions. For single-phase flow, the flow is steady and predominantly in the direction of 
the bulk driving pressure gradient. For multi-phase flow, dominant flow paths have complex spatial configuration, highlighting 
the importance of local pressure gradients in front migration; capillary fingering in the CO2 phase are noted at both low and high 
flow rates, with relatively stronger capillary effects at the lower flow rate, as expected. 
 

CURRENT WORK 
 
   Experiments are ongoing for a broad range of reservoir-relevant conditions to study the sensitivity of these flow patterns 
on pressure. In addition, similar heterogeneous micromodels are being constructed with varying wettability to study the impact 
of grain wettability on the observed fingering physics upon injection of CO2 and concomitant displacement of the resident 
water. Finally, complementary numerical simulations that replicate the conditions studied herein (pore geometry, 
thermodynamic conditions and wettability) are underway with collaborators to both validate these numerical tools as well as 
explore a broad span of the relevant parameter space. 
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NONLINEAR WAVES IN A FALLING FILM WITH PHASE TRANSITION 
 

Alekseenko S. V.,1, 2 Aktershev S. P. 1, 2 a) 
1 Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia 

2 Novosibirsk State University, Novosibirsk, Russia 
 
Summary Intensive investigation of thin liquid films is caused by their wide application in engineering. In the majority of practical 
situations the film flow is unstable and waves develop on the liquid surface. It is known that the waves in liquid film intensify processes 
of heat and mass transfer even for laminar flow. Wave generation and transport processes in falling liquid films without phase transition 
were investigated in many studies; the results of these studies are summarized in [1]. The wave dynamics and heat transfer in non-
isothermal films are much less studied. The purpose of the presented research is to study the nonlinear evolution of waves in the film with 
a phase transition, and to determine the effect of waves on heat transfer. Nonlinear evolution of the two-dimensional both natural and 
forced waves in a liquid film is studied by numerical method. An integral-boundary-layer model [2] modified to consideration of phase 
transition is applied to describing nonlinear waves in a liquid film. 
 

UNSTEADY FILM FLOW EQUATIONS  
 
Let us consider a vertical laminar film flow on a uniformly heated or cooled plate. Let us introduce Cartesian coordinate 
system Oxy with Ox axis directed downward, and Oy axis normal to the plate. Let us assume the following basic 
simplifications, acceptable for a wide range of practically important flow conditions: 1) Plate temperature constTw  , the 

liquid surface is in contact with stagnant saturated vapor with temperature constTs  . 2) Film essentially contributes to the 

thermal resistance. 3) The perturbation of the film surface is considered to be long wave (the typical length of the 
perturbation is much greater than the film thickness). 4) Density , dynamic viscosity , liquid conductivity , surface 
tension , and latent heat of evaporation r are assumed constant. We introduce the distance scale l along the Ox axis. We 
take film thickness hm at x = 0 as the distance scale along the Oy axis. Let us introduce velocity scale 3/2

mm ghu  , time 

scale mm ult / , flow rate scale mmm huq  , temperature scale ws TTT  , and move on to the dimensionless variables x/l, 
y/hm, h/hm, q/qm, t/tm, u/um, keeping for them the same notations. In dimensionless variables the film flow with phase 
transition is described by the set of equations [3, 4] with respect to film thickness h(x,t), flow rate q(x,t) and temperature 
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Here and in other formulae sign “plus” corresponds to condensation and sign “minus” corresponds to evaporation; 

1


 
A ;  Pr/ rTcp  is a parameter of phase transition; 23 3/Re mm gh  is the Reynolds number at the inlet; 

lhm /  is the ratio of scales;   3/15Re/3 mFiWe  ; 433 /  gFi   is the Kapitza number; coefficients 2
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and )4/(11 AAF   take into account the effect of condensation on the velocity profile in the film; 
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Wave flow regimes are obtained by numerical solution to equations (1) using the finite-difference method. Region of 
computation was large enough to be able to trace the development of the waves downstream. Duration of calculations was 
also chosen sufficiently large to assure that the wave regime is developed over the all computation region. 
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Boundary and initial conditions. The waves were generated by a small perturbation of the flow rate at the inlet: 
 ftQqtq a 2sin1),0( 0  . Here q0 is the undisturbed flow rate, Qa is small amplitude, and f is flow rate oscillation frequency. 

The constant film thickness 1),0( th  and the linear temperature profile  ),,0( t  were set at the inlet. Linear 
temperature profile was set at time t = 0 for the all region of calculation; distributions of h(x,0) and q(x,0) were set by 
formulas (2). Boundary conditions for the energy equation are 11  , 00  . 

SIMULATION RESULTS 
 
All calculations were carried out for water at the temperature of 373 К (Pr = 1.75, Fi1/3= 14700) for Qa= 0.01,  = 0.005. 
Reynolds number at the inlet Rem = 1 in a case of condensation and Rem = 40 in a case of evaporation. Simulation shows 
natural waves caused by instability of flow develop which intensify considerably heat transfer in a film. Natural waves 
occurred without inlet perturbation were also observed in [5] at numerical simulation of the R11 condensate film flow. For 
the first time the evolution of forced waves in a film with phase transition is studied in a wide range of frequencies. The 
wave film surface at forcing frequency of 18 Hz is shown in Fig. 1 (condensation) and Fig. 2 (evaporation). It can be seen 
from figures that forced waves have the regular character and develop at a certain distance from the inlet. The coordinate, at 
which the nonlinear wave starts to develop, depends on frequency, but in all cases the forced waves develop earlier than the 
natural ones. At sufficiently low forcing frequency, the intermediate peaks (generation of higher harmonics) are observed. 
This results in the wave interaction with the subsequent merge of the individual peaks. 

 
CONCLUSIONS 

 
In the presented study a numerical method is used to simulate nonlinear waves and heat transfer in the film of water flowing 
down a vertical wall in the presence of a phase transition. The evolution of both natural waves arising due to the instability 
of the flow, and forced waves generated by small periodic perturbation of flow rate at the inlet, was investigated. Natural 
waves appear at some distance from the inlet and very quickly transform into large-amplitude nonlinear waves with a thin 
residual layer between them. The application of small periodic forced perturbation within a certain frequency range results 
in appearance of regular waves with stable characteristics. The distance, at which the nonlinear wave starts to develop, 
depends on frequency, but in all cases the forced waves develop earlier than the natural ones. At sufficiently low forcing 
frequency, the intermediate peaks (generation of higher harmonics) are observed. It results in the wave interaction with the 
subsequent merge of the individual peaks. Sufficiently high forcing frequency results in appearance of subharmonic 
instability, which also leads to the interaction and merging of the waves. Heat transfer calculations show that at the 
appearance of waves (both natural and forced) heat transfer coefficient abruptly increases up to a certain level, depending on 
the frequency of the waves. 
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VISCOUS DISSIPATION IMPACT ON PRESSURE LOSS IN COMPRESSIBLE LUBRICANTS

Andrea Codrignani∗, Franco Magagnato, and Bettina Frohnapfel
Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany

Summary In the present work we consider compressible viscous lubrication oils in a channel flow. With the aim to study the effects
of viscous dissipation and thermodynamics in a very thin lubricant film. Direct numerical simulations of the compressible Navier-Stokes
equations and the energy equation are performed for a lubricant oil whose equation of state is represented by a stiffened gas model. Particular
attention is paid to the resulting pressure losses in the plane channel. It is shown that these viscous effects, that alter the classical Couette
velocity profile towards a Couett-Poiseuille one, scale with the parameter α = µLU/h2, and that the losses are proportional to the square
of α.

INTRODUCTION

In tribological applications the ability of the lubricant film to generate a net load capacity is the key performance factor. For
many different reasons (e.g. viscous effects, roughness, compressibility, cavitation... ), the lubricant flow generates undesired
pressure losses which degrades the overall load carrying capacity. Several aspects of these losses are discussed in literature
based on numerical (Gropper et. al. [2]) and experimental (Morini [1]) studies. In the present work we focus exclusively
on effects related to the compressibility of the lubricant fluid by taking into account the related thermodynamics without any
simplification.

In usual sliding contacts, the lubricant film is very thin but the contact area between the two surfaces may extend over a
very large distance in comparison. For this reason, even in absence of pressure gradients due to inclined walls, severe pressure
drops can be encountered due to viscous dissipation. This kind of effect can be described, from the numerical viewpoint,
only by solving the compressible Navier–Stokes equations jointly with the energy equation. Such a numerical approach can
also provide the thermal dependency which is not discussed in the presently available analytical solutions (e.g. Venerus [3],
Housiadas [4] ) where isothermal flows are considered.

PROCEDURE

In oder to study the generation of a pressure gradient due to compressibility effects, the laminar flow between two parallel
surfaces is considered. The gap height is h, its length L and the upper wall moves with constant velocity U . At the inlet, a
linear velocity profile (Couette flow) with a uniform temperature T is prescribed, while the static pressure P0 is assigned at the
outlet boundary. In order to describe the lubricant oil properties we apply the stiffened gas equation of state in the following
form:

P = (γ − 1)ρe− γP̄ (1)

where γ and P̄ are liquid dependent constants, ρ is the density and e the internal energy of the fluid. In this case the selected
oil is a Polyalphaolefin whose viscosity depends exponentially on temperature and not on pressure. The two liquid dependent
constants are γ = 2.8 and P̄ = 3.16e8[Pa].

The compressible Navier–Stokes equations and the energy equation with the above oil properties are solved with a Finite
Volume scheme [5]. All results are tested to be mesh independent by means of a multi-level method.

A parametric analysis is carried out by varying important aspects of the flow such as temperature, inlet velocity and the
aspect ratio of the channel. All these aspects can be summarized in a unique parameter α = µLU

h2 which represents the
influence of the viscous dissipation on energy and pressure. This parameter originates from the dimensional analysis of the
energy equation which, for a compressible flow in a thin channel, can be reduced to:

u
∂Ht

∂x
= µ

(
∂u

∂y

)2

(2)

where Ht is the total enthalpy Ht = ρe + 1
2ρu

2 + P . We can note that, by isolating the enthalpy on the left side of the
equation, the right hand side becomes dimensionally proportional to the already mentioned parameter α = µLU

h2 .
Three main sets of simulations are carried out in order to investigate the influence of α by varying the moving wall speed

and the viscosity (temperature). For every set, six different channel aspect ratios L/h are considered.

∗Corresponding author. Email: andrea.codrignani@kit.edu
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RESULTS

Figure 1a shows the relative pressure difference between inlet and outlet P−P0

P0
as a function of α. The solid symbols

represent one simulation result each and it can be seen that the pressure drop increases with increasing value of α. In fact, it
appears to be directly proportional to α2. For example, at α = 4.26 the relative pressure drop is ∆P

P0
= 1.86 times the reference

pressure at the outlet. It is interesting to note that this case can easily correspond to a typical tribological application, since it
is obtained for a channel of height h = 1µm, length L = 1mm, at a temperature of T = 50◦C, and with a sliding velocity of
U = 0.5m/s.

The above case is shown also in figure 1b, where the relative pressure drop and temperature distribution are plotted along
the longitudinal axis x of the channel. Due to viscous dissipation, the thermodynamic state of the initial Couette flow changes
through the channel and the temperature increases. The consequent temperature gradient yields a density decrease and thus
generates a streamwise pressure gradient which must exist in order to maintain the mass flow rate. Due to this pressure
gradient the velocity profile at the outlet assumes the typical shape of a Couette-Poiseuille flow. Moreover, the change in the
velocity profile leads to an increasing wall shear stress in streamwise direction and thus to a higher overall friction coefficient.

10−2 10−1 100

10−6

10−5

10−4

10−3

10−2

10−1

100

α

∆
P
/P

0

(a) Pressure losses as function of the parameter α. T =
50◦C, U = 0.5m/s. T = 100◦C, U = 0.5m/s.
T = 50◦C, U = 1m/s.
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(b) Pressure and temperature distribution along the streamwise
direction x. T = 50◦C, U = 0.5m/s, h = 1µm, L = 1mm.

CONCLUSION

The pressure losses due to viscous dissipation are quantitatively studied for a generic compressible lubricant oil, pointing
out the relevance of this phenomena for a typical lubrication case. As a result, a common scaling is found which directly
captures the influence of viscous dissipation on the pressure losses. Further work that we intend to present at the conference
includes the extension towards more realistic tribological cases, particularly for bearing applications with prescribed pressure
and temperature gradients.
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STABILITY OF A NON-NEWTONIAN FLOW DOWN AN INCLINE

Simon Dagois-Bohy∗1, M.H. Allouche1, S. Millet1, V. Botton1, D. Henry1, H. Ben Hadid1, and F. Rousset2

1Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, École Centrale de
Lyon/Université Lyon 1/INSA de Lyon

2CETHIL, UMR CNRS 5008, Université de Lyon, INSA de Lyon/Université Lyon 1

Summary We investigate experimentally the stability of a shear-thinning flow down an inclined plane. We focus on low-concentrated
polymer solutions following a Carreau rheology. By measuring the wave numbers and amplification coefficients at different frequencies,
we reach the marginal conditions and determine the stability threshold in the (Re, k) plane. We find this threshold to be in good agreement
with numerical results obtained by a resolution of the generalized Orr-Sommerfeld equations, as well as with results found in the literature.
This confirms the destabilizing effect of the shear-thinning properties, observed through a lower critical Reynolds number and a higher wave
celerity.

The hydrodynamics of viscous film flows driven by gravity down an inclined plane cover a very large scope of natural
phenomena and industrial applications. The stability of such flows has been studied extensively in the Newtonian case, most
notably by Yih [1] and Benjamin [2], and Liu et al. [3] for the experimental part. The main features unravelled by these
authors are that the instabilities occur at very long waves (compared to the thickness of the film) and that inertia plays a major
role in the destabilization of the flow.
However, in many real cases, industrial (coating, transport, ...) or environmental (mud, glacier, lava flows), the fluid is not
Newtonian and exhibits a complex rheological behavior. In particular, relatively few studies have investigated the stability of
such flows when the fluid is shear-thinning. Ng and Mei [4] considered a power-law fluid and, using a long-wave approxi-
mation, they demonstrated a linear evolution of the critical Reynolds number for the onset of instability as a function of both
the cotangent of the slope and the power-law exponent n. This study, however, is limited by the singularity introduced by the
viscosity law in the model: a power-law describes an infinite viscosity at the free surface characterized by a zero shear-rate,
which is not physically consistent. To remove this singularity, Ruyer-Quil et al. [5] introduced a Newtonian plateau at small
strain rate. Their use of integrated Navier-Stokes equations allowed them to predict an analytical expression of the critical
Reynolds number. Another approach consists in numerically solving the generalized Orr-Sommerfeld equations that arise
from the linearization of the Navier-Stokes equations. This was carried by Rousset et al. [6] who studied a fluid following a
Carreau law, i.e. whose viscosity varies (in a dimensionless form) as :

η̄ = I + (1 − I)

[
1 +

(
L
dub
dy

)2
](n−1)/2

where I = η0/η∞, L = δQ
(
ρg sin γ
η0Q

)2/3
, with Q the flow rate, γ the slope angle, η0 (η∞) the 0 (resp infinite) shear rate

viscosity, δ a parameter of the Carreau law, and ub is the dimensionless basic flow velocity.
They found that the critical Reynolds number is lowered by the shear-thinning properties, whereas the wave celerity is in-
creased. They also showed in a subsequent paper that the Squire relations cannot be extended to this configuration, and even
that 3D waves become less stable than 2D waves when the non-dimensional parameter L is high, another signature of the rich
behavior of non-Newtonian flows [7].

In this paper we present experimental measurements of the linear stability threshold of two shear-thinning fluids flowing
down an inclined plane, which was never done before, and we compare those measurements with the aforementioned numer-
ical models. The two chosen fluids are composed of a mixture of Carboxymethylcellulose (CMC, E466) and Xanthan gum
(Xg, E415), with two different concentrations. These mixtures were carefully elaborated so that the non-Newtonian effect i)
can be observed, ii) is not too strong for the simulations, iii) keeps the L parameter within ranges where the instability is 2D.
The viscosity of both these mixtures follows a Carreau law (Fig. 1b). Because the Newtonian plateau is sometimes difficult
to observe on conventional rheometers, we also used an electro-capillarity technique to measure the rheology of those fluids
over the full range of shear rates in the inclined plate experiment [8].

The experiment consists in an inclined channel with a free surface (47 cm X 200 cm) and two reservoirs (upstream and
downstream) linked by a pump. The upstream reservoir is constantly alimented by the pump and overflows in the channel,
ensuring a continuous thin flow with a rate imposed by the pump (Fig. 1a).
Upstream, a shaker actions a plate in the fluid and generates small surface perturbations at a controlled frequency. The slope
of the surface is measured locally by the deflection of a laser beam shot through the channel (the bottom is transparent). The

∗Corresponding author. Email: simon.dagois-bohy@univ-lyon1.fr
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Figure 3.2.3 : Résultats expérimentaux de stabilité linéaire spatiale pour des solutions
aqueuses de glycérine - validation dans le cas Newtonien. Ces résultats ont
été obtenus par des mesures en deux points réalisées par réfraction de faisceau
laser.
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Fig. : (a) Marginal curve in the (Re,f) plane for the Xanthan gum solution characterized by electrocapillarity (Allouche et al. 
(2014)), at an inclination angle of 1°. Empty circles correspond to measurements of the cutoff frequency for each value of the 
Reynolds number, the green cross and the red square represent, respectively, the critical Reynolds number determined 
asymptotically by Ng & Mei (1994) and Ruyer-Quil et al. (2012). The solid line represents the fitted values obtained 
according to Eq. (), and the grey diamond shows the critical Reynolds number obtained in the Newtonian case.  
(b) Measurements of wavelength at the marginal conditions. 

 
Fig. : Viscosity as a function of the shear-rate for solution n°2 (squares) and solution n°3 (triangles): these solutions have 
been obtained by mixing CMC and Xanthan gum. The empty black markers represent the data measured with a Couette 
rheometer, and the red markers correspond to an estimation of the maximum shear rate due to the baseflow (Eq. ()). The 
dashed lines represent a fit according to the Carreau law (Eq. ()). The characteristic parameters involved in this Carreau fit 
are given in Table. 
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Fig. : (a) Marginal curve in the (Re,f) plane for the Xanthan gum solution characterized by electrocapillarity (Allouche et al. 
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asymptotically by Ng & Mei (1994) and Ruyer-Quil et al. (2012). The solid line represents the fitted values obtained 
according to Eq. (), and the grey diamond shows the critical Reynolds number obtained in the Newtonian case.  
(b) Measurements of wavelength at the marginal conditions. 
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Figure 1: a- Scheme of the experiment. b- Viscosity as a function of the shear-rate for two different mixtures of CFC and
Xanthan gum. Fluid 1 (top curve) corresponds to a higher proportion of CFC/Xg, whereas fluid 2 (lower curve) has a lower
proportion and is less viscous. c- Marginally stable wave number k as a function of the Reynolds number Re, for fluid 1
(empty square dots). Black line : simulation results with Rousset et al. method [6]. The other points correspond to predictions
by Ng & Mei (green cross), Ruyer-Quil (red square) [4, 5], and to the Newtonian case (grey diamond). Inset : Critical
Reynolds number as a function of the inclination angle, in the Newtonian case.

measurement system is set on a translational stage in order to get longitudinal profiles of wave amplitude and phase-shift. By
varying the frequency at a given slope and flow rate, we were able to determine the wave number k at the marginal stability
threshold, i.e. when the growth rate changes sign.
To verify the validity of this setup, this threshold k was first measured with a Newtonian water-glycerol mixture for different
Re, and the critical Reynolds number Rec at zero k was extrapolated from the curve, for different inclination angles γ. The
good agreement we found between our measurements and the theory (inset of Fig. 1c) shows the validity of the experimental
setup.
We then measured this threshold wave number for the shear-thinning fluids at an angle γ = 7◦. Fig. 1c shows this wave
number as a function of the Reynolds number of the flow (empty square dots), as well as the numerical resolution of the
generalized Orr-Sommerfeld equations (solid line) [6]. Again, a good agreement is found. The critical Reynolds number that
we extrapolate from this instability threshold is also consistent with the predictions of Ruyer-Quil and Ng & Mei [4, 5]. The
predicted cot γ dependency of Rec [4, 5, 6] is confirmed, and as expected, Rec is lower than in the Newtonian case, and the
wave celerity is larger, thus confirming the destabilizing effect of the shear-thinning properties.
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Summary The numerical simulation of moving contact lines is complicated by the stress singularity at the contact point, which prevents
results from converging in a standard way. The objective of this work is to achieve mesh convergence of moving contact line results in VOF
simulations, and to assess the applicability for a wide range of capillary numbers of the numerical model proposed by Afkhami et al. [1].
Based on fundamental hydrodynamics, the numerical model serves as a new boundary condition that adapts the microscopic contact angle
as the mesh is refined, eliminating the stress singularity at the contact line. Systematic computations are performed to obtain convergence
of the macroscopic interface shape near the moving contact line at a solid plate withdrawing from a fluid pool.

INTRODUCTION

Contact line motion has been studied in the limit of small capillary numbers, when capillary forces dominate. Cox [2] and
others have used matched asymptotic expansions to relate the microscopic contact angle (✓

m

) with the macroscopic contact
angle (✓

w

) of the interface relative to the solid, respectively near the moving contact line (distance r

in

) and away from the
moving contact line (distance r

out

, r
out

>> r

in

). An approximation of this asymptotic matching [3] has been used to obtain
a contact angle boundary condition as a function of mesh size [1], in order to achieve mesh convergence in VOF simulations
of moving contact lines. Same macroscopic contact line configurations were obtained for different microscopic mesh sizes, in
the simulation of a partially wetting and withdrawing plate from a liquid reservoir at a small capillary number Ca = 0.03.

NUMERICAL METHODS

We use the open-source code Gerris to solve the incompressible, variable-density, Navier-Stokes equations with surface ten-
sion [4]. The volume fraction c of the first fluid (⇢1, µ1) is used to define density ⇢ ⌘ c⇢1 + (1 � c)⇢2 and viscosity
µ ⌘ cµ1 + (1 � c)µ2, where (⇢2, µ2) are properties of the second fluid. A time-splitting projection method is used, and
requires an iterative solution procedure. Space is discretized using quad tree partitioning. A Volume Of Fluid (VOF) scheme
is used to track (advect and reconstruct) the interface.

SIMULATION PROPERTIES

Consider a solid plate withdrawing at a velocity U from a square fluid pool of length L/l

c

= 20, with l

c

the capillary length:
l

c

=
p

�/⇢g. The density ratio is set to 20, and viscosity ratio to 1. The interface between the two fluids is initially flat at
height h0/lc = 7. No slip and a fixed microscopic contact angle ✓

m

are prescribed at the wall. The contact line motion along
the wall evolves to a stationary state for ⌧ >> 1, with ⌧ = (U · t)/l

c

. Systematic computations are performed to span a wide
range of contact angles ✓, Capillary numbers, and cell sizes at the contact line dx/l

c

, as detailed in Table 1.

Mesh refinement is increased at the interface, in the vicinity of the contact line, and where the error on velocity is the highest.
In Figure 1, the inner region (in blue) in the vicinity of the contact line is sufficiently refined to resolve small scale effects,
up to the inflexion point of the interface, where its curvature becomes positive (in red). The computational domain shown
in Figure 1 is truncated: a static microscopic contact angle, and no-slip, are prescribed at the left boundary of the domain;
symmetry on the right boundary of the domain (at x/l

c

= 20); top and bottom boundaries allow flow in and out of the domain.

Table 1: Simulation parameters

Contact angle ✓ [�] Capillary number Ca [�] Minimum cell size dx/l
c

[-]
50, 55, 60, 65, 70, 75, 80, 85, 90 0.01, 0.02, 0.04, 0.08, 0.16 1/16, 1/32, 1/64, 1/128, 1/256

⇤Corresponding author. Email: aguion@mit.edu
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RESULTS

In the wide range of capillary numbers simulated, we both observe the development of a steady meniscus at the partially
wetting wall (see blue, black and magenta profiles in Figure 2 (a)), and the Landau-Levich transition at higher values of Ca,
where the liquid meniscus is entrained and leads to the formation of a thin film at the wall (red profiles, Figure 2 (a)). The
position of the meniscus once it has reached its stationary state, e.g. when all forces are in equilibrium, is reported for all Ca, ✓
and dx/l

c

(see Figure 2 (b)). This work systematically quantifies the effect of mesh refinement and contact angle on the final
position of the contact line, for a range of capillary numbers below the Landau-Levich transition threshold. It is then possible
to adjust the microscopic contact angle a priori with mesh refinement to obtain convergence of the results (see Figure 2 (c)).

a b c

Figure 1: Stationary shape and position of the contact line (black line), for the same window of observation, but different
minimum cell sizes dx/l

c

= 1/16 (a), 1/32 (b), 1/64 (c). The curvature is negative (blue) then positive (red).

(a) (b) (c)

Figure 2: (a) Contact line height as function of time for ✓
m

= 90�, Ca 2 {10�2(blue), 2 · 10�2(black), 4 · 10�2(magenta), 8 ·
10�2(red)}, and dx/l

c

2 {1/16(/), 1/32(.), 1/64(⇤), 1/128(?), 1/256(�)}. (b) Stationary heights of the contact line as
function of cell size. Dashed line for ✓

m

= 70�. (c) Stationary contact line shapes for (dx/l
c

, ✓)2 {(1/64, 70�), (1/32, 90�)}

CONCLUSIONS

The numerical model proposed in [1] is applied to a wider range of capillary numbers. The systematic adjustment of micro-
scopic contact angles with mesh refinements makes it possible to refine the grid arbitrarily, while still eliminating the stress
singularity at the contact line and obtaining mesh convergence of the results.
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Summary. Results of experimental study of transition processes from two-dimensional to three-dimensional wave regimes for the case of 
isothermal falling liquid film are presented. Instantaneous and time-averaged film thickness fields are obtained and analyzed. It is shown that 
the process of transition to the three-dimensional wave motion is accompanied by formation of rivulets and that the downflow evolution of the 
rivulets usually has non-monotonic character. 
 

INTRODUCTION 
 
   Three-dimensional wave regimes are considered to be the last stage of film flow evolution at moderate Reynolds 
numbers. In such regimes the film surface is covered by the numerous amounts of 3D waves chaotically interacting with 
each other. Usually 3D waves arise due to transverse instability of nonlinear 2D waves which in turn can be formed during 
the process of natural wave evolution or generated by artificial modulation of liquid flow rate. The case of transition to 
three-dimensional wave regimes for excited 2D waves is more investigated by now. Recent experimental ([1], [2], [3]) and 
theoretical ([4], [5], [6]) investigations show good agreement in some characteristic dimensions of 3D waves despite on 
some differences in their shape. Using modern experimental techniques, in the first place Laser Induced Fluorescence 
technique, allow us to reveal sufficient redistribution of liquid in transverse direction in the processes of 2D – 3D transition 
([2], [3]) for the case of isothermal film flow, which leads to the formation of well pronounced rivulets on the time-averaged 
fields of film thickness. Such behaviour is unexpected for isothermal film flow and previously was not observed in 
experiments basically because of using local probes or shadowgraph technique adjusted for registration of the waves' parts 
which have high curvature of free boundary. Main aim of this work is to investigate experimentally general dependencies of 
process of transition from two-dimensional to three-dimensional wave motion and associated formation of rivulets on the 
vertically falling liquid film surface in the range of 5 < Re < 100 for the downflow distances up to 140 cm. 
  

EXPERIMENTAL TECHNIQUES AND OPERATING CONDITIONS 
 
   On the vertical transparent glass plate the liquid film with width of 50 cm and length of 140 cm was formed by 
adjustable slot distributor. The film freely flows down onto one side of the glass by the action of gravity. Water and water-
glycerol solutions (WGS) with different concentrations were used as working liquids which allowed us to cover range of 
Kapitsa number from 1100 for more viscous WGS up to 3675 for water. The range of investigated Reynolds numbers 5 < 
Re=q/ν < 100, where q – volumetric flow rate per unit width and ν – kinematic viscosity of liquid. The 2D – 3D transition 
processes in the case of the natural wave evolution as well as for the case of initially regular excited 2D waves were 
investigated. For the last case the regular two-dimensional waves were forced by the periodic flow rate modulation with 
prescribed frequency F. With help of regular 2D waves the uniformity of local flow rate distribution over the plate’s surface 
was controlled. In the case of uniform distribution of liquid the wave’s front in the upper part of the flow is a straight line 
perpendicular to the flow direction. The procedure of control and adjustment of uniformity of liquid distribution was 
performed obligatory before each experiment. 
   The shadowgraph imaging was used for registration of the wave patterns over whole area of the plate. The white matt 
screen placed behind the glass plate on the variable distance was used for the technique realization. The halogen light source 
and registering camera were placed from the film side. Varying the distance between the screen and the plate allows 
obtaining shadow images for parts of liquid surface with different curvature. When the screen is placed close to the glass 
plate, shadow images represent the areas with high curvature and are similar to those obtained in other works (e.g. [1]). If 
the screen is placed at distances of a few centimeters from the plate, the film areas with much lower curvature form evident 
shadows on the screen. The distance between the screen and the glass plate was selected before each experiment in order to 
register capillary ripples having high curvature as well as the rivulets having lower curvature of film surface (fig. 1). 
   The Laser-Induced Fluorescence (LIF) technique was used for measurement of instant film thickness distribution with 
high time and spatial resolutions. High-speed camera registers LIF images with frequency of 1 kHz on film areas with sizes 
from 13x13 cm2 up to 19x19 cm2 dependently on flow conditions; this leads to spatial resolution from 0.13 mm/pix to 
0.19mm/pix accordingly. Record length of each set of LIF images was 2 seconds. For each investigated regime the sets 
were obtained independently on the different distances from inlet. The time-average film thickness distributions were 
obtained for each set of LIF images using full length of the set. 
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RESULTS 
 
   For all investigated liquids three typical scenarios of wave evolution 
against Reynolds number can be noted in the range of 5 < Re < 100. 
Major difference between liquids consist in different values of boundary 
Reynolds numbers which exact definition is the complex problem and 
lies beyond the scope of this work.  
   First scenario of wave evolution is observed for low Re < Re1 when 
transition to three-dimensional wave regimes does not occur even in the 
bottom part of the test section. The waves have a shape close to two-
dimensional up to the end of test section and time-average film thickness 
distributions over the plate are flat. Upper limit for Re1 is 15 for all 
investigated liquids. Over this value (Re > Re1) transition from two-
dimensional to three-dimensional wave regimes occur which is 
characterized by fast degradation of transverse size of the waves. In the 
upper part of the flow initially 2D wave, no matter natural or excited, are 
breaking down into numerous 3D waves with characteristic dimension of 
1 – 2 cm in transverse and longitudinal directions. In that region time-
averaged film thickness distribution reveals formation of rivulets. 
   For Re1 < Re < Re2 (where 40 < Re2 < 60) the second scenario of 
wave evolution with well pronounced rivulets is observed. In this case 
evolution of natural and excited waves is different and rivulets are 
observed up to the end of test section (fig.1). Forming 3D waves move 
mainly upon the rivulets and form chains. At the same time wave motion 
between rivulets looks depressed. Despite some differences in regimes of 
natural and excited wave evolution the 3D waves in bottom part of test section have similar characteristics. 

 
Figure 1. Shadowgraph images of water film at 
Re = 25. a) natural wave evolution, b) evolution 
of excited waves, F = 8Hz. X – downstream 
distance. 

   Because the formation of rivulets in the film flow usually connects with non-isothermal effects, direct measurements of 
film surface temperature were performed with help of Titanium ATR-570M infrared scanner. Measured with total error not 
exceeded 0.05K temperature fields show that the flow is isothermal on the whole flow area. 
   In third scenario of wave evolution which is observed for Reynolds number Re > Re2 the 2D-3D transition appears in the 
upper part of the flow over a few wavelengths of 2D waves. Rivulets formation in such regimes is not monotonic. Till 40 – 
50 cm rivulets can increase and further they begin to decay up to full disappearance at the end of the flow. Difference 
between cases of natural and excited wave evolution is revealed only in the upper part of the plate at the distances up to a 
few wavelengths from the film inlet, after that the wave patterns for both cases become similar and appeared to be steady 
state 3D wave flow regime. 
 

CONCLUSIONS 
 

   Performed in a wide range of parameters experimental study of wave evolution of isothermal film flowing down a big plate 
reveals formation of rivulets during the process of transition from two-dimensional to three-dimensional wave motion. Evolution 
of forming rivulets depends on flow parameters but their transverse sizes weakly affects by Re. For regimes with well 
pronounced rivulets the decay of wave motion is observed for both natural and excited wave evolution. Characteristics of 3D 
waves in such regimes are similar in the bottom part of the flow despite on differences in the upper part. For Re > Re2 fast 
evolution of the film flow toward steady state 3D wave regimes is observed and the rivulets exist only in the upper part of the 
flow. Direct measurements of temperature fields of film surface indicate that the flow in a range of measurements errors is 
isothermal on the whole test section. Therefore observed redistribution of liquid in transverse direction leading to rivulets 
formation should be described in the terms of hydrodynamics of isothermal film flow. 
This work was supported by the Russian Foundation for Basic Research (project no. 15-01-06702) 
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Summary. In this paper we present results of experimental study of three-dimensional (3D) waves characteristics on the surface of the vertically 
falling liquid films. Experiments were carried out using liquids with various physical properties in the range of Reynolds numbers 5 < Re  < 
100. The statistical analysis of the 3D wave’s characteristics allowed us to characterize in detail different scenarios of downflow evolution of 3D 
waves and to determine the regimes of fully developed steady-state 3D wave flow. Noticeable differences between natural and forced wave 
evolution have been observed for the relatively small Reynolds numbers whereas for the higher Reynolds numbers fast evolution of the all 
characteristics with achievement of the steady-state 3D wave flow is distinctive. 
 

INTRODUCTION 
 
   Three-dimensional wave regimes are considered to be the last stage of the wave evolution at moderate Reynolds 
numbers of liquid film flow down vertical plate. In such regimes liquid film surface are covered with numerous interacting 
3D waves. Statistical description of these regimes is often used due to large number of the waves [1]. Recent experimental 
investigations have shown that rivulets formation occurs during transition process from the two-dimensional (2D) to the 3D 
wave flow regimes [2]. The fact of the rivulets formation in the process of 2D to 3D wave transition has never been taken 
into account in the previous attempts to classify film flow regimes. In order to describe in detail the 2D to 3D waves 
transition process we carried out experimental investigation of film flow down the vertical plate of large dimensions using 
measuring system allowing reconstruction the form of 3D waves. The main consideration was given to the analysis of 
statistical characteristics of the waves and their connection with flow regimes including formation of the rivulets 
 

METHODS AND EXPERIMENTAL SETUP 
 
   The experimental setup represents a close-looped hydrodynamic contour. Liquid film flow was formed by an adjustable 
slot distributor on a vertical glass plate with dimensions 50cm x 140cm. Three types of working fluids were used in 
experiments: water (ν = 0.99*10-6 m2/s), water-glycerol solution WGS1 (ν = 1.5*10-6 m2/s), and water-glycerol solution 
WGS2 (ν = 2.2*10-6 m2/s). Experiments were carried out in the range of Reynolds numbers 5 < Re = q/ ν < 100, where q is 
a volumetric flow rate per unit width and ν is kinematic viscosity of liquid. Detailed structures of the waves were studied 
by means of the high-speed laser induced fluorescence (LIF) method [3]. In this method, special fluorescent dye 

Rodamin 6G is dissolved in the working 
fluid, so that obtained solutions acquire 
fluorescent properties. Green solid state 
continuous laser is used for the fluorescence 
excitation. Intensity of the emitted from the 
liquid light is proportional to the film 
thickness H. The LIF method allowed us to 
obtain instantaneous film thickness fields 
whereas extensively used shadowgraph 
method [4] gives only qualitative information 
about waves shapes. The most demonstrative 
in the matter of evaluating the direction of 
the wave evolution downwards were such 
statistical characteristics as the film 
thickness probability density function (PDF), 
dispersion and spectral power density of film 
thickness temporal variation. 
 

EXPERIMENTAL RESULTS 
 

   The analysis of the statistical characteristics allows us to classify in detail the studied flow regimes. It was found 
that for all working fluids there exists a threshold value of Reynolds number Re1 beneath which (Re < Re1) no transition 
from two- dimensional to three-dimensional wave motion occurs throughout the length of the working section both for 

(a)

 

(b) 

 
Figure 1. Film thickness PDFs, working liquid - WGS2. а) Re=19, 
distance X from the flow inlet: 1 – X=26cm, 2 – X=26cm, f=8Hz, 3 – X 
= 92cm, 4 – X = 133cm, 5 – X = 133cm, f = 8Hz. b) Re = 54, 1 – X = 
26см, 2 – X=26cm, f=8Hz, 3 – X=92cm, 4 – X = 133cm, f = 8Hz, 5 – X 
= 133cm. 

 

a) Corresponding author. Email: azkvon@gmail.com. 
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natural and forced two-dimensional waves. Re1 is different for the different liquids and lies in the range from 5 to 15. 
Several statistical quantities were obtained and analyzed in order to determine direction of the wave motion evolution 
on the falling liquid film. Probability density functions of the liquid film thickness are shown in figure 1 for 
WGS2. Distributions have characteristic asymmetric right-tailed shape. For the high Reynolds numbers the film 
thickness PDFs almost don’t change with downflow distance (fig.1(b)). However transform of the PDFs with shifting of 
the most probable film thickness can be observed for the case of lower Re (fig. 1(a)). 
 
 

  
Figure 2. Film thickness dispersion D normalized to the 
squared undisturbed film thickness (h2). Working liquid - 
WGS2. 1 – Re = 19, natural waves; 2 – Re = 19, forced waves 
F = 7 Hz; 3 – Re = 54, forced waves F = 7 Hz; 4 – Re = 54, 
natural waves. 

Figure 3. Spectral power density Y(f) at various distances 
from the distributor. Working liquid – WGS2 а) Re = 
13.5,forced waves F = 7 Hz.. 1 – X = 21 cm, 2 – X = 56 
cm, 3 – X = 128 cm. b) Re = 54, natural waves, 1 – X = 21 
cm, 2 –X = 87 cm, 3 – X = 128 cm; 4 – forced F = 7 Hz, 
X = 128cm. 

   Values of the dispersion D were obtained by averaging of the calculated local D values over the each transverse 
section of the measuring area. Intensive growth of the D was observed up to 40cm from the inlet for the high Re. 
After fast evolution in the upper part of flow D reaches steady-state value in cases of both natural and forced 2D 
waves (fig.2). Behavior of the D value while moving downstream in the case of lower Re is different: the change of D is 
observed up to the end of the plate (fig.2). It should be noted that in such regimes transition from 2D to 3D waves is 
accompanied with formation of well pronounced rivulets on the time-averaged film thickness distributions. Fast forming 
of the three-dimensional wave motion for the case of large Re was also observed while analyzing spectral power (fig. 
3(b)). Interestingly that for the steady-state flow regimes in the area of the high frequencies the spectral power decay by 
law of Y ~ fα, with index of power α = -2.8. This index is close to that obtained in the work [5] and as it turned out it 
doesn’t depend on the liquid properties. 
 

CONCLUSIONS 
 

   The analysis of the statistical characteristics allows characterizing in detail regimes of the film flow at 5 < Re < 100. 
Stabilizing of the dispersion value as well as of the PDFs and spectral power densities of film thickness fluctuations for 
the flow regimes with high Reynolds numbers apparently indicates that at these regimes stabilization of 3D wave 
motion occurs. However at lower Re continuous evolution of the waves throughout the whole plate takes place with 
different behavior of statistical characteristics for the cases of natural and forced waves 
 

AKNOWLEDGEMENTS 
 

This work was supported by Russian Science Foundation (project no.14-22-00174). 
 
References 
 
[1] Telles, A. S., and A. E. Dukler. "Statistical characteristics of thin, vertical, wavy, liquid films." Industrial & Engineering Chemistry Fundamentals 9.3, 1970. 
[2] Alekseenko S.V., Bobylev A.V, Guzanov V.V., Markovich D.M. and Kharlamov S.M.. Formation of Rivulets in Isothermal Liquid Film Flow during 

Transition to a Three-Dimensional Wave Regime. Technical Physics Letters, 40(11), 2014. 
[3] Alekseenko S.V., Cherdantsev A.V., Cherdantsev M.V., Isaenkov S.V., Kharlamov S.M. and Markovich D.M.. Application of a high-speed laser-induced 

fluorescence technique for studying the three-dimensional structure of annular gas–liquid flow. Experiments in fluids, 53(1): 77-89, 2012. 
[4] Park C. D., Nosoko T. Three-dimensional wave dynamics on a falling film and associated mass transfer. AIChE Journal, V. 49. № 11. P. 2715, 2003. 
[5] Chu K. J., Dukler A. E. Statistical characteristics of thin, wavy films III. Structure of the large waves and their resistance to gas flow. AIChE Journal.V. 21. 

№. 3, 1975. 

1073



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

REDUCED ORDER MODELLING FOR FLOODING ONSET PREDICTION

Gianluca Lavalle ∗1, Jean-Paul Vila2,3, Mathieu Lucquiaud1, and Prashant Valluri1
1School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL, United Kingdom

2Institut de Mathématiques de Toulouse, INSA, GMM, 31055 Toulouse, France
3ONERA, Aerodynamics and Energetics Modelling Department, 31055 Toulouse, France

Summary We investigate numerically the flooding onset occurring in two-layer channel flows at low density contrast and low surface
tension. An integral film model is used in the bottom layer, which is supposed much thinner than the interfacial wavelength. This low-
dimensional model allows us to cut down the computational cost and data with respect to DNS (Direct Numerical Simulation). The
validation of our methodology is achieved by comparing the growth rate of linear wave with the Orr-Sommerfeld theory, and the non-linear
wave profiles with DNS.

INTRODUCTION

Counter-current two-layer flows are encountered in numerous chemical applications, such as in distillation and absorption.
The performance of such processes in terms of transfer rate is governed by the flow pattern and the interface evolution.
However, under certain conditions, two-layer flows manifest flow reversal, which drives to a dramatic loss of performances
of the technological equipments. During the past, several studies have therefore aimed to understand and predict the flooding
onset, focusing on experimental observations, linear stability analysis and numerical simulations. More recently, for those
applications involving thin films, the flooding onset has been also investigated by means of reduced models, such as for
turbulent gas over liquid films as in Tseluiko & Kalliadasis [1], and gas-liquid flows in narrow channels as in Dietze &
Ruyer-Quil [2].

Here, we introduce a two-phase numerical model for counter-current channel flows with the aim to predict the flooding
onset and provide a map relevant for industrial uptake for a quick evaluation of the regions where flooding occurs. This
numerical model is based on the coupling between a low-dimensional model for the lower layer and compressible Navier-
Stokes equations in the upper layer, as developed by Lavalle et al. [3] for co-flowing liquid-gas channel flows.

MODEL DEVELOPMENT

Consider a liquid film flowing at the bottom of a channel driven by gravity, while an opposite pressure gradient drives an
upper layer counter-currently. Shear stress and pressure exerted by the upper phase at the interface feed the film, which in
turn can become unstable. The integral formulation is based on the assumption that the film thickness h is thinner than the
wavelength λ of interfacial waves. The Navier-Stokes equations can be therefore integrated over the film thickness, aiming to
reduce the order of the system by enslaving the film dynamics to thickness and flow rate only. However, those depth-integrated
equations need closure laws for the wall shear stress and the integral of squared velocity, and many choices are possible. We
use a first-order gradient expansion of the velocity field in terms of the small parameter ε = h/λ. At this stage, computing the
velocity profile allows us to close the system of depth-integrated equations.

However, the interfacial shear stress and pressure must be given by the upper layer. This long-wave integral model is
therefore coupled to compressible Navier-Stokes equations in the upper phase, with the aim to couple the two phases. At the
interface, we choose to transfer the stresses from the top phase to the bottom one, while the interfacial velocity and shape of
the interface is given by the film to the upper phase. Numerically, a moving mesh technique has been implemented in order to
guarantee the correct transfer of the interface shape.

NUMERICAL RESULTS

We apply our model to counter-current two-layer flows at low density contrast and low surface tension. Given a small
sinusoidal perturbation, we compute periodic simulations with our coupled model. We firstly validate the linear regime by
comparing the growth rate of linear waves with the Orr-Sommerfeld problem. Subsequently, we investigate the non-linear
saturated waves developing at the interface. Our model provides good comparisons with our in-house DNS [4] in terms of
wave profiles, as well as pressure and streamline distribution.
Furthermore,at the most unstable wavelength, we look at the speed of the developed waves in order to plot the map of Figure 1.
This Figure shows the regions where the saturated waves travel downwards with the gravity, stand in a fixed position or travel
upwards against the gravity. The latter is the condition for flooding, according to our definition. This map is highly important
for industrial uptake because links the applied pressure gradient and the liquid flow rate (directly from the uniform film
thickness h0) and therefore has an immediate interpretation.

∗Corresponding author. Email: g.lavalle@ed.ac.uk
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Figure 1: Map obtained from our model simulations, showing cases of downwards waves (circles), standing waves (squares)
and upwards waves (crosses) at the most unstable wavelength. The solid line is the Orr-Sommerfeld loading curve. The
applied pressure gradient plays with F̂ r

2
= ∆p̃/λ̃/(ρ2g).

CONCLUSIONS

This work addresses the problem of the flooding onset in counter-current two-layer flows. We provide a two-phase numer-
ical model based on a low-dimensional formulation for the film at the bottom, which is considered thinner than the wavelength
of interfacial waves. Not only our model shows agreement with Orr-Sommerfeld theory and DNS within the linear and non-
linear regimes, but also is an efficient and fast methodology to predict the flooding onset. The implementation of turbulence
to study gas-liquid flows is left to future works, as well as the inclusion of mass transfer.
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Summary The aim of this project is to explain the fluid motion and maximise the performance of the Vortex Fluidic Device, a rapidly
rotating tube with pipettes feeding liquid reactants to the base of the tube. It is a novel ‘greener’ technology for industrial applications
such as pharmaceutical production and protein folding. The problem is approached according to the stages of fluid spreading, with the
most promising area being at the bottom of the hemispherical tube as the fluid reaches the solid surface and spreads along the walls. The
parameters that affect the spreading are defined and their role is explored theoretically and experimentally with respect to the geometry of
the tube. The spreading pattern is explained and the optimum fluid volume, release height and rotation rate are established for both a flat
disk and a hemispherical bowl.

INTRODUCTION

Figure 1: Methodology - geometrical approach.

The Vortex Fluidic Device
(VFD) is a novel thin film reactor
developed by the Raston Labora-
tory at Flinders University. This
technology is focused on the syn-
thesis of organic chemicals and in
material processing. The thickness
of the thin film produced depends
primarily on the rotational speed,
flow rate, the position of the feed
nozzles and the tilt angle of the
tube (Britton et al., [1]).

To understand the efficiency of
the VFD, we consider a model re-
action A+B → C. If Z is the col-
lisional frequency between the re-
actants of respective concentration
[A] and [B], the main hypothesis is based on the idea that the rate of reaction is enhanced when collision rate Z is increased.
The fluid mechanics of the tube can control the collision rate Z by altering the conditions of intense shearing, e.g. by achieving
high velocity gradients at the interface with the solid surface.

This project focuses on explaining the fluid mechanics responsible for enhancing the reactions in the VFD and will seek
optimal conditions with respect to the geometry of the tube and the fluid mechanical parameters such as the rotation rate,
flow rate, wettability and contact line dynamics, gravity, the orientation of the tube and environmental conditions, such as
overheating.

As the film is thin, the base of the tube can be considered locally flat and can be modelled as a horizontal disc. This
presentation describes the experiments conducted so far for a broad range of parameters from moving on a flat disc to moving
in a curved bowl, as illustrated in Figure 1.

OVERVIEW OF FLUID MOTION IN THE VFD

There is very little literature describing the fluid mechanics in the VFD, i.e. landing, spreading, climbing, etc. First, despite
the continuous flow, surface tension at the nozzle promotes the formation of droplets, which fall vertically onto the rotating
disc with angular velocity ω. The spreading pattern is affected by the height of the release (Chou et al, [2]). At the stage of
the landing, the top of the droplet and the base of the droplet move with different velocities forming a ‘Rayleigh layer’ at the
bottom of the volume of increasing thickness δ ∼ (νt)

1/2, where ν is the kinematic viscosity of the fluid.
At the next stage, of centripetal acceleration, the bottom of the liquid droplet adheres on the surface and is simultaneously

dragged by the moving substrate. The spreading is axisymmetric and the thickness of the ‘Ekman layer’ at the bottom, which
rotates with the disc is δ ∼ (ν/ω)

1/2. At the third stage, the fluid is ejected by the Ekman layer, it spreads with viscous forces

*Corresponding author. Email: el393@cam.ac.uk
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balancing the centrifugal force as a ‘Nusselt film’ (Espig and Hoyle, [3]) and eventually climbs the curved base, moving within
the ‘Stewartson layers’.

During fluid spreading, waves alter the curvature at the contact line. These waves cause azimuthal variations in pressure,
triggering an instability mechanism at a critical radius rc (Spaid et al., [4]). Since fingering instability decreases the overall
shear stress it is therefore desirable to suppress or delay its onset.

According to our analysis, the concentration of the product with respect to fluid mechanics, before the formation of fingers,
is predicted to follow

∆C ∼
∫ T

o

Zdt ∼
(
ω2r5c
Qν

) 1
3

.

The above relation indicates that there is an enhanced shear stress when the shearing duration, the angular velocity and the
axisymmetric spreading are maximised and the flow rate Q is low.

EXPERIMENTS

The aim of the first experiments was to understand the different patterns of spreading at different rotation rates, heights of
release and landing points. For this purpose, experiments were conducted on a flat disc and on a curved bowl at rotation rates
ranging from 1000 rpm to 12000 rpm and with heights of release from 5 mm to 15 mm. In one set of runs, the nozzle was
positioned above the axis of the disc, while in a second set the nozzle was positioned off axis. The droplet volume was kept
constant and the rotation rate was changed in steps of 1000 rpm.

RESULTS AND CONCLUSIONS

According to our theoretical approach and experimental observations, the height of the droplet release should be close to
the disc to avoid high kinetic energy on impact which leads to faster spreading and fingering. A volume of 40µl, released 5
mm above the disc, is sufficient to cause axisymmetric spreading. Although maximum axisymmetric spreading occurs at 5000
rpm, the maximum collision rate, prior to the onset of instability, is likely to occur at 9000 rpm.

Since velocity gradients increase with increased rotation rates, the shearing after the fingers form requires further investi-
gation. The duration of the acceleration of the fluid after landing is also important. An off-axis landing increases the spreading
time at the boundary layer which can be beneficial for the desirable shearing. The spreading is slower on a curved bowl due
to the reduced tangential component of centrifugal force and instability is delayed due to the normal component of gravity.

The research will continue according to the factors that affect instability and shear stress. Tilting is a component that affects
the performance of the VFD. Current experiments investigate whether it is the landing point that changes the performance or
the tilting that has multiple effects on the device. Once optimum conditions are established, reactions will be monitored in the
VFD.

References

[1] Britton J., Dalziel S., and Raston C.: Continuous flow Fischer esteriications harnessing vibrational-coupled thin film fluidics. RSC Advances 5:1655-
1660, 2015.

[2] Chou F.C., Zen T.S., and Lee K.A.: An experimental study of a water droplet impacting on a rotating wafer. Atomization and Sprays 19:905-915, 2009.
[3] Espig H. and Hoyle R.: Waves in a thin liquid layer on a rotating disk. J. Fluid Mech, 22:671-677, 1965.
[4] Spaid M. A., and Homsy G.M.: Stability of Newtonian and viscoelastic dynamic contact lines. Physics of Fluids, 8:460, 1996.

1077



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

INTERFACE MORPHOLOGY OF THIN FILMS: ELECTROHYDRODYNAMIC VS
ELECTROKINETIC MODEL
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Summary Dynamics and morphological evolution of thin liquid films (thickness<100 nm) are numerically investigated using electrohy-
drodynamic (EHD) and electrokinetic (EK) models. In the EHD patterning process, the thin film is typically considered as either perfect
dielectric (PD) or leaky dielectric (LD) and the EHD model can be used to investigate the spatiotemporal evolution of the thin film. In the
case of having a finite diffuse layer of charges accumulated at the interface (i.e. double layer), the EK model is applied. The effect of the
ionic strength of an ionic liquid film which is determined by its molarity is included in the EK model. The 3-D nonlinear thin film equation
is solved numerically resulting in spatiotemporal evolution of interface.

INTRODUCTION

Electrically assisted patterning of polymer films has received extensive attention over the past decades as a unique and
interesting approach for creating micron and submicron sized features [1, 2]. In this process, a thin liquid film is sandwiched
between two electrodes and an electric field is applied to the film in the transverse direction (see Fig.1(a)). Disparity of
electrical properties of the film and the bounding fluid (the material which fills the gap between the film and the upper
electrode) results in an net electrostatic force acting on the interface[3]. As the film thickness is less than 100 nm, the short
range intermolecular forces are considered in addition to long range electrostatic, viscous and interfacial forces. The film
motion can be described by nonlinear thin film equation employing long-wave approximation [4]:

3µht + [h3(γ[hxx + hyy]− φ)x]x + [h3(γ[hxx + hyy]− φ)y]y = 0 (1)

In this equation, the subscripts x and y denote the spatial derivatives and subscript t denotes the time derivative. The term φ,
often called conjoining/disjoining pressures, is the summation of van der Waals, Born repulsion and electrostatic pressures.
Initial linear stages in growth of instabilities was investigated through linear stability (LS) analysis [1]. The LS analysis pro-
vides prediction of the maximum wavelength, λm, for growth of instabilities which characterize the center-to-center distance
of pillars (raised columnar structure) in the hexagonal pillar pattern formation[1, 2]. In this analysis, it is shown that the
lateral size of pillars decreases when increasing the applied voltage ψl, mean initial film thickness h0, electric permittivity
of film ε and its conductivity σ. A significant discrepancy between the theoretical predictions and experimental results was
observed during formation of nano-sized features at the high electric field strength [5] which is primarily attributed to the
electric breakdown of the polymer film and the bounding fluid. This phenomenon that typically occurs at higher electric field
strength is reported as the main limitation of the EHD patterning for generation of submicron sized features. In the work of
Lau and Russel, an ionic conductive liquid (IL) is used as a bounding fluid to prevent electric breakdown happening in the
bounding layer [5]. In the EHD patterning process, the thin liquid film and/or bounding layers is considered as either perfect
dielectric (PD) or leaky dielectric (LD). In the PD film there is no free charge and the film is polarized under applied electric
field. In contrast, for the LD film the infinitesimal amount of charge present moves and accumulates at the interface. Both
LS and non-linear analysis of the EHD patterning shows that the presence of free charges, albeit infinitesimal, reduces the
characteristic wavelength λm.

In ILs, the free ions move easily and form a diffuse layer called double layer (DL) adjacent to the charged surfaces. In
the PD and LD models, the thickness of the DL is assumed infinitesimally large and small, respectively. Between these
two limiting cases, an electrokinetic (EK) model has been initially developed for drop deformation in an electric field[6].
More recently, LS analysis of thin films has also been considered using EK model based on the linearized Debye Huckel
approximation [7]. The more general model based on the nonlinear Poisson Boltzmann equation to investigate the dynamics
and stability of IL-PD bilayers [8].

In this study, morphologyical evolution and the process of pattern formation on the thin liquid films under applied electric
field are numerically simulated using both the EHD and the EK models. A system of two planar fluids layer (thin PD or IL
films below and a PD bounding media above) confined between two flat electrodes is considered.

The main contributions of this paper are: (1) developing an electrostatic model for dynamic modeling of the EHD pattern-
ing process using ultra-thin IL film; (2) investigating the dynamics and pattern formation on IL films that includes the initial
linear stages and further nonlinear stages in growth of instabilities; and (3) evaluating the effects of ionic strength and the IL
film initial thickness on the shape and size of structures forming on the film.
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RESULTS AND DISCUSSION

In the present work the ionic strength of an IL which is determined by IL molarity, M, is incorporated in our analysis.
This is in addition to typical design parameters such as applied voltage, electric permittivity of layers and electrodes distance.
Higher values of M (i.e. 100 and 1000 mMol L−1) account for higher concentration of charges in the film, thinner DL, which
results in perfect conducting (PC) behavior whereas lower values of M (i.e. 0.001 mMol L−1), thicker DL, represent poor
conductive medium similar to PDs . The Poisson-Nernst-Plank (PNP) model is used to develop the electrostatic model and
find the dynamics of free ions in the ionic conducting layer. It should be noted that, in this study the process time is much
longer than the charge relaxation time. This diminishes the effect of the free ions (charges) dynamics during pattern formation
process. The effect of molarity on the electrostatic component of conjoining pressure, as the main force for pattern formation
process, is examined. Higher electrostatic force is applied to the film interface in the EK model compared to the EHD model.

An overview of the interface morphology at the quasi-steady state in the pattern formation process is shown in Fig.1(b).
The effects of ionic conductivity and film initial filling ratio (mean initial film thickness to electrodes distance ratio) on the
shape and size of structures are presented. The addition of ionic conductivity to the film results in an increase in the number of
pillars forming on the interface and consequently more compact structures (pillars with smaller size) are created. The number
of pillars formed in the IL films also increase at higher filling ratios. The PD film shows similar trend below the critical filling
ratio of h0/d = 0.5.

Figure 1: (a) Schematic of the thin film sandwiched between electrodes and electric potential distribution within each layer.
(b) Interface morphology and total number of pillars versus initial filling ratio of film. 3-D snapshots of the patterns formed
in PD and IL films with h0 = 30 and 70 nm. d= 100 nm, ψl = 20 V.

CONCLUSIONS

In the EK model, ILs are defined to be materials having properties between two limiting cases of PC and PD materials
based on their ionic strength. The IL films experience a much higher electrostatic pressure compared to similar PD films and
this increase in ionic strength results in higher electrostatic pressure. More compact structures are created in the IL film (using
the EK model) when compared to the similar PD films (using the EHD model) and the compaction is increased by increasing
the initial film height.
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Summary The objective of this paper is to present a simple approach for taking into account the contact line forces in shallow water models for 
partially wetting liquid films onto a solid substrate. The method is inspired by the idea proposed by Brackbill et al in [1] to deal with capillary 
forces in two-phase flows. It consists in reformulating the shallow water equations by introducing a “colour function” which is equal to 1 
where the film is present and 0 elsewhere and which is advected at the film velocity. The introduction of this new variable allows reformulating 
the shallow water system in a new way which is much more suited to the numerical discretization than the original one. First numerical results, 
issued from the currently ongoing tests, will be presented during the conference.  
 
 

INTRODUCTION 
 
   Liquid films moving onto a solid substrate are present in a lot of natural and industrial processes and have been the 
object of a lot of research studies for several decades. For thin films, capillary forces generally play an important role and 
could strongly influence both the motion of the contact line and the development of longitudinal (surface waves) and 
transversal instabilities (dewetting and rivulets formation) [2,3]. To predict such flows, shallow water models are generally 
preferred to the full Navier-Stokes equations. The derivation of such models is based on closure assumptions on the normal 
film velocity profile which can be justified either by asymptotic analysis or by empirical arguments. In the present paper, 
since the objective is not to justify the formulation of a particular model but to focus on the numerical treatment of capillary 
forces both inside the film and at the contact line, we will restrict our attention to the simplest model accounting for surface 
tension and gravity effects. For the sake of simplicity, viscous effect and other forces will not be considered but it is worth 
pointed out that the present approach could be easily extended to more complex and more realistic film models. In the 
following the model of interest will read:  

(1)       {
(𝑎)     𝜕𝑡ℎ + 𝜕𝑥(ℎ𝑢) = 0

(𝑏)       𝜌𝜕𝑡ℎ𝑢 +  𝜌𝜕𝑥 (ℎ𝑢
2 +

1

2
𝑔ℎ2) = ℎ𝜕𝑥 (

𝛾𝑙𝑔𝜕𝑥𝑥ℎ

[1+(𝜕𝑥ℎ)
2]
3
2

) + (𝛾𝑠𝑔 − 𝛾𝑙𝑔
1

√1+(𝜕𝑥ℎ)
2
− 𝛾𝑠𝑙) 𝑛𝑐𝑙𝛿𝑐𝑙

 

where h denotes the film thickness, u is the film velocity, g is the gravity acceleration, is the liquid density, 
𝛾𝑠𝑙 , 𝛾𝑙𝑔  and 𝛾𝑠𝑔 denote the interfacial energy of the solid-liquid interface, liquid-gas interface and solid-gas interface 
respectively, 𝑛𝑐𝑙 = ±1 is the x-component of the outward unit normal to the contact line, and 𝛿𝑐𝑙 is the Dirac measure 
concentrated at the contact line position. System (1) can be interpreted as a model for the motion of an inviscid 
incompressible fluid over a horizontal flat plate. The last term in the r.h.s. of the momentum equation accounts for the  
surface tension forces acting on the contact line. It allows to impose the Young-dupré boundary condition at the contact line 
(or by modifying its expression to prescribe a dynamic contact angle model). This term is generally not taken into account 
in the shallow water models used in the literature.  

In this paper, we propose a regularizing method which allows dealing easily with this term at the discrete level. It 
consists in introducing in the shallow water model a “colour function”  which is equal to 1 where the film is present and 0 
elsewhere and which is advected at the film velocity. Thanks to this additional variable, it is possible to reformulate the surface 
tension terms in the momentum equation in a more tractable way as regards numerical purposes.  
 

REVISITED SHALLOW WATER MODEL 

 

Model derivation 

Let  denotes the indicator function of the film, defined as:  

{
𝛼(𝑡, 𝑥) = 0, 𝑖𝑓 ∃ 휀 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ℎ(𝑡, 𝑥′) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥′ ∈ ]𝑥 − 휀, 𝑥 + 휀[

𝛼(𝑡, 𝑥) = 1, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Obviously  is solution of the following (non-conservative) equation:  
(2)                                      𝜕𝑡𝛼 + 𝑢𝜕𝑥𝛼 = 0 
Noticing that, by definition,  h = h and 𝜕𝑥𝛼 = 𝑛𝑐𝑙𝛿𝑐𝑙 , system (1) is equivalent to:  
 

(3)       {
     𝜕𝑡(𝛼ℎ) + 𝜕𝑥(𝛼ℎ𝑢) = 0

     𝜌𝜕𝑡(𝛼ℎ𝑢) +  𝜌𝜕𝑥 (𝛼ℎ𝑢
2 +

1

2
𝛼𝑔ℎ2) = 𝜕𝑥 (

𝛾𝑙𝑔 𝛼 ℎ 𝜕𝑥𝑝

[1+𝑝2]
3
2

) + 𝜕𝑥 (
𝛾𝑙𝑔𝛼

√1+𝑝2
) + (𝛾𝑠𝑙 − 𝛾𝑠𝑔) 𝜕𝑥𝛼
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where we have set p = 𝜕𝑥ℎ and we have used that 𝜕𝑥 (
𝛼

√1+𝑝2
) =  −

𝛼 𝑝 𝜕𝑥𝑝

[1+𝑝2]
3
2

  + 1

√1+𝑝2
 𝜕𝑥𝛼. Using equation (1)-(a), equation 

(2) and the property  h = h, the following equation can be derived for p:  
(4)                              𝜕𝑡(𝛼𝑝) + 𝜕𝑥(𝛼𝑝𝑢) =  − 𝜕𝑥(𝛼ℎ 𝜕𝑥𝑢)  
Combining (3) and (4), we finally get the following model: 

(5) 

{
 
 

 
 

𝜕𝑡𝛼 + 𝑢𝜕𝑥𝛼 = 0

     𝜕𝑡(𝛼ℎ) + 𝜕𝑥(𝛼ℎ𝑢) = 0

     𝜕𝑡(𝛼𝑝) + 𝜕𝑥(𝛼𝑝𝑢) =  − 𝜕𝑥(𝛼ℎ 𝜕𝑥𝑢)

     𝜕𝑡(𝛼ℎ𝑢) + 𝜕𝑥 (𝛼ℎ𝑢
2 +

1

2
𝛼𝑔ℎ2) − 𝜕𝑥 (

𝛾𝑙𝑔𝛼

𝜌√1+𝑝2
) − 𝜕𝑥 (

(𝛾𝑠𝑙− 𝛾𝑠𝑔)

𝜌
𝛼) = 𝜕𝑥 (

𝛾𝑙𝑔 𝛼 ℎ 𝜕𝑥𝑝

𝜌[1+𝑝2]
3
2

)

 

It is worth pointing out that (5) is exactly equivalent to (1) as soon as is the exact indicator function of the film support. 
But, if is only a regularization of the indicator function (as it will be the case at numerical level due to artificial diffusion), 
system (5) is no more equivalent to system (1). It must simply be considered as a regularization of (1) in which the singular 
capillary force acting at the contact line have been replaced by a continuous force as in the CSF method.  
 
Energy equation associated with the model 

Given the definition of , it is natural to define the energy of the system as: 
(6)               𝐸 = ∫  𝛼 𝑒 𝑑𝑥    where: 𝑒 =  1

2
𝜌ℎ𝑢2 +

1

2
𝜌𝑔ℎ2 + 𝛾𝑙𝑔 √1 + 𝑝

2  +  (𝛾𝑠𝑙 − 𝛾𝑠𝑔) 

Noticing that  𝜕𝑥𝑝

[1+𝑝2]
3
2

= 𝜕𝑥 (
𝑝

√1+𝑝2
), it is possible to prove that the following additional equation is satisfied by the solution 

of (5) [4]:  

(7)         𝜕𝑡(𝛼𝑒) + 𝜕𝑥(𝛼𝑒𝑢) + 𝜕𝑥 (𝛼 (𝛾𝑠𝑔 − 𝛾𝑠𝑙 −
𝛾𝑙𝑔

√1+𝑝2
) 𝑢) = 𝜕𝑥 (𝛾𝑙𝑔𝛼ℎ 𝑢 𝜕𝑥 (

𝑝

√1+𝑝2
)) − 𝜕𝑥 (𝛾𝑙𝑔 𝛼ℎ 

𝑝

√1+𝑝2
𝜕𝑥𝑢) 

Equation (6) is the energy balance equation corresponding to model (5). It implies the conservation of E. Such a result was 
mandatory since viscous effects are not accounted for in model (1). The existence of this energy balance equation was used 
as a criterion to select system (5) among the multiple models which could be formally consistently derived from (1) and the 
definition of . It is also worth mentioning that each term of equation (7) can be easily interpreted from a physical point of 
view [4].  
 

NUMERICAL DISCRETIZATION 

 
Model (5) is much more suited for numerical purposes than system (1). First of all, system (5) only involves second 

order derivatives instead of third order derivatives. Moreover the second order terms present in the r.h.s. of (5) satisfy a 
mathematical property (linked to the energy conservation) which allows building energy stable schemes by extending the 
ideas introduced by Noble and Vila in [5]. Last but not least, by construction, model (5) allows to easily take into account 
the singular force located at the moving contact line.  

Equation (2) being a non-conservative equation, it cannot be discretized by using a finite volume scheme. However a 
second order upwind scheme may be used, with a special attention paid to the choice of the slope limiter in order to avoid 
excessive numerical diffusion. Regarding the three other equations of system (5), a finite volume method can be applied. A 
suitable scheme has to be chosen for the second order derivative terms in order to preserve their compatibility with equation 
(7) at the discrete level. Details on the chosen numerical method will be given during the conference.  

 

CONCLUSIONS 

 
   An original way to deal with capillary forces in shallow water models has been proposed. This new formulation is well 
adapted for numerical purposes. Its numerical implementation (using a more general model which also takes into account 
viscous effects) is on-going and application results for partially wetting films will be presented during the conference. The 
extension of the method to 3D problems is also currently in progress.    
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NUMERICAL STUDY OF FALLING FILM ON FLEXIBLE WALL IN THE PRESENCE OF
INSOLUBLE SURFACTANT

Hao YANG1, Rong-Qi SHI1, and Jie PENG ∗1

1Department of Engineering Mechanics, Tsinghua University, Beijing, China

Summary The dynamics of falling film down an inclined flexible wall have been studied by means of a numerical simulation, in which the
algorithm is based on marker and cell (MAC) method. The free surface of liquid film is occupied by insoluble surfactant. The equations
governing the fluid motion are discretized on a semi-staggered grid fixed on a physical space. The interfacial boundary conditions on the
free surface are treated with the donor cell method. The displacement of flexible wall are treated according to the conservation of mass for
liquid film. The surfactant evolution is simulated by separating the convection and diffusion into two steps. Simulation results indicate that
the surfactant acts to suppress the dispersion of interfacial wave. Both the wall damping and tension acts to suppress the fluctuations of the
flexible wall. However, they play different roles in the evolution of the liquid-air interface.

PROBLEM DESCRIPTION

We consider a two-dimensional incompressible liquid film flow down an infinitely long flexible wall under the effect of
gravity force, as illustrated in figure 1. The liquid is postulated as Newtonian fluid. The film is bounded by a gas, which
is assumed to be inviscid. Thus, the flow of the gas is ignored in this model. Phase change at the interface, condensation or
evaporation, does not occur and the shear stress from the vapor phase may be neglected. The insoluble surfactant occupies
the liquid-gas interface, which convects and diffuses along the interface to alter the local surface tension. In this study, we
consider that the surfactant is present in dilute concentration. Thus, a linear relation between surface tension and surfactant
concentration is adopted. Moreover, the flexible wall is assumed to be tethered and non-stretchable. The bending stresses are
neglected and the wall inertia is negligible relative to wall damping.
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Figure 1: Schematic of the problem.
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Figure 2: Semi-staggered grid fixed on the physical space near the interface. Here, �
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are defined, respectively. Corresponding ♢ and △ indicate the grid outside the film.

COMPUTATIONAL METHOD

In this study, an algorithm technique based on the MAC method is adopted to directly simulate the moving interfacial
problem. The computational framework is built on an Eulerian Cartesian grid to facilitate the field equation computation. A
finite differential, semi-implicit method is used to discretize the governing equations on a semi-staggered grid, as illustrated
in figure 2. Inside the liquid film, both the convection terms and the diffusion terms of basic equations are discretized by the
second-order upwind scheme and the second-order central-difference scheme, respectively.

Evolution of free-surface and flexible wall
The values at the grid points outside the liquid-gas interface and the flexible wall, which are shown as open symbols in

figure 2, are unknown, though they are necessary for the numerical procedure. Similar to those presented by [1], they are
extrapolated according to the values inside the film and the boundary conditions on the liquid-gas interface or flexible wall.
The x-direction velocity component at the liquid-air interface ui,η is then obtained by interpolate from ui,j and ui,j+1, and
the y-direction velocity component can be obtained according to the conservation of mass. The velocity of flexible wall is
obtained by integrating the continuity equation from y = ζ to y = η and combining with the flexible wall velocity conditions
and kinematic boundary condition at the liquid-gas surface. Therefore, the film thickness on each time step satisfies the mass
conservation strictly. The movement of the both the liquid-gas interface and flexible wall can be obtained.
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Strategy for surfactant evolution
In this work, unlike those presented in [2], the movement of free-surface are captured with the position of marker points.

The surface area can be calculated accurately. Thus, we do not solve the surfactant convective and diffusion equation directly
and instead relate the surfactant concentration to the ratio of the surfactant mass M and surface area A. In current approach,
the evolution of surfactant is simulated by the following three separated steps: (i) the convection which is attributed to the
movement of free-surface, (ii) the marker point update and (iii) the diffusion induced by the concentration gradient within the
surface, as illustrated in figure 3.
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Figure 3: Computation for the concentration of surfactant. It includes (a) convection, (b) marker point update and (c) diffusion
step. The initial position of free-surface at time step n is profiled with solid line, while the position of free-surface at time step
n+ 1 is represented with dashed line.

RESULTS AND CONCLUSIONS

Many cases were performed to study the effect of surfactant, wall damping and wall tension on such problem. As illustrated
in figure 4, the wave characteristics of the wave agree well with the simulation result presented in [1]. For the flow with clean
liquid-gas interface (M = 0.0), it can be found in figure 5a that the wave celerity is much larger than that of the mean flow.
However, for the contaminate interface M = 0.01, as illustrated in figure 5b, the development of the initial imposed wave
packet is weakened due to the presence of surfactant. Moreover, the surfactant plays a role to weaken the dispersion of the
initially imposed perturbation wave.
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Figure 4: Comparison of a calculated solitary-like
waveform to the previous simulation results on a
rigid wall. Re = 29, We = 0.414, θ = 6.4o,
ω = 0.0135 and δ = 0.03 with clean liquid-gas
interface.

Figure 5: Effect of surfactant on the dispersion of initial imposed
wave on the rigid wall, where (a) M = 0.0 and (b) M = 0.01. The
rest parameters are Re = 45.0, We = 0.05, θ = 90o, Pes = 103.
The dashed line indicates the convection velocity due to the mean
flow.

The effect of wall damping and wall tension on the evolution of initial imposed wave packet have also been studied. Both
the wall damping and wall tension act to suppress the fluctuations of the flexible wall. In the case of small wall damping, it
suppresses the proceeding capillary ripples of the solitary-like wave. However, for the strong wall damping case, the capillary
ripples are intensified with increasing of wall damping. The wall tension, which acts to reduce the displacement of the wall,
acts to intensify the proceeding ripples, constantly. Moreover, the wall flexibility has little influence on the dispersion of the
initially imposed perturbation wave packet.
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Instabilities of liquid-lined flexible tubes with interfacial surfactant

Zhi-Qiang Zhou1 and Jie Peng ∗1

1Department of Mechanics Engineering, Tsinghua University, Beijing, China

Summary The linear instability and dynamic behaviours of a liquid-lined flexible tube are studied as a simplified model of pulmonary
airway. The liquid-air interface is occupied with an insoluble surfactant. The primary flow can be driven by an external force (e.g. gravity),
an interfacial shearing stress, or their combination. A modified lubrication approximation is proposed with the pressure being assumed
to vary linearly with the radial position. The linear instability property of the system is examined using normal-mode analysis. For the
extremely thin liquid film (ε → 0), the approximate dispersion relations are derived. For liquid film with relative small thickness (e.g.
ε = 0.1), though either the interfacial shearing stress or the external force destabilizes the interface, the combination can cause stabilization
in the presence of surfactant. Island of stability, which is caused by the dual role of primary flow in affecting the instability, is detected in
the σs −Bo plane.

PROBLEM FORMULATION

In this work, we consider an incompressible annular liquid film coating the inner surface of a flexible tube, surrounding
an infinitely long cylindrical air core. The pressure in the core (p∗in) is constant while the dynamics of the core is neglected.
Without loss of generality, the gravity g∗ is considered as the external force. An additional constant shearing stress σ∗

s

induced by airflow is applied to the liquid-air interface, and its direction can either assist or oppose the flow caused by the
external force. The liquid-air interface is occupied by an insoluble surfactant, which can convect and diffuse across the
interface to alter the local surface tension. The liquid film with density ρ∗ and viscosity µ∗ occupies the annular region
η∗(z∗, t∗) < r∗ < ζ∗(z∗, t∗), where η∗(z∗, t∗) and ζ∗(z∗, t∗) denote the position of liquid-air interface and inner wall of the
flexible tube, respectively. Throughout this work, we assume that the flows and geometry are axisymmetric.

The non-dimensionalized evolution equation for the liquid-air interface position (r = η) is given by

∂η

∂t
+
uz(η)

ε3
∂η

∂z
=
ζ

η

(
∂ζ

∂t
+
uz(ζ)

ε3
∂ζ

∂z

)
+

1

2πη

∂Q

∂z
. (1)

Here, Q means axial flow rate of the perturbation field. The surfactant convection-diffusion equation takes the form (at r = η)

∂

∂t
[η(1 + Γ )∆η] +

∂

∂z

[(
uz(η)

ε3
+ uz

)
η(1 + Γ )∆η

]
=

1

Pe

∂

∂z

(
η

∆η

∂Γ

∂z

)
, (2)

where Pe = Ub∗/κ∗ denotes the interfacial diffusivity of the surfactant. The evolution equation for the displacement of the
tube wall (at r = ζ) is given by

ϕ

∆ζ

∂ζ

∂t
+ β

ζ − 1

ζ2∆ζ
− Tz

∆3
ζ

∂2ζ

∂z2
= εp+

2σrz(ζ)

∆2
ζ

(
∂ζ

∂z

)3

+ T0

(
1− 1

ζ∆ζ

)
. (3)

Here, ∆ζ =
√
1 + (∂ζ/∂z)2, ϕ = ε3ρ∗wH

∗λ∗b∗/µ∗ is the damping parameter, which remains finite in the limit ε → 0.
β = E∗H∗/

(
γ∗0(1− χ2)

)
is the ratio of elastic forces to the surface tension. Tz = T ∗

z /γ
∗
0 is the ratio of longitudinal wall

tension to the surface tension and T0 = T ∗
0 /γ

∗
0 is the ratio of initial circumferential tension to the surface tension. The

evolution equations (1) – (3) constitute an initial value problem for η, γ and ζ, respectively.

RESULTS

The results of present work are compared with those of traditional lubrication approximation and an Orr-Sommerfeld
computation that comes from a linearization of the full Navier-Stokes equations, which is named as full linear instability
analysis. The value of β is marked on the curve. For β = 1.5, the growth rates predicted by the lubrication approximation
(dashed lines) lie below those from the modification method in the present work (solid lines), which are consistent with the
results from the full linear instability analysis (solid squares). This indicates that the modification method proposed in the
present study is sufficient to capture the linear regime satisfactorily, while the lubrication approximation without modification
is unsatisfactory for the compliant tube wall in the presence of primary axial shearing flow caused by either gravity force
(Bo = 2.0, in figure 1a) or interfacial shearing stress (σs = 0.5, in figure 1b). However, for β = 100.0, the tube wall is
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Figure 1: Comparison of the results in this work with those from the lubrication approximation and full linear instability
analysis for ε = 0.1, ϕ = 0.1, T0 = 0.0, Tz = 0.0, M = 0.0 and (a) Bo = 2.0, σs = 0.0; (b) Bo = 0.0, σs = 0.5. Numbers
marked on the curve denote the value of β, which indicates the ratio of elastic forces to the surface tension.
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assumed to be stiff, and the differences between the profiles become very small (see in figure 1). The lubrication approximation
without modification is now acceptable.

For compliant tube wall (β = 1.5), as illustrated in figure 2 with ϕ = 0.1, T0 = 0.0, and Tz = 0.0, the neutral stability
curves are distinctively different from those with stiff tube wall. For M = 0.01, a small stable region with sharp profile can be
identified. The minimum value ofBo, below which the flow is linearly unstable with whatever value of σs, isBomin = 2.688.
This is much larger than that with stiff tube wall. However, for M = 0.02956, an island of stability close to the origin point
of coordinates is developed. The island becomes larger with increasing of Marangoni number M (e.g. M = 0.05, 0.07), and
integrates together with the rest stable region while M is big enough (e.g. M = 0.075, etc.). A stable streak, which looks
like character ′V′, is formed on the neutral plane, and the stable region expands with increasing of M (e.g. M = 0.1, 0.5).
Physically, as being mentioned before, for the compliant tube wall, a remarkable axial perturbation flow rate can be induced
and result in destabilization. Combining with the Marangoni traction forces due to the surfactant gradient, the primary flow,
which acts to stabilize for stiff tube wall, tends to play a dual role in the flow instability.
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EXPERIMENTS ON STRATIFIED TURBULENCE AND MIXING IN AN INCLINED DUCT
Adrien Lefauve∗1 and P. F. Linden1

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
Summary Laboratory experiments on the stratified shear flows in an inclined duct are reported. Stratified turbulence is observed in this
two-layered exchange flow, whose dissipation is controlled by the duct inclination and compares with that observed in geophysical con-
texts. Three-dimensional simultaneous particle image velocimetry (PIV) and laser-induced fluorescence (LIF) measurements are presented
together with arguments as to how they can be employed to advance our understanding of the dynamics and mixing of stratified turbulence.

FROM THE OCEAN TO THE INCLINED DUCT

Between quasi-geostrophic and small-scale isotropic turbulence lies a range of scales strongly affected by buoyancy.
The realm of stratified turbulence, characterized by high Reynolds number (Re), low horizontal Froude number (Frh) but
high buoyancy Reynolds number (Reb ≡ ReFr2h, a measure of turbulence intensity), exhibits complex dynamics and mixing
properties [1]. A better understanding of the laminar-turbulent transition, spatio-temporal intermittency, energy dissipation and
mixing poses serious mathematical challenges and would enable progress in atmospheric and oceanic modelling. Although
typical geophysical values are Reb = O(105 − 107), it was argued that Reb > O(10) was sufficient to investigate this regime
[2]. However, sustaining high-Re and “high” Reb turbulence proves challenging both experimentally and numerically.

The experiment sketched in Fig. 1 consists of a long duct connecting two reservoirs of brine and water, in which a two-
layer exchange flow is established. As shown in Fig. 2, the flow can exhibit laminar, wavy behaviour, spatio-temporally
intermittent ‘weak’ turbulence or developed turbulence in a well mixed layer. This experiment was first investigated in [3],

Figure 1: Schematic of the inclined duct experiment. The square duct is 135 cm long and 4.5cm high. Adapted from [4]).

Figure 2: Shadowgraph, laser-induced fluorescence (LIF) and particle image velocimetry (PIV) visualisations of the flows.

and more recently in [4], who mapped the flow states in the (Re =
√
g′HH/ν, θ) space and proposed that the transition to

turbulence was triggered by increasing θ > 0. Due to the flow velocity being hydraulically controlled by the duct ends, the
inclination provides excess energy that needs to be dissipated. They argued that the ensuing stratified turbulence, generated
by the internal flow dynamics and whose dissipation is controlled, could maintain values up to Reb = O(102) for extended
periods of time.

∗Corresponding author. Email: lefauve@damtp.cam.ac.uk
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PIV AND LIF EXPERIMENTS

Using non-simultaneous LIF and PIV measurements, it was possible to estimate the vertical time- and space-average shear
distribution in the mid-plane of the duct S = ∂u/∂z, as well as the buoyancy frequency N2 = (−g/ρ)(∂ρ/∂z), and deduce
the gradient Richardson number Rig ≡ N2/S2 (Fig. 3). Low values (Rig < 0.5) on both sides of the interface (Fig. 3a)
are thought to be responsible for the Holmboe waves, while the turbulent, mixed layer (Fig. 3b-e) seems associated with even
lower, near constant Rig ≈ 0.1 − 0.2. This can be substantiated by arguing that this interior mixed layer, insulated by two
peaks of high stability (Rig ≈ 1), is not influenced by the duct upper and lower boundaries. Its thickness is thought to be
internally set by the flow, which is consistent with a constant Rig = Rie, where Rie is an equilibrium Richardson number
[5], which can be shown to provide the link between the turbulent transition and mixing efficiency.
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Figure 3: Time- and space-averaged Rig(z) from non-simultaneous LIF and PIV at various Re and θ = 2◦ .

State-of-the-art experimental capabilities (Fig 4) now allow us to probe the flow with simultaneous LIF and PIV and
extract buoyancy fluxes as well as coherent structures. The latest results obtained with those techniques will be presented.
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Figure 4: Schematic of the 3D simultaneous LIF-PIV system.
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Summary Motivated by the importance of irreversible mixing in geophysical and environmental flows, we seek to understand the de-
pendence of its efficiency under strongly stratified conditions through an investigation of two types of stratified shear instabilities: the
Kelvin-Helmholtz and Holmboe wave instabilities. Our numerical findings suggests that mixing efficiency of energetically turbulent flows
may never become suppressed despite arbitrarily strong stratification in the Holmboe wave case.

INTRODUCTION

Turbulent mixing of a stably stratified flow has a leading role in controlling the large scale meridional overturning circula-
tion of the ocean [1]. Although the precise nature of physical processes that are involved in the downscale cascade of energy,
from global to dissipation scales, is not well understood, it is generally believed that shear instabilities occur as the last step to
mediate the transition to turbulence at the smallest scales. In fact, a layered or stepwise density structure (i.e. layers of well-
mixed flow separated by sheets of sharp density interfaces), is commonly observed in nature. For a stably stratified density
layer that is embedded by a shear layer of a similar finite depth, the classical Kelvin-Helmholtz instability (KHI) may grow.
However if the density interface is sufficiently sharper than the shear layer, another class of shear instability, the Holmboe
wave instability (HWI), emerges in spite of arbitrarily large values of stratification.

The turbulent mixing induced by these instabilities may be characterized by an efficiency, E, that quantifies the proportion
of the total rate of dissipation into internal energy which is expended on useful irreversible mixing (M ). Furthermore, a
fundamental non-dimensional parameter in stratified shear flows is the bulk Richardson number, Ri, which characterizes the
relative strength of density stratification to the velocity shear. Formally these parameters may be defined mathematically as:

E =
M

M + ε
, Ri =

g∆ρ/(ρ0Lρ)

(∆U/Lu)2
, (1)

in which Lρ and Lu represent respectively the thickness of the density and shear layers across which these quantities vary by
∆ρ and ∆U . In addition, for a stratified flow to be recognized as turbulent, the rate of kinetic energy dissipation, ε, should
exceed a limit of approximately 20νN2 [2], where N2 = −(g/ρ0)dρ/dz is the squared buoyancy frequency associated with
the background stratification and ν is the kinematic viscosity. In other words, the so-called buoyancy Reynolds number,
Reb = ε/(νN2) > 20 for a stratified flow to be considered turbulent.

An outstanding question in stratified turbulence concerns the behavior ofE when the flow is subjected to strongly stratified
conditions with arbitrarily large values of Ri. As illustrated in figure 1 (left), it is unclear whether mixing (I) stays at its
maximum efficiency, (II) asymptotes to an efficiency less than its maximum or (III) becomes completely suppressed. While
previous laboratory studies support (III) [3], recent studies seem to suggest that (II) is most likely [4, 5]. Both cases (I) and
(II) would imply the absence of a critical bulk Richardson number as suggested by [6]. Nevertheless, none of these studies
discuss the vigor of turbulence as e.g. characterized by Reb. As a result, the true behavior of E with Ri for geophysically
relevant energetic turbulence (i.e. Reb > 20) has hitherto remained enigmatic.

In particular, in the context of the aforementioned shear instabilities, it is not known whether the growth of the two-
dimensional Holmboe instability, which is guaranteed in spite of an arbitrarily largeRi, would lead to a fully three-dimensional
turbulent flow. In fact, previous Direct Numerical Simulations (DNS) of this instability at exceedingly low Reynolds number
[7] suggest that the saturated Holmboe waves may never become turbulent (i.e. Reb � 20) which supports a complete
suppression of irreversible mixing as suggested by case (III). Nonetheless, it has most recently been demonstrated in [8] that
sufficient increase in the flow Reynolds number renders the induced flow truly turbulent by promoting the strength of the
secondary instabilities which directly contribute to the three-dimensionalization process.

In the present work, we aim to investigate the behavior of E with respect to Ri under the stringent condition that the
induced flow after the saturation of two-dimensional instability must be sufficiently turbulent (i.e. Reb � 20). This condition
is particularly important for studies of mixing in strongly stratified flows [9].
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RESULTS

Figure 1 (right) illustrates E∗ as a function ofRi where E∗ is the maximum value of the mixing efficiency that is achieved
after the saturation of three-dimensional kinetic energy. Note that E = E∗ approximately when Reb also becomes maximum.
HenceE∗ characterizes the mixing efficiency when the flow is most vigorously turbulent. This figure contains a rich collection
of DNS data associated with both Kelvin-Helmholtz and Holmboe wave instabilities (KHI and HWI) where the KHI dataset
is that available from [10]. Note that every symbol indicates the result for a single DNS analysis.

Unlike KHI that is suppressed for the bulk Richardson numbers Ri & 1/4, under such strongly stratified conditions HWI
not only emerges but also produces highly turbulent flows. Although the emergence of two-dimensional HWI is expected
based on linear theory alone, the transition to a fully three-dimensional turbulent flow has been achieved only by increasing
the flow Reynolds number to sufficiently high values so as to lead to Reb > 20 (this condition has demanded the application
of massive computational resources). As a result, the mixing induced by HWI is apparently never fully suppressed. Moreover,
the highest value of mixing efficiency, as high as E∗ ∼ 0.4 when Ri ∼ 1/4, is only attainable through KHI. For Ri & 1/4,
mixing efficiency quickly decreases to approximately E∗ ∼ 0.15 and remains at this value up to Ri ∼ 2.

CONCLUSIONS

Although further DNS analysis of HWI have not been conducted beyond Ri ∼ 2, our findings in figure 1 (right) clearly
support scenario (II) in figure 1 (left) which suggests that turbulent mixing may never become completely suppressed so long
as the stratified flow is sufficiently energetic with Reb > 20.
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Figure 1: Left: Schematic illustration of three hypothetical behaviors for mixing efficiency as a function of the bulk Richardson
number (Ri). The shaded areas represent schematically the region of the Ri space where Kelvin-Helmholtz instability (KHI)
or Holmboe wave instability (HWI) may mediate the transition to turbulence. Right: DNS data of KHI [10] indicated by blue
stars, along with a set of original DNS analysis of HWI indicated by red stars (a single symbol represents the result for a single
DNS case). Note that all DNS analyses have been conducted at sufficiently high Reynolds numbers yielding Reb � 20.
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Summary The unobvious relation between Ozmidov’s scale Lo [2] and Thorpe’s scale LT [1] is extended to a large regime of stratifi-
cation by investigating the corresponding dynamics using Direct Numerical Simulations (DNS) in freely decaying turbulence at different
stratification rates. Moreover, we confirm the return to isotropy of the small scales by analyzing the orientation-dependent power spectrum
and energy modes. To some extent, many characteristics of isotropic universality are restored at small scales but, surprisingly, the density
spectrum (also potential energy spectrum) plays a particular role.

THORPE’S SCALE AND OZMIDOV’S SCALE

In oceanic, atmospheric or engineering flows, turbulence can be strongly affected by stratification. In stably stratified
homogeneous turbulence, the flow contains quasi-horizontal structures organized in vertically sheared layers. These structures
are a mix between internal waves and turbulence. Different lengthscales are used to characterise the overturning of buoyancy;
the most used in oceanography are Thorpe’s scale LT which is a measure of large-scale vertical overturns [1] and Ozmidov’s

scale Lo =
(
ε/N3

) 1
2 (withN the Brunt-Väisälä frequency and ε the dissipation) which compares the relative effects of inertia

and of the buoyancy force [2].
Structures larger than Lo are strongly influenced by stratification whereas structures smaller than Lo recover three-

dimensional isotropy. These two scales Lo and LT are related by Dillon’s relation Lo ' 0.8LT [3] which is obtained in
the Ocean. This relation allows to find the value of dissipation ε in the ocean, directly by a measure of Thorpe’s scale LT .
Nonetheless, the proportionality coefficient 0.8 depends on stratification and on the flow regime, so that Dillon’s relation was
recently extended using DNS [4]. Moreover the scales Lo and LT are widely used for the analysis of numerical simulations
[6, 7] or experiments [8, 9]. Such a refined description is thus important for an accurate characterization of turbulent mixing
in stratified flows. We propose here a parametric study of scale-by-scale anisotropy of stratified turbulence using dedicated
spectra.

In order to analyze further the extension of Dillon’s relation and small-scale isotropisation, we present results from high
resolution DNS (20483 points) of freely decaying turbulence at four different stratification rates. On figures 1( a) and (b), we
illustrate a typical distribution of the fluctuations of density and of Thorpe’s deplacement.

SCALE BY SCALE ANALYSIS

Classically, to measure the energy by scale — or for each wave number k in Fourier space —, one uses averages of energy
over spheres of radius k, and thus averages out the anisotropic contents of the energy distribution. In the case of stratified
turbulence with axisymetric statistics about the vertical axis of gravity, the distribution of energy is not equi-distributed over
the spherical shell of radius k by contrast to isotropic turbulence. We characterise this non equi-distribution of kinetic energy
and potential energy by introducing the angular dependence of the power spectrum [10]. In the case of discrete analysis in
DNS, we decompose the sphere into several rings Oi (six rings in our simulation as shown on the sketch of figure 1 d)) and
we define the kinetic Ec and potential Epot energy spectra for each ring as:

Ec(k,Oi) =
1

mi
k

∑
k∈Oi

|ûk|2 and Epot(k,Oi) =
1

mi
k

∑
k∈Oi

|ρ̂k|2 (1)

where ûk is the Fourier velocity vector, ρ̂k is the Fourier component of density andmi
k = (π/4)(θi − θi+1)

−1(sin(θi)− sin(θi+1)
−1

is a normalization term (so that Ec recovers isotropic scalings k−5/3 of classical Kolmogorov spectrum in absence of stratifi-
cation).

We have performed simulations at four stratification intensities, thus at different Froude numbers ranging from about 0.13
to 1.06, with 20483 grid points, so that the Reynolds numbers are rather high and of order Re ' 3000–4000. For instance,
figures 1 (c) and (d) show power spectra for two stratification rates. On each plot the Ozmidov wavenumber kN ' 1/LO is
indicated to delimitate the large scale stratification-affected range from the smaller-scale range.
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We show that at Froude number of order one (the lowest stratification rate in our parametric study), on figure 1(c), large
scales are clearly anisotropic (kinetic energy is concentrated towards the polar ring O1), whereas at scales smaller than the
Ozmidov one (wavenumbers larger than kN ), the spectra join again, as a sign that 3D isotropy is recovered. At very high
stratification rate on figure 1(d) (very low Froude number), all scales are strongly anistropic with at least one decade difference
in the energy between horizontal motion (vertical wavenumbers in ring O1) and vertical one (horizontal wavenumbers in ring
O6). During the colloquium, we shall present all the results of our simulations, which confirm that the Ozmidov scale is
a separating scale between anisotropic and isotropic ranges: for moderate stratification, the large scales are preferentially
horizontally oriented but the smaller scales recover a classical isotropic behaviour whereas for increased stratification, small
scales also become quasi horizontal. This work was granted access to the HPC resources of IDRIS under the allocation
i20152a2206 and i20152a7411 made by GENCI.

Re ' 3156
Fr ' 1.06

Re ' 4198
Fr ' 0.13

(a) (b)

(c) (d)

k k

Figure 1: Illustration of the layering through distribution in a vertical section: (a) fluctuation of density with vorticity and
iso-density, and (b)Thorpe’s deplacement. Angle-dependent power spectrum at increasing Froude numbers as indicated from
(c) to (d) -(different stratification rates), and sketch of the angular decomposition into six spectral rings.
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Summary We study the competition between the zigzag instability and Lilly’s mechanism of vertical decorrelation through independently-

evolving horizontal layers by computing the linear optimal perturbations to different types of vertically-invariant base flows with strong

stratification. This allows us to find, as a function of vertical wavelength, the potential of linear perturbations to extract energy from each

base flow. We observe that the zigzag instability is more relevant than Lilly’s mechanism only when the base flow is composed of distinct

vortices, while the zigzag scaling laws remain always valid except for viscous effects. Additionaly, the optimal perturbations reveal other,

more efficient mechanisms of transient energy extraction. Performing toroidal-poloidal decomposition of the optimal perturbations we

observe that, as the vertical wavenumber increases, the optimal perturbations are increasingly associated to energy extraction from the

vertical vorticity into vertical velocity and density perturbations.

INTRODUCTION

Similar to the zigzag instability [1], the vertical scale of the anisotropic direct cascade of strongly stratified turbulence

is given by the buoyancy length scale [2]. In both cases this length scale selection follows from the inviscid self-similarity

of the strongly stratified Boussinesq equations [3], but it is not clear what role, if any, does the zigzag instability play in the

development of stratified turbulence. In fact, Lilly’s mechanism of vertical decorrelation between different horizontal layers

[4] also predicts small vertical scales and is consistent with the strongly stratified scaling of Billant & Chomaz [3].

The dynamical differences between Lilly’s mechanism and the zigzag instability are important. Lilly’s mechanism involves

two-dimensional (2D) dynamics on each of the essentially uncorrelated horizontal layers, and is similar to the toroidal cascade

in that it does not involve vertical transport (except for ‘secondary’ instabilities that may arrive from the vertical shear between

adjacent horizontal layers). For the zigzag instability, on the other hand, vertical transport is a key ingredient that leads to the

destabilization of an otherwise neutral 2D mode associated with rotation and translation of the vortices.

Despite the differences, both mechanisms can lead to the formation of thin horizontal layers from an initial flow which is

nearly invariant in the vertical direction. While a layering induced by the zigzag instability is expected when there are well

separated interacting vortices, Lilly’s mechanism will induce decorrelation of horizontal layers on any nearly vertically invari-

ant base flow through the sensitivity to initial conditions of the 2D flow. The question arises of whether the zigzag instability,

or a similar mechanism inducing the destabilization of the 2D dynamics for long vertical wavelengths, will generically be the

most efficient in determining the vertical wavelength appearing naturally from a vertically invariant flow.

METHODOLOGY AND MAIN RESULTS

Here we evaluate the different mechanisms that may be involved in the layering process by computing transient energy

growth on different types of vertically-invariant, time-dependent horizontal flows. These flows are computed by 2D direct

numerical simulations of the Navier-Stokes equations, and the resulting evolution is stored and used as a vertically invariant

base flow for computing three-dimensional (3D) optimal perturbations (maximizing perturbation energy growth in a prescribed

evolution interval) with a direct-adjoint method [5]. We are thus able to identify and characterize, as a function of the vertical

wavenumber and for each of the base flows considered, the mechanisms which are the most efficient in extracting energy from

the vertically-invariant base flow to a 3D flow.

Figure 1 shows horizontal cuts of the vertical vorticity at different times of the evolution of optimal perturbations to a

base flow composed of well separated vortices. The base flow was initialized at t = 0 with a superposition of four Gaussian

vortices of the form ±2 exp(−x
2) initially located at random positions and indicated at later times by the dashed (negative

vortices) and solid (positive vortices) black lines. The different columns in the figure correspond to different times during

the evolution of the optimal perturbation. The different rows in the figure correspond to optimal perturbations with different

Froude numbers Fh = 1/N (where N is the Brunt-Väisälä frequency) and vertical wavenumbers kz while keeping Fhkz in

accordance to the inviscid scaling of strongly stratified flow [3]. The vorticity plots are very similar between the different

rows, showing that the evolution of the optimal perturbations indeed satisfy the inviscid self-similarity.

At the final time of the evolution of the optimal perturbations shown in the example of figure 1 (right column for t = 25),

it can be noted that the vertical vorticity corresponds to a simultaneous displacement of all the base flow vortices in a similar

direction. This indicates that the zigzag instability is active in the example of the figure, as can be expected from the presence

of well separated vortices. It will be seen that this ‘zigzag-like’ optimal perturbation is of no particular significance in
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Figure 1: Snapshots of the initial (t = 5, left column), intermediate (t = 15, middle column) and final (t = 25, right column)

vertical vorticity of the optimal perturbation for kzFh = 1.26, and Fh = 1 (top), Fh = 0.5 (middle) and Fh = 0.25 (bottom).

The solid (dashed) black lines correspond to iso-values where the vorticity of the instantaneous base flow is equal to 1 (-1).

terms of energy growth, and that depending on the base flow and the vertical wavenumber, different and more efficient

mechanisms are present in the optimal perturbations. These include but are not restricted to the 2D mode associated to the

leading (finite time) Lyapunov exponent corresponding to the optimal perturbations associated to Lilly’s mechanism. For the

different types of base flow, strong energy extraction is remarkably found for short-wavelength perturbations, only limited

by viscous effects. A poloidal-toroidal decomposition shows that this short-wavelength optimal perturbations are, initially,

almost exclusively composed of toroidal energy, and at the final times their energy is predominantly poloidal. Thus, the

corresponding mechanisms are associated to energy transfer from the predominant vortical flow to density perturbations and

horizontally divergent flow.
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Summary Vertical mixing in the stably-stratified ocean interior is often assumed to arise due to shear instabilities. However, there is
observational, experimental, and numerical evidence that suggests increased dissipation may also occur in more strongly stratified flows.
The non-normality of the Navier-Stokes and buoyancy equations may allow for substantial perturbation energy growth at finite times, even
in flows which are stable in the Miles-Howard sense. Here we show that this transient growth mechanism may be sufficient to trigger
strongly nonlinear effects and breakdown into small-scale structures, thereby leading to enhanced dissipation and non-trivial modification
of the background flow. The effects of nonlinearity are felt more strongly for higher Re and lower Rib. As such, this may point to transient
non-normal growth as a possible linear mechanism to trigger turbulence and mixing in stably-stratified shear flows.

INTRODUCTION

Vertical mixing in the stably-stratified ocean interior is thought to be a key player in setting the vertical density struc-
ture and distributions of tracers which are important for climate and biogeochemical cycles. However, the turbulent eddies
responsible for mixing are typically on the order of several meters in size, and are unresolved in ocean circulation models.
Parameterizations of the physics leading to mixing are therefore required.

Mixing is often assumed to arise in the ocean interior as the result of shear instabilities. The Miles-Howard theorem states
that, for parallel, steady, inviscid stratified shear flows, a necessary condition for instability is that the gradient Richardson
number (the ratio of stratification, which stabilizes a flow, and shear, which destabilizes a flow) be less than 1/4 somewhere in
the domain. This concept has been used as the basis of several mixing parameterizations which employ a critical Richardson
number below which the effects of turbulence are felt. However, despite the correlation between enhanced dissipation and
low Richardson numbers, there is observational [1, 2], experimental [3], and numerical evidence [4] suggesting that increased
dissipation may also occur in more strongly-stratified flows.

LINEAR OPTIMAL PERTURBATIONS

The Miles-Howard theorem is based on the behaviour of normal-mode perturbations to a given steady inviscid parallel flow
and their subsequent exponential growth rates. However, due to the non-normality of the Navier-Stokes operator, transient
perturbation growth may be possible at finite times even when no normal-mode instabilities exist. By employing a direct-
adjoint-looping technique, Kaminski et al. (2014) [5] computed the “linear optimal perturbations”, i.e. the perturbations which
maximize perturbation energy gain at a finite target time T , for a uniform stable stratification and hyperbolic-tangent shear
layer. They considered a range of target times T and bulk Richardson numbers Rib (where, for the base state in question,
Rib corresponded to the minimum gradient Richardson number of the flow) and showed that perturbation energy gains of
O(10− 100) could be achieved, even in flows which were were stable in the Miles-Howard sense.

Here, we consider the same base flow as in [5] and a target time of T = 15. Both the stratification Rib and the Reynolds
number Re are varied. Higher gains are achieved for higher values of Re, as shown in figure 2(a), and for lower Rib. At
this target time, the linear optimal perturbations found are two-dimensional and consist of a series of rolls tilted against the
background shear (figure 1(a)). Perturbation energy grows via the Orr mechanism as the rolls are tilted upwards by the
background shear (figure 2(b)).

NONLINEAR EVOLUTION

Given the substantial gains achieved via linear transient growth, it is natural to question what the nonlinear evolution of
these perturbations might be. To examine this, the optimal perturbations computed for T = 15 are given small but finite initial
amplitudes E0 and used to initialize full direct numerical simulations. Random noise is also added to allow for the possibility
of secondary instabilities arising. The full nonlinear Navier-Stokes and buoyancy conservation equations are solved using
DIABLO, which employs a third-order mixed Runge-Kutta-Wray/Crank-Nicolson timestepper. The horizontal directions are
periodic and treated pseudospectrally, while a second-order finite-difference discretization is used in the vertical [6].

We find that the perturbations initially grow linearly, as seen in figure 2(b). After this initial growth period, nonlinear effects
become important and the perturbations saturate. In some cases, perturbations have grown enough to become susceptible to

∗Corresponding author. Email: alexis.kaminski@gmail.com

1095



(a) (b)

x

z

x

z y

Figure 1: (a) Buoyancy perturbation of linear optimal perturbation for Rib = 0.40, Re = 4000, and T = 15. Note that the
magnitudes are arbitrary. (b) Total buoyancy (isosurface) and vertical vorticity ωz = ∂v/∂x−∂u/∂y (colour) for Rib = 0.40,
Re = 4000, and E0 = 2× 10−5 at t = 24.4. Note that only the region around the shear layer is shown and the aspect ratio is
stretched in the vertical in order to better show the detailed structure in both (a) and (b).
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Figure 2: (a) Linear perturbation energy gains for Rib = 0.40 and T = 15. (b) Perturbation energy evolution for Rib = 0.40,
E0 = 2 × 10−5, and Re = 1000, 2000, and 4000. Linear perturbation evolutions are shown with solid lines, while dashed
lines denote the perturbation energy from the full DNS.

secondary instabilities which then break down into small-scale turbulence. For example, in figure 1(b) (for which Re = 4000,
Rib = 0.40, and E0 = 2× 10−5), we observe that after the rolls are tilted by the Orr mechanism, billows reminiscent of the
classical Kelvin-Helmholtz instability form. These billows then become unstable to a three-dimensional secondary instability.
We find that the effects of nonlinearity are more important for flows with higher Re, higher initial amplitude, and lower Rib.

As a result of the effects of nonlinearity, we find that the perturbations are able to modify the background flow non-trivially,
leading to layer formation in the background buoyancy field. Enhanced kinetic energy dissipation is observed for higher-Re
and lower-Rib flows, and the mixing efficiency, quantified here by the ratio of the potential energy dissipation to the total
dissipation, εp/(εp + εk), is found to be approximately 0.35 for the most strongly nonlinear cases.
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Summary High-frequency observations of thermal structure under the ice of a large lake reveal the presence of large (10-20 m) overturning 
convection cells, driven by solar heating. Two winters observations are used to quantify the under-ice mixing and dissolved oxygen 
dynamics. The most vigorous convection occurred near the end of winter, as the water surface layer started warming, with a gradually 
deepening of the mixed layer over time. This coincided with the prediction by the Canadian Lake Ice Model of when the ice cover began 
to melt and decrease in thickness. During the same period the dissolved oxygen had become super-saturated from the surface to 23 m 
below the surface, suggesting abundant algal growth. Thorpe scale analysis revealed that very large scale mixing occurred beneath the ice; 
the mixed layer depth increased during the melting period, and mixing was most active during the day.  
 

INTRODUCTION 
   
  Vigorous circulation can occur under the surface of ice-covered lakes that is driven by the penetration of solar radiation. 
The extent of this circulation is strongly influenced by underlying inverse stratification that typically forms under ice: near 
the floating ice was is close to 0oC, while water at the base of lakes is near the density maximum of 4oC water near the 
bottom of the lake. Due to isolation of the water in an ice covered lake from the atmosphere it has often been assumed that 
circulation is very small. However heat fluxes through clear ice can drive very large overturn convection near the end of 
winter, as reviewed by [1]. The main goal of this study is to quantitatively investigate the effect of solar radiation 
penetrating through the ice on the magnitude of convection and how this influences the dissolved oxygen (DO) 
concentrations in ice-covered lakes. Specifically, we investigate how the surface mixing layer evolves near the end of the 
ice-cover period; and how mixing influence dissolved oxygen concentrations in lakes. 

 
 

Figure 1: Schematic representation of under ice convection, showing how solar radiation penetrating through clear ice can drive 
heating of the water column. For water below 4oC such heating drives convective overturn of the water column (figure modified 
after [1]). 

 
FIELD SITE AND METHODS 

 
The field study was conducted in Lake Simcoe (44°25'N, 79°30'W), a large dimictic lake located in southern Ontario, 

Canada. A mooring with temperature and DO sensors was lowered between November 27, 2014 and April 27, 2015 into 
Lake Simcoe. Complete ice cover over the lake was observed between January 7 and April 25, 2015. The depth of the water 
column at the location of the mooring is about 42 m. The temperature loggers were configured to record at a spatial 
measurement interval of 2.5 m with the topmost one being at 5m deep on the rope. Each temperature logger samples at a 
frequency of 20 seconds. The DO loggers were configured at a spatial measurement interval of 7.5 m, with the topmost one 
being at 7.5 m deep. Each DO logger samples at a frequency of 30 minutes. 
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  We quantify the stability of the water column using two parameters, namely the buoyancy frequency and by estimations 
of Thorpe scales of density inversions. The buoyancy frequency N is defined by !! ! ! !!!! !!"!!", where ! !
!!!!!!!! and !! ! !"""!!"!!!. Thorpe displacements were calculated by sorting the instantaneous density profile and 
tracking the distance moved by each water parcel. The minimum temperature difference we could resolve was twice the 
uncertainty of the accuracy of the temperature loggers. The corresponding instantaneous Thorpe scales were calculated by 
taking the root mean square of the Thorpe displacements. Buoyancy frequencies and Thorpe scales are calculated from the 
raw temperature data, and then smoothed with a 6-hour running average. The depth of the surface mixed layer beneath the 
ice was determined as the depth from the surface to where the buoyancy frequency first exceeds ! ! !!"!!!!!! 

RESULTS 

Figure 2: Water column temperature time series, black line indicates estimated mixed layer depth (a), DO concentration time 
series (b). Yellow bar on top of graph indicates ice cover. Calculated Thorpe scales between the periods January 7 to February 7 
(c) and March 18 to April 18 (d).

Figure 2 shows that before the ice-cover period, the mixing layer spans the entire water column with overturns as large as 15-
20 m occurring. Ice covered the lake on January 7, and there was a vigorous period of mixing from Jan 16 to 31st, after which the 
snow cover was sufficient to block any light. Calculations of Thorpe scales show that the water column is highly unstable in this 
period of time. From the time series of the Thorpe scales in this period of time, it is clear that there is a periodic behaviour of 
convection. In particular, the maximum Thorpe scales occur around noon, suggesting that the main driving mechanism of mixing 
is solar radiation. Between February 3 and March 18, the water column stratifies with warm water at the bottom and cold water 
at the top. The mixing layer shallows and DO concentrations decrease in the water column. The bottom levels of the water 
column gradually increase in temperature over this period, suggesting positive surface heat flux from the bottom. After March 18, 
steady increase in mixed layer depth and Thorpe scales are observed. The calculated Thorpe scales once again exhibit a periodic 
behaviour. DO concentrations in the water column homogenize as the mixed layer extends deeper. There is a clear increasing 
trend of DO in the mixing layer while the bottom stratified region still shows a decreasing trend of DO. This suggests algal 
growth in the water column. Algae then produce oxygen by photosynthesis. The maximum DO concentration observed in the 
water column is about 17 mg/L, which is supersaturated relative to the surface. 

A new field deployment in the winter 2015/2016 includes a velocity meter, light sensor and faster response DO and T sensors. 
We use this new data to discuss the energetics of under-ice convective mixing in more detail in our presentation.  
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Summary One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and
its contribution to mixing. Here, we propose a unique self-consistent experimental and numerical setup that models a cascade of triadic
interactions transferring energy from large-scale monochromatic input to multi-scale internal wave motion. We also provide, for the first
time, explicit evidence of a wave turbulence framework for internal waves. Finally, we show how beyond this regime, we have a clear
transition to a cascade of small-scale overturning events which induce mixing.

The continuous energy input to the ocean interior comes from the interaction of global tides with the bottom topography
yielding a global rate of energy conversion to internal tides on the order of 1TW. The subsequent mechanical energy cascade
to small-scale internal-wave motion and mixing is a subject of active debate in view of the important role played by abyssal
mixing in existing models of ocean dynamics. The oceanographic data support the important role of internal waves in mixing,
at least locally: increased rates of diapycnal mixing are reported in the bulk of abyssal regions over rough topography in
contrast to regions with smooth bottom topography. A question remains: how does energy injected through internal waves at
large vertical scales induce the mixing of the fluid?

In a stratified fluid with an initially constant buoyancy frequency N = [(−g/ρ̄)(dρ/dz)]1/2, where ρ(z) is the density
distribution over vertical coordinate z, and g the gravity acceleration, the dispersion relation is θ = arcsin(Ω). Here θ is the
slope of the wave beam to the horizontal, and Ω (resp. ω = ΩN ) is the non-dimensional (resp. dimensional) frequency of
oscillations. The anisotropic dispersion relation requires preservation of the slope of the internal wave beam upon reflection
at a rigid boundary. In the case of a sloping boundary, this property gives a purely geometric reason for a strong variation
of the width of internal wave beams (focusing or defocusing) upon reflection. Internal wave focusing leads to shortening of
wavelengths and amplification of wave amplitudes, which provides a necessary condition for large shear and overturning, as
well as shear and bottom layer instabilities at slopes.

L

ω0

α

H

Figure 1: Experimental set-up showing the wave generator on the left and the inclined slope on the right. The color inset is a
typical PIV snapshot showing the magnitude of the experimental two-dimensional velocity field obtained at t = 15 T0 with
T0 = 2π/(NΩ0). Black dashed lines show the billiard geometric prediction of the attractor.

In a confined fluid domain, focusing usually prevails, leading to a concentration of wave energy on a closed loop, the
internal wave attractor [1]. At the level of linear mechanisms, the widths of the attractor branches are set by the competition
between geometric focusing and viscous broadening. High concentration of energy at attractors make them prone to parametric
subharmonic instability (PSI) which sets in as the energy injected into the system increases [2]. The onset of instability in this
case is similar to the classic concept of triadic resonance, which is best studied for the idealized case, with monochromatic
in time and space carrier wave as a basic state which feeds two secondary waves via nonlinear resonant interactions. The

∗Corresponding author. Email: Thierry.Dauxois@ens-lyon.fr
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resonance occurs when temporal and spatial conditions are satisfied: Ω1 + Ω2 = Ω0 and −→k1 +
−→
k2 =

−→
k0, where −→k is the

wave vector while subscripts 0, 1 and 2 refer to the primary, and two secondary waves, respectively. In a wave attractor, the
wave beams serve as a primary wave, and the resonance conditions are satisfied with good accuracy [2], providing a consistent
physical framework for the short-term behavior of the instability.

Using laboratory experiments and numerical simulations, we suggest the energy cascade in internal wave attractors as a
novel laboratory model of a natural cascade. We show here that energy transfer from global to small scales in attractors oper-
ates via a hierarchy of triadic interactions producing a complex internal wave field with a rich multi-peak discrete frequency
spectrum embedded in a continuous spectrum of weaker magnitude. Convincing evidence of a wave turbulence framework for
internal waves is also provided for the first time. Spontaneous summation of the wave-field components produces moreover a
statistically significant amount of extreme overturning events which eventually lead to an easily measurable mixing.

It is important to emphasize that the final stage of overturning and mixing is non-trivial since these phenomena are beyond
the domain of pure wave-wave interactions, a regime usually called wave turbulence. A similar situation takes place for
surface waves, where the flourishing literature gives a fully consistent description of energy cascades between components
of wave spectra, only in the case of weakly nonlinear processes, while experimental reality deals with cascades significantly
“contaminated” by effects of a finite size fluid domain, wave breaking, wave cusps, nonlinear dispersion, viscous damping
of wave-field components, etc. The very specific dispersion relation for internal waves introduces additional complications.
For instance, in rotating fluids, which have a dispersion relation analogous to stratified fluids, the usefulness of the formalism
turbulence as a basis for the studies in rotating turbulence has been reported for experiments only recently [3]. For internal
waves, the question is still fully open, from both experimental and numerical points of view. Its consequences on mixing were
moreover widely open, until the present work.

Conclusion
We report and describe a novel experimental and numerical setup, an “internal wave mixing box”, which presents a

complete cascade of triadic interactions transferring energy from large-scale monochromatic input to multi-scale internal
wave motion, and subsequent cascade to mixing. We report interesting signatures of discrete wave turbulence in a stratified
idealized fluid problem. Moreover, we show how statistics of extreme vorticity events leads to mixing that occur in the bulk
of the fluid.
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Summary The tidal flushing of coastal basins is studied both experimentally and numerically. Two key parameters are the shape of the basin 
and the position of the connection to the open sea. For the case of a rectangular basin, the opening position has been varied systematically, and 
three different flow regimes have been observed, with different flushing characteristics. 
 

INTRODUCTION 
 
   Partly enclosed coastal basins, such as harbours and estuaries, usually have one or more connections to the open sea. 
Through these connections, coastal basins are subjected to marine influences like tides, which lead to the generation of 
residual circulation patterns. The tidally induced flow through the opening between the coastal basin and the open sea has 
an asymmetric structure, being essentially a potential sink flow towards the opening, while the outflow on the other side has 
the character of a jet, often with a dipolar vortex structure at its head. Such a dipolar vortex, when strong enough, may 
propagate into the basin, due to its self-propelling mechanism, and may thus greatly influence the exchange of matter 
between the coastal basin and the open sea. The propagation of such dipolar flow structures in an oscillating tidal flow has 
previously been studied in the laboratory by Kashiwai (1984), who argued that the tidal dipoles can propagate away from 
the opening region if the dimensionless parameter W/UT (with U the maximum velocity, W the width of the opening, and T 
the tidal period) is larger than some critical value. This analysis was later extended by Wells & van Heijst (2003), and the 
analytical predictions were verified by their laboratory observations. In later studies by Nicolau del Roure et al. (2009) the 
effect of the inlet geometry was investigated. 
   The asymmetry between the periodic jet-like inflow, together with the self-propelling dipolar vortex structures, and the 
sink-type outflow may result in the generation of a residual circulation in the coastal region. In a recently started study, we 
have studied this issue in detail by a combination of laboratory experiments and two-dimensional (2D) numerical 
simulations. It was found that the shape of the basin and the positioning of the inlet/outlet opening has a profound effect on 
the resulting circulation pattern, and hence on the flushing of the basin. Some results of this study will be presented here. 
 

LABORATORY EXPERIMENTS AND NUMERICAL SIMULATIONS 
 
   Laboratory experiments have been performed in a rectangular container (length L0 = 1 m, width W0 = 0.5 m) filled with 
a layer of fresh water. In order to minimize the effects of bottom friction, an additional layer (thickness 1 mm) of salty fluid 
was added, so that the total fluid depth measured H = 11 mm. The experimental configuration is shown in Figure 1. The 
tidal motion is generated by moving a partially submerged cylindrical weight harmonically up and down. The frequency of 
this harmonic motion was low enough to prevent gravity waves being formed. A barrier with a narrow opening was placed 
in the tank, thus separating the ‘coastal basin’ from the ‘open sea’, in which the tidal motion is generated. The shape of the 
opening plays a crucial role in the generation of the exchange flow. The present study focusses on the case of a thin-walled 
separating barrier, with sharp edges at the sides of the opening. Flow visualization experiments were performed in order to 
obtain a clear qualitative picture of the overall flow (structure of inflow and outflow, vortex formation, structure of the 
residual circulation pattern). Detailed quantitative information about the flow was obtained by PIV measurements. 

Figure 1 Experimental configuration. 
 
   Numerical simulations of the tidal exchange flow in this geometry were performed by using the COMSOL Multiphysics 
modelling software. The simulations were carried out for the 2D case, so neglecting any effects and velocities in the vertical 
direction. The tidal motion was introduced by prescribing a harmonically varying in/outflow at the far end of the ‘open sea’ 
region of the flow domain. This in/outflow results in a harmonically changing free-surface level of the fluid, and hence in a 
harmonically changing horizontal divergence. In all simulations, no-slip conditions were imposed at the boundaries of the 
coastal basin. 
In the present study the position of the opening of the barrier was varied. This position is given by the coordinate yg, 
measured from the long (symmetry) axis of the domain. The gap position was varied from yg = 0 (corresponding to a 
symmetric configuration, with the gap on the symmetry axis of the domain) to yg = 7.5 (corresponding to the opening 
touching the side wall). 
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RESULTS 
 
   The simulations, carried out for yg = 0, 1.35, 2.7, 4.05, 5.4 and 6.75, with the non-dimensional gap width fixed at the 
value Wg = 0.5, revealed the occurrence of three different flow regimes The first regime is observed for the symmetric 
opening position yg = 0. During the first few tidal periods, the flow is symmetric with respect to the long domain axis. The 
starting dipole travels straightforward, towards the end wall of the coastal basin, and subsequent dipoles catch up with the 
previous ones, thus forming a larger dipolar structure that tends to fill the coastal basin. After approximately 15 periods, this 
pattern changes: the symmetry is broken and the flow changes into one large domain-filling circulation cell. Newly arriving 
dipoles are deflected by the circulating flow, thus further forcing this cellular motion. 
   The second regime is observed for the gap positions yg = 1.35, 2.7, 4.05 and 5.4, so not on the centreline (yg = 0) and not 
touching the sidewall (yg = 6.75). The flow pattern observed for these yg-values after 200 periods is shown in Figure 2. After 
a few tidal cycles, a single cell is formed, which appears to be very robust. The circulation Γ of this cell was found to be 
significantly larger than that of the cell observed in regime 1. A circulation pattern consisting of two oppositely rotating 
cells is established in the ‘open sea’ part of the domain. The occurrence of these cells is determined by the presence of the 
solid boundaries in this model system. 
 

 
Figure 2 Vorticity distribution after 200 periods for yg = 1.35 (left) and yg = 5.4 (right), corresponding with regime 2. 

 
   The third flow regime is observed for the case yg = 6.75, so with the gap touching the side wall. Very soon after the tidal 
forcing has started, the dipoles are deflected to the centre of the basin and then follow a curved trajectory back towards the 
gap. Boundary-layer vorticity generated at the no-slip sidewall is partially taken up into the dipole, thus giving it a negative 
net circulation and hence resulting in a curved trajectory. Although one observes also a larger cell filling the basin, this cell 
is much weaker than that found in regime 2. 
 

 
Figure 3 Tracer distributions after 25 periods for yg = 0 (a), 4.05 (b), and 6.75 (c). 

 
In order to examine the flushing characteristics, the transport of a tracer with concentration c was simulated by numerically 
solving the 2D advection-diffusion equation for c, with initial concentrations c = 0 in the ‘open sea’ and c = 1 in the ‘coastal 
basin’. Figure 3 shows some typical results, with the concentration values varying between 0 (blue) and 1 (red), as indicated 
by the colour bars. It is obvious that the most efficient flushing of the coastal basin is obtained in regime 2. Putting the 
opening symmetrically (yg = 0) or touching the side wall (yg = 6.75) leads to locally good mixing, but with large portions of 
the domain still having their initial concentration values. 
 

CONCLUSIONS 
 

   The tidal flushing characteristics of a coastal basin are highly determined by the geometry of the basin, and in particular the 
position of the inlet/outlet. 
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Summary The effect of rotation upon the classical Rayleigh-Taylor instability is considered both theoretically and using superconducting

magnets in a novel experimental configuration. We show that in many cases, rotating the system above a critical rate associated with the

mode’s wavelength, the Atwood number and the flow’s aspect ratio may stabilize unstable axisymmetric wave modes. The growth rate of

the instability and its dominant lengthscale may be significantly reduced by rotation.

Experiments conducted in a magnetic field with ‘heavy’ diamagnetic and ‘light’ paramagnetic fluids are used to show the effects of rotation

and to compare with our theoretical predictions. By rotating the system the growth rate of the instability is typically suppressed and the

scale of the structures observed are significantly reduced. We investigate the effect of increasing fluid viscosity on the observed structures

and conclude that both rotation rate and fluid viscosity control the form of the instability that develops.

INTRODUCTION

The Rayleigh-Taylor instability is a fundamental fluid dynamical phenomenon that occurs at the interface between a dense

fluid supported by a lighter fluid under gravity, or, equivalently, in a system that is accelerating in the direction of the denser

fluid. The instability is a common occurrence in many geo- and astrophysical phenomena including, for example, the finger-

like structures of the Crab nebula, created by the acceleration of pulsar winds through a dense supernova remnant [?], and

salt tectonics, where deep salt sediments protrude upwards through denser rock into finger-like ‘diapirs’ [?]. The instability

appears in many industrial applications involving, for example, thin film flows, pool boiling and aerosol transport [see e.g.,

3]. In some cases we may wish to influence the Rayleigh-Taylor instability through means beyond imposing the initial density

difference. In particular there are many situations in which it is desirable to stabilize a system, as in inertial confinement

fusion. Here we investigate the effect of rotation on the system.

MODELLING

We consider a fluid system that consists of a two-layer gravitationally unstable stratification that is subject to steady

rotation about an axis parallel to the direction of gravity. A rotating fluid is known to organize itself into coherent vertical

Figure 1: The image on the left hand side is of the Rayleigh-Taylor instability developing in a non-rotating system. The

instability develops in time, forming large vortices that transport the ‘denser’ (green) fluid downwards. The image on the right

hand side is of the same fluids, but here the system is rotating. The effect of the rotation can be seen to restrict the size of the

vortices that form and inhibit the bulk vertical transport of fluid.

structures aligned with the axis of rotation, so-called ‘Taylor columns’ [?], whereas a perturbation to an unstable two-layer

density stratification will lead to baroclinic generation of vorticity at the interface, tending to break-up any vertical structures.

∗Corresponding author. Email: matthew.scase@nottingham.ac.uk
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Figure 2: Images from a series of experiments investigating the role of viscosity in determining the scale of instability ob-

served. The rotation rate was fixed at Ω = 7.8±0.1 rad s−1. The left image shows the instability in a system that has viscosity

approximately equal to that of water. The middle image shows the instability in a system that has viscosity approximately

8.36 times that of water. In the right hand image the viscosity of the system is approximately 20.50 times that of water. It can

be seen that the observed length scale increases with increasing fluid viscosity.

Hence the system under investigation undergoes competition between the destabilizing effect of the denser fluid overlying the

lighter fluid that generates an overturning motion at the interface, and the stabilizing effect of the rotation that is organizing

the flow into vertical structures and preventing the two layers passing each other. With increased rotation rate the ability

of the fluid layers to move radially, with opposite sense to each other, in order to rearrange themselves into a more stable

configuration, is increasingly prohibited by the Taylor-Proudman theorem [?, ?]. The radial movement is therefore reduced

and the observed structures that materialize as the instability develops are smaller in scale.

We model the system using an unpublished variational approach that represents the governing wave equation and the

associated boundary conditions as stationary points of a multivariate functional. It can be shown that in the appropriate limits

the well-known results for gravity waves in both non-rotating and rotating systems, and the classical non-rotating Rayleigh-

Taylor instability can be recovered. We are also able to show that in a finite domain there exists a critical rotation rate above

which axisymmetric modes may be stabilized. This demonstrates that although Chandrasekhar’s statement [?] that ‘. . . rotation

does not affect the instability or stability, as such, of a stratification’ applies in the limiting case of an infinite aspect ratio, any

confinement of the flow, i.e., a finite aspect ratio, permits the stabilization of modes of instability by rotation of the system.

EXPERIMENTAL VALIDATION

In order to compare our experiments with theory we show that the additional magnetic effects that modify the stress

tensor in the fluid may be regarded as a modified gravitational field. In this way we are able to create a gravitationally stable

stratification and spin it up into solid body rotation. We are then able to use the magnet to create a modified gravitational field

that renders the interface unstable such that the fluid system behaves, to a good approximation, as a classical Rayleigh-Taylor

instability. We show that there is good agreement between our theoretical prediction for the stabilization of the dominant

axisymmetric mode of instability and our experimental observations. We are also able to demonstrate good agreement between

the predicted growth rate of the instability and our observations. At high rotation rates large-scale structures in the instability

are inhibited and the dominant lengthscale of the instability is controlled by the fluid viscosity (figure 2). We conclude that

the observed nature of the instability is determined by both the rotation rate of the system and the fluid’s viscosity.
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Summary We investigate the stability of an axisymmetric pancake vortex in a continuously stratified and rotating fluid. The characteristics
and domains of existence of the different instabilities are determined as a function of the Froude number Fh, Rossby numberRo, aspect ratio
α and Reynolds number Re. The centrifugal instability is almost independent of the aspect ratio of the vortex due to its short-wavelength
nature and depends mostly on the Rossby number Ro and the buoyancy Reynolds number R = ReF 2

h . The shear instability exists for the
azimuthal wavenumber m = 2 only when Fh/α is below a threshold depending on Ro. This condition comes from confinement effects
along the vertical. The shear instability transforms into a mixed baroclinic-shear instability when the Burger number Bu = α2Ro2/(4F 2

h )
is smaller than unity. The baroclinic instability develops when Fh/α|1 + 1/Ro| > 1.46 in qualitative agreement with an analytical model.

INTRODUCTION

In stably stratified rotating fluids, vortices have a pancake shape with a small thickness compared to their radial extent.
An example is the Mediterranean eddies (Meddies) which are formed by salty water flowing from the Mediterranean sea into
the Atlantic ocean [1, 2]. The stability of such vortices has been studied with multi-layer models under the quasi-gesotrophic
or shallow water approximations [3, 4, 5]. More recently, continuously stratified non-rotating fluids [8, 9, 10] or quasi-
geostrophic fluids [6, 7] have been considered. In order to link these two limits, the linear stability of an isolated axisymmetric
pancake vortex is studied here in a continuously stratified fluid with arbitrary background rotation.

METHODS

The base vortex is chosen to have a Gaussian angular velocity profile in radial (r) and vertical (z) directions

Ω = Ω0exp

(
− r

2

R2
− z2

Λ2

)
, (1)

where Ω0 is the maximum angular velocity, Λ the half thickness and R the radius. The base density inside the vortex is
deduced from the thermal-wind relation. The stability problem is solved numerically by discretizing the linearized Boussinesq
equations with finite element methods and by solving the eigenvalue problem with the Krylov-Schur method of SLEPc library
[11]. The most unstable modes have been determined as a function of azimuthal wavenumberm, Froude number Fh = Ω0/N ,
Rossby number Ro = Ω0/Ωb, Reynolds number Re = Ω0R

2/ν and aspect ratio α = Λ/R, where N is the Brunt-Väisälä
frequency, Ωb the ambient rotation and ν the viscosity. The Schmidt number Sc = ν/κ (where κ is the mass diffusivity of the
stratifying agent) is set to unity.

RESULTS

The pancake vortex is unstable to many kinds of instabilities depending on the azimuthal wavenumber, Froude and Rossby
numbers. As an example, Figure 1a shows the domains of existence of each instability for the azimuthal wavenumber m = 2
in the parameter space (Fh/α,Ro). The corresponding eigenmodes are displayed in Figure 1b-e. The origin of each instability
has been identified thanks to stability criteria or from their resemblance with the instabilities in the columnar limit (α→∞).
The centrifugal instability (Fig. 1b) exists for the azimuthal wavenumbers m = 0, 1, 2 when the Rossby number |Ro| is larger
than a critical value such that the generalized Rayleigh discriminant is negative. For a given Rossby number, its maximum
growth rate is almost independent of the aspect ratio α and scales mostly as R−1/3 where R = ReF 2

h is the Buoyancy
Reynolds number. For a given Reynolds number, the centrifugal instability is therefore stabilized for small Froude number
(Fig. 1a). The shear instability (Fig. 1b) due to the radial shear exists for m = 2 when the vertical Froude number Fh/α
is below a threshold depending on the Rossby number (Fig. 1a). This condition derives directly from the fact that the shear
instability for a columnar vortex exists only in the vertical wavenumber band 0 ≤ kRFh ≤ c(Ro), where c(Ro) is a constant
depending on Ro. The pancake vortex should be therefore tall enough so that the minimum vertical wavenumber fitting inside
the pancake vortex, kR ' π/α, is unstable, i.e. Fh/α ≤ c(Ro)/π. When the Burger number Bu = α2Ro2/(4F 2

h ) is smaller
than unity, the shear instability transforms continuously into a mixed baroclinic-shear instability (Fig. 1a). The eigenmode
of the latter instability (Fig. 1d) resembles the shear instability one (Fig. 1c) but its energy source is the potential energy of

∗Corresponding author. Email: eunok@ladhyx.polytechnique.fr
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the base flow instead of the kinetic energy. A similar mode has been found by [7] in the quasi-geostrophic limit. The pure
baroclinic instability (Fig. 1e) exists for Fh/α|1 + 1/Ro| ≥ 1.46 (Fig. 1a), just below the threshold for the gravitational
instability [9], i.e. when the isopycnals of the base vortex are almost about to overturn. It can destabilize a large band of
azimuthal wavenumbers m ≥ 1. An analytical model consisting in a bounded vortex with an angular velocity only varying
slowly in the vertical direction shows that this threshold comes from confinement effects. This model further shows that the
maximum growth rate and the most amplified azimuthal wavenumber of the baroclinic instability scale as Fh/α|1 + 1/Ro|
in good agreement with the numerical results. For the azimuthal wavenumber m = 1 (not shown), there exists an additional
instability: the Gent-McWilliams instability [12] which bends the vortex. It continuously changes into a mixed baroclinic-
Gent-McWilliams instability for Burger number below unity, as reported by [7] in the quasi-geostrophic limit. Comparison to
oceanic observations will be discussed.

(a)

Figure 1: (a) Stability map as a function of the vertical Froude number Fh/α and the Rossby number Ro for m = 2 and
Re = 10000: gravitational instability, centrifugal instability, horizontal shear instability, baroclinic shear
instability and baroclinic instability. Real part of the radial velocity perturbation Re(ur) of the (b) centrifugal instability
for Ro = 20, (c) shear instability for Ro = 20, (d) baroclinic-shear instability for Ro = 0.25 and (e) baroclinic instability for
Ro = 0.25 for m = 2, α = 1.2, Fh = 0.5 and Re = 10000. The dotted line indicates the extension of the base flow where
Ω = 0.1Ω0. Horizontal lines represent isopycnals.
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Summary We consider the interaction between a surface buoyancy strip and an internal vortex. This research investigates the coupling
between the observable ocean surface and the less well observed deeper ocean. We show that the strip?vortex interaction depends on the
ratio of the time scales of the two features, and on their relative displacement (horizontally and vertically). Intense buoyancy strips break
down rapidly once perturbed by the vortex, whereas weak strips tend to wrap due to the vortex rotation. When the vortex is close to the
surface and below an intense strip, the vortex may destabilise and break into smaller vortices. Importantly, the interaction depends on the
sign of the buoyancy strip relative to that of the internal vortex. Above a cyclone, a surface strip with positive buoyancy rolls up into a spiral
filament, while a strip with negative buoyancy forms a row of billows on both sides of the vortex.

INTRODUCTION

The availability of data at the ocean’s surface has increased both in quantity and quality with the increase of satellite mea-
surements. These data provide detailed information about the ocean surface dynamics, from which one may infer information
on the internal dynamics, invisible to direct satellite observations. Our ability to relate the surface dynamics to the interior
dynamics greatly depends on our theoretical understanding of the coupling and interaction between the two. At meso-scales,
the dynamics of the surface alone is well documented, in particular within the context of the Surface Quasi-Geostrophic (SQG)
model, see [1,2] for buoyancy strips. It should be noted that SQG remains relevant at submeso-scales. Similarly, the dynamics
of internal vortices under the quasi-geostrophic approximation is now well known, see [3] for isolated ellipsoidal vortices.
Much less is known, however, for the coupled system. Perrot at al [4] studied the interaction between a internal vortex and an
elliptical patch of buoyancy at the surface. Here we consider a different situation where the surface elliptical patch is replaced
by a strip of buoyancy, modelling a filament. The main difference is that the (isolated) strip is always intrinsically unstable,
while an elliptical surface vortex is stable for aspect ratios < 2.34 [5]. The internal vortex is taken to be spherical (after
stretching by the ratio of buoyancy to Coriolis frequencies), implying it is stable if taken alone. We investigate the influence
of the relative sign of the buoyancy anomaly with respect to the sign of the vortex as well as their displacement.

RESULTS

We consider a strip of buoyancy anomaly b of half-width a = 0.5 located at the top surface of a (2π)3 computational
domain. The transverse buoyancy profile is b = bm

√
1− (x/a)2, leading to a linear profile of velocity within the strip,

v(x) = bm
a x. |x| < a. The linear stability of the strip has been examined, and we find that the strip is unstable to perturbations

with wavenumber k ∈ [0, kmax], kmax ' 1.1/a. The most amplified mode has k ' 0.73/a. The domain is periodic in both
horizontal coordinates. A sphere of uniform potential vorticity q = 1, of radius r = a, is centred at a depthH from the surface
and is displaced horizontally from the central axis of the strip by a distance %. In this study we investigate the influence of bm,
H and % on the dynamics of the interaction.

Simulations are performed using the Contour-Advective Semi-Lagrangian algorithm described in [4] and references
therein. The coarse grid on which the interior velocity field is obtained has a resolution of 2563 while is it 10242 at the
surface where smaller scale features are expected.
Figure 1 illustrates the interaction in cases where there is no horizontal displacement between the surface strip and the internal
vortex. By symmetry, the centroid of the vortex remains at the centre of the domain. For small values of bm, the strip is
nearly passive and is wound up by rotating vortex. The strip will eventually destabilise once it gets sufficiently thin. The
vortex remains almost exactly spherical throughout the simulation. The shear flow induced by the strip is not strong enough
to disrupt the vortex. On the other hand, we see a topological differences between the cases bm > 0 and bm < 0, even for
small values of |bm|. Buoyancy tends to accumulate directly above the vortex when bm < 0, in a region of cooperative shear,
and is depleted from this region when bm > 0 (adverse shear). The reason for this behaviour becomes clearer with increasing
|bm|, and is related to the destabilisation of the strip. The vortex first deforms the strip. In the case bm > 0, the deformation
of the strip above the vortex initiates a saddle point between two consecutive billows along the strip while in the case bm < 0
it seeds the formation a billow (again due to the cooperative shear). For an intense strip, the shear induced by the strip is able
to deform, and even tear the vortex apart. This effect is more pronounced in adverse shear.

∗Corresponding author. Email: jean.reinaud@st-andrews.ac.uk
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Figure 1: Surface buoyancy strip (blue for b < 0, red for > 0, and internal vortex (black) with q = 1. From left to right. First
frame: % = 0, H = 0.5, bm = 0.01 at t = 600. Second frame: same as left but bm = −0.01. Third frame: ρ = 0, H = 0.5
bm = 1 and t = 17.5. Fourth frame: same as third one but bm = −1.

Figure 2: Surface buoyancy strip (blue for bm < 0, red for > 0, and internal vortex (black) with q = 1. From left to right.
First two frame: % = r, H = 0.25, bm = 2 at t = 7.5 (first) and t = 12.5 (second). Last two frames same as first two, but
bm = −2.

Figure 2 illustrates how a horizontal displacement between the strip and the vortex changes the flow evolution. For
illustration purposes, the vortex is located closer to the surface (H = 0.25) and near an edge of the strip (% = a = r) where
the velocity induced by the strip is maximum (and equal to bm). We can see that the vortex now travels along the edge of
the strip and produces a more complex deformation field on the strip. Indeed, it becomes a moving source of perturbations
feeding further instabilities along the strip. The strip breaks asymmetrically, and the vortex is caught in a complex shear flow
which disrupts and eventually tears it apart. Both the strip and the vortex are now sources of smaller-scale structures in the
flow, inducing a cascade of both enstrophy and energy to higher wavenumbers (smaller scales).

CONCLUSION

The examples discussed illustrate the richness of the interaction between a strip of surface buoyancy and a deep vortex.
Both are potential sources of smaller-scale structures in the flow. The details of the interaction depends on the time scales
associated with the features and whether they are in a cooperative or an adverse shear situation. As regards applications to
ocean dynamics, we find that the link between an observable surface structure and the internal dynamics is tenuous at best. In
particular, the existence of a buoyancy patch at the surface is not always associated with the presence of the internal vortex
directly below it. The presentation will also analyse energy cascades at the surface and in the interior, as well as the exchange
of energy between the surface and the interior.
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Summary Double-diffusive and settling-driven convection processes can enhance the sedimentation rate of particles beneath a sediment-
laden plume. The two mechanisms can be active simultaneously, and previous experimental studies had difficulty distinguishing them 
visually. In experiments with a sediment-laden fluid overlying a saline layer, visual measurements of mean velocities can only be made in 
the optically clear lower layer. We measured the velocity and turbulence components of the flow field above and below the initial 
sediment/salt interface, using an Acoustic Doppler Velocimeter. The velocity of the sediment fingers in the lower layer were always 
larger than the Stokes settling velocity of the particles, leading to an asymmetry in the flow field of the two convective layers. Sediment 
fingers only dominated when there were marginal density differences between the two layers. We conclude that double diffusive sediment 
fingers control sedimentation beneath interflows in most lakes, whereas settling-driven convection is dominant in most oceanic overflows. 
 
   When a sediment-laden river enters in to a stratified lake or the coastal ocean, it is of great interest to know how fast the 
sediment settles from the base of the resulting surface or subsurface flow (overflow or interflow). There is observational 
evidence of enhanced sedimentation near the mouth of the rivers, in the coastal ocean [6] and lakes [9], where the apparent 
particle settling rate is larger than that based on Stokes settling velocity of a single particle. However it is not clear whether 
such enhanced settling is due to flocculation [8], double-diffusive convection [4, 7] or settling-driven convection [5]. In the 
absence of flocculation, two related processes of enhanced particle sedimentation could occur beneath a sediment-laden 
intrusion; namely double-diffusive convection (illustrated in Figure 1a) and settling-driven convection (illustrated in Figure 
1b). When a sediment-laden fluid overlies a denser saline layer, the accumulation of particles at the interface can develop a 
gravitationally unstable bulk density profile that produces Rayleigh-Taylor instability at the sediment front [5, 10, 11, 1, 2], 
shown in Figure 1b. In this case the settling-driven mechanism leads to convective sediment plumes below the interface, 
which drives vigorous convection. Double-diffusive “sediment-fingering” is another instability that arises due to the 
diffusion of salt being much faster than the Brownian diffusion of sediment. This process results in rapidly descending 
fingers of sediment beneath the intrusion as shown in Figure 1a. 
 

   While there has been great progress in direct numerical simulations of double diffusion [10, 11, 1, 2], there is a paucity 
of solid experimental or theoretical descriptions of the process, which limits our understanding of sediment transport. A 
critical limitation of all previous experiments [3, 4, 5, 7] was that the sediment layer was optically opaque, which greatly 
hampered an understanding of the physical processes at work. In this experimental study we investigated the responsible 
mechanisms for the enhanced sedimentation of non-cohesive SiC particles with a median diameter of 7.8 μm. We conducted 
a series of geophysical relevant experiments to distinguish enhanced sedimentation due to double-diffusive fingering versus 
settling-driven convection. By measuring the turbulence characteristics using a NORTEK Vectrino+ Acoustic Doppler 

Figure1. Schematic figures indicating (a) the horizontally symmetric double-diffusive instability 
and (b) the vertically symmetric Rayleigh-Taylor instability (the red lines show the initial 
interface between the saline and sediment laden layers). 
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Velocimeter (ADV) in the sediment-laden and saline layers of a two-layer configuration, we determined what conditions 
were consistent with double-diffusive or settling-driven convections. Our data covered a geophysical relevant range of 
salinity and sediment concentration differences (Figure 2a), which we used to provide a sedimentation process regime 
diagram (Figure 2b). We then applied the diagram to predict the occurrence of enhanced sedimentation beneath overflows 
and interflows in oceans and lakes. 
   Our main conclusion was that for 7.8 µm SiC particles, sediment fingers due to double-diffusive convection dominated 
only for 1 ≤ Rρ < 1.1. However, settling-driven convection was significant for Rρ > 2, and strength of turbulence in the 
bottom layer only depended on density difference due to the added sediment. We anticipate that for particles with slower 
settling velocities (i.e. smaller or lighter) there would be a greater range of Rρ, where double-diffusive processes dominate. 
Sediment-laden underflows or interflows are rare in the coastal ocean, due to the large density difference between fresh 
water and seawater (Δρ ~ 20 kg m-3). This implies that sediment laden overflows and river plumes in ocean generally have 
Rp >> 1 and hence settling-driven convection is the dominant sedimentation mechanism (Figure 2b). An interflow by 
definition occurs at its depth of neutral buoyancy, where the density difference is minimal (Rρ ~ 1). Therefore based on our 
regime diagram (Figure 2b) double-diffusive convection is the primary mechanism for sedimentation in these flows. 
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Figure 2. (a) The turbulence strength normalized by Stokes settling velocity in the first 500s for the top and bottom layers as a function of 
the density difference due to sediment and salinity or Rρ (The size of the red and blue circles in lower right corner represents normalized 
turbulence strength of 27.5) and (b) A regime diagram showing the occurrence of overflows, underflows and interflows. 
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Summary Various oscillation phenomena, such as the transitions between stable and unstable states of western boundary currents (e.g., the 
Kuroshio), are present in the oceanic circulation of the North Pacific Ocean. These phenomena are considered to be related to non-linear 
rhythmic phenomena, such as the synchronization and the stochastic resonance, which are often observed in non-linear ocean systems. 
However, oceanic applications of these non-linear rhythmic phenomena have not been investigated in detail. Thus, we investigated the 
responses of oceanic double gyres to external wind forcing with and without noise using a 1.5 layer quasi-geostrophic model and considered the 
possibility of the occurrence of these non-linear rhythmic phenomena in general oceanic circulation. 
 

INTRODUCTION 

 
Synchronization is an adjustment (e.g., frequency and/or phase locking) of the rhythms of two or more self-sustained 

oscillating systems that have different periods because of their non-linear interaction [1, 2]. Stochastic resonance is a 
phenomenon in which parts of potential signals can exceed the threshold when adequate noise is added to non-linear 
systems; these can then be detected as actual signals [3, 4]. Both phenomena are general characteristics of highly non-linear 
open systems and have been observed in living systems and electrical circuits [2, 4]. They are considered to be related to 
formation of ordered structure, such as in the rhythm adjustment observed in non-linear systems.  

The ocean system can be regarded as a highly non-linear open system driven by external forcing (i.e., the wind stress on 
the sea surface). The variability in the oceanic general circulation results in a non-linear interaction between the atmospheric 
wind stress oscillator and the oceanic circulation oscillator. In fact, previous studies [5-11] have noted the possibility that 
both the synchronization and the stochastic resonance should play an important role in causing the variability of strong 
oceanic currents and of the concurrent eddy shedding. The aim of this study is to understand the relevance of 
synchronization and stochastic resonance in the generation of oceanic turbulence. 
 

NUMERICAL MODEL AND METHODS 

 

The model used in this study was a 1.5 layer, reduced-gravity, quasi-geostrophic numerical model with Rayleigh-type 
interfacial friction and a nonslip boundary condition [12]. The model domain was a rectangular area of 3600 km × 2800 km 
representing the mid-latitude North Pacific. Further details of the numerical model are provided in [8]. 

The external wind forcing, τ (y, t), has the following form: 
τ (y, t) = [1 + α cos(ωt) + ε n(t)/σn] × τ0 cos(2πy/L),                                               Eq. (1) 

whereα is the amplitude of seasonal variation (see below in this section), ω is the frequency of seasonal variation (= 1/1 
year−1), ε is the amplitude of red noise n(t) [13], σn is the root mean square of n(t), τ0 is the amplitude of wind stress (= 0.1 N 
m−2), and L is the length of the region in the N-S direction (= 2800 km). The basic external forcing field, τ0 cos(2πy/L), has 
only an E-W component, is constant in time and varies in the N-S direction, representing a simplified spatial distribution of 
wind stress in the mid-latitude North Pacific. Seasonal variation and red noise were added to the basic field after year 50 in 
the integration. Further details of the red noise calculation are provided in [10]. 

The experiments for constant external forcing (i.e., α = ε = 0.0) [9] showed that the energy level changes 
discontinuously and represents a different quality state. As a result, the state of Re = 39 represents the state in which the 
modelled ocean regularly oscillates with a characteristic period. The state with Re = 157 represents the situation in which 
potential signals exist in the model ocean but are not apparent. 

Based on the above results, we conduct the following experiments: 
[Seasonally changing experiments] These experiments were conducted under seasonally varying external forcing with 

a 1 year period for Re = 39. In these experiments, the only variable parameter was α, the amplitude of the seasonal variation 
(i.e., ε = 0.0), which can vary from 0.0 to 1.0: α = 0.0 corresponds to no seasonal variation, and α = 1.0 indicates that the 
amplitude of the seasonal variation is equal to that of the average external force. 

[Noise-added experiments] These experiments were conducted under red-noise-added external forcing for Re = 150. 
In these experiments, the only variable parameter was ε, the amplitude of the seasonal variation (i.e., α = 0.0), which can 
vary from 0.0 to 0.1: ε = 0.0 corresponds to no added red noise, and ε = 0.25 indicates that the amplitude of the red noise is 
equal to that of the average of external force because the range of x(t)/σx in Eq. (1) is roughly equal to ±4.0 [6]. 
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RESULTS AND DISCUSSION 

 

The results obtained in this study can be summarized as follows. 
(1) The response of the oceanic double-gyre to seasonally changing external forcing was investigated by changing only the 

seasonal variation amplitude α in the numerical model. We focused on the state Re = 39, in which the modelled ocean 
regularly oscillated with a characteristic period. 

(2) With seasonally varying external forcing, the characteristic period of the modelled ocean (2.45 years) was synchronized 
to twice the period of the external forcing (2 years). In this case, the period of the whole system is believed to adjust 
due to the interactions between the ocean system and the external forcing. 

(3) The response of the oceanic double-gyre to red-noise-added external forcing was investigated by varying only the red 
noise amplitude ε in the numerical model. We focused on the condition Re = 157, in which potential signals existed in 
the model ocean but did not appear in the results. 

(4) With the noise-added external forcing, an adequate noise amplified the potential signals in the system (i.e., stochastic 
resonances occur), but strong noise buried the potential signals within the noise. 

(5) An optimum noise strength in stochastic resonance is considered to exist at least in the parameter range corresponding 
to a noise that is not excessively strong. 
The result (5) is interesting because it is formally identical to the “intermediate-disturbance hypothesis” [14, 15], that 

has been demonstrated in ecology and in which species diversity in a local area is maximized when the environmental 
disturbances are neither excessively weak nor excessively strong. The relation between them and the generality should be 
investigated. 

Our previous studies [8-11] have noted also the possibility that both the synchronization and the stochastic resonance 
significantly influence the variability of strong oceanic currents and of the concurrent eddy shedding. These phenomena 
may affect the periods of oceanic oscillation phenomena, such as the transitions between stable and unstable states of 
western boundary currents (e.g., the Kuroshio). The roles of these phenomena in the real ocean should be investigated. 

The coupling of synchronization and stochastic resonance has also been discovered and is known as stochastic 
synchronization [16]. However, only one study [17] related to stochastic synchronization in oceanic circulation has been 
conducted so far; thus, additional investigations on this topic are required. 
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EVALUATION OF EDDY- AND NON-EDDY-VISCOSITY SUBGRID SCALE MODELS IN
STRATIFIED TURBULENCE

Sina Khani∗and Fernando Porté-Agel
École Polytechnique Fédérale de Lausanne (EPFL)

Summary This paper presents a detailed study on the performance of eddy- and non-eddy-viscosity subgrid scale (SGS) models using
direct numerical simulations (DNS) of decaying stratified turbulence, when two types of test filters – the Gaussian and sharp spectral filters
– are applied. It is shown that non-eddy-viscosity models yield very good results when a Gaussian filter is applied. On the other hand, the
eddy-viscosity models show less dissipative results when the spectral filter is applied. Overall, this study provides a strong support for the
choice of minimum grid spacing in eddy- and non-eddy-viscosity SGS parameterizations using theoretical scale analysis and DNS data.

INTRODUCTION

Due to the high computational costs of direct numerical simulations (DNS), large eddy simulations (LES) has been considered
in the computational studies of stratified turbulence in the last few years (e.g. Remmler & Hickel, 2012; Paoli et al., 2013;
Khani & Waite, 2014 and 2015). In particular, Khani & Waite (2014 and 2015) have studied the performance of three common
eddy-viscosity models in LES of forced stratified turbulence. They have shown that the robustness of LES in capturing the
fundamental characteristics of stratified turbulence depends on the resolution of the buoyancy scale Lb and also the SGS
models: the Kraichnan (1976) model requires ∆/Lb < 0.47, the Smagorinsky (1963) model requires ∆/Lb < 0.17 and the
dynamic Smagorinsky model requires ∆/Lb < 0.24, where ∆ is the grid spacing (Khani & Waite, 2014 and 2015). The
resolution of Lb might not be computationally practical when the buoyancy Reynolds number Reb is very large, as in, for
example, mesoscale motions in the atmosphere (e.g. Riley & Lindborg, 2008; Waite, 2014). As a result, improving the
capability of current SGS models in LES of stratified turbulence, when Lb is not resolved, is motivated. The first step for
this improvement is to evaluate different SGS models, including non-eddy-viscosity SGS parameterizations, using DNS data
through an a priori study. The results of this study will provide strong supports for the a posteriori study of Khani &
Waite (2014 and 2015). In addition, we will investigate the importance of resolving buoyancy scale Lb in LES of stratified
turbulence through the theoretical scale analysis on the SGS stress tensor τij , and using the fact that the vertical scale lz in
stratified turbulence is squeezed and scaled by the buoyancy scale Lb due to the buoyancy effects.

MATERIALS AND METHODS

An idealized case of study for decaying stratified turbulence in a cubic domain of size L = 2π with triply periodic boundary
conditions is considered. Taylor-Green vortices of size π, i.e.

u(x, 0) = cos(z)

 cos(x) sin(y)
− sin(x) cos(y)

0

 , (1)

along with low-level noise, are considered for the initial conditions. Spatial derivatives are discretized using the spectral
transform method with the cubic truncation. The two-thirds rule is considered for eliminating aliasing errors. The time
advancement includes the explicit third order Adams-Bashforth scheme for all terms except the diffusion terms, for which the
implicit trapezoidal method is employed. A sharp spectral filter with kc = π/∆f , a long with a Gaussian filter G(k) with the
isotropic form

G(k) = exp

(
−
k2∆2

f

24

)
, (2)

are applied, where ∆f is the test filter scale. The test filtering wavenumbers are kc = 10, 20, 32 and 44, which are smaller or
around the Ozmidov wavenumber ko = (N3/ε)1/2. Since the vertical kinetic energy is relatively small, the root-mean-square
velocity urms is set to

√
E at the time when the kinetic dissipation rate ε is large.
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CONCLUDING RESULTS AND DISCUSSION

Layered structures are seen in the x-z field of the actual and SGS stress tensors τ13, dissipation rate τij s̄ij and the dynamic
Smagorinsky coefficient cs. During the a priori study, different SGS models show both up- and downscale energy transfer,
except the regular Smagorinsky model that is a purely dissipative scheme. With a Gaussian test filter, the Smagorinsky
and dynamic Smagorinsky parameterizations are more dissipative in comparison with the nonlinear and modulated gradient
parameterizations. The histograms of SGS dissipation τij s̄ij are dramatically changed with changing the type of test filters.
The correlation coefficient γ, which shows the correlation between actual and SGS stress tensors, depend on the SGS model
and the type of filter scale. Moreover, the leading order of the SGS tensor τij depends on the resolution of Lb: when Lb

is not resolved, τij ∼ u2rms, which shows that the SGS stress removes the turbulent kinetic energy at the smallest resolved
scale (isotropic dissipation); when Lb is resolved, however, τij ∼ ∆2

fN
2, which shows that the SGS stress depends on the

test filter scale ∆f and the buoyancy frequency N , and that increased N requires smaller grid spacing to prevent excessive
SGS dissipation (consistent with the picture of anisotropic dissipation, as seen in LES of Khani & Waite, 2014 and 2015).
In conclusion, both the a priori and a posteriori studies suggest that the resolution of Lb is required in order to capture
the fundamental characteristics of stratified turbulence if common isotropic SGS models are employed. In other words, we
require to develop a new anisotropic SGS model for LES of stratified turbulence if the buoyancy scale Lb is not resolved.
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NUMERICAL SIMULATION OF FREE-SLIP DOUBLE-DIFFUSIVE GRAVITY CURRENTS

Jared Penney∗1 andMarek Stastna1

1Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Summary In situations where gravity currents develop due to thermohaline gradients, double-diffusive instabilities may also arise. When
simulating these flows numerically, because of the low diffusivities of both heat and salt, highly refined grids are required for adequate
resolution of the resulting small scale diffusive processes. This paper presents several high-resolution direct numerical simulations of
gravity currents formed by thermohaline gradients that induce double-diffusive salt fingering.

INTRODUCTION

Gravity currents are a well-documented phenomenon that arises due to density differences between interacting fluid masses
as a result of gradients in temperature or dissolved material (e.g., salinity). When both of these quantities contribute to the
density gradient, the difference in diffusion coefficients may result in double-diffusive instabilities. The primary challenge in
the numerical simulation of these instabilities is the adequate resolution of the different diffusive length scales of the tracers.
Because diffusivity of salinity is so small (typically on the the order of10−9 m2s−1), sharp saline interfaces may arise in
the flow that require a high number of grid points to resolve. This paper examines several high-resolution direct numerical
simulations (DNS) of double-diffusive, near-surface gravity currents. Initially, the flows are horizontally stratified in heat and
salt to simulate dam-break experiments so that a less dense current of hot, salty water flows over top of cooler, fresh water.
Although this causes the flow to become stably-stratified in density, the top layer sees a loss of both heat and salt to the bottom
layer due to diffusion. However, because the diffusivity of heat is larger than the diffusivity of salinity, the saline layer retains
most of its salt along the thermohaline interface while experiencing a relatively rapid decrease in temperature. This causes the
salty layer to increase in density near the interface, where denser fluid parcels begin to sink in the form of thin convective cells
called salt fingers. In a typical two layer system, the motion of the fingers would be primarily vertical. In this configuration,
the shear along the interface of the current causes them to slope down and away from the direction of flow. The shear also has
the effect of aligning the fingers in rows parallel to the direction of the flow. Depending on the size of the current, the salt lost
due to fingering may be enough to make the gravity current lose coherence and hinder its motion in the streamwise direction.

METHODOLOGY

The double-diffusive gravity currents presented in this paper are simulated using the Boussinesq approximation to the
Navier-Stokes equations under the effects of incompressibility. Salinity,s, and temperature,T , are governed by typical
conservation laws, and are coupled to the momentum equations using a nonlinear approximation to the UNESCO equation of
state for seawater density,ρ,

∂u

∂t
+ u ·∇u = −

1

ρ0
∇p− g

ρ

ρ0
δi3 + ν∇2

u, ∇ · u = 0,
∂T

∂t
+ u ·∇T = κT∇

2T,
∂s

∂t
+ u ·∇s = κs∇

2s,

ρ (T, s) = ρ0 + c1 + c2T + c3s+ c4T
2 + c5sT + c6T

3 + c7sT
2.

In these equations,u = (u, v, w) is the velocity in thex-, y-, andz- (or streamwise, spanwise, and vertical) directions,
respectively,p is the pressure,g is the gravitational constant,δi3 is the Kronecker delta, andν = 2 × 10−6 m2/s is the
kinematic viscosity.κT = 3.4 × 10−8 m2/s andκs = 2 × 10−8 m2/s are the thermal and saline diffusivity coefficients,
while ρ0 = 1000 kg/m3 is the reference density, andci, i = 1, . . . , 7, are the coefficients of the nonlinear equation of state
described by [2]. The initial thermohaline stratification is defined by

s (x, t = 0)

∆s
=

T (x, t = 0)− T0

∆T
=

1

2

(

1 + tanh

(

x0 − x

∆x

))

, (1)

wherex0 gives the midpoint of the stratification, and∆x = 0.5 cm sets the width.T0 = 15 ◦C is chosen as the temperature of
the cool water, while the change in temperature and salinity between the layers are∆T = 25 ◦C and∆s = 5psu, respectively.
This arrangement gives lighter, hot, salty water to the left ofx = x0, and denser, cool, fresh water to the right. The fluid is
initially stationary, with all motion arising from the stratification. In each direction, free-slip boundary conditions are chosen
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Figure 1: Salinity isosurfaces inpsu for a gravity current in a40 cm × 4 cm × 4 cm tank with free-slip boundary conditions
in all directions after25 s. The arrow indicates the direction of travel of the current.

for the velocity fields, while no-flux conditions are chosen for the tracers. In the vertical direction, the free-slip condition has
the effect of simulating a near-surface gravity current in a tank with an open top.

Direct numerical simulation was performed using the Spectral Parallel Incompressible Navier-Stokes Solver (SPINS)
model [6]. Spatial derivatives are calculated using cosine transforms, while the time-stepping method is variable third-order
Adams-Bashforth. In each experiment, the midpoint of the pycnocline is varied to examine the effect of different initial
volumes of salty water, and thus, different current sizes. The grid spacing is9.766 × 10−3 cm in the streamwise direction,
3.125× 10−2 cm in the spanwise direction, and2.083× 10−2 cm in the vertical direction.

RESULTS

Each numerical experiment exhibits a similar flow pattern. To stabilize the density gradient, the less dense, warm, salty
water moves along top the denser, cool, fresh water, forming a near-surface gravity current that travels toward the right side of
the tank. The current head takes the shape described by inviscid theory [1] and observed in moving boundary experiments [5].
Towards the back of each current, horizontal salt fingers that are two-dimensional in the streamwise and vertical direction begin
to form. The heads of these fingers eventually begin to sink, causing the fingers to slope down and away from the direction in
which the current is traveling. The streamwise shear causes spanwise undulations in the two-dimensional fingers, which is the
beginning of the salt sheet instability as described by [3] and [4]. The sheets give way to the full three-dimensionalization of
the fingers, which arrange themselves parallel to the direction of the shear. Meanwhile, the head of the current remains mostly
two-dimensional, even upon colliding with the far wall. These features are observable in Figure 1, which presents isosurfaces
of the salinity field of the lowest salt water volume experiment, where the midpoint of the pycnocline is set2 cm from the
left-hand wall. This simulation shows an increase in three-dimensionalization moving from the head of the current towards
the back.

In general, prior to collision with the wall, the current head in each experiment was observed to travel at a roughly constant
velocity of1.7 cm/s, independent of current volume. However, the low volume current presented in Figure 1 loses enough of
its salt content due to fingering that it slows down significantly. Additionally, upon colliding with the wall, the current loses
enough coherence that it breaks down. In contrast, the larger current simulations retain enough of their volume and shape that
they do not slow down, and upon colliding with the wall, rebound and travel leftward. In an experiment using the same initial
conditions as presented in Figure 1, but with a domain that is half as long, the flow manages to stay two-dimensional until
shortly after colliding with the wall.
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Summary The purpose of this numerical work is to investigate the influence of the Reynolds number on the evolution of particle-laden
gravity currents in a non-channelized non-axisymmetric lock-exchange configuration by means of high-fidelity simulations. Such configu-
rations are largely understudied by comparison to more conventional channelized or axisymmetric lock-exchange configurations, despite the
fact that most of gravity currents in nature originate from non-channelized non-axisymmetric configurations. It is found that the Reynolds
number has a strong influence on the lobe-and-cleft structures at the head of the current and on the deposition patterns over the flat bed.

INTRODUCTION

Turbidity currents are particle-laden gravity-driven currents in which the gravitational driving force is supplied by a density
excess associated with the suspension of particles. They exhibit a highly complex dynamic with the presence of the lobe-and-
cleft patterns at the front of the head and a region of mixing with intense spanwise Kelvin-Helmholtz vortices. Understanding
the physical mechanism associated with these currents as well as the correct prediction of their main features are of great
importance for practical and theoretical purposes. They have been under scrutiny for a very long time with many experimental
investigations and more recently with numerical investigations based on Direct Numerical Simulations. However, most of
those investigations were performed in a channelized flow configuration for which the flow is constraint by the wall in the
spanwise direction. Following our previous work on channelized turbidity currents [2], high-fidelity simulations are performed
in a non-channelized non-axisymmetric configuration where the current can freely evolved in the streamwise direction as well
as in the spanwise direction. In the present numerical investigations, the aim is to better understand the effect of the Reynolds
number on the spatio-temporal evolution of a non-channelized non-axisymmetric gravity current. The focus will be on the
lobe-and-cleft structures at the front of the current and on the deposition pattern at the bottom wall.

NUMERICAL METHODS AND FLOW CONFIGURATION

x1x3

L3s

L1s
L2s

L1

L3

L2

g

x2

r

Figure 1: Schematic view of the flow configuration.

The fluid-particle mixture (in blue in Figure 1) is enclosed in a
small portion of the domainL1s×L2s×L3s separated by a gate
from the clear fluid. Then, the gate is removed and the particles
flow due to gravity, without any constraint in the spanwise di-
rection. We choose half of the box height as the characteristic
length scale h = L2/2. The velocity scale is defined by the
buoyancy velocity as ub =

√
g′h. The reduced gravitational

acceleration g′ is defined as g′ = g(ρp − ρ0)ci/ρ0 where ρp
and ρ0 are the particle and clear fluid density respectively, g is
the gravitational acceleration and ci is the initial volume frac-
tion of the particles in the lock. With these two scales and the
kinematic viscosity of the fluid ν, we can define the Reynolds
number as Re = ubh/ν. All variables are made dimensionless
using ci, h or/and ub.

Free-slip boundary conditions are imposed for the velocity field in the streamwise and spanwise directions x1 and x3 while no-
slip boundary conditions are used in the vertical direction x2. For the scalar field, no-flux conditions are used in the streamwise
and spanwise directions x1 and x3, and in the vertical direction x2 at the top of the domain. For the particles deposition in
the vertical direction x2 at the bottom of the domain, a simple 1D outflow boundary condition is imposed, meaning that the
particles can virtually leave the computational domain (non conservative simulations). The modelling of the initial reservoir
is performed with a customized immersed boundary method based on a direct forcing approach that ensures zero-velocity
boundary conditions and a no-flux boundary condition for the fluid-particle mixture at the wall of the solid geometry. We
solve the incompressible Navier-Stokes equations using the Boussinesq approximation along with a scalar transport equation
on a Cartesian mesh with our high-order flow solver Incompact3d (www.incompact3d.com) which is based on sixth-order
compact schemes for spatial discretization, a third order Adams-Bashforth scheme for time advancement and a fully spectral
Poisson solver. Full details about the code can be found in [1].
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RESULTS

For this study, three simulations are performed with three different Reynolds numbers equal to 1000, 5000 and 10000.
The computational domain L1 × L2 × L3 = 12× 2× 12 is discretized with 1201× ny × 1201 mesh points with ny equal to
193, 289 and 385 for Re = 1000, 5000 and 10000 respectively. For the three simulations we use the same lock dimensions
L1s × L2s × L3s = 1 × 2 × 2 with a dimensionless settling velocity of us = 0.02 and a Schmidt number equal to 1. The
formation, merging and meandering of the lobe-and-cleft structures at the front of the current can be seen in Figure 1. The
observed slightly curved structures are different from the straight ones obtained with channelized or axisymmetric locks.
For Re=1000, the structures are almost symmetric with respect to x3 = 0 with very large lobe-and-left structures. When
the Reynolds number is increased the structures become smaller and more curved. Note that the streamwise and spanwise
extension of the current is the same for Re=5000 and Re=10000 suggesting a geometric similarity for the shape of the current
for high Reynolds numbers.
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Figure 2: Time evolution of isolines of the bottom wall concentration for Re=1000 (left), 5000 (middle) and 10000 (right).

2D maps of the wall deposition Dt(x1, x3, t) =
∫ t
0
cw(x1, x3, τ)us dτ (where cw is the concentration at the wall) are

presented in Figure 3. As already explained for the channel configuration in a previous study [2], the lines starting from the
initial volume and expanding with the current corresponds to the signature of the clefts. These maps can therefore be seen as a
footprint of the front structures and can be used to better understand the lobe-and-cleft patterns. It can be seen that most of the
deposition is location very close to the gate regardless of the Reynolds number. Once again, we can observe a very symmetric
shape for the deposition at Re=1000 whereas at Re=10000 a large-scale bifurcation seems to split the deposit map in two large
areas.

Figure 3: Deposit maps at t = 20 for Re=1000 (left), 5000 (middle) and 10000 (right). The data are normalized with the
maximum values (red is 1, blue is 0).
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Summary Idealized numerical simulations of the atmospheric kinetic energy spectrum are analyzed to better understand the wide range of
results reported in the literature. In particular, the role of stratified turbulence, vertical mixing, and vertical grid resolution are investigated
in simulations forced by baroclinic instability. Spectra are converged when the vertical grid spacing ∆z < 200 m – which is quite high
by comprehensive atmospheric model standards – but are very sensitive to resolution with coarser grids. When the vertical mixing scheme
is weak, the under-resolved spectra are energized in the mesoscale. By contrast, when strong mixing is employed, the under-resolved
mesoscale cascade is suppressed. Convergence requires that vertical scales associated with the full range of horizontal scales – including
quasi-geostrophic scales of large-scale vortices and the buoyancy-scale of small-scale stratified turbulence – be resolved.

INTRODUCTION

Over the last two decades, there has been increasing interest in using atmospheric models to study the atmospheric kinetic
energy spectrum and the energy cascade through the mesoscale (horizontal scales from O(1)-O(100) km). A variety of models
are able to reproduce the qualitative shape of the observed spectrum, which has a spectral slope of -3 at large scales, shallowing
to approximately -5/3 in the mesoscale [1, 2, 4]. Different driving mechanisms have been identified for the mesoscale cascade,
including stratified turbulence [3] and inertia–gravity waves [5]. There has naturally been a strong focus on increasing the
horizontal resolution of such studies, in order to capture more of the mesoscale spectrum at small scales. By contrast, vertical
resolution has received less attention, and coarse vertical grids with grid spacing ∆z ≈ 1 km outside the boundary layer are
often employed [2] in global and regional atmospheric models. Sensitivity to ∆z is rarely considered, but when it has been
investigated, spectra have been found to be possibly very dependent on ∆z [1]. In addition to practical implications, this grid
dependence gives insight into the mechanics of the cascade because some mechanisms (e.g. stratified turbulence) require very
fine vertical grids to be resolved. In this work, we present a careful investigation of the dependence of the energy spectrum on
the vertical resolution and vertical mixing, and discuss implications for theories of the mesoscale cascade.

METHODOLOGY

Forced simulations of the Boussinesq equations on an f -plane are performed and analyzed. A sinusoidal zonal jet is
initialized with Rossby and Froude numbers of 0.1. Simulations are seeded with low-level noise and forced by relaxation
to the initial jet. The numerical model is fully spectral (transform-based with full dealiasing in the horizontal and vertical).
Primary horizontal resolution is 512×512 grid points, with an effective grid spacing of 12 km, though some higher-resolution
cases are also discussed. Baroclinic instability of the initial jet grows over the first few days. Simulations are run for 24 days.
A wide range of vertical resolutions, from 16 levels (∆z = 2 km) to 256 levels (∆z = 120 m) are considered. In addition,
three different vertical mixing schemes are employed: no explicit mixing, hyperviscosity with a grid-dependent but otherwise
fixed coefficient, and stability-dependent Smagorinsky. Additional simulations testing the sensitivity to Coriolis parameter
and buoyancy frequency are also performed. In each case, horizontal wavenumber spectra of kinetic energy are computed,
averaged in the vertical, and averaged over the last few days of integration.

RESULTS

In simulations with no explicit vertical mixing, the energy spectra converge for ∆z < 200 m. The converged spectra
show the familiar double power law shape, with a large-scale spectral slope of -3 that shallows below scales of ≈ 100 km. By
contrast, the under-resolved simulations have an exaggerated mesoscale spectrum, with a very shallow slope that extends to
much larger scales. In the most extreme case (∆z = 2 km), the spectrum shallows below scales of 300 km, and the mesoscale
slope is around −1. Convergence occurs when the vertical grid is fine enough to capture the thickness of quasi-geostrophic
vortices at all scales with small Rossby number, as well as the buoyancy scale associated with smaller-scale motions. Indeed,
the small-scale features in the well-resolved cases have some similarities with idealized simulations of stratified turbulence.

In addition to vertical resolution, the details of the vertical mixing scheme also affect the simulated energy spectra. When
fixed vertical hyperviscosity is employed, the under-resolved simulations are strongly damped: vertical mixing removes ki-
netic energy from a wide range of horizontal scales, suppressing the shallowing of the mesoscale spectrum. Well-resolved
simulations are very similar to cases without vertical mixing. Stability-dependent Smagorinsky mixing behaves differently:
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under-resolved simulations are not affected by mixing because of their grid-scale stability, and these simulations resem-
ble experiments without mixing. However, high-resolution simulations have small grid-scale Richardson numbers, and the
mesoscale spectrum is correspondingly strongly damped. Stability-dependent Smagorinsky does not appear to be appropriate
for simulations with high vertical resolution. Implications for sub-grid scale modelling are discussed.

CONCLUSIONS

These findings suggest that, in some cases, kinetic energy spectra from atmospheric model simulations may be contam-
inated by low vertical resolution. Vertical grid spacings larger than 200 m and stability-dependent vertical mixing schemes
are commonly employed. Our work implies that the mesoscale spectra in such simulations may be exaggerated by under-
resolution in the vertical. Sensitivity to vertical resolution should always be checked directly.
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Summary Temperature fronts and associated cliff-ramp structures in stably stratified turbulence are investigated using DNS of the Navier-
Stokes equations under the Bousinesq approximation. Vertical profiles of temperature fluctuations show sawtooth wave structures which
result in a skewed PDF of the derivative of temperature fluctuation in the z-direction. The mechanisms for generating and maintaining these
structures are considered.

In the atmosphere and oceans, flows are often stably stratified, and ongoing research seeks to understand the dynamics
of stratification in geophysical turbulence. An important feature of stably stratified turbulence is the significant influence of
internal gravity waves which makes stably stratified turbulence unique compared to homogeneous isotropic turbulence. In this
paper, we investigate the genesis of temperature fronts–a crucial subject both practically and fundamentally–in stably stratified
turbulence using Direct Numerical Simulations (DNS) with 10243 grid points.

The simulations are done by solving the following non-dimensionalized 3D momentum and temperature fluctuation equa-
tions under the Boussinesq approximation pseudo-spectrally,

(∂t − ν∇2)u = −u · ∇u − ∇p + θẑ + f (1)

(∂t − κ∇2)θ = −N2w − u · ∇θ (2)

∇ · u = 0 (3)

where u = (u, v,w) are velocity components, θ is the temperature fluc-
tuation about the linear (stable) mean temperature profile dT/dz ≡
−N2, and N is the Brunt–Väisälä frequency,

√
gα(∂T/∂z)/T0. f is a

stochastic forcing applied to the large scales of the horizontal veloc-
ity. In wavenumber space, we set f̃(k) = ( f̃x(kx, ky, 0), f̃y(kx, ky, 0), 0)
so that the forcing excites pure 2D velocity modes uniform in the z-
direction and isotropic in (x,y). For the analysis of velocity field, we
use the so-called Craya-Herring decomposition, which decomposes
the velocity field into a vortex mode (ϕ1) and a wave mode (ϕ2). As
an initial condition, we set all velocity components zero, and excite
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Figure 1: The growth of ϕ1 and ϕ2 energy.

the velocity without coupling to the temperature field. After the 2D velocity field is developed, we switch on the velocity-
temperature coupling [1]. Figure 1 shows the temporal growth of the energy in ϕ1 and ϕ2 for N2 = 10 and forcing wavenumber
k f = 4. Stratification is switched on at t = 10, and because of the interaction with the vortex mode, the wave mode ϕ2 grows
nearly exponentially and becomes comparable with ϕ1 around t = 20. It takes a rather long period for the ϕ1 and ϕ2 modes to
become stationary around t = 50.

Figure 2: Contour plot of the temperature fluctuations
on the slice at y = π at t = 64.7.

Figure 2 shows a gray-scale contour plot of temperature fluctu-
ations at slice y = π (or y = 512 in grid number coordinates) at
t = 64.7. We observe many (almost vertically periodic) wavy struc-
tures with black (negative) and white (positive) layers stacked together
with clear boundaries implying a sharp temperature fronts. Similar
temperature front structures are observed in simulations of homoge-
neous shear flows [2],[3] as well as in large-eddy simulations of the
stably stratified atmospheric boundary layer [4]. Also, temperature
fronts are ubiquitous features in passive scalar turbulence [5]. The
fronts are tilted at angles that depend on the ratio of horizontal to
vertical gradients of temperature; Chung and Matheou [3] show that
for fixed shear the fronts become nearly horizontally when the mean
temperature gradient is very large.
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Figure 3: a): Temperature fluctuations along the line at x = 132, b): The total
temperature

Cliff-ramp structures are one of the sig-
natures of temperature fronts, and to show
this more clearly, a vertical cut is taken at
x = 132 in the region where the most intense
fronts are visible in Figure 2 (see the white
line in Figure 2). Temperature fluctuations
and the total temperature along this cut are
plotted in Figure 3. Figure 3-a) shows nu-
merous sharp jumps in the temperature fluc-
tuations with increasing z. These large jumps
result in a staircase pattern for the total tem-
perature shown in Figure 3-b). The sawtooth
waves consist of gradual decreasing θ with z
with rapid recovery to a positive value as the
frontal boundary is crossed. This asymmetry of gradients comes from the structure that warm temperature region lies on top
of cool temperature region.

The asymmetry of the positive and negative gradients in the z direction is further shown in the probability density function
(PDF) of temperature. Figure 4 shows the PDFs of θ and the three components of its derivatives. We see that the PDF of θ is
near Gaussian for small values, while the tails exhibit strong
non-Gaussianity for all components of the gradient of θ.
Among the three components, ∂θ/∂z shows skewness while the
horizontal derivatives are not skewed.

Based on the above observations, the objectives of this work
are to seek the answers to the following questions:

(1) How is the strong temperature front produced in relation
of the effects of gravity waves? (How does it grow along
the development of ϕ1 and ϕ2 in Figure 1 ?)

(2) What are the relevant flow structures to maintain the strong
temperature front in stably stratified turbulence? (Are
they (approximate) vortex rings [4], pancake vortices [6]
or any kind of colliding waves?)

(3) How does the intermittency of the derivative of temper-
ature fluctuations develop as stratification varies? (De-
parture from Gaussian increases/decreases with stratifi-
cation?)

(4) What kind of interactions do flow instabilities in sta-
bly stratified turbulence have with temperature fronts?
zig-zag or Kelvin-Helmholtz (Zigzag instability [7][8]
causes the front genesis ? Kelvin-Helmholtz instability
enhances/suppresses it ?)

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

-40 -30 -20 -10  0  10  20  30

N2 = 10
t = 64.7340

θ
θx
θy
θz

Figure 4: PDFs of the temperature fluctuations and
the derivatives.

References
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Summary Three-dimensional simulations of flow through a single Pocillopora coral colony were performed to examine the interaction between 
coral geometry and hydrodynamics. The complex shape of a coral colony poses a significant challenge for numerical simulation. To simplify grid 
generation and minimize computational cost, the immersed boundary method was implemented. Large eddy simulation was chosen as the 
framework to capture the turbulent flow field in the range of realistic Reynolds numbers of 5,000 to 30,000. These results presented here give 
insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics. We found that, in contrast 
with the one previous numerical study of flow inside a coral colony, the maximum water velocity value in the colony interior was comparable to 
the value of the uniform flow velocity exterior to the coral.  
 

INTRODUCTION 

 
   Coral reefs are the largest shallow-water marine ecosystem. They form the habitat of more than 25% of all marine life, 
though they cover less than 1% of the ocean floor. In addition, coral reefs provide natural protection against storms and coastal 
erosion. But most of the world’s corals are currently under serious threat 
   Developing methods for measuring the flow field inside coral colonies is a key issue for understanding coral nutrient 
uptake, photosynthesis and wave dissipation capabilities [1-3]. Most of the physical and numerical experiments conducted 
previously have measured or modeled the flow over and external to the coral reef canopies, and theory and computations have 
treated the corals as an isotropic porous medium [4]. Experimental studies are also constrained due to the limitations of the 
measurement techniques and the limited environmental conditions in the laboratory. Numerical simulations can be an answer 
to overcome some of these shortcomings. Here, we compute the flow through and around a single Pocillopora coral colony 
whose geometry was obtained from the coral skeleton via computed tomography scanning.  
 

METHODS AND PROCEDURES 
 

   The immersed boundary (IB) method was implemented in order to handle the complex boundary. The Pocillopora coral 
colony geometry we used was obtained from the coral skeleton via computed tomography scanning by our colleagues in the 
Environmental Fluid Mechanics Research Laboratory at the Technion – Israel Institute of Technology.  
   The IB methodology applied in this work solves the Navier-Stokes equation in all liquid and mixed cells. Large eddy 
simulation (LES) was chosen as the framework in which the IB technique was implemented, so that the turbulent flow field 
could be captured without requiring extensive modeling. The largest scales of motion are calculated explicitly in LES while 
the effects of the small scales on the large scales, or the sub grid dynamics, are modeled. In the present study, a top-hat filter 
in physical space is applied implicitly by the finite difference operators. The resulting filtered equations of motion are: 

𝜕𝒖𝒊̅̅̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝒖𝒊̅̅̅ 𝒖𝒋̅̅ ̅) = −
1

𝜌

∂�̅�

∂𝑥𝑖

−
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

+ 𝜐
𝜕2𝒖𝒊̅̅̅

𝜕𝑥𝑗𝑥𝑗

+ 𝑓𝑖 

𝜕𝒖𝒊̅̅̅

𝜕𝑥𝑖

= 0 

where 𝒖𝒊̅̅̅ is the large-scale velocity vector, P is the pressure, 𝜌 is the fluid density and 𝜐 is the kinematic viscosity; 𝑓 
represents an external body force field, which in the present case is designed to enforce the proper boundary conditions on an 
arbitrary immersed body that does not coincide with the grid. The effect of the small scales upon the resolved part of turbulence 
appears in the SGS stress term, 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ −𝒖𝒊̅̅̅ 𝒖𝒋̅̅ ̅ which must be modeled. The dynamic eddy-viscosity model [5] used in 
this study is of the following form: 

𝜏𝑖𝑗 −
𝛿𝑖𝑗

3
𝜏𝑘𝑘 = −2𝜐𝑇𝑆�̅�𝑗 = −2 CΔ2|𝑆̅|𝑆�̅�𝑗  

where |𝑆̅| = (2𝑆�̅�𝑗𝑆�̅�𝑗)0.5 is the magnitude of large scale strain rate tensor,  

𝑆�̅�𝑗 =
1

2
(
𝜕𝒖𝒊̅̅̅

𝜕𝑥𝑗

+
𝜕𝒖𝒋̅̅ ̅

𝜕𝑥𝑖

) 

and the coefficient C is determined from a Lagrangian averaging procedure.  
The flow domain was set up as rectangular box where X represented the streamwise direction and Y and Z the width and the 
height of the domain, respectively. These dimensions allowed adequate space around each coral to build natural flow inside 
and outside of this coral colony. To further resolve the region of interest close to the coral with enhanced mixing, the grid was 
locally refined.  
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Figure 1. Rendering from STL file of Pocillopora coral colony. 

 
RESULTS & DISCUSSION 

 

   To quantify the field flow variations in the computational domain, velocities were extracted as a function of location 
along the span of the coral. The slices of the velocity field at different locations inside the coral gave a complete picture of 
the flow formation inside the coral colony. The simulations were performed at Reynold numbers ranging from 4,000 to 50,000 
to simulate natural low and high flow condition. The results of the simulations were compared and validated against the results 
of Chang et al. [6] for another Pocillopora colony geometry under similar flow condition. Surprisingly, high velocities were 
observed in some regions inside the coral colony. This indicates that some high velocities were still able to penetrate into the 
interior of coral, and were in fact accelerated. 

 

                         (a)                            (b) 

Figure 2. Slices of (a) velocity and (b) pressure field inside the Pocillopora colony. 
 

CONCLUSIONS 

 
   The velocity field inside a Pocillopora coral coral was simulated using the immersed boundary method over a range of 
realistic Reynolds numbers. LES was used as the framework to capture the turbulent flow. The simulations were validated 
against previous experimental and numerical investigations, and give clear insight into the flow formation inside a single coral 
colony. The findings contradicted previous numerical findings, in that internal colony velocities comparable to the external 
uniform velocity were found in our study. The present work will help us to understand the interaction between coral geometry 
and hydrodynamics and the impact of hydrodynamics on biological processes of coral. 
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Summary A three-dimensional proper orthogonal decomposition (POD) is applied to the wake of a sphere in a stably stratified environment.
The wake data are obtained through a spectral implicit LES numerical simulation highly resolved in both space and time. The Reynolds
number based on the tow velocity and diameter of the sphere is Re = 5 × 103 and the buoyancy Froude number is Fr = 4. Due to
the nature of the stably stratified wake, the decomposition analysis suggests the possibility of decomposing the flow field into an “inner”
portion and an “outer” portion, both representing different flow phenomena. This type of decomposition allows for further examination of
the enstrophy variation in the two dominant features of these flows: the turbulent wake core and the internal gravity waves radiated from the
wake core.

INTRODUCTION

Due to the prevalence of stably stratified environments in the atmosphere and oceans, the understanding of energy flux
paths in these environments is of considerable interest. One of the most important - yet not fully understood - energy flux
paths in a stably stratified medium is the formation and propagation of internal gravity waves due to turbulence [1]. It is
well known that the propagation angle of internal gravity waves (IGWs) is directly related to the forcing frequency of the
generating source [2]; however, the wide spectrum of frequencies typical of turbulent flows leaves many open questions about
how IGWs are generated and propagated from turbulent spots in a stratified medium.

Proper orthogonal decomposition (POD) is used for a variety of purposes in the analysis and simulation of turbulent flows
after first being suggested for use in the study of turbulence by Lumley [3]. The POD technique has been used to quantify the
dominant flow features in many types of flows (e.g., [4]), and is often applied to the velocity field in which case the spatial
modes represent those which maximize the turbulent kinetic energy. However, in other cases [5, 6] the vorticity is used as the
set of basis functions. In the case where vorticity is used the spatial modes represent those which maximize the enstrophy.
In each case spatial and temporal characteristics of the turbulent dynamics are revealed by examining and reconstructing the
turbulent flow field based on the obtained eigenmodes.

The study of [5] has previously assessed a sphere wake in stable stratification using two-dimensional POD by focusing on
key planes normal to the lateral and streamwise directions. The results of this analysis showed that each mode was responsible
for different angles of IGW propagation. The boundary conditions imposed by the numerical simulations in that study meant
that the data could be assessed until Nt ≈ 35 before re-entrant IGWs contaminated the flow field. In the current study, the
analysis is extended to three dimensions and the numerical simulations have incorporated sponge layers to allow for longer
examination times up to approximately Nt = 100.

NUMERICAL SIMULATIONS

The numerical model and initialization used in the present study is detailed in [7, 8] and is best described as a spectral
implicit LES solution. The definition of the geometry and the co-ordinate system are given in Fig. 1. The Reynolds number
of the simulation based on the tow velocity, U , and the diameter, D, of the sphere is set to Re = 5× 103, and the size of the
domain is approximatelyX×Y ×Z = 27D×27D×12D with a resolution of 256×256×175. The effect of stratification is
provided through the Froude number, Fr = 2U/(DN), and in this case is set to Fr = 4, where N is the buoyancy frequency
N =

√
(−g/ρ0)/(∂ρ/∂z), and ρ is the density.

y

Lx

Ly

Lz

Domain for 3D POD
x

z

Figure 1: Schematic defining the problem geometry and the three-dimensional domain used for the POD.
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RESULTS & DISCUSSION

The functionality of proper orthogonal decomposition maximizes a set of functions in terms of the variance. In many
implementations of POD the set of functions to be analyzed are snapshots of the velocity field at different times [9]; in these
cases the modes represent those features contributing most significantly to the the turbulent kinetic energy (i.e., the variance
of the velocity). In the current study, the set of functions to be analyzed are snapshots of the streamwise vorticity component,
ωx. Therefore, the modes found are those which contribute most significantly to the turbulent enstrophy. It is noted that the
horizontal components of vorticity contain contributions from both wake turbulence and IGWs whereas the vertical component
contains only contributions from turbulence [10].

We choose to classify the modes into two main categories: (i) those which contribute relatively more to the wake core,
and (ii) those which have relatively more enstrophy outside of the wake core. The former are referred to as “inner” modes
with the latter being “outer” modes. The selection of which modes are inner or outer modes is necessarily subjective. In the
current study the distinction is defined by the following ratio where the wake core definitions follow from the late-time size
of the wake [7], γm = ⟨ϕ2m (y ≥ 4D, z ≥ D)⟩/⟨ϕ2m (y < 4D, z < D)⟩, where the angle brackets denote a three-dimensional
spatial average. The ratio γm quantifies the relative streamwise enstrophy content in the outer wake versus the inner wake
for an individual mode. Due to the shear in the mean velocity profile within the wake core, the enstrophy is highest in this
location. Examples of so-called “inner” and “outer” modes are shown in Fig. 2.
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Figure 2: Normalized values of the POD eigenmodes (an analogue to streamwise vorticity) showing an example of an “inner” mode (mode
1, (a)-(c)) and “outer” mode (mode 10, (d)-(f)). The y-z transect is taken at the midpoint on the x-axis, and the x-y transect is taken at
z/D = 1 as shown by the cut planes in (c) and (f).

CONCLUSIONS

It is somewhat challenging to provide a generic description of the individual mode shapes to physical flow features since
the decomposed data sets vary as a function of the flow phenomena - in this case wake turbulence and IGWs. Therefore, care
must be taken to associate the mode distribution with the specific flow phenomena which is under investigation. Inherent in the
POD is the ability to reconstruct flow fields using selected modes through linear superposition. By selectively reconstructing
the flow fields using the “inner” modes and “outer” modes it will be shown that the relative contributions to the total enstrophy
of the turbulent wake core and the IGW field can be examined and quantified using the 3D POD technique. This type of
decomposition will enable the study of the coupling between turbulence and stratification and shed light on the dynamics of
vorticity in this type of flow.
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Summary Among the large scale magnetic dynamo mechanisms occurring in turbulent MHD flows in many astrophysical objects such as
stars, planets, accretions disks, galaxies etc. the so-called α-effect based on nonlinear interactions between the velocity and the magnetic
fields of the fluctuating turbulent components is without a doubt the most commonly invoked. The large scale electromotive force, whcih is
responsible for generation of the mean magnetic field is calculated as the cross-product of the wave-like solutions of the linearised equations
for the velocity u′ and magnetic field b′ of the same mode, i.e. with the same complex growth rate. Here it is demonstrated that there exists
a mechanism for mean electromotive force generation based on interactions of turbulent small scale fields of different modes, which does
not even require the fluid’s resistivity to operate and which is potentially very effective.

INTRODUCTION

The mean field theory [1, 2] is most commonly used to describe large scale magnetic fields in natural systems. It is based
on the following induction equation for magnetic field resulting from the Maxwell laws and the OhmâĂŹs law and averaged
over a statistical ensemble

∂ 〈B〉
∂t

= ∇× (〈u〉 × 〈B〉) +∇× 〈u′ ×B′〉+ η∇2B. (1)

The ensemble average removes the quickly varying in space and time turbulent fluctuations in magnetic and velocity fields,
B′ and u′, leaving the fields 〈B〉 and 〈u〉 which possess only slowly varying components. The averaged interactions of
small scale fluctuations generate a large scale electromotive force (EMF) 〈u′ ×B′〉, which is a physical foundation of the
mechanism of generation of the large scale magnetic fields.

THE NEW MECHANISM

The mean electromotive force is typically calculated as an average of the cross product of the perturbation velocity and
magnetic fields corresponding to a single eigenmode obtained from linearised problem. In such case, it was shown by [1], that
generation of the mean EMF is impossible without the magnetic diffusion, which creates a phase shift between the velocity
and magnetic fields within one eigenmode, i.e. perturbation fields associated with the same complex eigenvalue. However, in
[3] it was shown, that the interactions between different unstable tidal modes lead to generation of the electromotive force and
consequently, the possibility of exciting the magnetic dynamo instability, i.e. large scale magnetic field generation through the
well-known α-effect. It was also demonstrated for the first time, that the magnetic dissipation (i.e. the fluidâĂŹs resistivity)
is not necessary for generation of the electromotive force. A new mechanism of the EMF generation was found, based
on interactions between two eigenmodes with the same wave-vector and the EMFs were calculated, generated by both, the
resonance modes excited through the parametric instability mechanism and horizontal modes excited by interactions of the
Coriolis force and strain in the basic elliptic flow.

The theory of [3] is further developed in here on general grounds for the basic flow U0 in the form of axial jet and arbitrary
geometry. It is demonstrated that in the two asymptotic cases of double limits kU0 � Ωk/kz and either

∣∣〈B〉 · k/√µ0ρ
∣∣ �

|2Ω · k/k| or the opposite |2Ω · k/k| �
∣∣〈B〉 · k/√µ0ρ

∣∣ , where k is the wave-vector and Ω = Ωêz is the background rota-
tion, the large scale electromotive force induced via interactions between fluctuations belonging to two different eigenmodes,
i.e.

u′ = C1u
′(1) + C2u

′(2), B′ = C1B
′(1) + C2B

′(2) (2)

E =
1

2
<e (u′ ×B′∗)

=
1

2

√
µ0ρ<e

[(
C1û

(1)eiω1t + C2û
(2)eiω2t

)
eik·x ×

(
C∗1 B̂(1)∗e−iω1t + C∗2 B̂(2)∗e−iω2t

)
e−ik·x

]
=

1

2

√
µ0ρ<e

[
C1C

∗
2 û(1) × B̂(2)∗ei∆ωt + C∗1C2û

(2) × B̂(1)∗e−i∆ωt
]
, (3)

∗Corresponding author. Email: kamiz@igf.edu.pl
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oscillates on a timescale 1/∆ω much larger than that of the mean magnetic field growth and hence can lead to mean field
dynamo, as long as kz/k � 1. In the above ∆ω = ω1 − ω2 denotes the difference between the two eigenvalues associated
with the two interacting eigenmodes.

The new mechanism of EMF generation based on the interactions between fluctuations of the velocity and magnetic fields
with the same wavelength of a structure resulting from superposition of at least two different eigenmodes can be particularly
effective in systems with degenerate (multiple) eigenvalues. In such case the superposition of eigenmodes associated with one
eigenvalue and their nonlinear interactions result in the EMF growing in time as t to a power dependent on multiplicity (and
structure) of the eigenvalue, which enhances the mean field dynamo action. In the case of negligible resistivity of the fluid,
which extracts the new mechanism by eliminating the mean EMF generation through resistive phase shift between velocity
and magnetic fields, the large scale elctromotive force induced in systems with multiple eigenvalues takes the forllowing form

u′ = C1u
′(1) + C2tu

′(2), B′ = C1B
′(1) + C2tB

′(2) (4)

E =
1

2
<e (u′ ×B′∗)

=
1

2

√
µ0ρ<e

[(
C1ũ

(1) + C2tũ
(2)
)

ei(k·x+ωt) ×
(
C∗1 B̃(1)∗ + C∗2 tB̃

(2)∗
)

e−i(k·x+ωt)
]

= t
1

2

√
µ0ρ<e

[
C1C

∗
2 ũ(1) × B̃(2)∗ + C2C

∗
1 ũ(2) × B̃(1)∗

]
, (5)

where λ1, λ2, λ3 and λ4 are constants and the subscripts 1 and 2 at the fluctuating velocity and magnetic fields correspond
to two different eigenmodes assiciated with the same eigenvalue. The EMF obtained in such a way grows linearly in time,
however, in the case of higher multiplicites of eigenvalues in the problem the dominant contrbution to the mean electromotive
force can grow as a higher power of t.

CONCLUSIONS

A new mechanism of generation of mean electromotive force is presented, which operates even for perfectly conducting
fluids. The physical basis of the mechanism relies on nonlinear interactions between the magnetic and velocity fields of two
different MHD waves, which can produce non-zero EMF that either oscillates in time very slowly or grows in time as a power
of t. A thorugh analysis of this new mechanism may allow for determination of its role in generation of astrophysical large
scale magnetic fields, however, the relation of this mechanism to small scale dynamo mechanisms operating at high magnetic
Reynolds numbers Rm = U0L/η � 1 needs to be established.
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Summary A dust storm is a particle-laden two-phase flow with a Reynolds number of up to Reτ(106). The effect of particles on wind flow has 

gotten more and more attention; meanwhile it is important to understand the turbulence statistics in boundary-layer flow with particles. 

Therefore, field observations were conducted in the Desert of Qingtu Lake in western China, Results from these data revealed that a) the 

presence of sand particles appears to enhance both the streamwise and vertical turbulence intensities, with increases up to 20%; b) vertical 

turbulence intensity is likely to be more affected by particle than streamwise intensity; and c) with an increase in Reynolds number, the 

increases of streamwise and vertical intensities caused by particles are likely to be more significant. We also provide a physical interpretation of 

these phenomena. These results contribute to understanding the turbulence characteristics of a high Reynolds number ABL flow with particles. 

 
INTRODUCTION  

 

   It is important to understand the turbulence statistics, such as how turbulent kinetic energy is a key factor in maintaining 

turbulent flow (Perry et al , 1986 ; Marusic et al , 1997). However, most measurements have been expended in turbulent 

wind field or DNS, meanwhile this previous measurements almost in clean air flows (Hultmark et al, 2012; Hutchins and 

Marusic, 2007). Therefore, the analysis of the effect of particles on wind flow will contribute to understanding the 

turbulence characteristics of a high Reynolds number ABL flow. 

As we all know, a dust storm is a particle-laden two-phase flow with a Reynolds number of up to Reτ(10
6
). The effect 

of particles on wind flow has gotten more and more attention from scholars. Wei Zhang (2008) comparison of the 

turbulence statistics with and without sand reveals that the significant influence of sand movement on the wind field; 

Kenning and Crowe (1997) also discovery that the turbulence intensity variation was related to the turbulent wakes 

separated behind the particles; Bailiang Li(2012) used a commercial LDA system in wind tunnel, they find that turbulence 

intensities and Reynolds stress increase with the particles and that aeolian saltation increase the magnitude but not the 

frequency of burst-sweep events. But field experiments, the presence of sand are how to influence the development of 

turbulence? How to influence the turbulence intensity? At present, we do not know this clearly, Therefore, field 

observations were conducted in the Desert of Qingtu Lake in western China (E: 103° 40′ 03″, N: 39° 12′ 27″). Results from 

these data revealed the effect of particles on turbulence flow. 

 

FIELD MEASUREMENTS AND PRE-TREATMENT 

 

   Field observations were conducted in the Desert of Qingtu Lake in western China (E: 103° 40′ 03″, N: 39° 12′ 27″). 3D 

sonic anemometers (50Hz) and a sand particle counter (1Hz) were used to measure the three components of wind velocity 

and sediment process (sand transport rate Q (g/m/s)) under the condition of time synchronization. The 3D sonic 

anemometers installed at 11 levels (0.9m,1.71m,2.5m,3.49m,5m,7.15m,8.5m,10.24m,14.65m,20.96m,30m, just as Fig 1) 

and the sand particle counter installed at 4 levels ( 0.2 m, 0.3 m, 0.5 m and 0.7 m ). This paper distinguishes the flow with or 

without sand from the sediment process Q at 0.2m.Of course, before analyzing the data, we calibrate and correct the raw 

data of sediment process. The more details can be found from Masao Mikami et al (2005). The process of diversion and 

subtracting synoptic-scale fluctuations from the raw wind-velocity signals and more details can be found from Liu, H. Y. et 

al (2014). 

 

 

 

 

 

 

 

 

 
Figure 1 the 3D sonic anemometers installed and the sand particle counter installed at the test site. A shows the 3D sonic anemometers 

installed at 11levels and B shows the SPC installed at 4 levels. 
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Due to space limitations, The mean velocity profiles and the streamwise turbulence intensities (Picture doesn't show) 

show that the near-neutral ASL at the test site behaves like a canonical turbulent boundary layer during the selected hour of 

data. The more details is same as (Liu, H. Y. et al (2014); Hutchins. et al (2012)) . 

 

RESULTS  
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Figure 2 Figure a shows streamwise turbulent intensities normalized by Uτ at different heights The solid line indicates the normalized 

streamwise velocity fluctuation from Marusic et al .2013, dash line shows the variation of parameters A and B; Figure b shows vertical 

turbulent intensities. The dash line shows the formulation of Marusic and Kunkel (2004). Both of figures of Solid dot and circle are 

current ASL data with and without sand at Reτ =2.79× 106.  

Figure 2a is a comparison of the streamwise turbulent intensity with and without sand. Due to space limitations, we just 

show one group data at Reτ =2.79× 10
6
(The same of following analysis). Marusic et al .2013 have given variation of 

parameters A and B about streamwise turbulent intensity, we can seem that our data agree well with their results without 

sand. Considering the formulation is presented based on a canonical zero-pressure-gradient turbulent boundary layer, it is 

reasonable that the ASL can also be considered as a model of the canonical bounder layer. But when full of sand of flow, we 

can seem the streamwise turbulent intensity increasing clearly, about 15%. 

Figure 2b is a comparison of the vertical turbulent intensity with and without sand.From this figure, we see a different 

between our results and Marusic and Kunkel (2004), which is mainly in atmospheric surface layer flows, the top surface 

layer with a certain energy input, resulting in difference with low Reynolds number experiments. At the same time, we find 

the presence of sand will increase vertical turbulent kinetic energy (about 22%), which are consistent with the laboratory 

results (Bailiang Li, 2012 ; zhang et al, 2008). On the other hand, vertical turbulence intensity is likely to be more affected 

by particle than streamwise intensity. 
 

CONCLUSIONS 

 

The enhanced turbulence in the presence of sand particles can be explained by the wake structure behind individual sand 

particles, just the same as Wei Zhang (2008). In the particle-bed collision event, the vertical turbulence intensity is more 

influenced than the streamwise turbulence intensity, which could be a direct result of the particle-bed collision. During this 

progress, the gravity plays an important role, which will cause the increasing of vertical turbulence intensity. The analysis of this 

paper, we show this influence of particles on flow by field observations, which contribute to understanding the turbulence 

characteristics of a high Reynolds number ABL flow with particles. 
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Summary Saltation is an important process on aeolian sand transport, as it contributes to dust raising, bedform dynamics, and aeolian abrasion. 

However, the mass flux prediction remains notoriously unreliable, especially for close-to-onset saltation. Large eddy simulation and discrete 

particle method are employed to model the close-to-onset sand saltation in this paper. Two kinds of wall models for large eddy simulation are 

used as wall boundary condition, the standard model that can predict the mean wall shear stress and a new wall-model that is able to predict the 

fluctuating wall shear-stress from a large-scale velocity input. The results show that the latter can lead to more fluid-sheared particles and 

therefore higher mass flux, which demonstrate the significance of large-scale turbulent structure to unsteady environmental sediment transport. 

 
INTRODUCTION 

 

   Aeolian sand saltation contributes the majority of mass flux during sand/dust storm events
 [1]

. The onset of 

saltation transport is classically associated with a critical mean shear velocity. However, the recent measurements
 

[2][3]
suggested that discontinuity and intermittency dominate saltation transport when the wind velocity fluctuates around the 

threshold. Most importantly, the mass flux prediction remains notoriously unreliable, especially for close-to-onset saltation 
[4]

. By analyzing the observed data, it is believed that the coherent structure in the turbulent wind in atmospheric surface 

layer is crucial
 [5]

. 

There are four key sub-processes
 [4]

 in saltation. We focus on aerodynamic entrainment process first. Based on recent 

researches on high Reynolds number wall-bounded turbulent flows that the large and very-large scale motions in the outer 

region interact with the near-wall region, a model (IOSI) for the wall shear stress prediction was proposed
[6]

 and applied in 

large eddy simulation
[4]

. Comparing to standard wall model
 [7]

, it is able to reconstruct the fluctuating wall shear-stress based 

on large-scale log-layer velocity input, which will directly influence the number of aerodynamic-entrainment sand particle. 

Therefore, large eddy simulation and discrete particle method are employed to model saltation. 

The scale-dependent dynamic subgrid-scale model
 [8]

 is adopted in equation (1) to calculated filter stress. The 

governing equations (1) are discretized in time using the Crank-Nicholson scheme and resolved in space using the second-

order central difference scheme with a staggered mesh. The computational domain in each direction (Lx , Ly , Lz) is (8 ,1,2

 )m, where x (i = 1), y (i = 2), and z (i = 3) denote the streamwise, vertical and spanwise coordinates, respectively. The 

upper boundary has a stress-free condition, i.e. ∂u/∂y=∂w/∂y=0, where u, v, and w are the streamwise, vertical and spanwise 

velocity, respectively. Periodic boundary conditions are used in the streamwise and spanwise direction. At the surface, the 

wall stresses are provided based on aforementioned wall models.  
2

1
; 0

i j iji i i
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Sand particles are presumed to travel only under the act of drag force and the gravity force, 
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;
2
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d d
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dt dt
    

u x
v u v u g u  

 

where , ,p p pm u x are the particle density, velocity and position vector, ,DC A  denote the drag coefficient and cross-

sectional area of sand particle,  and v are the atmospheric density and wind velocity vector at particle position obtained 

through linear interpolating. The particle number of aerodynamic liftoff is proportional to the excess shear stress

 710 cN     . The splash process is modeled according to the stochastic methods 
[9]

.  

The Reynolds number of the simulated turbulent wind is Re =22000. The density and particle diameter are 2650 

kg/m
3
 and 0.48 mm so that the mean wall shear-stress is slightly larger than the particle's threshold stress, =1.05 c. The 

mean wind velocity profile with and without saltation sand are shown in figure 1. It can be seen that the wall model has a 

small effect on mean velocity profile in the outer-regions of the boundary layer without sand particle. However, the mean 

velocity apparently decrease in the saltation layer. The evolution of aerodynamic entrainment is show in fig.2，indicating 

that particle number lifted directly by aerodynamic shear is much larger than in fluctuating wall shear stress case. Apparent 

large structures existed for the IOSI-model simulation which deserves further discussion. 
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Fig. 1 Mean velocity profile with and without sand saltation.   Fig. 2 Particle number entrained by aerodynamic shear. 

 

 

CONCLUSIONS 

 

   The inner outer interaction wall model which can predict fluctuating wall shear stress is included in large eddy simulation to 

discuss the effect of large scale turbulent structure on sand saltation. The model results show that the aerodynamic liftoff 

particles are significantly increased. 
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Summary A weakly-coupled evolution model of stratified ocean is proposed to build upon our knowledge on the interacting mechanism of 
North Pacific Low-Latitude Western Boundary Currents (NP-LLWBCs), which takes the influence of the surface wind forcing, dissipation and 
understratum configuration into account. The solvability of its initial and/or boundary problem is established, moreover, some analytical and 
numerical results on the dynamical behaviour of the currents are advanced by its simplified versions, including our comment on the decadal 
variability in the bifurcation of the North Pacific Current. 
 

INTRODUCTION 

 

Western intensified wind-driven currents are ubiquitous in world oceans, among which NP-LLWBCs, including the 
Mindanao Current (MC), the New Guinea Coastal Current (NGCC), the New Guinea Coastal Undercurrent (NGCUC) and the 
Mindanao Undercurrent (MUC), play a prominent role in the understanding of the climate dynamics and the meridional 
conveying of mass, heat and salt of the world ocean [1-5]. The southward flowing MC is deemed to not only blocks the surface 
water and the subtropical water in NGCC and NGCUC and forces them turning into the Northern Equatorial Countercurrent 
(NECC) and the Equatorial Undercurrent (EUC), but also constitutes the two branches of the North Equatorial Current (NEC) 
together with the northward flowing Kuroshio (KC), as NEC encounters its western boundary along the Philippine coast, where 
the bifurcation latitude indicates the separation of the subtropical and the tropical gyres of North Pacific Ocean. 

Considerable progress has been achieved in the last several decades towards the dynamics of the NEC bifurcation in the 
oceanographic observation and mathematical modelling, with seminal works [6-14] among many others, while discrepancy still 
remains and the models used are usually linear ones or oversimplified. On the subject of ocean circulation models, many 
important contributions have also been made, among which we recommend [15-24] for more inspiration. Concerning the NP-
LLWBCs, our knowledge is still not comprehensive and we need more endeavours or speculations on their driving mechanism 
and interacting mode, especially with the view of nonlinear evolution. This talk is an attempt at the puzzle with the Sverdrup 
theory and the multi-layer potential vorticity theory. 

 

GOVERNING EQUATIONS AND MATHEMATICAL SETTINGS  

 

With proper assumptions, such as taking dissipation or friction, bottom topography, and thickness and density of 
currents into account while ignoring the relative vorticity and the Indonesian throughflow (ITF), our model ocean is 
characterized by the following two-layer evolutional system  

         1 2 1 1 1 1 1 2 2 2 21 , curl ,   ,z TJ q H J q
t t

                  
 

,                   1) 

and 
   2

1 1 0 1 21q H g f f       ,      2
2 2 0 0 1 2q H g f f g f        ,                                2) 

      2
1 1 1 2 0 11R gf f fH            ,         2

2 2 1 2 0 2 0R gf f fH g f                                      3) 

in an extended ocean basin, where , , 1,2i i i    are the stream function (upper=1) and density ( 1 2  ) at the k-th layer, 
respectively, g is the gravitational constant,  1 2 1/     , 1 and  2 1   are proportional to the interface 
displacement from the basic resting state, J is the general Jacobian operator with ( , ) x y y xJ a b a b a b  , , 1,2iH i   denote 
the functions of layer height,   0, ,f f x y f  are the Coriolis frequency equation and its reference value, respectively, 

curlz T  in this talk represents a zonally-averaged synthetic seasonal or interannual wind stress curl field with the form  

   
1,

20,k 0
curl curl , (y)sin .N

i
z T z T iki

y t M k t  
 

                                                    4) 

In application,  ,x y   can be regarded as the understratum function, which can be a bottom topographic function or a 
shape function of an extra layer. The system can be regarded as a generalization of the Stommel model (e.g.[22]). 
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CONTRIBUTION 

 

Using the weakly-coupled system (  1 2, 0R R R  ) and its reduced version ( 0R  ), we investigate the interacting 
mechanism of the system. The monthly wind stress curl used in our talk is derived from the European Center for Medium-
Range Weather Forecasts (ECMWF) Ocean Analysis System ORA-S3 (Figure 1) with horizontal resolution 11 and period 
from January 1959 to December 2009. 

 
Figure 1. A synthetic zonally averaged interannual wind stress curl field from ORA-S3(1959-2009)  

 

The solvability to the initial and/or boundary problem of the weakly coupled system 1)-3) is developed firstly, and the 
existence and uniqueness of its solutions are established to present an evolution pattern of the currents. With Sverdrup’s 
balance, its formal solutions are presented for each layer. In the case of 0 1, 1,2iR i = , it can be seen as a viscosity 
regularization of its corresponding transport system, i.e. the case of 0, 1,2.iR i   Our upper layer equation can be regarded 
as a generalization of the reduced gravity equation given by Qiu and Lukas (1996).  

Secondly, with further simplifications, such as 1 1   , the transport system of wind-induced and form-dragged 
type is used to interpret their interacting mode of the two layers. In this case, the system can be regarded as a generalization 
of Meyer’s single layer transport equation. Analytical solutions of the system are established and applied to enlighten the 
cause of swerve for the western boundary currents and the decadal variability in the NEC bifurcation latitude.  

Some numerical results on application of our proposed models are issued.  
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Summary The paper describes several new options to analyse and forecast possible changes in extreme water levels at the coasts of sea areas 
hosting substantial subtidal weekly-scale variations in the water level. The test area is the Baltic Sea. For a certain averaging interval (about 8 
days) there exists a straightforward separation of the total water level into components driven by Gaussian and Poisson processes and 
representing the basin-scale and local phenomena, respectively. The contribution of the basin-scale phenomena into the increase in extreme 
water levels is almost constant for the entire study area whereas the contribution of local storm surges exhibit substantial spatial variations. The 
entire pattern of the changes in water level extremes signals a rotation of strong wind directions rather than an increase in the wind speed. 
 

INTRODUCTION 
 
   The risks and damages associated with coastal flooding that are associated with an increase in the magnitude of extreme 
storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. It is often unclear which 
component of the water level (or its physical driver) is responsible for an increase in the extreme water levels. For example, 
changes in high sea levels matched mean sea level changes on the German North Sea coast prior to the mid-1950s and from 
about 1990 onwards, but obvious mismatch was observed in the 1960s to 1980s [1]. The largest challenges in the analysis of 
the water level data sets from the past and in modelling of the future (extreme) water levels offer semi-enclosed water 
bodies such as the Baltic Sea. The sea-level change in such basins may be faster than in the adjacent regions and the course 
of water level may depend on specific factors such as local salinity or spatial variations in the tectonic motions. 
   The core question is: Which mechanism has the largest contribution into the changes in sea level extremes and 
associated coastal floodings? Classic approaches address this question by means of a separation of the water level course 
into periodic and random components, or components driven by fundamentally different mechanisms such as the long-term 
mean and its slow variations, tides and storm surges. We demonstrate that a natural, straightforward and rich in content 
separation can be produced for sea areas of certain type by means of a surprisingly simple operation of the running average. 
    

MODELLED AND OBSERVED TIME SERIES OF WATER LEVEL 

 

   The focus is on the possibilities of the analysis and modelling of large-amplitude subtidal (with time scales from a day 
up to a few weeks) variations in the water volume of semi-enclosed water bodies from the viewpoint of possible changes in 
water level extremes. The presence of such variations substantially complicates the analysis of the future projections of the 
course of local water level extremes. For example, in the Baltic Sea these fundamentally aperiodic variations are driven by 
the atmospheric impact, usually occur on time scales of a few weeks and contribute about 50% of the extreme storm surges 
[2]. 
   We employ time series of sea levels numerically reconstructed using the three-dimensional RCO (Rossby Center, 
Swedish Meteorological and Hydrological Institute) ocean circulation model and kindly provided in the framework of 
BONUS BalticWay cooperation. The horizontal and vertical resolutions of the model are 2 × 2 nautical miles (about 
3.7 km) and 3–12 m, respectively. The model run for May 1961–May 2005 includes information about sea ice and is driven 
by a meteorological data set with a horizontal resolution of 22 km produced from the ERA-40 re-analysis. The modelled 
data set (sampled once in 6 h) is complemented with observed water level time series at four coastal locations in the eastern 
Baltic Sea: Tallinn 1945–1995, Narva-Jõesuu 1950–2010, Ristna 1950–2012 and Pärnu 1950–2010. 
 

SEPARATION OF WATER LEVEL TIME SERIES INTO WEEKLY AVERAGE AND STORM SURGES 

 

   Application of a running average with a variable averaging length (from one day up to a few months) and subsequently 
evaluating the residual naturally produces a separation of the total water level into slowly and rapidly changing constituents 
[3]. For averaging lengths of the order of one week the distribution of the slowly changing component mimics the water 
volume of the entire Baltic Sea (and has, as expected, an almost Gaussian shape). The residual characterises the heights of 
storm surges. It contains all outliers of the water level time series for averaging intervals longer than about 3 days. 
Surprisingly, its distribution (equivalently, the frequency of occurrence of local storm surges of different height) almost 
exactly matches an exponential distribution for the 8-day average. Therefore, for this averaging length we reach a separation 
of the total water level into a Gaussian process (that governs the large-scale water level of the entire sea) and a component 
driven by a Poisson process. The slopes of the positive and negative branches of the resulting exponential distribution 
provide a useful quantification of different coastal sections with respect to the probability of coastal flooding and extremely 
low water levels. 
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CONTRIBUTION OF SUBTIDAL PROCESSES AND STORM SURGES INTO EXTREME WATER LEVELS 

 

   It is well known that the water level maxima increase rapidly at many ocean coasts. This increase has a spatially variable 
rate of 5–10 cm/decade in the eastern Baltic Sea [4] and is relatively rapid in the interiors of bays deeply cut into the 
mainland and slower on the coasts of the open sea. The introduced separation makes it possible to evaluate the contribution 
of different processes into this increase. The weekly-scale component reflects the cumulative impact of long sequences of 
storms. The relevant increase rate is almost constant along the entire eastern coast of the Baltic Sea. Therefore, either the  
wind speed in associated storms or the duration of storm sequences has increased. 
   Importantly, almost all spatial variability in the trends in the total water level maxima stems from the component that 
reflects the impact of single storms. This component reveals almost no changes in locations that are open to the predominant 
directions of strong storms. The changes in the maxima of the total water level in such locations are thus almost exclusively 
governed by the water volume of the entire Baltic Sea. Consequently, it is very likely that the wind speed in strong storms 
has not increased significantly in the Baltic Sea region but the length of sequences of storms that push water into the Baltic 
Sea has increased. 
   The maxima of storm surge heights exhibit a substantial increase in bayheads of large subbasins cut deeply into the 
mainland such as the eastern Gulf of Riga and the eastern Gulf of Finland. Therefore, most of the changes in the spatial 
variability in the local water level extremes are driven by changes in single storms. This remarkable spatial variation 
suggests that, most likely, wind directions in strong storms may have rotated since the 1960s. 
 

ENSEMBLE APPROACH TO HIGHLIGHT THE MAGNITUDE OF LOFAL EFFECTS 

 
   The spatially varying contribution of various drivers to the water level in the eastern Baltic Sea and the frequent 
presence of outliers in the observed and modelled water levels lead to large uncertainties in the projections of future extreme 
water levels. A natural way to more reliably evaluate return periods of extreme water levels is the use of an ensemble of 
projections to. An appropriate example is constructed by means of fitting several sets of block maxima (annual maxima and 
stormy season maxima) with the classic generalised extreme value distributions. As the shape parameter of the Generalised 
Extreme Value distribution changes its sign along the coast of Estonia, projections based on the Gumbel and Weibull 
distributions are also included. The ensemble involves projections based on two data sets (resolution of 6 h and 1 h) 
hindcast by different circulation models and atmospheric drivers. 
   For coastal segments where the observations represent the offshore water level well, the overall appearance of the 
ensembles signals that the errors of single projections are randomly distributed and that the median of the ensemble 
provides a sensible result. For locations where the observed water level involves strong local effects (e.g. wave set-up) the 
block maxima are split into clearly separated populations. The resulting ensemble consists of two distinct clusters, the 
difference between which can be interpreted as a measure of the impact of local features on the water level observations [5]. 
 

CONCLUSIONS 

 
   By means of a simple and straightforward averaging procedure we have separated the local water level time series of semi-
enclosed water bodies into two components with fundamentally different probability distribution functions. A weekly-scale 
average large follows a Gaussian distribution whereas the residual (the total water level minus the weekly average) exhibits 
features of a Poisson process. The latter is not particularly surprising as the formation of storm cyclones can be described by a 
Poisson process. A further analysis of the contribution of these components indicates an interesting feature of climate changes in 
the Baltic Sea basin and possibly in other areas. Namely an increase in wind speed in strong storms is unlikely in this area but 
storm duration may have increased and wind direction may have rotated. In general, one or even set of a few projections based 
on single general extreme value distribution are not appropriate for the estimates of future extreme water levels and their return 
periods at the eastern coast of the Baltic Sea. 
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Summary In this study, we derived the theoretical formulas characterizing the geometry of the pollutant mixing zone (PMZ) formed by a
constant discharge, point source in straight-bank, wide open rivers, using the analytical solution of the simplified two-dimensional advection-
diffusion equation of the pollutant. In such flow configuration, only the convection in the longitudinal direction and diffusion in the lateral
direction are significant in the pollutant transport. The obtained formulas for the maximum length, maximum width and its corresponding
longitudinal location, and area of PMZ, and the concentration contours equation defining the PMZ boundary, show excellent agreement with
the onsite observations. These theoretical formulas can also be used in the inverse problems to determine the lateral diffusion coefficient in
the river, or to design the sewage discharge load based on the PMZ range limitations in the water environmental quality standard.

INTRODUCTION

Industrial wastewater or municipal sewage, after being treated to achieve the appropriate discharge standards, is discharged
along the river bank through pipes or open channels in the coastal area of rivers. Because the depth of the natural rivers
is usually much smaller than the width, the initial dilution stage of the pollutant mixing is rather short, and the vertical
diffusion is soon finished within a short distance downstream of the sewage outfall. Therefore, the pollutant concentration
and its characterization in the river are commonly considered as the two-dimensional (longitudinal and lateral) advection and
diffusion during the mixing zone development stage [1, 2].

Pollutant mixing zone (PMZ) is the allocated impact zone where water quality criteria can be exceeded as long as acutely
toxic conditions are prevented. One of the PMZ technical procedure manuals (drafts) was proposed by the Idaho Department
of Environmental Quality in 2008. It includes the PMZ setup rules, approval process, monitoring, determination and water
quality modelling etc. [3]. Wu Z.-H. et al. developed an analytical PMZ calculation method for constant lateral diffusion
coefficient cases corresponding to the wide, rectangular and straight rivers [4, 5]. In this study, we derived a set of analytical
formulas of the geometric scales and area of the PMZ, for constant, point source riverbank discharging. The goal is to provide
analytical mathematical tools for both scientific studies and environmental flow applications.

GEOMETRIC CHARACTERISTICS OF CONCENTRATION CONTOURS

At the steady state of pollutant transport downstream of the sewage outfall, the diffusion in the longitudinal direction (x) is
negligible compared to the advection. Then, the only remaining terms give the simplified two-dimensional advection-diffusion
equation of the pollutant concentration, C, as [1]

U
∂C

∂x
= Ey

∂2C

∂y2
(1)

in which positive x-axis points downstream of river, and y is the lateral direction (positive y-axis points towards the opposite
bank). Both axises are oriented from the sewage outfall; U is the mean longitudinal velocity (dim. LT−1), and Ey is the lateral
diffusion coefficient (dim. L2T−1). For constant, point source riverbank discharging, the analytical solution of Eq. (1) is [1]

C(x, y) =
m

H
√
πEyUx

exp
(
− Uy2

4Eyx

)
(2)

in which m is the discharge rate (dim. MT−1), and H is the mean depth of the river (dim. L).
Let C(x, y) = Ca to be the threshold defining the boundary of the PMZ, and y = 0, the theoretical formula of the

maximum length of PMZ along the riverbank reads

Ls =
1

πEyU

(
m

HCa

)2

(3)

Take derivative of each term in both sides of Eq. (2), and let dy/dx = 0, we obtained the theoretical formula of the
maximum width of the PMZ, bs, and its relation with Ls as

bs =

√
2

πe
m

HUCa
=

√
2EyLs

eU
(4)
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where e is the mathematical constant. This maximum width occurs at Lc = Ls/e in the longitudinal direction.
Substitute Eq. (3) and (4) into (2), the concentration contours equation of the PMZ at C = Ca is

y = bs

√
−e

x

Ls
ln
(
x

Ls

)
(5)

Figure 1 shows an example of the nearly semi-elliptical shape of PMZ described by Eq. (5). Take definite integral of Eq. (5)
in the x direction from 0 to Ls, the area enclosed by the boundary is

S ≡
∫ Ls

0

ydx =

∫ Ls

0

bs

√
−e

x

Ls
ln
(
x

Ls

)
dx =

(
2

3

)3/2 √
πe
2

Lsbs ≈ 0.795Lsbs (6)

Figure 1: The standard curve of the boundary of pollutant mixing
zone defined by Eq. (5) near the sewage outfall.

Figure 2: An onsite observation of the pollutant mixing zone near
the outfall of a starch factory in the Guangfu River.

APPLICATION: DIFFUSION IN A RIVER

Figure 2 is the onsite observation of the PMZ near the outfall of a starch factory in the Guangfu River in Shandong,
China [5]. The high pollutant concentration, white PMZ in this river is independent from the other side of boundary, thanks to
the sufficient river width and strong longitudinal advection. The maximum length and width of the PMZ are measured to be
Ls = 32 m and bs = 5 m. The corresponding longitudinal location of bs is at Lc = 12 m, which agrees very well with the value
predicted by the formula derived in this study, i.e. Lc = Ls/e ≈ 11.8 m. Substitute the measured value of Ls and bs into Eq.
(5), the concentration contours equation of the PMZ boundary is predicted to be y = 5

√
−eξln(ξ), where ξ = x/32, and is

showed in Fig. 2 as the dashed line. It is in excellent agreement with the visual boundary identified by the water color.
The theoretical formulas obtained above also have significant values in the inverse problem to determine Ey in the river.

Rewrite Eq. (4), the formula to calculate Ey is

Ey =
eU
2Ls

b2s (7)

The parameters U , Ls and bs in Eq. (7) are easy to measure onsite. Ey in the Guangfu River, for instance, is calculated to be
0.27 m2/s using the measured Ls and bs of the white PMZ (U = 0.25 m/s).

CONCLUSIONS

In this paper, the theoretical formulas describing the geometry of the pollutant mixing zone in rivers are derived from the
simplified two-dimensional advection-diffusion pollutant transport equation. Application of these formulas shows excellent
agreement with the onsite observation. These theoretical tools are powerful and easy-to-use in estimating the PMZ in water
environmental impact prediction, and can be used as the basis for water quality model validation. They can also be applied
to the inverse problems, such as determining the lateral diffusion coefficient of the river, or the maximum pollutant discharge
load limited by the allowable range of the PMZ.
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Summary We study the motion of a hot particle in a viscous liquid at low Reynolds numbers. The calculation is inspired by experiments
of laser heating of Brownian particles. The difference in temperature between the particle and the fluid causes a spatial variation of
the viscosity. We derive formulae for the force and the torque on the particle by exploiting the reciprocal theorem. For small viscosity
variations, a perturbation analysis provides the leading-order correction to the hydrodynamic force and torque. The results are applied to
describe dynamics of a uniformly hot spherical particle and to spherical particles with non-uniform surface temperature distributions.

INTRODUCTION

There are many problems of physicochemical hydrodynamics where temperature gradients affect the motion of suspended
particles, e.g. thermophoresis [1, 2]. The standard analyses of these problems assume the viscosity of the solution is constant.
More recently, the Brownian motion of a small heated sphere – a hot particle – has been investigated [3] and the particle
diffusion has distinct features from diffusion in isothermal systems since the temperature field produces spatial variations in
viscosity. This problem motivates our study where we present an asymptotic calculation for the corrections to the hydrody-
namic force and torque on a particle due to viscosity variations in the surrounding fluid.

Several recent studies report approximate formulae for the force on hot particles considering variation in the viscosity of
the surrounding liquid (e.g. [4]). To the best of our knowledge there are no analytical expressions available for the force or
torque on a particle that have been derived with a self-consistent asymptotic analysis. Obviously, numerical solutions can be
developed on a case-by-case basis for a given viscosity distribution. We seek analytical results by combining the reciprocal
theorem with a perturbation analysis in a parameter characterizing small viscosity changes. Thus, we obtain equations for the
force-velocity and torque-rotational velocity relations that account for the influence of the viscosity variation.

PROBLEM FORMULATION AND SOLUTION

We present a theory for the force on a hot particle of arbitrary shape, which produces a variation of viscosity, in a low-
Reynolds-number flow. We assume that advective transport of thermal energy is negligible compared to conduction, i.e.
the Péclet number is small, and so (i) distortions induced by the flow on the temperature field can be neglected and (ii)
particle-scale features of the temperature distribution are imprinted on the thermal field in the fluid. The viscosity in liquids
is temperature dependent and hence the viscosity varies with position. Therefore, both the flow field and the hydrodynamic
force on a translating particle will differ from their respective results in the well known case of a constant viscosity fluid.

We denote the position vector as rrr. For an incompressible flow, the velocity uuu and stress σσσ fields are determined by

∇ · uuu = 0 and ∇ · σσσ = 000. (1)

For a Newtonian fluid and a temperature distribution T (rrr), the stress σσσ, pressure p, spatially varying viscosity η (T (rrr)) or
η(rrr), and the rate of strain tensor EEE = 1

2

(
∇uuu+ (∇uuu)

T
)

are related by σσσ = −pIII + 2η(rrr)EEE, where III is the identity tensor.

The corresponding force and torque on a particle (surface Sp) are FFF =
∫
Sp
nnn· σσσ dS and TTT =

∫
Sp
rrr ∧ (nnn· σσσ) dS.

Our main objective is to quantify the difference of the force calculated from equation (1) to the force obtained from the
Stokes equations when the viscosity is constant, i.e. η = η0 does not depend on position,

∇ · uuu0 = 0, and −∇p0 + η0∇2uuu0 = ∇ · σσσ0 = 000, (2)

where the subscript 0 refers to the constant viscosity problem. In this case, for particle translation UUU0 and rotation ΩΩΩ0, the

force and torque are given by
(
FFF 0

TTT 0

)
= RRR0 ·

(
UUU0

ΩΩΩ0

)
, whereRRR0 is the resistance tensor (each term proportional to η0).

In order to avoid the complexities of solving the differential equation (1) or (2) arising from the variations of the viscosity
with position, we exploit the reciprocal theorem [5]. To relate the solution of the Stokes equations (1) and (2), we note that
(∇ · σσσ) · uuu0 = 0, and so we have ∇ · (σσσ · uuu0)− σσσ : ∇uuu0 = 0; as a result of incompressibility and the symmetry of the stress
tensor we can write∇ · (σσσ · uuu0)− 2η(rrr)EEE : EEE0 = 0. Following the usual steps we find

−
∫
Sp

nnn· σσσ · uuu0 dS +

∫
Sp

nnn· σσσ0 · uuu dS = 2

∫
V

(
η(rrr)− η0

)
EEE : EEE0 dV. (3)
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Now we apply (3) to translation and rotation of a particle, where the boundary condition on Sp for the main problem is
uuu = UUU + Ω ∧ r and for the model constant viscosity problem is uuu0 = UUU0 + Ω0 ∧ r. Owing to the linearity of the Stokes
equations and the boundary conditions, which involve both translation with velocity UUU (or UUU0) and rotation with angular
velocity ΩΩΩ (or ΩΩΩ0) we can write the strain tensor as a sum of two tensors,EEEU , due to translation, andEEEΩ, due to rotation. We
also define corresponding third-order tensors, EEEβ , which we shall call the normalized strain tensor, such that:

EEE = EEEU +EEEΩ = EEEU ·UUU + EEEΩ ·ΩΩΩ and EEE0 = EEEU0 +EEEΩ
0 = EEE0 ·UUU0 + EEE0 ·ΩΩΩ0. (4)

Then, we eliminate the otherwise arbitrary vectorsUUU0 and ΩΩΩ0 to arrive at(
FFF
TTT

)
= RRR0 ·

(
UUU
ΩΩΩ

)
+ 2η0

∫
V

(
1− η(rrr)

η0

)
ΛΛΛ dV ·

(
UUU
ΩΩΩ

)
with RRR0 ≡

(
RRRFU0 RRRFΩ

0

RRRTU0 RRRTΩ
0

)
and ΛΛΛ ≡

(
EEEU0 : EEEU EEEU0 : EEEΩ

EEEΩ
0 : EEEU EEEΩ

0 : EEEΩ

)
,

(5)
where we have defined the double inner product : of third-order tensors according to EEE0 : EEE = E0(kji)Ejk`eie`.

A PERTURBATION EXPANSION FOR MOTION OF A SPHERE

For a heated particle we describe the local temperature variations away from T0 with the first terms of a multipole expan-
sion, which can be written in terms of the characteristic change in temperature caused by the particle (∆Tm, ∆Td and ∆Tq ,
respectively, for monopole, dipole and quadruple), i.e. using ˜ to denote the normalized dipole ∆̃∆∆ and quadrupole Q̃QQ, we write

T (rrr)− T0 = ∆Tm
a

r
+ ∆Td

a2∆̃∆∆ · rrr
r3

+ ∆Tq
a3Q̃QQ :

(
3rrrrrr − r2III

)
6r5

+ · · · . (6)

We can show for a sphere that moments higher than a quadrupole do not contribute to the leading-order correction given
below.

For small temperature variations characterized by ∆Tm, the viscosity can be expanded as a Taylor series around T0,

η ≈ η0

(
1 +

∆Tm
η0

∂η

∂T

∣∣∣∣
T0

T (rrr) +O(T )2

)
where T (rrr) =

T (rrr)− T0

∆Tm
. (7)

Introducing a small parameter ε that captures the (small) temperature and viscosity variations produced by a heated particle,
we define ε = − ∆Tm

η0

∂η
∂T

∣∣∣
T0

since typically ∂η
∂T < 0. Clearly, ε represents the fractional change of viscosity, ∆η

η0
,

Then, for the velocity and the pressure fields, we write regular perturbation expansions

uuu(rrr; η(rrr)) = uuu0(rrr) + εuuu1(rrr) + ε2uuu2(rrr) + · · · and p(rrr; η(rrr)) = p0(rrr) + εp1(rrr) + ε2p2(rrr) + · · · . (8)

Here the zeroth-order solution is the well known solution for a constant viscosity. Thus, using equations (5) and (7) we have(
FFF
TTT

)
=
(
RRR0 + εRRR1 +O

(
ε2
))
·
(
UUU
ΩΩΩ

)
with RRR1 = 2η0

∫
T (rrr)

(
EEEU0 : EEEU0 EEEU0 : EEEΩ

0

EEEΩ
0 : EEEU0 EEEΩ

0 : EEEΩ
0

)
dV. (9)

whereRRR1 can be evaluated in terms of the thermal field and known quantities for the constant viscosity zeroth-order solution.
This equation is our main result; it introduces the first effects of viscosity variations on the dynamics of a hot particle.

In our presentation we consider different thermal characterizations of small particles, as described by a thermal monopole,
dipole and quadrupole. Then, we use (9) to obtain analytical corrections to the force and torque on a sphere. Among other
results, we find for dipolar thermal fields that there is coupling of the translational and rotational motions when there are local
viscosity variations; such coupling is absent in an isothermal fluid.

CONCLUSIONS

We describe a systematic asymptotic approach accounting for viscosity variations on the motion of small particles. The
analysis is applicable to recent experiments where laser heating of Brownian particles produces local viscosity variations.

References

[1] Schermer, R. T. and Olson, C. C. and Coleman, J. P. and Bucholtz, F.: Laser-induced thermophoresis of individual particles in a viscous liquid. Optics
Express 19, 10571–10586, 2011.

[2] Bickel, T. and Majee, A. and Würger, A.: Flow pattern in the vicinity of self-propelling hot Janus particles, Phys. Rev. E 88, 012301, 2013.
[3] Rings, D. and Schachoff, R. and Selmke, M. and Cichos, F. and Kroy, K.: Hot Brownian motion/ Phys. Rev. Lett. 105, 090604, 2010.
[4] Rings, D. and Selmke, M. and Cichos, F. and Kroy, K.: Theory of hot Brownian motion. Soft Matter 7:3441–3452, 2011.
[5] Happel, J. and Brenner, H.: Low Reynolds Number Hydrodynamics. p. 85. Prentice-Hall. 1965.

1141



XXIV ICTAM, 21-26 August 2016, Montreal, Canada
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Summary Dynamics of a single non-Brownian flexible fiber in shear flow at low Reynolds number is investigated numerically. Initially,

the fiber is straight and at the equilibrium. For different initial orientations and values of bending stiffness, three generic scenarios are

observed: the fiber tends to: align along the vorticity direction, tumble within the plane perpendicular to vorticity, or perform a periodic

motion superposed with translation along the flow.

SYSTEM

Dynamics of non-Brownian flexible microfibers in external flows have been recently intensively investigated experimen-

tally and numerically, see e.g. [1, 2] and the references therein. One of the basic questions is how to classify the modes of

their dynamics in shear flow, depending on the initial position [3, 4, 5] and flexibility [6]. In this work, we contribute towards

solving this problem. We denote the fluid viscosity as η and the shear flow velocity as v = γ̇zex, where ex is the unit vector

along x. A flexible fiber is modeled as a chain of N beads of equal diameters d, with the consecutive beads connected by

springs, and resisting bending [7]. At equilibrium, the fiber is straight with a very small distance l0 between the centers of

the consecutive beads. As in [1, 6], the constraint forces are characterized by the dimensionless bending stiffness parameter

A equal to the ratio of the Young modulus to πηγ̇, and the dimensionless ratio k of the spring constant to the hydrodynamic

force per unit length, πηdγ̇. The value of k is assumed to be large, to provide almost constant fiber length.

The Reynolds number of the system is much smaller than unity, and the fluid motion satisfies the Stokes equations. Nu-

merical simulations of the dynamics of each fiber bead are performed using the multipole expansion, corrected for lubrication

[8], and implemented in the HYDROMULTIPOLE numerical code. We choose N =40, k= 1000, l0 = 1.02. We assume that

initially the fiber is at equilibrium, and we perform a systematic study of how the evolution depends on the bending stiffness

A and the initial orientation, which is determined by two angles: Θ0 - the angle between the end-to-end vector of the fiber and

the vorticity direction y, and Φ0 - the angle between the projection of the end-to-end vector on the x−z plane and the x axis.

RESULTS

Identification of modes

In our simulations of the fiber motion, we have found three generic types of evolution. Basic features of these three modes

of the fiber dynamics are illustrated in three columns of Figure 1, where we plot the time-dependent angle Θ between the

instantaneous end-to-end vector and the vorticity direction, and the time-dependent distance ∆L between the centers of the

first and last beads, normalized by its equilibrium value L0. The time unit is 1/γ̇.

In the first mode, shown in the left column of Figure 1, colored blue and called spin-rotation [4], the fiber tends to stay

straight, ∆L/L0 → 1, and along the vorticity direction y, Θ → 0, rolling around it. In the second (red) mode, called the

tumbling one, the fiber tends to the x−z plane, Θ → 90o, and it regularly straightens out and becomes coiled while tumbling,

with large-amplitude oscillations of ∆L/L0. In the third (green) mode, each bead of the fiber evolves towards a periodic orbit

of a very complex three-dimensional shape, translating along the flow with a constant speed. This mode, called the periodic

one, has not been observed before.

Diagrams of the modes

We have systematically investigated the dependence of the dynamical modes on the fiber initial orientation (Φ0,Θ0) with

respect to the vorticity direction. The results for fibers of a different bending stiffness A = 4, 10 and 40 are shown in Figure 2.

Very flexible fibers (A = 4, left) with all the initial orientations belong to the spin-rotation (blue) mode. For very stiff fibers

(A = 40, right), the tumbling (red) mode dominates for most of the initial positions, excluding some of those which are close

to the vorticity direction and lead to the spin-rotation (blue mode). For fibers of a moderate stiffness (A = 10, middle), there

exists a range of the initial orientations which correspond to the periodic (green) mode. The boundaries of this range are not

smooth, and a relatively small change of initial orientations can result in a different dynamical mode.
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A = 100,Θ0 = 5o,Φ0 = 10o A = 100,Θ0 = 60o,Φ0 = 60o A = 10,Θ0 = 10o,Φ0 = 10o
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Figure 1: Typical examples of three modes of the fiber dynamics: blue, red and green. Top: the time dependent angle Θ.

Middle: the instantaneous relative length ∆L/L0 of the fiber end-to-end vector. Bottom: examples of shapes when the

end-to-end vector is perpendicular to the flow.
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Figure 2: Dynamical modes of fibers at different initial orientations (Φ0,Θ0), depending on their bending stiffness A.

CONCLUSIONS

We have shown numerically that there exist three – rather than two as reported before [3, 4, 5] – essentially different

modes of the flexible fiber dynamics in shear flow. The remarkable feature is that for moderate values of the bending stiffness,

periodic solutions exist, with a very complex three-dimensional shape of the periodic trajectories. These orbits are essentially

different than the classical Jeffery’s orbits.

This work was supported in part by the National Science Centre under grant No. 2014/15/B/ST8/04359.
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[2] Słowicka A.M., Ekiel-Jeżewska M.L., Wajnryb E.:Lateral migration of flexible fibers in Poiseuille flow between two parallel planar solid walls.Eur.

Phys. J. E 36:1-12, 2013

[3] Arlov A.P., Forgacs O.L., Mason S.G.: Particle motions in sheared suspensions IV. General behaviour of wood pulp fibres. Sven. Papperstidn. 61:

61-67, 1958.

[4] Skjetne P., Ross R. F. and Klingenberg D. J.: Simulation of single fiber dynamics. J. Chem. Phys. 107: 2108, 1997.

[5] Joung C.G., Phan-Thien N. and Fan X.J.: Direct simulation of flexible fibers. J. Non-Newtonian Fluid Mech. 99:1-36, 2001.
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Summary We study the trajectories of elongated objects transported in microfluidic Hele Shaw cells. The transverse confinement (and the
resulting viscous friction on the particle), as well as lateral confinement (i.e. the presence of lateral walls), lead to complex trajectories that
we characterize experimentally and numerically. We show that the fiber behaves as an oscillator and obtain a complete bifurcation diagram.
We then study the effect of the particle asymmetry by considering L-shaped particles; in that case, there is a coupling between translation
and rotation that leads to a reorientation of the particle. We show that this reorientation stabilizes the particle motion.

The motion of rigid or flexible particles in viscous flows has been extensively studied; a particular example are elongated
objects, like fibers, whose transport is important in a variety of small-scale applications, from swimming micro-organisms and
biofilm streamers in blood capillaries to fabrication of non-woven fibrous media. A canonical situation is the sedimentation
of such an elongated object in a Stokes flow; due to its drag anisotropy, a randomly oriented fiber does not translate in the
direction of gravity but at an angle depending on its orientation. The presence of a vertical wall leads to a rotation of the fiber,
with either glancing or reversing motions. Other hydrodynamics effects, linked to the shape or deformability of the particle,
the features of the flow or of the flow boundaries can lead to complex trajectories. For example, the flexibility of the fiber can
induce changes in the trajectory and significantly affect its transport [1]. When a flexible filament sediments in a viscous fluid,
it deforms due to the viscous drag; this deformation modifies its trajectory, i.e. the filament rotates and aligns perpendicular
to the flow. In addition, highly flexible filaments are susceptible to a buckling instability [2]. These motions influence the
stability of a suspension of flexible fibers sedimenting in a viscous fluid: the deformation of the fibres leads to an anisotropic
base state that renders the suspension more unstable, while the subsequent self-rotation of the fibres prevents clustering and
thus stabilizes the suspension [2]. Here, we consider the transport of elongated objects in pressure-driven flows in microfluidic
Hele-Shaw cells, and study the effect of confinement, shape and flexibility on the trajectories.

(a)

(c)

(d)

(b)

Figure 1: Inset: notations. (a-c) Experimental chronophotographies of a fiber flowing in a microchannel exhibiting (a,b)
glancing (with two different initial angles) and (c) reversing oscillations. (d) Experimental chronophotographies of the flow
of an L-shaped fiber. Flow is from left to right.
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FLOW OF CONFINED RIGID SYMMETRIC FIBERS

We fabricate polymeric particles directly in microchannels by using a stop-flow photolithography method [1, 4]. This
allows for a good control over the shape and mechanical properties of the fiber. We first consider rigid symmetric particles,
i.e. fibers with a square cross-section (inset in Fig. 1). When the particle dimensions are small compared to the channel
dimensions, the particle is unconfined and is simply advected at the flow velocity. However, in shallow cells in which the
fiber size is of the same order as the channel height (i.e. nearly blocks the channel), the particle is confined and its trajectory
and velocity are modified due to the friction with the walls. In that case, the transport anisotropy is reversed compared to
sedimentation: a fiber moves faster when perpendicular to the flow direction than when parallel to the flow [3]. When oriented
at an arbitrary angle θ with the flow direction, the fiber thus drifts, albeit in the opposite direction than the one found in
sedimenting fibers (see Fig. 1 (a-c) near the center of the channel). By varying the confinement, i.e. the ratio of the particle
height to the channel height, we can tune the magnitude of the friction and thus the velocities. The drift angle, as well as
the spanwise drift velocity, increase with increasing confinement and are maximal for an orientation close to θ = 45◦. We
then consider the effect of lateral confinement, i.e. interactions with the lateral walls. In that case, the trajectory of the fiber
is a combination of drift and rotation due to the presence of the bounding walls. When the orientation of the fiber deviates
from θ = 0◦, the fiber exhibits oscillations around θ = 0◦ (glancing) as shown in Fig. 1 (a-b). As the initial fiber angle
increases, the drift velocity increases, while the rotation velocity remains nearly constant: as a consequence, the amplitude
of the oscillations increases with increasing angle, i.e. the fiber glances closer to the wall and explores a larger part of the
channel (Fig. 1 (a-b)). If we increase the angle above 45◦, the fiber exhibits qualitatively different oscillations (Fig. 1 (c)):
the rotation induced by the wall is reminiscent of the reversing regime, i.e. the fiber now oscillates around θ = 90◦. When the
fiber is not placed at the center of the channel but in the vicinity of the wall, it remains in the boundary layer close to the wall
and we observe different trajectories (not shown): the fiber either rotates and completely reverses orientation with a repeated
movement of pole-vaulting, or exhibits small oscillations (wiggling).

The fiber thus behaves like an oscillator. We build a bifurcation diagram as a function of the fiber orientation and spanwise
position in the channel. The fiber either exhibits closed orbits (glancing and reversing oscillations) or open orbits near the
walls (pole-vaulting and wiggling). We analyze the oscillatory regimes and show that the trajectories can be tuned by adjusting
the confinement, i.e. changing the magnitude of the viscous drag. We also note that the fiber position is unstable to small
perturbations, i.e. the fiber can jump from one orbit to the other. For example, fibers of orientation close to θ = 50◦

oscillate between glancing and reversing motions. Finally, our experimental data compares well with numerical simulations
using modified Brinkman equations developed by M. Nagel, P-T. Brun and F. Gallaire at EPFL (Lausanne). With these
simulations, we can obtain a complete phase diagram exhibiting both glancing and reversing regimes, as well as pole-vaulting
and wiggling, for various transverse and lateral confinements, and extract the rotation and drift velocities from which we
rationalize our observations.

ASYMMETRIC AND FLEXIBLE FIBERS

We then turn to asymmetric particles, by first considering an L- shaped fiber. Here, the anisotropy of the viscous drag
exerted between the fiber and the walls leads to a reorientation of the fiber due to its asymmetry: the fiber rotates until it
reaches an equilibrium orientation, i.e. its angle remains constant (Fig. 1 (d)). As we vary the transverse confinement and the
shape of the particle (i.e. the ratio of lengths between the short and long branches of the ”L”), the equilibrium angle varies:
it decreases (i.e. the long branch tends to align with the flow) as the confinement increases or as the length ratio increases.
This model experiment shows that a small perturbation of the shape (here the presence of a small branch on one side) can lead
to particle rotation, and the particles always reorient towards their equilibrium orientation. While this can lead to complex
trajectories, it also stabilizes the fiber motion: slightly asymmetric particles return to a constant angle even if perturbed, and
are thus more stable than straight fibers. These experiments are a first step towards understanding the motion of a flexible
fiber in a confined geometry. Due to the transverse confinement, strong hydrodynamics forces can deform the fiber. As a first
step, we have used this flow-induced deformation, on anchored fibers, to develop an in-situ method to measure the mechanical
properties of photo-polymerized gels [4]. When freely transported by the flow, the fiber can deform due to a change in flow
conditions or the presence of a wall, and we expect complex trajectories as suggested from our results with L-shaped particles.
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Summary Motivated by the problem of an eroding particle immersed in a viscous fluid, we present some new results on surface tractions in
Stokes flows. In particular, we derive new integral equations for the surface tractions on a rigid particle immersed in a low Reynolds number
fluid which may have a non-trivial background flow and/or a no-slip plane wall. The integral operator enjoys the conditioning advantages
of second kind integral equations while avoiding the traditional obstacles of hypersingularity and rank deficiency. Moreover, the derivation
is a simple argument using the Lorentz reciprocal theorem. This work builds on a 2011 paper of Keaveny and Shelley which considered the
case of an infinite quiescent fluid. The formulation is used to explore viscous erosion of bodies in a selection of fundamental background
flows, resulting in the emergence of distinct limiting body shapes involving sharp corners and ridges.

THE COMPLETED TRACTION BOUNDARY INTEGRAL EQUATION WITH IMPOSED BACKGROUND FLOW

Consider the following Stokes resistance problem. The boundaryD and centroid Y of a suspended particle are given along
with a background linear flow u∞i (x) = Aijxj , where A is trace-free. The equations of motion in the fluid are the Stokes
equations,

0 = −∇p+ µ∇2u (1)
0 = ∇ · u (2)

where u is the fluid velocity, µ is the viscosity, and p is the pressure. We wish to determine the surface tractions on the particle.
The boundary conditions consist of an imposed rigid-body motion at the surface, u = U + Ω × (x − Y ), and decay of the
disturbance flow at infinity, |u− u∞| = O (1/|x− Y |) as |x− Y | → ∞. The desired tractions can be obtained by solving
the second-kind integral equation

−1

2µ
fj(y) + nk(y)

∫
D

Tijk(y′ − y)fi(y
′)dSy′ +

∫
D

Cij(y
′,y)fi(y

′)dSy′

= Uj + εjk`Ωk(y` − Y`)− (Ajk +Akj)nk(y) +
1

2
(Ajk −Akj)yk +

1

2
(Ajk +Akj)zk(y).

(3)

This equation holds for j = 1, 2, 3 and at each point y on the particle surface D. We have written Tijk for the free-space
stresslet and Cij for the kernel of a completion flow:

Tijk(x,y) =
−3

4πµ

(xi − yi)(xj − yj)(xk − yk)

|x− y|5
(4)

Cij(x,y) =
δij

8πµ|x− z(y)|
+

(xi − zi(y))(xj − zj(y))

8πµ|x− z(y)|3
+ εm`j

εimp(xp − zp(y))

8πµ|x− z(y)|3
(y` − z`(y)) (5)

where z : D → IntD is a map from the surface to the interior of the particle; in the case that z ≡ Y this reduces to the
Power and Miranda formulation [1]. The inclusion of completion flow makes the operator acting on f invertible. The integral
equation (3) may be derived through a simple Lorentz reciprocal theorem argument. The formulation can also be extended to
address problems with several particles, problems with more general background flows, problems involving a no-slip plane
wall, and mobility formulations. This work generalizes the argument presented in [2], which considered the case of an infinite
quiescent fluid and which in turn drew on [3]. Previous works in this area also include [4, 5, 6] and others; the current method
is advantageous because it leads to invertible integral operators with singularity equivalent to a jump discontinuity.

DISCRETIZATION AND APPLICATION TO LOW-REYNOLDS NUMBER EROSION

We employ a simple collocation discretization of the integral equations, following a suitable subtraction of the singularity
which reduces its order to that of a jump discontinuity. After presenting numerical tests indicating third-order convergence
under mesh refinement, we use the method to examine the erosion of several bodies when they are held fixed in various
background flows. A recent study of erosion of clay in a high Reynolds number fluid flow found support for a model of
surface ablation as proportional to the tangential surface stress [7]. We use the same ablation model to explore the erosion
of bodies in a variety of low Reynolds number settings. We also apply the method to obtain surface tractions on spheroidal
bodies sedimenting under gravity near a plane wall as studied in [8], clarifying the role of particle eccentricity in determining
three-dimensional glancing versus reversing type trajectories.
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Figure 1: Erosion of three initially spherical particles at low Reynolds number while held immobile in non-trivial background
flows. Top row: uniform horizontal flow. Second row: shear flow with plane of zero background flow below the sphere.
Third row: shear flow above a no-slip plane wall. The surface color indicates shear stress. The white tracers illustrate the
background flow in the animations from which these images are taken.

CONCLUSIONS

We have presented new integral equations for the surface tractions on a rigid body in a viscous fluid with background
flow. These equations were applied to the study of several erosion processes including those depicted above; in each case
we see the emergence of a distinct limiting body shape, which has sharp corners or ridges. In particular, the body shape that
emerges in a uniform background flow is the drag-optimizing profile obtained by Pironneau [9]. Future applications of this
integral equation will include problems in microscale chemical processes and biophysics where local stress information may
be critically important in inducing/inhibiting growth, as well as other stress-influenced phenomena such as plaque rupture in
arteries [10].
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Summary The cellular cytoskeleton is an assembly of microscopic filaments and molecular motors, and is the machinery for performing 
many cellular processes vital to life such as mitosis and cell division. Despite its critical role, important aspects of cytoskeletal mechanics 
remain poorly understood, particularly how the interactions of microscopic cytoskeletal elements — filaments and motor-proteins — with 
each other and the cellular cytoplasm relate to observed larger-scale behavior. One reason for this lack of understanding is the complexity 
of the fluid-structure interactions involved – mitosis and chromosome segregation can involve hundreds to tens-of-thousands of 
microtubules – and, when modeling, the difficulty in determining the key actors driving the phenomena. I will discuss recent advances in 
our theoretical understanding of some important cytoskeletally-driven processes, achieved partly through the development of highly 
efficient and flexible numerical methods for resolving and evolving large assemblies of microtubules, and partly through careful 
combinations of experimental observation and biophysical modeling. 
 

INTRODUCTION 
 

Biology has long been the inspiration for studying how actively driven structures interact with fluids, with the flight of birds 
and swimming of fish being classical examples. However, the microcosm of the cell provides other, less easily observed, 

likewise fascinating instances. Figure 1 shows some of the events 
leading to the first cell division in a Caenorhabditis elegans embryo. 
Figure 1a–c shows the migration and positioning of the pronuclear 
complex (PNC), which carries the male and female genetic material to 
the center of the cell. However this process might be effectuated, the 
proper positioning and orientation of the complex, and thus that of the 
subsequent mitotic spindle (Figure 1c–e), are crucial for asymmetric 
cell division and the generation of cell diversity during development. 
Pronuclear positioning is a daunting problem in fluid-structure 
interactions as the PNC is itself geometrically complex given its 
association with two dense arrays of stiff biopolymers -- microtubules, 
or MTs -- which are themselves involved in driving the complex 
through the cytoplasm. Figure 1d,e captures another fluid-structure 
interaction as chromosome copies are divided and are then moved to 
opposite ends of a cell before cell division (Figure 1f). See [1] for a 
recent review. To study these problems in developmental biology, we 
have developed new numerical tools to resolve some of the complex 
fluid-structure interactions involved, and new theoretical models of the 
active cytoskeletal materials involved. 

    
Spindle Positioning as a Fluid-Structure Interaction Problem 
   To this end, we have created a highly efficient, large-scale numerical 
platform for dynamic simulation of cytoskeletal assemblages of MTs and 
motor-proteins [2]. It is, to our knowledge, the first method to incorporate 
many-body hydrodynamic interactions between MTs and other intracellular 
bodies with the cytoplasmic fluid, while also accounting for MT flexibility, 
their “dynamic instability”, and interactions with motor proteins [3]. Our 
method is based upon a boundary integral formulation for efficiently solving 
the Stokes equations around immersed bodies in confinement [4], and uses 
nonlocal slender body theory for the accurate, but dimensionally reduced, 
representation of MT biopolymers [5]. Figure 2 shows the application of this 
platform to the study the mitotic spindle positioning in the first cell division in 
C. elegans embryo [3]. Achieving proper position is indispensible for faithful 
chromosome segregation. This simulation instantiates a model of pronuclear 
positioning proposed by Kimura & Onami [6] wherein motor proteins bound to 
the cell periphery pull upon MTs attached to the pronucleus; see also [7]. 
Specifically, we show that different proposed active mechanisms for spindle positioning produce qualitatively different 

Figure 1: Snapshots of different stages of the first cell 
division in a single-cell C. elegans embryo: (a–c) 
pronuclear centering and rotation, (c,d ) spindle 
formation, (e) asymmetric spindle elongation and 
chromosome segregation, and ( f ) cell division. Here 
tubulin is labeled with a green fluorescing molecule, 
and the chromosomes are labeled with a red 
fluorescing molecule. Figure modified with the 
permission of Asako Sugimoto. 

Figure 2: The computed cytoplasmic flow 
during nuclear positioning where ~1000 MTs 
are pulled upon by motor-proteins bound to 
the cell periphery. Adapted with permission 
from Nazockdast et al [3]. 
 

1148

mailto:shelley@cims.nyu.edu
sophie
Typewritten Text



signatures in their induced cytoplasmic flow, suggesting flow visualization as a tool for studying different active 
mechanisms in cellular processes. For the simulation in Figure 2, the cytoplasmic flow is predominantly that induced by a 
Stokeslet moving under confinement. In related work, we use a combination of structural data from electron tomography 
and computer simulations to study the interaction of MTs within the spindle with chromosomes during chromosomal 
division (Redemann et al, 2016, in preparation).  
 
Mathematical Modeling of Contractile MT/Motor-Protein Networks 
 It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures such as the 
mitotic spindle, and how molecular properties of cytoskeletal components affect the large-scale behaviors of such systems. 

To help understand this in the context of the 
mitotic spindle, recent work from the Needleman 
Lab (Harvard) investigated the self-organization of 
microtubules in cellular extracts [8]. These 
experiments show that MTs can form macroscopic 
networks that spontaneously contract; See the two 
left panels of Figure 3. As part of this study, we 
proposed that these contractions are driven by the 
clustering of microtubule minus ends by the motor-
protein dynein, and constructed an active fluid 
theory based on this idea. In this mathematical 
model, motion of MTs is driven by the active 
stresses arising from motor-protein driven bundling 

of their minus ends, and is ultimately resisted by steric repulsion. This theory predicts a dependence of the time-scale of 
contraction on initial network geometry, a development of density inhomogeneities, and a constant final network density, all 
in quantitative agreement with experiments. The right panel of Figure 3 shows a comparison of the MT density predicted by 
simulating the active fluid model with experimental measurements of the active material density. These results demonstrate 
that the motor-driven clustering of MT ends is a generic mechanism leading to contraction, and its consequences are being 
investigated in the context of active fluid models of the mitotic spindle (Furthauer et al, (2016), in preparation). 
 
Conclusions 
Cell biophysics provides complex new fluid-structure interaction problems that are central to our understanding of basic 
developmental biology, and which impinges on new areas of materials science and self-assembly. Understanding these 
requires the development of new computational tools that can resolve the geometric complexity of the phenomena, and the 
derivation and analysis of new “active-matter” models that explore the peculiarities of how motor-proteins interact with 
cytoskeletal filaments such as microtubules. 
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Figure 3: Left and Middle panels: Contraction of a cellular extract containing 
“stabilized” MTs in a microfluidic channel, and showing intensity averaged 
along the length of the channel (rightward graphs). The average intensity 
peaks at the network's edges due to increased local microtubule density. Right 
panel: Comparison of measured density (solid lines) with density from 
simulation of the active fluid model (dashed lines). Adapted with permission 
from Foster et al [8]. 
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Summary The aim is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. 
We observed two mechanisms by which the pollen released from male inflorescences of Ruppia is adsorbed on a water surface: 1) 
inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; 2) 
inflorescences remain below the surface and produce air bubbles which carry pollen mass to the surface where it disperses. In both cases 
dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the 
capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can 
disrupt the pollination process as the pollen is not captured or transported on the water surface. 
 

INTRODUCTION 

 
   In Ruppia maritima, the transport of pollen from an anther to a stigma takes place primarily on a water surface [1,2]. To 
model the transport process, we need to understand the mechanisms by which the pollen grains released from an anther are 
adsorbed and disperse on the water surface and the hydrodynamic forces that govern their subsequent motion on the surface 
towards the sigma. Our objective is also to study the role of surface tension in the transport process and how it is affected by 
the presence of surfactants that may be present because of water contamination. It is well known that particles trapped in 
liquid surfaces interact with each other via lateral capillary forces, which arise because of their weight, to form clusters. 
This, as discussed below, is also the mechanism by which pollen particles cluster together to form pollen rafts. 
  Clusters of pollen adsorbed in a water surface are subjected to hydrodynamic drag and capillary forces. The vertical 
component of capillary force keeps them afloat, and its lateral component moves them tangentially on the water surface 
(Fig. 1). A depression in the water surface created by a stigma gives rise to a lateral capillary force that transports the pollen 
towards the stigma. The latter is the key mechanism that enhances the probability of pollination which is especially 
important because these plants produce pollen in limited quantities in comparison to the plants that rely on three-
dimensional pollination. Flow on the surface of oceans or lakes changes with changing wind and water currents. Therefore, 
in addition to lateral capillary forces, floating pollen clusters are subjected to hydrodynamic forces. This makes a study of 
the role of capillary forces in the pollen transport process difficult to carry out under natural conditions. 
   For the last three years, we have collected Ruppia maritima from the north coast of Long Island and the Jersey Shore 
just as it was coming into bloom. This was the optimal condition in which to manipulate and observe pollen release and its 
interaction with the water surface. Field samples of male and female flowers were collected for experimentation and whole 
plants were transferred to saltwater aquariums at Brooklyn Botanic Garden and New Jersey Institute of Technology for 
observation. We made video recordings of the pollen release, transport to the surface, adsorption, dispersion, and transport 
on the water surface under the controlled laboratory conditions. We also conducted experiments to understand the effect of 
trace amounts of surfactant in the water, for which we added detergent to the water and observed its influence on each of 
these steps. 

(i)   (ii)   (iii)  
Figure 1. Anthers and pollen grains of Ruppia. (i) Male flower (anthers); (ii) Magnified view of kidney-shaped pollen grains (length ~40 
m) in 100x, and (iii) Magnified view of a stigma in contact with the water surface. Notice that the water surface around the stigma is 
depressed which can be inferred from the reflection pattern around the upper tip of the stigma. This attracted the attached pollen clusters. 
 

RESULTS AND DISCUSSION  
 

   We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a 
water surface: 1) inflorescences rise above the water surface and after they mature their pollen mass falls onto the surface as 
clumps and disperses as it comes in contact with the surface [3-5]; 2) inflorescences remain below the surface and produce air 
bubbles which carry kidney-shaped pollen mass to the surface where it disperses. In the second case, some pollen grains were 

1150



also released onto the bubble surfaces before they detached from the inflorescences. These pollen grains adsorbed on the bubble 
surfaces were also carried to the water surface.  
   The video recordings show that in the second mechanism often the pollen mass within a bubble remained undispersed for 
several seconds and then suddenly the bubble bursted causing the dispersion of the pollen onto the water surface (Fig. 2). The 
dispersion occurs in two-dimensions, i.e., on the water surface, in the sense that a significant fraction of the pollen grains are 
adsorbed at the surface. Pollen grains are slightly denser than water and so if they are not adsorbed at the surface, they 
slowly sediment to the bottom.  
   For both mechanisms, the pollen mass partially dispersed with a densely packed region of pollen grains in the middle which 
was surrounded by a monolayer of pollen grains. The latter appeared translucent compared to the densely packed region because 
it contained mostly a single layer of grains with some smaller clumps within. The process by which a pollen mass disperses is 
qualitatively similar to the process by which a clump of powder disperses on a water surface. The dispersed area of a pollen mass 
released above the water surface was smaller than that of a pollen mass released below the water surface. Pollen dispersion on 
the surface is a crucial first step in the formation of floating porous pollen structures called “pollen rafts.” In both cases 
dispersed pollen masses floated and combined with others to form pollen rafts.  
   The presence of a trace amount of surfactant (~100 ppm) interfered with the pollen adsorption process. For anthers 
released below the water surface most pollen masses were not transported to the surface. The surface tension force, reduced 
because of the surfactant, was not large enough to keep them attached to the bubbles as they rose to the surface, and so 
pollen masses sedimented to the bottom. Although some pollen masses were transported to the water surface, they did not 
disperse and after remaining on the water surface for a few minutes they also sedimented. The reduced surface tension was 
not large enough to keep them afloat or to disperse them. For pollen masses released above the water surface, most of the 
pollen was not trapped at the surface, especially the larger sized clumps. The pollen that was adsorbed formed a monolayer 
which was not dense enough and pollen rafts were not formed, and so it was only weakly attracted towards a depression in 
the water surface created by a stigma.  
 

(i)   (ii)   (iii)   (iv)  
Figure 2. Pollen mass released from anthers below the air-water interface disperses upon reaching the water surface to form a partially 
dispersed clump and subsequently combined with other pollen masses to form a pollen raft (i-ii) A pollen mass is rising to the water 
surface, (iii) The pollen mass dispersed as soon as it came in contact with the water surface, and (iv) Several dispersed pollen masses 
cluster together to form a pollen raft. 

CONCLUSIONS 

 
   Surface tension is essential for efficient pollination of Ruppia maritima. It causes pollen masses released above or below the 
water surface to disperse when they are adsorbed in the surface. This increases their surface area allowing pollen masses to float 
on the surface. Furthermore, lateral capillary forces cause dispersed pollen masses to come together to form pollen rafts. Pollen 
rafts deform the water surface substantially more than a single pollen grain because of their larger size and buoyant weight, and 
therefore, they are more strongly attracted to the depressions created by the stigmas. For this reason the pollen rafts are also 
referred to as the search vehicles. The presence of a trace amount of surfactant can disrupt the pollination process. When 
pollen is released above the water surface it sinks as it is not trapped at the surface because of the reduced surface tension, 
and when it is released below the surface either it does not reach the surface or if it does, it does not disperse on the surface 
and eventually sinks. 
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Summary Suspensions of non-Brownian particles display a complex rheology that originates in a subtle balance between hydrodynamic 
interactions and direct forces between particles, together with the so-called shear-induced microstructure. In particular, the influence of the 
microstructure has been qualitatively evidenced years ago in shear-reversal experiments. At the particle scale, experimental studies pointed the 
role played by the surface roughness of the particles in promoting direct contact between particles, and recent numerical computations suggest 
that contact friction between particles could be part of the explanation for the large viscosity of non-Brownian suspensions. We shall present 
both experimental and numerical results that highlight the links between contact forces, microstructure and rheology. 

INTRODUCTION 

   Creeping flows of non-Brownion suspensions are ubiquitous in industrial processes as in nature and have been the 
subject of numerous studies from about the 1970s. Significant efforts have been devoted to modelling the rheological 
behaviour of these suspensions and, in particular, the variation of the viscosity, , with shear rate, , or particle volume 
fraction, . The viscosity dependence on the shear rate is still ambiguous for highly concentrated suspensions. Suspensions 
appear to change from slight shear-thinning behaviour to shear-thickening one, as the ratio of viscous to Brownian forces 
increases [1], [2]. Recently the work of Mari et al. [3] showed that discontinuous shear-thickening could be explained by the 
involvement of friction forces between particles when the shear stress is high enough and Gallier et al. [4] have conducted a 
comprehensive study on the effect of friction between particles on the rheological behaviour of Non-Brownian suspensions 
showing that friction was responsible for a significant increase of both the viscosity and the magnitude of normal stress 
differences. The idea that particles interact not only through hydrodynamic forces, though often ignored, was proposed as 
early as 1980 by Gadala-Maria & Acrivos to explain the transient response of the viscosity under shear reversal [5]. Indeed, 
Gadala-Maria & Acrivos proposed to explain the step-like reduction followed by a slower decrease that undergoes the 
suspension viscosity after shear reversal by the destruction of an asymmetric shear-induced microstructure. Few years latter, 
this conjecture was confirmed by Parsi & Acrivos who measured the pair distribution function in a non-Brownian 
suspension [6]. Owing to the reversibility of Stokes equations that hold in low Reynolds number flows, an asymmetric 
microstructure can develop only if non hydrodynamic forces are involved in particle interactions. Later, Blanc et al. [7] 
showed that the fore-aft asymmetry observed in the pair distribution of a diluted suspension under shear is explained 
quantitatively by the direct contacts experienced by the particles through their roughness. 
Here, we present some experiments that evidence the role of contact both on microstructure and on rheology and, in a 
second part we give some numerical results that characterize the role of friction on rheology. 

LOCAL RHEOMETRY AND MICROSTRUCTURE 

   Using Particle Image Velocimetry (PIV) method, we measure the velocity field in a buoyant index-matched suspension 
sheared in a Couette rheometer [8]. We thus access to the viscosity everywhere in the gap between the concentric cylinders. 
This local method provides two main advantages compared to conventional macroscopic rheometry: it allows us to avoid or, 
at least, to control experimental artefacts such as wall slip or shear-induced particle migration and it enables us to observe 
the microstructure that develops under the flow. We used this technique to measure the response of suspensions of various 
particle volume fractions under shear reversal. Fig. 1 shows the viscosity response as well as the change in microstructure 
during shear reversal tests. These results corroborate those of Gadala-Maria & Acrivos and of Pari & Acrivos but since they 
are almost free from the experimental artefacts mentioned above, we can extract the viscosity values at the minimum and at 
the plateau. Furthermore, since the microstructure measured at the minimum is almost isotropic, the minimum viscosity 
should be that of a random suspension where the particles interact only through hydrodynamic interactions. On the opposite, 
at the plateau, the suspension has a microstructure with pairs of contacting particles in the compressional quadrant. Thus the 
difference between the viscosity at the plateau, pl, and the viscosity at the minimum, min, corresponds to the enhancement 
of the dissipation due the microstructure and should give an estimate of the so called contact viscosity that is the non 
hydrodynamic contribution to the viscosity. 
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Figure1. Viscosity response during shear reversal experiments and associated pair distribution functions, obtained for a 
suspension with =0.35. When the flow direction is changed, the microstructure pair distribution function is changed into its par 
distribution function. After shear reversal, the viscosity undergoes a step-like decrease, passes through a minimum and increases 
again to its steady value. At the minimum the microstructure is almost isotropic (in the shear plane) while, at the plateau 
contacting pairs are present in the compressional quadrant.   

A detailed numerical study conducted with the Force Coupling Method of Peters et al. proposes a correlation between the 
contact viscosity, c, and the difference pl- min:

c=0.85.( pl- min)
Even though this correlation seems to hold whatever the roughness of the particles and the friction coefficient, friction plays
a significant role on rheology and tunes both the viscosity and the normal stress differences, as shown in fig.2 [4] 

Figure 2. Viscosity (a), first (b) and second (c) normal stress differences as a function of the particle volume fraction for different 
friction coefficients. 

   
CONCLUSIONS 

From experiments (local rheometry and pair distribution function measurement), links between rheology, microstructure and 
solid contact interactions between particles have been evidenced and the role of friction between particles has been studied from 
numerical simulations. 
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Summary In recent experiments, Blanc, Lemaire and Peters dropped a heavy sphere through a concentrated suspension of smaller, neutrally
buoyant particles. They found that the application of a lateral oscillatory shear flow caused the heavy ball to fall faster on average; and that
for highly concentrated suspensions, at certain moments of the cycle of shear oscillation, the heavy ball moves upwards.

We use Accelerated Stokesian Dynamics to model these experiments and other related scenarios. We show how the motion of the heavy
particle depends on two key dimensionless parameters: the frequency of the oscillations (relative to a typical settling time) and the strength
of repulsive interparticle forces, such as DLVO, relative to the buoyancy-adjusted weight of the heavy ball. At the conference, we will also
present results on the dependence on oscillation amplitude, suspension concentration, and the orientation of the shear flow.

INTRODUCTION

Blanc and coworkers [1] recently discovered that a heavy ball falling through a dense suspension of smaller particles can
be made to fall much faster by applying a transverse oscillatory shear to the system, as in geometry [A] of figure 1. The
mechanism, they hypothesise, is all in the microstructure created in the small-particle suspension by each flow. A falling ball
creates an asymmetric density disturbance, with more particles ahead of it than are found in its wake; this naturally hinders
its falling. The cross-shear, on the other hand, may encourage the small particles to align in the vertical direction, making it
easier for the large sphere to pass.
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Figure 1: Three different possible orientations of the fall direction relative to the oscillatory shear flow. [A] Vorticity direction,
as in the Couette device experiments of [1]; [B] Flow gradient direction, as reported below; [C] Flow direction.

They also found that for very concentrated suspensions (a volume concentration of φ = 0.47), if they tracked the large
ball’s fall speed during a shear oscillation, its variation was so extreme that at some moments of the shear cycle it was actually
travelling upwards. In this paper we aim to reproduce some of these observations numerically, and therefore elucidate the
importance of various physical parameters on the two phenomena.

SIMULATION METHOD

We use Accelerated Stokesian Dynamics [2], modified to allow for spheres of different sizes, along with a DLVO-type
repulsive force between each close pair of particles (to prevent overlap); for particles of radius a and bwhose surface separation
is h, the magnitude of this force is [2ab/(a+ b)]ke−τh. Here k governs the force strength and τ its extent.

The physical system we are simulating can be completely specified in terms of the following physical parameters: the
radius of the small particles, as, and of the large ball, af ; the volume concentration φ, or area concentration, c of small
particles; the shear oscillation amplitude, γ0, and frequency, f (defined here as the inverse of the period); the solvent viscosity,
µ; the buoyancy-adjusted weight of the heavy ball, W ; and the two parameters of the DLVO repulsive force, k and τ . There
are additional parameters introduced by the fact that we are simulating a small imitation of the real physical system: the length
of our simulation region, L; the number of preshear oscillations we carry out before “turning on” gravity, Np; the number of
shear oscillations we simulate during settling, Nosc; and the timestep ∆t.

We choose to use the large ball radius af as our fundamental lengthscale; its buoyancy-adjusted weight W as our funda-
mental scale of force; and as our fundamental timescale, the Stokes time Ts = W/6πµa2f over which the large ball would fall
through its own radius in pure solvent. The system is then governed by the dimensionless parameters given in table 1.

∗Corresponding author. Email: helen.wilson@ucl.ac.uk
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Physical parameters Simulation parameters Ideal Used
λ = as/af 0.1 Particle size ratio L/af Box size Large 5–10
γ0 1/3 Shear amplitude Np Pre-shear oscillations Large 2
(τaf )−1 0.05 Repulsion decay length Nosc Main oscillations Large 2
k = k/W Free Strength of DLVO force ∆t/Ts Step size Small Varies
f = fTs Free Dimensionless frequency c Area concentration (2D) – 0.60

Table 1: Dimensionless parameters governing our simulations. On the left are physical parameters, along with typical values
as used in the simulations presented below. On the right we give numerical parameters as we have used them; we also show
the “ideal” value these parameters would take if we had unlimited computing resource.

Since simulations are such a flexible tool, we have also considered the two other possible orientations of the shearing flow
relative to the fall direction (figure 1). The experiments correspond to geometry [A]; in cases [B] and [C] the direction out of
the plane of shear is essentially neutral and we can make a reasonable approximation by considering a single layer of spheres
(here we parametrise the suspension in terms of its area concentration, c, rather than volume fraction, φ). Preliminary results
for a layer in case [B] are presented below; results for [A] and from fully 3D simulations will be presented at the conference.

PRELIMINARY RESULTS

In figure 2 we show the transient fall speed v (normalised by the Stokes velocity of the large sphere in pure solvent)
during a single oscillation of the shear flow for four different parameter combinations with the ball falling in the flow gradient
direction [B]. The system is first presheared for two oscillations before the ball begins to fall; we show here the trajectory of
the second oscillation after the large ball begins its settling motion.

f = 1 f = 10

k = 2

k = 0.2

Figure 2: Two-dimensional simulations of a ball falling in the flow-gradient direction (geometry [B] of figure 1). We plot the
instantaneous fall speed v against state of shear. In each plot, the oscillation begins with motion to the right. The timestep is
∆t/Ts = 1/(100f) in each case and the other parameters are as in table 1.

Looking first at the mean velocity, we see that, as expected, the ball falls more slowly if the magnitude of the repulsive
force between particles is increased (lower plots), because the falling ball naturally comes close to more of its neighbours on
the underside than on the top, so the repulsive force has a net upwards effect on the large ball. This is, however, a weak effect
(as we would hope, since the purpose of the repulsive force is primarily to reduce numerical overlap problems).

When we investigate the dependence on frequency, however, the results are more dramatic. When the shear has a higher
frequency (plots on the right) the mean fall velocity is enhanced by roughly 10%. If we think of low frequencies as the no-
shear limit, this is a reproduction (in a different geometry) of the effect discovered by [1]. However, in our geometry we are
yet to find any parameter values for which there is reproducible upwards motion.
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Summary Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. A
frictional approach, which stems from the rheology of dry granular materials, has been successfully applied to Newtonian suspensions
using an original pressure-imposed shear cell. This alternative way of looking at suspensions provides a way to circumvent the divergence
observed in volume-imposed rheometry and yields examination of the rheology close to the jamming transition. This has been also applied
to suspensions of non-Brownian spheres in yield-stress fluids. Accurate measurements of the shear stress and particle normal stress are
favorably compared with a model based on scaling arguments and homogenization method.

Dense or highly concentrated particulate flows belong to an intermediate regime between pure suspensions and granular
flows. These dense mixture of non-Brownian particles and fluid are found very commonly in practical engineering applica-
tions (e.g. waste disposal, concrete, drilling muds, metalworking chips transport, and food processing) but also in natural
phenomena (e.g. flows of slurries, debris, and lava). In order to understand their flowing behavior, it is desirable to know
their response to imposed forces and motions at their boundary. The fundamental problem is then to determine the rheolog-
ical properties of these media (considered as equivalent homogeneous materials) from a knowledge of the mechanics of the
particles and the interstitial fluid. In other words, the key problem is to understand the relationship between the macroscopic
or bulk properties of the medium and its microscopic structure at these large concentrations. The major difficulty of dense
particulate flows is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact.
The complex nature of these particle interactions greatly contribute to the lack of understanding of these systems.

Over the last century, there has been extensive work on the rheology of Newtonian suspensions, i.e. suspensions composed
of a Newtonian suspending fluid and of non-colloidal particles interacting mainly through hydrodynamics, see e.g. [1]. In the
case of neutrally-buoyant solid spheres subjected to a steady shear flow, the linearity of the Stokes equation implies that the
scaling of the shear stress τ is viscous, i.e. τ = ηs(φ) ηf γ̇ where γ̇ is the shear rate and ηf the viscosity of the suspending
Newtonian fluid. The dimensionless effective shear viscosity ηs only depends on the particle volume fraction φ and increases
with increasing φ, diverging at maximum packing fraction, φm. In addition to this quasi-Newtonian shear-stress law, there
exists a particle normal stress P which also scales viscously. To be more precise, P is linear in the modulus of the shear rate,
because it must be independent of the sign of the shear rate. It can be written as P = ηn(φ) ηf γ̇ where γ̇ is conveniently
defined in an invariant form as γ̇ =

√
2E : E where E is the rate of strain. The dimensionless effective normal viscosity ηn

is again a sole function of φ and presents the same divergence as ηs(φ) when approaching jamming at φm. The rheology of
the suspension is solely determined by the knowledge of the two functions ηs(φ) and ηn(φ).

There is an equivalent approach to this classical view in terms of effective viscosities which is coming from the rheology of
dry granular materials and hinges on a frictional view of the problem, see e.g. [2]. When an assembly of particles is subjected
to steady shear under a confining particle pressure P , there is only one dimensionless control parameter, a dimensionless shear
rate which can be interpreted as the ratio of the time scale for particles to rearrange due to the pressure P to the time scale
of the flow γ̇−1, see figure 1 (a). The friction µ = τ/P and the volume fraction φ are sole function of this dimensionless
number. In the case of immersed granular media, when viscous forces are dominant, the dimensionless number is J = ηf γ̇/P
and is viscous in contrast to dry granular flows where it is inertial. Using an original pressure-imposed shear cell, µ(J) and
φ(J) has been found once again to collapse onto universal curves [3]. This alternative way of looking at suspensions enabled
to circumvent the divergence observed in volume-imposed rheometry and provided examination of the rheology close to the
jamming transition. In particular, this approach yields accurate measurements of the particle pressure, a quantity not often
easily captured.

The new unconventional rheological tool that is the pressure-imposed shear cell offers a brand new perspective of analysis,
see figure 1 (b). We have undertaken systematic investigations and examined how the macroscopic rheology close to the
jamming transition is influenced by the nature of the suspending fluid. In particular, we have explored the rheology of non
colloidal suspensions composed of a yield-stress fluid and of neutrally-buoyant solid spheres in the dense regime [4]. The
particles used were polystyrene spheres having a diameter d = 580± 10 µm and thus are insensitive to Brownian motion and
colloidal interactions. Four suspending fluids having different rheological behaviors were selected. A test case Newtonian
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Figure 1: (a) Principle of the pressure-imposed rheometry: the porous plate exerts a pressure (P ) on the grains while the
suspension is sheared (γ̇) and the shear stress (τ ) is measured. (b) Sketch of the experimental apparatus. (c) Friction coefficient
µ = τ/P and (d) the function F relating the local shear rate seen by the particles to the macroscopic shear rate versus φ (grey
line : 2.8

√
ηs(φ) [6], black dashed line : 2

√
ηs(φ)/1− φ [5], inset : F versus φm − φ) for the viscoplastic suspensions as

well as for the test Newtonian suspension. The symbols correspond to the suspending fluids (the viscoplastic fluid having
different yield stresses τy and consistencies k and the Newtonian fluid) and the colormap to the range of τy/kγ̇n.

fluid was chosen to be polyethylene glycol-ran-propylene glycol monobutylether of viscosity η = 2.27 Pa.s at a temperature
of 24◦C and of density closely matched to that of the particles. The three other non-Newtonian suspending fluids were
emulsions of water droplets in dodecane at different water volume-percentage (68%, 72%, and 80%). Their rheological
behaviors followed a Herschel-Bulkley law with the same exponent but with different yield stresses τy and consistencies k.

The rheological measurements are in agreement with a model based on scaling arguments and homogenisation methods
[5, 6]. In particular, all the data including the Newtonian test case show a perfect collapse of the friction τ/P = µ(φ), see
figure 1 (c). This shows that the constitutive laws close to jamming has a form similar to that for a Newtonian suspending fluid
and thus demonstrates unambiguously that the dynamics of the particles close to jamming are mainly controlled by geometrical
constraints and are independent of the suspending fluid. This scaling approach has been further tested by inferring the function
F(φ) relating the local shear rate seen by the particles to the macroscopic shear rate imposed by the rheological flow and by
showing that an excellent collapse is obtained with a sole dependence in φ, see figure 1 (d). This experimental master curve
agrees well with the prediction proposed by [5] and by [6].

As previously found by [5], the properties of the viscoplastic suspensions can be satisfactorily modelled as that of a
Herschel-Bulkley fluid with an exponent equal to that of the suspending fluid. The dimensionless effective yield-stress and
consistency are found to be sole functions of φ that can be deduced from the knowledge of F(φ) and the dimensionless
effective viscosity ηs(φ) of the test Newtonian suspending fluid.

The present study offers new perspective in the study of even more complex particulate systems as the knowledge of the
rheological constitutive laws in the Newtonian case and the calculation of the function relating the local to the macroscopic
shear rate seem to be the sole ingredients needed to infer the rheological properties of these suspensions.
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Summary We study incipient motion of single spherical particles in shear flow over regular substrates at low particle Reynolds numbers. 
Experimental studies show a strong dependence on the substrate geometry. Numerical studies covering the entire range of particle spacings 
on quadratically arranged substrates show that rolling motion is always preferred to sliding motion. It also reveals how the effective zero 
level depends on the particle spacing. Taking into account the substrate geometry, we propose a model for the incipient motion at low 
particle Reynolds numbers that only relies on the effective zero level and compares well with experiments and numerics. 
 

INTRODUCTION 

 
Prediction of particle incipient motion is important in a wide variety of industrial and natural processes like cleaning of 

surfaces and conveying as well as sediment transport in rivers, granular beds erosion and dune formation. Given the wide 
range of applications, onset of particle motion has been studied intensively during the last century, yet mostly under turbulent 
conditions. During the last decade, several authors have focused on incipient particle motion under laminar conditions, which 
is encountered, for instance, in heavy oil transportation [1], deposition and cleaning in filtration processes or microfluidics 
[2], [3]. Even in high Reynolds number flows, the particle Reynolds numbers may be of order one or smaller [4]. 

In recent experimental studies at low particle Reynolds numbers with regularly arranged monolayers of spheres as 
substrates, we observed a strong impact of the substrate geometry on the incipient motion of a single bead [2]. Further 
experiments also revealed the role of the substrate geometry on the incipient particle motion for multi-particle systems [3]. 
The local grain arrangement on the incipient particle motion has been considered by taking into account the angle of repose 
[5], [6] and exposure to the flow [7] or grain protrusion [8]. The models for predicting the incipient motion usually rely on 
effective empirical values for the drag coefficient and assume an effective zero level independent from the bed geometry [9]. 
Depending on the assumed effective and empirical values, the models provide threshold values that scatter significantly [10]. 
Focusing on creeping-flow conditions, we propose here a model that takes into account the substrate geometry and only relies 
on the effective zero level. The dependence of the effective zero level on the particle spacing is determined numerically. 
 

SYSTEM 

 

We consider a single sphere of diameter DP and density ρS deposited on a regular substrate and exposed to a steady shear 
flow (see Figure 1) with shear rate   of a viscous incompressible Newtonian fluid of constant density ρ and kinematic 
viscosity ν. The substrate consists of a layer of fixed spheres of same size that are regularly arranged in quadratic 
configurations. In experiments, the spacing was achieved using sieves of different mesh size [2], [3]. For irregular substrates, 
it has been shown that the shear flow penetrates slightly into the substrate [1], [11], [12]. Extrapolating the linear shear flow 
results in an effective zero level z0 below substrate protrusions. 

 We consider particle Reynolds numbers smaller than 1. The particle Reynolds number is given by  2Re PP D . The 
incipient motion is characterized by the critical Shields number θC, which compares the characteristic shear force acting on 
the particle to the resistant specific particle weight that retains the particle in its place. The Shields number is defined by

 PS gD)1/(    , where g is the acceleration of gravity. 

 

a aDP

DPz0 O
χ

ϕ Figure 1: Sketch of the system: Single bead resting on a 
quadratic substrate exposed to a shear flow. DP: particle 
diameter; a: substrate spacing; z0: effective zero level below 
the top of the substrate; O: downstream contact point between 
mobile bead and substrate; ϕ: angle of repose. 
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RESULTS 

 
At particle Reynolds numbers below 1, the critical Shields number does not depend on inertia but increases with substrate 

spacing [2]. The substrate hinders the motion in two ways: The mobile particle is partially shielded to the shear flow and it 
has to overcome the angle of repose at the downstream side. The latter is a function of the substrate spacing. The former has 
been studied numerically. As shows Figure 2(a), the effective zero level below substrate protrusions increases linearly with 
substrate spacing from about 10% to 20%. 

     
Figure 2: (a): Effective zero level below substrate protrusions. The symbols show the numerically determined values; the line 
is to guide the eye. (b): Critical Shields number as a function of the angle of repose. Triangles indicate the experimental data 
[2], [3]; open and solid squares indicate the numeric values for frictionless sliding and for rolling motion, respectively. The 
solid line represents the critical Shields number obtained from the analytical model. 

Figure 2(b) shows the critical Shields number determined numerically for the entire range of particle spacings. For each 
geometry, it was determined using the particle density for which the torque balance or the force balance is zero, respectively. 
The former corresponds to the onset of rolling motion, the latter to that for sliding motion. It shows that rolling motion is 
always preferred to sliding motion. The numerical studies also show that lift forces are negligible. 

Assuming a linear velocity profile for the effective zero level obtained numerically, we derive a model for the incipient 
motion as an extension of Goldman’s model for a single particle near a plain surface [13]. The critical Shields number for 
rolling motion can be expressed as:  

10.13 1 cosc G DL L 


  , where LG and LD are the lever arms of the effective gravity 
force and of the drag force with respect to the center of rotation O, respectively. Like χ, they are related to the bead diameter 
and to the spacing. As shows Figure 2(b), it recovers quite well the experimental and numerical data. 
   

CONCLUSIONS 

 
Incipient motion depends strongly on the substrate geometry. At low particle Reynolds numbers, rolling motion is always 

preferred to sliding motion. The effective zero level depends on the particle spacing. Based on the effective zero level and 
taking into account the substrate geometry as the only parameters, we propose a model for the incipient motion at low particle 
Reynolds numbers that compares well with experiments and numerics. 
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Summary Flow in a channel with spatially periodic wall heating is examined experimentally at Reynolds numbers below Re=20 and at the 
Rayleigh number based on the amplitude of the periodic heating and the channel half width Rap=3500, to verify the super-thermohydrophobic 
effect leading to a friction-drag reduction.  Periodic heating with a non-dimensional wavenumber of 1 is applied at the lower wall while the 
temperature of the upper wall is uniform and kept constant at the average temperature of lower wall.  The results show that steady separation 
bubbles are created by periodic heating, which separate the main stream from the wall.  About 12% drag reduction is found at Re=1, 
demonstrating that separation bubbles due to the super-thermohydrophobic effect surely contribute to the friction drag reduction. 
 

 
INTRODUCTION 

 
Drag reduction due to the super-hydrophobic effect is well known, in which gas bubbles trapped in surface micro pores 

prevent direct contact of the liquid with the solid surface and, thus, the shear between the liquid flow and the solid wall is 
replaced by a shear between the flow and the trapped gas bubbles [1].  This mechanism, however, is active only when the 
fluid of the main stream is liquid, and usually requires fine surface topography in order to trap the gas bubbles.  In recent 
years, Floryan [2] proposed a novel methodology to reduce friction drag using spatially distributed wall heating, in which 
buoyancy-generated steady separation bubbles isolate the main stream from the solid wall.  Accordingly, he referred to this 
effect as the super-thermohydrophobic effect.  A significant advantage of this method is that it is applicable to single phase flows, 
including gas flows, and is independent of surface topography.  A qualitative discussion of the drag reducing effect due to 
distributed wall heating was reported by Hossain et al.[3] who analyzed the dependency of the intensity and wave length of 
periodic wall heating on the flow topology and drag reducing effect in detail, and showed that up to 87% drag reduction could 
be achieved.  In addition, a proper combination of spatially periodic and spatially uniform heating enhances the drag reducing 
effect [4].  Although the characteristics of flow exposed to a distributed wall heating have been revealed analytically, an 
experimental study has not yet been reported.  In the present experimental study, flow in a channel with spatially periodic 
wall heating is examined to verify the friction drag reduction due to the super-thermohydrophobic effect.  
 
 

RESULTS 
 

The experiment is conducted in a rectangular channel whose width, height and length are 420mm, 20mm (=2h) and 
2000mm, respectively, giving an aspect ratio (the ratio of width to height) of 21 (Fig. 1a).  The channel is set horizontally in 
the laboratory.  The main flow is driven by a piston connected to a stepper motor controlled ball screw.  The spatially 
(streamwise) periodic wall heating is applied at the lower wall while the upper wall temperature is uniform and is kept constant.  
Hot and cold water is supplied in square pipes installed in the back of the lower wall made of thin water proof paper, creating 
a streamwise periodic temperature variation along the bottom surface (Fig. 1b).  The wavelength of the heating is =62.8mm, 
giving a non-dimensional wavenumber of =2h/ = 1.  The Reynolds number is defined as Re=Uch/, where Uc denotes 
the center velocity of the plane Poiseuille flow upstream of the heated wall and  stands for the kinematic viscosity.  The 

Rayleigh number measuring the intensity of periodic heating is defined as Rap=gh3Tp/(, where Tp denotes the peak-
to-peak amplitude of the absolute temperature along the lower wall, g stands for the gravitational acceleration,  is the thermal 
expansion coefficient and  denotes thermal diffusivity.  Properties of the fluid (air) are defined at the upper wall temperature.  
A particle image velocimetry (PIV) system (Dantec) consisting of a double-pulsed Nd:Yag laser and a CCD camera of 2048 
× 2048 pixels is used to obtain instantaneous velocity fields.  The surface temperature is measured using thermography and 
thermocouples.  In the present paper, the average temperature of the lower wall is set equal to the temperature of the upper 
wall. 

Figures 2(a)-(c) display the time-averaged flow expressed in terms of a map of the transverse velocity V and streamlines.  
In the absence of net horizontal flow at Re=0, pairs of counter rotating rolls whose upward and downward motions occur 
above the hot (maximum temperature at (x-x0)/h=94) and the cold (minimum temperature at (x-x0)/h=97) spots, respectively, 
are observed (Fig. 2a).  When a weak flow is imposed at Re=1, the main stream meanders remarkably, i.e. the net stream 
flows along the lower wall at 91≤(x-x0)/h≤94 and along the upper wall at 94≤(x-x0)/h≤97 (Fig. 2b).  This stream divides a 
pair of rotating rolls into distinct separation bubbles which separate the main stream from the wall.  With increasing Reynolds 
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number, separation bubbles on the upper (non-heated) wall become smaller than those on the lower (heated) wall (Fig. 2c).  
Figure 3 illustrates the Reynolds number dependency of the drag reducing effect compared with the unheated (plane 
Poiseuille) flow.  Local skin friction is measured by measuring the y-profile of the streamwise velocity U at each x location, 
and the net wall shear stress over one heating wavelength1 is examined.  About 6-12% drag reduction is found at Re≤5, 
demonstrating that the presence of the separation bubbles surely contributes to the friction drag reduction. 
 
 

CONCLUSIONS AND OUTLOOK 
 

Flows in a channel with spatially periodic wall heating are examined experimentally.  The results have shown that periodic 
heating creates steady separation bubbles which reduce the net friction drag by about 12% at Re=1, verifying the existence of the 
super-thermohydrophobic effect.  In the presentation, the influence of the heating wave number as well as the average temperature 
difference between the upper and lower walls on the drag reduction will be discussed in detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Experimental setup (dimensions in mm) and (b) streamwise variation of the bottom surface temperature (Rap=3500). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Maps of V velocity component and the stream lines.      Fig. 3. Variations of the reduction of the friction drag  
 (a)Re=0, (b) Re=1, (c) Re=5.                                 as a function of Re.  0 denotes wall shear 

stress of the unheated (plane Poiseuille) flow. 
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Summary Suspensions of microorganisms are characterized by large scale correlated flow structures, enhanced diffusion of passive tracers, and 
enhanced fluid mixing. Most previous studies on the collective motion of microorganisms have been limited to Newtonian fluids. The non-
Newtonian fluid properties, such as viscoelasticity and shear-dependent viscosity in biological flows, such as saliva, mucus and biofilm, 
significantly affect the swimming dynamics of a single swimmer. However, the role of fluid rheology on the collective motion of 
microorganisms is poorly understood. In this work, we use direct numerical simulations to investigate the effects of fluid properties on the 
collective motion of rod-like microswimmers in a low Reynolds number regime. For both pushers and pullers, we find that the viscoelasticity 
does not qualitatively alter the collective motion of microorganisms. The average speed and spatial correlations in a suspension of pushers 
decrease with Deborah number, but they are less affected for pullers. 
 

INTRODUCTION 
 
   Collective motion of microorganisms, which is also referred to as “active turbulence”, is characterized by complex 
dynamics including large-scale correlated motions, strong fluctuations and enhanced diffusion and fluid mixing [1]. The 
energy source of the active turbulence is intrinsically different from the classical turbulence at high Reynolds numbers. The 
high Reynolds number turbulent flow arises from energy input on large scales. For the microbial turbulent flow, the energy 
is provided by the microorganisms at microscale and flow is highly dissipative at such low Reynolds numbers (Re~10-5). 
Although the active turbulence in a Newtonian fluid has been recently studied [2], the role of non-Newtonian fluid 
properties on the collective dynamics is poorly understood. Microorganisms and spermatozoa often swim in non-Newtonian 
fluids exhibiting both viscoelasticity and shear-thinning viscosity [3, 4]. For an isolated swimmer or a swimmer in a dilute 
suspension, fluid rheological properties are found to greatly affect the swimming speed [5, 6]. Using a modified mean-field 
theory, the viscoelasticity is found to affect the wavenumber corresponding to the largest growth rate [7]. Despite 
widespread applications of swimming in complex fluids, the role of fluid properties on the hydrodynamic interaction of 
microorganisms in a suspension is poorly understood. 
 

GOVERNING EQUATIONS AND NUMERICAL METHODS 
 
   We conduct two-dimensional simulations of suspension of  identical slender rod-like swimmers of length , 
propelling themselves by a slip velocity 2  over half of their body. Two types of swimmers are considered: pushers, for 
which a constant slip velocity is imposed on the tail half side of the rod, and pullers, for which slip velocity is imposed on 
the head half side. In a Newtonian fluid, a single pusher and puller swimmer have the same swimming speed U. In the 
following, the length is scaled by , velocity by , time by / , and pressure and stress by / , where  is the fluid 
viscosity. Simulations are performed in a periodic square box of size =10. Volume fraction is defined as / . 
 
The dimensionless equations for conservation of momentum and mass are 

∙ 	, 

∙ 0, 

where the Reynolds number is defined as 5 10 , ρ is the fluid density, u is the velocity vector, p is the 
pressure, and τ is the deviatoric stress tensor. The extra dissipative term  corresponds to the mechanical friction 
between the soap film and the surrounding air. This dissipation is important in the energy budget for high Reynolds two-
dimensional turbulent flows, however, it is not necessary for an active turbulence at low Reynolds numbers. We set 0 
in the following, unless otherwise mentioned. In a Newtonian fluid, the stress tensor is simply determined by the shear rate 
tensor  and fluid viscosity, i.e.,  in dimensionless form. For the elastic fluid, we use the Oldroyd-B 
constitutive relation, in which  can be split into solvent and polymer contributions as , where , 
 

1 , 
 

where 0.5 is the ratio of the solvent viscosity to the zero-shear-rate viscosity of the polymeric solution. The Deborah 
number /  is the ratio of the polymer relaxation time  and the characteristic flow time scale / . The notation 
∧ represents the upper-convected derivative. Simulations are conducted using a finite-volume method based on a staggered 
grid. A conventional operator-splitting method is applied to enforce the continuity equation. The swimmer is modelled by 
satisfying the above mentioned slip condition using a distributed Lagrange multiplier method. The viscoelastic stress is 
solved by implementing a commonly used formulation denoted as the elastic-viscous stress splitting method [8]. 
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RESULTS AND DISCUSSIONS 
 
   As shown in figure 1, the flow field is characterized by large scale coherent structures much larger than the swimmer 
size. Pushers tend to align with their neighbours due to a side-by side attraction and show a local nematic ordering. The 
pullers aggregate at their head and form clusters. Similar results are also observed in confined 2D suspensions of 
microswimmers in a Newtonian fluid [9]. Although the viscoelasticity does not qualitatively change the collective motion 
for either pushers or pullers, it quantitatively affects the collective motion of pushers. Figure 2 shows the distribution of the 
swimming speeds and the spatial correlation for pushers and pullers. Pushers swim faster in a Newtonian fluid while pullers 
swim slower. Stronger spatial correlations are observed for pushers as Deborah number increases, while pullers are less 
affected. 

 
            Suspension of pushers, 1  Suspension of pullers, 1 

Figure 1. Distribution of swimmers and flow field. Colour contours show the u-velocity component. 

   
Figure 2. Swimming speed and spatial correlation in suspensions of pushers and pullers. 

 
 
   In summary, we have conducted fully resolved simulations of suspension of microswimmers and quantified the role of 
viscoelasticity of the surrounding fluid on suspensions of pushers and pullers. 
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Summary We study the effect of wall bending resistance on the motion of an initially spherical capsule freely suspended in shear flow. The

fluid–structure interactions are modeled by coupling a boundary integral method for the fluids with a shell finite element method for the

capsule envelope. For a given wall material, the capsule deformability strongly decreases when the wall thickness (or bending resistance)

increases. For low flow strength, membrane wrinkles can appear with a wavelength that depends on the wall bending resistance.

INTRODUCTION

Capsules, which consist of an internal liquid droplet enclosed by a membrane, are designed to protect fragile or volatile

substances and control their liberation. Typical artificial capsules are quasi–spherical at rest and have a thin membrane whose

thickness and mechanical properties depend on the fabrication process. When suspended in a simple shear flow, a spherical

capsule is elongated in the straining direction by the hydrodynamic stresses, while the membrane rotates around the deformed

shape because of the flow vorticity. However, for low flow strength, the capsule membrane is compressed in the equatorial

region and may buckle [1]. Since membrane wrinkling may lead to fatigue breakup, it is important to predict this phenomenon

in order to avoid/provoke membrane rupture. Numerical models of the fluid–structure interaction must then be developed to

understand the complex behavior of a spherical capsule in an external flow. Most models that include bending effects have

decomposed the wall strain energy into the sum of a membrane elastic energy and of a bending energy computed from the

local curvature. Their relevance for artificial capsules can be questioned because unrealistically high values of the bending

modulus have been used [4, 5].

The objective of this study is to analyze the deformation of an initially spherical capsule (radius ℓ) in a simple shear flow,

assuming that the wall is made of a three–dimensional, incompressible, homogeneous, hyperelastic material (thickness αℓ
(α < 1), shear modulus G and Poisson ratio ν = 1/2) that resists both membrane and bending deformations.

PROBLEM FORMULATION AND NUMERICAL MODEL

The wall is sufficiently thin to be modeled as a thin shell with mid–surface St. The displacement field satisfies the

Reissner–Mindlin kinematic assumption [2]. The wall’s stress-strain relationship is the generalized Hooke’s law. The capsule

is freely suspended in a simple shear flow with shear rate γ̇. The inner and outer fluids have the same viscosity µ and density

ρ. As inertia effects are neglected, the internal and external flows are governed by the Stokes equations. For thin walls, the

local velocity of the mid–surface points is then obtained from an integral over St of the viscous traction jump, weighted by a

stokeslet. The problem parameters are the relative wall thickness α, the bulk capillary number Cav = µγ̇/G, which compares

the viscous to the elastic forces. When bending resistance is neglected (α ≪ 1), it is customary to introduce a surface shear

modulus Gs = Gαℓ, to which corresponds a membrane capillary number Cas = µγ̇ℓ/Gs = Cav/α. The bending number

Kb = α2/3 measures the relative importance of bending and shearing effects.

To solve the fluid–structure interaction problem, we iteratively couple (i) a shell finite element method to solve the solid

problem and find the viscous load acting on the capsule wall from the displacement field on St, and (ii) a boundary integral

method to compute the velocity field on St from the load transferred by the solid solver. We then update the position of the

mid–surface by integrating the velocity using a first–order explicit Euler scheme. At time t = 0, the undeformed mid–surface

of the capsule wall is discretized with linear triangular shell elements (MITC3 elements). A convergence analysis has shown

that 5,120 elements are sufficient to obtain a precision of order 10−3 on the overall capsule deformation. s

EFFECT OF WALL THICKNESS ON CAPSULE DEFORMATION

We first study the influence of the wall thickness and consider capsules made of the same homogeneous 3D material but

with different wall thicknesses, subjected to a linear shear flow corresponding to Cav = 0.05. As shown in Figure 1, the

thinner the wall, the more elongated the capsule becomes under the influence of the external flow.

∗Corresponding author. Email: anne-virginie.salsac@utc.fr
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Figure 1: Influence of wall thickness on the mid–surface profile in the shear plane for Cav = 0.05. From Dupont et al. [3]

.

We now evaluate the effect of the bending resistance (as measured by α) on the behavior of a capsule for Cas = 0.1 and

α ∈ [0.005, 0.02]. The capsule is subjected to compressive tensions in the equator region as is observed with a membrane

model with no bending resistance. As a consequence, buckling may occur at steady state for low bending resistance (small

α) of the capsule wall (Figure 2). When the wall thickness is increased, the bending resistance increases and fewer wrinkles

are formed. For α ≥ 0.02, the wall is too thick for wrinkles to form even if it is subjected to compressive tensions. It is thus

possible to prevent buckling by increasing the wall thickness.

α = 0.003 0.007 0.012 0.015 0.02

Figure 2: Steady profiles of an initially spherical capsule subjected to a simple shear flow at Cas = 0.1 for different wall

thicknesses α. Thin membranes tend to buckle around the equator, which is under compression. Grey levels represent the load

on the membrane. From Dupont et al. [3]

CONCLUSIONS

For a given wall material, the capsule deformability decreases when the wall thickness increases. However, the overall

deformation of the capsule depends only on Cas with no influence of the bending resistance, because the stretching of the

mid–surface is the prevailing phenomenon. Note that using Cas as the main parameter implies that the bulk elastic modulus

G decreases when α is increased: thus, for a given flow strength and capsule size, the larger α, the softer the material. Other

authors [4, 5] have observed that the bending resistance reduces the capsule deformability at a given Cas. But they have

considered very large values of bending resistance corresponding to α ∼ 0.3− 0.9, for which the thin shell hypothesis fails.

Furthermore, it is difficult to imagine a thin material sheet that has both a very low shear elastic modulus and a very high

bending modulus.

A shell model is needed to analyze the formation of the wrinkles, which appear at low Cas. We find that Cas has no

influence on the wrinkle wavelength λe, which depends only on α (or Kb) and increases with it. The wrinkle wavelength

can be correlated to the bending stiffness by a power function λe/ℓ ≃ 3.3 (Kb)
1/4, which is similar to the one obtained for a

flat membrane stretched between two clamped ends [6]. The results from this study can be used to analyze experiments on

wrinkled nylon capsules [7] and deduce the membrane thickness from the wavelength of the experimental folds.
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Summary We numerically study the self-assembly process of particle mixtures on fluid-liquid interfaces when an electric field is applied in the 

direction normal to the interface. The resulting electric and capillary forces cause particles to self-assemble into molecular-like hierarchical 

arrangements, consisting of composite particles (analogous to molecules) arranged in a pattern. As in experiments, the structure of a composite 

particle depends on factors such as the relative sizes of the particles and their polarizibilities. If the particles sizes differ by a factor of two or 

more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. Approximately same sized 

particles, on the other hand, form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate. 

 
INTRODUCTION 

 

   In recent years, many studies have been conducted to understand the behavior of particles trapped at fluid-liquid 

interfaces because of their importance in a range of physical applications and biological processes, e.g., formation of pollen 

and insect egg rafts, stabilization of emulsions, and the formation of photonic crystals and biosensor arrays [1-2]. Particles 

trapped in fluid-liquid interfaces interact with each other via lateral capillary forces, and when present also by other forces 

such as electrostatic forces, to form monolayer arrangements. However, capillarity-driven self-assembly produces 

monolayers which lack long-range order, and for monolayers containing two or more types of particles the technique does 

not allow for any control of the particle-scale structure as capillary forces simply cause particles to cluster [3].  

   We have recently shown that monolayers containing two or more types of particles with different dielectric properties 

can be self-assembled by applying an electric field in the direction normal to the interface. The technique exploits the fact 

that the dipole-dipole force between two particles adsorbed in an interface can be repulsive or attractive depending on their 

polarizabilities and that the intensity of the force can be varied by selecting suitable upper and lower fluids. The force is 

repulsive when both particles are positively or negatively polarized, but attractive when one particle is positively polarized 

and the other is negatively polarized. The force also depends on the sizes of the particles and the electric field intensity.  

   The differences in the polarizibilities and sizes of the particles derive a hierarchical self-assembly process analogous to 

that which occurs at atomic scales. First, groups of particles combine to form composite particles (analogous to molecules) 

and then these composite particles self-assemble in a pattern (like molecules arrange in a material). The force between 

similar particles is repulsive (because they have the same polarizibilities), and so they move apart which allows particles 

that attract to come together unhindered to form composite particles. Furthermore, since particles trapped in a fluid-liquid 

interface are free to move laterally, they self-assemble even when the lateral forces driving the assembly are small. The only 

resistance to their lateral motion is hydrodynamic drag which can slow the motion but cannot stop it. A sufficiently strong 

electric field is applied to ensure that the electrically induced lateral forces remain stronger than Brownian forces. 

   In our experimental studies, the availability of liquids and particles with the specific dielectric properties limited the 

parameter range that could be investigated. This is not the case for the numerical study presented in this paper which has 

allowed us to discover new self-assembled arrangements. 

(i)    (ii)   

Figure 1. (i) Monolayers of mixtures of 20 µm glass and 71 µm copolymer particles formed on the surface of a 30% castor oil and 70% 

corn oil mixture: (left) Initial distribution and (right) final distribution. (ii) Monolayer of a mixture of 63 µm glass and 71 µm copolymer 

particles on silicone oil. The graphical representation (right) shows glass and copolymer particles in different colors.  

   

RESULTS AND DISCUSSION  
 

   The self-assembly process of particles was simulated by placing n particles on a regular grid, and then integrating the 

governing momentum equations in time 
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where 
iu is the velocity, mi is the effective mass of the i

th
 particle which includes the added mass contribution, 

ije  is the 

unit vector from the center of particle i to the center of particle j, and 
ijr  is the distance between the centers of particle i 

and particle j. Here 
jw  is the vertical force and pj is the induced dipole moment acting on the j

th
 particle, 0 is the 

permittivity of free space, L is the permittivity of the lower liquid,  is the interfacial tension, and r is the distance between 

the particles. The last term on the right side is the Stokes drag, where  is the viscosity of the lower fluid and   is a 

correction parameter which accounts for the fact that the particle is immersed in both upper and lower fluids. The system of 

equations was discretized using an implicit second order scheme in time.  

   The three distinct size dependent regimes identified in our experiments for the mixtures of glass and copolymer particles 

on corn oil were also found and validated in our numerical simulations. Fig. 2a shows numerical results for the mixture 71 

µm copolymer and 150 µm glass particles. The larger sized particles were positively polarized and the smaller particles 

were negatively polarized. The larger sized particles attracted the smaller ones to form composite particles, similar to those 

seen in the experiments (see Fig. 1). In Fig. 2b, the smaller sized particles were more intensely polarized, which is the case 

for the mixture of 71 µm copolymer and 20 µm glass particles. As in the experiments, the smaller particles formed a 

triangular lattice in which the larger particles were imbedded. The larger particles attracted nearby smaller particles in the 

lattice and together they formed composite particles. Fig. 4c shows a third regime for which the sizes of positively and 

negatively polarized particles were comparable, which corresponds to the case of a mixture of 71 µm copolymer (red) and 

63 µm glass (yellow) particles. In this case, instead of forming ring-like arrangements, the particles arranged in chains in 

which the positively and negatively polarized particles alternated.  

       

Figure 2. Numerical simulation of self-assembly on corn oil. The parameters were selected to match: (a) 71 µm copolymer and 150 µm 

glass particles; (b) 71 µm copolymer and 20 µm glass particles; and (c) 71 µm copolymer (red) and 63 µm glass (yellow) particles. 

 

Fig. 3 shows how the monolayers for four different values of 
𝒑𝟏

𝒑𝟐
, while keeping all other parameters fixed. When the 

smaller particles are more polarizable than the larger particles, the former arranged in a triangular lattice, and the larger 

particles clustered at the center as the capillary force was the dominant force for them (see Fig 3a). As the polarizability of 

the larger particles was increased, they moved apart and the smaller particles formed rings around them (see Fig 3b-d).  

a)  b) c) d)  

Figure 3: Monolayers of particle mixtures with 
𝑎1

𝑎2
= 1.2. The ratio 

𝒑𝟏

𝒑𝟐
 was varied: (a) 0.5, (b) 1.0, (c) 5.0, and (d) 7.5. 

 

CONCLUSIONS 

 

   Our simulations show that the theoretical model given by Eq. 1 correctly captures the underlying physics of the self-assembly 

process. In agreement with our experiments, particles self-assemble into hierarchical arrangements, consisting of composite 

particles arranged in a pattern. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle 

at its core with several smaller particles forming a ring around it. Approximately same sized particles form chains in which 

positively and negatively polarized particles alternate. 
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MULTI-SCALE MODEL OF MAGNETICALLY-DRIVEN FLOWS IN DEAD-END 
CHANNELS 

 
Roger T. Bonnecaze1a) and Michael Clements1 

1Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA 
 
Abstract Observations show that dilute suspensions of iron particles in a rotating magnetic field form rotating rods along the wall of a blocked 
channel, creating a convective flow.  We propose a multi-scale mechanism for this magnetically-driven flow.  At the particle-scale, particles 
chain up to a length balancing magnetic and hydrodynamic forces on the resulting chains.  The weak gradient of the magnetic field causes the 
chains to accumulate on one side of the channel.  They rotate due to the rotating magnetic field, provided the field strength is high enough, 
which creates a localized body couple in the flow that drives a macroscopic convective flow in the channel. Coupled transport equations for the 
particles, chains and the suspension as a whole are presented and are successfully compared to experimental observations. 
 

INTRODUCTION 
 
 Creating convective transport in dead-end channels is important for improving many processes, including enhanced oil 
recovery and delivery of thrombolytics (clot-dissolving drugs) to thrombi (clots) blocking an artery during stroke.  For 
ischemic stroke patients, delivering the thrombolytics to the blood clot is time sensitive. Since the artery is blocked, there is 
no convective transport, and so the thrombolytic must be delivered by a usually too slow diffusion-limited process1.  
Inducing convection within the blocked artery can dramatically speed delivery of the thrombolytic to the clot and improve 
patient outcomes. 
 Pulse Therapeutics has developed a method for rapidly delivering thrombolytics that 
does not require imaging of the thrombus and can be easily performed by a nurse2,3,4,5.  The 
apparatus for this delivery method is a permanent magnet that uses a two-motor system so 
that it can rotate in any plane. It generates a rotating magnetic field with a gradient and 
applies it to the affected area of the stroke victim’s brain.  Simultaneously, very low 
concentrations of 100 nm diameter ferroparticles are co-delivered with a thrombolytic 
during IV administration.  These particles interact with the magnetic field, inducing a flow 
within the occluded vessel.  The hypothesis for this process is the following.  In the 
presence of a magnetic field, induced dipoles in the ferroparticles are attracted to one 
another so they form into chains.  The chains accumulate on one side of the channel due to 
the gradient in the magnetic field.  The chains also experience a magnetic torque and rotate 
as the field rotates.  This creates a non-uniform body-couple in the fluid which generates a 
flow.  Because the channel is blocked at one end, a pressure gradient is created so there is 
no net flow at any cross-section.  A schematic of the chains (not to scale) and the flow field is shown in Fig. 1.  A 
conveyor belt of flow up one side and down the other is created that can convectively transport the thrombolytic or other 
material to the dead-end.  
 Here we develop and present a model and analysis of the proposed mechanism and compare with experimental 
observations. 
 

METHOD 
 

In order to predict the fluid velocity profile of a dilute suspension of ferroparticles in a 2D blocked channel (Fig. 1) 
when subjected to a rotating magnetic field and to better understand the physics leading to convective flow, a model was 
developed to describe both the particle dynamics and the flow field.  The 2D model equation describing the suspension 
dynamics is given by, 

  
2

20 M
dP u nG
dy x x

  
   

 
   

where u is the velocity vector, P is pressure, and η is fluid viscosity and n is the number density of chains. GM is the torque 
on the chains due to the applied magnetic field which is essentially the body-couple per particle in the fluid. Note that the 
torque is essentially constant across the channel and that the variation of the number density across the channel due to the 
gradient of the magnetic field is essential to drive the flow. 

The dynamics of the chains are described by balancing the hydrodynamic and magnetic torques.  The length and width 
of the chains is determined by a balance of the magnetic forces attracting the individual particles with the hydrodynamic 
forces due to rotation of the chain or the shear generated by the flow. The dimensions of the chain are determined using a 
model by Gomez-Ramirez et al.6.  A general set of multiscale equations describing the fluid flow and particle dynamics 
will be shown in the presentation. 

FIG 1. Schematic of model 
system showing particle 
aggregates, potential flow 
field, and rotating magnetic 
field source. 
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RESULTS  

 
 Fig. 2 shows the torque on the chain as function of the magnetic 

field. Here the chains are assumed constant in length. Both figures show 
that there is a threshold or critical field strength 

3
0~crit LH L V   , where L is the length of the chain,  is the 

rotation rate of the field, 0 is magnetic permeability and L is a chain 
shape factor.  Above the critical field strength the chains rotate at the 
same rate as the rotation of the applied field. Below this critical field 
strength, the viscous forces are too large for the chains to rotate, the 
average torque vanishes and there is no flow. 

Fig 3a shows a typical velocity profile in the 2D channel. The length 
and width of the chains are computed self-consistently with the flow 
field.  There is an upward flow on one side of the channel due to the 
magnetic forces and downward flow on the other side due to the pressure 
gradient created by the dead-end to ensure no net flow. Note it is 
unsteady due to the offset in the location of the source of the magnetic 
field.  The flow speed on the order of mm/s is consistent with 
experimental observations2. The average magnetic component of the 
velocity is shown in Figs. 3b,c as a function of applied field and rotation rate.  Note there are optimal values because of the 
flow strength depends on the length of the chains and the rotation rate, but increasing the flow strength can tear the chains 
apart.  The optimum of rotation rate of about four Hz is consistent with experimental observations. 
 

FIG 3. a) Velocity profiles across a blocked channel with an average ferroparticle volume fraction of 0.1% in the 
presence of a 7500A/m magnetic field rotating at 5Hz. Profiles shown at different times in a rotation cycle. b) Average 
magnetically-induced velocity in a channel with an average particle volume fraction of 0.1% under the influence of a 5Hz 
magnetic field at various field strengths c) Average magnetically-induced velocity in a channel with an average particle 
volume fraction of 0.1% under the influence of a 7500A/m magnetic field rotating at various frequencies 

 
 

CONCLUSIONS 
 

   We develop a multi-scale model of magnetically-driven flows in dead-end channels that includes a coupling between 
chain formation and dynamics and the fluid flow. The flow requires a field strength above a critical value, and it must rotate 
and have gradient to interact with the ferroparticles.  Preliminary results agree with experimental observations.  
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[3] Methods of controlling magnetic nanoparticles to improve vascular flow, F.M. Creighton, US Patent 8,529,428 B2 
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FIG 2. Dimensionless torque on rod-like 
aggregates of iron particles when subjected to 
magnetic fields of various amplitudes.  The 
torque is constant above a threshold or critical 
field strength Hcrit. 
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HELE-SHAW FLOW OF A CONCENTRATED, NON-COLLOIDAL SUSPENSION

Arun Ramachandran∗1

1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

Summary This paper provides a set of macrotransport equations for determining the volume fraction and velocity distributions in the flow of
a concentrated suspension of rigid, spherical particles through a Hele-Shaw cell. In this problem, Taylor dispersion relaxes volume fraction
gradients in the flow direction, with a dispersivity that is proportional to uB3/a2, where u is the local depth-averaged velocity, B is the
half depth of the channel and a is the particle radius. Perpendicular to the flow, volume fraction gradients are relaxed by shear-induced
migration at a rate proportional to |u| a2/B. The model predicts that negative volume fraction gradients should relax in the flow direction,
while positive ones should self-sharpen to an asymptotic distribution in an appropriate frame of reference. However, the latter distribution
is unstable to perturbations normal to flow, leading to viscous miscible fingering with a preferred wavelength that scales as B5/3/a2/3.

Keywords: Non-Brownian suspension, Taylor dispersion, shear-induced migration, viscous miscible fingering

INTRODUCTION

The development of the suspension balance model by Nott and Brady [1] represented a significant advancement in the area
of modeling concentrated, non-Brownian suspension flows. It has explained experimentally-observed velocity and volume
fraction distributions for several different flow geometries [2, 3, 4]. However, the numerical implementation of this model
to calculate time and space dependent volume fraction distributions can be a highly challenging task [5, 6, 4], particularly in
geometries with a region of vanishing shear stress in the cross-section. Fortunately, some geometries allow the simplification
of the model in certain asymptotic limits. Previously, we have developed a macrotransport model for suspension flow through
a circular tube that describes the spatial and temporal distribution of the cross-section-averaged volume fraction distribution.
In this work, we present the corresponding macrotransport equation for Hele-Shaw of suspensions, and compare the results
with tube flow.

METHOD AND RESULTS

In this work, we implement a two time scale perturbation [7] of the suspension balance model [1] coupled with the
constitutive equations of Zarraga et al.[8], and formally derive the following depth-averaged convection-dispersion equation
for the flow of a concentrated suspension of neutrally-buoyant, non-colloidal particles between two parallel plates.

∂φ

∂t
+∇ · [g (φ)u]
︸ ︷︷ ︸

Convection

=
B3

a2
∇ ·

[

h
(

φ
) u · ∇φ

|u| u

]

︸ ︷︷ ︸

Taylor dispersion

+
a2

B
∇ · [qA

(

φ
) |u|H · ∇φ

]

+
a2

B
∇ · [qB

(

φ
)∇ · (|u|H)

]

︸ ︷︷ ︸

Shear-induced migration

(1)

The various variables here are the depth averaged velocity field u, the local depth-averaged particle volume fraction φ, the half
depth of the channel B, the particle radius a, a geometry tensor, H, that attributes different weights to the flow and vorticity
directions according to normal stress differences [4], and h, g, qA and qB , which are functions only of φ. At every time step,
the pressure field, P , needs to be determined by solving the depth-averaged continuity equation,

∇ · [M (

φ
)∇P

]

= 0, (2)

Figure 1: A positive step change in volume fraction from 30% to 50% in the flow direction is unstable to perturbations imposed
normal to the flow.
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from which umay be deduced as− (

B2/μ0

)

M
(

φ
)∇P , μ0 being the viscosity of the suspending fluid. The Taylor-dispersion

coefficient in this macrotransport equation scales as B 3/a2, and it is proportional to the local velocity. However, it acts only
on gradients in the local flow direction. Normal to the flow, shear-induced migration terms can produce particle redistribution,
and these are proportional to a2/B .

Analogous to the macrotransport equation for tube suspension flow [9], the evolution of concentration distribution is de-
pendent only on the total strain experienced by the suspension, and is independent of the suspension velocity. However, unlike
tube suspension flow, a positive concentration gradient along the flow direction does not reach an asymptotic distribution;
rather, it is susceptible to viscous miscible fingering, as shown in Fig. 1. A linear stability analysis performed for a step
change in the volume fraction revealed that the wavenumber corresponding to fastest growing mode scales as a 2/3/B5/3.

These phenomena will be explained in detail in the presentation. An inner solution in the vicinity of an obstacle surface
with the details of the particle distribution and the velocity field in the inner region will also be elucidated.

CONCLUSIONS

The macrotransport equations presented here greatly reduce the complexity of determination of velocity and particle
distributions in suspension flows. One only needs to solve two coupled PDEs in P and φ, which can be implemented on
standard numerical software such as COMSOL or ANSYS. The equations will be useful in determining time-dependent
volume fraction and velocity fields in processes such as powder injection molding or extrusion of films containing filler
particles.
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PARTICLE-INDUCED VISCOUS FINGERING

Jungchul Kim1, Feng Xu1, and Sungyon Lee ∗1

1Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA

Summary Viscous fingering instability arises when a less viscous fluid displaces a more viscous one inside porous media. We introduce
a novel fingering instability in the absence of the destabilizing viscosity ratio, when particles are added to the viscous invading fluid in a
radial source flow inside a Hele-Shaw cell. The fingering regimes are characterized experimentally (from a stable regime to weak and band
fingering) for varying particle volume fractions and ratios of the gap thickness to particle diameter. The mechanism of particle-induced
fingering is rationalized based on the particle migration towards the channel centerline, and the transition between weak and band fingering
regimes is theoretically resolved based on the rate of particle aggregation near the interface.

INTRODUCTION

Viscous fingering is ubiquitous in multiphase flows in porous media, and controlling them is important in numerous
industrial applications that include enhanced oil recovery. While the invasion of a more viscous fluid into a less viscous fluid
is inherently stable to fingering [1, 2], Tang et al. [3], followed by Ramachandran and Leighton [4], discovered the surprising
destabilizing effect of particles which leads to particle-induced viscous fingering; however, much of the rich physics of this
fingering phenomenon remains unexplored. In this paper, we experimentally quantify the particle-induced viscous fingering
and derive a functional dependency of the fingering onset for varying key experimental parameters: particle volume fraction,
φ0, and gap thickness relative to particle diameter, h/D.

EXPERIMENTAL RESULTS

A mixture of silicone oil (density, ρ = 0.98 g/cm3 and viscosity, µ = 0.1 Pa·s) and neutrally buoyant polyethylene
particles (D ≈ 0.330 mm) is injected into a Hele-Shaw cell at a constant flow rate, Q (schematic in Fig. 2(a)). The Hele-Shaw
cell consists of two glass plates with gap thickness, h, that ranges from 0.635 − 1.39 mm. We experimentally observe three
distinct regimes of fingering, as the particle volume fraction, φ0, is increased for given Q and h/D. As shown in Fig. 1, for
φ0 < 10%, the interface appears to be stable, which corresponds to a stable “no fingering” regime. As φ0 increases, regularized
particle clusters and slight interfacial deformations are observed, referred to as the “weak fingering” regime. For large values
of φ0, more pronounced fingers appear on the interface in the “band fingering” regime. Specifically, band fingering involves
the formation of a torus band of particles on the interface, which subsequently breaks to form fingers (Fig. 2(b)). Fig. 2(c)
shows that the radius at which the particle band breaks coincides with the peak in the dimensionless deviation of the interface
from a circle, Λ =

∫
S

(1 − (Rb(s)/Rc))
2ds, where Rb is the center-to-edge distance and Rc is the radius of the best fitted

circle [4]. The value of Λ is calculated using MATLAB R© image processing tools for all values of φ0 and h/D to differentiate
band fingering from weak or/and no fingering, as summarized in a phase diagram of Fig. 2(f).

MECHANISM OF FINGERING

Fingering is caused by the particle aggregation on the interface, which results in the destabilizing local increase in effective
viscosity [5, 6, 7], as illustrated in Fig. 2(d). The particle aggregation on the interface itself arises from the particle focusing
on the channel centerline (z = 0) due to shear-induced migration [8], which leads to the faster motion of particles towards
the interface relative to that of the mixture. Here, we define the ratio of the mean particle speed to that of the suspension as

Band fingering (     )

5 % 30 %25 %20 %15 %10 %

5 cm

0 %

No fingering (     ) Weak fingering (     )

Figure 1: Gradual appearance of fingering with an increasing particle concentration, φ0, for the gap thickness, h = 1.15 mm, particle
diameter, D = 330 µm, and flow rate, Q = 150 mL/min. Arrows indicate the flow direction.
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Figure 2: (a) Schematic of the experimental set-up. (b) Time evolution images of band fingering (φ0 = 30%, h = 0.762 mm, andD = 330

µm.); inset: initial formation of the band with the scale bar of 2 cm. (c) Plot of Λ =
∫ S

0
(1 − (Rb(s)/Rc))

2ds over dimensionless time,
which characterizes the interfacial deviation from a circle. (d) Schematic illustrating the sequence of events that lead to fingering due to the
particle aggregation on the interface. (e) The rate of the particle volume increase in the band is predicted based on qp ≈ Qφ0(1 − 1/β), in
good agreement with the experimental data. (f) A φ0-(h/D) phase diagram summarizes the fingering regimes with a solid line showing the
theoretical transition between weak and band fingering.

β =
∫ h/2
−h/2 upφdz/(φ̄(r)

∫ h/2
−h/2 udz), where φ̄(r) =

∫ h/2
−h/2 φ(r, z)dz/h, and u and up denote local suspension and particle

radial velocities, respectively. In order for the particle aggregation to occur, β > 1 must be satisfied. Furthermore, if we
assume a uniform particle concentration, φin, away from the interface, φin = φ0/β by mass conservation. In the limit of
h/D → 1, one can derive the expression for β to scale as 3/[2(1 + D/(3h))] assuming a monolayer of particles centered at
z = 0. In the limit of h/D � 1, the suspension balance model [9, 10] is employed to compute β in a separate manuscript.

To identify the transition from weak to band fingering, the necessary condition to form and maintain a particle band of
maximum monolayer volume fraction, φs ≈ 0.46, is considered. By balancing the increase in the band volume, Vb, with the
particle flux at the inner edge,Rin (schematic in Fig. 2(d)), we obtain φs(Vb−Vb0) = Qφ0(1−1/β)(t−t0) with Vb(t0) = Vb0,
which has been experimentally validated in Fig. 2(e). In order for the band fingering to occur, Vb must evolve in such a way
that the band width is at least greater than or equal to the particle diameter, D: V̇b = Q(φ0/φs)(1− 1/β) & 2πhDṘin, where
Ṙin = Q/(2πRinh). By plugging in Rin = r0 and rearranging the terms, we define the ratio of particle influx to the required
band growth rate as Π = r0φ0

Dφs
(1− 1

β ). When Π & 1, band fingering is more likely to occur as the requirement for sustaining
an initial particle band has been met. In contrast, for Π . 1, the rate of particles entering the band is not sufficiently fast to
maintain it, resulting in weak or no fingering. As shown in the phase diagram of Fig. 2(f), the curve of Π = 1.47 successfully
captures the boundary between the band fingering and weak fingering and shows that this simple model exhibits the correct
functional dependence of the band fingering onset on φ0 and h/D.
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FLOW IN A HUMAN NASAL CAVITY OBTAINED BY IMPROVED SHAPE
STANDARDIZATION

Alireza Nejati1 and John Cater ∗1

1Department of Engineering Science, University of Auckland, New Zealand

Summary Numerical simulations of flow through healthy and diseased human airways suffer from significant inter-individual variation. We
develop a method for standardizing the human nasal cavity to eliminate some of these differences. In this work we present preliminary
CFD results for air flow through this standardized air way and demonstrate flow features that are reflective of average flow features in the
population.

INTRODUCTION

It is important to understand the airflow through the human upper airways, for purposes of such as optimizing the delivery
of drugs through aerosol deposition [8] and improvements of artificial respiratory devices [6]. To do this, first an airway
geometry has to be obtained. Airway geometries are typically obtained from cadavers or CT scans of individual subjects [8, 7],
however these are subject to excessive inter-individual variation [1]. Here, we analyze flow through a more representative
geometry. A naive method of obtaining representative geometry would be taking the average of scans [3, 4] or the median of
segmented scans [5]. However, these methods have difficulties with the very thin, convoluted structures present in the nasal
cavity. In this work we use a deformable registration procedure to obtain a more accurate standardized geometry and we
simulate the air flow through this geometry and compare with previous results obtained from individual scans.

METHODS

Standardization
The deformable registration procedure consists of three separate alignment procedures that are carried out in sequence:

1. Rigid alignment to common landmarks, 2. ‘Straightening’ of the nasal septum, 3. Fine-tuning via per-cross-section
deformable registration. In the first step, all scans are aligned such that their anterior maxillary spine (AMS) and choana are
coincident. In the second step, coronal cross-sections of the scans are obtained and the nasal septum is identified in each
cross-section, and the septa are deformed to be straight while still preserving the position of their bottom-most point and total
arc length. In the final step, a a multiple registration procedure is used based on the following functional [2]:

J ({uk}mk=1) =
m∑

k=1

∫
Ω

(fk(x− uk)− g(x)) 2dx + λ

∫
Ω

|∇g|2 dx + µ
m∑

k=1

∫
Ω

|∇uk|2 dx + σ

∫
Ω

(
m∑

k=1

uk

)2

dx (1)

where Ω is the image domain (e.g. R2), uk are the deformations, and fk represent the input images. The variables λ, µ,
and σ are parameters of the model that may be set to different values to produce different alignment behavior. m is the number
of images. After this alignment step, the ‘average’ image g is extracted and the slices are combined together to produce a solid
3-dimensional surface mesh.

Air flow simulation
The expiratory air flow through the mean geometry was modeled in ANSYS 16.0. The surface mesh was ‘cleaned’ by

removal of overlapping faces and a CFD mesh was generated using 0.4 mm as the base element size and using 3 prism layers
on the interior of the airway to resolve the boundary layer. We carry out a numerical solution of steady state air flow, with
a shear stress transport (SST) turbulence model. The inlet was modeled as a source of 37 ◦C air at 5.5 ×10−4 g/s (28.8
litres/minute). This represents a typical expiratory air flow rate [6].

RESULTS

A pressure drop of 12.9 Pa was observed from the tracheal inlet to the nostril; the highest relative pressure (19.2 Pa)
existed in the posterior section of the middle turbinate, superior turbinate, and olfactory section. This is similar to results
obtained from individual airways (e.g. a relative pressure of 9.8 Pa was observed in [7]). Two recirculation regions (one in the
superior nasopharynx area and one in the small cavity behind the tip of the nose) were observed. The flow appears transitional
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Figure 1: Flow velocity in coronal cross-sections of nasal cavity. Cross-sections 1-9 positioned 1-9 cm behind the tip of the
nose, respectively; slice 10 positioned 9.5 cm behind the tip of the nose.

with some areas of relative laminar flow and other areas of turbulent flow. With the 2 million node mesh, the boundary layer
appears well resolved and relatively thin (˜0.1 mm) in some areas. In the cross-sections, most of the flow appears to occur
in the thin middle sections (velocities ranging from 3 to 5 m/s), with a relatively small portion of the flow occuring in the
extremes of the inferior turbinates or the olfactory section. This is despite the inferior turbinates having large cross-sectional
area.

CONCLUSIONS

The transitional flow and relative small thickness of boundary layer are consistent with the presumed role of the nasal cavity
as heat and moisture exchange system. The airway shape is such that flow is forced through thin sections; this is consistent
with the shape of the airway being optimal for heat and moisture exchange. Note that various developmental disorders of
the nasal cavity (such as concha bullosa) interfere with this natural air flow pattern and cause air to flow through regions of
relatively low resistance and high cross-sectional area, exchanging less heat and moisture. Compared with individual subjects,
the standardized geometry is more symmetric (left and right passageways of similar shape and size; deviation of nasal septum
not apparent) and this leads to a symmetric flow pattern, however due to the turbulence present, this symmetry is not exact, as
can be seen.
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MAGNETIC MICRO-CONVECTION
Andrejs Cebers ∗1, Kaspars Erglis1, Guntars Kitenbergs1, Oksana Petrichenko1, and Andrejs Tatulcenkovs1

1Department of Physics, University of Latvia, Riga, Latvia

Summary Magnetic micro-convection of a magnetic liquid in Hele-Shaw cells is caused by the action of non-potential ponderomotive forces
of its self-magnetic field. The main experimental findings of a study of the magnetic micro-convection, which are in a good agreement with
analytical and numerical results obtained in the frame of the Brinkman model, are presented. It is also found that the gravitational forces
play important role in the horizontal Hele-Shaw cells due to the small density difference of miscible magnetic and non-magnetic fluids.

EXPERIMENTAL AND THEORETICAL STUDY

Magnetic liquids with a free boundary in Hele-Shaw cells under the action of perpendicular magnetic field form complex
patterns due to the action of ponderomotive forces of their self-magnetic field [1].

Magnetic micro-convection occurs in the limit of zero surface tension on the interface between miscible magnetic and
non-magnetic fluids [2, 3]. The flow in the Hele-Shaw cell with a thickness h caused by the non-potential ponderomotive
force of the self-magnetic field is described in the frame of the Brinkman equation coupled with the diffusion equation for the
normalized particle concentration c:

−∇p− 12η

h2
~v + η∆2~v +

2M0c∇ψ
h

= 0 , (1)

∂c

∂t
+ ~v · ∇c = D∆2c . (2)

Here M0 is the magnetization of the liquid at c = 1, ψ is the potential of magnetostatic field on the boundary of Hele-Shaw
cell.

Scaling the length and time by h and h2/D respectively it follows that the flow arising on the planar interface between
miscible magnetic and non-magnetic fluids is determined by the magnetic Rayleigh number Ram = M2

0h
2/12ηD, which

characterizes the ratio of the hydrodynamic M2
0 /η and diffusion h2/D time scales. The calculation in the frame of linear

perturbation theory in quasi-static approximation taking into the account the non-homogeneous self-magnetic field at the step-
like initial concentration distribution (c = 1; x < 0 and c = 0; x > 0) gives the critical value of the magnetic Rayleigh
number Racm = 6.6 and the characteristic wavenumber of the instability kh = 1.8. The flow in the non-linear stage of the
instability described by Eqs.(1,2) is calculated by the pseudospectral technique.

Figure 1: Magnetic micro-convection development [3].

Experimental study of the magnetic micro-convection is carried out in the horizontal Hele-Shaw cell with thickness h =
120 µm, where two miscible fluids are put into a contact by a syringe pump. Water-based magnetic fluid with average particle
diameter 7 nm, saturation magnetization M = 8.4 G and magnetic susceptibility χ = 0.016 is used. The development of the
patterns on the interface in dependence on the applied magnetic field is shown in Fig. 1.
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Figure 2: Numerical simulation of magnetic micro-convection development [3].

These data and the theoretical value of the critical magnetic Rayleigh number give us the effective diffusion coefficient
of the particles which turned out to be much larger than determined by Dynamic Light Scattering measurements. Additional
experimental and theoretical study has shown that it is due to the counter flows arising in the horizontal Hele-Shaw cell due
to the small density difference of the magnetic liquid and its carrier liquid which causes effective smearing of the interface
presumably accounted for by introduction of the effective diffusion coefficient.

As a result good quantitative and qualitative agreement of the experimental and numerical simulation results is obtained as
may be seen by comparing experimental results in Fig. 1 and Fig. 2, where numerical simulation results for different magnetic
Rayleigh numbers are shown. It should be remarked that the Brinkman model [3] contrary to the Darcy model [2] shows the
formation of mushroomson the fingers of the developing micro-convection pattern (see Fig. 1), which is in agreement with the
experimental observations.

Rather convincing results are obtained by the measurement of the velocities of the finger motion in dependence on the
magnetic Rayleigh number shown in Fig. 3. The slope of the linear dependence of the finger velocity on the magnetic Rayleigh
number 0.29 is close to the slope of numerical results in the frame of the Brinkman model 0.36 and is rather far from the one
given by the Darcy model [2] .

Figure 3: Maximal finger velocities in dimensionless (left) and dimensional (right) units. Empty squares mark average
experimental data, black diamonds on the left – numerical data [3].

To conclude we may note that magnetic micro-convection could be interesting in microfluidics to enhance the mixing of
magnetic and non-magnetic fluids.
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RATCHETING VISCOUS FLUIDS IN A VIBRATING CHANNEL

Jie Yu ∗1

1Department of Civil Engineering and, School of Marine and Atmospheric Sciences, Stony Brook University,
Stony Brook, New York, USA

Summary A laboratory experiment shows that fluid can be pumped from one end to another in a narrow channel with vibrating sawtooth
walls. The phenomenon is referred to as ratcheting fluid. We here present a theory describing the mechanism of rectifying oscillatory
momentum into steady motions and symmetry-breaking that lead to the directional pumping of fluids as observed. A ‘terrain-following’
theoretical framework is formulated using a conformal transformation to accurately resolve the Stokes boundary layer of oscillatory flows
and boundary-driven effects. The theory correctly predicts the unidirectional pumping, clearly elucidating the working principle of this fluid
rectifier: The nonlinear inertia rectifies the periodic fluctuations of the flow into a steady momentum flux, driving steady circulations against
viscous resistance. The asymmetric wall geometry renders the steady circulations to be spatially biased, leading to the pumping. Various
influences on the pumping rate are analyzed. Applications to viscoelastic flows will be discussed.

MOTIVATION, METHOD AND RESULTS

Motions rectified by symmetry-breaking mechanisms in oscillating flows have been of great interest in biological loco-
motion and engineering applications. The ratchet-based concepts have been extensively explored in applications of selective
control and optimization of directed transport, separation (or mixing) of nanoparticles, micro and complex fluids, magnetic
vortices, etc; see extensive reviews in [1, 3]. The importance of boundary conditions has led to techniques that exploit
boundary-driven effects by microfluidic manipulation, e.g. electrokinetic effects, acoustic streaming (i.e. steady streaming) in
oscillatory boundary layers and fluid-structure interactions [3].

As Yu [5] pointed out, the ratcheting effect of viscous fluids observed in [4] shares the same origin as the acoustic (steady)
streaming in Stokes boundary layers of oscillatory flows. It is in fact akin to the steady streaming over sand ripples under
water waves [2]. To deal with the large-amplitude sawteeth, Yu [5] adapted the method of constructing a conformal map for
generally periodic boundary geometries that has been recently developed in the studies of water waves interacting with seabeds
[6]. Under the transformation, the undisturbed flow domain between the sawtooth walls is mapped onto a uniform strip, while
the symmetry with respect to the channel centerline is preserved; see figure 1. The large sawtooth height (relative to the mean
channel width) limits wall vibrations to be of small amplitude, avoiding collisions of sawteeth. Thus, we can approximate
the instantaneous wall position using the Taylor expansion at the mean position up to the accuracy that is necessary (for
determining the steady streaming), avoiding the use of a time-dependent map, hence greatly simplifying the formulation.
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Figure 1: (a) A 2D sketch of a channel with oscillating sawtooth walls, showing the relevant scales. (b) The uniform strip
of the undisturbed flow domain upon conformal transformation. (c) The curvilinear grids in the (x, y) plane that correspond
to the regular grids ξ = const and η = const, showing the ‘terrain-following’ contours near the walls. The actual sawtooth
profile used is smoothed, considering the perturbation analysis.

The complete vorticity equation, the boundary conditions at the vibrating channel walls and centerline, are transformed to
the mapped plane. A boundary layer approach is then invoked, considering long-wavelength sawtooth profiles, rendering an-
alytical solutions to be attainable. The perturbation solution is sought for the stream function ψ(ξ, η, t) = ψ̂0e

−iωt+α(ψ10+

ψ̂11e
−iωt + ψ̂12e

−2iωt) + c.c., where α is the amplitude of wall vibrations normalized by the mean half-channel width and,
ψ10 is the rectified steady streaming flow field whose spatial average gives the net pumping; see figure 2. Good comparison
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with the experiment is obtained; see figure 3. The theoretical method can be adapted to study viscoelastic flows in similar
channels. This is ongoing.
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Figure 2: Contours of stream functions in the half plane y > 0. (a) ψ0 at t = π/2. (b) ψ0 at t = π, i.e. at the end of a closing
half cycle when the flow is about to reverse. (c) The steady streaming flow field ψ10, showing the net pumping from left to
tight. Dashed lines indicate the negative contour values. The Reynolds number, based on the speed of vibration and channel
width, is Re = 2.47 taking water as the working fluid. (d) The pumping rate αQ (for half channel width) as a function of
frequency (via the dimensionless Stokes layer thickness δ =

√
2ν/ω/h0) for oscillation amplitude α = 0.3; (e) αQ vs. α for

δ = 0.9247. Channel lengths: #, N = 15; 2, N = 10; 4, N = 5 (multiple of λs). εb = 1.0, β = 0.3130.
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Figure 3: Experimental flow visualization (fig. 5 in [4]) at the central region of the oscillating channel (a) during the closing
phase and (b) during the opening phase, showing the shift of stagnation point. Theoretical results: The leading order (linear
dynamics) stream function ψ0 (c) during the closing half cycle and (d) during the opening half cycle, showing the complete
reversal of the flow pattern. The streaming function ψ0 + ψ10 including the steady streaming (e) during the closing phase and
(f) during the opening phase, showing the shift of stagnation point that is consistent with the observation.
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DISPERSION OF SOLIDS IN FRACTURING FLOWS OF YIELD STRESS FLUIDS
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Summary Recent trends in the hydraulic fracturing have included the use of cyclic pumping of solid particles (proppant) interspersed with
yield stress fracturing fluid, which is found to increase the subsequent productivity. We propose a model framework for this scenario and
analyse one of the simplifications. A key effect of including a yield stress is to focus high shear rates near the fracture walls. In typical
fracturing flows this results in a large variation in shear rates across the fracture. With shear-thinning viscous frac fluids, suspensions
may vary on the particle scale from Stokesian behaviour to inertial behaviour across the width of the fracture. Equally, according to the
bulk flow rates, Hele-Shaw style models give way at higher Reynolds number to those in which inertia must be considered. We develop the
Suspension Balance Model of Nott and Brady [1] to include this range of flows, while still representing a significant simplification over fully
three-dimensional computations. In relatively straight fractures and for fluids of moderate rheology, this simplifies into a one-dimensional
model that predicts the solids concentration along a streamline within the fracture. We use this model to make estimates of the streamwise
dispersion in various relevant scenarios.

Fracture geometries can be very complex and the aim here is to develop a simplified description in which the transport
equations can be applied locally to channel-like geometries, with length L̂, width D̂ and height Ĥ . Fracture orientation and
width are assumed to vary along the fracture on a length-scale L̂t . min{L̂, Ĥ}. The essential parameters for describing the
fracturing flows are the fracturing fluid with density, ρ̂f and effective viscosity, µ̂f and proppant with density, ρ̂s, diameter
size, d̂p and volume fraction, φin are pumped in a cyclic fashion at the fracture inlet. Here, the fracturing fluid is described by
a Herschel-Bulkley fluid with yield stress τ̂Y , consistency κ̂ and power law index n. With this simplistic description above, we
expect that 8 dimensionless groups govern these flows. Four of these groups are geometric. On adopting D̂ and L̂t as natural
length-scales for transverse and streamwise directions, we have 2 groups L = L̂/D̂ and H = Ĥ/D̂, that simply indicate the
extent of the fracture. More relevant to the transport processes are: δp = d̂p/D̂ and δt = D̂/L̂t i.e. a scaled particle diameter
(particle diameter to fracture width ratio) and the local fracture aspect ratio. The remaining dimensionless groups are φ, the

density ratio s = ρ̂s/ρ̂f and two others that we take as the densimetric Froude number, Fr = Û0/

√
ĝ(s− 1)D̂, and Reynolds

number, Re = ρ̂f Û0D̂/µ̂f . Further dimensionless groups may arise in characterizing the rheology.
The presence of shear thinning and yield stress lead to a huge variation in the viscosity of the fracturing fluid across the

fracture. This will be amplified by the presence of particles. In a bulk rheological sense there is an effect of increase in
viscosity due to the particles (ηs(φ)), e.g. of classical Krieger-Dougherty type [2], but also local shear rates are amplified by
the presence of particles (which do not deform) focusing the effective shear rate in the inter-particle liquid and increasing the
shear-thinning. The form of local effective viscosity, η̂f depends on the local shear rate, ˆ̇γloc, which itself depends on the solid
volume fraction [3]. Therefore, the bulk suspension viscosity η̂ can be decomposed as: η̂ = ηs(φ)η̂f (ˆ̇γloc(φ)). In considering
the local micro-rheology it is of great interest to estimate the local particle Reynolds number, Rep = ρ̂f Û0d̂p/η̂f (φ,̂ γ̇loc) to
understand the range of behaviors locally. It can be shown that there is a significant variation in this local particle Reynolds
number across the fracture due to the change in local viscosity of yield stress fracturing fluid. In the high viscous central
region the Stokesian particle regimes is applicable; however, in the wall layers with significant shear rates, particle regimes
may vary from Stokesian to inertial.

Diffusive and dispersive effects combine with the averaged forces acting on the solids phase to distribute the particles.
The solid phase mass conservation equation is typically manipulated to give a transport equation for evolution of φ. At
least two general approaches have been taken to model particle phase diffusion: (i) the diffusive flux approach of Leighton
& Acrivos [6]; (ii) the Suspension Balance Model (SBM) of Nott & Brady [1]. The diffusive flux approach is essentially
phenomenological in bringing in a diffusive term to the right-hand side of the solid phase mass conservation equation. The
physical origin of this term is stochastic and can be justified by ensemble averaging. The phenomena modelled by the diffusive
flux approach of Leighton & Acrivos [6] are observable experimentally, but the derivation of the model has been criticised on
two grounds. First, the form of diffusive closure predicts no diffusive fluxes where ˆ̇γ = 0, leading to unrealistic profiles for φ
in pressure driven flows. Secondly, the point has been made that similar diffusive fluxes arise naturally from gradients in the
suspension stress, which enter the solid phase mass conservation equation directly in considering the relative velocity. This is
the idea underlying the SBM approach of Brady and co-workers, [1]. The relative velocity (ûr = ûp − ûf ) is substituted into
the solid phase mass conservation equation to give:

∂φ

∂t̂
+ ∇̂ · [φû] = −∇̂ · [φ(ûp − û)] = −∇̂ · [φ(1− φ)ûr] = ∇̂ · [φ(1− φ)M̂(η̂f , d̂p, φ)f̂D], (1)
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where û, ûf and ûp denote the suspension velocity, the fluid velocity and the particle velocity respectively. Here, M̂ is the
particle mobility and f̂D is the phase-averaged particle drag force. The usual approach now is to consider the solid momentum
equation in the limit of small inertia. In this case, we may write f̂D ≈ −[f̂B + f̂D′ + ∇̂ · Σ̂p], where f̂B is the solid phase body
force, f̂D′ contains hydrodynamic forces excluding the drag (e.g., lift and Archimedes forces) and Σ̂p is the solid phase stress.
Then, f̂D may be substituted into (1) to derive a transport equation for the solid volume fraction. The objective is to include the
non-Newtonian and inertial effects into SBM model to extend it for fracturing flows with yield stress frac fluids. This includes
the suspension momentum equations and a transport equation for the solid volume fraction. The recent work of [3] implies
that the non-Newtonian effects can be introduced to the SBM through adopting a local effective viscosity. With shear-thinning
viscous suspending fluids, suspensions may vary on the particle scale from Stokesian behavior to inertial behavior depending
on the shear rate. Here, we include inertial effects by following the approach of Koch and co-workers [4, 5], targeted primarily
at dense inertial gas suspensions, but also applicable to liquid suspensions with sufficiently large density ratio. The idea is to
include the growth of the fluctuating component of the particle velocity

√
Θ into the suspension stress.

We adopt the Hele-Shaw/lubrication approach to model fracture flows. In deriving this type of model equation the
assumption is made that the velocity field and gradients can be scaled differentially, according to the fracture aspect ra-
tio. We define dimensionless coordinates and velocity components as follows: (x, y, z) = (x̂/L̂t, ŷ/D̂, ẑ/L̂t), (u, v, w) =
(û/Û0, δtv̂/Û0, ŵ/Û0). Evidently, if we consider allO(δt) terms we invite suffocating geometric complexity, quite apart from
the additional normal stresses and shear stress contributions. Neglecting terms strictly of O(δt), we see that the Hele-Shaw
type of model is recovered as δt → 0 at fixed Re. If Re is O(1) then anyway the Hele-Shaw type of averaging is valid, but
in practice many fracturing flows have large Re. Insofar as the bulk suspension flow is concerned, the terms of O(δtRe) are
probably the most important to include at high flow rates. These terms change the form of the momentum balance. Equally,
at higher flow rates we would expect larger gradients in shear rates and thus inertial effects to appear at the particle scale in
sheared layers nearer the walls. In summary, it appears that two types of model are feasible within this framework, according
partly to the fracture geometry, fluid rheology and flow rates. Here we effectively assume δt ∼ 1/L, that Re is moderate and
that the fracture width D̂ is small enough for δ2p � δt. We can show that the following model equations result:

0 = ∇ · u (2)

0 = −∂pf
∂x

+
∂

∂y

[
ηfηs

∂u

∂y

]
, (3)

0 = −∂pf
∂y

(4)

0 =
Re

Fr2
φ− ∂pf

∂z
+

∂

∂y

[
ηfηs]

∂w

∂y

]
, (5)

∂φ

∂t
= −∇ · [φu] +

δ2p
δt

∂

∂y

[
φ(1− φ)M

(∣∣∣∣∣δ2pφReFr2

∣∣∣∣∣
)(

λy
∂Π

∂y
− fD′ , y

δ2p

)]

+
δ2pRe

Fr2
∂

∂z

[
φ2(1− φ)M

(∣∣∣∣∣δ2pφReFr2

∣∣∣∣∣
)]

(6)

0 = ηf [ηs − 1][u2y + w2
y]− 12ηfα(φ,Θ)Θ + δ2p

∂

∂y

[
3ηfκ(φ,Θ)

∂Θ

∂y

]
. (7)

This model appears to allow potential for analysis. We use this model and apply mathematical techniques to make estimates
of the streamwise solid dispersion in various relevant scenarios of fracturing flows with yield stress suspending fluids.
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Summary This study conducts two-dimensional unsteady laminar simulation and investigates effects of flat plates aspect ratio on the flow
field characteristics under the constant Reynolds number based on the plate thickness. The flat plate aspect ratios (t/c, t: plate thickness,
c: plate chord length) are set to be 0.01, 0.025, 0.05, and 0.1. The Reynolds numbers based on the plate thickness (Ret) are set to be
250 (laminar reattachment), and 1, 000 (turbulent reattachment). The results suggest that the effects of t/c can relatively be negligible
at Ret = 250. After formation of three-dimensional turbulent structures at Ret = 1, 000, however, the reattachment points move to
downstream as t/c decreases. In this Ret, the flow fields characteristics such as instantaneous flow, turbulent kinetic energy, and boundary
layer near the leading edge are different depending on t/c.

INTRODUCTION

Characteristics of low Reynolds number (Re) flow are drastically changed with a little variation of theRe, so it is important
to understand the flow field characteristics in a wide range of low Re. Especially, one of the important features of the low Re
flow is a formation of laminar seperation bubble (LSB) because it affects not only the flow field characteristics but also the
mechanical efficiency (e.g., airfoil aerodynamic performance). Thus, it is important to understand the characteristics of LSB
such as flow fields around the LSB or the length of LSB. Figure 1 shows the comparison of reattachment points of several
previous experiment and numerical results[1]. The reattachment points are normalized by the plate thickness with respect to
the thickness based Reynolds numbers (Ret)[1]. It is commonly observed that the flow remains two-dimensional structures in
a relatively lowRet (Ret < 320 ∼ 400). The separated shear layer reattaches as laminar state in thisRet. As increase inRet,
the three-dimensionality appears atRet > 320 ∼ 400 and the shear layer reattaches as turbulent state[2, 3]. In thisRet region,
all the results show the movement of reattachment points to the leading edge, but their values are not quantitatively consistent.
One more point that many experimental studies have set the Reynolds numbers based on the plate thickness, because the plate
length based Reynolds number cannot be specified by assuming as an infinite length. It has not been discussed, however, that
comparisons of the reattachment point based on the plate thickness are reasonable or not. The discussion is also insufficient
that these quantitative discrepancies with respect to the reattachment points is resulted by the physical phenomena depending
on the plate thickness or error of each measurement method. Therefore, numerical experiments are conducted to investigate
the effects of aspect ratio of flat plate on flow field characteristics under the constant Re which is based on the plate thickness.

COMPUTIATIONAL SETUP

The 3rd order MUSCL[4] with SHUS[5] are employed for evaluating the convective terms. The viscous terms are com-
puted by the 2nd order central differencing without any turbulence model. The 2nd order backward differencing converged
by the ADI-SGS method[6] is adopted for time integration. The methods used in this study have been verified by compari-
son with the Large-eddy simulation results[1] in terms of the reattachment point predictability, reattachment state, etc. The
freestream Mach number is set to be 0.2 with zero turbulence intensity. Two cases of Ret are conducted: Ret = 250 for
laminar reattachment and Ret = 1, 000 for turbulent reattachment. The flat plate aspect ratios (t/c, t : plate thickness, c :
plate chord length) are set to be 0.01, 0.025, 0.05, and 0.1.

RESULTS

VERIFICATION OF NUMERICAL EXPERIMENTS
In performing numerical experiments, it should be firstly considered some factors which may produce numerical errors

(e.g., the number of grid pointsN , time step ∆t, and minimum grid spacing) to reduce numerical errors and prevent misleading
of the discussion. Thus, the verification of simulations is conducted using t/c = 0.05 case. The results indicate that grid points
used in this study (streamwise × wall-normal direction = 471 × 359) are sufficient in terms of discussing the reattachment
points. It is shown that the maximum CFL number should be lower than 1.2, and minimum grid spacing in the wall-normal
direction ∆y is sufficient in ∆y < 0.1/

√
Rec. One more important factor which should be considered is the minimum grid

spacing in the streamwise direction near the leading edge ∆x, because the resolution of shear layer thickness which flows
∗Corresponding author. Email: lee@flab.isas.jaxa.jp
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around the corner of the leading edge has significant effects on the accuracy of reattachment point predictability and the
formation of shear layer is affected by the boundary layer resolution at the leading edge. The results show that ∆x = 3.5∆y
is sufficient. Using the criteria above, four types of grids are prepared in each t/c. It is ensured that the quality of the grids
near the leading edge (N , ∆x, and ∆y) is exactly same in each case when shown by the thickness base viewpoint. Detailed
grids and verification results will be demonstrated at the presentation.

EFFECTS OF THE ASPECT RATIO OF FLAT PLATE TO THE REATTACHMENT POINTS
The present simulation results are also superimposed in Fig. 1. The results indicate that the effects of t/c of the plate

can be ignored at Ret = 250 where the laminar reattachment appears. At the turbulent reattachment Ret (Ret = 1, 000),
however, the reattachment points move downstream as t/c decreases. Figure 2 shows the instantaneous spanwise vorticity
flow fields near the leading edge at Ret = 1, 000. From the figure, location of the spanwise vortex shedding from the shear
layer moves downstream as decreasing in t/c. It can be considered that some flow fields characteristics in the downstream are
different depending on t/c at this Ret, and downstream flow affects the characteristics near the leading edge flows. Detailed
results such as averaged and instantaneous flow fields, turbulent kinetic energy distributions, and boundary layer characteristics
(displacement and momentum thickness) will be shown at the presentation.

CONCLUSIONS

The effects of flat plates aspect ratio (t/c, t : plate thickness, c : plate chord length) on the flow field characteristics under
the constant Reynolds number based on the plate thickness (Ret) are investigated by two-dimensional unsteady simulation.
Four cases of t/c are conducted at the two different Reynolds numbers (Ret = 250 and Ret = 1, 000). The results show that
the effects of t/c can be negligible at Ret = 250. At Ret = 1, 000, however, the reattachment points move to downstream as
t/c decreases. In this Ret, some flow fields characteristics (instantaneous flow, turbulent kinetic energy, and boundary layer)
change near the leading edge. Therefore, it can be considered that the variation of the reattachment points at the turbulent
reattachment Ret which are shown in Fig. 1. might be largely affected by different physical phenomena depending on the t/c.
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Summary We develop a reciprocal theorem for convective scalar transfer from an arbitrary-shaped particle in linear flows. In particular, we
obtain a closed-form expression for the total transfer rate from a particle with a non-uniform surface distribution given the known solution
of the scalar field for a constant surface distribution. Hence, eliminating the need for calculating a detailed scalar field corresponding to
the non-uniform boundary condition. Employing this formula, we analytically calculate the convective heat transfer from a sphere with an
arbitrary surface temperature in Stokes flow in the limits of small and large Péclet numbers.

INTRODUCTION

Since the seminal works of Acrivos [1], Acrivos and Taylor [2], and Brenner [3] more than half a century ago, there
has been a significant theoretical progress in the area of transport phenomena in creeping and potential flows (see e.g. [4]).
However, a vast majority of analytical results for the rate of convective heat and mass transfer from an object have been derived
under the assumption of uniform boundary condition on the surface of the particle. This limits the applicability range of such
results as in many practical applications convective transfer takes place from particles with non-uniform surface conditions.

Here, we introduce a reciprocal theorem for convective heat and mass transfer from an arbitrary-shaped particle in steady
linear (e.g. Stokes and potential) flows. Specifically, we derive a formula relating the total transfer rate from a particle with
a non-uniform surface distribution to the solution of the temperature/concentration field for a constant surface distribution.
The formula enables us to readily extend the existing analytical results to accommodate non-uniformities in surface boundary
condition without solving for new scalar fields. We note that the Lorentz reciprocal theorem has been used in a similar fashion
for calculating drag, torque, and propulsion speed in Stokes flow without developing detailed flow fields (see e.g. [5, 6, 7, 8]).
In the following, we explain how Green’s second identity (a reciprocal relation between two scalar fields [9, 10]) is used to
derive a closed-form expression for convective scalar transfer from a particle in a linear flow.

DERIVATION OF THE RECIPROCAL THEOREM

Consider a steady linear (e.g. Stokes or potential) flow with velocity u past a stationary rigid particle of arbitrary geometry.
Let φ and ψ be two diffusing scalar fields that vanish at infinity and are transported, respectively, by the velocity fields u and
−u. Then, their Laplace transforms φ̃ and ψ̃ satisfy

sφ̃− φ0 + u · ∇φ̃ = D∇2φ̃, (1)

sψ̃ − ψ0 − u · ∇ψ̃ = D∇2ψ̃, (2)

where D is the diffusion constant and φ0 and ψ0 are initial conditions at t = 0. Note that −u satisfies the reversed flow far
from the particle as the velocity field is linear. Multiplying (1) by ψ̃ and (2) by φ̃ and subtracting the resulting equations yield

φ̃ψ0 − ψ̃φ0 +∇ ·
(
ψ̃φ̃u

)
= D

(
ψ̃∇2φ̃− φ̃∇2ψ̃

)
. (3)

According to Green’s second identity∫
V

(
ψ̃∇2φ̃− φ̃∇2ψ̃

)
dV =

∫
Sp+S∞

[
ψ̃(∇φ̃ · n)− φ̃(∇ψ̃ · n)

]
dS, (4)

where V , Sp, and S∞ denote the domain volume, surface of the particle, and bounding surfaces at infinity, respectively.
Substituting from (3) into (4) and applying divergence theorem, we obtain∫

V

(
φ̃ψ0 − ψ̃φ0

)
dV +

∫
Sp

ψ̃φ̃ (u · n) dS = D

∫
Sp

[
ψ̃(∇φ̃ · n)− φ̃(∇ψ̃.n)

]
dS. (5)

Integrals over S∞ are zero since ψ̃φ̃, ψ̃(∇φ̃ · n), and φ̃(∇ψ̃.n) decay faster than the inverse distance squared in the far field
[11].
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Figure 1: (a) The cross-sectional streamline for a uniform Stokes flow past a sphere with non-uniform surface temperature. (b)
Distribution of temperature on the surface of the sphere. (c) and (d) The cross-sectional steady-state distribution of temperature
corresponding to Péclet numbers Pe = 0.5 and Pe = 100, respectively. The temperature vanishes at infinity and its average
value on the surface of the sphere is set to Tave = 1.

Given φ0 = ψ0 = 0 everywhere in V except on Sp, the first integral on the left-hand side of (5) is zero. The second
integral also vanishes since u is zero on Sp. Hence,∫

Sp

ψ̃
(
∇φ̃ · n

)
dS =

∫
Sp

φ̃
(
∇ψ̃ · n

)
dS. (6)

Assuming ψ̃ is uniform on Sp, we have

q̃φ =

∫
Sp

φ̃

(
q̃′′ψ

ψ̃

)
dS, (7)

where q̃φ = −D
∫
Sp

(
∇φ̃ · n

)
dS and q̃′′ψ = −D

(
∇ψ̃ · n

)
. The left-hand side of (7) represents the instantaneous total

convective flux q̃φ from the particle corresponding to an arbitrarily non-uniform surface distribution φ̃s. The right-hand side
of (7) is a surface integral that only involves φ̃s, ψ̃s, and the local convective flux q̃′′ψ . The latter denotes the transfer due to the
reversed flow (i.e. −u) and a constant surface distribution ψ̃s. Simply put, equation (7) relates the average quantity of interest
q̃φ to the boundary information (φ̃s) and the solution of a much simpler problem ψ, which is often already known. Remember

that conventionally q̃φ is directly calculated from
∫
Sp

(
∇φ̃ · n

)
dS. However, evaluating this integral requires the detailed

knowledge of φ, which is analytically much more challenging to obtain than ψ. As an application of (7), we will extend the
analytical results of Acrivos and Taylor [2] for temperature distribution around a sphere of constant temperature in a uniform
Stokes flow to calculate convective heat transfer from a sphere with a non-uniform surface temperature (see figure 1).
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Summary We consider steady state flow of a viscous Newtonian fluid containing solution of water and ions through a wavy wall chan-
nel coated with electrically charged poroelastic layer. This is relevant to applied problems such as blood flow through a post-capillary
vessel lined with the endothelial glycocalyx layer. A triphasic mixture theory is used for the mathematical description of the mechano-
electrochemical behavior of the charged porous layer. The governing equations are solved numerically by means of combined Boundary
Element and Finite Element Methods as well as analysed analytically using an asymptotic analysis. We examine the impact of geometry
and electrical charge effect on hydrodynamics, as well as the role of the EGL in transmitting fluid shear stress exerted on the vessel wall.

INTRODUCTION

Past studies have shown that endothelial cells that line inner capillary wall surfaces are coated with a layer of macro-
molecules (the Endothelial Glycocalyx Layer)[1]. This layer has a gel-like structure and is comprised of polysaccharides. It is
established that this layer acts as a mechanotransducer of fluid shear stress (FSS) to the endothelial cytoskeleton, including the
resulting biochemical responses. In addition, the presence of the EGL can provide vessels with an anti-adhesive inner lining
when a white blood cell pass through the vessel. Indirect measurements of the mechanical properties of the EGL show the
layer is deformable and can restore its shape after being deformed by an applied force. However, there is some debate around
the dominant mechanism by which this layer restores. There are two types of models accounting for the restoring mecha-
nism, namely, elastohydrodynamic and mechano-electrochemical models. According to the elastohydrodynamic approach,
the dominant source of restoration is due to the inherent elasticity of the EGL. The layer is modeled as a poroelastic media
and the biphasic mixture theory is applied to mathematically describe the phenomenon.

The mechano-electrochemical model takes into account electrical properties of the EGL which contain electrostatically
charged macromolecules hydrated in an electrolytic fluid. Electrostatic forces and associated osmotic pressure represent an
additional restoring force for an EGL deformed by the fluid flow or passing blood cell. A triphasic mixture theory (TMT) is
used for the mathematical description of the mechano-electrochemical behavior of the EGL. The TMT combines the physico-
chemical theory for ionic and polyionic solutions with the biphasic theory for porous media [2]. This theory is successfully
applied to model swelling and deformation of hydrated porous biological materials [3, 4]. In the absence of any flow, a
pseudo-equilibrium approximation is often made for the mechano-electrochemical dynamics [3, 4, 5]. This means that the
electroneutrality condition along with the Boltzmann distribution for ions is assumed. However, background flows introduce
a streaming potential which modifies the transport of ions (the distributions of which can no longer be assumed to be Boltz-
mann), and hence generates an electric field. In this study we, for the first time, tackle the full problem incorporating flow,
electrochemical effects, and EGL elasticity. Considering this coupled problem allows us to gauge the effect that electrochemi-
cal effects have on the shear stresses exerted on a vessel’s walls, and hopefully ultimately inform the debate around the relative
importance of different effects in EGL restoration.

MODEL FORMULATION

In the problem considered the blood is modeled as a solution containing water and salt ions (Na, Cl). The vessel is coated
with the EGL which is considered as a negatively charged porous layer reflecting the electrical property of proteoglycans
(PG). We consider two sets of non-dimensional equation: for the luminal region (index l) where blood flows unhindered

∇2vl = ∇pl − αl∇2ϕl∇ϕl, (1)
∇ · [γ±cl±vl −∇cl± ∓ cl±∇ϕl] = 0, (2)
−δ∇2ϕl = cl+ − cl−, (3)

and for the layer region having fluid (φf ) and solid (φs) volume fractions

∇2v = ∇p− α∇2ϕ∇ϕ+ χ̂cs∇ϕ+ χv, (4)
1

1− 2ν
∇ · (∇u) +∇2u = φ∇p− χ̂cs∇ϕ− χv, (5)

∇ · [γ±c±v −∇c± ∓ c±∇ϕ] = 0, (6)
−δ∇2ϕ = c+ − c− − cs. (7)
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Here φ = φs/φf , χ = KH2/(φfµf ), χ̂l = c0kTH/(µfV ), χ̂ = χ̂l/φf , αl = εk2T 2/(µe2V H), α = αl/φf and
δ = εkT/(c0e

2H2) are the non-dimensional parameters. Constant cs models negative charge distribution fixed on the solid
phase (i.e. EGL). The other notations are the following: v is the fluid velocity vector; µf is the fluid viscosity; p is the
pressure; ϕ is the electric potential; c± positive (negative) mobile ions concentration; K is the hydraulic resistivity; u is the
elastic displacement (assumes small strain); ν is Poisson’s ratio; c0 is the reference concentration; H is the characteristic
length; constants ε, e, k, T,D± are the dielectric permittivity, elementary charge, Boltzmann constant, absolute temperature
and ions diffusions coefficients respectively. The governing equations for the lumen region are given by the modified Stokes
equation incorporating electric forcing term, extended Nernst-Plank equation for the ion diffusion and the Gaussian law for the
electric potential. As to the EGL region, we obtain the Brinkman type equation for the fluid phase and Navier type equation
for the solid phase both having the additional electrical forcing term. The small parameter δ captures the non-dimensional
dielectric permittivity .

SOLUTION METHOD

The resulting nonlinear problem is solved using a Boundary Element Method (BEM) scheme for the momentum equations
combined with Finite Element Method (FEM). The use of a hybrid scheme allows us to reduce computational cost. The
nonlinear system is built in parallel across 48 CPUs, and solved iteratively.

RESULTS

Parameters values for the numerical simulation were chosen to be representative of a blood capillary having wavy wall
shape. Simulation results have shown some features which are characteristics of the dynamics. Under the fluid flow state
the electroneutrality condition is maintained in both lumen and EGL regions except in the neighborhood of the interface
boundary. Within this zone we observe large electric potential and concentration gradients resulting in a nonlinear osmotic
pressure distribution across the vessel. The smaller value of δ the narrower transitional zone and greater the gradients therein.
The simulation was carried out with δ = 10−3 but physiologically it can reach the value of 10−6. For such an extreme
parameter value an asymptotic analysis was undertaken. The charge effect in the EGL along with wavy geometry leads to
nonuniform fluid shear stress distribution exerted on the vessel wall (see Figure 1) different to that exerted in the absence
of charge effects. It is believed that the EGL play an important role in transmitting mechanical signals to the underlying
endothelial cells, and we shall report on how this mechanotransduction is predicted by our simulations to be affected by the
EGL’s charge.
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Figure 1: Varicose - type vessel showing flow field and fluid shear stress exerted on the solid wall. The scale beneath
corresponds to the non-dimensional stress magnitude.
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Summary By using fluid-kinetic simulations of confined and concentrated emulsion droplets in a rough microchannel, we explore the role
of geometrical roughness in providing activation of plastic events close to the boundaries. Our results show the existence of a finite stress
correlation scale, which can be mapped directly onto the cooperativity scale, recently introduced in the literature to capture non-local effects
in the soft-glassy dynamics. Numerical simulations also allow to study the fluidity field, a continuous quantity which can be related to
the rate of plastic events, thereby allowing us to establish a link between the mesoscopic plastic dynamics of the jammed material and the
macroscopic flow behaviour.

INTRODUCTION

Soft-glassy materials (SGM) encompass a wide variety of systems such as emulsions, foams and granular media. The dy-
namics of these complex fluids is usually characterized by relatively large packing fractions, and the microscopic constituents
(i.e., droplets for emulsions, bubbles for foams, etc) are jammed together so as to exhibit a yield stress, below which the
material deforms elastically and above which it flows like a non-Newtonian fluid according to a Herschel-Bulkley rheology.
The yielding behavior makes such systems as interesting for applications as challenging from the fundamental point of view of
out-of-equilibrium statistical mechanics [1]. One challenging question concerns the formation of spatially non-homogeneous
features, where the global rheology is not able to properly capture the complex space-time behavior of the system. It is now
widely acknowledged that SGM flow as the result of a succession of plastic rearrangements, occurring when a local config-
uration of constituting micro-elements cannot sustain the accumulated stress and relaxes it in the form of long-ranged elastic
waves which induce non-local behaviour in the rheological properties of the system. A number of theoretical frameworks have
been developed recently accounting for these non-local effects (see [2, 3, 4] and references therein). One of them, the Kinetic
Elasto-Plastic (KEP) model [4], captures the essential phenomenology in a mean-field spirit through a diffusion-relaxation
equation for the fluidity field f = γ̇/σ (the ratio of the local shear rate and shear stress):

ξ2∆f = f − fb, (1)

where ξ is the so called cooperativity length, quantifying the spatial extension of the non-local correlations, and fb = fb(σ)
is the bulk fluidity, which is function of the shear stress σ only and equals the fluidity in absence of spatial heterogeneities.
Together with (1), the other fundamental result of KEP, is the expected proportionality between f and the rate of occur-
rence of plastic events (whose prototypical instance, in 2d, is the so called T1, i.e. the neighbour-swapping of four adjacent
droplets/bubbles), RT1:

RT1 = Af, (2)

with A a constant, proportional to the elastic modulus G0 in the KEP formulation. Equation (1) can be solved analytically in
some simple cases, provided that a proper boundary condition is supplied for the fluidity at the wall. In a Couette flow, for
instance, in which the stress is constant, a straightforward calculation for a Dirichlet-type boundary condition f(±H/2) = fw
yields

f(z) = fb + (fw − fb)
cosh(z/ξ)

cosh(H/(2ξ))
(3)

whose corresponding velocity profile v(z) = σ
∫
f(ζ)dζ has been found consistent with numerical and experimental data

[2]. Notice that a Von Neumann boundary condition of the type, e.g., df
dz (±H/2) = 0 (i.e. the wall does not act as a

“source” of fluidity) would give f = fb everywhere, in clear contrast with all evidences. It must be noticed that, though it
plays a crucial role, the fluidity at the wall fw has no first principles ground and, as a matter of fact, enters the picture as
a completely phenomenological free parameter of the model. Therefore, a challenging question, which certainly deserves
thourough investigations, concerns the possibility of engineering a surface in such a way to control the fluidity, and hence the
plastic activity, in its proximity. Nevertheless, only very few studies addressed the problem. Mansard et al [2] have performed
experiments with dense emulsions flowing in microchannels with rough walls patterned with equally spaced posts of variable
height, finding that slippage and surface fluidization depend non-monotonously on it. By means of numerical simulations,
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Figure 1: Left Panel: a Snapshot from lattice Boltzmann simulations in confined microchannels with structured roughness on
the bottom wall. We report the main roughness parameters: λ, w and h refer to the roughness wavelength and inter-post width
and height, respectively. Middle Panel: Sketch of a T1 plastic event. To systematically analyze plastic events, we perform
a Voronoi tessellation from the centres of mass of the droplets. Following the Voronoi tessellation in time, we are able to
identify T1 events and associated disappearing (red solid line) and appearing (blue dashed line) links. In grey (black) we
indicate the Voronoi cells soon before (after) a T1 event. Right Panel: fluidity profiles for λ/d = 7.3 and w/d = 3.5 and
various post heights. Inset: wall and bulk fluidity as a function of the post height.

based on the lattice Boltzmann method of Poiseuille flows of model soft-glassy materials [3], we have recently shown that
there is a non-trivial dependence also on other geometrical parameters of the roughness (namely, the inter-post distance), and
that the presence of the roughness may cause a breakdown of the proportionality relation predicted by KEP between fluidity
and rate of occurrence of plastic events. To address in particular the latter problem in a more systematic way, in this paper
we study two-dimensional Couette flows of dense emulsions. Our numerical setup is sketched in figure 1, where we show
a snapshot from a simulation. The dense emulsion is confined between a top wall moving with the velocity Uw and a fixed
bottom wall patterned with equally spaced posts of variable width w, height h and centre-to-centre inter-post distance λ. To
gain insight into the statistics of plastic events, we perform a Voronoi tessellation (by using the voro++ libraries [5]) of the
centres of mass of the droplets so that we identify plastic rearrangements in the form of topological events, in which one
“edge” of a given droplet collapses to zero length and neighbour droplets switching occurs. In connection with roughness-
induced fluidisation of the material, deviations from the linear (f(z) = fb) profile arise close to the wall, as highlighted in the
right panel of figure 1, which is a signature of non-locality associated to a cooperative flow [4]. The enhanced friction effect
induced by the roughness is accompanied by a triggered plastic activity which makes the dependence of the wall fluidity on
the geometry of the wall roughness highly non-trivial.

CONCLUSIONS

Mesoscopic numerical simulations have been used to study the emergence of non-locality and the effects induced by rough-
ness for the flow of concentrated emulsions in rough microchannels. Roughness effects are materialized through enhanced
friction and surface fluidization induced by enhanced plastic activity. Numerical results are rationalized in the framework of
KEP theory [4] for elastoplastic materials.

The authors kindly acknowledge funding from the European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279004. The authors kindly acknowledge useful
discussions with R. Benzi.
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Summary We examine the sensitivity of Saffman-Taylor fingers to controlled variations in channel depth by investigating the effects of 
centred, rectangular occlusions in Hele-Shaw channels of increasing aspect ratio using a combination of experiments and numerical simulations 
of a depth-averaged lubrication model. The system is characterised by multiple modes of propagation which are first provoked for decreasing 
relative depth changes as the aspect ratio increases. We estimate that the required depth-changes become of the same order as the typical 
roughnesses of the experimental system (1 μm) for aspect ratios beyond 155, which we conjecture underlies the extreme sensitivity of 
experiments conducted in such (unoccluded) Hele-Shaw channels [1].  
 

INTRODUCTION 

   Two-phase displacement flow in a confined geometry is a fundamental problem in fluid mechanics with applications in 
biomechanics, geophysics and industry. Following the classic work of Saffman and Taylor [2], the tube geometry that has 
attracted the most attention is the Hele-Shaw channel: an axially-uniform tube with rectangular cross-section of large width 
to height aspect ratio �. Only a single family of solutions is ever observed , although a depth-averaged model without 
surface tension possesses symmetric and asymmetric families of solutions. The introduction of finite surface tension selects 
a single family of stable, steadily propagating fingers, which depend uniquely on the modified capillary number 1/B=12 
�2Ca, where Ca corresponds to the ratio between viscous and surface tension forces [3]. However, the model also contains 
alternative families of multiple-tipped symmetric solutions, the Romero-Vanden-Broeck solutions [5], which are unstable. 
The Saffman-Taylor fingers have been observed up to a threshold in 1/B, which depends on the roughness of the 
experimental channel [4]. Motivated by the finger-selection problem, many groups have investigated the effects of 
geometric perturbations on two-phase flow in a Hele-Shaw channel, in the form of wires, threads or grooves, stabilising 
narrower fingers or generating dendrite growth. Unsteady finger propagation has also been observed in very large aspect 
ratio channels (158 < � < 490) , where the fingertip exhibited significant lateral movement [1]. Fluctuations increased as the 
liquid films on the top and bottom channel walls thinned, and details of the wall roughness began to influence the system. 

Here, we consider a Hele-Shaw channel with a small step change in depth provided by an axially-uniform rectangular block, 
which is known to support multiple stable modes of propagation, including asymmetric and oscillatory modes as well as the 
expected symmetric Saffman-Taylor mode [7]. We exploit this simple but robust system to probe the sensitivity of viscous 
fingering, because it enables transitions between multiple states to be clearly identified when the geometric variations are on 
a larger scale than the wall roughness.  
 

EXPERIMENT 

  
 

 
 
 
 

 
 

 
 

DEPTH-AVERAGED MODEL 
 
The variable-depth profile b is a smoothed step-like occlusion of fractional height αh. The free-surface flow is modelled by 
the Reynolds lubrication equations with suitable boundary conditions [7]. The pressure jump at the interface becomes

1 1

3
p

Q b

κ

α α

� �
Δ = +� �

	 

, where Q is the non-dimensional flow rate, κ the in-plane curvature and Ca=QUf, with Uf the non-

dimensional finger speed. For occluded channels, the cross-sectional curvature term 1/b is dynamically significant, and 
appears on the order of αhα

-1Q-1, whereas the effect of the in-plane curvature is on the order of α-2Q-1.The model is 
integrated numerically using the finite-element library oomph-lib. 

 

b) 

Fig. 1: (a) Experimental configuration. (b) Channel cross-section: 
�=W*/H*, �h=h*/H*. (c) Example of an oscillating finger: finger width 
�=(y1-y2)/W*, finger offset �=(y1+y2)/(2W*). 

a) 

c) 

The experimental channel is shown schematically in Fig.1(a-b). 
Air is drawn into the channel at one end by withdrawing silicone 
oil at constant flow rate from the other end, resulting in the steady  
propagation of an air finger that displaces the oil. The capillary 
number is Ca=μU*

f/σ, where U*
f is the dimensional speed of the 

finger, μ is the dynamic viscosity of the oil and σ the surface 
tension. Measurements are made of the finger width �=(y1-y2)/W* 
and the finger offset �=(y1+y2)/(2W*) (see Fig. 1(c)). 
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RESULTS 
 
We demonstrate that the depth-averaged model presented 
above is in quantitative agreement with the experimental 
results for � > 40, provided that Ca < 0.012 – see Fig.2. The 
model is based on the lubrication approximation, which is 
expected to be valid for sufficiently high aspect ratio 
channels and small occlusion heights, in the limit of small 
Ca where the effect of liquid films on the top and bottom 
boundaries of the channel is negligible. Hence, this 
quantitative agreement means that we are able to use the 
model to follow the evolution of the solution structure in a 
large aspect ratio Hele-Shaw channel to that presented by 
[7] for a partially occluded channel with a high level of 
confidence that this represents the situation in the 
experiment. We believe that this evolution is the same for 
all aspect ratios which have been investigated, although we 

cannot confirm this without resorting to three-dimensional 
Stokes calculations. Thus we can demonstrate that the 
asymmetric and the double-tipped solutions observed in 
smaller aspect ratio channels by de Lozar et al. [8] and others 
are the unstable asymmetric Saffman-Taylor solutions and 

the first symmetric Romero-Vanden-Broeck solution having been stabilised by the presence of the occlusion – see Fig. 3. 
The occlusion height required to stabilise the asymmetric Saffman-Taylor solutions decreases with increasing aspect ratio, 
with the critical height for provoking pitchfork bifurcations being proportional to �-2 and that for Hopf bifurcations being 
proportional to �-1.These scalings are consistent with the mechanisms underlying bifurcations described by Thompson et al. 
[7]. The pitchfork is principally associated with changes in viscous resistance, whereas the Hopf bifurcation is associated 
with coincidence of finger and occlusion edges.  
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Fig. 2: Finger offset as a function of capillary number (1/B) for � =40. The 
symbols (lines) indicate experiments and numerical simulations, 
respectively. As the fractional depth �h increases, the viscous finger 
undergoes supercritical then subcritical symmetry-breaking. Oscillatory 
fingers occur for a bounded range of �h and Ca, respectively. The highest 
values of �h yield a finger that localizes in one of the deeper side-channels. 

Fig. 3: Bifurcation diagrams for �=80 and (a) �h=0, (b) �h=0.01. The solid (dashed) lines represent stable (unstable) states, and blue (red) lines 
represent symmetric (asymmetric) fingers. Finite occlusion heights are required for stable asymmetric states to arise. In (a), the Saffman-Taylor 
mode is stable and the Romero-Vanden-Broeck solutions are unstable. In (b), the RVB solutions have interacted with the Saffman-Taylor mode, 
resulting in a bifurcation scenario with a supercritical symmetry-breaking bifurcation as Ca increases from small values. 
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Summary Mobility of hydrogel nanofilaments suspended in liquid is investigated to gain basic knowledge on hydrodynamic interactions biased 
by Brownian fluctuations. Typical for long macromolecules effects like spontaneous conformational changes and cross-flow migration are 
observed and evaluated. The collected experimental data can be used to validate assumptions present in numerical models describing intercellular 
transport of long biomolecules.  
 

INTRODUCTION 

 
Cross-flow migration of long micro objects is one of the fundamental mechanisms of lab-on-chip bio-processors. Moreover, 
behavior of long macromolecules is important in a variety of biological processes responsible for transport, aggregation and 
structure formation at the cellular level. Mobility of long deformable objects suspended in liquid depends on large number of 
parameters. Some of them like local flexibility, 3-D orientation, coiling - uncoiling are essential for resulting dynamics, 
however difficult to be accurately incorporated in practical models. Most common hydrodynamic models are based on several 
variants of classical worm-like chain (WLC) approach, describing flexible object as systems of interconnected identical 
spheres [1]. Its flexibility is usually defined by two parameters of stretching and bending. Experimental validation of such 
models using polymer solutions or DNA [2] is difficult and mainly limited to very general observations.  In the following we 
propose more robust experimental study, based on optical observations of hydrogel filaments. Their characteristic size (dia. 
~100 nm) allows for accurate evaluation of shape and orientation, but still remains small enough to reproduce characteristics 
of the flow regime influenced by Brownian fluctuations.  
 

EXPERIMENT 

 
We have developed new method allowing for fabrication of highly deformable microscopic filaments with typical diameter 
of 100 nm and contour length ranging from single micrometers to millimeters [3]. The nanofilaments are obtain by extracting 
hydrogel core of electrospun polymeric nanofibres. The composition of materials used allows for in flight modification of the 
hydrogel polymerization, tuning its mechanical properties to desired values. The surface topography of filaments is obtained 
by AFM equipped with a closed liquid cell and a rectangular silicon cantilever. Despite relatively large diameters, high 
deformability of our hydrogel filaments permits to obtain objects with mechanical properties resembling that of long 
biomolecules (comp. Table 1).   

Table 1. Typical experimental parameters: mean flow velocity (Vm), contour length (L), radius (R), persistence length (Lp), and Young modulus (E) of the 
analyzed filament. Flow Reynolds number (Re) is based on the channel width (200 m).  

No Vm [µm/s] L [m] R [nm] Re  Lp [µm] E [kPa] 

1 59.02 71.91 81 1.51E-02 17.62 2.17 

2 77.78 72.87 81 1.98E-02 12.38 1.53 

3 39.65 34.49 45 1.01E-02 3.44 4.45 

4 68.87 54.31 45 1.76E-02 7.51 9.72 

 

The dilute suspension of hydrogel nanofilaments is pumped through the 500 m long PDMS microchannel and imaged by a 
fluorescent microscope coupled with high-gain EM-CCD camera. The experiment is based on observation of position and 
instantaneous shape of nanofilament conveyed by steady or pulsating flow. Some hundreds of long sequences of filament 
images are processed to extract their shape with specially designed Matlab software. The velocity profile in the channel is 
obtained from small amount of fluorescent tracers. For each analyzed filament its flexibility is determined by calculating 
Young modulus. For this purpose we analyze their Brownian shape fluctuations, and then used cosine correlation method to 
determine the persistence length [3]. Evaluation of geometry for three dimensional objects using 2-D projections obtained 
from the microscope is overwhelmed by unavoidable inaccuracy, it additionally complicates if parts of the filament tend to 
overlap. Hence, only clearly distinguishable objects with in plane shape deformations are taken into account. For this purpose 
constancy of apparent contour length of visualized filament is used as a control parameter. Channel depth is 60 m. Hence, 
additional efforts (e.g. flow focusing) are undertaken to keep filaments far from the upper and bottom wall of the channel.       
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RESULTS 

 
Figure 1. Sequence of images for a single flexible nanofilament suspended in liquid. (a) – Brownian motion observed for very long filament (R= 90 nm, L= 
60 µm), image height 35 µm; (b) - filament conveyed by Poiseuille flow (no. 4 in Table 1), image centerline located 38 m from the wall, t – time stamp, x 
– distance traveled from the channel entry (picture frame moves with the object), image height  66 µm. 
 
Mobility of our filaments strongly depends on their length. For 
short pieces (10 – 20 m) translational and rotational diffusion 
coefficients could be evaluated from Brownian motion. They 
are typically of the same order of magnitude as those obtained 
for rigid rods. For longer filaments their bending flexibility is 
well exhibited, especially pronounced for millimeters long 
objects (Fig. 1a). Interesting to note that despite negligible 
ionic interactions bending following characteristic coiling and 
knots formation is observed. This effect remains to dominate 
for objects conveyed by Poiseuille flow (Fig. 1b). The 
approximate center of mass for the conveyed filaments slightly 
lags behind the local flow field (Fig. 2), whereas cross-flow 
migration into the center of channel can be detected. Applying 
periodic flow we may notice evidence of broken reversibility 
of the Stokesian approximation. This is obvious for motion of 
deformable objects like droplets, bubbles and flexible fibers. 
In the present study it helps us to perform long time study for 
the same filament remaining in the field of observation.    
   

CONCLUSIONS 

We have demonstrated possibility to create useful microscale experimental model to study hydrodynamic interactions for highly 
flexible long objects formed as hydrogel nanofilaments.  Such objects can be used as possible carriers or indicators in biomedical 
applications. Our study gives evidence of difficulties to describe mobility of long flexible nanofilaments in terms of coarse 
parametric description, like hydrodynamic diameter and constant friction tensor. At each time step variable conformation of the 
observed objects strongly modifies hydrodynamic interactions, effects of wall and shear field forces, leading to more or less 
predictable evolution of their transport properties. Probably statistical analysis performed for large number of experiments is the 
only way to obtain plausible average mobility values convenient to predict longitudinal and cross-flow transport properties of such 
objects.  
 
The support of NCN grant no. 2011/03/B/ST8/05481 and NCN Preludium grant no. 2015/17/N/ST8/02012 (S. P.) are acknowledged. 
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Figure 2. Velocity of fluid and for center of mass of the filament conveyed 
by  pulsatile flow. 
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Summary

 

 The self-propelled Janus micromotors moving in low Reynolds number environments have attracted extensive attention. In this 
paper, we measure the translational motion of Pt-SiO2 Janus microparticles (size d=20-50µm) in H2O2 solutions, and report a three-stage typical 
behavior including self-diffusiophoresis, bubble growth, and bubble collapse. This behavior is found to coincide with a transition from self-
diffusiophoresis to micro-bubble propulsion. The speed of the Janus microparticle due to bubble propulsion is observed to be about 1-2 order of 
magnitudes larger than that due to self-diffusiophoresis. Furthermore, we show that a strong jet flow towards the Janus microparticle emerges 
during bubble collapse, which reveals a new mechanism of bubble collapse.  

INTRODUCTION 
 
   Self-propelled Janus microparticles are special types of active particles whose surfaces have two distinct physical or 
chemical properties [1]. Considering this special structure and the fact that no extra power is required, self-propulsion of 
Janus microparticles has attracted widespread interest in fields such as MEMS, drug delivery, enhancement of micromixing, 
environmental applications. As a simple and typical example, the Pt-SiO2 Janus microparticles in H2O2 solutions are 
commonly used [2]. The catalytic reaction on the Pt surface, 2 H2O2 → 2H2O2 + O2, will generate more molecules and thus 
results in self-diffusiophoretic motion of Janus micropartilces driven by concentration gradient. In our previous study, we 
have demonstrated the typical behaviors of the self-diffusiophoresis [3]. Recently, a new type of self-propulsion due to 
micro-bubble propulsion (oxygen bubble on the Pt surface) was reported [4], which could significantly enhance the mobility 
of the Janus microparticles. Considering the possible wide applications of these Janus micromotors, we therefore perform 
systematic studies in this paper to investigate their swimming mechanisms. 
 

EXPERIMENTS AND RESULTS 
 
Experiments 
   The Pt-SiO2 Janus microspheres were synthesized through the E-beam evaporation technology. We first deposited a 
monolayer of SiO2 microspheres (30-65 μm in diameter) on a silicon wafer by spin-coating at 800 rpm for 10 s. Then, these 
silicon wafers were dried and baked at 80°C for 2 mins. Evaporation of 20 nm platinum on the upper half surfaces of these 
microspheres was performed using an e-beam evaporator, to them double faced. After that, the Janus microparticles were 
collected from the silicon wafer and re-suspended in di-water. 
   The Janus microparticles were set into motion in H2O2 aqueous solutions containing various concentrations (2-5 wt%). 
A 50µL droplet of Janus particles and H2O2 solutions were put on a glass slide. The motional behaviors of the Janus 
microparticles were then observed under a microscope (Nikon v7.3) with 20x or 40x objectives. A fast CCD camera 
Phantom Camera was used to record videos with a frame-to-frame interval of 100 µs. Video sequences were processed with 
Image J. The particle positions and the bubble growth can be tracked by the software video spot tracker (V07.02). And also, 
2µm polystyrene tracers were added into the solution to show the flow field during bubble collapse. 
 

   
        Fig. 1                                Fig. 2                                Fig. 3 
Fig. 1 An image shows that a microbubble generates on the Pt surface of Janus micromotor to propel its motion. 
Fig. 2 The three-stage behavior of the propulsion: (1) self-diffusiophoresis, (2) bubble growth and (3) bubble collapse. 
Fig. 3 An overlapped image shows that a jet flow emerges after the bubble collapse in stage (3). 
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Results 
   Fig. 1 shows a typical image of a moving Janus microparticle with a growing bubble attached to its Pt surface (dark half) 
on the rear part. By analyzing the trajectories and displacements, we observe that the propulsion of the Janus micropariticle 
can be divided into three stages: (1) self-diffusiophoresis; (2) bubble growth, and (3) bubble collapse, as shown in Fig. 2 
(3% H2O2, results of six different Janus particles are assemble together). In stage 1, the bubble is still not visible, and the 
propulsion speed is about 5 µm/s, which is consistent with the typical speed of self-diffusiophoresis [2-3]. In stage 2, the 
Janus microparticle moves with an approximately constant speed ( ~ 100 µm/s), which means the propulsion force due to 
bubble growth is balanced by the Stokes drag force. This stage could last as long as 50-100 ms. In stage 3, the micro-bubble 
collapses when the pressure difference between its interface cannot be sustained. During bubble collapse, there will be 
instantaneous strong propulsion pushing the Janus microparticle forward, which results in a speed up to about 10 mm/s. 
    The fast propulsion in the third stage is of great interest. This process was considered as bubble burst that makes the 
Janus microparticle moving back and forth, and finally a local pressure depression will pull the Janus microparticle 
backward [5]. This explanation can only predict a negative pullback motion in stage 3. However, our measurements clearly 
show that the Janus micromotor emerges the strongest propulsion after bubble collapse. By overlapping 20 images (100 µs 
of each frame) recorded just after bubble collapse (Fig. 3), we observe that there is actually a jet flow from the bubble center 
pushing the Janus micromotor forward. This result shows a new mechanism of the bubble propulsion of Janus micromotors. 
 

CONCLUSIONS 
 

   In this paper, we measure the characteristic motion of Janus microparticles in different H2O2 solutions (2-5 wt%). The 
catalytic reaction on the Pt surface of Janus micropariticle will result in its self-propulsion. The swimming mechanisms are 
identified as both self-diffusiophoresis and bubble propulsion. Correspondingly, a three-stage behavior is reported, which 
includes (1) self-diffusiophoresis; (2) bubble growth, and (3) bubble collapse. A strong jet flow after bubble collapse is 
observed and considered as the reason of the strong propulsion in stage 3, which gives a new physical insight of this 
transient collapse process. 
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Summary Inertial microfluidics is a field of study involving interactions between fluids with particles and/or fluids with structures where both 
inertia and viscosity become important.  In traditional microfluidics, inertia has generally been ignored since the associated Reynolds number is 
close to zero due to the small channel scale and low flow velocity.  However, cases with fluid flows that involve non-zero Reynolds numbers 
(i.e., non-zero inertia) are frequently encountered where fluid inertia should be accounted for.  Inertial effects—inertial particle migration and 
secondary flow—have gained much attention in biology and medicine research because it inherently offers simple, sheathless, and high-
throughput particle and cell manipulation that cannot be found in conventional active particle manipulation approaches.  Through a deep 
understanding of fluid-particle-structure interactions, inertial microfluidics can be expanded to different fields, here in manufacturing and 
quantitative single-cell biology, in the sense of enabling technology. 
 

3D PARTICLE MANUFACTURING: OPTOFLUIDIC FABRICATION  

 

   Many colloidal particles are spherical entities in order to minimize their interfacial energy.  However, anisotropic 
particles can provide unique properties and additional functionalities not available in spherical particles.  For instance, 
ellipsoids can randomly pack more densely in a given volume,1 and non-spherical particles behave differently under electrical, 
chemical or mechanical stimuli.  As such, shaped particles are now being used in various fields for self-assembly, photonics, 
biotechnology, structural materials and pharmaceutics.2, 3  These intrinsic opportunities have driven the development of non-
spherical polymer hydrogel particles,4 and recent applications from various fields demand further functionalized, miniaturized 
and tailored hydrogel architectures at the micron scale.  In order to meet these requirements, substantial efforts5-11 have been 
made toward generating three dimensional (3D) tailored hydrogel particles.  However, through these approaches, imposing 
high three-dimensionality into hydrogel architectures still remains challenging.2, 3    
   To address these limitations, recently we reported a novel inertial microfluidics based 3D particle generation method 
termed optofluidic fabrication.12  The process is comprised of two sequential coupled procedures: (1) Fluid and (2) Light 
shaping.  As a first step, we shape the fluid cross section using fluid inertia in microchannels with “obstacles”.  Although 
fluid inertia is ignored in conventional microfluidics,13 non-negligible inertia can be of great use to change the flow cross 
sectional profile.  With moderate inertia, the interaction between fluid and obstacles creates net lateral secondary flows, 
altering the cross sectional shape of multiple fluid streams.  The flow is then quickly stopped (<1 sec), and patterned UV 
light is exposed to initiate a polymerization process (<1 sec) where UV light only polymerizes a photosensitive stream(s).  
The process can be considered as a polymerization of an intersection of two extruded bodies: horizontally shaped fluids by 
inertia and vertically patterned UV light.  In this talk, I will present detailed numerical and experimental understandings of 
the interactions between fluid inertia and local obstacles in fluidic channels, and 3D shaped particle generation.   
 

QUANTITIATVE SINGLE-CELL BIOLOGY: NEXT GENERATION DEFORMABILITY CYTOMETRY 

 
   Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state 
identifiers.14  Stiffness changes in red blood cells and stem cells are well known examples indicating cytoskeleton disorders15, 

16 and pluripotency,17  respectively.  This stiffness based cell state correlation also can be found in cancers,18, 19 and cells 
possess different mechanical property upon their progression.  Various recent studies20-22 reported that a change in cell 
stiffness is shown between invasive and healthy cells where they can be distinguished.  All of these facts suggest that the 
ability to measure cell stiffness is an extremely useful task for numerous applications, but the challenge is how to quantify a 
large number of cells precisely and rapidly.  Due to the cellular heterogeneity, cells exhibit a distribution of responses in a 
probabilistic manner;23 thus it is important to measure many individual cell behaviors rather than relying on the stochastic 
average masked by bulk measurements.24  General approaches for measuring single-cell stiffness25 are limited because of 
low throughput, non-bio-friendly measuring environments, and/or costly and time consuming labeling processes.  
   In this talk, I will present a development of a high-throughput and label-free inertial microsystem examining single-cell 
mechanical properties.  Fluid inertia aligns cells into a single-cell train26, 27 and guides them to collide with the channel wall 
at a T-junction where they can be stretched where we aim to establish a novel, simple, robust and high-throughput microfluidic 
cell stretcher for quantitative single-cell biology.  I will discuss the details of cell positioning, ordering and manipulation 
strategies via localized microstructure induced secondary flows and a new image analysis algorithm for real-time data 
processing which may aid in next-generation deformability cytometry. 
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Summary Single cell analysis enables the study of cellular activity and parameters at an individual, rather than population-average basis. This is 

made possible by retaining cells so that temporal data can be accessed. In contrast to previous capture approaches utilising mechanical traps, we 

present an ultrasonic method to capture and release spatially separated cells on demand, with potential for population screening and analysis. The 

transition from manipulation of particles in groups, which is routinely performed using ultrasound, to individuals requires the reduction of 

ultrasonic wavelength, but it also introduces a unique physical situation. This arises from the two key forces present: the acoustic radiation force 

and Bjerknes forces. The former collects particles at defined locations within the sound field, whereas the latter acts to coagulate particles. For 

collection of individual particles the former is beneficial, the later a hindrance; we show that over a defined range of parameters single particle 

and cell capture is possible.  
 

INTRODUCTION 
 

   Single-cell analysis permits the interrogation of individual cells and their response to their local environment [1]. Due to 

heterogeneous cellular parameters, the examination of individual cells has the potential to offer a far more detailed picture of 

cellular response than the standard practice of analyzing the population as a whole. Further, the large-scale trapping of a cell 

population (100s-1000s of cells) permits this activity on an en-masse basis [2]. This study examines the use of acoustic force 

fields as a method of trapping grids of individual cells [3]. With the ability to rapidly activate the force field, this approach 

enables a method to flash the force potential so that a population can be rapidly screened, and cells of interest (for example, 

cells infected by a parasite) then held for more detailed examination. Whilst acoustic waves have been widely used for 

handling and trapping suspended cells [4, 5], this is the first study of trapping cells individually.  

 
Figure 1. The two dimensional acoustic field is characterized by the ratio of wavelength to particle size. Looking at a 

1D depiction, at large ratios multiple particles can cohabit a single potential minimum – the nodes of the standing pressure 
wave (left). Once the ratio falls below approximately 4 there is only enough physical space for a single particle (right) [3]. 

 

Previous work has shown the collection of cells in clumps by a 2D force field [6]. In order to transition from trapping 

clumps of cells at each acoustic radiation force potential minima to trapping of individual cells, the minima dimensions must 

be reduced (Figure 1). However, the underlying physics is more complex than simply a reduction in scaling. The sound field 

generates acoustic radiation forces on the particles which act to collect them in patterns dictated by the shape of the sound 

field. In addition Bjerknes forces are excited; these forces arise due particle-particle interactions and are attractive in nature. 

In contrast to previous acoustic cell manipulation studies in which patterns of cell clusters are formed, to pattern individual 

cells, the clustering effect of the Bjerknes force works against the patterning effect of the acoustic radiation forces.  

 

METHODOLOGY 

    
Figure 2. The one-cell-per-well device comprises a PDMS defined microfluidic chamber bonded onto a lithium niobate 
wafer on which two pairs of orthogonal IDTs are patterned (left). The result of actuating the four IDTs is a 2D pressure 

field in the fluid chamber, which leads to an acoustic radiation force potential field (right) capable of patterning cells [3]. 
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To achieve individual cell handling, we have designed a system which excites two orthogonal standing surface acoustic 

waves by excitation of four interdigital transducers (IDTs) patterned on a lithium niobate substrate (Figure 2). These waves 

couple into the fluid body defined by a PDMS chamber bonded onto the substrate, it is these coupled waves which define the 

sound field which patterns the particles.  

 
RESULTS AND DISCUSSION 

 
   We have examined this unique physical situation, and found that a very specific range of frequency over diameter ratios 

is required in order to trap the cells individually. At a frequency which is too low, multiple particles fit in one well, and at a 

frequency which is too high, the cells do not conform to the pattern dictated by the acoustic radiation force field (Figure 3).  

  

  
 

Figure 3. There is a limited range of λ/D in which single particles can be collected. Above approximately 4 there is space 
for more than one particle in each minimum. Within a specific range particles can be collected into a grid as shown for 6.1 
µm particles (left, upper). At further reduced values of λ/D the particles form clumps across the force potential minima (left, 

lower). The optimum collection wavelength has been found experimentally for a range of particle sizes (right). It is 
observed that there is a linear relationship between wavelength and particle diameter [3]. 

 

Finally trapping of red blood cells in a flashing potential, has allowed cells to be screened by holding them statically against 

a fluid flow for visual inspection (Figure 4).   

 

     
 

Figure 4.  Red blood cells flowing (from the opening at the bottom right to that at bottom left) through the square chamber 
(left) can be captured by momentary excitation of the acoustic field (right) such that screening can take place [3]. 

 

CONCLUSIONS 
 

   This first study into acoustic single cell analysis shows the potential for using surface acoustic wave fields to trap and investigate 

multiple individually trapped cells, and highlights the intriguing underlying physics comprising the interplay between two 

acoustically generated forces. 
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Summary Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations 
this single probe technique is unable to detect forces with femtonewton resolution. We present the development of a combined atomic force 
microscopy and optical tweezers (AFM/OT) instrument. The optical tweezers system provides us the ability to manipulate small dielectric 
objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate 
the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies.  
The presented study is aimed to quantify the interaction forces between two single polystyrene particles in the femtonewton scale by using the 
developed AFM/OT equipment. 
 

INTRODUCTION 
 

Materials containing suspended microparticles or nanoparticles are used extensively in fields of research and in the industry. 
In order to understand their behaviour in the liquid, the knowledge of stability and mobility of particles in the liquid is 
fundamental. In all applications it is vital to maintain single particles well dispersed and to avoid the formation of 
aggregates. For this reason, it is necessary to know the nanoscale fluid-solid interaction and the hydrodynamic properties of 
the particles. The equilibrium state and the hydrodynamic properties of many colloid's system in aqueous medium is 
affected by several environmental parameters. The addition of salt influences the stability of colloids. An explanation for 
this fact was given by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, studying the surface charges at interfaces 
and the factors that affect the electrostatic double-layer forces [1]. This theory assumed that the interaction between two 
particles is due to the sum of the electrostatic double-layer repulsion and the van der Waals attraction. At low salt 
concentration, the double-layer repulsion is strong enough and the single particles are stable, but with increasing ionic 
strength the electrostatic repulsion is masked. If the saline concentration is high enough the colloid system will be unstable 
because the van der Waals attraction will be higher than the repulsive electrostatic barrier. 
Atomic force microscopy (AFM) was developed for nanoscale imaging purposes, where a topographical reconstruction is 
obtained by scanning the sample surface using a tip fixed on a flexible cantilever [2]. AFM is not only a useful tool to 
visualize micro and nanomaterials with high resolution but it can also be used to quantify force in the nanonewtonscale (10 -9 
N). Optical tweezers were first realized by Arthur Ashkin in 1970. He was the first to observe and study light scattering on 
microparticles and the resulting gradient force. This is a technique with which it is possible to trap and manipulate 
nanometer and micrometer-sized material using a highly focused laser beam. Optical tweezers is a very sensitive technique 
used to manipulate objects with nanometer displacements and to measure forces with femtonewton (10-15 N) accuracy [3]. 
 

EXPERIMENT 

 

The combination of atomic force microscopy and 
optical tweezers (AFM/OT) in one single piece of 
equipment (Figure 1)      give us the ability to obtain 
images, to manipulate and quantify the motion and 
the forces directly in the same sample [4].                                      
This research used an atomic force microscopy 
combined with optical tweezers system (AFM/OT) to 
measure the effect of ionic strength on the 
femtonewton scale interaction force between single 
polystyrene particles at different separation 
distances. Here, we describe forces involved in single 
polystyrene colloid stability according with the 
DLVO theory. At the beginning, AFM/OT system 
was used to isolate a 1.0 μm polystyrene particle into 
a microfluidic well using the dragging force of the 
trapping laser. Subsequently, a custom-made AFM 
colloidal probe cantilever in which a single 
fluorescent 5.5 μm particle was glued to the end of a 
tip-less AFM. It was used to quantify the interaction force between two polystyrene single particles The experiments were 

Figure 1. A sketch showing the scheme of atomic force microscopy and 

optical tweezers (AFM/OT) setup. 
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carried out by approaching the trapped particle with the AFM particle probe at a constant velocity (200 nm/s) in pure water 
and recording the optical tweezers output signals with a resolution of ±100 fN. The same experiment was repeated in 10 -5 M 
and 10-3 M KCl solutions in that order. 
 

RESULTS 
 

The obtained data (Figure 2) confirm that the behaviour of colloidal systems observed experimentally agrees with the 
theoretical predictions. In pure water, long range attraction is clearly measured, instead small short range repulsions that are 
still not strong enough to overcome the attractive component in the analysed range. A completely different behaviour is 
observed in presence of KCl, where no final attractive forces act in the analysed range, while repulsive forces that grow 
exponentially with decreasing particle-particle distance are visible. In all the studied systems, no interaction forces between 
the polystyrene particles could be observed at distances exceeding 450 nm.  

 
  

Figure 2. Force as a function of the relative distance between a single pair of polystyrene particles. The interaction force curves 

measured on approach between the polystyrene sphere attached to the AFM probe and the trapped sphere were collected varying KCl 

concentration: 10-3 M (blue circles; A), 10-5 M (red squares; B) and pure water (green triangles; C) at pH 7. The continuous lines 

correspond to the best fit in the particle-particle interaction range.  

 
CONCLUSIONS 

 

The hybrid AFM/OT allows quantifying the forces involved in the colloid stability with femtonewton resolution tacking in 
account only forces relative to the two analysed particles. The experiment performed using the developed instrument allows 
miming the natural colloidal system condition in which the studied single particle is completely bordered by the liquid through 
the use of the optical trap, giving us a more reliable result than similar experiment performed with AFM only. The used 
configuration can quantify the forces of interaction between single particles with good reproducibility. 
The obtained experimental results confirm the applicability of our combined system to study single particle interaction forces. It 
is shown that the polystyrene particle colloid systems are more stable in a 10-3 M KCl solution, than a 10-5 M KCl solution and 
that is, in turn, more stable than the same system in water. The change of attractive and repulsive forces at various ionic strengths 
due to the modification of double layer structure affect the stability and the hydrodynamic properties of colloid systems. 
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Summary Almost all drugs recently developed in animal models to treat inflammatory disease have failed in clinical trials. There 
is therefore a significant need for rapid screening of anti-inflammatory drugs before they are tested for safety, efficacy and 
toxicity in expensive and time consuming large animal models and eventually human trials. We have developed and validated a 
novel biomimetic microfluidic assay (bMFA) that reproduces the entire leukocyte adhesion cascade in a physiologically realistic 
three-dimensional environment using human cells and allows for rapid screening of potential therapeutics. Protein Kinase C-
delta (PKCδ TAT) inhibitor represents a new class of anti-inflammatory drug and we have used bMFA to show the potentially 
therapeutic effects of this novel drug on human neutrophil-endothelial interactions. 

INTRODUCTION 

Inflammation is a physiological response of the body to protect tissues from infection, injury, or disease.  The 
inflammatory response starts a signaling cascade at the affected areas, followed by the production and release of chemical 
agents such as chemokines, cytokines and other inflammatory mediators. The evolving signals then recruit leukocytes to the 
inflammation site activating an acute inflammation process during three major stages at or near the affected site which 
include dilation of capillaries to increase blood flow, microvascular structural changes and increased endothelial 
permeability, and leukocyte transmigration through the endothelium and accumulation. Leukocyte transmigration and 
accumulation, depends on a multi-step process called the Leukocyte Adhesion Cascade, which includes 5 discrete steps: 
capture/attachment, rolling, firm arrest, spreading, and extravasation and migration. Recruitment of neutrophils to the site of 
injury or inflammation is an early key step in this process and neutrophil migration across the endothelium plays a key role 
in pathogenesis of lung injury in diseases such as sepsis [1]. 

Regulating leukocyte recruitment has been shown to reduce symptoms of inflammation in clinical studies [2] and 
identification of key molecules involved in the leukocyte adhesion cascade will allow for the development of novel 
therapeutics. However, while in vivo studies of mechanisms of inflammatory disease have mostly relied on murine models, 
in vitro studies of the inflammatory pathway have mostly relied on simplistic two-dimensional human cell culture models. 
A meta-analysis of a large number of studies found little overlap in gene activity between mouse models of inflammation 
and its clinical manifestations [3] which led The New York Times then to suggest that much time and money has been 
wasted studying mouse models of inflammation [4]. Of particular concern is that the reductions in mortality from sepsis has 
been primarily due to supportive care rather than effective medicines where, for example, all of the ~150 drugs recently 
developed in animal models to treat sepsis have failed in clinical trials [5]. Currently there are no specific pharmacologic 
therapies available that protect from neutrophil-mediated tissue damage and there is an increased preclinical effort to 
identify novel targets and develop new therapeutic paradigms. 

To address some of these challenges, we have developed and validated a novel biomimetic microfluidic assay 
(bMFA) that reproduces the entire leukocyte adhesion cascade in a physiologically realistic three-dimensional environment, 
encompassing circulation, rolling, adhesion and migration of leukocytes [6-8]. In developing this technology we are 
specifically responding to the call by the scientific community for “translational 
medical research to focus on the more complex human conditions rather than relying 
on mouse models to study human inflammatory diseases” by developing a realistic 
fluidic model for “in vitro reconstitution of disease-related cell types or tissues” [3]. 

We have introduced a novel therapeutic paradigm which targets PKCδ and 
neutrophil-endothelial interactions and in an animal model have shown it to protect 
vascular endothelial integrity and attenuate sepsis-induced tissue damage [1, 9]. In 
this study, we investigated the mechanism of PKCδ inhibition on the interaction of 
human umbilical vein endothelial cells (HUVECs) and human neutrophils during the 
inflammatory response. 

Novel Biomimetic Microfluidic Assay (bMFA)  
Our modified Geographic Information System (GIS) approach was used to digitize 
the microvascular networks and generate the synthetic microvascular networks on 
Polydimethylsiloxane (PDMS) by soft lithographically (Figure 1). The device 

Figure 1: Schematic of the bMFA (A) 
and its scanning electron microscopic 
image showing the different 
compartments (B). 
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Figure 4: PKC  inhibition significantly 
reduces adhesion of neutrophils to the 
endothelium in low shear regions and 
near bifurcations in bMFA in the 
presence of fMLP. 

Figure 5: PKC  inhibition significantly 
reduces migration of neutrophils from the 
vascular channels, across the activated 
endothelium, into the tissue compartment. 

consists of a vascular compartment and connected to a tissue compartment 
connected by 3 µm gaps, the most common and optimum size for studying 
leukocyte migration. Similar to the in vivo vascular networks, the device has 
channels ranging from 15-100 µm. Confluent culture of human umbilical 
vein endothelial cells (HUVEC) in bMFA shows an elongated morphology in 
the direction of the flow and form a 3D culture as shown in confocal 
microscopic images (Figure 2). We have shown that the pattern of neutrophil 
adhesion to primary endothelial cells in bMFA is similar to that of leukocyte 
adhesion to the vessels in networks of the mouse cremaster muscle in vivo 
(Figure 3). 

Using bMFA to Screen a Potentially Novel Therapeutic 
We have introduced a novel therapeutic paradigm which targets PKCδ and 
neutrophil-endothelial interactions to protect vascular endothelial integrity and 
attenuate sepsis-induced tissue damage [1, 9]. We have now used bMFA to 
characterize the effect of a PKCδ TAT peptide inhibitor on human neutrophil-
endothelial interaction. As shown in Figure 4, PKCδ inhibition significantly 
decreases adhesion of human neutrophils to the TNF-α activated human 
endothelium in the presence of chemoattractant fMLP but only in channels with 
low shear rate flow (γ <30 1/sec) and at bifurcations. Please note that these latter 
observations regarding the spatial distribution of adhesion patterns within the 
vascular network cannot be easily made in other microfluidic devices. Migration 
of human neutrophils across TNF-α activated endothelial cells in response to 
fMLP also decreases significantly after inhibition of PKCδ (Figure 5). 

CONCLUSIONS 

Our novel biomimetic microfluidic assay (bMFA) provides an effective tool for 
rapid screening of promising anti-inflammatory therapeutics in a physiologically 
and functionally realistic in vitro environment and provides early indications of 
their potential success in clinical applications. We have used clinically relevant 
human cells to show that PKCδ TAT peptide is an effective therapy for reducing 
neutrophil-endothelial interaction during inflammation. 
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Figure 2: Endothelial cells in bMFA elongate 
in the direction of shear flow (A) and form a 
3D culture (B). 

Figure 3: Distributions of both number 
of adhered leukocytes (in vivo, black 
bars) and neutrophils (in vitro, grey 
bars) as a function of distance from the 
nearest bifurcation indicate that 
leukocytes/neutrophils preferentially 
adhere near bifurcations. 
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Summary This article focuses on the growth, transition, coalescence and jumping of the condensation microdroplets (< 10 µm) 
on the superhydrophobic substrates with two-tier roughness. We report a spontaneous dewetting transition of condensed 
droplets occurring on pillared surfaces with micro/nanoscale roughness, from the valleys to the tops of the pillars, owing to 
the nanotexture enhanced superhydrophobicity. Three novel wetting transition modes are observed. It is found that a further 
decreased Laplace pressure on the top side of the individual droplets accounts for such a surprising transition and self-removal 
of condensed water. Our results also show that decrease the size and the space of the micro pillars is a good strategy to realize 
spontaneous dewetting and droplet jumping. 
 

    

  Condensation of water vapor is an everyday phenomenon which plays an important role in power generation, thermal 
management, chemical processing and water harvesting. The dropwise condensation has been shown to achieve heat and mass 
transfer coefficients over an order of magnitude higher than its filmwise counterpart.1 Recently, there has been significant 
interest in developing superhydrophobic surfaces for promoting dropwise condensation.2 Such surfaces benefit greatly from 
the combination of nano-/microstructures and the inherent hydrophobicity of their chemistry, which allows attaining extreme 
non-wetting properties with vapor trapped underneath (Cassie state) and coalescence-induced self-propelled dropwise 
condensation.3 Most of the previous studies4 have applied ESEM technique to visualize growth and merging of condensed 
droplets, however, low time resolution of ESEM has limited the investigation on the dynamics of growth and coalescence-
induced jumping on such surfaces. The details and mechanisms of the growth and coalescence of microdroplets on micro/nano 
structured surfaces under natural condensation situation are still limited to date. This article focuses on growth, transition, 
coalescence and jumping of microdroplets (< 10 µm) on superhydrophobic substrates with two-tier (micro and nano) 
roughness. A moist ambient environment are employed, which allowing a systematical study of growth processes, wetting 
transitions, as well as jumping behaviors of microdroplets under optical microscopy. 

Silicon wafer substrate with square-shaped micropillars (Fig.1) with side length L and spacing S of the neighbors, are 
employed. The height H of the micropillars in this work is fixed at 5 µm. The key feature is that the surface of the micropillars 
and the bottom of the substrate are treated with the coating agent,  in which hydrophobic nanoparticles  are contained to 
guarantee excellent superhydrophobicity, i.e., even on flat one-tier nanotextured surfaces , the apparent contact angle and 
hysteresis are found to be θ = 159.2°±1.5° and Δθ = 10.2°±2.1°, respectively. There are four types of samples investigated 
with L = 2 µm, 3 µm, 4 µm, and 8.4 µm, respectively, and S = 3 µm, 4.5 µm, 6.5 µm, and 13 µm, respectively. For a 5 µL 
droplet dropped under an ambient environment, all of them demonstrate high apparent contact angles (> 160°) and low 
hysteresis (< 10°). 

 

 
Fig.1 Topology of the two-tier nano-/microstructured surface (L = 3 μm, S = 4.5 μm, H = 5 μm) and its roughness 
characterized by SEM in micro (A) and nanoscale (B), (C), respectively. (C) and (D) are measured on flat surfaces. (D) is 
characterized by AFM, the roughness at the nanoscale is Ra = 24.5 nm, which corresponds to a 1 µm × 1 µm area.  

 
   All the experiments are performed using an optical microscopy technique under a moist ambient environment allowing 
for focusing on the in situ dynamic characteristics of the condensed droplets, thereby overcomes the limitations of the previous 
commonly used environmental scanning electron microscopy (ESEM) technique, such as slow imaging times, narrow ranges 
of operation pressures and temperatures, as well as beam heating effects. All of the samples are placed horizontally on a peltier 
cooling stage, which is fixed on the slider of an optical microscope with a high resolution of 0.2 μm. The laboratory 
temperature is measured at 29°C with a relative humidity of 40%. During the running of the cooling system, the temperature 
of the sample is well maintained at 10° ± 1°C. Top-down imaging of the processes is captured using a CCD camera installed 
on the microscope. 
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   We report a spontaneous dewetting of condensed microdroplets on superhydrophobic substrates owing to excellent 
superhydrophobicity at the nanoscale and the geometrical topologies at the microscle. Moreover, three dewetting modes are 
observed(Fig.2). Mode I: Wetting transition of an individual droplet. Mode II: Wetting transition triggered by a coalescence 
of two neighbor droplets. Mode III: Wetting transition triggered by coalescence of a flying droplet. We not only develop a 
theoretical expression which can be utilized to predict the Laplace pressure of the droplet with no fitting parameters, but also 
construct an explicit model which links the critical size of the droplet, and the spacing and height of the micropillars. Our 
experimental and theoretical results indicate that further decreased value of Laplace pressure on the top side of the individual 
droplet leads to instability, and subsequently a surprising spontaneous dewetting without any external force. We further reveal 
that the spacing of the micropillars is essential for determining the critical size of the droplet for dewetting. We have to 
emphasize that the contact angle hysteresis of the material/structure systems plays an essential role accounting for the motion 
of the droplets, only if it is further suppressed and overcome, the spontaneous dewetting can be realized effectively. We also 
display the statistical results between the number of dewetting transitions and transition modes, as well as the influence of the 
spacing of the micropillars. From Fig.3 it is clear that the wetting transition is dominant for the microstructures with the 
smallest value of space (S = 3 µm). On the contrary, the transition phenomenon is weakest for the microstructures with the 
largest value of space (S = 13 µm in Mode I and Mode II). For Mode I, the number of transitions decreases monotonously 
with S, and our findings suggest that decreasing the space of the micropillars constitutes a favorable strategy to decrease the 
critical size of the droplet for transitions. 
  

   
Fig. 2 Three wetting transition models of the microdroplets        Fig. 3 (a) Number of transitions vs transition models; 

on the superhydrophobic substrates with two-tier roughness           (b) Number of jumping events vs number of merging droplets. 
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Summary Inkjet printing technology has shown significant potential for the versatile and low-cost fabrication of micro-scale functional 
patterns that span applications from microelectronics to bio-engineering. Although theoretical and experimental investigations addressing 
the stability criteria and morphological evolution of rivulets have been discussed in literature, the transport phenomena within rivulets of 
dispersions or solutions have received little attention. Comprehensive study of transport in drops has firmly established the first-order role 
of transport process in determining the final deposition structure and functionality. This study focuses on the significantly more complex 
hierarchical structure in printing, the rivulet, and the corresponding role of transport on its final deposition structure and functionality. We 
elucidate the roles of capillary pressure and evaporation on the transport process in rivulets, the influence of liquid ink-substrate interaction 
and the relationship between transport and final deposition morphology. 
 

LIQUID RIVULET FORMATION AND CAPILLARY PRESSURE DRIVEN FLOW  
 
   The inkjet printing of liquid rivulets was performed by a customized 
single nozzle inkjet printer coupled with three orthogonal µ-cameras enabling 
the visualization of the rivulet formation process and micro-scale flows inside 
rivulet. A typical size of the impinging droplet is about 50µm in diameter, and 
the width of the formed rivulet is about 100µm, depending on the advancing 
contact angle (θA) of the liquid ink on the surface of substrate. The receding 
contact angle is controlled at 0o, which is the prerequisite for the formation of 
hydrodynamically stable rivulet1 and leads to the pinning of the contact line 
when the liquid starts to retract due to evaporation. 
   The printed liquid rivulet is characterized by the formation of a primary 
bulge at the initial drop landing position and linear ridge region as the leading 
edge of the rivulet moves forward due to continuous droplet overlapping (Fig.  
1(a)). The formation of the primary bulge is due to the strong capillary 
pressure driven wetting process and contact angle hysteresis, according to 
Thompson.2 Furthermore, the spatial gradient in the rivulet geometry (low 
curvature at the primary bulge and high curvature at the leading edge of the 
rivulet) leads to a capillary pressure gradient driven “axial flow” which pumps 
the liquid from the leading edge to the primary bulge continuously, as shown 
in Fig. 1(b) (the grey arrow represents the direction of the axial flow). The 
capillary pressure driven flow can be qualitatively represented by Eq. 1 as 
follows: 

∆𝑝𝑝 = 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏~𝛾𝛾 �
𝜃𝜃𝑑𝑑
𝑟𝑟𝑑𝑑
−
𝜃𝜃𝐴𝐴
𝑟𝑟𝑒𝑒
� > 0              (1) 

   Presumably, this capillary pressure driven transport process would be 
critical for the final deposition morphology and functionality if we are dealing 
with the patterning of functional materials via inkjet, and an elucidation of the 
transport in this microfluidic system would undoubtedly facilitate a fine 
control over this dynamic process and help with the structural optimization of 
the deposited materials in real-world manufacturing. Our microfluidic 
imaging measurement technique via tracking and decoding the motion of 
fluorescent particles seeded in the liquid rivulet serves as a powerful tool for 
the elaboration of the flow profile in the micro-scale liquid rivulet structure 
(Fig. 2(a)). Coupled with the new high-speed imaging technique, we are able 
to capture the µ-second time scale post-impact dynamics and strong surface 
tension driven liquid wetting and distribution, as well as the morphological 
evolution of the rivulet structure (Fig. 2(b)). More importantly, seeking a 
connection between the micro-flow profile and the morphological evolution 
of the rivulet provides information facilitating a fundamental understanding 
of the capillary pressure driven transport associated with the rivulet. Through 
these advanced characterization techniques, we clearly verified the existence 
of a pulsatile flow profile which is associated with the periodic impacts of the incoming droplets (inserted figure of Fig. 2(a) 
and Fig. 2(b)) for the first time. The frequency of pulsatile motion was characterized and matched with inkjet frequency. 

Figure 1. (a) Schematic representation of the 
liquid rivulet formation process via inkjet; 
(b) Leading edge of the rivulet depicting the 
surface tension driven wetting and liquid 
structure evolution. 

Figure 2. (a) The bottom-view fluorescent 
micrograph of the capillary pressure driven 
flow with particle motion; (b) The side-view 
optical micrograph of the droplet impact and 
rivulet formation process captured by high-
speed imaging system. 

 

a) Corresponding author. Email: singler@binghamton.edu. 
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Furthermore, the pulsation amplitude was also evaluated, and its relationship with the viscous dissipation of momentum (flow 
relaxation) has been drawn. The capillary pressure gradient existed in the liquid rivulet due to the geometric variation along 
the line axis, together with the momentum transfer due to droplet impact, leads to a strong capillary flow and axial distribution 
of the deposited materials. Further experiments will be performed for a quantitative characterization of the flow profiles along 
the line axis of the rivulet, which would provide information for a complete disclosure of the role of this capillary pressure 
driven transport process in material deposition and final functionality. 
 

CONVECTIVE FLOW AND CONTROLLABLE PARTICLE SELF-ASSEMBLY AT THE CONTACT LINE  
 
   Besides the capillary pressure gradient driven flow in 
the line axial direction, we are also able to characterize the 
transverse convective flow existing in the printed rivulet, 
which is due to the enhanced evaporation at the contact line 
and usually leads to the so-called “coffee-stain” deposition 
profile. A fundamental investigation of the evaporatively 
driven convective flow would help to explain, and more 
importantly, mitigate the non-uniform material deposition 
and lead to an optimized functionality of the final product. 
Interestingly, one of our research projects focuses on rather 
mitigating, but taking advantage of such a seemly “harmful” 
transport process, and utilizes this convective flow for the 
generation of material deposition patterns which are 10 to 
100 times smaller than the designed resolution of inkjet 
printing. The formation of the highly resolved “twin-line” 
patterns is due to the convectively driven particle self-
assembly at the contact line (Fig. 3(a), left). Through a 
systematic control over the substrate surface energy, we 
produced high resolution patterns in a controllable manner 
(Fig. 3(a), middle and right). Water contact angle and 
pattern geometric characterization revealed reasonably 
good controllability over surface wetting property, 
quantitative matching between produced pattern width with 
theoretical prediction, and more interestingly, dependence 
of particle array width on liquid rivulet morphology (Fig. 
3(b)), which haven’t been explored previously. A numerical model for predicting the “twin-line” growth process was 
constructed, and a connection with the convective flow profile was sought, which captures the evaporation induced convective 
flow in inkjet printed rivulet and its relationship with the material transport and final deposition structure for the first time. 
This strategy also enables a fundamental understanding of the dynamic wetting process of sequentially overlapped droplets 
for rivulet formation and the transport in systems with varied morphologies (depending on the wetting behaviour). 
 

CONCLUSIONS 
 

   The capillary pressure gradient and evaporation induced flows in inkjet printed linear liquid rivulet have been investigated. 
Through tracking the fluorescent particles seeded in the liquid ink, the axial flow profiles with pulsatile feature were captured for 
the first time. The pulsatile characteristic of the flow inside the rivulet is due to the periodic impact of the droplets landing at the 
rivulet leading edge, which is coupled with the geometric variation of the rivulet and results in a strong capillary driven flow along 
the line axis towards the primary bulge. Furthermore, the evaporatively driven convective flow towards the contact line region was 
also visualized and characterized, and its relationship with the deposition morphology of the materials (nanoparticles) was drawn 
via a systematic control over the liquid ink wetting behaviour on the substrate surface. These two types of flows, both existing in 
the inkjet printed rivulet, have been proven to exert a significant influence on the final structure of deposited materials. 
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Figure 3. (a) Schematic of the particle suspension ink printing 
process and particle self-assembly at the contact line due to 
transverse convective flow (left), Engineered substrate surface 
with controllable wetting property (θA) and varied particle array 
formation processes (middle), high resolution “twin-line” 
formed on surfaces with varied wetting properties (right); (b) 
Measurement results of the “twin-line” width and separation 
distance with varied wetting property as indicated. 
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Summary We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid
jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. Such liquid jet flow configurations require a
high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-
phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads on the IBM BlueGene/Q machine with excellent
scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines
the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account
and solved via an exact time-integration method that ensures numerical accuracy and stability.

INTRODUTION

Two-phase jet flows occur in a large variety of industrial configurations and also for artistic designs such as public foun-
tains. Some jet flow configurations encompass complex hydrodynamic behaviour in many spatial scales such as the formation
of primary and secondary interfacial instabilities, thin sheets, liquid rims, stretching ligaments and droplet atomization. Mar-
mottant and Villermaux[1] highlight the process of spray formation of a liquid jet flow surrounded by a faster coaxial air flow
(see fig.1-(a)). Kubitschek and Weidman [2, 3] studied a viscous liquid jet subjected to a global rotational motion for which
the liquid jet shows, in the beginning, a clear preference for helical instabilities (see fig.1-(c)). The simulation of such jet flow
configurations is very challenging since it requires particular numerical techniques able to handle large interface deformations
and breakup phenomena and also the necessity of high spatial resolution for hydrodynamic motion occurring across many
spatial scales.

Figure 1: (a) Jet flow snapshots from Marmottant and Villermaux[1] corresponding, from top to bottom, to 0.5m/s liquid
jet surrounded by 15m/s air flow and 0.6m/s liquid jet surrounded by 35m/s air flow respectively. (b) Snapshot of three-
dimensional simulation of 0.5m/s liquid jet surrounded by 15m/s air flow. (c) Snapshots of rotating jet flow from Kubitschek
and Weidman [2, 3] at different angular velocity. (d) Snapshots of three-dimensional simulation of 4m/s liquid jet subjected
to a global rotation of 400rad/s.

In figure1-(a) we show two examples of jet flows studied by Marmottant and Villermaux[1] for which we use the same
physical and flow parameters in order to simulate numerically the complex process of spray formation (see Figure1-(b)). The
jet flow configuration consists of a liquid jet exiting a nozzle, with inner diameter D = 7.8mm, and surrounded by a faster
coaxial gas flow with an annulus gap width of h = 1.7mm. This simulation requires a very high resolution thus we decompose
the entire domain into 8× 8× 32 = 2048 subdomains and use 2048 cores with 32× 32× 32 as the resolution per subdomain.
The global resolution is 256×256×1024. In figure1-(c) we show several jet flow shapes studied by Kubitschek and Weidman
[2, 3] for different angular velocities of the nozzle. We also use similar physical properties with higher resolution than the
previous example. We decompose the entire domain into 16×16×32 = 8192 subdomains and use 8192 cores with 64×64×32
as the resolution per subdomain. The global resolution is thus 512 × 512 × 2048. Centrifugal and Coriolis forces are taken
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into account and treated via an exact time-integration method that ensures numerical accuracy and stability. The governing
equations for transport of an incompressible two-phase flow are expressed by a single field formulation:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + ρg +∇ · µ
(
∇u +∇uT

)
+ ρΩ× (Ω× x)− 2ρΩ× u + F (2)

The material properties such as density or viscosity are defined in the entire domain with the aid of the indicator function
I(x, t), for the density for example :

ρ(x, t) = ρ1 + (ρ2 − ρ1)I(x, t) (3)

where the subscripts 1 and 2 stand for the respective phases. The fluid variables u and P are calculated by means of a projection
method. A second order Gear scheme is used for time integration. Either explicit or implicit time integration of the viscous
terms may be chosen depending on the problem. For the spatial discretization we use the well-known staggered mesh, MAC
method with second order ENO advection. The pressure and distance function are located at cell centers while the x, y and
z components of velocity are located at the faces. All spatial derivatives are approximated by standard second-order centred
differences. The code BLUE [4] is written in Fortran 2003 which allows the definition of a set of dynamically allocated derived
[data] types and generic procedures associated with the matrix of procedures, grids, scalar and vector fields, operators as well
as the various solvers used in the Navier-Stokes and Lagrangian Tracking modules. The parallelization of the code is based on
an algebraic domain decomposition technique where the velocity field is solved by a parallel GMRES method for the viscous
terms and the pressure by a parallel multigrid method. Communication is handled by MPI message passing procedures able
to be run on a simple laptop up to high performance supercomputers. The method for the treatment of the fluid interfaces uses
a hybrid Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by
a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture
and/or coalescence of fluid interfaces. The geometry of the nozzle is handled in the code by a module for the definition of
immersed solid objects and their interaction with the flow for both single and two-phase flows.

CONCLUSION

We demonstrate through the simulation of two examples of jet flows the capabilities of BLUE, a new high performance
parallel numerical code for the simulation of two-phase incompressible flows. The code combines high-fidelity algorithms
for Lagrangian tracking of deformable phase interfaces for a precise treatment of surface tension forces, interface advection
and mass conservation. The parallel structure allows calculation on highly refined grids of highly deforming fluid interfaces
including rupture and coalescence. BLUE is, to our knowledge the first implementation of Lagrangian tracking on massively
parallel architectures and is limited only by availability of computing resources as it has been run on up to 131072 cores on
the IBM BlueGene/Q machine at the CNRS IDRIS computing center in Orsay, France.
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INFLUENCE OF NOZZLE SHAPE ON THE BREAK-UP OF NON-NEWTONIAN INK JETS
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Summary The present work consists in an experimental study of the influence of nozzle shape onto the break-up of ink jets. Experimental
data are obtained using a Continuous Ink Jet printing device and three low-viscosity inks. Several nozzle dimensions and shapes are
investigated for different stimulation amplitudes. Droplet and satellites dynamics as well as jet break-up lengths for each fluid are compared
and discussed with the numerical nozzle velocity profiles.

INTRODUCTION

Continuous Ink Jet printing technology relies on the efficient break-up of a micrometric ink jet issuing from a nozzle at
very high speed. A periodic radius stimulation has to be applied to the fluid in order to trigger the capillary instability known
as Rayleigh-Plateau instability. In order to widden the printability range of CIJ devices, one can take advantage of non-
newtonian fluid properties like shear-thinning or viscoelasticity. The present work focuses on the influence of the nonlinear
coupling between nozzle shape and rheological properties of inks and its influence onto the break-up dynamic. The shape
of the jetting nozzle has a major influence on the velocity profile in the jet, which, in turn, influences the instability growth.
Non-newtonian fluids behavior also involves modifications on the velocity profile and its relaxation when the jet leaves the
nozzle. These statements motivated the present work and the understanding of interactions between nozzle shape and complex
rheological properties.

EXPERIMENTAL SETUP

The experimental setup used for this study is shown on figure (1). The jet is stimulated by a piezoelectric actuator at a
constant frequency of several kiloHertz. The stimulation frequency and pressure gradient are chosen in order to guarantee a
wave number close to the optimal wave number calculated by Rayleigh [1]. A JetXpert R© camera and a strobe light synchro-
nized with the jet stimulation are used to observe jet and droplets. This setup is similar to the Rayleigh-Ohnesorgue Jetting
Extensionnal Rheometer (ROJER) presented in [2] for the characterisation of elongationnal properties of weakly viscoelastic
solutions.

Figure 1: Experimental setup for ink jet break-up observation

Five micrometric home-designed nozzles with various shapes but a constant outlet diameter are compared. Tested fluids
are low viscosity inks made of polymeric chains of various length and flexibility. The apporpriate choice of polymer made
it possible to obtain three inks of comparable density, zero shear viscosity, and surface tension which display three distinct
behavior : a newtonian behavior, a shear thinning behavior, and a viscoelastic behavior. Hence, a complete characterisation
of rheological properties of inks has been performed beforehand. First of all, shear thinning characterisation has been made
using a capillary rheometer (m-VROC from RheoSense) to obtain the dynamic viscosity at high shear rates (∼ 5 × 105 s−1)
and a rotationnal rheometer (ARG2 from TA-Instruments) to obtain the dynamic viscosity at low shear rate (∼ 100 s−1).
Furthermore, elongationnal properties of our polymer solutions were obtained using the ROJER method.
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RESULTS

For each nozzle and ink, a wide stimulation amplitude sweep is performed. Figure (2) shows an example of two sweeps
for the same ink but different nozzles. Although keeping the same jetting conditions, significant differences between data sets
are observed, which emphasises the strong influence of nozzle shape onto droplets and satellites dynamics.

Figure 2: Amplitude sweeps for the same ink passing through two different nozzles. Constant dimensionless wave number
k = 0.6.

Moreover, it is pointed out in the present work that the break-up length evolution as a function of stimulation amplitude
reveals a strong dependency on the nozzle shape and ink rheological properties. Finally, a numerical calculation of the velocity
profile in the nozzle for each case is performed for a better understanding of these links.

CONCLUSIONS

This study has been driven on a wide range of stimulation amplitude and experimental results have highlighted strong
links between the nozzle shape and rheological properties of inks. These relations rely on the shape of the velocity profile and
its relaxation into a plug flow.
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UNDERWATER SUPERHYDROPHOBICIY: FUNDAMENTALS AND APPLICATIONS 
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Summary Bioinspired superhydrophobic surfaces have attracted great interest from fundamental research to engineering applications. The 
functioning of superhydrophobicity, especially under a submerged environment, depends on a large area fraction of entrapped liquid-air 
interfaces, which, however, are subject to instabilities as induced by physical phenomena such as pressurization, air diffusion, fluid flow, and 
condensation. The wetting states strongly impact various pertinent properties and phenomena such as liquid slippage and cavitation. This work 
is dedicated to elucidating the underlying mechanisms of stability and wetting transition of underwater superhydrophobicity, introducing novel 
strategies for durable and robust design, and probing the applications in drag reduction and cavitation control. 

INTRODUCTION 
   Bioinspired superhydrophobic surfaces are enabled by an optimized combination of surface roughness and material 
chemistry [1], and have great potential for applications in self-cleaning, drag reduction, and energy conversion [2-4]. The 
key mechanism to realize superhydrophobicity is to maintain a large area fraction of liquid-air interfaces in a pinned Cassie-
Baxter (CB) state. The collapse of the meniscus leads to wetting transition to a fully wetted Wenzel state and the failure of 
superhydrophobicity, as induced by pressurization. When these surfaces are fully submerged underwater, air diffusion from 
entrapped air cavities into bulk water may also gradually result in wetting transition, which is further deteriorated under 
fluid flow conditions. Moreover, microdroplet condensation within air cavities after long-time contact with water could also 
lead to wetting transition. Understanding the wetting transition dynamics is essential for the design and regulation of CB-
based superhydrophobicity for its functionality. On the other hand, preexisting air cavities on structured hydrophobic 
surfaces may act as cavitation nuclei, which greatly reduce the cavitation threshold and preferentially initiate cavitation.  
   In this work, we elucidate the stability and wetting transition of superhydrophobic surfaces submerged underwater as 
influenced by pressure, air diffusion, fluid flow, and condensation, propose strategies for robust design, and investigate the 
application of these surfaces in liquid slippage and cavitation control.  

STABILITY OF UNDERWATER SUPERHYDROPHOBICITY 
   Under a submerged environment, the entrapped air cavities on structured hydrophobic surfaces are isolated from the 
ambient, or in a closed state. The equilibrium of closed air cavities is established only if both mechanical and chemical ones 
are achieved. The mechanical equilibrium is governed by the balance of the liquid, the entrapped air and the capillary 
pressures, while the chemical one is controlled by air exchange between the entrapped air cavities and the bulk water, which 
is accelerated by fluid flow in a convection-diffusion regime. Moreover, microdroplet condensation within microcavities is 
another physical mechanism affecting the stability of underwater superhydrophobicity. In what follows, we will examine in 
details to see how physical factors lead to the wetting transition of submerged superhydrophobic surfaces. 

Pressurization 
   Pressurization causes liquid penetration into entrapped air cavities, and the subsequent sliding of the three-phase contact 
line along the sidewalls gradually results in the failure of superhydrophobicity when the meniscus touches the pore bottom. 
However, the closed air cavities resist the liquid penetration under elevated liquid pressure due to air compressibility, 
leading to a new equilibrium state in-between the CB and Wenzel states, i.e., the depinned metastable state, which enhances 
the critical wetting transition pressure [5]. Laser scanning confocal microscopy (LSCM) was employed to investigate and 
quantify the CB-Wenzel transition and metastable states on regularly patterned surfaces submerged underwater [6]. LSCM 
is capable of dynamically resolving the liquid-air interfaces. The experiment results confirm the direct observation of the 
pinning CB and depinned metastable states, as shown in Fig. 1.  

Air diffusion and fluid flow 
The plastron supported on underwater superhydrophobic surfaces is susceptible to gas exchange with surrounding bulk 
water, especially under high liquid pressure, affecting the longevity of these surfaces. Under fluid flow conditions, a 
convection-diffusion regime accelerates the air exchange, and thus reduces the durability of underwater 
superhydrophobicity. The exchange of gas in entrapped air cavities with bulk water is controlled by a gradient of the gas 
partial pressure across a poorly-mixed region in water adjacent to the composite solid surface. This process was extensively 
quantified by LSCM under different ambient pressure conditions, and the experiment data are in good agreement with a 
diffusion-based model prediction. A similarity law along with a characteristic time scale is derived which governs the 
lifetime of the air pockets and which can be used to predict the longevity of underwater superhydrophobicity. 
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Figure 1. LSCM images of pined CB (a), depinned metastable (b), and Wenzel (c) states [6]. 

Condensation 
   Although microdroplet condensation on superhydrophobic surfaces has been extensively investigated, few researchers 
have noticed that when superhydrophobic surfaces are submerged underwater, microdroplet condensation occurring within 
entrapped air cavities after long-term contact with water can also result in wetting transition [7]. The process of 
microdroplet growth within hydrophobic textures submerged underwater was directly captured by LSCM, which eventually 
resulted in the collapse of the meniscus. The droplet growth is found to be induced by water condensation at hydrophilic 
defects. When the pore bottom was fabricated with sub-level structures, the condensed microdroplets were absent since the 
hierarchical structure enabled a sufficient self-cleaning of the pore bottom. 

LIQUID SLIPPAGE REGULATION 
   We investigate experimentally how adhesion of superhydrophobic surfaces affects liquid slip [8-9]. Surface adhesion 
was regulated by sparsely grafting responsive hydrophilic polymer chains on superhydrophobic surfaces but without 
obviously changing the contact angle. It is found that the slip length of water on such surfaces decays quickly as the 
adhesive force increases. This intrinsic dependence is theoretically explained based on scaling descriptions for specific 
geometries. A slip length range of 87 m can be achieved reversibly by changing the temperature below and above the low 
critical solution temperature (LCST) of the grafted temperature-sensitive polymer. The results shed light on the intrinsic 
mechanism of liquid slip on textured surfaces. 

CAVITATION INCEPTION UNDER REDUCED PRESSURE 
   Gas cavities entrapped on structured hydrophobic surfaces play important roles in realizing their functionalities. We 
present a complete theoretical analysis to predict cavity morphological change under reduced liquid pressure, on a 
submerged hydrophobic surface patterned with cylindrical pores [10]. Equilibrium solutions are derived for five different 
phases, namely, (I) pinned recession, (II) depinned recession, (III) Cassie-Baxter, (IV) expansion, and (V) coalescence; their 
stabilities are also analyzed. A phase map is developed outlining the different regimes with respect to the gas amount and 
liquid pressure. Importantly, phase (IV) exhibits a complex stability behaviour that leads to two possible routes to 
coalescence, which lends two different mechanisms of cavitation. Accordingly, the threshold pressure for cavitation can be 
calculated. The theoretical model is supported by direct experimental measurements via confocal microscopy and 
demonstrates good quantitative accuracy. This work provides a predictive tool for the design of functional structured 
hydrophobic surfaces 
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Summary The moving contact line problem is one of the remaining unsolved fundamental problems in fluid mechanics. At the heart of
the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum assumption breaks down, must be
bridged with a macroscopic region where the usual laws of hydrodynamics apply.

At the macroscale, we review our recent effort to show that direct matching between the inner (nanoscale) region and the outer (macroscale)
region is possible through an overlap domain, thus simplifying the analysis presented to date in the literature. Our analysis is also in
agreement with results from diffuse interface approaches.

At the nanoscale, the density profile at the contact line region is obtained using classical density-functional theory. This is used in combi-
nation with extended Navier-Stokes equations to compute advancing and receding contact lines. Our results are compared with predictions
from molecular kinetic theory.

INTRODUCTION

It is well known that applying classical hydrodynamic equations to the moving contact line problem leads to a non-
integrable stress singularity. Typically, it is concluded that the continuum assumption breaks down in the vicinity of the
contact line and that nanoscale effects relieve the singularity. The main challenge in modelling the moving contact line is
therefore twofold: First, the outer region (macroscopic) contact angle visible to the naked eye needs to be linked to the inner
region contact angle at the nanoscale by bridging several lengthscales. Second, physical effects at the nanoscale need to be
included in a self-consistent manner to predict the dynamic contact angle in the vicinity of the contact line.

In Ref. [8], we showed that the classical asymptotic analysis presented in Refs. [1, 3, 9], linking the inner region to the
outer region via a viscocapillary balance can indeed be done in a systematic asymptotic manner and without the need for an
intermediate region. Here, it is shown that our asymptotic results for the macroscopic equations are in agreement with diffuse
interface computations, which also allow us to extract an effective slip. We then compute the nanoscale behaviour in the
vicinity of the contact line by employing density-functional theory (DFT) in a dynamic setting. Our results compare well with
predictions from molecular kinetic theory (MKT).

THE VISCOCAPILLARY BALANCE

In our recent work in Ref. [8], we demonstrated that direct matching
between the inner and the outer region is possible without the need for
an intermediate region as done in the literature. Therefore, any self-
consistent model for the inner region should include the full overlap
region, where viscous and surface tension forces balance (the viscocap-
illary region). We test this statement by modelling a binary fluid of two
immiscible species using diffuse interface Navier-Stokes/Cahn-Hiliard
(NS/CH) equations. In this case, the contact line singularity is relieved
via diffusion along the substrate and along the fluid interface. The inner
region length scale is defined by the diffusion length, which is indepen-
dent from the interface thickness. For the computations presented here,
the inner region is singled out following ideas outlined in Ref. [6].
In Fig. 1, it is shown that the model captures the full viscocapillary
region. In particular, it is evident that away from the substrate, the slope
of the fluid interface increases logarithmically with the distance to the
substrate, in agreement with asymptotic results. The slip length, which
here is employed as a fitting parameter, is shown to converge to approx.
0.45 ± 0.02 times the diffusion length. Away from the substrate, it can
be shown that classical boundary conditions are retrieved at the fluid
interface, as predicted analytically in Ref. [7].
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face in [◦] as a function to the distance to the con-
tact line r (black symbols) and fit to the viscocap-
illary balance (magenta line). Inset: Slip length
λ as a function of the Cahn number Cn.
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THE NANOSCALE

A more accurate description of the nanoscale effects in the vicinity of the contact line for a single fluid of spheres with
diameter σ can be obtained by using DFT. This self-consistent statistical mechanics framework for equilibrium systems allows
to model density oscillations close to the wall due to hard-sphere packing effects, as well as long-range dispersion forces. The
density structure at the equilibrium contact line has been analysed in detail in Refs. [4, 5]. Here, we combine this equilibrium
theory with the extended NS-like equations derived in Ref. [2], and compute advancing and receding contact lines (see Fig. 2).
Computational results are compared with predictions from linear MKT theory, giving a good agreement.
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Figure 2: Dynamic DFT (DDFT) computations at the moving contact line. Left subplot: Density isolines (blue, green and red
solid lines), and velocity field in the moving frame of reference (black solid streamlines and arrows). y1 and y2 are coordinates
in direction parallel and perpendicular to the substrate, respectively. Right subplot: Contact line velocity UCL vs. force acting
at the contact line, where γlv is the liquid-vapour surface tension and θeq is the equilibrium contact angle. Coloured symbols
are results from DDFT, with initial and equilibrium contact angles given in the legend. Black solid and dashed lines are fits to
the prediction from linear MKT for receding and advancing contact lines, respectively.

CONCLUSIONS

Modelling a binary fluid contact line by NS/CH equations reveals the overlap between the inner and the viscocapillary
region at the contact line, as shown in our previous effort for macroscopic/sharp-interface modes. The NS/CH computations
also allow us to extract an effective slip length. For simple fluids, ideas from DFT are used in a dynamic framework to predict
the inner region contact angle at the nanoscale. Results show a good agreement with linear MKT theory.
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Summary The flow near a receding contact line on a hydrophobic surface was measured using a particle tracking velocimetry 
from two different experimental techniques: multi-layer flood illumination and Total Internal Reflection Fluorescent 
Microscopy. The high speed receding contact line motion was generated using a liquid bridge instability by stretching a liquid 
bridge formed between a syringe and a hydrophobic substrate. Significant apparent slip is observed and the derived slip velocity 
appears to be inversely proportional to the distance from the contact line, while the slip length changes from O(10 nm) to 

O(1u\µm) toward the contact line singularity. 
 

INTRODUCTION 

 
   The boundary condition at a moving contact line remains as a challenge to the continuum description of fluid mechanics 
since it was first identified by Huh and Scriven [1]. When the no slip boundary condition applied to a creeping flow 
solution, the velocity at the contact line becomes multi-valued and the corresponding shear stress diverges infinitely. The 
resolution of this apparent paradox has become a lively topic of debate with suggestions ranging from the use of a slip 
model, a diffuse interface model, a variational method, molecular kinetic theory and the interface formation/disappearance 
model, to name a few [2]. Unlike the multifaceted theoretical debates, however, a few detailed, high resolution 
measurements of the boundary condition near a moving contact line have been made. In this work, we present particle 
tracking velocimetry (PTV) measurements of apparent slip near a receding contact line on a hydrophobic surface from two 
independent experimental techniques, multi-layer flood illumination and Total Internal Reflection Fluorescence Microscopy 
(TIRFM).  
 

EXPERIMENTAL METHODS 

 

   The experimental setup for flood illumination and objective-
based TIRFM on an inverted microscope is shown in figure 1. A 
syringe needle with a radius of 70 μm was lowered using a 
micro-stage until the pendant water droplet forms a liquid bridge 
in contact with a hydrophobic coverslip glass (contact angle of 
110.8°). By retracting the syringe, a pinch-off instability was 
generated which generates a moving contact line that initially 
retreats slowly, in a quasi steady manner, but then accelerates to 
become a rapidly moving contact line as the liquid bridge 
pinches off to form a small droplet on the surface.  Contact line 
velocities ranging from 150 to 3000 μm/s were repeatedly 
generated in this manner. The water filling the syringe was 
purified and mixed with 0.01% vol. fraction of fluorescent 
polystyrene particles (300 nm diameter). The fluorescent signals 
from either flood illumination or TIRFM were captured with a 
100X objective and a 1.5X internal lens and recorded at 2000 
fps with a CMOS camera coupled to a two-stage photon 
intensifier via 1:1 relay lens. The room temperature and 
humidity were regulated between 20 to 22°C and 10 to 20%, 
respectively. For multi-layer flood measurements, the objective 
was initially focused on the particles stuck on the glass and vertically translated twice in steps of 1 μm, for a total of three 
measurements. The mean vertical distances for each layer were computed accordingly from the depth of focus 800 nm of 
the objective and the size of particles. For TIRFM measurements, the penetration depth of the exponentially decaying 
evanescent field was measured as 214 nm. From the recorded images, contact line and particle positions were detected using 
a Canny edge detection algorithm and Gaussian fitting, respectively. The SPTV using Kalman filtering was implemented to 
reduce noise in particle velocities from Brownian motion and measurement error. Using more than 100,000 filtered particle 
trajectories, the velocity field was estimated using 2-D log-normal kernel density estimation.  

Figure 1. Experimental setup of flood illumination 
and total internal fluorescent microscopy. (δ: 
observation region, dz: interval between each depth 
of focus, θ: laser beam incident angle) 
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Figure 2. Flood illumination measurement of (a) normalized mean velocity near a substrate,  
(b) normalized slip velocity at the substrate, and (c) slip length near a moving contact line.  

 

RESULTS 

 
   A result from multi-layer flood illumination is presented in Figure 2 with grey lines indicating standard errors. The 
particle velocities from the measurements are normalized by the corresponding contact line speed, Uc and are used to 
construct the velocity profile, U(z), as a function of the distance from the contact line, x. In Figure 2(a), um is the mean 
velocity obtained from the bottom layer, with a mean distance of 300 nm from the glass surface. When x < 1 μm, the mean 
velocity um/Uc exhibits a power law dependence of x

-1. In figure 2(b), the slip velocity us was obtained by linear 
interpolation of the multi-layer measurements. Again, a power law dependence, us ~ x-1 is observed until x ~ 10 μm where us 
become indistinguishable from the minimum resolvable velocity. Interestingly, in figure 2(c), the slip length, ls, which is 
computed from the slip velocity and the shear rate, both derived from the linear interpolation, also exhibits a power law 
close to ls ~ x-1. At x > 10 μm, the slip length is in the order of 10 nm, which is consistent with the previous studies of slip 
length measurements between liquid-solid interface from a microfluidics channel [2]. 
 

CONCLUSIONS  

 
The result presented here is quite startling as the apparent slip length becomes as high as in the order of 1μm close to the 

moving contact line. On the other hand, the universal power law dependence of us ~ x-1 at various contact line speeds agrees 
with the theoretical analysis by Dussan [3]. The experimental artifacts such as particle size effect, near-surface particle-wall 
interaction, heating from the illumination, and measurement bias from a certain experimental technique have been ruled out 
as possible sources of error. The measurements from TIRFM with different size of particles will be presented in a future 
publication. The x-1 power law also is consistent with our previous measurement with a receding contact line at a low speed 
[4]. To the authors’ best knowledge, our result is the first quantitative nanoscale observation of apparent slip near a moving 
contact line over a range of speeds, which can be utilized to test existing theoretical models. 
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MICROCHANNEL
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Summary We focus on the regime at low capillary number, where the droplet keeps a circular shape in the horizontal plane. Parametric
studies are performed on the droplet horizontal radius and the capillary number, and particular attention is paid to the effect of the lubrication
film on the droplet velocity. For droplets with an horizontal radius larger than half of the channel height, the droplet overfills the channel and
a lubrication film is formed between the droplet and the wall. The lubrication film is shown to have a strong impact on the droplet migration
velocity and the three-dimensional flow structure.

INTRODUCTION

A comprehensive understanding of droplet migration in confined microchannels is essential to many microfluidics appli-
cations i.e. for performing biochemical or chemical assays or to observe liquid-liquid extraction. Droplets are unit systems of
controlled volume and content characterized by a radiusR, within which mixing, reacting and/or transferring can be achieved.
Rectangular confined channels with a width significantly larger than the heightH are commonly used in microfluidics devices.
The 3D simulations of droplet migration in a microchannel are challenging as well, in particular for droplets with large ratio
R/H and small capillary number Ca which measures the relative importance of viscous stresses compared to surface tension.
Numerical simulation can give supplementary information about droplet shape, streamlines, velocity patterns, stresses, which
is difficult to extract from experimental data. We investigate the droplet migration in a Hele-Shaw microchannel through 3D
direct numerical simulations. The capillary number (2.3 10−2) of the droplet is considered to be small enough so that the
horizontal shape of the droplet is near-circular. Particular attention will be paid to the effects of the lubrication film on the
droplet dynamics to study the flow patterns around the droplet.

EQUATIONS

We use the incompressible (∇U = 0), three-dimensional variable-density NavierStokes equations with surface tension:

ρ

(
∂U

∂t
+ U∇U

)
= −∇p+∇(2µD) + σκδn̄

with D the deformation tensor, U = (u, v, w) the fluid velocity, ρ = ρ(x, y, z, t) the fluid density, µ = µ(x, y, z, t) the
dynamic viscosity. The Dirac distribution function δ expresses the fact that the surface tension term is concentrated on
the interface; σ is the surface tension coefficient, κ and n̄ the curvature and normal to the interface. For two-phase flows
we introduce the volume fraction c(x, y, z, t) of the first fluid and define the density and viscosity as a function of c. The
Navier-Stokes equations are solved using a finite volume approach based in a projection method. The spatial discretization
is done using a octree cubic cells allowing dynamical grid refinement in the lubrication film and the accurate computation
of the surface tension at such small scales. The numerical problem is solved using the open-source package Gerris [1]. The

Inflow

Outflow
Ly

Lx

Lz Uw

Uf � Uw

Figure 1: Microfluidic configuration: channel width isH , velocities are Uf the mean flow velocity and Ud the droplet velocity.

computational domain for 3D droplet migration in a Hele-Shaw microchannel is shown in Figure 1 where it is assumed that
the droplet motion and the corresponding flow are symmetrical in the y and z directions, with respect to the planes y = 0 and
z = 0. Taking the half-height of the channel H as the typical length scale, the length, height, and width of the computational
domain are taken as Lx= 16H , Ly = H , andLz = 8H . An inflow boundary condition is imposed on the left of the domain
with a parabolic velocity profile.

∗Corresponding author. Email: jose.fullana@upmc.fr
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Figure 2: Top panel: Mean droplet velocity (left) and relative u-velocities (right) at the top and the side of the droplet as
functions of droplet radius and capillary number. Bottom panel: streamlines in the droplet reference frame (left) and film
thickness (right)

RESULTS

According to the numerical and experimental results [3, 5], the variation ofUd withR/H can be divided into three different
regimes: the Poiseuille-dominated regime, the transient regime and the film-dominated regime, which are schematically shown
in Figure 2 (top panel). In a Poiseuille-dominated regime (Regime P), the droplet velocity is close to the maximum fluid
velocity, when R/H increases, Ud decreases (solid lines theory are from ref [4]). In a Transition regime (Regime T), the
droplet just overfills the channel and the lubrication film just starts to form. Finally in the film-dominated regime (Regime F),
R/H >> 1, the droplet velocity is controlled by the lubrication film. The film thickness becomes completely independent
from the horizontal radius and becomes dependent on the Capillary number. For the film-dominated regime Figure 2 (bottom
panel) shows the 3D streamlines (left) and the film thickness (right) using a color graduation between 1 and 0 in units of H
(from red to dark blue). The stream lines concentration at the rear top of the droplet indicates a high shear stress region. This
region is correlated with the bump in the shape observed in Figure 2 (bottom panel right). We note that the minimum dark
blue is 5/100 of H . A complete description of film dynamics is presented in [5].

CONCLUSIONS

We have presented numerical simulations of a droplet in a channel. The good behavior of the numerical implementation
of the Navier-Stokes equations with a surface tension model was demonstrated by comparisons with theory and experimental
data. The quality of the numerical results are, in particular, a consequence of the grid refinement approach which allows the
accurate computation of the very thin films of liquid between the droplet and the wall.
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SLIP FLOW IN COLLASPING MICROCHANNELS

Krishnashis Chatterjee1 and Anne Staples∗2
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Summary In this study we investigate the effects of rarefaction on the flow through a two-dimensional microchannel driven by periodi-
cally collapsing walls. The Navier Stokes equations are linearized using lubrication theory assumptions, and slip boundary conditions are
imposed. Two up-down symmetric collapse sites in the channel are periodically actuated. The axial and vertical velocities, axial pressure
gradient, and time averaged flow rates are found as a function of the phase lag between the two contraction sites, with and without slip. The
optimal phase lag that maximizes the flow rate increases with the value of the slip parameter, from approximately 60◦ for no slip to approx-
imately 70◦ for the largest value of the slip parameter considered, β = 0.1. As is the case for pressure driven flow through a microchannel,
adding slip is found to reduce the rate of contraction-driven flow through the microchannel.

INTRODUCTION

Here, we extend the results of earlier studies [1],[3],[4],[7]. In that series of papers, inspired by features found in insect
respiration, periodic collapses were established as a means for driving flow through a microchannel. In the earlier studies,
only the upper wall of the channel contracted, and no-slip boundary conditions were imposed at the walls. The current study
extends the earlier results by adding first-order slip boundary conditions and imposing contractions on both the upper and
lower walls. These symmetric collapses are necessary in order to obey the assumptions of the slip flow model used. Slip
effects can be assumed to occur in regions of insect tracheal networks, since the working fluid is air near atmospheric pressure
and the diameter of the tracheal tubes for typical insects ranges from 1 to several hundred micrometers. Thus, the current
study investigates the bio-inspired regime of low-Reynolds number flow in a microchannel with rarefaction effects.

PROBLEM FORMULATION

The incompressible flow in a two-dimensional rectangular microchannel is considered. The channel length L is assumed
to be much greater than the width W so that δ =W/L << 1. The upper and the lower wall contraction profiles are functions
of time and distance from the beginning, and are given by H2(x, t) and H1(x, t) respectively.

For the microscale flow we can assume the Reynolds number to be of the same order of magnitude as the reciprocal of the
channel aspect ratio, according to the lubrication theory assumptions. Neglecting the convective terms, the simplified form of
Navier Stokes becomes

∂u

∂x
+
∂v

∂y
= 0 (1)

−∂p
∂x

+
∂2u

∂y2
= 0 (2)

∂p

∂y
= 0. (3)

Using the following boundary conditions

(i) at y = H1(x, t), u = β ∂u
∂y , v = ∂H1

∂t

(ii) at y = H2(x, t), u = β ∂u
∂y , v = ∂H2

∂t

(iii) at x = 0, p = po(t)
(iv) at x = 1, p = pL(t).

we derive the expressions for the axial velocity, pressure gradient, total pressure and time averaged flow rate.

∗Corresponding author. Email: staplesa@vt.edu
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Figure 1: Time averaged net flow rate plotted for different phase lag values over an entire cycle at x = 0., the midpoint of the
channel.

RESULTS

Three different values of the slip parameter β were considered, 0 (representing no-slip conditions), 0.001 (low-slip con-
ditions), and 0.1 (high-slip conditions). Two collapse sites, one located at 0.25L and the other at 0.75L, were actuated
periodically. Details of the actuation and collpase functions can be found in [5] and [7]. We found that both the axial velocity
and pressure gradient have higher values in the contraction regions of the channel, regardless of the value of the slip parameter.
The velocity and the pressure gradient values for first half of the cycle (collapse) are identitical to that of the second half (re-
expansion) in case of zero degree phase lag (i.e., collapse at the same time), regardless of the value of β, but for other phase
lag values they differ. It is this temporal symmetry breaking between the first and the second half of the cycle that causes
the unidirectional flow in the channel. Also, as seen in Figure 1, the time averaged flow over an entire cycle is significantly
lower in case of double wall contractions than in the case of single (upper) wall contractions, even though the change in cross
sectional area is preserved. This is because the momentum injected into the flow toward the center of the channel from the
upper and lower walls tends to cancel. In Figure 1 it can also be seen that the introduction of slip reduces the net flow rate,
with the reduction being proportional to the value of the slip parameter, β.

CONCLUSIONS

From the present study we conclude that in the absence of slip the time averaged flow rate is lower when both walls
contract compared to when just a single wall contracts, even though the total reduction in cross-sectional area is the same in
both cases. Adding slip decreases the flow rate further, with the reduction in flow rate found to be proportional to the value of
the slip parameter β. The motivation of this study was to investigate the effect of slip boundary conditions on the fluid flow
in microchannels driven by symmetric wall contractions. It can be concluded that adding slip to these flows decreases the net
flow rate substantially. It has been established both theoretically and experimentally that adding slip to pressure-driven flow
through a microchannel reduces the flow rate [6]. The results of this study indicate that the same is true for contraction-driven
flow through a microchannel.
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Summary In this paper, mixing of fluids in microchannels using AC electroosmotic(ACEO) flows with asymmetric electrodes are studied. 

Effects of geometric parametric of the asymmetric electrodes on the mixing efficiency are investigated using numerical simulation methods. 

Experimental results in PDMS-based microfluidic chips are compared with numerical results to confirm enhanced mixing in the micromixer, 

and optimal design of the asymmetric ACEO electrodes is proposed. 

 

INTRODUCTION 
 

   Mixing is essential in many microfluidic devices, especially for those performing biochemical assays or chemical 

reactions. Due to the small characteristic dimensions of microfluidic channels, fluid flow is characterized by low Reynolds 

numbers and mixing of fluid streams is limited to molecular diffusion. Micromixers are generally divided into two groups, 

passive micromixers that utilize geometrical mixing by their physical structures and active micromixers that use movable 

parts or external forces like pressure, electric or magnetic field etc. [1]. AC electrokinetics has been employed extensively 

for mixing of fluids in microchannels. ACEO flow with a pair of asymmetric electrodes has been demonstrated to be 

effective in mixing of two fluid streams [2]. The goal of this work is to investigate the effects of electrode geometric 

parameters on the mixing efficiency in the micro-channel, and provide guidelines for the optimal design of ACEO 

micromixers with asymmetric electrodes. 

 

DESCRIPTION OF THE MICROMIXER 
 

   In the micromixer, anti-symmetric AC voltages are applied on the two co-planar rectangular electrodes fabricated on the 

bottom of the microchannel, as shown in Fig.1. Geometric asymmetry of the electrodes results in ACEO flows with two 

asymmetric counter-rotating rolls of fluid motion above the two electrodes (Fig. 2). Stretching and folding of the material 

interface between the two fluid streams is significantly enhanced and mixing is hence improved. 

         
Fig. 1                                                       Fig. 2 
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RESULTS AND CONCLUSIONS 
 

   Steady 3D incompressible Navier-Stokes equations are solved numerically to obtain the ACEO flow in the 

microchannel, with ACEO slip velocity boundary conditions [3] on the electrode surfaces. Concentration distribution is 

governed by a steady convection diffusion equation. The coupled fluid flow and mass transfer problem is solved in Comsol 

Multiphysics 5.0. The mixing efficiency is calculated to be standard deviation of concentration in the region of interest.  

The chips (Fig. 3) for generating ACEO are fabricated on a glass substrate, with a gold layer evaporated and patterned to 

be electrodes by a wet etching process. The Y shaped microfluidic channel, 2cm long, 200μm wide and 100 μm deep, is 

made of PDMS using standard soft-lithography techniques and precisely bonded onto the substrate after oxygen plasma 

treatment. An AC signal with peak-to-peak voltage PPV  =14V at 10kHz is applied on the electrodes. Mixing efficiency in 

the square region in Fig. 3(b) is calculated acoording by fluorescence imaging to be 58%, which is in good agreement with a 

numerically computed value of 55%. 

Effects of electrode geometric parameters are then studied numerically. Mixing efficiencies at a fixed cross section 

downstream the electrodes are plot in Fig. 4 for different offset distance (distance between the channel center line and 

electrode-gap center line) and different width w2 of the thin electrode. It is concluded that mixing efficiency increases with 

increasing size ratio of the two electrodes; when the sizes of the two electrodes are fixed, optimal mixing can be achieved if 

the inner edge of the thin electrode coincides with the channel center line (initial interface of the two fluids), as is the case in 

Fig. 2. For the configuration in our study, when w1=50μm, w2=10μm, electrode gap G=10μm, the optimal mixing 

efficiency can be as large as 93%, compared to the value of 25% without ACEO flows. Mixing efficiency of the micromixer 

also increases with decreasing gap between the electrodes, and increasing length of the electrodes.   

            
Fig. 3                                                         Fig. 4 
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Summary We report a microfluidic approach to fabricate osmolarity-responsive dumbbell Water-in-Oil-in-Water(W/O/W) double emulsion 
with precisely osmolarity-controlled swelling behaviors. By using different concentration of KCL in the inner droplets and that in collection 
solutions, we independently control the swelling speed and size of each droplet in the dumbbell double emulsion. Interestingly, this osmolarity-
controlled swelling behaviors of inner droplets facilitate two different kind of transformation in the dumbbell emulsion. One is core-coalescence 
between two inner droplets, when the two inner droplets have similar size and concentration of KCL. Another one is swelling-breakdown of 
one inner droplet, when the two inner droplets have different concentration of KCL. The swelling-caused core-coalescence behavior in a 
dumbbell double emulsion establishes a new reactor for protecting reaction materials and products from being contaminated or released. In 
addition, swelling-breakdown behavior has the potential for controlling release of important active ingredients. 
 

INTRODUCTION 

   The advance in the microfluidic technologies provide new means for microencapsulating active ingredients such as 
drugs, microbes, living cells, and functional materials in isolated spaces, and separating them from the outer environment[1]. 
For instance, the core-shell double emulsions and the resulting microcapsules are thus attractive candidates in a wide range 
of applications, from materials science such as the synthesis of functional particles and fibers, to drugs for therapeutic 
applications, to components for cosmetics and food additives. To achieve these applications, the double emulsions or 
capsules have to be exposed to a range of specific stimulus to trigger the inner cores break or coalesce, such as mechanical 
stress, changing in PH or temperature, changing in the external chemical environment, or UV exposure[2-4]. In addition, the 
shape and size of an emulsion and capsule plays an important role in these trigger process. Thus, more active stimuli and 
shaped emulsions and capsules should be designed to enable the trigger process easier and more accurate, and extend the 
range of applications in variety areas. 
 

RESULT AND DISCUSSION 

   In this work, we report fabrication of osmolarity-responsive dumbbell double emulsions with two different inner cores, 
which have precisely osmolarity-controlled swelling behaviors. As shown in Figure 1 a), we use a capillary microfluidic 
device to develop dumbbell Water-in-Oil-in-Water(W/O/W) double emulsions. The middle oil phase is 
Polydimethylsiloxane(PDMS), which allows the diffusion of only low-molecular weight molecules such as water, 
antibiotics, and signalling molecules. Moreover, its excellent bioinertness and biocompatibility are suitable for 
encapsulating important actives[5]. The inner droplet cores are KCL solutions. The outer phase is a 5 wt % Poly(vinyl 
alcohol) (PVA) aqueous solution.  
 
   By using different concentration of KCL in the inner droplets and that in collection solutions, we independently control 
the swelling speed and size of each droplet in the dumbbell double emulsion[6]. As shown in Figure 1 b) and c), the 
objectives of this osmolarity-controlled swelling behaviors are twofold. When the two inner droplets have similar size and 
concentration of KCL, the inner droplets swell with similar swelling speed and coalesce together at a certain size, as shown 
in Figure 1 b). When the two inner droplets have different concentration of KCL, the inner droplets swell with different 
swelling speed and reach different size. This un-equilibrium between the two inner droplets makes the dumbbell unstable, and 
facilitate the breakdown of the small inner droplet, as shown in Figure 1 c). Furthermore, by controlling the concentration of 
KCL in the inner droplets and that in the collection solution, the swelling caused core-coalescence behavior and the 
swelling-breakdown behavior in dumbbell emulsion can be controlled precisely. 
 

CONCLUSIONS 

 
   In this work, a dumbbell Water-in-Oil-in-Water(W/O/W) double emulsion is developed using Polydimethylsiloxane(PDMS) 
as oily shell, which contains two inner droplets with different concentration of KCL. The swelling behaviors of this double 
emulsion is performed by precisely controlling the concentration of KCL in the inner droplets and that in outer phases of the 
double emulsions. Two different kind of swelling behaviors, core-coalescence between two inner droplets, and swelling-
breakdown of one inner droplet, have been achieved by this osmolarity-controlled swelling. This approach is general and can be 
used as a kind of trigger for coalescing and releasing of dumbbell double emulsions. Thus, the development of swelling-caused 
core-coalescence behavior and swelling-breakdown behavior in a dumbbell double emulsion establishes a new tool for 
controlling release of important active ingredients and protecting them from being contaminated. 
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Figure 1. a) Schematic of the capillary microfluidic device for generating dumbbell W/O/W double emulsions. Two smaller separate capillaries 
are injected into the bigger round capillary as internal tubes, which enable two different fluids to enter the devices separately. b). Schematic 
diagram of the core-coalescence by swelling, when the inner droplets have similar size and concentration of KCL. c). Schematic diagram of the 
release mechanism by swelling-breakdown, when the inner droplets have different concentration of KCL.  
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Summary In comparison to traditional valveless micropumps, the pumping efficiency of the micropump proposed in this work has enhanced to 

about one order of magnitude with the aid of new elastomer design. A revised lumped model can effectively predict the frequency response of 

the system that could be well quantified by the geometry and material of elastomer design in the micropump. Furthermore, excellent 

consistency of various elastomer designs between experiment and theory has demonstrated another waveguide character of the present design. 

A micropump with three elastic outlet buffers was designed for having three distinct resonant frequencies, and a novel frequency-selective 

pumping method based upon Frequency-Division-Multiplexing (FDM) was used to execute the sequential and parallel flow manipulations 

without additional valves and the need of multi-pumps for general microfluidic applications. 

MULTI-RESONANCE VALVELESS MICROPUMP 

   As the heart of mammals delivers and circulates blood flow inside vessels to sustain all functions of organs, tissues and 

cells, efficient fluid transportation and flow control are always the key issues in various microfluidic applications. To meet 

the need of delicate and precise flow manipulation in biochemical or biomedical reaction analysis, many valves and pumps were 

commonly designed and used to guarantee the reliable operations of the system [1]. However, the complexity of system could 

dramatically increase the cost and volume of system for involving more individual controllability and system reliability in the 

operation procedure. Hence, the alternative approaches with simple structures, such as droplet-based electrowetting [2], 

acoustophoresis [3], as well as frequency-specific pumping [4,5], have been proposed to reveal their control simplicity in 

comparison with those in complicated microfluidic systems.  

   In this study, a valveless micropump [6] equipped with two symmetric elastomers, e. g., elastic buffers, was first designed to 

create the multi-resonance behaviour as shown in the inset of Figure 1(a). It is mainly composed of “an active oscillator 

(actuation chamber)”, inlet/outlet “rectifiers (nozzle/diffuser type)”, “buffers with deformable boundaries”, and “connecting 

tubes”. To design the potential resonance frequency fr below 10 kHz range in experiments, the PZT actuator was chosen as an 

oscillatory pressure-driven source and the thermoplastic polymer PMMA was adopted as the base material of microchannel due 

to its moderate elasticity. Here, γ is defined as rb/ra (the radius ratio of buffer and actuation chamber), and ra is fixed as 

12.5mm in all cases. Physically, γ can demonstrate the variation of structure compliance of buffer. Figure 1(a) shows that 

the dual resonance pump can be successfully activated in experiments and the net flow rate Qnet of the 2
nd

 peak is

significantly larger than the 1
st
 peak for γ > 0.64. By increasing γ, the 2

nd
 resonant peak fR2 would move leftward toward the

1
st
 resonance due to the change of structure compliance and internal flow dynamics.  

   The lumped-element model (LEM) has been widely used to deal with such a Fluid-Structure-Interaction (FSI) problem 

according to Electric-Hydraulic Analogy (EHA) [7]. In our revised model, the structure compliance Cstruct of all elastic 

components has been considered, and the hydraulic resistance Rhyd (viscous dissipation) of each element is modified as in series 

with a hydraulic inductance Lhyd (inertia) and in parallel with Cstruct, denoted as (Rhyd+Lhyd)//Cstruct. The working fluid is water, 

which is regarded as incompressible with negligible hydraulic compliance. The corresponding ODEs for the designed system 

can then be numerically solved. In Figure 1(b), the model shows its excellent prediction of both fR1 and fR2. Both of them 

decrease with increasing γ. As γ > 1.4, fR2 is insensitive to γ due to the dominant fluid inertia and fR1 disappears eventually. The 

amplification ratio of net flowrate Qnet* (the peak flowrate of designed pump divided by that of the original single peak of pump 

with γ = 0.12) has shown the significant efficiency enhancement (up to a factor of 15!) of the present design. 

Figure 1. (a) Experimental net flowrate of the single- and dual-resonance pumps for various γ (= rb/ra), where γ =0.12 case 

has single Qnet peak while the rest cases have dual Qnet peaks; (b) Amplification ratio Qnet* and theoretical/experimental 

resonance frequency fR versus γ relationship, respectively. 
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FREQUENCY-DIVISION-MULTIPLEXING FLOW CONTROL METHOD 

   Similar to the wave-selection in the signal transmission technology, the elastic buffer could be also considered as a fluidic 

waveguide to transport (peak) flowrate under a specific (resonance) frequency. A micropump with three distinct radii of outlet 

buffers (γ = 0.71, 0.8 and 0.9), i.e., Single-Inlet and Multiple-Outlet (SIMO), was designed to create three distinct fR, as shown 

in the inset of Figure 2. By the sweeping frequency technique, three resonant peaks locating in 977, 707, and 530 Hz 

(denoted as fRA, fRB and fRC thereafter) were identified in the spectrum of the whole system. This means that the multi-

bandpass-filters characterized by elastic outlet buffers can be further applied for the frequency-selective control of pump(s). 

However, the reverse net flow was found, shown as the blue and green dashed lines in Figure 2, by driving the PZT actuator 

with single frequency. To avoid the “crosstalk” phenomenon, taking the concept of Frequency-Division-Multiplexing (FDM) 

in telecommunication, the synthesized driving signal of PZT actuator was modulated by three sinusoidal waves with 

different fR and driving amplitudes AO. The multi-frequency driving signal can be represented as 

𝐴(𝑡) = 𝐴𝑜,𝐴 sin(2𝜋𝑓R𝐴𝑡) + 𝐴𝑜,𝐵 sin(2𝜋𝑓R𝐵𝑡) + 𝐴𝑜,𝐶sin(2𝜋𝑓R𝐶𝑡). (1)

By properly choosing fR and AO for each sinusoidal wave, the reverse net flow from outlets (outlet A & C) can be easily 

eliminated , which is shown as solid lines in Figure 2. The designed route from the inlet to the outlet B was then 

successfully achieved without any additional valve or pump. Hence, the flow path control can be completed by simply 

adjusting the composition of driving signal, which shows the great simplicity and controllability of the newly proposed flow 

control method. 

   Furthermore, to illustrate the ability of sequential and parallel flow controls with only one actuator but without 

additional valves, three independent microchannels were individually connected to the three outlets of the above-mentioned 

micropump. The coloured droplet was placed in each microchannel as the tracer. The time-sequenced driving signal was 

pre-programmed as shown in Figure 3(a), and the sequential control (C→B→A→A&B) for driving the flow in three 

individual microchannels was successfully achieved as shown in Figure 3(b). 

Figure 2. Transient net flow rate under different PZT 

driving signals of single and multiple resonant frequencies. 

Net flow through outlet B without reverse flow from the 

other outlets was achieved by driving the actuator with 

multi-frequency signal. 

Figure 3. The sequential and parallel flow controls of the 

multi-resonance micropump in experiments: (a) The time-

sequenced driving signal; (b) The control of droplet motion 

by FDM (white dashed lines show the position of droplet at 

the previous time step). 
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Summary Inertial microfluidics has been extensively implemented for high-throughput manipulation of particles and cells, depending on 
hydrodynamic forces. The performance of inertial manipulation largely relies on the precise prediction of particle trajectories that are 
determined by the inertial lift acting on the particles. Here we propose a fitting formula for the inertial lift on a spherical particle drawn from the 
direct numerical simulation data obtained in straight channels. It consists of four terms that represent the shear-gradient-induced lift, the wall-
induced lift, the slip-shear lift, and the correction of the shear-gradient-induced lift, respectively. Notably, as a function of the parameters of the 
local flow field, this generalized formula possesses good adaptability to complex channel geometry.  
 

INTRODUCTION 
 

 The inertial lift on a particle stems from the asymmetry of pressure and viscous stresses on the particle surface in a 
Poiseuille flow with a finite Reynolds number. Analytical studies have been conducted to calculate the lift forces on a small 
sphere by solving the Navier-Stokes equations using perturbation methods. Investigating the motion of a sphere in a two-
dimensional Poiseuille flow, Ho & Leal successfully explained the focusing pattern in tube flows1 and obtained an explicit 
formula for the lift force2 

                            
2 4 2
maxL LF C U a L                                   (1) 

where a is the particle diameter, LC the lift coefficient, ρ the fluid density, maxU the maximum channel velocity, and L the 
characteristic length. The restriction of Re << 1 limits its application to practical applications where the Re is finite. 
Schonberg et al.3 and Asmolov4 extended the applicable Re up to 3000 by the matched asymptotic perturbation method. 
However, these theoretical studies fail to predict the lift forces when applied to the case of finite-sized particle in 
rectangular channel with high aspect ratio AR ( AR W H , where W is the channel width and H the height), which is a 
common situation in inertial microfluidic applications.   

 Several groups have conducted direct numerical simulation (DNS) to investigate the particle motion and lift 
distributions without the restrictions faced by the aforementioned perturbation methods. However, DNS could become 
dramatically burdensome for long microchannels encountered in practical devices, for example, serpentine or spiral ones. 
Here, we develop a generalized lift formula from DNS data obtained in straight rectangular microchannels.  
 

RESULTS AND DISCUSSION 
 

Figure 1a displays the schematics of simulation: a spherical particle with a diameter a suspended in a pressure-driven 
flow in a straight rectangular channel. Our previous dimensional analysis shows that the lift forces on a particle are 
determined by a dimensionless parameter group F=F( , AR , Re , *y , *z ).5 Here is the particle blockage ratio ( a H  ). To 
re-examine the lift forces and develop the lift formula, we conduct systematic DNS in terms of these dimensionless 
parameters. The governing equations for the flow field are 

                          210,  p
t





         


u

u u u u                          (2) 

where u is the fluid velocity, p the pressure, and the kinematic viscosity. The particle trajectory is predicted by Newton’s 
second law 

                , pp
p p cm

dd
m p d m  p d

dt dt
 

 


              

I ΩU
1 τ n g x x 1 τ n             (3) 

where pm is the mass of the particle, pU the translational velocity, pΩ the angular velocity, 1 the unit tensor, 
 58 15pdiag aI the moment of inertia tensor of the particle, and cmx the position of the center of mass. Equations (2) and 

(3) are numerically solved on structured overlapping grids using the Overture C++ framework.6 Figure 1b shows the 
computational grids and Figure 1c plots the lift force vectors in a quarter of the channel cross-section. The particles 
equilibrate at the positions where the lift forces vanish along both axes. 
  The proposed formula consists of four terms that represent the wall-induced lift wF , the shear-gradient-induced lift sF , the 
slip-shear lift ssF , and the correction of the shear-gradient-induced lift cF , respectively 

                                   1 2 3 4L w s ss cF C F C F C F C F                               (4) 
where 1C , 2C , 3C , and 4C are constants that will be determined by the fitting-analyses of the DNS data. After mathematical 
manipulation, Equation (4) becomes 
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Figure 1. (a) The schematics of the computational system and the set of the coordinate system. (b) The overlapping grid used for 
calculating the inertial lift forces on a spherical particle in a rectangular microchannel. (c) Inertial lift forces are calculated for a quarter of 
a square channel cross-section and shown in vector plot for  = 0.3 and Re = 300. The equilibrium positions are marked with the solid 
circles. 
    

Equation (5) involves the parameters of the local flow field  and  , the slip velocity sU , and the functions 1G  and 2G , 
*J , and c that have been obtained by Ho & Leal,2 Mei et al.,7 and Asmolov,4 respectively. As the lift forces directly depend 

on the local flow field, this formula has better adaptability for complex channel geometry, compared with those in terms of 
position’s coordinates. Figure 2 shows that the CL obtained by DNS for various AR ranging from 1 to 6 can be fitted by the 
proposed formula well. The proposed formula is then implemented in Lagrangian particle tracking method to realize fast 
prediction of particle trajectories in two types of widely used microchannels: a serpentine and a double spiral microchannels, 
demonstrating its ability to efficiently design and optimize inertial microfluidic devices by comparing against experimental 
observations. 

 
Figure 2. Comparison between LC calculated by DNS (red marks) and the fitting results by the proposed formula (blue lines).  = 0.3, 
Re = 100, and AR = 1, 2, 4, and 6. 
 

CONCLUSIONS 
 

   The proposed formula for the inertial lift consists of four terms that represent the wall-induced lift wF , the shear-
gradient-induced lift sF , the slip-shear lift ssF , and the correction of the shear-gradient-induced lift cF , respectively. It could 
become an effective tool for predicting particle trajectories in real-world microfluidic devices when implemented in 
Lagrangian tracking method, as the effects of complex geometry on the acting forces can be automatically taken into 
account by prior solving the flow field.  
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Summary We present three-dimensional direct numerical simulations of liquid-liquid plug formation in two kinds of microchannel con-
figurations: circular T-junction and complex cross-junction microchannels. The simulations are carried out with a massively parallel two
phase flow code, called BLUE. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that
defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh. A static distance function represents
the microchannel structures.

INTRODUCTION

Flows in small channels, with dimensions less than a millimiter, have found widespread applications in food processing,
drug delivery and also in chemical reactions. At these scales, flows are generally laminar and governed mainly by viscous and
interfacial forces, while gravity forces are neglected. In this work, we will focus on two kinds of microfluidic channel con-
figurations. A circular T-junction where all branches have internal diameters equal to 200µm (see figure1(a)). The dispersed
phase is chosen with the physical properties of a water/glycerol solution, injected from the vertical branch of the junction,
while the continuous phase is silicon oil and was injected along the horizontal main channel axis. A similar configuration
has been used and studied experimentally by Chinaud et al. [1] for which intriguing vortex formation is observed after the
plug breakup process. The configuration shown in figure1(b) is a complex cross shaped microchannel for which the dispersed
phase is injected from the horizontal main channel with a quasi-circular section and the continuous phase is injected from two
vertical branches.

Figure 1: Microchannel configurations, (a) circular T-junction and (b) a complex cross-junction.

The geometry of both T-junction and the complex cross-junction is handled in our numerical study by implementation of
a module for the definition of immersed solid objects and their interaction with the flow for both single and two-phase flows.
Such simulations require an important spatial discretisation and figure1(top) represents the subdomain decomposition used in
the parallel calculations. An example of one of our simulations is shown in figure 2 representing a snapshot of plug formation
for the case of a T-junction. In the simulations it appears that the first plug is always longer than the following plugs.

GOVERNING EQUATIONS AND NUMERICAL METHODS

The governing equations for transport of an incompressible two-phase flow are expressed by a single field formulation:

∇ · u = 0 and ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P +∇ · µ
(
∇u +∇uT

)
+ F. (1)

Here F is the local surface tension force at the interface and described by the hybrid formulation F = σκ∇I where σ is the
surface tension coefficient assumed to be constant, I is the indicator function which is zero in one phase and one in the other

∗Corresponding author. Email: damir.juric@alum.wpi.edu
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phase and κ is twice the mean interface curvature field. The material properties such as density or viscosity are defined in the
entire domain with the aid of the indicator function I(x, t), for the density for example :

ρ(x, t) = ρ1 + (ρ2 − ρ1)I(x, t) (2)

where the subscripts 1 and 2 stand for the respective phases. The gravity is neglected. The fluid variables u and P are

Figure 2: Snapshot of plug formation in a T-junction microchannel

calculated by means of a projection method. A second order Gear scheme is used for time integration. Either explicit or
implicit time integration of the viscous terms may be chosen depending on the problem. For the spatial discretization we
use the well-known staggered mesh, MAC method with second order ENO advection. The pressure and distance function
are located at cell centers while the x, y and z components of velocity are located at the faces. All spatial derivatives are
approximated by standard second-order centred differences. The code BLUE [2] is written in Fortran 2003 which allows
for the definition of a set of dynamically allocated derived [data] types and generic procedures associated with the matrix of
procedures, grids, scalar and vector fields, operators as well as the various solvers used in the Navier-Stokes and Lagrangian
Tracking modules. The parallelization of the code is based on an algebraic domain decomposition technique where the
velocity field is solved by a parallel GMRES method for the viscous terms and the pressure by a parallel multigrid method.
Communication is handled by MPI message passing procedures able to be run on a simple laptop up to high performance
supercomputers. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique which
defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh. This structure allows
the interface to undergo large deformations including the rupture and/or coalescence of fluid interfaces.

CONCLUSION

We demonstrate, through simulations of two microchannel configurations, the capabilities of BLUE, a new high perfor-
mance parallel numerical code for the simulation of two-phase incompressible flows. The code BLUE is, to our knowledge
the first implementation of Lagrangian tracking on massively parallel architectures applied to two-phase microfluidic flows.
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Summary This study is aimed to present an analysis of electro-osmotic (EO) pumping of a micro-duct with fin vanes. Fin structures are 

known to be an efficient and very important tool in conducting heat generated in fluid transport system, such as Joule’s heating in micro-

fluidic devices. The present semi-analytical analysis, under the Debye-Hückel approximation (DHA), enables us to explicitly investigate 

the combined effects of various parameters for the purpose of optimizing the EO pumping while retaining substantial fin vanes for heat 

removal. A mathematical model based on the solutions of two fundamental EO flows is introduced to explain how the choice of the fin 

vane may optimize the EO pumping rate. Moreover, we identify and analyse several salient features of the optimized EO flow rates with 

the help of diagrams plotted on the plane of zeta potentials, which may serve as an easily used reference for engineering deign and 

applications.   

 
INTRODUCTION 

 

   Microfluidic devices, as laboratory on a chip, have continued to find important applications in microbiological sensors 

and micro-electro-mechanical systems (MEMS). The electro-osmotic flow (EO flow) is inevitably subject to Joule’s 

heating, and thus heat removal is also an essential issue in this type of fluid transport. In is well known from the heat 

transfer realm that fin plates or structures are excellent candidates for conducting heat generated in thermal-fluid system. A 

fundamental structure of using fin plates in EO flow inside a microtube or nanotube could consist of several plates radially 

inserted from the channel centre, as sketched in Fig. 1. It is of essential importance to seek understanding of the fluid 

transport mechanisms by solving appropriate equations based on the physical laws describing the EO flow. As there are 

several physical parameters involved, we aim to investigate the problem by the approach of mathematical analysis as much 

as possible so that the role of each parameter is easily identified. In the literature, analytical solutions to electroosmotic flow 

(EO flow) even under the Debye-Hückel approximation exist only for a few tube cross sections, and for a review we refer to 

some of our previous studies [1-4]. The several physical parameters involved include the width of the fin plates b, the radius 

of the cylindrical duct R, the numbers of sector P=2π/θ, the Debye length D  of the EDL as well as the zeta potential 1  

on the fin plate and the zeta potential 2  on the cylindrical surface and the externally applied electric field E (in the axial 

direction).  

 
 

RESULT & DISCUSSION 

 

   For the geometry depicted in Fig. 1, we may only consider one sector of it with assuming symmetry, and formulate the 

EO problem for two fundamental problems. The idea is as follows. In the range of zeta potentials of possible interest, let the 

maximum of them 
( )

M


 be normalized to be 1, then the solution (EO flow rate) to the problem for any pair of zeta 

potentials
( , ) 

 with on the fin vanes and the duct surface can be obtained by linearly combining the two fundamental 

solutions, namely,
( , )= (1,0)+ (0,1).Q Q Q   

 The primary interest of this study is twofold. One is to obtain the solution 

to the two fundamental problems with detailed understanding of the EDL and flow velocity profiles as well as the general 

behaviours of the EO flow rate. And, more importantly, we would like to obtain the optimized EO flow rate in terms of the 

width of the fin plates for any given pair of zeta potentials on the fin plates and on duct surface.  

(a) (b) 
Figure 1. (a) Schematic of the fin vanes in the three 

dimensional setting. (b) The cross section of a cylindrical 

duct with inserted fin vanes with zeta potentials
1 and 

2  

developed on the fin vanes and duct surface, respectively, 

with R the radius of the duct, bR the width of the fin vanes, 

and P (=3 in this plot) the number of the vanes. 
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The fins complicate the analysis with involving a set of 4 normalized parameters: the vane width b, the electro-kinetic width

DK R 
, and the pair of zeta potentials 

 , 
 in addition to the number P of vanes. The findings are summarized 

below. In essence, there are two competing mechanisms that determine the optimal EO pumping when an external voltage is 

applied to drive the pumping: the no-slip condition hinders the EO flow yet the zeta potential helps the EO flow. The most 

significant finding is: it is more feasible for us to find a width b to optimize (maximize) the EO pumping rate if the ratio 

/   is greater than 1. It can be shown that that Q(1,0) and Q(0,1) can be well approximated by simple algebraic 

functions. This simple model enables us to predict that the optimal width b=bmax for the occurrence of the maximum EO 

flow rate QM(α,β) for given
 , 

is proportional to the ratio /  with other conditions specified. This behaviour is well 

confirmed by the accurate calculations with plots for the optimized EO flow rates. Figure 2 shows plots of typical EDL 

potentials and velocity profiles. The plots of Fig. 3 enable us to see how much the EO flow rate can be improved by 

optimization with respect to the width of the fin vanes. For example, given the point M in the 
 , , 

we may compare the 

level of QM(α,β) to the corresponding values at b=1 (full fin width) and 0 (zero fin width). The various diagrams plotted on 

the plane of zeta potentials contain all the useful information about the EO pumping and may serve as an easily used 

reference for engineering deign and applications.   

 
 

 

 

 

 

 
 

CONCLUSIONS 

 

   As a final remark, microfluidic devices in practice are often operated in a short time interval of impulse voltages. The 

steady-state EO pumping is reached after a transient time, which is on the order of ρR2/μ (see, e.g., [25]) (which is about 

10-8 sec=10 ns for R=100nm). This is very efficient for the duct on the size of nanoscales. It must be emphasized that the 

present results were obtained under the Debye-Hückel approximation. In a wider range of applications with the ratio 

/ bze k T 
 being not small but close to 1, the DHA is no longer valid and one may resort to the analysis of the 

nonlinear Poisson-Boltzmann equation. In the line of our previous approach [26], the present DHA solution provides the 

base for extension of analysis to the Poisson-Boltzmann equation, or the more general Poisson-Nernst-Planck equations. In 

other realistic applications, one may need more accurate model to account for the physics and chemistry. (supported by 

MOST 103-2221-E-002-099-MY3) 
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Figure 2. (left) Plots for the case Q(1,0) with b=0.3, K=10, P=3: (a) EDL potential; (b) EO velocity profile. The left panel 

of each plot presents level lines of the field, and the right panel presents a three-dimensional view. 

Figure 3. (right) Plots of several level lines of optimal EO pumping rate QM(α,β) for P=3 (with K=100). Also shown are 

several lines of constant bmax from 0.2 to 0.9 (counter-clockwise) 
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GEOMETRIC CONTROL OF ASYMMETRIES IN PASSIVE SCALARS ADVECTED IN
RECTANGULAR AND ELLIPTICAL PIPES

Manuchehr Aminan1,2, Francesca Bernardi1,2, Roberto Camassa1,2, and Richard M. McLaughlin∗1,2

1Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
2University of North Carolina Joint Fluids Laboratory, UNC, Chapel Hill, NC, USA

Summary We explore the role different geometries (amongst rectangular and elliptical domains of arbitrary aspect ratios) play in controlling
emerging up-stream/downstream asymmetries in the cross-sectionally averaged distribution of diffusing passive scalars advected by laminar,
pressure driven shear flows. We show using a combination of rigorous analysis, asymptotic expansions, and Monte-Carlo simulations, that
on short time scales relative to the shortest diffusion times, elliptical domains preserve initial uptream/downstream symmetric distributions,
while rectangular ducts break this symmetry. Skinny ducts produce distributions with negative skewness, while fat ducts produce positive
skewness for symmetric initial data which is uniformly distributed in the cross-section. There is a special aspect ratio of approximately 2-1
ratio for which symmetry is preserved. In turn, long-time (relative to the longest diffusion timescale) exact analysis shows that all geometries
generically break symmetry before ultimately symmetrizing in infinite time.

INTRODUCTION

The evolution of diffusing passive scalars in laminar flows is of central importance to the discipline of micro and nano
fluidics. Assessing precisely how geometry affects scalar spreading can provide a valuable design tool for producing mix-
ers which deliver chemicals effectively. For example, if it is desirable to deliver a chemical from a source with a particular
heavy front-loaded (as opposed to back-loaded) distribution, it is necessary to understand how the shear dispersion induced
by pressure driven fluid flows manifests. To that end, we present a complete, comprehensive study which shows explicitly
how a channel’s cross sectional shape can be used to control such loading through a complete characterization of the depen-
dence of the scalar’s skewness (the centered, normalized third moment) upon the aspect ratio across elliptical and rectangular
shaped pipes. We establish using a combination of exact and asymptotic analysis along with Monte-Carlo simulations several
interesting new phenomena associated with the cross-sectional geometry.

First, we study the skewness of the distribution. The skewness is the centered, third moment of the distribution, taken
as the integral of the product of the cube of the horizontal position, x, with the evolving distribution of the passive scalar,
from minus infinity to plus infinity, then averaged over the cross-sectional area. This evolving quantity is the lowest order
statistic which gauges asymmetries in a distribution. Closed evolution equations for arbitrary moments of a distribution were
derived by Aris [1] in arbitrary cross-sectional domains. We succeed in deriving closed form exact expressions as single series
formulas for the first three moments, along arbitrary slices for the special case of the flow between two infinite parallel plates.
These formulas are used to carefully benchmark our Monte-Carlo simulations for arbitrary geometries.

Interestingly, we demonstrate that the case of the infinite channel has the property that for initial data which is symmetric
in the upstream/downstream direction, but possesses no variation transverse to the flow, the skewness is strictly negative
for all time. This is in contrast to the result of Barton [2], who showed that for the circular pipe, the analogous case is
strictly negative. As such, alternative geometries with differing aspect ratios are expect to show an intriguing connection with
interesting dynamics connecting the negative case for two infinite parallel plates, with the positive case involving the circular
pipe.

We find that in fact, on short timescales compared to the shortest diffusion timescales, that elliptical domains preserve
initial symmetries. On the other hand, rectangular ducts break this initial symmetry. Skinny ducts are seen to develop negative
skewness, while fat ducts evolve passive scalar distributions to have positive skewness. Remarkably, a special aspect ratio of
approximately 2-1 ratio separates negative skewness cases from positive ones.

We also document both analytically and numerically, that on long times relative to the longest diffusion timescale in the
system, all geometries studied break symmetry. Of course, in infinite time, everything re-symmetrizes in accordance with the
long time theory of homogenization theory and G.I. Taylor’s pioneering work [3]. We establish similar ”golden” ratios for
ellipses and rectangles separating negative skewness from positive skewness at long time.

CONCLUSIONS

These results are expected to be of particular interest in the field of micro and nano=scale fluidics where geometry could
potentially be used with these findings in mind to shape the distributions to be either front-loaded or back loaded, properties
of natural interest in different mixing configurations. Some of our findings were just reported at Physical Review Letters [4].

∗Corresponding author. Email: rmm@email.unc.edu
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WETTING DYNAMICS ON UNDER-LIQUID SUBSTRATES
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Summary An experimental study to characterize the spreading of a liquid drop on an under-liquid substrate has been presented. It was found
that the spreading occurs over an initial distinct fast regime before transiting to a much slower regime close to its equilibrium. A comment
has been made to delineate the distinction of spreading on under-liquid substrate with the well known framework of spreading-coalescence
analogy commonly found in literature.

INTRODUCTION

Wetting of liquid drops on a substrate in air medium has been studied extensively over the past few decades due to its
manifold applications in technology and industry [1]. This is a fairly well understood phenomenon where a liquid drop upon
contact with a surface spreads by the virtue of minimization of surface energy. Recent studies have shown spreading occurs
in two distinct regimes: an initial fast regime just at the instance after the liquid drop touches the substrate and a later slower
regime close to equilibrium [2, 3, 4]. Though the latter regime is well understood from classical hydrodynamics [5, 6] as
well as molecular kinetic theory [7], the initial faster regime is yet to be explained from a theoretical perspective. But what
happens if we consider the same liquid drop spreading on a substrate in the presence of a surrounding liquid medium? This
fundamental problem of liquid-liquid displacement poses some complexities due to lack of understanding of contact line
dynamics in liquid-liquid systems. Though relatively less studied, it has significant applications in oil recovery [8], droplet
microfluidics [9], interaction of marine systems with oil spills, etc. The present work aims at decoding the spreading of a
liquid drop on a flat substrate submerged in another liquid medium.

EXPERIMENT AND RESULTS

Figure 1: (Color online) (A) Schematic of the experimental set-up. Inset (b) and (c) shows an ideal representation of side-view
and bottom-view images captured by the respective cameras. (B) Time snaps showing the growth of spreading radius r with
time for oil-water-glass system used in the study.

The experimental set-up consist of a custom made contact angle measurement system (as shown in Fig. 1(A)). The
working liquids used were deionized water ( ρW = 1000kg/m3, γWA = 72.1mN/m, µW = 0.001Pa-s) and laser oil (Cargille
Laboratories Inc., Cedar Grove, NJ, USA; ρO = 1100kg/m3, γOA = 24.5mN/m, µO = 0.2Pa-s). An oil drop of radius
0.7mm was generated at the tip of a stainless steel needle and was gently made to touch the glass substrate (microscope slides,
Fisher Scientific) kept at the bottom of a water filled glass cuvette. Since the initial spreading dynamics is very fast, two high
speed cameras (Photron UX-100) were used in tandem to simultaneously capture the spreading dynamics from side view as
well as top view (see Fig. 1(A)). The entire process was captured at a frame rate of 10,000 fps. The drop contact radius was
extracted from the captured images using an in-built image analysis tool in MATLAB.
Figure 1(B) shows the time snaps representing the growth of the drop contact radius, r with time. It can be seen that the
spreading process was successfully captured with a temporal resolution of a few microseconds. Such high temporal resolution
enabled us to track the growth of the spreading radius from as early as 4µm. Similar to spreading in air, here also spreading
begins in an intial faster regime. Since, wetting on under-liquid substrate is in the domain of partial wetting with a final
equilibrium contact angle greater than 90◦ (for the present oil-water-glass system, θeq = 134◦), the spreading process slows
down quickly and enters a period of much slower growth in spreading radius.

∗Corresponding author. Email: mitras@yorku.ca
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DISCUSSION

There has been a recent surge in applications of droplet microfluidics where the key idea is to generate and manipulate
micro droplets. In such systems involving narrow confinement, spreading is often followed by coalescence of such drops and
an eventual jet formation. Many recent studies have tried to understand spreading in analogy with coalescence due to their
common self-similar flow characteristics [4]. When two free drops merge, the coalescence process essentially takes place
by the formation of a liquid bridge between the drops which grows with time [10]. It has been argued that for spreading in
air medium, growth of the spreading radius, r follows a similar scaling as growth of the liquid bridge when two free drops
merge [4]. But, for spreading on an under-liquid substrate such analogy should not hold due to complexity in the nature of
the contact line motion for a liquid-liquid system as well as different length scales over which the flow evolves in both the
drop and the surrounding medium. Our recent study on under-liquid sessile drop coalescence has thrown some light into the
growth of bridge height as two drops merge (see Fig. 2), where it has been found that the bridge height grows in a self-similar
manner following a scaling of h∗ ∼ t∗0.89 (see Fig. 2(d))[11]. However, it is yet to be seen where for under-liquid substrates,
spreading and coalescence can be merged into an single common theoretical framework.

Figure 2: (Color online) Schematic of drop coalescence on an under-liquid substrate. (a) and (c) represents the side view and
top view of the process, respectively. (b) represents an extended view of the bridge region connecting the two drops where
the profiles has been conceived as a liquid wedge. The flow vectors are shown for the drop ad liquid medium. (d) shows the
growth of the bridge height with time in non-dimensional terms where the curves for two different viscosity ratio of the drop
liquid and surrounding liquid merge into a single curve. For more details, see Ref. [11].
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Summary A diffusive-convective-reactive coupled nonlinear mathematical model that governs the mass transfer process during the 
transesterification reaction in parallel plates microreactors in isothermal conditions is presented and a hybrid solution via Generalized 
Integral Transform Technique (GITT) is developed. The heuristic method Particle of Swarm Optimization (PSO) is applied in the inverse 
analysis to estimate the reaction kinetics constants. The results present a good agreement with experimental data from the literature and 
indicate that the GITT combined with PSO presents themselves as a efficient and robust combination for direct-inverse analysis in mass 
transfer problems. 
 

INTRODUCTION 
 

The theoretical analysis of the microreactors design for the biodiesel production via transesterification reaction is a 
complicated task due to the complex liquid-liquid reactant flow that takes place within these microsystems. So, the 
computational simulation is an important tool that helps to understand the physical-chemical phenomenon and, 
consequently, to determinate the suitable conditions that maximize the conversion of triglycerides during the biodiesel 
synthesis. Some works in the literature presents a theoretical and/or experimental study about the transesterification process 
within microreactors [1-2]. 

 

DIRECT AND INVERSE PROBLEM 
 

   The mathematical model was obtained from the literature [2] and it governs the concentration of the species involved in 
transesterification considering fully developed laminar stratified flow of two Newtonian reactants fluids, soybean oil and 
methanol, within parallel plates microreactors. It is considered that the second order consecutive elementary reaction occurs 
only in the oil phase in isothermal conditions. 
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where F is the dimensionless concentration of all six species involved: triglyceride (TG), diglyceride (DG), monoglyceride 
(MG), biodiesel (B), alcohol (A) and glycerol (GL), respectively. L and HTG are the length of microreactor and the height of 
the oil phase in the stratified flow. CTGo and C*

A are, respectively, the concentration of the triglycerides specie at the 
entrance of microreactor and the equilibrium concentration of the alcohol species at the interface between the two phases. D 
is the mass diffusion coefficient of the species. UTG(Y) is the dimensionless velocity profile of the triglycerides species in 
the microreatcor. The Gs represents the kinetic equation for each specie, in accordance with Table 1. 
 

TABLE 1. Chemical reaction equation. 
Specie sG  Specie  sG  

B ( ) ( )1 3 5 2 4 6TG DG MG A DG MG GL Bk F k F k F F k F k F k F F+ + + − − −  MG ( ) ( )3 5 4 6DG MG A MG GL Bk F k F F k F k F F− + − +  

A ( ) ( )1 3 5 2 4 6TG DG MG A DG MG GL Bk F k F k F F k F k F k F F− − − + + +  GL 5 6MG A GL Bk F F k F F−  

DG ( ) ( )1 3 2 4TG DG A DG MG Bk F k F F k F k F F− + − +  TG 1 2TG A DG Bk F F k F F− +  

where k1 to k6 are the reaction kinetic constants. 
   The solution for the problem above was obtained by the hybrid method so called GITT [2, 3]. Some quantities of 
interest are the residence time and the triglycerides conversion, which are defined, respectively, by equations (2a-b): 
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where FTG,Av is the average concentration of the triglyceride species. 
   To estimate the reaction kinetic constants, the least squares objective function is considered, and to minimize the 
objective function Fobj, the heuristic method Particle of Swarm Optimization (PSO) [4] was used. 
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i
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RESULTS 
 

   Table 2 presents the parameters used in the simulation of the concentration of the species, and Table 3 presents a 
comparison between the results obtained with the kinetic constants estimated in this work and the literature data [2]. 
 

TABLE 2. Parameters used in the simulation. 
Parameter Value Parameter Value Parameter Value 

µTG
 5,825.10-2 [Pa.s] QTG/QA

 
3,402 DDG, DMG, DGL and DB

 
1,38.10-9 [m²/s] 

µA
 5,47.10-4 [Pa.s] CTGo

 
1014 [mol/m³] ρTG

 885 [kg/m3] 
DTG

 
1,58.10-9 [m²/s] FAo

 
4,4 W 0,0105 [m] 

DA
 

1,182.10-10 [m²/s] L 0,0233 [m] H 100.10-6 [m] 
 

TABLE 3. Reaction kinetics constants [mol/(m³.s)] estimated and conversion of triglyceride. 
Parameter Literature [2] GITT+PSO τ Exp. [2] Num. [2] Num.(GITT+PSO) 

k1 4.368x10-6 3.170x10-6 0.41 12.33 20.36 15.90 
k2 9.623x10-6 2.461x10-6 0.79 36.98 40.68 35.70 
k3 1.880x10-5 5.378x10-5 1.69 66.56 66.78 66.31 
k4 1.074 x10-4 2.874x10-4 3 84.48 80.57 83.98 
k5 2.117x10-5 1.000x10-1 5.3 89.5 88.29 90.13 
k6 9.000 x10-7 3.221x10-2 10 91.1 90.95 90.88 

Fobj 0.00949 0.00152 - - - - 

Figure 1 presents the conversion of triglycerides with the reaction kinetics constants from the literature and with the 
constants estimated by this work using the GITT and the PSO methods in the direct-inverse solutions, respectively. 

 
FIGURE 1. Conversion of triglycerides. 

 
CONCLUSIONS 

 

   The GITT was successfully applied in the analysis of direct solution of the mass transfer process during the 
transesterification reaction in microreactors, and the heuristic method PSO was used to estimate the kinetic constants, 
providing a better agreement between the simulation and the experimental results than those previous available in the 
literature. 
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Summary Mucus is a viscoelastic gel layer that typically protects exposed surfaces of the gastrointestinal (GI) tract, lung airways, and other 

mucosal tissues. Particles targeted to these tissues can be efficiently trapped and removed by mucus, thereby limiting the effectiveness of such 

drug delivery systems. In this study, we experimentally and theoretically demonstrated that cylindrical nanoparticles (NPs), such as mesoporous 

silica nanorods, have superior transport and trafficking capability in mucus compared with spheres of the same chemistry. The higher diffusivity 

of nanorods leads to deeper mucus penetration and a longer retention time in the GI tract than that of their spherical counterparts. Molecular 

simulations and stimulated emission of depletion (STED) microscopy revealed that this anomalous phenomenon can be attributed to the 

rotational dynamics of the NPs facilitated by the mucin fibers and the shear flow. These findings shed new light on the shape design of NP-

based drug delivery systems targeted to mucosal and tumor sites that possess a fibrous structure/porous medium. 

 
INTRODUCTION 

 

Improving the mucus-penetrating ability of nanoparticles (NPs) is of great importance to avoid rapid drug clearance and 

achieve efficient drug delivery [1-3]. Mucus is a tenacious mesh structure with a thickness ranging from tens to hundreds of 

microns and an average pore size in the range of hundreds of nanometers. Small hydrophilic molecules can freely diffuse 

through this barrier while particles, especially foreign particles, are excluded in cases where the particle size is larger than 

the average pore size [4-7]. The trapped particles are then quickly washed away by the microflows of the mucus layer. Such 

a capture and clearance mechanism protects mucosal tissues against infectious agents; however, this mechanism limits 

opportunities for the controlled drug delivery of NPs. From the Nature, we know that most of the bacteria possessing a high 

mobility in mucus have a rod-like shape [8,9]. Pathogens such as Helicobacter pylori [10] and Vibrio cholera [11] are able 

to swim through the intestinal mucus and remain in the mucus layer for extended periods, instead of being easily washed 

away. This finding informs us that shape may contribute to the high mucus-penetrating ability of particles. The correlation 

between the shape of NPs and their diffusivity in mucus, however, is still missing, even though this aspect is potentially 

crucial in the design of NPs-based drug delivery systems. 

 

RESULTS 

 

Transport and tracking of NPs in rat intestinal mucus in vitro, ex vivo and in vivo 

In this study, we fabricated mesoporous silica nanospheres (MSNSs) and mesoporous silica nanorods (MSNRs) with 

different aspect ratios (ARs) but identical surface chemistries and zeta potentials. We present evidence that, compared with 

spheres, cylindrical NPs display superior diffusion and penetration patterns in intestinal mucus, which can further lead to a 

longer intestinal retention time and higher villus absorption. This work provides insights into the effect of NP shape on the 

mucus-penetrating property and demonstrates the usability of nanorods for drug delivery to mucosal tissues. 

 

Mechanism for the rapid diffusion of MSNRs 

Through molecular simulations, we found that the better mucus-penetrating property of the nanorods is due to the rotational 

motions of the nanorods facilitated by the shear flow and the mesh structure of mucus. The rotational dynamics of nanorods 

were also confirmed using STED microscopy. A single MSNR is rotating in the mucus, which is consistent with the results 

of the molecular simulation. 

 

CONCLUSIONS AND OUTLOOK 

 

   We note that in addition to transport in mucosal tissues, nanorods can have superiority in interstitial transport within the 

dense interstitial structure surrounding tumor cells. Because the microenvironment of the interstitial structure is similar to 

that of mucus, which is formed by fibrous tissues, we postulate that the mechanism for the rapid penetration of nanorods 

into tumor sites may be the same as that for mucus. Therefore, although conventional spherical NPs currently remain the 

dominant shape, non-spherical NPs may become common next-generation drug carriers. The barrier to using non-spherical 

particles lies partly with the difficulty in synthesis and characterization, but even more with the lack of understanding of the 

physics that govern the relationship between shape and various characteristics of non-spherical NPs. Our findings may 

inspire the novel and rational design of drug delivery systems for use in various diseases. 
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Summary

 

 Confined diffusion is ubiquitous in nature. Ever since the “anomalous yet Brownian” motion was observed, the non-
Gaussianity in confined diffusion has been unveiled as an important issue. In this study, we experimentally investigate the characteristics 
and source of non-Gaussian behavior in confined diffusion of nanoparticles suspended in polymer solutions. A time-varied and size-
dependent non-Gaussianity is reported based on non-Gaussian parameter and displacement probability distribution, especially when the 
nanoparticle’s size is smaller than the typical polymer mesh size. The main source of the non-Gaussianity can therefore be attributed to 
hopping diffusion that results in an exponential probability distribution with the large displacements 

INTRODUCTION 
 
   The diffusive motion of particulate matter (e.g., nanoparticle (NP), protein and DNA) in complex medium is of 
fundamental interest in many interdisciplinary fields, such as biophysics, soft matter and polymer physics. Different from 
free Brownian diffusion in simple liquids, the mean squared displacement (MSD) <L2(t)> of the so called “anomalous 
diffusion” exhibits a nonlinear relation with elapsed time t, i.e., <L2(t)> ~ t β where β ≠ 1. β > 1 corresponds to the super-
diffusive motion, as observed in the self-motile motion of cells or Janus particles, whereas β <1 corresponds to the confined 
and sub-diffusive motion, which is suggested to be more ubiquitous in nature. 
   Recently, as first observed by Granick’s group, even Brownian diffusion with linear MSD could be non-Gaussian [1-2].  
This “Brownian but not Gaussian” behavior has attracted much attention because it raises questions on the validity of the 
frequently invoked Gaussian approximation for describing the diffusive phenomenon in complex medium. To fully 
understand this phenomenon, one needs to know the origin and implication of the non-Gaussianity. However, the physical 
source of the non-Gaussianity and the influence from the complex environment on the non-Gaussianity remain an open 
question. Thus, the purpose of this study is to identify the physical source of non-Gaussianity in confined diffusion and 
clarify its characteristics. 
 

EXPERIMENTS AND RESULTS 
 
Experiment 
   We study the non-Gaussianity in a model system that contains diffusive polystyrene NPs in polyethylene oxide (PEO) 
solutions. The motions of NPs were measured using particle tracking method. The particle tracking method provides 
detailed displacements and facilitates statistical analysis to quantify non-Gaussianity based on high moment of displacement, 
displacement probability distribution (DPD) and displacement auto-correlation, which other techniques including dynamic 
light scattering or fluorescence correlation spectroscopy can hardly provide. The experiments were performed by controlling 
the NPs’ size (diameter a = 40 nm, 100 nm and 200 nm, respectively), the PEO molecular weight (MW = 0.6 M, 2 M, 4 M 
and 8 M, respectively), and the PEO concentration (c = 0.05 to 1.5 wt %). 
 
Results 

    
                      Fig. 1                        Fig. 2                       Fig. 3 
Fig.1 The measured MSD of different NPs. The slope of 1 indicates the linear relation between MSD and t. 
Fig.2 The measured non-Gaussian parameter α of 40nm (square), 100nm (circle) and 200nm (diamond) NPs in 0.5% PEO 
solution. 
Fig.3 The fat tail distribution of DPD of 40nm NP, which is due to the long-distance hop through polymer networks. 
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Typical results of measured MSD are shown in Fig. 1. One sees that the MSD behavior varies from a sub-linear short-
time stage (t ~ 10 ms, slope β < 1) to a linear Brownian stage (t > 30 ms, slope β = 1) in a long-time stage, and the slope on 
sub-linear stage decreases slightly with increasing PEO concentration. The transition between these two stages is in 
accordance with previous works [3].  

However, there are several important questions that MSD results are unable to answer. First, as explained by Piskorz 
and Ochab-Marcinek [4], all those commonly-used models (i.e., elastic force, walking confined diffusion with depletion 
layer or hopping diffusion) predict the same MSD feature as shown in Fig. 1. It is necessary to develop alternative approach 
to identify the source of non-Gaussian behavior. Second, it is still unclear why non-Gaussianity emerges not only in the sub-
diffusive stage but also in the long-time Brownian stage. The non-Gaussianity needs to be quantified for a better 
understanding of the anomalous diffusion of NPs in complex medium. 

Therefore, the non-Gaussian parameter, a fourth moment, 4 2 2α( ) / (3 ) 1x x= < ∆ > < ∆ > − , is introduced to quantitatively 
describe the variation of non-Gaussianity. Generally, α = 0 indicates a pure Gaussian process such as simple Brownian 
motion. In the current experiments, however, we obtain positive α which is observed to vary with particle size, elapsed time, 
PEO concentration and molecular weight. Fig. 2 shows a size-dependent non-Gaussianity, that is, smaller NPs result in a 
stronger non-Gaussianity regardless of PEO solutions. Explicitly, α is between 0.1-0.3 for 40 nm NP, while α is very close 
to zero for 200 nm NP indicating that the motion is still Brownian. Considering the PEO mesh size is in the order of 50 nm, 
it is not surprised that a more significant non-Gaussianity will be observed for those NPs smaller than the typical size of 
surrounding structure. Moreover, different time-varied tendencies of α are observed. For 40 nm NP, α decreases rapidly at 
short time and then reaches a nearly constant value at about t ~ 30 ms (Figure 2a-b). This time scale agrees with the 
transition time of the measured MSD shown in Figure 1. For 100 nm NP, α remains positive and varies slightly with time; 
while for 200 nm NP, α is always close to zero indicating that the non-Gaussianity becomes trivial. More interestingly, the 
non-Gaussianity of 40 nm and 100 nm NPs will not disappear even in the long-time Brownian stage.  

The source of the non-Gaussianity will be analyzed with the aid of the measured DPD (Fig. 3, 40 nm NP in 4M PEO). 
The standard Gaussian distribution with probability density function 21 exp[ ( / ) / 2]

2sG x σ
π

= − ∆  is introduced based on the 

normalized displacement ∆x/σ, where σ is the standard deviation of displacements, which permits a direct comparison 
between different results. The most obvious deviation compared to standard Gaussian distribution is observed at the tails 
( / 3x σ∆ > ), showing an approximately one hundred times higher probability of large displacements. The tail distribution 
is found to decay linearly on the logarithmic plot, implying that the probability function changes to )]/(exp[~ σxGs ∆−  
(solid lines in Figure 3). In the middle part of DPD, a sharper peak at ∆x/σ = 0 and a narrower shoulder ( / 1.5 2.5x σ∆ = − ) 
are visible, representing smaller displacements caused by confinements compared to simple Brownian motion. Based on the 
definition of non-Gaussian parameter α, i.e., a fourth moment of displacement, the contribution from the tails with large 
displacements is much more significant than that from the center. Thus the non-Gaussianity depicted by α comes from the 
enhanced probability of large displacement through the surrounding structures. According to these features, we propose that 
the source of non-Gaussianity is mainly attributed to the hopping diffusion, which means that NPs could hop through the 
polymer mesh structures nearby intermittently. Multiple PEO molecular chains tend to overlap or entangle with each other 
to form heterogeneous structures like global networks and local compartments in which fast motion of NPs across networks 
or adjacent compartments would happen. 
 

CONCLUSIONS 
 

   In summary, this letter investigates the diffusing behavior of NP interacting with surrounding polymer chains by means 
of non-Gaussian parameter α, DPD and displacement auto-correlation. A size-dependent and time-varied non-Gaussianity is 
observed, especially when the NP’s size is smaller than the typical network mesh size. This non-Gaussianity does not vanish 
even at long-time Brownian stage with linear MSD, and thus results in the “anomalous yet Brownian” phenomenon. We 
thus propose that the main source of non-Gaussianity is connected to the exponential tail distribution with enhanced 
displacements, which is a clear signal of hopping diffusion. The present results provide physical insights into the particle-
polymer interaction and shed light on the debate of the physical origin of NP dynamics in soft-matter systems. 
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FROM RHEOLOGY TO MOLECULAR DETAIL - VISCOSITY OF SUSPENSION OF
COMPLEX MOLECULES
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Summary The viscosity of solution is intrinsically connected with its composition and the properties of individual particles. For complex
macromolecules there often exist coupling between the flow and the state of the molecule. The distribution of particle shapes and movements
reacts to the external flow and the flow reacts to this distribution change. This coupling determines the amount of stress induced by the
molecules immersed in the fluid that results in change of the viscosity. Using the Rotne-Prager-Yamakawa approximation we show, that
given molecular model, one can infer the details of the molecules based on rheology of the solution.

INTRODUCTION

Relation between effective solution viscosity and its composition, in principle, can be calculated from the Stokes equation.
All the details of the system in a given time instant come into the solution. They include particles conformation and position
but also characteristics of the external flow. Also the coupling of those play an important role due to the hydrodynamic
interactions, since the flow affects particles and particles affect flow. Even the change in the strength of the flow change
suspension state and the effective viscosity. These dependencies give an insight into the details of the molecules.

KEY IDEA

The effective viscosity ηeff is the proportionality coefficient between the stress tensor and the effective strain tensor. These
three quantities are coupled and depend on the suspension and flow. The effective viscosity calculated for shear flow is
different than for e.g. straining flow. In this report we will restrict to the shear flow even though the presented method is
suitable for any kind of linear flow. For the shear flow stress tensor is given by

σ = 2ηeffE∞ : E∞ =
1

2

(
∇v0 + (∇v0)

T
)
, (1)

where v0 = (zγ̇, 0, 0) is the ambient flow and E∞ is the symmetric part of the ambient straining field. The stress tensor can
be decomposed into the part originating from unperturbed fluid and the particle contribution

σ = 2η0E∞ +

〈∑
i

Si

〉
γ̇

, (2)

where Si is the stresslet induced by particle i and 〈·〉γ̇ denotes an average over all possible particle positions and states for a
given flow strength γ̇. The complete set of the components of the particle induced stresslet consists of: stresslet induced sole
by the particle presence, stresslet induced by inter and intra particle forces, stresslet induced by torques acting on particles
and stresslet induced by the translational and rotational Brownian motion. Some contributions can be neglected in the specific
situations e.g. if all particles in the system are torque-free spheres, then the torque components of the stresslet can be neglected.
In the shear flow the effective viscosity ηeff can be measured with force acting on the vessel walls required to sustain given
shear rate. For the system between two parallel plates in xy plane only the σxz component will contribute to the measurements.
In the dilute system - with volume fraction φ � 1, the effective viscosity can be expressed in terms of intrinsic viscosity [η]
by the series expansion[1]

ηeff = η0

(
1 + [η]φ+O

(
φ2
))
. (3)

For the arbitrary shear strength the intrinsic viscosity can be calculated as

[η] = − 1

γ̇

〈∑
i

Si

〉
γ̇

. (4)

∗Corresponding author. Email: pjzuk@fuw.edu.pl
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METHOD

The total stresslet induced by every particle is calculated from the mobility matrix µ. Mobility matrix can be calculated
for many different systems using bead models in different approximations. Here we use the Rotne-Prager-Yamakawa (RPY)
approximation for the mobility matrix. This matrix is positive definite also for overlapping spheres of different radii[2]. Rigid,
non-rigid and partially rigid molecules can be constructed in order to model real particle shapes that can interact with forces
and torques. Depending on the partcle size, the Brownian or deterministic trajectory can be calculated. Finally the stresslet is
averaged over the simulated trajectory. The method performance is demonstrated by the comparison of the different dumbbell
intrinsic viscosities calculation in figure 1. The flow strength is expressed with dimensionless Péclet number Pe = 6πηa3γ̇.

RESULTS

On the example of Hookean dumbbell we show, that the equilibrium length of the spring can be determined based on the
viscosity spectrum. We will consider a dilute suspension φ � 1, that in practice is calculated as a single dumbbell in an
unbounded fluid. Let the Hookean dumbbell be composed of spheres of radius a and a spring with an equilibrium length l0
and stiffness k. The typical intrinsic viscosity dependence on the shear rate, for three different equilibrium lengths with fixed
k is presented in figure 2. Significant shear thinning in rarefied solution is observed.

The simulation results for different l0 and k show, that for spring constants bigger than certain threshold, the equilibrium
length of the spring can be uniquely determined from the viscosity spectrum. There are two distinct regimes

• overlapping regime l0 ≤ 2a : [η] = (a1 + b1l0)γ̇
c1l0 ,

• non-overlapping regime l0 > 2a : [η] = (a2 + b2l0)γ̇
c2l0 ,

where (ai, bi, ci) are two sets constants independent of spring stiffness, that are calculated numerically.
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Figure 1: Comparison of intrinsic viscosities: theoretical (TH) re-
sults[3] including Brownian contribution for rigid dumbbell (RD)
using multipole method and RPY approximation from linear re-
sponse theory, RD in RPY approximation using Brownian dynamics
(BD) and Hookean dumbbell (HD) with k = 20kBT using BD.
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Figure 2: Dependence of intrinsic [η] viscosity on the
shear rate for k = 20kBT and different l0.

CONCLUSIONS

The viscosity of suspension is a result of the coupled interactions between suspension structure and the flow. They both
influence each other. Interesting molecular details can be deduced about the shape of the molecules and molecular intractions
from the viscosity spectrum by exploiting the knowledge of the hydrodynamic interactions and a proper molecule model. This
kind of measurements give insight into molecular details, that are not measurable by other techniques.
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Summary The current work investigates the effect of blood viscoelasticity on the stress, velocity and haematocrit fields as well as the 
formation of the cell-depletion-layer for haemodynamics in microvessels lined with glycocalyx layer. To this end, we advance the 
inhomogeneous constitutive model proposed by Moyers Gonzalez-Owens-Fang (2015), treating properly the shear induced rbc migration 
mechanism and incorporating the effect of plasma viscoelasticity. The enhanced model (e-model) can accurately reproduce the experimental 
data by Damiano-Long-Smith (2004) and provide reasonable predictions for the rbc distribution, the shear-stress along the luminal surface. It is 
shown that blood viscoelasticity expressed in terms of Deborah number is quite small (O(0.3)), but plays a crucial role in the formation of the 
cell-depletion-layer. In particular, there is a critical value of Deborah number above which the formation of the cell-depletion-layer occurs.       
 
 

INTRODUCTION 

 
   The luminal surface of the endothelial cells that line our vasculature is coated with glycocalyx. Glycocalyx is a thin 
layer of membrane-bound macromolecules, which also plays a substantial role in the most striking non-homogenous 
effects1,2 in blood flow in microvessels. Our work aims at the microrheological modelling of human blood, when it flows in 
confined vessels. A two-phase system is assumed, with one phase being a peripheral layer of filtered plasma flowing inside 
the glycocalyx layer, which is modelled as a porous medium that follows the Brinkman Law, and the other one a core region 
of suspension of all the erythrocytes, which is modelled as a non-Newtonian viscoelastic fluid. To this end, a new 
constitutive model for whole human blood is proposed for the description of the non-homogeneous behavior of blood in the 
core region. While the new model is based on the Moyers et al. model3,4, it deviates from it in the conservation balance of 
red blood cells and aggregates where a new term replaces the stress gradient mechanism, and in the constitutive equations of 
stresses where the second order derivatives are omitted, since they are thermodynamically inconsistent. Also, the 
viscoelastic properties of plasma5,6,7 could not be ignored, thus the behavior of plasma was approached by an Oldroyd-B 
model. Furthermore, the homogeneous apparent blood viscosity is obtained by a new equation, which optimally fits the data 
of Brooks et al.8 and corrected from the experimentally measured apparent viscosity by Pries et al.9,10,11. The developed 
model was applied for the study of blood flow in small vessels lined with glycocalyx layer and reproduced with great 
accuracy all the experimental data of Damiano et al.12 and concurrently captured properly the formation of the cell depleted 
layer near the glycocalyx layer. Our findings have showed that the elastic response and concentration of the erythrocytes 
along with the flow rate are the most crucial factors that affect the human blood behavior in microvessels. 
 
 
 

RESULTS 

 

In contrast to previous works13,14 the e-model does not need any explicit or implicit assumption about the existence or 
location of the cell depletion layer. Its calculation is based only on the rheological properties and the geometric parameters 
of the flowing system. Figure 1 depicts the predictions of our model for (a) the velocity profile, (b) the number density of 
RBCs, and (c) the shear stress across a microvessel of diameter 21.8 μm, and glycocalyx thickness 0.15 μm. Apparently, we 
have accurately reproduced the experimental data by Damiano et al.12 (Fig. 1(a)). Regarding the distribution of the red-blood-
cells (number density in μm-3), it is almost uniform across the core region of the vessel, but within its annular region there is a 
sharp reduction and zeroing of the local hematocrit indicating that there is no rbcs there. The thickness of the cell depletion layer 
id equal to 1.51 μm in agreement with the calculations of Secomb et al.15. The formation of the cell-depletion-layer affects the 
shear-stress field (Fig. 1(c)). Our predictions shows that in the core region its spatial variation is linear, having a slope smaller 
than the empirical model of Damiano et al.12. On the other hand, in the annular region the shear stress is also linear, with a 
smaller slope, due to the smaller value of the plasma shear-viscosity.            
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(a) (b) (c) 

 
Figure 1: Predictions of the e-model for (a) the velocity profile, (b) the number density of RBCs, and (c) the shear stress across a microvessel of 
diameter 21.8 μm, and glycocalyx thickness 0.15 μm. The rest dimensionless numbers are equal to 

10.33 50,140 0.14 0.56 0.67 16.4t dDe Br H H s        .   
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Summary It is well known that suspended particles strongly affect fluid flows.  In this talk, we briefly describe two systems in which particles 
produce paradoxical motions in fluids.  In a first example, we show that floating particles cause a flow reversal, leading to contamination of an 
upstream reservoir of clean water by particles in a dirty downstream reservoir, and in a second example, we demonstrate that vertically 
vibrating a plate in a cornstarch suspension causes the suspension to vigorously ratchet up the plate.  Both examples produce motion against 
the direction imposed by gravity, and both can be analyzed in terms of well understood phenomena – the first due to interfacial forces, and the 
second due to non-Newtonian forces. 
 

INTRODUCTION 

   When fluids are pipetted onto a culture plate, it is taken for granted that cells from the plate will not travel upstream to 
contaminate the fluid source. Yet we recognize that suspended particulates can interfere with the material properties of a 
fluid – for example reducing its surface tension or increasing its viscosity.  In this conference proceeding, we demonstrate 
that these changes in material properties can produce paradoxical results that violate our expectations.  In a first example, 
we show that the reduction in surface tension causes floating particles to contaminate upstream reservoirs.  This occurs 
both on the micro-scale – in pipetting experiments over distances of millimetres to centimeters – and on the macro-scale – 
causing upstream flows over several meters in extent.  In a second example, we show that vibrating a plate vertically in a 
shear thickening suspension causes the suspension to travel up the plate against the influence of gravity. 
 

RESULTS 

   Over a century ago, Carlo Marangoni reported that floating particulates decrease the surface tension of water – an effect that 
we now recognize as being due to interference with hydrogen bonds.  This observation has implications for modern 
applications ranging from microfluidics and cellular morphogenesis to colloidal dynamics and self-assembly.  An 
underappreciated consequence of this effect is that when clean water is discharged into a dirty container, a gradient in surface 
tension is produced, with lower tension at the dirty downstream end of the flow, and higher tension upstream at the clean end.   
 

 
Figure 1 – Upstream contamination.  (a) Clean water poured onto tea leaves; (b) expanded view shows that tea leaves travel 
upstream from cup into water source.  Figure credit: Sebastian Bianchini , Alejandro Lage & Ernesto Altshuler.  (c) 
Deionized water pipetted into petri dish containing fluorescein; (d) dried pipette afterward, showing contamination 
accumulated inside of tube. 

   Logically enough, the higher upstream tension causes fluid – and entrained contaminants – to be drawn upstream.  This is 
shown qualitatively in Fig. 1 (details appear in Ref. [1]).  In Fig’s 1(a), we show mate tea being prepared by pouring clean 
water onto tea leaves: here the tea leaves downstream act as a contaminant, and as shown in the detail, Fig. 1(b), the leaves flow 
upstream – faster than the downstream flow imposed by gravity. The same thing can occur during pipetting, as shown in Fig’s 
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water input

Fluorescent water 
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(a) (b)
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Fluorescent 
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1(c)-(d).  Although this effect is general insofar as it applies to many different problems, we hasten to point out that it requires a 
free and angled surface – meaning that upstream flow of contaminants is not observed in a vertical waterfall or in a closed pipe. 

   Paradoxical flows can be produced by other changes in fluid properties than surface tension.  An example of this is shown 
in Fig. 2, where snapshots are displayed of a vertically vibrated plate partially submerged in a 50-50 w/w suspension of 
cornstarch in water. In this situation, the cornstarch is more strongly sheared when the shaft moves up than when it moves down 
– because in the first case the shaft and gravity act in opposing directions, while in the second they act in the same direction.  It 
therefore follows that the suspension viscosity will be higher in the first case than in the second, and so we can expect the fluid to 
ratchet upward with every cycle of vibration of the shaft.  This is in fact what we see, as shown in Fig. 2. 

 

 
Figure 2 – Uphill ratcheting.  Sequence of photos of plate partially submerged in cornstarch suspension and 
vibrated vertically as indicated by arrows.  Suspension energetically ratchets upward as shown. 

 
 

CONCLUSIONS 
 

   In this proceeding, we have presented two examples in which well-known effects of suspended particulates cause predictable 
paradoxical behaviors in fluids.  In the first example, the particulates change the surface tension, and in the second they change 
the viscosity.  Although predictable in retrospect, both of these paradoxical behaviors were encountered serendipitously, and we 
propose that other examples may be awaiting discovery. 
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BUCKLING AND THE RHEOLOGY OF AN ELASTIC CAPSULE SUSPENSION
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Summary The rheological behavior of an elastic capsule suspension is studied in a model two-dimensional channel using detailed numerical
simulations. As the rest capsule membrane aspect ratio increases, the capsules become increasingly vulnerable to a buckling instability. This
buckling behavior is concomitant with a sudden increase in the effective viscosity and a near disappearance of any near-wall capsule-free
layer. The microstructure dynamics suggest elongated capsules make significant rotational contributions that disrupt organized flow, as
computed by their rotlet capsule-capsule interactions.

INTRODUCTION

Flowing elastic capsule suspensions are well-known to have complex properties and rheology. We considered fluid-filled
elastic membranes, which can be considered a model for both natural capsules like red blood cells, and artificial ones such as
those used for drug delivery. The adjustment of the relative surface area of the capsule membrane leads to expected transitions
in rest shape, from round, to biconcave, to elongated, and dog-bone-like. We examine how these shape changes contribute
to the complex flow of the confined suspension, whose properties are then quantified by an effective viscosity. In blood or
similar complex suspensions, when flowing in narrow confines on the cell scale, the effective viscosity is known to involve the
formation of cell-free regions near the vessel wall, thus special attention is afforded to the behavior of this layer for different
capsule shapes and its relation to the effective vicosity. This is carried out through the simulation of a two-dimensional
simulation model.

METHODS

The flow geometry is a narrow streamwise-periodic two-dimensional channel, for which we vary width W and mean flow
rate U . The capsule membranes are finite-deformation linear-elastic shells with finite-deformation bending (M ) and tension (T )
moduli; each of which contains an incompressible Newtonian fluid with viscosity µ matching that of the suspending fluid. The
membrane rest shape is parameterized via ξo = lo/2πro, where lo is the length of the membrane and πr2o the interior capsule
area. We consider several different ξo, varying from circular geometries with ξo = 1.0 to very elongated shapes with ξo = 3.0.
Figure 1 shows the flow of different capsule geometries at capillary number u∗ = µU/T = 1.0.

(a) ξo = 1 (b) ξo = 1.7 (c) ξo = 3.0

Figure 1: Flow visualizations of different ξo capsules as indicated flowing in the model channel.

Since the Reynolds number of cell-scale flow is small, inertia is neglected and the governing equations can be solved using
a boundary integral formulation.1 The computation of velocities is accelerated using a particle-mesh-Ewald scheme based on
periodic Greens’ functions, while channel walls impose a no-slip condition enforced by a penalty method.2 The membrane
positions x are then advected according to

dx
dt

= u(x), (1)

where u(x) are the velocities of the capsule collocation points x as computed by the boundary integral equation. To evaluate
elastic tractions on the fluid, derivatives are calculated using Fourier interpolants of the discrete collocation points representing
the capsule membranes. A second-order Runge–Kutta scheme numerically integrates (1).

*Corresponding author. Email: bryngel2@illinois.edu
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RESULTS

We see for the flowing capsules in figure 1, that the (a) circular ξo = 1.0 and (b) biconcave ξo = 1.7 cases only slightly
deform from their equilibrium configuration, while the (c) ξo = 3.0 case shows significant folding of some capsules. This
seemingly disrupts the otherwise orderly flow, and is considered subsequently as a buckling mechanism.
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Figure 2: (a) Effective viscosity µeff for varying equilibrium shapes ξo, and (b) corresponding capsule-free layer thickness h.

The effective Newtonian-equivalent viscosities of the suspensions for different area fractions Hc and ξo are shown in
figure 2 (a). Elongated capsules with ξo & 2.0 have an increasingly large effective viscosity. In blood, the effective viscosity
µeff is reduced through the formation of a cell-free layer. This is measured here as h in figure 2 (b), which decreases to near
zero, also for ξo & 2.0, presumably leading to the increase in µeff.
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Figure 3: Non-dimensional force F ∗ versus resting capsule aspect ratio lc. The straight lines are power-law fits.

We hypothesize that the capsules undergo a buckling transition. Figure 3 shows force F ∗ ≡ F/µUlo plotted against the
aspect ratio lc = l1/l2 of the corresponding at-rest capsules. This is compared for single capsules suspended in a Taylor–Green
stagnation point flow, in a simple homogeneous shear flow, and in the channel flow. All three show a scaling reminiscent of
Euler bucking though altered presumably due to the strong perturbation environment in the channel and the shell-like structure
of the capsules.

This work was supported in part by the National Science Foundation under Grant No. CBET 13-36972.
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Summary The capillary driven thinning and break-up of non-Brownian suspensions are considered. Experiments show that in the final
stages of break-up (when the filament diameter is approximately five times that of the suspended particles) the thinning no longer follows
the behaviour predicted by the bulk viscosity; instead thinning is accelerated due to the effects of finite particle size. A simple one-
dimensional model is described in which the viscosity is determined from the local particle density, found by tracking individual particles
within the suspension. Despite its simplicity this model is able to reproduce quantitively the thinning behaviour observed in experiments.

CAPILLARY THINNING OF NON-BROWNIAN SUSPENSIONS

The surface tension driven thinning and break-up of liquid bridges is a fundamental mechanism controlling jet break-up
and droplet formation, and its prediction is vital to processes such as inkjet drop and spray formation. For Newtonian fluids
considerable research has been done to understand the final stages of break-up, which have been shown to follow a progression
of similarity thinning laws [1] depending upon the value of the Ohnesorge number ( Oh = η/

√
ργR, where η, ρ and γ are

respectively the viscosity, density and surface tension and R is filament radius). However, many applications involve complex
fluids such as polymer solutions or suspensions, which do not follow these scaling laws. In particular, the approach to break-
up of non-Brownian suspensions depends upon the particle size, as well as particle concentration and so cannot be predicted
from the bulk properties of the suspension alone.

Various experimental studies [2, 3] have demonstrated that the thinning behaviour of non-Brownian suspensions proceeds
through a number of different regimes, illustrated in Fig 1 (left). While the radius of filament is relatively large compared the
particle size, the thinning follows the appropriate Newtonian thinning law corresponding to the bulk viscosity. However, there
is then transition to an “accelerated” regime in which the rate of decrease of the filament radius becomes faster even than that
of the continuous fluid alone. This is followed by a further transition to a regime in which the filament appears to return to the
Newtonian thinning law, but with a slope corresponding to the viscosity of the continuous phase.

MATHEMATICAL MODEL

In order to elucidate the mechanism responsible for this accelerated thinning, we have constructed a simple model [4]
to examine the effects of axial variations in particle concentration on the thinning dynamics. In this model, the filament is
assumed to be sufficiently long and thin that it can be modelled using the slender jet approximation, but with a viscosity given
by the local particle concentration. The governing equations for the dimensionless filament radius h(z, t) and velocity v(z, t)
are given by

∂h2

∂t
+

∂

∂z
(h2v) = 0,

∂

∂t
(h2v) +

∂

∂z
(h2v2) =

∂

∂z

(
h2

(
K + 3Oh

∂v

∂z

))
.

where

K =
1

h(1 +
(
∂h
∂z

)2
)1/2

+
∂2h
∂z2

(1 +
(
∂h
∂z

)2
)3/2

,

is the surface tension contribution and

Oh = Ohs

(
1− φ(z, t)

φmax

)−2

is the dimensionless local viscosity obtained from the local particle concentration φ(z, t) via the Maron-Pierce relation. To
obtain φ(z, t) we track the positions of individual particles from an initial uniform distribution moving with the fluid velocity
and determine the number density in a local section of filament. The particles only contribute to the dynamics through the
local viscosity, so the direct effects of hydrodynamic interactions between particles and the effect of the individual particles on
the free surface are not included. However, the model does capture the coupling between the local concentration fluctuations
and the filament dynamics.

∗Corresponding author. Email: o.g.harlen@leeds.ac.uk
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Figure 1: (left) Thinning dynamics of a 10% suspension of 40 µ m diameter polystyrene particles in a polydimethylsilox-
ane(PDMS)oil for Ohnesorge number Oh = 2.5. The thinning initially follows the thinning law for a Newtonian fluid of the
bulk viscosity but then transitions to an accelerated regime where the rate of thinning is faster even than that of the continuous
phase. (Right) Comparison with the predictions of the thinning dynamics, shown as solid line with the crosses showing the
experimental data.

CAPILLARY THINNING EXPERIMENTS

The Capillary breakup experiments are performed using a CaBER-1 extensional rheometer (Thermo Scientific). This gen-
erates an unstable liquid bridge by stretching a sample of fluid between two end-plates. Unlike the pendant drop experiment,
this setup has the advantage that the position of the minimum radius remains approximately fixed, so that the diameter can be
followed more easily using a static high-speed camera. The experiments were performed using suspensions of three different
particle sizes dispersed in Newtonian silicone oils with volume fractions, φ of between 0.02 and 0.40. The minimum filament
diameters were obtained through analysis of the images from the high speed camera.

Since both the experiments and numerical simulations depend on the initial distribution of particles within the filament,
each case was run with at least ten different realisations to obtain an ensemble average.

RESULTS AND CONCLUSIONS

The right-hand figure in Fig 1. compares the simulation results with the experimental data presented in the left-hand figure.
It can be seen that despite the simplicity of the model it is not only able to reproduce the sequence of thinning regimes seen
in experiments, but also provides a quantitatively accurate reproduction of the accelerated regime and its transitions. This
demonstrates that accelerated thinning of these particulate suspensions results from local fluctuations in the particle density,
amplified as the filament radius reduces, leading to the development of low-viscosity regions that allow the filament to thin
more easily.

Whilst the model appears to capture the mechanism responsible for the acceleration phase in these moderate concentra-
tions. Recent experiments [5] show that an acceleration of filament thinning is also observed in very dilute suspensions where
the particles do not significantly change the fluid viscosity. This phenomenon occurs at a later stage when the minimum
filament diameter is smaller than that of the particles and is beyond the scope of the current model. To address this requires a
model that explicitly represents individual suspended particles, from which we hope to show preliminary results.
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IMPACT AND SPREADING OF A VISCOELASTIC DROPLET ON A SOLID SURFACE
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Summary The effects of viscoelasticity on impact and spreading of a drop on a solid surface are computationally studied. It is found that
viscoelasticity favors advancement of contact line during the spreading phase leading to a slight increase in the maximum spreading in
agreement with the experimental observations [5]. However, in contrast with the well-known anti-rebound effects of polymeric additives,
the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the anti-rebound
effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material
properties of the drop fluid. A model is developed to test this hypothesis. It is found that the model gives good qualitative agreement
with the experimental observations and the anti-rebound behavior can be captured by modification of the surface wetting properties in the
receding phase.

INTRODUCTION

Controlled deposition of a viscoelastic drop is an important problem in many applications including coating, ink jet
printing, additive manufacturing, tissue engineering and single cell epitaxy [2]. It is particularly important to know whether
a droplet will deposite or rebound after the impact. Unlike Newtonian systems, understanding of viscoelastic drop impact
is severely limited, and yet of great importance for wide range of applications. It has been reported that a tiny amount of
polymer, polyethylene oxide (POE), added to water can dramatically alter the drop dynamics, suppressing the rebounding of
a drop on a hydrophobic substrate [1].

In this paper, we computationally study the effects of viscoelasticity on drop impact, spreading and rebound on a solid
surface. We fully account for the effects of surface tension and treat the partially wetting cases with a dynamic contact
angle. The Navier-Stokes and the viscoelastic model equations (FENE-CR) are solved in the entire computational domain
using a front tracking method [7, 5]. Motivated by the recent experimental results of Bertola and Wang [3], a simple model is
developed to mimic the hysteresis of the contact angle due to the deposition of polymer molecules on the substrate. Simulations
are performed to investigate effects of viscoelasticity characterized by the Weissenberg number (Wi), polymeric viscosity
ratio (β), the concentration parameter defined as the ratio of polymeric viscosity to solvent viscosity (c) and the extensibility
parameter (L2). Although the emphasis is placed on the effects of the viscoelasticity in the present study, simulations are also
carried out to examine the effects of the Weber number (We), Reynolds number (Re) and equilibrium contact angle (θe).

RESULTS AND DISCUSSIONS

We first investigate the effects of viscoelasticity on drop impact, spreading and rebound without taking the polymer-
induced modification of surface wetting properties into account. For this purpose, extensive simulations are performed to
examine the effects of various flow parameters on the drop dynamics. Sample results are shown in Fig. 1(a) where the spread
factor is plotted as a function of non-dimensional time for various Weissenberg numbers. The spread factor is defined as the
radius of the wetted spot normalized by the equivalent drop radius. The results obtained for a Newtonian droplet are also
plotted in this figure to directly show the effects of viscoelasticity. The viscosity in the Newtonian case is set to the total
viscosity, i.e., µNewtonian = µs + µp. The figure shows that the Weissenberg number does not have a significant influence
on the spread factor in the initial stage of the impact where the inertial effects are dominant. However, its influence is more
pronounced in the later stages especially in the receding phase. The maximum spread factor increases with Wi (Fig. 1(a))
mainly due to the additional viscoelastic stresses that act to favor the advancement of the contact line. The tendency for a
drop rebound also increases with Wi and the drop rebounds when Wi ≥ 4 in this case. These results are in contrast with the
well-known polymeric anti-rebound phenomenon [1].

The recent experimental studies have revealed that there is a substantial hysteresis in the contact angle especially during
the receding phase [2]. This hysteresis is believed to be related to the polymer molecules deposited on the substrate during
the advancing phase [3]. Smith and Sharp [6] observed that the deposited polymers outside the drop are stretched during the
receding phase, which in turn slows down the movement of the contact line. This mechanism can be interpreted as a dissipative
force or an effective friction force acting in opposite direction of the contact line leading to a reduction in dynamic contact
angle during the receding phase. Bertola and Wang [3] have recently shown that the contact angle decays nearly exponentially

∗Corresponding author. Email: mmuradoglu@ku.edu.tr
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during the first receding phase. Depending on the flow conditions, the contact angle may exhibit an under-damped or over-
damped behavior until it reaches a steady value as the substrate gets fully saturated by the polymers. To mimic this behavior,
we propose a simple model for the polymer-induced hysteresis and modify the equilibrium contact angle θe as

θe =

{
θc if Vcol ≥ 0 (advancing)
θs + (θc − θs)e−t/Td if Vcol < 0 (receding),

(1)

where t, Td, Vcol, θc and θs are the time, the time scale for the polymer deposition on the substrate, the impact velocity of
the drop, the clean and saturated equilibrium contact angles, respectively. The deposition time scale characterizes how fast
the polymers deposit on the substrate. The hysteresis effects are reduced as Td increases and no-hysteresis conditions are
recovered in the limit as Td → ∞. Simulations are carried out to examine the performance of this model and the sample
results are shown in Fig. 1(b) where the evolution of the spread factor and the dynamic contact angle is plotted for various
values of the non-dimensional deposition time scale τ = TdVcol/d where d is the equivalent drop diameter. As seen, the drop
rebound is suppressed as τ is reduced showing qualitatively good agreement with the anti-rebound effects of polymer additives
observed in the experimental studies [2, 3]. These results support that the anti-rebound effect is mainly due to the modification
of surface wetting properties by the deposited polymer molecules rather than alteration of the bulk fluid properties.
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Figure 1: (a) The simulations without the polymer-induced hysteresis. Effects of the Weissenberg number on droplet impact
and spreading. Time evolution of the spread factor with Wi (Re = 35,We = 30, L2 = 225, β = 0.56 and θe = 145◦). (b)
The simulations with the polymer-induced hysteresis. Effects of the non-dimensional deposition time (τ ) on droplet impact
and spreading. τ ranges between 1 and 50 (Re = 75,We = 30,Wi = 1, L2 = 225, β = 0.07, θc = 145◦ and θs = 90◦).
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Flow induced inhomogeneity for a polymer solution in oscillatory shear flow  
Joseph D. Peterson and L. Gary Leala 
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Summary Flow-induced concentration inhomogeneities are often neglected in fluid mechanics studies of polymer solutions, but recent work has 
shown that they can often occur and may lead to major changes in the flow kinematics. In this work, we consider this phenomena for the simple 
model problem of large amplitude oscillatory shear flow (LAOS).  

Flow Induced Demixing and Two-Fluid Models  
   Entangled polymer solutions are known to exhibit enhanced light scattering and demixing for a broad range of flow 
geometries in both steady and unsteady flows1, 4.  The resulting inhomogeneity in polymer concentration can, in turn, lead 
to major changes in the flow compared to what would be predicted for the same fluid rheology but uniform concentration.  
Early investigations2 showed these phenomena arise due to a coupling between stress and concentration; in particular, the 
diffusive velocity of a polymer network is modified to account for the migration of polymer chains towards regions of higher 
stress.  Such a coupling between stress and concentration is reasonably captured by two-fluid models that treat the polymer 
and solvent as superimposable continuum fluids coupled by friction and incompressibility.  An example of such a two-fluid 
model is described in our previous research of flow induced demixing in steady shear flows3 
 
  Our recent 1D studies of a two-fluid model, based upon the Rolie-Poly constitutive theory, have shown that shear induced 
demixing leads to shear banded steady state velocity profiles3.  The physics that drives this transition is relatively well 
understood at this point in time:  a local depletion of polymer results in an immediate increase in the local shear rate to ensure 
stress continuity.  This increased rate of deformation causes the polymer to experience an increase in compressive stresses 
along the flow gradient axis.  For certain conditions, these elastic compressive stresses overpower the osmotic stresses and 
the low concentration domain squeezes solvent out of nearby concentrated regions, further enhancing the difference in 
concentration between the two regions of flow.  This process will continue until the difference in concentration between the 
two domains is large enough to prevent further growth of concentration inhomogeneity. 
 
  Experimentally, shear induced demixing in polymer solutions has also been observed in large amplitude oscillatory shear 
flow4 (LAOS), but the nonlinear, unsteady nature of the flow would initially seem to preclude the development of a 
comparatively concise explanation of the instability and its nonlinear evolution. 
 

Multiple Scale Asymptotic Analysis 
 

   Numerical simulations of LAOS induced demixing, using the full two-fluid Rolie-Poly model, reveal that changes in 
concentration tended to evolve over a diffusive time-scale  that is much longer than the period of oscillation 1/  at 
the system boundary.  For timescales on the order of 1/ , the concentration profile is nearly unchanging, whereas 
oscillations in the velocity and polymer configuration are quasi-periodic.  For much longer time-scales, any initial 
perturbation to the polymer concentration profile appears to evolve smoothly with negligible correlation to the oscillatory 
dynamics of the velocity profile and configuration tensor.  Because the separation of time-scales is large ( ≫ 1/ ), 
this suggests that an approximate analytic description of the dynamics can be achieved via the asymptotic method of 
multiple scales. 
 
   After formally applying the method of multiple scales, we found strong parallels between the physics of demixing in 
steady flows and demixing in oscillatory flows.  In steady flows, changes in the configuration tensor may be approximated 
as quasi-steady with respect to changes in the polymer concentration.  In oscillatory flows, the configuration tensor is 
always oscillating about a limit cycle, but the entire limit cycle can be approximated as quasi-steady with respect to changes 
in the polymer concentration.  Thus, the relationships that provide an asymptotic description for the linear and non-linear 
behavior of flow induced demixing are identical for steady and unsteady flows, except that in unsteady flows the 
relationships are averaged through a limit cycle instead of computed for a stationary point. 
 

Comparing:  Simulations and the Asymptotic Theory 
 
  To evaluate the utility of the asymptotic model, we have tested its predictions of stability boundaries and shear band 
selection against a numerical simulation of demixing in the full two-fluid model.  The choice of oscillatory flow is somewhat 
arbitrary, but for simplicity we impose a sinusoidal oscillation in the shear stress such that Σ ̅ = Σ sin 2 ̅ , where the 
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shear stresses have been normalized by the elastic modulus of the solution.  We evaluate the resulting velocity and 
concentration profiles for a well entangled semi-dilute polymer solution with 40 entanglements per chain and a solvent of 
viscosity 10  relative to the viscosity of the whole solution.  The elastic modulus of the solution is 0.15 relative to the 
osmotic modulus, and the gap dimension is 35 times larger than the solution correlation length.  To describe the coupling 
friction, we choose a ‘magic length’ at which diffusion and stress relaxation occur on similar time-scales.  For present 
purposes, this magic length is defined as 1/10 of the gap dimension.  Finally, the period of oscillation is chosen to be equal 
to the reptation time of the polymer chains. 
 
   For the material and flow protocol described above, demixing is predicted by the asymptotic theory to occur for Σ =0.6515, 0.6935 .  Here, we show simulations results for an initial small amplitude sinusoidal perturbation in the polymer 
concentration for values of Σ  just below and just above the asymptotically predicted lower critical value for demixing.  
Note that the perturbation magnitude (as measured by the L2 norm of the departure from homogeneity) does oscillate slightly 
with the rest of the system, but the overall trend is consistent growth or decay. 
 

       Figure 1:  Perturbations decay for Σ  below the stability boundary but grow in the expected unstable range of Σ . 
 

   The asymptotic theory seems well-equipped to describe the transition from homogeneous to demixing flows.  As the 
perturbation amplitude grows larger still, the asymptotic theory predicts an eventual shear banded steady state.  
Simulations of the full model confirm the existence of shear banding, and the asymptotic model shows excellent agreement 
with the numerically predicted mean composition and velocity profiles.  In the figures below, we show agreement in the 
steady state concentration profile (left) and time dependent local shear rates in the high shear band (middle) and low shear 
band (right).  The concentration is scaled by its mean value and the shear rates are scaled by the oscillation frequency. 
 

  
Figure 2:  The asymptotic model can be used to obtain predictions for the concentration in the shear bands and the 

rheological behavior of the two bands.  The figure on the left shows that the sigmoidal concentration profile obtained via 
numerical simulation approaches the limiting concentrations anticipated by the asympotic model.  The center and right 

figures show that the rheological response of the two shear bands is also well described by the asymptotic model. 
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Summary We present results of a numerical investigation of the low Reynolds number flow of viscoelastic fluids, described by the Oldroyd-B 
model, in a 2D cross-slot channel with a main inlet flow and two periodic in-phase and out-of-phase forcings imposed on the opposing lateral 
inlets. Several types of flow transition are reported that depend on the amplitude and frequency of the forcing. We observed that for high 
Weissenberg numbers the flow becomes chaotic, with the path to the chaotic state depending on both the ratio of steady inlet velocity to 
oscillating velocity amplitude and Deborah number.  
 

INTRODUCTION 
 
   Purely-elastic instabilities, i.e. induced by elastic normal stresses in the absence of significant inertial effects, have been 
observed in a range of flows, including ideal viscometric and complex flows. It is now well known that such instabilities 
can arise as a consequence of the combination of elastic stresses and streamline curvature, such as in the cross-slot 
microchannel flow investigated experimentally by Arratia et al. [1]. Poole et al. [2] numerically simulated such two-
dimensional cross-slot flow for an Upper-Convected Maxwell (UCM) model under creeping-flow conditions, and were able 
to capture qualitatively the onset of a bi-stable steady asymmetric flow above a first critical Weissenberg number (Wi), 
followed by a second transition to a time-dependent flow at higher Wi. More recently, Cruz et al. [3] proposed the cross-slot 
flow as a benchmark problem due to its conceptually simple geometry and well defined steady asymmetric flow instability. 
The benchmark results were presented for a wide range of differential constitutive equations, namely the UCM, Oldroyd-B 
and Phan-Thien–Tanner (PTT) models, showing that, in the limit of negligible inertia, i.e. when the Reynolds number (Re) 
approaches zero, the flow exhibits two types of purely-elastic instabilities for fluids with high extensional viscosity. Above 
a first critical value of the Weissenberg number, Wicrit, the steady flow becomes spatially asymmetric, even though the 
geometry is perfectly symmetric; at higher Wi a second instability occurs and the flow becomes time-dependent. 
   A flow-focusing configuration can also be realized in the same cross-shaped geometry in which a central inlet flow is 
shaped by two opposed side inlet streams, as in Jensen [4]. The steady low Re flow behavior for Newtonian fluids has been 
extensively investigated numerically by Oliveira et al. [5], whereas the corresponding viscoelastic flow was also 
characterized by the onset of elastic instabilities for UCM and linear simplified PTT models [6]. As for the cross-slot 
configuration above, the flow-focusing configuration showed a first pitchfork bifurcation from steady symmetric to steady 
asymmetric flow at a first critical Weissenberg number followed by a second transition to time-dependent flow above a 
second critical Weissenberg number provided the velocity ratio (VR) between side and main inlets was high, whereas for 
low VR there is a single transition from steady symmetric to time-dependent flow. However, what happens when the inlet 
lateral streams are not steady and how the elasticity and lateral inlet periodicity interact with the main steady inlet is still 
unknown and is the subject of the current investigation. 
 

METHODS, RESULTS AND DISCUSSION 
 
   In this work we further extend the previous investigations of Oliveira et al. [6] by considering time periodic oscillating 
lateral streams of amplitude Umax and frequency f, defining the lateral inlet velocity as u=Umax cos(2πft), stretching the main 
steady inlet stream of constant velocity Usteady, as sketched in Fig. 1a. The mesh used in the numerical simulations has 51 
cells in the central square region of the cross slot along x and y directions (see partial view of the mesh in Fig. 1b), leading 
to minimum cell sizes of ∆xmin = ∆xmax ≈ 0.02. We have used a finite-volume technique based on the kernel-conformation 
formulation, together with the high resolution ‘CUBISTA’ scheme for the convective terms in the constitutive equation, to 
study the low Re viscoelastic flow (Re < 0.01) inside the cross geometry, using an Oldroyd-B fluid with solvent viscosity 
ratio, b=0.575. 
   In order to explore the evolution of the flow dynamics due to the periodic oscillation we defined a parametric variable 
space based on the variation of the Weissenberg number (Wi=lUsteady/h= 0 to 10), of the velocity ratio (VR=Usteady/Umax= 
0.2, 1 and 5) and of the oscillation frequency, f, here quantified via the dimensionless Deborah number (De= lf= 0.2, 1 and 
5). Using two different periodic inlet flow configurations (in-phase and out-of-phase, as sketched in Fig. 1a) we were able to 
assess the importance of different types of flow near the stagnation point while assessing how the flow evolves along the 
outlet channel. We observed several types of flow transition, that depend on the amplitude and frequency of the forcing, and 
analyzed the corresponding velocity and stress fields in the exit channel, at the positions marked in Fig. 1a). As illustrated in 
Fig. 2, for the in-phase flow configuration the results at low Wi show the dampening of the oscillations on moving 
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downstream along the outlet channel, whereas for high Wi the flow becomes chaotic. In contrast, for the out-of-phase 
forcing the outlet flow remains periodic up to Wi=10. 
 

       
(a)                                 (b) 

Fig. 1. a) Schematic of the 2D cross-slot geometry and time periodic inlet configurations: in-phase (red) and out-of-phase 
(blue) configurations; b) partial view of the mesh at the central square. 
 

  

  
(a)                                                 (b) 

Fig. 2. Time-space velocity maps at different cross-sections in the outlet channel at Wi= 0.1 (top two rows) and Wi= 10 
(bottom two rows): a) in-phase configuration for De=0.2 and VR= 0.2; b) out-of-phase configuration for De= 5 and VR= 5. 
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Summary Excluded volume (EV) and hydrodynamic interactions (HI) play a central role in macromolecular dynamics under equilibrium
and nonequilibrium settings, specifically in determining the concentration dependence of the properties of polymeric solutions. The compu-
tational cost of incorporating the influence of HI in Brownian dynamics simulations (BDS) of semidilute polymeric solutions has motivated
much research on development of high-fidelity and efficient techniques. Here, a matrix-free approach for calculation of HI is implemented
which leads to O (N logN) scaling of computational expense, where N is the number of beads in the simulation box. The fidelity of
the algorithm is demonstrated by evaluating the properties of polymeric solutions and comparing the results with that of the blob theory.
The scaling of relaxation time versus concentration is evaluated and compared with experiment. Furthermore, the matrix-free approach is
implemented for nonequilibrium settings to simulate extension and relaxation of macromolecules of different architectures.

INTRODUCTION

The effect of concentration on equilibrium and dynamic properties of polymer solutions has been observed experimentally
even at very low concentrations [1]. Accurate determination of the aforementioned properties of the polymer solutions near
or above c∗ (the concentration at which chains begin to partially overlap at equilibrium), i.e., the semidilute regime, is of great
importance to the polymer physics as well as polymer processing communities. To this end, development of high-fidelity and
computationally efficient simulation techniques for this class of fluids is important both from a scientific perspective and in
industrial applications.

Calculating long-range HI
The perturbation of the velocity field around a polymer segment (or hydrodynamic coupling) is due to the movement of the

segments of the same chain (intra-chain interaction) and the segments of other chains (inter-chain interaction). Simulations
of such multichain systems are performed for homogeneous system in an unbounded domain using a periodic box. Nc chains
with Nb identical beads are considered inside the primary box, so the number of interacting beads is N = NcNb. Due to
the long-range nature of HI, each bead interacts not only with the beads inside the primary simulation box, but also with
particles in all periodic replicas (images) of the primary box. The additive sum corresponding to this hydrodynamic coupling
is known to be slowly and/or conditionally convergent [2]. Beenakker [2] used Ewald summation technique for Rotne-Prager-
Yamakawa (RPY) HI tensor to split the original sum into two exponentially decaying sums in real and reciprocal spaces. In a
straight forward implementation of the Ewald sum, the construction of the diffusion matrix requires O

(
N2

)
operations. This

procedure followed by the calculation of Brownian displacements which also scales as O
(
N2

)
(if the Lanczos algorithm is

used [3]) are the most cost prohibitive procedures in simulating polymer solutions with concentrations well above c∗.

Matrix-free Brownian Dynamics approach
In this study, the high computational cost of simulating long-range HI is reduced by using smooth particle mesh Ewald

(SPME) technique where fast Fourier transform (FFT) is employed to accelerate the computations in reciprocal space. A
small subset of interacting particles is treated in the real space while the main load is transferred to the reciprocal space sum.
Efficient implementation of this method leads to the scaling of O (N logN) [6].

GOVERNING EQUATIONS

The dynamics of a macromolecule can be described using a coarse grained bead-spring model [4]. In this micromechanical
model, a flexible polymer withNK statistical Kuhn steps is discretized usingNb identical beads, which resemble the centers of
hydrodynamic resistance, connected by Nb − 1 springs, which account for the entropic force between the neighboring beads.
The simulation box is assumed to have sides with dimensions (Lx, Ly, Lz); i.e., V = LxLyLz . Therefore, the concentration
of beads in the box is given by c = N

V . The Itô stochastic differential equation of motion (SDE) is integrated in BDS to obtain
the time evolution of the position of the beads, i.e., r. The nondimensionalized form of SDE is written as

dr =

[
PeK · r +

1

4
D · F φ

]
dt+

1√
2
C · dW (1)

where K is a block diagonal matrix which contains Nb ×Nb blocks of 3× 3 matrices which are equal to the transpose of the
velocity gradient tensor. The diffusion matrix D is also a block matrix which contains Nb ×Nb blocks and each block is the
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Figure 1: (a) The mean-square radius of gyration as a function of the number of beads in a bead-spring chain. The inset schematically
depicts the blobs in the blob theory. (b) The execution time per time step as a function of the number of beads inside the periodic simulation
box and the corresponding concentration.

3×3 pairwise RPY HI tensor. F φ = F S+FEV is the total conservative force on the beads, where F S is the net spring force
and the FEV is the excluded volume force due to having a better than θ-solvent. C is the coefficient matrix which satisfies
the following equation, D = C ·CT . In this work, C is calculated using the polynomial approximation to D1/2 based on the
Lanczos technique [3]. W is a 3N dimensional Wiener process [4] defined for all beads in the simulation box.

RESULTS AND DISCUSSION

The static and dynamic behavior of multichain systems in θ and good solvents was evaluated both in dilute as well as
semidilute regimes. The mean-square radius of gyration of the chains with different length in a good solvent is shown in Fig.
1(a). At low concentrations, i.e., (c/c∗ < 0.1),

〈
R2
g

〉
is similar to the dimensions of the single chains at infinite dilution. At

higher concentrations, an individual macromolecule experiences the repulsion due to the other chains in its vicinity which
results in the reduction of its dimensions. The blob theory [5] (schematically shown in Fig. 1(a)) estimates this relative
reduction of the chain size, i.e., Rg/Rg,0 = (c/c∗)

−(2ν−1)/(6ν−2), where Rg,0 is the radius of gyration in the limit of infinite
dilution. To this end, the radius of gyration of the multi-chain systems with the relative concentration c/c∗ = 5 is determined.
It can be clearly seen that the simulated

〈
R2
g

〉
is consistent with the predictions of blob theory.

The execution time per time step as a function of N using both Ewald and matrix-free algorithms is depicted in Fig. 1(b).
Clearly the matrix-free implementation with proper choice of the Ewald parameters [6] results in the total execution time
which scales as O (N logN). As expected, the scaling of the execution time for the original Ewald algorithm is as O

(
N2

)
.

The universal scaling of relaxation time for dilute and semidilute solutions is evaluated based on the correlation function
of bead to center of mass relative distance to shed light into the dynamics of interacting macromolecules. The simulations are
compared against the experimental data by Pan et al. [1]. Furthermore, the matrix-free approach is implemented for systems
under homogeneous planar flow to simulate the transient and steady-state extension and relaxation of macromolecules of
different molecular architectures.
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Summary The study of viscoelastic fluids with particulate fillers is of considerable interest due to the prevalence of such materials in
manufacturing, including injection molding and 3D printing, where the robustness of the process depends on controlling the suspension
rheology. However, a fundamental understanding of the bulk stress of viscoelastic suspensions is complicated by the nonlinearities of
the suspending fluid properties, which present a challenge for deriving analytical results. We present 3D simulations of neutrally buoyant
spheres freely suspended in a viscoelastic fluid described by the Giesekus model under shear flow. Single particle results are used to validate
the dilute limit and explore the effect of high shear rates, showing that the bulk rheology becomes dominated by polymer stresses induced
in the fluid by particle disturbances. We also present multi-particle simulations at low volume fractions with fully resolved hydrodynamics
to show how particle-particle interactions affect the pair-probabilities and resulting bulk stresses.

PROBLEM STATEMENT

Introduction
Because of the importance of viscoelastic suspensions in applied industrial applications, they have been studied mostly

through experimental research devoted to concentrated suspensions. A deeper fundamental understanding of such systems is
lacking in part because of the diverse nature of viscoelastic fluids and the nonlinearity of their stress-strain relationship. Few
theoretical results exist and these predictions are often only valid in a flow regime (i.e. very weak flow and infinite dilution)
where experimental measurements are difficult [1]. Numerical tools for computing the rheology of viscoelastic suspensions
are few and most have focused on 2D, which produce results that often differ qualitatively and quantitatively from experiments
[2]. As such there is a need for 3D simulations to not only validate the theoretical calculations but also provide a fundamental
understanding of the mechanisms present in experimental results. We focus on the viscometric functions for non-colloidal
suspensions of spheres in “Boger” fluids – i.e. nearly constant shear viscosity elastic fluid – since our primary goal is to gain
insight into the effect of fluid elasticity on the rheological behavior of suspensions. There are several interesting observations
from the experimental data which we explain through our numerical simulations. First, though the suspending Boger fluid is
of constant shear viscosity, suspensions exhibit shear thickening even at low volume fractions [3, 4]. Second, experimental
measurements of viscometric functions at low volume fractions exhibit larger viscosities and first normal stress difference
coefficients than that predicted by dilute theory. Moreover, the measured second normal stress difference coefficients may
differ in sign compared to that predicted by the dilute theory [4].

Numerical Methods
We use a 3D, parallel code based on an unstructured finite volume formulation for incompressible flow. The viscoelastic

suspending fluid is described using the Giesekus constitutive model, which is fit to a number of existing experimentally
measured Boger fluid rheologies, and added as a momentum source to the fluid solver. The code can accommodate boundary-
fitted meshes, which allow high resolution of particle boundaries and can resolve all hydrodynamics (cf. Fig 1 a), as well as an
immersed-boundary (IB) formulation that can efficiently handle multi-body dynamic simulations as well as all hydrodynamics
if the particles remain separated by at least one grid spacing (cf. Fig 1 b). The IB code allows us to capture structure formation
from flow inception to steady state (cf. Fig 1 c). The simulations are completed by solving the continuity and momentum
equations for the flow around the particles and from this we can calculate any quantities of interest – e.g. the particle-induced
fluid stress and the stresslet, which, when combined, determine the particle contribution to the bulk stress.

RESULTS

We first present a study of dilute suspensions as a function of the flow Weissenberg number, Wi, defined as the product
of the shear rate and the polymer relaxation time, in Boger fuids. We found that the particle contribution to all viscometric
functions exhibit shear thickening (cf. Fig 2 a). The shear-thickening was found to be created by the stretching of the polymers
in the surrounding fluid induced by particle disturbances. These particle-induced fluid contributions increase withWi, though,
depending on the particular stress contribution, the trends may not be monotonic with Wi. We have also determined the
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(a) (b) (c)

Figure 1: (a) body-fitted mesh for single particle simulations (b) initial configuration for immersed-boundary multi-particle
simulations (c) 5 % suspension at various strains, γ̇t = 0, 5, 10

(a) (b)

Figure 2: (a) particle contribution to the viscosity, first normal stress coefficient, and second normal stress coefficient; stresslet
in red, particle-induced fluid stress in blue, and total in black (b) cumulative pair probability of a 5 % suspension at Wi = 1

leading order Wi corrections (for Wi << 1) to the viscosity, first normal stress difference coefficient, and second normal
stress difference coefficient for dilute suspensions.

We also performed multi-body simulations of suspensions at volume fractions of 0.05 in suspending Boger fluids. We can
quantitatively evaluate the structure formation in the suspension by computing the cumulative pair probability and we find
that there is a reduction of particle-particle interaction pairs in the flow direction while most interactions occur at an angle
between the gradient direction and the vorticity direction (cf. Fig 2 b). We do not observe chaining in our simulations, which
is in qualitative agreement with previous experimental observations of suspensions in Boger fluids [5]. On the other hand, 2D
simulations do show chaining via flow-alignment, which suggests that our 3D multi-body simulations more accurately capture
the physics of particle interactions than corresponding 2D simulations.

CONCLUSIONS

We have used a set of numerical tools to study the rheology of suspensions at low volume fractions for Wi = 0−5. In the
dilute regime, we have validated our results by comparison to existing theory and, thereafter, extended the stress predictions to
high Wi. In the non-dilute, low volume fraction regime, we are able to predict suspension structures similar to that observed
in experiments. These tools allow us to study hydrodynamic interactions between particles and determine the solvent and
polymer contributions to the bulk stress over a broad range of parameters. We anticipate that the present study will inform
further fundamental investigations of suspensions in viscoelastic fluids as well as provide a starting point for the development
of constitutive models for full particle loaded, viscoelastic suspensions.
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MOLECULAR ORIGINS OF HIGHER HARMONICS IN LAOS: SHEAR STRESS 
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Summary Recent work focuses on understanding the molecular origins of higher harmonics arising in the shear stress response of polymeric 
liquids undergoing large-amplitude oscillatory shear (LAOS). These higher harmonics have been explained using orientation distribution of a 
dilute suspension of rigid dumbbells in a Newtonian fluid, neglecting polymer interaction. We explore these interactions by examining the 
Curtiss-Bird model, a kinetic molecular theory that accounts for restricted polymer motions arising when chains are concentrated.  
 

INTRODUCTION 
 

We examine the molecular origins of higher harmonics that arise in the shear stress response of a fluid undergoing 
LAOS [1] by exploring the predictions for several special cases of the Kramers freely-jointed chain [2]. We compare these 
predictions with those of rigid dumbbell [3] and reptation [4] theories. To explore the predicted behaviors, we plot loops of 
shear stress versus shear rate, since these best display distortions from ellipticity.  

 

     
Figure 1: (Left to Right) Kramers freely-jointed chain (a), chain through slip-links (b), rigid dumbbell (c). 

 
The Curtiss-Bird theory [2] models the polymer as an intertwined, interacting collection of freely jointed bead-rod 

chains (Figure 1a). A chain moves easily along its backbone ("reptation"), but neighboring chains restricts its lateral 
movement. The link tension coefficient,  ε , quantifies this anisotropy, for which special cases arise: reptation (  ε = 0 ), rod-
climbing (  ε >1 8 ), reasonable shear-thinning (  1 5 ≥ ε ≥ 3 4 ), and dilute solution without hydrodynamic interaction (  ε =1 ). 
 

     

         
Figure 2: Curtiss-Bird model loops for   ε = 0  (top row) and slip-link reptation loops (bottom row) of dimensionless 

shear stress versus shear rate calculated for different values of  Wi  with (left to right)  De = 0.1,1,10 . 
 

In the dilute rigid dumbbell theory [3], a pair of beads, rigidly-separated, reorient in oscillatory shear flow, without 
interacting with any other dumbbells (Figure 1c). Doi-Edwards reptation theory includes hydrodynamic interaction by 
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confining the polymer chain to a tube [5] representing hydrodynamic interaction. For LAOS, reptation has been modeled 
using chains slipping through links (Figure 1b) [4]. We compare slip-link reptation with Curtiss-Bird theory [2] at   ε = 0 . 
 

COMPARISON: REPTATION THEORY 
 

The Kramers freely-jointed chain (special case of   ε = 0 ) predicts an orientation distribution of the chains that matches 
the orientation distribution of Doi and Edwards. In other words, for the special case of   ε = 0 , we can compare the Curtiss-
Bird model, at least approximately, with predictions from slip-link reptation [4]. If we compare shear stress versus shear rate 
loops of Curtiss-Bird at   ε = 0  with those predicted by slip-link reptation (Figure 2), we immediately see that the 
reasonable loop shapes of Curtiss-Bird at  De ≤1  are not replicated by slip-link reptation. Instead, we obtain unphysical 
self-intersecting loops and loops with loop-end distortions resulting from the higher harmonics, which we call having wrong 
convexity. By wrong convexity, we mean that the loop tips are concave up rather than matching experimentally observed 
concave down shapes. Both models have wrong convexity at  De >1 , but they agree more closely. 

 
COMPARISON: DILUTE SOLUTION OF RIGID DUMBELLS 

 
When   ε =1 , the Curtiss-Bird model describes orientation distributions for dilute solutions. We can compare the 

Curtiss-Bird loops with those of a dilute solution of rigid dumbells (Figure 3). The increase of  ε  eliminates the wrong 
convexity we observed in the Curtiss-Bird loops when   ε = 0 . However, the rigid dumbbell model still predicts wrong 
convexity when  De >1 . Furthermore, these two dilute solution models do not agree at any value of  De . 
 

     

     
Figure 3: Curtiss-Bird model loops for   ε =1  (top row) and rigid dumbell model loops (bottom row) of dimensionless 

shear stress versus shear rate calculated for different values of  Wi  with (left to right)  De = 0.1,1,10 . 
 

CONCLUSION 
 

The higher harmonics in the fluid shear stress response are not correctly captured by molecular models, which predict wrong 
convexity for several values of  De  and  Wi . Additionally, the wrong convexity manifested by each model disagrees with slip-
link reptation and dilute solution predictions at similar conditions. Because the models do not capture convexity correctly and 
disagree with each other, one must further dissect these models to discover the source of these errant predictions. 
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MACH CONES IN A VISCOELASTIC FLUID

Fumihiko Mikami∗1 and Yoshiaki Yagi1
1Department of Mechanical Engineering, Chiba University, Chiba-shi, Chiba, Japan

Summary Mach cones created by a falling sphere are observed experimentally in a viscoelastic fluid. The fluid used is a dilute wormlike
micelle solution of cetyletrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) dissolved in water. A sphere falls through
the fluid faster than the speed of shear waves. Mach cones are clearly observed in vorticity fields. They have a multiple-cone structure. The
first cone is involved with forward shearing motion in the direction induced by the falling sphere, and it is followed by weaker cones with
backward shearing motion accompanied by a relaxation of the initial shearing motion. The results suggest the importance of considering
shear-wave-based Mach numbers that facilitates the understanding of a complex phenomenon associated with viscoelastic fluid flows.

INTRODUCTION

Shear waves, or equivoluminal waves can be propagated in viscoelastic fluids, and they can be interpreted as vorticity
waves in the fluids. The speed of shear waves is given by

√
G/ρ, where G is the rigidity and ρ is the density of the fluid. The

speed of shear waves propagating in a viscoelastic fluid is usually much smaller than that of compressional sound waves in the
fluid. Therefore, it is easily possible that a shear-wave-based Mach number M = V/c exceeds one, where V is the speed of
an object through a fluid and c =

√
G/ρ is the speed of shear waves in the fluid. The phase velocity of plane harmonic waves

in wormlike micellar fluids decreases with the concentration and tends to zero [1], which is indicating that dilute conditions
may give rise to supercritical flow of the fluids. Joseph [2] considered the problem of uniform flow of viscoelastic fluid past a
body using linearized theory and showed that a Mach cone will develop if M > 1, where the governing vorticity equation is
hyperbolic when M > 1 and elliptic when M < 1. In this study, we demonstrate experimentally that Mach cones are created
by a falling sphere in a dilute wormlike micelle solution in the condition of M > 1.

METHODS

An aqueous solution of wormlike micelles was prepared by mixing 3 mM cetyltrimethylammonium bromide (CTAB) and
3 mM sodium salicylate (NaSal) in deionized water. The wormlike micelle solution was seeded with water-soluble acrylic
paint containing luminous red pigment suspension for flow visualization purpose. It has been shown that the linear rheology
of the wormlike micelle solution can be well described by a fit to a Maxwell model having single relaxation time [3]. Because
the shear wave speed is the most important characterizing property of the fluid responsible for the formation of Mach cones,
the speeds of plane shear waves generated by impulsive excitation in the fluid were directly measured instead of measuring
the steady and dynamic shear rheology.

The fluid was contained in a transparent Plexiglas vessel having square cross section of 100 mm in side and a hight of 350
mm. The experiments were performed at a constant temperature of 25 ◦C. Shear waves were generated by a vertical thin plate
moving in its own plane driven by an electric linear actuator. The plate undergoes a step increase of velocity from rest to 10
mm / s followed by a sudden stop. A generated shear wave pulse travels in the direction normal to the plate. The flow fields
were visualized with laser sheet illumination of a central vertical slice normal to the plate. The sheet thickness of the laser
was 0.8 mm. The emitted fluorescence from the tracer particles was imaged with a CCD camera (2336 ×1728 pixel, 8 bit) by
using a sharp cut filter and captured on a PC. The flow fields associated with the shear waves were obtained by using a particle
image velocimetry (PIV) and the vorticity was computed from the flow fields. The shear wave speed c was determined by
tracking the position of a vorticity peak over several frames.

A polystyrene sphere of a density ρs = 1.04 × 103 kg / m3 with a diameter of 6.36 mm was released from a guide pipe
carefully. The lower end of the guide pipe was positioned a depth 12 mm below the center of the free surface. The flow fields
around the sphere were obtained in a vertical plane coinciding with the center of the sphere, in the same way as described
above for the wave speed measurement. The position of the sphere in each video frame was obtained by image analysis. The
settling velocity V was determined from the trajectories of the sphere. The Mach number is defined as M = V/c.

RESULTS

In wave speed measurements, the generated shear waves have been damped before they reach walls and reflected waves
were not observed. A vorticity peak was successively tracked over several video frames without any disturbance arising from
the circulating flow in a cavity driven by a moving plate. The measured shear wave speed for the 3 mM CTAB/NaSal solution
was 8.4 mm/s.

∗Corresponding author. Email: fmikami@faculty.chiba-u.jp
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Figure 1 shows the flow fields and the vorticity fields around a sphere falling at a constant speed of M = 1.5. The Mach
cone is clearly visible and more easily identified on vorticity maps. The half-angle α of the Mach cone is nearly 40◦, which
obeys the relation sinα = 1/M . The undisturbed region in front of the Mach cone is visible in the vorticity fields. As can be
seen in the vorticity maps, the initial Mach cone is followed by weaker cones with opposite sign of vorticity. The velocity and
the vorticity fields show that in the first cone the fluid elements undergo forward shearing motion in the direction of shear flow
induced by the falling sphere and in the following cones they undergo backward shearing motion. It is considered that the
weaker Mach cones with opposite sign of vorticity are caused by a relaxation of the initial shearing motion in the first cone.
A conical region of the negative wake is also visible in the flow fields behind relaxation waves.

Arigo and McKinley [4] examined negative wakes behind a sphere sedimenting in a viscoelastic solution of polyacrylamide
in a water glycerol mixture. The Mach cones did not appear in their PIV results. By using the values given by them for
the fluid, the shear wave speed is computed to be 58 mm/s and the Mach number is ranging from 0.07 to 0.09, which is
subcritical. On the other hand, the formation of a conical upward flow zone that may be a Mach cone around a rising bubble
in a polyacrylamide solution is reported in the experiment of Funfschilling and Li [5]. The flow patterns in their results are
quite simillar to ours. Unfortunately, the shear wave speed can not be determined from their data, though the Mach number
probably exceeded one in their experiments. They also observed a zone of a negative wake behind the conical upward flow.
The distinct flow zones in their results could be attributed to the nature of the supercritical flows.

0.030.00-0.03
omega*

(a) (b) (c)

Mach cone

relaxation waves

zone of silnce
potntial flow

Figure 1: Flow around a sphere falling at a Mach number of 1.5 in a 3 mM CTAB/NaSal solution. (a) Velocity field. (b)
Vorticity ω∗ non-dimensionalized by the sphere velocity and the sphere diameter. (c) Wave system around a sphere.

CONCLUSIONS

Mach cones in a viscoelastic fluid were investigated experimentally by using a PIV. Mach cones were generated by a
falling sphere in a viscoelastic wormlike micelle solution when the sphere velocity is faster than the shear wave speed in the
fluid. The Mach cones were visible in the vorticity fields, and were found to have a multiple-cone structure. In the first cone
the fluid elements undergo forward shearing motion in the direction induced by a sphere and in the following weaker cones
they undergo relaxation by backward shearing motion. The results suggest the importance of considering shear-wave-based
Mach numbers that facilitates the understanding of a complex phenomenon associated with viscoelastic fluid flow.
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Summary We subject elastomers to a fixed pre-stretch in uniaxial extension upon which a large-amplitude oscillatory uniaxial 
extensional (LAOE) deformation is superposed. Our new continuum model, the Voigt element with strain-hardening spring, for 
this behavior combines a new nonlinear spring in parallel with a Newtonian dashpot. We consider this three-parameter model to 
be the simplest relevant one for the observed convex banana-shaped stress-strain ( τ xx − ε ) loops. We fit the three parameters 
(Young’s modulus, viscosity and strain-hardening coefficient) to our LAOE measurements. We develop analytical expressions 
for the Fourier components to the parts of the stress response, both in-phase and out-of-phase with the strain, for the zeroth, first, 
second and third harmonics. We find that the part of the second harmonic that is out-of-phase with the strain must be negative, 
for proper banana convexity.  
 

INTRODUCTION 
 

We subject elastomers to a fixed pre-stretch in uniaxial extension upon which a large-amplitude oscillatory uniaxial 
extensional (LAOE) deformation is superposed (Figure 1a). Our continuum uniaxial spring, the strain-hardening spring 
follows: 

   
τ xx = E ε[ ]+ −ε 2 1+ 2

3 ε( ) 1+ ε( )−2{ }+ hε 4!
"#
$
%&( )  (1) 

which, when combined in parallel with a Newtonian dashpot givess: 

   
τ xx = E ε[ ]+ −ε 2 1+ 2

3 ε( ) 1+ ε( )−2{ }+ hε 4!
"#
$
%&( ) +η 'ε  (2) 

where for our LAOE protocol (Figure 1a): 

  
ε = ε p + ε0 sinωt  (3) 
where the bracketed [blue] term is the linear elastic contribution, the braced {green}, the nonlinear, and the slot-bracketed 

  red! " term accounts for strain-hardening. We call this the Voigt element with strain-hardening spring [Figure 1b and 
following Eq. (2)].  
 

 
Figure 1: (Left to Right) (a) LAOE protocol, (b) Voigt element, (c) necessary condition for convex banana. 

 
Figure 2a illustrates the static uniaxial extensional behavior for the new spring [Eq. (1)] and compares it with the classic 
natural rubber data of Treloar (FIG. 5.4 of [1]) for   E = 1.17 M Pa  and   h = 0.0210 . We see that the green term in Eq. (1) 

imparts concavity to the  τ xx − ε  curve for low strain regime, and the red term imparts convexity for the large strain 
regime. From Figure 2a, we learn that our model agrees well the static observations. Figure 2b illustrates the steady uniaxial 
extensional behaviour of Eq. (2), for   E = 3.12MPa ,  η = 0.680MPa s  and   h = 1.67  with    !ε s = 0, 1

100 , 1
10 ,1rad s , and 

compare with our own measurements (Figure 5.5 of [2]). Figure 2c illustrates the LAOE behavior of Eq. (2), for 

  E = 25.1MPa ,   η = 6.68MPas  and   h = 3.33 , and compares it with our own measurements (red loops in Figure 5.10 of 
[2]). We see that the black term in Eq. (2) imparts area to the  τ xx − ε  loop. We then rewrite Eq. (2) as a Fourier series: 
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⌣τ ≡
′′E0

2E
+ ′En sin nDeτ

n=1,2

∞

∑ + ′′E1 + ′′En cosnDeτ
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∞

∑  (4) 

   
⌣τ ≈

′′E0

2E
+

′E1

E
sin Deτ +

′E3

E
sin3Deτ +

′′E1

E
+

′′E2

E
cos2Deτ  (5) 

Further, our new model [Eq. (2)] satisfies the necessary condition: 

   
⌣′′τ 2 ≡ ε0 ′′E2 < 0  (6) 

for banana convexity (Figure 1c). 
 

CONCLUSION 
 

We have studied the Voigt element with strain-hardening spring [Eq. (2)]. We find that this new model imparts convexity, 
and is adequate for static extension of natural rubber including at large extension. Our new model can also be fit to both steady 
uniaxial extensional and LAOE measurements on filled elastomer. However, we find that the best fit constants ( E , η  and  h ) 
for steady uniaxial extension differ significantly from those for LAOE [see above Eq. (4)]. We speculate that that multiple 
Voigt elements with strain-hardening springs in parallel would correct this. 

In Eq. (6), we state the sufficient condition for  τ xx − ε  banana convexity, and our new constitutive model predicts this 
banana convexity correctly. From this Fourier series, we conclude that harmonics higher than the third can be neglected for  

 

 
 

Figure 2: (Left to right) (a) Uniaxial static behavior of Treloar [1] spring (red) and (black) strain-hardening spring, (b) 
Steady uniaxial extension behavior of Voigt model with strain-hardening spring for    !ε s = 0, 1

100 , 1
10 ,1s-1  (from bottom to 

top). Blue, green and red curves and circles are shifted upward by 5,10 and 15. (c) LAOE behavior of Voigt model with 
strain-hardening spring for   ω = 1

50π , 2
10π ,2π rad s (from bottom to top). Blue and red curves and circles are shifted upward 

by 1 and 2. Voigt element. 
 
elastomers in LAOE. Our new model overpredicts the stress-strain loop area, and thus overpredicts the viscous dissipation at 
high frequency (top loop, Figure 2c). We speculate that that multiple Voigt elements with strain-hardening springs in parallel 
would correct this. 
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CREEPING FLOW AROUND PARTICLES IN LARGE YIELD STRESS BINGHAM FLUIDS
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Summary Yield stress fluids can hold buoyant rigid particles static if their yield stress is large enough. This critical yield number, beyond
which there is no flow, is an important parameter to estimate in addressing sedimentation of rigid particles in visco-plastic fluids. As we
get close to this limit, viscous dissipation becomes negligible in comparison to the plastic contribution. Employing slipline theory for 2D
plastic flows, we are able to approximate the yield number (lower bound) and the shape of the plugs attached to the falling particle in this
limit. Numerical experiments of symmetric particles motion in visco-plastic fluid validate the predictions of slipline theory for a wide range
of geometries and reveal some astonishing effects.

BACKGROUND

Particulate flow in viscoplastic fluid has been extensively investigated numerically and experimentally. One aspect how-
ever, that has not been addressed completely is the static stability problem: one expects that for large enough yield stress of
the fluid, the particle will not move under the action of the body force (i.e. there is no particle settling). The yield number
(Odc) or critical plastic drag coefficient (CpD,c) is an important flow parameter. For a few specific geometries these critical
numbers can be found in the literature [1–4]. However, a general method to find the yield number does not exist and also no
study focuses on the features of the flow in the yield limit.

Putz and Frigaard [1] have shown that as we get close to the yield limit the viscous dissipation will be at least one order
of magnitude less than the plastic dissipation. Ignoring the viscous contribution, here we consider a rigid-plastic rheological
model. Slipline theory (which has been extensively used in solid mechanics and geotechnics) is a powerful tool for limit
analysis in rigid-plastic problems. One of the best examples is the paper by Randolph and Houlsby [5] in which the authors
constructed the slipline network around a circular pile to calculate the lateral resistance of it in the soil mass. This flow is
equivalent to a 2D settling circular disc. In the present study, we attempt to shape a general framework for using slipline
theory in calculating the critical plastic drag coefficient (or equivalently yield number) of particle motion in visco-plastic fluid
and highlight the flow characteristics in the yield limit.

PROBLEM STATEMENT

The yield limit studied is identical for a range of yield stress models, e.g. Bingham, Casson, Herschel-Bulkley. Using the
simplest (Bingham) model as the constitutive equation, we solve the following dimensionless equations:

∂τij
∂xj

− ∂p

∂xi
= 0 and ∂ui/∂xi = 0 (1)

τij =
(
1 +

B

γ̇

)
γ̇ij iff τ > B

γ̇ = 0 iff τ 6 B
(2)

where B = τ̂Y L̂/µ̂Û is the Bingham number, γ̇ =
√

1/2
∑
γ̇2ij , and τ =

√
1/2

∑
τ2ij . Here τ̂Y is the yield stress of the

fluid, µ̂ the plastic viscosity, L̂ the length scale, and Û is the velocity of the particle. The stresses and pressure are scaled
with viscous scale. For boundary condition we impose no-slip on the particle surface and ui = 0 at infinity. Using variational
principles we find the solution of (1)-(2) using the augmented Lagrangian formulation and Uzawa algorithm, e.g. [6].

SLIPLINE THEORY

Viscous dissipation is much smaller than the plastic dissipation in the yield limit. Hence, we ignore the role of viscosity
in this limit for finding the critical plastic drag coefficient. In this case, the von Mises yield criterion and the Stokes equations
form a closed set of hyperbolic equations along characteristic curves for which the magnitude of shear stress is maximal and
is equal to the yield stress. These orthogonal characteristics (α and β lines) are found from the Hencky equations [7]):

p̂+ 2τ̂Y ϕ = const. along α lines and p̂− 2τ̂Y ϕ = const. along β lines, (3)
∗Corresponding author. Email: frigaard@math.ubc.ca
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where ϕ by definition is the angle that the α-line makes with the x-axis. Solving these equations along the slipline network, we
can find an admissible stress field and hence calculate a lower bound of CpD,c. In Fig. 1, the slipline network around example
shapes is presented. In all the results presented the particle is moving vertically upward. Satisfactory agreement is found
between the lower bound of CpD,c predicted by slipline theory and that computed from iteratively solving (1)-(2) numerically.

(c) (d)

(b)

(a)

Figure 1: Slipline network for different geometries: (a) oblate ellipse (10.34,10.35), (b) circle (11.94,11.94), (c) prolate
ellipse (27.43,27.9), (d) kite (11.78,11.85). The bracketed numbers in each case give the values of CpD,c from slipline theory
and numerical solution of (1)-(2), respectively.

CLOAKING EFFECTS

Close to the yield limit (large B), we observed that for different particle shapes, the flow can look very similar; see Fig. 2.
Thus, the shape of the particle is ‘cloaked’. Based on these observations, we developed a general methodology that can
summarize all these flow features. Using this method, we can find the slipline network around arbitrary symmetric particles
and calculate lower bounds estimates of the yield number that prove to be close to those from (1)-(2).

Figure 2: Different particles at large B. Colourmap shows speed contours and gray shaded regions are unyielded. The tilted
square is like a triangle (a plug fills the rear side of the triangle). The ‘Batman’ and ellipse are very similar.
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Summary We study experimentally the displacement flow of a viscoplastic fluid by a Newtonian fluid in a vertical pipe. The two fluids have
a small density difference (i.e., 2%). The denser displacing fluid is placed above the displaced fluid. Although buoyancy is a driving force,
there is also an imposed flow (from the top of the pipe) with a mean velocity V̂0. We have considered two different situations: first, the pipe
is stationary; second, the pipe slowly oscillates around its vertical position like an inverted pendulum. Considering displacement flows at
different imposed flow rates in stationary and moving pipes, we find that at low imposed flows the displacement flow in a moving pipe is
less efficient. This may have a negative impact in floating production storage and offloading (FPSO) applications, where displacement flows
in moving geometry occurs.

INTRODUCTION

There are many industrial processes where it is necessary to remove viscoplastic materials from pipes and channels.
Examples include bio-medical applications, cleaning of equipment and food processing, oil well cementing and waxy crude
oil pipeline restarts. There are relatively few experimental studies of displacement of yield stress fluids by other fluids.
Gabard & Hulin [1] studied iso-density miscible displacements in a vertical tube where a more viscous non-Newtonian fluid
is displaced by a Newtonian fluid. They observed the effects of rheological features of the displaced fluid on the transient
residual layer thickness during the displacement process. They reported that for yield stress fluid displacements the static
residual wall layers have uniform thicknesses. Examples of other experimental studies on viscoplastic displacement flows in
the pipe geometry are presented in [2, 3].

There are numerous situations where displacement flows occur in a geometry that is moving. Examples include various
processes occurring in floating production storage and offloading (FPSO) applications and casing’s reciprocative and rotative
motions in primary cementing processes. However, displacement flows in moving geometry have not been studies in the
literature. Our study considers displacement flows of a viscoplastic fluid and a Newtonian fluid in pipe moving with a specially
interesting motion.

EXPERIMENT

Figure 1: Schematic of the Hexapod parallel
robot.

Our experimental study was performed in a 2m long, 9.6mm diameter,
transparent vertical pipe with a gate valve located 40cm from the top end. The
displacement flow setup was mounted on an Hexapod parallel robot, which is
a motion simulator that has six degrees of freedom (see Fig. 1). Based on the
principle of the Stewart platform, the Hexapod includes a fixed platform and a
mobile platform, which are linked together by six actuators (hydraulic jacks).
The actuators are mounted in pairs on the fixed platform and cross over to
three mounting points on the mobile platform. A software was used to move
the mobile platform with the six degrees of freedom with a centre of rotation.
The displacement setup placed on the top plate could be moved to experience
the six degrees of freedom movement, including the three linear movements
X (lateral), Y (longitudinal), and Z (vertical), and the three rotations pitch,
roll, and yaw. Initially, the lower part of the pipe was filled with a less dense
fluid (fluid 2) coloured with a small amount of ink. The upper part of the
pipe, above the gate valve, was filled by the denser fluid (fluid 1). To avoid
pump disturbances, the displacing upper fluid was fed by gravity from a large
elevated tank. The flow rate was controlled by a valve and measured by a
rotameter, located downstream of the pipe. At the start of the experiment the
gate valve is opened. Images of the displacing fluid are recorded using a high-speed camera (covering 80cm below the gate
valve), and subsequently analyzed to characterize different aspects of the flow. The camera was mounted on the setup to
move with it; therefore, the (quite clear) images obtained were in a moving frame of reference. Regarding the pair fluids, we
performed experiments with a Newtonian fluid (i.e., salt-water solution) as the displacing fluid and a viscoplastic fluid (i.e.,
Carbopol solution) as the displaced fluid. The characterization of our fluids was carried out using a rheometer.

∗Corresponding author. Email: Seyed-Mohammad.Taghavi@gch.ulaval.ca
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(a) (b) (c) (d)

Figure 2: Sequence of images showing the difference between the displacement flow in a stationary pipe and in a pipe in
motion (with a frequency of 0.2 Hz over 15 degrees with respect to vertical). The field of view is 9.6× 800 mm2 right below
the gate valve. In each subfigure, time grows from the left towards the right snapshot. (a) Stationary pipe flow: V̂0 = 8 mm/s
and t̂ = 0.25, 10, 20, 30 , 40 , 50, 60 s; (b) Flow in a pipe in motion at V̂0 = 8 mm/s for t̂ = 0.25, 10, 20, 30 , 40 , 50, 60 s;
(c) Stationary pipe flow: V̂0 = 41 mm/s for t̂ = 0.25, 2, 4, 6 , 8 , 10, 12 s; (d) Flow in a pipe in motion at V̂0 = 41 mm/s for
t̂ = 0.25, 2, 4, 6 , 8 , 10, 12 s.

RESULTS & DISCUSSIONS

The experiments were performed at various density differences but for this paper we only present the results at a fixed
density difference of 2%. The heavy fluid displaced the light fluid in a vertical pipe. The displaced fluid was a Carbopol
solution as a viscoplastic fluid with τ̂Y = 1.05 Pa. Many experiments were performed at various imposed flow rates. To study
the effect of the pipe motion on the displacement flow, the Hexapod simulator was used to impose an inverted pendulum like
motion of 15 degrees (max amplitude with respect to the vertical position of pipe) at a small frequency of 0.2 Hz.
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Figure 3: Average concentration against time
for stationary and moving pipes.

Fig. 2 shows examples of our results. Fig. 2(a) shows a sequence of images
at a low imposed flow rate, i.e., V̂0 = 8 mm/s (Re ≈ 76), in a stationary pipe.
As time grows, it can be seen that the heavy fluid displaces the light fluid
downwards and there is not much mixing between the two fluids (although
there are pieces of Carbopol moving upward). In fact the displacement process
is efficient. As the displacement front moves further, the amount the displaced
fluid left behind (called static residual wall layer) is not so significant. Fig. 2(b)
shows that when the pipe is moving, there exists static residual wall layers and
the displacement process is not as efficient as the case without motion. This
observed behaviour might be due to the slumping effect (due to the density
difference) that occurs in a moving pipe. At certain times when the pipe is
inclined, the heavy displacing fluid slumps underneath the displaced fluid (for
a moment) and it leaves behind a static residual layer of the displaced fluid. Fig. 2(c) and Fig. 2(d) show at a higher imposed
flow rate, V̂0 = 41 mm/s (Re ≈ 389.5), the two displacements may have similar high efficiencies. In addition, visually,
there is not a significant amount of static residual wall layers left behind in either case. For moving and stationary pipes,
Fig. 3 shows the normalized average concentration (over the axial and the longitudinal directions) of the displacing fluid in
the field of view shown in Fig. 2. As can be seen, the average concentration of the displacing fluid is similar at higher imposed
velocities while at lower imposed velocities, the average concentration of the flow in a moving pipe is lower than that in a
stationary pipe. We conclude that the displacement flow efficiency is a function of both the imposed flow rate and the motion
of the geometry. At low imposed flows, the displacement flow in a moving pipe (in an inverted pendulum motion) may be be
less efficient than that in a stationary pipe.
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Summary We investigate the characteristics of displacement flow of a yield stress fluid by a Newtonian fluid. A neutralized solution of Car-
bopol, is placed at the bottom of a vertical pipe, displaced by pumping Newtonian fluid downwards from the top. During the displacement,
3 flow regimes are identified: central-type, slump-type and turbulent. Central-type displacements left non-uniform residual layer at the wall.
Slump-type displacement normally have two fronts moving at different speeds, sometimes with Carbopol moving backwards against the
imposed flow (when the Atwood number (At) is positive and the imposed velocity low). Turbulent mixing results in no discernible boundary
between the displacing and displaced fluids, typically for Re > 8000. In some experiments with low velocity and negative At, the initial
developing phase forms at the beginning of the experiment and a portion of initial phase stays until the end of the experiment without being
displaced.

Figure 1: A schematic view of flow loop

INTRODUCTION AND SCOPE

In many industrial applications such as bio-medical, food
processing, oilwell cementing and pipeline, it is required to remove a
gel-like material from a duct. An oil industry application is chosen
for this study where we consider the fluid to be removed is either a
drilling mud or a pipe full of waxy crude oil, both with a yield stress.
The yield stress is made at intermediate pH on neutralizing the
Carbopol solution. Concentrations of Carbopol are chosen to give
yield stresses of approximately 1, 5, 10 and 20Pa. Following [1,2],
the experiment is performed in a 4m long, 19.05mm diameter acrylic
pipe that stands vertically. Initially, the yield stress fluid (fluid 2) is
filled in the bottom of the pipe up to a gate valve whereas Newtonian
fluid (fluid 1) occupies the top section of the pipe. The gate valve is
located at 80cm below the top end. The flow rate is controlled by
imposed pressure and a flow control valve at the exit. It is measured
by a magnetic flow meter, located at the inlet of the pipe, measures
Newtonian fluid flowing into the pipe. An ultrasonic Doppler
velocimeter (UDV) is mounted at the middle to measure the velocity
through the central plane of the pipe; see Fig. 1.

The main experimental parameters are the fluid densities (ρ̂k), the mean imposed velocity (V̂0), the yield stress (τ̂y) and other
rheological parameters. The density difference is represented dimensionlessly by the Atwood number (At):

At =
ρ̂1 − ρ̂2
ρ̂1 + ρ̂2

(1)

The flow is characterized by the Reynolds number (Re) and densimetric Froude number (Fr):

Re =
ρ̂1V̂0D̂

µ̂1
; Fr =

V̂0√
AtĝD̂

, (2)

with µ̂1 the viscosity of the displacing fluid. The dimensionless number representing ratio of yield stress to viscous stress in
the Bingham number. Here the viscous stress is imposed via the Newtonian fluid and hence we define:

BN =
τ̂yD̂

µ̂1V̂0
(3)

The range of the experiments is constrained to: At = 0, ± 0.0035, ± 0.016, Re ∈ [200, 10000], Fr ∈ [0, 20] and
BN ∈ [90, 60000].
∗Corresponding author. Email:jaewoo.jeon@alumni.ubc.ca
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DISPLACEMENT

This work is to present results of an experimental study of buoyant miscible displacement flow of a yield stress fluid by
Newtonian fluid in the geometry above. The main focus on this study is where the yield stress is significantly greater than
a typical viscous stress in Newtonian fluid, BN � 1. In some experiments where τ̂y = 1Pa and At = −0.016, the effect
of buoyancy stress is significantly greater than τ̂y . Flow regimes are identified into three different regimes: central-type,
slump-type (including ripped, [2]) and turbulent displacements. In central displacements, static residual layers left behind
after displacement are found to be non-uniform, showing long-wave variation along the pipe in the stream wise direction; see.
Fig. 2. In slump-type displacement, we generally detect two propagating displacement fronts. A fast front propagates in a
thin layer near to one wall. A slower second front follows and displaces a much thicker layer of the pipe but sometime stops
altogether. The fast thin propagating flow is usually unsteady and flows through the yield stress fluid in an irregular fashion;
see also [1,2].

Figure 2: Central type
At=0.016, τ̂y=6.91Pa, V̂0=76.3mm/s

Figure 3: Backflow
At=0.016, τ̂y=6.91Pa, V̂0=2.3mm/s

Figure 4: Initial phase
At=-0.016, τ̂y = 2.87 Pa, V̂0=17.6 mm/s

Novel flow phenomena, compared to [1,2], are identified in slump-type displacements. Buoyancy-driven back-flow of
Carbopol chunks rise upwards during displacement, in cases with high positiveAt and low V̂0; see Fig. 3. Prominent Carbopol
back flow occurs in the top half of the pipe rather than the bottom half. During the back-flow, Carbopol chunks generally
becomes bullet-shaped and can flow upstream in a helical motion. Turbulent mixing occurs in some experiments with Re >
8000. In this regime, instead of a distinctive displacement front, there is no clear boundary between the displacing and
displaced fluids and the length of the mixing area increases as the displacement progresses.

We also witnessed interesting flow development when negativeAt and low velocities coincide; see Fig. 4. The initial phase
does not belong to any of the 3 flow regimes and occurs at the beginning of the displacement. The initial phase eventually
grows to either the central or slump-type flow regime. In the initial phase, Carbopol displacement by Newtonian fluid is poor
and it leaves a thicker non-uniform residual layer until it develops into central or slump type regimes. The portion of the initial
phase in the pipe remains the same until the end of the displacement.
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Summary Using numerical computation, we explore the validity of lubrication/Hele-Shaw approaches for 2D channel flows of a Bingham
fluid: effectively Darcy’s law. Wavy and linear profiles approximate a simple fracture and a shift between top/bottom walls adds tortuosity.
The Darcy law estimate is valid as far as the geometry is long and thin, as expected. In other geometric ranges a major diversion occurs due
to appearance of fouling layers, i.e. static fluid attached to the walls. Fouling gives an O(1) modification to the aperture, resulting in O(1)
errors in Darcy law estimates. We show this can be improved. Second, we consider the critical pressure drop for the onset of flow, which
is important in a variety of invasion/plugging and flow-back/cleaning applications. We study asymptotic behaviours and derive a simple toy
model that gives good predictions for simple geometries. Illustrations are presented with more complex fractures.

INTRODUCTION

Cement injection for CO2 storage reservoirs, flow of cement/drilling mud in thin annuli in primary cementing, repair of
oil/gas wells in squeeze cementing, viscous frac fluids in hydraulic fracturing are some examples of industrial applications of
yield stress fluid in fractures and irregular channels. Lubrication/Hele-Shaw approximations (Darcy’s law) are widely used for
Newtonian flows, so it is natural to develop the same yield stress fluids. Aside from standard “nonlinear filtration” modifica-
tions, the nature of yield stress fluids raises 3 additional issues. (i) It is known that naı̈ve application of these approximations
may result in significant errors in the stress fields. (ii) Fouling (static) layers can appear in uneven channels [2] which cause
O(1) changes in the aperture. (iii) Below a critical pressure drop these fluids are not expected to flow.

PROBLEM FORMULATION

We consider 2D Stokes flow of a Bingham fluid in 3 types of fractures: wavy, linear and affine fracture geometries. The
Stokes equations are scaled with length scale D̂, velocity scale Û0 = Q̂/2D̂ (Q̂ is the areal flow rate). A single dimensionless
Bingham number B appears, which is the ratio of yield stress τ̂y to viscous stress µ̂Û0/D̂. Other dimensionless geometric
parameters areH, L, ψ; see Fig. 1. Boundary conditions are no slip for top/bottom walls and periodicity on the left/right of the
fracture. We have used the augmented Lagrangian method [1], implemented in the FreeFEM++ finite element environment.
To improve solution accuracy, especially close to zero flow limit, we use five cycles of anisotropic mesh adaptation.

RESULTS

Lubrication approximation applicability
We have computed > 2000 flows over a wide range of (H,L,B, ψ). Assuming Poiseuille flow at each section of the frac-

ture we find the corresponding pressure drop ∆PL from lubrication approximation. This is compared with the 2D computed
pressure drop along the fracture (∆PN ), in Fig. 2a which shows the ratio ∆PN/∆PL. Note that the 2D flow is expected
to dissipate more energy than the pseudo-1D lubrication approximation, hence ∆PN/∆PL ≥ 1, but the 2 measures should
coincide as the flow becomes progressively 1D. The main parameter affecting the prediction accuracy is H/L, as expected.
For larger amplitudes H , fouling layers appear; see Fig. 3. These grow in size with B. The boundaries of the stagnant regions
effectively define a new channel geometry (see red points in Fig. 3 at B = 100), which is self-selected by the flow. Self-
selection also occurs in 1D duct flows [3]. Geometry and rheology are coupled by this novel non-Darcy effect. The pressure
drop prediction may be improved by using the (unknown) fouled surface as the new geometry of the fracture (Fig. 2).

L̂

2D̂Q̂
ŷ = D̂ + Ŷ+(x̂)

ŷ = D̂ + Ŷ
−
(x̂)

x̂

ŷ

Ĥ

Ĥ Ĥ

Ĥ

2ψL
y = 1 + y+(x)

y = −1− y
−
(x)

Figure 1: The fracture geometries used
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Figure 2: Plots of ∆PN/∆PL: a) full range of geometries; b) (H,L, ψ) = (2, 4, 0). Red marked points are from recomputing
∆PL using the fouled yield surface as the wall.

Figure 3: Speed & streamlines: (H,L, ψ) = (2, 10, 0) and B = 1, 5, 100 (left to right); unyielded regions in gray. Self-
selected channel marked by red points (B = 100).

Limit of zero flow
Due to the yield stress the pressure drop should exceed a minimum threshold ∆Pc to initiate flow. This limit (realised

as B → ∞) is studied by rescaling with the pressure drop ∆P̂ , to give a problem dependent on the Oldroyd number:
Od = L̂τ̂Y /(D̂∆P̂ ). Using the mechanical energy balance of the flow, it can be shown that the critical Odc for zero flow is:

Odc = sup
v∗∈V,v∗̸=0

Q(v∗)

j(v∗)
, Q(u∗) ≡

∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)

u∗1(x, y) dy dx, j(v
∗) ≡

∫ L/2

−L/2

∫ 1+y+(x)

−1−y−(x)

γ̇(v∗) dy dx (1)

Where V is the space of all velocity solutions. For Od ≥ Odc (∆P ≤ ∆Pc) the fluid is stationary. By investigating velocity
and stress fields of numerical solutions close to the zero flow limit, we can estimate the above supremum with simple algebraic
expressions and hence predictions of Odc over a wide range of parameters; see Fig. 4.
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Summary The spreading of yield stress droplets extruded on glass surfaces is studied experimentally. We used a combination of shadowgra-
phy and swept-field confocal microscopy. The vertical profiles of the radial velocity were obtained, using Particle Image Velocimetry (PIV).
On untreated glass surfaces, Carbopol droplets experience a significant amount of effective slip. However, on treated (through salinization)
glass, where positive charges are permanently generated on the surface, PIV demonstrated a substantial reduction in slip.

INTRODUCTION

Spreading of yield stress materials occurs in several industrial applications such as painting, printing, and coating. Similar
to many polymeric fluids, a large number of yield stress liquids undergo apparent slip in the vicinity of a smooth surface [1].
This often occurs due to the migration of the polymer particles away from a boundary, leaving a relatively dilute layer between
the viscoplastic material and the wall. Direct observation of this lubrication layer (typically smaller than 1 µm) is challenging,
however the macroscopic consequence of apparent slip can be perceived more easily (see e.g. [2] for the effect of slip on
the rheology of Carbopol). In the current study, we explore experimentally the effect and control of wall slip for spreading
droplets of Carbopol solutions as a prototypical yield stress fluid.

EXPERIMENTAL METHOD

Carbopol samples were made by preparing aqueous solutions of Carbopol Ultrez 21 (by Lubrizol) neutralized with tri-
ethanolamine. Carboxylated green (468-508nm) polystyrene fluorescent (PSF) particles of diameter of 3±0.1µm were added
to the samples and mixed gently to act as the flow tracers in our experiments. The pH of the final solutions was 6.25±0.1.
Material properties of the samples were measured using an Anton Paar (Physica MCR-30Z) rheometer and the yield stress
values were obtained through the Herschel-Bulkley fits. The strongest and weakest solutions have yield stress of 0.14 Pa and
10.5 Pa, respectively.

The experimental setup for the droplet experiments is sketched in figure 1-a. Droplets of volume 0.1 mL were deposited
onto glass slides at a rate of 2 mL/min, using a syringe pump connected to a stainless steel nozzle of inner and outer diameters
of 0.15 and 0.31 mm, respectively, held 1.5 mm above the surface. Two different glass substrates were used: the first was a
normal microscope glass slide. The second was a (3-aminopropyl) trimethoxysilane (APES) treated glass that had a positive
surface charge.

Figure 1: a) Sketch of the experimental setup. b) Droplet radius versus time for two different glass substrates. c) Shadowg-
raphy pictures of the final shapes, where the photograph shows the droplet on the untreated glass substrate and the red line
shows the final shape on the treated glass substrate.
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The side-view imaging was used for the shadowgraphy. The bottom view was used for swept-field confocal microscopy.
A motorized piezo stage (Prior H101A ProScan) moved the glass slide vertically, enabling us to observe multiple horizontal
planes. We focussed on the flow field very close to the substrate, scanning eleven planes with a vertical distance of 25
µm, starting at the surface of the glass slide and extending up to a total height of 250 µm. The images from microscopy
were intensity-filtered to remove out-of-focus particles and then analysed using a cross-correlation PIV algorithm to obtain
horizontal velocity fields. For the vertical profiles of the radial velocity, the magnitude of the instantaneous velocity field was
averaged over the entire field of view for each of the horizontal planes.

RESULTS

Figure 1 (panels b and c) displays the side view results for the highest concentration Carbopol droplets spreading on the
two glass surfaces. As can be seen from both the position of the contact radius (panel b) and the final shape of the droplets
(panel c), the droplet spreads further over the untreated glass surface than the treated substrate. Figure 2 (panels a and b)
displays vertical profiles of the radial velocity of the droplets at the three times indicated in Figure 1-b. Above the untreated
glass surface (panel a), the wall slip is significant. By contrast, above the treated surface (panel b), no effective slip whatsoever
could be detected to within the experimental precision.

Figure 2: Vertical profiles of the radial velocity for the highest concentration Carbopol where droplet spreading over a) the
untreated glass surface, and b) the treated glass surface. Maximum radius of the droplets over c) treated and d) untreated
surfaces. The horizontal dashed lines show the predictions for a spherical cap with the contact angles of water.

A summary of final drop radii for the all concentrations is shown in Figure 2 (panels c and d). Over the treated surface,
the droplets spread further when the Carbopol concentration is reduced, as would be expected for a reduction in the bulk yield
stress without any significant change in surface tension and contact angle (see [3] for details). A similar trend is observed for
the droplets over the untreated surfaces, where the slip rheology is expected to govern the spreading. For the lowest Carbopol
concentration, the final droplet radii are similar to those measured for water. This agreement is not so surprising in view of
the similarity of the observed contact angles. Indeed, the final radius is close to that predicted by assuming that the final shape
is a spherical cap terminated at the contact angles of water.

CONCLUSIONS

We have provided evidence for apparent slip during the spreading of Carbopol drops, using a combination of shadowgraphy
and confocal microscopy. It is known that glass surfaces obtain a negative surface charge in contact with aqueous solutions,
mainly due to the dissociation of the terminal silanol groups. Therefore, a repulsive interaction between the Carbopol particles
and the surface is expected, which results in an apparent slip. Wall slip however can be prevented if the glass is treated to
feature positive surface charges. This substantiates the proposition that the lubrication layer can be breached with an attractive
electrostatic interaction.
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Summary We study flow development from a static background state in yield stress fluids, due to localized heating. The particular geometry
of interest here is inspired by the experimental work of Davaille et al. [1]. Numerical and analytical techniques are used to explain the
signature phenomena observed experimentally, namely delayed flow onset, cellular–like and plume–like flow development, and episodic
development of multiple plumes.

BACKGROUND

When subject to shear stress, yield stress fluids (YSF) exhibit a finite resistance against motion. Once the yield stress is
surpassed, the fluid starts to flow. Natural convection of YSF has been studied in a limited number of settings. Zhang et al. [2]
showed that a layer of motionless YSF heated uniformly from below is linearly stable at all heating rates and that kinetic
energy of small disturbances decays to zero in a finite time.
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Figure 1: Model problem

Recent experimental studies of Davaille et al. [1] revealed some peculiar features of nat-
urally convecting flows of YSF at high Prandtl, Pr. They investigated the development of
natural convection in a rectangular tank filled with otherwise static YSF. Localized heating
was imposed on the bottom wall of the tank. Intuitively, when the yield limit is sufficiently
high, fluid motion never starts. However, for smaller yield limits, there exists a measurable
delay between the onset of heating and when motion starts. At lower heating rates, the motion
is localized around the heater and develops smoothly. At higher heating rates however, multi-
ple thermal plume heads may form close to the heater which then advect towards the top wall,
episodically. We have studied a model problem to investigate the effect of the yield stress on
the hydrodynamic features of the flow. A 2D square cavity filled with YSF is considered, as
illustrated in Fig. 1. The fluid is initially at the reference (cold) temperature.

MOTION ONSET

Initially, when the fluid is cold everywhere, there is no buoyancy stress in the domain. As the temperature field develops
conductively, buoyancy stresses dominate the yield stress and promote fluid motion. The flow onset time, ts, thus increases
with Bingham number, B, which characterizes the ratio of buoyancy and yield stresses. This also indicates that ts is inde-
pendent of Rayleigh, Ra, and Pr numbers. Numerical and analytical estimates of ts are illustrated in Fig. 2a. Analytical
estimates of ts are developed using asymptotic methods and assuming that at ts yielded regions consist of a network of thin
layers of slow–moving fluid (shown schematically in Fig. 2b). As B approaches the motionless limit, Bcr, the motion onset
time approaches infinity. Our numerical and analytical estimates of the critical limit agree well and yield Bcr ≈ 0.003.
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Figure 2: a) Variation of motion onset time, ts, with Bingham number, B. b) Illustration of yieldded and unyielded zones just
after ts. The gray area represents the unyielded regions. The thin white layers are the yielded regions.

∗Corresponding author. Email: idak@math.ubc.ca

1286



PLUME DEVELOPMENT

Once motion starts, flow accelerates and advective heat transfer improves until a balance between thermal and effective
viscous stresses is reached. When advection is sufficiently strong, the fluid around the heater becomes very buoyant and floats
upwards. This plume head then advects towards the top wall, initially accelerating as it penetrates colder layers of fluid away
from the heater. Ultimately it decelerates as it loses thermal energy and approaches the top wall. Figure 3 illustrates the
development of the temperature field during the first two pulses at Ra = 107, B = 0.0025, P r = 104.
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Figure 3: Development of temperature field at Ra = 107, B = 0.0025, P r = 104 (half of the domain is omitted due to the
symmetry with respect to the center–line).

This process is manifest in the temporal development of the kinetic energy of the domain; each plume head corresponds
to a pulse–like feature. Multiple pulses can be observed depending on Ra and B. As Ra increases pulses become more
pronounced and more numerous. B however plays a multifaceted role in the development of plume heads. The interplay of
competing effects means that initially increasing B from zero results in formation and enhancement of plumes. However,
ultimately as B gets close to the critical limit, advection becomes very weak and plume heads disappear.

CONCLUSIONS

The key qualitative observations made by Davaille et al. [1] are explained and the role of the yield stress is clarified. In
particular, we have used numerical and analytical techniques to illustrate the possibility of development of motion in YSF
from an initially static state regardless of the nature of disturbances in the domain. We have also illustrated that the static state
is nevertheless linearly stable and may only be destabilized at sufficiently high Ra by imposing disturbances of a finite size.

Parallels to the two main flow development trends observed experimentally are identified and the role of dimensionless
groups is explored. When B < Bcr, the temperature develops conductively until buoyancy stresses are sufficiently large to
dominate the yield stress. The motion onset time, ts, is therefore independent of Ra and Pr. After ts flow development trends
depend strongly on Ra. At low Ra, flow develops smoothly around the heater. At high Ra thermal plumes form and develop
episodically.
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Summary Experiments of non-colloidal suspensions with finite inertia at both the particle and the bulk scale were performed in bifurcating
channels focusing on the T-geometry to provide a benchmark for general suspension flows. Single-phase effective viscosity analyses fail
to capture even the macroscopic characteristics of the flow. The non-Newtonian and multi-phase nature of this flow were examined using
discrete particle Lattice-Boltzmann simulations and the continuum suspension-balance model and these provide a more accurate description
and understanding of the experiments.

In recent years, there were significant developments in the understanding of the rheology of non-colloidal suspensions
at finite inertia [1, 2, 3]. However extending this knowledge to non-viscometric flows and to suspension flows in general
geometries remains a challenge [4]. In this work, we focus on the pressure-driven flow of inertial suspensions in straight
channels and bifurcating asymmetric T-channels. These are geometries found in nature and industrial applications, and thus
provide an important benchmark to examine the non-Newtonian and multi-phase behavior of inertial suspensions.

EXPERIMENTS

In the T-channels, we conducted experiments at bulk Reynolds numbers of 50 < Re < 900 and covering particle volume
fractions of 0.05 < φ < 0.40 at the inlet. The channel geometries consisted of an inlet branch of square cross section 2.4 mm
wide and 128 mm long bifurcating into two daughter branches, one parallel and the other perpendicular to the inlet branch. In
the two types of channel geometries considered, the parallel daughter branch dimensions were the same as the inlet, while the
width of the perpendicular branch was either the same or one third of the inlet branch. Both channel outlets were open to the
ambient air (Pout = 1 atm). We used neutrally buoyant suspensions of polystyrene particles (d ≈ 250 µm) in 17% by volume
of glycerol in water. The average flow rates and particle concentrations at each outlet were measured, and high speed camera
images were captured to characterize the details of the flow at the bifurcation region during the experiments.

The results of these experiments demonstrate major macroscopic differences when compared with Newtonian fluid be-
havior, and provide a basis for comparison with modeling. Specifically, we observed highly non-trivial dependences of the
suspension distribution among the daughter branches and of the particle concentrations at the branch outlets onRe and φ. The
variation of the ratio of the straight branch flow rates to the inlet branch flow rates for the bulk suspension and the particle
phase (βsuspension and βparticle) at different inlet conditions show drastic differences compared to a simple Newtonian fluid.
The detailed flow structure near the junction such as the size of the flow separation regions and particle concentrations inside
these zones also demonstrated features that cannot be predicted by a single-phase flow description with an effective viscosity.
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Figure 1: Image of the bifurcation region at Re = 400 and φ = 0.16 (left). Experimental results for suspension splits at
various Re and φ (right).
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MODELLING

For particle loadings up to φ = 0.12, Lattice-Boltzmann simulations of a pressure driven suspension flow in a square
channel at the experimental Re range were performed to compute particle positions at the channel cross section near the
T-junction. The dimensions of the periodic simulation box and the particle size in lattice units were chosen to match the
experimental particle channel width to particle diameter ratio (α = d/W ). The simulations were conducted long enough
for the suspension to travel a distance equivalent to the experimental inlet branch length. The results of these calculations
demonstrate the transformation of cross-sectional particle positions from a ring structure to an almost uniform distribution of
particles to a structure with more particles migrating to the core of the tube at high enough Re, as described in [5].

In addition, finite element method calculations of the Newtonian fluids were performed using Comsol Multiphysics in
the experimental geometry. These calculations reveal the details of the highly three dimensional base flow and are used for
calculating the complex evolution of the stream-surface partitioning the inlet flow into each branch with increasing Re.

The cross-sectional particle positions from LB calculations were superimposed with the streamlines entering into each
branch obtained from FEM calculations for a Newtonian fluid. By assuming that the particles whose centers lie on the
streamtube entering to a particular branch enters the corresponding branch we obtain a reasonably accurate estimate of the
particle split among the branches (βparticle). The interaction of the particle migration profiles with the streamlines provide
the explanation of the experimentally observed cross-over from the particles preference of the side branch at low Re to the
preference of straight branch at high Re.

For higher inlet particle concentrations, we present the predictions of the continuum suspension-balance model [6] ex-
tended to include inertial effects in a T-channel. We consider the influence of bulk level inertia, modeled through the inclusion
of inertial terms to suspension momentum equations, along with the influence of the particle-scale inertia, modeled through
rheological stress terms.

Figure 2: Combination of particle positions and streamline regions at the junction for φ = 0.05 at Re = 46 (left) Re = 525
(right). Shaded regions indicate the regions corresponding to the straight branch; the side branch goes down the page.

CONCLUSIONS

The experiments of non-colloidal suspensions in T-channels reveal macroscopic and detailed flow behavior not explicable
by a simple effective viscosity approach. Consideration of the particulate nature of the flow in simulations reveal the dominant
influence of the upstream particle migration on the particle concentration in the daughter branches.
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Summary A numerical tool for the simulation of Nano/Micro Cellulose fibre suspensions is developed by means of coupling of a Compu-
tational Fluid Dynamics code and a Discrete Element code. The 3D Navier-Stokes equations are solved by a finite volume scheme, and the
fibres are discretised into a chain of beam elements. Momentum exchange between the two phases are enforced by a two-way coupling.
Compared to the conventional ”prolate-spheroid” approximation [11] [12], we implement a hydrodynamic force model based on the drag of
an infinite cylinder, as such a description of the hydrodynamic force tends to be free from the discretisation of the fibre. In the future work,
it is planned to use the developed model for the simulation of dilute and dense NFC suspensions.

INTRODUCTION

Cellulose microfibrils exhibit strong mechanical properties (E ∼ 80Gpa) and ultimate tensile stress around 1 GPa, making
them attractive for applications in nano-fibrous based composites such as nano-films or packaging materials [1]. However
the manipulation of these fibrous structures encounter obstacles in particular, at the process scale where their behaviour as
suspensions are insufficiently understood, as they exhibit complex flow features such as shear banding, wall slippage and plug
flow behaviour as described by Martoı̈a et al [1]. The objective of the present study is to develop a numerical model for the
study of the complex rheology of N/MFC suspensions. Furthermore we review the applicability of the force models arising
from the slender body theory and prolate-spheroid models for high aspect ratio fibres (rp ∼ 100) and propose an alternative
model for the hydrodynamic force on the fibre segments based on the drag of an infinite cylinder derived by Tomotika et al
[2] and Taylor [3].

METHODOLOGY

The methodology involved in the project is to couple a Finite Volume Method fluid flow solver (FVM) YALES2 [4]
with a Discrete Element Method code (DEM) YADE [5]. In a nutshell YALES-2 accounts for the fluid flow physics and
YADE accounts for the mechanical behaviour of the fibres. The codes are coupled with with in the Multiple Instruction
Multiple Data (MIMD) framework of Message Passing Interface (MPI- 2), currently one-way coupling and two-way coupling
methodologies are implemented. The one-way coupling deals with fluid⇒ fibre interactions and the two-way coupling adds
fibre⇔fluid interactions.

A fibre is discretised into several beam segments with each segment having a local frame of reference fixed to its symmetric
axis. Force and torque are applied to each of these segments. The cylindrical elements are modelled as discrete beams that
respond elastically to normal, shear bending and twisting loads, the details are well explained in [6], [7]. For solving the three
dimensional incompressible Navier-Stokes equations, a finite volume scheme with 4th order accuracy in space and time have
been used as described in [4].

RESULTS

Comparison with Tritton’s experiment
Tritton [8] performed experiments on the flow past a cylinder at various Reynolds numbers based on the fibre diameter

ranging from 0.387 to 100. The experimental setup consisted of a high aspect ratio quartz fibres cemented at one end and
the other free to move. A uniform flow was then imposed on the fibre. Based on the linear-beam theory, a beam in such a
configuration (cantilever beam with uniform loading) would undergo a small deflection at the ends, (l/h > 30, l is the length
of the beam, h the deflection).

In order to verify the drag force and the coupling of the methods, we repeat the experiments of Tritton [8] numerically
with the prolate-spheroid model[10], Kaplun’s expression [9] and Tomotika et al’s expression, for the drag force on an infinite
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cylinder at low Reynolds number [2] and obtain the deflection of the fibre as shown in figure 1. From the figure it is observed
that the prolate-spheroid model [10] tends to under-predict the deflection and the drag force, moreover on further examination
of the prolate-spheroid model it was seen that the model is not independent of the fibre discretisation i.e, the net drag force on
the fibre depends on the number of segments and this effect is more pronounced for higher aspect ratios.

Figure 1: Comparison of Deflection with Tritton’s experiments fibre-1 [8]

CONCLUSIONS

A numerical model for the simulation of flexible fibre suspensions has been developed and is currently under validation.
The numerical tool dveloped would offer new insights on understanding the complex flow behaviour of N/MFC suspensions.
An example of such a simulation of dense NFC suspension is shown in figure 2.

Figure 2: Suspension of N/MFc fibres
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Summary Morphology and dynamics of soft structures depends on interactions with their environment. In the presence of anisotropic
media, such as orthotropic gels or nematic liquid crystals, fluid anisotropy induces topological defects and long-range interactions between
immersed particles. Understanding how anisotropic fluids deform particles and induce interactions over long distances is a theoretically and
numerically challenging problem with applications to biological materials and soft device fabrication. In this paper we develop an immersed
boundary method that efficiently simulates highly deformable particles in flowing liquid crystals.

INTRODUCTION

Microorganisms and biological materials inhabit highly viscous environments, and the overall behavior of soft cells and
their molecular constituents depends sensitively on their interactions with the fluid in which they are immersed [1]. While
many of these environments are purely viscous Newtonian fluids, a variety of biologically and technologically relevant phe-
nomena occur between objects immersed in anisotropic fluids. Mucus and biofilms exhibit stress anisotropy (deformation
direction dependence), which may have important implications for biological function. For instance, bacterial cells have been
observed to swim along the preferred directions of fluid deformation in anisotropic environments [2, 3], which may be linked
to urinary tract infections [4]. Moreover, the complicated cytoskeletal network of eukaryotes and even the transmembrane
protein structure in lipid-based membranes exhibit orientational order that allows for these complex heterogeneous materials
to be modeled as anisotropic fluids.

In this paper we consider the theoretical description of deformable bodies in a canonical class of anisotropic fluid, a ne-
matic liquid crystal, a state of matter which exhibits orientational order but no positional order. Despite the myriad theoretical
and experimental advances in studying nematic liquids crystals (NLCs), relatively little has been done to study dynamically
evolving fluid-structure interactions in the presence of soft immersed boundaries. We develop an immersed boundary method
that efficiently handles both the simpler Ericksen-Leslie model of NLCs and a more sophisticated Stark-Lubensky “Q-tensor”
model [5]. Using semi-implicit time-stepping we construct a general framework that can be used to numerically study biolog-
ically relevant membrane dynamics, as well as various industrial applications associated with liquid crystal flow and device
fabrication.

IMMERSED BOUNDARIES IN NEMATIC LIQUID CRYSTALS

For both the Ericksen-Leslie and Stark-Lubensky models of flowing liquids crystals, we examine the zero Reynolds num-
ber limit and solve a system of coupled equations for the fluid velocity and either the nematic director n (Fig. 1a) or the tensor
order parameter Q, respectively. Similar to the Landau-de Gennes model of liquid crystals, in the Stark-Lubensky model
the orientational order of the fluid is represented by a second-rank order tensor Q, which in a uniaxial system reduces to
Q = S (nn − I/d), where S is a scalar order parameter, d is the dimension of the space, and I is the identity operator. The
general Landau-de Gennes energy functional takes the form

F (Q,∇Q) =

∫
Ω

{
−

a
2

Tr(Q2) −
b
3

Tr(Q3) +
c
4

Tr(Q4)
}

+
1
2

{
L1|∇Q|2 + L2Qi j, jQik,k + L3Qi j,kQik, j + L4Qi jQk`,iQk`, j

}
dV, (1)

where the first bracketed term is the bulk energy, the second is the elastic energy, and the constants are material- and
temperature-dependent. As in the Ericksen-Leslie model, variations of Q generate an added elastic stress and introduce
anisotropy into the viscous stress, while itself satisfying a separate evolution equation [6]. The Stark-Lubensky formulation
provides a coupled system of equations for the fluid velocity v and the order parameter tensor Q via this associated stress.

To efficiently compute the dynamics of deformable membranes in nematic liquid crystals we implement a spectral im-
mersed boundary method with semi-implicit time stepping. In the immersed boundary formulation, the fluid equations are
solved on a fixed rectangular (Eulerian) grid. The immersed boundary, however, is discretized according to Lagrangian points
that do not conform to the background Eulerian mesh (Fig. 1b). In the present context, the immersed structure communicates
forces onto the fluid as in Peskin’s original method [7], but also communicates torques on the nematic director field through
molecular anchoring boundary conditions. The immersed structure is modeled as a series of Lagrangian grid points that evolve
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Figure 1: (a) The nematic director of a liquid crystal is written as a vector n. (b) Schematic of the immersed boundary formu-
lation: the fluid equations are solved on a fixed rectangular (Eulerian) grid. The immersed boundary, however, is discretized
according to Lagrangian points that do not conform to the background Eulerian mesh. [7] (c) Nematic director field for a
“swimming sheet” with planar anchoring conditions immersed in a NLC, and (d) the corresponding velocity field. (e) Under
imposed flow and weak anchoring conditions in a nematic LC, the membrane undergoes large amplitude deformations. (f) The
director field (with scalar order parameter overlaid with color-code) for the simulation involving a deforming spherical mem-
brane. High flow regions cause local areas of the nematic field to “melt”, leading to locally isotropic regions and topological
defects which further contribute to the complex deformations and dynamics of the immersed structure.

in time using semi-implicit time-stepping. The system is discretized in time such that at every time step n a nonlinear update
for the position of the immersed structure Xn is required:

Xn+1 = Xn + ∆tS ∗L−1S F(Xn+1), (2)

where the time step is ∆t, the force on the Lagrangian body points is F, and S and S ∗ are “spreading operators”. While S
spreads vector- and tensor-valued fields from the Lagrangian to Eulerian grid, S ∗ accurately interpolates from the Eulerian
to the Lagrangian grid. The inverse of the linear operator L is the matrix that solves the velocity system, which is nonlinear
only in the order parameter, and thus amenable to standard splitting procedures for solving the Stokes equations. This method
allows stable time stepping unburdened by classical Courant-Friedrichs-Lewy (CFL) constraints on ∆t, and is related to efforts
used to study the flow of other isotropic viscoelastic flows including those of the Oldroyd-B model fluid [8, 9].

RESULTS AND CONCLUSIONS

By developing a general numerical scheme for studying the dynamics of elastic membranes in anisotropic fluids we open
the door to studying bio-locomotion in complex fluids (Fig. 1c-d), as well as explore key aspects associated with self-assembly
in anisotropic fluids. For example, we explore the dynamics of an initially spherical elastic membrane in a Stark-Lubensky
NLC in the presence of a 3D Taylor-Green vortex background field, as shown in Fig. 1e-f. Our simulations are valid over a
wide range of material parameters, and we may explore a variety of dynamical phenomena, such as long-range interactions
between particles [10], swimming bacteria in liquid crystals [2, 11], and defect dynamics in active matter [12].
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Summary We investigate the spectrum of relaxation times and relaxation normal modes in percolated colloidal networks. The relaxation
spectrum is intimately tied to the linear viscoelasticity of such networks, and the spatial heterogeneity of the normal modes describes how
susceptible structures of different length scales are to deformation. We show that these quantities are highly sensitive to hydrodynamic
forces exerted on the network. Models for the hydrodynamic forces that neglect hydrodynamic interactions show significant departures
from those that include them in dilute networks. In dense networks, hydrodynamic screening reduces the strength of the interactions, and
the predicted relaxation spectra coincide regardless of hydrodynamic model. We show that modes of energy dissipation in the network are
fundamentally altered by the presence of long-ranged hydrodynamic interactions. Analogous to the Zimm model in polymer dynamics,
models describing network viscoelasticity must incorporate these effects of hydrodynamic coupling across the network to accurately predict
the experimental response.

INTRODUCTION

Harmonic normal-mode analysis has been applied to study and predict liquid-state dynamics as well as the eigenmodes and
eigenvalues and vibrational properties of numerous systems ranging from biomolecular structures such as membrane proteins,
through jamming transitions of granular material to colloidal crystals and glasses. Normal modes provide a framework for
understanding the dynamical excitations of a system in diverse fields. The normal modes are those degrees of freedom which,
at least for small perturbations away from equilibrium, do not interact with each other. Each mode oscillates independently
of the others with its own characteristic frequency. The distribution of these frequencies, known as the vibrational density
of states (vDOS), is central in the investigation of solids,since, apart from the structure, it is probably the most relevant and
direct quantity to characterize a system. For example, within the harmonic approximation, the vDOS allows one to calculate
the temperature dependence of the specific heat, thermal conductivity, as well as the free energy. While much effort has been
devoted to the investigation of dense glasses, much less is known for the case of weak colloidal gels. One of the reasons for
this is that physically realistic modeling of such gels has become possible only recently [1].

In soft materials, normal mode analysis of the equations of motion of the load bearing constituents can be directly related
to its macroscopic linear viscoelasticity. Conceptually, near any point of mechanical equilibrium, the load on each constituent
can be modeled as a Hookean spring with a characteristic relaxation time related to the ratio of the spring constant to the
viscosity of the suspending medium. There is a fundamental rheological relationship between the microscopic modes of
particle relaxation within a colloidal gel and the macroscopic viscoelasticity of that material. The spectrum of these relaxation
times, a density of states, of Maxwell-like normal modes, can be transformed into the linear viscoelasticity by summing the
viscoelastic contributions of each mode.

Work by Rovigatti et al. [2] focused on the structural and relaxation properties of colloidal networks, the mechanisms
responsible for the slowing down of the dynamics with decreasing temperature. However, such an analysis as all others before
it neglected the role of hydrodynamic coupling. Contrary to atomic systems, where the phonon dispersion curve is entirely
determined by inter-particle forces, in colloidal systems hydrodynamic interactions have to be considered. These interactions
arise when moving colloids exchange momentum through the solvent. Because of their long-range nature these interactions are
difficult to treat theoretically. We present computational methodologies for resolving this dilemma and results demonstrating
that long-ranged hydrodynamic interactions are essential to relaxation spectrum of colloidal networks.

RESULTS

In a colloidal network the evolution of particle positions x is satisfies the equation:

ẋ = −M · (∇U − FB) , (1)

where M is the hydrodynamic mobility matrix, U is the inter-particle potential and FB is the random fluctuating Brownian
force. Using Cholesky decomposition the mobility matrix can also be expressed as M = BT ·B.

Close to mechanical equilibrium (∇U = 0), particles fluctuate about an equilibrium position xeq such that d = x− xeq .
The time evolution of the fluctuations to first order is

ḋ = −M ·H · d, (2)
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Figure 1: (Left) Relaxation rate λ as a function of the characteristic wavelength of energy dissipation q for the given mode, as
calculated for each volume fraction and both hdyrodynamic models. (Right) Dispersion relation between relaxation rate and
characteristic wave vector of different normal modes in gels with different volume fraction.

where H is the Hessian of the inter-particle potential, U . The solutions of this first order equation are exponentially decaying
modes with rates satisfying the eigenvalue equation:

λivi = M ·H · vi. (3)

Various computation methods can be applied to approximate the hydrodynamic mobility M. The most common example
is the so-called freely draining approximation in which M is replaced by an isotropic tensor describing the mobility of a
single particle in the network neglecting all hydrodynamic interactions. A further approximation is the so-called Rotne-Prager
tensor which couples the particle motions via long-ranged hydrodynamic interactions scaling with the inverse of inter-particle
distance. We have recently shown that this approximation is the minimum acceptable for model gelation kinetics. It is the
lowest order approximation capable of replicating the experimentally observed dependence of aggregation rate on the size of
clusters during gelation.

Here we compare the relaxation specturm {λi} and the normal modes of relaxation {B−1 · vi}, produced by the two
models. Results from more sophisticated models which incorporate the effects of hydrodynamic lubrication can be shown
to reduce to the Rotne-Prager mobility model as well. Figure 1 depicts the eigenspectrum as a function of the fractional
order (position within the spectrum in accending order) for the freely draining and Rotne-Prager models applied to colloidal
networks with 15, 30, 45% particles by volume. Differences in the relaxation rates across the entire spectrum can be attributed
to the additional hydrodynamic drag imparted by the Rotne-Prager model. In the figure, the relaxation rate is normalized by
ka3/kBT/τD, where k is the mean stiffness of inter-particle bonds, a is the particle size, kBT is the thermal energy, and τD
is the characteristic relaxation time of a single particle.

The structure of each of the normal modes is interrogated by computing its spatial power spectrum. The power spectrum
exhibits a peak at a particular wave vector q, which suggests the normal modes are correlated over a length scale 2π/q.
This describes the size of the relaxing unit associated with each normal mode. Figure 1 plots the relaxation rate versus
the characteristic wave vector for networks with 15, 30, 45% particles. This dispersion relation is key for understanding
relaxation and ultimately rheological properties of colloidal networks. At low volume fractions, the dispersion relations for
the free draining approximation and the Rotne-Prager approximation differ in their power law scaling. Large structures relax
more quickly in the Rotne-Prager approximation because of collective hydrodynamic enhancement to particle motion. At
high volume fractions, hydrodynamic screening ensures that the approximations are indistinguishable. These differences in
relaxation processes have profound consequences for how stress relaxes in colloidal networks and their viscoelastic properties.
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Summary Concentrated suspensions of solid particles in liquid, such as pastes, exhibit many forms of nonlinear flow behaviour. Shear
thickening, in which the suspension viscosity increases with applied stress, is of particular interest to engineers across disciplines as it can
arise under minor variations in composition but leads to, for example, pump failure and extrusion blockages. We recently demonstrated
that the increase in viscosity can be attributed to direct particle-particle contacts, which are frictional in nature. Furthermore, experiments
have shown that the critical stress above which thickening occurs is intimately related to the particle size, with larger particles more likely
to thicken than smaller ones. In the present work, we explore the implications of these findings for ‘real’ suspensions, which might be
composed of particles spanning orders of magnitude in size, and propose how particle size distributions of future suspensions might be
tuned to achieve or avoid certain shear thickening behaviour.

INTRODUCTION

Shear thickening, the increase of viscosity (e.g. of a densely packed suspension) with increasing shear rate, is a complex
rheological phenomenon that has earned much attention from academia and industry. It can be desirable, for example during
solidification upon impact of an otherwise highly flexible bullet proof vest, or detrimental, causing blockage and fracture
during ceramic paste extrusion [1]. Until recently, the link between suspension composition and shear thickening has been
somewhat misunderstood. A full understanding of this relationship could be used to establish design principles, allowing ra-
tional, as opposed to empirical, formulation of future suspensions, allowing predictable promotion or mitigation of thickening.

The classical explanation for shear thickening assumes that under large stresses or deformations, suspended particles
approach each other extremely closely, leading to the diverging hydrodynamic lubrication forces becoming enormous in the
interstices. This theory has recently been uprooted by experiments [2, 3] and simulations [4] demonstrating that above an
onset stress σ∗ particle surfaces come into contact, and the frictional nature of this interaction leads to enhanced dissipation
and is responsible for shear thickening. Note that such a shear thickening mechanism is distinct from inertial shear thickening,
which happens above a critical shear rate when the material adopts Bagnoldian stress scaling, analogous to dry grains [5]. The
question remains of how to devise practical design principles that utilise this improved understanding.

In the present work, we propose how existing theory [6] might be extended to account for significant polydispersity of the
suspended particles, using bidisperse suspensions of various diameter ratios at test cases.
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Figure 1: (a) Frictional and inertial flow regimes for a monodisperse suspension. Frictional shear thickening is governed by a
critical shear stress (purple dashed line); inertial shear thickening is governed by a critical shear rate or Stokes number (dashed
green line). (b) Highlighting frictional shear thickening behaviour for small and large particles, and a proposed interpolation
for bidisperse mixtures. (c) Image of a sample simulation for diameter ratio 1:6;
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THEORETICAL DEVELOPMENT

Recent theoretical work [6] proposes that above a critical applied stress σ∗, suspended particle surfaces may come into
frictional contact. The fraction of particle-particle interactions that become frictional in this way as the stress σ is increased is
given a simple exponential form

f ∝ exp(−σ∗/σ) (1)

where f is a parameter varying from 0 → 1, quantifying the degree of frictional character of the suspension. This parameter
may be built into a constitutive framework [7] by considering its influence on the critical solid fraction for flow arrest φc, as
the contacts evolve from being frictionless (like a colloid, with flow arresting at φrcp ≈ 0.64) to frictional (like a granular
suspension, with flow arresting at φm ≈ 0.58)

φc = φmf + φrcp(1− f). (2)

In Figure 1(a), we plot resultant viscosity-stress curves for varying solids fraction φ, further incorporating inertial shear
thickening above a critical shear rate [5, 8]. Experiments [3] suggest that σ∗ varies with 1/a2i for approximately monodisperse
suspensions of particles of radius ai, implying that large particles become ‘frictional’ at lower stresses than small ones. We
therefore propose that in polydisperse suspensions, the large-large contacts become frictional at lower stresses than large-small
or small-small, and therefore the frictional character of the suspension might be better characterised using a multi-modal fpoly,
such as

fpoly ∝
∑
i

κi exp(−σ∗
i /σ) (3)

for a suspension with i distinct particle sizes, and where
∑
κi = 1 and σ∗

i , the critical stress for shear thickening for particles
of radius ai, varies with 1/a2i . Replacing f with fpoly in Eq 2 and assuming bidispersity, we obtain the family of shear
thickening flow curves in Figure 1(b) (at fixed φ − φc), where the weighting parameter κi is adjusted to represent varying
the number ratio of small-to-large particles in the bidisperse suspension. The bidisperse flow curves demonstrate interesting
shear thickening behaviour. Particularly, we observe significant non-monotonic behaviour in the viscosity, coupled with a
large increase in the range of stresses over which thickening is observed. We note that having a wide window of frictional
shear thickening stresses gives rise to the possibility of inertia of the large particles contributing to enhanced thickening. To
elucidate these phenomena, and to validate our simplistic extension of Eq 1 for polydispersity, we carry out simulations of
suspension shear flow.

SIMULATION DETAILS

Discrete element method simulations [9] enhanced for dense suspensions [10], implemented as described in [5] are carried
out for bidisperse suspensions of particles of varying size and number ratios, with a sample cross-sectional slice being shown
in Figure 1(c). We simulate the Newtonian dynamics of assemblies of ≈ 2000 particles in periodic, cubic domains subjected
to Lees-Edwards boundary conditions and calculate the resulting shear viscosity as a function of shear stress, at fixed shearing
rate.

We will discuss our simulation results in the context of the interpolating shear thickening regimes of Figure 1(b), discussing
how that picture might be correctly extended to allow the emerging understanding of frictional shear thickening to be exploited
as a design tool for general polydisperse suspensions.

We thank EPSRC and Johnson Matthey for funding, and Ben Guy, Michiel Hermes and Wilson Poon for fruitful discussions.
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Summary A drag reduction effect has been a long-standing issue.  In order to consider the background mechanism of the drag 
reduction effect, we focus on vortex deformation in turbulence and extensional rheological properties of the fluids in this study.  
A flowing soap film as a two-dimensional flow was adopted to avoid shear stress effects.  Vortex generation in a 2D flow was 
visualized and how the vortices deformed by polymer additives were analysed.  Power spectra of the visualized 2D turbulence 
through interference patterns and velocity fluctuation obtained by a PIV analysis revealed the variation of energy transfer in 2D 
flow.  A wavelet analysis was used to detect the variation of vortices in time.  We considered how these variations were 
affected by a relaxation time of sample solution, and by several extensional rates added on the flow.   
 

INTRODUCTION 
 
   Addition of little amounts of polymer in Newtonian-flow prohibits turbulence.  This phenomenon is called a drag 
reduction effect.  When polymers affect turbulence, vortices generated on the wall are deformed[1].  That is why frictional 
drag at the wall surfaces is reduced.  Since the drag reduction effect is a useful technique to improve energy efficiency, this 
technique has been applied in many industries.  In order to investigate the background mechanism of this phenomenon, the 
relationship between effects of polymers on the flow and rheological properties of the fluids has been studied in many 
previous studies.  We have focused on how the relaxation time of solution related to extensional viscosity of solution 
affects turbulences[2,3,4].  Since the extensional viscosity is increased under the extensional rate, a flow that is free from 
shear stresses is needed.  In order to realize such a flow system, a flowing soap film as a two-dimensional (2D) flow is 
installed[5].  2D turbulence is generated on the flowing soap films, and vortices of the turbulence are visualized by 
interference patterns of the film in this study.  Vortices deformation due to polymers is analysed by power spectra and a 
wavelet analysis of the images.  Velocity fields of the two-dimensional flow are also measured by a PIV analysis to discuss 
turbulent statistics.  
 

EXPERIMENTS 
 
Material  
   Soap solutions contained sodium dodecylbenzenesulfonate (SDBS) as a surfactant at the concentration of 2wt%.  As 
polymers, a flexible polymer and a rigid polymer were selected to vary rheological properties of the fluids.  As a flexible 
polymer, polyethyleneoxide (PEO, molecular weight: 3.5×106) was used at the concentrations from 0.25 to 2.0×10-3wt%.  
As a rigid polymer, hydroxypropyl cellulose (HPC, molecular weight: >1.0×106) was used at the concentrations from 0.01 
to 0.05wt%. 
Method 
   Experiments were conducted on a flowing soap film shown 
in Figure 1(a).  If we see the cross section of a soap film, 
water layer is sandwiched by surfactants.  The surfactants are 
vanishingly small compared to the thickness of the water layer.  
Therefore, the flowing soap film is considered as a water layer 
itself, that is 2D flow.  In this study, two nylon wires 
tightened by a weight were used to make a soap film channel.  
Sample solutions flowed between the two nylon wires from 
top to bottom by gravity-driven.  The flow reached uniform 
velocities at about 30cm behind from the injection nozzle.  
The flow rate was measured by a flow meter.  The mean 
velocity, V(t) [m/s], was 130cm/s.  The mean thickness of the 
water layer, h(t) [m], was approximately 3.85µm, which is 
calculated by h(t) = Q(t)/(V(t)W) with a flow flux, Q(t) [m3/s], 
of 0.5ml/s and the channel width W [m].  A grid of equally 
spaced cylinders was inserted to the flow perpendicular to the 
flow to generate 2D turbulence.  The flow was illuminated 
and visualized through interference patterns (Figure 1(b)).   Figure 1. Experimental apparatus 
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Data acquisition area was 15cm behind the grid.  Since the flow was self-standing, and was surrounded by air, shear 
stresses on the flow were negligible small.  When polymers were added to the sample solution, polymers were mainly 
affected by extensional stresses at the grid due to an abrupt decrease of the cross section area of the water layer.  Here, 
extensional rate, !ε  [1/s], added on flows were roughly calculated by ( ) ( )tStS ε!−= exp0

, where S0 [m2] is the cross section 
area before the grid, S(t) [m2] is the cross section area middle of the grid, and t [s] is the time needed to through the half 
distance of the grid.  In order to change the extensional rate, the distance of the cylinder was changed.  In this study, the 
extensional rates were 250 and 350 1/s.  PIV was used to obtain local velocity fields around the cylinders.  Polystyrene 
particles with 2.11µm of diameter were added to the solutions as tracers. 
 

RESULTS AND DISCUSSION 
 
   Figures 2(a) and (b) show vortices of 2D turbulence visualized by interference patterns.  The sample solution of 
Fig.2(a) was polymer free, and the sample solution of Fig.2(b) contains PEO at the concentration of 2.0×10-3wt%.  When 
PEO was added to the flow, vortices were clearly deformed.  The deformation is due to variation of energy transfer in 2D 
flow.  In order to investigate how the energy transfer was affected by polymers, power spectra of the interference patterns 
in the streamwise and the normal directions were calculated.  The interference pattern is related to the thickness of water 
layer of 2D flow, and the thickness of 2D flow is a passive scalar.  Therefore, we can adopt a dimension analysis of 
passive scalar scaling to the power spectra of interference patterns[4,5].  As shown in Fig.2(c) and (d), the scaling index of 
the power spectrum was changed to -5/3 to -1.  In 2D flow, when the energy is well transferred to different scale, the index 
of passive scalar scaling shows -5/3, and when the energy transfer is prohibited the index becomes close to -1.  The 
variation was detected by the power spectrum analysis.  In addition, velocity field obtained by PIV and turbulent statistic 
analysis also confirmed that the variation of energy transfer was affected by polymers.  When polymers were added to the 
flow, the third moment of velocity fluctuation of 2D flow, which indicates energy transfer, was depressed.  Since vortices 
were generated at the grid and advected to downstream, rheological properties of the sample solution around the grid should 
affect the vortex generation.  The relaxation times of polymer free solution and PEO 2.0×10-3wt% added solution were 
0.5ms ad 10ms.  Relaxation time is related to extensional viscosity of the solution.  In addition, when the extensional rate 
added at the grid was increased from 250 to 350 1/s, the variation of the scaling index occurred at a lower concentration.  
A wavelet analysis was also used to detect how polymers varied 2D turbulence(Fig.3).  The wavelet intensity shows 
original vortices disappeared and new fluctuations appeared by addition of polymers.  From all these results, we consider 
that the relationship between polymer effects on 2D flow and extensional viscosity of polymer solution were confirmed 
through vortex deformation in this system.   
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Summary The instability arising in dilute polymer solutions has been studied experimentally. The effect of polymer concentration on the flow 
behaviour, with a focus on the friction factor and fluctuation intensity, was studied with the aim of better distinguishing between turbulence 
arising in Newtonian fluids and that in dilute polymer solutions. We concluded that long-chain polymers have the ability to completely supress 
Newtonian turbulence and give rise to an independent form of turbulence which has been termed elasto-inertial turbulence. 
 

BACKGROUND 

 
   Dissolving minute amounts of long-chain polymers, such as polyacrylamide, in liquids has been shown to dramatically 
decrease the friction losses in wall bounded flows; the reduction can be as high as 80% in some cases with the addition of 
only a few parts per million of polymers by weight (ppmw). Applications which take advantage of this phenomenon range 
from reducing transport costs in oil pipelines [1] to reducing turbulence induced noise in military submarines [2]. While this 
phenomenon has been known about since the late 40’s [3], several mysteries surrounding it have yet to be resolved. Of note, 
is an empirically derived asymptotic limit of drag reduction [4]; with increasing polymer concentration C, the drag of a 
turbulent flow progressively decreases from that of Newtonian turbulence (where the friction factor follows the Blasius 
scaling) to an asymptotic state which has been termed the maximum drag-reduction (MDR) asymptote [4,5] (see Figure 1). 
This limit does not depend on the type of long-chain polymer used, and in most cases cannot be exceeded irrespective of the 
quantity of polymers added. Another point of interest, and the focus of this paper, is the nature of the flow when it reaches 
this asymptotic state. It has recently been proposed that this state is not a modified version of ordinary turbulence but 
instead that ordinary turbulence gets completely supressed and replaced by a different state of motion which has been 
termed elasto-inertial turbulence (EIT) [6]. To illustrate this point Samanta et al. [6] plotted the transition to turbulence 
thresholds as a function of polymer concentrations; similar to what we have done in Figure 2. From this figure it is clear that 
adding more polymers delays the transition of ordinary turbulence to higher values of the Reynolds number while 
simultaneously promoting the emergence of a new type of turbulence; EIT.  
 

 

EXPERIMENTAL FACILITY AND INSTRUMENTATION 

 
   The majority of experiments were conducted in a glass pipe of diameter D = 10mm consisting of several sections 
connected by precisely machined fittings into which pressure tap holes where added. Two differential pressure sensors were 
used; the first to measure pressure drop over a distance of 134.1D starting 200D away from the pipe inlet; and the second to 
measure pressure fluctuations across a distance of 5D starting from a distance of 323.3D from the inlet. The flow was driven 
by gravity and controlled by a precision control valve proceeded by a conditioning tank containing pressurized air which 
removed any flow fluctuations resulting from flow in the control valve. The flow rate was assessed by continuously 
measuring the mass of fluid collected at the outlet of the pipe. A solution of polyacrylamide (Batch#685910 with molecular 
weight up to 7 million as estimated by the distributor – Polysciences Europe GmbH, Eppelheim, Germany) was mixed in 

 

 

 
 

Figure 1 – Friction factor plot showing effect of increasing 
polymer concentration at a fixed Reynolds number. 

 Figure 2 – Transition to turbulence thresholds as a 
function of polymer concentration. 
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specially designed slow rotating drums to allow for a full dissolving of polymers while exerting the minimum amount of 
shear. In order to increase the repeatability of measurements, the fluid was mixed in a consistent manner, over a fixed 
amount of time (usually 24 hours) and once mixed, the fluid was only allowed to pass once through the pipe before being 
discarded. The viscosity of the solution was estimated from the pressure drop in the pipe by solving for the Reynolds 
numbers Re=UD/ν < 500, where U is the bulk flow velocity and ν the kinematic viscosity, with the assumption that at such 
low values of Re, the friction factor was consistent with that of Hagen-Poiseuille. 
 

RESULTS AND DISCUSSION 

 
   Building on the work of Samanta et al. [6] we designed an experiment with the aim of showing definitively a clear 
distinction between Newtonian turbulence and EIT. The aforementioned authors showed that the critical shear rate 
(γ̇ = 8U/D) for the onset of EIT decreases with increased polymer concentration but this critical shear rate was independent 
of pipe diameter. Taking advantage of this and the fact that increased polymer concentrations tend to delay transition to 
Newtonian turbulence, we selected a pipe diameter which insured a laminar region would exist well beyond the natural 
transition point of ordinary turbulence. 
   For a turbulent flow at Re=5000, we increased the polymer concentration from 0 to 35ppmw and observed a steady 
decrease in the friction factor as well as the amplitude of pressure fluctuations as had been expected based on previous 
studies [5] and by examining Figure 2. At a fixed Re≃3500, we increased the polymer concentration starting from zero and 
initially observed similarities with the aforementioned trend. Interestingly this time, as the drag coefficient approached the 
MDR asymptote, the flow state changed from one of random fluctuations to one containing bursts of turbulence interlaced 
by regions of supressed turbulent activity resembling that of laminar flow; this observation could be related to the state 
referred to as “hibernating” turbulence [7] or may simply be a form of intermittency as known to exist in ordinary 
turbulence. Continuing to increase polymer concentration however lead to a surprising observation; the complete 
suppression of Newtonian turbulence; this is indicated by a suppression of observable pressure fluctuations and a friction 
factor which follows the Hagen–Poiseuille scaling. Even more surprisingly, increasing the polymer concentration further 
resulted in an increase in fluctuations accompanied by an increase in the friction factor which finally came to rest on the 
MDR asymptote. This time the fluctuations grew steadily in magnitude and no intermittency was observed. The complete 
suppression of ordinary turbulence and the introduction of a new type of turbulence (EIT) occurred by a continuous 
variation of a single quantity C; this leads us to the conclusion that the mechanisms driving the two types of turbulence are 
unique and the two resulting states are distinct. 
   A second point of distinction between the two types of turbulence raised by Samanta et al. [6] was the fact that unlike 
ordinary turbulence, the onset of EIT was not governed by Re, but rather by the critical shear rate (which can be expressed 
in dimensionless form as the Weissenberg number Wi). To test the limits of this assertion, we increased the viscosity of our 
polymer solution by adding various amounts of glycerine; this had the effect of lowering Re for a constant shear rate. By 
means of laser Doppler velocimetry (LDV) we measured the centreline axial velocity of the flow and by analysing the 
spectrum of velocity fluctuations we were able to determine that turbulent signatures could be resolved at Reynolds 
numbers as low as 7 (which was the smallest Reynolds number we tested). This further solidifies the argument of distinction 
between ordinary turbulence (which would be supressed in cases of high viscous forces in comparison to inertial forces) and 
EIT which persists under the same conditions. 
     

CONCLUSIONS 

 

   From our experiments we conclude that long-chain polymers delay and completely suppress Newtonian turbulence 
under the right conditions. For large enough Weissenberg numbers on the other hand, polymers give rise to a distinct type of 
turbulence which we clearly demonstrated as being independent of Newtonian turbulence. Based on these observations, we 
conclude that MDR is in fact the asymptotic state of a unique type of turbulence which has been termed EIT. 
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Summary The comparison of the results of direct numerical simulations (DNS) of homogeneous and isotropic turbulence (HIT) of vis-

coelastic fluid are done based on the FENE-P model. It provides evidence, comparing with DNS of Newtonian fluid HIT, that viscoelasticity

modifies qualitatively the behaviour of the smallest scales.

INTRODUCTION

We have already reported [1] the influence of polymer on turbulence at the smallest scales by considering the dynamics of

the FENE-P model and representing some key features of flow with a weak concentration of polymer molecules. The transfer

of energy from large scale toward the smallest scales via interaction with polymer fields was observed. In this communication

we will focus on the influence of these mechanisms on the classical statistical quantities issued from velocity or conformation

fields of the viscoelastic fluid flows.

MODEL AND NUMERICAL SET-UP

We have implemented the FENE-P model in a standard pseudo-spectral solver. The model is given by

∂tu+ u× (∇× u) = −∇p+ ν∆u + νp div (P.C − I) + f (1)

∂tC + u.∇C = C.∇u+∇u
t.C +

1

τp
(P.C − I) (2)

where p = p′ + u2

2
is the total pressure, C is the conformation tensor of the polymer chains, I is the identity tensor,

P =
L2

m−1

L2
m−Tr(C)

is the Peterlin’s function with Lm the maximum extension of the spring, τp is the polymer relaxation time,

νp is the polymer zero-shear-stress viscosity and f is a forcing term. The incompressibility condition is div u = 0. We use a

symmetric factorization of the conformation tensor: Cij = BimBmj [2], which ensures C to remain positive definite. In order

to accurately resolve the dissipation range, we simulate low Reynolds number flow (with a Taylor-scale Reynolds number of

order Reλ ≈ 30) using 2563 grid-points. The maximum stretching-length L = 255 and the ratio of solvent to total viscosity

(β) is around 0.909. The parameter β is in a direct relation with the concentration of polymer. The Newtonian case can be

considered as β equal to 1.

Case Forcing ν τp β
type ×10−2

a1 S 1.25 0.5 1

a2 S 1.25 0.5 0.909

a3 S 2.5 0.5 0.909

a4 S 1.25 0.5 0.833

a5 S 1.25 0.75 0.909

b1 ABC 1.25 - 1

b2 ABC 1.25 0.5 0.909

c1 None 1.25 1

c2 None 1.25 0.5 0.909

d1 None 1.25 - 1

d2 None 1.25 0.5 0.909

Table 1: Parameter compilation for the different cases.

In order to investigate the issues in the following (dissipation

range behaviour and drag-reduction), we consider five differ-

ent flows at comparable Reynolds and Weissenberg (Wi =
τp
λ

numbers. Cases from a to b are forced to obtain a statisti-

cally steady state, the remaining cases c and d are decaying,

starting from different initial conditions. We summarize them

in the table 1. The label S denotes a stochastic forcing [3],

ABC indicates a deterministic helical forcing [4]. The differ-

ence in the freely decaying simulations (non forcing type) is

that in cases c the initial condition is a fully developed veloc-

ity field, in cases d it is a synthetic Gaussian flow field with

prescribed energy distribution. The comparison of these dif-

ferent cases allows us to consider the issues discussed below.
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Figure 1: Dependence of the trace of the conformation

tensor on the Weissenberg number

The polymer diluted in solvent will be stretched under the ac-

tion of shear. In the linear regime of polymer stretching (small

deformations), the polymer should be stretched more at the

Kolmogorov’s scale which corresponds to a peak of the shear

rate. The extension of polymer is the competition between the

relaxation rate fp = 1/τp and the shear rate s =
√

ǫf
ν

, where

ǫf is the dissipation rate of kinetic energy. Hence, we expect

that the polymer extension will scale with the ratio between

the relaxation frequency of the polymer fp and the character-

istic shear rate (s) at the Kolmogorov scale.This ratio is the

Weissenberg (Wiη) number. The trace of conformation ten-

sor scales with the square of the polymer extension, which

yields:

〈Cij〉 ∼

(

τp

√

ǫf
ν

)2

= (Wiη)
2

(3)

Our data fit well the scaling law described in equation (3), as presented in figure 1. The linear regression coefficient is

noted as A = 3.29. Thanks to this scaling law, we managed to collapse the kinetic energy spectrum (EK) and the polymer

elastic energy spectrum (Ep). The spectra of small scales in the dissipation range lead to a k−6 law and k−2 law respectively

plotted on figure 2. The argument leading to this normalization will be detailed during the Colloquium. Finally, we will

propose a phenomenological law on polymer extension, which is supported by a global and scale by scale analysis spectra.

More statistical classical results, corresponding to Newtonian and viscoelastic cases will be presented and compared.
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Figure 2: Normalized Kinetic and polymer energy spectra. Lp is the correlation length based on the elastic energy of polymer.
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Summary We conduct multi-scale study on energy transfer due to polymers dispersed in homogeneous isotropic turbulence in elasto-inertial
regime (EIT). Effect of introduction of non-affinity with macroscopically-imposed deformation in the motion of polymers is examined by
connecting mesoscopic Brownian dynamics of elastic dumbbells to macroscopic DNS for solvent. The dumbbells are allowed to be advected
either affinely (contravariant) or completely non-affinely (covariant). The relaxation time of polymer is in the order of eddy turnover time.
Contravariant polymers drain more energy from the large scales than they can dissipate and transfer the excess energy back into the solvent
when they are highly-stretched. It is shown that the skewness of strain-rate tensor in the production term for elastic energy and dissipation
rate transfer elastic energy back into the smallest scale of the solvent and increase the dissipation. In the covariant polymers, this backward
transfer is eliminated and elastic energy is retained when highly stretched.

PROFILES OF BDS-DNS RESULTS AND CONVERSION OF SOLVENT ENERGY

It is well known that addition of small amount of long-chain polymers into the turbulent flow in the Newtonian fluid causes
significant drag reduction (DR). A theoretical concept of DR due to Lumley [2] is that randomly coiled polymer molecules
stretch in regions of strong deformation, increasing the elongation viscosity of the solution and results in damping of small
turbulent eddies and DR. de Gennes [3] considered that Lumley scheme may hold for (rigid) rods, and in the coil-stretch
transition, stretched chains behave elastically and it leads to modifications of turbulent cascade. It is generally assumed that
the fluid surrounding the bead-spring configuration of the polymers moves affinely with an equivalent continuum. In the fluid
diluted with stretched polymer or rod, molecular motions may not precisely correspond to the macroscopic deformation. In
[4], the Johnson-Segalman (JS) constitutive model for the polymer stress τij [5] was adopted to introduce non-affinity, where
the strength of non-affinity is described by the slip parameter α(0 ≤ α ≤ 1). Remarkable enhancement in DR was achieved
when non-affinity is maximum (α = 1.0) in homogeneous isotropic turbulence and pipe flow.

To extract exact distribution and orientation of the dumbbells, we adopt multi-scale BDS-DNS approach [6]. The position
vectors of each bead of the n−th dumbbell are denoted by x1

(n) and x2
(n) (n = 1, 2, · · ·Nt, Nt is the number of dumbbells).

When α = 0.0, the governing equation for motion of the end-to-end connector vector R(n) is given by

dRi
(n)

dt
= {ui(x1(n))− ui(x2

(n))} − 1

2τs

Ri
(n)

1− (Rk
(n)Rk

(n)/Lmax
2)

+
req√
2τs

(
(W1

(n))i − (W2
(n))i

)
, (1)

where ui(x) denotes the velocity field of the solvent fluid, and the finitely extensible nonlinear elastic (FENE) model is applied
to the elastic force. (W1,2

(n))i is a random force representing the Brownian motion of particles. τs denotes the relaxation
time. We introduce the non-affinity by allowing a slippage in the motion of polymer strand [4]. The velocity imposed at bead
i, is given as ui = ug + (∇ug) · (Ri −Rg) − 2α{St · (Ri −Rg)}, where ug denotes the velocity at the center and ∇ug
is the velocity gradient tensor and St is the strain rate. When α = 0.0, Eq. (1) becomes analogous to the upper-convective
derivative for evolution of a contravariant vector, dR

i

dt = Rj ∂u
i

∂xj . The dumbbells concentrate along the vortex lines. When
α = 1.0, Eq. (1) becomes analogous to the lower-convective derivative for material surface element with its covariant vector
area, dRi

dt = −Rj ∂u
j

∂xi . Elasticity arises in the sheet-like region and R aligns transversely with the vorticity vector ω. When
α = 0.0 R tends to become parallel to ω [4]. By taking ensemble average over a small volume containing a large number of
dumbbells, the JS model is obtained. We carried out DNS using 1283 grid points, τs = 2.8, Nt = 109. Weissenberg number
Wi = 10.0 in which EIT arises. Pseudospectral technique with a 3/2-rule de-aliasing is used. τij due to the force acting on
the fluid from the dispersed dumbbells are added to the Navier-Stokes equation, where replica method was used [6].

Figure 1 (a) shows the temporal variations in ε. Smaller ε implies larger DR. When α = 0.0 DR occurs, but DR in α = 1.0
is more remarkable. Figure 1 (b) shows the PDF for the length of the dumbbells. Covariant dumbbells exhibit larger extension
close to the maximum length (≈ 0.1) and larger viscoelastic effect is caused in the covariant dumbbells. Note that the PDF
for covariant dumbbells is segregated into two groups of large and smaller lengths.

The approximate solution of the the JS model expanded in τs becomes [4] τij ≈ ν(1−β)
[
2Sij +2τs{(1−2α)2SikSkj −

(SikΩkj + SjkΩki)} up to the first order in τs, where Ωij is the vorticity tensor. The production term for polymer elastic
energy, Pe becomes Pe ≡ τijSji ≈ 4ν(1−β)τs(1−2α)2SikSkjSji. The −SikSkjSji term is also responsible for production
of dissipation ε, Pε. Therefore, the solvent energy is converted to either elastic energy or dissipation. When the former case
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occurs, elasticity and tension force arises and it leads to DR, while in the latter, drag is enhanced. The shear stress comes from
the SikSkj(i ̸= j) term. It turned out that when the dumbbells are highly stretched, shear stress becomes large although the
normal stress is dominant when the length is intermediate. Noting that −SikSkjSji is predominantly positive, when α = 0.0,
Pe ∝ SikSkjSji < 0 and Pε ∝ −SikSkjSji > 0. When α = 1.0, Pe ∝ −SikSkjSji > 0 and Pε ∝ −SikSkjSji > 0.
Thus, in the highly stretched dumbbells, the contravariant polymers transfer the elastic energy back into the solvent and it is
converted to dissipation. In the covariant polymers, the transfer can proceed to both elastic energy and dissipation.

Figure 2: (a): joint PDF between −SikSkjSji (x-axis) and Pe (y-axis) from the case of α = 0.0 ; (b): α = 1.0; (c): PDF for
ε taken conditionally on the magnitude of −SikSkjSji from the case of α = 0.0; (d): α = 1.0.

Figure 2 (a) and (b) show the joint PDF between −SikSkjSji and Pe in the cases of α = 0.0 and 1.0, respectively. When
α = 0.0, large −SikSkjSji does not contribute to generation of large Pe, whereas large Pe occurs in association with large
values of −SikSkjSji when α = 1.0. Figure 2 (c) and (d) show the PDF for ε in α = 0.0 and 1.0, respectively. The value
of −SikSkjSjiis divided into 7 zones. PDF is taken in each zone. When α = 0.0, ε monotonically increases as the value of
−SikSkjSji increases. Transfer to dissipation overwhelms transfer to elastic energy in α = 0.0. When α = 1.0, the PDF of
ε saturates in the intermediate zones of −SikSkjSji. Transfer to elastic energy overwhelms transfer to dissipation, and the
drawback of the contravariant polymer is eliminated in the covariant polymers.

CONCLUSIONS

Effect of introduction of non-affinity in the motion of polymers on elasto-inertial turbulence is studied using BDS-DNS.
It is shown that contravariant polymers release the elastic energy back into the solvent when highly stretched and dissipation
increases. Covariant polymers retain the elastic energy when highly elongated, which leads to larger DR. We consider that this
difference is attributable to flexibility and rigidity in the contravariant and covariant polymers, respectively. Present results
provide support for the hypothesis due to de Genne [3].
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Summary Using surface textures has been shown to decrease friction in lubricated sliding contact with Newtonian fluids (oils). Adding
polymers to the oils increases their lubricating effectiveness, and also causes the solution to be Non-Newtonian. We present an experimental
investigation varying both the surface texture depth profile and the viscoelastic lubricant in order to determine their effects on friction
reduction. Gap-controlled experiments were performed on a custom tribo-rheometer in order to systematically examine the friction reduction
by varying the Reynolds number, Weissenberg number, and Deborah number in bi-directional motion. Cavitation effects are not present so
that the normal force is produced solely by the surface textures and the lubricants. We show that the symmetry of the surface textures must
be broken in order to produce normal forces above the viscoelastic response, and that an optimal angle of asymmetry β exists for decreasing
friction with asymmetric surface textures and viscoelastic lubricants.

INTRODUCTION

Surface texturing has been used in recent years in order to reduce the friction in lubricated sliding contact[1]. Surface
textures can decrease the apparent area of contact in boundary lubrication, act as reservoirs that retain lubricant during startup
[2], increase the film thickness and increase hydrodynamic pressure to further separate the plates [3], and decrease the local
shear stress [4], all of which contribute to friction reduction.

We experimentally examine the effects of different surface texture depth profiles on decreasing friction through the re-
duction of apparent viscosity and the production of normal forces. Gap-controlled experiments were performed on a custom
tribo-rheometer in order to systematically determine the normal force production and apparent viscosity reduction with vary-
ing Reynolds number up to a maximum Reynolds number with respect to gap height Reh = 59.54. Previous experimental
work [4, 5] only tested with the top plate moving in one direction. In our work here the top plate was allowed to rotate in both
directions to verify symmetry in the experimental set up and to determine direction of motion dependence on the normal force
and apparent viscosity reduction.

A recent trend in the lubrication industry is to use polymer additives with Newtonian oils in order to obtain better viscosity-
temperature and viscosity-pressure dependence [6] and to increase the load carrying capacity [7]. We present an experimental
examination of the effects of surface texture depth profiles with a viscoelastic lubricant. Gap controlled experiments were
performed on a custom tribo-rheometer in order to systematically examine the friction reduction with varying Reynolds
number, Weissenberg number Wi = λγ̇ where λ is the fluid relaxation time scale and γ̇ = ΩR0/h is the nominal shear rate,
and Deborah number De = λ/tchar where tchar = Ω/φ and φ is the periodic spacing of the surface texutres. Cavitation
effects are not apparent in our measurements; therefore the normal force produced is solely from viscous effects caused by the
surface textures and by the viscoelastic response of the fluid.

RESULTS AND DISCUSSION

The apparent viscosity reduction of the surface textures with the viscoelastic lubricant is given in Figure 1A. The flat plate
matches the Carreau-Yasuda model obtained for the lubricant for all the gap heights tested, independent of the direction of
motion. The surface textures decrease the apparent viscosity beyond the shear thinning effects, independent of the direction
of motion.

The normal forces produced with the surface textures and the viscoelastic lubricant is given in Figure 1B. The forces
produced by the flat plate are solely due to the viscoelastic response, independent of the direction of motion. The forces
produced with the symmetric texture are barely above the viscoelastic response. The asymmetric textures produce normal
forces above the viscoelastic response, and the magnitude of the normal force depends on the direction of motion and the
value of β, suggesting there is an optimal surface texture for decreasing friction with viscoelastic lubricants.

The apparent viscosity reduction and normal force production can be combined as the effective friction coefficient, given
as

µ∗ =
M/R0

FN
. (1)

The effective friction coefficient for all the surface textures at each of the gap heights tested is given in Figure 2. A minimum is
observed in the effective friction coefficient, suggesting that there is an optimal β for decreasing friction with a Non-Newtonian
fluid.
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(A) (B) 

Figure 1: Results of the surface textures tested with a Non-Newtonian viscoelastic lubricant. (A) is the apparent viscosity
reduction. (B) is the normal force production.

Figure 2: Effective friction coefficient µ∗ = M/R0

FN
for all the surface textures at each of the gaps tested experimentally with

both Newtonian and Non-Newtonian fluids. The results with the Non-Newtonian fluid are always lower than those with the
Newtonian fluid, meaning that the combined performance of the surface textures and Non-Newtonian fluids is better than the
surface textures alone.

CONCLUSIONS

We show that the surface textures decrease the apparent viscosity of a viscoelastic lubricant beyond the shear thinning
effects of the lubricant. We also show that symmetry must be broken in order to produce normal forces above the viscoelastic
response, and the magnitude of the forces produced depend on the value of β of the asymmetric textures. Finally, we show
that there appears to be a minimum in the effective friction coefficient as a function of the surface texture. This suggests that
there is an optimal surface texture for decreasing friction in lubricated sliding systems with a viscoelastic lubricant.
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Summary The vorticity response to small-amplitude surface undulations in a viscoelastic Couette flow is examined. An integral measure
is defined to quantify the depth of vorticity penetration into the bulk flow. Three regimes of penetration are identified, and each occupies
a sector of a phase diagram parameterized by the ratios of the channel depth and of the critical-layer (CL) height to the lengthscale of
the surface roughness. The CL emerges due to the propagation of vorticity waves along the tensioned mean-flow streamlines. The most
intriguing behavior, the trans-critical regime, occurs when the CL lies within one wavelength from the wall. In trans-critical flows a
kinematic mechanism associated with the relative realignment of the polymer by the mean shear amplifies the vorticity in ‘sheets’ around
the CL. The effect is dominant at this location since the vorticity waves appear steady to an observer advecting with the mean flow.

PROBLEM FORMULATION
Hoop stresses established in viscoelastic flows with curved streamlines can initiate linear instability even in the inertialess

limit [1], a phenomenon which vanishes in parallel flows [2]. However, in planar configurations finite amplitude perturbations
can generate streamline curvature which is susceptible to secondary instability [3]. In this work we consider an important
related problem: how do small distortions in the surface topography of a parallel, viscoelastic shear flow affect streamline
curvature in the bulk?

We consider viscoelastic Couette flow, U∗ = γ̇∗y∗, in a channel of depth d∗ driven by motion of the top wall. The planar
Couette flow has an associated viscoelastic streamwise stress µpT ∗11 = µp2γ̇

∗2ς and shear stress µpT ∗12 = µpγ̇
∗, where µp

is a polymeric viscosity and ς the relaxation time. The wavy surface of the lower wall is y∗ = h∗cos(k∗x∗). In the linear
regime, and assuming small wave slopes, k∗h∗ � 1, the roughness leads to the slip boundary condition, u∗(x∗, y∗ = 0) =
−γ̇∗h∗cos(k∗x∗). In these expressions the asterisk identifies a dimensional quantity. The problem is non-dimensionalized
using the roughness wavenumber, k∗, and the shear rate, γ̇∗. We seek steady solutions of the form φ′(x) = φ(y)exp(ikx),
where the unit dimensional wavenumber k = 1 is retained for clarity.

The perturbation field is examined in terms of the vorticity, ω = ∇∧ u, and the polymer torque, χ = ∇∧ (∇ · τ ), where
τ is the perturbation polymer stress tensor. In the present problem the only relevant components of the vorticity and torque
are in the spanwise direction, and in an Oldroyd-B fluid they satisfy [4, 5],

advection︷ ︸︸ ︷
ikγ̇yω =

α2

R

[ solvent diffusion︷ ︸︸ ︷
β
(
d2
y − k2

)
ω+

polymer torque︷ ︸︸ ︷
(1− β)χ

]
, (1a)

ikγ̇yχ︸ ︷︷ ︸
advection

+
1

W
χ︸︷︷︸

relaxation

= 2ikγ̇dyϕ︸ ︷︷ ︸
kinematics

+
[
−k2T11 + 2ikT12dy︸ ︷︷ ︸

streamline tension

+
1

W

(
d2
y − k2

)
︸ ︷︷ ︸
linear viscoelasticity

]
ω, (1b)

where α ≡ k∗d∗ is the normalized channel depth, R = γ̇∗d∗2/(νs + νp) is the bulk Reynolds number, W = γ̇∗ς the
Weissenberg number and β = νs/(νs + νp) the ratio of solvent to total viscosity. The variable ϕ is a polymer potential,
∇2ϕ = −χ. Lines of constant ϕ are tangent to polymer force vectors. The most important terms in the torque equation (1b)
are those labelled ‘kinematics’ and the T11 component of the ‘streamline tension’ term. The former generates torque as the
mean shear re-aligns layers of varying polymer force. The latter provides a mechanism for the propagation of vorticity waves.
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Figure 1: Perturbation spanwise vorticity (colors) and streamfunction (lines) due to surface waviness. Here α = 10, R = 800.
(a) Newtonian flow. (b) Viscoelastic flow, β = 0.7, W = 30. (c) Viscoelastic flow, β = 0.7, W = 60.
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Figure 2: Penetration depth P in shallow ((a), ‘ ’ α = 0.01, ‘ ’ α = 0.1, ‘ ’ α = 0.5) and deep ((b), ‘ ’
α = 1, ‘ ’ α = 5, ‘ ’ α = 10) channels with with W = 60, β = 0.7. (c) Phase diagram of vorticity penetration.

TRANS-CRITICAL FLOWS

In inertia-dominated Newtonian flows where the viscous diffusion length is smaller than the channel height, (α2/R)1/3 <
α, the vorticity perturbations are swept downstream as they diffuse into the bulk flow [6], as shown in figure 1(a). Corre-
sponding viscoelastic flows are considered in figures 1(b) and (c), and the influence of the polymer is increased by raising
the Weissenberg number W . As W increases, the vorticity maximum detaches from the wall and moves upwards in the flow,
where amplification occurs in ‘stripes’ which are aligned favorably with the shear.

The mechanics of this behavior are explained by examining the vorticity-torque system (1) in the limit W � 1. The
leading approximation retains the effects of advection and the polymer torque in the spanwise vorticity equation (1a). In the
polymer torque equation (1b) only the advection, kinematics and T11 component of the streamline tension term are kept. The
reduced equations can be combined into a single ‘elastic-Rayleigh’ equation,

ikγ̇
(
y2 − Σ2

)
ω0︸ ︷︷ ︸

advection & wave propagation

= Σ2dy (ϕ0/W )︸ ︷︷ ︸
kinematics

, (2)

where Σ ≡ α
√

(1− β)T11/R. On the left hand side of (2) is the combination of base-flow advection and steamwise wave
propagation along the tensioned mean-flow streamlines. The kinematic term from the torque equation (1b) is a source term.

The streamwise vorticity waves arise from an interplay between flow inertia and fluid elasticity, and affect the efficacy of
the kinematic source term to generate vorticity. The source is most effective at y = Σ, or the critical-layer (CL) where the
advection and vorticity wave speeds are equal. This is because the source term generates torque through the realignment of
layers of varying polymer force by the mean shear, an effect which can operate most efficiently at the CL where an observer
travelling with the mean flow would see a stationary vorticity wave. Equation (2) is singular at y = Σ, and we have constructed
a uniformly valid solution using matched asymptotic expansions. This solution demonstrates that the CL thickness is set by
the solvent diffusion lengthscale, δc ∼ (α2β/R)1/3, and provides an explicit expression for the level of vorticity amplification
there, ω0(y = Σ) ∼ Σ3/2exp(−Σ)/δ2c .

PHASE DIAGRAM
In order to quantify the induced vorticity perturbation, we introduce the integral penetration measure P ≡ y(Λr = 0.99)

where Λr(y) =
∫ y
0
|ω(y′)|2dy′/

∫ α
0
|ω(y′)|2dy′. This quantity depends on two parameters: the ratios of the channel depth

and of the CL height to the roughness wavenumber, α and Σ respectively. Figures 2(a, b) report values of P in both shallow
and deep channels. For shallow channels, α < 1, the CL does not influence P ∼ α since it is outside of the domain, Σ & α.
We term these cases ‘shallow elastic’ flows. In deep channels (figure 2b) the penetration depth grows linearly with the CL
height, P ∼ Σ for Σ . 1. These are the ‘trans-critical’ flows described above. However, once the critical layer is sufficiently
far from the wall, Σ & 1, it no longer influences the perturbation field and the penetration depth reaches a maximum, P ∼ 1.
These are termed ‘deep elastic’ flows’. These results are summarized in a phase diagram in figure 2(c).

The present analysis focused on trans-critical flows whose parameters are relevant to drag-reduced turbulence [7, 8],
Furthermore, the shallow elastic regime has interesting features which were not discussed. In particular, there is an inertialess
mechanism by which the vorticity amplifies at the top wall. Finally, while the analysis is performed with the Oldroyd-B model,
the same behaviors are retained qualitatively in the more realistic FENE-P model.
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Summary In this work we focus attention on the startup flow version of the classical Poiseuille flow in a two dimensional channel for 
the case of a Bingham fluid by allowing the possibility for thixotropic behavior. We show results for the flow and unyielded core 
evolution and discuss the effects of the parameters on the final time needed to reach steady state.  
 

INTRODUCTION 
 

   The unsteady startup Poiseuille flow is of great theoretical and practical importance. For a Bingham fluid the problem has 
been tackled mathematically by a variety of methods [1]. The ultimate objective of this work is to solve the flow 
numerically by using two competing numerical methods (for the case of viscoplastic fluids and to compare the results with 
those given by analytic solutions [1]. Eventually we seek to establish a widely accepted solution for this problem. Below 
however due to lack of space, after a brief description of the theoretical background we present and discuss high fidelity 
numerical results from finite element simulations of the regularized version of the theory.   
 
Theoretical background   
			We	 consider	 the	 start-up	 flow	 of	 a	 Bingham	 plastic	 in	 a	 channel	 of	 height	 2H	 initiated	 by	 a	 known	 constant	
pressure	 gradient	G,	 such	 that	G>	τ0/Η,	where	τ0	 is	 the	 yield	 stress. The flow field is divided into a yielded region 
(𝑦!,𝐻) and an unyielded one (0, 𝑦!). The unyielded region is moving with a constant unknown velocity 𝑈!. In the unsteady 
case both 𝑈! and 𝑦! are functions of time.  Conservation of linear momentum yields 
 

     𝜌 !"
!"
= 𝐺 + !"

!"
                            (1) 

 where	 ρ	 is	 the	 density,	 u=u(y,t)	 is	 the	 velocity	 in	 the	 x	 direction	 and	 τ	 is	 the	 shear	 stress. The shear stress
 
𝜏 is 

expressed using the Bingham flow model as  

                              τ =τ 0 +µ
∂u
∂y                               (2) 

where 𝜇 is the plastic viscosity. In case of thixotropy we use the following evolution equation for the structural parameter 𝜆 
 
                       

!"
!"
= 𝛼 1 − 𝜆 − 𝛽𝜆𝛾                       (3) 

 
where α and β are the buildup and breakdown parameters and 𝛾 the rate of strain given by 𝛾 = 𝑑𝑢/𝑑𝑦. For closure we 
assume that the yield stress is a linear function λ, i.e. 𝜏! = 𝜆𝜏! where 𝜏! is the yield stress corresponding to the fully 
structured fluid.  

Numerical solution and proposed extrapolation method 
   The numerical solution for the complete work is obtained by solving Eqs. (1)-(3) along with the constitutive relation for 
the yield stress with: (a) the augmented Lagrangian method [2] and (b) by regularization employing the Papanastasiou 
model [3]. The augmented Lagrangian method is implemented using Matlab and, the regularized approach is formulated 
using the classical Galerkin Finite Element method and solved by Newton-Raphson iteration procedure. 
 

PRELIMINARY RESULTS AND DISCUSSION 
 

    Due to space limitation we are presenting here only for the regularized problem for G=-5, by using 1000 bi-quadratic 
elements and time increament dt=5000. The results are shown as a function of the Bingham number 𝐵𝑛 = 𝜏!𝐻

𝜇𝑈 and 

non-dimensional time =  𝜇𝑡 𝜚𝐻! where t is time and 𝑈 = 𝜏! 𝜚 .  The velocity and thickness are scaled using 𝑈, and 𝐻 

respectively. Figures 1 and 2 show the non-dimensional thickness (green line) and non-dimensional velocity of the 
unyielded core region. As it is expected the thickness decreases with time while its velocity (red line) increases. Eventaully 
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the flow reaches steady state. The steady state results agree with the analytic solution to an accuracy of up to the sixth digit. 
A comparison between the two figures where the only difference is the magnitude of Bn shows that while the core thickens 
with increasing Bn and its velocity decreases. For the chosen parameters the time to reach steady state appears to be less 
sensitive to Bn. This issue however is  investigated fully in the completed work.  
 

.  

Fig. 1.: Velocity and size of core region  (Bn=0.1)                          Fig. 2: Velocity and size of core region (Bn=0.5) 

   Figures 3 and 4 show the effects of thixotropy for Bn=0.5 and β=0.5. Depending on the relative ratio of the coeficients of 
breakdown and buildup the results are very different from the non-thixotropic cases. Figure 3 corresponds to a lower 
effective Bn because for lower buildup coefficient  𝑎 less  of the original yield stress survives during breakdown. Fig. 4 
then corresponds to a case of higher effective Bn. Consistent then with these observations the final thickness for Fig.4 was 
0.088039 and that for Fig. 3 0.069147 (not a steady state value). The corresponding velocities are 2.138820 (Fig. 4) and 
2.42848 (Fig.3). Please note that the time to reach steady state changes significantly as the flow represented by Fig. 3 has 
not reached steady state. This is another issue that is discussed in the completed work.  

 
 
Fig. 3.: Velocity and size of core region (α=0.1)  Fig. 4: Velocity and size of core region (α=0.5)
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VISCOELASTIC AND EMPIRICAL MODELS COMPARED IN CONTEXT OF
FLOWS IN EXTRUDERS

Stefan Descher∗1 and Olaf Wünsch1
1Chair of Fluid Mechanics, University of Kassel, Kassel, Germany

Summary This contribution deals with the comparison of viscoelastic and empirical rheological models in context of flows in extruders. A
simplified model based on the unwound helix channel is used to calculate the characteristic of the machine and the dissipation power curve.
Results of computations with the exponential Phan-Thien-Tanner model and a model using only its shear thinning behavior are compared.

MOTIVATION

In modern CFD-analysis of process engineering applications the use of empirical rheological models like Cross or Carreau-
Yasuda is common because they allow implementing a shear rate dependent viscosity at a low computational cost. In this
approach the shear viscosity curve is modelled and all kinds of other effects that can occur in a fluid relevant to these processes
are neglected. For example in polymer melts besides shear-thinning behavior also strain hardening, normal stress differences
and transient effects like stress relaxation are relevant. But to consider these effects more complex models like e.g. the
exponential form of the Phan-Thien-Tannner Model (EPTT) can be used. It includes all relevant effects, but is expensive
with respect to the computation time. A question that may come up in everybody doing computational rheology is, if it is
appropriate to just use empirical models or if the effort by using Maxwell-type models might be too high. Because the answer
to that question is strongly dependent on the flow type, for every case an investigation should be performed.

In polymer processing extruders play a key role in melt conditioning and feeding casting processes. For these applications
machine characteristics are relevant for process control which depends on the fluids properties. In this case it is useful to have
numerical data that is reliable.

SHORT OUTLINE

To perform calculations an unwound extruder model for a single flighted machine introduced in [1] is used. Here the
helically wound flow channel that is located between barrel and screw as shown in fig. 1 on the left is unwound which leads
to the geometry on the right. In this model the screw surface is static and the barrel surface is moving withvb = πDbn,
decomposed in the down-channel componentvbz and cross-channel componentvbx using the helix angleθ. Cyclic boundary
conditions are used at the gap between barrel and screw for the cross direction flow and at the channel surface for the down
direction flow. To calculate the characteristics of the machine a pressure gradient is implemented by using a body force in the
momentum equation. The direction of this force is perpendicular to the velocity of the moving wall.

θ

θ

vb

vbx

vbz

D
b

Figure 1: (Left) Single flighted screw in a barrel. (Right) Unwound helix channel model.

The study that is carried out deals with the case the pressure increases in direction of transport. This is given in extruders
if e.g. a nozzle is mounted at the outlet. In this configuration one point of interest is when the volume flux is canceled out over
the cross section of the channel. It is found by increasing the pressure gradient stepwise starting from zero. For each value
one calculation is performed until the steady state is reached. In this work this is done also for a varying relaxation timeλ
of the EPTT model in a range of the Deborah-numberDe = λn from 10−3 − 103. Besides the curve of power consumption
is evaluated because it correlates with the dissipative heating. Although the calculations are performed isothermally this is
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important to know because the material behavior is highly temperature dependent. Investigations with this unwound model
were done in [2] for the linear-PTT model analytically focused on the main and secondary flows.

The comparison with the empirical model is done by using the shear viscosity curve of the EPTT model in a list during
calculations. For this purpose a solver that calculates the shear rate and uses this list to interpolate values for the viscosity
was composed. The list is generated before the calculation using a semi analytical approach based on a Newton-Raphson
method. Thereby in the computaion is guaranteed, that the empirical model has the same shear-thinning behavior as the
viscoelastic model. The object of this approach is that if deviations occur in the calculations they will be caused by other
material phenomena. The results will show the error that has to be taken into account if a fluid that behaves exactly like a
EPTT model is described by a model that only concerns the shear properties.

The calculations are performed using foam-extend-3.1 [3] a version of OpenFOAM containing extensions contributed
by the user community. For considering the EPTT model a solver based on the log-conformation reformulation [4] was
composed. The solver interpolating the viscosity from a list uses a generalized shear rate based on the second invariant of the
deformation rate tensor. In both solvers pressure and velocity are coupled with a block matrix method and they are based on
outer corrections for stress respectively viscosity. For numerical stability the newtoinian solvent contribution had to be set to
β = 1% which is also included in the empirical solver.
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Figure 2: Comparison of the extruder characteristic and dissipation power curve forDe = 1. (Left) Dimensionless pressureK
over dimensionless volume fluxQ. (Right) Dimensionless dissipation powerΠDiss overQ.

An example of one investigation withDe = 1 is shown in fig. 2. In the left diagram the dimensionless pressure gradient
K is plotted over the dimensionless volume flow rateQ. The right diagram shows the curve of the dimensionless dissipative
powerΠDiss. The diagram forK shows that both models start with nearly the same value ofQ in the pressure gradient free
state and have the same shape. They have an increasing spacing that reaches a deviation of4.9% atK(Q = 0). The empirical
model shows a weaker structure, because its curve is always above the one of the EPTT. This means smaller changes in the
pressure gradient are needed for the same change in the volume flux. The curves of the dissipative power have a different
slope and cross each other. Close to the pressure gradient free point the empirical model overestimatesΠDiss by 4.5% and
at the characteristic point whereQ = 0 underestimates it by -6.8%. In the investigated range ofDe the deviations of the
models were in this magnitude. For the boundary values ofDe range both models behave newtonian and their deviation
nearly vanishes. This is obvious forDe = 10−3 and must be forDe = 103 because the viscosity of the EPTT model drops
below the solvent viscosity.
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RECIRCULATING FLOW PAST A CYLINDER OF A YIELD STRESS FLUID  
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Summary The recirculating flow around a circular cylinder is investigated experimentally and numerically in a Poiseuille configuration. A 
Newtonian fluid and two elasto-viscoplastic fluids without thixotropy prepared with Carbopol polymer are used. A regularised Herschel-Bulkley 
viscoplastic numerical model has been used to make comparison with experimental results. The morphologies and especially the geometrics 
characteristics of the twin vortices are described according to the Oldroyd and Reynolds numbers. The unyielded zones are defined. The 
parameters of the flow at the transition to the recirculating flow regime are provided.  
 

INTRODUCTION 

 
   This paper is on the fundamental problem of the flow past a confined circular cylinder in the case of a Newtonian fluid 
and yield stress fluids. We focus on the recirculating regime of flow which has two vortices attached to the cylinder in a 
confined medium. The yield stress fluids concern a broad range of fluids used in the industry and in everyday life. An 
important property of this fluid category is that it takes a solid behaviour below a yield stress 𝜏0 and flows as a viscous fluid 
above. 
   The main features to describe the vortices at the rear of the cylinder are its length, the position of its centre and its 
separation angle in function of Reynolds number and Oldroyd number which represents the ratio of yield stress effects to 
viscous effects (Figure 1). In our confinement of 0.2, only two studies which focused on the description of the vortices have 
been found in the literature for newtonian fluid, Grove et al. [1] with a Poiseuille flow configuration and Coutanceau and 
Bouard [2] with a uniform velocity profile flow configuration. For yield stress fluids, Mossaz et al. [5] have given some results 
with a uniform velocity profile flow configuration. These results have been used to compare our results and to discuss about 
the effect of the flow configuration. 

 
Figure 1: Example of vortices at the rear of the cylinder at Re=46 for the gel A (top part) and the gel B (bottom part) and 

comparison of numerical and experimental results at Re=59.3.  
 

MATERIALS AND METHODS 

 
   Three different fluids have been used in this study: a Newtonian aqueous glucose solution and two yield stress fluids based 
on Carbopol polymer: gel A (𝜏0 = 1.88 𝑃𝑎, 𝐾 = 1.85 𝑃𝑎. 𝑠𝑛 , 𝑛 = 0.43)  and gel B (𝜏0 = 0.02 𝑃𝑎, 𝐾 =
0.38 𝑃𝑎. 𝑠𝑛 , 𝑛 = 0.52). This polymer is used as a reference model for yield stress fluid experiences. Each fluid has been 
systematically characterised with rheometer by using specific methods [3]. For the yield stress fluids, the shear stress versus 
shear rate follows the Herschel-Bulkley constitutive law 𝜏̿ = (𝐾�̇�𝑛−1 +

𝜏0

�̇�
) �̿̇� 𝑖𝑓 𝜏 > 𝜏0  

  
 and �̿̇� = 0̿ else , where �̿� 

denotes the deviatoric part of the stress tensor, 𝐾 the consistency, 𝑛 the power index, 𝜏0 the yield stress. �̇̿� and �̇� are the 
strain rate tensor and the shear rate, respectively. 
   An experimental device has been built which consists in a loop working in closed circuit. The test duct has a rectangular 
cross section with a fixed confinement of 𝐷/𝐻 = 0.2 where 𝐷 is the diameter of the cylinder and 𝐻 the height of the 
channel. The visualisation system includes a high speed camera which allows us to make PIV. The Poiseuille flow is fully 

1316



developed upstream of the cylinder. A numerical method has been also developed with the ANSYS-Fluent software. The 
Herschel-Bulkley constitutive law has been implemented with the Papanastasiou’s regularisation method  
 

RESULTS 

 
   After a qualification of the experimental set-up by comparison to the literature results, the main characteristics of the 
vortices at the rear of the cylinders have been described for each fluid. The Figure 1 shows the typical influence of Oldroyd 
number (𝑂𝑑 = 𝜏0/(𝐾(𝑉𝑚𝑎𝑥/𝐷)𝑛) on the vortices at same Reynolds number (𝑅𝑒 = 𝜌𝑉𝑚𝑎𝑥

(2−𝑛)𝐷𝑛/𝐾). The critical values of 
the parameters at the transition no recirculating to the recirculating flow regimes have been established. All the experimental 
results have been always compared to the numerical ones (Figure 1). 
Globally, the yield stress effects are, on one hand, to delay the transition to the recirculating flow regime toward more inertial 
flow and on the other hand, to keep the vortices near to the cylinder (Figure 1). For this type of configuration, it is possible to 
distinguish different unyielded zones (Figure 2): first the confinement causes the appearance of a plug flow at the upstream 
and the downstream far from the cylinder. Then, around or on the cylinder, different unyielded zones rigid or moving can be 
observed. The size of these zones depends on both inertial and yield stress effects [4]. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Streamlines and unyielded zones in the global flow (top part) and around the cylinder (bottom part, zoom on the 
cylinder). The unyielded zones are colored in black. (𝑅𝑒, 𝑂𝑑, 𝑛) = (52, 0.92, 0.5). 

 
CONCLUSIONS 

 
   New results on flow morphologies and particularly on the structure of the vortex rear the cylinder have been determined 
experimentally and numerically for yield stress fluids. The influences of inertia, viscous and yields stress have been determined. 
The viscoplastic numerical simulation gives satisfactory results. 
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AXIAL DISPERSION IN WEAKLY TURBULENT FLOWS OF VISCOPLASTIC FLUIDS
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Summary In this study we present a framework to characterise the axial dispersion in the turbulent flow of viscoplastic fluids. Assuming
Herschel-Bulkley model, we perform the hydraulic calculation for a viscoplastic fluid. Then, we propose a method to correct the well-known
logarithmic turbulent velocity profile. Finally, we give an estimate for turbulent diffusivity and axial dispersion. This improves the earlier
results of [1] as we demonstrate that the corrections suggested for velocity profile can contribute to significant change in the case of weakly
turbulent flows. We also report on the effect of viscoplasticity on dispersion.

INTRODUCTION

The sequential flows of fluids along pipes or channels are ubiquitous in the industry. One particular example that we are
interested in is the primary cementing of oil and gas wells. During primary cementing one fluid is pumped after another.
These fluids have different densities and viscosities and may exhibit viscoplastic behaviour. They may also mix together. The
objective of this study is to give an estimate of magnitude of mixing due to axial dispersion. That is, mixing due to difference
of fluid parcel velocity with respect to the average velocity.

VISCOPLASTIC PIPE HYDRAULICS

The hydraulic calculations in general amount to defining the relationship between the wall shear stress τ̂w and the mean
velocity Ŵ0 for the different flow regimes. A widely used approach is that of [2] in defining (Fanning) friction factor (ff )
as a function of the generalised (Metzner-Reed) Reynolds number ReMR = 8ρ̂Ŵ 2

0 /κ̂
′(ˆ̇γN )n

′
where κ̂′ = τ̂w/(ˆ̇γL)

n′
, n′ =

d ln τ̂w/d ln ˆ̇γL, ˆ̇γN is the Newtonian strain rate at the wall and ˆ̇γL is the strain rate at the wall if the fluid would have been
in a laminar flow. The definition of ReMR is designed such that the classical relation ff = 16/ReMR for laminar flows
is recovered for power law fluid. However, the simplicity of this formulation is lost when we deal with more complicated
generalized Newtonian fluids or different flow regimes, because ReMR depends on both Ŵ0 and τ̂w. This in fact makes it less
useful in mapping τ̂w ↔ Ŵ0. Therefore, we define a Reynolds number which depends only on Ŵ0:

Rep =
8ρ̂Ŵ 2

0

κ̂p(ˆ̇γN )n
, κ̂p = κ̂

[
3n+ 1

4n

]n
. (1)

To represent the yield stress effect, we introduce a Hedström number that depends linearly on τ̂Y and is independent of
both Ŵ0 and τ̂w. Finally, we construct a similar dimensionless group representing τ̂w.

He = τ̂Y

(
ρ̂nD̂2n

κ̂2p

)1/(2−n)

Hw = τ̂w

(
ρ̂nD̂2n

κ̂2p

)1/(2−n)

, rY =
τ̂Y
τ̂w

=
He

Hw
(2)

Given He, we show that there is a 1-1 relation between Hw and Rep.

TURBULENT VELOCITY PROFILE

Following [2] we find that turbulent velocity profile is like:

W0(r) =

√
ff
2
[A0 ln(1− r) +B0] (3)

where A0 = A0(n
′) and B0 = B0(n

′, ReMR). Two common deficiencies of such log-law profiles are the centreline and near
wall behaviours. The velocity profile is symmetric which demand a zero velocity gradient at centreline. Following [3] we
add an exponential correction term to fix the centreline behaviour. In addition, as argued by [4] Reynolds stresses decay like
∼ (1− r)3 near the wall and therefore, a wall layer correction is needed. We eventually show that the velocity profile can be
approximated by:

W =

{ √
ff
2 [A0 ln(1− r) +B0 +B0,c +Bw] 0 < r < rc

W+(y+) rc < r < 1
(4)
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Figure 1: a,b) Comparison of our results (solid black) for n = 1 and He = 0 with Taylor’s coefficients (broken red) [1] for average
turbulent diffusivity (D̄t) and dispersion coefficient DT . c,d)average turbulent diffusivity (D̄t) and dispersion coefficient DT as a function
of Hw and n for He = 5

whereB0,c andBw are centreline and wall corrections to the core velocity andW+ is the wall layer velocity. y+ = 1−r
ψ is the

wall coordinate where ψ is a scaling factor. rc is the wall layer width which is obtained by stitching the two velocity profiles
together.

STREAMWISE DIFFUSIVITY AND DISPERSIVITY

We now follow a classical path towards estimating streamwise spreading of a passive tracer by the turbulent flow via
diffusive and dispersive mechanisms. To do so, we first need an estimate of turbulent diffusivity Dt. We use the Reynolds
analogy for the turbulent transport of mass and momentum, and the axial momentum balance to evaluate the shear stress. We
eventually show that:

Dt =


1

2Sct

(
ff
2

)1/2
r
rc

1
G(r)

[
rc − rY − 8

Rep

[
n

3n+1

]n
[G(rc)]

n
(
ff
2

)n/2−1
]

0 < r < rc

ψ
2Sct

(
ff
2

)1/2 [
1−ψy+−rY −(1−rY )

∣∣∣ dW+

dy+

∣∣∣n]∣∣∣ dW+

dy+

∣∣∣ rc < r < 1
(5)

where Sct is turbulent Schmidt number, andG(r) =
∣∣∣− A0

1−r +
d
drB0,c(r)

∣∣∣. Finally we calculate the dispersion coefficient(DT )
which is defined as below:

DT =
1

2

∫ 1

0

(∫ r

0

[W (r̃)− 1]r̃ dr̃

)2

rDD(r)
dr (6)

RESULTS

We compare our turbulent diffusivity and dispersion coefficient for the case of Newtonian fluid (He = 0, n = 1) with
those of [1]. Figure 1(a,b) demonstrates the effect of velocity profile correction. Figure 1(c,d) shows averaged turbulent
diffusivity (Dt) and dispersion coefficient (DT ) as a function of dimensionless wall-shear stress (Hw) and power law index
(n) for He = 5. The dashed red lines indicate the contributions from the turbulent core. We see that in the limit of weak
turbulence, the contribution of wall layer is significant.
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A DAMPED NEWTON ALGORITHM FOR COMPUTING VISCOPLASTIC FLUID FLOWS

Pierre Saramito ∗1
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Summary A new damped Newton algorithm for viscoelastic fluid flows is presented in this paper. This algorithm bases on a projection
formulation of the viscoplastic problem and an efficient preconditioned iterative solver for the singular Jacobian. A demonstration is pro-
vided by computing a viscoplastic flow in a pipe with a square cross section and performance are compared with the augmented Lagrangian
algorithm.

INTRODUCTION

The numerical resolution of viscoplastic fluid flows is still a challenging task. Two main main approaches are considered:
the augmented Lagrangian algorithm, which is accurate and slow, and the regularization approach, which is faster but could
be less accurate, as it solves a modified problem. This paper is a contribution to an ongoing effort for the development of
faster algorithms than the augmented Lagrangian for the resolution of the unregularized viscoplastic model. One of the most
efficient algorithm to solve nonlinear problems is the Newton method, due to its superlinear convergence properties. Applying
the Newton method to the unregularized viscoplastic problem leads to a singular Jacobian matrix. In this paper, we address
directly the singularity of the Jacobian matrix in the Newton method in order to preserve the superlinear convergence.

PROBLEM STATEMENT

The Bingham and Herschel-Bulkley models are characterized by the following property: the material starts to flow only
if the applied forces exceed a certain limit σ0, called the yield limit. We consider the fully developed flow in a prismatic tube
(see [1, 2] for details and notations). The problem can be summarized as:

Find σ and u defined in Ω such that:

∇u = P0(σ) (1)
divσ = −f in Ω (2)

u = 0 on ∂Ω (3)

where Ω is the pipe section, u is the velocity component along the pipe axis, σ is the shear stress vector and f > 0 is the given
constant pressure force in the pipe. Here, P0 denotes the following projection operator, defined for all τ ∈ R2 by

P0(τ ) =


1

K1/n
(|τ | − σ0)

1/n τ

|τ |
when |τ | > σ0

0 otherwise

where K > 0 is the consistency. Here, (1) expresses the constitutive equation, (2) the conservation of momentum and
(3) the no-slip boundary condition. The Bingham dimensionless number is defined by the ratio of the yield stress σ0 by a
representative viscous stress: Bi = 2σ0/(Lf) where L is the half-length of an edge of a square section Ω of the pipe. The
Bingham number Bi and the power law index n are the only two dimensionless numbers of the problem.

NUMERICAL RESULTS AND PERFORMANCES

Fig. 1 plots a comparison of the present inexact preconditioned damped Newton algorithm with the classical
Uzawa/augmented Lagrangian method, as proposed in [1]. The augmentation parameter r for the augmented Lagrangian
algorithm (AL) has been optimized for the present mesh (a pipe section with h = 1/80 and 5781 elements) in order to present
the best possible convergence rate. Both algorithms are implemented in the Rheolef free software FEM library [3]. The
Poisson matrix with no-slip boundary condition used by the AL is factored in sparse format one time for all, thanks to the
SUITESPARSE library. At each iteration of the AL, a linear system is solved, based on this factorization. For the present
inexact Newton algorithm, the Jacobian of the unregularized problem is solved by using a GMRES algorithm. The Jacobian
matrix of the corresponding regularized problem is used as preconditioner and is also factored. This factorization has to be

∗Corresponding author. Email: pierre.saramito@imag.fr
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Figure 1: Comparison between the inexact damped Newton method and the augmented Lagrangian algorithm (AL) for the
Herschel-Bulkley problem: residu vs CPU time, in seconds when Bi = 0.1, n = 0.5, h = 1/80 (a) in semi-log scale ; (b) in
log-log scale.

performed at each iteration of the Newton method, so each iteration of the Newton method is expected to be slower than its
AL counterpart. For this reason, Fig. 1 compares these two methods in term of the CPU time instead of iteration number.
Observe the dramatic efficiency of the Newton algorithm, which converges in less than 5 seconds to a residue less than 10−10

while the AL becomes slower and slower in semi-log scale and adopts an asymptotic behaviour, as shown in semi-log scale,
where the residue behaves as 1/tα, with α ≈ 0.75. After about 15 minutes, the residue is of about 10−7 and, by extrapolation,
reaching 10−10 would requires one day of computation.

CONCLUSION

For the first time, a Newton method is proposed for the unregularized viscoplastic fluid flow problem. It leads to a
superlinear convergence for Herschel-Bulkley fluids when 0 < n < 1. At each iteration, the singular Jacobian system is
solved by an iterative method and an efficient preconditioner based on the regularized problem. An inexact approach permits
to increase the performances of the algorithm. A demonstration is provided by the computing a viscoplastic flow in a pipe with
a square cross section and performances are compared with the augmented Lagrangian algorithm. Future work will extend
this approach to larger flow problems such as flows around obstacles and tridimensional geometries.
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Summary The present model analyses the dispersion of a solute in Casson fluid in unsteady pressure driven flow through an 
annulus in which the outer wall is moving in its own plane. By using the generalized dispersion model, the expressions for 
dispersion coefficient and mean concentration are obtained.  In the case of wall movement, the dispersion coefficient is 
observed to take both positive and negative values, which differ from the case of stationary boundary where the dispersion 
coefficient takes only positive values.  
 

INTRODUCTION 

 
   The study of flow/dispersion in annular tube with wall movement has many applications in medical and industrial fields. 
Secomb (1978) studied two dimensional flow field of an incompressible viscous fluid in a long parallel side channel with 
pulsating walls. Hydon and Pedley (1993), studied axial dispersion in a channel and discussed the applications of their 
results in understanding low-volume high frequency ventilation of the human lung. Waters (2001) studied the uptake of 
passive solute through walls of pulsating, fluid filled channel into an adjacent medium in which the solute diffuses and is 
consumed at a constant rate. In this study, we aimed to study the combined effects of pressure pulsation and wall oscillation 
on the dispersion process in Casson fluid flow in an annulus. By using generalized dispersion model proposed by Gill and 
Sankarasubramanian (1970), the expressions for dispersion coefficient and mean concentration are obtained. The results are 
analysed for the variation of dispersion coefficient and mean concentration with different parameters in the model. 
 

MATHEMATICAL FORMULATION 

  

   We considered the flow in an annulus between two coaxial cylinders with inner cylinder radius ka  )10(  k  and 

outer radius a. The dispersion of a bolus of a solute, which is initially of sz  units in length and of uniform concentration 

0C ,  is studied. For fully developed, axi-symmetric and incompressible flow, the unsteady convection-diffusion equation 

which describes the local concentration ),,( rztC of a solute can be written in the non-dimensional form as,   
 
 
                                (1) 
  

 with the non-dimensional quantities  
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Here Dm is the coefficient of molecular diffusion, ),( trw is the axial velocity, Pe = ,0
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aw
 the Peclet number and 0w  is the 

reference velocity. The corresponding initial and boundary conditions are  
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The velocity expression for the case of pulsatile flow in Casson fluid flow in annulus with wall movement is obtained in 
different regions  as:      
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where 21
2   ,   the width of the yield plane region )(/12 t
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mD
Sc


 .  The superscripts “+” and “+ +” represent the 

shear flow regions 1 rk  and 12  r , respectively, and the superscript “–”  represents the plug flow region

21   r . The yield plane locations 21 and   are evaluated from the continuity condition of velocity.  
 

METHOD OF SOLUTION  

 
   The solution of the convection-diffusion equation (1), with conditions (3 a-d) is solved, using the generalized dispersion 
method  and  hence the dispersion model reduces to 
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with the transport coefficients Ki’s as a function of time t and are given by  
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      i =1, 2,...                      

Here )(1 tK is called convection coefficient and )(2 tK  is called dispersion coefficient.  
Solving equation (5), by neglecting terms involved in 3K , 4K , etc., the solution of mean concentration mC  is obtained.  
 

RESULTS AND DISCUSSION  

 

   We have discussed the effects of yield stress y , inner cylinder radius k, steady component of the wall velocity 0W , 
fluctuating pressure gradient e, Womersely parameters  , w  and amplitude of wall velocity   on dispersion 
coefficient and mean concentration by fixing both  Pe and Sc as 1000. As   increases it is seen that fluctuations of  K2 

are more and magnitude of K2 is also increased. Here we made some of the important observations which are different from 
the stationary boundary problem. It is seen that as k increases the magnitude of K2 increases and decreases with time when 

y = 0 .05 and the magnitude of  K2 increases for y = 0.1, but whereas in stationary boundary situation the magnitude of 
K2  decreases for all times. As wall velocity increases the mean concentration increases, and also the curve shifts towards 
the right . The variation of mean concentration with annular gap is shown in Figure 6.18. As the annular gap decreases the 
mean concentration decreases and the curve shifts towards left  as k increases. 
 

CONCLUSIONS 

  Dispersion of a solute in an annulus in oscillatory flow in a Casson fluid with wall movement is studied using generalized 
dispersion model. It is found that dispersion coefficient in Casson fluid flow in an annulus in the presence of wall movement 
is a function of frequency parameter, Schmidt number, fluctuating pressure component, wall movement beside its 
dependency on time, annular gap, and yield stress of the fluid.  
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Abstract 
   Sedimentation of rigid particles is numerically studied in Newtonian and Bingham fluids in this work. In Newtonian 
fluids it is found that an increase in the number of particles leads to a decrease in the average settling velocity of the 
particles whereas for yield stress fluids this is not necessarily true. For the latter fluids, it is found that for sufficiently 
large Bingham numbers the number of particles can have an increasing effect on the average settling velocity of the 
same particles. In general, it is concluded that the initial arrangement of the particles plays a more important role as 
compared with the number of particles in dictating their settling velocity in yield-stress fluids. 

Introduction 
   Sedimentation of solid particles is encountered in a variety of industrial processes including fluidization, slurry flows, 
etc. While in the majority of cases the continuous phase is Newtonian, in food and oil industries the case in which the 
suspending medium is viscoplastic is quite common. Thanks to its technological impact, many researchers have studied 
single-particle sedimentation in yield stress fluids, either analytically or numerically [1-3]. To best of our knowledge, 
however, there is no published work addressing the case of multiple-particles settling in a yield stress fluid. 

Problem Description and Results 
   We have studied sedimentation of particles under the influence of the gravitational force in yield stress fluids obeying 
the Bingham model. To figure out the interaction between particles during their fall, we have considered different initial 
configuration comprising one, two, four, and nine particles arranged in a symmetric fashion. The channel is assumed to 
have a width of 2 cm and a height of 8 cm. Initial positioning of the particles is chosen in such a way that, in all cases 
under investigation, their center of mass is located at a height of 7 cm from the center of the channel (see Fig. 1). The 
distance between two adjacent particles is set at 0.3 cm. The density of the fluid is set at ρf  =  1 g/cm3 while the density 
of the solid particle is set at ρs = 1.01 g/cm3. The diameter of the planar particles is set at D = 0.2 cm. The fluid and the 
particles are initially at rest. The viscoplastic fluid of interest is assumed to follow the Bingham model. Detailed 
descriptions of our numerical method (i.e., the LBM/SPM methods) and its verifications are presented in our recent 
publications [4,5]. The dimensionless parameters involved in this study are the Archimedes number and the 
dimensionless yield stress (say, the Bingham number); that is: 
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 where g is the gravitational acceleration, τy the yield stress, and µ  is the dynamic viscosity of the fluid. 

 

    
A b c d 

  
Fig. 1: Initial positioning of the particles in the two-

dimensional channel. 
Fig. 2: Y-location of the center of gravity of the 

particles for the Newtonian case. 

Figure 2 shows how the center of gravity of the particles varies with time during their sedimentation in a Newtonian 
fluid. In Figs. 3 and 4. we have shown the behavior when falling in a yield-stress fluid having Yg = 0.02 and 0.05, 
respectively. As can be seen in Fig. 2, when the particles sediment in a Newtonian fluid, an increase in the number of 
particles results in a decrease in the average velocity of the particles settling velocity. In contrast, from Fig. 3 it can be 
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concluded that when the particles are falling in a slightly viscoplastic fluid, the two-particle scenario falls faster than the 
one-particle scenario. Similarly, the nine-particle case falls faster than the four-particle case. An increase in the yield 
stress of the fluids gives rise to an unexpected behavior, as can be seen in Fig. 4. The nine-particle combination settles 
faster than all other combinations. An interesting phenomenon that is seen in this figure is the change in the slope of the 
falling two and four particles. Two and four combinations of the particles start to fall with large velocity (with a high 
slope), but after a while the speed of their sedimentation decreases dramatically. 

  
Fig. 3: Y-location of the center of gravity of the 

particles for the yield stress fluid (Yg=0.02). 
Fig. 4: Y-location of the center of gravity of the 

particles for the yield stress fluid (Yg=0.05). 

To have a better understanding of the mechanisms involved in the particles' settling, we have shown the vertical 
position of the particles in Figs. 5 and 6 for the cases of Yg = 0.02, and Yg = 0.05, respectively. A comparison between 
Fig. 5 and Fig. 3 reveals that the average settling velocity of the settling is directly related to their initial arrangment and 
not the number of the particles. Interestingly, as soon as the particles reach the same vertical position the speed of 
falling decreases. In fact, the best scenario for having a higher falling velocity is when the particles are arranged in a 
vertical line (cf. Fig. 6 with Fig. 4). 

      
a b c d e f 

 

      
a b c d e f 

 

Fig. 5: Position of the particles during falling at times: t = 
1.25 s (a,b,c), t = 8 s (d,e,f) (Yg = 0.02, green: particles, 

red: unyielded regions, blue: yielded regions). 

Fig. 6: Position of the particles during falling at times: t = 
1.25 s (a,b,c), t = 8 s (d,e,f) (Yg = 0.05, green: particles, 

red: unyielded regions, blue: yielded regions). 

Conclusions 
   Based on the results obtained in this work, it can be concluded that the initial arrangement of particles before fall 
plays a key role in dictating the fall velocity when settling in a yield-stress fluid with the number of particles playing a 
secondary role. 
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Summary Energy spectra of elastic wave turbulence are examined by simulating the Föppl-von Kármán equation for several forcing scales.
There are two key scales: one is the system’s scale and the other is the critical scale where the nonlinear frequencies are comparable with
the linear ones. Although the energy spectra with the power law corresponding to the inverse wave-action cascade is observed in the middle
stage, it eventually relaxes to that for the energy equipartition. Various power-law spectra are observed depending on the forcing scales.

INTRODUCTION

The wave turbulence propagating in a thin elastic plate is described by the Föppl-von Kármán (FvK) equation, which
has Hamiltonian structure described easily in the Fourier representation. In the weak turbulence theory (WTT), complex
amplitude ak = ρωkζk+ipk√

2ρωk
is introduced as a canonical variable: idakdt = δH

δa∗k
, where ζk, pk, ωk, and ρ are respectively the

Fourier coefficients of the displacement and of the momentum, the frequency defined by the linear dispersion relation, and the
density of the plate. The Hamiltonian is given as

H =
∑
k

ωk|ak|2 +
∑

k+k1−k2−k3=0

Wkk1

k2k3
akak1a

∗
k2
a∗k3

+
∑

k−k1−k2−k3=0

(
Gk

k1k2k3
aka

∗
k1
a∗k2

a∗k3
+ c.c.

)
. (1)

The second and the third terms on the right-hand side respectively show the 2 ↔ 2 and the 1 ↔ 3 interactions of the four-wave
interactions, and Wkk1

k2k3
(= Wk2k3∗

kk1
) and Gk

k1k2k3
are the corresponding matrix elements of the interactions. Although there

exists the 0 ↔ 4 interaction other than the above interactions, such interaction is omitted in Eq. (1), since it can be reduced
by an appropriate canonical transformation. We have examined forward cascading turbulence in statistically steady states by
adding external force at small wavenumbers and dissipation at large wavenumbers, and shown the coexistence of the weak
and strong wave turbulence spectra as well as the variability of energy spectra depending on the energy level [1, 2].

Recently, Düring et al. [3] reported an inverse cascade of wave action in this system by adding external force at large
wavenumbers, which seems like a contradiction to our understanding that steady inverse cascade of wave action does not
exist in the framework of WTT. Although only the resonant interactions of the four-wave interactions are retained in WTT,
the quadratic energy as well as the total energy is conserved, but the wave action is not conserved since the 1 ↔ 3 reso-
nant interactions exist in addition to the 2 ↔ 2 resonant interactions. Furthermore, when a power-law solution of energy
spectra E(k) = Akp is assumed, the explicit expressions of the energy flux and the wave-action flux as well as the resonant
interactions can be obtained formally [3, 4]. There exist four typical spectra: ⟨1⟩ energy equipartition for p = 1 , ⟨2⟩ direct
energy cascade for p = 1 with logarithmic correction, ⟨3⟩ wave-action equipartition for p = 3, and ⟨4⟩ inverse wave-action
cascade for p = 5/3. Note here that for p = 3 and p = 5/3, the expression of the wave-action flux superficially diverges, and
E(k) = Akp cannot be a steady solution of the kinetic equation in WTT since the 1 ↔ 3 resonant interactions do not vanish.

Alternatively, other two typical spectra are derived by using dimensional argument, where the physical parameter difined
by the dispersion relation of the system is employed [5]. The one is p = −1 corresponding to the direct energy cascade and
the other p = −1/3 to the inverse wave-action cascade. The dimensional argument is applicable to non-weak turbulent states.

Lastly, we have to be careful about the difference between FvK and the kinetic equation in WTT in terms of interaction
and conserved quantities. The random phase approximation also makes the difference in nonlinearity, e.g. nk = ⟨|ak|2⟩ ∼
ωk⟨|ζk|2⟩ as in Ref. [3]. The words “cascade” and “flux” have been often used for non-conservative quantities.

NUMERICAL RESULTS

Direct numerical simulations (DNS) were performed by using the standard pseudo-spectral method according to the canon-
ical equation for the complex amplitude, added the external force and dissipation to achieve non-equilibrium statistically
steady states. We used N × N = 2048 × 2048 modes in the calculation of the convolutions with the 4/2 dealiasing rule.
The forcing scale was changed, while the dissipation was always added at large wavenumbers. We also changed the system’s
scale L × L instead of changing N to investigate the dependence of energy spectra on the forcing scale, because too much
computation time is consumed with much larger number of modes. Two types of forcing scales are chosen as a representative
for the present analysis: one is the forcing at large wavenumbers, and the other at middle wavenumbers. The wavenumber
range for the former is 512π

L ≤ k ≤ 566π
L and that for the latter 32π

L ≤ k ≤ 40π
L .
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Figure 1: (a): representative energy spectra for external force at large wavenumbers with L = 1. (b) and (c): energy spectra in
statistically steady states for external force at large wavenumbers and at middle wavenumbers. The system scales are L = 1
(red and blue curves) and 10 (purple and green curves). The thick straight lines represent the critical scale at each energy level.

In Fig. 1 (a) shown are the energy spectra at four representative times, when the external force is added at large wavenum-
bers. The spectrum (red curve) shows k5/3 as reported in Ref. [3] at early stage, and the spectrum (blue curve) at middle
stage becomes to have two power-law ranges which might correspond to the spectra in Fig. 8(b) of Ref. [3]. The spectra
were described as a final spectra in a stationary regime with ωk⟨|ζk|2⟩ ∼ k−4/3 for k < 0.2 and ωk⟨|ζk|2⟩ ∼ k−2×0.873

for 0.5 < k < 5. When the energy at the largest scales becomes significant, the energy spectrum (purple curve) grows to
have the power law k which corresponds to the energy equipartition. In almost statistically steady state (green curve), the
energy equipartion spectrum ends up being concave upward below the critical wavenumber where the nonlinear frequencies
are comparable with the linear frequencies. Negative slope of energy spectrum appear in smaller wavenumber range where
WTT cannot be applied but the dimensional analysis can be.

To investigate the importance of critical scales, we have performed DNS with the external force at large wavenumbers with
changing L and the forcing amplitude. The energy spectra in almost statistically steady states are plotted in Fig. 1 (b). It is
confirmed that the spectra in the larger wavenumber range than the critical wavenumber have the energy equipartition spectra
k and that in smaller wavenumber range the negative slope spectra, though the fluctuation is large there, consistent with the
dimensional analysis. There is no singular behavior at the smallest wavenumbers, though no drag was added at the smallest
wavenumbers similarly to Ref. [3] .

We also performed DNS with the external force at middle wavenumbers in order to find the relation of the forcing scale
with the system’s scale. The results are shown in Fig. 1 (c). The energy spectra in the larger wavenumber range than the forcing
wavenumbers show the similar behavior with those in Refs. [1, 2] where the external force was added at small wavenumbers to
investigate the forward cascade. It is interesting to point out that the positive slope spectra appear in the smaller wavenumber
range than the forcing wavenumbers even though such wavenumbers are smaller than the critical wavenumbers.

CONCLUSIONS

Direct numerical simulation of the Föppl-von Kármán equation are performed for various forcing scales and system’s
scales. Although the power-law spectrum k−1/3 corresponding to the inverse wave-action cascade transiently appear, the
energy spectrum in the larger wavenumber range than the critical wavenumbers relaxes to the energy equipartition spectrum
k eventually. The spectra in larger wavenumber range than the forcing wavenumbers have weak and strong wave turbulence
spectra as reported in Refs. [1, 2]. New power-law spectra are observed in the smaller wavenumber range than both the forcing
wavenumbers and the critical wavenumbers.

References

[1] Yokoyama N., Takaoka M.: Weak and strong wave turbulence spectra for elastic thin plate. Phys. Rev. Lett. 110: 105501, 2013.
[2] Id.: Identification of a separation wave number between weak and strong turbulence spectra for a vibrating plate. Phys. Rev. E 89: 012909, 2014.
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Summary In many applications of large eddy simulation (LES), the grid or filter that defines the scales of turbulence to be simulated is
anisotropic. Further, it is common for the turbulence to be so highly anisotropic and the filter scale so large that the unresolved turbulence
cannot be assumed to be locally isotropic. However, LES subgrid models do not generally account for this turbulence and resolution
anisotropy. In this talk we propose and evaluate an anisotropic subgrid modeling approach designed to address these shortcomings.

In large eddy simulations of complex turbulent flows, the geometry and important flow characteristics often demand that
the grids employed be anisotropic (also inhomogeneous). The filter scale is therefore a function of the direction. To use
classical large eddy simulation subgrid models such as Smagorinsky and its variants, which are formulated in terms of only a
single filter scale, some sort of aggregated length scale must therefore be defined. But, this means that in some directions one
must be simulating less turbulence than the grid could support and/or in some directions the model is formulated to simulate
smaller scale turbulence than the grid can resolve. This results in poor LES performance in complex flows [Haering, 2015].

Further, in these complex flows, computational cost considerations demand that the resolved scales not extend deep into
the inertial range, so isotropy of the unresolved scales is not generally a good assumption. Again, commonly used subgrid
models like Smagorinsky are formulated based on a scalar and therefore isotropic description of the subgrid turbulence. The
goal of the model development described here is to obtain an anisotropic subgrid model that accounts for the anisotropy of
both the resolution and the turbulence. An anisotropic eddy diffusivity based on a tensor description of the resolution and a
tensor measure of the subgrid turbulence intensity is sought.

To formulate an anisotropic filter metric, consider a transformed coordinate system in which the filter resolution is isotropic
with unit filter width. Let J be the Jacobian of the transformation from this coordinate system to the physical coordinates,
then the symmetric tensorM = (J TJ )1/2 has the property that the quantity eTMe, where e is a unit vector, is the effective
filter width in the direction of e.M will be used as the tensor representation of the filter scale in the model formulated here.

To represent the scale anisotropy of the unresolved turbulence, a natural quantity to consider is the second order structure
function evaluated with separation at the filter scale. Consider the second order structure function contracted on the velocity
components:

S2(δx) = |u′(x+ δx)− u′(x)|2 (1)

As is well known, S2/2 is a measure of the kinetic energy of the turbulence at scales smaller than |δx|. If we consider δx to
be at the filter scale, then S2 can be approximated as

S2(δx) ≈
∣∣∣∣ ∂u′∂xm

δxm

∣∣∣∣2 (2)

where u is the resolved velocity. Using the resolution tensor defined above, a tensor Q representing the dependence of S2 on
the direction of the filter-scale separation can be defined as

Qij =
∂u′k
∂xm

Mmi
∂u′k
∂xn
Mnj , (3)

then the quantity eTQe is an approximation of S2 with filter-scale separation in the direction e.
A natural formulation for a second-order tensor eddy diffusivity can be found by generalizing the structure function model

of Metais and Lesieur [1992]. The resulting tensor eddy diffusivity is given by

ν = Cν(MQM)1/2 (4)

where consistency with the structure function model yields Cν = 0.105C
3/2
k /3 with Ck the Kolmogorov constant. The

sub-filter stress tensor τ can then be written [Haering, 2015]

τij = νik
∂uj
∂xk

+ νjk
∂ui
∂xk

. (5)
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Figure 1: One dimensional energy spectrum of filtered DNS, LES with the proposed anisotropic model and standard Smagorin-
sky model. Compared to a DNS resolution of 2563, the LES have effective grid sizes of 128×322 (left) and 1282×16 (right).

This formulation of an anisotropic eddy diffusivity has been tested against filtered DNS. For example, to test the treatment
of anisotropic filter widths, an anisotropically filtered forced isotropic turbulent DNS was compared to a forced isotropic
turbulence LES performed with an anisotropic filter resolution. The resulting one-dimensional energy spectra are shown in
figure 1 for two cases, one in which the filter resolution is coarse in two directions, and fine in the third, and one in which the
filter resolution is coarse in one direction and fine in the other two. Also shown for reference are the spectra from the filtered
DNS and from the standard Smagorinsky model. In both cases, the anisotropic model and the Smagorinsky model agree well
with the filtered DNS in the coarsely resolved directions, but in the refined directions, the Smagorinsky model appears over
dissipative, resulting in an under prediction of the spectrum at higher wavenumbers.

In this talk, we will discuss the model formulation and its testing, and examples of complex turbulent flows in which the
anisotropy was found to be important.

References

Sigfried W. Haering. Anisotropic hybrid turbulence modeling with specific application to the simulation of pulse-actuated
dynamic stall control. PhD thesis, University of Texas at Austin, 2015.

O. Metais and M. Lesieur. Spectral large-eddy simulation of isotropic and stably stratified turbulence. Journal of Fluid
Mechanics, 239, 1992.

1331



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

EXPLICIT vs. IMPLICIT SUBGRID-SCALE MODELLING FOR LES
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Summary This study compares explicit and implicit subgrid-scale modelling for large eddy simulation. The implicit modelling is based
on a targeted numerical dissipation introduced by the discretization of the viscous term. The flexibility of the method ensures high-order
accuracy while controlling the level and spectral features of the resulting numerical viscosity. A spectral closure can be used to scale it a
priori. This relaxation strategy is found more efficient and accurate than the extremely popular Smagorinsky model in standard as well as
in dynamic version. Its main advantage is the ability to regularise the solution at the mesh scale, a property that cannot be reached with any
of the two versions of the Smagorinsky model that show a strong sensitivity to numerical errors. Despite its purely numerical nature, the
present approach can also be viewed as explicit subgrid-scale modelling because of the equivalence with spectral viscosity prescribed on a
physical basis.

INTRODUCTION

An alternative to conventional large-eddy simulation (LES) based on explicit subgrid-scale (SGS) modelling is to adopt a
pragmatic approach mainly guided by basic physical and numerical considerations but free of clear formalism. This strategy
is in continuous development since the MILES approach [1] and its various subsequent variants falling under the banner of
implicit LES. In this work, we address the concept of implicit LES while suggesting a new balance between numerics and
physics. How to combine numerics and physical modelling is a key issue for implicit LES. This study contributes to this
challenging point in an alternative way where the built-in numerical dissipation does not come from the discretization of the
convective term but of the viscous term in the Navier-Stokes equations. This switch from the convective term to the viscous
term allows more flexibility in the prescription of the level of numerical dissipation, offering the opportunity to scale it as a
conventional SGS model.

METHODOLOGY

To compare the implicit and explicit SGS modelling strategies, the academic Taylor-Green vortex problem is computed
using the sixth-order flow solver Incompact3d which is kinetic energy conserving in the discrete and inviscid sense. To
make this demanding benchmark more challenging and representative of realistic turbulence, high values of Reynolds are
considered (5000 ≤ Re ≤ 20000) while using highly-resolved Direct Numerical Simulation (DNS) results as reference for
the assessment of their LES counterparts.

The implementation of the standard and dynamic Smagorinsky model is based on conventional sixth-order compact cen-
tred finite difference schemes free from artificial dissipation. Alternatively, the implicit SGS modelling is ensured by the
introduction of a targeted numerical dissipation via the discretization of the viscous term [3]. This approach can be seen
as spectral vanishing viscosity νs(k) that can be easily shaped in order to control its value at the cutoff wavenumber kc
(νs(kc) = ν0) as well as its spectral shape (wavenumber k dependency of the kernel νs(k)/ν0). Using this favourable feature,
a simple method to scale the level of spectral viscosity has been proposed [2]. This method is based on a very simple closure
of the Lin equation taking the numerical dissipation into account. The resulting Pao-like spectrum solutions are used to ap-
propriately scale the spectral viscosity on a physical basis. For instance, to reduce the number of degrees of freedom (DOF)
of the LES by a factor 83 by comparison to the DNS while using a highly concentrated numerical dissipation near the cutoff
wavenumber, this simple closure model suggests the use of ν0/ν = 63.

RESULTS

To the question “What is the most efficient and accurate SGS modelling between the present explicit and implicit strategies
in the framework of the Taylor-Green benchmark?”, the answer of this study is firmly in favour to the second strategy. To
illustrate this conclusion, the time evolution of the total dissipation of the kinetic energy is presented in figure 1-left for
three types of LES and for the reference DNS. The implicit SGS approach based on high-order numerical dissipation is
clearly found in better agreement with DNS by comparison with the conventional standard and dynamic Smagorinsky models.
The examination of turbulence spectra (see figure 1-middle) exhibits the fundamental difference between these two types
of explicit/implicit SGS modelling. The Smagorinsky models are found unable to control the development of small-scale
∗Corresponding author. Email: eric.lamballais@univ-poitiers.fr
†This work was granted access to the HPC resources of TGCC under the allocation 2015-2a0912 made by GENCI.
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on the computational domain (2π)3 for the DNS and LES respectively.
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ELES(k, t)/EDNS(k, t) for various LES including the “no-model” case.

oscillations that can be seen as a partial thermalization of the turbulent flow that distorts strongly its kinetic energy spectrum not
only at high wavenumbers (where a pile-up of energy is observed) but also in the mid-range wavenumbers. This contamination
of low wavenumbers is assumed to be the consequence of triadic interactions between the unrealistic thermalized zone at high
wavenumbers and the rest of the spectrum. This spurious behaviour (pile-up of energy at small scales and contamination of
large scales) is not recovered for the present implicit SGS strategy.

To better understand the basic difference between the present explicit/implicit SGS modelling, a convergence study has
been carried out through the use of a mesh size ∆x significantly smaller than the filter length ∆. The conclusion is that the
pile-up of energy observed near the cutoff wavenumber kc when the Smagorinsky model is used (see figure 1-middle) is not a
feature of the model but the consequence of numerical errors. On the contrary, the mesh refinement has no significant effect
when the present high-order numerical dissipation is used, suggesting that the results can be seen as numerically converged
even at the marginal resolution ∆x = ∆ (not shown for conciseness).

The use of very refined mesh ∆x � ∆, as required by the Smagorinsky model for the numerical errors to be negligible,
is obviously very penalising computationally and a major drawback of this explicit SGS approach. This drawback is in fact
more serious because even in this more favourable converged situation, the Smagorinsky model is found to ensure a very soft
filtering effect. As a consequence, it is unable to provide a significant reduction in the number of DOF, missing the ultimate
goal of any LES model. This conclusion is illustrated in figure 2 where the a posteriori transfer functions Tf of various LES
are plotted. A “defiltering” effect associated with the pile-up of energy at small scales can be clearly observed at marginal
resolution (∆x = ∆) for the Smagorinsky model. This spurious defiltering can be removed using a finer mesh but the resulting
Tf correspond to a very poor filtering effect. On the contrary, the present implicit SGS enables a strong damping of the kinetic
energy at small scales as expected in order to allow a substantial reduction in the number of DOF.
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Summary The results of a DNS of the flow around a NACA4412 wing section at Rec = 400, 000 and 5◦ angle of attack are presented in
this study. The high-order spectral element code Nek5000 was used for the simulations. The effect of a strong adverse pressure gradient
(β ' 4.1) on the turbulent boundary layer at xss/c ' 0.8 is assessed, including a more prominent wake region, and steeper logarithmic
and buffer layers. Increased production and dissipation are observed across the boundary layer, as well as enhanced viscous diffusion and
velocity-pressure-gradient tensor close to the wall.

INTRODUCTION

Despite their great technological importance, the turbulent boundary layers developing around wing sections have not
been characterized in detail in the available literature. One of the most remarkable studies in this regard is the work by
Coles [1] 60 years ago, where among others he analyzed several sets of measurements on airfoils approaching separation,
and he introduced the concept “law of the wake”. Progressive increase in computer power has allowed in the recent years
to perform numerical simulations on relatively complex geometries, which have shed some light on the physics taking place
on wing sections. In the present study we report the results of a DNS of the flow around a NACA4412 wing section, at an
unprecedented Rec = 400, 000, with 5◦ angle of attack. The emphasis of this work is on the streamwise development of the
turbulent boundary layers around the wing, and the effect of the pressure gradient on the most relevant turbulent features.

NUMERICAL METHOD

In order to properly simulate the complex multi-scale character of turbulence, it is essential to use high-order numerical
methods. The DNS described in this work was carried out with the code Nek5000 (Fischer et al. [2]), which is based on the
spectral element method, and Lagrange interpolants of polynomial orderN = 11 were considered for the spatial discretization.
The computational domain has chord-wise and vertical lengthsLx = 6.2c andLy = 2c respectively, and the periodic spanwise
direction has a length of Lz = 0.1c. As can be observed in Figure 1 (left), we considered a C-mesh; a Dirichlet boundary
condition extracted from a previous RANS simulation was imposed in all the boundaries except at the outflow, where the
natural stress-free condition was imposed. A total of 1.85 million spectral elements was used to discretize the domain, which
amounts to around 3.2 billion grid points. A comprehensive description of the setup can be found in the work by Hosseini et
al. [3].

RESULTS AND DISCUSSION

In order to compute complete turbulence statistics, the simulation was run for a total of 10 flow-over times, which corre-
spond to at least 12 eddy-turnover times throughout the whole wing except for xss/c > 0.9. Note that this region is subjected
to a very strong adverse pressure gradient (APG), and therefore the turbulent scales are significantly larger than in the rest of
the wing. According to the recent DNS of zero pressure gradient (ZPG) boundary layers by Sillero et al. [5], this averaging
time is sufficient to obtain converged turbulence statistics.

The boundary layers developing around the wing were characterized at a total of 80 profiles on both sides, projected on
the directions tangential (t) and normal (n) to the wing surface, and the magnitude of the pressure gradient was quantified
in terms of the Clauser pressure gradient parameter β = δ∗/τwdPe/dxt. Figure 1 shows the inner-scaled mean flow and
the turbulent kinetic energy (TKE) budget at xss/c ' 0.8. At this location the boundary layer is subjected to a strong APG,
where the value of β is 4.1, and as can be observed in Figure 1 (center) the APG leads to a more prominent wake region,
a steeper incipient log region, and reduced velocities in the buffer layer compared with the DNS of ZPG boundary layer by
Schlatter and Örlü [4]. Table 1 shows several mean flow parameters of the boundary layer at xss/c ' 0.8 compared with
the ZPG at approximately matching friction Reynolds number Reτ = δ99uτ/ν. The APG effectively lifts up the boundary
layer and increases its thickness, which leads to a larger shape factor H = δ∗/θ (where θ is the momentum thickness),
and also to a reduced skin friction coefficient. The lower value of the von Kármán coefficient κ is connected with a steeper
log law, and the larger wake parameter Π shows the strong impact on the wake region. As shown by Monty et al. [6], the
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Figure 1: (Left) Instantaneous visualization of the DNS results showing coherent vortices identified by means of the λ2
criterion. The spectral element mesh is also shown, but not the individual grid points within elements. (Center) inner-scaled
mean flow (with reference low-Re values κ = 0.41 and B = 5.2) and (right) TKE budget scaled by u4τ/ν. Budget terms
are represented as follows: (—) Production, (—) Dissipation, (—) Turbulent transport, (—) Viscous diffusion, (—) Velocity-
pressure-gradient tensor and (—) Convection. Data extracted at xss/c ' 0.8, and compared with the ZPG data by Schlatter
and Örlü [4].

Parameter xss/c ' 0.8 ZPG DNS

Reτ 373 359
β 4.1 ' 0
Reθ 1,722 1,007
H 1.74 1.45
Cf 2.4× 10−3 4.3× 10−3

κ 0.33 0.41
B 2.08 4.87
Π 1.35 0.37

Table 1: Boundary layer parameters at xss/c ' 0.8 compared with ZPG results by Schlatter and Örlü (2010).

APG energizes the large-scale structures in the flow, which have a strong interaction with the outer flow (thus the impact
on the wake region). These large-scale motions are usually wall-attached eddies, which leave their footprint at the wall and
therefore significantly affect the overlap and buffer layers. The more energetic large-scale motions lead to the development
of a prominent outer peak in the components of the Reynolds stress tensor [3]. The TKE budget presented in Figure 1 (right)
shows increased production and dissipation throughout the boundary layer in comparison with the ZPG case, as well as the
incipient emergence of an outer peak in the outer region of the production profile. Increased viscous diffusion is observed
in the near-wall region (y+n < 10), partly produced by the increased dissipation. Moreover, the other component balancing
the increased dissipation is the velocity-pressure-gradient tensor, which exhibits moderate values in the near-wall region, and
once again highlights the impact of the pressure gradient on the most relevant energy transfer mechanisms across the whole
boundary layer.
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Summary In the present study we present the results of a fully resolved direct numerical simulation (DNS) aimed at evaluating the 
influence of corner geometry in fully-developed turbulent duct flows by computing cases with increasing corner rounding radius 𝑟. 
Doing so, we evaluate the convergence from square duct 𝑟 = 0 to pipe flow 𝑟 = 1. We focus on the decay of the secondary flows present 
in turbulent duct flows and on further characterizing the mechanisms that produce them. The simulations are performed at friction 
Reynolds numbers 𝑅𝑒𝜏,𝑐 ≅ 180 and 360 using the spectral element code Nek5000. 
 

SECONDARY FLOW OF PRANDTL’S SECOND KIND 
   According to Prandtl [1], there are two kind of secondary flows: skew-induced (Prandtl’s first kind) and Reynolds-
stress-induced (Prandtl’s second kind). The first type, which involves vortex stretching and tilting terms, is found in curved 
geometries and thus it is not present in fully-developed straight ducts. The second type is associated with the deviatoric 
Reynolds shear stress 𝑣𝑤̅̅ ̅̅  and the anisotropy of the cross-stream Reynolds stress 𝑣2̅̅ ̅ − 𝑤2̅̅ ̅̅  [2]. It is important to note that 
secondary flows of the second kind are entirely due to turbulence and are absent in laminar flows. As can be observed in 
Figure 1a), the secondary motions in a square duct consist of eight streamwise vortices, two counter-rotating in each corner, 
with the flow directed toward the corners along the bisectors. Although this kind of secondary flow is relatively weak (about 
2-3% of the bulk velocity [3], as opposed to up to 10% or more for skew-induced secondary flow), its effect on the mean 
velocity distribution is important. The interaction between secondary flow and streamwise mean velocity is sketched in 
Figure 1b), which shows how the secondary flow modifies the primary mean flow by comparing the laminar and turbulent 
cases. As postulated by Prandtl [4], the secondary motions convect mean velocity from regions of large shear (along the 
walls) towards regions of low shear (along the corner bisectors). Secondary motions of Prandtl’s second kind have been 
studied in detail through DNS simulations in ducts with varying aspect ratios AR (defined as the duct full width 𝑊 divided 
by its full height 𝐻) and corners forming straight angles by Vinuesa et al. [5,6] (see figure 2). In the present study we study 
the effect of rounded corners on the secondary flow. The cases under consideration are with 𝐴𝑅 = 1, centerplane friction 
Reynolds numbers 𝑅𝑒𝜏,𝑐 ≅ 180 and 360, and radii of curvature of the corners 𝑟 = 0.25, 0.5 and 0.75. 
 

 
Figure 1: a) Contour lines of the primary mean flow 𝑈, and vectors of the secondary mean flow 𝑉 ,𝑊 for a DNS at Reynolds number 
based on bulk velocity 𝑅𝑒𝑏 = 1,205 (this figure corresponds to Figure 3 in Uhlmann et al. [8]). b) Sketch of the mean flow 𝑈 in the 
corner region of a straight duct (this figure corresponds to Figure 1 in Gessner [7]). 

1336



 
Figure 2: Cross-flow velocity magnitude √𝑉2 + 𝑊2 (left), contours of the streamfunction (center) and streamwise velocity (right) for the 𝐴𝑅 = 1 duct 
case computed at 𝑅𝑒𝜏,𝑐 ≅ 180. Data extracted from Vinuesa et al. [5].  
 

CONVERGENCE FROM DUCT TO PIPE FLOW 
   The above mentioned secondary motions are not present in straight pipes, where flow statistics are two-dimensional due 
to azimuthal symmetry. For this reason, by gradually increasing the rounding radius of the corners in the duct it is possible 
to characterize the decay of the secondary flow kinetic energy, and gain deeper fundamental knowledge of the mechanisms 
that produce the cross-flow. The idea is to determine the range of  𝑟 values where these motions basically disappear. The 
rounding radius r here is defined as the ratio between the corner radius and the half height of the duct. Note that the 0 and 1 
rounding radii cases correspond to the regular 90 degree corner duct and the canonical pipe flow respectively. Therefore, 
this study will serve as a link between two extensively studied cases helping the turbulence community to understand their 
differences. Figure 3 shows a visualization of instantaneous streamwise velocity in the 𝑟 = 0.25 case, as well as the 
computational mesh considered for the 𝑟 = 0.5 configuration. 
 

 
Figure 3: (Left) Cross-section view of the instantaneous turbulent streamwise velocity field in a duct with rounding radius 𝑟 = 0.25 and 
(right) detailed view of the computational mesh considered for the 𝑟 = 0.5 case. 
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Summary In the present study, direct numerical simulations (DNS) are performed to investigate the effects of thermal and chemical non-
equilibrium on hypersonic turbulent boundary layers. In order to isolate the non-equilibrium effects, spatial developments of mean quantities,
turbulence statistics and near-wall structures in non-equilibrium flows are compared with those in perfect gas flows. It is observed that the
turbulent motions are intensified due to the non-equilibrium processes. Meanwhile, no direct energy exchanges between internal and
turbulent kinetic energies are observed. The mechanisms of non-equilibrium effects on the flow fields are discussed in detail.

INTRODUCTION

In the present work, spatially developing hypersonic turbulent boundary layers over a cold wall are considered. Non-
equilibrium states are described by Park’s two temperature model with endothermic chemical reactions without ionizations [1].
The transport properties of the gas mixture are obtained by Gupta’s mixing rule [2]. In order to reduce the computational
costs, air is approximated as either pure oxygen or pure nitrogen, which are the main air species experiencing non-equilibrium
processes in moderate and high enthalpy conditions, respectively.

The governing equations are approximated using a fifth-order hybrid weighted essentially non-oscillatory scheme with low
dissipation finite difference scheme and a sixth-order central finite difference scheme for non-linear convective and viscous
dissipative terms, respectively [3, 4]. The approximated difference equations are then advanced in time using the third-order
total variation diminishing Runge-Kutta scheme [3].

HYPERSONIC TURBULENT BOUNDARY LAYERS

Results from DNS are presented in the current section. The same boundary conditions are applied to both the perfect
gas and non-equilibrium flows of each species. The inlet flows are obtained from a separate simulation and assumed to be
in thermal equilibrium with a constant mass fraction. Turbulent statistics, near-wall structures as well as mean properties
are compared with those from perfect gas simulations with the same boundary conditions. The flow parameters are given in
Table 1. All dimensional parameters are given in SI units.

M∞ Reδ Reτ δin Ue ρe Te Tw h0

Oxygen 5.6 13, 073 350 0.01013 5, 092 0.0224 2, 275 3, 042 1.525× 107

Nitrogen 5.2 15, 270 380 0.00196 7, 129 0.1205 4, 458 5, 962 3.104× 107

Table 1: Flow parameters of hypersonic turbulent boundary layers in SI units.

Non-equilibrium effects
In order to rule out the different spatial development effects, all the quantities are normalized by either inlet wall units or

boundary-edge values. The most noticeable non-equilibrium effects are observed in the van Driest effective velocity profiles,
shown in Figure 1a. In non-equilibrium states, the additive constant in the low-law region becomes larger while the von
Kármán constant remains the same. The difference in the additive constant between perfect gas and non-equilibrium flows
depends on the degree of non-equilibrium, i.e. the stronger non-equilibrium, the larger difference. The non-equilibrium pro-
cesses in the flow fields also reduce the growth rates of the momentum and boundary layer thicknesses, while the displacement
thickness is hardly affected. Moreover, Figure 1b shows higher RMS of velocity fluctuations in non-equilibrium flows and,
hence, the higher turbulence kinetic energy. The higher turbulent kinetic energy with endothermic reactions implies that there
are no direct energy exchanges between internal and turbulent kinetic energies.

∗Corresponding author. Email: jkim@seas.ucla.edu
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(d) RMS of velocity fluctuations in semilocal units.

Figure 1: Comparisons between prefect gas (PG) and non-equilibrium (RG) flows.

Mechanisms of non-equilibrium effects
The effects of non-equilibrium on turbulent boundary layers can be explained by changes in the mean temperature. Due to

non-equilibrium processes, temperature fields are changed. In the non-equilibrium state of consideration in the current study,
the flow fields experience cooling due to both the vibrational energy relaxation and endothermic reactions. The temperature
drops result in an increase in density and a decrease in viscosity. The increased density causes slow streamwise velocities
while the velocity gradient becomes stiff due to weak viscous diffusion. These two opposite phenomena are balanced by the
conservation of mass and momentum. The perturbation fields are then adjusted according to the changes in the mean fields.

The differences between perfect gas and non-equilibrium flows can be compensated by taking the variations of density and
viscosity into account, which implies Morkovin’s hypothesis is still valid with thermal and chemical non-equilibrium. The
van Driest effective velocities between perfect gas and non-equilibrium flows, normalized by local wall units, show excellent
agreements in Figure 1c. The difference between species are mainly due to different degrees of non-equilibrium. In addition,
by using semilocal scales, which are defined with the wall shear stress and local mean density and viscosity, and denoted by a
superscript ∗ in Figure 1d, turbulent statistics curves collapse with each other. The RMS of velocity fluctuations are shown in
Figure 1d as an example.

CONCLUSIONS

Based on the data from DNS, we have shown that changes in the mean temperatures are responsible for the modifications
of the flows due to non-equilibrium processes. We have also shown that the proper scale for compressible turbulent boundary
layers with isothermal wall conditions is the semilocal scale. From this, it can also be concluded that Morkovin’s hypothesis
is still valid even with thermal and chemical non-equilibrium.
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Summary Direct Numerical Simulations (DNS) of turbulent channel flow are performed with the aim to reduce the skin friction by con-
trolling the near-wall transport processes based on surface modifications. The latter are determined based on the solution of the adjoint
Navier-Stokes equations which provides surface sensitivities indicating an optimal wall shape. With the modified geometry the DNS is
continued until a new fully developed state is reached. Time-averaging of the instantaneous wall shapes produced with this approach will
finally lead to a steady wall shape which controls the flow according to a prescribed objective function.
Considering that the objective function turbulence kinetic energy (TKE) is minimized, the approach produced a reduction of ≈ 9.3% and
a mean pressure gradient, required to drive the flow, which is reduced by ≈ 7.5%. Currently, different objective functions are tested to
identify flow parameters which are suitable to effectively reduce the skin friction in turbulent channel flow.

ADJOINT SHAPE OPTIMIZATION

Passive flow control often relies on structural changes of the wall contours or on flow control devices which are installed
on the wall. Although it is widely known that certain flow control devices like riblets or dimples can be used to control
aerodynamic quantities like lift or drag, it is not fully understood, how they interact with near-wall flow structures and how the
type and the size of these devices scale with the Reynolds number. On the other hand, it is well known that the wall-normal
momentum transport is organized in sweep and ejection events in the boundary layer which control skin friction [1]. The final
aim of this work is to identify surface modifications on the walls of a channel which influence the development of turbulent
coherent flow structures and reduce the drag.
To achieve this, a finite volume method based on central differences and suitable to deal with unstructured grids solves the
unsteady, incompressible Navier-Stokes equations

∂vi
∂t

+
∂

∂xj
(vivj) = − ∂p

∂xi
+

∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
− ∂vj
∂xj

= 0, (1)

with the velocity vector vi, the specific pressure p and the kinematic viscosity ν. The investigated domain is a channel with
periodic boundary conditions in streamwise and spanwise directions. Considering a bulk velocity vbulk = 1m/s leads to a
Reynolds number, based on the channel half height and the friction velocity, of Reτ = 180. After reaching a statistically
steady state in the DNS of fully developed turbulent channel flow, instantaneous velocity fields are averaged over one turn-
around time based on the bulk velocity to obtain the turbulence kinetic energy (TKE). In [2] it was shown that due to the
time-averaging, the minimization of the exact quantity of interest (skin friction) is not necessarily the most effective way.
Therefore, the objective of the present study is to minimize the TKE of the turbulent channel flow by modifying the shape of
the channel walls. The constraint R is to fulfill the unsteady, incompressible Navier-Stokes equations (1). The optimization
problem

min J =
1

2

(
(v′x)2 + (v′y)2 + (v′z)

2
)

(2)

wrt. R = 0.

is solved by the method of Lagrange multipliers. The latter is based on the Lagrange equation L = J(vi, p)+(ui, q) ·R(vi, p),
with the Lagrange multipliers ui and q. Minimization of the Lagrange equation is formally achieved by considering the total
variation δL = δβL + δviL + δpL, where β denotes the design variables. Since any change of β changes the state variables
as well, a new solution of (1) would be required. To obviate the latter, an adjoint method [3], [4] is used, where the Lagrange
multipliers are chosen in a way, that the relation δvL+ δpL = 0 holds. This leads to the adjoint Navier-Stokes equations

vj

(
∂ui
∂xj

+
∂uj
∂xi

)
= −ν ∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+

∂q

∂xi
+
∂J

∂vi
(3)

∂ui
∂xi

=
∂J

∂p
.
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With the solution of (3), the total variation of L reduces to δL = δβL. To perform the shape optimization, all points of
the surface mesh must serve as design variables β. Therefore, a superposition of local surface normal displacements β is
introduced to describe the shape deformation [5]. Finally, one can compute the sensitivities in a post-processing step [6] with
the solutions of (1) and (3) via

S = δL = δβL = −Aν
(
ni
∂ut,j
∂xi

· ni
∂vt,j
∂xi

)
(4)

With these two solutions it is possible to compute sensitivities S for every cell of the boundary Γ = ∂Ω, independent of the
number of design variables. This reduces the computational costs extremely in comparison to other gradient based optimiza-
tion methods and maximizes the degrees of freedom in the optimization process.
Since, the computed sensitivities represent local surface normal displacements, they can be used to deform the mesh by inter-
polating the sensitivities to the mesh points with radial basis functions (RBF). In [7] we developed a mesh deformation tool,
which conserves the mesh quality. Thus, remeshing is not necessary.

RESULTS AND CONCLUSION

For the present study, the adjoint equation (3) has been solved based on the mean flow field obtained from the velocity
fields of the DNS after time-averaging over one turn-around time. The resulting surface sensitivity distributions on both
channel walls are shown in figure 1 (left). Based on them, the channels walls are deformed, as presented in figure 1 (right).
Then, the DNS has been continued with the deformed channel domain until a new statistically steady state has been reached.

Figure 1: Computed surface sensitivities (left). TKE-optimized shape of the channel walls (right).

Time and volume averaging of the TKE fields obtained in the DNS of the turbulent flow in the channel with smooth walls
resulted in a value of 2128.141 m2/s2. After the deformation of the channel walls (see figure 1), the corresponding TKE
value evaluated based on the new flow fields drops to 1930.065 m2/s2. This is a reduction by 9.3%. Further, the pressure
gradient, needed to drive the flow, drops from 0.00418 to 0.00387, which is a reduction by 7.4%.
The results show that the presented method has a high potential to identify passive flow control measures. Currently, other
objective function are implemented which are suitable to reduce the pressure drop in turbulent channel flows. A comparison of
the results which is performed to identify the most effective objective function for skin friction reduction in turbulent channel
flows will be presented at the conference.
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Summary A full Eulerian fluid-structure coupling method was proposed within the framework of the volume-of-fluid approach. 
All the basic equations are numerically solved on a fixed Cartesian grid in a finite difference manner. An incompressible fluid 
flow solver is extended to the incompressible fluid-structure system. The present method has been further developed for fluid-
membrane interaction problems and applied to the blood flows containing Red Blood Cells (RBCs) and platelets. The method is 
further extended to multiscale thrombosis simulation, which couples Monte-Carlo simulations for the molecular scale protein-
protein interactions with continuum scale simulations. These simulators are developed for the massively parallel computation 
and the method of having the good scalability of the computation will be also presented.  
 

INTRODUCTION 
 
   Fluid-Structure Interaction (FSI) phenomena appear in many places, e.g., biological systems, and industrial processes. 
Conventionally, the computational Fluid dynamics is more commonly described in an Eulerian way, while the 
computational structure dynamics is more straightforward to be described in a Lagrangian way. The coupling of the Fluid 
and structure dynamics is a formidable task due to such a difference in the numerical framework. There are currently several 
major approaches classified, with respect to the computational treatment of FSI problems, on how the kinematic and 
dynamic interactions are coupled on the moving interface. In general, the methods with the body-fitted mesh can more 
accurately track the shape of the deformable body. These approaches are referred to as an interface-tracking approach, in 
which the surface mesh is shared between the fluid and solid phases, and thus automatically satisfies the kinematic 
condition.  However, the computational domain has to be remeshed as the object is greatly distorted, and it is not always 
an easy task to keep the load of each computational core balanced. An alternative to the interface-tracking approach is an 
Eulerian-Lagrangian approach, in which the fluid and solid phases are separately formulated on the fixed Eulerian and 
Lagrangian grids, respectively. A noticeable contribution is the development of the immersed boundary (IB) method by 
Peskin[1], who introduces a smoothed approximation of Dirac  function for communication between the Eulerian and 
Lagrangian quantities, and demonstrated the landmark simulation of the blood flow around heart valves. Here, we introduce 
another approach where both the fluid and solid phases are treating in Eulerian way. 

Considering the utilization of voxel data converted from the medical image data of MRI or CT, it is straightforward to 
develop the full Eulerian finite difference methods, which directly access the voxel data to describe the boundary on the 
fixed Cartesian mesh and avoid difficulty in mesh generation and reconstruction. Sugiyama et al.[2] developed a novel full-
Eulerian FSI solver, and it has been extended to a fluid and stiff material interaction and fluid and membrane 
interaction([3],[4]). Considering that the voxel data contain the volume fractions of fluid and solid, we apply the volume-of-
fluid/volume-fraction (VOF) formulation to describing the multicomponent geometry. Because the Eulerian formulation 
lacks of the material points to link between the reference and current configurations, a method to quantify the level of 
deformation is required. To this end, we introduce the left Cauchy-Green deformation tensor defined on each grid point, and 
temporally update it. The full-Eulerian method has been reviewed by Takagi et al. [3]. In the present talk, this novel method 
is explained with its application to blood flows. 
 

EXAMPLES OF NUMERICAL RESULTS 
 

The numerical results of large scale parallel computation with O(106) flowing RBC-like particles are shown in Fig.1. 
The developed method is highly suitable for the massively parallel computing and the actual computational speed of 4.5 
peta flops was achieved, which corresponds to 43% of the theoretical performance of the supercomputer, named “K”, used 
for the simulation. The method was also extended to simulate platelet adhesion process which occurs at the initial stage of 
thrombosis. The platelet adhesion to the vessel wall is given by the large numbers of protein-protein bindings. This binding 
process of protein molecules are treated stochastically using the Monte Carlo method. The snapshot of the numerical result 
of platelet adhesion is shown in Fig.2. More detail discussion will be given in the talk. 
 

CONCLUSIONS 
 

A novel simulation method for solving fluid-structure coupling problems suitable for the massively parallel computing 
was introduced. All the basic equations in continuum scales are numerically solved on a fixed Cartesian grid with finite 
difference discretization. An incompressible fluid flow solver is extended to the incompressible fluid-structure system. A 
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volume-of-fluid approach, which has been developed for computing multiphase flows, was applied to describing the multi-
component geometry. So, the present method treats non-linear deformation of hyperelastic materials in fully Eulerian way 
on a fixed grid without generating the boundary-fitted meshes. The simulator was designed for the massively parallel 
computation and showed the excellent scalability of the computation which achieved the actual speed of 4.5 Peta Flops. 

 The method has been further developed for fluid-membrane interaction problems and applied to the blood flows 
containing Red Blood Cells and platelets. Then the method has been extended to multiscale thrombosis simulation. For this 
simulation, the molecular scale protein-protein interactions are solved using Monte-Carlo method [3] coupling with 
continuum scale simulations. The results show that the continuum scale flows affects the platelet adhesion on the vessel 
walls where the adhesion force itself is given by the molecular scale binding between GP1b  proteins on the platelet and 
vWF proteins on the damaged vessel wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Large scale parallel computation with O(106) particles 
( Computational speed of 4.5 Peta Flops was achieved ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Simulation results of platelets adhesion on arteriosclerosis area in the presence of RBCs. 
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Summary Dynamics of flexible fibers and vesicles in unbounded planar Poiseuille flow at the low-Reynolds-number are shown to exhibit

similar basic features, when their equilibrium (moderate) aspect ratio is the same and vesicle viscosity contrast is relatively high. The lateral

migration and accumulation of these two types of flexible objects are analyzed numerically.

In this paper, we investigate whether different flexible objects – vesicles and flexible fibers made of beads – may share

similar features, or even some universal behaviors, regarding their migration properties. Revealing similarities between ap-

parently different systems would advance our understanding of the migration mechanism and allow for using simpler models,

which are numerically more efficient.

A single flexible object is entrained by an unbounded Poiseuille flow with velocity v∞ =
(

αy2−vm
)

ex, where α is the

flow curvature. The value −vm of the flow velocity at the central plane y=0 is irrelevant for the migration or shape evolution.

The dynamics of the flexible object is derived from the Stokes equations, using the boundary integral method for vesicles

[1, 2, 3] and the multipole expansion (implemented in the HYDROMULTIPOLE numerical codes) for the fiber beads [4, 5].

A vesicle has a constant area S and a constant volume V , and its geometry is described by the radius of the sphere having

the same volume, R0 = (3V/4π)1/3, and the reduced volume ν = 6
√
πV S−3/2. The other parameters which determine the

vesicle deformation and motion under flow are the ratio λ of the fluid viscosities inside and outside, and the dimensionless

capillary number Ca = αR4
0η/κ, defined as the dimensionless ratio of the hydrodynamic to bending forces (the first one

proportional to the flow curvature α and fluid viscosity η, and the second one – to the vesicle bending modulus κ).

Flexible fiber is modeled as a chain of N identical spherical solid beads of diameter d. Following Refs. [4, 5, 6, 7, 8], we

impose the constraint elastic and bending forces which act on each bead, in such a way that the total external force and torque

on the fiber vanish. The bead centers are connected by springs with the equilibrium length l0d only slightly larger than the

bead diameter d, with l0 = 1.01, and the Hooke’s spring constant k̃. As in Ref. [5], the ratio of the elastic to viscous forces is

given in terms of the dimensionless parameter k = k̃/(πηvm). We set k = 80 >> 1. With this choice, the fiber practically

does not change its length during the motion, and the specific value of k is irrelevant. The relevant quantity is the ratio of

bending and viscous forces, A = Ã(625πηd5α)−1, where Ã denotes the fiber bending stiffness. [5]

To match flexible fibers with vesicles, we focus on vesicles with relatively large viscosity contrast, λ = 12. Moreover, we

choose relatively low aspect ratio – our fiber is made of N =5 beads. We circumscribe the fiber at the equilibrium position

by the spherocylinder, and match its volume and surface with the corresponding volume and surface of the vesicle at the

equilibrium, what results in the choice of ν = 0.6. The goal is to analyze how the dynamics of flexible objects depends on

their dimensionless bending stiffness, i.e. A for fibers and C−1
a for vesicles.

Each of our flexible objects is initially aligned with the flow. While translating with the flow, it tumbles and changes shape.

The basic task, however, is to determine the motion of the center of the flexible object across the flow. For vesicles, the center

is determined as the center of mass of the membrane. For fibers, we take their center of mass, with the position calculated

as the arithmetic mean of the positions of all the bead centers. The center keeps the same z-coordinate, but its y-coordinate

(denoted here as y0) changes slowly with time. Examples of the time evolution of the dimensionless position y0/R0 of the

center are shown in Fig. 1, with the use of (αR0)
−1 as the time unit. It is clear that both vesicles and flexible fibers migrate

across the flow and their centers tend to a certain accumulation plane, y0 → yc. The position yc depends on the bending

stiffness. In Fig. 1, we have matched the values of Ca = 0.08 and A = 0.024 in such a way that both vesicles and fibers

accumulate at the same distance y0/R0 ≈ 8.2 from the central plane.

The dynamics of a flexible object, which is relatively far from the central plane of the flow, satisfy a universal scaling [5, 9]

– the fiber essential dynamics, including its deformation and migration, is determined only by the local shear rate 2αy0. As the

result, the accumulation position yc is a linear function of the bending stiffness, as shown in Fig. 2. The same accumulation

positions correspond to the bending stiffness of vesicles and fibers related to each other by the expression 1/Ca ≈ 520A.
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Figure 1: The time-dependent distance y0/R0 from the center of flexible object to the central plane of the flow. Vesicles with

Ca=0.08 (left) and fibers with A=0.024 (right) accumulate at the same distance yc/R0≈8.2. The blue and red lines indicate

migration outward and inward, respectively.
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Figure 2: The accumulation position yc/R0 of vesicle (left) and fiber (right) vs. its Figure 3: Evolution of shapes.

bending stiffness. Ca = 0.15, y0/R0 = 9.3.

In the following part of the paper, we analyze how other features of the dynamics of single vesicles and fibers depend

on their bending stiffness. We evaluate the tumbling frequency and the migration velocity across the flow, study evolution of

shape, compare the universal scaling based on the local shear with the dynamics in the pure shear flow. We also present exam-

ples of the motion and deformation of more elongated flexible objects, and demonstrate that the second (coiled) mode of the

dynamics exists not only for fibers [8] but also for vesicles. We observe that fibers can migrate slower or faster than vesicles of

the matched flexibility, depending on the range of the parameters. However, the overall similarity of the corresponding shapes

(see Fig. 3) is evident, what allows to suppose that the accumulation mechanism of vesicles and fibers is essentially the same.
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Summary Nasal high flow therapy has been used clinically to increase the intubation period in patients requiring mechanical ventilation,
however the mechanisms through which the therapy achieves this have not been investigated. Computational fluid dynamics has been used
in this study to demonstrate the effect of the therapy on the gas concentrations within the apneaic human airway. The complexity of the
human airway gives rise to an intricate flow field in which the turbulence and mixing of gas species is augmented by the application of nasal
high flow therapy. The therapy was found to flush the airway with oxygen thereby removing the stagnant, CO2 rich gas via the nostrils
and mouth and hence preventing CO2 build-up during apnea. These results explain the previously reported clinical observations and give
confidence in the application of the therapy during anaesthetic procedures.

INTRODUCTION

The intubation of patients requiring mechanical ventilation is a delicate procedure which can result in airway trauma - a
situation in which intubation cannot occur and thus ventilation of the patient becomes impossible. Airway trauma happens
most commonly in patients with difficult airway anatomies and prevents surgery from proceeding. Nasal high flow (NHF)
oxygen therapy has been used on twenty five subjects to increase the apneaic period during which intubation occurs, thereby
improving the chances of a successful intubation [1]. The apneaic window is the time period during which the surgeon provides
the patient with an artificial windpipe that will be used throughout surgery for mechanical ventilation. During this period the
patient is anaesthetised and paralysed, hence they are not breathing spontaneously and the procedure must be carried out
rapidly. It is suggested that NHF aids in maintaining normal gas exchange in the alveoli during the apneaic window. However
there are no studies to date that analyse the effect NHF has on the oxygen and carbon dioxide concentrations within the airway
of apneaic subjects.

NHF therapy has traditionally been used to treat a variety of respiratory diseases, including chronic obstructive pulmonary
disease and hypoxemic respiratory failure, through its five mechanisms of action [2]. One of the mechanisms of action of
NHF therapy is the washout of the anatomical dead-space which is thought to improve patient oxygenation. Clinical studies
have alluded to the existence of such a phenomenon [3] but the fluid dynamics causing this washout effect has not been
investigated. Previous computational fluid dynamics (CFD) and experimental studies have focused on modeling the airflow
patterns, temperature distribution, particle deposition and humidity variations within the airway during natural breathing. The
size of flow re-circulations within the airway have been found to depend on flow rate [4] while anatomical features of the
bronchi, such as large branching angles and quasi-monopodial branching, is thought to increase flow mixing by enhancing
secondary flow [5]. Such flow features hint at the hypothesis that the nasopharyngeal washout produced by NHF therapy
could maintain normal gas concentrations within the human airway during apnea. The focus of this study is to model, using
CFD techniques, the gas concentrations within the apneaic airway of an adult human with applied NHF therapy in an attempt
to explain the increased apneaic window observed in clinical studies.

MATERIALS & METHODS

The Reynolds Averaged Navier Stokes equations were solved numerically with the finite volume solver Fluent (ANSYS
16.0). A k−ω shear stress transport model was employed to model the turbulent features of the flow. The flow was assumed to
be incompressible and isothermal as the effects of buoyancy are considered insignificant [6]. An anatomically accurate airway
down to the 5th bronchiole generation was constructed from CT scans and is displayed in Figure 1(a). Fine anatomical details
such as cilia and mucous were neglected and the airway was modeled as rigid, smooth, no-slip wall [6]. An OptiflowTM nasal
cannula was inserted into the model and a pipe extension was added to allow natural flow development. A box surrounding
the terminals of the bronchi was generated to represent the remainder of the airway from the 5th generation through to the
alveoli. A section of the atmosphere surrounding the nose was also included to allow air to pass through the nostrils at any
angle. The box surrounding the lower airway was modeled as a wall with a constant CO2 volume fraction representative of
the alveolar CO2 concentration.

The complexity of the nasal cavity geometry and the large variations in element size required to accurately capture the
different sections of the model (i.e. the very fine bronchioles compared to the box) make generating a high quality mesh for
this model arduous. An unstructured tetrahedral mesh, containing 4 million cells, was generated and used to solve the velocity,
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pressure, carbon dioxide and oxygen volume fractions within the airway during the first 2 seconds after therapy was initiated.
The airway was initialised with a gas composition that was representative of the alveolar gas composition to represent the end
of an expiration prior to the patient becoming apneaic. Transient simulations were performed with therapy flow rates ranging
between 0 - 70 Liters per minute. The model involves much faster flows around the nasal cannula compared to those in the
lower airway. Hence the gas species transport within the upper airway is convection dominated while transport in the lower
airway is primarily a result of diffusion and this is numerically challenging as it limits the solver time-step.

RESULTS

NHF therapy injects high flow oxygen into the upper airway which causes re-circulations within the nasal cavity. This in
turn causes the high CO2 concentrated gas that was initially in the airway to vent out of the mouth and nostrils. Over time, the
concentration of carbon dioxide within the whole airway diminishes as oxygen coming from the therapy washes out the higher
CO2 concentrated gas. This washout along with the secondary flows produced by the airway branching helps the airway reach
a steady state where the diffusion of CO2 coming from the alveoli model is balanced by convective transport out of the airway.
At higher therapy flow rates the flushing occurs faster, thus the airway reaches a steady state more quickly than at low flow
rates. This is seen in Figure 1 (b) & (c), as the low CO2 gas penetrates further down the airway at the higher therapy flow rate.

Figure 1: Outline of airway geometry and surrounding boxes (a). CO2 distribution in airway after 2 s NHF therapy at flow
rates of 30 L min−1 (b) & 70 L min−1 (c).

CONCLUSIONS

The results indicate that NHF can extend the apneaic window by enhancing CO2 removal by a washout of the stagnant
airway space during the process of intubation. The effect of airway geometry on the therapy remain to be studied.
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Summary In this paper, we present an efficient rescaling scheme for computing moving interface problems. The idea is to design an adaptive
time-space mapping such that in the new time scale, the interfaces can evolve logarithmic fast for small-sized interface at early stage of
growth and exponentially fast for large-sized interface at later times. During the evolution, the new spatial scale guarantees the conservation
of the area/volume enclosed by the interface. Comparing with the original rescaling idea in [3], this adaptive scheme dramatically improves
the slow growth at early times when the interface size is small. Our results show that the original three-week computation in [3] can be done
in just four days using the adaptive scheme.

THE HELE-SHAW PROBLEM

The Hele-Shaw problem is a classical example for studying interface dynamics or systems driven out of equilibrium.
When a less viscous fluid is injected into a more viscous fluid contained in a Hele-Shaw cell, the interface separating the two
fluids develops fingering patterns due to the Saffman-Taylor instabilities [4].

Let Γ(t) be the moving interface separating the two fluid domains Ei, where i = 1, 2 indicates the injected fluid and the
exterior viscous fluid, respectively. We assume the two fluids obey Darcy’s Law, ui = −Mi∇Pi for x ∈ Ei, where ui is the

velocity of fluid i, Pi is the corresponding pressure, andMi =
h2

12μi
is the mobility of fluid i. The parameter h is the width of

the gap between the two parallel plates and μi is the viscosity of fluid i. For incompressible fluids, i.e. ∇ · ui = 0, we have

∇2Pi = 0, x ∈ Ei. (1)

Across the interface Γ(t), the fluid normal velocity is continuous and the pressure has a jump given by the Laplace-Young
condition

[P ]t = P1 − P2 = σκ(x), x ∈ Γ(t), (2)

where σ is the surface tension and κ is the curvature of the interface. Finally fluid is injected at flow rate J(t) =
∫

Σ0

∂P1

∂n
ds,

where s is the arclength, Σ0 is a small circle centered at origin and n is the outward normal. We reformulate Eq. (1) as a

boundary integral equation and seek a solution in the form, P (x) =
1

2π

∫

Γ(t)

μ(x′)
[∂ln|x− x

′|

∂n(x′)
+1

]

ds(x′)+Jln|x|, where

μ(x) is the dipole density on Γ(t). Using the boundary condition given by Eq. (2), μ can be calculated by solving a 2nd

kind Fredholm integral equation, μ(x) −
1

π

∫

Γ(t)

μ(x′)
[∂ln|x− x

′|

∂n(x′)
+ 1

]

ds(x′) − 2Jln|x| = 2σκ(x) for x ∈ Γ(t), with
∫

Γ(t) μ(x
′)ds(x′) = 0. The normal velocity of the interface can be calculated by the Dirichlet-Neumann map [2, 1].

THE RESCALING SCHEME

In [2, 3], the authors studied an air-oil interface in a radial Hele-Shaw cell with injection air flux J = 1. As predicted
by the linear stability analysis, the interface develops ramified patterns by repeated tip-splitting of fingers. For a constant
flux, the equivalent bubble radius evolves as dR/dt ∼ R−1, where R is the radius of a circle with the same area as the air
bubble. Consequently the velocity of the interface, dR/dt, decreases as R increases (the bubble grows). From the perspective
of numerical computation, this makes the large air bubble computation extremely expensive. In [3], the authors proposed a
rescaling idea such that in the new rescaled time-space, the interface always evolves exponentially fast. The scheme works
beautifully for large-sized interface at later times. However, at early times when the air bubble is small, the evolution is quite
slow, and a significant portion of CPU time was used to compute the slow development of viscous fingers.

We introduce a new rescaled space and time frame (x̄, t̄) such that x = R̄(t̄)x̄(t̄, θ), t̄ =

∫ t

0

1

ρ(t′)
dt′, where R̄(t̄) is

the space scaling factor depending on a new time variable t̄, x̄ is the position vector of the scaled interface, and ρ(t) = ρ̄(t̄)
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Figure 1: The largest and most complicated Hele-Shaw bubble simulation up to date.

is the time scaling factor. The rescaled normal velocity V̄ satisfies V̄ (t̄) =
ρ̄

R̄
V (t(t̄)) −

x̄ · n

R̄

dR̄

dt̄
, where V is the original

normal velocity. In the rescaled frame, we require the area enclosed by the interface remains constant. As a consequence,
dR̄

dt̄
=
πρ̄J̄

ĀR̄
, where J̄(t̄) = J(t(t̄)) is the flux. Here we simply set the scaling time factor ρs as

ρs =
b

log(a)

Ā(0)

πJ
R̄2(

1

aR̄R̄
︸ ︷︷ ︸

logarithmic growth

+
1

aR0R0
︸ ︷︷ ︸

exponential growth

). (3)

At early growth stage, the evolution is dominated by the logarithm term in Eq. (3); at later stage, the evolution is dominated
by the exponential term, where parameterR0 is the switch point which can be chosen arbitrarily.

RESULTS AND CONCLUSION

We take an interface with initial shape, (x̄(α, 0), ȳ(α, 0)) = r̄(α, 0)(cosα, sinα)) where r̄(α, 0) = 1.0 + 0.1(sin 2α +
cos 3α) following [2, 3]. The number of mesh points N = 131, 072 along the interface and the time step Δt̄ = 2.5 × 10−5.

We set the injection flux to be a constant in time J̄(t̄) = J(t(t̄)) = 1.0, and the rescaling function ρs = 20R̄2(
1

1.05R̄R̄
+

1

1.0511 × 11
). On a computer with CPU 1.6GHz running Linux, it takes about 5.8 days to get the results shown in Fig. 1.

Note that it only takes four days to reproduce the simulation results in [3], which originally took three weeks [3]. In summary,
the adaptive rescaling scheme significantly reduces the computation time, and enables one to efficiently simulate the long-time
dynamics of moving interfaces.
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Summary Smoluchowski kinetic equation, which governs the time evolution of the pair correlation function of rigid spherical particles
suspended in a Newtonian fluid, is extended to include particle migration. The extended kinetic equation takes into account three types of
forces acting on the suspended particles: a direct force generated by an interparticle potential, hydrodynamic force mediated by the host
fluid, and the Faxén-type forces bringing about the across-the-streamline particle migration. The enhanced Soluchowski model is solved
numerically using the PGD method.

INTRODUCTION

Usual models of colloidal suspensions proceed within non-continuous approaches in which the suspensions are explicitly
represented, the so-called Brownian dynamics (BD) or Stokesian dynamics (SD) framework. Thus, suspended particles are
subjected to different kind of forces coming from the fluid drag, inter-particles potentials, particles-solvent interaction, Brow-
nian forces describing the bombardment that colloidal particles suffer from other solvent and colloidal particles, etc. When the
solvent is considered as continuum and the Reynolds number of particles is small, Stokesian dynamics account for interactions
between colloidal suspension mediated by the solvent the so called hydrodynamics interactions (HI). However both BD and
SD approaches fail in adressing flows on industrial interest for which the caracteristic length of the flow is several order of
mignitude larger than suspensions one.

An alternative to the BD and SD simulations lies then in deriving a continuum and deterministic kinetic theory description.
This formulation leads to the so called Smoluchowski equation that characterizes the microstructure through through the pair
correlation function g (r,R, t), where r is the position vector, R the vector connecting two particles

This approach has been successfully applied by Zmievski et al. [2] and more recently in [3] where the pair correlation
function is taken as a micro-macro theory and is solved using high-dimensional strategy widely described in [5]. In this work
we briefly present the extended Smoluchowski model that accounts for the particles migration. The new physics that is put
into the governing equations is the physics behind the Faxén forces causing migration of suspended particles. Without the
Faén forces, the kinetic equation arising in this paper is exactly the same as the classical Smoluchowski equation investigated
in [2] and [3]. In order to see clearly how the new physics expressed in Faén forces modifies the kinetic equation, we invite
the reader to refer to [4].

The dimensionless kinetic equations, based on the Smoluchowski equation and accounting for the migration takes the
form:

∂g

∂t
= −Pe∂(guj)

∂rj
+ Pe

∂

∂rj

[
g(κ(I)Y(I)

j + κ(II)Y(II)
j + κ(III)Y(III)

j )
]
− Pe ∂

∂Rj

(
Rk

∂uj
∂rk
4g
)

+ Pe
∂

∂Rj
(gλjkXk) +

∂

∂ri

(
κ
∂g

∂ri

)
+

∂

∂Rj

(
geqΛjk

∂

∂Rk

(
g

geq

)) (1)

The symbols appearing in previous equation have the following meaning: Y(I)
i = R2Djji, Y(II)

i = RjRkDijk, Y(III)
i =

RiRkDjjk; the symbol Dijk stands for Dijk =
1

3

(
∂Djk

∂ri
+
∂Dik

∂rj
+
∂Dij

∂rk

)
and λij , Λij , κ, κ(I), κ(II), κ(III) are material

parameters. For more details about both the derivation of the equation (1) and the definition of the parameters, the reader is
invited to refer to [4].

RESULTS

Due to the high dimensionality (7 in 3D and 5 in 2D) of function g (r,R, t) the task is practically unfeasible if approached
with traditional numerical methods. It has been demonstrated in [3] that with the PGD method, recently developed in [5],
the problem of solving numerically the Smoluchowski kinetic equation becomes feasible without restoring to moments and
closures.
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We compare the results implied by the modified Smoluchowski model to the experimental results reported in [6]. The
experimental setting is a micro channel of 2H × 200H cross section and 1040H long with H = 25µm. The suspensions are
slightly charged hard spheres of diameter in a flow characterized by a Péclet number Pe = 69. For more details concerning
the experimental setting, please refer to [6].

Figure 1 presents np(r) =

∫
dRg(r,R) normalized by its value at rest for whole geometry. We can indeed observe the

migration of the suspended particles toward the center of the channel.

Figure 1: Normalized np(r) for the whole channel. Note that for sake of clarity different scales are adopted for x and y axis.

Figure 2 shows the normalized local volume fraction of the suspended particles as they appear in the theoretical prediction
and the experimental observations. Both types of results appear to be in relatively good agreement.

Figure 2: Normalized local volume fraction of particles for both experimental results (square, from [6]) and modified Smolu-
chowski’s model (circle) accounting for migration effects.

CONCLUSIONS

In this paper we present an enhanced Smoluchowski model that accounts for the across-the-streamline migration of rigid
particles in a Newtonian solvent. The use of the PGD makes the problem of finding numerical solutions to the Smoluchowski
kinetic equation solvable. Finally, the enhanced model presented here is, as far as the authors know, the only continuous
model thoroughly derived (from a thermodynamics point of view) describing the across-the-streamline migration of colloidal
particles.
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Summary The coefficient of power CP generated by a Darrius vertical axis wind turbine is a function of the blade azimuthal position θ. For a given 
blade profile and tip speed ratio, there is always a given range of azimuthal position that gives the peak CP. By using a blade with a morphing 
trailing edge, the blade camber is modified and the effective incidence angle can be controlled at different azimuthal position. The goal is to study 
the flow around the blade with morphing trailing edge to see which profile at which azimuthal position will result in the highest increase of CP. 
Three blade profiles are used for the study, blade profiles with deflection angles of δ = -13.37°, δ = 6.98°, and δ = 0.48°, which include the highest 
negative and positive deflection angles of the actuation range as well as a nearly symmetric profile, respectively. 
 

INTRODUCTION 

 

   The simulation of flow around a vertical axis wind turbine (VAWT) is complicated by the fact that the blade effective 
angle of attack changes as a function of its azimuthal position. Studies have been conducted in the last two decades in order 
to investigate the aerodynamic efficiency of VAWT with a constant pitching angle blade [1]. However, a constant pitching 
angle limits most of power generation to the upwind half of a cycle, and it also encounters self-starting difficulties. Studies 
have been done on the aerodynamic advantages of morphing the airfoil for wind turbine applications [2][3]. Pankonien, et al 
[4] developed a morphing flexure box mechanism in order to morph the trailing edge of a chord. They showed that this 
compliant mechanism performs better than a hinged box mechanism for a smooth trailing edge change. In the current research, 
the aerodynamic efficiency of three airfoil profiles that are formed by the flexure box mechanism are investigated. Therefore, 
in order to study the aerodynamic performance of the morphing trailing edge as it is implemented on the vertical axis wind 
turbine, the power coefficient is compared for the case of blade profiles at the available extreme ends of the morphing trailing 
edge deflection range and the blade profile that is closest to being a symmetric profile. 
 

BLADE PROFILES AND NUMERICAL METHODOLOGY 

 

   Three blade profiles are demonstrated in Figure 1. ANSYS ICEM CFD is used to generate the 2D unstructured grid for 
positive camber profile δ = -13.37°. A grid convergence study is performed and the mesh with 3200 nodes on the blade surface 
is used which has an average y+ of less than 10. The blade profile is deformed through FLUENT user-defined function (UDF) 
wherein each node points on the upper and lower surfaces are given new coordinates that are obtained through MATLAB’s 
polynomial curve fitting of the experimental data points from the desired blade profile. The leading edge of the blade is the same 
as NACA0012, but the blade starts to morph at the location of 0.5 x/chord. 

 
Figure 1: Morphing blade profile (left) and the mesh after diffusion-based smoothing (right) 

 

   After the blade profile is deformed, the resulting mesh motion is then smoothed by using FLUENT’s boundary distance 
diffusion-based smoothing as it is shown in Figure 1 (right). The diffusion-based smoothing is governed by the equation ∇ ∙ (γ∇�⃗� ) 
= 0 where �⃗�  is the displacement velocity of the mesh, and γ is the diffusion coefficient. The diffusion coefficient controls how 
the boundary motion affects the interior mesh movement. The region of nodes with higher diffusivity tend to move together. For 
this case, the diffusion coefficient is a function of the normalized boundary distance d and is represented by the equation γ=1/dα 
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where the diffusion parameter α is set to 1.5 in order to preserve larger regions of mesh near the deforming blade boundary and  
allow the regions further away from the blade to absorb most of the motion.  
   ANSYS FLUENT solver is used in order to simulate the flow past the turbine. The Unsteady Reynolds Averaged Navier-
Stokes (URANS) model is used with the Spalart-Allmaras turbulence model having the far-field boundary condition 
turbulence viscosity ratio set to 0.1. The SIMPLE scheme pressure-velocity coupling is used with second order least-squares 
cell-based spatial discretization. The transient formulation used is the first order implicit with a time step size of Δt = 0.0003s 
or Δθ = 0.16°. The rotor angular velocity ω is kept constant at 90rpm while the freestream velocity, V∞, is set to 8 m/s for a 
tip speed ratio TSR = 3.18 where TSR is the ratio of the blade tip speed to the freestream velocity. CP is calculated as CP = P/ 
(0.5ρAV3), where P is the power generated and A = rotor diameter*span. The rotor diameter is 5.395m while a span length of 1m 
is used for the calculation. 

 

RESULTS 
 

   The individual blade profiles δ = -13.37°, δ = 0.48°, δ = 6.98° are simulated individually at TSR = 3.18 until a periodic pattern 
has been achieved. The CP curves for the last cycle is shown in Figure 2 along with the turbine diagram. The result shows that 
blade profile δ = 6.98° increases the maximum peak by as much as 22% compared to δ = 0.48° on the upwind half of a cycle; 
while on the downwind half, the blade profile δ = -13.37° gives the highest peak CP.  

 
Figure 2: CP curve comparison for each blade profiles, average CP values, and VAWT diagram 

    
  The CP curves from the individual blade profiles in Figure 2 could be used to identify which profile should be used at which 
azimuthal position. It can be observed that the δ = 0.48° blade profile could be used for azimuthal positions 300° < θ ≤ 15°, δ = 
6.98° blade profile for 15°< θ ≤ 180°, while δ = -13.37° blade profile performs better for 180°< θ ≤ 300°. By doing so, this gives 
the envelope CP curve, and it can be seen that although the average CP is highest for the almost symmetric profile among the 
individual blade profiles, if the envelope is considered, there is a possibility of 28% increase in average CP compared to the 
baseline profile of δ = 0.48°. 
 

CONCLUSION AND FUTURE WORK 

 

  The current study demonstrates the advantages of utilizing the flexure box mechanism of morphing trailing edge by Pankonien 
& Inman [4] for a Vertical Axis Wind Turbine. The results show that using a smart blade increases the average CP of VAWT’s 
by raising the CP peak in the upwind side and generating more power across the downwind side in a given cycle. The results also 
show that just by changing the camber line of the blade profile at different azimuthal positions, the average CP can be increased 
by as much as 28% compared to the baseline case of symmetric blade profile. 
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Summary Two new high-order (sixth- and seventh-order) global smoothness indicators of the 5-point stencil used in the fifth-order WENO 

scheme are proposed. Using the new smoothness indicators to construct the WENO-Z type scheme, the sufficient condition of the fifth order 

convergence for a fifth-order WENO is satisfied even at critical points where the first-order derivatives are zero. Compared with existing global 

smoothness indicators, two new indicators contain all terms in the smoothness indicators of three sub-stencils, and the maximal ratio of the 

coefficients of different first-order undivided differences (△fi+1/2=fi+1-fi) is not greater than 3. Hence they can keep the property of essentially 

non-oscillation as well as low dissipation. Numerical results demonstrate the improved accuracy and robustness of the new WENO schemes. 

INTRODUCTION 

    Weighted essentially non-oscillatory (WENO) schemes, which were first proposed by Liu et al. [1] and then improved 

by Jiang and Shu [2], have been widely applied in computational fluid dynamics. WENO schemes use a convex 

combination of all candidate reconstruction polynomials as the final numerical flux, in which each of polynomials is 

assigned a weight to determine the contribution of corresponding stencil based on a set of smoothness indicators of all 

candidate stencils. The smoothness indicator plays a very important role in the performance of a WENO scheme. Jiang and 

Shu[2] analyzed the fifth-order WENO scheme proposed by Liu et al. [1] and suggested a classic way of measuring the 

smoothness of a numerical solution. Thus, a WENO scheme with the optimal (2r−1)th order accuracy rather than (r+1)th 

order is obtained. Henrick et al. [3] pointed out that the original smoothness indicators of Jiang and Shu fail to improving 

the accuracy order of WENO scheme at critical points where the first derivatives are zero. By using a mapping function to 

Jiang and Shu's weights, a new WENO-M scheme is proposed. WENO-M scheme can achieve the fifth-order convergence 

order at critical points. Borges et al. [4] introduced a smoothness parameter for a global 5-point stencil and used it to devise 

a new set of WENO weights. The resulting WENO-Z scheme generates solutions that are sharp as the ones of the WENO-M 

scheme with a 25% reduction in CPU costs and presents less dissipation than WENO-JS, but it is difficult to guarantee both 

of sharp discontinuity profile and the sufficient condition for fifth-order convergence at the first order critical points. 

Recently, Ha et al [5] suggested a new method of measuring the smoothness of the numerical solution in a stencil, and a 

sixth-order smoothness indicator for a global 5-point stencil is also constructed to calculate the weights. The associated 

WENO scheme can get the fifth convergence order in smooth regions. Fan et al [6] devised several global smoothness 

indicator with truncation errors of up to 8th-order. With the new global smoothness indicators, the corresponding WENO 

schemes can achieve the fifth order convergence in smooth regions, even at critical points where the first and second 

derivatives vanish. The low diffusion of these new methods have been demonstrated by numerical examples in[5,6], 

however, by calculating more examples in this paper, we find that there still are shortcomings in these schemes, for example, 

poor symmetry, spurious numerical oscillation even incurs computation broken down. To overcome these shortcomings, 

this paper proposes new sixth-order and seventh-order global smoothness indicators to construct WENO-Z type scheme. 

The new scheme can achieve the fifth-order convergence in smooth regions with improved performance. 

ALGORITHM 

    Consider a hyperbolic conservation law in the form 
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    The numerical flux 2/1ih of the fifth-order WENO-Z scheme[4] can be written as 
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where, k  is the smoothness indicator at sub-stencil 3
kS , and it is the form of Shen and Zha[7] with the coefficients 

121  . Ha et al. [6] suggested using the approximation of the derivative )(l
kF  ( 2,1l , 2,1,0k ) at 2/1ix on stencil 3

kS  

to construct a local smoothness indicator kIS , and a global smoothness indicator  is also suggested, i.e., 
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   In this paper, two new indicators 6  and 7 is proposed as 
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Applying the Taylor expansion in smooth regions, we can be found that 
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Hence, compared with 5 , it is clear that all these global indicators ( 6 , 8 ,  , 6  and 7 ) can improve the accuracy 

order of k  approximating to ideal weight kc . 

NUMERICAL EXAMPLES 
   In this section, several numerical examples are given to demonstrate the improved performance of the WENO-Z type 
scheme with the new global smoothness indicators. Table 1 gives the accuracy comparison of )exp(2 xxf  . It can be seen 
that, at the critical point 0x , except 5  gives the fourth-order accuracy, others are fifth-order convergence. With 
decreasing x , the error of 7  is closer to that of the 5th-order ideal scheme than those of 6 ,  , and 6 .  

                           Table 1 Accuracy comparison of )exp(2 xxf   

5  6  Ha 6  7  5th-order ideal scheme 

  x       error        order 

0.2500E+00  0.16237E-01   -----  
0.1250E+00  0.98866E-03   4.038  
0.6250E-01   0.55315E-04   4.160  
0.3125E-01   0.31259E-05   4.145  
0.1563E-01   0.18086E-06   4.111  
0.7813E-02   0.10737E-07   4.074  
0.3906E-02   0.65090E-09   4.044  

 x        error      order 

0.2500E+00   0.61221E-02   -----  
0.1250E+00   0.14197E-03   5.430  
0.6250E-01    0.32037E-05   5.470  
0.3125E-01    0.79429E-07   5.334  
0.1563E-01    0.21550E-08   5.204  
0.7813E-02    0.62234E-10   5.114  
0.3906E-02    0.18659E-11   5.060  

 x         error      order 

0.2500E+00  0.11954E-02   -----  
0.1250E+00  0.13893E-03   3.105  
0.6250E-01   0.43230E-05   5.006  
0.3125E-01   0.12074E-06   5.162  
0.1563E-01   0.34525E-08   5.128  
0.7813E-02   0.10224E-09   5.078  
0.3906E-02   0.31021E-11   5.043 

x         error      order 

0.2500E+00  0.86920E-02   -----  
0.1250E+00  0.19860E-03   5.452  
0.6250E-01   0.43326E-05   5.519  
0.3125E-01   0.10518E-06   5.364  
0.1563E-01   0.28171E-08   5.222  
0.7813E-02   0.80740E-10   5.125  
0.3906E-02   0.24096E-11   5.066  

x         error      order 

0.2500E+00  0.87159E-02   -----  
0.1250E+00  0.11800E-03   6.207  
0.6250E-01   0.15022E-05   6.296  
0.3125E-01   0.26397E-07   5.831  
0.1563E-01   0.61156E-09   5.432  
0.7813E-02   0.16576E-10   5.205  
0.3906E-02   0.48440E-12   5.097 

x         error      order 

0.2500E+00  0.42791E-03  -----  

0.1250E+00  0.14220E-04  4.911  

0.6250E-01  0.45980E-06  4.951  

0.3125E-01  0.14628E-07  4.974  

0.1563E-01  0.46135E-09  4.987  

0.7813E-02  0.14484E-10  4.993  

0.3906E-02  0.45368E-12  4.997  

 
        Fig.1 Four waves                Fig.2 Zoomed of Fig.1               Fig.3 Shock tube                   Fig.4 Forward step 

   Figs.1-2 give the solution contained a combination of Gaussians, a square wave, a sharp triangle wave, and a half ellipse. Ha 
scheme is overshoot for the Gaussians wave, 8 generates evident oscillation. In addition, Ha and 6  obtain evident asymmetric 
solution for square wave and half ellipse wave. While both 6  and 7 avoid above shortcomings greatly. For the 1D shock tube 
problem of interacting blast waves, the computations with 6 , 8  and Ha schemes are broken down, while 6  and 7  work 
well as 5 , see Fig.3. Fig.4 is the 2D supersonic flow over a forward step, similar as the 1D shock tube problem, 6  and 

7 can capture the strong shock structures well, but the computations of 6  and Ha are broken down. 

CONCLUSIONS 

   New higher-order global smoothness indicators are proposed to construct WENO-Z type scheme. With the news indicators, 

the new WENO-Z type scheme enhances the symmetry of solution, keeps the property of essentially non-oscillation well and 

improves the robustness. 
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HIGH-ORDER METHODS
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Summary We present a general framework for anisotropic hp-adaptation of high-order discontinuous Galerkin finite element discretizations
for compressible flow simulation. Using the sensitivities of an adjoint-based error estimate our method seeks optimal element mesh size
h and polynomial degree p distributions. This approach results in an optimal hp-mesh tailored to yield the most accurate prediction of
a quantity of interest, such as aerodynamic coefficients, at a given computational cost (number of degrees of freedom). The proposed
approach features a reduced dependence on the initial mesh compared to established adjoint-based adaptive methods. It provides a unifying
framework where adaptation choices such as isotropic/anisotropic, h-/p-refinement/coarsening do not only rely on local arbitrary measures
of the solution’s anisotropy and smoothness, but rather where a globally optimal distribution of degrees of freedom is sought to minimize
the error in the chosen quantity of interest.

INTRODUCTION

Adaptive unstructured high-order methods form a promising framework to improve the computational efficiency, robust-
ness and reliability of Computational Fluid Dynamics (CFD) algorithms, as well as to gain insight in aerodynamic flow physics
[1]. The most widely used high-order discretization scheme for solving the compressible Navier-Stokes equations is arguably
the discontinuous Galerkin (DG) method. The reason for the DG method’s success is its arbitrary high-order accuracy, ge-
ometric flexibility (unstructured grids) and compact stencil. A number of variants to the DG method have been proposed
including the promising Flux Reconstruction (FR) schemes [2].

Industrial CFD applications often result in complex flow solutions. Error estimation and control are hence essential to
assess the validity of these numerical solutions. In addition since they rely on arbitrary discretizations of space and time, the
efficiency and accuracy of the numerical methods can potentially be optimized for a given flow simulation. The development
of reliable error estimates and robust procedures to adapt the mesh to the solution are subject to ongoing research efforts. Three
types of error indicators are commonly used to drive mesh adaptation in CFD: feature-based, residual-based and adjoint-based
indicators. Adjoint-based indicators provide information on the sensitivity of the error in a global quantity of interest with
respect to the local solution error [3]. This type of indicator is arguably the best suited for CFD since it is the only one to
account for error propagation. The approach is referred to as goal-oriented because it results in error estimates for outputs
(such as aerodynamic coefficients), as well as local error indicators which can be used to adapt the mesh in order to obtain
enhanced accuracy on chosen quantities of interest.

ADAPTIVE HIGH-ORDER METHODS

The discontinuous high-order methods provide a highly flexible framework for space discretization adaptation. Once an
error indicator is available, several techniques enable to modify the discretization in order to seek an overall more accurate
solution. To this end, the high efficiency of anisotropic mesh and polynomial (h- and p-adaptation) is well known. In
addition to the error indicator, some solution anisotropy and smoothness information is commonly used to guide anisotropy
and h/p adaptation choices [4]. A recently developed and unifying alternative to heuristic indicators is based on direct mesh
optimization [5, 6, 4, 7]. Instead of assessing directivity or smoothness of the solution, trial element patches are used to
compare all available local refinement choices. A merit function is then used to pick the optimal choice, i.e. locally minimizing
the ratio of error reduction over number of added degrees of freedom. This approach is much better suited to be coupled with
an adjoint-based adaptation technique since it allows a relevant use of the output sensitivity information provided by the dual
solution.

In this context, it is reasonable to assume the existence of optimal meshes minimizing the error for a given number
of degrees of freedom. Therefore, the use of optimization concepts have been recently increasingly considered to guide
adaptation, from the use of local merit functions [4, 5] to the global mesh size optimization via a surrogate error model [7].
Following these recent developments, we propose a unifying optimization-based framework for anisotropic hp-adaptation.

A UNIFYING OPTIMIZATION-BASED FRAMEWORK FOR ADAPTATION

The proposed approach relies on the concept of mesh-metric duality [8] to optimize the computational hp-mesh {Ωk}
used to solve a system of governing equations R(u) = ∇.F(u) = 0. A Riemannian metric is used to represent the discrete set
of nodes forming the computational grid in a continuous mesh model. Every element of the mesh can be uniquely associated
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with a positive definite symmetric matrix which contains information related to its geometric properties: size h, orientation ϕ

and aspect ratio ρ. For a given two-dimensional element Ωk, the metric is given by Mk = R(ϕ)T
[
h 0
0 h/ρ

]
R(ϕ), where

R is a rotation matrix. By interpolation from the elements of the entire grid these matrices define a Riemannian metric field
M(x). The knowledge of a metric enables to generate the corresponding mesh. To obtain an anisotropically adapted grid, the
metric of a given initial mesh is modified in order to better approximate the solution. Based on this concept, the initial coarse
hp-mesh is first represented in a continuous framework using its corresponding metric field M(x) and polynomial degree
distribution p(x). The adjoint solution ψ obtained from the linear system

[
∂R
∂u

]T
ψ =

[
∂J
∂u

]T
provides a sensitivity of the

global error on an output quantity of interest J(u) with respect to the local error measured by the residual of the governing
equations R(u). Adjoint-based error indicators η are computed on every element as η = ψTR(u) to provide an estimate of the
contribution of the local error to the error on the functional J(u), such as for example lift or drag coefficients for aerodynamic
simulations. Given this information, it is possible to seek an hp-mesh minimizing the global error on the output of interest.
To do so, we propose a method to evaluate the sensitivities of the error indicator η with respect to both the metric M(x) and
the polynomial degree p(x): ∂η

∂M and ∂η
∂p . These sensitivities are then used to guide a numerical optimization towards optimal

Mopt(x) and popt(x) minimizing the global error. Based on this optimized mesh representation, an adapted hp-mesh can
be generated, either by adaptation of the initial mesh or by regeneration based on the metric field. Since the accuracy of the
error indicator depends on the initial mesh, a constraint on the number of degrees of freedom of the adapted mesh has to be
imposed. Several of the above described adaptation cycle have to be combined in an iterative procedure in order to drive the
error under a specified tolerance. Since every adaptive cycle minimizes the error for a given number of degrees of freedom,
few iterations are needed to converge to the coarsest mesh that meets a user-defined accuracy requirement.
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Figure: (a) Sensitivity ∂η
∂p for the manufactured solution of a linear steady advection equation using a 5th order

FR scheme.

(b) Transonic inviscid flow over a NACA 0012 airfoil currently considered for optimization-based adap-
tation; Mach number solution obtained using a 3rd order adjoint-based adaptive DG scheme [9].

(c) Laminar viscous flow over a NACA 0012 airfoil also considered for optimization-based adaptation;
Mach number solution obtained using a 6th order FR scheme.
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Summary We present a novel implicit algorithm which allows to remove the acoustic time step limitation in compressible shock-free flows.

The key point of the algorithm is the use of the entropy equation in place of total energy. This allows to remove the acoustic time step

restriction in the wall-normal direction by solving a single scalar tridiagonal system, which is considerably more efficient with respect to

previous implicit algorithms [1, 2]. Direct Numerical Simulations(DNS) of compressible channel flows are presented to show accuracy and

efficiency of the new approach.

INTRODUCTION

Compressible wall-bounded flows play an important role in many aerospace applications of industrial and academic in-

terest [4, 3]. Despite that, compressible simulations of wall bounded flows remain often more time-consuming with respect

to their incompressible counterparts, mostly due to the acoustic time step restriction. In the near-wall region in fact the gap

between the hydrodynamic and acoustic time scale dictate the use of much smaller time steps than physically needed. In this

respect the use of implicit time integration algorithms is attractive since it allows to relax, if not remove, the acoustic time

step restriction. A crucial contribution in this sense was given by Beam and Warming [1], who proposed an implicit scheme

for the solution of the Euler equations in conservative form, which relies on the inversion of block matrices, thus avoiding

costly iterative algorithms. Many variations to Beam and Warming approach are available in literature, and special efforts

have been devoted to the reduction of the operations count, such as the algorithm of Pulliam and Chausse[2], which involve

the inversion of a series of scalar systems rather than block ones. The approach in this work is 20% − 30% faster than the

Beam and Warming algorithm, but it is inaccurate for time dependent flows. We develop a novel implicit algorithm which

is more efficient than previous ones as it barely requires the inversion of a single scalar tridiagonal system. A key role in

the algorithm is played by the entropy equation which is used in place of the total energy. The novel implicit scheme can

be used to efficiently predict Direct Numerical Simulation (DNS) of compressible wall-bounded flows. We perform DNS of

compressible channel flows and compare the results in terms of accuracy and efficiency with the fully explicit case.

NUMERICAL APPROACH

The maximum eigenvalue of the Euler equations in the i-th direction is ui + c, so that the inviscid time step limitation

in the same direction is ∆tI = (CFL∆xi/ui + c), where ui and ∆xi are the local velocity and mesh spacing in the i-th
direction, c the local speed of sound and CFL is the Courant number. In the case of wall-bounded flows, the most restrictive

limitation is in the wall-normal direction, since the mesh is clustered toward the wall, where the velocity goes to zero, but c
is finite. The novel idea to remove the acoustic restriction is to treat implicitly only the terms in the Navier-Stokes equations

which are responsible for the acoustic time step limitation in the wall-normal direction, namely the mass flux and the pressure

gradient in the momentum equation. This alone would allow to invert a 2 × 2 block matrix rather than a 5 × 5 one as in the

standard Beam and Warming approach. Further manipulations of the system of equations, which for the sake of brevity are

omitted here, show that only a scalar system of equations needs to be solved. Depending on the Reynolds and Mach number

and on the distance of the first mesh point from the wall, the viscous time step limitation in the wall-normal direction may

also be restrictive, and the viscous terms also must be treated implicitly. This can be efficiently done by solving a series of

scalar systems in sequence. The case in which both the acoustic limitation and the viscous one in the wall normal direction are

removed is denoted as Acoustic and Viscous Terms Implicit (AVTI), whereas the case in which only the acoustic limitation is

removed is denoted Acoustic Terms Implicit (ATI). The AVTI and ATI approaches are compared with the classical Beam and

Warming algorithm (BM), and the explicit case (EXPL). In all cases a fourth order Runge-Kutta scheme is used as a wrapper

for time stepping.

RESULTS

Six test cases have been performed, using the novel method (CH-AVTI and CH-ATI), Beam and Warming algorithm (CH-

BW1 and CH-BW2 ) and two cases with fully explicit discretization (CH-EXPL1 CH-EXPL2). The cases denoted by 1 and 2

∗Corresponding author. Email: davide.modesti@uniroma1.it
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differ for the distance of the first mesh point from the wall, which is ∆y+w = 0.15 for the former and ∆y+w = 0.7 for the latter

and are compared to CH-AVTI and CH-ATI respectively. In CH-BW1 both the viscous and inviscid limitation are removed,

while in CH-BW2 only the Eulerian fluxes are implicit. The comparison of the time steps and computational times in table

1a shows that ATVI is 20%− 30% more efficient than BW. This is approximately the same speed up of Pulliam and Chausse

variant [2], with the difference that ATVI can be applied to time-dependent flows. On the other hand the cases in table 1b

show that the use of BW algorithm does not give any substantial advantage, while ATI allows a speed up of a factor 2.

Case ∆tI/∆tE CPUI/CPUE

CH-EXPL1 1 1

CH-BW1 10 1.80

CH-AVTI 10 1.13

(a)

Case ∆tI/∆tE CPUI/CPUE

CH-EXPL2 1 1

CH-BW2 2.3 1.80

CH-ATI 2.3 1.08

(b)

Table 1: Test cases. Turbulent channel flow at Mb = 1.5 Reτ = 220. The distance in inner units of the first mesh point

from the wall is ∆y+w = 0.15 in table (a) and ∆y+w = 0.7 in table (b). ∆tI/∆tE is the ratio between the maximum allowable

implicit end the explicit time step. CPUE/CPUI is the relative CPU effort with respect to the fully explicit case.

Figure 1 shows the mean velocity profile and the r.m.s. pressure fluctuations in wall units. Excellent agreement with the

explicit case is found. The good agreement of the pressure fluctuations with the explicit case confirms that the method can

also be used for time dependent flows.
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Figure 1: Turbulent channel flow at Mb = 1.5 Reτ = 220. ∆y+w = 0.15. (a-c)Mean velocity profile in wall units (b-d)r.m.s.

pressure fluctuations in wall units. Figures (a-b) refer to the test cases of table 1a in which ∆y+w = 0.15, while figure (c-d) refer

to table 1b, with ∆y+w = 0.7. The symbols denote CH-EXPL1,2(squares), CH-BW1,2(triangles),CH-ATI,AVTI(gradients).

CONCLUSIONS

A new algorithm for efficient removal of the acoustic time step limitation has been presented. The method is attractive as

it barely requires the inversion of scalar systems rather than block ones[1], with subsequent efficiency gain. We performed

DNS of a supersonic channel flow, which is a good prototype of wall bounded flows. The results of the test cases here

presented shows an improvement which depends on the distance of the first mesh point from the wall. The speed up of AVTI

is about 20%− 30% with respect to the BM approach, whereas a factor 2 is obtained when only the acoustic terms are treated

implicitly (ATI). Future work will involve the application of the algorithm to other wall-bounded turbulent flows such as pipes

and boundary layers, with special attention to pipe flow, for which the time step restriction is also severe in the azimuthal

direction.
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Summary A three-dimensional, spectrally accurate algorithm based on the immersed boundary conditions (IBC) concept has been developed 
for the analysis of flows in channels bounded by rough boundaries. The algorithm is based on the velocity-vorticity formulation and uses a fixed 
computational domain with the flow domain immersed in its interior. The spatial discretization uses Fourier expansions in the stream-wise and 
span-wise directions and Chebyshev expansions in the wall-normal direction. Various tests confirm the spectral accuracy of the algorithm. 
 

INTRODUCTION 

 
   The Immersed Boundary (IB) concept, first proposed by Peskin [1] in the context of cardiac dynamics, provides a 
general computational basis to develop efficient tools for the analysis of flows involving complex geometries. IB methods 
are mainly based on low-order finite-difference, finite-volume or finite-element techniques, limiting their spatial accuracy. 
Some recent implementations employ either a spectral discretization [2] or higher-order finite-difference techniques for the 
field equations [3], however, the complete solution is not spectrally accurate. A fully spectrally-accurate version of the IB 
algorithm, referred to as the Immersed Boundary Conditions (IBC) method, was proposed in [4] for two-dimensional flow 
problems. The IBC algorithm has been implemented for time-dependent problems, problems involving moving boundaries, 
and its accuracy has been improved through the use of the over-determined formulation. This algorithm has also been 
applied to three-dimensional problems governed by the Laplace operator. The current work describes the implementation of 
the IBC method for problems governed by the three-dimensional Navier-Stokes equations. 
 

MATHEMATICAL FORMULATION AND SOLUTION METHOD 

 

   The problem of interest consists of a three-dimensional viscous steady flow in a channel bounded by rough walls. The 
geometry of the walls is described by the following relations:  
  (   )    ∑ ∑   

(   )  (       ) 
    

 
    ,   (   )     ∑ ∑   

(   )  (       ) 
    

 
               (1a, b) 

where   
(   )    

(     ) ,   
(    )    

(    ) ,   
(   )    

(     ) ,   
(    )    

(    )  with stars denoting the 
complex conjugates. The walls are periodic and extend to    in the x- and z-directions, with       ⁄  and    
   ⁄  denoting the wavelengths (Fig. 1). 

 
Figure 1: Sketch of the flow and computational domains. 

 
   The field equations in the vorticity-velocity form are used. Two types of closing conditions have been implemented, i.e. 
the fixed flow rate constraint and the fixed pressure gradient constraint. Fourier expansions are used for the discretization in 
the x- and z-directions and Chebyshev polynomials are used for the discretization in the y-direction. The solution takes the 
following form:  
 (     )  ∑ ∑ ∑   

(   )  ( ) 
 (       )    

   
  
     

  
     

,                                               (2) 
where A stands for any of the unknowns,    and    are the number of Fourier modes used in the x- and z-directions,    
represents the kth-order Chebyshev polynomial of the first kind and    is the number of Chebyshev polynomials retained 
in the solution. By applying the Galerkin procedure, a coupled nonlinear system of algebraic equations is obtained. All 
nonlinear terms are considered to be known during the iterative solution process with their values taken from the previous 
iteration. 
 

PERFORMANCE OF THE ALGORITHM 

 

   To examine the performance of the algorithm a model problem is introduced where the upper wall is kept smooth and 
the shape of the lower wall is described by a combination of two Fourier modes of the form 
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           (  )   (  )   (3) 
Two error definitions have been used to measure the performance of the algorithm. The error of the whole solution domain 
(        ) is defined as the maximum difference between the computed solution for the entire physical domain and a 
reference solution. The reference solution is computed using          Fourier modes and       Chebyshev 
polynomials. The other error measure is the boundary error (           ) which is the maximum difference between the 
computed solution at the boundary and the known boundary condition. 
   Figure 2A demonstrates that the error decreases exponentially with an increase of the number of Chebyshev 
polynomials and, thus, the algorithm provides spectral accuracy in the y-direction. Figure 2B demonstrates that the 
algorithm delivers spectral accuracy when increasing the number of Fourier modes in the periodic directions. A spectral 
decomposition of the error at the rough wall (Fig. 2C) demonstrates the absence of the first eight Fourier modes in the x-
direction and the first seven modes in the z-direction, in agreement with the construction of the boundary relations. 

   
(A) (B) (C) 

Figure 2: (A)- Variation of          as a function of the number of Chebyshev polynomials    used. (B)-Variation of 
         and             as functions of the number of Fourier modes for       and     , determined using 
      Fourier modes. (C)-Spectral decomposition of the boundary error for the roughness geometry described by (3) 
with        for       ,      , determined using      and      Fourier modes. 
   Figure 3 illustrates variations of the pressure gradient correction dp1/dx induced by the roughness of the form given by 
Eq.(3). Positive values of this correction indicate drag reduction. 

 
Figure 3: Variation of the pressure gradient correction dp1/dx as a function of the roughness wave numbers   and   for the 
roughness geometry described by Eq.(3) with         for Re = 5 determined using          Fourier modes and 
      Chebyshev polynomials. Grey zone identifies the drag reducing corrugations. 
 

CONCLUSION 

 

   A gridless, spectrally-accurate algorithm has been developed for the analysis of viscous flows in domains bounded by 
rough walls. It is demonstrated that the algorithm delivers spectral accuracy in spite of a complex shape of the solution 
domain. The solver represents a very efficient tool to explore flows over different surface topographies and to search for 
possible drag reduction. 
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Summary Looking for an improvement of convergence rate of steady state and eigenvalue solvers preconditioned by the inverse Stokes 
operator and realized via a time-stepping, we propose two independent additions. First, we suggest a generalization of the Stokes operator so 
that the resulting preconditioner operator depends on several parameters and whose action preserves zero divergence and boundary conditions. 
The parameters can be tuned for each problem to speed up the convergence of a Krylov-subspace-based linear algebra solver. Second, we 
propose to generate an initial guess of steady flow or eigenvalue and eigenvector using orthogonal projection on divergence free basis satisfying 
all boundary conditions. Both additions are illustrated on the solution of the linear stability problem for laterally heated square and cubic 
cavities. 

INTRODUCTION 

   Stability of fluid flows, being one of the classical and oldest topics of theoretical fluid dynamics, attracted a lot of 
attention during the last decades. With the growth of computational power and fast development of numerical methods of 
linear algebra, it became possible to study stability of numerically calculated flows that require development of non-linear 
steady state solvers and the solution of eigenproblems for matrices of extremely large size [ 1-2]. Existing computational 
methods and computer power available allow one to study modal linear stability of two-dimensional flows relatively easy 
nowadays. Disturbances of these flows are usually assumed to be either two-dimensional or three-dimensional with 
prescribed spatial periodicity in one dimension, e.g., spanwise or circumferential one. The family of such problems is called 
BiGlobal in [1]. TriGlobal problems, where stability of fully three-dimensional flows should be studied without any 
preliminary assumptions about disturbances, remain challenging for computational simulations. Difficulties are usually 
caused either by available and not powerful enough computer resources, or by an enormous slowdown of convergence of 
numerical methods effectively applied to the BiGlobal problems. Thus, development of robust numerical methods for 
TriGlobal stability problems is one of the challenging problems of computational fluid dynamics. 
   One of the efficient and most popular approaches for application of Krylov-subspace linear algebra solvers to 
computation of incompressible flows and study of their stability was proposed in [3]. Within this approach, assuming 
availability of an efficient time-dependent CFD code, Krylov vectors are generated via the time stepping. This approach was 
successfully applied to a variety of BiGlobal problems, however applying this technique to TriGlobal problems usually 
leads to a very slow convergence, so that the final result cannot be obtained in a reasonable time.  
   As it is argued in [3], the time-stepping method for calculation of Krylov vectors can be interpreted as preconditioning 
by an inverse Stokes operator. The latter serves as a starting point for this study, in which we show how the Stokes 
preconditioning can be generalized. This allows for a faster convergence of the most inner iterative process, which produces 
Krylov vectors via iterative inverse of the preconditioner operator. Then, to reduce the number of outer iterations of either 
the Newton or Arnoldi solver, we propose to generate a close to solution initial guess using projections on divergence free 
bases. We argue also that having a good initial guess of the leading eigenvalue and eigenvector, the Arnoldi process can be 
replaced by a simpler and faster converging inverse iteration. 
   Application of the proposed approach is illustrated on the well-known problem of convection in square and cubic 
laterally heated cavities. Considering square cavities (BiGlobal) we reproduce previously published results for the critical 
Grashof number corresponding to the steady – oscillatory transition. We succeed also to compute the critical Grashof 
numbers also for laterally heated three-dimensional cubic boxes (TriGlobal) with different thermal boundary conditions on 
horizontal and spanwise boundaries. These results are obtained by means of linear stability analysis for the first time. 
 

GENERALIZATION OF STOKES PRECONDITIONER 
 
   The Stokes operator acts of the three velocity components 𝑢, 𝑣, 𝑤, and the pressure 𝑝 and is defined as  

𝑺

[
 
 
 
 
𝑢

𝑣

𝑤

𝑝]
 
 
 
 

=

[
 
 
 
 𝐻𝑢 0 0 – 𝛻𝑝

𝑥

0 𝐻𝑣 0 –𝛻𝑝
𝑦

0 0 𝐻𝑤 – 𝛻𝑝
𝑧

𝛻𝑢
𝑥 𝛻𝑣

𝑦
𝛻𝑤

𝑧 0 ]
 
 
 
 

[
 
 
 
 
𝑢

𝑣

𝑤

𝑝]
 
 
 
 

=

[
 
 
 
 
𝑅𝑢

𝑅𝑣

𝑅𝑤

0 ]
 
 
 
 

      (1) 

where ∇𝑥, ∇𝑦 and ∇𝑧  are the first derivatives in the x, y and z directions, 𝐻 = ∆ − 𝐼/𝛿𝑡 are Helmholtz operators, ∆ is 
the Laplacian operator, and I is the identity operator. The lower indices show on which variable an operator acts. By 
assigning the lower indices, we emphasize that boundary conditions can be different for different velocity components, that 
different scalar variables can be assigned to different staggered grid nodes, and that numerical discretization of the same 
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differential operators can be different for different scalar variables. As a result of the inverse Stokes operator 𝑺−1 action 
one obtains a divergence-free velocity field that satisfies all the boundary conditions. The product by 𝑺−1  can be 
interpreted as a semi-implicit time step of length 𝛿𝑡, so that the result can be calculated by a time-dependent code [3], and 
1/𝛿𝑡 plays a role of an iteration parameter. The pressure gradient is needed here to remove the potential part of a vector 
resulting after the action of the three Helmholtz operators. 
   For the following we assume that velocity boundary conditions are linear and homogeneous. Note, that an 
inhomogeneity of a linear boundary condition can be removed by a change of variables. Then, for successful 
implementation of the Krylov-subspace iterations methods, vectors of the Krylov basis must be divergence free and satisfy 
all the boundary conditions. In other words the Krylov vectors and the solution must belong to the same linear space. Since 
the linearized Navier-Stokes operator alters the divergence and the boundary conditions, product by 𝑺−1 allows one to 
restore them. Observing that the boundary conditions are parts of the Helmholtz operators H, we can generalize the 
operators as 

𝐻(𝑢,𝑣,𝑤) = 𝛼(𝑢,𝑣,𝑤)
𝑥 𝜕2

𝜕𝑥2 + 𝛼(𝑢,𝑣,𝑤)
𝑦 𝜕2

𝜕𝑦2 + 𝛼(𝑢,𝑣,𝑤)
𝑧 𝜕2

𝜕𝑧2 − 𝛽(𝑢,𝑣,𝑤)      (2) 
 
The boundary conditions are incorporated into operators 𝐻(𝑢,𝑣,𝑤) , so that a product by newly formed 𝑺−1 yields a 
divergent free field satisfying the boundary conditions. The nine values of α-s and three values of β-s must be optimized for 
the fastest convergence. Clearly, there are too many parameters to optimize just by a numerical experiment. However, some 
partial optimization is possible, and allowed us to reduce by half the total computational time.  
 

GENERATION OF INITIAL GUESS  
 
   Denoting the linearized part of the Navier-Stokes operator as (𝑵𝑼 + 𝑳)[2,4,5], and the current Krylov basis vector as 𝒘(𝑛), 
the calculation of the next Krylov vector can be formally written as 𝒘(𝑛+1) = 𝚷(𝑵𝑼 + 𝑳)𝒘(𝑛), where 𝚷 is an operator that 
projects a vector on the space of divergence free vectors satisfying all the boundary conditions. This operator can be built, for 
example, as an orthogonal projection on basis vectors of the above space. One possible way of construction of such basis as 
linear superpositions of the Chebyshev polynomials is proposed in [4], where all the definitions are given and technical 
details are described. Applying the Galerkin projections, 𝒘(𝑛+1) is calculated as a truncated Galerkin series. This yields 
approximation of the projection operator 𝚷 and allows one to obtain a rough approximation of a true numerical solution 
within a relatively short computational time. Then this rough approximation can be used as an initial guess either for 
computations with a larger truncation number, or for the complete computation using the above preconditioner operator. 
 

PRELIMINARY RESULTS AND CONCLUSIONS 
 

   Applying two above approaches we succeeded to compute primary bifurcation points corresponding to a steady – oscillatory 
transition of convection in a laterally heated cube. The whole computations comprises several tens of hours on a PC with 
parallelization on six 2.6 GHz Intel CPUs. Further details can be found in [5]. Table 1 compares these results with those obtained 
by straight-forward integration in time (DNS) [6].  
 
Table1. Critical Grashof number and critical oscillation frequency for primary instability of convection in a laterally heated cube. Comparison 
of results obtained by the stability analysis and DNS. 

Horizontal boundaries Spanwise boundaries Stability analysis: 𝐺𝑟𝑐𝑟/𝜔𝑐𝑟 DNS: 𝐺𝑟𝑐𝑟/𝜔𝑐𝑟 
conducting conducting 3.4136 ∙ 106 /1.7651 3.32∙106 / 1.766 
conducting insulating 3.3831 ∙ 106 / 1.6489 3.29∙106 / 1.652 
insulating conducting 1.226 ∙ 107 / 0.9579 1.28∙108 / 0.987 
insulating insulating 4.252 ∙ 107 / 0.05385 4.45∙107 / 0.109 
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Summary Prediction of the motion of oil-water contact has great importance in the problems of oilfield development by flooding. We consider 
a piston-like model of oil-water displacement, which takes into account differences in viscosity of two fluids. Filtration of liquids is described 
by Darcy's law. Both fluids are weakly compressible and the pressure in the reservoir satisfies the quasi-stationary diffusion equation. Piston-
like model leads to discontinuity of the tangential velocity at the boundary L of oil-water contact. Using the generalized Cauchy integral we 
reduce the problem of finding the current boundary of oil-water contact to the system of singular integral equations for the velocity components 
and to the Cauchy problem for the boundary motion of oil-water contact. An algorithm for numerical solution of this problem is developed. The 
monitoring of oil-water boundary motion for different schemes of flooding (four-point, five-point, seven-point, nine-point, etc.) is carried out. 
 

MATHEMATICAL MODEL AND NUMERICAL SOLUTION  

 
Among the methods of oil fields development the flooding method [1] became widespread. The main objective of 

flooding is to maintain by flooding the reservoir pressure, inevitably falling in the primary field development. In this paper, 
the model of the piston-like oil displacement by water, which takes into account the difference in physical properties 
(density and viscosity) of oil and water. Consider the plane filtration flow of a viscous compressible fluid with viscosity μ 
and compressibility β in an infinite horizontal reservoir with permeability k, porosity m and thickness h. For the quasi-
stationary state of filtration flow the pressure in the reservoir p(x,y,t) satisfies the diffusivity equation and the velocity 
components Vx(x,y,t) and Vy(x,y,t) are calculated by the Darcy law [1] 
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where χ=k/mμβ - the coefficient of diffusivity. 
Solution of the equation (1) in the case of doubly periodic system of production and injection wells has been obtained in 

[2]. Discontinuous on the line L function Vx(x,y,t) - iVy(x,y,t) on the complex plane z=x+iy will be sought in the form: 
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where ζ(z) - Weierstrass zeta function, F(z,t) is given in paper [2].  
Denoting the viscosity ratio as κ=μ(w)/μ(o), the normal and tangential velocity components of the water as N(s)=Vn

(w) and 
T(s)=Vt

(w), equation (2) allows us to obtain singular integral equation for the unknown functions T(s) and N(s) on the line L: 
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The integral equation (3) must be supplemented by the differential equation that determines the time evolution of the 
line L. This equation has the following form [1]: 
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where z0 - the center of the injection well with radius rw, through which water is pumped into the reservoir. The initial 
condition in the equation (4) indicates the starting position of the point in the beginning of flooding, the corresponding angle 
 is determined on the contour of the injection well. 

Consider the algorithm for the numerical solution of integro-differential equations (3) and (4). For the numerical 
solution of singular integral equation (3) we divide the contour L by discrete set of points on the elements [zi, zi+1], (i = 0, 1, 
... N-1). Due to the closure of line L, the first and the last points of the partition are the same, i.e., zN=z0. Each of the points 
zk corresponds to the length of the arc sk. Let us choose and fix the point zk=z(sk) on the contour L.  

Omitting the rather cumbersome intermediate calculations, we write the approximation of the integral term in equation 
(3) as follows: 
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Equation (3) shows us that the real part of the singular integral equation (3) matches the finding of values of the 
unknown function Tk=T(sk) at a given time tn on a discrete set of points zk=z(sk). The imaginary part of this equation is, in 
fact, the formula for calculating the values of the function Nk=N(sk) at a given time tn at the same discrete set of points. 

The obtained values of Tk and Nk are then used to calculate the displacements of points zk=z(sk) in the time interval [tn, 
tn+1]. These displacements are determined by the numerical solution of the Cauchy problem (4) with the Runge-Kutta 
method, modified in view of the complex nature of the differential equation (4). In the calculations it was chosen the 
dimensionless time τ, associated with the original time t as τ=10-4Qt/2πmhω1

2, where Q is the flow rate of the injection well, 
ω1 is the biggest complex period of doubly periodic system of production and injection wells. 
 

RESULTS OF CALCULATIONS 

 
To solve this problem there was developed a software system to track the evolution of the flooding front in time, as well 

as to quantify the effectiveness of a particular scheme of flooding (dimensionless water breakthrough time into the 
production wells τbreckthrough and waterflooding coverages Kcoverage). In numerical calculations there was considered frontal 
row, four-point, five-point, seven-point and nine-point scheme of flooding. To determine the current position of the flooding 
front it was involved 180 tracers - points coming out at the initial time of the injection well. 

It is known [3] that the viscosity ratio κ has a negative impact on the ultimate recovery: the decrease in the parameter κ 
leads to the decrease in the volume of recoverable oil due to the growing instability of oil displacement by water. In 
addition, when viscosity ratio κ<1, the Saffman-Taylor instability [4] occurs, which is often called as “viscous fingering”. 
The viscous fingering effect has been observed in the course of our numerical calculations. The fig. 1 shows the formation 
of viscous fingers for five-point scheme of flooding at κ=1/5 value. For comparison, the fig.1 is supplemented by the figure 
from [5] (fig. 6a in the cited paper) obtained experimentally for similar geometry placement of wells. 

 

(a) (b) 
Fig. 1. Saffman-Taylor instability of the front of flooding for the five-point scheme.  
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Summary In this paper the operation of a tidal turbine has been simulated using the blade element actuator disk (BEAD) and actuator line (AL) 
methods for different values of tip speed ratio (TSR). Results show that the BEAD and AL give close results for power (CP) and thrust (CT) 
coefficients which agree well with the experiment [1]. On the other hand it is observed that for corresponding cases solved by the BEAD and AL, 
moving downstream, the wake experiences smaller velocity change behind the rotor centre in the AL method. This can be attributed to the 
presence of coherent root vortex structures which are captured in the AL method. In addition it is noted that the BEAD method, because of its 
averaged actuator disk methodology is not able to expose the flow unsteadiness as well as the AL method. 
 

INTRODUCTION 
 

   Tidal energy and tidal turbines have drawn much attention in recent years. Among different methods that have been used 
to investigate tidal turbines, the blade element actuator disk (BEAD) and the actuator line techniques are feasible for turbine 
arrays and also have proven to have good performance. In the BEAD method, the turbine rotor is replaced with an actuator disk 
and the momentum source terms, calculated from the blade element theory, are distributed on the disk. The result is a permeable 
actuator disk which the flow can pass through and be influenced by the source terms which vary radially but are averaged in the 
rotational direction. In the AL method on the other hand, the blades body forces are placed as momentum source terms along 
the lines which represent the blades and rotate with time. The distribution of the source terms in these two methods have been 
shown in figure (1). As can be seen the source term distribution in the AL method is much closer to the real geometry of the 
rotor. In this study using the EXN/Aero CFD code, large eddy simulations are performed using the BEAD and AL methods 
and their performance is compared on the basis of their prediction of turbine performance and the wake pattern. 
 

RESULTS 

 
   Figure (2) and (3) respectively show CP and CT coefficients versus TSR for the BEAD and AL methods. While from figure (2), 
the power coefficient increases with TSR until a maximum is reached (TSR ≈ 6) and falls off, in figure (3) the thrust coefficient 
increases continuously with TSR. Results from the present study have been compared with Bahaj et al. [1], Bai et al. [2] and Malki 
et al. [3] and a good correlation between them is observed. The velocity fields obtained from the BEAD and AL methods are 
shown in figure (4) and (5). A comparison between these two figures illustrates that the AL method shows a better performance in 
picking up the unsteadiness that is caused due to the spinning blades. In addition, when moving towards the wake core a smaller 
velocity gradient is obtained from the BEAD. This difference is due to the fast root vortex structures which maintain themselves 
in the AL method and are not captured by the BEAD method. Figure (6) and (7) show axial induction factor calculated from the 
two methods. While from figure (6) in the BEAD method the axial induction factor changes only with radius and is averaged in 
tangential direction, the plotted distribution from the AL method shows the capability of this method in giving a realistic picture 
of the turbine operation and its resulting velocity field. In figure (8) the change of normalized axial velocity in the cross stream 
direction have been shown at Z/D = 2 and Z/D = 5 downstream for both methods. This figure shows again that while in the AL 
method coherent structures due to the root vortex shedding maintain their higher velocity at the wake core, in the BEAD method 
because of their absence and overestimation of mixing process, axial velocity changes notably from Z/D = 2 to Z/D = 5. Figure 
(9) shows the changes in the normalized axial velocity behind the rotor at Z/D = 2. Since from figure (8) both methods predict the 
same value at this spot only results from the AL method have been shown here. From this figure it can be seen that the velocity 
deficit increases continuously with TSR. The vorticity field obtained from the AL method has been shown in figure (10). Tip and 
root vortices that can be seen in this picture are not detected by the BEAD method.  
 
 

  
Fig. (1). Source terms distribution for BEAD and AL Fig. (2). Cp versus tip speed ratio 
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Fig. (3). CT versus tip speed ratio Fig. (4). Velocity field from BEAD method 

 

  
Fig. (5). Velocity field from AL method Fig. (6). Axial induction factor (BEAD)  

 

  
Fig. (7). Axial induction factor (AL)  Fig. (8). Axial velocity behind the turbine  

 

  
Fig. (9). Axial velocity for different TSRs Fig. (10). Vorticity field from AL method 

 
CONCLUSIONS 

 
   This study showed that while the BEAD method gives reasonable answers for turbine power and thrust coefficients, it does not capture the 
tip and root vortices and the unsteadiness that can be predicted by the AL method. 
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Summary The present work validates a numerical model used to describe the flow behavior of particle suspensions through horizontal
pipes. The mixture of liquid water and polypropylene spheres is considered as single-phase and Newtonian fluid. The transport equation
proposed by Phillips et al. [1] for the particle fraction is employed, including a term which accounts for buoyancy. Different flow conditions
depending on the flow rate and initial particle concentration have been considered. The present simulations compare well to the experiments
of Reghem [2] and improved the simulations of Darbouret [3].

INTRODUCTION

The primary objective of this project is the numerical simulation of ice slurry flows in different types of ducts and complex
geometries for the transport of cold in refrigeration systems. The lack of reliable local measurements (velocity and ice
concentration) has considerably slowed down the development of dedicated numerical models. Behaviour of flows involving
solid particles scattered in liquid water tends to be very similar to the one of ice slurry flows. The velocity measurements
and observations of Reghem [2] then constitute a very interesting database for the validation of the present model. Moreover,
Darbouret [3] also proposed some numerical simulations based on the finite difference method and assuming a 2D steady-state
laminar flow. This flow configuration is very challenging for numerical methods as the particle concentration may reach very
high values at some locations inducing high shear stress flow regions.

MODEL DEVELOPMENT AND NUMERICAL PARAMETERS

The model presently used considers the fluid mixture as being single-phase and Newtonian. Phillips and al.’s equation
[1] is employed to model the transport of the particle volume fraction. Originally, this transport equation gathered three
components being a flux term accounting for the Brownian motion of the particles − that can straightly be neglected in the
present case − and two other flux terms giving diffusion, due to the spatial variation of effective viscosity for the first and due
to the spatial variation of particle interaction frequency for the second. The latter may also be neglected, according to [1],
since the two resulting effects of this term auto-annihilate. A last flux term is added to obtain the particle buoyancy and the
stratification phenomenon. The terminal particle settling velocity is calculated from [4] and a dumping function derived from
Gurel’s formula [5] is used to fit the mixture viscosity modelled with the Thomas’equation. The flow is isothermal and steady.
The model has been implemented in a finite volume solver with second-order upwind schemes for the pressure, momentum
and particle volume fraction transport equations. The pressure-velocity coupling is overcome through the SIMPLE algorithm.
The particle suspension, a mixture of liquid water and polypropylene spheres of diameter d = 0.0036 m, flows through a
cylindrical and horizontal pipe of length L = 3 m and diameter D = 0.05 m. The mesh comprises nearly 8 × 105 cells with
about 1400 cells per cross-section. Mesh refinement is done in the near wall regions. At the inlet, uniform profiles for the
velocity and the particle concentration are ruled. The flux of the particle volume fraction is turned to zero at the wall.

RESULTS AND DISCUSSION

Different values for the uniform axial velocity Um and particle volume fraction Φ have been imposed at the inlet. The
results are shown on Figures 1 and 2. They correspond to the radial profiles of the axial velocity and cross-section particle
volume fraction at the pipe outlet z/L = 1, for each flow condition. The blue color corresponds to areas of high particle
concentration (Φ > 0.35) whereas the yellow region contains almost no particle. As the mixture flows along the pipe, the
solid particles being lighter than liquid water rise to the top wall. Consequently, a heap of these particles is likely to form in
the top region, slowing down the flow there considerably and reshaping the velocity profiles as shown on Figure 1. Thus, it
appears essential to model accurately the dynamics of the particles within the mixture and especially the buoyancy term.

Case I corresponds to Um = 0.18 m.s−1 and Φ = 0.15, values typically encountered in ice slurry transport systems.
The suspension is clearly heterogeneous, with a highly concentrated flow region at the top of the pipe and a part being poorly
concentrated in the lower region (Fig.2-I). The mixture is accelerated in the lower-half of the pipe with a maximum velocity
around r/R ' −0.18 (Fig.1-I). A rather good agreement is obtained compared to the experiments [2], even if the model
predicts a linear profile in the top region highlighting higher shear stresses there.

∗Corresponding author. Email: aurelien.bordet@usherbrooke.ca
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Figure 1: Radial profiles of the normalized axial velocity at the pipe outlet z/L = 1 for three sets of initial conditions (cases I
to III). Comparisons with the experiments of Reghem [2] and the simulation of Darbouret [3].

Figure 2: Corresponding simulated particle volume fraction over the same pipe section, i.e. at outlet.

The main difference between cases I and II is the increased initial concentration in solid particles to Φ = 0.26. The
radial distribution of the axial velocity is not significantly modified regarding the numerics. In the experiments, Reghem [2]
observed the formation of a bed moving slowly in the top part of the pipe 0.1 < r/R < 0.5, where the velocity remains
almost constant (u/Um ' 0.5). The model fails to predict the right profile but Fig.2-II confirms a flow region with high and
constant concentration in solid particles. A Bingham rheological law for such a flow regime would improve the capabilities
of the model to reproduce packed-bed flows.

By comparing cases I and III, increasing the inlet velocity from Um = 0.18 m.s−1 to 0.37 m.s−1 clearly modifies the
radial distributions of the axial velocity. The peak value at r/R ' −0.1 is reduced. The flow regime is here turbulent, which
slightly homogenizes the particle distributions (Fig.2-III). It explains why the turbulence models improve the predictions over
the present laminar simulation and one of Darbouret [3]. The remaining discrepancies may be explained by the rheological
law used there, valid for Φ ≤ 0.6, value locally exceeded at the top of the pipe. It will be shown also in the presentation that
the model performs much better for ice slurry flows, with smaller particle diameter.

This work is part of the NSERC chair on industrial energy efficiency established at Université de Sherbrooke in 2014 with
the support of Hydro-Qubec, CanmetÉNERGIE and Rio Tinto Alcan, which are gratefully acknowledged.

References

[1] Phillips R. J., Armstrong R. C., Brown R. A., Graham A. L., Abbott J. R.: A constitutive equation for concentrated suspensions that accounts for
shear-induced particle migration. Physics of Fluids, 4(1):30-40, 1992.

[2] Reghem P.: Étude hydrodynamique de fluides diphasiques solide-liquide en conduite circulaire : application au coulis de glace. PhD Thesis, Université
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Summary Unsteady CFD simulations of the unappended DARPA SUBOFF 5470 undergoing a pitch maneuver were conducted using
Ansys CFX to support the development of hydrodynamic force models for simulating the transient dynamics of underwater vehicles. The
simulations used a sliding mesh formulation and the BSL Reynolds stress turbulence model. Four simulations were conducted with varying
pitch rates; the results from two of these were compared to experimental wind tunnel tests. The simulated flow was qualitatively correct,
however comparisons show that the simulations under-predict the normal force and over-predict the pitching moment. This error grows in
proportion to the angle of incidence. The body-normal vorticity moment distribution along the body and wake was calculated, and is seen
to transition between from a steady translation distribution to a steady rotation distribution over the maneuver. This transition appears to be
proportional to the local drift angle along the hull and the pitch rate.

INTRODUCTION

The design and safe operation of underwater vehicles depends critically on knowledge of the vehicles safe operating limits.
This operating envelope is developed primarily by numerical dynamics simulations, which must be computationally fast and
generally make use of simplified models for the vehicles hydrodynamics. Past work at the University of New Brunswick has
investigated the hydrodynamic characteristics of submarines undergoing steady translations and rotations using computational
fluid dynamics. The results of these investigations were accurate lower order models for the vehicle hydrodynamics, suitable
for use in simulations of the vehicle dynamics.

In certain extreme conditions, such as emergency rising or collision avoidance, the fluid flow will experience significant
unsteady effects and a model which resolves the transient hydrodynamics will be required. This work presents the results of
CFD simulations of unsteady pitching maneuvers for the unappended DARPA SUBOFF submarine geometry at Re = 6.1e6,
and an analysis of the hydrodynamic forces and moments. These results are compared to the unsteady experimental model
tests of Granlund and Simposon [1], as well as previous simulations of the steady hydrodynamics, in an attempt to analyze
both the accuracy of the CFD model and the effect of unsteadiness on the hydrodynamic forces.

METHODOLOGY

The geometry of interest is the unappended DARPA SUBOFF 5470 generic submarine hull in a steady cross flow of air
at 44.56 m/s. The hull geometry is axisymmetric, measuring 2.24 m in length and 0.267 m in diameter. The maneuver and
hull form are symmetric across the centreline, and so a half symmetry domain was used in the computational mesh. The hull
surface was discretized with approximately 100 cells circumferentially and 216 cells longitudinally. A cell inflation layer
with an initial cell height of between 5.52e-6 m at the bow and 8.62e-5 m at the stern was used; yielding y+ ≈ 1 along the
hull. This mesh was simulated in Ansys CFX using a sliding mesh formulation. A cylindrical structured domain was used for
the rotating mesh attached to the hull; this mesh was then embedded in a rectangular static hybrid domain. The total mesh,
including both the rotating and static domains, contained approximately 12.2 million cells.

The maneuver consisted of the hull in a steady oncoming flow at an incidence of one degree, up to a non-dimensionalized
time of 3 units, where t′ = tu/l. At 3 units, the hull would begin pitching, sweeping up to 27 degrees incidence at approxi-
mately 9 units, at which point the motion ceased and the simulation was held for an additional 3 units. This corresponds to a
constant linear pitch rate of ω = 1.36rad/s. Three additional unsteady cases were investigated. The first attempted to match
the exact experimental kinematics of Granlund, which deviated slightly from a constant linear pitch rate, and were here fit
to an 8th order polynomial. This was followed by two additional simulations at pitch rates of 4ω and 8ω and with the same
range, in order further to investigate the effects of unsteadiness on the flow. Timestep sizes for these four simulations were
2.0e − 4 seconds for the first two, 5.0e − 5 seconds for the third, and 2.5e − 5 seconds for the fourth. In addition, steady
flow simulations were conducted for translation at incidence angles of 5, 10, 15, 20, and 27.6 degrees. All of the simulations
utilized the BSL Reynolds stress turbulence model, as implemented in CFX v14.
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Figure 1: Vorticity Contours and Hull Streamlines Figure 2: Comparison of Simulated and Experimental
Normal Force

RESULTS

Qualitatively, as the hull is pitched, an open separation of the flow is seen to develop at the stern and gradually spread up
the body towards the bow. Figure 1 displays the hull stream lines and select vorticity contours for the simulated flow with
experimentally matched pitch rate at t′ = 12. This corresponds to the end of the simulation, with a fixed incidence angle of
27 degrees. The separation line is clearly visible in the hull streamlines, while the formation and growth of the wake vortex
is seen in the vorticity contours. This separation and wake vortex dominate the hydrodynamics of the hull, especially the hull
normal force and pitching moment.

A plot of the body-frame normal force coefficient comparing the four unsteady simulations and experimental data is
shown in Figure 2. It can be seen that both the linear and fitted kinematics simulations under-predict the normal force found
in experiment, with the error magnitude increasing with time and thus with angle of incidence. The experimental result also
shows two distinct plateaus, which Granlund attributes to separation events at the stern and bow of the hull respectively [1].
While the plateaus in the force data are not seen in the simulated results, the separation events discussed by Granlund are
observed at the correct times and locations. As expected, the results at higher pitch rates show increased normal force, due
to the greater added mass effects at the higher pitch rates. Similar results were found for the pitching moment, with the
simulated results tending to over-predict the experimentally observed moment. Comparison with the steady state data at the
corresponding angles of incidence throughout the maneuver shows that at this pitch rate, simulation predicts little effect due
to unsteadiness. An analysis of the body normal vorticity moment distribution was also conducted. The results of this analysis
showed that during the course of the maneuver, the vorticity moment transitions from a distribution which is characteristic of a
steady translation to one which is characteristic of a steady rotation. The progress of this transition was seen to be proportional
to the pitch rate and the instantaneous local drift angle along the body.

CONCLUSIONS

Simulations of the unsteady pitching of the DARPA SUBOFF hull geometry were conducted and compared to the ex-
perimental results of Granlund and Simpson. This comparison showed that despite the flow appearing qualitatively correct,
the predictions for the normal force and pitching moment were under-predicted. Comparisons with steady simulations at
varying angle of incidence showed that the unsteady result deviated little from the steady case, indicating little effect from
simulation unsteadiness. Future work will investigate the effect of applying large eddy simulation to this maneuver, as well
as the effect of the imposed symmetry on the domain. The vorticity moment analysis suggests that the body normal voriticy
moment distribution transitions between that of a steady translation and a steady rotation during the maneuver, and that this
transition depends on the local drift angle and the pitch rate. This suggests an avenue for exploring lower order models based
on predicting the vorticity moment distribution, which merits further investigation for use with vehicle dynamics models.
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Summary A new approach is introduced and developed to generate moving grids for large amplitude rigid body motion. The approach
can be interpreted as a solid body moving through, and displacing an existing mesh whose connectivity remains fixed. In this method, the
elements ahead of the body are separated and reattached along a trajectory so as to preserve a fixed connectivity and maintain mesh validity.
The procedure for the rotation is exactly the same where the grid nodes slide on the solid body during the rotation in order to maintain a
fixed connectivity during the rotation.

INTRODUCTION

To achieve unsteady flow simulations with moving boundaries that incorporate the complete details of geometry as well as
flow features, numerical algorithms with great fidelity are needed. This has led to the development of algorithms for simulating
fluid physics using dynamic mesh generation for both viscous and inviscid flows. Generally, moving mesh generation is a con-
flicting situation between geometric complexity and algorithm robustness from several aspects points of view like boundaries
with concave geometries, boundaries in contact, etc. The early attempts in dynamic grid generation are essentially remeshing
techniques based on the new position of the boundaries in each time step (e.g. [1]). This approach can produce meshes of
very high quality. However, it is very expensive computationally, as in addition to the actual remeshing, the technique requires
the interpolation of the solution at each time step. Mesh motion algorithms with fixed topology have been presented in the
literature, with various approaches according to the amplitude of the body motion: spring analogy, radial basis functions,
grid deformation using PDE operators etc. However, all these methods finally fail to handle grid motion for large amplitude
of motion since the cells remain attached to the boundary. The current work introduces a new method in order to allow the
grid nodes to slide on the moving boundaries as particles flowing past the domain boundaries. This was first introduced by
[2] where a generic configuration mimics the motion of the real object in the computational space followed by a mapping to
physical space using an appropriate operator (e.g. Laplace’s equation). In spite of numerous interesting features compared to
other mesh motion strategies, this method suffers from a few short-comings. One of the most important weaknesses of the
method is mapping the solution from the computational space to the physical space which is obviously costly. In addition,
the distribution of the nodes in physical space depends on the choice of the mapping in computational space which is not
necessarily compatible with geometry in physical space. Consequently, the current work is an extension of this method to
manage the sliding procedure directly in physical space, to remove the previous shortcomings of the method, and to make
the approach ready and compatible with any flow solver. Figure (1) shows generated grid for a moving circle passing several
bumps. The whole motion can be watched on footage uploaded on [3].

Sliding Method for Translation
In the current work the sliding approach is directly handled in physical space. The procedure can be interpreted as the opening
and stitching of a mesh around the moving body and along a defined path. Unlike the previous procedure for sliding method
introduced by [2], where it was necessary to rearrange the grid in the leading node in order to generate a valid splitting, in the
new approach, the initial grid is generated around the trajectory of the motion. As the topology of the grid is fixed during the
entire motion, the edges are adapted to the specified motion and the arbitrary displacement of the body along the trajectory is
satisfied with this strategy. The trajectory on the zipping path has two sides which are ”inflated” as the body slips through the
grid. This requires that the body be represented by its upper and lower sides which connect at the leading node and the trailing
node. Therefore these two parts need to be determined together with the trajectory at the beginning of the procedure. Briefly,
the procedure consists in the following steps: 1. Prescribing the path of the motion (trajectory) and generating the initial grid;
2. Defining the leading node and the trailing node on the body. This is equivalent to the determination of upper and lower
parts of the body; 3. Setting the moving body on the trajectory; 4. Determining the number of time steps (of course this is
dependent to the flow solver). 5. Displacing the body based on the time steps. 6. Smoothing the new grid using an appropriate
operator. 7. Repeating the procedure from number 5 till to the end point of the motion.
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Figure 1: A moving circle passing several bumps

Sliding Method for Rotation
Similar to the translation motion, in the current work rotational motion is managed in physical space. This is to avoid the
connectivity changes at each time step which obviously causes additional interpolation procedure for a flow solver. This
is one of the major drawbacks of working in computational space which led to a modification for rotation in the present
approach. Where, the mesh is constructed based on the geometry in computational space, it may not be well-adapted with
the real geometry in physical space. In addition, managing the motion in computational space and then mapping the grid to
the physical space with the use of an operator (e.g. Winslow equation) always requires a high number of iterations since at
each time step, the grid in physical space does not have any information from previous time step to be used as an initial guess
for the next time step. In the present study, working directly in physical space requires fewer iterations for the smoothing
procedure since the initial guess comes from the previous time step and is a good approximation for the next time step. This
is one of the main reasons of switching back to physical space. Another reason for working in physical space is the fact that
smoothing operator does not smooth the grid in physical space but maps the grid from computational space to physical space.
Accordingly sliding approach is directly applied in physical space. A step by step algorithm for this approach can be defined
as follow 1. Generating the initial grid in physical space including the rotating object with its initial position; 2. Identifying
the axis of the rotation; 3. Setting the angle of rotation; 4. Calculating the time step. This is obtained by dividing the entire
rotation by the number of steps. The calculation of the time steps is not independent of the flow solver; 5. Rotating the object
around the rotation axis based on the calculated time step; 6. Projecting the nodes on the rotating object(s) (boundary nodes) to
their new positions based on the new position of the object; 7. Smoothing the mesh with the use of an appropriate smoothing
operator. In the current work, Winslow’s equation is employed for the configuration with sharp curvature(s) and a barycentric
method is used for simpler cases; 8. Iterating the process from number 4 to complete the entire rotation. A footage of a
generated grid for a rotating object with the use of presented approach can be found on [4].
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Summary Multiple layer underground and the flow of ground water in some layers have an important effect on the heating of vertical heat 
columns and heat exchangers (HE). This paper investigates the important implication on the design of the Ground HE with regard to their 
heating effect. For this reason a thermal model is constructed in Comsol Multiphysics software and the effect of various parameters such as 
thermal conductivity of the ground and the groundwater flow velocity is considered. The model parameters are set to present actual (known) 
parameters of an installed column and validated against experimental values. Although the key for an overall capital cost reduction is the 
borehole length, the results indicate that by using the groundwater available, construction of shallow Ground Source Heat Pump systems can be 
achieved with an increase of the coefficient of performance (COP). 
 

INTRODUCTION 
    
   Ground Source Heat Pump (GSHP) systems constitute an evolving technology that has been given significant attention 
in recent years. GSHP systems have higher energy efficiency and lower environmental impact than regular ones [1]. 
Geothermal energy, although developed for many years, has not reached a stable and popular state to be widely used. This is 
due to the high manufacturing and installation cost of Ground Heat Exchangers (GHE) compared to similar, albeit not so 
effective systems. The capital cost of an air-to-air heat exchanger Heat Pump system is lower than that of a GSHP one, but 
the operation cost is higher compared to the GSHP system. Only recently the GSHP systems have gained more recognition 
due to energy shortage uses. It is noted that GSHP installations have increased dramatically in recent years (after 2010) with 
a rate of 10–30% annually [2].  
   The closed loop system, either vertical or horizontal, is the most common of the configurations. Pipes can be buried by 
drilling either vertical boreholes or horizontal trenches. Alternatively, if the building has access to an aquifer, pipes can run 
all the way down to utilize this natural underground water source. The effect of an aquifer with groundwater flow is 
examined in this paper through the use of the computational modeling. The model was constructed using the COMSOL 
v.5.1, which is a computational modeling software package allowing the use of general equations, but also adding and 
editing equations manually.  
    

MATHEMATICAL MODEL 
 
   The three dimensional conservation of the transient heat equation for an incompressible fluid used is given as 

p
T

t
+ wcpwu T + q = Q,         (1) 

where T is the temperature, t is time,  is the density of the borehole/soil material,  is the specific heat capacity of the 
borehole/soil material at constant pressure,  is the density of the ground water,  is the specific heat capacity of the 
ground water at constant pressure,  is the velocity of the groundwater (seepage velocity is being used),  is the heat 
source and q is given by the Fourier’s law of heat conduction that describes the relationship between the heat flux vector 
field and the temperature gradient. 
 

COMPUTATIONAL MODELING 
 

   The geometry includes five layers of ground with different thickness and thermal properties. Two cylinders represent the 
boreholes with a total depth of 100 m and a distance between them of 10 m. The geometry and the properties of the ground 
can be found in Florides et al. [3]. The multilayer ground was constructed with different material properties in order to 
achieve realistic results and the general model was scaled down on the z-axis. The groundwater velocity was set using the 
seepage velocity, where the hydraulic conductivity minimum and maximum values were taken from typical data presented 
in Domenico and Schwartz [4]. The boreholes were set as a heat source with an overall Q = –40 W m–1. For presenting a 
nearly realistic model a pulse function was also applied, by equating the heat source term to 1 (on) for 12 hours and to zero 
(off) for the next 12 hours, for 7 consecutive days. 
 

RESULTS AND DISCUSSION 
 
   By analyzing the borehole results at different regions (Figure 1), it is observed that the temperature decreases with time 
except in the region of the groundwater flow. This is due to the fact that heat is carried away from the borehole section 
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where groundwater is present, while in the other sections heat is accumulated and maintained in the region. In addition, 7 
lower peak points are noticeable due to the pulse function applied. The temperature reaches its lower peak point each day in 
the middle of the day after the 12 hours of continuous heat injection. 
   By plotting only the minimum temperature points in each borehole (Figure 2), it can be observed that by increasing the 
groundwater velocity the average surface temperature on the groundwater region increases. The results show that where the 
minimum hydraulic conductivity is applied (lower seepage velocity) there is not enough groundwater velocity to cool down 
the boreholes, whereas in the maximum hydraulic conductivity regime the boreholes response with lower average 
temperature and, in addition, they are reaching steady state in a shorter time. It is also noticeable that in the case of the first 
borehole, the average temperature reaches a steady state from the first day peak point, whereas on the second borehole (on 
the downstream) there is an increase in temperature before it reaches steady state again. Further on the heat carried away 
from the first borehole interferes with the second borehole (on the downstream) when the groundwater velocity is high 
enough, like in the case of the maximum seepage velocity (vS = 10–5 m s–1). 
 

   
 
Figure 1. Temperature profiles versus time on the first 
borehole (B1) for a seepage velocity of vS = 10–5 m s–1.  

 
Figure 2. Average Temperature peak points versus time 
in the region of water flow for various values of seepage 
velocity (vS). 

 
CONCLUSIONS 

 
   In this paper the effect of the groundwater flow on a GHE in heating mode is examined using the Comsol 
computational modeling. The average borehole surface temperature on every ground layer was calculated with lower and 
higher seepage velocities. The results indicate that groundwater flow has an effect on the temperature of the ground water 
flow region. It is also noticeable that in this region steady state is reached much sooner than in the other regions. 
Additionally, the two boreholes interfere with each other when the groundwater flow velocity is high influencing the 
downstream borehole temperature.  
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Summary In this paper, the suitability of Computational Fluid Dynamics (CFD) to evaluate and predict physical phenomena in lieu of 

experimental work in a jet impingement application is assessed. Previous experimental work looked at the effectiveness of different geometries 

in improving jet impingement cooling. This work was used to construct a numerical model of two of the geometries each running at three different 

Reynolds numbers. First a turbulence model is selected based on a simple two-dimensional axi-symmetric jet impingement case. The k-ω SST 

model produced the most accurate results and was thus selected. The model was then used to simulate jet impingement in both a basic flatplate 

and a corrugated geometry. The corrugated geometry was expected to improve cooling performance. The trend was seen in the numerical results, 

particularly at higher velocities and at the most downstream jets. The trend replicates that of the experimental results, with negligible impact of 

the corrugations before the 3-4th jet. 

 

 

   Gas turbines are one of the most effective power generation devices available today. They supply power to many 

applications, most commonly in aviation and utility power [1]. There is naturally a constant demand for higher fuel efficiency 

by gas turbine operators. Gas turbine efficiency can be improved by an increase in the turbine inlet temperature. Since these 

temperatures may exceed materials’ allowable temperature, advanced cooling methods are involved [2]. Jet impingement 

cooling is one such technology and will be looked at more closely in this paper. Since experimental work can be both costly 

and time consuming, ideally a numerical model would be able to replace or reduce an experimental setup. A comparison is 

therefore made between experimental results based on available data in the literature [3, 4] to evaluate whether the same 

trends could be observed in the current numerical model. Two geometries are tested, a flatplate and a corrugated geometry. 

The geometry is given in Figure 1a. Each geometry consists of 10 inlet holes and a full streamwise length of over 40D. 

 

 

  
    (a)         (b) 

 

Figure 1. a) Three-dimensional impingement geometries and dimensions; and b) sample mesh of the corrugated case 

  

   To select a numerical model for this study, a two-dimensional (2-D) axi-symmetric case was first simulated for validation. 

The results were compared to works of previous researchers who had done both numerical and experimental work [5]. The 2-

D geometry was drawn in commercial software ANSYS Designmodeler, meshed in ICEM 14.5 and exported to FLUENT 

14.5 to be solved [6], see Figure 1b. Three separate meshes were tested to determine the discretization error using the Grid 

Convergence Index (GCI) method [7], with the intermediate mesh size of 40,000 cells chosen as a sufficient compromise 

between accuracy and computational resources. The impingement target was set at a constant temperature of 315K with the 

air inlet at 300K, with the variation in heat flux providing the Nusselt number for comparison to the experimental results. 

There was a preference for a 2-equation model for the sake of computational efficiency. Of all 2 equation models, the k-ω 

SST model produced the most accurate results and was selected for use in the 3-D models. An example showing the 

comparison and mesh sensitivity is given in Figure 2. A linear regression analysis done on the two cases with respect to the 

experimental results over the full surface shows that the k-ω SST model fits the data with a R2 value of 97.01% and standard 

error of 5.850 while the k-ε realizable model has a fit of 94.78% and standard error of 7.644. The k-ω SST model is the only 

2-equation model that shows the second peak referred to by previous researchers and in the experimental results of Baughn 

[5], see Fig. 2b. 
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    (a)         (b) 

Figure 2. a) Linear regression analysis for two different turbulence models; and b) the Mesh sensitivity using k-ω SST 

model for the 2-D axi-symmetric case 
  

 The same methodology as in the 2-D case was used in the 3-D case, with three separate meshes of roughly 2 million, 4 

million and 9 million cells tested for each geometry. All meshes were found to be in the asymptotic range based on the analysis 

of the order, GCI and discretization errors. As a better compromise between accuracy and available computational 

requirements in all runs, the 4 million cell mesh was selected for all simulations cases.  

 Simulations were then run at steady state using the k-ω SST model and solutions of the governing equations were 

approximated using a second-order upwind scheme with the FLUENT solver [6]. Convergence was monitored at the 

impingement surface, which was 15K higher than the air inlet. Simulations using three Reynolds numbers of 20,000, 40,000, 

and 60,000 were conducted for each geometry case. As an example, the Nusselt contours of the 20,000 case for both the basic 

flat impingement case and the corrugated case are given in Figure 3a. The span-wise averaged Nusselt values were obtained 

to compare to experimental values. 400 lines were scripted to be drawn across the target plate with each line producing an 

average Nusselt value. Results for the 20,000 Reynolds case can be seen in Figure 3b. 

 

(a) (b) 

Figure 3. a) Nusselt contours for flatplate (top) and corrugated (bottom) and b) Spanwise averaged Nusselt values for the 

two geometries, at Re=20,000 
 

 The corrugated geometry had improved cooling performance downstream, as suggested by the experimental results. The 

numerical model was therefore shown to successfully predict the trend though not the absolute Nusselt values. The cause of 

the error may be due to lack of turbulence intensity measurement in the experimental setup, which can greatly affect heat 

transfer. In the above cases, a turbulence intensity value of 5% was imposed at the inlets. Another cause of error may be the 

imposition of a uniform velocity profile at the inlets and lack of a plenum. The model was nonetheless accurate in replicating 

the trend seen in the experimental setup. 

References 

[1] Bathie W.: Fundamentals of Gas Turbines, New York, Wiley & Sons 1984.  

[2] Han J.C., Dutta S., Ekkad S.: Gas Turbine Heat Transfer and Cooling Technology, Boca Raton: CRC Press, 2013.  

[3] Esposito E.I., Ekkad S.V., Kim Y., Dutta P.: Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling. J. Thermal Sci. Eng, Appl. 1 
(2), 021001, 2009.  

[4] Xing Y., Spring S., Weigand B.: Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets. 
J. Heat Transfer 132, 092201, 2010.  

[5] Baughn J.W., Shimizu S.: Heat Transfer Measurements from a Surface with Uniform Heat Flux and an Impinging Jet. Trans. ASME 111, 1096-1098, 1989.  

[6] ANSYS Inc, ANSYS FLUENT 14.5 Theory Guide, USA, 2012.  

[7] Roache P.J.: Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J. Fluids Eng. 116, 405-413, 1994.  

y = 1.3012x - 36.716
R² = 0.9478

y = 1.3282x - 20.336
R² = 0.9701

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160

N
u

ss
el

t 
N

u
m

b
er

 (E
xp

er
im

en
ta

l)

Nusselt Number (Numerical)

K e Realizable K omega SST

0

20

40

60

80

100

120

140

160

180

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

N
u

ss
el

t 
N

u
m

b
er

x/D

Coarse Mesh Intermediate Mesh Fine Mesh

10

30

50

70

90

110

130

150

0 10 20 30 40 50 60

Sp
an

w
is

e 
A

ve
ra

ge
d

 N
u

ss
el

t 
N

u
m

b
er

x/D

20k Corrugated 20k Simple

1379



 

 

a) Corresponding author. Email: hwx@tsinghua.edu.cn. 
 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada  

AN IMMERSED BOUNDARY PROJECTION METHOD 
FOR FLOW OVER MOVING BOUNDARIES 

 
Wei-Xi Huanga), Ru-Yang Li, Chun-Mei Xie & Chun-Xiao Xu 

AML, Department of Engineering Mechanics, Tsinghua University, Beijing, P.R. China 
 
Summary A revised immersed boundary projection method with the primitive variables is proposed by utilizing a two-step approximate 
factorization. Two computation sequences derived from the different factorization processes are introduced and compared. Benchmark 
problems are examined for validation of the proposed method for flow over moving boundaries. 
 

INTRODUCTION 
 
   Flow over complex/moving boundaries is frequently seen in nature and engineering, but poses challenges for numerical 
simulation. As a representative of non-body conformal grid methods, the immersed boundary (IB) method has experienced 
a fast development during the past two decades [1-3]. Recently, a new IB formulation was proposed by Taira and Colonius 
[4]. In this method, the additional momentum forcing was interpreted as a Lagrangian multiplier to enforcing the no-slip 
condition along the IB, similar to the role of the pressure for satisfying the continuity equation of the impressible flow. Thus, 
the method was referred as the immersed boundary projection (IBP) method, which can be solved by using the approximate 
factorization [5]. However, it was found that the computational cost of the original IBP method with the primitive variables 
is high, where a modified Poisson equation needs to be solved by an iteration approach. In the present study, we propose a 
revised version of the IBP method, aiming at improving the computation efficiency. 
    

NUMERICAL METHOD 
 
   The governing equations are the non-dimensional Navier-Stokes (N-S) equations for incompressible flow, which can be 
written into the matrix form after discretization [4], i.e. 

1

0 0
0 0

n n

B

A H G
E
D p cbc

δ
δ

+   − 
     =    
         

u r
F U                                    (1) 

where u is the velocity vector, p is the pressure, F is the momentum forcing applied to enforce the no-slip condition along 
the IB,δ = −F F F , and p p pδ = −  , with F and p denoting the predictions of F and p respectively. In Eq. (1), the discrete 
interpolation operator E and the discrete regularization operator H are introduced for velocity interpolation and forcing 
spreading. Eq. (1) can be regarded as the Karush-Kuhn-Tucher (KKT) system and solved by the traditional fractional step 
method or equivalently the projection method [5], which can be implemented by utilizing a block-LU decomposition. In the 
original IBP method [4], the pressure and the momentum forcing are solved simultaneously from a modified Poisson 
equation by an iteration approach, which is not only computationally expensive but also prone to the convergence error. In 
order to retain the features of the original N-S solver after incorporating the IB method, especially the efficient Poisson 
solver for pressure which usually adopts the FFT algorithm, in the present study we propose a two-step LU decomposition 
of the above KKT system (Eq. (1)) to decouple the pressure and the momentum forcing sequentially from the velocity. 
Moreover, the three components of the intermediate velocity can be further decoupled by the approximate block LU 
decomposition [6], which significantly saves the computational cost and memory. 

Two computation sequences derived from the different factorization processes are compared: In Algorithm 1, we first 
decouple pδ  from the system at the first fractional step and then decouple δF decoupled from the velocity field at the 
second fractional step; In Algorithm 2, the decoupling sequence of pδ  and δF  is reversed. Moreover, we tried different 
schemes in the predicted momentum forcing F at each time step: (1) The simplest form is that 0=F ; (2) F is obtained by 
using the velocity of the previous step (3) F is calculated by using the predicted velocity obtained by an explicit 
advancement of the momentum equation without the forcing term. 
 

RESULTS AND DISCUSSION 
 

A series of cases of flow around the inline oscillating cylinder have been simulated with different computational 
algorithms and prediction schemes of the momentum forcing. The parameters are set consistent with Dütsch et al. [7]. By 
examining the time evolution of the drag coefficient, it is observed that the computation process has significant impact on 
the solution while the forcing prediction scheme has only slight influence. The solution obtained by Algorithm 1 is 
satisfactory except that unphysical oscillations appear at the very beginning stage. On the other hand, unphysical 
oscillations at the beginning stage can be eliminated by Algorithm 2, but the solution reliability can only be assured by 
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using a relatively small computational time step. Moreover, the temporal and spatial accuracy are both between the first 
order and the second order. 

Performance of the present method in the initial transient stage is further tested by simulating a circular cylinder 
impulsively started in a quiescent fluid, where Algorithm 2 together with the forcing prediction scheme 2 is chosen. The 
computational configuration is following Taira and Colonius [4] with Re=40. Fig. 1 displays the instantaneous vorticity 
contours behind the cylinder at t=1.0 and 3.5. We can see that a symmetric vortex pair grows as the cylinder moves. Time 
histories of the drag coefficient of the impulsively started cylinder is plotted in Fig. 2 for four different computational time 
steps. For comparison, the result of Taira and Colonius [4] and the analytical solution [8] are also included. As seen in Fig. 
2, some differences exist among the results of the four time steps, especially at the beginning time (t < 0.5), while 
convergence of the results is observed as the time step decreases. The result of Δt=0.0005 agrees very well with that of 
Taira and Colonius [4] along the whole time and the analytical solution [8] at the very beginning stage, where it is valid. 

 
Fig. 1. Vorticity contours around an impulsively started circular cylinder at (a) t=1.0 and (b) t=3.5. 

 

Fig. 2. Time history of the drag coefficient of the impulsively started cylinder. 

 
CONCLUSIONS  

 
In the current study, we presented a revised IBP method with the primitive variables, by utilizing a two-step approximate 

factorization. Both the pressure and the momentum forcing are decoupled from the system and solved sequentially, while an 
equation for the momentum forcing is derived. As a result, the computational cost is significantly saved as compared with 
original IBP method. Two computation algorithms, together with three prediction schemes of the momentum forcing at the 
beginning of each time step, were proposed and compared. More numerical examples will be presented in the conference, 
including both 2D and 3D benchmark problems. Furthermore, application of the proposed method to the insect flight 
problem will also be reported. 
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Summary In the mechanistic modeling of slug flow, the Taylor bubble velocity has been determined to strongly affect the predictions
of liquid holdup (or void fraction) and pressure gradient. The objective of this work is to improve these predictions through a better
Taylor bubble velocity closure relation. Computational Fluid Dynamics (CFD) with Level-Set as the Interface Tracking Method (ITM) are
employed to generate a large numerical database of Taylor bubbles in stagnant, upward and downward flow for an ample range of fluid
properties and pipe geometries (Mo ∈ [1 ·10−6, 5 ·103], Eo ∈ [10, 700], θ ∈ [−90◦, 90◦], Re ∈ [0, 1000]). The new correlation, obtained
using this database, has been applied to those mechanistic models observing higher improvements as the inclination with respect to the
horizontal decreases.

INTRODUCTION

Two-phase slug flow occurs often in wells, riser pipes and pipelines of crude oil and natural gas systems. Current predictive
methods are based on the mechanistic models, which require the use of closure relations to complement the conservation
equations and predict integral flow parameters such as liquid holdup (or void fraction) and pressure gradient. These closure
relations carry the highest uncertainties in the model, since they are obtained empirically or through the use of overly simplified
assumptions. In particular, significant discrepancies have been found between experimental data and closure relations for the
Taylor bubble velocity in slug flow, which has been determined to strongly affect the liquid holdup and pressure gradient
calculations.

TAYLOR BUBBLE VELOCITY

Taylor bubble velocity, vTB , in two-phase flow is generally modeled based on the drift flux approach of [5],

vTB = C0 · vm + vd, (1)

where vd is the drift velocity of the bubble in stagnant liquid, and C0 · vm is the contribution of the mixture velocity, vm,
which is the sum of the liquid and gas superficial velocities, vm = vSL + vSg, respectively. The distribution parameter, C0,
is a dimensionless coefficient that depends on the velocity profile above the bubble, and is approximately the ratio of the
maximum to the mean velocity profile for vertical pipes.

Taylor bubble’s dynamics are influenced by the viscous, inertial, gravitational, and interfacial forces acting on it. Assuming
that the liquid transport properties are dominant (ρg/ρL � 1, µg/µL � 1, where the subscripts g and L indicate the gas and
liquid phases, respectively, ρ is density, and µ is the dynamics viscosity), dimensional analysis indicates the following five Π
dimensionless groups are sufficient to determine the bubble dynamics: the Froude number, Fr = v2TB/

√
gd, where g is the

gravitational acceleration and d is the pipe diameter; the Eötvös number, Eo = ρLgd
2/σ, where σ is the surface tension; the

Morton number, Mo = gµ4
L/(ρLσ

4); the liquid flow Reynolds number, Re = ρLvSLd/µL; and the inclination angle, θ.
Most multiphase models and correlations were developed based on and for low viscosity fluids. However, the oil and gas

industry is currently moving towards the production of heavier oils. High density and high viscosity oils currently constitute
nearly 70% of the available reserves in the world, increasing the need to gain and improve the knowledge of the flow behavior
of these fluids. Furthermore, the combine effect of θ and Eo on the distribution parameter, C0, needs further investigation.

The primary objective of this work is obtainFr as a function of the other dimensionless numbers, Fr = f(Eo,Mo,Re, θ),
for an ample range of fluid properties and pipe geometries.

CFD MATHEMATICAL MODEL

3-D CFD simulations have been performed with the CMFD code TransAT [6], a finite-volume software developed at
ASCOMP. The code uses structured meshes and MPI parallel-based algorithm to solve multi-fluid Navier-Stokes equations.
Computer resources for this work include the supercomputers of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory. The code has been validated with experiments and correlations [3] (see blue circle cases (◦) in
figure 1a). Simulations are initialized with the bubble in still water. Furthermore, for inclined pipes it is assumed that the thin
film formed between the bubble and the pipe in its upper part exists, based on our proposed breakup criterion (figure 1b, [4]).

∗Corresponding author. Email: jacopo@mit.edu
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Figure 1: (a) Database for Taylor bubbles in stagnant liquid (◦), database for upward and downward flow (�), and cases used
to validate the CFD code (◦), located in the map of [8]; (b) thin film drainage model and breakup criterion used in the inclined
pipe simulations [4] .

NUMERICAL DATABASE

Our correlation covers from low to high viscosity oils (Mo ∈ [1 · 10−6, 5 · 103]). Furthermore, Eo covers the whole range
under which Taylor bubbles exist: Eo ∈ [10, 700]. The database text matrix is shown in figure 1a. The cases for stagnant
liquid are depicted in red circle (◦), for which seven inclination angles (5◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) are simulated. The
cases for liquid flow are depicted in green square (�), for which six inclination angles (−90◦,−45◦,−5◦, 5◦, 45◦, 90◦) and
several liquid velocities (Re ∈ [0, 1000]) are simulated.

PROPOSED CORRELATION AND RESULTS

The proposed correlation for the terminal velocity in stagnant liquid, based on the procedure followed by [2], is

Fr/Frv = (1 + cos θ)
Eo0.019Mo0.0028

√
sin θ, (2)

where Fv is obtain with the model of [7]. Equation 2 improves the velocity prediction of current correlations, and widens
the dimensionless numbers range of applicability. Furthermore, it improves the prediction of the pressure drop by 2.1% for
θ = 90◦, 5.9% for θ = 60◦, 11.3% for θ = 30◦, and up to 23.5% for θ = 15◦, using the modified mechanistic model of [1].
The correlation for upward and downward liquid flow is still under development.

CONCLUSIONS

A new approach to improve the prediction of mechanistic models through the use of CFD has been taken. A wide database
of Taylor bubbles in round pipes has been generated, from which a unified correlation of their terminal velocity in stagnant
liquid is obtained. The correlation improves the pressure drop prediction greater with lower inclination angles.
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Summary The North Atlantic Treaty Organization (NATO) has been tasked with completing a “Multi-Disciplinary design and performance 
assessment of effective, agile NATO Air Vehicles” which has been denoted the AVT-251 task group [1]. One of the goals of this subgroup, 
denoted the “Aerodynamic Shaping group”, is to determine how the overall leading edge shape effects the aerodynamic characteristics. This 
paper presents an initial parametric study focused on mesh development. The tasks were: 1) validate the CFD predictions for the latest unmanned 
combat aerial vehicle (UCAV) shape against previous experimental results, and 2) design and test a meshing topology to be used for future 
parametric studies. Preliminary simulations were run at M=0.2 and 𝛼 = 100 and 140 . Both the lift and drag coefficients correlated very well 
with previous results and pressure coefficient values were almost identical. The initial success of the simulations allows for continued validation 
and development of the mesh topology.    
 

SIMULATION PARAMETERS 

 
Geometry 

 The geometry of the SACCON has a great effect on the mesh creation 
process. The initial SACCON geometry used for previous AVT task groups can 
be found in the top of Figure 1.Three different air foil shapes were used at various 
sections along the UCAV, having varying shapes and chord lengths. The 
planform is a 1/10 scale model of the full SACCON geometry. The bottom 
portion of Figure 1 is a representation of the new planform shape used for 
simulations in the AVT-251 task group. This geometry has a different trailing 
edge sweep, 300, where the original designed used a consistent 530 sweep around 
the entire aircraft. The new planform geometry is for the full scale UCAV [2].  
 A structured mesh was used on this UCAV geometry, as it would allow for 
more control around the aircraft body. Due to the drastic variations in leading 
edge shape, it was impossible to create a mesh with both good minimum included 
angle values and proper aspect ratios. A delicate balance was met, ensuring that 
both the aspect ratios and minimum included angles were acceptable, in order to 
properly run in EXN/Aero. This resulted in a mesh with approximately 24 million 
cells. An initial grid spacing of 8mm around the aircraft body was set in order to 
reduce the overall skewness. Very few previous studies of the SACCON 
geometry used a structured mesh, due to the shear complexity of the aircrafts 
geometry. In order to reduce overall simulation time it was deemed more 
advantageous to run the CFD tests on half the UCAV, with a symmetry plane set 
at the root chord.  
 
Flow Conditions and Simulation Parameters 

   Although it is anticipated that this UCAV will operate at both subsonic and 
supersonic speeds, this preliminary EXN/Aero test was subsonic flow at Ma=0.2. 
The focus is in the region where the pitching moment coefficient becomes 
inconsistent and sporadic (see Figure 4), occurring at an angle of incidence range 
of 100 to 200. The results shown are for α = 10º and 140. The simulations were 
run at sea level conditions with a given Re∞=50x106 and an air density of 1.225 
kg/m3. Further simulations will be completed from α = 12º-20º, in order to fully 
understand the flow physics of this new planform shape. 
 The time step was set to ∆t = 0.001sec with a total run time of 4.3 seconds 
for both simulations, using double precision blocks in the near field of the aircraft 
geometry, but single precision in the far-field, a capability found in EXN/Aero to 
optimize the use of GPU memory. Obtaining results employed the use of 6 CPUs 
and 4GPUs on a server system comprised of Intel Xeon E5-2600 processors and 
NVIDA Tesla K80 GPUs. EXN/Aero is a recently developed CFD solver 
designed specifically for use on many core hardware [3]. 
 

 

Figure 2- Y+ results around Surface 

 

Figure 1- Geometry Variation from Previous Task 

group (AVT-161) 
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SIMULATION RESULTS 

  

Mesh Quality 

 The y+ results around the surface of the UCAV body can be found in Figure 
2. As suspected the values are exceedingly high, ranging from 60 to an excess of 
2000 in some very limited regions. This is due to the fact the initial distribution 
height off the body was set to be roughly 7mm, when the boundary layer height 
estimate was determined to be δ = 0.0119mm, roughly 600 times smaller than 
the chosen value. Fortunately, this poor y+ estimate did not have a significant 
effect on the overall results, as the poor values were in such a localized region. 
Future work will require the proper y+ value of at most 1, for proper boundary 
layer resolution. Other important mesh quality parameters are: aspect ratio and 
skewness with the maximum values being 3665 and 0.84, respectively. 
 

Pressure Results and Comparison 

 Prediction and Validation of Aerodynamic Characteristics for a Generic 
UCAV Configuration with Trailing-Edge Flaps is a report completed by Young 
et al. [4] that simulated flow over a 530 trailing edge sweep UCAV for the NATO 
AVT-201 task group. These simulations were conducted at 50 m/s3. Simulations 
were run on a 1/10 scale model of the original UCAV planform shape shown in 
Figure 1. 
 Figure 3 compares the results obtained in the EXN/Aero simulations (A) 
against the results obtained by Young et al. at an angle of attack of 10º(B). The 
important flow features include: a low pressure region on the leading edge of the 
aircraft, and a high pressure region at the tip and tail region of the aircraft. 
 As can be seen in Figure 3, a coefficient of pressure of approximately 0.3 is 
obtained at the nose and tail, and approximately -2 along the leading edge. 
Overall, it can be seen that the resultant pressure distribution has a strong 
correlation with work done by Young et al. Furthermore, it should be noted that 
work done by Young et al. was conducted with a tailing edge sweep of 53˚, while 
the new results were conducted on a 30˚ trailing edge sweep UCAV geometry.  
 

Lift and Drag Results 

 The lift coefficient was found to be CL = 0.47 and the drag coefficient was 
found to be CD = 0.039 at α = 10˚ and at α = 14˚ CL = 0.56 and CD = 0.076. All 
the coefficients determined with EXN/Aero were integrated into a plot created 
by Loeser et al. (Figure 4). Loeser et al. conducted actual experiments on a model 
SACCON over a wide range of angles of attack with a Ma=0.15, close to the 
completed simulation values, making a qualitative comparison possible. As can 
be seen, the experimental data found by EXN/Aero shows a strong correlation 
with the data obtained by Young et al [4]. 
 

CONCLUSIONS 

 

 Based on the close correlation between both experimental and previous CFD results, it can be conclude that these initial 
simulations were successful. In the future further refinement will be made to the mesh in order to improve the y+ values. More 
simulations will be completed at higher angles of attack, a requirement in order to better understand the new UCAV baseline flow 
characteristics.  
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Figure 4- Lift and Drag Coefficients plotted 

against Experimental Results [1]. Red-Lift, Green-
Drag. 

 

 

Figure 3- Pressure Coefficients. A) Xn/Aero B) 
Previous AVT-201 Simulations (𝛼 =100)3 
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Summary In annular pressure seals used in turbomachinery, the leakage of working fluid is reduced by the acceleration-deceleration effect of 
the fluid through a convoluted path. In order to better understand the mechanism that governs the leakage rate, this study proposes the 
utilization of Reduced Order Model and snapshot techniques. The goal is to study the energy distribution of the flow field by replacing a huge 
number of governing PDEs with only a few ODEs, to describe a complex system. As the results indicate, the first few modes contain the 
majority of the energy, therefore only these first few modes are needed to recreate the flow field. It is shown that energy distribution is 
concentrated on the clearance region. Considering that seal design studied is not efficiently using the space inside the grooves, a potential 
improvement from the energy flow point of view can be carried out to increase seal performance. 
 

INTRODUCTION 

   Non-contact annular seals are widely used in turbomachinery to provide minimum leakage of the working fluid. A small 
clearance region exists between rotor and stator surfaces to avoid contact and keep the system stable, and thus a small 
amount of fluid leakage is inevitable. The leakage of working fluid is reduced through the acceleration and deceleration 
effect of the fluid through a convoluted path. For better performance of the non-contact annular seals, the study of the 
leakage path geometry is important since the leakage rate is significantly affected by the geometry.  
   Seal performance is typically calculated using bulk-flow method, CFD analysis, or a combination of the two [1]. The 
previous works on hole-pattern seals mostly connect the leakage rate and rotor dynamic coefficients to the geometry of the 
grooves directly. However the analysis of energy distribution can be used to improve the seal performance by providing 
insight into the underlying physical mechanisms. This paper focuses on the use of the method of Reduced Order Model 
(ROM) and snapshot techniques to understand the energy distribution of different elementary modes in control volume of 
working fluid of hole-pattern seals.  
 

METHODOLOGY 

   In fluid dynamics, Reduced Order Modelling (ROMs) techniques have been widely used to describe a complex system 
with a few ODEs instead of a huge number of governing PDEs [2]. For a scalar function u(x,ti), i=1,2,…M, the time-average 
of the sequence can be defined by summation of time-dependent orthogonal amplitude coefficients ak(t) multiplied with 
time-independent orthogonal basis functions ϕk(x), which is �̅�(𝒙) = ∑ 𝑎𝑘

𝑀
𝑖=1 (𝑡)𝜙𝑘(𝑥).  ϕk(x) and ak(t) are extracted using 

Proper Orthogonal Decomposition (POD) method to reconstruct the function. The optimum condition can be reduced to 
eigenvalue problem, and the snapshots method is used to find the eigenvector of ROM (ϕk), from which the eigenvectors 
can be written as a linear combination of the data vectors. Once the eigenvectors of matrix are calculated, the POD modes 
are derived, and the Galerkin procedure can be used to reduce a set of PDEs to a smaller set of ODEs. For flow field 
captured by POD of numerical simulation or experimental measurement, the relative energy of kth mode is defined by 𝐸𝑘 =
𝜆𝑘/𝐸 = ∑ 𝜆𝑘

𝑀
𝑗=1  , where E is the total energy. 

 

Computational Model  The hole-pattern seal in this study is selected from the literature [3,4]. As shown in Fig.1, the 
grooves on the stator are evenly distributed in axial and circumferential direction. The repeated pattern allows to model only 
a sector of the seal using cyclic periodic boundary condition to reduce simulation time. A CFD model consisting of approx. 
1 million grid elements is generated using ANSYS-Mesh (Fig. 2).  
 

 
Figure 1. Hole-Pattern Seal Model- Fluid 

Domain 

  
Figure 2. Computational Model Figure 3. Five Representative Axial 

Locations 
Numerical Modelling  A transient flow simulation is then performed in ANSYS-CFX to calculate the leakage rate and 
flow field velocity distribution. The rotational speed of the rotor is set to high angular velocity with perturbation of 1/400 of 
the velocity ( 20200 50.5 sin 2  rpmn ft  （ ） ). The perturbation frequency f is 60 Hz. In each cycle, 100 time steps are used 
for accurate POD snapshot. The sampling frequency is therefore 6000 Hz. The pressure at the inlet is set as 70 bar, and the 
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pressure ratio between outlet and inlet is 0.45. The isothermal heat transfer option and the k   turbulence model in 
conjunction with a scalable wall function are selected. The air inlet temperature is set to o17.4 C  as measured in the tests 
[3]. By using the ROM method described above, the flow field is deconstructed in elementary modes and their 
corresponding energy levels.To understand the flow pattern in the annular seal, five representative grooves (groove 1, 5, 10, 
15, 22, shown in Fig. 3, are analysed with individual POD basis functions of velocities and their combination. 
 

RESULTS 

   Velocity profile data is extracted for each of the 22 grooves along the axial direction of the seal in CFX-Post. These 
grooves are numbered by their distance from the inlet, from 1st to 22nd. The CFD results of velocity field are then used for 
the POD analysis. Fig. 4 shows the reconstructed flow pattern for section 1 using all modes Φ1~100 and only the first three 
Φ1~3, while Fig.5 shows the velocity vectors reconstructed at various axial locations along the seal. It can be seen that 
velocity magnitude and energy concentration are much higher in the jet flow region, which is the area near the rotor surface. 
The energy of all 100 modes are illustrated in Fig. 6. The first mode energy is much higher compared to other modes for 
both cases (groove and jet region together case and groove region only case). As the mode number increases, the energy of 
corresponding mode drops exponentially. As a result, only a few modes are required to reconstruct the entire flow pattern. 
Furthermore, if the same mode energy is compared for two different cases, it has been shown that the energy near the rotor 
surface is about one order of magnitude higher than the energy inside the groove. The results from the energy plots for all 
modes are consistent with the flow pattern reconstruction. 

 

  
Figure 4. Flow pattern-Reconstructed vs. 

CFD for section 1 
Figure. 5 Flow pattern-Reconstructed vs. 

CFD for section 15,10,15,22 
Figure. 6. Velocity magnitude (energy) plot for all 

modes a) groove and jet region, b) groove region only 
 

CONCLUSIONS  

   The flow field in hole-pattern seals can be precisely reconstructed from energy decomposition by POD snapshots technique. 
The details of the velocity profile inside the grooves are accurately reassembled from the relative energy of elementary modes. 
The first few modes contain the majority of the energy, so only these first few modes are needed to illustrate the flow field. The 
energy concentration is much higher in the clearance region, therefore the groove depth is not efficiently used. Considering that 
the current hole-pattern seal design is not efficiently using the space deep inside the cavities, a potential performance 
improvement from the energy flow point of view can be carried out. The geometry could be adjusted to let energy flow more 
easily into the inner space of grooves and this might be achieved by tilting the groove orientation away from the normal of rotor 
surface. 
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CIRCUMNAVIGATING THE CLOSURE PROBLEM OF TURBULENCE - A LIE

SYMMETRY APPROACH

Martin Oberlack ∗1 and Andreas Rosteck1

1Chair of Fluid Dynamics, Department of Mechanical Engineering, TU Darmstadt, Germany

Summary Present text-book knowledge proclaims that Lie symmetries such as the Galilean transformation group lie at the heart of fluid

dynamics. These important properties also carry over to the statistical description of turbulence, i.e. to the Reynolds stress transport equations

and its generalization, the multi-point correlation equations (MPCE). Interesting enough, the MPCE admit a much larger set of symmetries,

in fact, infinite dimensional, subsequently named statistical symmetries. The new statistical symmetries mirror key properties of turbulence

such as intermittency and non-gaussianity. They have important consequences for our understanding and construction of turbulent scaling

laws, as the symmetries form the essential foundation to derive exact solutions. Examples on classical and new shear flow scaling laws

including higher order moments are presented.

SYMMETRIES OF NAVIER-STOKES EQUATIONS

The concept of symmetries may most easily be introduced by considering the Navier-Stokes equation

∂Ui

∂t
+ Uk

∂Ui

∂xk

+
∂P

∂xi

− ν
∂2Ui

∂xk∂xk

= 0 , i = 1, 2, 3 ,
∂Uk

∂xk

= 0. (1)

A symmetry or symmetry group is called a transformation, x∗ = φ(x,y) and y∗ = ψ(x,y), where x and y are generic

independent and dependent variables, such that the form of the original differential equations is unchanged in the new variables

x∗ and y∗. For the Navier-Stokes equations (1) it is know that they admit a nine-parameter symmetry group, such as scaling,

rotation, translation, and the prominent Galilean symmetry group

TGal : t∗ = t, x∗ = x+ kt, U∗ = U + k, P ∗ = P, (2)

where k is the vector of group-parameters. In other words, inserting transformation (2) into equation (1) does not change the

equations’ shape, when written in terms of ∗-variables.

STATISTICAL SYMMETRIES OF THE CORRELATION EQUATIONS

From (1) we may define the correlation equation

∂Ri{n+1}

∂t
+

n
∑

l=0

[

Ūk(l)
(x(l))

∂Ri{n+1}

∂xk(l)

+Ri{n+1}[i(l) 7→k(l)]

∂Ūi(l)(x(l))

∂xk(l)

+
∂Pi{n}[l]

∂xi(l)

− ν
∂2Ri{n+1}

∂xk(l)
∂xk(l)

− Ri{n}[i(l) 7→∅]

∂ui(l)uk(l)
(x(l))

∂xk(l)

+
∂Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

]

= 0, for n = 1, . . . ,∞ , (3)

where the multi-point correlation is defined as

Ri{n+1}
= Ri(0)i(1)...i(n)

= ui(0)(x(0)) · . . . · ui(n)
(x(n)) . (4)

and the mean velocity is denoted by Ū and u is the fluctuation velocity. Quite obvious, (3) admits all classical symmetries

of (1) such as the Galilean group (2). Most important, however, the correlation equations (3) admit additional statistical

symmetries such as

T ∗′

1{1}
: t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗

i(0)
= Ūi(0) + Ci(0) ,

R∗

i(0)i(1)
= Ri(0)i(1) + Ūi(0) Ūi(1) −

(

Ūi(0) + Ci(0)

) (

Ūi(1) + Ci(1)

)

, · · · (5)

T ∗′

s : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗

i(0)
= eks Ūi(0) , R∗

i(0)i(1)
= eks

[

Ri(0)i(1) +
(

1− eks
)

Ūi(0) Ūi(1)

]

, · · · , (6)

see e.g. [1, 2]. It is to note that symmetries can be rigorously computed using the Lie algorithm from its underlying equations,

and this algorithm has been implemented into various computer algebra systems.

∗Corresponding author. Email: oberlack@fdy.tu-darmstadt.de
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SYMMETRY INVARIANT SOLUTIONS - TURBULENT SCALING LAWS

For the understanding of the following results it is to note that symmetries are the key foundation of essentially all analytic

solutions to ordinary and partial differential equations. For partial differential so-called symmetry invariant solutions may be

computed, which comprise classical solutions such as similarity solutions, wave-type solutions, etc. to name only a few.

Presently we will only exemplary show a few solutions to equation (3) for the mean velocity and the second moment for

plane shear flows. The condition for symmetry invariant solutions reads

dx2

kNSx2 + kG,2
=

dŪi

(−kNS + ks)Ūi + ktr,1 + kz1
=

dP̄

(−2kNS + ks)P̄ + kP̄
= ... (7)

where all kα are group parameter and are usually considered constants. The complex conditions for the higher moments have

been omitted. The first example is the well known case of the logarithmic law of the wall, which may easily obtained from

the first two terms employing kNS = ks. Less well known is that also the stresses may be computed. The final results read

Ū+
1 =

1

κ
ln(x+

2 ) +B ,

R̃+
ij =

CI,ij

x+
2

+ αij + β+
ijx2 for ij = 12, 22, 33 , R̃+

11 =
CI,11

x+
2

+ α11 + β11x
+
2 −

1

κ2
ln2(x+

2 )− γ ln(x+
2 ) (8)

while all constants in (8) are related to the group parameters in (7) by algebraic expressions and the constant CI,12 is also

conneted to von Kármán’s constant due to the relation CI,12 = 1
κ

. Comparison to data has been waived due to lack of space.

The second example is the deficit law in the center of a Poiseuille flow

Ūdef +
1 = U+

cl − Ū+
1

(x2

h

)

= −CI,1

∣

∣

∣

∣

x2

h

∣

∣

∣

∣

γ

+B , (9)

where U+
cl represents the normalized velocity of the centerline. The components of Reynolds stress tensor read

R̃+
ij = CI,ij

(x2

h

)γ−1

+ αij + βij

x2

h
, R̃+

11 = −C2
I,1

∣

∣

∣

∣

x2

h

∣

∣

∣

∣

2γ

+ CI,11

∣

∣

∣

∣

x2

h

∣

∣

∣

∣

γ−1

+ σ

∣

∣

∣

∣

x2

h

∣

∣

∣

∣

γ

+ α11 + β11
x2

h
. (10)

where ij = 12, 22, 33 and, further, there is a connection between coefficients according to CI,12 =
CI,1γ

Re
. A comparison of

the DNS data in [3] to the symmetry based scaling laws are presented in figure 1
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Figure 1: The mean velocity ♦ and the Reynolds stress components R̃+
11(�), R̃+

12(◦), R̃+
22(△) and R̃+

33(+) from the DNS data

in [3] are compared with symmetry based scaling law in (9) and (10) (solid lines).

CONCLUSION

Classical and new statistical symmetries allow to derive exact solutions to the MPCE for a very large number of canonical

shear flows (only two were shown here), which turn out to be turbulent scaling laws.
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Summary The one-point velocity distribution, the two-point velocity-sum distribution and the velocity-difference distributions of 
homogeneous isotropic turbulence are obtained exactly in the form of the normal velocity distributions. The consistency of this result with 
Kolmogorov’s local similarity is discussed, and the above result is finally justified. 
 
 
Closure problem of turbulence 

   One of the fundamental problems in statistical theory of turbulence lies in the ’unclosedness’ of its equations governing 
the mean products of the multi-point turbulent velocities, since its n-th order equation, n being a positive integer, always 
includes the (n+1)-th order terms. Then, in order to make the equations solvable, we have to introduce a certain ‘closure 
hypotheses’ due to some physical consideration. Although a large number of the ‘closure hypothesis’ have been proposed so 
far, including those by the present author, no decisive answer seems to have been obtained yet. 

An important progress in this problem has been made by Lundgren (1967) and Monin (1967) independently, using the 
statistical formulation in terms of the set of equations governing the joint-probability distributions of the turbulent 
velocities, instead of those for the mean velocity products.  
   This formalism had a definite merit in being indifferent from the above-mentioned statistical unclosedness, but it had its 
own unclosedness concerning the velocity distributions of different orders. This latter unclosedness is, however, much 
easier to deal with than the former, and actually the latter has been solved by the cross-independence closure proposed by 
Tatsumi (2011).  
   It has also been shown in this paper that the infinite set of the equations for the turbulent velocities can be minimized to 
the self-deterministic set of equations for the one-point velocity distribution f, the two-point velocity-sum distribution g+ , 
and the velocity-difference distribution g- , and the closed set of equations for these distributions has been given explicitly in 
Tatsumi (2011). 
 

Homogeneous isotropic turbulence 
In the present work, this approach is applied to homogeneous isotropic turbulence decaying in time, which has been first 

investigated by Taylor (1935, 1936) both experimentally and theoretically. In this turbulence, the decay-law of the kinetic 
energy per unit mass of fluid, K(t)= <u

2>/2, u being the magnitude of the one-point turbulent velocity u(x,t), is determined 
as K(t) = K0 (t/t0)-1, with K0 being an initial value of K(t). Then, the energy-dissipation rate, D(t) = -- d K(t)/dt, is expressed 
as D(t) = D0 (t/t0)-2 with an initial value D0 . 

Then, the velocity distributions f, g+, g- are expressed in the time-similar forms as 
f(v,t) = (t/t0)3/2 F(w) ,  w= v (t/t0)1/2

 ;  
g+(v+,r,t) = (t/t0)3/2 G+(w+,s),, g-(v-,r,t) = (t/t0)3/2 G-(w-, s ) ,   s = r (t/t0)-1/2 .  

The equations governing the distributions f, g+, g- for homogeneous isotropic turbulence are derived from the 
corresponding general equations given in Tatsumi (2011), and the equations for the distributions F, G+, G-- are obtained 
from these equations through the above time-similarity transformation. Then, the equations for the time-similar distributions 
F, G+, G-  are solved analytically, and the following normal solutions are obtained:  

One-point normal velocity distribution (N1): 

F(w) = F N (w) = (1/4(pi)A0 t0)3/2
 exp[- w2/4A0 t0], 

f(v,t) = f N (v,t) = (t /4(pi)A0 t0
2)3/2

 exp[- v2
t/ 4A0 t0 

2], 
where A(t) = D(t)/3 = A0(t/t0)-2

 .  
   Two-point normal velocity-sum distribution (N2) for the energy-containing range:  

        G+ (w+, s) = G+ N (w+, s) = (1/2(pi)A0 t0)3/2
 exp[- w+

2/2A0 t0], 
g+ (v+, t) = f N (v+ ,t) = (t /2(pi)A0 t0

2)3/2
 exp[- v+

2
t/ 2A0 t0 

2], 
  Two-point normal velocity-difference distribution (N2) for the energy-containing range: 

 G- (w+) = G+ N (w+) = (1/2(pi)A0 t0)3/2
 exp[- w+

2/2A0 t0], 
g- (v-,t) = f N (v- ,t) = (t /2(pi)A0 t0

2)3/2
 exp[- v-

2
t/ 2A0 t0 

2], 
It is to be noted that the above N2 is identical with the N1 except for that the parameter A0 in the former is replaced by A0//2. 
in the latter. 
Two-point normal velocity-sum distribution (N3) for the energy-dissipation range:  
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The velocity distributions in the energy-dissipation range are all normalized with respect to the Kolmogorov length and 
expressed in the local variables with *.  

G+*
 
(w+*, s*) = G+*

 
N (w+*, s*) = (1/4(pi) A+* (s*) t0*2) exp[- w*+

2/4 A+* (s*) t0*], 
g+*

 
(v+*, r*, t *) = f N (v+*, r*, t*) = (t */4(pi) A+*(s*)) exp[- v+

2
t/ 4 A+*(s*) t0 

2], 
Two-point normal velocity-difference distribution (N4) for the energy-dissipation range 

G-*(w-*, s*
 
) = G- *N (w-*, s*) = (1/4(pi) A-*(s*) t0*2) exp[- w-

2/4 A-*(s*) t0*], 
g- (v-*, r*, t* ) = f N (v*- r*,,t*) = (t */4(pi) A-*(s*)) exp[- v-

2
t/ 4 A-*(s*)], 

where A+*(s*) (= D+*(s*)) and A-*(s*) mean the local energy-dissipation rates related with the local velocity-sum u+
* and 

the velocity-difference u-* respectively.  
The local energy-dissipation rates A+*(s*) (= D+*(s*)/3) and A-*(s*) (= D-*(s*)/3) are expressed in terms of the error 

functions or the integral-normal forms. This result seems to be natural in view of the normality of the velocity distributions 
themselves. 
 
Normal character of homogeneous isotropic turbulence 

The overall normality of the statistics of homogeneous isotropic turbulence mentioned above is thought to be a natural 
consequence of the assumed independence of the velocity-sum and -difference assumed at small and large distances 
between the two points. This normality, however, seems to contradict with the notion of the local similarity due to 
Kolmogorov’s theory (1941) of local isotropic turbulence, which predicted much non-normal characters of this turbulence. 
At the moment the author attribute this discrepancy to the time-stationality of his turbulence, while in homogeneous 
isotropic turbulence even the smallest components of turbulence are supposed to decay in time. Concerning this issue, 
reference may be made to the discussion by George (2013).  
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A LAGRANGIAN CLOSURE APPROXIMATION FOR
HOMOGENEOUS ISOTROPIC TURBULENCE

Makoto OKAMURA∗1

1Research Institute for Applied Mechanics, Kyushu University, Kasuga, Japan

SummaryThe closureproblem of turbulence has been one of the most important subjects in fluid dynamics through many years. Now
a large number of closure models, ranging from empirical to theoretical, are available. In this paper, we are interested in closure models
which are compatible with Kolmogorov’s five-thirds law without any adjustable free parameter. From this point of view, there are few
closure models [1, 2], which are originated in the Lagrangian direct-interaction approximation (DIA) proposed by Kraichnan [3]. Their
closure equations yield the Kolmogorov constant,CK = 1.72. In this paper, a new closure approximation, which is completely different
from the DIA, is proposed for homogeneous isotropic stationary turbulence in the Lagrangian description. A two-closed-equation set is
derived without any adjustable free parameter. The Kolmogorov constantCK is evaluated to be 1.66. This value is close to 1.62, which is
the mean value of numerous experimental data collected by Sreenivasan [4].

GENERALIZED VELOCITY, LAGRANGIAN POSITION FUNCTION AND THEIR GOVERNING EQUATIONS

We introduce a generalized velocityui(t|x′, t′) = ui
(
y(t|x′, t′), t

)
defined by Kraichnan [3], wherey(t|x′, t′) is the

position at timet of a fluid element which is at the positionx′ at timet′, and the Lagrangian position functionψ(x, t|x′, t′) =
δ
(
x− y(t|x′, t′)

)
, whereψ(x, t|x′, t) = δ(x− x′). Here these relations hold for allt andt′. We now move from real space

to Fourier space. The Eulerian velocityui(k, t) and the Lagrangian velocityvi(k, t) are the special cases of the generalized
velocityui(t|k, t′) as follows:

ui(k, t) = ui(t|k, t) and vi(k, t) = ui(t|k, t0), (1)

wheret0 = ±∞. Because the Lagrangian velocity is most ‘distant’ from the Eulerian velocity regarding the labelling timet′,
the choice oft′ = t0 (= ±∞) is more reasonable than that oft′ = 0 for the Lagrangian velocity. The relation between the
generalized velocities is expressed by

ui(t|k′, t′) = (2π)3
∫
dk′′ui(t|k′′, t′′)ψ(−k′′, t′′|k′, t′), (2)

which shows thatψ(−k, t|k′, t′) is a time evolution operator ofui(t|k′, t′) with respect to the labelling timet′. Settingt′ = t
in (2), we obtain the Eulerian velocity expressed by the generalized velocity. The governing equation of the Lagrangian
position functionψ(k, t|k′, t′) and its initial condition are

∂

∂t
ψ(k, t|k′, t′) = −ikj

∫∫
dp dq δ(k − p− q)uj(p, t)ψ(q, t|k′, t′) (t ̸= t′), ψ(k, t′|k′, t′) =

1

(2π)3
δ(k + k′),

the formalsolution to which is expressed by

ψ(k, t|k′, t′) =
1

(2π)3
δ(k + k′)− ikj

∫ t

t′
dt′′
∫∫

dp dq δ(k − p− q)uj(p, t
′′)ψ(q, t′′|k′, t′). (3)

Under the isotropy, (3) yields
⟨
ψ(k, t|k′, t′)

⟩
= δ(k+k′)/(2π)3 exactly, which makes it easy to derive the closure equations

in the next section. The relations obtained from (3), such asuuuψ = uuu + uuuuψ andu = v + vvψ with a symbolic
representation, play an important role. Thus (3) is a key point in the present closure approximation.

We introduce the two-point, two-time velocity correlation function

Qij(k, t− t′) =

∫
dk′⟨vi(k, t)vj(k′, t′)

⟩
=

∫
dk′⟨ui(t|k, t′)uj(t′|k′, t1)

⟩
=

1

2
Dij(k)Q(k, t− t′) (4)

for homogeneous isotropic stationary turbulence in an incompressible fluid. HereDij(k) = δij − (kikj/k
2) andt1 is an

arbitrary constant. Settingt1 = t′ in (4) and using the symmetry of the second-order isotropic tensor, we find that the third
equation holds in spite ofkiui(t|k, t′) ̸= 0.

The governing equations of the Eulerian velocityui(k, t) and the generalized velocityui(t|k, t′) are

∂

∂t
ui(k, t) = −νk2ui(k, t) +Mijm(k)

∫∫
dp dq δ(k − p− q)uj(p, t)um(q, t) + fi(k, t) and (5)

∗Corresponding author. Email:okamura@riam.kyushu-u.ac.jp
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d

dt
ui(t|k, t′) = −(2π)3ν

∫
dp p2ui(p, t)ψ(−p, t|k, t′) + (2π)3

∫
dp fi(p, t)ψ(−p, t|k, t′)

+ (2π)3i

∫∫∫
dp dq dr δ(r − p− q)

rirjrm
r2

uj(p, t)um(q, t)ψ(−r, t|k, t′), (6)

whereMijm(k) = [kjDim(k)+kmDij(k)]/(2i), ν is the kinematic viscosity of the fluid andϵ is the mean energy dissipation
rate per unit mass. Here the external forcefi(k, t) is given to satisfy the condition∫

dk′⟨fi(k, t)uj(t′|k′, t1)⟩ =


1

2
ϵDij(k)δ(k)δ(k + k′) (t = t′),

0 (t ̸= t′).
(7)

CLOSURE APPROXIMATION

In order to obtain closure equations, we make the assumptions: (i) The Lagrangian position functionψ(k, t|k′, t′) is sta-
tistically independent of the Lagrangian velocityvi(k, t); (ii) The Lagrangian velocityvi(k, t) obeys a Gaussian distribution.

First, settingi = j in (4), differentiating with respect tot, and then substituting (6), we obtain

∂

∂t
Q(k, t− t′) =

∫
dk′

⟨
duj(t|k, t′)

dt
uj(t

′|k′, t1)

⟩
= −(2π)3ν

∫∫
dk′dp p2

⟨
uj(p, t)ψ(−p, t|k, t′)uj(t′|k′, t1)

⟩
+ (2π)3i

∫∫∫∫
dk′dp dq dr δ(r − p− q)

rjrlrm
r2

⟨
ul(p, t)um(q, t)ψ(−r, t|k, t′)uj(t′|k′, t1)

⟩
+ (2π)3

∫∫
dk′dp

⟨
fj(p, t)ψ(−p, t|k, t′)uj(t′|k′, t1)

⟩
. (8)

The force term becomes zero under (7) and assumption (i). Substituting (3) into (8) and using (1), (2) [to eliminateui(k, t)],
(4), assumptions (i), (ii), the incompressibility and the statistical steadiness, we obtain one of the two-closed-equation set[

∂

∂t
+ νk2

]
Q(k, t− t′) = −4

3
πk5 sgn(t− t′)Q(k, t− t′)

∫ ∞

0

dp p10/3J(p2/3)

∫ t

t′
dt′′Q(kp, t− t′′), (9)

which is the same as the former result [1, 2]. Heresgn(t) = t/|t|, andJ(p) is defined in [2]. We have addedsgn(t − t′) to
the right-hand side of (9) because (9) should be independent of the sign oft− t′ in stationary turbulence.

Second, settingi = j in (4) andt′ = t, and then differentiating with respect tot, we obtain

0 =

∫
dk′

⟨
∂uj(k, t)

∂t
uj(t|k′, t1)

⟩
+

∫
dk′
⟨
uj(k, t)

∂uj(t|k′, t1)

∂t

⟩
. (10)

Substituting(5) and (6) into (10) and using (1), (2) [to eliminateui(k, t)], (3), (4), assumptions (i), (ii), the incompressibility
and the statistical steadiness, we obtain another of the two-closed-equation set

0 = 2
[
− νk2Q(k, 0) + ϵδ(k)

]
+

1

12
sgn(t0)

∫ t0

t

dt′
∫∫

dp dq δ(k − p− q){
kp
[
y(x+ yz)Q(q, 0)Q(k, t− t′) + (z + xy)Q(k, 0)Q(q, t− t′)

]
− k2a1(k, p, q)Q(p, 0)Q(q, t− t′) + (p↔ q)

}
, (11)

which is different from the former result [1, 2]. Here the definitions ofx, y, z anda1(k, p, q) are given in [3]. We have added
sgn(t0) to the right-hand side of (11) because (11) should be independent of the sign oft0 in stationary turbulence. Note that
(11) is independent oft because oft0 = ±∞, which is reasonable in stationary turbulence.

Finally, we obtain a closed set of equations (9) and (11) using a new closure approximation. SubstitutingQ(k, t) =

(CK/2π)ϵ
2/3k−11/3G

(
C

1/2
K ϵ1/3k2/3t

)
andG(0) = 1 into (9) and (11), we evaluate the Kolmogorov constantCK to be1.66.

This values is close to 1.62, which is the mean value of numerous experimental and observational data [4]. We end this paper
by adding a comment about an advantage of the present closure model over the Lagrangian DIA [1, 2]; The derivation of
the closure equations in this model is much easier than that in the Lagrangian DIA because the former does not include the
response function and the decomposition of physical quantities such asui = u

(0)
i + u

(1)
i .
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HOT-WIRE SPATIAL RESOLUTION EFFECTS IN MEASUREMENTS OF THE
TURBULENT ROUND JET

Hamed Sadeghi1, Philippe Lavoie ∗2, and Andrew Pollard3

1,2Institute for Aerospace Studies, University of Toronto, Toronto, ON, Canada
1,3Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada

Summary The effect of hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent jet is investigated. To
quantify spatial resolution effects, measurements were taken using conventional hot-wires with different sensing lengths of l = 0.5 mm
and 1 mm and compared to results from a nano-scale thermal anemometry probe (NSTAP). Significant impact of spatial resolution on
the velocity fluctuations, 〈u2〉, and dissipation, 〈ε〉, is found along the jet centreline. Correction functions for the fluctuating velocity and
dissipation data acquired with the conventional hot-wires are proposed. Along the jet centreline, the corrections are functions of l/η, where
η is the Kolmogorov length scale defined as η ≡ ν3/4/〈ε〉1/4.

INTRODUCTION

A significant source of error in hot-wire measurements of turbulence is its finite spatial resolution relative to the smallest
(Kolmogorov) scale of the flow (i.e., the sensing length of the hot-wire probe is larger than the smallest turbulence length scale
and therefore, the probe is not able to resolve the full range of scales). In some experiments, hot-wire measurements have
been restricted to the jet far-field or low-Reynolds numbers, in which the Kolmogorov length-scale is typically large. In other
cases, researchers have used the spectral correction approach, based on the method of Wyngaard [1] to minimise errors due to
probe resolution. In a variety of other studies, however, it has been generally accepted that the magnitude of uncertainty due to
the probe resolution is unknown. Therefore, the significance of spatial resolution effects remains an open question in jet flows.
In this work, to quantify spatial resolution effects on the measurements of turbulence in jet flows, different hot-wire sensor
lengths are used. The results obtained from two conventional probes (with 0.5 mm and 1 mm sensing lengths) are compared
to those from a Nano-Scale Thermal Anemometry Probe (NSTAP) (see [2], [3]). The NSTAP is an order of magnitude smaller
than conventional hot-wire probes and it displays also a considerably higher frequency response. In the current experiments,
the NSTAP sensing length is smaller than the Kolmogorov scale for all test cases considered.

EXPERIMENTAL SET-UP

The experimental setup is the same as used in [4]. The experiments were carried out at Reynolds numbers of ReD =
30, 000 and 50,000, where ReD is calculated based on the jet exit mean velocity and the nozzle exit diameter. The measure-
ments were performed for 10 ≤ x/D ≤ 20, where x represents streamwise distance. All data were obtained using single
hot-wire anemometry probes. In this study, two types of thermal anemometry probes were employed: a new designed Nano-
Scale Thermal Anemometry Probe (NSTAP) and two conventional hot-wire probes. The NSTAP probe used in this study was
obtained from a series of standard semiconductor manufacturing techniques, as outlined in [3]. This probe had a 60-µm-long
sensing element, measuring 100 nm by 2 µm in cross section, with a frequency response that exceeds 150 kHz [3]. The use
of the NSTAP probe has previously been validated in pipe flows and grid turbulence in [2], [3] and [5]. The conventional
hot-wires were made of 2.5 and 5 µm diameter tungsten wires with 0.5 mm and 1 mm sensing lengths, respectively.

RESULTS AND DISCUSSION

To determine the magnitude of spatial filtering on the turbulence statistics in the jet, the fluctuating velocity and dissipation
measured by the conventional hot-wires along the jet centreline (〈u2〉M 〈ε〉M), are compared to their fully resolved values
obtained by the NSTAP (〈u2〉N and 〈ε〉N) in Figure 1. Figure 1a shows the ratio of 〈u2〉M/〈u2〉N, whereas Figure 1b provides
the ratio of 〈ε〉M/〈ε〉N. It can be observed that these ratios decrease with increasing l/η. This trend is more significant for the
dissipation. Over the present range of l/η, the data are found to exhibit monotonic changes with l/η and can be described by:

〈u2〉M/〈u2〉N = exp(−0.005l/η), (1)

and

〈ε〉M/〈ε〉N = exp(−0.035l/η). (2)

∗Corresponding author. Email: lavoie@utias.utoronto.ca
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Figure 1: (a) The ratio of turbulent velocity measured by conventional HWA and NSTAP. The dashed line represents Eq (1).
(b) The ratio of dissipation obtained by conventional HWA and NSTAP. The solid line represents Eq (2). The squares are the
experimental data reported in [5] for grid generated turbulence. The crosses are the ratio of the measured dissipation to those
corrected by spectral correction approach [1] .
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Figure 2: Measured streamwise wavenumber spectra normalized by the Kolmogorov scales in the pre-multiplied form at (a)
x/D = 10, (b) x/D = 15 and (c) x/D = 20 for ReD = 30, 000 and 50,000 along the jet centreline .

The ratio of the dissipation obtained by the conventional hot-wires measurements to the corrected dissipation obtained by the
spectral correction approach (SCA) [1], 〈ε〉C, is also included in Figure 1b. As can be observed, there is a significant deviation
between 〈ε〉C and 〈ε〉N, possibly because the SCA was developed for infinite Reynolds number. Also shown in Figure 1b is
the dissipation measured by the conventional probes, normalized by the NSTAP, in grid-generated turbulence obtained in [5].
These data are within 5% of the present jet results.

In order to study the effect of spatial filtering on the energy spectra, the pre-multiplied form of the spectra, k1ηE11(k1),
at three selected axial locations (x/D = 10, 15 and 20) for ReD = 30, 000 and 50,000 along the centreline are provided
in Figure 2. The reduced spectral response of the larger probes becomes more apparent when the spectra are viewed in the
pre-multiplied forms, especially at x/D = 10, at which the energy measured by the conventional probes is lower than the
NSTAP. It is noted that the conventional probes filter energy at wavelengths that are much larger than the wire length. This
can be attributed to the one-dimensional filtering of a three-dimensional input, as previously noted in [2] and [3]. When x/D
increases or Re decreases, η becomes larger and therefore the effect of spatial filtering on the spectra reduces.

CONCLUSIONS

In this work, spatial filtering effects on turbulence in a round turbulent jet were studied by conducting measurements with
a new nanoscale probe and two conventional hot-wire probes. The turbulence fluctuation, dissipation distributions and energy
spectra suggested that the conventional hot-wire results suffer from spatial filtering effects in the jet.
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ENERGY DISSIPATION SCALING IN UNIFORMLY SHEARED
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Summary First, we investigated the streamwise evolution of the dissipation parameter Cε in uniformly sheared flow (USF). We observed
three distinct regions in which Cε ∝ Reαλ , with respective values of the exponent α equal to−0.6, 0.5 and 0, the latter one termed as “fully
developed USF”, where Cε is constant. Second, we introduced a uniform grid within a developed USF and created a “multi–structure”
turbulent flow, which had a region with α = −1 and then eventually relaxed to fully developed USF again.

INTRODUCTION

Although dissipation of turbulent kinetic energy to heat is enacted by small–scale motions, the average rate of dissipation
ε is known to depend on the large, energy–containing motions. Dimensional analysis leads to a dimensionless dissipation pa-
rameter Cε = εL/(2k/3)3/2, where k is the turbulent kinetic energy and L is an integral length scale. Numerous experiments
have shown that Cε is approximately constant along the paths of canonical turbulent flows far downstream of their origin and
has an asymptotic value that depends upon the geometry of flow and its boundary and/or initial conditions. The assumption
of a constant Cε has been employed in a wide variety of contexts, sometimes implicitly and often for the sake of convenience
[1]. This assumption has been used in the derivation of far–field scalings laws for canonical turbulent flows, in the formulation
of turbulence models for the solution of the Reynolds–averaged Navier–Stokes (RANS) equations and large–eddy simula-
tions (LES), in the prediction of turbulent scalar dispersion and in the estimation of computer resources for direct numerical
simulations (DNS) [2, 3, 4]. Recently, however, a growing body of research has shown that decaying grid turbulence [3] and
turbulent axisymmetric wakes [4], both of which are canonical turbulent flows, contain a region in which Cε 6= const. In these
“non–equilibrium” regions, Cε could be fitted by a power law of turbulent Reynolds number Reλ = (2k/3)1/2λ/ν, where λ
is the Taylor microscale, related to the other parameters as λ =

√
10νk/ε. In both decaying grid turbulence and in turbulent

axisymmetric wakes, Cε ∝ Reαλ , where α = −1 [3, 4].
As described in the following, we investigated the energy dissipation scaling in a uniformly sheared turbulent flow (USF).

Most of the available literature on USF, which is also a canonical flow, has been concerned with its far–downstream, self–
similar region, in which the turbulent kinetic energy grows exponentially [5]. Apart from a compilation of data from previous
studies [6], there does not appear to be any clear analysis on the behaviour of Cε in USF. The available data indicate that Cε is
constant in fully developed USF, a postulate that seems to be of general acceptance in the literature. We shall therefore focus
our attention on the energy dissipation scaling in developing stages of USF, as it evolved towards its fully self–similar state.
Uniform mean shear was generated in a wind tunnel, as depicted in Fig. 1, with the use of a shear generator, followed by a
flow straightener, both of which had 12 channels with a spacing of M = 25.4 mm. Furthermore, we investigated the energy
dissipation scaling in multi–structure turbulence, namely a flow which was generated by the insertion of a planar turbulence
grid with a solidity of 0.25 and a mesh size Mg =18 mm across the USF. The streamwise and transverse velocity components
were measured simultaneously with a cross-wire probe powered by constant temperature anemometers.

h = 0.305 m

2.5h

16.6h

x
1

x
2

shear 

generator

flow

straightener

U
1

M

4.5h

turbulence

grid

Figure 1: Schematic diagram of the wind tunnel, showing the shear–generating apparatus, the co–ordinate system and the
location where the turbulence grid was inserted.
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Figure 2: a) Streamwise evolution of the normalised streamwise velocity variance. b) Fitted relationships between the dis-
sipation parameter Cε and the turbulent Reynolds number Reλ. In both plots, values are represented by diamonds for the
unobstructed USF and by filled stars for the multi–structure case.

RESULTS

In Fig. 2a, we show the streamwise evolution of the normalised streamwise velocity variance u2
1/U

2
c , whereUc = 10.8 m/s

was the centreline velocity. Near the shear generating apparatus, this property decayed with streamwise distance and reached
a minimum, beyond which it increased monotonically as a result of production by the mean shear. In the unobstructed
USF, u2

1/U
2
c eventually grew at an exponential rate, denoted as the solid line in Fig. 2a. To generate the multi–structure

flow, the turbulence grid was inserted at x1 = 4.5h, which was just before the start of exponential growth. A region of
decaying turbulence can be observed downstream of the grid, followed by a region of growth, which eventually reassumed an
exponential growth rate.

In Fig. 2b, we show the relationship between the dissipation parameter Cε and the turbulent Reynolds number Reλ for
the two cases. For regions with increasing turbulence (i.e. for 2.5h ≤ x1 in Fig. 2a) in the USF case, three distinct regions
can be identified. In the first region (3h ≤ x1 ≤ 4.5h in Fig. 2a), where the structure of device–generated turbulence gets
transformed towards the USF structure, we found that Cε ∝ Re−0.6

λ . This was followed by a second region (6h ≤ x1 ≤ 8h
in Fig. 2a), in which Cε ∝ Re0.5λ ; in this region, both k and ε were growing at their far–field, self–similar rates, however,
L was not. Finally, in the far–field, self–similarity was established for all parameters and Cε settled at a constant value. In
the multi–structure case, we observed that Cε ∝ Re−1

λ , which is the same scaling found in the “non–equilibrium” region of
decaying grid turbulence [3]. Fig. 2b also suggests that, towards the end of the domain, Cε began to increase again and one
may speculate that, if measurements were taken further downstream, there would be a region in which Cε would be constant.

CONCLUSIONS

We demonstrated that the studied USF had two distinct regions in which the dissipation parameterCε was not constant. The
scalings in these regions were found to be Cε ∝ Re−0.6

λ and Cε ∝ Re0.5λ , both of which differ from the scaling Cε ∝ Re−1
λ

found in “non–equilibrium” decaying grid turbulence. Towards the end of the measurement domain, Cε became constant.
For the multi–structure turbulence case, we again found that Cε was not constant but instead scaled as Cε ∝ Re−1

λ . These
findings demonstrate that the common assumption that Cε is a constant is not of universal applicability and that more work is
required to understand the reasons behind the scaling of dissipation, if we are to improve, amongst other things, RANS and
LES models.

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).
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ENERGY TRANSFER ACROSS SCALES AROUND ELLIPTIC BURGERS VORTICES

Hiromichi Kobayashi1a)

1Department of Physics, Hiyoshi Campus, Keio University, Yokohama, Kanagawa, Japan 

Summary In turbulence, vortices emerge and the energy transfer across scales mainly occurs around the vortices. It is known that 
the vortices are approximated as elliptic Burgers vortices. We analytically and numerically examined the energy transfer across
scales around the elliptic Burgers vortices. We found that the regions of the forward scatter (energy transfer from large-scale to 
small-scale) have a double-peak structure around the vortex and those appear in the direction of the minimum eigenvalue of the 
velocity strain tensor whereas the regions of the backward scatter (energy transfer from small-scale to large-scale) with a double-
peak structure emerge in the direction of the maximum eigenvalue. Those double-peak structures distribute as a quadrupole 
around the vortex. By integrating the energy transfer distribution around the vortex in the azimuthal direction, we revealed that 
the net energy transfer becomes the forward scatter and takes place at the centre of the vortex.

MOTIVATION 

   Vortex tubes, in other words, coherent eddies or energy containing eddies, emerge in turbulence. The coherent eddies in 
direct numerical simulation (DNS) are well approximated by the elliptic Burgers vortex [1-3]. In large eddy simulation 
(LES), the energy transfer between large-scale and small-scale is of great importance. The energy transfer from large-scale 
to small-scale, the so-called forward scatter, around the vortex occurs at the different location of the high energy dissipation
as shown in DNS [4]. The strong forward scatter region has also a double-peak structure around the vortex in the log layer 
of wall turbulence experiments whereas the strong backward scatter region where the energy transfers from small-scale to 
large-scale appears around the vortex with a double-peak structure [5]. In order to consider the energy transfer, using the 
DNS and experimental results is rigorous method. However, those results obtained from the DNS and experiment are 
complicated and are difficult to analyse. Thus, the analytical approach is useful to understand the feature of the energy 
transfer across the scales. In this study, the energy transfer around the elliptic Burgers vortex is analytically and 
numerically examined. 

ANALYTICAL METHOD 

   We use the asymptotic solution of the elliptic Burgers vortices [3]. The background strain flow given to the elliptic 
vortex with the rotation axis in z direction is defined below. 

.
The normalized steady vorticity equation is described as 

,
where the stream function expanded with Reynolds number defined by circulation and viscosity is 

, , , . 
We used a typical condition of Re = 200 and 0 = 9 where 0 is the total stretching parameter and the value of 9 is 

commonly seen in homogeneous isotropic turbulence, turbulent mixing layer and turbulent channel flows [1]. In the DNS, 
0 is computed using the velocity strain tensor at the centre of the vortex. However, the value consists in the background 

strain and the strain of the vortex. The stretching parameter  by the background strain flow is analytically solved as 3.63. 
Getting the velocity field of the elliptic Burgers vortex, we carried out the filtering operation using differential filter 

.
By using this filtering operation, we can calculate the energy transfer term that is expressed by the multiplication 
of the subgrid-scale (SGS) stress tensor and the filtered velocity strain tensor. The positive and 
negative energy transfer terms indicate the forward scatter and backward scatter, respectively. 

MAIN RESULTS 

   Figure 1 shows the distributions of vorticity and velocity vectors of the elliptic Burgers vortex at Re = 200 and 0 = 9. 
This is a typical vortex as seen in the turbulence [1]. By using the filtering operations, as shown in the left figure of Fig. 2,
we obtain the energy transfer distribution where red and blue colours show the regions of the forward scatter and backward 
scatter, respectively. The forward scatter and backward scatter appear around the vortex as a quadrupole and those are 
located in the x and y directions that corresponds to the directions of the minimum and maximum eigenvalues. This 
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distribution is analytically solved and decomposed with sine and cosine functions. By integrating that distribution in the 
azimuthal direction, we obtain the net energy transfer distribution as shown in the right figure of Fig. 2. We found that the 
net energy transfer occurs at the centre of the vortex. The amount of the net energy transfer is analytically derived as 
follows. 

.
We will elucidate the effects of the Reynolds number and the filter size on the energy transfer across scales in the 

presentation in detail. 

Figure 1  Distributions of vorticity (left) and velocity vectors (right). 

Figure 2  Distributions of energy transfer (left) and net energy transfer integrated in the azimuthal 
direction (right). 

CONCLUSIONS 

   The energy transfer across scales around the elliptic Burgers vortices is examined analytically and numerically. The forward
scatter with a double-peak structure appears in the direction of the minimum eigenvalue of the velocity strain tensor whereas the 
backward scatter with a double-peak structure emerges in the direction of the maximum eigenvalue. Although those double-peak 
structures distribute as a quadrupole around the vortex, the net energy transfer integrated in the azimuthal direction occurs at the 
centre of the vortex as the forward scatter. This analysis enable us to show the energy transfer decomposed into the Leonard, 
cross and Reynolds terms and to compare the energy transfer predicted through the Smagorinsky and Bardina models in LES. 
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CHARACTERIZING MULTI-SCALE INTERACTION IN TURBULENCE

Cristian C Lalescu ∗1 and Michael Wilczek1

1Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany

Summary In fully developed turbulence, interactions take place between structures spanning a broad range of length and time scales. In
this work, we aim to characterize these multi-scale interactions quantitatively. To this end, we identify the time scales relevant for structures
of a given size, both from an Eulerian and a Lagrangian perspective. By employing filtering techniques in space and time, we compare
turbulent velocity fields containing length scales above a given cutoff-scale with time-filtered fields. Varying the filter widths and times
yields a precise picture of the various interactions. In a second step, we generalize the analysis to the Lagrangian frame to study the impact
of large- and small-scale fluctuations on turbulent particle transport.

In fully developed three-dimensional turbulence, eddies of a wide range of sizes are dynamically active and energy is
transferred from large to small scales. With respect to time scales, a naive application of the 1941 Kolmogorov theory predicts
that eddies of scale `, in the inertial range, should have a characteristic time scale τ ∼ (`2/ε)1/3, where ε is the mean energy
dissipation rate. It is well known, however, that Eulerian statistical quantities are affected by random sweeping [1, 2], since
structures of some characteristic size in the inertial and dissipative ranges are advected by the more energetic larger scales
independently of any “scale-local dynamics” taking place at the same time. Random sweeping is known to have a significant
impact on the decorrelation of Eulerian quantities in time [3, 4]. By analyzing both Lagrangian and Eulerian statistics for
direct numerical simulations (DNS) of homogeneous isotropic turbulence, we aim to better distinguish between “scale-local
dynamics” and random sweeping effects. While kinematic considerations have already led to the conclusion that only eddies
of similar sizes interact effectively [5], here we progress towards quantifying how different time scales are associated to
different length scales.

As a first step, we filter the DNS over time and space. If eddies of size ` evolve roughly on time scales τ , the naive
expectation is that u` ≈ uτ , where u` contains only eddies of size at least ` and uτ contains only components of u that evolve
over time scales of at least τ . The removal of eddies smaller than ` is achieved by a spatial filtering, whereas fluctuating
components that are faster than some τ are removed by temporal filtering.

Figure 1: Snapshot of a turbulent velocity field. Velocity field containing all scales in space and time (left), result of spatial
filtering (center) and result of temporal filtering (right). While the space- and time-filtered field show a similar large-scale
structure comparable to the unfiltered field, small scales differ significantly. This points at the absence of a simple relationship
between time and length scales.

In Fig. 1 we show, for illustration, an unfiltered velocity field u and the corresponding filtered fields, to emphasize the
visually distinct details; differences are made more clear by the energy spectra shown in the left-hand plot of Fig. 2. It is
evident that temporal filtering decreases the amplitudes of small-scale fluctuations. However, small scales are still present
after temporal filtering, even though amplitudes are lowered progressively more for decreasing scales. This averaging effect,
of course, is induced by both the scale-local dynamics as well as the random sweeping.

To quantify the difference between time-filtered and space-filtered fields we introduce the normalized difference:

M(τ, `) =

〈‖u` − uτ‖2
‖u‖2

〉
(1)
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Figure 2: Spectra for original, spatially filtered and temporally filtered field (left) and difference between the two filtered
fields, for different filter sizes (right). The white star corresponds to the ` and τ used for Fig. 1 and the spectra.

where the L2 norms are taken over the spatial domain of the flow and the angular brackets denote ensemble averaging.
DNS data at Rλ ≈ 130 is shown in Fig. 2. We observe that the different isocontours ofM are not simply linear rescalings

of each other; there is a nontrivial transformation asM increases and τ and ` reach integral scale values. Additional DNS at
higher Rλ indicate that the normalized difference tends to scale with the large-eddy turn-over time and the integral length —
which, as expected, points at random sweeping as the dominant effect. The results will be further quantified using a simple
random sweeping model [6].

As a next step, complementary Lagrangian results will be presented. We will consider different “species” of Lagrangian
tracers that follow Eulerian velocity fields filtered at various length scales. By this the dynamical influence of a range of scales
is systematically eliminated. The elimination of small scales is expected to have only limited impact on single-particle statistics
such as the mean square displacement because of the dominant influence of large-scale sweeping. Two-particle dispersion,
on the other hand, largely eliminates sweeping effects and is expected to be more sensitive to smaller-scale fluctuations. This
analysis will draw a detailed picture of the influence of Eulerian scales on Lagrangian statistics, yielding new insights into
the problem of random sweeping by building on previous modeling attempts [7, 8, 6]. Besides characterizing fundamental
aspects of turbulence, the results will also shed light on Lagrangian transport in large eddy simulations of turbulence relevant
in many engineering applications, which has been a motivation for a number of recent studies [8, 9, 10].

References

[1] R. H. Kraichnan, “Relation between Lagrangian and Eulerian correlation times of a turbulent velocity field,” Phys. Fluids, vol. 7, p. 142, 1964.
[2] H. Tennekes, “Eulerian and lagrangian time microscales in isotropic turbulence,” J. Fluid Mech., vol. 67, pp. 561–567, 1975.
[3] S. Chen and R. H. Kraichnan, “Sweeping decorrelation in isotropic turbulence,” Phys. Fluids A, vol. 1, no. 12, pp. 2019–2024, 1989.
[4] M. Nelkin and M. Tabor, “Time correlations and random sweeping in isotropic turbulence,” Phys. Fluids A, vol. 2, p. 81, 1990.
[5] G. L. Eyink, “Locality of turbulent cascades,” Physica D, vol. 207, pp. 91–116, 2005.
[6] M. Wilczek and Y. Narita, “Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow,” Phys. Rev. E,

vol. 86, no. 6, 2012.
[7] G.-W. He and J.-B. Zhang, “Elliptic model for space-time correlations in turbulent shear flows,” Phys. Rev. E, vol. 73, p. 055303, 2006.
[8] G.-W. He, G. Jin, and X. Zhao, “Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence,” Phys. Rev. E,

vol. 80, p. 066313, 2009.
[9] J. Pozorski and S. V. Apte, “Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion,” Int. J. Multiphas.

Flow, vol. 35, pp. 118–128, 2009.
[10] I. M. Mazzitelli, F. Toschi, and A. S. Lanotte, “An accurate and efficient Lagrangian sub-grid model,” Phys. Fluids, vol. 26, p. 095101, 2014.

∗Corresponding author. Email: Cristian.Lalescu@ds.mpg.de

1406

Home
Text Box



 

 

a) Corresponding author. Email: heguosheng@buaa.edu.cn 

 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada  

MULTI-RESOLUTION ANALYSIS OF THE TURBULENT BOUNDARY LAYER WITH 

ORTHOGONAL WAVELET AND POD  

 
Guo-Sheng He

1a)
, Jin-Jun Wang

1
  

1
Ministry-of-Education key laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, 

Beijing, China 
 
Summary The flat plate turbulent boundary layer triggered by a tripwire is measured with two-dimensional particle image velocimetry (PIV) in 

the plane perpendicular to the plate. An orthogonal wavelet multi-resolution technique has been applied to decompose the flow into a number of 

wavelet components. The coherent structures in each wavelet component are examined by the proper orthogonal decomposition (POD) method. 

The POD modes of different wavelet components clearly reveal the cascade of scales in the turbulent boundary layer, while the POD modes of 

the measured data are only suitable to reveal the large coherent structures.  

 
INTRODUCTION  

 

   Flow structures in turbulence consist of a wide range of scales. Previous studies on turbulent structures mostly focused on 

large-scale organized motions (large coherent structures), and the attention paid to other scales has been relatively scarce. The 

wavelet technique proposed by Mallat 
[1]

 provides a hierarchical frame work to represent a signal, which allows a muti-resolution 

analysis of the signal. Since then a lot of efforts have been made on applying this technique to investigate various scales in 

turbulence (see Meneveau 
[2]

, Farge
[3]

 and Mouri
[4]

 for a few examples). However, most of the previous studies in the literature 

are based on measurements of a single hot-wire, which cannot directly reveal the structures.  

Recently, Rinoshika
[5]

 used the wavelet technique to analyse the velocity data obtained by two rakes of hot-wires in the 

turbulent near wake of a circular cylinder. Using Taylor's frozen hypothesis, they were able to construct the sectional streamlines 

for the measured velocities and also each wavelet component. These streamlines, as well as a two-point velocity correlation in 

their study, showed the correspondence between the central frequencies (wavelet level) and spatial scales of the wavelet 

components. 

In the present study, the wavelet technique is applied to velocity data of the turbulent boundary layer obtained by two-

dimensional PIV measurements. Therefore the spatial structure can be revealed without relying on the Taylor's hypothesis. 

Moreover, POD method is used to examine the most important coherent structures in each wavelet component. POD method is 

widely used in the analysis of complex flow, but usually only the first a few modes (the large structures) are examined. In the 

present paper, a combination of the wavelet technique and POD method is expected to yield more details of the turbulent 

boundary layer. 

 

EXPERIMENTAL SET-UP AND METHODOLOGY 

 

   The present experiment was conducted in a low-speed water tunnel. A flat plate with an elliptical leading edge was 

horizontally positioned at the center of the entire depth of the water tunnel. A rod with the diameter D=10mm placed on the flat 

plate, 300mm (15D) downstream of the leading edge, to trigger the boundary layer. The location of the rod on the flat plate is 

defined as the origin. x is in the streamwise direction and y is perpendicular to the flat plate. At x/D=100 (100D downstream of 

the rod, 115D from the leading edge), the boundary layer has become fully turbulent, which was verified by the mean 

streamwise velocity profile. The boundary layer thickness δ was about 76mm, corresponding to a friction Reynolds number Reτ= 

246 (Reτ=δ/y*, y*is the inner length scale). Two-dimensional time-resolved particle image velocimetry was used to measure 

the flow-field in the rectangular region of about 100<x/D<122 and 0<y/D<9. There were a total of 256×100 vectors in each 

instantaneous velocity field and the spacing between adjacent vectors was 0.87mm (0.087D) in both x and y direction. 

The velocity data obtained by the PIV technique was then decomposed by the one dimensional discrete orthogonal 

Daubechies wavelet basis with an order of 20 along the temporal direction (A detailed description of this kind of 

decomposition can be found in Mallat
[1]

 and Rinoshika
[5]

). The decomposition depth was 10 levels. The flow field was then 

reconstructed with wavelet coefficient at each level, yielding 10 wavelet components of the flow field. The higher the level, the 

lower the central frequency. Wavelet component at the nth wavelet level (WL) was denoted as WL-n. For example, the wavelet 

component at the 10th level, WL-10, had the lowest temporal frequency and therefore should contain structures with the largest 

spatial wavelength (as shown in Figure 1(a) below). 

The coherent structures in each wavelet component were then examined by the POD method. POD is a common tool in the 

analysis of fluid flow as it is very useful in extracting the dominant flow structures from the complex flow field. The theory and 

the application of POD method can be found in Berkooz
[6]

 . 

 

RESULTS AND DISCUSSIONS  
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   Representative POD modes of WL5-10 are shown in Figure 1. The left column shows the modes for streamwise velocity u 

and the right column for vertical velocity v. Only the first or second mode of each wavelet component is shown, except that 

Figure1 (f) and (m) are the 6th mode of WL-6 for u and v, respectively. The cascade of scales in the turbulent boundary layer are 

evident. In figure 1(a) the coherent structure is featured as a long strip along the wall that extends out of the field of view. This 

may correspond to the long streamwise streaky structures in the sub-layer of the turbulent boundary layer. In figure 1(b), the 

streamwise extent of the strip decreases. Note that the coherent structure in figure 1(b) extends much further away from the wall 

than that in figure 1(a), suggesting this structure may have a wall-normal scale comparable to the boundary layer thickness. In 

Figure 1(c), (d), (e) and (g), with the decrease of the wavelet level, the streamwise wavelength of the modes also decreases. 

Although it is too early to speculate the flow structures of various scales based on the current POD modes, the hierarchical 

paradigm proposed by Kim
[7]

, which is comprised of hairpin vortex, hairpin packet, large-scale-motions and very-large-scale-

motions, may be a good candidate. However, we will not elaborate it here.  

What we want to emphasize in the present paper is that the combination of wavelet technique and POD method yields more 

details about the turbulent boundary layer. If the POD is applied to the measured (undecomposed) data directly, only the modes 

in Figure 1 (a)-(d) (and (h)-(k)) can find their counterparts (not shown here due to length limitation). While for high wavenumber 

wavelet components (such as Figure 1 (g)), finding their counterparts may be very difficult or even impossible. This is because 

the POD modes are only orthogonal in space, so one mode may reflect contributions from high and low frequency components. 

As low frequency components are usually much more energetic, the POD modes for high frequency (wavenumber) components 

may easily be contaminated by the low frequency components. Therefore the present wavelet decomposition provides a good 

way to isolate the small scale structures from the influences of the large scale ones, and the POD method can then extract these 

small scale coherent structures.  

 
Figure 1 POD modes of the wavelet components. (a) and (h) WL-10, the first mode; (b) and (i) WL-9, the second mode; (c) and (j) WL-8, the first mode; 
(d) and (k) WL-7, the second mode; (e) and (l) WL-6, the first mode; (f) and (m) WL-6, the sixth mode; (g) and (n) WL-5, the first mode; Left column, the 

mode for streamwise velocity u; Right column, the mode for vertical velocity v.  
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Summary The interaction between concurrent large-scale velocity fluctuations and small-scale velocity and velocity-gradient fluctuations is
examined with both experimental and complementary DNS data. It is shown that both the sign and the magnitude of the large-scale velocity
fluctuation affect this scale interaction, as does the definition of the “modulating” large scales, with a distinct peak interaction length-scale
identified. The results are explained via a “convective” mechanism whereby high activity small-scale fluctuations are transported from the
centre-line of the shear flow by the large-scale velocity fluctuations.

INTRODUCTION

Whilst turbulence is known to be a multi-scale phenomenon it has long been assumed that the smallest scales of motion,
those responsible for the dissipation of turbulent kinetic energy to internal energy, possess a universal phenomenology. How-
ever, at practically realisable Reynolds numbers, there is a distinct interaction between the large and small scales. Recently
there has been significant interest in these scale interaction effects in wall-bounded flows in which the large, outer scales are
observed to leave a “footprint” on the inner small scales [e.g. 1]. However, little information is available concerning these
interactions in free shear flows. The first study to examine the interaction between the large and small scales in a variety of
shear flows (both wall bounded and free shear flows) was that of Bandyopadhyay and Hussain [2]. The authors examined the
time correlations between the low and high frequency content of hot-wire time series data and observed a coupling between
the large scales (low frequencies) and small scales (high frequencies) that was maximised when the two signals were concur-
rent. This manuscript combines the findings of Buxton and Ganapathisubramani [3] and Buxton [4], which examine these
concurrent scale interactions in the far field of a turbulent mixing layer, thereby offering an explanation for these interactions.

DATA AND SCALE SEPARATION
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Figure 1: (a) Dissipation spectrum along the centre-line of the mixing layer. (b) Joint PDF between the variance of the
small-scale velocity fluctuations and the concurrent large-scale velocity fluctuation.

The data consists of experimental [3] and DNS [4] data from the far field of a planar mixing layer in which the turbulence is
“fully developed”. In both cases the centre-line turbulent Reynolds number (based on the Taylor microscale, λ) isReλ ≈ 260.
The dissipation spectrum for this flow is presented in figure 1(a). The experimental data consists of four simultaneously
acquired particle image velocimetry (PIV) fields of view. Three of the fields of view are highly spatially resolved (1.2η, where
η is the Kolmogorov length scale) and are embedded within the fourth, more coarsely resolved (12η) field of view. The highly
resolved data, which comes from the high speed side of the mixing layer, is filtered to remove all length scales > λ, where λ
is the Taylor microscale, and contrastingly the coarsely resolved field of view is filtered to remove all length scales < λ. The
DNS data consists of the final 15% (in the streamwise direction) of the simulation domain of a planar mixing layer produced
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by inlet flows U1 and U2 in the ratio U1/U2 = 2 either side of a splitter plate. The data was subsequently filtered with a
sharp spectral filter at a variety of cutoff length scales marked on figure 1(a). Both the high wavenumber content and the
low wavenumber content from the low speed side of the mixing layer were retained. Throughout this abstract the suffix “S”
denotes the small-scale quantities (high wavenumbers) and “L” denotes the large-scale content.

DISCUSSION

Figure 1(b) shows a joint probability density function (PDF) between the variance of the small-scale velocity fluctuations
and the concurrent large-scale velocity fluctuation from the experimental data set. The contours of the joint PDF are clearly
sloped. This is illustrative of a scale interaction effect in which a concurrent low momentum large-scale fluctuation amplifies
the concurrent small-scale fluctuations, with both the sign and magnitude of the large-scale fluctuation being important.
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Figure 2: KLD between the PDFs of small-scale dissipation
conditioned on positive and negative large-scale velocity fluc-
tuations. The small-scale field consists of all length scales
Λ ≤ ΛS and the large-scale field consists of all length scales
Λ ≥ ΛL.

Figure 2 shows that this scale interaction effect not only
amplifies the energy content of the small-scale fluctuations
but also the small-scale velocity-gradients. The figure shows
the integrated difference between the PDF of the small-scale
dissipation conditioned on the concurrent large-scale fluc-
tuation being positive and the PDF of dissipation condi-
tioned on the concurrent large-scale fluctuation being neg-
ative. This is quantified by means of the Kullback-Leibler
divergence (KLD) [5], defined as

DKL(A‖B) =

∫ ∞
−∞

ln

[
a(X)

b(X)

]
a(X)dX

in which a(X) and b(X) are PDFs of fluctuating variableX .
This is computed for various thresholds, {ΛS ,ΛL}, defining
the large and small scales. There is a peak in this interaction
at ΛL ≈ 2.5λ, regardless of the definition of the small scales.
This value of 2.5λ roughly corresponds to L/4, where L is
the integral length scale, which is associated with the large,
streamwise roller structures in a mixing layer.

The experimental data (figure 1(b)) is from the high
speed side of the mixing layer whereas the DNS data (figure
2) is from the low speed side. The opposite scale interac-
tion effect is observed in the low speed side to figure 1(b), in

which the small-scale activity is amplified by a concurrent positive large-scale velocity fluctuation.
Neglecting smaller constituent term we may write the turbulent kinetic energy production term P ≈ −uLvL∂U/∂y,

which is positive. For a mixing layer the mean velocity gradient remains positive, hence for P > 0 we require uL and vL to
be inversely correlated. In the far field of a mixing layer the peak Reynolds stresses are located at the centre-line. Briefly, we
may consider the proposed convective mechanism to work as follows: a positive vL fluctuation in the high speed side of the
mixing layer will originate from a region of higher turbulence intensity (Reynolds stresses). This is correlated to a negative uL
fluctuation, explaining the findings of figure 1(b). The opposite effect will of course be observed in the low speed side of the
mixing layer, explaining the findings from the DNS data. The final manuscript will expand upon this proposed mechanism and
will provide a fuller account of the scale interactions in a free shear flow, both of small-scale velocity fluctuations/Reynolds
stresses and velocity-gradient phenomena, such as dissipation and enstrophy amplification via vortex stretching.
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TIME INTERVAL BETWEEN MEAN-FLOW REVERSALS IN A TWO-DIMENSIONAL
RANDOMLY FORCED FLOW IN A SQUARE DOMAIN

Takeshi Matsumoto ∗1
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Summary We study time interval between random mean-flow reversals of a two-dimensional forced Navier-Stokes turbulence in a square
domain. Via a heuristic modeling, we show that the interval scale is determined by the viscosity and the length scale given by the energy
and the enstrophy.

INTRODUCTION

When a turbulent flow is somehow maintained inside a closed container, it is known that a large-scale mean flow can
appear. More interestingly, it is also known that in certain cases the direction of the mean flow changes rather abruptly. A
famous example is the high-Rayleigh number thermal convection, see, e.g., [1, 2]. How an organized mean flow of a confined
turbulent flow suddenly switches its direction — mechanism of the reversal — is an important but unresolved question.

Another, perhaps simpler, example of such reversal is a two-dimensional (barotropic) forced flow in a square domain,
which was first experimentally found by Sommeria [3] and was later modeled and numerically studied by Molenaar et al. [4]
(see also [5]). According to Molenaar et al.’s numerical study [4], the reversal occurs irregularly but there is a typical time
scale of the interval between reversals, which is order of 100 × (large-scale characteristic time). The large-scale characteristic
time is here defined as the side length divided by the typical velocity given by the kinetic energy.

In the present study, we study the reversal in this two-dimensional flow formulated in [4]. In particular we consider
determinant of the typical time interval via a heuristic, stochastic modeling of the integral quantities of the flow such as the
energy, the enstrophy and the angular momentum.

NUMERICAL RESULTS AND MODELING

First, we numerically solve the two-dimensional randomly forced Navier-Stokes equation in the square domain as in [4].
The boundary condition is no-slip and the Reynolds number is about 3000. However, we use a slightly different Chebyshev
tau method which is the streamfunction-vorticity formulation developed in [6] (the velocity-vorticity formulation was used
in [4]). We reproduce the mean-flow reversals as obtained in [4]. The resultant normalized angular momentum of the flow,
L′(t), shown in Fig.1 indicates that the typical interval between reversals is indeed O(100). The instantaneous kinetic energy,
E(t), the enstrophy,Q(t), the angular momentum, L(t), and the normalized angular momentum, L′(t), of the flow are defined
respectively as

E(t) =
1

2

∫
D
|u(x, t)|2d2x, Q(t) =

1

2

∫
D
ω(x, t)2d2x, L(t) = −1

2

∫
D
|x|2ω(x, t)d2x, L′(t) =

√
3L(t)

D2
√
E(t)

. (1)

Here u and ω are the velocity and the vorticity; D denotes the square domain; D is the side length of the square.
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Figure 1: Left: time variation of the normalized angular momentum, L′(t), obtained from one realization of the random
forcing. Middle: typical velocity field of L′(t) < 0 state. Right: typical velocity field of L′(t) > 0 state.
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Figure 2: Time variation of the scaled energy, the enstrophy and the scaled angular momentum.

As already noticed in [4], E(t), Q(t) and |L(t)| are almost perfectly correlated, which is shown in Fig.2. This implies that
the integrals are characterized with a single length scale λ and a velocity scale U [4].

Now we start to model the time variation of the integrals with the two scales. First, we assume for simplicity that λ
is a constant and only U depends on time. Second, by dimensional analysis, we assume that the integrals are expressed
as E(t) ∼ D2U(t)2, Q(t) ∼ (U(t)/λ)2D2 and L(t) ∼ λU(t)D2 (hence L′(t) ∼ λ × sign(U(t))). Third, we consider
the energy budget, which can be modeled roughly as dE/dt = −νQ(t) + ξ(t). Here ν is the kinematic viscosity and ξ(t)
represents the energy input from the random forcing. This modeled budget is a stochastic process. On dimensional grounds,
the random input term in the budget is ξ(t) ∼ U(t)η(t)D2, where η(t) represents the random forcing added to the Navier-
Stokes equation. Putting the scales λ and U into the modeled budget, we obtain

dU(t)

dt
= − ν

2λ2
U(t) +

1

2
η(t). (2)

Lastly, we assume that η(t) is a Brownian noise. Then Eq.(2) becomes an Ornstein-Uhlenbeck process. The correlation time
of the random velocity scale, U(t), is hence Tc = 2λ2/ν.

Does this time scale Tc agree with the interval time scale (∼ 100) of the mean flow reversal? For the length scale λ, we
take the time average of

√
E(t)/Q(t), which is 0.19. The kinematic viscosity of our simulation is ν = 5.0×10−4. This gives

Tc = 144, which is in agreement with the interval time scale (here we cheat a bit: the factor 2 in Tc is crucial for getting the
correct order). We speculate that the length scale 0.19 corresponds to the radius of the corner vortex such as the one seen in
the top-right corner of the right panel of Fig.1.

SUMMARY AND DISCUSSION

It is known that the interval between the random mean-flow reversal of the two-dimensional randomly forced Navier-
Stokes equation in the square domain is typically order of 100 [4], which is longer than the standard norm of the large scales
of the flow. We inferred that the interval time is determined by the kinematic viscosity and the length scale defined by the
energy and the enstrophy,

√
E/Q by combining the scale representation of the integral quantities and the heuristic stochastic

modeling of the energy budget.
However the model (2) has a drawback. If the model is correct, the resultant probability density function (PDF) of U(t)

or L(t) ∼ λU(t)D2 is Gaussian. However, the PDF of L(t) obtained in the direct numerical simulation differs qualitatively
from Gaussian distribution: it has two peaks. A possible way to model the double peaks will be discussed in the conference.
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Turbulence on a fractally decimated Fourier set
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Summary One of the most distinct features of the physics of fluid dynamics turbulence is the intermittency of the flux of energy. Here
we present a recently proposed approach (Lanotte et al., Phys. Rev. Lett. 115 2015) to investigate the nature of the energy transfer in
incompressible, homogenous and isotropic turbulence. The Navier-Stokes equations are projected on a fractally decimated skeleton in
Fourier space. The robustness of the energy transfer and of the vortex stretching are tested by changing the fractal dimension D in Fourier
space, from D = 3 to D = 2.5 (where about 3% of the modes are retained). This approach allows to study the statistical properties of
the energy cascade preserving the symmetries of the Navier-Stokes equations. We find that a direct energy flux is maintained while clear
deviations from the Kolmogorov scaling are observed in the energy spectra. A simple phenomenological model to rationalize to explain our
findings is suggested.

INTRODUCTION

Understanding the nature of the energy transfer in fluid dynamics turbulence is a fascinating outstanding open problem of
classical physics. Furthermore, being able to understand the statistics and to control the energy flux in turbulence would have
an impact on a broad number of fields and applications, from astrophysics [2], atmospheric/ocean sciences [3], to mathematics
and engineering [4]. One of the main difficulties hampering theoretical advancement is the presence of intermittency, i.e.
strongly non Gaussian fluctuations over a broad range of scales. The energy flux in turbulence, transporting energy from the
large to the small scales, is chaotic, intermittent, non-linear and it is influenced by the vortex stretching mechanism acting at the
smaller scales (the amplification of vorticity in thin long filaments). The role of small-scale vorticity has been at the center of
long debates, questioning whether or not the presence of such coherent structures correlates with the non-Gaussian intermittent
statistics observed at the small scales. In our recent work [1] we employ a novel approach based on the modification of the
Navier-Stokes equations by means of a fractally decimated mode reduction in Fourier space. An appropriate decimation
operator (projector), PD, acts on the velocity field as proposed in [6]. By introducing the following notation for the real-
space, v(x, t), and Fourier-space, u(k, t), representations of the velocity field in in D = 3 the decimated field, denoted as
v

D(x, t), can be in the following way:

v

D(x, t) = PD
v(x, t) =

X

k2Z3

eik·x �
k

u(k, t) . (1)

In this expression the random numbers �
k

, that do not vary with time, express the projection operator and are defined to
be: �

k

= 1 with probability hk and 0 with probability 1 � hk where k ⌘ |k. Choosing the probability hk / (k/k0)D�3

(where 0 < D  3) ensures that the dynamics is isotropically decimated on a D-dimensional Fourier-set. The factors hk are
independent for each k but are choosen such to respect Hermitian symmetry, i.e. �k = ��k, so that PD is self-adjoint. The
modified Navier-Stokes equations in the decimated Fourier space are:

@tv
D = PDN(vD,vD) + ⌫r2

v

D + f

D . (2)

It is important to underline that the non linear term, N(v,v) = �v ·rv+rp, is projected at each time-step on the quenched
fractal set. This in order to constrain the dynamics to evolve only on the decimated Fourier skeleton. It worths underlying that
since PD

v

D = v

D, both energy and helicity are conserved quantities in the inviscid and unforced limit, thus retaining the
same invariants of the original Navier-Stokes equations.
The eqs. (2) are numerically integrated by means of a simple modification of a standard pseudo-spectral solver with fully
dealiasing with the 2/3-rule, time stepping was performed by means of a second-order Adams-Bashforth scheme. The nu-
merical integration provides a stationary flow that is statistically isotropic and homogeneous. A large-scale forcing [7] was
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employed to keep the total kinetic energy constant in the range of shells 0.7  |k| < 1.7. With this setting we performed
several numerical simulations with different fractal dimension in the interval 2.5  D  3, different space resolution and
different realizations of the fractal mask for the projector operator.

To start disentangling the relation between large and small scales one can study the shell-to-shell energy transfer in Fourier
space. Following the notation adopted in Ref. [5], we write the energy spectrum for a generic flow in dimension D as:

ED(k) =

Z

|k1|=k
d3k1�k1

Z
d3k2�k2hu(k1)u(k2)i , (3)

and the energy flux across a Fourier mode k, ⇧D(k) =
R
|k1|<k d

3k1@tE(k1):

⇧D(k) =

Z

|k1|<k
d3k1�k1

Z
d3k2d

3k3�k2�k3S(k1|k2,k3), (4)

where [8] S(k1|k2,k3) = �Im[h(k1 · u(k3))(u(k1) · u(k2))i+ h(k1 · u(k2))(u(k1) · u(k3))i].

CONCLUSIONS

Our first finding is that the energy flux is relatively robust under mode reduction meaning that an inertial range of scales
with a constant-flux is observed even when D decreased from 3 and few modes survive. This finding can be explained by
the fact that the Fourier Galerkin truncations that we apply do not alter the inviscid conservation of quadratic quantities.
The energy spectrum in Fourier space gets a power law correction that we were able to predicted by means of dimensional
arguments. Our second finding is that small-scale intermittency is quickly reduced for D < 3 and it almost vanishes already at
D ⇠ 2.98. The Fourier decimation procedure here discussed could be seen as a possible way to introduce a control parameter
in the original Navier-Stokes turbulence problem capable of modifying the scaling properties of the system and possibly
making it amenable of semi-analytic or perturbative approach.
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SCALE BY SCALE ENERGY BUDGET IN THE NEAR WAKE OF A SQUARE CYLINDER
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Summary We study the energy cascade downstream of, but close to, a square cylinder Re = 3900 using two-point statistics, by means
of DNS. Shortly after the mean recirculation region the turbulent energy spectrum exhibits a near −5/3 slope in the frequency domain.
Our DNS analysis of the general Kármán-Howarth-Monin equation show that the production, transport, advection and fluctuating pressure
terms cannot be neglected as they are in the Richardson-Kolmogorov equilibrium theory. Even so, the term which is interpreted as an
interscale energy flux divergence in the case of homogeneous turbulence is close to −ε over a significant range of small scales, where ε is
the turbulence dissipation rate.

INTRODUCTION

In Kolmogorov’s seminal work [1], the assumptions of equilibrium and local homogeneity lead to the well known −5/3
law (1a) for the turbulent energy spectrum E(k) or equivalently the 2/3 law (1b) for the second order structure function
〈δq2〉 = 〈δuiδui〉.

E(k) ∝ k− 5
3 , 〈δq2〉 ∝ r 2

3 (1a,1b)
We use our DNS to study all the terms in the most general equation governing the evolution of 〈δq2〉, i.e. the gener-

alised Kármán-Howarth-Monin equation (2) derived directly from the Navier-Stokes equations without assumptions [2] and
is therefore valid in any turbulent flow with any inhomogeneity and anisotropy structure.

At︷ ︸︸ ︷
∂〈δq2〉
∂t

+

A︷ ︸︸ ︷
∂
U+
i +U−

i

2 〈δq2〉
∂xi

+

Π︷ ︸︸ ︷
∂〈δuiδq2〉

∂ri
+

ΠU︷ ︸︸ ︷
∂δUi〈δq2〉

∂ri
=

P︷ ︸︸ ︷
−2〈δuiδuj〉

∂δUj
∂ri

− 〈
(
u+
i + u−i

)
δuj〉

∂δUj
∂xi

−
∂〈u

+
i +u−

i

2 δq2〉
∂xi︸ ︷︷ ︸
Tu

−2
∂〈δujδp〉
∂xj︸ ︷︷ ︸
Tp

+ ν
1

2

∂

∂xi

∂

∂xi
〈δq2〉︸ ︷︷ ︸

Dx

+ 2ν
∂

∂ri

∂

∂ri
〈δq2〉︸ ︷︷ ︸

Dr

− 2ν

(
〈∂δuj
∂x+

i

∂δuj

∂x+
i

〉+ 〈∂δuj
∂x−i

∂δuj

∂x−i
〉
)

︸ ︷︷ ︸
ε

(2)

Eq. (2) was used to investigate experimentally the flow immediately downstream of a fractal grid by [3] but they were
not able to access all the terms of this equation. None of the terms of (2) which they were able to access was negligible but
they nevertheless found that Π remains fairly constant at increasing separations r = ||ri|| while all other terms increase (in
absolute value) with r. They also observed a −5/3 in the turbulent energy frequency spectrum even though the flow does not
comply with the assumptions of [1].

RESULTS AND DISCUSSION

We used an in-house finite volume code with second order central discretisation in space and second order semi-implicit
discretisation in time while the PISO algorithm is used for the pressure-velocity coupling. The spatial resolution in the wake
was at worse about 4 times the Kolmogorov length scale and the statistics were collected over 30 shedding cycles and averaged
along the span-wise direction.

Similarly to the observations of [3], our results show that at all positions where a near −5/3 is observed (Fig. 1) many of
the terms of eq. (2) which are neglected in [1] actually play a role in that equation. This can be seen in Fig. 2, where the ratio
−Π
ε is shown for x/d = 3 on the centreline (d is the square cylinder width). In the framework of the Richardson-Kolmogorov

cascade this ratio should be 1 over a range of scales. Instead, a ratio different from 1 is observed which equals the sum of the
other terms in eq. (2) (normalised by ε). The individual contributions of each term are shown at two locations in Figs. 3 and
4 for stream-wise separations and Figs. 5 and 6 for separations averaged over all orientations.

The process of averaging extends the constant plateau in −Π
ε to larger r (Figs. 5 and 6). The non-linear interscale

interactions represented by Π appear to act as a source in eq. (2) at separations normal to the mean flow direction (not shown
for brevity) compensating their action as a sink at separations aligned with the mean flow. When averaged, the combined result
is then a rate of transfer close to −ε, similar to Kolmogorov’s prediction of −Π

ε = 1 but without satisfying the assumptions of
equilibrium (A = 0), local homogeneity and local isotropy.
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Figure 1: Eu(f) at various stream-wise locations
on the centreline. Figure 2: Kolmogorov’s balance −Π

ε in scale
space ri (r3 = 0), at x/d = 3.

λ/d

Figure 3: Terms in (2) at x/d = 3 along stream-
wise separations r1. λ is the Taylor micro-scale.

λ/d

Figure 4: Terms in (2) at x/d = 6 along stream-
wise separations r1. λ is the Taylor micro-scale.

λ/d

Figure 5: Terms in (2) at x/d = 3 averaged over
the orientations ri. λ is the Taylor micro-scale.

λ/d

Figure 6: Terms in (2) at x/d = 6 averaged over
the orientations ri. λ is the Taylor micro-scale.

CONCLUSIONS

In the near-field of the planar turbulent wake the generalised Kármán-Howarth-Monin equation (2) does not only involve
the non-linear transfer term Π and turbulent dissipation. The production, turbulent and mean flow transport and the pressure
term are non-negligible. However we observe a clear −5/3 slope in the frequency energy spectrum at locations close to the
cylinder. We find that Π is comparable (but not equal) to ε over a range of scales; this is particularly noticeable for larger
separations r when averaged over the orientation, as the value of Π is smaller than ε for separations aligned with the centreline,
but larger than ε at separations normal to the centreline.
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Martin Scheeler1, Dustin Kleckner1, Hridesh Kedia1, Stephane Perrard1, and William T.M. Irvine ∗1

1James Franck Institute and Department of Physics University of Chicago

Summary The helicity of a fluid is a conserved quantity in idealized fluids, such as Euler fluids and thus offers the potential for fundamental
insights into fluid flow. In real fluids, progress has been hindered by lack of accessible experimental and model systems. I will describe how
to make vortex knots and links in water (in experiment), in the wave function of a superfluid (on a computer) and what happens thereafter.
In particular, I will talk about how in helicity conservation, linking, coiling and twisting interplay across scales. Finally, I will describe
experimental and numerical progress towards exploring the effects of helicity on turbulent flows.

HYDRODYNAMIC HELICITY

In addition to energy, momentum, and angular momentum, idealized (Euler) fluids have an additional conserved quantity,
the hydrodynamic helicityH:

H =

∫
u · ω dV (1)

where u and ω are respectively the velocity and vorticity of the flow. A natural interpretation of the hydrodynamic helicity is
as a measure of the the linking and knotting of the vortex lines composing a flow:

H =
∑

i,j

ΓiΓjLij (2)

Where Lij is the Gauss linking number between infinitesimal vortex tubes i and j having circulation Γi and Γj and the sum
extends over all pairs of vortex tubes in a space-filling flow. For an Euler fluid, the conservation of helicity follows from
the Helmholtz laws of vortex motion, which forbid vortex lines from crossing and preserve the flux of vorticity, making it
impossible for linked or knotted vortices to untie.

Conservation laws are of fundamental importance in understanding flows so the question of whether this topological
conservation law extends to real, dissipative systems is of clear and considerable interest. In particular determining whether
and how helicity is conserved in the presence of dissipation could provide fundamental insights into the dynamics of complex
and turbulent flows. Furthermore, since the dynamics of helicity are intrinsically geometric and topological in nature, lessons
learned in fluids may well extend to the physics of tangling in other types of flow (e.g. plasmas) as well as other physical
systems such as liquid crystals.

The robustness of helicity conservation in real fluids is unclear because dissipation allows the topology of field lines to
change. For example, in viscous flows, vorticity will diffuse, allowing nearby vortex tubes to “reconnect”, apparently creating
or destroying the topological linking of vortices. This behavior is not unique to classical fluids: analogous reconnection events
have also been experimentally observed in superfluids and coronal loops of plasma on the surface of the sun. In general,
these observed reconnection events exhibit divergent, nonlinear dynamics that makes it difficult to resolve helicity dynamics
theoretically. On the other hand, experimental tests of helicity conservation have been hindered by the lack of techniques to
create vortices with topological structure.

GENERATION OF VORTEX KNOTS

Thanks to a recent advance in experimental vortex production [1] it is now possible to generate vortices with controlled
shape and topology, such as the one shown in Figure 1 (Left). The technique is based on the acceleration of 3D printed
hydrofoils in an otherwise stationary fluid. Upon acceleration, a “starting vortex” whose shape traces the trailing edge of the
hydrofoil is shed and subsequently evolves under its own influence. In our experiments, we use this technique to produce
vortex knots and links in water having a total length of approximately 1m, a typical width of 150 mm and circulation Γ =
20, 000mm2/s; the Reynolds number is of order Re ∼ 2× 104.

By adding sparse micro-bubbles to the flow, we can clearly see the location of the vortex cores (see Figure 1 Left). Using
a laser-sheet scanning apparatus, we can then reconstruct the three-dimensional shape of the vortices and track their evolution
in time. This enables us to measure the evolution of helicity in a viscous fluid and probe how well it is conserved as well as
what mechanisms exist for its conservation, for example through reconnections.

∗Corresponding author. Email: wtmirvine@uchicago.edu
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Figure 1: (Left: A vortex knot in water. Middle: The evolution of link and writhe in a reconnecting vortex trefoil knot. Right:
a vortex knot in the Gross Pitaevskii model of a superfluid.

EVOLUTION OF HELICITY

We find that in both cases, the vortices distort towards a series of localized reconnections that appear to change their coarse
topology. To quantitatively measure the evolution of the helicity we consider the three geometrically distinct contributions
to helicity for thin vortex tubes: Linking, coiling and twist. These three geometrically distinct but topologically equivalent
contributions arise in the case of finite thickness vortex tubes, by subdividing the tube into N infinitesimal filaments each with
strength Γ = Γ0/N , and computing their linking in the limit N →∞:

H =
∑

i6=j

ΓiΓj Lij +
∑

i

Γ2
i (Wri + Twi) , (3)

where Lij is the linking number between tubes i and j, Wri is the writhe of the tube center-line, and Twi is the total twist of
each tube. Note that Lij and Wri can be inferred from the shape of the tube centerline alone.

Remarkably, we find that immediately following the reconnections, the loss of linking between vortex tubes is completely
balanced by the presence of writhe in the reconnected tube centerlines (Figure 1, center). This occurs through a geometric
mechanism that converts link to writhe. By further decomposing the writhe on different scales using a ‘helistogram’ we track
the flow of helicity across scales [2].

The mechanism we find for helicity conservation through reconnections is entirely geometric, suggesting it may be present
in other fluid-like systems as well. To test this possibility, we simulate the evolution of vortex knots in a superfluid with the
Gross-Pitaevskii equation (GPE). Although superfluids are inviscid, they are not ideal Euler fluids: vortex reconnections are
possible and vortex cores do not have unconstrained structure. By simulating vortices with hundreds of distinct topologies we
find that both aspect of topological vortex evolution outlined so far are general: all vortex knots untie efficiently and as they
reconnect conserve the helicity of their centerline [3].

Measuring the total helicity however, requires additional information about how the vortex lines are locally twisted inside
the vortex core. To bridge this gap, we have developed a novel technique for experimentally measuring twist helicity. Using
this method, we are able to measure the production and eventual decay of twist for a variety of vortex evolutions. Remarkably,
we observe twist dynamics capable of conserving total helicity even in the presence of rapidly changing writhe.

Injecting helicity in a turbulent flow (in experiment) enables us to explore the role helicity has to play in complex flows.
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EFFECTS OF HELICITY ON THE ENERGY TRANSFER IN THREE-DIMENSIONAL
TURBULENCE
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Summary We investigated the effects of the helicity in the dynamics of the energy transfer in turbulent flows using a modified version of
the Navier-Stokes equations with explicit breaking of the mirror symmetry. With an external parameter that controls the imbalance between
the number of positive and negative helical Fourier modes we aim to disentangle the role of helicity in the direction of the turbulent energy
transfer. In an earlier study with helical projection, an inverse cascade of energy was observed in the three-dimensional Navier-Stokes
equations when helicity was maintained sign-definite [1, 2]. In this study we measure the degree to which the parity symmetry controls the
direction of the cascade. We introduce a mechanism in which the parity is broken stochastically but in a time frozen manner with helical
constraints. We keep triadic interactions in Fourier space involving modes with definite sign of helicity and decimate the triads of other
modes with opposite sign of helicity with a fixed probability. We observed a singular behaviour of the direction of the energy cascade
measuring a positive forward flux as soon as only a few modes with different helical polarities take part in the dynamics.

INTRODUCTION

Direct numerical simulations of three-dimensional Navier-Stokes equations for incompressible flows and experiments in
the three-dimensional homogeneous and isotropic turbulence show cascade of energy from the forced scales to the dissipative
scales. The direction of the energy transfer is however believed to be determined by the invariants of the system. In two-
dimensions the two positive-definite invariants, energy and enstrophy, effect in transfer of energy to the large scales. For
the three-dimensional Navier-Stokes equations two inviscid invariants are the energy E =

∫
d3r ~u · ~u and the helicity H =∫

d3r ~u · ~ω, where ~u is the velocity and ~ω = ∇ × ~u is the vorticity. The energy is positive and definite whereas the helicity
could be either positive or negative. Helicity is known to play a key role in hydrodynamical and magnetohydrodynamical
systems [3, 4]. In hydrodynamics both energy and helicity cascade forward from large scales to small scales [5]. However,
There are evidences of inverse energy transfer to the large scales under special conditions. A turbulent flow confined in thick
fluid layers due to formation of large scale vortex suppresses vertical motions and supports large scale energy transfer [6]. In
a rotational turbulent flow with helical force a direct cascade of helicity and direct and inverse cascade of energy is observed
[7]. Dynamics of the inverse energy transfer is studied in a subset of all interactions in the Navier-Stokes equations as in
Ref. [1, 8]. Positive definiteness of helicity leads to inverse energy transfer. In this work we show that when relative weight
between the positive and negative helical modes present in the system is changed a critical behaviour of the energy transfer is
observed [9]. We, using a method to separate positive and negative helical modes to understand the dynamics of the energy
cascade, show a transition of forward to inverse energy transfer.

NUMERICAL METHOD

Each Fourier mode of velocity u(k, t) has two degrees of freedom as it satisfies the incompressibility condition, i.e.,
k ·u(k, t) = 0. If we chose these degrees of freedom to be the projections on orthonormal helical waves with definite sign of
helicity [10] we could write

u(k, t) = u+(k, t) + u−(k, t).

Using the complex eigenvectors of the curl operator ik × h±(k) = ±kh±(k) we could define a projection operator

P±(k) ≡ h±(k)⊗ h±(k)∗

h±(k)∗ · h±(k)

such that u±(k, t) = P±(k)u(k, t). The Navier-Stokes equations could be then independently written for each modes as

∂tu
±(k, t) = P±(k)Nu±(k, t) + νk2u±(k, t) + f±(k, t) (1)

where ν is the kinematic viscosity and f is the external forcing and the nonlinear term containing all triadic interactions is

Nu±(k, t) = FT (u± ·∇u± −∇p).
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Figure 1: (a) All possible triadic interactions in Navier-Stokes equations based on the helicity content of the involv-
ing Fourier modes. The triads with only u+ (Class-I) lead to reversal of energy cascade (left). (b) Energy spectra
E(k) =

∑
k3|k|=k |u(k)|2 in the inverse cascade regime shows k−5/3 slope [1, 2] (right).

DISCUSSION AND RESULTS

There are four classes of nonlinear triadic interactions with definite helicity signs under helical decomposition of Navier-
Stokes equations shown in Fig.1a. Energy and helicity are conserved for each triads. Restricting dynamics to subsets of these
triads affects the direction of the energy transfer [10, 11]. Full decimation of triads involving either u+ or u− shows inverse
cascade of energy [1, 2] as shown in Fig.1b. To understand the transition of the forward energy transfer to the inverse energy
transfer we decimated a fraction α of modes with helicity of one sign instead of all of them. We numerically found a critical
value of α at which forward cascade of energy stops when force is applied at the large scales and alternatively, inverse cascade
of energy stops if forced at small scales. We define the projection operator using the parameter α,

P+
α (k)u(k, t) = u+(k, t) + θα(k)u

−(k, t) (2)

where θα(k) is 0 or 1 with probability α and 1 − α, respectively. When α = 0 we obtain the results for standard Navier-
Stokes equations and when α = 1 we recover results for fully helical-decimated Navier-Stokes equations. We performed
direct numerical simulations of Eq.(1) using a pseudo-spectral method on a periodic cubic domain of size L = 2π with
resolutions up to 10243 collocation points.

We observe that as we increase α, the contribution of triads leading to inverse energy cascade grows. Only when α is very
close to 1 inverse energy cascade takes over the forward cascade; critical value of α is found to be ' 1 our simulations. We
also measure the relative changes in the intermittency in the forward cascade regime at changing α.
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Summary In the context of the recently discovered non-equilibrium high Reynolds number scalings in the wake of axisymmetric plates,
we propose an application to the study of the interaction of two axisymmetric turbulent wakes generated by two bluff bodies. Our results
show that non-equilibrium scalings properly describe the interaction of the turbulent wakes of the two bluff bodies, predicting both at which
distance the wakes meet on average and the velocity fluctuation intensity at that point. Moreover, the streamwise evolution of the turbulence
dissipation rate, estimated between both plates seems to follow the non-equilibrium law.

Recently, flow regions with non-equilibrium high Reynolds number turbulence at odds with usual Richardson-Kolmogorov
phenomenology have been discovered in a number of turbulent flows [8], in particular axisymmetric and self-preserving
turbulent wakes of plates with and without irregular edges. These regions are characterised by streamwise evolutions of
the mean flow profiles which have only recently been documented and partially understood for the first time ever [5, 6].
Furthermore, these regions can extend as far as about 100 plate characteristic lengths (defined as

√
A, with A the frontal

area of the plate) in the streamwise direction. A further study [1], critically revised the classical theory of high Reynolds
axisymmetric turbulent wakes [7, 2] to encompass these new scalings. Both direct numerical simulations and experiments
were found to agree with the theory. A key point of this theory is an assumption of constant anisotropy which concerns the
behaviour of the fluctuating velocity components at the edges of the wake.

In this work we focus on the interaction of turbulent axisymmetric wakes generated by two bluff bodies. This is an
important configuration, present for instance in arrays of wind or marine tidal turbines, and the interaction of the two wakes
can be expected to involve non-equilibrium turbulence. We present experimental evidence that the non-equilibrium theory
in [1] properly models the interaction of these two wakes, for plates with both regular and irregular edges. We show that,
by having knowledge of the values of δ and the centreline velocity deficit u0 for a single wake, it is possible to predict the
wake interaction length x12 which quantifies the position where the wakes meet. Furthermore, it is also possible to predict the
intensity of the fluctuations at that particular point.

For this purpose, we propose an experimental set-up where streamwise profiles of streamwise fluctuating velocities are
acquired via hot-wire anemometry (HWA) in a wind tunnel (figure 1a). We have studied two different sets of plates, one
with square regular and another with irregular edges, the latter shown in figure 1b. All plates have a characteristic length√
A = 64 mm, and the freestream velocity U∞ was kept constant at 10 m/s. Ten different plate separations S were tested:

240, 250, 260, 270, 280, 285, 290, 295, 300 and 305 mm. By acquiring streamwise profiles of the streamwise fluctuating
velocity r.m.s u′ for different plate separations and identifying the streamwise distance x where the wakes meet for each
separation it is possible to estimate the streamwise evolution of the single wake width δ. From the HWA measurements it is
also possible to deduce the turbulence dissipation scalings.

(a) (b)

Figure 1: (a) Sketch of the experimental wind tunnel set-up; (b) Irregular plates used herein. They are the second iteration of
a fractal plate with dimension Df = 1.5 and a square initial pattern, as described in [4].

As explained above, the interaction of the wakes can be characterized by the wake interaction length x12. This parameter,
previously proposed for planar wakes in fractal grids (see for instance [3]), can be easily generalized to include axisymmetric
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wakes, as it will depend linearly with the streamwise scaling of δ. Furthermore, the streamwise variation of this parameter
will be different if the turbulence follows Richardson-Kolmogorov (where δ(x) ∼ x1/3 and therefore x12 ∼ x1/3 as well) or
non-equilibrium (where δ(x) and x12 vary according to x1/2) phenomenology.

To scale the magnitude of velocity fluctuations, we use the assumption of constant anisotropy by Dairay et al.[1]. It
implies that the turbulent kinetic energy is proportional to the Reynolds shear stress on the properly defined edges of the wake.
This assumption also implies that the streamwise and radial velocity fluctuations are proportional at the edges of the wake.
Therefore, an expression can be deduced for u′: u′ ∼

√
2/3U∞u0(d/dx δ(x)) at r = nδ(x), with n a constant (for this

particular experiment n ≈ 2.2). Scaling u′ with this expression and its streamwise development with the present interaction
length scale x12(S) gives a very good collapse of the profiles of u′(x) for almost all distances and both sets of plates (figure
2a). It is also important to note that the streamwise evolutions of the skewness and the flatness of the streamwise fluctuating
velocities can also be collapsed with x12.

(a) (b)

Figure 2: (a) Streamwise evolution of velocity fluctuations for all distances and both sets of plates, collapsed horizontally with
the values of x12 and vertically with u′ ∼

√
2/3U∞u0(d/dx δ(x)). The values of S = 240 and 250 mm for the square plates

are not represented as the collapse is less good. (b) Values of Rel/ReGCNE
ε for different plates separations S for plates with

regular and irregular edges.

Finally, to unequivocally demonstrate de presence of non-equilibrum scalings on the flow, we study the dissipation coeffi-
cient Cε. It is well known that in the Richardson-Kolmogorov phenomenology, Cε ∼ εδ/u′3 with Cε a constant independent
of Reynolds number. On the other hand, at high Reynolds numbers, the non-equilibrium dissipation coefficient is not constant,
and obeys CNE

ε ∼ ReG/Rel, where Rel = Kδ/ν is a local Reynolds number and ReG = U∞
√
A/ν is a Reynolds number

based on global (inlet) properties. K and ν are the turbulent kinetic energy and the kinematic viscosity of the flow, respec-
tively. Figure 2b shows the value of (Rel/ReG)CNE

ε at x12 for different values of S and both sets of plates. For both sets
of plates, Rel at x = x12(S) varies significantly with S. It can be seen that, as expected in the presence of non-equilibrium
turbulence, (Rel/ReG)CNE

ε remains relatively constant.
In conclusion, this work shows that non-equilibrium turbulence properly models the interaction between two turbulent

wakes. Furthermore, it adds to recent reported measurements suggesting that this non-equilibrium behaviour has some uni-
versality and is not limited to very specific turbulent flows.
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[5] J. Nedić, J.C. Vassilicos, and B. Ganapathisubramani. Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Physical review
letters, 111(14):144503, 2013.

[6] M Obligado, T Dairay, and JC Vassilicos. Non-equilibrium scalings of turbulent wakes. Submitted to PRL, 2016.
[7] A.A. Townsend. The structure of turbulent shear flow. Cambridge university press, 1976.
[8] J.C. Vassilicos. Dissipation in turbulent flows. Ann. Rev. Fluid Mech., 47(1), 2015.

1422



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

EXTREME EVENTS AND ACCELERATION STATISTICS AT HIGH REYNOLDS NUMBER

P.K. Yeung∗1

1Schools of Aerospace Engineering and Mechanical Engineering, Georgia Institute of Technology, Atlanta,
Georgia, USA

Summary Statistics of dissipation, enstrophy and acceleration from a well-resolved high Reynolds number simulation of forced isotropic
turbulence are reported. Observations of extreme events at intensity levels much higher than commonly reported and of a topologically
distinct nature are related to conditional statistics that are useful for future efforts in improving stochastic modeling of turbulent dispersion,
through incorporating the effects of fine-scale intermittency on the fluid particle acceleration.

BACKGROUND AND TECHNICAL APPROACH

Turbulent flows consist of disorderly fluctuations in time and space over a wide range of scales. At the small scales there is
particular interest in the fluctuations of the dissipation rate (ε = 2νsijsij , where sij is the strain-rate tensor) and the enstrophy
(Ω = ωiωi, where ωi is the vorticity). As the Reynolds number increases, the range of scales becomes wider, and intense
fluctuations of ε and Ω localized in both time and space become more intense. Recent work [1] based on direct numerical
simulations of forced isotropic turbulence at Taylor-scale Reynolds number (Rλ) about 1300 on an 81923 grid has shown that
instantaneous values of both ε and Ω can take on extreme values that are as large as O(104) or even O(105) of their mean
values, or higher. These “extreme events” are also observed to possess a spatial structure that is characteristically different
from the classical notion of vortex filaments surrounded or wrapped around by sheets of high dissipation rate. Numerical tests
indicate that actual occurrence or observation of events of these magnitudes is dependent on high Reynolds number as well as
resolution of the small scales (which together require tremendous computing power to achieve).

In this short paper we first provide a basic description of extreme events in dissipation and enstrophy, and then focus on
their connection to the acceleration experienced by a infinitesimal material fluid element in the flow. Both strong local straining
and strong local rotation are expected to cause a fluid element to undergo rapid changes in the magnitude and orientation of
its velocity, i.e. a large acceleration. A detailed understanding of the acceleration is, in turn, a key requirement [2] in
long-standing efforts to improve the modeling of fluid particle dispersion and turbulent transport processes in a Lagrangian
reference frame. However, in this paper it is convenient to compute the acceleration as the material derivative of the velocity,
according to the Navier-Stokes equations, through a post-processing code that analyzes instantaneous velocity fields saved in
the simulations. Both the simulation and post-processing are performed using massively parallel pseudo-spectral codes scaled
up to 262,144 cores to date.

EXTREME EVENTS IN DISSIPATION, ENSTROPHY AND ACCELERATION

Figure 1 below shows visualizations of several representative snapshots of dissipation and enstrophy in regions closest to
peak intensity in the simulations. Only the last image, at a lower Reynolds number, is dominated by structures resembling
the conventional notion of worm-like vortex filaments surrounded by sheets of high dissipation. All others, from our 81923

DNS, show wider and less elongated structures with dissipation and enstrophy almost coincident at the highest magnitudes,
although some vortex filaments at moderately high intensity are also visible. Our interest here is to investigate how this
qualitative change in behavior at high Reynolds number affects other turbulence statistics of importance for various reasons.

(a) (b) (c) (d)

Figure 1: 3D contour surfaces for high ε (red) and high Ω (cyan) from DNS at Rλ 1000 (a-c) and 390 (d).
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PROBABILITY DISTRIBUTION AND CONDITIONAL STATISTICS OF THE ACCELERATION

In both simulations and experiments [3] acceleration in high Reynolds number turbulence is well known to be extremely
intermittent. One consequence of this intermittency is that the acceleration variance does not follow classical Kolmogrov
universality. In Eulerian terms, the acceleration may be computed as (neglecting any forcing at the large scales)

a = ∂u/∂t+ (u · ∇)u ; or a = −∇(p/ρ) + ν∇2u . (1)

where unsteady and convective contributions are in strong mutual cancellation, and the pressure gradient dominates over the
viscous term. The pressure fluctuation itself is governed by the Poisson ∇2(p/ρ) = 1

2 (Ω − ε/ν). In addition, a complete
quadratic measure of the velocity gradients, including contributions from both straining and rotation, is given by the pseudo-
dissipation ϕ = ν(∂ui/∂xj)2, which is useful for purposes of stochastic modeling.

PDF
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Figure 2: (a) PDF of normalized acceleration (red) and vorticity (blue) components; (b) acceleration variance conditioned
upon ε/〈ε〉 (red), Ω/〈Ω〉 (green), ϕ/〈ϕ〉 (blue); and (c) conditional flatness factors.

In Fig. 2(a) the probability density function (PDF) of the acceleration (normalized by its standard deviation) is seen to
possess very wide tails, indicative of the systematic occurrence of extreme events at 300 standard deviations and beyond
(which correspond to the square of the acceleration exceeding 105 of its mean value). The tails are in fact wider than that
found in the PDF of the vorticity components that constitute the enstrophy. To relate, or partially explain, the intermittency
of the acceleration to those of dissipation and enstrophy, we use conditional averaging [4], such as the conditional moments
Mn(a|X) = (1/3)〈(a·a)n|X〉whereX can be either ε or Ω (and, by extension, alsoϕ). Figure 2(b) shows that the conditional
dependence is weak in regions of small velocity gradients, but that the conditional variance rises strongly at higher values of
ε, Ω and ϕ, which means extreme events in these variables do tend to lead to extreme events in the acceleration. It is also
interesting that (in Fig. 2(c)) the conditional flatness factor µ4(a|X) = M4(a|X)/M2(a|X)2 decreases at large values of ε, Ω
or ϕ. This decrease shows, in fact, that given a large ε (say), the likelihood of the acceleration-squared deviating far from its
conditional mean (i.e. M2) is somewhat low — or, conversely, that extreme events in all of these variables are indeed likely
to correspond well to one another.

CONCLUSIONS

Direct numerical simulation results at Taylor-scale Reynolds number 1300 on a well-resolved 81923 domain have shown
that dissipation, enstrophy and acceleration (squared) attain extreme values as high as O(105) of their mean values. Con-
ditional averaging shows that these extreme events are closely related to each other. Further results on the acceleration and
other flow variables (such as the pressure gradient, and the inertial terms in the Navier-Stokes equation) in these conditions of
extreme intermittency will be presented at the Congress.

Support from the NSF Petascale Computing Program through a large allocation of resources on the Blue Waters super-
computer at the University of Illinois at Urbana-Champaign is gratefully acknowledged.
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ROTATING TURBULENCE IN A ROTOR/STATOR CAVITY AT HIGH REYNOLDS NUMBER
C. Lachize, G. Verhille ∗, and P. Le Gal

Aix Marseille University - CNRS, Institut de Recherche sur les Phénomènes Hors Equilibre, Marseille, France

Summary This communication reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity at high
Reynolds numbers. The experiments have been driven by changing both the rotation rates of the disk and the density of the working
fluid (sulfur hexafluoride near its critical point) by imposing the operating temperature and pressure inside a thermalized and pressurized
vessel. This original set-up allows to get Reynolds numbers as high as 2 107 with potential compressibility effects as the Mach number can
reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade in accordance
with Kraichnan’s conjecture. For the highest Reynolds numbers, the spectra are however dominated by low-frequency oscillations involving
large scale modes with azimuthal wavenumbers m = 1, 2, 3 and 4. We interpret these modes as acoustico-inertial modes for which we have
calculated their dispersion relation as function of the Mach number.

INTRODUCTION

The aim of this experimental work is to study rotating turbulence and its coherent large scale structures at high Reynolds
numbers when turbulence is generated in a rotor-stator cylindrical cavity immersed in a pressurized vessel containing sulfur
hexafluoride (SF6). The use of this fluid permits to reach Reynolds numbers as high as 2 107 and Mach numbers around
0.5. It is well known that flows driven by a rotating disk in cylindrical enclosures can generate azimuthal spiral coherent
structures whose appearance is associated to Ekman (rotor) or Bödewadt (stator) layers instabilities. In general, the number
of these spiral structures is around 20 and the increase of the Reynolds number makes them to disappear to give rise to
an apparent homogeneous turbulence in the azimuthal direction [1]. The report of the experimental observation of a small
number of azimuthal structures in rotor/stator cavity is scarce. To our knowledge, it was first described in the experimental
visualizations of Czarny et al. [2] who reported the occurrence of unsteady large scale vortices. Jacques et al. [3] performed
2D-axisymmetric numerical simulations in a rotor/stator configuration that underlined the presence of inertial waves for fast
enough rotation rates. Recently, three dimensional simulations of the flow inside a rapidly rotating cylinder split at mid-height
show that the basic state loses stability through sidewall boundary layer breathing causing inertial waves to propagate in
the core of the flow [4]. In this last work, when the cavity is axially extended, large amplitude subharmonics are discernible,
leading to the complex superimposition of many inertial waves propagating at different angles. Independently of these rotating
disk flow studies, rotating turbulence has been the subject of numerous experimental and numerical works as it is still today
one of the main challenges of research on turbulence. To give a synthetic and simplistic view, it is admitted that if energy
is injected in the turbulent rotating flow at a frequency f0, it gives rise to both a direct and an inverse cascade which are
similar for some aspects to the 2D turbulent cascades. Indeed, because of the bi-dimensionalisation of turbulence caused by
the strong global rotation, a direct cascade of enstrophy should take place together with an inverse energy cascade towards
frequencies lower than f0 in agreement with Kraichnan’s conjecture [5]. This inverse turbulence cascade has been revealed
in recent experiments [6], [7]. Finally, as observed in the numerical simulations mentioned previously [4] and in experiments
[7],[8], inertial waves can arise and superimpose on (and interact with?) turbulence through a process which is still debated.

EXPERIMENTAL SET-UP

The flow is generated within a cylindrical enclosure consisting of a stationary shroud, two smooth rotor and stator with
diameters of respectively 2Rr = 68 mm and 2Rs = 70 mm. The outer wall is fixed to the stator and the rotor is driven
by a brushless electric motor which could reach a rotation frequency f0 = 185 Hz. The spacing between the disks is
H = 40 mm. The rotor/ stator cavity with the motor is integrated into a pressurized 140 mm inner diameter cylindrical
pressure vessel. The temperature control of the cavity is ensured by a thermostatically-controlled bath that regulates the
entire vessel temperature through an internal circulation in the cylindrical wall of the pressure vessel. By changing the
quantity of SF6 in the vessel, different thermodynamics conditions (and so different viscosity, sound speed,...) can be reached.
Measurements are performed at a rotation frequency f0 from 17 Hz to 170 Hz, a density ρ from 6,17 (vapor) to 830 kg/m3

(supercritical phase). Variations of SF6 dynamic viscosity and sound speed c0 allow to explore a wide range of Reynolds
numbers 5 104 < Re < 2 107 and Mach numbers 0, 03 < Ma = 2πRrf0/c0 < 0.5. Two dynamics pressure sensors are
fixed flush on the stator at a radius of 15 mm and separated with an angle of π/2 in the azimuthal direction. These sensors have
a frequency range that extends between 0.5 Hz and 105 Hz. Finally, a temperature probe is placed onto the cylindrical shroud,
which allows us, a posteriori and associated with the absolute pressure measurements, to determine the working isochores and
the corresponding thermodynamics conditions. Experimentally, these thermodynamics conditions are reached by varying the
fluid density by evacuating SF6 under pressure out of the vessel.
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Figure 1: Pressure power spectral densities for ρ = 830 kgm−3 and Re = 105 in a) and for Re = 2 106 in b).

RESULTS AND DISCUSSION
The power spectral densities of temporal pressure fluctuations are calculated and presented for two different Reynolds

numbers in figure 1, for one of the two pressure sensors. Frequencies have been normalized by the rotor rotating frequency f0
where energy is injected from the rotating disk to the fluid through the turbulent Ekman boundary layer. As can be observed,
the spectra are divided in several frequency zones that we will describe starting from the highest frequencies. For all Reynolds
numbers that we have explored and for frequencies higher than f0, an inertial cascade is observed. This part of the spectra
starts at the rotor frequency f0 and is observable up to 3f0 with a slope very close to −5 for the highest frequencies. This
−5 slope for the pressure fluctuation spectrum corresponds to the −3 exponent of the velocity fluctuation power spectrum as
predicted by Kraichnan [5] for the 2D turbulence direct enstrophy cascade. Starting at a Reynolds number around ≈ 106 and
in addition to this direct cascade, a series of peaks appears at frequencies in the range 1/4 < f/f0 < 3/2. They imply that
non axisymmetric oscillating coherent structures come into play and lead to a complex flow topology. Whereas these peaks
are numerous for Reynolds numbers in the range 105 < Re < 106, when increasing the Reynolds number above 2 106,
only four of them are selected at frequencies f/f0 ≈ 0.25, 0.5, 0.75 and 1. The study of the phase difference between the
two pressure probes shows that these modes possess azimuthal wavenumbers m = 1, 2, 3 and 4 respectively. We interpret
them as acoustico-inertial modes for which we have calculated their dispersion relations as a function of the Mach number.
Finally, for frequencies slightly lower than these series of peaks, one can detect a −5/3 slope region which is, in fact, also
present at lower Reynolds number before the appearance of the peaks (see figure1-a)). Although we have no direct proof of
it, this range of frequencies - around one tenth of the injection frequency - should correspond to an inverse cascade of energy.
Indeed, if we transform the −5/3 exponent visible on our pressure fluctuation power spectra into the corresponding exponent
for the velocity fluctuation power spectra, it becomes a −4/3 in complete agreement with the temporal spectra exhibited in
a recent rotating turbulence experiment [7]. As claim by these last authors, this exponent might appear by the interaction
between inertial waves and may correspond to the inverse cascade. In our case, it seems however that the inverse cascade is
independent of the presence or not of the low frequency azimuthal modes. Finally, as can be observed on figure 1-b), at very
small frequencies we observe the appearance for the highest Reynolds numbers of a puzzling slow dynamics with periods as
long as 100 times the disk rotation period.
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Summary Direct numerical simulations of Taylor-Couette flow form Re = 8000 to 25000 are carried out to investigate the process of the 

transition in the Reynolds number dependency of the mean torque. The velocity fluctuations are decomposed into the contributions of the 

Taylor vortices and remaining turbulent fluctuations. Distinct Reynolds number dependencies of these components are observed in the 

Reynolds shear stress and the torque transmission. The net contributions of these components to the mean torque are evaluated. Relative 

contributions of The Taylor vortex component is overtaken by the turbulent counterpart around Re = 15000. This Reynolds number is close to 

the torque transition Reynolds number in the literature. These results suggest that the torque transition can be explained by the competition 

between the contributions of azimuthally averaged Taylor vortex and the remaining turbulent components. 

 
INTRODUCTION 

 

Taylor-Couette flow has been investigated because of its importance in engineering. Wendt et al. [1] found that the flow 

exhibits a transition in the Reynolds number dependency of the mean torque at Reynolds number Re = 10000. In the torque 

transition state, Lewis et al. [2] found the changes of azimuthally traveling wave of the velocity fluctuation in the center 

region as well as in the near wall region. The numerical study by He et al. [3] clarified that the universal fine scale eddy 

structures of turbulence develop in the domain around Re = 10 000. These results indicate the connection between the 

Reynolds number dependency of flow structures and the torque transition. In this study, the direct numerical simulations 

(DNS) of the Taylor-Couette flow have been conducted to clarify the Reynolds number dependency of the turbulence 

statistics in the torque transition state. 

 

NUMERICAL METHODS 

 

DNS of Taylor-Couette flow is conducted using Fourier-Chebyshev spectral methods. The governing equations are the 

incompressible Navier-Stokes equations and the continuity equation in the cylindrical coordinate system. These equations 

are non-dimentionalized by the rotation speed of the inner wall Uin and the gap width d. Boundary conditions are no-slip 

boundary condition for radial direction with only inner cylinder rotating, and the periodic boundary condition for axial 

direction. The time integration is implemented with 2nd order Adams-Bashforth method for non-linear terms and backward-

Euler method for the other terms to satisfy the continuity equation with the influence matrix method. For the calculation 

conditions, the radius ratio  and the height of the domain h are fixed to 0.8 and 5d respectively. The DNS has been carried 

out at different Reynolds numbers Re ( = Uin d/) = 8000, 12 000, 20 000 and 25 000. 

 

REYNOLDS NUMBER DEPENDENCY OF TURBULENCE STATISTICS 

 

Figure 1 shows iso-surfaces of the second invariant of the velocity gradient tensor Q and mean velocity fields in r-z 

plane at Re = 8000 and 25 000. In the mean velocity field, two pairs of Taylor vortices are observed in both Re cases. The 

iso-surfaces of Q show that the fine scale eddy structures show preferential angle at Re = 8000 [3]. They distribute in the 

inflow and outflow regions existing between the Taylor vortices. In higher Reynolds number cases, the fine scale eddies 

gradually develop in the whole domain and they take more versatile angles. 

As visually presented in Fig.1, both the large scale coherent motions of Taylor vortices and the fine scale structures exist 

around the transitional Reynolds number. To investigate the contributions of these flow structures to turbulence statistics, 

the velocity fluctuations are decomposed into the azimuthally-averaged velocity field and remaining turbulent components.
f and f

~
denote the average of a variable in z and  directions, respectively. 'f and "f are the fluctuations of from f

~
and

f
~

. The Reynolds stress Rr is decomposed as 

TTVuuuuuuR rrrr  ""~~''  . (1) 

The first term TV is “Taylor vortex component” representing the contribution of the mean Taylor vortex motion. The second 

term T is “turbulent component”, which is the contribution of remaining turbulent fluctuations. 

Transmission of the torque between cylinders is written as the function of the Reynolds stress and the viscosity terms [2]. 
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(a) Re = 8000 (b) Re = 25 000 

Figure 1: Iso-surfaces of the second invariant of the velocity gradient tensor (Q = 1.0, colored by the radial position) and 

azimuthally averaged mean velocity in r-z plane. 
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Figure 2: Radial profiles of the components of the torque 

transfer function. 

Figure 3: Reynolds number dependency of the components of 

the mean torque. 
  

Fig. 2 shows the radial profiles of the each component of Eq. 2. The Reynolds stress term exhibits a major contribution in 

the torque transmission. The contributions of TV and T are comparable in the present Re range, and T apparently exceeds TV 

with Re increase. The viscosity term takes main role only in the near wall region.  

The net contributions of each component in Eq. 2 to the mean torque can be written as 
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Fig. 3 shows the contributions of the torque components at four Re cases. Wendt’s empirical formula of the mean torque [1] 

are also plotted. Comparing the components of the Reynolds stress, TV is greater than T in lower Re cases, but due to the 

difference in their slope with respect to Re, the magnitude of T eventually excesses to TV. Assuming that TV and T follow 

the power law scaling, their trend lines are evaluated by the least squares method. The trend lines of TV and T cross near Re 

= 15 000, which is close to the transition Reynolds number proposed by Lewis et al. [2] Re = 13 000. Therefore it is 

considered that the torque transition can be explained by the competition between the large coherent motions of Taylor 

vortices and the fine scale turbulent structures. 

 

CONCLUSIONS 

 

A series of DNS of Taylor-Couette flow from Re = 8000 to 25 000 has been carried out to investigate the Reynolds number 

dependency of the turbulence statistics in torque transition state. The Reynolds stress and torque transmission show significant 

Reynolds number dependency when they are decomposed into the contribution of the mean Taylor vortex motion and remaining 

turbulent fluctuation. The contributions of these components to the net mean torque are evaluated from the torque transfer 

function. The turbulent fluctuation component excesses the Taylor vortex component around Re = 15 000, which is near the 

transition Reynolds number of the mean torque. These results show that the torque transition can be interpreted as the change of 

the major component from the Taylor vortices to turbulence. 
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TURBULENCE UNDER ROTATION AT HIGH NUMERICAL RESOLUTION: EULERIAN
AND LAGRANGIAN STATISTICS

Luca Biferale∗1, Fabio Bonaccorso1, and Irene Mazzitelli1
1Department of Physics and INFN, University of Rome Tor Vergata, Italy

Summary Direct numerical simulations at unprecedented resolution of rotating turbulence at changing Reynolds and Rossby numbers are
presented. Flow is also seeded with millions of particles, with and without inertia, light and heavy. We study two regimes, at high and low
rotation. We mainly focus on extreme events for Eulerian and Lagrangian statistics, including the preferential sampling of inertial particles
in presence of Coriolis and Centripetal forces.

EULERIAN ROTATING TURBULENCE

Turbulence under rotation is a paradigmatic problem involving complex physics and complex flow behavior. In presence
of high rotation, i.e. low Rossby numbers, the flow tends to become more and more two-dimensional, being dominated
by the presence of strong large-scale coherent structures aligned along the direction of rotation [1, 2, 5]. The transition is
triggered by the presence of a non-vanishing inverse energy flux, as for genuine two dimensional flow (see Fig 1). Here,
we present state-of-the-art direct numerical simulations of 3d turbulent flows under rotation at changing Reynolds number,
up to record resolution (for the rotating case) of 40963 collocation points. Both the case of weak anisotropy (only forward
energy cascade) and strong anisotropy (both forward and inverse cascades) are investigated, with assessment of isotropic and
anisotropic scaling properties [4] of both the 2d mean field averaged along the rotation axis and the 3d underlying turbulent
fluctuations.

Figure 1: A 3D rendering of two turbulent flows at two Rossby numbers, one small enough to lead to an inverse energy
cascade (right) and one with forward energy cascade only (left). At small Rossby, for the inverse energy cascade case, we
observe the formation of three cyclonic coherent columnar vortices in a sea of 3D turbulent fluctuations.

LAGRANGIAN ROTATING TURBULENCE

The main novelty of our simulation is the advection of millions of light and heavy point-particles by the rotating flow.
Following Maxey and Riley [6] the equations for the trajectory x and the velocity v of a small sphere of radius a and density
ρp suspended in the fluid field u are:

dx

dt
= v (1)

dv

dt
= β

[
2

3

Du

Dt
+

1

3

du

dt

]
− 1

τp
(v − u)− 2Ω× (v − βu)

−(1− β)Ω× (Ω× r) (2)
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The dynamics is controlled by two non-dimensional parameters, the density ratio β = 3ρf/(ρf + 2ρp) and the Stokes
number St = τp/τη defined as the ratio between the particle relaxation time τp = a2/3βν and the Kolmogorov time τη .
The term Du/Dt = ∂u/∂t + u · ∇u is the fluid acceleration, while du/dt is the derivative of the fluid velocity along the
particle trajectory. Here we have neglected the Basset history force, the Faxen corrections and gravity force. At variance
with the rotating Navier-Stokes equations for the fluid velocity field, the centrifugal force (β − 1)Ω × (Ω × r) is explicitly
present in the equation for the particles. Its sign depends on the factor β − 1: For heavy particles (0 ≤ β < 1) the force is
centrifugal, while for light particles (1 < β ≤ 3) is centripetal. The presence of cyclonic structures (see Fig. 1) is key also
for the dispersion and advection of inertial particles [4]. We present the first systematic investigation of dispersion of tracers,
light and heavy particles in rotating turbulence, at high resolution and with a high number of particles trajectories. Both single
particles quantities (acceleration, Lagrangian velocity structure functions) and two-particles quantities (Richardson dispersion)
are studied, together with conditional statistics with respect to the underlying flow structures (preferential concentration).

CONCLUSIONS

We presented the first combined study of Eulerian and Lagrangian statistics for turbulence under strong rotation at high
Reynolds and with a huge set of tracked particles’ trajectories. Both single and multi-point statistics are investigated and the
importance of the presence of stable coherent vortical structures for particles’ distribution and particles’ dispersion is analyzed.
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ASYMPTOTIC STATES IN TURBULENCE: THE EMERGENCE OF UNIVERSALITY AND

INTERMITTENCY

Diego Donzis ∗1

1Department of Aerospace Engineering, Texas A&M University, Texas, United States of America

Summary Using a large database of well resolved direct numerical simulations, we show that small-scale universality, dissipative anomaly,

and anomalous velocity gradients exponents attain an asymptotic character at very low Reynolds numbers—in fact, lower that those needed

for the emergence of an inertial range. An implication of this observation is that inertial-range dynamics, for example, may not be responsible

for small-scale intermittency. We also show that inertial range information can be accurately obtained from dissipative range statistics.

INTRODUCTION AND MOTIVATION

Most approaches to understand turbulence have sought universal behavior believed to manifest at high Reynolds numbers,

Rλ. An underlying issue thus is the quantitative determination of the meaning of high Reynolds number. Neglecting this

question could lead to varying conclusions when comparing flows in different configurations and different Rλ. Moreover, it

has become clear now that different statistics approach their asymptotic state—if one actually exists—at different Reynolds

numbers. For example, we recently suggested that anomalous scaling exponents of velocity gradients attain their high-Rλ
asymptotic values at rather low Rλ [5]—in fact, lower than that required to observe an inertial range. This observation, which

may seem counterintuitive, leads to important implications.

The thrust in this work is thus two fold. First, we identify asymptotic states for some of the most commonly studied

statistics, namely, the mean dissipation rate, the energy spectrum, and moments of velocity gradients. We show that anomalous

high-order exponents of velocity gradients emerge at lower Reynolds numbers than other lower-order statistics. This leads to

the second objective, which is to assess whether quantities that emerge first already contain information about other aspects of

fully developed turbulent flows. As we argue in this work this is indeed the case. A consequence of this is that, for example,

information about the inertial range can be obtained from the dissipative range at very low Reynolds numbers.

THE EMERGENCE OF SMALL-SCALE UNIVERSALITY AND INTERMITTENCY

A basic assumption in phenomenological treatments of turbulence is that of dissipative anomaly—the idea that the mean

energy dissipation rate, 〈ǫ〉, is independent of viscosity as long as the latter is sufficiently small. This result, which was

put forth by Taylor [8], has been verified experimentally and numerically [6, 2, 3]. Collectively data support an asymptotic

Rλ ∼ O(10
2
), above which the normalized dissipation rate is indeed independent of viscosity.

Dissipative anomaly is also an implicit assumption behind Kolmogorov 1941 theory (K41) which predicts certain universal

behavior at small scales at high enough Reynolds numbers. This has been extensively assessed by examining the so-called

compensated spectrum ψ(k) = E(k)/〈ǫ〉2/3k−5/3 where E(k) is the three-dimensional energy spectrum at wavenumber

k. Small-scale universality is then seen as a collapse of ψ(k) at high wavenumbers for different Reynolds numbers and/or

different flows. This is indeed observed in Fig. 1(a) where we show our data for a wide range of Rλ and different large scale

forcing [1]. A question of interest is at what Reynolds number this universality emerges. In Fig. 1(b) we show data from new

well-resolved DNS at much lower Rλ which shows that small-scale universality is maintained at Rλ as low as O(1).

K41 also proposed the existance of the so-called inertial range of scales at high enough Rλ. Simulations and experiments

show that it emerges also at Rλ ∼ O(10
2
) (e.g. [3, 1] for recent data). We note, however, that the well-known spectral

bump at kη ∼ 0.1 [1] is established at a lower Rλ ≈ 50. A significant inertial range—one in which the so-called 4/5th

law can be meaningfully assessed—appears to be only obtained at Rλ exceeding 10
3 for forced flows or 106 for decaying

flows [4]. The situation can be seen in Fig. 1(a). An inertial range would be seen as a plateau at intermediate scales. Careful

investigation of the data, however, exposes two main difficulties which make an assessment of inertial-range quantities (such

as the Kolmogorov constant) less than unambiguous as documented in [1]. These are intermittency corrections to the inertial-

range slope, and the spectral bump. Difficulties in extracting information or even identifying the inertial range are even more

severe for high-order statistics such as high-order structure functions. Finding an alternative way of doing so is, thus, highly

desirable and possible as shown here.

While K41 has been shown to be approximately valid for low-order moments, it has become increasingly clear over

the decades that high-order moments of velocity gradients, dissipation, enstrophy and velocity increments depart from K41

predictions [7]. This so-called anomalous scaling has been related to the phenomenon of intermittency—the tendency for

extremely large but localized fluctuations in space and time. This fluctuations are resposible for strong departures from
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Figure 1: (a) Compensated energy spectrum at different Reynolds numbers. Different lines styles for different forcing and
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Gaussian behavior as Rλ increases. Thus, intermittency has also been historically believed to be a high-Rλ feature. However,

we recently showed [5] that anomalous scaling emerges at very low Reynolds numbers. Data suggest that the first few

moments of velocity gradients transition from Gaussian to fully anomalous high-Rλ behavior at Rλ ∼ O(10). This implies

the somewhat unexpected conclusion that the structure of very intense small-scale intermittent events emerges at lower Rλ
that the inertial range or dissipative anomaly. Furthermore, in this work we show that normalized moments of different orders,

Mp = 〈(∂u/∂x)p〉/〈(∂u/∂x)2〉p/2, approach their asymptotic behavior (the high-Rλ limit, Mp,∞) at different Reynolds

numbers (Fig. 1(c)). High-order moments do so at lower Rλ than low-order moments (inset of figure).

A number of studies have established relations between inertial range scaling exponents of structure functions and the

scaling of velocity gradients which have been tested against DNS data. As we show here, this provides a key ingredient in a

novel way we propose to study inertial-range dynamics from dissipative-range statistics.

THE OVERALL PICTURE

Taken together, all observations above suggest that as the Reynolds number is increased beyondO(1) the energy spectrum

display small-scale universality at high wavenumbers consistent with K41. At higher Reynolds numbers of O(10) the most

intense events appear as measured by high-order moments of velocity gradients. Further increase of Rλ to about 50 results

in the formation of the spectral bump. Finally, it is only at Rλ ∼ O(10
2
) that dissipative anomaly and an incipient inertial

range appear. A number of interesting counterintuitive consequences follow from this result. First, since the spectral bump

emerges before there is any inertial range, its origin cannot be attributed to inertial-range dynamics as commonly done. The

same can be concluded for intermittency and anomalous scaling which appears at a Reynolds number and order of magnitude

smaller than that required for the inertial range. Very strong fluctuations at the smallest scales, thus, are not produced by, e.g.,

fluctuations in the energy cascade as proposed in a number of intermittency models in the literature.

Additionally, since anomalous scaling of velocity gradients appears at very low Rλ, it is then possible to obtain very

accurate velocity gradient moments from well resolved simulations at low Reynolds numbers and compute inertial-range

scaling exponents for structure functions with well-known formulas relating the two. In this work we show this is indeed

possible and compare against data in the literature. This approach provides a tremendous advantage, since as mentioned

above, obtaining a sufficiently wide inertial range would require Rλ well beyond what is possible in the foreseeable future.
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Summary Local scaling exponents of the structure functions of the velocity and two passive scalar increments in steady isotropic turbulence

at very high Reynolds numbers Rλ = 805 with the grid points N = 40963 are examined. The two passive scalars are convected by the

identical turbulence but excited by the different scalar injections. It is found that all the exponents have plateaus at separation distance in

between twice the Taylor microscale and a quarter of the integral scale, for which the inertial range is defined and does not coincide with

the −5/3 kinetic energy spectrum range. The crossover lengths of the inertial (convective) and the dissipation (diffusive) ranges are found

to be independent of the order of the structure functions.

INTRODUCTION

The scaling exponents have been one of the central issues in the fundamental physics of turbulence [1]. The theories of

Kolmogorov for the velocity and Obukhov-Corrsin for the passive scalar predict the normal scaling with the exponent n/3
of the nth order structure functions, but the intermittency modifies the exponents to be non decreasing functions of n and

smaller than n/3. The error bars of the exponents of the longitudinal velocity structure functions so far found are small, but

the exponents of the passive scalar scatter considerably [1]. It is important and indispensable to quantitatively examine where

the inertial range exists and at which scale the dissipation range begins. We try to find a quantitative measure of the position of

the inertial (convective) range and the crossover scale to the dissipation (diffusive) range by using DNS at very high Reynolds

number.

DIRECT NUMERICAL SIMULATION

We have numerically integrated the Navier-Stokes equations for the incompressible fluid with unit density and the transport

equations of two passive scalars θ and q which are convected by the identical steady turbulent flow [2]. The scalar θ is excited

by the Gaussian random source which is white in time and excited at low wavenumbers 1 ≤ k ≤ 3, while q is excited

by the uniform scalar gradient Γ = 1 applied in the x3 direction. The pseudo spectral method and the 4th order Runge

Kutta Gill method are used. The number of grid points are 40963 and the time average is taken over about 8.2 large eddy

turnover time. The average Taylor microscale Reynolds number is Rλ = 805 and the Schmidt number is Sc = 0.72. The

structure functions as functions of the separation vector r are defined by Qu
n(r) = 〈(u(x+ r)− u(x)) · r/r)

n
〉, Qθ

n(r) =
〈(θ(x+ r)− θ(x))

n
〉, Qq

n(r) = 〈(q(x+ r)− q(x))
n
〉 and expanded in terms of the Legendre polynomial as Qα

n(r, φ) =
∑

l=0 S
α
n,l(r)Pl(cosφ), α = u, θ, q, where φ is the angle between the vector r and the x3 direction [2]. This yields better

statistical convergence at large separation distance.

RESULTS

Figure 1 shows the average spectra of the kinetic energy and the scalar variances which are compensated by multiply-

ing ǫ−2/3k5/3 or χαǫ
−1/3k5/3, respectively, where α = θ, q. The plateaus of the curves with finite width are clearly

seen. We assume that the separation distance 2r in the physical space corresponds to the wavelength and thus k = π/r.
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The k−5/3 plateau for the velocity is observed for kL < k < 4kL
and that for the scalar is for kLθ

< k < kλθ
/2. Note that the tilted

part exists in the kinetic energy spectrum for 4kL < k < kλ/2
which corresponds to the scaling range of the velocity structure

functions as we will see below. Figure 2 indicates the 4/5 law for

the velocity and the 4/3 law for the passive scalars. It is seen that

the approximate plateaus close to the 4/5 and 4/3 level occur for

the range 2λ < r < L/4 and 2λα < r < Lα/4(α = θ, q),
respectively. It should be noted that the range of 2λ < r < L/4
corresponds to the tilted part in the compensated kinetic energy

spectrum in Fig.1, not to the range where the fair −5/3 spectrum

of the kinetic energy is observed.

Now we examine the local scaling exponents of the isotropic

sector (l = 0) of the expansion coefficients that are defined by

ζαn,0(r) = d logSα
n,0(r)

/

d log r, (α = u, θ, q)

and plotted in Fig.3. It is found that ζun,0(r) has the fair horizontal

portion for 2λ < r < L/4. When the crossover length of the

inertial and dissipation ranges is defined as the length at which the

curve leaves the plateau, it occurs at the same length of about 2λ
and is independent of the order n within the present DNS. There

is no trend that the lower end of the inertial range penetrates into

the dissipation range with increase of the order [3]. Figure 3(b)

is most remarkable result. There are no plateaus in the curves of

the structure functions for the order higher than 2. The curves of

ζθn,0(r) are straight and approximated as ζθn,0(r) = ξθn+βn(r−r∗),
and thus the structure function for θ is given by the non-power law

Sθ
n,0 = An,0 (r/r∗)

ξθ
n
+ 1

2
βn log(r/r∗) , r∗ ≈ 2λθ,

for 2λθ < r < Lθ/2. The slope of the curve is found to linearly

increase with n [2]. On the other hand the local scaling exponents

of the scalar q has fair plateaus for 2λq < r < Lq . Again we

observe that the crossover lengths are 2λα(α = θ, q) and independent of the order.

CONCLUSIONS

The range that the plateaus of the local scaling exponents of the longitudinal velocity is observed corresponds to the tilted

part of the compensated kinetic energy spectrum, not to the range of −5/3 spectrum. The inertial range, when it is defined

as the range of scales that the 4/5 and 4/3 laws hold, is approximately in between twice the microscale and one quarter of the

integral scale within the present DNS study. The crossover length is at about 2λα, (α = u, θ, q) and independent of the order.

The physical reason for the non-power law will be discussed at the Congress.
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Summary A random additive process is introduced as a simplified version of the Townsend attached eddy hypothesis to describe fluctuations
in the momentum cascade in wall turbulence at high Reynolds number. This formalism can provide economical predictions about scaling
behaviors in single- and multiple-point turbulence statistics in the logarithmic region. New log laws for two-point quantities are identi-
fied and confirmed using experimental data. Secondly, properties of single- and two-point moment-generating- functions (〈exp(qu)〉 and
〈exp[qu(x, z) + q′u(x+ r, z)]〉) are investigated, where q, q′ are real-valued parameters. Empirical evidence of power law behaviors with
respect to the wall normal distance in the logarithmic region in single-point moment-generating-function (MGF) is observed. Moreover, a
power-law scaling transition in two-point MGF 〈exp(qu(x, z)qu(x+ r, z))〉 is predicted in the framework of the random additive process
and Townsend’s attached eddy hypothesis, and confirmed in experimental measurements.

INTRODUCTION

Townsend [1] hypothesized that at high Reynolds numbers boundary layer flow consists of self-similar, hierarchical
eddies. The size of each eddy scales as its distance from the wall. This hypothesis leads to the prediction of logarithmic
scaling of the variance of streamwise velocity fluctuations with wall normal distance z, <u+2

>= A1 log(δ/z)+B1, where u
is the streamwise velocity fluctuation, + indicates normalization by friction velocity (for compactness, this notation is dropped
hereafter), 〈·〉 indicates ensemble average and A1 = 1.25 is the Townsend-Perry constant, B1 is yet another constant and δ is
an outer-layer length scale such as the boundary layer thickness. In Refs. [2], [3], logarithmic scalings in

〈
u2p
〉1/p

as well as
structure functions have been derived within the framework of Ref. [1].

Here we model the streamwise velocity fluctuation at a generic point P within the logarithmic region at height z above the
wall to be an outcome of a random additive process:

uz =

Nz∑
i=1

ai, Nz ∼ log(δ/z). (1)

For shorthand, the subscript z indicates height z above the wall in the logarithmic layer. The random additives ai’s are
independently and identically distributed random variables, and each of them is associated with velocity induced at point P
by an attached eddy of size δ/2i. The number of random additives is proportional to the number of eddies above and, in line
with Ref. [1], Nz ∼

∫
1/z dz = log(δ/z). Using the assumed independency among ai’s, Eq.1 directly leads to generalized

log laws in
〈
u2p
〉1/p

. Also, Eq.1 leads to uz − ur =
∑Nz

i=Nr
ai, also leading to logarithmic scalings in

〈
(uz − ur)2p

〉1/p
.

This random additive model is used to propose new log laws in the present contribution.
Taking exponential of both sides of Eq. 1 gives moment-generating-functions (MGFs) defined as the average of exp(qu) =∏Nz

i=1 exp(qai). As can be seen, power law scaling in the single-point MGFs 〈exp(qu)〉 = zC log〈exp(qa)〉 must hold for a
random additive process. Besides this behavior for single-point MGFs, two-point MGFs are also examined.

We use Eq. 1 to derive new logarithmic laws. Eddies of height < r tan θ cannot simultaneously affect a point at (x, z) and
a point at (x + r, z) and eddies of height > r tan θ affect both points equally. θ is the inclination angle of a typical attached
eddy. Decomposing the velocity fluctuation at a point into uz−ur tan θ and ur tan θ the following new logarithmic scalings can
be found (for more details see Refs.[4, 5]):

S2 =
〈
3

2
u2
z(x)u

2
z(x+ r)− 1

2
u4
z(x)

〉1/2

= A2 log(δ/r); S3 =
〈
5

2
u3
z(x)u

3
z(x+ r)− 3

2
uz(x)u

5
z(x+ r)

〉1/3

= A3 log(δ/r). (2)

A2, A3 are the slopes in the logarithmic scalings in
〈
u4
〉1/2 and

〈
u6
〉1/3. The new log laws in Eq. 2 are confirmed using

experimental measurements of a Reτ = 19000 boundary layer (figure 1, see Ref. [6] for details of the dataset).
The MGFs are computed for various q-values in a range between ±2. The measured MGFs as function of wall distance

in inner units are shown in figure 2 for representative values of q. The experimental measurements are taken at a boundary
layer at Reτ ≈ 13000 (see [7] for details of the dataset). In the range 600 < z+, z < 0.2δ, power law behavior is observed.
Moreover, there is significant difference in the scaling exponents of 〈exp(qu)〉 for positive and negative q values of the same
magnitude. A scaling transition in the two-point MGFs 〈exp(qu(x, z)− qu(x+ r, z))〉 is observed in figure 2, (b)–the power-
law scaling exponents increase as q increases for q being small, while beyond certain critical value qcr, the scaling exponent
becomes constant. Detailed derivation of this scaling transition can be done using the random additive formalism.

a)Corresponding author. Email: meneveau@jhu.edu.
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Figure 1: S2, S3 against r/z at z+ ≈ 3Re0.5τ , 800, 1400 and z = 0.10δ. The measured A2, A3 values [2] are used for the
slope indicated in the figure (the solid red line).

z+
101 102 103 104 105

he
x
p
(q

u
+
)i

101

102

103

104

105
q = !2

q = !1:5

q = !1

q = !0:5

q = 0:5

q = 1

q = 1:5

q = 2

q increases 
from 0 to 1.5

Figure 2: a) Log-log plot of 〈exp(qu+)〉 against z+ for q = ±0.5,±1,±1.5± 2. Solid symbols are used for positive q’s and
hollow symbols for negative q values. The extent of the scaling regions, 400 < z+, z < 0.2δ for q>0 and 600<z+, z<0.2δ
for q<0 are indicated by vertical lines. b) Log-log plot of W (q,−q; z, r) against r at z+ = 600, for 9 values of q ranging
from 0 to 1.5 (shown values are q =0,0.19,0.38,0.56,0.75,0.94,1.13,1.31 and 1.50). The range of r chosen to determine the
power law scaling exponent (relevant for the log region) is z/ tan θ, to 0.15δ/ tan θ. At z+ = 600, this range corresponds to
(approximately) 2k<r+<6.5k, which is indicated by the vertical lines. The fits are indicated by dashed lines.

The random additive formalism is shown to be a convenient tool in providing economical yet accurate predictions of
scaling behavior of turbulence statistics in the logarithmic region. New logarithmic laws are identified using this formalism.
Properties of the single- and two-point moment generating functions in the logarithmic region are investigated. Power law
behaviors are found in single-point MGFs and a scaling transition is found in two-point MGFs. We conclude that MGFs can
provide new and statistically robust insights into turbulence structures and confirming essential ingredients of the attached
eddy model.

Acknowledgements: The authors gratefully acknowledge the financial support of the Office of Naval Research, the National
Science Foundation, and the Australian Research Council.

References

[1] Townsend A. A.: The structure of turbulent flow, Cambridge University Press, New York, 1976.
[2] Meneveau, C., Marusic, I.: Generalized logarithmic law for high-order moments in turbulent boundary layers. Journal of Fluid Mechanics, 719, R1,

2013. Chicago
[3] de Silva, C. M., Marusic, I., Woodcock, J. D., Meneveau, C.: Scaling of second-and higher-order structure functions in turbulent boundary layers.

Journal of Fluid Mechanics, 769, 654-686, 2015.
[4] Yang, X.I.A., Marusic, I., Meneveau, C.: Logarithmic scaling of high order two-point correlations in turbulent boundary layer flow-data analysis and

modeling. Preprint, 2016a
[5] Yang, X.I.A., Marusic, I., Meneveau, C.: Moment generating functions and scaling laws in the inertial layer of turbulent wall bounded flows. Preprint,

2016b
[6] Hutchins, N., Nickels, T. B., Marusic, I., Chong, M. S.: Hot-wire spatial resolution issues in wall-bounded turbulence. Journal of Fluid Mechanics, 635,

103-136, 2009.
[7] Marusic, I., Chauhan, K. A., Kulandaivelu, V., Hutchins, N.: Evolution of zero-pressure-gradient boundary layers from different tripping conditions.

Journal of Fluid Mechanics, 783, 379-411. Chicago, 2015

1436



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

Scale-hierarchy in homogeneous Hall MHD turbulence

Hideaki Miura ∗1 and Keisuke Araki2

1National Institute for Fusion Science, Oroshi 322-6, Toki, Gifu 509-5292, Japan
2Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, JAPAN

Summary Direct numerical simulations are carried out to study scale-hierarchy in homogeneous Hall magnetohydrodynamic turbulence. It

is shown that Hall term can cause from sheet to tubular structure transition in the vorticity field, changing the local structures without a clear

change in the energy spectrum. Longitudinal structure functions of the velocity field tends to be refracted at the scale comparable to the ion

skin depth. A relation between the refraction of the structure functions and the vorticity field is discussed.

INTRODUCTION

Magnetohydrodynamic (MHD) turbulence has been studied as a model of solar wind, nuclear fusion, and some other kinds

of plasma turbulence in which ion skin depth scale can be important. While MHD equations provides a good plat form for

studying plasma turbulence, the derivation of the equations can be invalid for very small scales comparable to or smaller than

the ion skin depth and ion Larmor radius. An extension of the MHD equations to the small scales is the Hall MHD equations

in which the ion skin depth scale, or two-fluid effects in other words, are taken into account.

The introduction of the two-fluid effects is considered to bring about modification of statistical structures as well as

dynamical structures in turbulence. It has been reported in some numerical and theoretical works that the magnetic energy

spectrum is likely to be proportional to k−7/3 for a high k where k is the wave number[1, 2, 3]. The two-fluid effects can

modify dynamical aspects and/or local structures of MHD turbulence. Dmitruk and Matthaeus have reported about the two-

fluid effects on the electric field[5]. Recently we have shown that a transition from a sheet to a tubular vortex structures in

freely decaying homogeneous and isotropic turbulence[4]. In this paper we study scale-hierarchy in statistics and its relation

to spatial structures of Hall MHD turbulence.

DIRECT NUMERICAL SIMULATIONS

Direct Numerical Simulations (DNSes) of homogeneous turbulence under an uniform magnetic field B0 = 5 are carried

out by solving the Hall MHD equations by the use of the pseudo-spectral method and the Runge-Kutta-Gill scheme. Random

forces are added to the equation of motions to keep turbulence to achieve statistically steady state. Because of the random

forcing, the kinetic energy is much larger than the magnetic energy. The Hall parameter is set ǫH = 0.05, and thus the wave

number kǫ = 1/ǫH = 20 is the scale of the ion skin depth. DNSes of homogeneous MHD turbulence (ǫH = 0) are also

carried out so that we can compare the two kinds of turbulence closely as the initial value problem. The number of grid points

in DNSes is typically 1024
3.

In Fig.1(a), isotropic energy spectra of the magnetic field in Hall MHD and MHD turbulence are shown. Since the

resistivity and the viscosity in DNSes are set relatively low. In order to resolve the scale k > kǫ, Kolmogorov’s k−5/3-law

is not observed clearly. On the other hand, however, the spectrum in Hall MHD appears being proportional to k−7/3, being

consistent with earlier numerical works[1, 2, 3]. In Fig.1(b) energy spectra of the magnetic field perpendicular (square) and

parallel (black circle) to the background magnetic field in in Hall MHD turbulence are shown. A clear power-law is observed

both for the perpendicular and parallel components. In particularly, the perpendicular component exhibits a clear k−7/3

scaling, showing a clear coincidence with earlier numerical simulations as well as solar wind observations by the Cluster

satellites[6, 7].

Next we study scale-hierarchy in Hall MHD turbulence. Though the structure functions should be defined by the use of

both the magnetic field and the velocity field as Galtier has derived the Kármán-Howarth equation[8] for homogeneous and

isotropic turbulence, we can approximately define a structure function by the use of the velocity field only since the kinetic

energy is quite larger than the magnetic energy. In Fig.2(a), structure functions of the velocity field in Hall MHD turbulence

on the longitudinal displacement Sn(r) ∝ 〈(uα(xα + reα)− uα(xα))〉 for where eα represents the α-th component of the

unit vector e in the direction parallel to the uniform magnetic field of the strength B0. Fig.2(b) is for the structure functions

of MHD turbulence. Though both Fig.2(a) and (b) show a power-law in the even-number structure functions, it is clear that

the structure functions in Fig.2(a) are refracted at r/η ≃ 2 and r/η ≃ 4 where η is the Kolmogorov’s length scale. A possible

understanding is that the generation of tubular vortices can influence the structure functions because radius of tubular vortices

in hydrodynamic turbulence is typically 4η ∼ 5η [9]. It may suggest that the refraction of structure functions originate from

the tubular structure in the velocity field. However, since the velocity structure functions in hydrodynamic turbulence does not

show a refraction at the scale of the vortex radius, the understanding may not be right. Another possible understanding is that

the strong influences of whistler waves along the magnetic field lines may influences the scale smaller than r/η < 4, related

with the magnetic field which is neglected here. The conjecture is to be examined.

∗Corresponding author. Email: miura.hideaki@nifs.ac.jp
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Figure 1: (a) Isotropic energy spectra of the magnetic field in Hall MHD and MHD turbulence. (b) Energy spectra of the

magnetic field perpendicular (square) and parallel (black circle) to the background magnetic field in in Hall MHD turbulence.

Figure 2: Structure functions of velocity fields in (a) Hall MHD and (b) MHD turbulence.

SUMMARY

DNSes of homogeneous Hall MHD turbulence shows that the introduction of the Hall term to MHD equations can cause

from sheet to tubular structure transition in the vorticity field and change vortex structures. A clear k−7/3-law is verified

in the longitudinal structure (one-dimensional) spectrum of the magnetic field fluctuation, agreeing well with the satellite

observations of the solar winds. It seems plausible that the refraction corresponds to the structure transition though the

conjecture is left to be examined by more detailed analysis.
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Summary Direct numerical simulations (DNSs) are performed to show the presence of turbulent/non-turbulent interfaces in a magnetohy-
drodynamic (MHD) turbulent channel flow under the influence of a wall-normal magnetic field. Visualization of the vorticity field reveals
flow structures consisting of two internal turbulent boundary layers (ITBLs) growing from each wall and a non-turbulent channel core. The
flow structures suggest the presence of an interface between the ITBL and the core. The conditional statistics of the DNS data shows that
vorticity components have sharp gradients at the interface as observed in external hydrodynamic shear flows. The Joule dissipation rate,
a characteristic quantity in MHD flow, is shown to have sharp gradients at the interface. A phenomenological theory gives an estimate of
the average thickness of the ITBL as a function of R, and the estimate is in close agreement with the DNS result. Here, R is the ratio of
Reynolds and Hartmann numbers.

INTRODUCTION

Turbulence of electrically conducting fluids subjected to external magnetic field at low magnetic Reynolds number is
encountered in many industrial applications e.g., electromagnetic casting of liquid metals and cooling blankets of nuclear
reactors [1]. A typical role of the imposed magnetic field is the suppression of turbulence via Joule dissipation. Experiments
with liquid-metal flows present difficulties for measuring and visualizing the relevant fields, owing to the opacity of the liquid
metals and their corrosion. Therefore, direct numerical simulation (DNS) is an essential tool for obtaining statistics on the
turbulent flows and flow structures encountered in those experiments. Boeck et al. [2] performed DNS studies of the effect
of the wall-normal magnetic field on an MHD turbulent flow in a channel. For strong magnetic fields, the visualizations
of the streamwise velocities of the DNS data showed flow structures consisting of two internal turbulent boundary layers
(ITBLs) near each wall and a non-turbulent channel core. The flow structures suggest the presence of a turbulent/non-turbulent
(T/NT) interface between the ITBL and the non-turbulent channel core. T/NT interfaces have been observed and studied for
hydrodynamic (HD) turbulent shear flows, e.g., turbulent wakes [3], jets [4, 5], and boundary layers [6]. Across the T/NT
interfaces, physical quantities such as vorticity have sharp gradients, and important exchanges of mass, energy and momentum
take place [7]. In the present study, we perform DNSs to show the presence of T/NT interfaces in an MHD turbulent channel
flow at low magnetic Reynolds number under the influence of a wall-normal magnetic field. Then, we characterize physical
quantities near the interface using the conditional statistics of the DNS data.

DNS OF MHD CHANNEL FLOW

We consider the flow of an incompressible MHD fluid in a channel between electrically insulated walls. Figure 1 (a) shows
a schematic of the channel and coordinate system used. A constant wall-normal magnetic field B0 is imposed to the flow. The
magnetic Reynolds number is assumed to be sufficiently small such that the so-called quasi-static (QS) approximation can be
applied (see, e.g., Ref. [8]). Periodic boundary conditions are employed in the streamwise (x) and the spanwise (z) directions.
On the walls, both the velocity and the wall-normal current vanish. Governing equations under the QS approximation are
solved using a pseudo-spectral numerical method based on Fourier series in x- and z-directions and a Chebyshev polynomial
expansion in the wall-normal direction (y). For time differencing, we use the implicit backward Euler scheme for the viscous
and the magnetic terms, but for nonlinear terms, we use a third-order Runge-Kutta method. The average streamwise pressure
gradient is controlled by maintaining the mass flow constant in time. Physical parameters and the numbers of grid points are
listed in Fig. 1 (b), where Re and Ha are Reynolds and Hartmann numbers, respectively. The latter is a nondimensional
measure for the strength of the Lorentz force to the viscous force. R = Re/Ha.

RESULTS

In Fig. 1 (c), we plot the mean streamwise velocity U+(y+), obtained from the DNS data of the MHD channel flow at
R = 600 and Ha = 35, where the superscript + denotes a non-dimensional quantity scaled by the wall friction velocity
and the kinematic viscosity. We see a three-layered structure consisting of a viscous region (y+ < 40), logarithmic region
(40 < y+ < 400), and plateau region, as already observed in Boeck et al. [2].
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Figure 1: (a) Geometry and coordinate system. (b) Parameters of the DNS. (c) Mean profile of the streamwise velocity in wall
units. (d) Contour plot of the amplitudes of vorticity on an xy-plane. Only the two-dimensional subregion (0.37Lx) × Ly is
shown to enlarge the flow structure. White lines indicate the contour lines of ω = 0.3Uc/δ99. (e) Conditional average of ⟨ω⟩I ,
⟨|ωx|⟩I , ⟨|ωy|⟩I and ⟨|ωz|⟩I (normalized by Uc/δ99). (f) Conditional average of normalized Joule dissipation rate.

Figure 1 (d) is a contour plot of the amplitudes of vorticity ω = |ω| on a plane parallel to the streamwise and wall-normal
directions. We observe that the vorticity magnitudes at the channel core are significantly reduced as compared to high vorticity
regions near the walls. Following the analysis by Westerweel et al. [4], we first define the turbulent region as a set of regions
where ω is greater than a given threshold. White lines indicate the isolines corresponding to the threshold value. The interface
height yI(x, z) is then defined as a set of the outermost points of the turbulent region. The average interface height ⟨y+I ⟩ in the
DNS data is found to be 340. This value approximately corresponds to the end of the logarithmic layer, as shown in Fig. 1 (c).
Once the interface is defined, conditional statistics, ⟨⟩I , are determined by averaging the data at fixed distances relative to the
interface. In this study, a conditional average of any quantity is taken when the detected interface is locally more or less parallel
to the channel walls [3]. Figure 1 (e) shows the conditional mean profiles of ⟨ω⟩I , ⟨|ωx|⟩I , ⟨|ωy|⟩I and ⟨|ωz|⟩I (normalized by
Uc/δ99) as a function of the distance from the interface, Y/δ99, where δ99 and Uc are the turbulent boundary layer thickness
and channel centerline velocity, respectively. The turbulent region is on the side of negative Y , while the channel core is on
the side of positive Y . The vorticity modulus ⟨ω⟩I shows a sharp gradient from the core region to the turbulent region. This
sharp gradient in the MHD channel is qualitatively similar to those across the T/NT interfaces observed in HD turbulent shear
flows, e.g. turbulent boundary layers[6], wakes[3], and jets [5]. We observe that most of the values of ⟨ω⟩I near the interface,
say −0.1 < Y/δ99 < 0, are retained by the spanwise component ⟨|ωz|⟩I , followed by the streamwise component ⟨|ωx|⟩I , and
then the wall-normal component ⟨|ωy|⟩I . Figure 1 (f) shows the mean conditional profile of normalized Joule dissipation rate
⟨µ⟩I , a characteristic quantity in MHD flow. We observe that ⟨µ⟩I hardly changes in the core, and there is a rapid gradient
near the interface. In the presentation, the average position of the interface is phenomenologically estimated as a function of
R = Re/Ha, and the estimate is shown to be in good agreement with DNS results.
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SummaryWe give an overview of the coupled Cahn-Hilliard and Navier-Stokes (CHNS) equations and show that they provide a natural
theoretical framework for studying turbulence in binary-fluid mixtures. In particular, we demonstrate, by using two recent studies that we
have carried out, how the CHNS system can be used to study (a) the turbulence-induced suppression of phase separation in a symmetric
binary-fluid mixture, (b) turbulence-induced multifractal dynamics in a droplet of the minority phase in a background of the majority phase,
and (c) the reaction of the fluctuations of such a droplet on the turbulent fluid, which lead, eventually, to dissipation reduction.

RESULTS

The coupled Cahn-Hilliard and the incompressible Navier-Stokes (CHNS) equations provide us with a natural model
for the dynamics of binary-fluid mixtures. They have been used to study the Rayleigh-Taylor instability [1] and, recently,
turbulent-induced suppression of phase separation [2]. The CHNS equations are, in two dimensions (2D),

(∂t + u · ∇)ω = ν∇2ω − αω −∇× (φ∇µ) + Fω, (1)

(∂t + u · ∇)φ = γ∇2µ and∇ · u = 0, (2)

whereφ(x, t) is the order parameter field at the pointx and timet [with φ(x, t) > 0 in the majority phase andφ(x, t) < 0
in the minority phase],µ(x, t) = δF [φ]/δφ(x, t) is the chemical potential,F [φ] = Λ

∫

[(φ2 − 1)2/(4ξ2) + |∇φ|2/2]dx is
the free energy,Λ is the energy density with which the two phases mix in the interfacial regime [1],ξ sets the scale of the
interface width,ν is the kinematic viscosity,σ = 2

√

2Λ
3ξ is the surface tension, and the mobility of the binary-fluid mixture is

γ, u ≡ (ux, uy) is the fluid velocity, the vorticityω = (∇ × u)êz. The forcingFω = F0 cos(kfy) is of the Kolmogorov-
type with amplitudeF0 and forcing wave numberkf , andα is the air-drag induced friction. We concentrate on mixtures in

whichγ is independent ofφ and both components have the same density and viscosity. The Grashof numberGr = L4F0

ν2 is a
convenient dimensionless measure of the forcing . We keep the diffusivityD = γβ

ξ2 of the system constant. The forcing-scale
Weber numberWe ≡ ρL3

fF0/σ, whereLf = 2π/kf , is a dimensionless measure ofσ.
We use Eqs. (1) and (2) and extensive direct numerical simulations (DNSs) to study turbulence-induced (a) multifractal

droplet dynamics of a minority-phase droplet in a turbulent background of the majority phase [3] and (b) suppression of phase
separation in a symmetric, two-dimensional (2D) binary-fluid mixture [4].

For problem (a) we find [3] that the turbulence-induced fluctuations in the dimensionless deformationΓ(t) of the droplet
perimeter are intermittent. We obtain the probability distribution function (PDF)PΓ(Γ) at the mean steady-state droplet
diameter〈dp〉t/L = 0.22 and three differentWe (Fig. 1(a)) and the multifractal spectrumfΓ(α) (Fig. 1(c)) of the time series
Γ(t) (Fig. 1(b)). We show, in Fig. 1(d), that the PDF of they componentay of the acceleration of the center of mass,P (ay),
are similar to those for finite-size particles in turbulent flows; and the power-law dependence of〈arms〉t on 〈dp〉t/L in the
inset of Fig. 1(d) is consistent with exponents that can be related to the inertial-range scaling of the pressure spectrum. We
also find that the large-k tail of E(k) is enhanced by the droplet fluctuations (Fig. 1(e)). The spectrumE(k) also displays
oscillations whose period is related inversely to the mean diameter of the droplet, and which appear prominently in the order
parameter spectrumS(k) (the Fourier transform of the spatial correlation function ofφ) in Fig. 1(f).

For problem (b) we find that in the absence of any coupling, we get spinodal decomposition and domain growth, which
we examine by the spatiotemporal evolution ofφ. We then show that the Cahn-Hilliard-Navier-Stokes coupling leads to an
arrest of phase separation at a length scaleLc, which we evaluate fromS(k), the spectrum ofφ. In Fig. 1(g) we show pseudo-
gray-scale plots ofφ, at late times, when coarsening arrest has occurred, for four different values ofWe atRe = 124; we find
that the larger the value ofWe the smaller is the linear size that can be associated with domains; this size is determined by the
competition between turbulence-shear and interfacial-tension forces and can be related to the Hinze length scale [4].
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Figure 1: (Color online) Plots for the runs withWe = 5.34, We = 2.3, andWe = 1.38, shown respectively, by blue, green
and red circles, (a) the PDFsP (Γ), (b) Γ(t) versust/τeddy (whereτeddy is the box-size eddy turnover time), and (c) the
multifractal spectrafΓ(α) for the times eries ofΓ. The insets in (a) show pseudocolor plots of the vorticity field withφ-field
contours superimposed on it; (d) semilog (base10) plots ofP (ay) for 〈dp〉t/L = 0.126 (deep-blue circles),〈dp〉t/L = 0.153
(green diamonds),〈dp〉t/L = 0.22 (red squares),〈dp〉t/L = 0.245 (light-blue inverted triangles),〈dp〉t/L = 0.283 (magenta
plus signs) and〈dp〉t/L = 0.324 (yellow asterisk) atWe = 1.38. Inset: Plot of〈arms〉t versus〈dp〉t/L. In (d) the black
dashed line shows a Gaussian fit. Log-log plots (base10) versus the scaled wavenumberk/kmax of (e)E(k) for runs with
〈dp〉t/L = 0.324 (deep-blue line with asterisks),〈dp〉t/L = 0.245 (green line with crosses),〈dp〉t/L = 0.177 (red line with
circles),〈dp〉t/L = 0.126 (light-blue line with plus signs), and single-phase fluid ( magenta line); the power-lawsk−3.6 and
k−5.2 are depicted by yellow-dash-dot and black-dashed lines, respectively; (f) the order-parameter spectrumS(k) = |φ̂(k)|2

for the cases with〈dp〉t/L = 0.22 (deep-blue line with circles) and〈dp〉t/L = 0.126 (green line with circles); for details and
run parameters see Ref. [3]; (g) pseudo-gray-scale plots of the order parameter fieldφ, at late times when coarsening arrest
has occured, in 2D symmetric-binary-fluid turbulence withRe = 124. Note that the domain size decreases as we increase the
Weber numberWe from the leftmost to the rightmost panel:We = 1.2 · 10−2; We = 5.9 · 10−2; We = 1.2 · 10−1; and
We = 5.9 · 10−1; for details and run parameters see Ref. [4].
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SummaryThe statisticalmechanics of quasi-geostrophic point vortices of mixed sign is investigated numerically and theoretically. Direct
numerical simulations of a point vortex system under periodic boundary conditions are performed using a fast special-purpose computer for
molecular dynamics (GRAPE9). Clustering of point vortices of like sign is observed and two tall columnar vortices appear in the course
of time. These numerical results are analyzed quantitatively using a density-based algorithm. The number of clusters decreases as about
t−1, which is significantly slower thant−1.25 found in the previous spectral simulations of geostrophic turbulence (e.g. McWilliamset
al., 1999). The equilibrium states are identified as the sn-sn dipole solutions of the two-dimensional mean field equation (the sinh-Poisson
equation). A three-dimensional mean field equation is derived based on the maximum entropy theory, and several branches of two- and
three-dimensional solutions are obtained. It is shown that the two-dimensional sn-sn dipole branch has the largest entropy.

INTRODUCTION

Geophysical flows are considered to be two-dimensional at the lowest order of approximation, because vertical fluid motion
is suppressed by stable density stratification and the Coriolis force. In two-dimensional turbulence, many coherent vortices
appear spontaneously and their interactions dominate the turbulence dynamics. The statistical mechanics of two-dimensional
vortex system has been studied extensively, starting from Onsager (1949), who was the first to illustrate the existence of
negative temperature states. Montgomery and Joyce (1974) derived the mean field equation (so called the sinh-Poisson
equation) for a system of point vortices of mixed sign, based on the maximum entropy theory. In actual geophysical flows,
the fluid motion is almost confined within a horizontal plane, but different flow patterns are realized on different horizontal
planes. This three-dimensionality is incorporated in the ‘quasi-geostrophic approximation’. The numerical simulations by
McWilliams (1994) of decaying quasi-geostrophic turbulence indicated that the vorticity field developed coherent vortex
structures. There was a period of self-similar dissipative temporal evolution, which terminated as the number of vortices
decreased due to merger and alignment of like-sign vortices. The end state was consisted of a dipole pair of tall columnar
vortices. It will be of interest to investigate the statistical mechanics of a simpler system, i.e., inviscid quasi-geostrophic point
vortex system, to understand the turbulence dynamics deeply, which was undertaken by Funakoshiet al. (2012). The aim of
the present paper is to extend their work. We perform larger numerical simulations with more point vortices, and determine
the two- and three-dimensional maximum entropy states at higher energy level. In order to investigate the clustering process
quantitatively, we also carry out clustering analysis using Density-Based Algorithm for discovering clusters.

NUMERICAL SIMULATIONS

As a simplest model of coherent vortices, we consider point vortices with infinitesimal size. The potential vorticity of point
vortices is concentratedδ-function likeq(r) =

∑N++N−
i=1 Γ̂iδ(r−Ri) at the location of vorticesRi = (Xi, Yi, Zi). Here,N+

andN− denote the numbers of vortices with positive and negative sings, respectively.Γ̂i is the strength of thei-th vortex. We
consider a symmetric bi-disperse case, takingN+ = N− = N and|Γ̂i| = Γ̂0. The point vortices move by mutual advection,
and the motion of thei-th vortex is governed by the canonical equations :dXi

dt = 1
Γ̂i

∂H
∂Yi

, dYi

dt = − 1
Γ̂i

∂H
∂Xi

. These equations
look similar to those describing the motion of two-dimensional point vortices, in which the interaction energy is proportional
to the logarithm of the distance between two vortices. It should, however, be noted that the interaction energy between
two quasi-geostrophic point vortices is proportional to the inverse of the distance between them. The vertical coordinateZi
remains constant, i.e., the vortices move on the horizontal plane on which they are initially located.

We illustrate the results of numerical simulation for a point vortex system in a cubic box of sizeLx = Ly = Lz = 2π. We
integrate the equations of motion forN = N± = 4000 and8000 point vortices of strengtĥΓ0 = 0.062 and0.031, respectively.
The time is normalized by the mean potential vorticityN Γ̂0/(2π)

3 = 1.00, which is taken to be unity. The vertical distribution
P±(z) = L−1

z = 1/2π is assumed to be uniform, as in the dissipative numerical simulations by McWilliamset al. (1994). The
energy is set to beE = 4.428× 10−3, 2.462× 10−3 for the computations withN = 4000 and4.536× 10−3 with N = 8000.
In order to investigate the clustering process quantitatively, we carry out so called clustering analysis using Density-Based
Algorithm for Discovering Clusters (DBADC). We search for a group of vortices, and identify it as a cluster, if its size exceeds
a specified minimum radius and the number of vortices inside the group exceeds a specified minimum number.

∗Takeshi Miyazaki. Email: miyazaki@mce.uec.ac.jp
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We show in Fig. 1 (left) the time evolution for the case ofE = 4.428 × 10−3, at the timest = 0.0, 14.0, 50.0 and
155.0, respectively. The initial unstable distribution is broken by aboutt = 8.0 and many‘ almost spherical clusters are
formed whose aspect ratio is about2. We can see the growth in vertical height of the cluster, called alignment. In Figure 1,
the number of clusters is shown as functions of time for three energy levels. The number of clusters decays liket−1 in
all computations, which is significantly slower thant−1.25 observed in the spectral numerical simulations of geostrophic
turbulence by McWilliamset al. (1999). The cluster height grows while its radius remains unchanged, indicating that clusters
of like sign align vertically but not being merged horizontally. This observation makes a sharp contrast with the fact that the
size of coherent vortex structure grows both in radius and height, keeping its aspect ratio almost constant (about1.6) in the
spectral simulations of gestrophic turbulence. Our simulations of point vortices seem to capture the dynamics in later stages,
in which the energy dissipation becomes very weak.

MAXIMUM ENTROPY THEORY

Funakoshiet al. (2012) derived the mean field equation based on the maximum entropy theory, i.e., maximizing the
Shannon entropy under the constraints of the fixed energyE and the fixed vertical vorticity distributionsP±(z): ∆ψ̄(r) +
λ2(z) sinh ψ̄(r) = 0. Here,ψ̄(r) = −βψ(r) denotes the rescaled stream function andλ2(z) = −2βe−α(z)−1 is a combination
of the Lagrangian multipliers. Coherent vortex structures appear only in the negative temperature region withβ < 0. This
equation is a natural extension of the sinh-Poisson equation derived for the two-dimensional point vortices. The mean field
equation is solved utilizing an efficient iteration procedure proposed by Turkington and Whitaker (1996). Figure 1 (right)
shows several branches of two- and three-dimensional solutions in theE–S (energy-entropy) plane, where the horizontal and
vertical axes denote the energy and entropy, respectively. The inserted figures illustrate the potential vorticity distributions
of two- and three-dimensional solutions. All branches emanate from the pointE = 0, S = 6 log(2π) ≈ 11.027, i.e., the
uniformly random distributionsF± = 1/(2π)3. As can be seen in Fig. 1, the sn-sn dipole branch has the largest entropy,
among other two- and three-dimensional solution branches.

CONCLUSIONS

We have investigated the statistical mechanics of quasi-geostrophic point vortices of mixed sign under periodic boundary
conditions numerically and theoretically. In the direct numerical simulations, clustering of point vortices of like sign is
observed and a two-dimensional dipole structure forms gradually. The clusters align vertically and their number decreases as
aboutt−1, which is slower thant−1.25 of the previous spectral simulations of geostrophic turbulence. This difference is due
to the absence of horizontal merging process in our simulations. The mean field equation, which was derived as an extension
of the sinh-Poisson equation, is solved to obtain the most probable states for the case with the uniform vertical distributions
P±(z) = 1/2π. Two- and three-dimensional solutions are obtained in a wide energy range. The two-dimensional sn-sn dipole
solution has the largest entropy among them, explaining why it appears as the end state of the direct numerical simulations.
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Figure 1:Left: Time-evolutions of the number of clusters, Right: Solution-branches of the mean field equation.
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Summary Using a combination of large-scale rotating fluid experiments and massively parallel Direct Numerical Simulations, we report the
formation of strong zonal jets due to topographical effects in rotating turbulence. For the first time, we reach the so-called “zonostrophic”
regime, thought to be relevant to Jupiter atmosphere for example. The jets dominate the small-scale turbulent fluctuations in amplitude and
appear very stable and long-lived. Although their size is consistent with the so-called Rhines scale, we observe interesting dynamics over
very long time-scales such as merging events where the number of jets decreases and their amplitude increases. These first results open new
perspectives in the study of large-scale zonal flows in the laboratory.

EXPERIMENTAL AND NUMERICAL METHODS

For our experimental set up (see figure 1(b)), we use a cylindrical container 1.4 meter high with an internal radius of 0.5
meter filled with up to 400 liters of water. A turbulent small-scale flow is driven via a basal injection/suction system made
of a square tiled set of 64 inlet/outlet ports, generating velocities in the range U ≈ 1 − 5 cm/s (corresponding to a Reynolds
number 2.5×103 < Re < 1.3×104 and a Rossby number 3.3×10−3 < Ro < 1.6×10−2). As opposed to thermally-driven
experiments (see [1] and references within for example), this set up allows a better control on the energy injection in terms
of spatial scales and amplitudes. The container is mounted on a rotating table of 1.4 meter in diameter, up to 1000 kg in load
capacity and able to perform up to 100 revolutions per minute. Lagrangian surface velocities are measured using a Particle
Tracking method using small floating particles with a typical diameter of 5 mm.
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Figure 1: experimental and numerical methods. (a) Planetary configuration of interest, with the topographic “β”-effect due to
the change of the fluid column depth with the distance from the rotation axis. (b) Sketch of our corresponding experimental
model reproducing the same physical ingredients in a cylindrical geometry, i.e. fast rotation, topographic β-effect and small
scale turbulent energy injection. (c) Cut through the numerical mesh used for the Direct Numerical Simulations.

Numerically, we consider the flow of an incompressible fluid of constant kinematic viscosity ν inside a cylindrical tank
of radius R rotating at rate Ω around the vertical axis ẑ. The upper surface is stress-free and its paraboloid shape is fixed and
given by the balance between centrifugal, gravitational and pressure forces (see figure 1(c)). Both the bottom and side walls are
no-slip. The flow is forced by the steady volumic force F made of small Taylor-Green type vortices with a typical horizontal
wave number of kf = 16. It is purely horizontal initially but rapidly collapses into a three-dimensional small-scale turbulent
flow at the base of the domain. The simulations are performed with the massively parallel spectral-element code Nek5000
(http://nek5000.mcs.anl.gov, see [2] and references within). Nek5000 solves the incompressible Navier-Stokes equations via
a Legendre polynomial based Spectral Element Method which combines the geometrical flexibility of finite element methods
with the accuracy of spectral methods. It is therefore particularly well adapted to our problem involving turbulent flows in
complex geometries.
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RESULTS

Here, we report the experimental results with the following parameters. The depth of the fluid layer at rest is h0 = 50cm
and the rotation rate of the table is 75 RPM. This leads to a very large deformation of the fluid layer, with a minimum depth
after the spin-up phase of h = 20cm at the center of the container and a maximum depth of on the side boundary of h = 88cm.
The associated Ekman number based on the mean water depth isE = 3·10−7. The corresponding simulations are run with the
same upper surface deformation but a slightly larger Ekman number of E = 10−6, using 2048 processors, 53360 elements,
and a Legendre polynomial order of N = 10.

After the spin-up is complete, we start the pumping system forcing quasi-homogeneous small-scale turbulence at the
base of the domain. Due to the very low Rossby numbers, the basal forcing very quickly drives a nearly depth-invariant
turbulent flow. The dominantly geostrophic flow is confirmed by the numerical simulations and shows that Lagrangian surface
measurements are sufficient to characterize the system in a first approach. After several tens of rotation times, alternating
zonal jets start to grow and eventually dominate the small-scale fluctuations. As shown in figure 2, this is observed in both
the experiments and the numerics, although the time scales involved are different due to the different Ekman numbers used.
The initial number of jets is consistent with the so-called Rhines scale, derived from a balance between the turbulent turn-over
time scale and the typical frequency of Rossby waves [3]. Contrary to previous experiments, where the zonal jets are mainly
observed after time averaging, our jets reach the so-called “zonostrophic” regime, where the instantaneous amplitude of the
jets is greater than that of the small-scale fluctuations.

(a)	 (b)	 (c)	

Figure 2: zonal jets visualization. (a) Polar view of Jupiter atmosphere (Credit: NASA/JPL/Space Science Institute). (b) Time
averaged zonal velocity map obtained by particles tracking in our experiment: blue/yellow values are retrograde/prograde jets
(velocity non-dimensionalized by the rotation rate times the tank radius). (c) Horizontal slice through the numerical domain
showing the instantaneous vertical vorticity (left) and zonal velocity (right).

CONCLUSIONS

Using a combination of experimental and numerical approaches, we have obtained for the first time strong zonal jets in
the so-called zonostrophic regime. These jets are extremely stable and live over many rotation timescales, but we nevertheless
observe interesting merging events. Our systematic study allows to understand this dynamics, as well as what fixes the size
and the amplitude of the jets. In the near future, implementations of our system will allow tacking many interesting questions
in the laboratory, like the formation of large-scales vortices in the presence of a top stratified layer [4] and the existence of
inertial wave turbulence [5] .
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4École polytechnique, Palaiseau, France

4School of Mathematics, University of Bristol, Bristol, U. K.
5Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Cambridge, U. K.

Summary We describe a series of laboratory experiments to study the turbulent mixing dynamics of an initially linear stratification in
Taylor-Couette flow, i.e. the flow in the annular region between two concentric cylinders. As described in [1], relatively well-mixed layers
separated by substantially thinner ‘interfaces’ of enhanced density gradient spontaneously form. Consistently with [1], these layers are
extremely long-lived, and exhibit an average turbulent buoyancy flux that falls on a ‘universal’ curve independent of the number of the
layers. However, by high-frequency measurements of density and image analysis, we show that the ‘interfaces’ are highly spatially and
temporally intermittent, and for sufficiently small separation between interfaces, there is a dynamically robust, and profoundly nonlinear
coupling between neighbouring interfaces. Such robust spatio-temporal intermittency has significant implications for the quantification and
parameterisation of mixing driven by horizontal shear, as commonly arises in the environment.

INTRODUCTION

The spontaneous formation of relatively deep horizontal layers of weakly stratified fluid, separated by relatively thin
interfaces of substantially stronger density gradient, is a common feature of strongly stably stratified flows and plays a major
role in the dynamics of geophysical flows, particularly when the flow is both strongly stratified and turbulent. Dating from
the seminal work of Phillips[2], such layer/interface formation is to be expected whenever the irreversible vertical buoyancy
flux is a non-monotonic function of the overall stratification. However, little is known about the physical mechanisms which
drive such robust layer formation, or indeed what sets their characteristic depth and subsequent evolution. When the mixing is
driven by instabilities due to vertical velocity shear, the situation is further complicated by the instabilities themselves having
a characteristic vertical length scale, which may or may not set the initial depth of the layers.

This uncertainty can be avoided by considering layer formation in ‘stratified Taylor-Couette flow’ (STC flow) in the
annulus between a rotating inner cylinder and a fixed outer cylinder, initially filled with stably, axially or vertically and
linearly stratified fluid. Here the dominant velocity shear is in the radial direction, and so the mixing due to turbulence can
be considered in isolation from the large scale stirring associated with (vertical) velocity shear. However, such flows are
still prone to various primary instabilities, including the inherently stratified strato-rotational instability[3], and unpicking the
relative importance of such linear instabilities, nonlinear dynamics and disordered turbulent mixing events for the formation
and subsequent evolution of layers and interfaces is still challenging. Relatively recently[4, 1], it has been demonstrated that
the turbulent mixing in such flows is ‘universal’ in the sense that the vertical flux of buoyancy appears to depend only on an
appropriately defined Richardson number: Ri = [g∆ρ/ρ0][RO/(RIΩ)2], where RI is the radius of the inner cylinder with
rotation rate Ω relative to the fixed outer cylinder RO, and ∆ρ is the density jump across the interface. We investigate what
actually causes this observed mixing, and also the robustness of the flow structures, since the layers and associated interfaces
have previously been assumed to be extremely robust lasting several thousand rotation periods[1, 5].

EXPERIMENTAL PROCEDURE

The outer cylinder has an internal radius of 24 cm, and we use three different inner cylinders, with radii of 5, 10 and 15
cm. The outer cylinder, base and upper surface are stationary, while the flow is driven by the rotation of the inner cylinder,
which has a range of angular velocities from 5 to 24 r.p.m. i.e. 0.5 < Ω < 2.5rad/s. To analyse the time-dependent dynamics
of the various interfaces, we record a shadowgraph image of the tank, which identifies the presence of regions of relatively
strong density gradient, and hence the presence (or absence) of sharp interfaces. We then extract a particular vertical line
from the image, and plot those vertical lines at several times. To investigate the robustness of the observed structures, and in
particular to determine whether the initial spin-up from rest is significant, we run the experiment for 200 rotation periods, stop
the rotation of the inner cylinder until the flow completely stops, and then restart the inner cylinder for 200 rotation periods.
We then repeat the on-off cycle of 200 rotation periods several times. Images taken from a typical initial spin-up cycle for an
experiment with RI = 10cm are shown in the upper panel of figure 1.
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RESULTS

As is apparent to the left of the left panel of figure 1, the initial spin-up of the flow is quite complex, with clear evidence
of spiral structures. These structures are reminiscent of the strato-rotational instability[3], but the characteristic length scale
of the layers which clearly develop are different from the most unstable wavelength of linear theory, pointing to the central
role played by nonlinear processes. More striking is the fact that the layers themselves continually appear and disappear, with
a characteristic period of existence which is robust over the entire flow life cycle.

Even more surprising, as shown clearly by the black line marked on the left panel of figure 1, is that there is strong
coupling between neighbouring interfaces, with a close to constant time lag between the reappearance onset of neighbouring
interfaces as shown in the right panel of figure 1, across different ‘runs’ of (typically) 100 rotation periods. The disappearance
of the interfaces appears to be associated with a coherent mode-1, inherently nonlinear structure, previously observed in such
high Reynolds number (but two-layer by design) STC flow, localised on the single density interface[5]. For sufficiently small
layers, apparently similar structures, localised on neighbouring interfaces, can couple strongly, and this coupling plays a
central role in the ensuing vertical turbulent transport of salinity and hence buoyancy flux. The robustness of these structures
across a wide range of flow parameters demonstrates that the layered state is strongly attracting, and that the predominant
mixing mechanism, at least in flows of this type, effectively ‘scours’ rather than ‘overturns’ the interface[4]. Generic, robust
scouring has significant implications for the appropriate parameterisation of diapycnal mixing in ‘strongly’ stratified flows.
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Figure 1: Left panel: Variation with time over initial 200-period run of shadowgraph images for an initially linearly stratified
experiment with RI = 10cm, N0 = 1.62s−1, and Re = ΩRI(RO − RI)/ν = 7000, where ν is the kinematic viscosity
of water. The formation of layers is visible with a well-defined wavelength, and a time-periodic structure is observed on
each interface. Moreover, these structures appear to be coupled between each interface, with some constant phase difference
between adjacent layers as indicated by the black solid line.
Right panel: Phase difference between adjacent layers for each run of an experiment with Re = 14000, and initial buoyancy
frequency N = 1.62 s−1. The phase difference is calculated from the cross spectrum of the time varying signals on adjacent
interfaces from the second 100 rotation period of each 200-period run (to minimise start-up influence), when the signal appears
to be quasi-steady. Each point represents the mean over a number of layer pairs with the error bars indicating one standard
deviation. The dashed line indicates the mean over all runs with the solid lines denoting one standard deviation.
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Summary The direct numerical simulation of turbulent plane Couette flows are performed at up to Reτ ≈ 500 to investigate the existence
of distinct large scale motion in streamwise direction. 100πδ long simulation domain is used in streamwise direction. It is shown that there
is extremely large scale motions exists in moderately high Re Couette flows and the scale of motions is strongly Re dependent.

Direct numerical simulation (DNS) has been a valuable vehicle for the study of wall-bounded turbulence. In the channel
geometry, the DNS of Poiseuille flow at Reτ up to approximately 5200 is available displaying many characteristics of high
Re wall-bounded flows. [Lee and Moser, 2015] On the other hand, the Re of simulation of Couette flow is still limited.
One of the reasons is that the largest scale motions in Couette flows are much larger than in Poiseuille flows. In particular,
a low-wavenumber peak in the spanwise one-dimensional premultiplied energy spectra, which is indicative of the large-scale
motions, has been observed. It has been speculated that there should be a similar peak in the streamwise spectrum, but this
has not yet been observed, due to limited simulation domain sizes in previous studies. [Avsarkisov et al., 2014] In this work,
we investigate the existence of strong distinct large scale motion in streamwise direction and its effect on statistics.

The simulation reported here are DNS of incompressible turbulent flow between two parallel planes without pressure
gradient. Periodic boundary conditioned are applied in streamwise (x) directions and spanwise (z) directions. The no-slip and
penetration conditions are applied at the walls. Both walls are moving at the same constant speed but in opposite directions.
We simulated cases at three different Reynolds numbers, Reτ = 93/220/505. The computational domain sizes are Ly = 2δ
and Lz = 5πδ where δ is channel half width. Two different domain sizes are used in streamwise direction, Lx = 20πδ,
labeled “small” and Lx = 100πδ labeled “large”. A Fourier-Galerkin method was used in the streamwise and spanwise
directions and a seventh-order B-Splines collocation method is used in the wall-normal direction. Effective grid spacings,
normalized by wall-shear stress and viscosity (denotes “+”, here after), are set to be smaller than 11.3, 0.006, 6.4 and 10.4 in
x, y (at wall), y (at the center of channel) and z directions, respectively. For more details about the numerical method and code
implementation, see Lee et al. [2013, 2014]. The convergence of statistics are monitored by examining total stress, which is
known analytically, 〈∂yU〉+ − 〈u′v′〉+ = 1. The discrepancy between 1 and computed total stress of each case is less than
0.001.

Figure 1: 1D premultiplied energy spectra of u′2; left (Reτ = 93), middle (Reτ = 220), right (Reτ = 505); top
(kxEuu(kxδ, y

+)), bottom (kzEuu(kzδ, y
+)), Lx = 100πδ, Ly = 2δ, Lz = 5πδ
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Figure 2: Mean profiles and variances of u; — (blue, Reτ = 93 large domain), — (red, Reτ = 220 large domain), — (black,
Reτ = 505 large domain), - - - (blue, Reτ = 93 small domain), - - - (red, Reτ = 220 small domain), - - - (black, Reτ = 505
small domain)

The one-dimensional premultiplied energy spectra of the streamwise velocity in the streamwise and spanwise directions
for the large cases are shown in figure 1. Strong large scale motions of u are observed in spanwise direction with peak at
kzδ ≈ 12 in all cases. Also, the contribution of large scale motion at kzδ ≈ 12 is getting stronger as Re increases. In all cases
the simulation domain size in the spanwise direction (Lz = 5πδ) is large enough to contain all motions of significant energy.
Similarly, a strong large-scale contribution to the u′2 is observed in streamwise direction. In the lowest Re case (Reτ=93)
there is no clear scale separation between the general turbulence and the large-scale motion. However, in the Reτ=220 case,
there is scale separation with a large-scale energy peak at kx ≈ 0.1, and in the Reτ=505 the large scale energy peak is at
separation at kx ≈ 0.04. Note that, the natural wavenumber of the large-scale peak is uncertain due to the discrete wavenumber
resolution imposed by the limited domain size (∆kx = 0.02). Nonetheless, it is clear that the large scale motions get larger as
Re increases. Unfortunately it is difficult to determine the precise Re dependency of large streamwise scale from the current
data set.

In the small domain (Lx ≤ 20πδ), the lowest non-zero wavenumber is ∆kx = 0.1 which is too large to include the large
streamwise-scale energy peak observed in the large domain, especially in the Reτ=505 case, and indeed it is not present in
the spectra (not shown). A comparison of statistics from the large and small domain cases (figure 2) therefore provides an
indication of the impact of the large streamwise scales on the statistics. The mean velocity profiles at the lower Reynolds
numbers (Reτ=93 and Reτ=220) show only small differences in outer region between large and small domains. But, the
difference is more substantial in the Reτ=505 case. Similarly, there are not a big deviations in the profiles of u′2 in the
Reτ=93 and Reτ=220 cases. However there is a more significant difference in the Reτ=505 case from y+ = 10 to the center
of the channel.

In this work, it is shown that there are extremely large streawise scales (> 300δ) in fluctuations of u in turbulent Couette
flow, and this size of these large scale motions increases with Re. In contrast, the size of the largest scales in spanwise
direction does not appear to have a significant Re dependence. Another set of simulations with larger streamwise domain
size would be required to accurately determine how the largest streamwise scale varies with Re. In the presentation we will
demonstrate the nature of extreme scale motions and their contribution to various statistics in details.
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SummaryTwo-point statistics in the log-law region of turbulent channel flow are studied on the basis of high resolution direct numerical
simulation (DNS) with the wall Reynolds number and the grid points up to 5120 and2048 × 1536 × 2048, respectively. The DNS data
are consistent with the linear response theory of turbulence. According to the DNS, the Taylor microscale is anisotropic, but has a simple
y-dependence (∝y1/2), and two-point fluctuating-velocity correlations at|r| ∼ y depend onr approximately throughr/yα, wherey is the
distance from the wall,r is the displacement vector between the two points, andα is close to but a little different form 1.

INTRODUCTION

According to the idea of Kolmogorov (K41), there are a certain class of universal laws in the statistics of turbulence at
high Reynolds number, where the influence of fluid boundaries is assumed to be negligible. On the other hand, in real flows
in nature and technology, the flows are often bounded by walls, which may significantly affect the turbulence statistics.

Among canonical wall-bounded turbulent flows are those bounded by two parallel planes (channel flows). We consider the
statistics of turbulent channel flow on the basis of high resolution direct numerical simulation (DNS) with the wall Reynolds
numberReτ up to 5120. A particular attention is paid on two-point statistics in the log-law region. The DNS uses a Fourier
spectral method in the streamwise (x1 = x) and the spanwise (x3 = z) directions and Tchebycheff expansion method in
the wall normal (x2 = y) direction. Readers may refer to Morishita et al. [1] for some details of the numerical method.
Characteristic parameter values of the DNS are listed in Table 1 (from [2]). Figure 1 is an example of visualization of the field
and shows intense vorticity regions in the DNS atReτ = 5120.

STATISTICS IN THE LOG-LAW REGION

In our DNS, it is confirmed that in a certain range ofy the mean streamwise velocityU and the mean rate of energy
dissipationϵ per unit mass fit well to the log-law

U+(y+) =
1

κ
log y+ + C, and ϵ+ = 1/(κy+), (1)

respectively, in accordance with studies so far made, wherey is the distance from the wall and the superscript + denotes the
normalization by the wall units. The constants are approximatelyκ ≈ 0.4 andC ≈ 5. They-range depends onReτ . For
example, it is approximately50 < y+ < 1000 atReτ = 5120 [2] .

Taylor microscale
As seen in Fig.1, the field consists of eddies of a wide scale range. Two-point velocity correlationQij(x, r) ≡

⟨ui(x)uj(x+ r)⟩ is one of the most fundamental measures characterizing such a field, whereu is the fluctuating part of the
velocity field. In our DNS, because of the homogeneity in thex1 andx3 directions,Qij(x, r) is independent ofx1 andx3, and
depends onx only throughx2 = y. For smallr = |r|,Qii is well characterized by the so-called Taylor microscaleλij defined
byQii(x, 0)/{λij(x)}2 ≡ −[∂2Qii(x, r)/∂rj∂rj ]r=0 [1] (no summation overi norj). In the log-law region in our DNS, the
flow field is not isotropic. But they agree well with the scaling∝ y1/2, which is in agreement with the scaling obtained by (1)
and the scaling ofλij for isotropic turbulence.

Table 1: DNS parameters.h, the channel half width;Lx, Lz, fundamental periodic lengths;Nx, Ny, Nz, the number of grid
points,∆x+,∆y+c ,∆z

+, grid width in the wall unit. The subscript denotes the direction.∆yc is at the center of the channel.

Reτ Lx/h Lz/h Nx ×Ny ×Nz ∆x+ ∆y+c ∆z+

Case 1 320 π π/2 128× 192× 128 7.9 7.9 3.9
Case 2 640 π π/2 256× 384× 256 7.9 7.9 3.9
Case 3 1280 π π/2 512× 768× 512 7.9 7.9 3.9
Case 4 2560 π π/2 1024× 1536× 1024 7.9 7.9 3.9
Case 5 5120 π π/2 2048× 1536× 2048 7.9 15.9 3.9
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Figure 1:Intense vorticity region in the DNS atReτ = 5120
in the domain{(x, y, z)|0 ≤ x ≤ Lx/4, 0 ≤ y+ ≤
1000, 0 ≤ z ≤ Lz/4)}. The color shows the distancey from
the lower wall. The distribution of the vorticity amplitude is
shown on thex = Lx/4 andz = 0 planes.

Figure 2: Contours of velocity correlationC11 ≡
⟨u1(x, y, z)u1(x+ rx, y, z)⟩ /

⟨
{u1(x, y, z)}2

⟩
as a func-

tion of y+ andrx/y in the DNS atReτ = 5120. The color
correspond to the value ofC11.

Statistics aty ≫ r ≫ η – Linear response theory
In general, the dominant dynamics in a scale range depends on the scale. LetLS be the length scale defined byLS =

ϵ1/2/S3/2, andη be the Kolmogorov microscale defined byη ≡ (ν3/ϵ)1/4, whereS ≡ ∂U/∂y andν is the kinematic viscosity
of the fluid. According to (1), we haveL+

S = κy+, η+ = (κy+)1/4. A simple dimensional analysis based on the idea of K41
suggests that in the scale ranger such thatLS ≫ r ≫ η, the non-linear interaction with eddies of similar sizer plays the
dominant role, and the influence of the mean flow and the existence of the wall may be treated as perturbation added to the
system dominated by the dynamics. This consideration leads us to apply the idea of the Linear Response Theory (LRT) [2,3].
The LRT gives a prediction onQij , or its Fourier transform in the wavenumber range1/LS ≫ k ≫ 1/η, The wavenumber
dependence for fixedy has been shown to be consistent with DNS [2,3]. It is also confirmed that they dependence is also
consistent with the DNS.

Two-point statistics atr ∼ y
If the log-law in fact exits, it is a challenging question whether we can derive the estimate of the Karman constantκ in

(1) from the first principle, i.e., the Navier-Stokes equation. In such a derivation, it is expected that two points statistics, in
particular they-dependence atr ∼ y may play an important role.

According to our DNS,Qij in the log-law region fits fairly well to the formQij(x,x+ r) = Qij(y, r/Y ) whereY ∝ yα

andα is close to 1 in agreement with the conjecture by Lesile[4]. But a close inspection shows thatα is a little different from
1. Figure 2 shows the contours of the velocity correlationQii(x, r)/Qii(x,0) with i = 1, r = (rx, 0, 0) as a function ofy
andrx/y. If α = 1, then the contours atrx/y ∼ 1 must be vertical, but they are seen a little tilted. The similar is true for the
otheri and direction ofr.

CONCLUSIONS

The analysis of the DNS data of turbulent channel flow withReτ up to 5120 shows the following. (i) The Taylor microscale
is strongly anisotropic, but fits well to the simple scaling∝ y1/2, (ii) the linear response theory is consistent with the velocity
correlation spectra by the DNS, and (iii) the two-point correlationQij(x, r) at r ∼ y depends onr approximately through
r/Y , whereY = yα andα is not far from 1.

This work has been supported partly by JSPS KAKENHI Grant Number (C)26400410.
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Summary Spectra of decaying turbulence in a stratified fluid containing either an active (density stratifying) or a passive high Prandtl
number scalar are investigated by direct numerical simulations. When the fluid is stratified by a low-Prandtl-number active scalar (PrT =
1) and simultaneouly contains a high-Prandtl-number passive scalar (PrS = 25), spectrum of the high-Prandtl-number passive scalar
variance obeys the usual Batchelor scaling. On the other hand, when the fluid is stratified by a high-Prandtl-number active scalar (PrT =
25), horizontal spectrum of that active scalar (or potential energy) decreases rapidly at high wavenumbers to approach the kinetic energy
spectrum, indicating the deviation from the Batchelor scaling. Examination of the spectral budget shows that the deviation is due to the
persistent conversion from the potential energy to the kinetic energy at small scales.

METHODOLOGY

We consider a density stratified fluid due to a buoyant (or active) scalar T∗, which has a Prandtl number PrT = κT∗/ν∗
(dimensional quantities are denoted by asterisks.). Here, κT∗ and ν∗ are the diffusion coefficient and the kinematic viscosity,
respectively. The scalar has a constant mean vertical gradient dT̄∗/dz∗ = const < 0, where z∗ is the vertical coordinate and
the undisturbed mean density is given by ρ̄∗(z∗) = ρ0∗{1 + α∗(dT̄∗/dz∗)z∗} (ρ0∗: representative density of the fluid, α∗:
contraction coefficient of the scalar).

The decaying turbulence in the stratified fluid are investigated by direct numerical simulations. We initially give isotropic
velocity fluctuations, whose rms velocity and integral length scale are given by U0∗ and L0∗, and zero scalar fluctuations. The
Navier-Stokes equations under the Boussinesq approximation and the transport equation for the scalar perturbation are given
by

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂x2j

− 1

Fr2
Tδi3 and

∂T

∂t
+ uj

∂T

∂xj
=

1

RePrT

∂2T

∂x2j
+ u3 (1)

in which physical quantities are non-dimensionalized by the length scale L0∗, the velocity scale U0∗ and the scalar scale
L0∗dT̄∗/dz∗, and i = 3 denotes the vertical component. T represents the scalar deviation from the background. The initial
Reynolds number and the Froude number are set to Re = U0∗L0∗/ν∗ = 100 and Fr = U0∗/(N∗L0∗) = 1, respectively,
where N∗ is the Brunt-Väisälä frequency. Additionally, we prescribe a linear stratification of a passive scalar S∗, which has a
Prandtl number PrS = κS∗/ν∗. The passive scalar obeys a similar transport equation to the second equation of (1).

The governing equations are solved by the Fourier spectral method with the resolution of 10243 for the periodic cubic
region with the domain size of 4π. We present the results of two simulations, in which the Prandtl numbers are set to
(PrT , P rS) = (1, 25), (25, 1). The simulation is terminated at t = 40, which approximately corresponds to seven buoyancy
periods (∼ 7× 2π/N∗ in dimensional form).

RESULTS AND DISCUSSION

We first show the temporal evolution of the horizontal spectra in figure 1. In the left frame of figure 1, the passive scalar
has a higher Prandtl number than the active scalar (PrT = 1, P rS = 25), and only the kinetic energy spectrum and the
passive scalar variance spectrum are depicted. The passive scalar spectrum has much larger fluctuations at high wavenumbers
than the kinetic energy spectrum as it is theoretically shown in [1]. In the right frame is shown the kinetic and potential
energy spectrum when the active scalar has a high Prandtl number (PrT = 25). At an early stage (t ∼ 6), the potential
energy spectrum with PrT = 25 has large fluctuations at small scales as well as the passive scalar spectrum with PrS = 25.
The influence of the buoyancy to small scales is not significant at this time since the Ozmidov wavenumber is at kH ∼ 6.
The Ozmidov wavenumber monotonically increases and exceeds the Kolmogorov wavenumber at t ∼ 9, at which even the
smallest fluctuations of the flow are dominated by the buoyancy. Subsequently the potential energy spectrum rapidly decreases
to approach the kinetic energy spectrum at high wavenumbers.

In the left frame of figure 2, the horizontal spectra of the passive scalar variance with PrT = 1, P rS = 25 normalized by
the Kolmogorov wavenumber kK , the passive scalar dissipation rate χS , the Prandtl number PrS and the Reynolds number
Re are plotted as a function of kH/kB , where kB = kKPr

1/2
S is the Batchelor wavenumber. The normalized spectra almost

converge with a single curve, showing the passive scalar spectrum follows the Batchelor scaling even though the turbulence
is affected by buoyancy. For an isotropic turbulence, a similar result is presented in [2]. On the other hand, the normalized
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horizontal spectra of the potential energy with PrT = 25 disperse, reflecting the rapid decrease of the potential energy at
small scales and the deviation from the Batchelor scaling for a high-Prandtl number active scalar. Though the potential energy
spectrum of the stratified turbulent flow with PrT > 1 is presented in [3], such a phenomenon is not reported. Note that
the Batchelor scaling holds for the vertical spectrum of both the passive scalar variance with PrT = 1, P rS = 25 and the
potential energy with PrT = 25 (figures are omitted.).

To explain the difference between the active scalar spectrum and the passive scalar spectrum described above, we examine
the budget of the scalar spectrum, which consists of the molecular diffusion, the vertical scalar flux and the scalar transfer
from large to small scales. Compared to the passive scalar, the large vertical scalar flux for the active scalar (i.e., conversion
from the potential energy to the vertical kinetic energy) significantly contributes to the rapid decrease of the spectrum at small
scales.
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Figure 1: Temporal evolution of the horizontal spectra of (solid) the kinetic energy, (dashed) the potential energy and (dotted)
the passive scalar variance. The spectra satisfy u2i /2 =

∫
EK(kH)dkH , T 2/(2Fr2) =

∫
EP (kH)dkH , and S2/(2Fr2) =∫

ES(kH)dkH , where the overbar denotes the space average, and kH is the horizontal wavenumber. (Left) PrT = 1, P rS =
25. (Right) PrT = 25, P rS = 1.
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Figure 2: Normalized horizontal spectra of (left) the passive scalar variance with PrS = 25 and (right) the potential energy
with PrT = 25.
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Summary Despite the fact that most jets (natural or man-made) discharge into turbulent environments, the vast majority of previous studies
of turbulent jets have considered the emission of jets into quiescent or laminar surroundings. The present investigation builds on the work
of Khorsandi et al. [1], who studied the velocity field of a turbulent jet emitted into a turbulent background. We examine herein the effect
of an approximately homogeneous, isotropic, zero-mean-flow turbulent background on the scalar field of a turbulent jet. To this end, we
measured the concentrations of a high-Schmidt-number passive scalar within the jet by means of planar laser-induced fluorescence. We
present the statistics of the jet’s scalar field and compare them with the results of a jet emitted into a quiescent ambient.

INTRODUCTION
The velocity and scalar fields of an axisymmetric jet discharging into a quiescent background have been thoroughly in-

vestigated. However, most natural and industrial jet-like flows occur in the presence of external turbulence, and relatively
few studies of jets issuing into a turbulent background have been carried out [1,2,3,4,5]. This prevents the complete under-
standing and prediction of the behavior of turbulent jets in more realistic situations, such as the discharge of pollutants into
the atmosphere or hydrosphere, or the injection of fuels into combustion chambers. Consequently, the effect of background
turbulence on both the scalar and velocity fields of turbulent jets is not well described. Furthermore, of the few previous works
studying jets emitted into turbulent backgrounds, most have focused on the velocity field, with some studies predicting higher
levels of mixing [3,4,5], while others predicted lower mixing [1,2]. Scalar mixing was studied quantitatively in one of these
studies, which observed lower mixing [2], while most works obtained only qualitative data using flow visualization. To aid
in resolving these contradictions, the present investigation undertakes a systematic study of the scalar field within the simple
classic flow of a turbulent jet emitted into a quasi-homogeneous, isotropic, zero-mean-flow turbulent background.

Khorsandi et al. [1] studied the effect of background turbulence on the velocity field of a turbulent jet and showed
that, in addition to increased decay rates of the mean axial velocities, jet widths, and rms axial velocities in the presence of
background turbulence, the mass flow rate of the jet decreased compared to the quiescent case. The latter is an especially
interesting finding since it is associated with lower entrainment into the jet. The reduced mass flow rates of a jet emitted into
a turbulent background may imply lower levels of scalar mixing. Herein, we present the results pertaining to the scalar field
of a jet emitted into a turbulent background necessary to confirm or refute the hypothesis of a reduction of the scalar mixing.

EXPERIMENTAL METHOD
The experiments were performed in a 1.5 × 2.4 × 0.9 m3 section of a large glass tank (1.5 × 6.0 × 0.9 m3) filled with

water in the Environmental Hydraulics Laboratory in the Department of Civil Engineering and Applied Mechanics at McGill
University. The flow conditions of the jet and background turbulence were identical to those of Khorsandi et al. [1] in the same
experimental facility. The turbulent jet had an exit velocity (Uj) of 1.3 m s-1 and a nozzle diameter (D) of 8 mm, resulting in a
jet Reynolds number (= UjD/ν) of 10600. Planar laser-induced fluorescence was used to obtain concentration measurements
of dye (disodium fluorescein, Schmidt number = 2000) within the turbulent jet. The approximately homogeneous, isotropic,
zero-mean-flow background turbulence was generated by a random jet array [6]. The generated background turbulence had
a turbulent kinetic energy (1/2〈uiui〉) of 4.4 cm2s-2 (i.e. urms = 1.7 cm s-1) and an integral length scale (`) of 11.6 cm,
resulting in a Reynolds number (= urms`/ν) of 2000.

RESULTS
Figure 1 depicts the radial profiles of the normalized mean concentration (〈C〉/Co) at different downstream distances

(x/D = 20, 40 and 50). The mean concentrations near the centerline (r/x = 0) are lower in the presence of background
turbulence. However, slightly higher mean concentrations are measured at the edges of the jet (r/x > 0.15), which can be
attributed to the moderately increased width of the jet emitted into turbulent surroundings. Examination of the downstream
evolution of the centerline mean concentration (〈C(r=0)〉/Co vs x/D – not shown) revealed a higher decay rate for the jet
emitted into turbulent surroundings. However, examination of the instantaneous concentrations showed a higher degree of
intermittency in the presence of the turbulent background resulting in higher rms concentrations (Figure 2) due in part to me-
andering of the jet. Although the mean concentrations may contradict the hypothesis of Khorsandi et al. [1] of possible lower
mixing based on the decreased mass flow rate of the jet (associated with lower entrainment), the combination of mean and
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rms concentrations may imply a more complex entrainment and mixing process of jet flow in the presence of the background
turbulence.
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Figure 1: Radial profiles of mean concentration (〈C〉) normalized by the initial concentration (Co) at different x/D.

Figure 3 depicts the probability density function of concentration at the jet axis for quiescent and turbulent backgrounds at
x/D = 40. (Similar results were obtained at different x/D.) In the presence of background turbulence, the concentrations at
the jet axis spanned values of similar magnitude to those for the jet emitted into a quiescent background, even though the two
jets exhibited significant differences in the mean concentrations (Figure 1). The shape of the probability density function is
significantly modified (from a unimodal distribution to a bimodal one) as a result of the highly intermittent scalar field. These
results indicate a large degree of meandering of the path of the jet due to the larger length scale of background turbulence, and
indicate that the mean concentration is not as representative of the instantaneous concentration.
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centration (Crms/Co) at the jet axis (r = 0).

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

C/C
o

P
D

F
(C

/C
o
)

 

 

Quiescent Background

Turbulent Background

r/x = 0

Figure 3: Probability density function of the concentration at
the jet axis (r = 0) at x/D = 40.

In the presence of background turbulence, the entrainment and mixing in the jet may potentially be dominated by i) tur-
bulent diffusion that is significantly enhanced by the turbulent background, and ii) apparent dilution due to meandering of the
jet caused by large scales in the background turbulence. However, simultaneous velocity-concentration measurements would
be beneficial in confirming these hypotheses. In the presentation, additional statistics of the scalar field will be presented, as
well as the results for a jet at Re = 5800.

CONCLUSIONS
In the presence of background turbulence, the scalar field becomes highly intermittent (with concentrations on the order

of those of a jet emitted into a quiescent background) and its statistics are significantly changed. An interesting finding is the
observation of a more complex mechanism of entrainment and mixing in the jet emitted into a turbulent background due to
the meandering of the jet, which explains the absence of significantly higher concentrations as hypothesized by Khorsandi et
al. [1], who had assumed that the effect of the jet’s meandering would not be as prominent.
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Summary We performed direct numerical simulation (DNS) of droplet-laden isotropic turbulence. We released 3130 non-evaporating
droplets of diameter approximately equal to the Taylor lengthscale (corresponding to 5% droplet volume fraction) in decaying isotropic
turbulence at initial Taylor-scale Reynolds number Reλ = 83. We studied four cases: one single-phase case and three droplet-laden cases
in which we varied the droplet- to carrier-fluid viscosity ratio (1 ≤ µd/µc ≤ 100). We first derived the turbulence kinetic energy (TKE)
equations for the two-fluid, carrier-fluid and droplet-fluid flow. This allows us to explain the pathways for TKE exchange between the
turbulent flow of the carrier fluid and the flow inside the droplet. Then, we analyze the effects of varying µd/µc on the turbulent kinetic
energy budget of the carrier fluid, the droplet fluid and the two fluids, and, finally, we explain the underlying physical mechanisms for their
modulation.

The interaction of dispersed droplets and turbulence is important in many natural and industrial processes, e.g. rain
formation [1], liquid-liquid emulsion [2], spray cooling [3] and spray atomization in combustors [4, 5]. Often, e.g., during
secondary atomization or the latter stages of rain formation, the droplets are larger than the Kolmogorov lengthscale, i.e.,
finite-size. The interaction of finite-size droplets and turbulence, in comparison to the interaction of finite-size particles and
turbulence (e.g., in [6]), is expected to incorporate new physical mechanisms. These new mechanisms are a result of the
droplet’s ability to deform, develop internal circulation, break up and coalesce with other droplets. The first two processes
are characterized by two additional non-dimensional parameters: the Weber number, We, and the viscosity ratio between
the droplet fluid and carrier fluid γ = µd/µc. In [7], we have reported on the effects of varying We on droplet/turbulence
interaction, and we now focus on the effects of varying γ on such interaction.

We have performed direct numerical simulation (DNS) of decaying isotropic turbulence laden with deformable droplets,
whose diameter is approximately equal to the Taylor lengthscale at the time of droplet release in the flow field. We released
3130 non-evaporating droplets from rest in the isotropic turbulent flow at time t = 1. Figure 1 shows a snapshot of the
computational domain after the droplets are released (t = 1.5). The non-dimensional parameters characterizing the two-fluid
flow are the initial Taylor-scale Reynolds number at droplet release time, Reλ = 83, droplet Weber number based on the
r.m.s. velocity at release time, Werms = 1, the droplet- to carrier-fluid density ratio, ρd/ρc = 10, the droplet volume fraction,
φv = 0.05, and the droplet- to carrier-fluid viscosity ratio which is varied from 1 to 100 in the three droplet-laden cases
studied. The initial droplet diameter is 1.1 Taylor lengthscales and 20 Kolmogorov lengthscales. The computational domain
is a periodic cube, which is discretized using 10243 grid points, giving a droplet resolution of 32 grid points per diameter. The
governing equations were solved numerically using a fast pressure-correction method [8] that has been verified and validated.
To capture the droplet interface and to track the motion of the finite-size deforming droplets, we used a mass-conserving
Volume-of-Fluid (VoF) method [9].

Figure 1: Instantaneous droplet interfaces in shaded white (C = 0.5 isosurface) and vortical structures in red (λ2 = −50
isosurfaces) at t = 1.5. (Left) full domain (1× 1× 1); (right) sub-domain (0.25× 0.25× 0.25).
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We simulate four cases: a single-phase case and three cases in which the viscosity ratio (γ) is increased from 1 to 10 to
100. Figure 2(a) shows the time evolution of the carrier-fluid turbulence kinetic energy (TKE) normalized by its initial value,
kc(t)/k0, in the four cases. The presence of the droplets increases the decay rate of carrier-fluid TKE compared to the single-
phase case. As the viscosity ratio (γ) increases from 1 to 100, the decay rate of kc(t) increases. By analyzing the evolution of
the terms in the carrier-fluid TKE budget, the results show that as γ increases, the enhanced decay of kc(t) is due primarily to
an increase in the dissipation rate of carrier-fluid TKE, εc(t) (figure 2(b)). εc(t) increases because as γ increases, the velocity
gradient near the droplet interface increases in the carrier fluid and decreases in the droplet fluid (figure 3). Therefore, the
carrier-fluid dissipation rate (εc(t)) increases, while the droplet fluid dissipation rate decreases.
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Figure 2: Temporal evolution of (a) the carrier-fluid turbulence kinetic energy, kc, normalized by its initial value, k0 and (b)
the carrier-fluid dissipation rate of turbulence kinetic energy, εc, normalized by its initial value, k0.
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Figure 3: Illustration of the velocity profile, u(y), at the interface of a droplet released from rest in uniform flow. The
illustration depicts the effects of varying the viscosity ratio, γ. Unity viscosity ratio (γ = 1): at the interface, the velocity
is continuous and the velocity gradient is continuous (left); viscosity ratio greater than unity (γ > 1): at the interface, the
velocity is continuous and the velocity gradient is discontinuous (right).
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Summary The optimal control theory is applied to determine wall blowing and suction for skin friction drag reduction in direct numerical
simulations of a fully developed turbulent channel flow. A particular focus is on the effects of the time horizon used in the optimal control
on the resultant control input and the control performance. Compared with the well-known opposition control[2], higher drag reduction is
commonly achieved with the optimal control. Through the detailed comparison between the control inputs obtained by the opposition and
optimal controls, the drag reduction mechanisms in the optimal control are discussed.

BACKGROUND

In the modern society, the reduction of turbulent skin friction drag is in huge demand in order to mitigate the environmental
burden. The skin friction is mainly governed by microscopic coherent structures near the wall, so that the effective control
within the thin near-wall layer is essential. So far, a wide variety of control schemes has been proposed. Passive schemes
are advantageous in the sense that they don’t require additional power consumption for control. On the other hand, active
control schemes are in general more flexible, and results in higher control performance, since they can adapt their control
inputs to instantaneous flow states. Among active control schemes, the optimal control theory provides a unique opportunity
to mathematically optimize the control input to minimize a prescribed cost functional, and generally achieves highest control
performance[1, 3, 4]. Despite its remarkable control performance, the optimized input and its control mechanisms are still
not well understood. In the present study, we revisit the optimal control for skin friction drag in a fully developed channel
flow. The resultant optimized control input are compared with that in one of the most well-known control schemes, i.e., the
opposition control [2] in order to clarify the drag reduction mechanisms in the optimal control.

NUMERICAL PROCEDURES

In the present study, we conduct direct numerical simulations of a fully developed turbulent channel flow. The streamwise,
wall-normal and spanwise directions are denoted by x, y, z. The governing equations of incompressible fluid are the Navier-
Stokes and continuity equations. The streamwise and spanwise widths of the computational domain are Lx = 2.5πδ and
Lz = πδ, respectively, where δ is the channel half depth. The Reynolds number based on the friction velocity uτ in the
uncontrolled flow and δ is set to be Reτ = uτδ/ν = 150 throughout of this work. Regardless of the presence of control,
the flow rate is kept constant, so that the wall friction decreases when an applied control is successful. Periodic boundary
conditions are applied in x and z directions, whereas the no-slip condition, i.e., u = w = 0, are used for the tangential
velocity components at top and bottom walls. As for the wall-normal velocity on the wall, it is also set to be zero for the
uncontrolled case, whereas the zero-net-mass-flux wall blowing/suction ϕ is applied as a control input. The fluid governing
equations are solved by a pseudo-spectral method. The present code has been validated in simultaneous suboptimal control of
wall friction drag and heat transfer [3], and then extended to apply the optimal control theory [4].

As a reference case, the opposition control[2] is considered. In this case, the control input, i.e., wall blowing/suction, is
determined so that it opposes to the wall-normal velocity fluctuation at a prescribed distance from the wall. The wall distance
of the sensing location is set to be y+ = 15, which is optimal at the present Reynolds number, where the cross represents a
value in wall unit. In the case of the optimal control, we first define a cost functional J as follows:

J =

∫ T

0

∫
dΩ

(
− 1

Reτ

∂u

∂y
n2 + αϕ2

)
dSdt, (1)

where dΩ is the wall boundary of the computational domain, and nj is the unit outer-normal vector on dΩ. Obviously, the first
term is the wall friction integrated over an entire wall and within a time horizon T . The second term corresponds to the cost
of control, where the weight coefficient α is set to be unity in this study. The optimization procedure is essentially the same
as those reported in [1] and [4]. In all controlled cases, we start applying control at t = 0. In the case of the optimal control,
the time horizon, in which the control input is optimized, is systematically changed as T+ = 50, 100, 150 and 200, which are
referred as T50, T100, T150 and T200, respectively.
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Figure 1: Time traces of Left) the wall shear stress; right) root-mean-square of blowing velocity after applying control at
t+ = 0. Magenta, T50; red, T100; green, T150; blue, T200. Solid black, the opposition control; broken, the uncontrolled.

Figure 2: Instantaneous control inputs at t+ = 0. Left) T200; Right) opposition control.

RESULTS

The time histories of the wall shear stress in the uncontrolled and controlled cases are plotted in Fig. 1. It should be noted
that all controls are applied to the exactly same initial flow field at t+ = 0. As the initial flow condition, a fully developed
turbulent state is used. The optimal control commonly achieves higher drag reduction than the opposition control for all time
horizons considered. It is also found that a longer time horizon results in higher drag reduction. A closer look around t+ ≈ 10
reveals that the wall friction of T50 achieves larger drag reduction compared to the opposition control, while the other cases
enhance the drag. Specifically, the wall friction in T150 and T200 are even larger than the uncontrolled value at the begging
of the control, and then rapidly reduced after t+ > 20 The time traces of the root-mean-square of the input wall-normal
velocity are shown in Fig. 1. It is found that the optimal control generates strong blowing/suction at the very beginning of
the control, i.e., t+ < 10 and then the control inputs are attenuated drastically with time. On the other hand, the intensity of
the control input in the opposition control does not change significantly in time, since it is always applied to oppose the wall
normal velocity fluctuation at a detection plane. These results indicate that the there is a clear difference between the drag
reducing mechanisms of the optimal and opposition controls. Finally, the instantaneous control inputs at the bottom wall in
the optimal control T200 and the opposition control at t+0 = 0 are compared in Fig. 2. The control input in the opposition
control has a streamwise-elongated structure, which corresponds to the presence of the quasi-streamwise vortices close to
the wall. In contrast, the optimal control input has wider structures in the spanwise direction. These two control inputs are
not entirely different, since the correlation coefficient between them is around 0.3. Nonetheless, the clear difference suggests
different control mechanisms. In the final presentation, we will investigate the drag reduction mechanisms of the optimal
control through detailed comparison between the control inputs in the opposition and optimal controls.
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Summary We apply the Integral Length-Scale Approximation (ILSA) model [Piomelli et al., J. Fluid Mech., 766, 2015] in Wall-Modelled
Large-Eddy Simulations. In the ILSA model the length scale used for the eddy viscosity is defined in terms of the integral scale, rather
than the grid-size, as is common practice. The only model coefficient is determined by prescribing a target value of the contribution of
subfilter-scales (SFS) to the turbulent stresses, called “SFS activity”. By increasing the SFS activity near the wall, the model correctly
represents the gradual transition from an LES, away from the wall, to a RANS-like model near the wall, where the grid is of the same order
as the integral length scale, and all eddies become subfilter scale. The modified model was applied to channel flow at Reτ = 5 × 103,
5× 104, 5× 105 using various resolutions and predicted the DNS data and log-law very well.

In large eddy simulation the governing equations are filtered with an assigned filter width, ∆, to separate the fields between
resolved and unresolved (subfilter) scales as a function of the filter-width. The nonlinear nature of momentum equations
results in additional stress terms, here called subfilter-scale (SFS) stresses. The SFS stresses are usually modelled using an
eddy-viscosity hypothesis which depends on the filter width, ∆. In most LES simulations it is related to the local grid size, h,
i.e. ∆ ∝ h. This choice causes various shortcomings, extensively explained in Ref. [1].

Piomelli et al. [1] proposed an alternative definition of ∆, decoupled from the grid, and is proportional to the integral
length-scale, Lest (Integral Length-Scale Approximation, ILSA). Lest is estimated based on the resolved turbulent kinetic
energy (TKE) and total dissipation. The single model parameter, Ck, is determined based on the contribution of SFS to the
turbulent stresses, called SFS activity. Two formulations were derived based on the volume averaged or local SFS activity
[2].Here, we extend the application of the localized ILSA model to wall-modelled LES (WMLES). WMLES is an approach
in which the inner layer scales (which demand most of computational power) are by-passed and only the outer flow eddies,
that scale like the boundary layer thickness (or channel half-width), are resolved. Then the effect of the by-passed wall layer,
reflected as a momentum flux at the wall, is modelled.

In this work we solve the filtered Navier-Stokes equations in an open channel with periodic conditions in streamwise
and spanwise direction, and a symmetry condition at the top boundary. Since the grid is too coarse to resolve the near-wall
eddies, we use approximate boundary conditions [3]. In particular, we employ the logarithmic law approach, requiring that
the average velocity at the first grid point satisfies the logarithmic law. Then the averaged wall shear-stress, 〈τw〉, is calculated
from the log-law and is used to update the instantaneous streamwise and spanwise wall shear-stress which then are imposed
as slip boundary conditions at the wall. The impermeability condition is imposed on the normal velocity.

In ILSA the eddy viscosity used to parametrize the SFS stresses is defined as:

νsfs = C2
k

〈Kres〉3

〈εtot〉2
∣∣S∣∣ (1)

where Kres = u′iu
′
i/2 and εtot = 2 (ν + νsfs) s

′
ijs
′
ij are the resolved TKE and dissipation, respectively.

∣∣S∣∣ =
(
SijSij

)1/2
is

the strain-rate magnitude of the resolved field. The model parameter, Ck, is determined based on the following formulation
for SFS activity which quantifies the contribution of SFS to turbulent stresses, denoted as sτ :

sτ =

[ 〈
τaijτ

a
ij

〉
〈(τamn +Ramn) (τamn +Ramn)〉

]1/2
, (2)

where
Ramn = u′mu

′
n −

δmn
3
u′ku

′
k, τaij = τij −

δij
3
τkk = −2νsfsSij . (3)

The user assigns a desired value of sτ , and the model coefficient Ck is calculated dynamically by solving (2) (which can
be recast as a quadratic equation for C2

k). The averaging operation, 〈...〉, in (2) is local (Eulerian/Lagrangian time frame,
homogeneous directions); here, for open channel flow, plane averaging is used [2]. In WMLES the grid, near the wall, is
insufficient to resolve even the largest eddies. Therefore, the simulation effectively becomes a solution of the Reynolds-
Averaged Navier-Stokes (RANS) equations. In this region the SFS activity must be increased (to reach 1 at the wall) to
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Figure 1: Application of wall-modelled ILSA on channel flow at Reτ = 5×103 with sinτ = 0.02. (a) mean velocity; (b) urms
normalized by uτ . 64× 20× 32; 64× 40× 32; 64× 40× 64; 128× 40× 64; + DNS [4]

Figure 2: Application of wall-modelled ILSA on channel flow at Reτ = 5 × 104 with sinτ = 0.02. (a) mean velocity; (b)
urms; (c) sτ ; (d) Lest. Wall-modelled ILSA: 128 × 40 × 64; 256 × 40 × 128; 256 × 80 × 128;
256× 160× 128. Dynamic model: 256× 80× 128. Log-law: .

account for the increased contribution of the unresolved eddies to the transport of momentum. The following distribution of
sτ for wall-modelled ILSA is used:

sτ (y) = sinτ +
1− sinτ
y/D + 1

(4)

where y is the normal distance to the wall, sinτ is the value of sτ far away from the wall (y > 20D). The fitting hyperbola (4)
bridges between a RANS like simulation at y = 0 to a well-resolved LES at y ' 20D. Numerical experiments suggested the
use of D = 0.1y1 , where y1 is the centre of first grid cell, which implies that the simulation is in RANS mode only for the
first two or three grid cells.

The proposed model was applied on open-channel flow at Reτ = 5 × 103, 5 × 104, 5 × 105; the domain size for all
simulations was (6δ, δ, 3δ) with a uniformly distributed grid. Results at Reτ = 5× 103 are compared against DNS data [4] in
Figure 1 for several grid resolutions. All the simulations predict the mean velocity accurately. For urms, agreement with DNS
appears for y > 0.2 corresponding to sτ < 0.025 which falls within the resolved LES zone.

Figure 2 shows the application of wall-modelled ILSA and dynamic eddy-viscosity model [5] at Reτ = 5 × 104. All
cases with ILSA model performed accurately while the dynamic model results in incorrect prediction of log-law. This is
due to the poorly resolved flow field near the wall and thus under-prediction of the dynamic model parameter. Using ILSA,
as the number of grid points is increased in the normal direction, near-wall resolution is improved and the fitting hyperbola
decays faster from the wall (due to decreasing D), to reduce the size of the RANS region close to the wall. Calculations at
Reτ = 5× 105 (not shown here) revealed that the model is accurate for 0.01 ≤ sinτ ≤ 0.03, which is the same range observed
in wall-resolved LES. Application of wall-modelled ILSA on high Reynolds number separating boundary layer is ongoing.

References

[1] Piomelli U., Rouhi A., and Geurts B. J.: A Grid-Independent Length Scale for Large-Eddy Simulations. J. Fluid Mech. 766, 499-527, 2015.
[2] Rouhi A., Piomelli U., and Geurts B. J.: A Dynamic Subfilter-Scale Stress Model for Large Eddy Simulations based on Physical Flow Scales. 15th

European Turbulence Conference, Delft, Netherlands, 2015.
[3] Piomelli U., and Balaras E.: Wall Layer Models for Large-Eddy Simulations. Annu. Rev. Fluid Mech. 34:34974, 2002.
[4] Lee M., and Moser R. D.: Direct Numerical Simulation of Turbulent Channel Flow up to Reτ ≈ 5000. J. Fluid Mech. 774, 395-415, 2015.
[5] Germano M., Piomelli U., Moin P., and Cabot W. H.,:A Dynamic Subgrid-Scale Eddy Viscosity Model, Physics of Fluids. 3, 7, 1760-1765, 1991.

1462



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

SIMULATION AND MODELING OF EXTENDED WIND-FARMS

Richard J.A.M. Stevens ∗1, Luis A. Martı́nez Tossas2, Dennice Gayme2, and Charles Meneveau2

1Department of Science and Technology and J.M. Burgers Center for Fluid Dynamics, University of Twente, The
Netherlands

2Department of Mechanical Engineering, The Johns Hopkins University, USA

Summary We present a comparison between large eddy simulations (LES) using an actuator disk or an actuator line method with wind
tunnel measurements performed at EPFL to analyze the accuracy of different wind turbine modeling approaches. We observe a very good
agreement between the simulation results and wind tunnel measurements. We find that even on relatively coarse grids including the turbine
nacelle improves the accuracy, compared to the wind tunnel data, of the flow profiles just behind the turbine in the LES. Subsequently,
we use these LES to simulate the turbulent flow in extended wind-farms with very large inter turbine spacings. These LES results are
compared to analytical predictions for the performance of different wind-farm configurations obtained from the Coupled Wake Boundary
Layer (CWBL). We show that the CWBL model reproduces the LES results for many conditions and discuss the observed discrepancies.

INTRODUCTION

Wind turbines interact with the environment over a wide range of length scales ranging from millimeters (viscous scales)
and meters (wakes and tip vortices) up to “geophysical scales” of hundreds of meters (inter-turbine spacing) to kilometers
(windfarms). The large scale separation makes analysis and design of windfarms challenging from both a theoretical and a
numerical perspective. However, a detailed understanding of the relevant physics is critical for efficient windfarm designs. In
this work we first present a validation of a detailed large eddy simulation (LES) wind-farm modeling approach against wind
tunnel measurements. Subsequently, this LES model is used to obtain data for different wind-farm configurations to validate
the analytical Coupled Wake Boundary Layer (CWBL) model that can be used to get a very fast estimate of the wind-farm
performance for many conditions.

COMPARISON LES WITH WIND TUNNEL MEASUREMENTS

To simulate wind-farms we use a LES code which solves the filtered Navier-Stokes Equations using a pseudo-spectral scheme
in the two horizontal directions and second-order finite differencing in the vertical direction. The subgrid-scale model that is
used is the scale-dependent Lagrangian dynamic model [2]. The turbines are modeled using an actuator disk or an actuator
line method. Figure 1 [3] compares LES results obtained using an actuator line model to represent the turbines with wind
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Figure 1: Comparison of the mean streamwise velocity (top panels) and turbulence intensity (lower panels) profiles as a
function of height for different streamwise locations behind the turbine. The circles are data from a wind tunnel experiment
by Chamorro and Porté-Agel [1]. The blue and red lines indicate actuator line model LES results with and without the
modeling of a nacelle.
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tunnel measurements performed at EPFL [1]. A comparison with the measurement data reveals that even on a relatively coarse
grid including the nacelle, which is not a standard procedure, significantly improves the agreement between the LES and the
wind tunnel data.

COUPLED WAKE BOUNDARY LAYER MODEL

With an experimentally validated LES mode available, it is possible to use it in development and testing of simpler, engineering
wind-farm models. Two common wind-farm modeling approaches are wake models and the top-down model. Wake models
[4] approximate the growth of velocity deficits behind each turbine as linear and account for wake-wake interactions through
superposition of squared velocity deficits. This approach captures the entrance effects well, but is less accurate in modeling
the deep-array effects. Top-down models [5] are able to capture the coupling between the wind-farm and the atmospheric
boundary layer, but do not capture the effects of relative turbine positioning. The CWBL model [6] introduces a two-way
coupling between these approaches and provides improved predictions over its constitutive models.

To test the CWBL model under conditions where it has not yet been evaluated, we model turbulent flow in wind-farms
that consist of a regular array of wind turbines. We consider wind-farms with ten (or more) rows in the streamwise direction
in order to study the fully developed regime. This number of turbine rows ensures that the power output of the later rows is
approximately constant in both aligned and staggered wind-farm configurations. The distances between wind turbines are sxD
and syD, where D is the turbine diameter, in the streamwise and spanwise directions, respectively. We vary the streamwise
spacing in the range ∼ [3.5,36] and the spanwise spacing in the range ∼ [3.5,12] and consider different combinations of these
spacings in these parameter ranges. The inflow in our simulations is obtained using a concurrent-precursor method [7] and the
turbines are represented by an area averaged actuator disk model using a constant thrust coefficient CT , which is representative
of turbines operating in region II. Figure 1 shows a sample comparison of LES and CWBL model predictions. The various
comparisons to be presented show that the CWBL model reproduces the LES results under many conditions. Conditions under
which discrepancies exist are also identified and discussed.
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Figure 2: Normalized velocities at hub-height obtained in (a) LES and from (b) the CWBL model for an aligned wind-farm
with sx = 7.85 and sy = 5.24. (c) Corresponding normalized power output P(x)/P(1) development. Figure from Ref. [6].
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SummaryIn previous works [1-2], the extension of the Kolmogorov K41 theory forpurely viscous power-law fluids was developed. In
the present work, the same procedure is used to find Kolmogorov microscales for yielding fluids. This idea is applied for Bingham plastic
rheology and the related scales are derived. As a direct application a friction equation is developed for Bingham fluids by relating the
purposed velocity scale and friction factor using a phenomenological model for turbulence. Comparing the new Blasius-type friction
equation with experimental results shows a good agreement.

INTRODUCTION

Turbulent flow of purely viscous non-Newtonian (PVNN) fluids is present in many industrial applications. Typical exam-
ples are the transport of some polymeric substances, sewage sludges, coal, china clay and many other mineral suspensions.
Despite its great engineering importance, only few works have been dedicated in literature to this topic.

Recently, authors have developed an extended version of the Kolmogorov K41 theory for purely viscous non-Newtonian
fluids [1-2]. The purpose of the current paper is to extend further this idea into yielding fluids. Also, using the phenomeno-
logical turbulence model of Gioia and Chakaborty [3], it is possible to related Kolmogorov microscales to friction. Using this
model, a Blasius-type friction equation was developed for Newtonian [3] and non-Newtonian (Power-Law) fluids [1]. The
second part of this paper is dedicated to develope such an equation for Bingham fluids. To our knowledge there is no such a
theoretical equation in the literature.

KOLMOGOROV SCALES

For the sake of simplicity, in the reminder of this paper only Bingham rheology is considered. This model is expressed as
τ = τy + µ∞ γ̇ whereτy stands for the yield stress,µ∞ is plastic viscosity anḋγ is shear rate. It should be emphasized here
that in the turbulent flow yielding fluid, it is believed the stress is higher than yielding limit in any point or at least, thixotropy
of the fluid do not let the plug micro-regions to form [4]. Thus the unyielded situation is removed from the rheological model
considered here.

The starting point of Kolmogorov’s theory is Richardson’s notion of energy cascade [1]. Based on experimental and
numerical evidences it can be assumed that this picture of energy transfer through eddies remains same for PVNN fluids.

K41 theory is based on three important hypotheses combined with dimensional arguments and experimental observations.
It is clear that the first hypotheses (local isotropy of turbulence) is still valid in turbulent flow of PVNN fluids. However, first
similarity hypotheses should be changed asin every turbulent flow at sufficiently high Reynolds number, the statistics of the
small scale motions (micro-scales) have a universal form that is uniquely determined byε (dissipation rate), and rheological
properties of the fluid (τy andµ∞). Finally Kolmogorovs second similarity hypothesis states that in every turbulent flow at
sufficiently high Reynolds number, the statistics of the motions of scalel in the rangel0 ≫ l ≫ η have a universal form
that is uniquely determined byε independent of viscosity. Because of independency on viscosity, this hypotheses remains
unchanged for PVNN fluids.

To complete our extension of Kolmogorov Hypothesis, we just need to provide the relation betweenǫ, τy andµ∞ (Kol-
mogorov micro-scales). To do this, we start from dissipation. Generally, dissipation can be expressed asǫ = τS, whereǫ
andS(∼ γ̇) stand for dissipation and strain rate, respectively. Using Bingham model, we will haveǫ = (τy + µ∞γ̇)γ̇ where
at dissipation range this can be approximated byǫ = (τy + µ∞

u
l
)(u

l
) whereu and l aredissipation velocity and length.

Combining this with dissipation calculated from integral scale (U3/L), we will have:

U3

L
=

(

τy + µ∞

u

l

)(u

l

)

(1)

It is logical to assume (same as Newtonian fluids) that in the limit of Kolmogorov scales, the local Reynolds number is equal
to one. For the Bingham fluid , the local viscosity can be expressed asµ = τ/γ̇ = µ∞ + τ0

l
u

. Usingequations (1) and
Relocal = 1, one can obtain velocity scale as following

uη

U
=

√

√

√

√

√

He2

Re4
+ 4

Re
+ He

Re2

2
(2)
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Figure 1: Comparison of Relative error of predictions of purposedformula with Darby-Melson and Blasius equations.

whereRe = ρUL
µ∞

is the bulck flow Reylonds number andHe is the Hedstrom number defined asρτyL
2

µ2
∞

.

Friction Equation
Thanks to phenomenological theory developed by Gioia and Chakaborty [3], the Kolmogorov micro-scales can be related

to friction factor [1-3]. Here we extend this idea to yielding fluids.
To derive an expression forτw, the shear stress at the wall, we follow the procedure set forward in [3]. We consider that

the momentum transfer through the near the wall viscous layer balances wall shear stress and also yield stress of the fluid. On
top of this layer, fluid has a high velocity which scales withU . However, in the viscous layer, the axial momentum transfer is
negligible so that the net rate of momentum transfer is due to the normal velocity, which is induced by the small eddies. Thus,
the stress scales asτw = τfluidw + τy ∼ ρUun, whereun is the velocity of the dissipating eddies, which will be assumed equal
to uη. Combinign this idea with the velocity scale of the previous section, it easy to show

ffluid =
8τfluidw

ρU2
= C(ξ)

√

√

√

√

√

He2

Re4
+ 4

Re
+ He

Re2

2
− 8

He

Re2
(3)

whereffluid is Darcy friction factor andC(ξ) is assumed to be equal to0.316 for Newtonian case (ξ= 0) to comply with
Blasius equation. Simple comparison with experimental data shows thatC is not strong function ofξ at least for low values
of ξ. So, it is assumed to be constant equal to 0.316 here. The accuracy of the predictions of equation (3) is compared with
experimental results of [5], in Figure 1. For the sake of comparison, results obtained with the empirical equation of Darby
and Melson [6] are also shown in this figure. This limited test seems to indicate that our analytic formula preforms even
better than purely empirical equation Darby and Melson [6] (The maximum error of new equaiton is less than 10%, where the
empirical equation shows up to 15% deviation from experimental results). However, further experimental evidence remains
necessary for a final judgement. It is also interesting to note that developed equation approaches Blasius equation in the limit
as expected, while Darby and Melson [6] equation does not.
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ENERGY TRANSFER BETWEEN ION CYCLOTRON AND WHISTLER MODES IN HALL
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Summary Using the generalized Elsasser variables expansion, we investigated the energy transfer by the interaction between ion cyclotron
and whistler modes in fully developed turbulence of an incompressible Hall magnetohydrodynamic plasma. Asymmetry of energy budget
between the ion cyclotron and whistler modes, i.e., energy transfer which tend to break chiral symmetry is observed.

INTRODUCTION

In the present study, we attempt to apply the analytical mechanical viewpoint to the results of direct numerical simulation
(DNS) of fully developed turbulence of an incompressible Hall magnetohydrodynamic (HMHD) plasma. During Lagrangian
mechanical analysis of the invariant action for the ideal, incompressible HMHD system, we found helicity-based particle-
relabeling operator[1]. The eigenfunctions of this operator are double Beltrami flows (DBF), i.e., force-free stationary solu-
tions to the equation of motion[2]. It was also shown that they provide a family of orthogonal function bases that yields the
spectral representation of the equation of motion with a remarkably simple form. Among the DBFs, considering the influence
of a uniform background magnetic field and the Hall term effect vanishing limit, the generalized Elsasser variables (GEV),
which was introduced by Galtier to formulate the closure problem [3], are found to be the most suitable for avoiding problems
with singularities in the standard magnetohydrodynamic limit. We developed the GEV application procedure to DNS datasets
and calculated the energy spectra and transfer functions of the ion cyclotron and whistler modes[4]. However, the detailed
analysis of transfer functions were left unresolved, because the analysis method that guaranteed the detailed energy balance
was not established.

BASIC EQUATIONS AND CONSIDERATION ON THE QUADRATIC TERMS

The time development of an incompressible HMHD plasma motion is determined by the following equation: ∂tZ⃗ + (Z⃗ ◦
∇̃)Z⃗ = DZ⃗, where Z⃗ := (V ,B) is a pair of velocity and magnetic fields; hereafter, called Z⃗-variables. The quadratic and
dissipation terms are respectively defined by:

(Z⃗1 ◦ ∇̃)Z⃗2 =
1

2

(
Ω1 × V2 − V1 ×Ω2 −∇× (V1 × V2) +B1 × J2 − J1 ×B2 −∇PV
∇× (B1 × (V2 − αJ2)− (V1 − αJ1)×B2)− J1 × V2 − V1 × J2 + αJ1 × J2 −∇PB

)
,(1)

DZ⃗ = (ν△V , κ△B), where Ω, J , PV , PB , α, ν, and η are vorticity (Ω = ∇×V ), current field (J = ∇×B), generalized
pressures to satisfy the divergence-free conditions, the Hall term strength parameter, kinematic viscosity, and resistivity,
respectively. The expressions of quadratic terms in Eq. (1) are determined by postulating that the bilinear operator (∗ ◦ ∇̃)∗ is
given by a linear combination of the Riemannian metric and the Lie bracket:

⟨
Z⃗3

∣∣(Z⃗1 ◦ ∇̃)Z⃗2

⟩
Z
= C1

⟨
Z⃗1

∣∣{Z⃗2, Z⃗3

}⟩
Z
+

C2

⟨
Z⃗2

∣∣{Z⃗3, Z⃗1

}⟩
Z
+ C3

⟨
Z⃗3

∣∣{Z⃗1, Z⃗2

}⟩
Z
, (the definitions of the symbols

⟨
∗
∣∣ ∗ ⟩

Z
and

{
∗, ∗
}

are given in Sect. 3
of Ref. [5]). The coefficients are determined by the following three physical conditions: (1) when the dissipation terms
are absent, the evolution equation, ∂tZ⃗ + (Z⃗ ◦ ∇̃)Z⃗ = 0⃗, agree with the Euler-Lagrange equation of the ideal HMHD
system; (2) the detailed energy balance holds; i.e., the Riemannian metric is right-invariant in mathematical terminology:⟨
Z⃗3

∣∣(Z⃗1 ◦ ∇̃)Z⃗2

⟩
Z
+
⟨
(Z⃗1 ◦ ∇̃)Z⃗3

∣∣Z⃗2

⟩
Z
= 0; (3) the substantial derivative operator ∂t + (Z⃗ ◦ ∇̃) is Galilean invariant.

GENERALIZED ELSASSER VARIABLES

In the numerical analysis procedures, velocity and magnetic fields are firstly expanded by the complex helical waves
[6], say ϕσk

(k⃗): V =
∑
V̂ σk

(k⃗)ϕσk
(k⃗), B =

∑
B̂σk

(k⃗)ϕσk
(k⃗), where σk = ±1, k⃗ are the helicity parameter and the

wavenumber, respectively. Using these coefficients, we decompose Z⃗-variables into the generalized Elsasser variables, say
Z⃗sk
σk
(k⃗), as follows:

Z⃗(x⃗, t) =
∑

Ẑskσk
(k⃗; t)Z⃗sk

σk
(k⃗; x⃗), where Ẑskσk

(k⃗) :=
V̂ σk

(k⃗) + λskσk
(k⃗) B̂σk

(k⃗)

1 + λskσk(k⃗)
2

, Z⃗sk
σk
(k⃗) :=

(
ϕσk

(k⃗)

λskσk
(k⃗)ϕσk

(k⃗)

)
,
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Figure 1: Time development of the energy transfer spectra (a) −
⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗+
⟩
Z

, (b) −
⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗−⟩
Z

, (c)
−
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗+
⟩
Z

, and (d) −
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗−⟩
Z

.

and sk = ±1 is the wave modes defining parameter. The eigenvalues, λskσk
(k⃗) = σkskλ

−sk (where λ = πα|⃗k|+ [(πα|⃗k|)2 +
1]

1
2 ), and the corresponding eigenfunctions, i.e., the GEVs, Z⃗sk

σk
(k⃗), are derived from the linearized dissipationless HMHD

equations: ∂tV = (B0 · ∇)B, ∂tB = (B0 · ∇)
[
V − α(∇×B)

]
, where B0 is a uniform background magnetic field. The

modes with σ = +1 (resp. −1) are the ion cyclotron waves (resp. the whistler waves). The set of these eigenfunctions work as
an orthogonal basis of Z⃗-variable space, even if the background magnetic field is absent (B0 = 0). The details of derivation
and numerical procedures were described in [4].

NUMERICAL RESULTS

Energy budget is analyzed using the same DNS dataset as Refs. [4], [7], and [8], wherein the details of numerical
methods and the principal features of the obtained turbulent snapshots were discussed. The quantities are normalized using
the dissipation rate of the magnetic field, say ϵB(t), and the resistivity (η), and shell averaged in the wavenumber space on the
intervals, Sj := {k⃗; 2−(j+1)/2kη(t) < |⃗k| < 2−j/2kη(t)} for integers (j) and the characteristic wavenumber of the dissipation
range (kη(t) := (ϵB(t)/η

3)1/4). In the present study, we decompose Z⃗-variable into the shell band-pass filtered components
and the ion cyclotron and whistler modes: Z⃗ =

∑
j(Z⃗

+
j + Z⃗−

j ), where Z⃗sk
j :=

∑σ=±1

k⃗∈Sj
Ẑskσk

(k⃗; t)Z⃗sk
σk
(k⃗; x⃗) for sk = ±1.

We analyzed in the present study the budget equations given by ∂t
⟨
Z⃗s
j

∣∣Z⃗s
j

⟩
Z
= −

∑
s′

⟨
Z⃗s
j

∣∣(Z⃗ ◦ ∇̃)Z⃗s′
⟩
Z
+
⟨
Z⃗s
j

∣∣DZ⃗s
j

⟩
Z
.

As was shown in Ref. [4], the analysis of
⟨
Z⃗+
j

∣∣(Z⃗ ◦∇̃)Z⃗
⟩
Z

and
⟨
Z⃗−
j

∣∣(Z⃗ ◦∇̃)Z⃗
⟩
Z

revealed that the energy is transferred
from larger scales to smaller scales as a whole irrespective of the wave modes. Using Eq. (1), we decompose the nonlinear
transfer as follows:

⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗
⟩
Z

=
⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗+
⟩
Z
+
⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗−⟩
Z
,
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗
⟩
Z

=
⟨
Z⃗−
j

∣∣(Z⃗ ◦
∇̃)Z⃗+

⟩
Z
+
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗−⟩
Z
. The transfers

⟨
Z⃗+
j

∣∣(Z⃗ ◦ ∇̃)Z⃗−⟩
Z

and
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗+
⟩
Z

evaluate the energy budget
between the ion cyclotron modes (Z⃗+) and the whistler modes (Z⃗−), while the other two indicates the redistribution of energy
among each of these modes.

In Fig. 1, the time development of these four energy transfer spectra is shown. It is most remarkable that the spectra
of
⟨
Z⃗−
j

∣∣(Z⃗ ◦ ∇̃)Z⃗+
⟩
Z
, which evaluates the energy transfer from the ion cyclotron mode to the whistler mode, have almost

stationary and positive functional profile for all the snapshots (see Fig. 1(c)). This implies that the energy is one-sidedly
transferred from the ion cyclotron modes to the whistler modes. This suggests that the breaking of chiral symmetry[9] is
spontaneous and intrinsic to the HMHD dynamics.

The counterparts of this excitation is given by
⟨
Z⃗+
j

∣∣(Z⃗ ◦∇̃)Z⃗−⟩
Z

(see Fig. 1(b)). The functional profile reads that the ion
cyclotron mode energy is most actively extracted around k ∼ 0.03kη, which corresponds to the peak of energy spectra (see
Fig. 1 of Ref. [4]). Besides, the functional profile also tells us that the energy transfer to (or the mode excitation at) smaller
scales around k ∼ kη is remarkably small compared with the other three transfer functions (see Fig. 1(a), (c), (d)). In other
words, the whistler modes practically has no feedback to the ion cyclotron modes in the dissipation range.

As a whole, we observed remarkable asymmetry of the energy transfer, i.e., almost one-way excitation of the whistler
modes by the ion cyclotron modes, which leads to chiral symmetry breaking.
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Summary Results of a study examining the mixing of a passive scalar downstream of different single and multiscale turbulence generators
(arrays of bars of various thicknesses) are reported in this work. Three different experiments were performed, each consisting of simultane-
ous velocity and concentration measurements, involving different dye release conditions: a mixing layer (solely in terms of the concentration
field, the velocity field was uniform), a single point continuous release and a single point discrete release. The data was used to quantify the
different mixing performance of the considered turbulence generators. Some concentration results are further linked to secondary coherent
structures revealed during the velocity field analysis.

MULTISCALE FLOWS

Fractal generated turbulence has been widely discussed in the scientific community in recent years. In particular, its
potential for mixing enhancement was reported by [1] as a significant increase in the turbulent cross-stream scalar transfer
was observed. The authors postulated the concept of a scale-space unfolding (SSU) mechanism which is a plausible physical
scenario linking such behaviour to the multiscale nature of the flow. The motivation behind the present work is to verify
the SSU idea by providing experimental proof of its existence and quantifying its impact on mixing performance. This is
approached via measuring velocity and concentration fields, using particle image velocimetry (PIV) and planar laser induced
fluorescence (PLIF) techniques respectively, in the near-wake of a single and multiscale arrays of bars (the setup is shown in
figure 1), as the latter can be seen as a canonical example of a multiscale flow.

Figure 1: Experimental setups utilized in the
study (the mixing layer case)
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Figure 2: Normalized magnitudes of the secondary coherent
structures associated with a) f1 − f2 and b) f1 + f2 frequencies
(black contours indicate mean wake positions).

VELOCITY FIELD

As a near-wake contains energetic coherent structures, a triple decomposition (see [2]) was utilized for the velocity field
analysis. The fluctuations were split into the stochastic part and coherent parts corresponding to shedding modes of various
bars (a separate phase signal was associated with each of the resolved modes). The phase signals were further used in a
conditional analysis which revealed some novel secondary coherent structures (see [3]). They appear to be the result of non-
linear triadic interactions between the shedding modes of adjacent bars, with the affiliated frequencies f1 ± f2 (where f1 and
f2 stand for the shedding frequencies). Spatially, they are located at the edges of the smaller wake,, as depicted in figure 2.
The importance of these structures is to be studied by consideration of the spectra of the scalar flux terms (i.e. the transport of
coherent concentration fluctuations by coherent velocity fluctuations, the transport of stochastic concentration fluctuations by
coherent velocity fluctuations, etc.). The results will be delivered in the final paper.
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CONCENTRATION FIELD

The improvement in mixing due to multiscale turbulence generation (compared to a single scale array) is going to be
shown from both the global homogenization and the transverse scalar transport perspectives. The first comparison is achieved
by studying the mean growth of a mixing layer downstream of different arrays. The mixing layer is generated by putting
a splitter plate, which divides the flume’s cross section into halves, upstream of an array and supplying one of the created
sub-channels with a uniform dye solution instead of clean water (the velocity field stays uniform throughout). It is observed
that the multiscale design homogenizes the concentration field more rapidly, as shown in figure 3.
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Figure 3: The bulk mixing comparison for single and multiscale
arrays at an arbitrary downstream position: a) the mean profiles
and instantaneous fields for b) single and c) multiscale arrays.
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Figure 4: An example of the temporal evolution of a
distinctive dye blob introduced into the multiscale flow.

The other comparison is completed by tracing dye released into the flow from a single point located at the rear face of
the smallest bar within a given array. This approach, originally intended to mimic the SSU scenario, enables a visualisation
of some quasi-periodic dye transfers between the adjacent wakes that occur in the multiscale flow. These are only observed
at certain downstream positions, close to where the additional coherent structures are located. Examples of such bursts (an
elongated transverse dye structure) are depicted in figure 5. It is believed that these engulfments are manifestations of the SSU
mechanism.

Additionally, a similar experiment is performed in which the dye is released in short discrete “bursts” as opposed to
continuously. Distinctive blobs of dye, originally of order of 1mm in diameter, are followed one by one so that the resulting
point separation growth (when treating the single blob like a grouping of adjacent points) can be established. This experiment
provides data for some Lagrangian mixing properties’ estimation, e.g. (yt − y0)2, where yt stays for a transverse coordinate
of the fluid portion at time t thats originates form y0 at the time 0. The example of the temporal growth of a single dye blob
is given in figure 4. The full results will be presented in the final paper along with the comparison to the previous numerical
simulations by [4].
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Figure 5: An example of the instantaneous concentration field behind the multiscale
array (normalized with the local profile’s rms). The dye is continuously released from
the point source.
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Summary Recently in Saveliev & Gorokhovski (2012)  Phys. Rev. E. 061112 the turbulent cascade model was proposed in the framework of 
renormalization of eddy-fragmentation equation under scaling symmetry. The analytical solutions to this equation for energy density and energy 
flux across length-scales have been obtained. Our present work consists in assessment of those solutions by DNS. 
 
Fragmentation Model of Turbulent Cascade and Main Motivation 

   In applications to critical phenomena and field theory, the idea of scaling symmetry, i.e. an assumption of invariant to 
details statistical evolution of a non-equilibrium system with respect to change of the length-scale of observation, was 
successfully developed in celebrated works of Kadanoff and Wilson [1] and was successfully put into practice. However 
this idea is not exploited to its fullest extent in turbulence. Instead, the Kolmogorov 41 theory of turbulent cascade assumes 
the local statistical equilibrium in high-frequency motions, such that the overall turbulence decay is regarded as very slow, 
and the energy flux in spectrum of length-scales remains constant. In [2], the model of turbulent cascade was developed in 
the framework of fragmentation under scaling symmetry. To this end, the fragmentation equation was derived for the 
turbulent energy density in the space of length-scale, and this equation was renormalized, i.e. it was rewritten in the form of 
the continuity equation, in which the evolution in time is resulted from interaction of all length-scales.  Thereby the 
divergence form of renormalized equation contained explicitly the energy flux towards zero-size. This equation conserves 
the total energy and is controlled by the “bare” flux of the specific energy, as a parameter. The auto-similar solutions to this 
equation for time-distributions of the energy and of its flux in the space of length-scale were found in the class of confluent 
hypergeometric functions, and they were expressed by elementary functions. Interestingly, with time translation to infinity, 
those solutions agreed with the Kolmogorov 41 law for the energy density 𝑓(𝑟) = 𝐶00

2/3𝑟−1/3, including the value of 
constant 𝐶0 = 2, which is usually presented in turbulence as an empirical one. The main motivation of our present work is 
to assess those solutions numerically. 
 
Performed Simulations and Assessment. 

   The first case concerns the decaying statistically homogeneous turbulence. The DNS on the mesh containing 2563 
nods was performed in 3D-box of 2π-size for 𝑅𝑒𝜆 = 67, 𝜀0 = 2.077𝑚2/𝑠3, 〈𝑢′2〉 = 2.58 𝑚/𝑠. An outcome from our 
simulations were time-distributions in the space of length-scale of the energy density and of the energy flux. The latter was 
computed first from the spectral energy balance in the space of wave numbers, and then it was recalculated for the length-
scale 𝑟. From other side, in the fragmentation model of the turbulent cascade [2], the “bare” flux of the energy flux was 
attributed to the rate of the energy decay 𝜀0 at largest spatial scales. The results are shown in two following figures. The 
first one compares the energy density 𝑓(𝑟, 𝑡) at four times issued from DNS (discontinuous line), from fragmentation 
model [2] (continuous line) and from the Kolmogorov 41 (red symbols). It is seen that in the inertial zone, where the 
solution from the fragmentation model tends with time to the power function, there is a good agreement between theoretical 
and computed distributions, mimicking the both the behaviour of classical Kolmogorov 41 law. 

 

1471

sophie
Typewritten Text
__________

sophie
Typewritten Text



The second figure below compares the energy flux distribution 𝑗(𝑟, 𝑡) towards smaller sizes for four times, indicating 
analytical solutions (continuous line) and DNS (discontinuous line). It is also seen that in the inertial range of scales the 
theory and computation display the similar behaviour. At small scales, the fragmentation model shows the continuous 
growth of the flux (manifested by accumulation of zero-size particles due to scaling symmetry), while DNS exhibits the 
viscous dissipation effect : distributions go to zero.     
 

 
 
The next step of assessments concerned the model of the acceleration of fluids particles in the framework of the 
fragmentation model.  Here we coupled the energy flux expression with the acceleration of fluid particles, and we 
compared DNS Lagrangian statistics with the model, as well as with the log-normal stochastic model given in [3, 4]. In the 
final paper these results will be presented.   
 
At the moment, we develop the model of Lagrangian acceleration of fluid particles in the homogeneously stretched 
turbulence, and we are going to compare the fragmentation based model of the Lagrangian acceleration with DNS.      
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   Summary: Scalar dissipation is obtained in the self-preserving region of a free round turbulent air jet at high Reynolds 
number. Air is slightly heated and temperature is considered passive. Simultaneous laser Doppler velocimetry–cold-
wire thermometry measurements were used to balance the temperature variance equation budget. Special care was paid 
to the statistical convergence of third-order moments. Temperature dissipation was deduced from the budget and 
directly measured with parallel cold wire probes. The validity and limitation of two point scalar measurements are 
presented. 
 

INTRODUCTION 

   The control of the dispersion of pollutants in the atmosphere and fuels in a combustion chamber requires a good 
understanding of the mixing process of scalars in turbulent flows. This understanding is necessary in modeling the 
transport of scalars in industrial applications. Several works dealt with mixing in reacting flows. For non-reacting flows, 
different approaches were employed to characterise scalar mixing in turbulent jets (Antonia and Mi, 1993 (A.M); Pietri, 
et al. 2000). These later authors used LDV and cold wire thermometry to document the flow before the self-similar 
region (x/D = 15) of a slightly heated turbulent jet at ReD =2.1x104. Their focus was on the statistics of individual 
fluctuations of velocity and temperature. In our case, ReD was equal to 1.5x105, which corresponded to Re  = 548. High 
order moments and turbulent fluxes were measured in the self-similar region (x/D=30) and validated against the 
predictions of momentum and enthalpy equations (Darisse et al, 2013). In the present work the velocity measurements 
were performed with LDV technique. Extra care was devoted to the control of the boundary conditions, flow stability 
and statistical convergence. Most studies devoted to the direct measurement of the temperature dissipation rate have 
done so using an open loop approach. Since the target dissipation rate was obtained from the budget, it was possible to 
compare it to the direct measurements and analyse the validity of the temperature derivative measurements. This 
constitutes, to the authors’ knowledge, the first time direct measurements of temperature dissipation were tested against 
a reliable estimate of this rate obtained in the same flow. 
 

EXPERIMENTAL SYSTEM AND MEASUREMENT TECHNIQUES 

   The experimental system is composed of a slightly heated free jet produced with a convergent nozzle with a 
contraction factor of 25:1 and an exit diameter of 63.17 mm. The nozzle profile was a fifth degree polynomial that 
guaranteed a top hate velocity profile. The jet exits in a large room larger than 42D on each side to avoid confinement 
effect. Measurements were produced at x/D =30 with a jet exit velocity of Ujet = 36.4 m/s. Air was heated so that the 
nozzle exit temperature was 20 C above ambient. The density ratio jet / amb was equal to 0.99 at x/D = 30 on the jet 
centerline. Velocity was measured with an LDV system from Dantec using a two color argon laser (blue 488 nm and 
green 514 nm) and a BSA-F60 analysing system. The focal distance of the optic system was equal to 1000 mm which 
allowed producing 22 interference fringes in the measurement point (0.14x0.14x3.70 mm3 and 0.15x0.15x3.90 mm3) 
for the blue and the green beam respectively. Temperature fluctuations were measured with current constant 
thermometry operating at an extremely low overheat (cold wire) and a low current of 0.1 mA. The sensors were made 
from Wollaston wire with a diameter of 0.58 mm. At x/D =30, on the jet axis, the ratio of the cut-off frequency over 
Kolmogorov frequency was estimated to be 2.20. The estimated error of the temperature dissipation was of the order of 
5 %.  
 

METHODOLOGY 

   The direct temperature dissipation was obtained using three different techniques: 1- from the use of Taylor’s 
hypothesis assuming local isotropy; 2- from the temperature correlation at two point measurement; 3- from a finite 
difference method. As explained in Darisse et al. (2013), in the case of a round jet, the correlation coefficient and finite 
difference methods are essentially identical. The only difference lies in the potential calibration and gain errors 
introduced in the finite difference methods. Antonia et al. (1984) found the temporal and spatial correlation coefficient 
to yield similar results 
 

DISCUSSION 

   In the < 2>/2 budget, third-order correlations such as <v 2> require long samples in order to achieve statistical 
convergence, (Pietri et al. (2000)). This convergence is even more important considering that it is the gradient of this 
correlation that is required to estimate the turbulent diffusion term of the budget. In Figure 1, the radial distribution of 
<v 2> is presented and because no results could be found in the literature for comparison, we compared our results with 
data from Panchapakesan and Lumley, (1993) obtained in a Helium jet. The agreement around the centerline is due to 
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negligible buoyancy effect for the Helium jet. This agreement also confirms the soundness of the results for this 
difficult to measure correlation. The confidence in the data for all the production, convection and diffusion terms lead to 
balance the budget of the temperature fluctuation and deduce the remaining term (dissipation). In Figure 2, the 
normalized budget is represented with the results of Antonia and Mi, (1993) (grey lines). These authors measured 
directly the dissipation. The comparison shows a disagreement in the central region of the jet, where it seems, the direct 
measurements cannot resolve the presence of a hump at   0.7. Figure 3 presents the relative magnitude of x, r and 

, the streamwise, radial and azimuthal components of temperature dissipation. The three curves are plotted against  
/3. Although, it is not expected that this reference will hold up away from jet centerline, it provides a useful basis for 
comparison. As found by Antonia and Mi, (1993), the three components of dissipation have roughly equal values on the 
jet centerline. This observation was already reported in Darisse et al. (2013). This near-equality prevails roughly up to  
 = 0.5. The value of r and  remain approximately equal throughout the jet notwithstanding the spreading. Contrary 

to the results of A.M., x becomes dominant around  = 1 and a large proportion of the peak reported in Figure 2 is 
attributed to the behavior of this component. 
 

Figure 1: <v > radial distribution 
Figure 2: Budget of < 2 >/2. 

 
Figure 3: Three components of temperature 
dissipation

 
   The spectral analysis of the streamwise temperature gradient obtained using a pair of probes presented in Darisse et 
al. (2013) revealed that for the most part, the attenuation present for high wavenumbers caused by wire separation was 
reasonably corrected using Wyngaard’s analysis. However, departure from the spectra obtained using Taylor’s 
hypothesis for low wave numbers was clearly reveled. The spectra obtained from the finite difference approximation 
would inevitably exhibit a very high level of low wave number content while the Taylor spectra would, as expected, 
monotonously decrease to zero when k1 the wavenumber tends to zero. 
   The simulation of finite streamwise wire spacing using a convection velocity also provides an illustration of the 
effects of this distortion. When the simulated separation is wide enough, ripples start to appear in the derivative spectra 
as a consequence of the filtering effect (Darisse et al. (2013)). No such ripples are found in the streamwise derivative 
spectra, even for large wire separation. Ripples are thus not observed because under the presence of transverse instant 
velocities and the highly fluctuating streamwise velocity, the turbulent structures are distorted, so that they are not fully 
convected from the upstream probe to the one located just downstream. Antonia et al. (1984) simulated this effect by 
considering a fluctuating convection velocity in the calculation of their Taylor spectrum and observed that the ripples 
would then vanish. The mathematical operation performed would no longer be akin to a finite impulse response filter. 

 
CONCLUSIONS 

   The direct measurement of the scalar dissipation is analysed and compared to one obtained from the budget of the 
transport equation of < 2 >/2. The limitation of temperature derivative measurements using two probes is shown and 
the reason of their failure identified. It is pointed out that a true derivative spectrum for the scalar is not attainable given 
the available approaches. Perhaps the knowledge of the passive scalar field obtained through direct numerical 
simulations could shed a new light on this behavior of the streamwise derivative spectrum and the mechanism through 
which the low wavenumber contents appear. 
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Summary :  Normal Inverse Gaussian law with four parameters , ,  and µ is shown to fit very well the experimental 

pronounced PDF shape with heavy tails at small scales and the Gaussian-like shape for the large scales. The probability 

density functions of velocity increments are obtained from recorded time series in the self-similarity region of a heated jet.  

The Reynolds number (𝑅𝑒𝑗 = 105) is sufficiently high to consider the flow as fully turbulent.  

 

INTRODUCTION 

 

   Because of intermittency, turbulent processes have the property to show a pronounced PDF shape with heavy 

tails for the increments at small scales of the velocity field. For the large scales, the PDF of increments tends to a 

Gaussian like type. A stochastic process approach to model this trait of turbulent process has recently been 

proposed [1]. The mathematical formulation is built in order to predict the correct shape of PDF at any scale of 

the velocity increments. Simulations of the process clearly show PDFs similar to those experimentally obtained. 

A maximum likelihood procedure is used by the authors to fit the PDFs by Normal Inverse Gaussian (NIG) law 

from small scales to large scales. The mathematical properties of the 4-parameter NIG (𝛼, 𝛽, 𝛿, 𝜇) distribution 

are presented in [2] with its extensive use for three different data sets including data from a Jet flow. The 

analysis revealed a striking similarity scaling of  𝛼/𝛿  of all three flow configurations. We consider that extended 

experimental support in different configurations of high Reynolds number turbulent flows is needed to comfort 

the proposed stochastic modeling. The present work is a contribution towards this goal by presenting some 

results on the PDF of velocity increments in a turbulent heated jet of Taylor Reynolds number  𝑅𝜆 = 316 . We 

determine the 4-parameter NIG distributions for different lag time s and compare the results with those obtained 

by the previous authors in the case of a lower Taylor Reynolds number and frequency sampling.  

 

EXPERIMENTS 
 

The jet flow produced with a nozzle of 𝑑 = 63.5𝑚𝑚 in diameter is slightly heated to consider the temperature as 

a passive scalar. Investigated Reynolds number 105 is sufficiently high for the flow to be fully turbulent as 

shown by the well separated ranges of large scales, inertial and dissipative scales in the spectra (fig.1). The 

longitudinal velocity 𝑢 is recorded at  𝑥/𝑑 =  30 in the centerline of the jet with a sampling frequency of 

𝑓𝑠 = 40 𝑘𝐻𝑧 and each time series realization contains 2. 106 samples. For more details about the experimental 

apparatus and techniques the reader can advantageously consult the references [3,4]. The data used in the present 

analysis have been kindly provided by Professor A. Benaissa. A huge number of data points is necessary to 

accurately estimate the PDF tails and consequently the effect of intermittency. A unique functional form of the 

4-parameter class of NIG distributions is used to match all the experimental PDF of velocity increments for 

different scales.   

The NIG distribution has PDF function given by the following analytical expression [1,2]: 

 

𝑝(𝑥, 𝛼, 𝛽, 𝛿, 𝜇) =
𝛿𝛼

𝜋. √(𝛿2 + (𝑥 − 𝜇)2)
𝐾1 (𝛼. √(𝛿2 + (𝑥 − 𝜇)2)) exp (𝛿√(𝛼2 − 𝛽2)) exp (𝛽(𝑥 − 𝜇)) 

 

𝐾1  is the Bessel function of the second kind with index one. In the present work, the parameters are determined 

by Maximum Likelihood estimation.   

 

RESULTS AND DISCUSSION 

 

   The spectrum depicted in figure 1 reveals the inertial range where the classical −5/3  power law of 

Kolmogorov is verified followed by the dissipation range. Well separated ranges are observed owing to the high 

value of Reynolds number. Figure 2 reports the dynamic behavior of the velocity increment squared  (Δ𝑢)2 =
[𝑢(𝑡 + 𝑠) − 𝑢(𝑡)]2  with time lag  𝑠 = 10 (1/fs units). We can clearly visualize the intermittency phenomenon 

and figure out the necessity of a great number of data points for an accurate estimation of  the  PDF tails. 
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                 Figure 1- Spectrum of the velocity                     Figure 2- Dynamics of (Δ𝑢)2 versus units of  
1

𝑓𝑠
 

 

The PDF of velocity increments for different time lag s are reported on figure 3. As the time lag increases we go 

through the dissipation range, inertial range and the large scales range. We observe the heavy tails of the PDF at 

small scales and the Gaussian-like shape at large scales ( for s = 2000, the red curve is the Gaussian pdf ). 

 

 

 
   Figure 3-  PDF (Δ𝑢) for different time lags s- (experimental data: blue points- NIG distributions: black curves) 

                                                                          

It is clear that the Normal Inverse Gaussian fits accurately experimental pdf  at all scales. 

 

CONCLUSIONS 

 

   A unique functional form of 4-parameters Normal Inverse Gaussian law is shown to represent accurately the 

PDF of velocity increments from dissipative scales to the large scales where it collapses with the Gaussian 

distribution.  Further analysis is being conducted to figure out  scaling properties of the parameters.   
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Summary Stereo particle image velocimetry is used to examine the influence of varying levels of freestream turbulence on the wakes of a
pair of side-by-side cylinders crossflow. Four different inflow conditions are employed. Each inflow condition is applied to three different
cylinder-to-cylinder spacing values. The mean velocity components and Reynolds stresses are heavily affected by the inflow condition as
well as the center-to-center spacing. Low dimensional representations found using Proper Orthogonal Decomposition recover energy at
rates that are also dependent on the level of incoming turbulence intensity.

INTRODUCTION

In addition to being of fundamental interest, groups of cylinders are a commonly found in engineering applications such as
heat exchangers, structural supports, and cables. In many applications, the incoming flow is highly turbulent. Much work has
been done to examine the wake behind single cylinders and to a lesser extent pairs or groups of cylinders. Even fewer studies
have been done to examine the changes in the wakes due to freestream turbulence. The present study examines the changes in
the wakes of pairs of side-by-side cylinders as a function of varying freestream turbulence intensity and cylinder-to-cylinder
spacing.

EXPERIMENTAL METHODS

Wind tunnel experiments are conducted at the facility at Portland State University. This closed circuit tunnel has a 9:1
contraction ratio. The test section is 5 m in length with a cross-section which is 0.8 m in height and 1.2 m in width. Four
different inflow conditions are used in this experiment which vary in the inflow turbulence intensity. The inflow is dependent
on a variable removable section at the tunnel inlet. In three of the inflow cases, the removable section houses an grid which is
operated passively or actively using two different winglet rotation protocols. In the fourth inflow case, the removable section
is a simple duct with a cross-section identical to that of the tunnel test section. Figure 1 illustrates the arrangement of the
pair of cylinders employed herein. For each inflow condition, three different transverse spacing to diameter ratios (T/D) are
employed: 1) T/D=1.5, 2) T/D=2.1, and 3) T/D=2.7. The four inflow conditions and T/D spacings compose a set of twelve
unique cases. End plates with a design described by Szepessy [1] are attached to the cylinders 0.06 m from the tunnel floor and
ceiling, respectively. Each cylinder has a diameter of 19.1 mm and has a ground surface. Based on the endplate-to-endplate
distance, the cylinders have an aspect ratio of 35. The combined blockage of the cylinders and structural attachments at the
floor and ceiling is 6.5%.

Stereo particle image velocimetry (SPIV) measurements are made at 0.4 m from the tunnel floor which is half of the test
section height. The SPIV system is composed of two LaVision 4 megapixel Pro LX cameras fitted with Schiempflug adapters,
a Litron Nano L 200-15 double pulsed Nd:YAG laser, and the software DaVis 8.1.5 by LaVision. The flow is seeded with
Diethyl-Hexyl Sebacate that was aerosolized via a seeding generator which uses a Laskin nozzle. Images are processed using
a multi-grid strategy for the stereo cross-correlation with two passes with interrogation area size of 64×64 pixels with 50%
overlap followed by three passes of interrogation area size of 32×32 pixels. Erroneous vectors are removed using a median
filter. Spurious vectors are replaced with vectors computed via a Gaussian interpolation of valid neighboring vectors.
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Figure 1: Top view of wind tunnel test section with experimental setup
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RESULTS

Figure 2 shows the mean streamwise velocity component, U , for T/D=1.5 for four different freestream turbulence in-
tensities. The lowest turbulence intensity employed was Tu%=0.32 which is displayed in Figure 2(a). This set of inflow
conditions the wake is consistent with bistability reported in previous studies for laminar inflow and low T/D ratios [2]. Fig-
ure 2(b) shows the same cylinder-to-cylinder spacing but with Tu%=3%. At this higher turbulence intensity, asymmetry in the
velocity is still present to a much smaller degree than in the laminar inflow case. The higher turbulence intensity cases with
Tu%=19.4% and Tu%=16.4% are shown in Figure 2(c) and Figure 2(d), respectively. The velocity deficits are symmetrically
distributed in both of these sets of conditions. For conciseness, the additional cases in which T/D=2.1 and 2.7 are not shown.
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Figure 2: Mean normalized streamwise velocity for turbulence intensities (a) Tu%=0.32%, (b) Tu%=3%, (c) Tu%=19.4%,
and (d) Tu%=16.4%. Origin of coordinate system set so that x/D = 0 coincides with the center of both cylinders.

Proper orthogonal decomposition (POD) using the method of snapshots [3] was done for each set of cases in order obtain
a low dimensional representation of each case. Focusing on the only cases corresponding to those shown in Figure 2, a greater
number of modes is needed to recover 50% of the turbulence kinetic energy as turbulence intensity is increased. As seen in
Figure 3(a), the highest energy containing mode shows evidence of vortex streets in for the Tu%=3% case. In contrast, as
seen Figure 3(b) the highest energy containing mode for the Tu%=19.4% case do not indicate the presence of vortex streets.

Figure 3: Highest energy containing POD modes for the cases with (a) Tu%=3% and (b) Tu%=19.4%.

CONCLUSIONS

The characteristics of the mean velocity components and Reynolds stresses are heavily impacted by turbulence intensity
of the freestream turbulence impinging on a pair of side-by-side cylinders in crossflow. This influence is present for all three
T/D spacing values employed in this study. From the POD, the rate of convergence the turbulence kinetic energy also varies
as a function of the freestream turbulence intensity incident on the cylinders with lower turbulence intensity generally having
more energy present in the first several modes. The characteristics of these the highest energy containing mode for each case
also differs with the inflow conditions. Specifically, vortex streets are only evident in the highest energy containing modes for
the inflow condition having Tu%=0.32 and Tu%=3%
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Summary Flow in channels with longitudinal grooves has been theoretically and numerically studied in the current work. The changes
in discharge are monitored for the pressure driven flow to investigate the efficiency of fluid flowing through the channels in laminar and
turbulent flow regimes. It has been shown that the long wavelength grooves induce discharge increase up to 3–9%, while the short wavelength
grooves reduce the discharge. Analysis of the flow patterns demonstrates that the increase in discharge results from the re-arrangement of
the bulk fluid movement.

INTRODUCTION

Drag reduction in wall-bounded flows is an essential method to reduce the power consumption and energy costs. Thus,
techniques to reduce friction drag attract lots of attention from the researchers since the reduction of pressure drag has been
well studied. These techniques include both passive methods (such as riblets and super-hydrophobic surface [1, 2]) and active
methods (such as wall-oscillations and jet injection [3, 4]). Recently, Mohammadi & Floryan [5] investigated the drag of a
macro-scale device, the two dimensional grooves in channel flow. It was reported that the longitudinal grooves with long
wavelengths potentially reduce drag in spite of the increase in the wetted surface area, while the short wavelength grooves
increase the drag. Such drag reduction was found to be attributed to the redistribution of the bulk flow, with the largest mass
flow taking place in the widest channel opening. Various shapes of groove have been investigated in laminar regime [6].

Considering the advantages of macro-scale devices over micro-scale devices and active methods (easy to manufacture
and maintain, no additional energy input), turbulent flows in channels with longitudinal grooves with various wavelength and
shapes are investigated to determine their capability to reduce drag in turbulent flow regime. The drag reducing potential is
measured by comparing the discharge through the grooved channel with the discharge through a smooth channel when both
channels are exposed to the same pressure gradient.

RESULTS

Consider fluid flow driven by a given pressure gradient through a channel extending to ±∞ in the x-direction bounded
by sinusoidal grooves parallel to the flow direction (see Figure 1(a)). The sinusoidal grooves can be defined as plate with
smooth longitudinal wavy grooves in such a way: yL = −1− S

2 sin (αz), yU = 1 + S
2 sin (αz) , where the subscripts L and

U refer to the lower and upper walls, respectively. S and α are, respectively, the amplitude and wave number of grooves, thus
the wavelength of grooves in the spanwise direction is λ = 2π/α. Simulations of turbulent flow in grooved channel were
conducted in a computational domain of length L = 2π, width W = min (2π, λ) and mean height 2H = 2 at Reτ = 180
(Re2H ≈ 6 , 000 ) by DNS and DES methods [7, 8].
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Figure 1: Channel with two corrugated walls (a); variations of the discharge correction ∆Q as a function of the groove wave
number α (b), and as a function of the groove amplitude S (b) for channel with grooves at Reτ = 180 .
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Figure 2: Distributions of the mean velocity component U in the y-z plane of channel with grooves α = 0.25, S = 1 (a),
α = 2, S = 1 (b) and smooth channel (c) respectively, for Reτ = 180 .

The normalized discharge difference between corrugated and smooth channels ∆Q (α, S) = Q−Q0

Q0
can be employed to

evaluate the system effectiveness, and positive ∆Q indicates an increase in the effectiveness of the flow system, or effective
drag reduction. Figures 1(b) and (c) display variations of the discharge difference between the corrugated and smooth channels
generated by the same pressure gradient. A critical groove wave number αc is observed, below which the grooves increase
discharge and above which the discharge is reduced. The critical wave number is estimated to be αc ≈ 1 for S = 0.5 and
αc ≈ 0.8 for S = 1. An increase in the groove amplitude S decreases the discharge when α > αc and, conversely, increases
the discharge when α < αc. A decrease of α increases the discharge but this increase rapidly approaches an asymptotic limit
where any further decrease of α brings in negligible contributions. The highest increase of the discharge at S = 0.5 is about
2%–3%, and it is about 9% at S = 1.

Figure 2 displays distributions of U in the spanwise cross-sections of channel with grooves. In the presence of grooves,
the fluid either accelerates or retains its velocity in the wide segment of the channel and slows down in the narrow segment,
leading to the re-arrangement of the bulk motion and stream tubes. When α < αc (Figure 2(a)), the difference between the
maximum velocity in the widest and narrowest sections of the channel is larger than the similar difference for channels with
α > αc (Figure 2(b)). The maximum velocity at the widest section of the channel for α < αc is higher than the maximum
velocity in the smooth channel (U ≈ 19; Figure 2(c)) with a minor velocity decrease in the narrow section, resulting in an
increase in the total discharge. When α > αc (Figure 2(b)), the maximum velocity in the widest portion of the channel is U ≈
18–19, which is similar to that found in the smooth channel and, since velocity decreases in the narrow section, there is an
overall reduction in the discharge.

CONCLUSIONS

The passive and macro-scale devices, grooved channels with small wave number (α < αc ≈ 0.8–1) and large amplitude,
induce discharge increase up to 10% for turbulent flow under the same pressure gradient. The maximization of the discharge
requires the use of the minimum possible groove wave number α as well as the largest possible groove amplitude S. Such
discharge increase is associated with the rearrangement of the bulk velocity in the cross-section (y-z) plane with the largest
fluid flux flowing through the widest channel opening.
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Summary The Voyager spacecrafts (V1-V2) are providing unique measurements of plasma and magnetic field at the helioshpere edge. We
compare the magnetic field measured from the Voyagers inside the heliosheath (HS) (V1 years 2004-2012, V2 year 2007-). Observations of
high variations of energetic particle fluxes at V2, recently suggested the existence of two regions with distinct magnetic field features: the
SHS (sectored heliosheath), where the magnetic field alternates the polarity due to the current sheet flapping and piling up as the heliopause
is approached, and the UHS (unipolar heliosheath) which extends outside the SHS, where the magnetic field polarity is constant. We present
here the first magnetic field power spectra computation inside the heliosheath. The spectra differ in both anisotropy and inertial decay rate.
The difference cannot be explained in terms of the different physics supposedly present in the sectored and unipolar regions.

Both the Voyagers have crossed the termination shock entering the heliosheath (V1 in December 2004 [13], V2 in August
2007 [10] . In this region, many observations are not completely understood [12, 8]. One of these is the difference observed
by V1 and V2 in the flux of both energetic ions and electrons (ions: kinetic energy from about 40 KeV to >1 GeV (Galactic
Cosmic Rays) and electrons: from about 50 KeV to >100 MeV) [6]. In particular, while particle fluxes time histories seen by
V1 were almost constant in the period 2007-2012, those recorded by V2 showed variations with an amplitude 50 times larger.
According to Hill et al. [6], possible physical interpretations to explain the enhancement or depression of energetic particle
intensity are related to the Helioshperic Current Sheet (HCS) maximum latitudinal extensions. These northern and southern
boundaries enclose the socalled sectored heliosheath region (SHS), where the magnetic field changes polarity as the HCS is
crossed, according to the Parker spiral structure. At higher North and South latitudes, outside the sector region, the heliosheath
is unipolar (UHS), see fig. 1. Traveling at a latitude of about 30◦ S, V2 is thought to have crossed different times the boundary
of the SHS, and a correlation was found between the energetic particle flux at V2 and the alternation of unipolar and sectored
zones crossed by V2. Different particle transport properties are expected in these regions. Opher et al. [9] suggested that
in the SHS region the magnetic field was not laminar but disordered and turbulent, with the sector structure being replaced
by a sea of nested magnetic islands. These bubbles would take origin from magnetic reconnection processes occurring near
the heliopause, triggered by the compression of sectors and by the narrowing of the HCS (see Drake et al. [2]). Different
scenarios may coexist, for instance the presence of magnetic reconnection or turbulence in the SHS can as well increase the
ions and electrons transport.

We are here interested in analyzing the magnetic field fluctuations in the two different SHS and UHS heliosheath regions,
see fig.1. We consider the highest resolution of recorded data (48-s averages) from this NASA mission [7] and we compute
power spectra by exploiting a proper data gap treatment developed inside this group [5, 4]. The data gap problem arises from
the fact that data can be lost due to telecommunication issues, noise, instrumental interferences and other reasons.

Figure 1: Qualitative scheme of the heliosphere

We consider four magnetic field (B) datasets in the interval 2009-
2012. In particular, for V1 we analyze the sequences 2009 DOY 1 - 2009
DOY 180 (A1) and 2010 DOY 180 - 2011 DOY 180 (B1). V1 is supposed
to be in the SHS in this two periods, even if the constancy of polarity of B
suggests that V1 remained within just one sector, see the azimuthal angle
variations in fig 2a, and [1]. For V2, we choose the interval 2009 DOY
219 - 2010 DOY 180 (A2), when V2 was inside the unipolar region and
measured a low flux of energetic particles, and the period 2010 DOY 255
- 2011 DOY 256 (B2), when V2 was in the SHS measuring an enhanced
particles intensity. The power spectra of the magnetic energy and of the
field components of B in the heliographic reference system for A1, A2,
B1, B2, are shown in panels (c,d,e,f), respectively.

A few aspects are common to all spectra. They show a mild algebraic
decay in the low-frequency range (f < 10−5 Hz) a steeper algebraic
decay in the intermediate range (about 10−5 < f < 3 · 10−4 Hz) and
a hi-frequency range (3 · 10−4 < f < 10−2 Hz) where the decay is likely affected by the accuracy of the magnetometers,
which is around 0.03 nT. Concerning the magnetic energy fluctuation, in the low frequency range, spectral slopes are within
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Figure 2: (a,b) Magnetic field module, azimuthal angle and elevation angle for V1 (top) and V2 (bottom). SHS periods are
highlighted in purple (A1, B1, B2) and UHS periods in green (A2). (c,d) Magnetic field components and energy spectra during
A1 and A2. All the spectra have been computed with the compressed sensing methodology, already tested in [4]. Vertical grey
lines indicate probably instrumental-related peaks, harmonics of 2.3 · 10−4 Hz. (e,f) Magnetic field spectra during the periods
B1 and B2.
−1.24 ± 0.2 for both crafts and all the periods observed. However, in the portion of inertial range 10−5 < f < 3 · 10−4

Hz, V1 and V2 show important differences which at this stage of knowledge seem associated to the different structures of the
fluctuation of the field orientation. In particular, for the Voyager 1, either when located at the boundary between UHS and
SHS or inside one single sector, the fluctuations level of the azimuthal and elevation angles is very low and their 48-s averages
are constant. For V2 instead, both inside the unipolar period A2 and in sectored period B2 the orientation fluctuation is much
more intense. These signal differences are reflected in a different structure of the spectra: the slope for V1 is 2.0± 0.19 while
V2 shows a spectral decay of 1.68 ± 0.2, closer to the Kolmogorov value. By looking at the components, high anisotropy is
observed by V1, where the tangential component is dominant and decays much faster than the radial and normal components
a fact which is not observed by V2. In particular, the anisotropy can be observed in fig. 2a (B signal) and in fig. 2 c,e (power
spectra). The anisotropy level in 2009 was σ2

BT
/σ2

BR
= 10.5, σ2

BT
/σ2

BN
= 11.6 while in 2011-2012 it reduced to 4.6 and

4, respectively. Spectrally this anisotropy is highlighted by the different decays showed by the normal and radial components
(∼ −1.5) and the tangential component (∼ −2), see fig.2 c,e. By contrast, confer in fig. 2d,f, the nearly isotropic behavior as
sensed by V2. It should be noted, in conclusion, that the highly different magnetic field structure we obtain by observing the
solar wind along the Voyager different paths cannot be simply explained from being in or out the sectored heliosheath. For
example, the V2 path seems to enter the unipolar region (A2) first and then the sectored region (B2), however, the signal and
related spectra remain alike.
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Summary Research on classical turbulence theory has benefited from the use of active grids that allow a wider range of flow conditions
to be generated than their passive counterparts [1]. We used a new type of active grid with 129 independently rotating paddles to imprint
different correlations into wind tunnel turbulence. The grid’s control over the RMS fluctuation velocity and integral length scale allowed the
turbulence Reynolds number Reλ to be held constant and isotropy to be controlled. We then imposed correlations into the otherwise random
motions of the paddles through convolution with kernels of different shape. At constant Reλ, the velocity correlation functions collapsed
into different families based on kernel shape when scaled by the integral length scale, regardless of flow anisotropy. This suggested that
the active grid could change the structures in the flow. The exceptional degree of control over flow properties offered by these methods
could allow hypotheses about the influence of large-scale structure on the various properties of turbulence to be tested more precisely and
extensively.

EXPERIMENTAL SETUP

The experimental apparatus consisted of a wind tunnel with the active grid mounted on the upstream end of the test section
and a traverse to hold a hot wire constant temperature anemometer (single- or cross-wire). The probes were calibrated [2]
using ten known velocities produced by a calibration unit. Measurements were taken in the center of the tunnel at a location
5.59 meters downstream of the grid. For all tests, the free stream velocity in the wind tunnel was approximately 1.5 m/s. The
raw voltage data were corrected using these readings to control against temperature changes across tests.

The active grid, part of the Göttingen Turbulence Facility, was composed of 129 independently-moving paddles forming
an 11 × 13 octagonal array. Each paddle was 11.5 cm wide and rotated on its diagonal, moving 90 degrees in either direction
from the open orientation. The positions of the paddles were updated every 0.1 seconds by a computer program.

The positions of each paddle were stored in memory along with their past and future positions. Raw positions began as
uniform random noise, which was then convolved with a 3-dimensional kernel function, composed of a spatial kernel function
multiplied by a temporal kernel function, to produce correlated positions. The width of the spatial kernel, σs, corresponded
to the size of the correlations in the cross-sectional dimensions of the flow. Taylor’s Hypothesis allowed the temporal kernel
length σt to be mapped to an effective correlation length in the streamwise dimension of the flow. Thus, altering the size of a
kernel by changing σs and σt would change the relative physical dimensions of flow structures produced by the grid. Top hat
and long tail functions, shown in blue and red in Figure 1(b), were used to create these correlations.

(a) (b)

Figure 1: (a) Photograph of the active grids paddle configuration during operation, viewed from the probe mount.
(b) Correlation kernels used in the experiments, with top hat kernel shown in blue and long tail kernel shown in red. The
correlation length σ represents either σs or σt. The height h of the long tail kernel was fixed to be 0.1.
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RESULTS

Controlling Flow Parameters
θ′ was defined as the root mean square of all paddle angles θ, where θ = 0 for paddles parallel to the flow. Increasing θ′

increased linearly u′, the root mean square of the fluctuation velocities of the turbulence. Integral length scale was defined as
the correlation distance (r = Uavg · t) at which the normalized velocity correlation function dropped below 1

e [3]. Increasing
σs and σt increased proportionally the integral length scale, with saturation occurring as the integral length scale approached
the size of the tunnel. The Taylor length scale λ varied with the correlation kernel applied, so the turbulence Reynolds number
Reλ was controlled by adjusting θ′ to change u′. Constructing kernels so that σs

σt
= 1 produced near-isotropic turbulence.

This ratio thus indicated the relative isotropy of a flow produced by a kernel with given correlation lengths.

Controlling Correlation Functions
Applying top hat and long tail correlation kernels with isotropic and anisotropic σs

σt
ratios created independent groups of

velocity correlation functions in a series of tests all run at Reλ = 200 ± 10. In Figure 1(a), the much slower decay of the
anisotropic correlation functions implied that greater anisotropy increased the spatial persistence of large-scale structures in
the flow. In Figure 1(b), the type of correlation kernel affected the small-scale behavior of the flows independent of anisotropy.

(a) (b)

Figure 2: Velocity correlation functions for several different correlation kernels of varying type and degree of anisotropy,
normalized by (a) paddle width and (b) the integral length scale. The pink and blue curves represent anisotropic and isotropic
top hat kernels, while the yellow, purple, green, and red curves are long tails of increasing anisotropy. The separation of
the curves in (a) at large scales shows that persistence of large-scale structures increases with anisotropy. Normalizing the
curves by the integral length scale in (b) isolates small-scale behavior, revealing that the type of correlation kernel affects flow
behavior at small scales independent of anisotropy. Thus, by controlling the kernel shape and the relative dimensions of the
temporal and spatial kernels, the small and large scales of the flow can be independently controlled.

CONCLUSIONS

Spatial and temporal correlations of the paddles on an active grid enabled control over a large number of flow parameters,
including u′, integral length scale, Reλ, and isotropy. The ability to change the shape of velocity correlation functions using
different correlation kernels demonstrated the grid’s control over the shape and behavior of large- and small-scale structures in
the flow, as well as the fact that grid and flow correlations were directly related. Such unprecedented control of the structures
and properties of turbulence will have sizable implications for studies of the fundamentals of turbulence and for technological
flows where mixing is important.
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1Institut de Radioprotection et de Sûreté Nucléaire, BP 3, 13115 St Paul lez Durance, France
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Summary We investigate experimentally the mechanism of erosion by a turbulent jet impinging a density interface with moderate Reynolds
numbers and low Froude numbers. From our measurements, we present a new scenario of turbulent mixing. The turbulent eddies contribute
indirectly to the mixing by generating surface gravity waves. The waves are then amplified by a mechanism similar to the Miles instability
characterized by the presence of a critical layer, where the phase velocity of the waves matches the velocity of the mean flow. This
amplification leads to the breaking of the wave, which mixes efficiently both fluids.

INTRODUCTION

Mixing between fluids with different density occurs in geophysical, in astrophysical and in industrial context [1]. It relies
on a complex process where the kinetic energy is irreversibly converted into potential energy. Our work is motivated by the
industrial applications in the nuclear safety context, where a lighter fluid (hydrogen) must be mixed with the ambient fluid
(air) to avoid the ignition of explosive reactions [2]. We consider the case of a sharp density interface impinged by a turbulent
round jet. The turbulent jet of light fluid (water) of density ρ1 impinges a volume of heavier fluid (salty water) of density
ρ2 > ρ1, such that the outflow of the jet is orientated in the gravity direction and orthogonal to the density interface. The jet
is driven by an upstream pump and the buoyant effect are initially localized in the region of the impact (figure 1). The salty
water is progressively mixed with the fresh water until the gradients of concentration disappear. We investigate the mechanism
of erosion of the density interface by a turbulent jet for moderate Reynolds number Re = uibi/ν (Re ∈ [2 − 3] × 103) and
low Froude number Fri = ui/

√
big′ (Fri < 2) with ui and bi the typical velocity and width of the jet at the interface

and g′ = g(ρ2 − ρ1)/ρ1 the reduced gravity acceleration. The velocity field is measured by particle image velocimetry
(PIV) process in the vertical plane of the laser sheet, which crosses the nozzle of the jet. The density is measured by planar
laser-induced fluorescence (PLIF).

(a) (b)

Figure 1: (a) A schematic of the experimental set-up showing a rectangular tank (30x30x50cm) filled with water (h1) and a
saline solution (h2). The nozzle is located at a height h from the interface. (b) Streamlines (black curves) of the mean flow,
superimposed on the vertical component of the mean velocity field 〈uz〉 (cm/s). The black dotted curve corresponds to the
time-averaged location of the interface separating both fluids.

AN NEW SCENARIO OF TURBULENT MIXING

The classical models of erosion (see e.g. [3, 4]) are commonly based on the mixing capacity of vortices, which engulf the
heavy fluid at the interface before being advected by the mean flow outside the impinged region. However no experimental
study has demonstrated quantitatively such mechanism in a non-buoyant jet. Our experimental results show that the mixing is
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(a) (b)

Figure 2: (a) Mixing process induced by surface-gravity waves in the vicinity of the interface (15 × 20cm2 ) and (b) of the
dome head (15× 8cm2 ). The heavy fluid has been dyed by rhodamine and corresponds to the bright region.

induced by the breaking of surface-gravity waves (figure 2.(a)) and the eddies play only the role of waves generator. We have
investigated in details the different steps of this process: the generation, the amplification and the breaking of the waves.

We draw a global picture of the mechanism of erosion. The jet impinges the interface between both fluids and the
time averaged impact describes a parabolic dome (figure 1.(b)). Inside the dome, the surface is convoluted by the turbulent
fluctuations of the jet. Our measurements shows that the Kelvin-Helmholtz instability is inefficient to trigger perturbations,
because the local shear is very weak in the vicinity of the dome head. The waves are rather generated by the turbulent
eddies coming from the jet. The vortices excite surface-gravity waves, which propagate outward the impinged region, but the
eddies do not contribute directly to a significant mixing as expected from the scenario of eddy engulfment. Theses waves are
identifiable on figures 2.(a) and 2.(b). During the propagation, the height of the waves increases until they breakdown close
to the border of the dome. This process is illustrated on the three successive pictures of the interface of the figure 2.(b), with
waves propagating from left to right. As the Kelvin-Helmholtz instability is not able to amplify the waves, an other mechanism
must transfer the energy to the waves.

For the first time, we show that the amplification of the waves is caused by an energy transfer from the mean flow via
a mechanism similar to the one described by Miles [5] in shear flows. Indeed, we observe a critical region where the phase
velocity of the waves matches the time-averaged tangential velocity following the interface. As described by Miles [5] , the
waves are amplified below the critical layer. Finally, the breaking of the waves induces a strong mixing due to the wrapping of
filaments. The heavy fluid is then transported in the bulk flow where the turbulence of the jet mixes both fluids (figure 2.(a)).

CONCLUSION

Our work shows the key role played by the waves in the erosion process at low Froude. The waves are amplified by
a mechanism involving a critical layer [5] and this amplification leads to the breaking of the waves, which is here the main
source of erosion. Waves being the primordial mechanism for mixing, we define a new scaling law for the entrainment rate as a
function of local Froude number, based on waves properties. This law is in good agreement with present and past experimental
measurements, hence solving a long standing problem [4]. This work is detailed in [1].
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SPECTRAL DYNAMICS IN ENSTROPHY INERTIAL RANGE IN α-TURBULENCE

Takahiro Iwayama∗1 and Takeshi Watanabe2

1Department of Planetology, Kobe University, Kobe, Japan
2Department of Scientific and Engineering Simulation, Nagoya Institute of Technology, Nagoya, Japan

SummaryWeinvestigate spectral dynamics in the enstrophy inertial range in forced-dissipative turbulence for a generalized two-dimensional
fluid system, the so-calledα-turbulence, by the eddy damped quasi-normalized Markovianized (EDQNM) closure approximation equation
for this system. As the non-local parameterα increases, the downward enstrophy flux dominates the net enstrophy flux and the triads
responsible for the net enstrophy flux become more non-local. According to this analysis, we derive the transition of the exponent of the
enstrophy spectrum atα = 2, which has been observed by previous direct numerical simulations, from an asymptotic analysis of EDQNM
approximation equation. The energy transfer in the enstrophy inertial range is also investigated similarly.

INTRODUCTION

The generalized two-dimensional (2D) fluid system was introduced by Pierrehumbertet al.[3] as a tool for studying effects
of non-locality of triad interactions on 2D Navier-Stokes (NS) turbulence. The governing equation of the system is given by

∂q

∂t
+
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
= D + F , q = −(−∇2)α/2ψ, (1)

whereψ(x, t) is the stream function andq(x, t) is a scalar advected by an incompressible velocityv = ez×∇ψ. Here,ez is a
unit vector normal to the plane of motion,α is a real number,∇2 is the Laplacian in 2D space, andD andF are dissipation and
forcing terms, respectively. Whenα = 2, this system reduces to the 2D NS system. This system has two inviscid invariants,
the generalized energyE ≡ − ⟨ψq⟩ /2 and the generalized enstrophyQ ≡

⟨
q2
⟩
/2. Here, those are frequently referred to as

energy and enstrophy for simplicity, respectively, and the angle brackets denote a spatial average.
In the present paper, we consider statistically steady state of turbulent flows governed by (1) forced at a narrow wavenum-

ber range around a forcing wavenumberkf on an infinite plane with appropriate decay conditions at infinity. Turbulent flows
governed by (1) is frequently referred to asα-turbulence.

Since there are two inviscid invariants, the cascade phenomenon of both invariants are realized inα-turbulence. Previous
direct numerical simulations (DNSs)[3, 4] indicated that the enstrophy spectrumQ(k) in the enstrophy inertial range, which
is formed in larger wavenumber side thankf , takes the form,

Q(k) ∝


k−(7−2α)/3, (for 0 < α < 2).

k−1{ln k}−1/3, (for α = 2).

k−1, (for α > 2).

(2)

The transition of the spectrum (2) was explained by a phenomenology proposed by Watanabe & Iwayama[5]. However,
underlying physics of their phenomenology has not yet fully understood. Moreover, the spectrum (2) has not been analytically
derived. Thus, to provide a dynamical basis to their phenomenology, we analyse the enstrophy transfer in the enstrophy inertial
range and the triad interactions responsible for the enstrophy transfer using an eddy damped quasi-normal Markovianized
(EDQNM) closure approximation equation of the present system[1, 2]. Furthermore, we derive (2) from the EDQNM closure
approximation equation.

RESULTS

First, using the detailed conservations of energy and enstrophy, we decompose the enstrophy flux into two parts:

Π(k) = Π(+)(k)−Π(−)(k), (3a)

Π(+)(k) =

∫ ∞

k

dk′
∫ k

0

dl

∫ l

0

dmTQ
α (k′, l,m), Π(−)(k) =

∫ k

0

dk′
∫ ∞

k

dl

∫ ∞

l

dmTQ
α (k′, l,m). (3b)

Here,TQ
α (k′, l,m) is the triad enstrophy transfer function in the EDQNM approximation[2]. Furthermore, normalizing the

triads comprisingΠ(+) andΠ(−), and assuming the enstrophy spectrum of the formQ(k) = Cαk
−n, we obtain the exponent

n in the enstrophy inertial range asn = (7− 2α)/3 for 0 < α < 2 andn = 3− α for α > 2, and two parts of the enstrophy
flux in the enstrophy inertial range as a function ofα. Two parts of enstrophy flux normalized by the net enstrophy flux are

∗Corresponding author. Email: iwayama@kobe-u.ac.jp
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shownin Figure 1. Figure 1 indicates that whenα is small,Π(+) andΠ(−) far exceed the net enstrophy flux and a small

Figure 1:α-dependenceof Π(+)(k) andΠ(−)(k) normalized by the net enstrophy fluxΠ(k) in the enstrophy inertial range.
The bold and thin lines indicateΠ(+)(k)/Π(k) and−Π(−)(k)/Π(k), respectively. Dotted lines indicate the normalized
enstrophy fluxes forα > 2, where our analysis fails to derive spectrum forα > 2.

difference between them derives the net enstrophy flux downward. The upward enstrophy fluxΠ(−) exceeds the net enstrophy
flux whenα ≲ 0.79. As α increases, both upward and downward enstrophy fluxes decrease, andΠ(+) dominate the net
enstrophy flux up to and beyondα ≃ 2. Note that the enstrophy fluxes calculated by the EDQNM closure approximation
equation reasonably agree with the DNS results[6].

Next, we examine the characteristics of the triads responsible for enstrophy transfer in the enstrophy inertial range. (Fig-
ures are not shown.) Approximately 80% of the downward and upward enstrophy fluxes are carried by triads with minimum
wavenumber below half of the medium wavenumber. The triads responsible for the downward enstrophy flux become more
non-local asα increases, while those responsible for the upward enstrophy flux are insensitive toα.

According to the nature of the triad interactions responsible for the enstrophy transfer, we perform an asymptotic analysis
of the EDQNM approximation equation and theoretically derive the transition of the exponent of the enstrophy spectrum (2).
The phenomenology proposed by Watanabe and Iwayama[5] modifies the characteristic time scale of enstrophy transfer in
Kraichnan-Leith-Batchelor phenomenology. This modification can be interpreted as the combined effects of the non-locality
of the decaying time of the third-order moments associated with the triads and the dominance of non-local triad interactions.

The energy transfer in the enstrophy inertial range is investigated similarly. In the enstrophy inertial range, the downward
and upward energy fluxes are equivalent; therefore, the net energy flux vanishes. The triads responsible for the energy transfers
and those for the downward enstrophy transfer show identical characteristics.
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hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight 

and the mole fraction of PEGMA were varied in the synthesis process. 

   The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction 

measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction 

in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the 

smooth surface for PRD3-1, as shown in Table 1. Figure 2 shows the profiles of the streamwise turbulent intensity and the 

Reynolds stress. It is obvious that those turbulent quantities significanty decreased in the case of PRD3-1, corroborating the 

presence of Toms effect from the present FDR-SPC.  

   
(a) Streamwise turbulence intensity                   (b) Reynolds stress 

Fig. 2 Comparison of turbulent quantities in low-Reynolds number flow for FDR-SPC 

   
Fig. 3 Comparison of frictional drag in high Reynolds number flow for FDR-SPC and FDR AF coatings 

PERFORMANCE OF FDR-SPC IN A HIGH REYNOLDS NUMBER FLOW 

   The present FDR-SPC was subsequently used as a binder for the FDR AF (AntiFouling) coating for marine application. 

The FDR AF coating consisted of FDR-SPC, antifouling pigment such as cuprous oxide (Cu2O) and various additives. 

Measurement of the skin friction of the present FDR-SPC and the FDR AF coated surfaces was carried out in a high-

Reynolds number flow measurement with a flush-mounted balance and a LDV (Laser Doppler Velocimeter). It is found that 

the FDR-SPC showed smaller skin friction than the smooth plate in the entire Reynolds number range, with the average 

drag reduction efficiency being 13.5% over the smooth plate. The FDR-AF (Anti-Fouling) coating manufactured from the 

present FDR-SPC exhibits drag reduction efficiency of about 20% over the conventional AF coatings, as shown in Fig. 3.  

This work was supported by National Research Foundation of Korea (NRF) grant of the Korea government (MSIP) through 

GCRC-SOP (No. 2011-0030013) 
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CROSS PLANE VORTICITY DISTRIBUTIONS IN A RECTANGULAR WALL JET 
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Summary Experimental results on the near field development of a turbulent rectangular wall jet with aspect ratio 10, issuing from a sharp-
edged orifice at Reh ~ 23,000 are presented and discussed. Hot wire X-probe measurements on cross plane grids provide information on the 3D 
characteristics of the flow field. Mean vorticity components were estimated by interpolation and derivation from the mean velocity 
measurements. Contour plots of flow characteristics are presented and discussed to uncover some complex flow physics. 
 

INTRODUCTION 
 

Wall jets have been studied extensively in the past, see Agelin-Chaab [1] for recent review. The initial 2D studies were 
rendered inadequate to provide proper physical understanding of these rather complicated flow fields. Several 3D studies 
have delivered significant information on wall jet development, see Schwab and Pollard [2]. Despite the consensus that 
vorticity plays an important role, the corresponding experimental information is rather scarce, see Craft and Launder [3]. In 
this work modern computer interpolation techniques are used in order to further exploit available 3D experimental 
measurements, providing first stage information on the vorticity distributions in a rectangular turbulent wall jet. 
 

MATERIALS AND METHODS 
 

The air jet was produced by a sharp-edged rectangular orifice (70x7 mm2, equivalent hydraulic diameter Dh = 12.73 mm) 
mounted on the downstream end of a 1.05 m long, square cross sectioned settling chamber 0.350 m to the side. The exit 
Reynolds number, based on the slot height (h=7mm) and jet exit velocity, Uexit, was Reh = 23,000. The velocity components 
in the streamwise (x-axis) and the spanwise (y-axis, parallel to the long side of the orifice) directions were measured with a 
miniature X-wire HWA probe and upon probe rotation the vertical velocity components were obtained (z-axis). Data were 
collected at equally spaced positions on cross plane grids at x/h= 1, 2, 3, 5, 7, 10, 15 and 20 distance from jet exit (see 
Schwab [4] for further details). The origin of the Cartesian coordinate system used in this work is located on the intersection 
of the wall plane and the short central axis of the orifice on the jet exit plane. Derivative variables and contour plots have 
been produced by applying the ‘inverse distance interpolation’ scheme on the raw measurements using TecplotTM. Contour 
plots of the measured and derived variables are presented in Figure 1. In all the plots, the black contour lines indicate the 
locations where the mean streamwise velocity takes values U/Ucl=0.5 and 0.95, where Ucl is the local centreline velocity.  
 

EXPERIMENTAL RESULTS - DISCUSSION 
 

Mean streamwise velocity distributions (Fig. 1a) present three main characteristics. The first is the appearance of two 
off centre peaks (saddle back profile) which reach a maximum of 23% over the central value at x/h=10. These peaks 
diminish downstream but persist to the last of the measurement stations at x/h=20. The second characteristic is the tendency 
of the wall jet towards axis switching indicated by the contraction of the jet in the spanwise direction and the spreading in 
the vertical direction away from the wall. The third characteristic is that although at the first cross plane the jet seems to 
diverge from the wall with peak values appearing over z/h=1, downstream a Coanda effect attracts the jet towards the wall 
and peak values appear at locations z/h<1. The streamwise normal turbulent stress distributions (Fig. 1b, very similar to 
those of the other normal stresses, not presented here) indicate that turbulence production is associated with the shear layers 
that develop between the jet and the ambient fluid, as well as between the mean velocity peaks and the centre of the jet. On 
the contrary, the wall impedes turbulence and the turbulent stresses gradually diminish downstream in the wall region. Shear 
layers also affect the vorticity distributions (normalized by h and Uexit). The mean vorticity magnitude (|Ω|, Fig. 1c) is 
higher around the jet core in the first downstream stations although far from the jet exit the shear layer developing close to 
the wall is responsible for the high vorticity values that dominate in this region. The streamwise vorticity component (Fig. 
1d) presents in the first stations negative values more or less within the U/Ucl>0.5 zone and positive outside, whereas at 
farther downstream locations a system of four vortices seems to develop in the central area of the wall jet as indicated in 
Fig. 1d at x/h=20, which is a possible link to Ewing and Pollard [5] interpretation. The transverse vorticity components 
(Fig. 1e,f) are affected by the derivatives of the streamwise velocity across corresponding shear layers. Ωy is in the first 
stations dominated by the shear layers along the large side edges of the jet, whereas the wall shear layer has a smaller effect 
which gradually becomes dominant downstream, not only for Ωy but for |Ω| as well. Similarly, at all measuring stations, Ωz 
changes sign at the locations of Ux off-center peak ridges and the corresponding centerline trench developing in z-direction 
due to the saddle back profile. Extensive interpretation of the vorticity field evolution through examination of the axial 
mean vorticity equation will be presented with link to what is known in the case of the free jet (see Vouros et al. [6]). 
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Figure 1. Contour plots of the axial mean (a) and rms (b) velocity and vorticity vector magnitude (c) and components (d, e, f) on cross 
planes at several distances (x/h) from jet exit  
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Summary The annular jet is an example of complex shear flow situations. Two axisymmetric shear layers, originating at the jet exit, one at the 
nozzle lip and the other at the centre body, eventually meet downstream or interact with each other. The main aim of this study is to observe and 
analyze the effects of passive control on an annular jet with a great diameter ratio (r= 0.91), in order to find a new way to reduce jet instabilities. 
This contribution discusses the application of Proper Orthogonal Decomposition to the Particle Images Velocimetry (PIV) velocity fields of the 
initial zone of an annular jet. Passive control has already been used with round jets and has given promising results. This work will permit us 
essentially to have a better knowledge of annular jets and used the potential of Proper Orthogonal Decomposition for aerodynamic study. 
Key-Words: - Annular jet, Particle Image Velocimetry, Proper Orthogonal Decomposition, Passive Control 

INTRODUCTION 
Annular jet is used in the industrial domain, in combustion (burners, bluff bodies…) or in industrial treatment processes. 
The geometry of the annular jet is determined by the ratio Di/Do, where Di represents the internal diameter and Do the 
external diameter. The interests of the flow here are the interaction between the jet and the recirculation zone near the 
nozzle of the annular jet. Many authors, like Ko [1], work on small diameter ratio annular jets, with a ratio Di/Do smaller 
than 0.7. Lumley [2] has proposed Proper Orthogonal Decomposition (P.O.D.) for identifying coherent and instantaneous 
structures in turbulent flow. This method provides a base for the modal decomposition of a set of functions, such as data 
obtained in the course of the experiments. The most striking property of this decomposition is optimality: it provides the 
most efficient way of capturing the dominant components of an infinite-dimensional process with only a few functions [3]. 
That is why the P.O.D. process has been applied in different turbulent flows to analyze experimental P.I.V. data with a view 
to extracting dominant features and trends: coherent structures [4]. The present study relies on an experimental investigation 
of the initial zone of a large diameter ratio annular air jet by the use of Particle Image Velocimetry (P.I.V.).  

EXPERMENTAL SET-UP
The annular jet is characterized by the outer diameter Do, equal to 53.88 mm, and the inner diameter Di, equal to 48.75 mm. 
The thickness of the jet e is thus equal to 2.565 mm. In our set-up, Di/Do is equal to 0.91. The exit velocity Uo is equal to 
30m/s which correspond to the value of the Reynolds number Re, based on the thickness e, of 7680. Nozzles used for 
experiments are presented on figure Fig.1.  

Fig.1: annular jet nozzles with central obstacle made of (a) a cylindrical shape (b) a conical shape and (c) an ellipsoidal shape and experimental PIV set-up. 

A double pulsed Nd-Yag laser is used to set up the light sheet. The output energy is nearly 30 mJ for each laser pulse. The 
wavelength is 532 nm. The observation field is 2.8*2.5 cm². In this study, the video images are recorded by a LAVISION 
Flow Master 3S camera. The acquisition frequency is 4 Hz. For all velocity fields, the sampling window has a size of 16 by 
16 pixels (0.377 by 0.377 mm) and there is a 50 % overlap with the next window. 400 P.I.V. images have been recorded.  

PROPER ORTHOGONAL DECOMPOSITION 
Coherent structures are present in turbulent flow and P.I.V. is able to highlight those on the largest scale at any given 
moment. The scientific interest in the study of turbulence has led to the development of P.I.V. post-processing, which is 
able to bring out the inner driving mechanism of the flow [5]. P.O.D. provides an optimal set of basis functions for a set of 
data, Patte-Rouland [5] Danlos [6]. It is optimal in the sense that it is the most efficient way of extracting the most energetic 
components of an infinite dimensional process with only a few modes. The Proper Orthogonal Decomposition is a linear 
procedure, which decomposes a set of signals in modal base. Karhunen–Loève decomposition can be used to decompose 
flow in space and/or time and separate the key flow features from the transient flow.  

EFFECTS OF PASSIVE CONTROL
For the annular jet, it appears that the stagnation point is put through important radial fluctuations and, axially, the maximal 
fluctuations are localized on the external-mixing layer. This was also observed by Ko and Chan [1], but they used a hot wire 
and this cannot measure null velocity. Figure 2 shows an example of the mean velocity field with the corresponding 
Reynolds decomposition fluctuation fields. The initial merging zone extends from the jet exit to the tip of the potential core. 
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This zone contains a recirculation zone. The stagnation point which marks the end of the recirculating region is located at 
x/Do=0.5. 

   
   

a)                   b)          c) 
Fig 2: Aerodynamic characteristics of the annular jet: a) Average velocity b) radial velocities c) axial velocities. 

ELLIPSOIDAL ANNULAR JET 
The ellipsoidal jet seems to narrow a little more towards the central axis than in the case of a basic annular jet. When we 
observe the field of average velocities, we notice that the recirculation zone completely disappears in the initial zone. We 
can see that the transversal fluctuations are no more situated in the stagnant point but rather in the separation point. The 
standard deviation of longitudinal velocities shows that there is only one zone of shear in the case of ellipsoidal obstacle. 
The flow of the ellipsoidal annular jet is then totally different from the basic annular jet.  
The figure shows the results of the P.O.D. computation on an ellipsoidal annular jet. Mode 0 represents the mean velocity 
field of the flow. The transversal fluctuations of velocities situated in the separation zone (downstream the ellipsoid) seem 
to be reflected on mode 1 while the transversal fluctuations part dedicated to the shear flow on the rims of the jet seem to be 
represented by the mode 2. And then the mode 3 looks like the longitudinal fluctuations manager. 

                          
(a)         (b)        (c)                 ( d)                 (e)                   (f)                   (g)  
Fig.3: P.I.V. measurements of an ellipsoidal annular jet. (a) mean velocity field, (b) longitudinal fluctuations, (c) transversal fluctuations. and P.O.D. 
analysis of an ellipsoidal annular jet. (d) Mode 0, (e) Mode 1, (f) Mode 2, (g) Mode 3. 

CONICAL ANNULAR JET 
The flow of a conical jet seems to be more spread than in the case of an ellipsoidal annular jet. The jet seems to not narrow 
so much towards the central axis. The mode 0 shows the appearance of the mean velocity field. There is no real special 
characteristic drawn on the mode 2. Modes 1 and 3 seem to represent structures responsible for instabilities on the rims of 
the jet that we can see on the longitudinal (modes 1 and 3) as much as the transversal (mode 1) fluctuations of velocities.  

                 
(a)                  (b)                  (c)                    (d) 
Fig. 4: P.O.D. analysis of an ellipsoidal annular jet. (a) Mode 0, (b) Mode 1, (c) Mode 2, (d) Mode 3.

CONCLUSIONS 
The study describes the recirculation zone of an annular jet by Particle Image Velocimetry. The Proper Orthogonal 
Decomposition has been applied to find the relationship of these radial fluctuations to the inner structures of the instantaneous 
P.I.V. fields. The mode 0 represents the carrier flow, which is the most energetic. The space fluctuation of the stagnation point is 
principally due to the mode 1. Each obstacle modifies different characteristics of the flow. Instabilities disappear in the stagnant 
point in the case of a conical annular jet but a new area of transversal fluctuations appears on the rims of the jet. The ellipsoidal 
annular jet suppresses the recirculation zone but there are always a lot of fluctuations in the flow, at the separation point or on the 
rims of the jet. This particular annular jet contains much more coherent structures than in the other configurations and then it has 
more energy represented in the first ten modes. This study shows that a partial control of the stagnant point fluctuations can 
result from a modification of the central obstacle but this obstacle has other effects on the rest of the flow. All effects have to be 
taken into account in order to determine the efficiency of the passive control.   
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SummaryA wide-gap Taylor-Couette (T-C) configuration with a radius ratio of 0.1 is investigated through direct numerical simulation.
Both axis-symmetric and fully three dimensional cases are simulated for a range of Reynolds numbers (Rea) from 100 to 1000. Rotating
inner cylinder and a stationary outer cylinder result in distributions of angular momentum near the walls which are susceptible to Gortler
instability. Unlike plane Couette flow which exhibits symmetry about the mid plane, wide-gap Taylor-Couette flow owing to circular
geometry, has distinct and sharply contrasted behaviour of flow at the two walls. Our investigations into the lowRea regime, shows the
presence of circumferentially elongated eddies resembling Gortler vortices near the inner wall. These observations lend support to earlier
studies which report experimental observations of near wall flow [3, 5, 6]. Mean angular momentum profiles show regions in the annulus
with a negligible gradient. Further, scaling of the non-dimensional torque (G) with Rea is reported.

NUMERICAL METHODOLOGY

High resolution direct numerical simulation of wide-gap T-C flow pose significant challenges in terms of efficient uti-
lization of resources. Motivated by this, a high-order accurate incompressible flow solver has been developed with MPI slab
decomposition. A high resolution compact scheme [12, 13] and Fourier spectral approximation [14] are used to discretize
the aperiodic and periodic directions respectively. A second-order accurate semi-implicit projection method [9] is used for
non-stiff temporal integration and to enforce incompressibility. The computational code has been extensively validated for
both two and three-dimensional bluff body flows. Both axis-symmetric and fully three dimensional cases have been simulated
for Rea (based on inner cylinder radius and wall velocity) ranging from 100 to 1000. The simulations are run till a statistically
steady flow field is obtained. At lowRea the flow is nearly axis-symmetric and the spatio-temporally averaged velocities
and fluctuations agree within a reasonable accuracy with the fully three dimensional cases. AsRea is further increased,
circumferential symmetry is lost resulting in a significant difference of mean statistics between the two cases. Global transport
quantity such as the torque however, seems to be unaffected by the loss in circumferential symmetry.

RESULTS AND DISCUSSIONS

The data presented here on are from the fully three dimensional cases. Global transport quantity such as the torque in T-C
flows has been subject to many previous investigations [3, 5, 7, 10, 15], albeit for higher radius ratios. Our DNS results show
that the non-dimensional torque per unit length (G) scales asRe1.41 as can be seen in Fig. 1(a). The exponent obtained here
is smaller compared to the previous studies which however were concerned with flows at much higherRea .
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Figure 1:(a) Scaling of mean torque withRea (b) Mean angular momentum profiles for variousRea
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Fig. 1(b) shows the radial variation of spatio-temporally averaged angular momentum. The profiles show two distinct
regions, the two boundary layers near the walls with a steep gradient and a core of nearly constant angular momentum, as was
also observed previously by [1, 4, 10, 7, 16]. Further, it is interesting to see that the mean axial vorticity in the core is nearly
zero for allRea (see Fig. 2(a)). The inlet of Fig. 2(a) shows the full extent of the radial variation of mean axial vorticity for
Rea = 100. As can be seen, the flow is nearly irrotational in the mean, bounded on either side by sharp boundary layers with
non-zero axial vorticity.
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Figure 2:(a) Spatio-temporally averaged axial vorticity for variousRea (b) Iso-contours ofλ2 = −0.01 for Rea = 200 with the colours
representing the sign of radial velocity, red being positive and blue negative.

Fig. 2(b) shows the presence of vortical structures (as illuminated by theλ2 criterion [8]) in the flow near the inner wall,
while no such coherent structures are observed at the outer wall. The iso-contours ofλ2 are coloured using the sign of radial
velocity and indicate the presence of Gortler type vortices. These structures play a key role in the transport of torque and
angular momentum to the outer reaches of the flow.
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Summary We examine the extent of relevance of extensive point-vortex-gas simulations (of Suryanarayanan et al, 2014) to real world 
turbulent mixing layers. The vortex gas is a singular, 2D, inviscid method used in the 70s and 80s to understand some aspects of turbulent 
flows, but has since been relegated to the status of a toy model. We challenge this view, by revisiting the vortex gas using modern high 
performance computing enabling simulations involving much larger number of vortices (upto 32000) than earlier studies and more crucially, 
large (upto 103) member ensemble averages. The present vortex-gas results are shown to be highly relevant to the large scale dynamics of free 
shear layers, particularly on the central and controversial issue of universality of self-similar states. The present analysis provides new insights 
on understanding data from other simulations that seemingly point to non-universal self-preservation behaviour. 
 

INTRODUCTION AND PROBLEM SETUP 

  We examine the evolution of a singly periodic array of N-point vortices of same sign and strength, initially distributed in 
the close neighbourhood of the x-axis with y-displacements drawn from a specified random or periodic distribution. Due to 
the 2D inviscid approximation, all the dynamics are condensed into the kinematics of the Biot-Savart relationship as a 
consequence of Kelvin‟s theorem and hence the system is governed by 2N ODEs which are solved using double precision 
RK4. The chosen scheme and time-step ensures conservation of the Hamiltonian to within 10-5 of its initial value. Different 
measures of layer thickness and other statistics are computed from the ensemble and x-averaged velocity field induced by 
the vortices on a grid. Further details are presented in Suryanarayanan et al (2014), where it was also demonstrated that the 
present simulations are far more extensive and accurate than existing simulations of this kind and that such an improvement 
was crucial for the conclusions that were drawn. The evolution of the layer was found to have three distinct regimes – an 
initial condition influenced RI, a periodic domain limited RIII and a linear intermediate asymptotic overlap RII with a 
universal spread rate. While connections were made between RIII and equilibrium statistical mechanics, the present paper 
would focus on the relevance of RI and RII on the dynamics of free shear layers as observed in experiments and 3D 
LES/DNS studies.   
    

RESULTS ON SELF PRESERVATION SPREAD RATE 

 
Figure 1. Galilean transformed Universal RII spread rate from temporal vortex-gas simulations compared with 
experimental results on plane mixing layers. 
Figure 2. Departures of the reported growth rates in DNS/LES of 3D Navier-Stokes Temporal mixing layers and present 
vortex-gas simulations from the universal Regime II growth rate with the product of “age” and “population” parameters 
 

   It can be observed from Figure 1, that the transformed temporal vortex-gas results are within the range of the 
experimental scatter, and many high Reynolds number experiments with velocity ratio parameter 0.1≲ λ ≲0.6 (at large 
values of λ the effects of spatial feedback may become dominant and Galilean transformation is no longer valid; further 
details in Suryanarayanan & Narasimha, 2015), including the recent post-mixing-transition experiments of D‟Ovidio and 
Coats (2013) are in close agreement. This suggests that 2D inviscid mechanisms can explain the spread rate even in post-
mixing-transition free shear layers. Implications and possible reasons for the experimental scatter shall be discussed.   
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ANALYSIS OF PREVIOUS LES/DNS SIMULATIONS 

   We next examine results from 3D DNS / LES simulations of temporal mixing layers. The scatter in the reported self-
preservation states is often used as an argument in support of existence of non-universal self-preservation states (e.g. 
Balaras et al, 2001).  However, the present analysis shown in Fig.3, suggests a systematic departure from the universal 
spread rate when the product of two parameters – number of mergers (“age”) and final number of structures (“population”) 
becomes small. This suggests that non-universal self-preservation states are possible artefacts of fits over insufficient 
number of mergers or lack of appreciation of onset of the domain dependent RIII. The implications will be discussed.  
  

LONG RANGE CORRELATIONS AND MULTIPLE SELF-PRESERVATION STATES 

  Another controversy concerns the proposal that there are multiple self-preservation solutions in the growth of a mixing 
layer.  Such segmented growth curves are encountered in single realizations of vortex-gas simulations as well. Figure 3 
shows a single realization in Regime II of a temporal vortex-gas shear layer that consists of four linear segments, each with 
a different slope varying by a factor of 2.35. However an ensemble average yields an excellent linear growth throughout, 
very close to the universal value in each of the indicated segments, suggesting that these “transient metastable states” 
(Narasimha, 1990) are eliminated by adequate averaging. The explanation for the segmented growth that appear under 
inadequate averaging is contained the vortex location snapshots that reveal long-range correlation via the presence of 
several co-oriented vortex „trains‟.  The train of structures rotating nearly in unison creates a very strong fluctuation in the 
local growth rate, and thus averaging over sufficient number of such trains is required. It is thus possible that reports of 
multiple or serial self-preservation states (Carton de Wiart et al, 2010) are the result of inadequate averages.   
 

 
Figure 3. Insufficient averaging leads to multiple local self preservation states with different spread rates. The orientation of 
train of structures (marked in boxes) may be locally coherent (orientation indicated by the black lines) and may lead to a 
linear growth for a substantial duration but with a very different slope compared to the average. 
 

CONCLUSIONS 

Thus temporal vortex-gas shear layer satisfactorily describes the large scale evolution of 3D NS mixing layers despite of 
what may appear as severe approximations, suggesting the dominance of the 2D Kelvin-Biot-Savart in determining the vorticity 
dispersal in real mixing layers. Therefore the universality of spread rate in Regime II suggests that the self-preservation spread 
rate in real mixing layers is also likely to be universal and reports of non-universal or multiple self-preservation states may be 
due to inadequate appreciation of the long memory of initial conditions, insufficient averaging, unreliability of fits made over 
short temporal and / or spatial domains, and the lack of appreciation of the beginning of Regime III during which the size of the 
flow domain becomes an additional parameter in the problem. 
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WALL-PRESSURE COHERENCE BENEATH A LOW REYNOLDS NUMBER TURBULENT
BOUNDARY LAYER

Jared Van Blitterswyk ∗1 and Joana Rocha 1

1Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada

Summary Measurements of the unsteady wall-pressure field are acquired on the floor of a wind tunnel beneath a fully developed, zero pres-
sure gradient turbulent boundary layer with a Reynolds number based on momentum thickness, Reθ of 2593. The single point wall pressure
spectrum and the streamwise coherence lengths are reported. The coherence lengths of streamwise pressure fluctuations are larger than
predicted using existing models, and shows that large irrotational outer layer motions retain their coherent power for streamwise separations
exceeding 3.6 boundary layer thicknesses, while smaller, high-frequency fluctuations decay within 0.75 boundary layer thicknesses. Further
investigations with finer spatial resolution are required to understand the coherent nature of high-frequency pressure events.

INTRODUCTION

A thorough understanding of wall-pressure fluctuations produced beneath a turbulent boundary layer (TBL) is of principal
importance to properly modelling flow-induced vibrations and sound radiation. Models of flow-induced noise depend on
a deterministic model of the spatial characteristics of unsteady wall-pressure beneath a TBL. This includes the frequency
spectrum of pressure fluctuations at a single point, and the spatial coherence of wall-pressure signatures. The streamwise
cross-spectrum (γ(ξ, f)) between two microphones separated by a distance ξ, is calculated by taking the Fourier transform of
the cross-correlation (χ = 〈p(x0, t0)p(x0 + ξ, t0 + τ)〉) and normalizing by the respective single-point autospectra (Eq. (1)).

γ(ξ, f) =
|φ(x0, x0 + ξ, f)|

|φ(x0, x0, f)|0.5|φ(x0 + ξ, x0 + ξ, f)|0.5
(1)

Corcos [1] proposed the most well-known model for predicting spatial coherence between two points, described by the product
of coherent decay in the streamwise and spanwise directions (ξ and η, respectively) (Eq. 2).

γ(ξ, η, f) ∝ e−2πfαx|ξ|/Uce−2πfαy|η|/Uc (2)

The spatial separation is normalized by an empirical constant, αi and the convection velocity, Uc, and together represents the
frequency-dependent ’coherence length’, Li = Uc/2πfαi. The inverse dependence on frequency results in overprediction at
low frequencies, which was addressed by Efimtsov [2] who offered a corrected model of the form,

Lx = δ

[(
2πfδa1
Uc

)2

+
a22

(2πfδ/uτ )2 + (a2/a3)2

]−1/2
(3)

where; the empirical constants ai control the mid to high frequency coherence and the low frequency roll off from the Cor-
cos model. Comparisons in the recent literature with both exponential models are not very satisfying as some researchers
have measured sinusoidal variations in the coherence lengths or sustained coherence at large separations [3,4]. This lack of
agreement encourages further research in this area, and will be studied here in the case of a low Reynolds number TBL.

EXPERIMENTAL METHODS

Streamwise measurements of wall-pressure fluctuations were made on an instrumented test panel along the test section
floor in a closed-circuit wind tunnel facility. The microphone array consisted of five, 1/4 in.-diameter, Brüel and Kjaer 4944A
type microphones, spaning x = 1.17 m to x = 1.3 m downstream of forced transition, with a minimum spacing of 25.4 mm.
More information on the facility, test panel, and microphone array can be found in reference [5]. The test section has since been
outfitted with an adjustable ceiling to control the streamwise pressure gradient. The boundary layer was characterized using
a Dantec 55P11 miniature hot-wire probe, which was sampled at 8 kHz for 65 seconds. Over the center of the microphone
array, at a freestream velocity of 10.4 m/s and zero pressure gradient conditions, the boudnary layer thickness, δ = 34.8 mm,
the Reynolds number based on momentum thickness, Reθ = U∞θ/ν = 2593, and the shape factor, H = δ∗/θ = 1.43. The
friction velocity, uτ = 0.40 m/s, was found by fitting the mean velocity profile to a logarithmic law.

∗Corresponding author. Email: jared.vanblitterswyk@carleton.ca
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RESULTS AND DISCUSSION

The single point frequency spectrum of wall pressure fluctuations, shown in Fig.1a, posseses key features of a well de-
veloped turbulent boundary layer; including an increase in amplitude proportional to f0.2 − f0.3 up to the spectrum peak
(f ≈ 120 Hz), followed by a decay in amplitude proportional to f−0.7 − f−0.8, and a rapid decay at high frequencies. The
normalized cross-spectrum for four different spatial separations, ranging from 0.73δ to 3.63δ, are shown in Fig.1b along with
predictions using the Corcos and Efimtsov models for the case of ξ = 2.54δ. The coherence length is calculated for a given
frequency by fitting an exponential curve to the cross-spectrum amplitude at each of the measurement locations, with the
frequency-dependent nature of the coherence length shown in Fig.1c.
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Figure 1: Single-sided frequency spectrum of wall-pressure fluctuations (a), normalized cross-spectral density measured be-
tween transducers with various spatial separations (b), and coherence length for all frequencies up to 2,000 Hz (c).

As shown in Fig.1b, the coherent power of the low-frequency pressure fluctuations exceeds the streamwise extent of
the microphone array, suggesting that these events can retain their signature for atleast 3.6δ downstream. This prolonged
coherence, reaching a maximum of 10.7 mm at f = 73 Hz (Fig.1c), is the signature of irrotational motions in the outer
regions of the boundary layer. The cross-spectrum is not well predicted by either model for any of the measured cross-spectra.
Assuming appropriate model constants are selected to match the low frequency behaviour, high-frequency coherent power
is always under-predicted. The rapid decrease in coherence length, shown in Fig.1c, suggests that the spatial signatures of
high-frequency fluctuations decay within travelling approximately 0.75δ downstream. The exponential form used to define the
coherence length likely contributes to the asymptotic behaviour at high-frequencies (Fig.1c), but the non-zero cross-spectrum
amplitudes (Fig.1b) suggests it may be a physical feature of the wall-pressure signature and requires further investigation.

CONCLUSIONS

Low-frequency wall-pressure signatures from irrotational outer layer motions are retained in the streamwise direction for
at least 3.6 boundary layer thicknesses, with a maximum coherence length of 10.7 mm measured at a frequency of 73 Hz. The
decrease in spatial coherence was not well predicted with exponential models from the literature. Further studies with refined
spatial resolution would be useful for investigating the coherence of smaller, high-frequency, pressure events.

References

[1] Corcos G.M., ”Resolution of Pressure in Turbulence”, J. Acoust. Soc. Am., 35(2);192-199, 1963.
[2] B.M. Efimtsov, ”Characteristics of the field of turbulent wall pressure fluctuations at large Reynolds numbers”, Soviet Physics Acoustical, 28(4);289-

292, 1982.
[3] Leclercq D.J.J., Bohineust X., ”Investigation and modelling of the wall pressure field beneath a turbulent boundary layer at low and medium frequencies”,

J. Sound. Vib., 257(3);477-501, 2002.
[4] Arguillat B., et al., ”Measured wavenumber: Frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations”, J. Acoust. Soc.

Am., 128(4);1647-1655, 2010.
[5] Van Blitterswyk J., Rocha J., ”Prediction and Measurement of Flow-Induced Wall-Pressure Fluctuations at Low Mach Numbers”, Canadian Acoustics,

42(4);3-14, 2014.

1501



	

24th	International	Congress	of	Theoretical	and	Applied	Mechanics	

	

FM15	-	Vortex	Dynamics	 	
TS.FM15-1.01		 Quaranta,	Umberto	-	Long-wave	instabilities	of	two	interlaced	helical	vortices	 	1504	
TS.FM15-1.02		 Stroh,	Alexander	-	Secondary	vortices	over	spanwise	heterogeneous	roughness	 	1506	
TS.FM15-1.03		 Goudar,	Manu	-	Auto-generation	by	interaction	of	weak	eddies	 	1508	
TS.FM15-1.04		 Krasny,	Robert	-	Computation	of	the	starting	vortex	past	a	flat	plate	(INVITED)	 	1510	
TS.FM15-1.05		 Hourigan,	Kerry	-	The	curious	case	of	the	vanishing	vorticity	(INVITED)	 	1512	
TS.FM15-1.06		 Yang,	Wenchao	-	Two-dimensional	wakes	of	an	oscillating	cylinder	at	low	

Reynolds	number	
	1514	

TS.FM15-2.01		 Stremler,	Mark	-	Point	vortex	models	of	exotic	laminar	vortex	streets	 	1516	
TS.FM15-2.02		 Blackmore,	Denis	-	Magnetic	point	vortex	dynamics	in	the	plane	 	1518	
TS.FM15-2.03		 Brøns,	Morten	-	Topology	of	vortex	creation	and	merging:	Wakes	and	multi-

Gaussian	models	
	1520	

TS.FM15-2.04		 Rosi,	Giuseppe	-	Entrainment	in	non-stationary	flows	 	1522	
TS.FM15-2.05		 Franck,	Jennifer	-	Vortex	and	wake	interactions	of	multiple	oscillating	foils	for	

energy	harvesting	
	1524	

TS.FM15-3.01		 Ko,	Lok	Sun	-	Experimental	investigation	of	a	slender	delta	wing	with	apex	and	
tail	flap	control	

	1526	

TS.FM15-3.02		 Rockwood,	Matthew	-	Determining	the	shedding	time	of	vortices	in	real-time	 	1528	
TS.FM15-3.03		 Fukumoto,	Yasuhide	-	Motion	of	a	vortex	pair	at	high	and	low	Reynolds	numbers	 	1530	
TS.FM15-3.04		 Llewellyn	Smith,	Stefan	-	Motion	of	a	compressible	vortex	pair	 	1532	
TS.FM15-3.05		 Kerr,	Robert	-	What	trefoil	reconnection	says	about	Navier-Stokes	regularity	 	1534	
TS.FM15-4.01		 Kudela,	Henryk	-	Collapse	Vortices	and	Filaments	of	Vorticity	 	1536	
TS.FM15-4.02		 Le	Dizes,	Stéphane	-	Curvature	and	elliptic	instabilities	in	helical	vortices	

(INVITED)	
	1538	

TS.FM15-4.03		 Delbende,	Ivan	-	Simulations	of	Helical	Vortex	Instability	 	1540	
TS.FM15-4.04		 Wood,	David	-	The	Use	of	Helical	Vortex	Solutions	in	Wind	Turbine	Performance	

Analysis	
	1542	

TS.FM15-4.05		 Heil,	Matthias	-	Topological	fluid	mechanics	of	the	formation	of	the	Karman-
vortex	street	

	1544	

PO.FM15-1.01.75		 Chang,	Chien-Cheng	-	An	analysis	of	vorticity	force	versus	pressure-friction	for	
incompressible	flow	

	1546	

PO.FM15-1.02.76		 Cuevas,	Sergio	-	Free	surface	vortex	instability	in	magnetically	driven	liquid	metal	
swirling	flow	

	1548	

PO.FM15-1.03.77		 Daneshvar,	Sina	-	On	the	influence	of	end	effects	for	stationary	and	vibrating	
circular	cylinders	

	1550	

PO.FM15-1.04.78		 Elsas,	José	Hugo	-	Vortex	Statistics	from	Vorticity	Local	Properties	 	1552	
PO.FM15-1.05.79		 Feys,	Jan	-	Elliptical	instability	of	the	Moore-Saffman	model	for	a	trailing	wingtip	

vortex	
	1554	

PO.FM15-1.06.80		 Hasegawa,	Hideki	-	Characteristics	of	eigen-vortical-axis	lines	 	1556	
	 	 	
PO.FM15-1.08.82		 Itano,	Toshihisa	-	Singular-value	analyses	of	symmetric	and	asymmetric	

perturbations	on	a	cylindrical	vortex	sheet	
	1560	

PO.FM15-1.09.83		 Krishnamurthy,	Vikas	-	Analytical	solutions	for	weakly	compressible	von	Karman	
vortex	streets	

	1562	

1502



	

24th	International	Congress	of	Theoretical	and	Applied	Mechanics	

	

PO.FM15-1.10.84		 Limacher,	Eric	-	Representation	of	real	flows	with	dynamically	equivalent	
concentrated	point	vortices	

	1564	

PO.FM15-1.11.85		 Liu,	Xin	-	Cascade	of	vortex	knots	detected	by	HOMFLYPT	polynomial	 	1566	
PO.FM15-1.12.86		 Mohseni,	Kamran	-	Unsteady	Kutta	condition	and	vortex-sheet	generation	 	1568	
PO.FM15-1.13.87		 Nakayama,	Katsuyuki	-	Invariant	local	flow	topology	in	transition	into	a	vortex	

and	property	of	its	prediction	
	1570	

PO.FM15-1.14.88		 Nitsche,	Monika	-	Deflection	of	a	vortex	dipole	by	a	flat	plate	 	1572	
PO.FM15-1.15.89		 O'Neil,	Kevin	-	A	vortex	sheet	/	point	vortex		dipole	 	1574	
PO.FM15-1.16.90		 Paoli,	Roberto	-	Hybrid	rans-les	simulation	of	wingtip	vortices	of	an	airliner	 	1576	
PO.FM15-1.17.91		 Velasco	Fuentes,	Oscar	-	Motion	and	flow	topology	of	multiple	helical	vortices	 	1578	

	 	

1503



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

LONG-WAVE INSTABILITIES OF TWO INTERLACED HELICAL VORTICES

Hugo Umberto Quaranta1,2, Mattias Brynjell-Rahkola3, Thomas Leweke∗1, and Dan S. Henningson3

1IRPHE UMR 7342, Aix-Marseille Université, CNRS, Centrale Marseille, Marseille, France
2Aerodynamics Department, AIRBUS HELICOPTERS, Marignane, France

3Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm, Sweden

Summary We present a comparison between theoretical predictions and experimental observations of the instabilities in the wake of a two-
bladed rotor. The linear stability of the vortex system consisting of two helical vortices is described using the Biot–Savart induced velocity
approach. Experiments are performed to investigate the breakdown scenario caused by both local and global pairing of successive vortex
loops, and the observations are found to be in accordance with the theory.

The near wake behind multi-bladed rotors consists of several interlaced helical vortices, generated at the tips of the rotor
blades. Various instabilities can exist in this system, involving perturbations at different wavelengths: long-wave displacement
modes or short-wave vortex core deformations [1]. The linear stability of a single helical vortex was first analyzed by Wid-
nall [2], followed by the work of Gupta & Loewy [3]. These authors determined the stability of long-wave displacement modes
by perturbing the helices and deriving an eigenvalue problem considering the induced velocity obtained using the Biot–Savart
law and the vorticity transport theorem (see [3] for details). A study aimed at verifying these theoretical results was recently
performed by Quaranta & Leweke [4], who carried out detailed experiments with a single-bladed rotor in a water channel. By
imposing perturbations with various wave numbers (i.e. number of perturbation wavelengths in one helix turn), they were able
to obtain growth rates that closely matched those predicted by Widnall [2] and Gupta & Loewy [3]. It was also shown that the
long-wave instability can be linked to the local pairing of successive loops of the helical vortex, and quantitative comparisons
were made with the well-known pairing mechanisms of an infinite array of straight vortices [5, 6].

(a) Schematic of a double-helix, as seen from a distance of 8R. (b) Water channel dye visualization of the base flow.

(c) Predicted shape for a spatially growing mode with k = 1. (d) Visualisation of the rotor wake perturbed with k = 1.

Figure 1: Vortices in the wake of a two-bladed rotor of radius R = 8 cm. (a,b) Unperturbed base flow. (c,d) Wake perturbed
with a mode of wave number k = 1.

∗Corresponding author. Email: Thomas.Leweke@irphe.univ-mrs.fr
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(a)

(b)

Figure 2: Uniform pairing mode (k = 0) of two helical vortices. (a) Prediction of the spatial growth, based on the linear
instability mode. (b) Experimental dye visualization of the wake of a slightly asymmetric rotor.

In the present study, the work by Quaranta & Leweke [4] is extended to the configuration of two helical vortices. Similar
cases have previously been considered theoretically by Gupta & Loewy [3], and by Okulov & Sørensen [7]. Both analyses
predict instability of the system, involving again local pairing at various locations along the filaments, depending on the per-
turbation wave number k, as well as a new mode of global pairing, with an azimuthally uniform (k = 0) relative displacement
of one helical vortex with respect to the other. When the perturbations are triggered by a rigid rotor, they are in phase on all
vortices, and pairing can be expected for wave numbers k = N(i + 1/2), where N is the number of blades and i an integer.
This has recently been investigated numerically by Sarmast et al. [8], who noted that pairing can also occur for other wave
numbers, including k = 0, when the perturbation imposed on the different vortices have different phases.

The experimental setup used is similar to the one described in [4], except that the rotor, of radius R = 8 cm, now has
two blades instead of one. By modulating the velocity of the stepper motor driving the rotor, the local pairing mechanism is
triggered with a prescribed wave number and an identical phase for both vortices (figure 1), whereas a very small eccentricity
of the rotor with respect to the axis of rotation leads to global pairing (figure 2). Both cases, as well as their combination
with various amplitude ratios, are investigated, including detailed measurements from dye visualizations and Particle Image
Velocimetry.

The presentation includes a review of previous theoretical results concerning the long-wave instability of helical vortex
systems and the pairing of vortex arrays, and a discussion of their limits of validity. Comparisons between theoretical predic-
tions and experimental measurements of the instability mode structures and corresponding growth rates are presented, and the
relevance of these results for the evolution of rotor wakes is considered.
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Secondary vortices over spanwise heterogeneous roughness
Alexander Stroh ∗, Pourya Forooghi, Jochen Kriegseis, and Bettina Frohnapfel

Institute of Fluid Mechanics (ISTM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Summary A spanwise heterogeneity of roughness is known to lead to the formation of large-scale secondary motions. The secondary
motions are investigated based on the data sets extracted from direct numerical simulations (DNS) of fully developed turbulent channel flow
where streamwise stripes of modeled rough surface with varying spanwise extension and roughness layer thickness are introduced. In order
to study the character of the secondary flow structures, the calculated flow fields are further post-processed by means of streamline-based
topology analysis. The extracted topology maps indicate that stronger secondary motions occur for wider roughness stripes and thicker
roughness layer, while the height of the roughness layer appears to not alter the secondary motion topology.

INTRODUCTION
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Figure 1: Schematic of the numerical domain with
roughness strips at the walls.

Secondary motions of Prandtl’s second kind have recently been
investigated numerically and experimentally for rough-wall turbulent
boundary layer flows with spanwise roughness heterogeneity [1, 2].
Similar observations were made in direct numerical simulations of
turbulent channel flows with superhydrophobic surfaces (SHS) where
streamwise stripes of a slip surface are introduced [3]. In the case of
SHS the presence of secondary motions results in a reduction of the
flow rate when a turbulent channel flow driven by a constant pressure
gradient (CPG) is considered. For rough-wall turbulent boundary lay-
ers there are some contradictory results with respect to the location of
low- and high momentum pathways (LMP & HMP) above the rough
surface [1, 2], while a reversal of the secondary motion and hence a
switch in LMP & HMP location are reported for SHS when the span-
wise extend of the structure is increased [3].

The present contribution considers a detailed analysis of the secondary motions above a surface on which stripes of
roughness are inserted as indicated in Figure 1. Topological evolution of the secondary flow and its properties are examined
for variation of the wave-length, L, and roughness layer thickness, h, and compared to available literature results.

PROCEDURE
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Figure 2: Vector plot of secondary motions,
contours of streamwise mean velocity and sin-
gular points at L/δ = 0.78.

A series of DNS has been carried out in a fully developed turbulent chan-
nel flow driven by CPG. The numerical code is identical to the implemen-
tation used by [3]. The schematic of the numerical domain is depicted in
Figure 1. The friction Reynolds number is Reτ = uτδ/ν = 180. The
wave-length, L, represents the size of the alternating structure with a con-
stant roughness fraction Φ = w/L = 0.5. For the variation of L we ad-
just the number of grid nodes in spanwise direction and, therefore, the span-
wise extension of computational domain, while the wall area is always cov-
ered by four wave-lengths. Based on literature results the wave-length range
0.4 < L/δ < 1.6 is considered.

The roughness effect is modeled by the introduction of an additional drag
force to the momentum equations in the corresponding areas of flow domain:

fd,i (y) = −1

2
ρα · √ujuj · ui · d (y) , (1)

where α represents the weighted drag coefficient depending on the roughness
element density and the frontal element width defined as d(y) = (1− y/h)
within the roughness element height h [4]. The particular wall-normal distri-
bution, d(y), and the value of α are chosen to represent the drag force exerted

by an array of equidistantly distributed conical roughness elements with height h and cone base diameter 2h to the fluid. For
the present analysis the roughness element height h+ = 10, 30 and 50 are chosen.

The resulting secondary motions are characterized by means of singularity analysis, where nodes and saddles are extracted
from the velocity maps in so as to develop a topology map of the flow structures; see Foss [5] for details on topology analysis.
An example of a secondary motion vector plot with singular points is given in Figure 2.
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Figure 4: Heterogeneous roughness distribution with
discrete elements.

RESULTS

The upper plot in Figure 3 shows the change of the bulk mean velocity with increasing L for three considered roughness
heights. It is evident that the change of Ub is mainly governed by the roughness layer height and does not significantly change
for different L, which is in contrast to the results obtained with stripes of free-slip surface [3]. In comparison to a plain channel
flow the reduction in Ub is 2.5%, 13% and 19% for h+ = 10, 30 and 50, resepectively. The lower plot in Figure 3 shows
the maximum magnitude of the occuring secondary motion with variation of L and h. The secondary motion strength does
not exceed 1% of Ub for L/δ < 0.75 and rapidly increases for larger L. At L/δ = 1 the secondary motion strength reaches
2− 3% of Ub and shows only slight variations for higher values.

For all investigated cases HMPs are found over the plain wall areas, while LMPs are located over the areas with roughness
as exemplarily shown in Figure 2, which is in agreement with results presented in [2]. The HMPs & LMPs are generated due
to the formation of a vortex pair with nodes located above the smooth / rough wall edges. The nodes slightly shift towards the
middle of the channel with increasing L. Interestingly, the wall-normal position of the vortex nodes is almost independent of
the considered roughnes layer height. This observation and analysis of the vorticity source term suggest that the secondary
motions mainly occur due the presence of a spanwise heterogeneity of the stress close to the wall surface, where the height of
surface roughness appears to only affect strength but not the topology of the secondary motion.

OUTLOOK

For the upcoming months, it is planned to extend the current analysis with a detailed evaluation of the vorticity transport
equation in order to elucidate the mechanism of the vortex formation and the influence of the roughness properties on it. We
also intend to carry out a similar investigation at higher Reynolds numbers (Reτ = 500) with discrete roughness elements as
shown in Figure 4 resolved in a DNS through immersed body method. The influence on the flow properties and characteristics
of the secondary motions as well as the comparison to the current roughness modeling approach will be reported in the
presentation.
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Summary For channel flow, we explore how the interaction of weak eddies produces additional eddies by means of auto-generation. This
is done by DNS of two eddies with different initial strengths, initial sizes and initial stream-wise spacing between them. The numerical
procedure followed is similar to Zhou et al[1]. The two eddies merge into a single stronger eddy when a larger upstream and a smaller
downstream eddy are placed within a certain initial stream-wise separation distance. Subsequently, the resulting stronger eddy is observed
to auto-generate new eddies. The non-merging cases with small initial stream-wise separation also auto-generate. The auto-generation is
characterized by a rapid lift-up of an initial eddy, which blocks the incoming flow and leads to shear-layer roll-up and formation of a new
eddy. The same sequence of events is observed in a fully developed turbulent boundary layer[2].

INTRODUCTION

To create energy-efficient designs by reducing drag, it is essential to understand the internal structure and dynamics of wall-
bounded turbulent flows. One of the ways to describe the dynamics of boundary-layer flows is the hairpin eddy model[3],
based on coherent structures. The hairpin-like vortices are observed to populate the outer layer over a range of Reynolds
numbers [4]. They are organized in the direction of the mean flow and occur in packets[5, 6, 7]. This packet organization
not only enhances the Reynolds shear stress[5], but also, while occupying only 4% of total area of the flow, it contributes to
more than 25% of the Reynolds shear stress[8]. Hence, vortex organization in packets is considered important. The packet
formation has been explained by the auto-generation mechanism or parent-offspring concept[3]. Zhou et al[1] reported that
the hairpins above a threshold strength can auto-generate. However, such strong vortices do not frequently appear in actual
turbulent flows. Hence, we consider scenarios involving weak eddies, which are frequent in actual wall-bounded turbulence.
The effect of low-speed streak on auto-generation, which is located under the eddy, is also studied. Finally, we examine the
critical aspects leading to the onset of auto-generation and present a modified interpretation of the auto-generation mechanism.

The interactions between two ideal non auto-generating eddies is studied numerically by Direct Numerical Simulation
(DNS). We follow a similar procedure to [1] in extracting the eddy from fully developed turbulent channel flow and simulate
them dynamically. A variety of scenarios are created based on different initial strengths, event location and initial stream-wise
spacing between the aligned eddies. The two eddies merge (Fig. 1a-b), when an eddy conditioned at higher wall-normal
location is placed upstream of the one conditioned at the lower wall-normal location. The eddy with higher wall-normal
location moves faster due to higher local flow velocity and merges with the downstream eddy creating an above threshold
strength eddy, which auto-generates (Fig. 1c). However, only the merging cases with lower stream-wise separation auto-
generate. Because, as the initial distance between the eddies increases, merging takes longer time, during which the eddies
weaken individually and hence the merged eddy is not strong enough to create new vortices. Also, a few non-merging cases
generate new structures, when the initial stream-wise separation between initial eddies is lower. From these observations, it
is inferred that merging can create stronger eddies, but is not the sole mechanism. The auto-generation may depend upon a
sufficiently small initial stream-wise separation of the two eddies as it is common between all the auto-generation cases.
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Figure 1: Iso-contours of swirling strength squared (10% of maximum) at time t+ = 0, 72 and 316.8 for the two-eddy case
with stream-wise separation ∆x+ = 118 (side view). Two eddies in (a) merge to form a single stronger eddy in (b). Merged
eddy further auto-generates as shown in (c). x+ and y+ represent stream-wise and wall-normal directions, respectively,
normalized by wall units.

The smaller stream-wise separation between eddies emulates the increasing threshold strength, as the velocity field of
the two individually eddies gets superimposed and amplified. Hence, the role of the velocity field and specifically of the
overlapping low-speed streak in the onset of auto-generation is explored. When the stream-wise separation is small, low-speed
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Figure 2: Auto-generation mechanism : Vector plots of velocity fluctuations (u′+, v′+) along with fluctuation pressure (p′)
contours in the symmetry plane which is between the two legs of an eddy. u′+ and v′+ are velocity fluctuations in stream-
wise and wall-normal directions, respectively. All vectors are scaled by unit length, hence only indicate the flow direction.
The iso-surfaces in the figures correspond the 10% of the initial maximum swirling strength. This is for two eddy case
(76, 51) at strength α = (1, 1) with ∆x+ = 59. Figures a-e represent the evolution of two eddies and vector plots in time at
t+ = 28.8, 57.6, 86.4, 158.4 and 244.8 respectively.

streaks from the two eddies overlap and get superimposed, which amplifies the strength of the resulting streak. A separate
set of simulations has been performed by adding a divergence-free low-speed streak to a conditional eddy to understand the
influence of vortex-streak interactions on auto-generation. However, these simulations do not show any auto-generation.

Finally, based on the above observations, the current picture of the auto-generation mechanism is modified. Analysis of the
data suggests that the strong lift up of the initial hairpin head is due to the ejection event located at the hairpin head (Fig. 2a).
Due to the lift up of the head, the in-rushing flow is blocked (Fig. 2b). This inrush of flow and the already existing ejection
events cause the shear layer to deform and roll-up in the span-wise direction (z) just upstream of the vortex (Fig. 2c-d). As
this span-wise roll-up becomes stronger, it connects to the leg/legs of the downstream vortex and becomes a new vortex by
separating from the main vortex (Fig. 2d-e). When the ejection events are stronger in any of these two vortices, a third eddy
will be formed in a similar way, else, the eddies are dissipated over time. The generation mechanism of new hairpin vortices
is also observed in experiments by [2] within a fully turbulent boundary layer in a similar way.

This modified mechanism differs from the existing mechanism by [1] where induced vortex motions result in the formation
of a kink in the legs of the initial eddy before a new hairpin head is created. In other words, kink formation in [1] is due to
mutual and self induction of stream-wise legs, whereas in the present mechanism, it is the consequence of shear layer roll-up
and ejection events. Also, the presence of two stream-wise vortex legs is not necessary to describe the onset of auto-generation
as a single leg can lift up and block the incoming flow leading to the shear-layer roll up and further generation of a new eddy.
The main implication of the present study is that commonly found weak eddies can also auto-generate, strengthening the
existing hairpin eddy model[3].
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Summary A comparison is presented of numerical methods applied to compute the starting vortex past a flat plate. The methods include (1)
direct numerical simulation (DNS) by a finite-difference scheme, and (2) a vortex sheet model. Preliminary results will also be presented
for (3) DNS by a viscous vortex method. The advantages and disadvantages of the methods will be discussed.

INTRODUCTION

When a viscous flow passes a solid body, the flow sticks to the body and a boundary layer forms along the body surface.
The boundary layer thickens due to viscous diffusion and it is convected downstream until eventually it separates and rolls up
into a starting vortex. The starting vortex affects the lift and drag forces on the body, and this has implications in many fields
such as aerodynamics and biolocomotion.

Several groups have compared different models and numerical methods for computing this type of flow separation. For
example a recent study compared a direct numerical simulation (DNS) with a discrete vortex model (DVM) for flow past an
airfoil [9]. The results showed that the DVM captures some large scale features of the flow and was much less costly than the
DNS, but the DVM was lacking in its treatment of the viscous boundary layer.

Here we consider the starting vortex past a flat plate and compare results obtained using several numerical methods, (1)
DNS by a finite-difference scheme, and (2) a vortex sheet model. Preliminary results will also be presented for (3) DNS by a
viscous vortex method. The advantages and disadvantages of the methods will be discussed.

PROBLEM DESCRIPTION

A flate plate is immersed in a viscous fluid. The plate is held fixed on the interval −0.5 ≤ x ≤ 0.5 in the xy-plane. The
incoming flow has speed U = tp and angle of incidence α. Here we consider the case of impulsively started flow p = 0
and normal incidence α = 90◦, and we will report on other cases at the ICTAM. We consider the Navier-Stokes equations in
vorticity form,

∂tω + u · ∇ω = Re−1∇2ω, (1)

where ω is the vorticity, u is the velocity, and Re is the Reynolds number. The velocity is obtained from the stream function,
u = (ψy,−ψx), where the vorticity and stream function are related by the Poisson equation ∇2ψ = −ω with boundary
conditions ψ = 0 on the plate surface, and ψ → ψ∞ for |x| → ∞. The no-slip condition u = 0 on holds on the plate surface.

NUMERICAL METHODS

DNS by a finite-difference scheme
The Navier-Stokes equations are solved by operator splitting, where the inviscid and viscous parts are computed in two

successive stages per time step. The inviscid part, ∂tω + u · ∇ω = 0, is computed by a semi-Lagrangian method, and the
viscous part, ∂tω = Re−1∇2ω, is computed by the Crank-Nicolson method. Details are in [8, 12, 13].

Vortex sheet model
The vorticity distribution has two components, a free vortex sheet that is shed at the edge of the plate, and a bound vortex

sheet on the plate. The free sheet is represented by regularized point vortices (vortex blobs) with smoothing parameter δ, and
the bound sheet is represented by singular point vortices. The vortex blobs are advected using the Biot-Savart integral. The
bound vortex sheet strength is computed by solving an integral equation on the plate. The unsteady Kutta condition is imposed
at the edge of the plate to account for circulation shedding. Details are in [7].

DNS by a viscous vortex method
Lighthill [5] advocated that the vorticity should be used in DNS of viscous flow past a solid body, where the no-slip

condition can be satisfied by creating vorticity on the body surface, and then allowing it to diffuse and convect. This approach
has been implemented in various ways by many investigators (see for example [2, 11, 3]). In the present work we implement
this approach using recently developed adaptive refinement and remeshing techniques for accuracy [4, 1] and a treecode
algorithm for efficiency [6]. This is current work and we will report on our preliminary results at the ICTAM.
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NUMERICAL RESULTS

Figure 1 compares results obtained using (1) DNS by a finite-difference scheme with several values of Reynolds number
Re, and (2) a vortex sheet model with several values of the smoothing parameter δ. The DNS results show a streakline of
passive particles introduced at the edge of the plate, and the vortex sheet results also show a streakline, but in this case these
are the computed vortex blob locations. The streaklines roll up into spirals that become tighter as Re→∞ and δ → 0. There
is good agreement between the DNS and vortex sheet model in terms of the size, shape, and location of the spiral. Similar
results were previously obtained for the case in which a free shear layer rolls up in unbounded flow [10], and the present work
is an extension to the case in which the flow separates at the edge of a solid body. Figure 1 also presents the shed circulation
Γ as a function of time, again showing good agreement between the two models.
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Figure 1: Starting vortex past a flat plate, comparison of numerical results, (left) streaklines of separating shear layer, (top left)
DNS by a finite-difference scheme with Reynolds number Re, (bottom left) vortex sheet model with smoothing parameter δ,
(right) shed circulation Γ as a function of time.

CONCLUSIONS

We computed the starting vortex in viscous flow past a flat plate using several numerical methods, direct numerical sim-
ulation (DNS) and a vortex sheet model. There is good agreement between the DNS and vortex sheet results in terms of the
large scale features of the flow, namely the size, shape, and location of the spiral core, and the shed circulation as a function
of time. The vortex sheet model is much less costly than the DNS, but it has limited applicability due to the omission of the
boundary layers present in the true viscous flow. We are currently developing a viscous vortex method which should address
the limitations of the vortex sheet model.
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Summary The flow over a submerged horizontally translating cylinder results in vorticity of opposite sign being shed from the top and
bottom. However, when the cylinder is close to a stress-free surface, the vorticity shed from the top of the cylinder seems to disappear
downstream, for zero and non-zero Froude number cases. For the zero Froude number flow case, vorticity shed from the top surface of
the cylinder can diffuse from the body of the fluid into the interface. For high Froude numbers, the stress-free surface curves and vorticity
can stream into the body of the fluid, cross-annihilating vorticity shed from the top surface of the cylinder. For each case, it is shown that
circulation is conserved in the flow, by taking account of the circulation at the stress-free interface. Such an interface is therefore a potent
source of vorticity, even in the absence of external forcing, and can dramatically modify vortex formation and evolution.

THE PROBLEM

The specific problem of interest involves the flow around a submerged circular cylinder translating at constant velocity
horizontally to a stress-free surface [1, 2]. For an isolated circular cylinder, a Bénard-von Kármán array of alternating vortices
(vortex street) forms in the wake. As the gap G between the cylinder and the free surface decreases, the vorticity shed
strongly from the top surface of the cylinder remarkably disappears in the wake, leaving vorticity of only one sign in the flow
downstream. At a Reynolds numberRe of 180, and for the zero Froude number (Fr) case (figure 1a), the role of the stress-free
surface is not obvious. For Fr = 0.2, the stress-free surface can distort, and patches of vorticity now appear (figure 1b). As
the Froude number is increased further to 0.6, the free surface curves more and strong downward jetting of positive vorticity
from the surface is seen to occur, leading to the rapid cross annihilation of the negative vorticity shed from the cylinder top
surface (figure 1c).

Here, we consider this apparent violation of the conservation of circulation and why vorticity appears to vanish from the
flow by first reflecting on how vorticity is generated and diffused at interfaces, and then analysing the particular case of the
flow over a submerged circular cylinder.

THE THEORY

For simplicity, we consider the case where the normal motion of the stress-free surface is negligible. The source density
σ, of vorticity ω, at a stress-free interface can be written as (the complete formulation for the generation of vorticity for 2D
incompressible fluids is found in [3], building on the earlier work of [4, 5]):

σ =
d

dt
(u · t̂) +

1

ρ

∂p

∂s
, (1)

where u, p and ρ are the fluid velocity, pressure, and density, respectively, t is time, s is the curvilinear distance along the
surface, and t̂ is the unit vector tangential to the surface.

(a) (b) (c)

Figure 1: Vorticity field for a cylinder of diameter D translating to the left, horizontally at distance G under a free surface,
for Re = 180: (a) Fr = 0, G/D = 0.125, (b) Fr = 0.2, G/D = 0.3 and (c) Fr = 0.6, G/D = 0.25 [3]. Red/blue denotes
positive/negative vorticity, respectively.
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The rate of change of the total circulation at the interface in an area A, perimeter C, and between the points a and b on the
surface of the stress-free interface is given by:

d

dt

(∫
A

ωdA+

∫ b

a
u · t̂ ds

)
=

∫
C

ν∇ω · n ds+

(
p

ρ1

∣∣∣∣
b
− p

ρ

∣∣∣∣
a

)
. (2)

This means that circulation is generated by a net pressure gradient in the fluid along the surface; viscosity serves to diffuse
existing vorticity. If the tangential velocity at the surface changes with time (i.e., the fluid accelerates at the interface), then
the circulation stored there evolves (second term in brackets on the left).

There is no constraint on the velocity of the fluid in the limit approaching the interface. However, from the dynamical
boundary condition (zero tangential stress at the interface), the following relation can be derived [5, equation 11]:

ω = 2
u · t̂
R

= 2Ω. (3)

This equation reflects the familiar statement that “surface vorticity is twice the curvature times tangential velocity”, and it
follows that the surface is point-wise in solid-body rotation with angular velocity Ω = u · t̂/R, where R = 1/κ is the radius
of curvature.

THE SOLUTION

In general, for a curved surface with a stress-free boundary condition, the exchange of vorticity between the body of the
fluid and the vortex sheet (velocity jump) representing this surface is such that the fluid at the surface is in solid-body rotation
(see equation (3)). In the case of a flat surface, the radius of curvature is infinite and the vorticity at the surface is identically
zero; therefore, the flow of vorticity can only be directed into the interface. A curved stress-free surface can also lead to active
and substantial vorticity introduction into the body of the fluid from the interface. Both the flow of vorticity into the interface
and the flow of vorticity away from a curved surface leading to cross-annihilation results in the diminution of opposite sign
vorticity shed from the top of the circular cylinder.

A close examination of our flow predictions shows that the deficit in vorticity present in the body of the fluid is indeed
balanced precisely by the increase in the circulation of the vortex sheet or velocity jump at the free surface. More generally,
according to equation (2), a flux of vorticity to the free-surface interface, in the absence of normal motion, is associated with
an acceleration of the fluid surface and/or a pressure gradient along this layer. For an initially uniform flow relative to the
cylinder, the net pressure difference and the velocity difference at the fluid interface between far upstream and far downstream
is zero; therefore, although local vorticity variations can occur and vorticity of one sign seems to vanish into the free surface,
overall the circulation is conserved.

CONCLUSIONS

The generalised formulation of the stress-free interface facilitates the physical understanding of the generation and re-
distribution of vorticity at the interface. The vorticity in the body of a fluid can be exchanged with that at a stress-free
interface/boundary and be stored as a vortex sheet (velocity jump). This storage is not possible at a no-slip boundary as the
fluid is forced to co-move with the boundary. Furthermore, tangential fluid motion induced at a curved stress-free boundary
results in the appearance of (solid-body rotation) vorticity at the fluid surface, and a balance of opposite-sign circulation in the
interface/boundary vortex sheet. In all cases, net vorticity (or circulation) is conserved in the system. The generation, transport
and conservation of vorticity has been demonstrated in the case of the flow past a cylinder beneath a stress-free surface; the
apparent loss in the fluid body of vorticity of in the body of the fluid is precisely balanced by the change in circulation stored
at the stress-free surface. Where there is surface curvature, solid body rotation ensues at the stress-free surface, and significant
amounts of vorticity can form (balanced by a change in the circulation at the interface); in certain cases, this vorticity can
separate into the flow, leading to rapid cross-annihilation of vorticity shed from the cylinder.
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Summary We will discuss the results of a systematic parametric study of the wake structure produced by a circular cylinder undergoing
forced oscillations transverse to the background flow in an inclined soap film system. Comparisons with existing results for a three-
dimensional experimental system and a two-dimensional computational model provide important insight into the role of system dimension-
ality in the formation and dynamics of complex vortex wakes.

Vortex-induced vibration is a classic problem in fluid mechanics with many applications. To better understand this phe-
nomenon, numerous researchers have investigated the structure and dynamics of wakes that are generated by a circular cylinder
undergoing controlled oscillations transverse to a uniform background flow. In their seminal paper, Williamson & Roshko [6]
documented several distinct wake structures that appeared in water channel experiments over a broad range of oscillation pa-
rameters, as shown in Fig. 1(I). The normalized oscillation amplitude,A∗ = A/D, and the normalized oscillation wavelength,
λ∗ = U/fD (or normalized oscillation frequency, f∗ = (λ∗ St)−1), play key roles in determining the wake structure, which
is related to the forces felt by the wake-producing body [5]. Here, D is the cylinder diameter, A is the oscillation amplitude, f
is the oscillation frequency, U is the (uniform) background flow speed, and St = fND/U is the Strouhal number, where fN
is the frequency of vortex shedding from a fixed cylinder. The vortex wake structures documented in Ref. [6] include a ‘2S’
mode corresponding to the standard von Kármán street having two single vortices formed per shedding cycle, a ‘2P’ mode in
which two pairs of vortices are formed per cycle, and an asymmetric ‘P+S’ mode comprised of a pair of vortices and a single
vortex; examples of each are illustrated in Fig.1(I).

Leontini and collaborators [2] replicated the investigation from [6] using a two-dimensional computational model. The
resulting bifurcation diagram for wake structure in (f∗, A∗)-space is shown in Fig. 1(II). Some general characteristics are
shared between the results shown in panels I and II of Fig. 1, but the relationship between parameter values and wake structure
as computed in the two-dimensional simulations is substantially different from that observed in the three-dimensional experi-
mental system. Some of this difference can be explained by Reynolds number dependence, as considered by Leontini et al. [2].
Of particular note is the absence of any ‘2P’ wake patterns in Ref. [2] for the wide range of parameter values considered in
those numerical simulations, although Williamson & Roshko [6] do note that “for Re< 300 the P+S mode occurred instead
of the 2P mode throughout that region as well.” Leontini et al. [2] conclude that the primary explanation for the differences
between the computational and experimental results (at similar Re values) lies in the difference in dimensionality between
these two systems.

We are investigating the role of system dimensionality in the wake structure generated behind an oscillating cylinder by
conducting experiments in a flowing soap film. Soap film systems have been established as a useful tool for investigating
(quasi-) two-dimensional flows [7] and have been used by several different research groups for investigating wake structure
(see, e.g., Refs. [1, 4]). Couder & Basdevant [1] demonstrated three decades ago that in-line oscillation of a circular cylinder
can generate a ‘2P’ wake in a soap film. Schnipper et al. [4] conducted an extensive parametric analysis of flow past a flapping
foil and observed a rich collection of wake structures. However, a replication of Williamson & Roshko’s [6] investigation of
transverse cylinder oscillations has not been conducted previously in a soap film.

Our experimental system, illustrated in Fig. 1(III), consists of a gravity-driven, inclined flowing soap film that generates a
quasi-two-dimensional flow with a controlled flow speed. The nylon wires forming the sides of the test system are stretched
by four horizontal pull lines that are tensioned by springs to form a 1m × 0.1m rectangular test section. Soap solution
is pumped into a top reservoir with an overflow mechanism to maintain a constant pressure head at the valve, enabling a
consistent average flow speed. The cylinder penetrates perpendicularly through the flowing soap film and is forced to oscillate
in harmonic motion transverse to the film flow. A high-speed camera records the optical interference between the front and
back surfaces of the film. Dark and bright fringes become visible on the film under monochromatic light from the sodium
lamp, enabling direct visualization of the wake pattern.

Five example cases of the wake structure observed in our experimental system are shown in Fig. 1(IV). Case A shows
evidence of a P+S wake structure, which consists of one pair of (two) vortices and one single vortex that are shed from the
cylinder during each oscillation cycle. The generation of a P+S wake structure at these parameter values is consistent with
the two-dimensional results in Ref. [2], as can be seen in Fig. 1(II), but differs from the 2P wake structure expected for these
parameter values in the three-dimensional experimental system [6], as shown in Fig. 1(I). Case B does not show an established
wake pattern, which is consistent with the findings of both Refs. [2] and [6]. Case C shows evidence of a 2S wake (with two

∗Corresponding author. Email: stremler@vt.edu

1514



Figure 1: (I) Characterization of wake structure behind an oscillating cylinder (I) in a three-dimensional water channel by
Williamson & Roshko [6] for 300 < Re < 1000 and (II) in a two-dimensional computational model by Leontini et al. [2] for
Re ≈ 100. Points labeled A–E mark the parameters corresponding to images A–E in panel IV. (III) Schematic of the inclined
flowing soap film system used in the present experimental study. (IV) Representative examples of wake patterns generated by
a cylinder oscillating transverse to the flow in the inclined soap film system for Re ≈ 170 (cases A–D) and Re ≈ 110 (case E).
Flow is from left to right.

single vortices formed per cycle) but lacks repeatability, which would seem most consistent with being near the bifurcation
boundary for the two-dimensional system in Fig. 1(II), but does not fully agree with the results for either of the previous
investigations. Case D shows evidence of being a 2PO wake, which is similar to the 2P wake with four vortices (or two pairs
of vortices) shed per cycle but exhibiting much weaker secondary vortices [3]. This wake structure is most consistent with
that found in the three-dimensional system [3, 6] despite the difference in Re values, although the structure we observed is
not invariably repetitive. Our final example, case E, shows a clear 2P wake structure; the occurrence of this structure matches
well with the three-dimensional experimental results in Ref. [6] for Re> 300 and contrasts sharply with the two-dimensional
computational results in Ref. [2] and the statement in Ref. [6] that the 2P mode is not observed for Re< 300, when the wake
is expected to remain two-dimensional.

We will discuss the results of a systematic parametric study of the wake structure produced in the (λ∗, A∗)-space accessible
to our experimental system. The examples presented here suggest that differences between the results from Williamson &
Roshko [6] and Leontini et al. [2] and occurrence (or absence) of a 2P mode wake cannot be attributed solely to system
dimensionality. Further insight into the formation and dynamics of complex vortex wakes produced behind oscillating bluff
bodies can be obtained by consideration of this quasi-two-dimensional experimental model.
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Summary We will discuss the structure and dynamics of complicated, or exotic, laminar vortex streets using point vortex models in two-
dimensional potential flow. The focus will be on singly-periodic systems containing four vortices per period having an assumed spatial
symmetry that is preserved by the dynamics. This symmetry is inspired by the patterns observed in 2P-mode bluff body wakes, in which
four neighboring vortices appear as two pairs with a glide-reflective symmetry: the position of each pair is related to the other by a reflection
about and a half-period translation along the wake centerline. This problem can be reduced to an integrable Hamiltonian system. Vortex
motions are classified using a bifurcation analysis of the phase space topology as determined by level curves of the Hamiltonian. The
four-point-vortex system exhibits a rich variety of relative motions for almost all possible initial conditions.

Figure 1: Various experimental wakes, with flow moving
from left to right. (a) A 2S von Kármán street behind
a stationary cylinder in water, adapted from [7]. (b) A
P+S wake behind an oscillating cylinder in water, from
C.H.K. Williamson [private communication]. (c) A 2P wake
behind a flapping foil in a flowing soap film, adapted from [5].

Consider the laminar flow of a viscous fluid moving with
a steady free-stream velocity U around a submerged bluff
body. If the Reynolds number is sufficiently large, the vortic-
ity generated by the body is periodically shed into the down-
stream wake. The most commonly occurring pattern for the
shed vortices is the standard von Kármán (vK) street, such
as that shown in Fig. 1(a), in which the vortices move in rows
nearly parallel to the streamwise axis and with essentially con-
stant inter-vortex spacing. This flow can be modeled as two
oppositely-signed point vortices in a periodic “strip”, i.e. in
a singly-periodic domain. When the body oscillates, flaps,
or is in close proximity to another body, the vortices in the
wake can exhibit a variety of other patterns, most of which
display relative vortex motion. Patterns such as those shown
in Fig. 1(b,c) have been referred to as ‘exotic wakes’ [2].

The point vortex modeling approach introduced by
von Kármán has been extended to wakes that can be repre-
sented by N = 3 [1] or N = 4 [3] vortices per period. The model represents one set of ‘base’ vortices in an exotic wake,
say the four vortices highlighted by the box in Fig. 1(c). Each base vortex is considered to be at position zα = xα + i yα
in the complex plan and have strength Γα. For simplicity, it is assumed that the influence of the remaining vortices can be
approximated using spatially periodic images of these base vortices. These complicated, or exotic, wakes are thus modeled as
periodic arrangements of N point vortices in a periodic strip of width L (i.e. as vortex streets); the focus of this presentation
will be on the case N = 4. The downstream development of a wake is then examined in the vortex street model by consider-
ing the temporal evolution of the base vortices. The equations are formulated so that the vortex street is viewed in a frame of
reference moving with the background flow.

Point vortex models of exotic vortex streets display a range of interesting, and sometimes quite complicated, behaviors.
When N = 4, the model system can be made integrable by assuming a glide-reflective symmetry that is motivated by
experimental observations of 2P wakes [6]. Each set of four base vortices are considered as two pairs, with the position of
each pair related to the other by a reflection about the wake centerline and a half-period translation along the wake centerline.
The strength of each vortex is taken to be the negative of its glide-reflective image, so that the sum of the vortex strengths is
zero. Under these assumed constraints, the N = 4 problem can be reduced to an integrable Hamiltonian system that depends
only on the relative separation between like-signed vortices, Z = X + iY = π(z1− z2)/L, with the relative vortex strengths,
γ = Γ1/(Γ1 + Γ2) and the imaginary component of the linear impulse, P = (π/L)

∑
α Γα/(Γ1 + Γ2) yα, as parameters.

The Hamiltonian formulation allows for a full characterization of this integrable system using phase space representations
and a bifurcation diagram in (γ,P)-space. Specifying values of γ and P establishes the topological structure of the phase
space representation, as determined by the existence of and connectivity between fixed points in the (X,Y ) plane. For a given
initial vortex configuration, the relative vortex positions evolve along level curves of the Hamiltonian. Absolute motion of the
vortex system is then determined by an additional integration of the relative motion. An example phase-space structure and
several corresponding real-space trajectories are shown in Fig. 2 for (γ,P) = (2/5,−1).

Varying the values of γ and P can change the phase space structure, leading to bifurcations in which the connectivity of the
saddle points changes. The topology of the phase space structure is the same within a given region of the bifurcation diagram,
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Figure 2: (left) Representative level curves of the Hamiltonian in the (X,Y ) plane for the case γ = 2/5, P = −1. Three
spatial periods are shown. Level curves are marked with solid lines; separatrices joining the saddle points are shown with
heavy lines, and these curves delineate seven distinct regimes of motion. Regimes with orbiting motion are labeled Oi, and
those with exchanging motion are labeled Ei. (right) Representative real-space vortex trajectories, labeled according to the
corresponding regime in the phase space diagram at left. Solid circles mark initial and final locations of the base vortices;
open circles mark initial and final locations of selected image vortices. The trajectories taken by the base vortices are shown
with solid lines; trajectories of the image vortices are shown with dotted lines.

Figure 3: Bifurcation diagram for the phase space topology.
Solid lines mark the (γ,P) coordinates at which different
phase space fixed points are connected by separatrices. The
open circle marks a singularity in the bifurcation diagram.
The example from Fig. 2 is marked with a square symbol.

shown in Fig. 3. Then, for a particular phase space structure,
separatrices delineate regimes of vortex motion, and within
any particular regime of motion the relative motion of vortices
in the (x, y) plane is qualitatively the same. Thus, describing
the possible vortex motions from a representative phase space
example in each of the regions of bifurcation space gives a full
characterization of the vortex motion in this system.

In the experimental literature, wakes with four vortices per
period are generally classified as being 2P or 2C wakes [6],
a distinction acknowledging that very different wake dynam-
ics can arise from having strong interactions between the
oppositely-signed vortices (generally 2P) or the like-signed
vortices (generally 2C). Relatively recent experiments have
expanded this classification to include a ‘2Poverlap’ mode, a
2P-like mode in which one of the vortices in a pair is much
weaker than the other [4]. The present model results suggest
that a wide variety of vortex dynamics may exist in experi-
mental wakes, and classification of a wake based primarily on
the number of vortices shed per cycle is likely insufficient.
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Summary It is shown that an interpretation of the Hamiltonian dynamics of a one-dimensional chain of point magnets bears a striking 
resemblance to that of point vortices in a planar ideal fluid. This leads naturally to a consideration of planar generalizations of point 
magnet fields that exhibit vortex-like dynamical characteristics. A class of such generalizations – (quasi-) 2-dimensional approximations 
of Bose—Einstein condensate vortex dynamics – is analyzed using a combination of theory and simulations. Special attention is paid to 
integrability, bifurcations and perturbations of the Hamiltonian dynamics. Possible variations of the fields and extensions to approximate 
models of (topological) vortex dynamics in Maxwell—Chern—Simon—Higgs fields are also briefly considered.  
 

INTRODUCTION 
 
   The dynamics of a 1-dimensional chain of small (point) magnets has several useful applications as shown in [5] and 
experiments and simulations by the authors indicate considerable energy harvesting potential. Naturally, this leads to an 
interest in higher dimensional generalizations, which catalyzed the work described in this paper on 2-dimensional 
extensions related to physical phenomena of current interest, especially those involving vortex-like dynamics. This 
emphasis is a result both of the resemblance of the equations of motion of to that of point vortices in fluid dynamics (see 
e.g. [1]) and certain similarities between these equations and those associated to vortex-like behavior in various electro-
magnetic gauge fields, especially Bose—Einstein condensates (BEC) as illustrated in papers such as [2-4, 6].  
   This paper begins with a brief description of the Hamiltonian dynamics of a 1-dimensional chain of magnets; especially 
its similarity to the dynamics of point vortices in an ideal fluid. We also describe the Hamiltonian equations for point 
magnetic fields in general Euclidean spaces. Next, the vortex dynamics of quasi-two-dimensional BECs is recognized as a 
natural 2-dimensional generalization of the 1-dimensional point magnet chain. The remainder of the exposition is mainly 
devoted to an investigation of the BEC vortex dynamics, wherein we summarize one of the main results of our research so 
far. In the final section, we describe some of our conclusions and identify several possible generalizations and interesting 
problems related to vortex dynamics in other gauge fields. 
 

   POINT MAGNET AND RELATED DYNAMICS 
 
   We assume that the magnetic monopoles are continuously distributed along a line, but concentrated in finitely many 
minute intervals identified as point magnets at the interval midpoints. Integration of the 1/r2 forces over the intervals 
produces 1/r interaction forces among the point magnets. Let N point magnets of masses m1 ,…, mN and strengths per unit 
mass γ1 , …, γN lie along  at the points x1 ,…, xN. The Hamiltonian equations of motion with 1/r interaction forces are 

(1) 0 0{ , }, { , } (1 ),
k k k k

x H x y H y k N       
where the momenta yk , Hamiltonian function H0 and (nonstandard) Poisson bracket {•,•} are defined, respectively, as 

(2)   2 1

1 1
1

0: , : 1 2 log and { , } : { }.
k k k k

N N

k k k k j k j k k y x x yk k
j k N

y x H y x x f g f g f g    

 
  

          

For point magnets in Euclidean n-space n, the equations of motion are the same mutatis mutandis the notation.  

   If one omits the kinetic energy in H0 in (2) for massless point vortices [3], it is essentially identical to that of point 
vortices in an ideal fluid and has three independent invariants in involution [1], whereas the original has just two. 
 

BOSE—EINSTEIN CONDENSATE VORTEX DYNAMICS IN THE PLANE 
 
   Vortices occur in BEC dynamics in the plane as shown in the experimental observation in Fig. 1, which can be inferred 
from a well-known approximate point vortex model of the form 

(3)   1

1

2 ( ) (1 ),
k z j k j k

j k N
kk kz i z i z z k N   



  

         

where zk = xk + iyk Î, the complex plane, and the leading term on the right-hand side is the component of the precession 

velocity. We note that the system (3) is symplectic, with Poisson bracket as in (2) and Hamiltonian function  
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Fig. 1. Evolution of vortices in a BEC. 
 

The Hamiltonian dynamical system corresponding to (3) is 
(5) 1 1{ , }, { , } (1 ).

k kk k y k k k x kx H H x y H H y k N              
As for the choice for the precession velocity, the function 

(6)  2

1
( ) : log ,kN

kk
z a b z




   

    

where a and b are positive constants, is realistic and often chosen [4].  
   As an example of the type of results we have been able to prove, we offer the following: 
 
Theorem. The Hamiltonian system (5) has, depending on Φ, either one, two or three independent constants of motion 
(including H) in involution, in which case it is completely Liouville—Arnold (L-A) integrable for N = 1, N =2 or N = 3 
point magnets, respectively. Additional point vortices in each of these cases can cause chaotic dynamics (proving that there 
are no additional independent invariants in involution).  
 
Indeed, if Φ = 0, the Hamiltonian function is the same as for point vortices in a fluid, for which a system of at most three 
vortices is completely L-A integrable [1], when Φ is as in (6) it is not difficult to show that the system (5) is L-A integrable 
for N = 2, but not N = 3, and it is easy chose Φ so that H is the only independent integral of (5).    
 

CONCLUDING REMARKS 
 

   We have shown how certain 2-dimensional generalizations of the dynamics of a 1-dimensional chain of point magnets 
includes well-known approximate 2-dimensional dynamical models of the evolution of BECs, and have begun to analyze these 
models. Additional investigation of these models is planned as part of our ongoing research. Moreover, inasmuch as the BEC 
models are derived from the 3-dimensional Gross—Pitaevskii partial differential equation, it is reasonable to assume that 
approximate planar point magnet models can be derived from gauge-field equations of more general types falling within the 
sphere of Maxwell—Chern—Simons—Higgs theory. We are also planning to delve into these possibilities. 
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Summary With the purpose of clarifying the topology of vortex creation and vortex merging in 2D flows, we consider the dynamics of the
critical points of vorticity. These include local extrema, which we identify as feature points of vortices, as well as saddle points. We present
a precise criterion for the merging or creation of a vorticity extremum and a saddle, and describe the motion of the critical points close to
the bifurcation. We show how creation of vortices in this sense occurs in the wake of a circular cylinder, and how vortex merging occur in a
multi-Gaussian model of two vortices.

A vortex is a fundamental object in fluid mechanics, and understanding how vortices are created, interact, and merge
is important for clarifying the features of the flow. Many definitions of a vortex exist, see e.g. [5, 4, 3], but no general or
commonly accepted concept has emerged as yet. Furthermore, these definitions focus on a vortex as a coherent object in a
way where the processes of creation and merging of vortices is not easily addressed.

One way to overcome this is to consider a feature point [7] of the vortex, rather than the spatially extended vortex as
a whole. In 2D flows, the extrema of vorticity ω(x, y, t) naturally present themselves as generalizations of inviscid point
vortices. They are defined by

ωx(x(t), y(t), t) = 0, ωy(x(t), y(t), t) = 0, (1)

where the subscripts denote differentiation. In [1] equations of motion of these points are derived,

ẋ = u− ν ωyy∆ωx − ωxy∆ωy

|H|
, ẏ = v − ν ωxx∆ωy − ωxy∆ωx

|H|
. (2)

Here ∆ is the Laplace operator, ν is viscosity, and |H| is the determinant of the Hessian matrix H =

(
ωxx ωxy

ωxy ωyy

)
. Hence,

a vorticity extremum is a material point in an inviscid flow, which is advected by the velocity field (u, v). Viscosity induces a
deviation from this. Saddle points of vorticity also fulfill (1), and while they may have no immediate physical interpretation,
they must be present for topological reasons. Vortex merging cannot occur directly between two vorticity extrema, but must
include the interaction with a vorticity saddle. This occurs when |H| = 0 and the velocity of a critical point is not well-defined.
It is the purpose of the present paper to explore these bifurcations. Examples of vortex creation through such bifurcations in a
cylinder wake are shown in Fig. 1(a).

(a) (b) (c)

Figure 1: (a) Snapshot of the unsteady flow around a circular cylinder close to a wall at Re = 300. Gap width is 0.2 cylinder
diameters. The colors indicate vorticity. The blue markers are instantaneous critical points. The black and blue curves are
paths of critical points with negative and positive vorticity, respectively. The red curves are paths of saddle points. The
arrows show the creation of the two main vortices (and corresponding saddles) which persist in the wake. Other vortices are
created, but they disappear again in vortex destruction bifurcations. Generated with numerical methods from [2]. (b) Paths
of a saddle and an extremum close to the creation, as given by (3). (c) Bifurcation diagram for the merging of vortices in the
multi-Gaussian model. Merging of an extremum and a saddle occur at the red curve.

The main theoretical result is the following: We consider the simplest case where H has 0 as a simple eigenvalue at a
critical point of vorticity at t = 0. We choose the coordinate system such that the critical point is at the origin and the Hessian
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is in normal form, H =

(
A 0
0 0

)
with A = ωxx 6= 0 and ωxy = ωyy = 0. If further B = ωyt 6= 0, C = ωyyy 6= 0, we show

that two critical points of vorticity, one an extremum, one a saddle, emanate from the origin, following a trajectory given by

x(t) =
(
−ωxyy

A
+
ωxtωxyy

AB

)
t+O(t3/2), y(t) = ±

√
−C
B
t+O(t). (3)

If C/B < 0 the critical points exist for t > 0, and the bifurcation describes a vortex creation. If C/B > 0, it is the destruction
of a vortex at t = 0.

For small values of t, the curve (3) is approximately a parabola, with an extremum following one branch, and a saddle
following the other. See Fig. 1(b). Furthermore, the local shape of the vortex close to the extremum is elliptic, and the
half-axes are given from the eigenvalues of H . We will show that the ratio of the half-axes grows as |t|1/4.

We use the theorem outlined above to study vortex merging as well. We revisit and extend the analysis of [6] of the
multi-Gaussian model of the merging of two vortices. The vorticity field is given by

ω =
1

4πτ

[
Γ1 exp

(
−|z − zL|2

4τ

)
+ Γ2 exp

(
−|z − zR|2

4τ

)]
. (4)

Here z = x + iy is the complex representation of a point, zL, zR are the centers of the two vortices, each moving in the
velocity field generated by the other as if they were point vortices with a strength decaying from the initial values Γ1,Γ2.
Time is given on the viscous scale, τ = νt. Initially, there are vorticity extrema located at the vortex centers zL, zR, but the
extrema deviate from the centers as time progresses. The ultimate distribution is that of a single Gaussian vortex based at
the center of vorticity. We explore the development of ω when Γ1 = α, Γ2 = 2 − α to compare with the study of α = 1
(symmetric case) and α = 4/3 of [6].

If Γ1 and Γ2 have the same sign, 0 < α < 2, this state is reached through a vortex destruction as described above, where a
vorticity extremum merges with a saddle. The time τ of merging as a function of α is shown in Fig. 1(c). The symmetric case
α = 1 is special, since the non-degeneracy condition B 6= 0 does not hold. The bifurcation is now a pitchfork bifurcation,
where both vorticity extrema and the saddle merge at the same time into a single extremum.

If Γ1 and Γ2 have opposite signs, there is no saddle point, and no bifurcation occurs. Instead, the strongest vortex advects
to the center of vorticity, while the other goes to infinity at a linear rate, while its strength goes to zero. Thus, in this case,
there is no vortex merging.

In conclusion, we have presented a simple a rigorous method to study vortex merging and creation, and showed how it can
be applied in a few specific flow situations. We believe this approach will be useful for classification of vortex interactions in
general. If time permits, we will discuss the application to a system of three multi-Gaussian vortices.
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ENTRAINMENT IN NON-STATIONARY FLOWS

Giuseppe A. Rosi∗ and David E. Rival

Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, Canada
Summary The current study reports on a generalized mechanism for entrainment in non-stationary flows. Towards this end, the starting
vortex that forms behind a constantly-accelerating, normally-towed, circular plate is considered. Velocimetry measurements of the starting
vortex suggest that the ratio between entrainment velocity and instantaneous plate velocity is independent of dimensionless acceleration. A
statistically significant data set has been obtained, from which a final model is currently being developed.

Entrainment, which is the assimilation process of low-vorticity fluid by neighbouring high-vorticity fluid, is as ubiquitous
as the shear layers that induce this disparity of vorticity in a flow. Studies on entrainment in non-stationary flows have typically
investigated the parameter ε, which represents the entrainment rate normalized by the growth rate of the rotational region. By
investigating vortex rings formed by piston-cylinder arrangements, recent studies have focused on the methods for measuring
ε, and on the dependency of ε with Reynolds number or with the piston’s velocity program [1, 2]. Although these studies
represent significant contributions, the entrainment mechanism they propose is not valid for the early-stage growth of the
rotational region. Thus, towards providing a mechanism for early-stage entrainment, the current study considers a basic,
non-stationary problem: A constantly-accelerating, circular plate of diameter D being towed normal to its path from rest.

Consider two accelerating plates as shown in Fig. 1(a). One accelerates at a higher non-dimensional rate of a∗H , resulting
in an instantaneous plate velocity of UH , while the other accelerates at a∗L, resulting in an instantaneous plate velocity of
UL. Acceleration is non-dimensionalized here as a∗ = aD3/ν2, where ν is viscosity. The following question is posed: As
each plate traverses a common dimensionless distance of s/D = s∗, how will the different acceleration rates modify the
entrainment? The answer to this is uncertain. Since the plate accelerating at a∗H results in a shear layer that produces vorticity
at a greater rate, presumably the resulting entraining structures would be correspondingly more energetic, which may result in
the greater ε. Nevertheless, the effect of acceleration remains unclear.

Towards answering the aforementioned question, planar, Particle Image Velocimetry (PIV) measurements of a circular
plate accelerating from rest were performed in a glass towing-tank facility at Queen’s University. The experimental setup is
presented in Fig. 1(b). Accelerations a∗L = 2.1 × 108 and a∗H = 1.1 × 1010, which are hereafter respectively referred to as
the low- and high-acceleration cases, were tested. The imaging apparatus is shown in Fig. 1(c). 10µm hollow glass spheres
were illuminated by a 2mm-thick laser sheet positioned at the plate’s midspan. A high-speed camera acquired images of the
bottom half of the starting vortex within the domain of 0.2 ≤ s∗ ≤ 1.0. The field-of-view size was 0.8c × 0.8c, and the
camera’s frame rate was set at 125Hz and 1000Hz for the low- and high-acceleration cases, respectively. Enstrophy (|ω2|)
fields were derived from the images, and entrainment velocity ~ue along starting vortex’s periphery was calculated using the
following equation, which is presented in [3]:

~ue = −D|ω2|
Dt /

∣∣ ∇|ω2|
∣∣ . (1)

Preliminary (instantaneous) results of the starting vortex at a dimensionless distance of s∗ = 1.0 are shown in Fig. 2. Figs.
2(a) and (b) present the |ω2| fields of the starting vortex for the low- and high-acceleration cases. |ω2| has been normalized
by U2/D2, where U is the instantaneous plate velocity. Correspondingly, Figs. 2(c) and (d) present ~ue across rotational
regions identified via the enstrophy-threshold technique described in [3]. The magnitude of |ω2| scales well with U2/c2.
Furthermore, the topology of the |ω2| fields appears to scale with s∗, since the starting vortices in both cases are of equal size,
and the number and positioning of Kelvin-Helmoltz instabilities are nearly identical. Finally, the length of ~ue presented in (c)
and (d) are both on the order of U , suggesting that |~ue|/U along the periphery of the starting vortex is independent of a∗.

The results presented here are derived from a single run of each acceleration case, and are by no means statistically
significant. Thus, forty additional runs of each acceleration have been acquired. In all collected runs, ~ue is evaluated directly
from the spreading of |ω2| iso-contours, which can be calculated more reliably from PIV data. From this data, the authors
wish to make definitive conclusions regarding the global and regional effects that non-stationarity has on entrainment.
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Figure 1: (a) A Schematic of two geometrically equivalent plates towed normally from rest to s∗ at two different constant
accelerations, a∗H and a∗L, where a∗H > a∗L. The current study investigates how entrainment responds to different a∗. (b) A
schematic of the water-filled towing tank. A circular plate is towed from rest at two constant accelerations through a 1m×1m
cross section. The sting attaches to the suction side, which then attaches to the traverse located above the tank. (c) A schematic
of the imaging apparatus. The plate has a diameter of D = 30cm and traverses through a 0.8c× 0.8c interrogation field. Two
accelerations were tested: a∗L = 2.1× 108 and a∗H = 1.1× 1010. Images were acquired at 125Hz and 1000Hz, respectively.
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Figure 2: (a) presents the enstrophy field of the plate accelerating at a∗L, while (c) presents entrainment-velocity vectors
calculated within the blue-rectangle region in (a). (b) and (d) present similar results as (a) and (c) but for the plate accelerating
at a∗H . In all figures, the plate, which moves from right to left, has traversed a dimensionless distance of s∗ = 1.0 and is
indicated by a gray rectangle. The topology and and magnitude of the enstrophy fields for the low- and high-acceleration
cases collapse well when enstrophy is normalized by U2/c2. Furthermore, the length of the vectors presented in (b) and (d)
are both on the order of U . The result suggests that |~ue|/U along the periphery of the starting vortex is independent of a∗.
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VORTEX AND WAKE INTERACTIONS OF MULTIPLE OSCILLATING FOILS FOR

ENERGY HARVESTING

Jennifer A Franck∗1, Filip Simeski1, Jennifer Cardona1, Yunxing Su1, Kenny Breuer1, and Shreyas Mandre1

1School of Engineering, Brown University, Providence, RI

Summary The vortex and wake interactions of multiple oscillating foils are investigated with computational fluid dynamics (CFD) and com-

pared with experimental measurements for energy harvesting applications. Oscillating with high pitch and heave amplitudes to maximize

power production, the elliptical-shaped foils generate large coherent vortices at the leading and trailing edge, which are shed downstream

to create a large highly structured wake of vortices with alternating sign. Downstream foils oscillate within the large organized wake at a

relative phase angle to the lead foil such that power efficiency is optimized. When placed directly downstream of one another, the optimal

phase of a second foil is to avoid interactions with the first foil’s wake, generating less than half of the total power of the first foil. However,

when placed in a staggered configuration the downstream foil has a 20% increase in efficiency through constructive vortex-foil interactions.

INTRODUCTION AND METHODS

An oscillating foil at high heave and/or pitch amplitudes will generate a sequence of shed vortices into an organized wake.

The structure and repeatability of the wake allows for interesting vortex interactions with subsequent strokes or with other

bodies in the flow. These vortex interactions have been well noted in animal propulsion, for example with vortex recapture in

insect wings [1] or by exploiting vortices while swimming [2]. Instead of propulsion, this paper focuses on energy harvesting,

in which the pitch and heave amplitude of the foil can be optimized to extract power from the freestream flow. We show that

with the proper configuration and kinematics, that a downstream foil can recapture the energy from the structured wake of the

lead foil. For the application of an hydrokinetic energy device, these constructive vortex-foil interactions will boost the overall

power, and increase the overall power density by placing devices in closer proximity of one another.

Energy Harvesting from Oscillating Foils
An oscillating foil generates power from a heaving motion defined by h(t) coupled with a pitching motion, defined by an

angular position θ(t). The instantaneous power generated is the combination of the two, P (t) = L(t)h′(t)+M(t)θ′(t) where

L(t) is the lift force and M(t) is the moment about the pitching axis. Energy harvesting occurs when the pitch is 90 degrees

out of phase with the heave cycle, thus generating large vertical force at maximum vertical velocity. A key component to

maximizing the power is the generation of a leading edge vortex (LEV) at the high relative angles of attack, which enhances

the lift force. For a single foil, maximum efficiency values are 30− 34% (reduced frequency fc/U = 0.1− 0.15, normalized

by chord c and freestream velocity U , heave amplitudes h/c = 0.8 − 1.5, pitch amplitudes α = 75 − 85 deg) and most of

the power is generated through the heave term L(t)h′(t), with the pitch generating the high angle of attack necessary for the

LEV formation. Many researchers have investigated the potential of energy harvesting from oscillating foils (see review [3]),

and a few groups have looked at interactions of multiple foils. Tandem and parallel foil configurations have been investigated

[4], but only for a handful of configurations, limited to either 90 or 180 degrees out of phase with one another. More recently

a parallel, or stacked configuration of foils has been performed [5].

This paper explores the vortex dynamics between two foils in tandem configuration with (a) the foils aligned one behind

the other, and (b) the foils staggered, with the trailing foil offset in the streamwise and vertical directions. Once a given

configuration is fixed, a range of optimal kinematics is prescribed, varying the phase angle,ψ, between the foils. The efficiency

and power production is computed for the upstream and downstream foils.

Figure 1: Linear arrangement: Efficiency of upstream (blue)

and downstream (red) foils; 6 chords separation.

Figure 2: Staggered arrangement: 8 chords downstream and

4 chords vertical separation.

∗Corresponding author. Email: jennifer franck@brown.edu
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Numerical Methods

Direct numerical simulations are used to perform all simulations, and the efficiency values and instantaneous forces are

compared with experimental flume data. The simulations are performed utilizing the OpenFOAM dynamic mesh libraries,

where the kinematics of the foils are prescribed. An incompressible Navier-Stokes solver is used to solve the fluid flow and

the solid body rotation stress equations for the mesh motion. An unstructured mesh of two elliptical foils is generated with

Gmsh, with an outer boundary of 25 chord lengths in all directions. The simulations are performed at a Reynolds number

of 1000, however the efficiency and forces are well validated against measurements performed in a water flume at Reynolds

number 50, 000 (Fig 1).

RESULTS

To validate the simulations, a sequence of experiments are performed in the flume with a linear arrangement of foils.

Figure 1 shows the efficiency of the lead and trailing foils for a separation distance of 6 chords apart for the flume and CFD,

and the kinematics of fc/U = 0.15, h/c = 1, α = 65 deg. Both the CFD and flume agree remarkably well with the ideal

phase separation between foils. For these kinematics, the efficiency of a single foil is approximately 22%, which is the same

as the results from the lead foil. Thus, the lead foil’s performance is not influenced by the presence of a downstream foil.

The efficiency of the downstream foil is influenced by the wake of the first foil, and depending on the phase difference the

efficiency ranges from approximately 1% to 14%. Since the downstream foil is directly behind the first its relative freestream

velocity is significantly slower, and a lower efficiency is expected. However, when the second foil is 150 degrees out of sync,

its stroke avoids the shed vortices from the first foil, and corresponds to the optimal phase for this configuration. At -30

degrees, the downstream foil directly intersects the counterclockwise vortex on the downstroke and clockwise vortex on the

upstroke, decreasing the lifting force and resulting in close to zero power production.

However, an arrangement of staggered foils (8c downstream and 4c vertical separation) in Figure 2, is able to benefit from

the intersection of vortices. By placing the downstream foil above the wake from the first, it sees mostly undisturbed flow, and

thus no drop in efficiency. Furthermore at optimal phase separation of 120 degrees, the second foil can favorably interact with

the clockwise vortex during the downstroke increasing the efficiency from 25% to 30%. The clockwise rotation of the vortex

is essential since the relative velocity in the proximity of the foil is increased, thus strengthening the LEV and enhancing the

downward force on the foil.

Future work will include adding more foils in various staggered configurations to investigate how constructive interference

can be achieved with multiple foil interactions.

(a) ψ = −30 degrees (b) ψ = 120 degrees

Figure 3: Vorticity flow fields in the staggered configuration of Figure 2.
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EXPERIMENTAL INVESTIGATION OF A 
SLENDER DELTA WING WITH APEX AND TAIL FLAP CONTROL 
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Summary An experimental investigation of a slender delta wing with a sweeping angle Λ=65° was conducted with apex and tail flap control at 
a Reynolds number Re = 12,900. Dye flow visualization revealed the flow pattern and vortex breakdown (VBD) location over the different 
wing configurations. The flow visualization showed that a tail flap with anhedral deflection angle of -15° (T-15) or -30° (T-30) promoted VBD 
while a tail flap with dihedral deflection angle of +15° (T+15) or +30° (T+30) delayed VBD. A combination of apex flap -15° and tail +30° (A-
15/T+30) delayed VBD the most of all the cases. A particle image velocimetry (PIV) study was conducted to characterize the flow. 
 

INTRODUCTION 
 
   For a slender delta wing, a pair of leading-edge vortices (LEVs) is formed on the suction side of the wing at moderate to 
high angle of attack. The LEVs provide additional suction vortex lift not found in a conventional rectangular wing. 
Furthermore, with increasing angle of attack, the LEVs undergo vortex breakdown (VBD), which is characterized by an 
increase in core size, decrease in vorticity, suction pressure and axial velocity. The core axial velocity, which can reach up 
to 3 Uc/U∞, becomes wake-like downstream of the VBD location. The breakdown occurs initially in the trailing-edge region 
and moves upstream with increasing angle of attack until it reaches near the apex, stalling the wing. Furthermore, due to its 
unsteady nature VBD may cause large structural vibrations and dangerous fatigue damage of fins [1].  
   Rao and Campbell [2] summarized many different control methods for delta wing vortical flow control. One such device 
is the apex flap, where the apex region of the wing is hinged transversely (seen in red, Figure 2b). Lowson and Riley [3] 
believed that the key in controlling the vortex breakdown is at the apex region because the strength of the vorticity shed by 
the apex will vary with apex geometry. In addition, the vorticity shed from the apex will form the center of the LEV core, 
hence affecting the vorticity distribution inside the core. The effective angle of attack of the wing is also altered. Therefore, 
the apex flap should have a great impact on LEV control. A tail flap is formed by hinging one of the base angles in the 
streamwise direction (seen in blue, Figure 2b). The goal is to affect the pressure gradient in the rear region of the wing. The 
flap also introduces spanwise camber to the delta wing.  

The objective of this study is to explore the use of both apex flap and tail flaps, deflected passively individually or as a 
combination, for VBD control. Based on flow visualization and particle image velocimetry (PIV), it is shown that certain 
flap deflections delay vortex breakdown.  

 
EXPERIMENTAL SETUP 

 
The experiments were conducted in a Rolling Hill Research Corporation (RHRC) model 0710 water tunnel. The chord 

Reynolds number was fixed at Re = 12,900. The 0.18 m × 0.25 m × 0.45 m test section was equipped with three optical 
windows. Furthermore, a dye flow visualization system was integrated into the test section. Ten test models, with a 
sweeping angle Λ = 65° and chord c = 0.108 m, were made from 1 mm thick aluminium sheet metal. The apex flap was 
sized at 30% c while the tail flaps had a width of 50% trailing edge semispan. The flaps were bent to the deflection angles of 
δ = ±15° or ±30°. 

The PIV experimental technique was used in order to study the flow field characteristics at different chordwise stations 
along the wing from 0.3 to 1.5 x/c, with Δx/c = 0.10 along the wing and 0.01 near VBD. A dual-head Continuum Nd:YAG 
laser was used to generate two overlapping light sheets. The test models’ x/c location was changed using guided rails. A 
4MP PowerView Plus CCD camera was set up downstream and outside of the test section to look upstream at the region of 
interest. The PIV calibration was 45.15µm/pixel. The water tunnel was seeded with Dantec PSP-20 polyamid particles with 
a mean diameter of 20µm and a density of 1.03g/cm3. The pictures were processed with the TSI Insight 3G version 9.1.0.0 
software. The TSI LaserPulse synchronizer model 610035 controlled all the components for picture taking. 
 

RESULTS 
 

Figure 1 shows the VBD location curves obtained by flow visualization. The worst case in terms of breakdown is the 
apex with upward deflection +15° (A+15), where VBD has been promoted due to the increase in effective angle of attack. 
Otherwise, A-15 delayed VBD beyond α > 22.5° due to the lowering of effective angle of attack. The cases of tail flap 
anhedral deflection -15° (T-15) and T-30 promoted VBD to a lesser throughout the range of angle of attack tested. The 
cases of T+15, T+30 and cropped all delayed VBD. The combination A-15/T-15 promoted VBD when α < 30° and delayed 
VBD at higher angles of attack. The combination A-15/T+30 delayed VBD significantly beyond α > 22.5°.  
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Figure 2 shows a set of typical flow visualization and PIV results for a) baseline and b) A-15/T+30 at α = 24°. Figure 2a 
shows four PIV x/c locations, two before and two after VBD. For x/c = 0.52 and 0.53, a strong concentric red core can clearly be 
observed. After VBD, for x/c = 0.54 and 0.55, a region of vorticity persisted but is more diffused with a significantly lower peak 
vorticity. In the flow visualization picture, two concentrated red lines, representing the trajectory of the vortex core center, can be 
seen originating from the apex and ending at the VBD location (x/c = 0.54). Downstream of VBD, the dye became a chaotic 
flow pattern with a larger diameter. Figure 2b shows the PIV result for A-15/T+30, which is the PIV case with the most delayed 
VBD (x/c = 0.81) at the same angle of attack. A red circular core of weaker vorticity intensity than the baseline can be observed 
for x/c = 0.79 and 0.80. Furthermore, the LEVs are mostly located on the tail flaps. From the apex to approximately x/c = 0.50, 
the LEV filaments are straight and concentrated. Around the tail flap hinge line, the LEV filaments begin to spiral before 
reaching VBD at x/c = 0.81. Post-VBD, the concentrated red core was no longer identifiable; instead a diffused region of low 
vorticity is observed. From flow visualization, the A-15/T-15 and A-15 cases also experienced spiralling before reaching 
VBD. This spiralling phenomenon could be caused by the downward deflection of the apex flap. 

Figure 3 shows the 3D composite iso-vorticity contours with 
Δx/c = 0.10 along the wing for the A-15/T+30 and A-15/T-15 cases. 
The difference in VBD locations (0.81 vs 0.62, respectively) can be 
seen clearly. Furthermore, the LEVs for the A-15/T+30 are located 
on the tail flap while the A-15/T-15 LEVs are situated mostly on the 
main body of the wing. The tail dihedral caused the LEV to be 
closer to the shear layer while an anhedral deflection had the effect 
of elongating the shear layer.  
   The vortex flow parameters calculated from the PIV results show 
that for all the cases the flap deflection rendered a weaker and more 
diffused LEV, with a lower outer circulation and tangential 
velocity, and a higher core radius. For all the control cases, peak 
tangential velocity and peak vorticity were also lower than   
baseline. 

 
 

CONCLUSIONS 
 

An experimental investigation of a slender delta wing was conducted with apex and tail flap control. The apex and tail flaps 
significantly modified VBD location and vortex parameters. The apex flap seemed to increase, for A+15, or decrease, for A-
15, the effective angle of attack of the wing. Decreasing the effective angle attack causes the LEVs to become weaker, 
rendering a delayed VBD. Vortex spiralling before VBD was observed for some cases with apex flap control. Tail flap 
dihedral deflection is best for delaying VBD compared to tail anhedral deflection. The tail flaps were also able to change the 
shape of the shear layer. The best control case for VBD delay was the case of A-15/T+30.  
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Figure 2. Flow visualization and PIV composite iso-vorticity results for a) 
baseline and b) combination of apex -15° deflection and tail +30° (A-15/T+30) 
deflection for α = 25°. 

Figure 3. 3D composite iso-vorticity plot for combination 
of apex -15° and tail +30° (A-15/T+30) deflections, and 
combination of apex -15° and tail -15° (A-15/T-15) 
deflections at α = 24°. 

 

Figure 1. Vortex breakdown location curves 
obtained by flow visualization (vortex 
breakdown location vs. angle of attack). 

a)                b) Apex flap 
Tail flap 
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DETERMINING THE SHEDDING TIME OF VORTICES IN REAL-TIME
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Summary Coherent vortex structures are tracked in the simulated wake of a circular cylinder. Topological Lagrangian saddle points are
identified as intersections of positive and negative finite-time Lyapunov exponent (FTLE) ridges, and these points are then followed as
the flow evolves in order to track individual coherent structures. Previous studies of a circular cylinder in cross-flow have shown that the
acceleration of Lagrangian saddle points away from the cylinder surface provides an objective method to detect vortex shedding. This
saddle point acceleration is combined with the static pressure distribution on the circular cylinder to provide a clear, more easily measured
indication of the shedding time of a vortex than comparable techniques such as force measurements.

INTRODUCTION

Coherent structures, or vortices, are a key component of unsteady flows that include propulsive wakes, flow separation, or
instabilities in shear layers. They are often found in the wake of bluff bodies, aerodynamic surfaces at high angles of attack, or
in turbulent flows. The visualization and tracking of coherent structures helps to explain the basic physics of turbulent motions,
and can be used to improve turbulent flow modeling, prediction, and the design and implementation of control systems.

Although studies on vortex dynamics have been carried out for decades, a widely-accepted, objective definition of a vortex
and its boundaries remains an open question. Techniques used to define vortices can be classified as Eulerian, in which the
instantaneous velocity field and its gradients are used to identify regions that contain vortices, and Lagrangian, where metrics
are calculated using particle trajectories to determine which regions of the flow are dynamically distinct.

Lagrangian techniques have been shown to help identify and describe mass transport and vortex dynamics in a variety of
unsteady flow fields, but they’re computationally intensive and require future data when calculating forward-time quantities.
In the current work, we consider how to detect Lagrangian phenomena from quantities such as surface pressure measurements
in vortex shedding off a circular cylinder, as the static pressure is easily measurable in real-time using current sensors.

METHODS

The Q criterion, an Eulerian scalar, identifies regions of the flow as vortices when there is local rotational motion. Vortices
are found where the norm of the local rate of rotation tensor is dominant over the norm of the local rate of strain tensor, which
corresponds to Q values greater than zero [1]. The Q criterion is useful for visualizing vortex cores.

The Lagrangian finite-time Lyapunov exponent (FTLE) measures the maximum rate of separation around a certain location
in space (x0) by first calculating the flow map of neighboring particlesφ(x0, t0, τ) over an integration time τ, and constructing
the Cauchy-Green strain tensor from the spatial gradient of the flow map. Maximizing ridges in this field indicate high levels
of Lagrangian stretching among nearby particle trajectories, and have been shown to represent structure boundaries in vortex
dominated flows [2].

While repelling ridges of FTLE (pFTLE) can be calculated using forward-time integration, attracting ridges (nFTLE) at
time t0 can be found by calculating FTLE using particle trajectories initialized at t0 and integrated in negative-time. The
pFTLE and nFTLE ridges at time t0 intersect at the outer boundaries of vortices but don’t overlap. Vortex structures are
tracked using points where the pFTLE ridges intersect with the nFTLE ridges. These intersections of the attracting and
repelling ridges in the flow are Lagrangian saddle points, and have been shown to be dynamically important features of the
vortex boundaries [3, 4].

RESULTS

In this section we compare the vortex shedding time found by the acceleration of a Lagrangian saddle point away from
the cylinder surface to the static pressure signal at an angular location 100◦ from the upstream stagnation point, as well as
to the cylinder lift history. Data was generated by a simulation run by Robert Reger advised by Drs. Taira and Cattafesta at
Florida State University using the CHARLES

TM
solver run at Re = 150. FTLE was calculated using an integration time of

two shedding periods (τ = 2T ).

∗Corresponding author. Email: greenma@syr.edu
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Figure 1: FTLE ridges (blue and red) and Q
criterion (grey contours) at t/T = 0.55.

Figure 1 displays a zoomed-in view of the cylinder wake. The attracting
nFTLE ridges (red) wrap around the outside boundaries of the vortices as they
form, separate, and convect downstream. The repelling pFTLE ridges (blue)
form the boundaries between vortices as well as between forming vortices and
the cylinder surface. The vortex center, found as the location of maximum Q
within the vortex of interest, is highlighted by a red “O”, and the Lagrangian
saddle point associated with that vortex is highlighted by a red “X”.

The location of the vortex center and Lagrangian saddle point were tracked,
and the results are displayed in figure 2(a). The track of the vortex center yields
little information besides the vortex convection speed (dashed line), but the
large change in slope of the saddle track as it sheds (departure from solid black

line) gives a clear indication that t/T = 0.44 is the time of vortex shedding (vertical dash-dot line). See [5] for more details.
Figure 2(b) shows that C ′p(t) at the 100◦ location on the cylinder surface reaches its minimum just as the Lagrangian saddle
point is beginning to accelerate away from the cylinder surface at t/T = 0.44. The pressure upstream and downstream of
100◦ reache a minimum at later and earlier times than the vortex shedding time, respectively. The vortex shedding time found
by the Lagrangian saddle point departure also coincides with the maximum in lift, calculated by integrating the static pressure
distribution, experienced by the cylinder as shown in figure 2(c). As the vortex sheds from the upper surface of the cylinder,
the pressure values in this region begin to increase, resulting in an increase in negative lift. Preliminary experimental results
for a circular cylinder at Re = 9000 are compared with the current results in figure 2(d). While the locations of the Lagrangian
saddle point are not identical between the two cases, the overall trend is very similar. Experiments are ongoing to determine
if a similar relationship exists between the saddle departure and the static pressure upstream of the separation point.
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(a) Distance from cylinder to vortex
center (blue squares) and Lagrangian
saddle point (red diamonds).
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(d) Experimental Lagrangian saddle
point locations (black hollow squares)
compared with numerical results

Figure 2: Three techniques for identifying vortex shedding time: (a) Lagrangian saddle departure, (b) pressure minimum, and
(c) lift maximum. Includes preliminary experimental results (d). The shedding time of t/T = 0.44 is marked by a vertical
dash-dot line in (a-c).

Discussion
The vortex shedding time found by the location of Lagrangian saddle points was compared with the shedding time deter-

mined by the force history, and the spatial track of the vortex center. The force history agreed well with the Lagrangian saddle
point shedding time, but the location of the vortex center did not yield information that corresponded to minima in pressure or
force on the cylinder. The surface static pressure 15◦ upstream of the mean separation point was found to reach its minimum
just as the vortex was shed from the cylinder. This relationship makes the detection of vortex shedding, described objectively
by the Lagrangian saddle point location, possible in a simple fashion using common sensors at an angular location near the
mean separation point. The information found from a few specifically placed pressure sensors could then be used to inform
closed-loop flow control around bluff bodies, deploy high-lift devices to prevent stall, or to inform fuel injection levels in a
mixing application.

References

[1] J. C. Hunt, A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows, in Studying Turbulence Using Numerical Simulation
Databases, 2, Vol 1, 1988.

[2] G. Haller, Distinguished material surfaces and coherent structures in 3D fluid flows, Physica D 149, 2001.
[3] M. A. Green, C. W. Rowley, and A. J. Smits, The unsteady three-dimensional wake produced by a trapezoidal pitching panel, Journal of Fluid Mechanics

685, 2011.
[4] K. Mulleners and M. Raffel, The onset of dynamic stall revisited, Experiments in Fluids 3, Vol 52, 2012.
[5] M. P. Rockwood and M. A. Green, An Analysis of the Unsteady Wake Behind a Circular Cylinder using Lagrangian Coherent Structures, in AIAA

SciTech, 2015.

1529



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

MOTION OF A VORTEX PAIR AT HIGH AND LOW REYNOLDS NUMBERS

Yasuhide Fukumoto∗1 and UmmuHabibah2
1Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan

2Graduate School of Mathematics, Kyushu University, Fukuoka, Japan

SummaryWe establish a high- and a low-Reynolds-number asymptotics for the speed of a counter-rotating vortex pair, traveling in a
viscous incompressible fluid. At a high Reynolds number, the solution of the Navier-Stokes equation is constructed by use of the matched
asymptotic expansions in a small parameter, a measure of the core radius to the half distance between the vortices. The correction to the
traveling speed, originating from finite-thickness effect, arises at fifth order. We drastically simplify it in a form including solely strength
of the quadrupole field of second order. We derive a two-dimensional analogue, applicable in the entire range of the Reynolds number, of
the Helmholtz-Lamb formula for an axisymmetric vortex ring. At a low Reynolds number, the vorticity field obeying the Stokes equation is
substituted into this formula. Thereby we describe the whole life of the motion a vortex pair.

INTRODUCTION

Motion and stability of a counter-rotating vortex pair is a long-standing problem since the late 1960s when jet planes
started their commercial flight. Finite-thickness effect of interacting vortex tubes has been intensively studied so far. Half a
century ago, the method of matched asymptotic expansions was put forward for the two-dimensional motion, at high Reynolds
numbers, of a viscous vortex embedded in an external flow [10]. This method has been highly developed for a curved vortex
tube [6, 2], for a vortex ring [7] and for a helical vortex tube [9]. Compared with the axisymmetric problem, less developed are
the asymptotic expansions for interaction of (anti-) parallel vortex tubes of distributed vorticity. For motion of point vortices,
sophisticated methods are available from the Hamiltonian mechanics, while, for interaction of finite vortices with distributed
vorticity, asymptotic methods remain to be matured, except for vortex patches, vortex tubes with uniform vorticity. For a
planer problem, the effect of finite thickness of the core makes its appearance at a higher order in small parameterε, a measure
for the ratio of the core radius to the distance between the vortices, compared with a curved vortex tube.

We first establish, at a high Reynolds number, a general formula of the traveling speed of a counter-rotating vortex pair in
an inviscid as well as a viscous fluids, for an arbitrary initial distribution of vorticity. We reach a surprisingly simple formula
of the correction to the traveling velocity; the strength of quadrupole ofO(ε2) suffices to calculate theO(ε5) correction.

The rest of paper is concerned with low-Reynolds-number motion. A vortex pair dies away. For an axisymmetric vortex
ring, an initial-value problem valid over the whole time range is found at low Reynolds numbers [4] which enables us to view,
in perspective, the early-time behavior and the decaying law. We adapt this method to the planer problem of a vortex pair. The
key tool is a two-dimensional analogue of the Helmholtz-Lamb formula for the traveling velocity [8, 3].

HIGH-REYNOLDS-NUMBER MOTION OF A VORTEX PAIR

Inner and outer expansions
Consider a counter-rotating vortex pair with circulations±Γ moving in an inviscid or a viscous fluid with the kinematic

viscosityν. The core radiusσ of the two vortices is assumed to be much smaller than the distance2d between the centroids
of the two vortices. The outer solution is provided by the Biot-Savart law, though the distribution of vorticity remains to be
obtained. The latter is found from the solution of the inner problem. The behavior of the Biot-Savart law valid near one of the
vortex provides the matching condition on the inner solution.

Inner solution and traveling speed of a vortex pair
The inner solution is obtained by integrating the Navier-Stokes equation. We introduce the Cartesian coordinates(x, y),

fixed in space, with thex axis parallel to the direction of the line connecting the centroids. At the same time, we introduce local
polar coordinates(r, θ), centered at the centroid(X,Y ) of one of the vortices, moving with it. The angle is measured from
the direction parallel to thex-axis, and therefore the laboratory and the moving frames are related with each other through
x = X + r cos θ andy = Y + r sin θ (Figure 1). The radial coordinater is non-dimensionalized byεd whereε =

√
ν/Γ is a

small parameter. The solution for the streamfunctionψ is sought in a power series inε as

ψ = ψ(0) + εψ(1) + ε2ψ(2) + ε3ψ(3) + ε4ψ(4) + ε5ψ(5) . . . . (1)

∗Corresponding author. Email: yasuhide@imi.kyushu-u.ac.jp
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Figure 1:The Cartesian coordinates(x, y) fixed in space and the polar coordinates(r, θ) centered at(X,Y ) in moving frame.

The Navier-Stokes equation and the matching condition atO(ε5) yields the correctioṅY (4) of O(ε4), to the traveling speed.
After some manipulation, we reach the eventual formula for the translation speed of a vortex pair, being written in dimensional
form as

Ẏ ≈ − Γ

4πd

(
1 +

2π

Γd2
q

)
; ψright = − Γ

2π
log r + q

cos 2θ

r2
+ · · · ; q = ε2q2. (2)

RemarkablyẎ (4) includes only the strengthq2 of theO(ε2) quadrupole field.

LOW-REYNOLDS-NUMBER MOTION OF A VORTEX PAIR

Identity for vorticity centroid
It is advantageous to derive the two-dimensional analogue of the Helmholtz-Lamb formula for axisymmetric vortex rings

[8, 3]. Given the vorticity fieldω = ω(x, y, t), we invoke the hydrodynamic impulseIy =
∫
xωdA to define they component

of the vorticity centroidYc. By use of the Navier-Stokes equation, its evolution, denoted with a dot, is found to be

Yc =

∫
yxωdA∫
xωdA

; Ẏc =
2
∫
yuωdA∫
xωdA

, (3)

where usehas been made of the fact thatIy is constant even in the presence of viscosity.

Motion of vorticity centroid
To examine the motion of a vortex ring at a very low Reynolds number, we substitute, into (3), the solution of the Stokes

equation. Given a point-vortex pair with the strength±Γ0 at (±d, 0) at the initial instantt = 0, the vorticity is

ω =
Γ0

4πνt

{
e−

(x−d)2+y2

4νt − e−
(x+d)2+y2

4νt

}
. (4)

Thetranslation velocityẎc of the vorticity centroid is written out, in terms of the error functions, in a tidy form. Its small- and
large-time behavior is manipulated, with ease, as

Ẏc = − Γ0

4πd

{
1− 2

νt

d2
+O

(
e−

d2

νt

)}
for νt≪ d2, Ẏc = − Γ0d

16πνt

{
1− 1

6

d2

νt
+O

[(
d2

νt

)2
]}

for νt≫ d2. (5)

These results achieves an improvement in those of Cantwell & Rott [1] and van Dommelen & Shankar [11].

References

[1] Cantwell B., Rott N.: The decay of a viscous vortex pair.Phys. Fluids31: 3213-3224, 1988.
[2] Fukumoto Y.: Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy.Euro. Phys. J. B. 29: 167–171, 2002.
[3] Fukumoto Y.: Global time evolution of viscous vortex rings.Theor. Comput.Fluid Dyn.24: 335–347, 2010.
[4] Fukumoto Y., Kaplanski F.: Global time evolution of an axisymmetric vortex ring at low Reynolds numbers.Phys. Fluids20: 053103, 2008.
[5] Fukumoto Y., Habibah U.: Finite thickness effect on speed of a counter-rotating vortex pair. submitted toFluid Dyn. Res., 2015.
[6] Fukumoto Y., Miyazaki T.: Three-dimensional distortions of a vortex filament with axial velocity.J. Fluid Mech.222: 369–416, 1991.
[7] Fukumoto Y., Moffatt H. K.: Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity.J. Fluid Mech.

417: 1–45, 2000.
[8] Fukumoto Y., Moffatt H. K.: Kinematic variational principle for motion of vortex rings.Physica D237: 2210-2217, 2010.
[9] Fukumoto Y., Okulov V. L.: The velocity field induced by a helical vortex tube.Phys. Fluids17: 107101, 2005.

[10] Ting L., Tung C.: Motion and decay of a vortex in a non-uniform stream.Phys. Fluids17: 1039-51, 1965.
[11] van Dommelen L., Shankar S.: Two counter-rotating diffusing vortices.Phys. Fluids7: 808-819, 1995.

1531



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

MOTION OF A COMPRESSIBLE VORTEX PAIR

Stefan G. Llewellyn Smith∗1, Daniel V. Freilich1, Vikas Krishnamurthy2, and Darren G. Crowdy2

1Department of Mechanical and Aerospace Engineering, UCSD, La Jolla, California, USA
2Department of Mathematics, Imperial College, London, United Kingdom

Summary Two equal and opposite point vortices translate uniformly. The desingularization of this configuration to vortex patches and
hollow vortices leads to a translation velocity that depends on the size of the vortices. The hollow case was first considered by Pocklington.
We extend the hollow solution to the case with compressibility by employing the Imai-Lamla version of the Rayleigh-Janzen expansion. We
find the O(M2) correction to the shape and velocity of the pair. The results are compared in the limit of small vortex size to the previous
compressible calculations of Moore and Pullin and of Leppington.

INTRODUCTION

Obtaining exact solutions to model problems in vortex dynamics has a long history. The simplest possible two-dimensional
solutions to vortex dynamics are point vortices, and configurations with one, two or three vortices in the plane are integrable.
In particular, two equal and opposite vortices with circulation ±Γ, separated by a distance d, propagate uniformly along the
direction of the normal to the segment joining them at a velocity U = Γ/(4πd). Point vortices are singular solutions of the
equations of motion [6], and it is of some interest to understand their relation to obtain desingularized versions. Two common
models to obtain desingularized solutions are vortex patches and hollow vortices. The former consist of finite regions with
constant vorticity; then the vorticity equation is automatically satisfied and the evolution of the vortex can be obtained by
tracking the motion of its boundary (this is contour dynamics). Hollow vortices are in fact closed vortex sheets separating two
regions of irrotational fluid (they are called hollow because in the steady case, the inner region say can contain fluid at rest or in
fact no fluid). Hollow vortices go back to Pocklington (1895) [8] who obtained steadily translating dipolar solution. Crowdy,
Llewellyn Smith and Freilich (2013) [4] revisited Pocklington’s solution using the prime function to examine its stability.

The above are solutions to incompressible fluid dynamics. This is an approximation for small fluid velocities compared
to the speed of sound, whereas real fluids are all compressible to some extent. When the Mach number, M ≡ U/c0, is small,
the incompressible solution at O(1) can be augmented by corrections at O(M2) and above. This is known as the Rayleigh–
Janzen expansion. A compressible extension to the line array of hollow vortices of Baker, Saffman and Sheffield (1976) [2]
was obtained by Ardalan, Meiron and Pullin (1995) [1].

We use the Imai–Lamla version of the Rayleigh–Janzen expansion as given by Barsony-Nagy, Er-El and Yungster (1987)
[3], applied to the hollow vortex case. The incompressible solution is given as a conformal map from the outside of the vortex
(or vortices) to the inside of the unit circle in the unit circle, and the kinematic and dynamic boundary condition specify the
analytic part of the O(M2) potential. The mapping is also computed as a series in Mach number.

FORMULATION

We consider the motion of an irrotational fluid with non-zero Mach number. We denote the complex potential by W (z, z̄),
where z is the physical variable and define the complex velocity by ∂W/∂z. Primes denote differentiation with respect to
the argument of a function. We then consider a map z(ζ) from the outside of the vortex to the inside of the unit circle in the
ζ-plane.

We now expand in Mach number, with W = W0 +M2W1 + · · · and z = z0 +M2z1 + · · · Then W0 is a function of z0

alone. As shown in [3], the O(M2) correction to the potential is

W1(ζ, ζ̄) =
1

4U2
W ′0(z0)

∫ z

(W ′0(z0))2 dz +G(z) =
1

4U2

W ′0(ζ)

z′0(ζ)

∫ ζ

R0(ζ)W ′0(ζ) dζ +G(ζ), (1)

where G(ζ) is an analytic function that is unknown at this stage. Hence the correction to the complex velocity is

R1 =
1

z′0

(
∂W1

∂ζ
+
∂W1

∂ζ̄
−W ′0(z0)z′1

)
. (2)
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POCKLINGTON’S VORTEX PAIR

We start with the solution for Pocklington’s vortex. The potential takes a simple form (which is not needed here), while
its ζ-derivative satisfies

W ′0(ζ) =
B

ζ

{
P (ζ/α, ρ)P (ζα, ρ)P (ζ/α, ρ)P (ζα, ρ)

P 2(ζ/
√
ρ, ρ)P 2(ζ

√
ρ, ρ)

}
, (3)

where the Schottky-Klein prime function P (ζ, ρ) is defined by

P (ζ, ρ) = (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1). (4)

The function P (ζ, ρ) has a single zero at ζ = 1. The fluid occupies the annulus ρ < |ζ| < 1 in the mapped plane; α is a point
in the annulus whose value is given by solving a transcendental equation. Each value ρ between 0 and 1 gives a member of
the family of Pocklington pairs. The area of the vortices is a monotonically increasing function of ρ.

The complex velocity at O(1) is

R0(ζ) =
A

ζ

{
P (ζα−1, ρ)P (ζα−1, ρ)

P (ζα, ρ)P (ζα, ρ)

}
, (5)

Combining (3) and (5) and using the chain rule leads to an equation for the shape at O(1):

z′0(ζ) =
ζW ′0(ζ)

ζR0(ζ)
= C

{
P (ζ
√
ρeiΘ, ρ)P (ζ

√
ρe−iΘ, ρ)

P (ζ/
√
ρ, ρ)P (ζ

√
ρ, ρ)

}2

(6)

with α =
√
ρeiΘ. The quantity inside the integral in (1) is

R0(ζ)W ′0(ζ) =
AB

ζ2

{
P (ζα−1, ρ)P (ζα−1, ρ)2

P (ζ/
√
ρ, ρ)P (ζ

√
ρ, ρ)

}2

, (7)

The goal is now to obtain G(ζ) so that the conditions =W = 0 is satisfied on |ζ| = 1. This can be rewritten as

Im G = −W1 −W1

2i
(8)

on ζ = 1.
We need another degree of freedom to satisfy the dynamic boundary condition |R| = 1 on |ζ| = 1. We use the correction

z1 to satisfy the resulting condition Re (z̄0z1) = 0 on |ζ| = 1.
Detailed calculations lead to a correction to the velocity U of the pair, as well as a change in shape.

CONCLUSIONS

We have computed the O(M2) correction to the Pocklington dipole pair. This is a free boundary-value problem in which
the physical region with unknown boundary is obtained as a map from a double-connected region (an annulus). Using the
Schottky-Klein prime function leads to explicit expressions for the correction to the potential and map.

The motion of a compressible vortex pair was investigated in the Rayleigh–Janzen limit by Moore and Pullin (1987)
[7] and by Leppington (2006) [5]. The results disagree. While the latter seems correct, the singular nature of the solution
motivates us to consider the limit of small vortex cores to recover the point vortex pair. The limit ρ→ 0 in the detailed results
above, obtained from an exact solution to the equation of vortex dynamics, can be compared to the predictions of previous
work.

Our work here complements the sister presentation “Analytical solutions for weakly compressible von Kármán vortex
streets” by Krishnamurthy and Crowdy.
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Summary Scheeler et al. [1] have recently demonstrated that one can experimentally investigate helicity by imprinting high Reynolds
number helical vortex knots into a fluid by yanking 3D-printed aerofoils covered with hydrogen bubbles out of a water tank. Some surprising
claims were made based upon the evolution of the resulting vortex filaments. This contribution will address those claims by simulating the
evolution and self-reconnection of a similarly perturbed trefoil vortex knot over a range of Reynolds numbers and core diameters. The
surprisingly long time it takes for reconnection to begin is confirmed. However, the simulations suggest that the significance of the trefoil
is not just in the initial preservation of helicity, but in how it is dissipated in a finite time once reconnection begins. This result implies that
the trefoil’s vortex dynamics is controlled primarily by the helicity, and not the energy, enstrophy or peak vorticity.

One of the fundamental, unanswered questions about turbulence is why every physical turbulent flow dissipates finite
energy in a finite time. Which seems to be inconsistent with the best current mathematics, which indicates that no Navier-
Stokes solution from any smooth initial condition can dissipate finite energy in a finite time as the viscosity goes to zero.

This presentation will use the unique properties of a trefoil vortex to address this paradox by taking a step back and asking
what defines the evolution of the vortices in incompressible fluids. Is it the energy and enstrophy/dissipation? Or the topology
and helicity of the configuration? And if it is the helicity, what is the limit as the diameter of the filament goes to zero?

The trefoil vortex knots that these simulations [2] and the earlier experiments have generated seem particularly well-suited
for addressing these questions for the following reasons.

• First, the helicity of these simulations is roughly 1/4 the upper bound given by a single perfectly helical Fourier mode.
The most helical I have seen.
• Second, to fully address the Navier-Stokes regularity problem one must have initial conditions whose major Sobolev

and Lebesgue norms are finite in Whole (infinite) Space. Other initial conditions such as initially anti-parallel and
orthogonal vortices do not have this property.
• Third, if one decreases the filament’s diameter a while holding its circulation Γ fixed, its kinetic energy and enstrophy

grow without bound, while the configuration’s helicity H = Γ2L remains constant. Γ is the circulation and the self-
linking number is L =W + T (writhe+twist).

* These contrasting trends make it easy to see whether the timescales are governed by the circulation and helicity, or the
energy, enstrophy and the maximum vorticity.

Two figures are given. Fig. 1 illustrates the contortions of the trefoil just as reconnection begins using a vorticity isosurface,
three closed vortex loops and two particular points. One where reconnection is beginning and the other the maximum of
vorticity. The closed trajectories allow one to make qualitative comparisons with the bubble trajectories in the experiments [1]
and relate the topological changes to some recent theoretical work [3]. Which is that the topological changes up to this time
are independent of the viscosity of the calculations and the thickness of the filament, there has been very little reconnection
and the helicity has not changed. All consistent with the surprisingly long period of helicity preservation in the experiments.

Note that in a classical fluid, reconnection is not instantaneous, so one of the curves (green) follows its original trajectory,
while the red and blue curves represent a portion that has reconnected. At this early time, following predictions [3], the red
and blue together preserve the total linking number of the trefoil. By determining the writhe, twist and the self-linking directly,
primarily using different forms of the Gauss-linking integral [2], it can be confirmed that the self-induced velocity along the
filaments has three parts: The self-Biot-Savart term whose integral is the writhe, the traditional bi-normal self-induction, plus
the torsion whose integral is the twist.

Fig. 2 illustrates how the helicity and related norms evolve in the period after reconnection begins for the five simulations
[2] described in the caption. All dissipate approximately 1/3 of their helicity by t = 65. Over this period there is minimal
energy loss, which decreases as the viscosity ν → 0. All three norms have been normalised to have the same units.
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Figure 1: A single vorticity isosurface plus three closed vortex
lines at t = 31. The green line follows a remaining trefoil tra-
jectories seeded near ωm, indicated by X. Its LS = 4, split into
W + T = 2.85 + 1.15 = 4 The orange cross is the “reconnec-
tion point”, the point between the closest approach of the trefoil’s
two loops and where, due to an extra twist, the loops are locally
anti-parallel. The Red LS = 0 and blue LS = 1 lines originate on
either side of the reconnection point and are linked, which gives a
total linking of Lt = 2Lrb + LSb + LSr = 2 + 1 + 0 = 3, the
linking of the original trefoil.

Figure 2: Time evolution of the normalised helicity (HL)1/2 for 5
cases. Four with radius a = 0.25 for the viscosities listed, and one
with radius a = 0.175 and ν = 0.0005 that lies on the ν = 0.00025
case shown. By t ≈ 72 all cases have roughly the same decrease
in helicity. The inset shows normalised L3 and H(1/2) = ‖u‖Ḣ1/2

for two of the calculations. L3, H(1/2) andH are all normalised to
have the units of circulation. H(1/2) must bound both L3 and |H|
from above and increases slowly, as required by its upper bound of√

2EZ. None of which prevents the strong decrease inH.

If L3 = ‖u‖L3 < ∞ then Navier-Stokes is regular. Here L3 is controlled as it decays just a bit more slowly than L2

(2×energy). |H| ≤ H(1/2) is an upper bound for helicity magnitude. Together these tell us why the energy spectrum [2] goes
as k−4. It is necessary for helicity dissipation.
How a = 0.175, ν = 0.0005 lays on the a = 0.25, ν = 0.00025 case suggests that as a→ 0:

A. It is the helicity, not the energy, that controls the dynamics.
B. The time between when reconnection begins and ends goes to zero.
C. If seems possible that there can be finite helicity dissipation in a finite time.
* None of this violates any mathematics related to fixed smooth initial conditions.

What these calculations don’t tell us whether there could be finite energy dissipation in a finite time as a→ 0, even though a
ν → 0 limit should not exist for fixed (that is a fixed) initial conditions.
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Summary The system of a finite number of point vortices that are in self-similar motion, under suitable conditions that are related to the
initial positions and circulations of the vortices, can collapse to the point with finite time. The initial positions that lead to the collapse
can be found numerically. An explicit solution for collapsing trajectory is derived. The numerical evidence is presented that collapsing
vortices may organized itself in vortex sheets. In the distribution of vortices one can clearly notices some regular structures. Examples of
the collapsing configurations of vortices is presented.

INTRODUCTION

The collapse of the vortices belongs to one of the most interesting problems related to the dynamics of vortices. In [1, 9]
proved that collapse three vortices (n=3) is possible. We will show that collapse vortices is possible for any number of the
vortices, n ≥ 3. The presence of the one or two strong vortices in the set of collapsing vortices lead to rising of filaments
created by point vortices. That filaments are stable and take part in the collapsing process. It can be interpret as vortex sheets
[7].

EQUATIONS OF MOTION AND THEIR INVARIANTS

The equations of motion of the system of n-point vortices on the plane with distinct positions z = (z1, z2, . . . , zn) ∈ Cn,
zk = xk + iyk, and circulations Γ1,Γ2, . . . ,Γn, each Γj ∈ R \ 0 are

dzk(t)

dt
= vk(z(t)) =

i

2π

n∑
l=1,l 6=k

Γl
zk − zl
|zk − zl|2

(1)

It is well known that the systems (1) posses several invariants [1, 6, 8]

Mx =
n∑
k

Γkxk, My =
n∑
k

Γkyk, S =
n∑
k

Γk(x2k + y2k), V =
1

2π

∑
k>j

ΓkΓj

L = (
∑
k

Γk)S −M2
x −M2

y , H = − 1

4π

∑
k,j

′

ΓkΓj ln rkj

(2)

SELF-SIMILAR MOTIONS AND COLLAPSE

The system of the n-vortices is in self similar collapsing motion if there exist complex function λ(t) ∈ C, λ(t) =
λr(t) + iλi(t) that Re(λ) = λr(t) < 0 and λi(t) 6= 0, such that for all k we have

dzk
dt

= vk = λ(t)zk, k = 1, 2, . . . , n (3)

Introducing the new variables (r(t), ϕ(t)) and assuming that zk = zk(0)r(t)eiϕ(t), r(0) = 1, ϕ(0) = 0, one can find
that the solution of (1),(3) has a form [3, 4]

zk(t) =
√

2λr(0)t+ 1e

(
i
λi(0)

2λr(0)
ln(2λr(0)t+1)

)
zk(0) (4)

Solution (4) represents the logarithmic spiral. The critical (collision) time t → Tc is Tc = − 1
2λr(0)

. If λr(t) > 0 then the
vortices system expand. If the real part of λ(t) equals to zero, λr = 0, the vortices are in relative equilibrium and the systems
rotate as a solid body ( the collapse time is infinite, Tc =∞).
The Hamiltonian H in(2) during the self-similar motion will conserve, when the invariant V in (2) is equal zero, V = 0.
With out loosing the generality we assumed that Mx = 0 and My = 0. So the vortex system collapsed to the beginning of
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the coordinate system. It can be proved that when V = 0, Mx = 0, My = 0 then also S = 0 and L = 0 in (2). From the
similarity of the motion (3), we have the following algebraic system of equations [6, 4]

v1zk = vkz1 (k = 1, .., n− 3). (5)

The collapsing positions of vortices can be determined by common zeros of the functions V = 0, Mx = 0, My = 0, S = 0
and 2(n-3) equations (5), fj = v1zj+2 − vj+2z1, j = 2, . . . , n− 2. To complete the systems to 2n equations, it was assumed
that one of the vortex in the system e.g zn has the fixed position, and it was included to the system of equation the identity∑
j Γjz

∗
jvj = 0 [3, 4]. The nonlinear algebraic system of equation was solved by the Newton method [3, 4]. For each

collapsing positions it is possible to find the curves where vortices are distributed in the continuous way.The positions of the
vortices on the curves are parameterized by the value of the Hamiltonian. Different Hamiltonian values results in different
collision time Tc. The number of collapsing set of vortices are infinite.

NUMERICAL RESULTS

In Figure 1 A), B), C), D) was shown different cases of the collapsing systems of 72 vortices. In Figures 1 were shown
the initial collapsing positions and only a few trajectories in order to preserve the readability and expose the vortex structures.
The thick points represent the vortices with big intensities. The blue color is related to the negative intensity and red one
to the positive. In Figure 1 A) intensities Γ1 to 71 = 1 and only one vortex has dominat value Γ72 = −35. Collision time
was Tc = 5.86232, H = 49.036. In Figure 1 B) there were two strong vortices Γ71,72 ≈ 20.1502,and Γ1 to 70 = −1.
Collision time was Tc = 32.72233 and H = 21.961502. In Figure 1 C) there were also two strong vortices Γ71,72 ≈ 20.1502,
Γ1 to 70 = −1, and H = 14.8442 but collision time was very long Tc ∼= 63511.8. One can noticed that vortices created the
circle . In Figure 1 D) there were three strong vortices Γ71,72 = −Γ70 =≈ 24.9663,and Γ1 to 70 = 1. The collision time time
was Tc = 31.0392 and H = 7.60762.

A) B) C) D)

Figure 1: Examples of collapsing systems of 72 vortices; In order to keep the readability of the graph it was shown only a few
trajectories. Bigger points mark the stronger vortices. The blue color related to negative intensity, the red color to the positive
one.

CONCLUSIONS

From examples it is clear that the presence a few stronger vortices in the set of collapsing vortices caused that the vortices
collect their self in the pieces curves that can be interpret as vortex sheets. They can crete a closed circle that take part in
collapsing phenomenon. In the atmospheric physics, it seems that collapsing vortices have relevance to the meteorological
phenomenon of a polar cyclone [4]. Spirals and filaments of vorticity are characteristic feature of two-dimensional turbulent
flow [5, 2].
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Summary Short-wavelength instabilities of helical vortices are analysed using a combined theoretical and numerical approach. The helical
vortices are described using an asymptotic approach in the limit of small core size (compared to the pitch and the radius of the helix).
Both the curvature instability induced by the local vortex curvature and the elliptic instability induced by the strain field deformation are
considered for a vortex with Gaussian axial vorticity and axial velocity (Batchelor vortex). Theoretical predictions are obtained for the
growth rate of each instability and used to analyse the competition between both instabilities. We show the crucial role of the axial flow
component of the Batchelor vortex in the selection of the dominant instability. For weak axial flow, the elliptic instability is found to
dominate the curvature instability, whereas it is the opposite when the axial flow is no longer negligible. The results are compared to recent
experimental observations.

Horizontal-axis wind turbines generate helical vortices which are subject to a complex spatial evolution involving several
instabilities. This evolution provides the characteristics of the wind-turbine far-wake which impacts other wind turbines placed
downstream. This wake is a source of increased mechanical fatigue and it affects their efficiency. Understanding the physical
mechanisms acting on the wake evolution is therefore a first step toward the prediction and control of wind turbine wakes,
which constitutes a goal for increasing the efficiency and life-time of wind turbine farms.

The long-wavelength instability discovered by Widnall [1] is the first instability affecting helical vortices. This instability
leads to a reorganisation of the vortex system through local pairing events but it does not seem to affect the global coherence
of the vortices [2]. More promising are short-wavelength instabilities which are known to possibly lead to the destruction
of the vortices [3]. Short-wavelength instabilities lead to the growth of perturbations within the vortex with a wavelength
comparable to the core size. Two short-wavelength instabilities could develop in helical vortices: the curvature instability and
the elliptic instability. In this work, we analyse the occurrence of both instabilities using a combination of asymptotic and
numerical methods.

The helical system is described using asymptotical methods by assuming that the ratio of vortex core radius to the curvature
radius is small. At leading order, the base flow is then a columnar vortex aligned along with the helix centreline. We assume
that the axial velocity and vorticity of the vortex are both Gaussian (Batchelor vortex). Curvature corrections are obtained as
first order corrections, while torsion and strain field corrections appears at second order [4, 5].

Both curvature and elliptic instability in a helical vortex can be analysed using the framework developed by Moore &
Saffman (1975) [6] for the elliptic instability of a strained vortex. Both instabilities are interpreted as a resonance of two
(Kelvin) modes of the Batchelor vortex with non-axisymmetric corrections. The curvature instability results from the coupling
with the dipolar corrections associated with curvature. The condition of resonance for the curvature instability corresponds
to the existence of two modes of azimuthal wavenumbers m and m + 1 with identical axial wavenumber and frequency
[7, 8]. The elliptic instability results from the coupling with the quadripolar corrections, which implies a similar condition of
resonance between two modes of azimuthal wavenumber m and m+ 2 [6].

The first difficulty of the analysis is to find the resonant configurations for the Kelvin modes of a Batchelor vortex.
Contrarily to the Rankine vortex (vortex with a uniform vorticity in its core and no vorticity outside), numerous Kelvin modes
of the Batchelor vortex are now damped due the presence of a critical layer singularity [9]. This affects significantly the
condition of resonance: they are found to systematically involve singular modes. The instability can therefore be present
only if the growth associated with the resonant coupling can overcome the critical layer damping of the Kelvin mode. This
is a strong constraint which selects very few possible resonant configurations. For the elliptic instability, Lacaze et al. [10]
showed that this explains why the sinuous mode present without axial flow, is replaced, as the axial flow is increased, by other
instability modes involving m = 0 and m = 2 Kelvin modes. The same sensibility with respect to the axial flow is observed
for the curvature instability. For small axial flow, only Kelvin modes of azimuthal wavenumbers m = 0 and m = 1 with a
high radial complexity are found to be possible. As the axial flow is increased, the radial complexity of the resonant modes
becomes simpler.

The second difficulty of the analysis is the computation of the coupling terms. For the curvature instability, we can follow
Moore & Saffman method and obtain coupling coefficients by a simple orthogonality condition at first order. For the elliptic
instability, the problem is more involved as coupling occurs at second order. It implies additional terms coming from a double
interaction with curvature corrections. Such terms were previously obtained for a Rankine vortex by Widnall & Tsai [11]. For
the Batchelor vortex, their calculation requires a numerical computation of the curvature correction to each Kelvin mode.

For each resonant configuration, a formula for the growth rate is obtained as a function of the Reynolds number, the local
curvature ratio, and a parameter characterizing the external strain field felt by the vortex. The stability results are then applied
to helical vortices by expressing this strain parameter in terms of the geometrical parameters of the helix.
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The competition between both instabilities is analyzed by comparing the growth rates of the various resonant configura-
tions. We observe that the characteristic of the most unstable modes strongly varies with the value of axial jet.

Without axial flow, we show that the first sinuous mode of the elliptic instability is the dominant instability mode when the
Reynolds number remains smaller than a critical value. In the presence of axial flow, this is no longer the case. The curvature
instability is found to provide unstable modes with the largest growth rate even for moderate values of the Reynolds numbers.

The results are discussed in light of recent experimental results obtained for helical vortices [12].
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Summary Using dedicated DNS codes, we simulate the linear growth of perturbations in the vicinity of helically symmetric vortex systems,
and extract the dominant instability properties: long-wave displacement modes and short-wave modes emerging through elliptical instability.
Nonlinear simulations also reveal the complex dynamics of interacting helical vortices: overtaking, leapfrogging, merging.

OBJECTIVES

The near wake behind rotating devices such as helicopter rotors, wind turbines and propellers is dominated by helical
vortices. Investigating their stability properties is a necessary step to predict their dynamics. On one hand, instabilities in
helical vortex systems have been studied theoretically by Widnall [1], Gupta & Loewy [2] and more recently by Okulov and
Sørensen [3]. These studies describe the inviscid instability of thin vortices with respect to displacement modes. On the other
hand, there has been much experimental and theoretical work on the elliptical instability, a situation where a pair of Kelvin
waves resonate with an external strain field which elliptically deforms the vortex core. This phenomenon has been encountered
in co- and counter-rotating rectilinear vortex pairs (see Leweke et al. [4] for a review) and has also been predicted in helical
vortices. The present work has thus a twofold objective: by means of viscous linearized and nonlinear numerical simulations,
we want to generalize the inviscid studies on displacement modes to more realistic vorticity profiles and arbitrary core sizes,
and to simulate the growth of elliptical instabilities in the context of helical vortices.

HELICAL SYMMETRY AND BASE FLOW

The base flows considered here are helically symmetric: fields are invariant through combined axial translation of distance
∆z and rotation of angle ∆θ = ∆z/L around the z-axis, where 2πL denotes the helix pitch. In this context, the field
components depend solely on the radial distance r to the axis, on the variable ϕ = θ − z/L (a constant along helical lines)
and on time. The dynamics is then governed by a system of two coupled dynamical equations for the components of velocity
and vorticity tangent to the helical lines. These two helical components are linked to a streamfunction through a Poisson-like
equation: the formulation extends the two-dimensional ψ − ω method to helical flows [5]. The numerical implementation
(HELIX code) in a (r, ϕ) domain uses Fourier modes in the periodic ϕ-direction (typically 256) and finite differences in the
radial direction (typically 512 grid points). The base flows are first computed using the HELIX code: they consist in one
helical vortex or several helical vortices of same unit circulation Γ and same core size a, of pitch L, regularly spaced along
the azimuth at a unit radial distance from the axis (see figure 1a for the N = 2 vortex case).

(a) (b) (c) (d) (e)

Figure 1: Two helical vortices with pitch L = 0.3 and core size a = 0.1. (a) Base flow: contours of helical vorticity in a plane
orthogonal to the helix axis z. (b) Dominant Okulov mode: contours of the helical vorticity perturbation in the same plane
as (a). (c) Three-dimensional representation of the Okulov mode: the arrows indicate the displacement that the perturbation
induces on the base flow. (d)-(e) Long-wave subdominant modes at kz = 0.5 and kz = 1.
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INSTABILITIES HAVING THE SAME HELICAL SYMMETRY AS THE BASE FLOW

We first perform a linear temporal stability analysis of these base flows using an Arnoldi procedure [6] coupled to a
linearised version of the HELIX code. This procedure gives access to the instability modes having the same helical symmetry
as the base flow, which generalize the Okulov modes. Instabilities are found to be dominated by displacement modes, the
structure of which is illustrated in figure 1b-c. Cases where a hub vortex is involved are also investigated and linked to the
findings of Felli et al. [7] in propeller wakes. We then compute the nonlinear dynamics of a basic flow perturbed with a linear
mode of the above type, set at a small initial amplitude. This displacement mode is shown to be responsible for a complex
dynamics with a sequence of overtaking events, leapfrogging and eventually merging, as shown in figure 2. The influence of
the parameters (a, L,Re) on the growth rate and the nonlinear dynamics is investigated.

(a) (b) (c)

Figure 2: Nonlinear dynamics at Re = Γ/ν = 104 of two helical vortices with pitch L = 0.3 and initial core size a = 0.1,
initially perturbed by the mode of figure 1b-c. Successive snapshots of the helical vorticity isosurface at half-maximum level
showing (a) overtaking, (b) leapfrogging, (c) merging. Color dots provide a visual help to follow vortices in time.

INSTABILITIES BREAKING THE SYMMETRY OF THE BASE FLOW

As the system is invariant along helical lines, the base flow components depend explicitly on r and ϕ = θ − z/L, but not
explicitly on z. More general eigenmodes can be found which vary along z as f(r, ϕ)eikzz (kz > 0). Another numerical code
has been developed that simulates the linearized temporal evolution of such modes that break the helical symmetry of the base
flow (code HELIKZ). The complex Navier–Stokes equations relative to a given wavenumber kz are discretized on the same
grid as above. Primitive variables are used, and zero divergence is ensured by a projection step.

Two types of modes are investigated: (i) long-wave modes which generalize the modes obtained by Widnall and Gupta
& Loewy (see figure 1d-e for a N = 2 case). The results we obtained for one vortex compare very well to those observed
in recent experimental work [8]. Note that the nonlinear saturation of such modes has been simulated using a vortex method
by Walther et al. [9] and using a grid method by Ivanell et al. [10]; (ii) modes with a wavelength smaller than the core size,
arising from elliptical instability. This part of the work is in progress.
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Summary The exact solutions for the velocities induced by helical line vortices are applied to two related aspects of wind turbine performance 

analysis.  First it is shown that they allow the determination of the “tip loss factor” which relates the velocities at the blades to the average 

velocity at the same radius.  The new calculation of tip loss is shown to be suitable for the computational modeling of wind turbine performance 

and is more accurate than the simple approximation due to Prandtl that is commonly used. Second, the conservation equations for momentum 

and angular momentum are nonlinear so the azimuthal variation of the induced velocities can be important. The exact solutions are used to 

determine the nonlinear terms in the torque and thrust equations. Approximate forms for the nonlinear terms are developed. 
 

 

For wind turbines with a finite number of blades, N, the wind speed at the blades may differ from the average wind speed at 

the same radius.  The difference is usually expressed as the tip loss factor, F, defined as the ratio of the average induced velocity 

to the induced velocity at the blade.  Typically, F reduces the power output of a three-bladed turbine by around 5%, and must, 

therefore, be included when analyzing turbine power extraction. F is commonly evaluated using Prandtl’s approximation which is 

computationally simple, see, for example, Chapter 6 of Hansen [1], but not necessarily accurate. Alternatively, F can be computed 

from the Kawada-Hardin equations for the velocity field due to a helical vortex of constant pitch and radius, Fukumoto et al. [2].  

These equations contain infinite sums of products of Bessel functions and their derivatives and are not computationally attractive.  

However, Kawada [3] and Okulov [4] provide approximations that are much more easily computed. 

In the first part of the presentation, Prandtl’s approximation and the three methods of determining F described above, will be 

compared for optimal Betz-Goldstein (BG) rotors whose loading (bound vorticity) was determined by the method of Okulov & 

Sørensen [5].  For these rotors, the vortex pitch is constant across the wake and an independent and accurate estimate of F is 

available.  Comparison is made for N = 3 and tip speed ratio, λ, from zero to 15.  Typical results are shown in Figure 1. 

 

 

It is clear that Prandtl’s approximation works well at high λ, but only for the outer part of the blade.  Near the hub, F exceeds 

unity which is the maximum possible value of Prandtl’s approximation at all λ.  Okulov’s approximate equations are the most 

accurate of the three direct methods and it will be shown that they can be utilized in a wind turbine analysis program with only a 

small additional computational cost compared to Prandtl’s approximation. 

If F differs significantly from unity, there must be significant azimuthal variations in the velocities.  Since all the conservation 

equations used in wind turbine analysis, apart from the mass equation, are nonlinear, the “quadratic” or “nonlinear” terms may be 

significant.  For example, the conservation of angular momentum equation is usually written in terms of UW, the product of the 

average axial and circumferential velocities, but the deviations from the averages, u and w, may also contribute.  For BG rotors, 

u and w are directly related so the nonlinear terms are reasonably straightforward to compute. They always reduce the angular 

momentum flux.   In most turbine analyses, the nonlinear terms are accounted for in terms of F. It is shown, however, that they 

do not depend explicitly on F but are closely related to it, and go to zero as F approaches unity.  So far, we have computed them 

   Figure 1: Tip loss factor for N = 3. λ  = 0.05 (left)and λ = 6.6 (right) 

1542



only from the Kawada-Hardin equations.  Figure 2 shows the results for two values of λ, along with the blade torque determined 

from the Kutta-Joukowsky equation (see Equation (12) of Okulov & Sørensen (2008)) which must exactly balance the angular 

momentum flux.  The quadratic terms are very important at the lower λ.  At the higher λ, the quadratic terms are smaller in 

magnitude and are insufficient to reduce the average angular momentum flux to match the rotor torque. 

 

 
 

We are currently investigating these results further and will present the analysis of the nonlinear terms along with the 

implication for including F in the conservation equations for momentum and angular momentum in general wind turbine analysis. 
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   Figure 2: Torque and angular momentum for N = 3. λ = 0.55 (left) λ = 6.6 (right) 
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Summary We analyse the topology of the vorticity field downstream of a circular cylinder to show that the Karman vortex street develops
at a large but finite distance downstream of the cylinder, and only when the Reynolds number is increased beyond a value ReK which
is slightly larger than the value Recrit at which the steady base flow becomes unstable to time-dependent perturbations. In the region of
validity of our analysis, that is, small values of ε ∼ (Re−Recrit)

1/2, only a finite number of vortices exist. Moving downstream after their
creation in a topological cusp bifurcation, the vortices later disappear in a similar but reversed event. However, the number of vortices and
the length of the domain where they exist grow rapidly with ε.

The flow of a viscous fluid past a circular cylinder undergoes a symmetry-breaking, super-critical Hopf bifurcation at a
critical Reynolds number, Recrit, of approximately 46 [1]. The key feature of the time-periodic unsteady flow that ultimately
emerges is the periodic shedding of vortices which results in the formation of the famous Karman vortex street. The transition
from steady to periodic flow and the transition of the shear layer in the wake of the cylinder into individual vortices are distinct
events. Mathematically the former is a bifurcation in a function space of velocity fields while the latter is a topological change
of the vorticity field in the physical space [2]. The purpose of the present study is to elucidate the connection between these
two bifurcation phenomena and to show that they occur at two slightly different Reynolds numbers.

To facilitate the analysis, we exploit the fact that for Reynolds numbers close to Recrit, the flow can be described by the
superposition of the steady, symmetric base flow, u, and the Navier-Stokes eigenfunction, û, both evaluated at Recrit; see,
e.g., [3]. Thus

u(x, y, t;Re) ≈ u(x, y;Recrit) + ε û(x, y;Recrit) exp(iΩt), (1)

where ε ∼ (Re−Recrit)1/2 and Ω (the purely imaginary Navier-Stokes eigenvalue associated with û) represents the frequency
at which vortices are shed. Using our finite-element library oomph-lib [4], we compute the vorticity fields ω and ω̂
associated with the base flow and the eigenfunction, respectively, in a long but finite channel, imposing parallel, traction-free
outflow at x = Xright, and “tow-tank” boundary conditions at the sidewalls at y = ±H/2. The time-periodic vorticity field
associated with the flow defined by (1) is given by

ω(x, y, t;Re) = ω(x, y;Recrit) + ε ω̂(x, y;Recrit) exp(iΩt), (2)

and we define a vortex as a local extremum in this vorticity field. Given that the steady base flow, u, does not contain any
vortices downstream of the cylinder, we expect that the amplitude of the perturbation, ε, has to be nonzero for such vortices to
develop in the time-periodic flow (1). Since ε ∼ (Re−Recrit)1/2 this would imply that the Karman vortex street develops at
Reynolds number ReK > Recrit.

(a) (b) (c)
C S E

Figure 1: Three snapshots of the vorticity field (a) before, (b) close to, and (c) after the generation of a new vortex via a cusp
bifurcation. Colours and the thin black isolines indicate logarithmic contours of the magnitude of the vorticity; the thick cyan
and blue lines show zero levels of ∂ω/∂x and ∂ω/∂y, respectively. The cyan and blue lines intersect at critical points of the
vorticity; either at a cusp (“C”), a saddle (“S”) or an extremum (“E”).

∗Corresponding author. Email: M.Heil@maths.manchester.ac.uk
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We start by analysing how new vortices are generated in the flow field given by equation (1). For this purpose Fig. 1 shows
three snapshots of the associated vorticity field (a) before, (b) close to, and (c) after the generation of a new vortex. The thick
cyan and blue lines in these plots show the zero levels of ∂ω/∂x and ∂ω/∂y, respectively. These lines intersect at positions
where the vorticity has a critical point, ∇ω = 0. The sequence of snapshots shows that new vortices are formed via a cusp
bifurcation in the vorticity field during which a saddle point (S) and an extremum (E) emerge from a degenerate critical point
(D) at which the HessianH of the vorticity vanishes. Given the vorticity field ω(x, y, t) from (2), we therefore determined the
position (Xcusp, Ycusp) and the time Tcusp at which a new vortex is created by solving the three equations

∂ω/∂x = 0, ∂ω/∂y = 0 and H =
∂2ω

∂x2
∂2ω

∂y2
−
(
∂2ω

∂x∂y

)2

= 0 (3)

for Xcusp, Ycusp and Tcusp.
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Figure 2: Dependence of the axial position of the cusp, Xcusp, on the amplitude of the perturbation, ε for different channel
lengths. (a,b): Xright = 30, 55, 80; (c) Xright = 400 (note the swapped axes).

Figs. 2(a,b) show how the axial position at which the vortex is created, Xcusp, depends on the amplitude ε of the pertur-
bation. Somewhat surprisingly, the plot suggests that a reduction in ε does not suppress the generation of new vortices but
simply moves the position at which the vortices are created further and further downstream. The computations can, of course,
only track Xcusp to the downstream end of the computational domain but Fig. 2(b) shows that, at least for channel lengths up
to Xright = 80 (which is much larger than the lengths considered in many other analyses of the Karman vortex street), this
behaviour is independent of the domain length and, in fact, very well described by a power-law, Xcusp ∼ ε−1/2.

It is easy to show that this behaviour is only possible if the vorticity associated with the base flow, ω, decays more
quickly in the streamwise direction than that associated with the perturbation, ω̂. An inspection of the vorticity fields confirms
that, for the domains considered in Figs. 2(a,b), this is indeed the case. However, computations in even longer domains
(up to Xright = 400) show that even further downstream the relative size of the decay rates is reversed so that, sufficiently
far downstream, the vorticity associated with the perturbation decays more quickly than that associated with the base state,
resulting in the behaviour shown in Fig. 2(c) (note the swapped axes). This plot shows that, as originally expected, there does
indeed exist a minimum value of the amplitude, εmin, below which no vortices are created. If ε exceeds this threshold, the
vorticity field develops a cusp at two instances during the period of the oscillation: once when/where the vorticity associated
with the base flow has decayed sufficiently for the perturbation to create a new vortex via the mechanism discussed above; and
then again further downstream when/where the vorticity associated with the perturbation has become too weak to sustain the
most downstream vortex, causing it to disappear via a reverse cusp bifurcation. In Fig. 2(c) the two solution branches identify
the upstream/downstream boundaries of the region within which vortices exist. The two branches meet at εmin; for this value
each newly created vortex is immediately annihilated, implying that this point is characterised by the convergence of two cusp
bifurcations. We exploited this observation to compute εmin directly from the two vorticity fields.
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Abstract. Over the years, we have proposed a force decomposition to quantify the contributions to the forces exerted on the plate 
in terms of all the fluid elements with nonzero vorticity. This presentation is aimed to illustrate the usefulness that the force 
element analysis complements the traditional analysis based on pressure and friction. An example of flow over a delta wing is 
provided to examine various contributions to the forces on an impulsively started finite plate from the perspective of a force-
element representation. The present vorticity force analysis (VFA) was made parallel to the pressure force analysis (PFA) by 
examining the sectional force contributions along the wing span, but can further extend to include the outer regions of tip 
vortices.  

Introduction. A vorticity force theory is most applicable to flow abundant in vortices. Counter-rotating tip vortices are an 
important aerodynamic feature of wings of finite span due to the pressure difference between the upper and lower wing 
surfaces. Tip vortices can cause undesirable noise and vibrations as well as induce downwash, which increases the drag 
force on the wing. In recent years, research in tip vortices has shifted into low-Reynolds-number flows for understanding of 
animal locomotion with applications to development in micro air vehicles (MAVs) and small unmanned aerial vehicles 
(UAVs). Because the wing geometry of animal wings and fins typically has a low aspect ratio (LAR), the induced flow is 
unsteady, and the influence of tip flow is obviously significant. As a model problem, impulsively started LAR plates at low 
Reynolds number can provide an in-depth research relevant to the design of small aircraft and the aerodynamics of animal 
locomotion.  
In spite of the many important studies on LAR-plate aerodynamics, a quantitative analysis that can identify the primary 
aerodynamic forces and relate them to individual vortex structures is still lacking. In the literature, there are several useful 
force theories that shed light on different aspects of hydrodynamic or aerodynamic forces. Circulation theory was an early 
effort toward predicting lift, which provided insightful relationships between forces and inviscid models in terms of 
boundary layer separation, vortex shedding, and conservation of circulation. Subsequent studies were meant to provide 
exact means or theories for hydrodynamic forces through a rigorous analysis of the equation for viscous flow, in particular, 
ideas that validate a separation of hydrodynamic loadings into potential flow forces and vortex-flow forces. The applied 
force was deliberately explained as the rate of change of a momentum, defined by an absolutely convergent integral. In this 
study, we investigate the unsteady mechanisms of a LAR plate with different angle of attack at low Reynolds flows in terms 
of a diagnostic force theory (Chang 1992; Chang et al. 2008; Hsieh et al. 2010, Lee et al. 2012). The force representation 
theory for real viscous flow is used to separate potential forces such as added-mass and inertial forces and to distinguish the 
contributions of individual fluid elements to aerodynamic forces. The theory starts from the D'Alembert theorem that the 
incompressible potential flow predicts that no force will be exerted on a body if the incident flow is a constant uniform 
stream. Incompressible potential flow means that there is no single fluid element possessing nonzero vorticity or dilation. It 
is therefore considered that in a more realistic flow, any fluid element with nonzero vorticity or dilation may be considered a 
source of the hydrodynamic force.  

Results & Discussion. There are four regions of distinguishable vortex structures (see Fig. 1 for illustration). Above all, it 
is noted that the LEV (leading-edge vortices) has a separation bubble in the x-y plane for sections near the middle span, and 
is connected to the tip vortices, the side edges where the roll-up structure contains a separation bubble above the plate in the 
y-z plane. First, the LEV contributes large positive lift elements, yet near the middle span, there are negative elements inside 
the separation bubble. Second, the part of each tip vortex above the extended plate contributes large positive lift elements,  
while along the downstream direction there is a developing region of negative elements inside each separation bubble. Third, 
we have strong positive elements in the two regions where the LEV and TiVs (tip vortices) interlink and rotate against each 
other. Fourth, the velocity field in the slender region just below the plate contributes substantially negative lift elements. 
The LEV, TiVs and TEV (trailing-edge vortices) are interwoven to form a complete vorticity-loop structure. As long as the 
loop structure is extending downstream the finite wing, its contribution to the lift is quickly diminished. The force-element 
approach is different from the classical aerodynamic theory. The latter considers the downwash flow of the tip vortices as 
the cause of reduction in the lift of a finite wing as compared to its 2D counterpart. The former, on the other hand, considers 
that, as there is no longer a genuinely 2D flow for a finite wing, it is more meaningful to examine directly the contribution 
from the TiVs to the lift. In other words, TiVs and LEV as sources of lift (and other force components) are considered on an 
equal basis; TiVs generated by the side edges, like LEV generated by the front edges, work collaboratively with LEV in 

1546



contributing lift. In the flow past a finite plate, not only is there spanwise (longitudinal) vorticity, but are also there vorticity 
components in the other two orthogonal (transverse) directions. In order to examine the three-dimensional effects, we 
provided two viewpoints: (i) sectional vorticity force distribution (CDv, CLv) contrasted with the traditional pressure force 
distribution (CLp, CDp), and (ii) the force credited to orthogonal (transverse) components (ωx, ωy, ωz) contrasted with all of 
the total force (CD, CL) credited to all the vorticity components in the entire flow region as well as in the outer regions. It is 
noted that in the ideal case of two-dimensional flow, there are no outer regions, and CLv′ and CLp are identical, and CDv′ and 
CDp are identical. Both viewpoints based on the force element theory show distinguished differences at different AR and 
angles of attack, and between the early and later stages of flow development. Consider the lift force from viewpoint 1. At 
the lower AR=1, the sectionwise pressure force (SPF) is always larger than the sectionwise vorticity force (SVF) in the plate 
region. The deficit of SVF as compared to SPF in the plate region is made up by the positive SVF contribution in the outer 
regions. The difference between SPF and SVF is more conspicuous at large α. At the large AR=3, the SPF and SVF are 
usually small in the middle plate region; the discrepancy occurs near the outer edges of the plate. But the situation changes 
in the case of a large angle of attack (say, α=45o). In the initial transient, SVF may exceed SPF in the middle of the plate, 
and becomes much smaller towards the edges of the plate. In the nearly steady state, the difference is small in the middle 
region of the plate, and becomes large farther from this region. Consider the lift force from viewpoint 2. In the early stages 
just after the flow is started, the force component due to ωz dominates other components in the plate region. But the other 
force components due to ωx and ωy have also been developed in the outer region and may exceed the component of ωz in 
magnitude. It is found that all the lift components due respectively to ωx, ωy and ωz in the outer regions are positive, and the 
lift component due to ωy is invariably the largest at the later time. At the larger AR=3, the lift components due to ωx and ωy 
are typically small in the middle plate region, but may exhibit negative contributions at the outer edges of the plate region. 
At a lower AR=1 but a larger α, the lift components due to ωx and ωy may become substantial in the plate region, though 
still small compared to that due to ωz. It is reasonable to consider that ωz is mainly contributed by the LEV, while ωx and ωy 
are contributed by the TiVs. The temporal variations of the relative importance of force contributions strongly depend on 
the interplay between the two vortex systems. (i) For the shorter plate (AR=1), the LEV is suppressed by the TiVs in the 
initial stage, and then develops gradually, extending its vorticity beyond the outer edges. (ii) For the longer plate (AR=3), 
the TiVs are initially suppressed by the strong LEV, but have more room for development in later stages as the LEV 
weakens in strength because of diffusion. As a final remark, the VFA for assessing the relative importance of individual 
force contributions can be pursued for all kinds of finite wings by relating the flow features directly to the aerodynamics 
forces that have no two-dimensional counterparts, such as those of a delta wing and of many natural flights.  

 
Figure 1. The scales are chosen to be the chord length L, and the time L/U, where L is the chord length and U the incoming 
flow velocity in the x-direction. The plots show the y-z plane velocity vectors colored by the volume lift elements at various 
chordwise locations for the AR=1 plate with α=45o, Re=300 at t=1.4: (a) x=0.14 (b) x=0.35 (c) x=0.57. First, the LEV 
contributes large positive lift elements, yet near the middle span, there are negative elements inside the separation bubble. 
Second, the part of each tip vortex above the extended plate contributes large positive lift elements, while along the 
downstream direction there is a developing region of negative elements inside each separation bubble. Third, we have 
strong positive elements in the two regions where the LEV and TiVs interlink and rotate against each other. Fourth, the 
velocity field in the slender region just below the plate contributes substantially negative lift elements. Note that at this low 
Reynolds number, although the contribution from the vorticity within the flow dominates, the surface vorticity contribution 
is not negligible, typically ranging from 10 to 30% contribution to the lift.  
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Summary We describe experimental observations of a free surface vortex instability in a shallow liquid metal layer driven by different 
arrays of rotating magnetized bars located underneath the bottom of a cylindrical container. For layer thicknesses smaller than a certain 
threshold, the swirling vortex flow created by induced Lorentz forces reveals a spontaneous instability for specific magnet rotation 
frequencies, leading to the opening of the free surface and the formation of regular structures that rotate stably with a speed about one 
order of magnitude lower than the magnets. An ellipse and a triangle are observed for one and three rotating magnets. When four or five 
magnets are used, transient polygons with the same number of corners appear on the deformed surface at the initial stages of spin-up. It is 
suggested that the formation of the structures is a consequences of resonant interactions between gravity and centrifugal waves. 
 

INTRODUCTION 
 
   Electromagnetic stirring offers a non-intrusive method for vortex flow generation in electrically conducting fluids. It 
consists in the production of driving Lorentz forces in a conducting fluid by the interaction of induced or applied electric 
currents with an external magnetic field. With this method, free surface vortex flows that resemble geophysical phenomena 
have been created in swirling liquid metal flows. For instance, the spin-up of a tornado-like vortex in a cylindrical liquid 
metal column has been generated by two flow-independent magnetic forces, produced by a combination of a rotating 
magnetic field and a vertical traveling magnetic field [1]. In the formation of vortex structures in swirling flows, the height 
of the fluid column is an important parameter. The question then arises as to how is the vortex flow structure changed by 
decreasing the fluid height. In fact, it has been reported that symmetry-breaking transitions can appear in swirling flows 
with a free surface. Experiments conducted in a cylindrical container with water and rotating bottom plate have shown that 
for certain fluid heights and rotation frequencies, a rotationally symmetric surface spontaneously deforms into a rotating 
polygonal structure [2-4]. The instability has been explained in terms of resonant interactions between gravity waves on the 
outer part of the surface and centrifugal waves on the inner part [5]. In the present contribution, instead of using rotating and 
traveling magnetic fields, liquid metal vortex flows are generated by different arrays of rotating magnetized bars located 
beneath the bottom of a cylindrical container. If the layer thickness is sufficiently small, the free surface of the induced 
vortex flow is drastically deformed for specific rotation frequencies giving place to regular shapes that rotate uniformly.  
  

EXPERIMENTAL SETUP AND RESULTS 
 
   The experimental setup consists of a fixed acrylic cylindrical container (L=101 mm radius) with a shallow layer (6-9 
mm thickness) of eutectic alloy GaInSn. Underneath the bottom wall of the cylinder an array of one, three, four, or five 
rectangular permanent magnets ( ) are placed radially and equidistantly on a rotating external acrylic 
disc coupled to an electric motor. The bars are uniformly magnetized perpendicularly to a pair of the faces of greater area. 
The Reynolds number based on the maximum rotation frequency of the magnets ( Hz) is , where

 is the kinematic viscosity, while the maximum Hartmann number is , where  is the maximum 
magnetic field strength and h is half the layer thickness. Experiments, performed with each magnet array for different layer 
thicknesses, started with the fluid at rest increasing the rotation frequency in the range 0-7.5 Hz until the appearance of the 
instability. Ultrasonic Doppler Velocimetry measurements were obtained previously to the emergence of the instability. The 
rotating magnetized bars acted as magnetic blades, producing initially a swirling flow and suddenly the free surface vortex 
touches the floor of the vessel and a region void of liquid metal is formed. To illustrate this phenomenon, we show in figure 
1a) four snapshots taken with one magnet spinning at 7.5 Hz. It was observed that the liquid metal rotates with a frequency 
of 0.25 Hz. The images in the figure show a structure of an ellipse with waves of small amplitude running near the edge. 
Also, hysteresis was observed as the magnet spin velocity was increased or decreased. Actually, as the angular velocity of 
the magnets is decreased, a circular structure rotating eccentrically was observed. The dynamic behavior is summarized in 
figure 1b) and suggests that the phenomenon can be described as a subcritical bifurcation. 
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                 a)                                          b) 
 

Figure 1. a) Snapshots of ellipses formed with one rotating magnet at 6 Hz. b) Hysteresis as the rotation frequency increases or decreases. 
 
   Figure 2 shows snapshots of vortical flows formed with three, four, and five rotating magnets, respectively. The first 
corresponds to a stable rotating triangle. The formation of the polygonal structure on the free surface is not a smooth 
process; the structure appears in a small time scale compared to the rotation of magnets once the threshold of the magnet 
spin has been reached. With four and five magnets (figs. 2b-c), square and pentagon shapes are formed instantly on the free 
surface at the initial stages of the spin-up; these structures are unstable and eventually the open surface evolves towards a 
stable rotating triangular structure. 
  
 
 
 

 
 
 
 
 

     a)    b)        c) 
Figure 2. Polygonal structures formed on the liquid metal free surface with three a), four b), and five c) rotating magnets.  

 
CONCLUSIONS 

 
   In this contribution, we describe the formation of polygons in free surface flows similar to those observed before in 
water flows driven by rotating the bottom plate of a partially filled, fixed cylindrical container [2-4]. Although in the present 
study the rotation is promoted by a body force rather than by a rotating boundary, the physical effects that produce the 
polygon instability are closely related. In the present case, the azimuthal Lorentz force generates a swirling motion that in 
turn originates the free surface instability. Non-uniformity of the applied magnetic field seems to play a role in the 
appearance of the instability although, just as in the rotating boundaries case, the formation of polygons can be attributed to 
the resonance of gravity and centrifugal waves at the free surface [5]. 
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ON THE INFLUENCE OF END EFFECTS FOR STATIONARY AND VIBRATING CIRCULAR 

CYLINDERS 

  
Sina Daneshvar1 & Chris Morton1a)  

1Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada 
 

Summary The flow development over stationary and oscillating circular cylinders with two distinct end conditions has been investigated 

experimentally for 2100 ≤ ReD ≤ 7000. The end conditions employed correspond to a free surface and a free end. For both the stationary 

and oscillating cylinder, near the free surface the wake vortices are oriented parallel to the cylinder axis. Circulation is preserved in this 

region with vortices terminating at the free surface. Near the free end the vortices cannot end abruptly in the fluid, hence, they must either 

incline towards the cylinder and maintain a direct connection to the free end (observed for 2S type shedding pattern) or they must form half-

loop connections with adjacent vortices of the opposite sign (observed for the 2P type shedding pattern). The apparent changes in vortex 

dynamics due to differing end conditions may significantly influence the unsteady loading characteristics. 

 

INTRODUCTION 

 
   Vortex shedding from circular cylinders has been a topic of interest in fluid mechanics for over a century. For a stationary 

cylinder, Williamson [1] affirmed that vortex shedding occurs from a circular cylinder for Reynolds numbers (�� = �� �⁄ ) 

greater than about 50. Depending on the Reynolds number, the vortex shedding may be laminar and two-dimensional, laminar 

and three-dimensional, or turbulent [1]. In addition, the flow behaviour can be affected by such other parameters as the 

cylinder’s aspect ratio, roughness, and end conditions. When a cylinder is free to move in either the transverse or free stream 

direction, the vortex shedding can lead to vortex-induced vibrations (VIV). According to Williamson [2], for low mass-

damping ratio, there are two abrupt changes in the amplitude of the cylinder’s vortex induced oscillatory motion resulting 

enabling the classification of three branches: initial, upper, and lower branch. While VIV has been the subject of numerous 

studies over the last several decades, few studies have been dedicated to identifying the effect of cylinder aspect ratio, 

roughness, or end conditions. The present study aims to address the effects of some commonly employed end conditions on 

vortex shedding and VIV. 

 

EXPERIMENTAL SETUP 

 
   Experiments were carried out in a water tunnel facility at the University of Calgary. The free stream turbulence intensity 

was measured to be less than 1% and the flow uniformity is within 2% for the full range of flow speeds tested, 0.05 ≤ U ≤ 0.4 

[m/s]. An image of the experimental setup is shown in Fig.1. As shown in the figure, an acrylic cylinder is fixed directly to a 

system of two air bearings mounted to parallel stainless steel rails and springs, facilitating the free oscillatory movement of 

the cylinder in the transverse (y) direction. The system was validated by measuring its amplitude response (�∗ = � �⁄ ) across 

a wide range of reduced velocities (�∗ = � ���⁄ , where �� is the natural frequency of the cylinder), as shown in Fig. 2. The 

results were found to be in good agreement with Williamson [2] for low mass-damping ratio. 

   Hydrogen bubble flow visualization technique is used to trace the flow pattern and highlight wake vortices. The hydrogen 

bubble wire is placed upstream of the cylinder, at a position of � �⁄ , � �⁄ ) = −1,−0.25), so that the bubbles pass over 

only one side of the cylinder. Using a Photonics DM40 pulsed laser coupled with two consecutive cylindrical lenses, a conical 

expanding volume of light is generated, illuminating the near wake of the cylinder (Fig.1). Images and videos were obtained 

using a Nikon 1V3 camera. Two boundary conditions are employed: a free surface at the top, and a free end at the bottom. 

This configuration provides the opportunity to investigate the effects of these two boundary conditions on the vortex 

dynamics. The flow behaviour is observed in four different scenarios: (i) the stationary cylinder, (ii) initial excitation branch, 

(iii) the upper branch, and (iv) the lower branch, as depicted in Fig. 2. 

 
Fig. 1. Experimental setup. The cylinder 

aspect ratio is L/D = 16. 

 
Fig. 2. Cylinder’s amplitude response and vortex shedding modes in the wake versus flow’s reduced 

velocity. 

Air Bearings 

Cylinder 
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DISCUSSION 
 

   The results are presented in Fig. 3 with instantaneous snapshots of flow visualizations. In all cases, the spanwise vortices 

form and are shed parallel to the cylinder axis near the free surface. In the vicinity of the free end, they tend to bend towards 

the cylinder and connect to the free end at formation. Downstream of formation the vortex connectivity is dependent on the 

nature of the vortex shedding pattern. For a stationary cylinder and in the initial branch of VIV (Fig. 2), the vortex shedding 

pattern is 2S (one single vortex is shed from each side of the cylinder periodically), while for upper and lower branch the 

vortex shedding pattern is 2P (pairs of opposite signed vortices are shed from each side of the cylinder periodically). The 

vortex patterns were confirmed via analysis of video records, and are in agreement with [2]. 

   For the stationary cylinder (2S mode, Fig. 3a), the vortex shedding can be categorized into three main cells: (i) parallel 

shedding, which starts from the water level and continues to almost midspan. (ii) oblique shedding end cell, which terminates 

at the free end of the cylinder, and (iii) central cell, which joins the two aforementioned cells. The cellular vortex shedding is 

similar to that observed by Eisenlohr and Eckelmann [3], and has been attributed to the presence of the free end and its effect 

on the cylinders base pressure. It should be noted that the spanwise extent and vertical position of the central cell varies with 

time, and was observed to be linked to the relative phase alignment of the parallel shedding cell and end cell. 

   For the initial branch, (2S mode, Fig. 3b), parallel vortex shedding becomes more dominant along the cylinder span (cf. 

Figs. 3a and 3b). However, near the free end, in order to maintain the Helmholtz vortex theorems, the vortices must distort 

and stretch in order to connect to the free end. Subsequently shed vortices must either form looped connections with adjacent 

vortices on the opposite side of the wake, or connect directly to the free end. As shown in the visualization (Fig. 3b), the 

vortices appear to maintain connection to the free end, and rapidly break down due to the wake turbulence. 

   For the upper as well as lower branch (2P mode, Figs. 3c and 3d) the parallel vortex shedding continues with two vortices 

shed in close succession on one side of the wake, as depicted in Fig. 3c and 3d with vortices V1 and V2. Analysis of video 

records revealed that near the free end, each pair forms a half-loop connection to one another, which is depicted within the 

annotations in Fig. 3d. Moreover, no consistent secondary vortex connections were observed in video records, suggesting that 

for the cases studied the circulation of the vortices are similar in magnitude.  

 

CONCLUSION 
 

   The vortex shedding from stationary and vibrating circular cylinders in the present study is highly three-dimensional due to 

the imposed free surface and free end boundary conditions. For a stationary cylinder, three vortex shedding cells form along 

the cylinder span. On the other hand, for a vibrating cylinder, a single cell forms, but near the free end there are significant 

changes in vortex dynamics. In particular, when a 2S mode of vortex shedding occurs from the cylinder (in either the stationary 

case or initial branch of VIV), the wake vortices connect to the free end of the cylinder, resulting in significant three-

dimensional distortions of those vortices. When a 2P mode of vortex shedding occurs (in the upper and lower branch of VIV), 

vortices at the free end instead form half-loop connections in order to preserve circulation in the wake. 
 

 

    
Fig. 3. (a) Stationary cylinder: three cells of vortices are observed, (b) Initial branch: near the free end, vortices bend in order to connect to the free end,  

(c) Upper/lower branch: connection of the vortex to the free end, (d) Upper/lower branch: looped connection between paired vortices. 
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VORTEX STATISTICS FROM VORTICITY LOCAL PROPERTIES

José Hugo Elsas∗1 and L. Moriconi1

1Instituto de Fı́sica, Universidade Federal do Rio de Janeiro

Summary Systematic procedures for the identification of vortices/coherent structures have been proposed as a way to address their kine-
matical and dynamical roles in structural formulations of turbulence. We investigate how the known vortex identification criteria performs
in controled numerical experiments, and pinpoint a number of relevant difficulties. These issues are addressed – and essentially solved –
from the introduction of an alternative vortex identification criterion which is entirely based on local properties of the vorticity field.

INTRODUCTION

Turbulent flow is present in many natural and industrial systems, being prevalent in usual natural and industrial flows.
Some examples include atmospheric, pipe and channel flow, which encompasses both free streaming and wall bounded flows.
Furthermore, the question of whether or not organized structures exist in turbulent fluid remains open, despite long-standing
discussions [1], and several arguments against turbulence as being merely a superposition of a sort of collored noise. A
major problem in the study of such coherent structures arises in the difficulty in identifying them, which in turn restricts their
usefulness as theoretical and practical tools.

We recently revised the main shortcomings of the swirling strength (Sw.St.) method, and have proposed an extension of
this approach as an attempt to overcome current limitations of vortex identification methods. Here we explore the impacts of
different procedures on the computed statistics of vortices on turbulent flows, as it would be necessary in the formulation of
statistical models for the fluctuation of flow observables.

VORTEX IDENTIFICATION

Vortex identification methods that only rely on local information are limited, in a way or another, to the gradient of the
velocity field. Three popular identification methods, the Okubo-Weiss Q-criterion [2], the ∆-criterion from Chong, Perry and
Cantwell [3], and the λ2-criterion from Jeong and Hussain [4], are equivalent for 2D incompressible flows. We chose to study,
for simplicity, the ∆-criterion, or swirling strength, for bidimensional incompressible flows.

The starting point of the swirling strength is to analyse the eigenvalues of the velocity gradient ∇u, and to search for
regions where its anti-symmetric part, which measures local rotation, dominates the symmetric, or shearing component, which
appear when ∇u has imaginary eigenvalues.

Swirling strength λ is the imaginary part of the eigenvalue of ∇u. For bidimensional incompressible flows, the eigenvalue
equation reduces to:

det(∇u− λ) = λ2 − Tr(∇u)λ+ det(∇u) = 0 ⇒ −λ2 = det(∇u) (1)

The usual swirling strength criterion identifies correctly a single vortex, but can greatly distort cases with multiple vortices,
as in Fig. 1, or cases with vortices within background shear. Our modification, which we call “vorticity curvature criterion”,
consists in the calculation of the Sw.St. taking ũ = ∇× (∇× u) instead of the real velocity field, and to correct the result by
filtering spurious regions using the sign of ω · ω̃ = − ω · ∇2ω, which should be positive only for the region over true vortices.

λω = Θ(ω · ω̃)ℑ(
√
− det∇ũ); Θ(x) = 1 if x ≥ 0 otherwise 0 (2)

∗Corresponding author. Email: jhelsas@if.ufrj.br
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Figure 1: Streamlines of two Lamb-Oseen vortices, in different configurations, using the swirling strength λ and the vorticity
curvature λω in density plots. a) two close vortices, merged by λ; b) the same vortices as first, but resolved using λω; c) two
unequal vortices, ΓL/ΓR = 20, right vortex has zero λ, thus, it is not detected. d) same vortices as third, but with λω, and
both vortices are detected.

STATISTICS

Qualitative features of statistical observables in turbulent boundary layer can be recovered with a statistical model [5],
in which, the detailed information on the flow is encoded in a probability distribution funcion (PDF) of vortices.

Our goal is to reliably retrieve this PDF from data, either through Direct Numerical Simulation (DNS) or Particle Image
Velocimetry (PIV). To test for reliability, we compared these methods with Monte-Carlo tests, shown in Fig. 2. We compared
the performance of the Sw.St. and of the vorticity curvature criterea with and without background shear.
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Figure 2: a) input circulations (circ.), b) output circ. from Sw.St., no shear, c) output circ. from V.C., no shear d) output circ.
from Sw.St., weak shear, e) output circ. from V.C., weak shear, f) input radius, g) output radius from Sw.St., no shear, h)
output radius from V.C., no shear, i) output radius from Sw.St., weak shear, j) output radius from V.C., weak shear

The first three columns show that vorticity curvature performs better than the original swirling strength for cases without
background shear, but still has problems in presence of background shear, still making it inadequate for the treatment of
boundary layer data.
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ELLIPTICAL INSTABILITY OF THE MOORE-SAFFMAN MODEL FOR A TRAILING
WINGTIP VORTEX
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Summary In this study, the elliptical instability exhibited by two counter-rotating trailing vortices is considered. This type of vortex
instability can be viewed as a resonance between two normal modes of a vortex and an externally imposed strain field. Recently, numerical
investigations have extended earlier results that ignored axial flow to include models with a simple axial jet such as the similarity solution
found by Batchelor [1]. Here, we present growth rates of elliptical instability for a family of velocity profiles found by Moore & Saffman
[2]. These profiles involve a parameter n that depends on the wing loading, and are therefore capable of modelling both the jet-like and
wake-like axial flow present in a trailing vortex at short and intermediate distances behind the wingtip. A direct numerical simulation is
performed using an efficient spectral method in cylindrical coordinates developed by Matsushima & Marcus [3]. We compare our results to
those for the Batchelor vortex.

INTRODUCTION

The recent introduction of large jetliners like the A380 has refocused attention on the study of the stability of the trailing
wingtip vortex. In flight aircraft shed, from their wingtips, a counter-rotating pair of trailing vortices which represents a hazard
to other air traffic, especially during take-off and landing. It is therefore important to understand the dynamics and stability
of such vortex pairs. In this study we investigate the elliptical instability, which is a cooperative instability characterized by
short wavelengths, for a realistic model of the trailing vortex described in Moore & Saffman [2].

Since Moore & Saffman [4], the mechanism underlying the elliptical instability is recognized to be one of resonance —
see Kerswell [5] for a review. The vortical flows of interest here include an axial mean flow component W (r) as well as a
swirl component V (r). Most investigations have made restrictive assumptions, such as a specific swirl profile and an absence
of axial flow. An exception is the work by Lacaze et al. [6] that examines the model introduced by Batchelor [1]:

V (r) =
1

r

(
1− exp (−r2)

)
, W (r) =W0 exp (−r2).

Batchelor’s model, however, can not account for the diversity of axial flow present in trailing vortices; as Spalart [7] points
out, the relative axial velocity in a trailing vortex can be directed towards the airplane (wake-like) or away from it (jet-like).

THE MOORE-SAFFMAN VORTEX

Moore & Saffman [2] employed the viscous light-loading approximation to estimate the effects of viscosity. Denoting the
azimuthal and axial velocity profiles Vn(η) and Wn(η), outside of the viscous core

V ∼ βr−n, and W ∼ β2

2W∞

(
1

n
− 1

)
r−2n as r → 0.

The similarity variable η = −r2U/4νz, where U is the speed of the wing in a fixed frame. The parameter n is important, as it
depends on the wing loading and, indirectly, on angle of attack. Varying n controls the amount of jet-like and wake-like flow
(see figure 1). Special cases are n = 0 (a delta wing configuration), n = 1/2 (elliptic wing loading) and n = 1 (Batchelor
profile). Feys & Maslowe [8] examined the linear inviscid stability of this model.

GOVERNING EQUATIONS AND NUMERICAL APPROACH

We consider a Moore-Saffman vortex deformed by an externally imposed stationary dipolar strain field of strength ε. The
incompressible Navier-Stokes equations are linearized about this mean flow and solved numerically using a spectral method
in cylindrical coordinates. In the axial direction, we perform a Fourier expansion into modes with axial wavenumber k. In
the perpendicular plane, we employ a method due to Matsushima & Marcus [3] which involves expanding all perturbation
quantities into associated Legendre polynomials. A random initial perturbation field is evolved in time and the growth rate ωi

of each azimuthal Fourier mode is obtained by tracking its energy.
∗Corresponding author. Email: jan.feys@mail.mcgill.ca
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Figure 1: The axial velocity component Wn(r) of the Moore-Saffman vortex.
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Figure 2: The growth rate ωi as a function of the axial wavenumber k for the Moore-Saffman vortex with (a) n = 0.95 and (b) n = 0.70. The flow parameters
are ε = 0.0625, W0 = 0.482 and Re = 3180. Results for odd and even azimuthal wavenumbers are represented by stars and circles, respectively.

RESULTS AND CONCLUSIONS

The influence of n on ωi is our primary point of interest. Figure 2 shows findings for a representative set of flow parameters.
Several resonant parabolae are visible in (a), with peak amplification rates close to those for the Batchelor vortex. When n is
decreased, in (b), the elliptical modes of instability are instead organized on a wide arc, i.e. a continuum of modes appears.
Further, the growth rate of the unstable modes increases; we recover n ' 0.44 as being a particularly unstable value of the
wing loading parameter. Finally, we find that varying n causes the dominant pair of azimuthal wavenumbers to shift from
(m1,m2) = (−1, 1) to other modes such as (−2, 0) and (−3,−1). The case n = 0.50 will be discussed further in the talk.
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Summary Characteristics of eigen-vortical-axis line defined as a vortical axis is investigated by tracing plural lines as a bundle in a 
vortical region and compared with the vorticity line. It shows that this line follows along a vortical core region with strong intensity of 
swirling or vorticity where the some vorticity lines may deviate from. On the other hand, in the outer area of the core region, eigen-
vortical-axis line may deviate or be diffuse, whereas a bundle of the vorticity lines seem to have a similar feature in the direction. The 
orbit of eigen-vortical-axis line is robust in the vortical core region. 
 

INTRODUCTION 

 
   Vortices are important subjects to be analysed in many turbulences. Since the universal definition of a vortex has 
not been established, several definition or identification methods have been proposed for a vortex and vortical axis in 
terms of a physical aspect of them. Identification of a vortical axis may be expected to follow the core region of a 
vortex and have a specific feature of vortices such as pressure minimum. The local flow topology specified by the 
velocity gradient tensor ∇v has been used to categorize the invariant flow pattern (topology) in turbulences, and 
associated with several vortex definitions. A vortical axis where the tangent vector is parallel to the axis of the local 
vortical flow topology specified by ∇v has been defined as “eigen-vortical-axis line” [1]. It has been shown that this 
line follows a core region of a vortex where the vorticity line deviates [1-3]. In addition, this line can follow the intense 
pressure minimum region [3] specified by the Q-definition or the integrated vortex definition of the Δ-, Q- and λ2-
definitions [4], whereas the pressure minimum axis derived from the eigenvector of the pressure Hessian in the λ2- 
definition fails to follow this region [5]. On the other hand, the eigen-vortical-axis line is specified as a line that passes 
an arbitrary point in a vortical region where ∇v has complex eigenvalues, and uncountable lines can exist such as 
vorticity line in the velocity field. The present study identifies plural eigen-vortical-axis lines in a vortical region as a 
bundle, and investigates its feature, comparing with that of the vorticity line. 
 

EIGEN-VORTICAL-AXIS LINE 

 
   In three dimensional and instantaneous velocity field, if ∇v has complex conjugate eigenvalues εR ± iψ (i: imaginary 
number) and their eigenvectors ξpl ± iηpl, and a real eigenvalue εa and its eigenvector ζζ , then the local flow orbit around 
the considered point can be represented as x = 2exp(εRt){cos(ψt)ξpl – sin(ψt)ηpl} + exp(εat)ζ , which indicates that 
vortical flow swirls in the plane defined by ξpl and ηpl and proceeds along an axis ζ  [6]. Then ζ  represents the local axis 
direction of the vortical flow, and an eigen-vortical-axis line (referred to as EVAL hereafter) α  = [αi ] (i = 1, 2, 3) can 
be defined from the following equation:  
 

                                      
  

dα1

ζ1
=

dα 2

ζ 2
=

dα 3

ζ 3
        (1) 

 
EVAL can be defined in a vortical region where ∇v has complex eigenvalues, and is traced along ζζ  from a point in a 
region.  
 

NUMERICAL ANALYSIS 

 
   Vortical axes are analysed in isotropic homogeneous decaying turbulence in DNS (Direct Numerical Simulation) 
where the pseudo-spectral method with the phase shifting method is applied [1, 3]. It is noted that all vorticity lines and 
EVALs are traced from (initial) points in vortical regions, and, from one point, both vorticity line and EVAL are traced 
so that these two lines pass through the same point. The tracing is terminated when they reach at non-vortical region. 
Figure 1 shows plural EVALs and vorticity lines in a sub-region in DNS where the Taylor Reynolds number Reλ = 35. 
The color on axes denotes the contour of the swirlity ϕ [6] that indicates the uniformity and intensity of azimuthal flow 
in terms of the geometric mean (note ϕ = ψ), and ϕ is nondimensionalized by its root mean square value at the 
corresponding time.  
   Figure 2 shows a bundle of EVALs and vorticity lines in the same vortical region located in the sub-region in Fig. 1, 
with isosurface of ϕ =2. Both EVALs and vorticity lines are traced with the same points in the lower part of the vortical 
region. EVALs show that they follow the vortical core region with intense ϕ. The vorticity lines similarly follow the 
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core region, however, ϕ on the several lines is not as high as that on EVALs, and some line deviates from the isosurface 
of ϕ =2. Then (the bundle of) EVAL is robust in its characteristics, in the core region. On the other hand, both lines 
meander at the outside of the isosurface, and EVALs trace in several directions. It is noted that the direction of ζζ  is 
influenced by vorticity components parallel to the swirl plane. In weak vortical region, vorticity vector may have 
diversity rather than a uniform feature in the core region, then the vorticity lines meander, and EVAL may be 
influenced more than the vorticity lines and then diffuse. 

 

CONCLUSIONS 

 
   The eigen-vortical-axis line was investigated in terms of the feature of its bundle. The feature of the eigen-vortical-axis 
line as a vortical axis in the vortical core region is robust, and follows the intense swirlity region. On the other hand, in outer 
region of the core region, the characteristic of the eigen-vortical-axis line is not robust and may be diffuse.  
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Fig. 1: (a) EVALs and (b) vorticity lines in a sub-region. 

Fig. 2: Bundles of (a) EVALs and (b) vorticity lines in the same vortical region 
      located in Fig. 1, with isosurface of ϕ =2. 
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SINGULAR-VALUE ANALYSES OF SYMMETRIC AND ASYMMETRIC PERTURBATIONES 

ON A CYLINDRICAL VORTEX SHHET 
 

Toshihisa Itano1 
1Department of Earth and Ocean Sciences, National Defense Academy, Yokosuka, Kanagawa, Japan 

 
Summary The singular-value analyses of symmetric and asymmetric perturbations on a cylindrical vortex sheet is, instead of the eigenvalue 
analyses, investigated in order to reveal the form and growth rate of possible symmetric and asymmetric perturbations which give the maximum 
development during a finite evaluation time. Here, two types of norms are adopted: i.e. the L2 norm (the square root of the sum of amplitude 
squared) and the energy norm. The new formulation based on the precedent studies by Micalke & Timme (1967) and Rotunno (1978) enables 
us to obtain the singular-values and the following forward and backward singular-vectors analytically. The optimally-excited perturbations thus 
obtained indicate secure non-normal growth and significant norm dependency. 
 

INTRODUCTION 

 
   Michalke & Timme [1] gave two types of models for a particular vortex, later known as a “multiple-vortex”, where 
several secondary vortices are embedded in their parent vortex and revolve around its center. The first model is a vortex 
consisting of "ring-shaped" piecewise-constant vorticity regions. Especially, in their analysis, a solidly rotating core 
surrounding by a high vorticity ring is focused. Meanwhile, the second model is a cylindrical vortex sheet, where the 
vorticity is zero except at the cylindrical region of infinitesimal thickness whose vorticity is infinite. They performed linear 
stability analyses of the proposed models against symmetric and asymmetric perturbations to explain the destabilization of 
the parent vortices and possible formation of the multiple-vortex structure. As for the second model of Michalke & Timme, 
Rotunno [2] later added the axial flow inside and outside of the cylinder after correcting a fatal misunderstanding seen in 
their analysis. This revealed significant effects of updraft and downdraft on the stability of the cylindrical vortex sheet. 
   In order for considering the development of symmetric and asymmetric perturbations on such parent vortices, it is 
insufficient to examine the linear stability (i.e. eigenvalues) alone even if the focus is limited in the "linear" developing 
stage. This is because possible non-normality existing in the linear system prevents the most unstable eigenmode to develop 
most rapidly during a finite evaluation time [3][4]. In this respect, the present author [5] performed a singular-value analysis 
of the first model of Michalke & Timme, and revealed the form and growth rate of the optimally-excited perturbations on 
the axisymmetric vortex with piecewise-constant vorticity. On the other hand, the present study focuses on the optimal 
excitation of perturbations on the second model of Michalke & Timme, i.e. the cylindrical vortex sheet. 
 

REFORMULATION 

 

   Theoretical setup is carried out here based on the formulation by Rotunno [2]. A cylindrical vortex sheet accompanying 
the axial flow, whose radius and length are R and infinite, respectively, is considered. The axial flow inside and outside of 
the cylinder is assumed to have constant speed of W/2 but point opposite directions. In the tangential direction, the angular 
velocity outside of the cylinder is constant (= ) whereas it is zero inside. Assumptions of constant density and zero 
vorticity (except exactly at the cylindrical region where vorticity is infinite) enable the introduction of the velocity potential 
  to describe the velocity field due to symmetric or asymmetric perturbations on the cylindrical vortex sheet. Since the 
velocity potential is a solution of the Laplace’s equation expressed in cylindrical coordinates (r, , z), it can be solved as 
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       (1) 

under the boundary condition of  =0 at r=0 and  . Here, A1 and A2 denote the amplitudes, m and k the azimuthal and 
vertical wave numbers, respectively, and Im and Km the modified Bessel functions of the first and second kind, respectively. 
Meanwhile, l indicates the infinitesimal deformation of the cylindrical vortex sheet and is also assumed to take the 
sinusoidal structure, i.e. l=L(t)exp[i(mθ+kz)], where L indicates the magnitude of the deformation. It is natural to consider 
the tendency of the deformation equals the radial velocity across the cylindrical vortex sheet: i.e. (∂ /∂r)r=R+l=dl/dt, 
which gives the relation among A1, A2, and L. Finally, the time evolution of the perturbations is determined by Bernoulli’s 
theorem. Linearizing the theorem, equating either side of the pressure just across the cylinder, and substituting the equations 
derived above lead to the second-order ordinary differential equation on L as d2L/dt2+2idL/dt-BL=0 where 

.)2/()()()()()(,2/)()()( 22 kSkIkKkSmmkkKkIkkSkIkKkSmk mmmmmm    (2)  
Note that scaling of variables are carried out in (2) following the conversion of r/R→r, L/R→L, Rk→k, (R2/ )t→t, and (A1, 
A2)/→(A1, A2). Thus, all variables are dimensionless hereafter. Also note that S (=WR/ ) is a dimensionless number 
known as the “Swirl ratio”, which is the most important parameter controlling the configuration of tornado-like vortices [6]. 
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The formulation shown above is essentially same as that derived by Rotunno [2]. Here, as an alternative form of the 
governing equation, a set of the first-order simultaneous ordinary equations 
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is obtained by changing the dependent variable from L to X [=(A1, A2)t]. It is the fundamental equation for present analyses. 
 

SINGULAR-VALUE ANALYSES 

 
   The equation (3) can be solved as an initial value problem. Symbolically, the solution is written as X=MX0, where X0 is the 
initial value of X and M the resolvent matrix. The singular-value under the L2 norm,λL2, is the square root of the eigenvalue of 
M*M or MM* (the suffix * indicates the Hermitian conjugate), and the forward and backward singular-vectors, fF and fB, are the 
eigenvectors of the former and latter matrices. They are given as 
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where the plus and minus signs indicate the growing and decaying modes, respectively. 
   The singular-values and corresponding vectors under the energy norm are obtained as follows: First, the kinetic energy 
E of a slice of the cylindrical vortex sheet per unit length is given as 
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  (7) 

Here, if we set to E=(π/2)e*e, comparison between both sides of (7) reveals e=H1/2X. Since X=MX0, the resolvent matrix 
which relates e and its initial value e0 (=H1/2X0) as e=ME e0 turns out to be ME=H1/2MH-1/2. The singular-value under the 
energy norm,λE, is the square root of the eigenvalue of ME

*ME or MEME
*, and the corresponding forward and backward 

singular-vectors, gF and gB, are the eigenvectors of the former and latter matrices, respectively. After some calculations, actual 
form and components ofλE, gF and gB are proven to be those converting QI and QK appeared in (4), (5) and (6) into

IQ̂ and
KQ̂ as 
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CONCLUSIONS 

 
   Equation (4) suggests the growing singular mode is larger whereas the decaying counterpart is smaller than unity. This means 
the non-normal growth or decay of the perturbations on the cylindrical vortex sheet. Such a feature is seen even under the energy 
norm though the growth rate and the wavenumber dependency are quite different. It is possible that such non-normal growth or 
decay crucially determine the occurrence and the dominant wavenumber of the multiple-vortex structure of tornado-like vortices. 
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ANALYTICAL SOLUTIONS FOR WEAKLY COMPRESSIBLE VON KÁRMÁN VORTEX
STREETS

Vikas Krishnamurthy and Darren Crowdy
Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, UK

Summary Vortex streets are a common feature of fluid flows at high Reynolds numbers and their study is now well developed for incom-
pressible fluids. Much less is known, however, about compressible vortex streets. Recently Crowdy & Green presented analytical solutions
describing a class of steady incompressible von Kármán vortex streets with distributed vorticity. To construct these they adopted the hollow
vortex model where each vortex is modelled as a finite-area constant pressure region with non-zero circulation. For weakly compressible
flows steady hollow vortex solutions are well known to be candidates for the leading order solution in a perturbative Rayleigh-Jansen ex-
pansion of a compressible flow. Here we give details of that expansion based on the vortex street solutions of Crowdy & Green. Physical
properties of the compressible vortex streets are described. Our approach uses the Imai-Lamla method coupled with analytic function theory
and conformal mapping.

INCOMPRESSIBLE HOLLOW VORTEX EQUILIBRIA

The point vortex is arguably the simplest and most widely used model of a two-dimensional vortex in an incompressible
flow [1]. The basic idea is to model a vortex as a δ-function distribution of vorticity in which all vorticity is concentrated at
a point. While this model has proved to be very useful in applications, not least because of its mathematical simplicity, it is
nevertheless limited in scope. However, as soon as a vortex distribution is endowed with any spatial extent, the mathematical
description of it becomes much more challenging.

There are various ways to desingularize the point vortex and devise more realistic models with distributed vorticity. A
popular choice is to consider a vortex patch [1] where a centre of vorticity is approximated as a finite area region of uniform
vorticity. A lesser known possibility is to employ a hollow vortex [1] model where vorticity is assumed to be concentrated on
a closed vortex sheet enclosing a finite-area region at constant pressure. This paper focusses on the hollow vortex model.

In a classical work, Pocklington [4] studied the hollow vortex desingularization of the travelling point vortex pair. He
used Schwarz-Christoffel mappings in a hodograph plane together with the machinery of elliptic functions to write down an
analytical solution for the shapes of two hollow vortices, of equal size, translating steadily in a rectilinear motion. Recently,
Pocklington’s solutions have been rederived [8] using a novel approach based on use of the Schottky-Klein prime function
for the annulus [6] (rather than elliptic function theory). Another contribution to the theory of hollow vortices was made by
Baker, Saffman and Sheffield [5] who considered the hollow vortex desingularization of a single periodic point vortex row;
they constructed the solutions using free streamline theory, again in a hodograph plane, and they also presented some partial
stability results.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0
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U=0.4

 

 

Figure 1: Von Kármán streets of hollow vortices with different areas; the solutions can be described in explicit form by the
map (1) (see [3])
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A VON KÁRMÁN STREET OF HOLLOW VORTICES

A new addition to this catalogue of analytical solutions for hollow vortex equilibria has been given recently by Crowdy &
Green [3] who identified solutions for a von Kármán vortex street made up of hollow vortices. Such vortex streets are known
to occur in a variety of fluid dynamical situations such as in the wake of flow past bluff bodies and in atmospheric flows. If
the vortex configuration is modelled as a staggered array of hollow vortices travelling at a steady speed U it can be shown that
a conformal mapping from the annulus ρ < |ζ| < 1 in a parametric ζ-plane to the fluid region in a principal period window
exterior to two typical hollow vortex members (in a co-travelling frame of reference) is given by the explicit formula

z(ζ) =

∫ ζ

ζ0

{
BP 2(ζ ′γ1, ρ)P

2(ζ ′γ2, ρ)

P (ζ ′/α, ρ)P (ζ ′α, ρ)P (ζ ′/β, ρ)P (ζ ′β, ρ)

}
dζ ′, (1)

where the special function P (ζ, ρ) is defined by

P (ζ, ρ) ≡ (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1) (2)

while α, β, γ1 and γ2 are some parameters. To within a normalization, the function P (ζ, ρ) is the aforementioned Schottky-
Klein prime function for the annulus [6]. For appropriate choices of the parameters in (1), the formula encompasses both
unstaggered and staggered vortex streets. Those parameters are uniquely determined by specifying the translational speed of
the street configuration and the vortex size. Figure 1 shows a superposition of hollow vortex streets, with vortices of gradually
increasing area superposed, all travelling at the same speed U = 0.4.

COMPRESSIBLE VORTICES: THE IMAI-LAMLA METHOD

So far, we have discussed hollow vortices in the incompressible case. However this model turns out to be of particular
significance for the study of compressible vortices for which much fewer analytical results are available. The infinite pressures
associated with singular point vortices preclude an extension of those models to the compressible case, but hollow vortices are
ideally suited to compressible extension because they are essentially regularized point vortices (the infinite pressure is “cut
off” by the hollow vortex region) and, moreover, the model is such that one retains control over the pressure inside the vortex
(unlike, say, a vortex patch model where it is much more difficult to get information on the fluid pressure).

If the Mach number of the flow is assumed to be small everywhere then it is usual to perform a perturbation analysis
about the incompressible state; this analysis produces what are known as Rayleigh-Jansen expansions. One approach to such
a perturbation analysis is by an ingenious linearization of the governing nonlinear equations due to Chaplygin; Ardalan et al
[7] used such a method, for example. An alternative mathematical approach is via the Imai-Lamla method which exploits a
complex variable formulation of the compressible flow problem; it was used, for example, by Barsony-Nagy et al in studying
the compressible Föppl vortex pair [9]. The latter method is natural for us given that the analytical solutions of Crowdy &
Green [3] for the hollow vortex street are derived using free streamline and analytic function theory together with conformal
mapping ideas. Here it becomes of great advantage that the incompressible hollow vortex equilibria are known in closed form
(in particular, functional properties of the Schottky-Klein prime function (2) can be harnessed to facilitate the analysis).

CONCLUSION

We show how to carry out the weakly compressible Rayleigh-Jansen expansions of the von Kármán hollow vortex street
solutions in [3] by a novel approach combining the Imai-Lamla method with elements of analytic function theory and confor-
mal mapping. Properties of the compressible vortex streets are examined. Our work here complements the sister presentation
“Motion of a compressible vortex pair” by S. Llewellyn Smith and co-authors.
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REPRESENTATION OF REAL FLOWS WITH DYNAMICALLY EQUIVALENT
CONCENTRATED POINT VORTICES

Eric Limacher∗1, Chris Morton1, and David Wood1

1Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada

Summary Unsteady inviscid point vortex models predict vortex locations and circulations as functions of time. In order to adequately
predict forces on plates undergoing unsteady maneuvers, we assert that such models ought to predict the centroids of leading-edge (LE)
and trailing-edge (TE) vorticity distributions in real flows. For a surging, nominally two-dimensional plate, we have used particle image
velocimetry (PIV) to calculate LE and TE vorticity centroids and circulations at early dimensionless times. These measurements are used
as inputs to a force formulation for an existing point vortex model. The instantaneous forces calculated in this way exhibit the same trend
as the direct force measurements, but underpredict the magnitude. Further work will be completed to identify the source of the discrepancy,
such that existing unsteady point vortex convection models can be validated.

INTRODUCTION

Low-order point vortex models have been used with some success to predict the forces on plates or wings undergoing
unsteady motions, e.g. [1]. Typically, such models are validated against experimental results or high-fidelity simulations to
show some level of agreement in the force histories. In the present work, we seek to validate existing point vortex models in a
more comprehensive way. The force on a plate due to the shedding of leading- and trailing-edge vorticity is dependent on the
circulation of the shed vorticity distributions, as well as the velocities of all fluid elements possessing vorticity.

Consider a two-dimensional fluid domain extending to infinity within which the total circulation sums to zero. If viscous
skin friction on a submerged body is assumed to be negligible, the force, F, on that body is given by the following [2]:

F = −ρ d
dt

∫
A

x× ωdA+ ρ
d

dt

∮
Sb

x× (n̂× u)dS, (1)

where x is the position vector, u is velocity, n̂ is the body surface normal pointing into the body, Sb is the body surface, A
is the fluid volume outside the body, ρ is density and ω is plane-normal vorticity. To represent a vorticity distribution within
a subdomain Av with a single concentrated point vortex in a dynamically equivalent way, the impulse of that point vortex,
i.e. its contribution to the first integral in equation (1), must equal the impulse of the true vorticity distribution at all points in
time. This is achieved if the point vortex has equal circulation to the true vorticity distribution, Γv , and if its location lies at
the centroid of the vorticity distribution, xc, defined as follows:

xc =

∫
Av

xωdV

Γv
. (2)

Wang and Eldredge [1] provide an expression for the force on an infinitesimally thin plate by conformally mapping the domain
around the plate to a domain around a unit circle. With some manipulation, the force, F̃ , can be expressed in a plate-fixed
frame of reference in complex notation in terms of physical coordinates normalized by chord, c:

F̃ = Ft + iFn = −iρ d
dt

[
π

4
c2Ṽ −

∑
j

cΓj z̃j +
1

2

∑
j

cΓjg(z̃j)

]
h, (3)

where Ṽ is plate-normal velocity, Ft and Fn are the plate-aligned and plate-normal forces, respectively, h is the submerged
height of the plate, and z̃j = x̃j + iỹj are the chord-normalized locations of vorticity centroids in a plate-fixed frame of
reference (see figure 1b). The function g(z̃) is a real function of vortex position only. If one has knowledge of the leading-
and trailing-edge vorticity centroids and circulations over a time interval of interest, and the plate kinematics are known, we
hypothesize that equation (3) can be used to calculate the instantaneous force on the plate.

EXPERIMENTAL METHODS

In the present work, we seek to validate equation (3) experimentally. The chosen test case is a nominally two-dimensional
flat plate surging in otherwise quiescent fluid at a fixed angle of attack of α = 60◦. A preliminary experiment has been
conducted in the water tunnel at the University of Calgary. Particle image velocimetry (PIV) has been used to quantify the
flow-field behind the plate at the midspan. The centroids of leading- and trailing-edge vorticity, as well as the circulations of

∗Corresponding author. Email: ejlimach@ucalgary.ca

1564



(a) (b) (c)

0 0.5 1 1.5 2
0

0.5

1

t
*
 = tV

max
/c

 

 

a
*
 = ac/V

max

2

V
*
 = V/V

max

Figure 1: (a) Experimental apparatus. (b) Two-dimensional schematic of the measurement plane. Domains of integration for
the leading-edge (LE) and trailing-edge (TE) vorticity distributions are shown approximately. (c) Programmed normalized
acceleration and normalized velocity of surge motion over the time period investigated using PIV.
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Figure 2: (a) Trajectories of leading-edge (LE) and trailing-edge (TE) vorticity centroids in a plate-fixed frame of reference,
extracted from the PIV results. The markers at the end of the lines represent the calculated centroid locations in the final
time-step of data, for which contours of normalized span-wise vorticity, ω∗ = ωc/Vmax, are also plotted. (b) Plate-normal
force coefficient, Cn = Fn/(1/2ρchV

2
max), versus time from direct force measurement (minus the known inertial force due

to the mass of the apparatus) and calculated from experimentally obtained vorticity fields using equation (3).

these vorticity distributions, have been measured. Direct force measurements were also taken to compare to the calculated
force based on the vorticity field.

The experimental setup and two-dimensional schematic of the measurement plane are shown in figure 1a and 1b. The
plate was made of glass to minimize reflections at the plate surface. With a chord length of c = 50mm, and a maximum surge
velocity of Vmax = 0.2m/s, the Reynolds number is calculated to be Re = 9950. The plate thickness is 3mm, or 0.06c. PIV
data is available for a dimensionless time of t∗ = 2.2 from the start of the surge motion (see figure 1c).

PRELIMINARY RESULTS AND SUBSEQUENT WORK

Figure 2a shows that the leading- and trailing-edge vorticity centroids depart from the plate over time, consistent with
qualitative observations of the instantaneous vorticity fields. The associated plate-normal force calculated using equation
(3) displays a similar trend to the measured force, but underpredicts the magnitude (see figure 2b). This suggests that the
concentrated point vortex force formulation captures the relevant physics of the problem, but there may be fundamental
experimental limitations, e.g. influence of the free surface and solid boundary at the plate ends, plate flexibility, missing
vorticity data near plate edges due to optical access limitations, etc. The investigation and quantification of such sources of
experimental bias will be the focus of future experiments.

In future work, a validated formulation that allows a real flow-field to be dynamically represented by concentrated point
vortices will facilitate experimental validation of predictive point vortex models for canonical kinematic test cases. In par-
ticular, the vorticity centroid paths predicted by the Brown-Michael and impulse matching models [1] will be compared to
experimental results.
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CASCADE OF VORTEX KNOTS DETECTED BY HOMFLYPT POLYNOMIAL
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Summary Due to reconnection of neighboring strands superfluid vortex knots seem to undergo a cascade process that consistently reduces
topological complexity by stepwise unlinking. Here, by using the HOMFLYPT polynomial recently introduced for fluid knots (Liu & Ricca,
2015), we prove that this cascade process follows a complexity-reducing path detected by a unique, monotonically decreasing sequence of
HOMFLYPT numerical values. This result holds true for any sequence of T (2, 2n+ 1) torus knots and T (2, 2n) torus links. By this result
we demonstrate that the computation of this adapted HOMFLYPT polynomial provides a powerful tool to measure topological complexity
of any physical system, and it is useful to investigate relationships between topological complexity and kinetic energy.

HOMFLYPT POLYNOMIAL FOR VORTEX KNOTS

Tangles of vortex filaments forming an intricate networks of thin tubes are generic features of quantum turbulence in
superfluids and, under appropriate circumstances, characterize the decay of vortical flows in classical turbulence. These fila-
ments may form knots and links, that decay rapidly through reconnections to form various loops, till final dissipation. Kinetic
helicity is an appropriate measure of topological complexity, but it is known to suffer from some serious limitations. To over-
come these difficulties Liu & Ricca have derived various knot polynomials (Kauffman bracket, Alexander–Conway, Jones and
HOMFLYPT) for fluid knots as new invariants of ideal fluid mechanics. By applying knot theoretical techniques to vortex
flows the HOMFLYPT polynomial P = PK has been derived [1] from the kinetic helicity H of vortex knots.

Theorem (Liu & Ricca, 2015). Let K denote a physical knot. If the helicity of K is H = H(K), then

eH(K) = e

∮
K

u·dl
, (1)

appropriately re-scaled, satisfies (with a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial
P = PK .

Remark 1. If K is a vortex knot, then u is the self-induced velocity associated with its vorticity, aligned along the knot
centerline of elementary line element dl. To make sense of eH(K), H(K) must be normalized with respect to some reference
value of vortex circulation Γ.

Remark 2. The derivation of the result above relies on a statistical hypothesis, that assumes equally probable state decom-
position of the crossing sites in the minimal, 2D knot diagram. This is equivalent to the ergodic assumption that all possible
(virtual) reconfiguration states of the given knot or link are equally admissible.

CASCADE OF VORTEX KNOTS BY STEPWISE UNLINKING DETECTED BY HOMFLYPT

Vortex filaments in classical and quantum fluids may interact and recombine through reconnection of neighboring strands
[2]-[5]. While details of the process depend on specific local mechanisms that may differ from classical to quantum case,
certain qualitative features — such as the preservation of the original strand orientation after reconnection — are generic and
common to both systems. In the majority of cases orientation-preserving reconnections occur when neighboring strands tend
to align (at the time of closest approach) in an anti-parallel fashion before transversal merging and final separation. In general,
when two disjoint, closed tubes reconnect, the result is a single closed tube and when a single closed tube reconnects with
itself, the result is two closed tubes [6]. Reconnections determine a change of topology often accompanied by a change in
energy, and this mechanism may play a fundamental rôle in the energy transfer and dispersion in turbulent flows.

According to recent observations based on direct numerical simulations of decaying Bose-Einstein condensates [7]-[6]
vortex knots and links seem to undergo a generic cascade process through an alternate sequence of T (2, 2n + 1) torus knots
and T (2, 2n) torus links, as n (integer) decreases to 0. After every reconnection the knot/link gradually unties by removing a
single crossing at a time, by reducing consistently topological complexity. Remarkably, the sequence of topological transitions
seem to follow an identical topological decay pattern, irrespective of the physical context considered (consistent even with
recombinant DNA plasmid reactions [9]). Here we show that HOMFLYPT polynomial not only detects topological differences
between knots and links (as standard knot polynomials typically do), but it can be used to quantify topological differences
between the various stages of the cascade process by a unique, monotonically decreasing sequence of numerical values. This
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result, anticipated by the recursive application of the HOMFLYPT skein relations on the 2D knot diagrams [10], can be proven
analytically by direct application of the skein relations to a generic portion of torus knot/link diagram. Direct comparison of
the decreasing sequence of numerical values of topological complexity with kinetic energy data of corresponding vortex knots
[12] shows remarkable, intriguing similarities that will be explored in the near future.
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Summary Vortex method has been widely used for low-Reynolds-number flights as it reduces the computation domain from the entire flow
field to only finite vortical structures. An essential challenge of the vortex method lies in the prediction of the vortex sheets separated from
the solid body. To tackle this problem, this study extends the classical Kutta condition to unsteady situations based on the physical sense
that flow cannot turn around a sharp edge. This unsteady Kutta condition can be readily applied to an airfoil with cusped trailing edge,
where the forming vortex sheet is known to be tangential to the trailing edge. For a finite-angle trailing edge, previous studies indicate that
the direction of the forming vortex sheet is ambiguous. Therefore, this study proposes a novel analytical formulation to determine the angle
of the trailing-edge vortex sheet based on momentum conservation in the direction normal to the forming vortex sheet.

INTRODUCTION

Natural flies are observed to be superior than man-made aerial vehicles in terms of aerodynamic performance, especially
the high lift-generation mechanisms. Early experimental investigations suggested that the existence of an attached leading
edge vortex (LEV) contributes to enhanced lift generation for flapping wings [2]. To understand the fundamental mechanism
of the LEV, recent analytical studies have been extensively focused on using vortex method (diagram shown in Fig. 1) to
solve the unsteady aerodynamics of a flat plate wing by means of tracking the wake vortices that are shed from the wing [7].

Figure 1: Diagram showing the unsteady aerodynamic model
for a two-dimensional airfoil. The green contour line repre-
sents the bound vortex sheet surrounding the airfoil. The red
and blue structures are the leading and trailing edge vortices,
respectively.

The fundamental question associated with vortex methods
is how to decide the rate at which vorticity is being created
at the leading or trailing edge. In reality, the generation of
vorticity is caused by the interaction between fluid and solid
boundary that forms the shear layer, which is essentially a
viscous process. Since viscosity is ignored in the Euler equa-
tion, a typical solution to that is applying vorticity releasing
conditions at the vortex shedding locations of the solid body,
e.g. the steady-state Kutta condition at a sharp trailing edge,
which requires a finite velocity at the trailing edge [5, 3].
For a Joukowski airfoil or a flat plate, the steady-state Kutta
condition is realized by setting the trailing edge to be a stag-
nation point in the mapped cylinder plane. The effect of this
implementation is that the flow from both sides of the trail-
ing edge will be tangential to the edge, which guarantees the
streamline emanating from this edge point to be inline with the plate, fulfilling the condition proposed in previous studies
[1, 4]. In this study, the objective is to extend the steady-state Kutta condition to unsteady situations for cusped and finite-
angle trailing edges.

UNSTEADY KUTTA CONDITION

The application of the steady-state Kutta condition for a flat plate or a Joukowski airfoil (with cusped trailing edge)
has already been discussed in our previous work [7]. Basically, this condition is equivalent to enforcing a stagnation point
at the trailing edge in the mapped cylinder plane. However, Xia & Mohseni [8] later pointed out that a stagnation point
generally does not exist at the trailing edge of an unsteady flat plate that has rotary motion. To address this difficulty, they
further proposed a modified Kutta condition which relaxes the trailing edge point from totally stagnant to only stagnant in the
tangential direction of the surface in the cylinder plane. They have shown that this modified Kutta condition is consistent with
the physical meaning of the classical Kutta condition that flow around the sharp edge should be prevented in a reference frame
that is fixed to the flat plate. This condition can be generalized in the physical plane (the plane of the flat plate or airfoil) as

ug · n = 0, (1)

where ug denotes the de-singularized flow velocity at the trailing edge, and n represents the vector perpendicular to the
trailing-edge tangential vector (n · t = 0) as shown in Fig. 2.
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Figure 2: The formation of vortex sheet for a cusped trailing edge (left) and a finite-angle trailing edge (right).

The unsteady Kutta condition (Eq. 1) have been shown to yield promising results in estimating vortex-sheet formation
at cusped trailing edges, yet, it was only validated for the situation where a flat plate or a Joukowski airfoil can be mapped
to a circle. For a general airfoil, solving Eq. 1 might be challenging because of possible finite-angle trailing edge. As
shown in Fig. 2, the two bound vortex sheets at a finite-angle trailing edge are at a certain angle to each other, which
is different from the case of a flat plate or a cupsed airfoil where the two bound vortex sheets share the same tangent.

Figure 3: Comparison between flow visualization and
simulation. The NACA 0012 airfoil is towed from right
to left with St = 0.45 and αmax = 30◦. The flow
visualization image is adapted from Schouveiler et al.
[6].

This inconsistency of the flow direction at the trailing edge creates an
ambiguity in deciding the angle of the streamline emanating from the
trailing edge, especially for unsteady cases. In this study, we propose
that the angle of the trailing-edge vortex sheet should be decided in a
momentum conservation sense. As a result, the angle of the forming
vortex sheet can be decided by

γ2 sin ∆θ2 + γ1 sin ∆θ1 = 0 with ∆θ1 · ∆θ2 ≥ 0, (2)

and
∆θ1 + ∆θ2 = ∆θ0, (3)

where ∆θ0 is the finite angle of the trailing edge. The unsteady Kutta
condition for an airfoil is validated through the simulation of a NACA
0012 airfoil with a combined pitching and heaving motion, the experi-
ment of which was conducted by Schouveiler et al. [6]. The chord length,
c, and the towing speed, U , are 0.1 m and 0.4 m/s, respectively. This cor-
responds to a Reynolds number of 4 × 104. The phase difference angle,
ψ, between the pitching and heaving motions is set to 90◦ in all circum-
stances. Fig. 3 shows the comparison of the flow structures between this
simulation and the flow visualization image of the original experiment
for a sample case with St = 0.45 and αmax = 30◦. The good matching
of the wake patterns provides qualitative support for the unsteady Kutta condition for a finite-angle trailing edge.

CONCLUSIONS

The unsteady Kutta condition is extended from the classical Kutta condition to study the vortex sheet formation at a sharp
edge. Applying the unsteady Kutta condition to an airfoil with finite-angle trailing edge is not straightforward, as the angle
of the forming vortex sheet is ambiguous. This study proposes to determine this angle based on the momentum conservation
in the direction normal to the forming vortex sheet. The good agreement between simulation and experiment confirms the
validity of the proposed unsteady Kutta condition.
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Summary Local �ow topology speci�ed by the velocity gradient tensor and features of corresponding physical properties
are investigated in transition into a vortical �ow. The swirlity that indicates the uniformity and intensity of azimuthal �ow
follows the transition process, and it shows that this property in the transition depends on two real eigenvalues of the tensor
with the same sign, not on vorticity. Sourcity shows that the uniformity of the radial �ow depends on both these eigenvalues
and vorticity (shear) in the plane that becomes the swirl plane.

INTRODUCTION

The eigenvalues of the velocity gradient tensor rv have contributed greatly to categorize the local �ow geometry
(topology or pattern) in turbulences that is Galilei invariant. They also derived the �-de�nition of a vortex [1]
that speci�es the swirling motion, and vortex de�nitions focused on the pressure minimum feature in terms of the
�ow kinematics, i.e., the Q- and �2- and their integrated de�nitions [2], are associated with rv and its eigenvalues.
Recently the physical interpretation of the complex eigenvalues of rv has been clari�ed, and it has derived other
invariant properties to specify the detail �ow geometry, e.g. swirlity, sourcity, and property of �ow symmetry [3].
The swirlity represents the uniformity and intensity of azimuthal �ow, and can be applied to the prediction of
generation of a vortex [4]. The sourcity speci�es the above characteristics of the radial �ow. These properties
specify not only the detail �ow geometry of a vortex, but also that before the generation of a vortex. The present
study investigates features of the �ow geometry before the generation of a vortex, and characteristics of the swirlity
and sourcity.

REPRESENTATION OF VELOCITY GRADIENT TENSOR

The local �ow geometry around a point xi (i = 1; 2; 3) in the velocity �eld vi (i = 1; 2; 3) can be expressed by rv,
i.e., dxi=dt = (@vi=@xj)xj , where the summation convention is applied. In this local �ow, the radial and azimuthal
velocities in the x1-x2 plane, vr and v�, are extracted as vr = tx̂Qrx̂= jx̂j and v� = tx̂Q�x̂= jx̂j, respectively, where
x̂ = (x1; x2) and jx̂j =

p
xixi (i = 1; 2), and Qr and Q� denote the respective matrix of the quadratic forms. Qr

and Q� are expressed as follows:

Qr=

�
a11 (a12 + a21)=2

(a12 + a21)=2 a22

�
; Q�=

�
a21 �(a11 � a22)=2

�(a11 � a22)=2 �a12

�
: (1)

The eigenvalues of these matrices specify the feature of vr and v�.
Here we derive a representation of rv that has three real eigenvalues �i (i = 1; 2; 3). We assume that �1 and �2

have the same sign, and set an orthonormal coordinate system xi with unit bases ei (i = 1; 2; 3) where the x1-x2
plane, referred to as P hereafter, is the eigenplane associated with �1 and �2, and e1 are parallel to the eigenvector
of �1. Then A = rv (= [aij ] = [@vi=@xj ] (i; j = 1; 2; 3)) can be expressed as:

A =

24 �1 �!3 !2
0 �2 �!1
0 0 �3

35 ; (2)

where !i (i = 1; 2; 3) denote components of the vorticity vector, and a12, a13, and a23 are expressed in terms of !i.
When rv with �i becomes to have a pair of conjugate complex eigenvalues, �1 and �2 change to them, and then

P becomes the swirl plane de�ned by the complex eigenvector of them [4]. Equation (2) is a general representation
of rv with three real eigenvalues, which is expressed as an upper triangular matrix. It shows that the vorticity
component normal to P or shear in P is expressed by only one component of rv.

SWIRLITY AND SOURCITY, AND LOCAL TOPOLOGY IN A VORTEX TRANSITION

From Eq. (2), the eigenvalues ��i (i = 1; 2;��1 < ��2) of Q� are expressed as ��i = !3=2�
p
!23 + 4�

2=2 where
� = (�1 � �2)=2. We note that ��1 and ��2 have the di¤erent sign and the azimuthal �ow has both clockwise and
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Fig. 1: Transition of �ow geometry in P and decomposed �ow of v� (and vr in (c)) with contours of tx̂Q�x̂ (and
tx̂Qrx̂) in transition into a vortex. Through (a) and (b), vortical �ow is generated in (c). (a) � = �2, (b) � = �1=2,
and (c) � =

p
3=2 and � = �3=4. (Note that the vector lengths are adjusted in respective �gures.)

counterclockwise directions in P , as shown in Fig. 1. The swirlity � is given by � = sgn(��1��2)
p
j��1��2 j, thus

� = �j�j < 0: (3)

This feature is of great interest. The swirlity, that speci�es the geometrical characteristic of azimuthal (swirling)
�ow, depends on not the vorticity component !3 but the eigenvalues associated rather with the radial �ow. Figure 1
shows the transition of the �ow geometry into a vortex followed by �.
On the other hand, the eigenvalues �ri (i = 1; 2;�r1 < �r2) of Qr are expressed as �ri = (�1 + �2)=2 �p
!23 + 4�

2=2. The sourcity � is de�ned as � = sgn(�r1�r2)
p
j�r1�r2 j, then � in P becomes

� = �1�2 �
!23
4
: (4)

Equation (4) shows that � is positive while !23=4 < �1�2, then the radial �ow is in�ow in all directions in P ,
if �1; �2 < 0. If !23=4 exceeds �1�2, then the radial �ow has both in�ow and out�ow (such as Fig. 1 (c)). The
symmetry or uniformity of the radial �ow depends on both intensities of �1�2 and !3. If !3 is small (and �1; �2 < 0),
the generated vortex may be weak. However, as � is positive, this vortex exhibits e¤ective vortex stretching that
have compression (in�ow) from all directions in P and increases vorticity.

CONCLUSION

The general representation of the velocity gradient tensor and the local �ow topology in the transition into a
vortex were shown. The swirlity and the generation of a vortex depend on the two eigenvalues of the tensor with
the same sign, not on the vorticity. The sourcity shows that the uniformity or symmetry of the radial �ow depends
on the two eigenvalues and the vorticity normal to the plane (shear in the plane) that becomes the swirl plane.
Acknowledgements. This study was supported by the 31st grant from The Nitto Foundation.
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Summary We present inviscid and viscous simulations of the trajectory of a counterrotating pair of point vortices in the presence of a flat
plate centered on the vortex path, at an angle βp with the horizontal. We vary the plate length and the angle βp. In the inviscid case, the
observed dynamics are extremely rich. In particular, singularities are observed that correspond to topological discontinuities in the vortex
path as a function of βp. In the viscous case, wall vorticity alters the vortex trajectory dramatically. Most notably, the inviscid limit of the
viscous flow does not equal the inviscid solution. We are currently planning outdoor experiments to study the effect of possible wall slip on
the flow.

PROBLEM DESCRIPTION

This paper presents a study of a rather simple dynamical system, namely, the trajectory of a pair of counterrotating point
vortices in the presence of a plate positioned in its path. The flow considered is illustrated in figure 1(a). Two counter-rotating
point vortices with circulation ±Γ are initially positioned at distance D from each other on a horizontal plane. In the absence
of a plate, the vortices travel with constant velocity downward, in direction normal to the horizontal. We consider the deflection
of the vortex trajectory by a plate of length L, centered on the path of the dipole sufficiently far downstream from the initial
vortex position, and at an angle βp from the horizontal. We vary 0 ≤ βp ≤ π/2 and the ratio of plate to dipole lengths, L/D.
The results presented are nondimensionalized with respect to the vortex circulation Γ and the distance D.

INVISCID FLOW

In the inviscid case, the observed dynamics are extremely rich. For all values of L/D and βp, the vortices surround the
plate and leave at a deflected angle βv on the opposite side of the plate. Figure 1(b) shows a sample trajectory for βp = 35o

and D/L = π/4. In some regimes, small changes in the angle βp lead to large changes in the outgoing angle βv . The
dynamics become more complex for smaller values of D/L, that is, for larger plate lengths L relative to D. Figure 2 plots
the trajectories for a decreasing set of values of D/L, as indicated. For smaller D/L, the right vortex is seen to approach the
plate more closely, and behaves more closely as if the second vortex were absent. It tends to rotate around the plate, until
it eventually returns to pair up with the left vortex and leave the plate. However, it is evident from the figure that between
D/L = 0.5π/4 and 0.45π/4 a topological discontinuity has occured in the path of the right vortex: with D/L = 0.5π/4 the
vortex leaves above the plate. With D/L = 0.45π/4 it leaves below the plate. We show that these bifurcations correspond
in singularities in βv as a function of βp. As D/L decreases further to 0.25π/4, another singularity occurs so that the vortex
again leaves the plate from above. Furthermore, the number of singular values of βp increases as D/L decreases.
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Figure 1: (a) (left) Initial configuration. (b) (right) sample trajectory and definitions.
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Figure 2: Vortex trajectories for decreasing values of D/L = 1.0π/4, 0.5π/4, 0.45π/4, 0.25π/4, as indicated.

VISCOUS FLOW

In the viscous case, we show that even in the simplest case of βp = π/2 (vertical plate) the no-slip boundary condition
creates a significant amount of opposite signed wall vorticity that merges with the vortices and alters the vortex trajectory
dramatically. The amount of wall vorticity depends only on the dipole induced velocity at the wall, and not on fluid viscosity.
Therefore, the change in trajectory does not vanish in the inviscid limit. The inviscid limit of the viscous Navier-Stokes flow
therefore interestingly does not equal the inviscid Euler flow.

CONCLUSIONS

We have studied a simple point vortex system using inviscid and viscous simulations. In the inviscid case, this simple
dynamical system has extremely rich structure. In the viscous case, the no-slip fluid velocity at the wall creates wall vorticity
that effects the flow significantly, in a manner independent of fluid viscosity. We are planning to complement these simulations
with outdoor experiments to study the effect of different surfaces with more or less slip at the wall on the vortex trajectory.
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Summary Few steady (weak) solutions of the 2D Euler equations involving vortex sheets are known. In this paper a distribution of vorticity
is described analytically, consisting of one point vortex and one vortex sheet, that is an equilibrium in a uniformly translating frame. It can
be considered a partial nonlocal desingularization of the +/- point vortex dipole. The vortex sheet is found as the limiting distribution of
zeroes of a normalized modified Bessel function of the second kind, and can be described as the image under a conformal mapping of one
half of the unit circle. The method used to find the solution, a two-step application of the “method of polynomials,” may be more widely
applicable.

Exact vortex sheet equilibria and vortex dipoles
Singular distributions of vorticity are commonly used as simplifications of the full 2D Euler equations; zero- and one-

dimensional distributions are point vortices and vortex sheets, respectively. Many point vortex equilibria are known, including
completely stationary configurations (“vortex crystals”), uniformly translating configurations, and relative (steadily rotating)
equilibria. Many examples of the first two types have been found by the method of polynomials, where the vortex positions
are represented as roots of polynomials that consequently satisfy differential equations [1]. This gives an analytic description
of the complex potential of the flow. The well-known Adler-Moser and modified Adler-Moser polynomials are encountered in
this context. However, only a few stationary configurations involving vortex sheets have been found analytically (other than the
trivial parallel lines and concentric circles.) These include the straight line segment obtained as the limit of elliptical Kirchhoff
vortices (a relative equilibrium) and the Prantdl-Munk vortex sheet [2] associated with elliptical lift distribution on a finite
wing (a uniformly translating configuration.) Stationary vortex sheets in the presence of a flow due to fixed point vortices
can be found exactly in some circumstances [3]. On the other hand, many stationary states have been found numerically,
approximated by point vortex arrays, on the sphere as well as the plane [4,5]. These vorticity distributions can consist of only
vortex sheets, or a hybrid of vortex sheets and point vortices. Some hybrid configurations shrink while rotating, resulting in
rapid concentration of the one-dimensional vorticity [6].

In this paper a uniformly translating state consisting of one vortex sheet and one point vortex is described analytically.
This vortex sheet/ point vortex configuration can be thought of as a partial desingularization of the simple +1/ − 1 point
vortex dipole that is nonlocal in the sense that the sheet extends over quite a long distance relative to its separation from the
point vortex. Alternatively, in the presence of a uniform external flow the vorticity distribution will be stationary and the fluid
velocity field can be interpreted as a separated flow past a one-dimensional barrier with a point vortex entrained in the flow.

The method of polynomials is used in two ways in the derivation of this flow. The vortex sheet appears as the limit of
point vortex distributions related to Bessel polynomials. First, the (reverse) Bessel polynomials satisfy a differential equation
related to uniformly translating point vortex configurations. Second, in the limit as the degree of the polynomials goes to
infinity, the properties of this differential equation have been used to find the limiting positions and distribution of the roots of
the polynomials. As a result the vortex sheet is described by a conformal mapping of the unit circle. It seems quite likely that
generalizations of this process will yield other stationary vortex-sheet configurations.

Reverse Bessel polynomials
The Bessel polynomials

yn(z) =
n∑
k=0

(n+ k)!

(n− k)!k!2k
zk, n = 0, 1, 2, . . .

are a well-known sequence of orthogonal polynomials related to the Bessel functions [7]. The zeroes of yn are simple and
have negative real part. The reverse Bessel polynomial θn(z) = zn yn(1/z) satisfies the second-order differential equation
zθ′′n − 2(z + n)θ′n + 2nθn = 0. The zeroes of θn(z) are the reciprocals of the zeroes of yn, and coincide with the zeroes
of the modified Bessel function of the second kind, Kn+1/2(z) [7]. Let fn(z) = θn(nz) be the normalized reverse Bessel
polynomial, so that fn satisfies the equation (z/n)f ′′n − 2(z + 1)f ′n + 2nfn = 0. Consequently the rational function

1

n

f ′′n
2fn
− (1 + 1/z)

f ′n
fn

+
n

z
,

which has simple poles at the zeroes a1, . . . , an of fn, is identically zero and every residue vanishes. Using the identities

f ′n(z)

fn(z)
=

∑
j

1

z − aj
,

f ′′n (aj)

2f ′n(aj)
=

∑
k 6=j

1

aj − ak
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to calculate the residue at z = aj then yields the relation∑
k 6=j

1/n

aj − ak
− (1 + 1/aj) = 0.

Summing these relations over all j yields the additional relation 0 = n +
∑

1/aj . Taken together, these relations show that
a configuration of point vortices consisting of one vortex of strength 1/n at each of the n points z = aj together with one
vortex of strength −1 at z = 0 will be at rest when in the presence of a constant external flow field. Without the external flow,
the entire configuration moves uniformly in the fluid plane with a constant velocity i/2π.

Shape and density of the vortex sheet
The zeroes of fn are the reciprocals of the zeroes of the normalized Bessel polynomial yn(z/n). In the limit n → ∞ the

zeroes of yn(z/n) are known to lie on a certain arc in the complex plane with a known limiting density [8, Theorem 7.1].
In terms of the the uniformly translating point vortex configurations mentioned above, the limit of the collection of n point
vortices of strength 1/n is a vortex sheet Γ of total strength 1. The location and shape of the sheet and the corresponding
linear vorticity density µ of the sheet can be derived from the information in [8], as follows. Let α(z) =

√
1 + z2 (principal

branch) and g(z) = z eα/(1 + α). Then:

Γ = {g−1(−eit), −π/2 ≤ t ≤ π/2}, µ(z) = (1/π) |1 + z−2|1/2.

This curve extends from −i to i to the left of the axis Re(z) = 0, passing through the real axis at z ≈ −0.663. The sheet very
nearly coincides with a circular arc. Indeed, the distance between any point on Γ and the nearest point on the circle with radius
1.086 and center 0.423 (that is, the circle that touches Γ at the center and two endpoints) is no greater than 0.024. (See also
Figures 2,3 of [2] showing the reciprocal of Γ.) It is also significant that the vorticity density µ is bounded and goes to zero
at the ends of the sheet, in contrast to the Prandtl-Munk vortex sheet [2]. The contribution of the vortex sheet to the velocity
field of the fluid is computed using the Cauchy transform of µ [9] since, as n→∞,

1

n

f ′n(z)

fn(z)
→

∫
Γ

µ(w)

z − w
|dw|.

The magnitude of the discontinuity in the fluid velocity on either side of the sheet is proportional to µ, and the average of these
velocities is the velocity of the sheet at that point. In this case every point of the sheet has the same velocity, so that when
a uniform external flow is added to make the sheet motionless the fluid velocity on the two sides of the sheet are equal and
opposite, with magnitude proportional to µ. Vanishing of µ at the ends of Γ means that the flow has stagnation points at the
ends, i.e. satisfies a Kutta condition at both ends. If the vortex sheet is replaced by a barrier (a nearly circular arc extending
from i to −i to the left of the origin) the flow can be visualized as separated flow around the barrier with an entrained point
vortex at the origin.
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Summary Numerical simulation of the wake of a realistic model of an airliner have been conducted using a hybrid RANS–LES approach.
Dynamics of the trailing vortices is analyzed and a simple analytical model is proposed that accounts for the turbulence in the wake.

INTRODUCTION

Modeling of aircraft wakes is an important component of many research areas in the aviation sector, including the pre-
diction of wake encounter hazard and the environmental impact of aviation. The latter has caught the attention of scientific
community because of its contribution to the general problem of climate change produced by anthropogenic activity [1]. Con-
trails, the ice crystals forming behind jet engines by condensation of water vapor onto exhaust soot particles are the most
uncertain contributors to the Earth radiative balance among all aircraft emissions. A good estimation of the radiative pertur-
bation depends partly on the accurate description of the long-time development of contrails, which is related to the dynamics
of trailing vortices past the wing tips [2]. Various hydrodynamic effects are involved in the process, such as generation of a
vortex sheet from the boundary layers, its subsequent roll-up in a pair of vortices, interaction with the jets and hydrodynamic
instabilities. In addition, chemical and micro-physics phenomena have to be considered such as formation and dispersion of
soot particles, ice crystal growth, evolution of their optical properties etc. In this work, we focus on the dynamics of the near
wake within the distance of about three wing spans downstream.

AIRLINER MODEL AND NUMERICAL METHOD

We consider a medium range twin-engine airliner and model its cruise flight at the altitude of 35000 feet, Mach number
M = 0.82 and lift coefficient cL = 0.5. The with wing span is b = 57.6 m, bilateral symmetry is assumed. Reynolds–
Averaged Navier–Stokes (RANS) and Large Eddy Simulations (LES) computations are performed in sequence. Averaged
quantities obtained form the RANS simulation are projected (using spline interpolation) on a uniform Cartesian grid at a
cross-section downstream from the trailing edge (figure 1a). The location chosen corresponds to the inflow boundary of the
LES domain. More information about our RANS–LES hybrid approach can be found in [3].

The LES simulations are performed using NTMIX [5], a research code developed for fundamental study of turbulent
reactive two-phase flows. The LES domain is a rectangular box located downstream from the wing. It spans Ly = 180 m
in the vertical direction, Lz = 90 m in the lateral direction and Lx = 192 m in the downstream direction. A Cartesian
discretization grid is used that consists of Nx×Ny ×Nz = 1280× 620× 852 points. It is stretched in the vertical and lateral
directions, but the volume that encompasses the wake is discretized uniformly with grid step 0.036 m. In the downstream
direction, the grid is uniform with step 0.15 m. The inflow boundary condition is supplied by a RANS computation (see
figure 1b). Conservative variables are sampled on a plane past the wing tip and extended inside the fuselage.

DISCUSSION

Figure 2 shows a visualization of the wake. The surface of the aircraft is shown in grey, for reference. The two distinctive
features clearly visible in this image are trailing vortices and turbulent jets. For the vortices, based on the results of our
numerical simulation, we propose a generalized Moore–Saffman model adapted to the turbulent regime. It yields a similarity
solution for the tangential velocity in a plane perpendicular to the inflow direction, in the laboratory reference frame,

vθ(r, τ) = Cθ
(
ν−1τα−1

) 1
4 V (−1

4
r2ν−1τα−1), (1)

where r is the distance to the vortex core, τ is the time variable, Cθ, ν and α are the parameters of the model. The self-similar
profile is expressed in terms of the Kummer confluent hypergeometric function M as

V (η) = (−η) 1
2M

(
1

2
+

b

α− 1
, 2; (1− α)η

)
. (2)
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Figure 1: (a) Side and top views of the airliner. (b) Flow parameters at the RANS-LES interface.

The original Moore–Saffman model [6] for laminar vortices is recovered if α = 0 and if ν is the kinematic viscosity of the
fluid. In our turbulent case, however, the numerical simulation suggests that α = 0.707 and ν = 0.00101 m2/s0.293. Similarity
solutions for the pressure deficit and for the axial velocity have also been obtained.
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Summary A set of equal, coaxial, symmetrically-arranged helical vortices translate and rotate steadily while the vortices preserve their
shape and relative position in an unbounded, ideal fluid (Joukowsky 1912). We obtained the corresponding linear and angular velocities (U
and Ω, respectively) as the sum of the mutually induced velocities found by Okulov (2004) and the self-induced velocities found by Velasco
Fuentes (2016). Numerical computation of the velocities with the Biot-Savart law, and numerical simulation of the vortex motion with a 3D
vortex-in-cell method verified that our theoretical results are accurate for any number of vortices and over the whole range of values of the
vortices’ pitch and radius. An analysis of the flow topology in a reference system that translates with velocity U and rotates with angular
velocity Ω served to determine the capacity of the vortices to carry fluid.

VORTEX MOTION

We study the motion of a system of N equal helical vortices in an unbounded, inviscid, incompressible fluid. Each vortex
is an infinite tube whose centerline is a helix of pitch L and whose cross-section is a circle of radius a, where the vorticity is
uniform and parallel to the centerline. The vortices’ centerlines intersect any polar plane on the vertices of a regular polygon
of N sides inscribed in a circle of radius R. Since the vortices’ circulations are assumed to be equal (Γ), the flow evolution is
determined by three non-dimensional parameters only: the number of vortices N , the vortex radius α = a/R and the vortex
pitch τ = L/2πR. Joukowsky (1912) deduced that this system translates and rotates steadily while the vortices preserve their
form and relative position: he found the approximate velocity of a single vortex of large pitch but made no attempt to compute
the motion of two or more vortices.

We determine the motion of the vortices by adding the self-induced velocity, defined as the velocity of the ith vortex in an
otherwise quiescent fluid, to the mutually induced velocity, defined as the velocity induced by the remaining N − 1 vortices
on the ith vortex. Therefore the set of vortices has linear velocity U = US + UM and angular velocity Ω = ΩS + ΩM . To
obtain US and ΩS Velasco Fuentes (2016) assumed that the vortices have, to a first approximation, circular cross section and
uniform vorticity, and evaluated the cylindrical components of the velocity field at two diametrically-opposed points on the
vortex boundary using Boersma & Wood’s (1999) approximation to Hardin’s (1982) velocity field. The self-induced velocities
(made dimensionless by dividing them by Γ/4πR and Γ/4πR2, respectively) are given as follows:

U∗
S =

1

(1 + τ2)3/2

(
ln(2/ε) − ln(

√
1 + τ2) + (1 + τ2)3/2W (τ)

)
Ω∗

S =
−τ

(1 + τ2)3/2

(
ln(2/ε) − ln(

√
1 + τ2) + (1 + τ2)3/2(W (τ) − 2/τ) + 2(1 + τ2)

)
where ε = a/R(1 + τ2) and W (τ) is an integral that cannot be evaluated in closed form (Boersma & Wood 1999). These
formulas are more accurate, over the whole range of values of the vortex’ pitch and radius, than any of those published in one
hundred years of research on the subject.
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Figure 1: Linear and angular velocities (U and Ω, respectively) of a set of helical vortices as functions of the number of
vortices (N ) and the vortex pitch (τ ), for a given vortex radius (α = 0.1).
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Okulov (2004) obtained UM and ΩM by a complicated but efficient evaluation procedure of the Kapteyn series appearing
in Hardin’s (1982) velocity field.

Thus, by adding the self- and mutually-induced velocities, we find that the set of helical vortices move with a linear
velocity U that grows with the number of vortices (N ) but decreases as their radius (α) and pitch (τ ) increase, whereas the
angular velocity Ω grows with N and α but has a minimum around τ = 1 for fixed values of N and α. Figure 1 shows a
comparison of the theoretical results with two numerical calculations: (a) the velocity evaluated at a single point using the
Rosenhead-Moore approximation to the Biot-Savart integral and (b) the velocities obtained with a three-dimensional, vortex-
in-cell model by computing the linear and angular displacements of fluid particles located within the vortex, dividing those
displacements by the elapsed time and taking the average over all the particles used in the simulation.

FLOW TOPOLOGY

We determined the capacity of the vortices to carry fluid by analysing the topology of the helical stream function in a
reference frame where the vortices are stationary; that is to say, in a frame that translates with linear velocity U and rotates
with angular velocity Ω. The steady stream function Ψ is given as follows

Ψ(r, φ) =
1

2

(
Ω − U

l

)
r2 +

N∑
i=1

ψi(r, φ)

where l = L/2π, (r, φ) are helical coordinates related to the cylindrical coordinates by (r, φ) = (r, θ − z/l), and ψi is the
stream function of the flow induced by the ith vortex (Hardin, 1982).

We found that for all N there are three qualitatively different flow geometries depending on the vortices radius and pitch
(see figure 2, which shows the case N = 3): (I) large-pitch vortices move slowly but carry a large volume of fluid, (II)
thin small-pitch vortices move fast and carry a small volume of fluid, (III) thick small-pitch vortices move at intermediate
velocities, carry a moderate volume of fluid but push fluid forward along the helices’ axis. Two vortices of intermediate pitch
(N = 2, 1 < τ < 4) exhibit a fourth regime which is similar to regime I except for the flow relatively far from the vortices.
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Figure 2: Left panel: The flow regimes for three helical vortices in the parameter plane (τ, α): (I) large-pitch helices, (II) thin
small-pitch helices, and (III) thick small-pitch helices. Upper row: the helical stream function Ψ on the polar plane (r, θ) for
representative cases of each regime (I to III from left to right). Lower row: the corresponding stream function on meridional
planes (r, z)
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Summary Quasi-2D deterministic and non-local stochastic evolution equations are derived for water waves up to quadratic nonlinearity.
The models include nonlinear shoaling and wave breaking effects. The work identifies that the stochastic model should be localized in
two different manners in order to account for two nonlinear resoant mechanisms related to intermediate and shallow water regimes. The
locallization process allows a 2D nonlinear triad source term (S3nl) fitting for implementation in wave forecasting models to be formulated
by locally using a quasi-2D approach. The derived formulation presents good agreements with deterministic ensembles, field measurements
and laboratory experiments.

Nonlinear interactions between sea waves and the sea bottom are a main mechanism for energy transfer between the dif-
ferent wave frequencies in the near-shore region. Nevertheless, it is difficult to implement this phenomenon in stochastic wave
forecasting models due to its mathematical complexity, which mostly consists of computing either the bi-spectral evolution or
non-local shoaling coefficients. Such an implementation is of great importance as it will allow extending the wave forecast to
the nearshore region.

In this work, quasi-2D stochastic energy evolution equations are derived for dispersive water waves up to quadratic nonlin-
earity based on the deterministic model of [1]. The bi-spectral evolution equations are formulated using the stochastic closure
of [2]. They are solved analytically and substituted into the energy evolution equations to construct a stochastic model with
non-local shoaling coefficients.

The nonlinear shoaling mechanism is investigated and shown to present two different behavior types. The first consists of a
rapidly oscillating behavior transferring energy back-and-forth between wave harmonics in deep water. Due to the contribution
of bottom components for closing the class III Bragg resonance conditions, this behavior includes mean energy transfer when
waves reach intermediate water depths. The second behavior relates to 1D shoaling effects in shallow water depths. In contrast
to the behavior in intermediate water depths, it is shown that the nonlinear shoaling coefficients refrain from their oscillatory
nature while presenting an exponential energy transfer. It is explained through the 1D satisfaction of the resonance conditions
by wave triads even without depth changes due to the non-dispersive propagation in this region. The energy evolution model
is localized using a matching approach to account for both behavior types.

A common assumption in formulating bi-spectral evolution equations is of slow changes of the wave spectrum. This
assumption causes very large discrepancies when the shoaling becomes significant or when breaking occurs. The present
work avoids this assumption by utilizing a perturbation approach. It shows that the stochastic closure of [2] does hold in the
above situation when and does not require the incorporation of additional nonlinear coefficients (i.e., to be extended to the
closure of [3]). The solution of the full 2D nonlinear interaction problem is addressed by using the quasi-2D formulation
locally in allignment with the local bathymetry gradient as a first approximation. This results in a nonlinear triad source term
(i.e., a 2D S3nl) that is fitting for implementation in wave forecasting models.

The derived formulation is evaluated with respect to deterministic ensembles, field measurements and laboratory exper-
iments while performing well in modeling directional monochromatic super-harmonic self-interactions, infra-gravity wave
generation from bi-chromatic waves and a realistic wave spectrum evolution. This lays physical and mathematical grounds
for constructing a formulation that consistently accounts for 2D nonlinear energy transfers from deep to shallow water in
stochastic wave forecasting models.
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Figure 1: Evolution of a measured wave spectrum over a mildly sloping beach. The dot-dashed red line describes the field
measurements results of [4]; The thick black line represents the current localized stochastic model; The dashed blue line
describes the ensemble averaged results of the deterministic model of [1]; the dark green dotted line describes the linear
stochastic model solution. Results are plotted for the depths of 14(a), 10.4(b), 5.25(c) and 4.1(d) meters.

References

[1] Bredmose H., Agnon Y., Madsen P.A., Schaffer H.A.: Wave transformation models with exact second-order transfer. European Journal of Mechanics -
B/Fluids 24(6):659-682, 2005

[2] Benney D.J., Saffman P.G.: Nonlinear interaction of random waves. Proceedings of the Royal Society of London A 289:301-321
[3] Holloway G.: Oceanic internal waves are not weak waves. Journal of Physical Oceanography. 10:906-914
[4] Freilich M.H., Guza R.T.: Nonlinear effects on shoaling surface gravity waves. Philosophical Transactions of the Royal Society of London A311:1-41

1583



 

 

a) Corresponding author. Email: ababanin@swin.edu.au 
 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada  

TURBULENCE INDUCED BY SURFACE WATER WAVES 
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Summary Turbulence produced by orbital motion of surface water waves will be discussed. While important across a broad range of ocean 
engineering, oceanographic and air-sea interaction applications, this is also an outstanding topic of the fluid mechanics. Its theory will be 
revisited, numerical and experimental results presented, field observations outlined. 
 
 

INTRODUCTION 
 
   Breakthroughs in the potential wave theories in the 60s defined the development of analytical research and drove 
experimental research in water waves for decades to come. Series of spectacular works by Hasselmann, Zakharov, 
Benjamin and Feir, Longuet-Higgins, among other researches, allowed us to reveal and explain many details of wave 
dynamics such as resonant and quasi-resonant interactions, modulational instability; led to introducing and embracing the 
kinetic theory, Zakharov and Nonlinear Schrödinger Equations, concept of weak turbulence for surface waves. 
   In the meantime, rotational approaches and solutions for the waves have not been receiving such an attention or even 
forgotten. One can trace a setup of this problem back to 1920s [1], but Phillips [2], followed by an extended summary in the 
book [3], provided explicit solutions for infinitesimal one-dimensional surface waves in the water of non-zero viscosity. The 
solutions are rotational, but as the authors rightly foresaw the one-dimensional approach imposed limitations on their 
practical applicability. 
   Such applicability was greatly enhanced by the Benilov theory [4,5]. It describes instability of three-dimensional 
vortexes in response to forcing by one-dimensional orbital wave motion. The wave motion is regarded potential in this 
theory, and hence the turbulence has to be pre-existent. Then, it is unstable in the two planes perpendicular to the wave 
orbits, and this instability radically changes the outcomes by comparison with the Phillips theory which applied to the stable 
plane. The Phillips one-dimensional wave-induced turbulence, after being produced by the wave orbital motion, is 
constantly damped by viscosity, whereas the Benilov three-dimensional turbulence should grow on behalf of the wave 
energy. 
   The ocean is always turbulent and the turbulence away from thin boundary layers is always three-dimensional, and 
therefore in the oceanographic context it can be expected that the Benilov mechanism prevails. The Phillips mechanism, 
however, should not be disregarded as having only an academic value. Whatever is the source of turbulence generation in 
the ocean, for example, the popular these days Langmuir turbulence, any pre-existing turbulence will be enhanced in 
presence of the waves (see e.g. [6] for a review). 
   While being an input of energy for turbulence, the wave-turbulence interactions are a loss of energy for waves, and 
hence a dissipation mechanism which has to be taken into account in the ocean wave forecast, particularly in case of swell 
propagation. Extra source of turbulence is also of primary significance for the upper-ocean mixing and hence the large-scale 
air-sea interactions which can be altered essentially, for example, in case of tropical cyclones (large waves) or at climate 
scales. 
 

THEORY, NUMERICAL SIMULATIONS AND EXPERIMENTS 
 
   Introduction above explains how the Phillips and Benilov theories are different, and this implies that turbulence 
production/dissipation rates and their dependences should be different between the two. Laboratory experiments [7] and 
numerical simulations [8], however, found both the intensity of the turbulence and its dependence on wave amplitude being 
similar in the two circumstances. Therefore, there may be a connection between the two mechanisms. 
   Here, we consider a similarity theory of isotropic turbulence induced by waves on the water with free surface. Scaling is 
obtained from observations of dissipation rates for swell propagation in the ocean, and then used to estimate the turbulent 
viscosity and spectrum of the locally-isotropic turbulence. The estimates are compared with measurements and modelling. 
 

CONCLUSIONS 
 

   The paper discusses turbulence produced or enhanced by the orbital motion of surface water waves. Similarity theory is 
proposed based on the concept of Lomogorov-Obukhov locally isotropic turbulence and agrees well with estimates of the 
turbulence dissipation rates and estimates of the coefficient of turbulent viscosity for oceanic conditions. 
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1MSC Laboratory, University Paris-Diderot, FR, EU
2current address : James Franck Institute, University of Chicago, IL, US

3current address : Scripps Institution of Oceanography, University of California at San Diego, CA, US
4LIMSI, University Paris-Orsay, FR, EU

Summary Under earth conditions, water surface waves of wavelength larger than few centimeters are usually dominated by gravity. We
present an experimental way to obtain steady levitated liquid puddles that can be used to observe quasi one-dimensional capillary waves at
the centimeter scale. Two modes of waves are observed: first linear and non-linear gravity-capillary waves, including capillary solitons, as
well as sloshing modes of the levitated puddle. Moreover, we show how various experimental geometry can be used to tune the influence of
gravity on the wave propagation.

INTRODUCTION

When water is deposited on a surface hotter than 200◦C, it breaks into small drops that roll over the substrate with very
little friction. The evaporation process lasts for a much longer time than expected. This effect is named after J.G. Leidenfrost
who discovered it in a spoon heated by a localized flame during the XVIII century. The presence of a thin vapour layer
supports the liquid weight by lubrication forces and the evaporation is drastically limited by the poor thermal conductivity
of the gas phase [1]. However, this Leidenfrost effect has long been limited to drop size, as larger volumes of liquid lead to
the formation of large gas pockets beneath which violently disturbs the liquid surface [1]. A few years ago we showed that
the drop size limitation can be circumvented by using a curved substrate to form a torus of liquid in levitation without any
specific limitation in length and volume [2]. The evacuation of vapour is then directed along the transverse direction, while
the length is no longer limited in the other direction. Using levitating liquids of larger dimensions, we study the propagation
of waves at the free surface. Figure 1 shows the two experimental configurations that have been used. One corresponds to a
linear channel (Figure 1a), the second is a toroidal channel (Figure 1c,d). In each geometrical configuration, we observe linear
and non-linear waves that can be characterized both from an experimental and theoretical point of view.

LINEAR WAVES

Figure 1a shows the one dimensional channel experimental setup, made of a dural plate with a transverse section of the
quarter pipe shape (figure1a and c). Once heated above 250◦C, 60mL of water poured into the substrate forms a cylinder of
water, levitating on its own vapor film. Using an external exciter, we observe the propagation of two types of gravity-capillary
waves. Their dispersion relations are displayed in Figure1b. Type I corresponds to a deformation of one interface (left interface
in Fig1a), and follow the usual gravity capillary wave dispersion relation :

ω2 = tanh(kHeff )(geffk +
γ

ρ
k3).

However, the usual water depthH and acceleration of gravity g are here replaced by effective depthHeff and gravity geff , that
can be derived theoretically from our particular geometry (solid line, Figure1b inset). In particular, we have geff = g sinα
where α is the angle between the substrate slope and the horizontal axis (defined either Fig1a of Fig1c). The angle α can
therefore be changed by inclining the substrate more or less. The dispersion relation can thus be tuned from waves propagating
on a horizontal interface as commonly encountered (α = 90◦), to an almost zero gravity situation for α → 0 (consequently,
geff → 0). One striking consequence is the variation of the minimum velocity of linear waves (Figure2b inset), that goes to
0 for α → 0. Close to α ≈ 0 quasi pure capillary waves are observed (dashed line) in a much larger range of wavelengths
the effective capillary length lc being greater than 1cm. Type II waves correspond to sloshing modes, associated to out of
phase oscillations of same amplitude for both interface. Their dispersion relation presents a frequency cut-off also dependent
on the geometry (i.e. α). Both dispersion relations can be rationalized by using a theoretical model based on a triangular
shape of the section. It predicts a good agreement with all the observed dispersion relations for linear waves. Type I and II
waves can also be observed in the toroidal geometry sketched in Figure1c. The linear channel has here been replaced by an
annular channel with an equivalent section profile (side view sketch of Figure 1c can be applied to each geometry). In this
case however the type I waves is amplified by a flow instability [2]. Indeed, a free surface toroidal flow turns out to be unstable
on its inner perimeter and the selected wavelength can be well predicted from a full hydrodynamic calculation [3]. It leads to
the formation of an asymmetric pattern, better describe by a non-linear wave equation (Figure 1d).

∗Corresponding author. Email: sperrard@uchicago.edu
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a c

d

b

Figure 1: Levitated liquid using Leidenfrost effect Using curved substrate heated above 200◦C, we generate levitating
cylinder or torus of water. a) the substrate has a shape of a quarter pipe, so that only the left interface is free to move.
Capillary waves generated by an external exciter (brass tube on the left bottom) are observed on the surface. They correspond
to gravito-capillary waves with an effective gravity geff = g sinα that can be tuned experimentally. The effective capillary
length is 1.3cm, five times larger than the usual value. b) Relation dispersion of linear waves. Two branches type I and II are
observed. Inset : minimum phase velocity of linear waves for various inclination angles. The limit α→ 0 leads to c0 → 0. c)
Sketch of toroidal substrate side view, with the same angle α that controls the effective gravity. Due to a symmetry breaking, a
rotating flow inside the torus is observed. d) Spontaneous generation of a train of capillary solitons, triggered by an instability
of the rotating flow inside the torus.

NON-LINEAR WAVES AND PATTERNS : DEPRESSION KDV SOLITONS AND POLYGONS

When the typical width of a localized wave is of the order or longer than the depth of fluids, there exist stationnary non-
linear waves solutions called solitons. They are described by the Korteweg de Vries (KdV) equation [5] where the presence
of both dispersive and non-linear term can balance to form a localized, stationary solution moving at constant speed. In
the gravity dominated domain, they are of positive amplitude and above the minimum of phase velocity c0. Due to our
reduced effective gravity, we observe capillary driven solitons that correspond to negative amplitude and subsonic velocities.
We present a full characterization of these solitons, and their shape, velocity, width and amplitude is well descrined by our
modified KdV solitons theory for a non-uniform bottom and a reduced gravity term. In the annular geometry, they correspond
to a train of solitons, that repel each other to form a periodic pattern.

CONCLUSION

We have revealed the propagation of a wide variety of waves in a quasi one dimensional system, ranging from linear
capillary waves in a reduced gravity environnement, sloshing modes, individual capillary solitons, collective organized soliton
state, and random soliton superposition. We model these various types of waves in a common theoretical framework by a
modified KdV theory, taking into account our specific substrate geometry, the reduced gravity, and the first non-linear terms.
The superposition of many individual solitons leads to a complex superposition where each localized structure can barely be
followed. This statistical wave state may be assigned to soliton turbulence in quasi one dimension.
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Summary Interface profile of magnetic fluid is known to change abruptly when the intensity of the applied magnetic field H0 is increased.
It is considered that during this transition process between interface profiles many modes are generated once but converge into one mode
corresponding to the final regular profile. From this standpoint, this paper inspects the spectra for interfacial quantities changing in time, by
use of the fluid and magnetic analyses which are applicable for arbitrary interface profiles and applied magnetic field distributions. As the
time goes on, several prominent modes are generated other than the initial basic modes as the result of the nonlinear wave-wave interactions.
Among various nonlinear processes, three-wave interaction is considered in this paper. When H0 is close to the critical intensity HCL,
modes with a triad of wavenumber vectors of the same size compose the interface profile of hexagonal lattice, as experimentally observed.

EQUATION FOR INTERFACE MOTION

When we analyze the free surface phenomena of irrotational and inviscid magnetic fluid with all nonlinear effects but with
no limitations on the interface profile, we use the following equation for interface motion which is derived from Bernoulli’s
equation and the dynamic boundary condition on the interface [1]:

ρ
∂φ

∂t
+ S + p0 = 0, S ≡ D +G+ C + T, T = −

[
1

µj

]
{µ1µ2(h

2
X + h2Y ) + b2Z}

2
, (1)

where ρ, φ, D, G, C, T , p0 are the fluid density, velocity potential, dynamic pressure, gravity potential, surface tension,
magnetic stress difference and atmospheric pressure, respectively. In (1), φ is obtained from the vertical component of the
fluid velocity vz and the interface elevation ζ as φ=

∫ ζ
−∞ dzvz , Furthermore, T represents the action from the magnetic field

to the fluid, where µj denotes the permeability of the fluid (j=1) or the vacuum (j=2), [· · · ] the difference of the value across
the interface (2−1), respectively. The tangential magnetic field hX,Y and the normal magnetic flux bZ should be obtained
rigorously as well as efficiently under arbitrary interface profiles and applied magnetic field distributions [2].

The interface elevation ζ(R) and the sum of interface stresses S(R), as well as other interface quantities, are regarded
as the functions of the interface coordinate parameter R=(X,Y ), and they are expanded into series of periodic functions.

We rewrite (1) by the column vectors ζ̃≡
(
ζ̃µ
)

and S̃≡
(
S̃µ
)

composed of the expansion coefficients ζ̃µ, S̃µ belonging to the
wavenumber vector kµ. Then, the temporal evolution equation for ζ̃ is derived.

TEMPORAL EVOLUTION OF WAVENUMBER SPECTRA

This section shows a temporal evolution of the spectra |ζ̃µ|2 and |S̃µ|2 for the interface elevation and the sum of interface
stresses. We prepare initially an interface profile with hexagonal lattice as shown in Fig.1(a) for the magnetic fluid with the
density ρ=1.0×103 kgm−3, capillary coefficient γ=2.6×10−2 Nm−1, and relative permeability µ1/µ0=1.2 (µ2/µ0=1.0,
µ0=4π×10−7 H/m). Three basic modes with the wavenumber vector kµ=mµA+nµB, (mµ, nµ)=(2, 0), (0, 2), (2, 2) as
shown by open circles in Fig.1(b) compose this profile, where A, B are the basic vectors crossing each other with the angle
of 120◦. Amplitudes ζ0=0.10mm for these modes are same. The critical wavelength and the critical magnetic field intensity
for infinitesimal ζ0 are calculated as λCL= 2π/ kCL=1.02×10−2 m and HCL=3.75 ×104A/m. The position of the critical
wavenumber k=kCL is represented by an arc in Fig.1(b). Applied magnetic field is vertical and homogeneous, and its intensity
H0 is 0.60HCL or 0.90HCL for the upper or lower row in Fig.2.
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Figure 1: Interface profile of hexagonal lattice in (a) real space and (b) wavenumber space. (c) Dispersion relation for linear
interface wave.
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Figure 2: Spectrum |ζ̃µ|2 (a) and |S̃µ|2 (b) after 20.0×10−2 s. Temporal
change of ζ̃µ (red line in (c)) and − (kµ/ ρ) S̃µ (blue line in (c)) at basic
modes. H0 = 0.60HCL (upper row) and H0 = 0.90HCL (lower row).
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Figure 3: (a) Triad of wavenumber vectors
for three-wave interaction. (b), (c) Their res-
onance curves.

As shown in Fig.1(c), the dispersion relation for linear wave (LNDS) is {ω(k)}2=Gk+Ck3−Mk2, where k=|kµ|, ω
is the angular frequency, and G, C, M are the gravity, capillary and magnetic coefficients, respectively. Shaded squares in
Fig.1(b) show the value of {ω(k)}2 at H0=HCL. Modes as many as 18×18 in the wavenumber space cover those generated
by the nonlinearity of the surface tension and the magnetic stress difference.

Figure 2(a), (b) shows the wavenumber spectra after some time. Many spectral modes other than the initial basic modes are
generated due to the nonlinearity in C and T of (1), where several prominent modes are shown encircled and weak continuous
modes as hiding the basic plane. For the case of H0 closer to HCL (lower row in Fig.2), both of the prominent and continuous
modes increase, but the latter more. In addition, the interface elevation ζ̃µ and the interface force − (kµ/ ρ) S̃µ change more
slowly as in Fig.2(c) due to the close balance of the interface stresses aroundHCL, but their change become unstable gradually.

NONLINEAR WAVE-WAVE INTERACTION ON THE INTERFACE OF MAGNETIC FLUIDS

During the transition process between interface profiles, various nonlinear wave-wave interactions will occur. On the
interface of magnetic fluids, three-wave interaction is anticipated since the magnetic stress difference is second order in the
magnetic field. Three-wave interaction is known to exist for gravity-capillary waves though not for gravity waves in normal
monolayer fluids [3].

For a triad of wavenumber vectors k1,2,3 as Fig.3(a), the resonance condition is k3=k1+k2 and ω(k3)=ω(k1)+ω(k2),
where ω(k) is given by the LNDS in the previous section with k1,2,3=|k1,2,3|. These resonance condition and LNDS are
expressed as

k̄3 =
√
k̄21 + k̄22 + 2k̄1k̄2 cos θ, {ω(k)}2

/√
G3/C = k̄ + k̄3 − 2mk̄2 (2)

by the wavenumber k̄≡ k/ kCL and the magnetic coefficient m≡M/MCL which are nondimensionalized by kCL=
√
G/C

and MCL=2
√
CG. If k̄3 is eliminated between two equations in (2) as F (k̄1, k̄2;m, θ)=0, we can draw k̄1–k̄2 resonance

curves with parameters m and θ, as in Fig.3(b),(c).
When H0<HCL (m<1) and k̄1=k̄2, θ increases with k̄1,2 but never exceeds 90◦, like the gravity-capillary waves [3].

However, when m≤1, there appears the resonance with θ ≥ 90◦. Especially when m=1, the resonance for θ=120◦ is at the
spot k̄1,2=1 instead of on a line. In this case, k̄3=k̄1,2=1 from the first of (2), and ω(k1,2,3)=0 from the second of (2).

The above discussion means that the modes with a triad of wavenumber vectors of the same size kCL, which compose
the initial profile as Fig.1(a),(b), are resonant and static, as experimentally observed (note that each point in (b) represents a
combination of modes symmetric with respect to the origin).
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INVESTIGATION OF INERTIAL WAVES INSIDE A LIQUID METAL COLUMN BY MEANS 
OF ELECTROMAGNETIC FIELDS

Tobias Vogt, Dirk Räbiger & Sven Eckert
Institute of Fluid Dynamics, HZDR, Dresden, Germany 

Summary In this study, the dynamics of inertial waves inside a cylindrical vessel was studied experimentally. The liquid metal 
GaInSn was chosen as fluid in order to enable a contactless stimulation of the flow inside the cylinder by means of 
electromagnetic fields. A rotating magnetic field (RMF) generates a supercritical rotating motion of the liquid. The excitation of 
the inertial waves is realised by means of periodic field strength modulations and by means of short intense magnetic field 
pulses. Furthermore, the experiment demonstrates that inertial waves may be excited spontaneously by turbulent structures in the
rotating flow. The ultrasound Doppler velocimetry was used to record the flow structure and to identify the inertial waves 
occurring in the setup 

INTRODUCTION 

Inertial waves are transversal mechanical waves which only occur in rotation fluids. The restoring force of inertial waves is 
the Coriolis force and their upper frequency limit is twice the rotation rate of the fluid. Due to the rotation of earth, one can 
find very large scale inertial waves for example in oceans [1], in the atmosphere [2] and also deep inside the earth in the 
liquid outer core [3]. Besides this, inertial waves can also be detected in a variety of technical applications. In all cases, the
source for an inertial wave is a disorder in the centrifugal force balance of the rotating fluid. So far, the majority of 
experiments on inertial waves are performed with water inside spinning vessels. The excitation is typically realized 
mechanically by means of oscillating plates, inclined vessel walls or cylinders subjected to a precessional movement. We 
describe a new approach for studying inertial waves using a highly conducting liquid metal and electromagnetic fields that 
are used to induce a Lorentz force in the liquid metal. This study demonstrates that electromagnetic fields can be considered 
as an effective tool for generating a variety of inertial wave modes in a laboratory-scale set-up. 

Forced inertial waves 
   Inertial waves can be excited in the present setup by distinct variations of the electromagnetic driving force. For 
instance, a pulsating RMF can be used to force particular inertial wave modes. Such a pulsating RMF implies periodic 
changes of the driving force. The fluid rotates because of inertia and the constant direction of the angular acceleration. We 
performed measurement series where the repetition frequency of the RMF pulses was varied in very fins steps. By this, the 
excitation of several inertial wave modes can be achieved. We analysed the spatial structures of the different wave modes 
by means 2D-FFT and compared the results to predictions of the linear inertial wave theory. 
   In a further series of experiments, the rotating flow was exposed to a strong, but very short duration, magnetic field 
pulses in either a vertical or azimuthal direction. These pulses generate a short-time propulsion of the fluid. The field 
strength of each pulse was set significantly higher than that of the RMF that continuously drives the background rotation of 
the fluid. The time duration of the pulses was chosen to be as short as possible in order to avoid a substantial change of the 
main rotating flow. Both the vertical and azimuthal pulses produce free inertial waves, which decay gradually. 

Spontaneous occurrence of inertial waves 
   Surprisingly, we also observed inertial waves in our experimental setup during a stationary rotation even without any 
external perturbation. Figure 1 displays a section of a long-term measurement lasting over a period of about one hour. In 
this figure, the evolution of the vertical velocity (uz) averaged along the axis of the liquid metal column is shown. An almost 
periodic oscillation of the mean axial velocity becomes visible collapsing from time to time. Because any external forcing 
was avoided here, the inertial wave must be triggered by the flow itself.  
   A typical feature of an RMF-driven flow at supercritical forcing is the formation of Taylor-Görtler (TG) vortices, which 
is a result of the instability of the side wall layers. These TG-vortices develop typically in the boundary layer at the side wall
of the cylindrical vessel. After formation, the TG-vortices are conveyed by the secondary flow towards the horizontal end 
walls of the vessel, where they dissipate in the Bödewadt layers. The impingement of the TG-vortex on the Bödewadt layer 
provokes a temporary disturbance of the boundary layer. Velocity measurements made during an RMF-driven spin-up [4] 
showed how such a disturbance propagates inside the boundary layer and excites an inertial wave appearing in the center of 
the vessel. Such a vortex dissipation in the Bödewadt layer leads to a perturbation of the Ekman pumping resulting in the 
excitation of an inertial wave. 
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ASYMPTOTIC ANALYSIS OF A ROTARY WAVE IN A CYLINDRICAL TANK

Herbert Steinrück∗1 and Lorenz Gusner2

1Institute of Fluid Mechanics and Heat Transfer, Technische Universität Wien, Vienna, Austria

Summary The free surface flow in a vertical, cylindrical, rotating container will be considered when axis-symmetric angular and radial shear

stress distributions are applied on the free surface. It is well known that in the inviscid case a rotary wave which can be described by a flow

potential exists. We want to determine the stability limit of the axis-symmetric base state with respect to the rotary wave for small Ekman

and Froude numbers. Under the above assumption, the critical flow conditions can be determined analytically. The results can be verified

experimentally using a vertical, cylindrical container partially filled with water where the top lid rotates with a given angular velocity. Thus,

the induced air flow will exert shear stresses in the angular and radial direction onto the water surface. Above a certain threshold, rotary

waves can be observed.

PROBLEM FORMULATION

Using a Francis turbine in phase condenser mode, the rotor sets the air above the water level in the suction pipe into a

rotation. If the angular speed of the rotor is above a critical value a rotary wave in the water forms. The angular wave speed is

almost independent of the rotor speed, and the amplitude of the wave can be considerably large. Thus, we want to explain the

excitation mechanism using asymptotic analysis of this wave. In particular, we want to determine critical conditions when the

axial-symmetric surface of the water becomes unstable, and the rotary wave develops. Since we are interested in an analytical

solution, we define a simplified model problem.

a)

rotating
lid

b)

z r

Ω0

z = −hW

θ

τθ
τr

c)

O(
√
EkW) O(

√
FrEkW)

O(
√
FrEkW)

O(Ek
1/3

W )

z

r

−hW

O(Fr2)

Figure 1: a) Rotatry wave in a vertical, cylindrical container induced by a rotating lid, b) coordinate system and applied shear

stresses c) boundary-layers relevant for the stability analysis

Consider a vertical cylindrical tank with radius R partially filled with water. Assume that on the free surface shear stresses

in azimuthal τθ = τθ,0r/R and inward radial τr = τr,0r/R direction are applied. These stresses model the action of the

rotating air flow onto the water. The shear stress distributions are assumed to be axis-symmetric and depend linearly on the

distance from the axis of the container.

For an inviscid fluid, the rotary gravity wave given by the flow potential φ = J1(µ1r) sin(θ − ω0t)e
µ1z is well known,

see figure 1a, where J1 is the Bessel function with index 1, µ1 is the smallest zero of its derivative, ω0 is the dimensionless

angular wave speed, see [1]. Here and in the following, r and z denote the dimensionless radial and vertical coordinate. They

are referred to the radius R of the container. The angular velocity is made dimensionless with
√

g/R, where, and g is the

gravity acceleration. All other quantities like time, velocity are scaled accordingly. For the definition of the coordinate system

and the boundary conditions, see figure 1b.

To facilitate a complete analytical solution, we assume that the container rotates with given angular velocity Ω0.Thus, we

define the following dimensionless numbers,

EkW =
ν

R2Ω0
, Fr =

Ω0
√

g/R
δ =

√

EkW
τθ,0
ρνΩ0

, τ =
τr,0
τθ,0

.

where ρ, and ν are the density and the viscosity of the fluid, respectively. Assuming δ ≪ 1 and EkW ≪ 1 the base flow can

be obtained by linearizing the Navier-Stokes equation around the solid body rotation with angular speed Ω0. Thus, it is given

∗Corresponding author. Email: herbert.steinrueck@tuwien.ac.at

1592



by a solid body rotation in the core (with a perturbed angular speed) and boundary-layers of width
√
EkW at the free surface

and the bottom of the container, see [2]

uB = Fr δrûB(η), vB = Fr r(1 + δ(v̄B + v̂B(η))), wB = Fr δ
√

EkW (w̄B + ŵB(η)), η = z/
√

EkW .

Here, uB , vB , WB denote the velocity components of the base flow in the radial, azimuthal, and vertical direction. Since the

boundary-layer of the base flow along the container wall does not play a role in the following asymptotic stability analysis,

the corresponding terms are omitted here.

ASYMPTOTIC STABILITY ANALYSIS

We linearize the governing equations (Navier-Stokes equations, the kinematic and dynamic boundary conditions, respec-

tively) around the base flow. We are looking for a rotary eigensolution in the double limit

EkW → 0, Fr → 0, δ << 1, τ = O(1). Thus, the asymptotic ansatz for the radial velocity component is of the form

u ∼
[(

u
(s)
0 +

√

EkWFru
(s)
G + Fru

(s)
1 + Fr2 u

(s)
2

)

sin(θ − ωt)+
(

√

EkWFru
(c)
G + Fru

(c)
1 + Fr2 u

(c)
2

)

cos(θ − ωt)
]

eg t

with the dimensionless angular wave speed ω = ω0 +
√
EkWFrωG + Frω1 + ..., and the dimensionless growth rate g =

−d
√
EkWFr + Frg1 + Fr2g2 + ....

Note that we have written in the ansatz only the order of magnitude of the terms needed for the discussion of the stability.

The terms u
(s)
G , u

(s)
1 , u2 have to be expanded with respect to EkW and δ and they may have boundary-layers of thickness√

EkWFr and
√
EkW, respectively. The leading order term is given by the inviscid rotary wave supplemented by boundary

layers at the wall. In the following we will shortly discuss the role of the terms in the expansion.

The inviscid rotary wave does not satisfy the no-slip boundary conditions at the container wall and bottom. Thus,

boundary-layers of thickness
√
EkWFr will develop along the wall, see figure 1c, and the bottom causing a velocity com-

ponent normal to the wall of the order
√
EkWFr at the outer edge of the boundary layer. Thus, a secondary flow of the same

order is induced in the core region. Applying the kinematic, and dynamic boundary condition in the normal direction at the

free surface yields a condition for the decay rate d and the shift of the angular velocity ωG.

At the free surface, the shear stresses are prescribed. The rotary wave displaces the free surface. Thus, a boundary-layer

correction of the radial and azimuthal component of the rotary wave of the order δFr3/2/
√
EkW is necessary. This, however,

induces a vertical flow velocity of order Fr2δ and depending on the sign a growth or decay rate of the wave of the same

order. A detailed analysis shows that this correction is positive (growth rate) if the radial component of the surface velocity is

negative.

In the core region of the flow, the rotary wave interacts with the base flow causing an additional correction to the wave

speed and the growth/decay rate. However, the corrections to the growth rate are only created in the boundary layer of the

base flow (width
√
EkW). It turns out that only the second order term g2 is different from zero. The contribution of this terms

of the same order δFr as the correction of the growth rate induced by the dynamic boundary condition in the radial direction.

Under the above assumptions all this contributions to growth/decay rate can be evaluated analytically yielding our main

result

g ∼ −
√

FrEkWd(hW ) + Fr
√

EkWg̃1 − Fr2δûB(0)g̃2(hW ),

where d, and g̃2 are positive constants depending only on the dimensionless water depth hW . Setting the growth rate equal to

zero, conditions for neutral stability are obtained. Thus, for neutral stability the radial surface velocity ûB(0) of the base flow

has to be negative.

NON-ROTATING CONTAINER AND EXPERIMENTAL VERIFICATION

In the case of a non-rotating container, see figure 1a, the main ideas of the present analysis hold. However, the equations

have to be solved numerically. Formally, we have to set δ = 1 and set Ω0 = (τ2θ,0/ρ
2νR2)1/3, a scale for the angular velocity

induced by the angular shear stress at the surface. The angular speed of the wave can be measured easily from a video. The

angular velocity of the core region can be estimated by the time an immersed particle needs for a complete revolution. The

ratio of the angular velocity of the flow in the core region to the angular wave speed is of the order Fr. In case of neutral

stability, we have Fr ∼ (EkW Fr)1/4 = ( ν

R2

√
g/R

)1/4 which is in agreement with experimental observations.
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EVOLUTION OF FARADAY WAVES BY RESONANT TRIAD INTERACTIONS OF
SURFACE–COMPRESSION WAVES

Usama Kadri∗1

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Summary The propagation of wave disturbances over a vertically oscillating liquid may form standing waves, known as Faraday waves.
Here we present an alternative description of the generation and evolution of Faraday waves by nonlinear resonant triad interactions,
accounting for gravity surface effects and the slight compressibility of the liquid. To this end, we analyse a triad comprising an infinitely
long-crested compression mode and two oppositely propagating subharmonic surface waves.

INTRODUCTION

A surface wave disturbance over a fluid layer that is subject to sinusoidal vertical oscillation at frequency 2ω may excite
subharmonic standing field of waves of frequency ω known as Faraday waves. The wavelength of these waves is prescribed
by the standard dispersion relation [1]. For many applications the driven flow due to the interaction of the disturbance with
the oscillating bath is attributed to parametric instability ([5]) (or parametric resonance). Here, we introduce an alternative
approach to describe this energy share between the surface waves and the oscillating bath. We model the oscillating bath as
an infinitely long-crested compression wave that exchanges energy with surface waves via resonant triad interactions.

Special triad interactions between surface wave disturbances and compression modes associated with resonances were
noted by Longuet-Higgins [4]. More specifically, these comprise a standing compression mode at a cut-off frequency 2ω,
and two subharmonic surface waves with frequency ω and opposite wavenumbers k. Here, we consider the interaction of a
propagating radial surface wave disturbances and a standing compression mode in a deep fluid. Such resonance interaction
depends on the small parameter µ = gh/c2, (µ � 1) (see [3]) that governs the effects of gravity relative to compressibility,
where g is the gravitational acceleration. Thus, free-surface wave disturbances feature vastly different spatial and/or temporal
scales from the compression mode. Specifically, the surface wavelength λ is much shorter than the vertical compression
lengthscale represented by the water depth (λ � h), whereas the gravity timescale τ ∼ (λ/g)1/2 in keeping with the deep-
water dispersion relation. Then, taking τ to be comparable to the acoustic timescale h/c implies λ ∼ µh; hence, in the present
setting, the parameter µ may be interpreted as the ratio of the gravity to the (vertical) compression mode lengthscale.

PRELIMINARIES

Based on irrotationality, the surface–compression wave problem is formulated in terms of the velocity potential ϕ(r, z, t),
where u = ∇ϕ is the velocity field. Moreover, we shall use dimensionless variables, employing µh as lengthscale and h/c as
timescale. We shall also assume radial motion (∂θ = 0), far from the centre (1/r � 1); then the field equation obeys

ϕtt −
1

µ2
(ϕrr + ϕzz) + ϕz + |∇ϕ|2t + 1

2u · ∇
(
|∇ϕ|2

)
= 0. (1)

On the free surface z = η(r, t), we consider the standard dynamic and kinematic conditions. Finally, the boundary condition
on the rigid bottom at z = −1/µ reads

ϕz = 0 (z = −1/µ). (2)

The velocity potential for the three interacting modes is expanded as follows

ϕ = ε ekz
{
S+(T )ei(kr−ωt) + S−(T )e−i(kr+ωt) + c.c.

}
+ α cosω(Z + 1)

{
C(T )e−2iω + c.c.

}
+ . . . . (3)

The first terms in (3) represent the two surface waves while the last represents the compression mode, that is scaled in the
vertical coordinate Z = µz. The surface wave amplitudes S± and the compression mode amplitude C depend on the ‘slow’
time T = µt, and space R = µr, where ε = αµ1/2 with α = O(1) ([3]).

∗Corresponding author. Email: ukadri@mit.edu
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EVOLUTION EQUATIONS

Upon substituting (3) in the surface–compression mode problem (1) and the boundary conditions, we focus on terms
proportional to exp{i(kr − ωt)}, exp{−i(kr + ωt)}, and exp{−2iωt}. These terms cause secular behaviour at higher order
in expansion (3) as they have the same spatial and temporal dependence as the three linear propagation modes at the leading
order. To overcome this difficulty we impose solvability conditions on the problems governing higher-order corrections to
these modes, which results in the desired evolution equations for the compression wave amplitude C(T )

∂C

∂T
= − i

2ω

∂2C

∂R2
− i

2ω
C +

1

4
ω3αS+S−. (4)

and the surface wave amplitudes S±(T )

dS±

dT
= −1

8
ω3αCS∗

∓ −
i
64
ω7α2

(
S2
±S

∗
± − 4|S∓|2S±

)
, (5)

where ∗ stands for complex conjugate. Note that equation (5) is a particular case of equation (5.9) derived by Kadri & Akylas
[3].

RESULTS AND DISCUSSION

A qualitative comparison between experiments (presented in [2]) and the proposed mechanism are shown in figure 1 (a)-
(d). The amplitude evolution of a surface wave is given in figure 1 (e). Note that in the given example, the prescribed surface
waves are travelling in opposite directions and thus present a standing disturbance in analogy to a disturbance by a falling
steel ball impacting the surface. Unlike parametric resonance, with the proposed mechanism we can also consider a moving
disturbance, say due to a moving droplet (e.g. see [5]), resulting in a rigorous description of the evolution of the disturbance
path memory.

(a) (b) 

(c) (d) 

(e) 

Figure 1: (a,b): Photographs of the wave field generated by a falling steel ball on a vertically oscillating liquid bath, at times
t=51 ms (a) and t=173 ms (b) after the collision — (a,b) are presented in [2]. (c,d): Simulations of the wave field generated
from nonlinear triad resonance of two surface waves propagating in opposite directions, and a compression mode oscillating
in the vertical direction, at times T = 17 (c) and T = 51 (d). (e): Evolution of the surface wave amplitude during the resonant
interaction.
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OCEAN WAVES AND MICROSEISMS 
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Summary Ocean gravity waves generate pressure variations on the sea floor, which may lead to microseisms. Secondary microseisms are due 
to the interaction of surface waves with nearly equal frequencies but nearly opposite directions. A theoretical analysis with goal to quantify the 
degree of nearness that must be reached for the occurrence of such phenomena is presented. Based on a weakly nonlinear analysis expressions 
are obtained for the free surface elevation and pressure of interacting waves. Results are discussed for various regimes. 
 

INTRODUCTION 
   Ocean microseisms have been observed from shallow water to deep water [1] and can be recorded as noise by coastal 
seismic stations either as primary or secondary. Various studies have been performed both on the origin and the propagation 
of microseisms [2–6]. The primary microseisms are generated by surface gravity waves incident on a sloped bottom in 
shallow water and have the same period as the incoming waves, while the secondary microseisms are due to the nonlinear 
interaction of a pair of linear surface gravity waves. Our interest here is in the secondary microseisms, which have a 
frequency twice that of the causative wave and amplitude independent of the depth. The main goal is to quantify the degree 
of nearness between the two frequencies needed to obtain a significant second-order pressure that extends all the way to the 
bottom of the ocean. From the records of coastal seismic stations, one can determine wave characteristics (period, height). 
So one needs to know the sea states that allow pressure variations large enough to generate microseisms, as well as to 
understand how pressure variations vary in space and time and how they are linked to the sea floor. We present the results 
obtained for the oceanic pressure in different cases, including both 2D and 3D regimes. We show the conditions on different 
parameters to obtain pressure variation able to generate microseisms. We also study the case of a train of freely TWs. 
    

GOVERNING EQUATIONS 
   As compressible effects do not play a role for the conditions to generate a strong second-order pressure independent of 
depth, we consider the 3D, irrotational and periodic in the horizontal directions flow of an ideal, incompressible and 
homogeneous fluid, with gravity as the only driving force. The flow is bounded above by a free surface at z = η(x, y, t) (z = 
0 at rest) and below by a flat bottom at z = –h, and is governed by the continuity equation 

02               (1) 

subject to dynamic (Bernoulli equation) and kinematic conditions at the free surface (where p = 0) and bottom boundary 
condition, given respectively by 

,0||
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where ρ is the density, p is pressure and velocity u =  , for velocity potential (x, y, z, t) with x and y the horizontal 

coordinates, z the vertical coordinate and t the time. We assume that the unknown quantities in the system under 
consideration (η,  and p) can be decomposed as 
  ),( 3

2
2

1  O   ),( 3
2

2
1  O   ),( 3

2
2

1  Oppp    (3) 

for a small parameter ε (typically the sea-surface slope). 
 

WEAKLY NONLINEAR ANALYSIS 
   Applying decompositions (3) on system (1)–(2) we obtain first- and second-order expressions for the free-surface 
elevation η, the velocity potential  (not presented here) and the pressure p, as explored for various regimes in the sequel. 
   First we look at several simplified cases of increasing complexity. The first one is an extension of the case studied by 
Longuet-Higgins [2] and deals with the superposition of two Traveling Waves (TWs) with opposite wave numbers of the 
same magnitude and with unequal amplitudes. The second one deals with the superposition of two TWs with different 
wavenumber vectors and not directly opposing. 
Sum of two opposite TWs of the same wave number 
   For two opposite 2D TWs of the same wave number k (and frequency ω) and amplitudes A, B respectively we have 
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FARADAY WAVES REVISITED

Jean Rajchenbach1 and Didier Clamond2
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2 Laboratoire Jean-Alexandre Dieudonné (CNRS UMR 7351)
Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02

Summary We revisit the theoretical description of Faraday waves. We show that the relation of dispersion is not that of free unforced
waves; the forcing amplitude and the viscosity play a significant role in the dispersion relation. We then determine the instability
thresholds and the wavenumber selection in cases of both short and long waves. We also show that, depending on the depth, the
instability leading to the formation can be either supercritical or subcritical, in agreement with experimental observations.

INTRODUCTION

Despite notable advances in the theoretical understanding of parametrically-forced water waves [1-3], some of their
fundamental properties remain obscure. For instance, the dispersion relation (relating angular frequency ω and wave number
k) of Faraday waves has astonishingly not been explicitly established hitherto. Moreover, following of the seminal paper of
Benjamin & Ursell [1], the wave number of Faraday waves is often supposed to be selected by the size and the shape of the

vessel and correspond to eigenmodes, and their dispersion relation identified with  that of free unforced waves, namely ω2
o

=gk tanh(kd) (g is the gravity constant and d is the depth). Both these hypotheses are actually incorrect and contradict
experimental evidences. First, as can be seen in the movie given as supplemental materials in [4], the parametrically forced
mode oscillates at half of the forcing frequency Ω , but corresponds there to two contra-propagative waves and not to an
eigenmode of the tank. Then,  the experimental determination of the dispersion relation of dispersion of parametrically-forced
waves shows significant deviations compared to that of free unforced waves (see e.g.  Fig. 7 in [5]). It is also worth noting
that formation of patterns can actually be observed in shallow water, that is inconsistent with  the dispersion relation ωo=

 gd k corresponding to free unforced waves in shallow water. Indeed, the formation and the symmetry of the surface
patterns are determined by a multiwave resonant coupling mechanism,  which requires the simultaneous fulfilment of  k1 +
k2 + k3 = 0 and ω1 + ω2 + ω3  = 0 (ki and ωi being the wave number and the angular frequency of the waves). Such relations
require a convex dispersion relation, and this condition is obviously not fulfilled by pure gravity waves in shallow water at
the leading linear order.

Furthermore, up to now, theoretical models predicted a supercritical (i.e. continuous) bifurcation from the rest state
to the wavy state when increasing the forcing. If experiments conducted in deep water are consistent with this standpoint,
recent experiments conducted in shallow water revealed rather a discontinuous, subcritical transition. At last, measurements
of the instability threshold showed significant discrepancies with values proposed in the theoretical literature. Therefore, it
turns out to be necessary to revisit the theoretical description of Faraday waves The first aim of this work is to establish the
actual relation of dispersion of Faraday waves for nonzero  forcing and dissipation. We have shown that dispersion relation
of free, unforced waves is significantly altered in the case of parametrically-forced excitations: two different wavenumbers
correspond then to the same angular frequency. We have then carried out their stability analysis and we have discussed the
nature of the bifurcation giving rise to the wavy surface state from the rest state when the forcing is increased. Thus, the
threshold of the Faraday instability is established as well as the selected wavenumbers in both cases of short and long
waves. At last, it is shown  that the transition can be either smooth (supercritical) or discontinuous and hysteretic
(subcritical), depending on the thickness of the liquid layer.

RESULTS

As established by Benjamin & Ursell [1], a parametrically-driven surface mode of wavenumber k and of amplitude ζ obeys in
the linear approximation a damped Mathieu equation

ζ tt   + 2 σ ζ t  + ω2
o [1 + F cos (Ωt)] ζ = 0

where σ = σ(k) is the viscous attenuation and  ωo the angular frequency of linear waves without damping and without
forcing.

It is well known that systems obeying a (damped) Mathieu equation with excitation angular frequency Ω  exhibit a
series of resonance conditions for response angular frequencies ω equal to nΩ/2, n being an integer. These solutions are
expressed in term of the Mathieu functions together with a dispersion relation involving the so-called Floquet exponent.
Mathieu functions are transcendent and cannot be expressed in term of simple functions in closed form. In order to
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understand qualitatively these solutions we consider approximations in the limit of small forcing and dissipation.
Assuming F << 1 and σ  ~ 0(F), an approximate dispersion relation can be found for the sub-harmonic response ω=Ω/2.

We obtain ωo/ω ≈ 1± (F/4)² - (σ/ω)². We note that two wavenumbers k± correspond to the same angular frequency ω=Ω
/2, and that both forcing and dissipation intervene in the relation of dispersion. Then, assuming |kA| << 1 and seeking an

approximation in the form  η (t) = Re{A(t)}cos(kx) + 0(A²), an amplitude equation can be derived in the form [6]  
dA
dt  +

(σ - iωo) A + 
iFΩ

8  eiΩtA* + 
iKΩk²

2  |A|²A = 0, with K = 
2 - 6s - 9s2 - 5s3

16(1+s)(1-s)²  (where s = sech(2kd)) [7]. A important fact is that

the sign of the nonlinear term (via the sign of K) depends on the depth: we have K >0 for short waves and  K<0 for long
waves [7]. This plays a key role for the stability of the solutions. In order to deal with an autonomous amplitude equation,

we define B = Aexp(
iπ
4  - 

i
2

Ωt) and the previous equation is recast into 
dB
dt  = (iωo - 

i
2

Ω - σ) B + 
FΩ
8 B* - 

iKΩk²
2  |B|²B. Then,

looking for solutions of the form B=aexp(iπ/4 -iδ), we obtain ωo/ω ≈ 1 + (Ka)² ± (F/4)² - (σ/ω)². Clearly, only the rest
solution B=0 can exist if F<F↓= 4σ/ω. In the other hand, there are two possible nonzero solutions in the range F↓< F< F↑

= 4ω-1 (ωo- ω)² + σ². In order to study the stability of these solutions, we introduce a small perturbation into the
stationary solutions of the above amplitude equation and we look for the eigenvalues of the linearized system of equations
obeyed by the perturbation. The stability analysis that we conduct below resembles that carried out in [8] for the
parametric pendulum. However, major differences are that the eigenfrequency of a freely-oscillating pendulum is unique,
whereas free, unforced, water waves exhibit a continuous spectrum of mode frequencies and that the sign of the nonlinear
term depends here on the depth. We finally find that, for short waves (K>0), the only stable solutions are the rest one if
F< F↑, and a nonzero amplitude solution (with ω < ωo) if F > F↑. The bifurcation is here surcritical. In the other hand,

for long waves (K < 0), the only stable solution is the flat one if F < F↓, there are two stable solutions in the range F↓< F<

F↑  (the rest solution, and a nonzero amplitude solution with ω < ωo), and only one stable solution (a nonzero amplitude

solution with ω < ωo) if F> F↑. In the latter case of long waves,  the range F↓< F < F↑ corresponds to a hysteretical

region, with both the possibilities of having a zero or nonzero wave amplitude, according to the forcing history, and the
bifurcation is subcritical [9].

We are now in position to determine  the wave number selected at the instability onset. The minimal forcing

required to destabilize the free surface is F↑ = 4ω -1 (ωo- ω)² + σ², with ω=Ω/2. The first wave to emerge from rest is the

one requiring the smaller value of   F↑, and corresponding to the wavenumber such that ∂F↑ /∂k = 0. In the limiting case

of deep water  (i.e.  d = ∞,  ωo = gk, σ = 2υk², υ being the kinematic viscosity) the most unstable wavenumber k is given

by 2ωo= ω + ω² -16σ². In the opposite limit of long waves (i.e. kd << 1, ωo= gd k, σ=(gd)1/4  kυ/8d² ), the most
unstable wavenumber corresponds to  ωo=  ω - 16 υ /d²  [9].

CONCLUSIONS

We have shown that the dispersion relation of Faraday waves is modified compared to that of free, unforced waves:
forcing and dissipation play a key role in the relation of dispersion. We have also studied the nature of the bifurcation at
the instability onset, and we have shown that the transition is supercritical for short waves and subcritical for long waves.
We have determined the instability threshold, and the selected wavenumber in the two limiting cases of short and long
waves.
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Summary Metamaterials enable the emergence of novel physical properties due to the existence of an underlying structure. Here, we use
the Faraday instability to shape the fluid-air interface with a regular pattern. This pattern undergoes an oscillating secondary instability and
exhibits spontaneous vibrations that are analogous to transverse elastic waves. By locally forcing these waves, we fully characterize the
dispersion relation of these waves and show that a Faraday pattern presents an effective shear elasticity. We propose a physical mechanism
combining surface tension with the Faraday structured interface that quantitatively predicts the elastic wave phase speed, revealing that the
liquid interface can be considered as a mechanical metamaterial.

INTRODUCTION

An artificial material made of organized functional building blocks is called a metamaterial [1] when it exhibits properties
that differ greatly from that of the unit cell. These new physical properties are intrinsic of the presence of an underlying
structure. Here we propose to use pattern formation in non-linear physics to produce the underlying structure of a metamate-
rial. For this purpose, the Faraday instability is often used as a model system. This hydrodynamic instability appears at the
interface between two fluids (in our case an oil-air interface) subjected to a vertical oscillation [2]. Above a certain threshold
of acceleration ac, the surface shows a stationary deformation [Fig. 1(a)] that oscillates at half the excitation frequency. This
pattern is both stable in time and regular in space, with a Faraday wavelength λF defined by the inviscid gravity-capillary wave
dispersion relation ω2

0 = (gkF + σ
ρ k

3
F ) tanh(kFh), where kF = (2π)/λF is the Faraday wavenumber, g is the acceleration

of gravity, σ is the surface tension of the fluid, h the fluid depth and ρ its density. For a square vessel it is most often a square
pattern that is obtained. It becomes unstable and oscillates [3] upon increasing the driving amplitude, and then destabilizes
into a chaotic state.

EXPERIMENTAL SET-UP, VIBRATION OF THE PATTERN

Experimental set-up
Our experimental set-up consisted of a square vessel filled with a thin layer of silicone oil of thickness h = 3 mm. The

vessel is mounted on a vibration exciter and we work with a sinusoidal acceleration a cos 2πf0t with frequency f0 ranging
from 72 Hz to 120 Hz. The pattern is about 25× 25 Faraday wavelengths. A top view of the stable pattern obtained is shown
in Fig. 1(a). Each white dot corresponds to an horizontal slope of the fluid interface, there are thus 4 white spots per Faraday
unit cell.

Spontaneous
Upon increasing the driving amplitude to about twice the threshold value, spontaneous oscillations of the square lattice

appear (Fig.1(d). These oscillations are in-plane modulations of the pattern along its two main directions. They exhibit a
spatial periodicity λ = 4 λF , corresponding to the white segment presented in this figure. We detect each point in-plane
position (x(t), y(t)) using a custom Matlab algorithm. Fourier spectra of the periodic oscillations show a peaked signal at
f = 1.35 Hz. These spontaneous oscillations of the pattern correspond to a supercritical Hopf bifurcation that takes place
close to the threshold of transition to chaos. The spontaneous oscillations occur at a frequency f much lower than the Faraday
frequency fF whereas their spatial wavelength λ ' 2.0 cm is 4 times larger than λF . In our experimental conditions and at
this frequency f , the gravito-capillary dispersion relation gives a wavelength of λgc = 23.26 cm much larger than λ. This
means that the transverse standing wave responsible for the pattern oscillations is governed by a different physical mechanism
that we identify by performing a new set of experiments.

Forced vibrations
We now investigate all the oscillating modes of the Faraday wave pattern by forcing the vibrations of stable square patterns.

We add to the vessel a custom-made forcing device consisting of a comb dipping into the liquid to a small depth [Fig. 1(c)].
The comb is set in motion by a second vibration exciter to oscillate horizontally in the reference frame of the container at
frequencies ranging from 0.5 Hz to 5 Hz. This allows us to generate a sinusoidal oscillation of the line of Faraday peaks
located below the forcing comb. We observe a transversal wave that propagates away from the forcing device at the forcing
frequency f . From the experimental data we extract its wavenumber kT for each value of f . We do the same analysis to extract
kT for waves propagating in the perpendicular direction. Fig. 1(c) presents the dispersion relations f(kT ) (blue triangles for
y direction and red triangles for x direction) that we obtain for f ranging from 0.5 to 10 Hz. We observe a linear increase of
f with kT . A linear fit gives the phase speed of the transverse waves vϕ = 4.60 cm.s−1.

∗Corresponding authors. Email: lucie.domino@espci.fr, antonin.eddi@espci.fr
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Figure 1: (a) Top view of the stable square pattern. The white segment has a length equal to λF . (b) Top view of the oscillating
Faraday pattern. The white segment has a length equal to 4λF , which is the wavelength of the spontaneous oscillations. (c)
Device used to force the vibrations of the Faraday pattern. Plain black arrow shows the vertical motion of the whole vessel,
dotted white arrow shows horizontal vibration of the comb. The width of the vessel is 12 cm. (d) Dispersion relation of the
oscillations f(kT ) and f(kL). Blue down triangles: transversal waves in the y direction. Red up triangles: transversal waves
in the x direction. Open circles: longitudinal waves in the x direction. Plain dark line: linear fit. Dashed line: gravity-capillary
wave dispersion relation. Dotted line and grey background: prediction and its associated uncertainty.

PHYSICAL MECHANISM

We consider a reference state for the surface defined as z0(x, y, t) = A(t) cos
(
2π
λ x
)

cos
(
2π
λ y
)
, with λ = λF

√
2 and

A(t) = A0 cos(2πfF t) the amplitude of the stationary wave. Measurements with a high-speed camera give A0/λF =
13.5% ± 3.5%. This 2D function gives a succession of peaks and crests arranged in a square pattern tilted at 45◦. We apply
a shear strain γ = tan θ to this elementary cell and calculate analytically the surface area S(γ). As γ and −γ give the same
area we can approximate for small deformations S(γ)− S0 = ∆S = 1

2
∂2S
∂γ2

∣∣∣
γ=0

γ2 = 1
2Sγγγ

2. Due to surface tension there

is an energy cost that depends on the applied shear deformation ∆E(γ) = σ∆S(γ). We then define the effective elastic
energy density per unit area WS = σ∆S/λ2 and introduce the effective shear modulus µS of the Faraday wave pattern:
WS = 2µS( 1

2γ)2. Following standard elasticity theory the transverse elastic wave phase velocity cT in a 2D elastic medium
is written

cT =

√
µS
ρS

=

√
σSγγ
ρSλ2

, with ρS the density per unit area, defined as ρS = ρA. (1)

The velocity we obtain is cT = 4.90 ± 0.63 cm.s−1, which is in excellent agreement with the experimental result of
4.60 cm.s−1. We represent in Fig. 1(d) the estimated dispersion relation (dotted line), the grey background representing the
uncertainty due to the uncertainty on A0/λF .

CONCLUSION

In this work, we observe the emergence of a new physical property, namely an effective 2D elasticity, at the air-liquid
interface. Our interpretation reveals that it is intimately related to the existence of a cellular pattern imprinted on the liquid
interface. From this perspective, the Faraday pattern formed at the interface of a newtonian liquid creates a mechanical
metamaterial at macroscopic scale. In the future, we would like to characterize the effect of the structure periodicity on the
elastic waves and investigate in more detail the limit k/kF = 1/2 that would correspond to the edge of the first Brillouin zone
in a crystalline solid material. Another line of future research is to understand if there exists a second elastic constant for the
medium that would correspond to the Poisson ratio of our meta-solid. More generally, other pattern formation instabilities
known in non linear physics could be investigated as a way to form structures for metamaterials.
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Summary Surface waves in a square container due to its resonant horizontal elliptic motion are examined theoretically. The motion of
the container is characterized by the ratio of the lengths of the major and minor axes of its elliptic orbit, and by the angle between the
directions of the major axis and one of its sidewalls. Using the reductive perturbation method, nonlinear time evolution equations for the
complex amplitudes of two degenerate modes excited by this motion are derived with the inclusion of linear damping. Solutions to these
equations expressing regular co-rotating or counter-rotating waves and waves with periodic or chaotic variations in their amplitudes
are obtained. Counter-rotating waves are not observed for the circular motion of the container. Chaotic waves are obtained frequently
when the container’s motion is close to linear.

DERIVATION OF MODEL EQUATIONS

Because of their interesting behavior as an example of nonlinear dynamical systems and their importance in many applica-
tions, surface waves due to the resonant oscillation of a container have been investigated theoretically and experimentally
by many researchers[1, 2]. In the present study, surface waves due to the resonant horizontal elliptic motion (including
linear motion as its special case) of a rectangular container with a square base are investigated, in which the frequency
of the elliptic motion is assumed to be close to the natural frequency of two degenerate modes with the smallest natural
frequency. The main purpose of this study is to examine the dependence of excited surface waves on the parameters
characterizing this elliptic motion with a weakly nonlinear theory, because the waves due to this motion have not been
examined before.
We consider three-dimensional surface waves in a rectangular container of square base with side length πL. In the
following part, all variables are nondimensionalized by the length L and the time

√

L/g, where g is the gravitational
acceleration. We first introduce the Cartesian coordinates (x̃, ỹ, z̃) of an inertial system, where x̃ and ỹ are horizontal
coordinates. We assume that the horizontal displacement of the container is expressed as

x̃ = −a0(cosφ cos θ cosΩt− sinφ sin θ sinΩt), ỹ = −a0(cosφ sin θ cosΩt+ sinφ cos θ sinΩt), (1)

where t is the time, a0 is a positive constant, and θ and φ are constants satisfying 0◦ ≤ θ ≤ 45◦ and 0◦ ≤ φ ≤ 45◦.
Therefore, the container moves with frequency Ω, and the orbit of its motion is elliptic, as illustrated in Fig. 1. Here θ is
the angle between the major axis of the elliptic orbit and the x̃-axis. Since the lengths of the major and minor axes of the
elliptic orbit are expressed as 2a0 cosφ and 2a0 sinφ, respectively, the ratio of the length of the minor axis to the length of
the major axis is tanφ. Next, we introduce Cartesian coordinates (x, y, z) fixed to the container, as illustrated in Fig. 2.
Here, x and y are horizontal coordinates along the sidewalls of the container in which sidewalls are expressed as x = 0, π

Figure 1. Orbit of container’s motion.
Figure 2. Cartesian coordinates fixed
to a container.

(a) (b)

Figure 3. Schematic diagrams of excited surface
waves. (a) Surface waves with M = 0 (and B =

0). (b) Surface waves with M > 0.

and y = 0, π, whereas z is the upward vertical coordinate in which a quiescent surface is defined by z = 0.
We assume the irrotational flow of an incompressible inviscid fluid of depth h. Therefore, using a velocity potential
Φ(x, y, z, t), the x, y, and z components of fluid velocity u are expressed as u = ∇Φ. The displacement of the free
surface is expressed by z = η(x, y, t). Φ and η satisfy governing equations of surface gravity waves including boundary
conditions on the walls of the container.
Now we assume that a0Ω2 = ε3π, where ε > 0 satisfies ε � 1. We then expand Φ and η as

Φ = εΦ1 + ε2Φ2 + ε3Φ3 + · · · , η = εη1 + ε2η2 + ε3η3 + · · · . (2)

We also assume that Ω − H = O(ε2), where H =
√
tanhh is the natural frequency of two degenerate modes of

standing waves called the (1, 0) and (0, 1) modes , and write as Ω = H + ε2δ with the detuning parameter δ. Moreover,
∗Corresponding author. E-mail: mitsu@acs.i.kyoto-u.ac.jp
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in order to describe the slow time evolution of amplitudes and phases of excited surface waves, we introduce the slow
time variable τ = ε2t, and then assume that Φ and η depend on not only t but also τ . Under the above assumption
for Ω, only the (1, 0) and (0, 1) modes are expected to be resonantly excited. Therefore, η1 can be expressed as η1 =
−iH[a(τ) cosx + b(τ) cos y]eiHt + c.c., where a(τ) and b(τ) are functions of τ , and −iHa(τ) and −iHb(τ) are the
complex amplitudes of the (1, 0) and (0, 1) modes.
By using the reductive perturbation method, and including the effect of linear damping, we finally derive the following
nonlinear time evolution equations from the governing equations of surface waves:

{

dA
dτ = −αA− iδA− iR1|A|2A− iR2|B|2A− iR3A

∗B2 + cosφ cos θ + i sinφ sin θ,

dB
dτ = −αB − iδB − iR1|B|2B − iR2B|A|2 − iR3A

2B∗ + cosφ sin θ − i sinφ cos θ,
(3)

where A(τ) = a(τ)e−iδτ and B(τ) = b(τ)e−iδτ , α is the coefficient of linear damping, and ∗ denotes complex conjugate.
R1, R2 and R3 are constants depending only on h. To characterize the energy of excited surface wave, we introduce
a variable E defined by E = H2

2 (|A|2 + |B|2). √
E is a measure of amplitude of these waves. We also introduce

M = i
2H

2(A∗B − AB∗) to characterize the rotation of the wave pattern. We can say that the pattern of excited waves
rotates counterclockwise (clockwise) if M > 0 (M < 0). Schematic diagrams of excited surface waves with M = 0 and
M > 0 are shown in Fig. 3.

RESULTS

For fixed values of α and h, response curves, expressing the depen-
dence of

√
E on δ, for stationary solutions to (3), are computed nu-

merically for several θ and φ. An example of response curve is shown
in Fig. 4. Stationary solutions are characterized by the value of M as
well as the value of

√
E. Non-rotating waves with M = 0 are possible

only for linear motions of the container with φ = 0◦ along the direction
of θ = 0◦ or 45◦. For other values of φ and θ satisfying 0◦ < φ ≤ 45◦

and 0◦ < θ < 45◦, only rotating waves with M �= 0 can be observed.
Moreover, for the elliptic motion of the container with φ �= 0◦, these
waves are classified into co-rotating waves of M > 0, whose direction
of rotation is the same as that of the container, and counter-rotating
waves of M < 0, whose direction of rotation is opposite to that of the
container’s motion. Response curves for such φ are composed of an
unbounded branch extending to δ → ±∞, and a bounded branch of a
closed curve observed within a finite range of δ not far from zero, if φ
is sufficiently small. With increasing φ, this bounded branch shrinks,
and the region of δ where stable counter-rotating waves are observed
on an unbounded or bounded branch becomes smaller for any θ. If φ
is sufficiently close to 45◦ corresponding to a nearly circular motion of
the container, for any θ stable co-rotating waves are observed for all δ
on an unbounded branch and no counter-rotating wave is observed.

Cub

Cub

Cb

H1

S

−6 −2−4

2

2

3

0

0

1

H2

Figure 4. Response curves for α = 0.3, h = π,
θ = 0◦, and φ = 20◦. Solid lines are stationary solu-
tions with M > 0. Broken lines are those with M < 0.
Thick and thin lines denote stable and unstable solu-
tions, respectively. Cub and Cb are unbounded and
bounded branches of response curves, respectively. S

and Hj (j = 1, 2) denote the points of saddle-node bi-
furcation and Hopf bifurcation, respectively.

For θ = 0◦, non-stationary solutions with chaotic or periodic slow variations in the amplitude and phase of excited surface
waves are observed for δ within the region of no stable stationary solutions. These solutions are either uni-directionally or
bi-directionally rotating waves. Chaotic solutions are observed more frequently for smaller φ. Moreover, with increasing
φ, the region of δ where chaotic or periodic solutions of bi-directionally rotating waves are observed tends to shrink and
then disappears. Only periodic solutions of uni-directionally rotating waves are observed for all the δ within the region
of no stable stationary solutions if φ is sufficiently large. Some of the transitions of non-stationary solutions associated
with the variation in δ and the multiplicity of these solutions can be explained from a complicated branching of periodic
solutions.
Finally, stable stationary and non-stationary solutions for the linear motion of the container with θ = 0◦, 30◦ and 45◦

are compared with the experimental results by Ikeda et al.[3] The wave amplitudes at two measurement points and the
rotation of the wave pattern for several forcing frequencies observed in this experiment agree fairly well with our results.
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NONLINEAR ACOUSTICS IN BRASS INSTRUMENTS

James McTavish1 and Edward Brambley ∗1

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United
Kingdom

Summary Since the work of Stokes in 1848 it has been well known that sound propagating over large distances begins to distort due to
the accumulation of small nonlinear effects. It can be shown that plane sound waves in a straight duct will eventually steepen to form
discontinuous shocks (in the absence of viscosity). More recently experiments have shown that this distortion and the resulting shock
waves may be responsible for the characteristic “brassy” sound of trombones and trumpets - especially when played at louder volumes [1].
The mathematics however, describing this nonlinear behaviour in ducts with curvature - such as the trombone resonator - remains little
understood. Our work extends the Multimodal Method of Félix and Pagneux [2] [3] with the introduction of a ‘nonlinear admittance’ term
coupling pressure and velocity modes to give a description of nonlinear behaviour in ducts with curvature.

METHOD OUTLINE

Beginning with the compressible Euler equations, we consider small perturbations of pressure, density and velocity about
a state of rest, where the perturbations are (in non-dimensional variables) of the order of the Mach number M < 1 which
is assumed to be small but finite. The mass and momentum conservation equations are then expanded correct to order M2

so that only quadratic nonlinearities are considered. A Taylor expansion of the equation of state at constant entropy is also
considered, relating the pressure and density (also correct to O(M2)). This is used to eliminate density terms from the
governing equations. The pressure and velocity perturbations are then expanded into a temporal Fourier series and a basis of
the transverse duct modes of a straight duct

p′ =
∞∑

a=−∞

∞∑
p=0

P a
p (s)ψp(r⊥)e

−iaωt, u′ =
∞∑

a=−∞

∞∑
p=0

Ua
p(s)ψp(r⊥)e

−iaωt

where we are using a coordinate system based on the arc-length s along the centreline of a general duct (including the
possibility of varying curvature) and transverse components perpendicular to the longitudinal direction. The transverse duct
modes satisfy the eigenvalue problem∇2

⊥ψp+a
2
pψp = 0 subject to the no penetration condition on the duct wall n·∇⊥ψp = 0.

Following the work of Félix and Pagneux, the transverse velocity components are eliminated to obtain two equations - one
for the pressure modal amplitudes and one for the longitudinal velocity modal amplitudes as they vary through the duct. Due
to the presence of evanescent modes these equations are numerically unstable. To overcome this, a nonlinear relation between
pressure and velocity modes is defined in terms of the linear admittance Y a

pq(s) of Félix and Pagneux and a new nonlinear
admittance term Yab

pqr(s) representing the O(M2) correction

Ua
p =

∞∑
q=0

Y a
pq(s)P

a
q +

∞∑
b=−∞

∞∑
q,r=0

P a−b
q P b

rYab
pqr

By taking derivatives, substituting the governing equations and considering orders of magnitude, separate equations for Y ′

and Y ′ can be found, and by applying a suitable boundary condition downstream the equations can be numerically solved to
the inlet and the admittance found everywhere along the duct. Using the admittance and the governing equations, an equation
for just the pressure can be found. By numerically integrating from a chosen source condition at the inlet, the pressure can be
found throughout the duct.

RESULTS

Numerical results of the nonlinear multimodal method have shown good agreement with the analytical Blackstock solution
[4] for a straight duct. Figure 1 shows a direct comparison of the modal amplitudes at various distances down the duct
(normalised in terms of the shock formation distance σ = x/xshock) for an initially sinusoidal planar waveform. Qualitative
results are also in good agreement with the non-planar or angled planar waveforms observed by Fernando et. al. [5]. Figure 2
shows the characteristic straight but angled shock fronts of a planar wave propagated at 84◦ degrees to the normal, at the point
of shock formation.

As an interesting aside, in certain cases the method may be used to tackle non-linear inverse problems. Figure 3 shows
the modal amplitudes of a waveform which propagates into a sinusoidal waveform (all the harmonics transfer their energy to
the fundamental) before steepening again. This initial waveform was found by applying the inverse method to a sinusoidal
waveform.

∗Corresponding author. Email: E.J.Brambley@damtp.cam.ac.uk
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Figure 1: Numerical solution using the nonlinear multimodal method (blue) against analytic Blackstock solution (red)
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Figure 2: Pressure scan against time for a guided shock at the point of formation
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Figure 3: Modal amplitudes against propagation distance showing energy being transferred to the fundamental and back again

CONCLUSION

This method extends the work of Félix and Pagneux to the weakly nonlinear case as well as allowing for more general duct
systems of non-constant curvature . It also has advantages over similar nonlinear methods for a straight duct (such as that by
Fernando et. al.) in that it can solve for a nonlinear superposition of forwards and backwards propagating waves (determined
by the radiation condition at the outlet) as well as being able to stably solve for evanescent waves.

References

[1] Hirschberg, A., Gilbert, J., Msallam, R., Wijnands, A. P. J.: Shock waves in trombones. J. Ac. Soc. Am. 99:1754-1758, 1996.
[2] Félix, S., Pagneux, V.: Sound propagation in bends: A multimodal approach. J. Ac. Soc. Am. 110:1329-13337, 2001
[3] Félix, S., Pagneux, V.: Multimodal analysis of acoustic propagation in three-dimensional bends. Wave Motion 36:157-168, 2002
[4] Blackstock, D.: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Ac. Soc. Am. 39:1019-1026, 1966
[5] Fernando, R., Druon, Y., Coulouvrat, F., Marchiano, R.: Nonlinear waves and shocks in a rigid acoustical guide. J. Ac. Soc. Am. 129:604-615, 2011

1605



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

OBSERVING AND UNDERSTANDING SHORT GRAVITY WAVES

Fabrice Ardhuin ∗1, Charles Peureux1, Pedro V. Guimaraes1,2, Alvise Benetazzo3, Filipo Bergamasco4, Fabien
Leckler5, and Vladimir Dulov6
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2Ecole Centrale de Nantes, France
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4Universita Ca’ Foscari, Venezia, Italy
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6Marine Hydrophysics Institute, Sebastopol, Crimea, Russia

Summary The energy level and its directional distribution are key observations for understanding the energy balance in the wind-wave
spectrum between wind-wave generation, non-linear interactions and dissipation. Here, properties of gravity waves are investigated from a
fixed platform in the Black sea, equipped with a stereo-video system that resolves waves with frequency f up to 1.6 Hz, and wavelengths
from 0.3 to 12 m. We made observations during 3 experiments in 2009, 2011 and 2013, in conditions with wind speeds ranging from 2 to
17 m/s, from the deep water platform of Katsiveli, operated by the Sebastopol Marine Hydrophysics Institute, off the coast of Crimea in the
Black sea. The observations allow a measurement of the full frequency-wavenumber spectrum, revealing a strong variability of the shape
of the short wave spectrum. This variability is possibly related to the wind speed and effects of the dominant waves. Possible processes that
could reduce the input of energy from the wind or enhance the dissipation may explain the data and are under investigation.

SHORT WAVES GO IN MANY - BUT NOT ALL - DIRECTIONS

We take advantage of recent improvements in stereo-video processing [5, 4, 3] to investigate the properties of short gravity
waves, with wavelengths between 10 and 0.3 m, and young wave ages.
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Figure 1: Case with wind speed of 13 m/s and a dominant wave frequency fp = 0.33 Hz. Slices of the double-sided spectrum
for positive apparent frequencies 0.7, 0.8, 1.0, 1.2, 1.4 and 1.6 Hz. The energy appears in the direction from where it is
coming. For each panel the color scale spans 30 dB with the dark red corresponding to the power indicated on the figure (e.g.
-30 dB) relative to 1 m4/Hz. Note that 1.4 and 1.6 Hz are twice 0.7 and 0.8 Hz, so that the first harmonic of the components in
(a) and (b) appear at approximately twice the wavenumbers in panels (e) and (f). In each panel, the linear dispersion relation
without current is plotted in black, in white with a uniform current U = 0.15 m/s towards the trigonometric angle 99 degrees.
The white dashed line marks approximately the separation between the linear part of the spectrum and the faster non-linear
components.

The analysis of a first case recorded in 2011 was presented in [9] and illustrated in figure 1 revealed, as shown in figure
1, (1) a very strong bimodal distribution of the directional spectrum for frequencies above 3 times the dominant frequency
(2) a deep gap in the wind direction at these high frequencies, with a spectral density less than 25% of the peaks at the same
frequency (3) a significant amount of energy traveling in opposite directions, capable of generating acoustic and seismic waves
[1] (4) at frequencies above 4 times the dominant frequency, the energy is mostly contained in second order harmonics that
are well predicted by the full second order spectrum [7]

∗Corresponding author. Email: ardhuin@ifremer.fr
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Figure 2: Sections of the 3D wave spectrum at frequencies 0.8 to 1.5 Hz and fitted linear dispersion relation with current (red
lines), compared to dispersion relation without current (black). This other event was recorded on 29 September 2013.

WHY?

How general are these features and how can they be explained? A particularly puzzling pattern is the very low energy in
the wind direction at high frequencies. Short waves can be influenced by longer waves in many ways. Banner and Phillips
[2] had observed and explained that in the laboratory, the wind produces a strong shear of the current near the sea surface that
can facilitate wave breaking and thus potentially reduce the energy in the downwind direction compared to other directions.
Using or data we can estimate the current that advects the different frequencies and, using wave dispersion theory for random
waves [8] we can estimate a likely vertical shear of the current.

Although the analysis is underway, preliminary results (figure 2) for cases with moderate winds (8 m/s and fp = 0.4 Hz
and measured in 2013) show that the current is almost constant for all wave frequencies, suggesting that there may actually be a
vertical shear of the Eulerian mean current that opposes the shear of the Stokes drift to produce a Lagrangian mean current with
nearly zero shear, yet the directional spectrum is again strongly bimodal. This may not be general and previous observations
with coarser data concluded otherwise [3]. There can also be effects of the long waves on the short wave interactions with
the wind, or short wave modulation by long waves. The spectrum is more narrow and less bimodal for strong wind cases (17
m/s).

CONCLUSIONS

Observations of the full frequency-wavenumber spectrum using stereo-video imagery are revealing new details on the
shapes and statistical properties. In real sea conditions the current shear appears to be minimal, at least compared to extrap-
olation from laboratory experiments, probably due to wave-induced breaking which is more intense for the more developed
waves found in field conditions. We are now looking for explanations for the very broad and strongly bimodal directional
distributions observed at low to moderate wind speeds. Numerical simulations (not shown here) of the 4-wave interactions do
produce a bimodal spectrum but the minimum in the wind direction is much less marked than in our field observations. We
suspect that some yet-to-be-indentified process is either enhancing the dissipation in the wind direction or reducing the source
of wind energy to the short waves.
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SPECTRAL EVOLUTION OF WEAKLY NONLINEAR RANDOM WAVE FIELDS: KINETIC
EQUATIONS VS DIRECT NUMERICAL SIMULATIONS

Victor Shrira1 and Sergei Annenkov ∗1

1Department of Mathematics, Keele University, Newcastle under Lyme, UK
Summary We examine how accurately the kinetic equations describe evolution of random weakly nonlinear waves in fluids and solids.
To this end we simulate numerically long-term evolution of wave spectra without forcing using three different models: (i) the classical
kinetic equation (KE); (ii) the generalised kinetic equation (gKE) valid also when the wave spectrum is changing rapidly; (iii) the DNS
based on the Zakharov integrodifferential equation for water waves (DNS-ZE). (DNS-ZE does not rely on any statistical assumptions.
As the initial conditions we choose two spectra with the same frequency distribution and different degrees of directionality. All three
approaches demonstrate very close evolution of integral characteristics of spectra. However, there are notable systematic differences (e.g.
the broadening of angular spectra is much faster for the kinetic equations), which suggests the presence and significance of coherent
interactions not accounted for by the established closure for the kinetic equations.

INTRODUCTION

The challenge of describing wave turbulence, i.e. evolution of random weakly nonlinear dispersive waves in fluids (and
solids) in various contexts is a major open fundamental problem despite being intensively studied theoretically and experi-
mentally for more than fifty years, e.g. [Nazarenko (2011)]. In contrast to the classical hydrodynamic turbulence, there is a
well-established general formalism for treating weakly nonlinear wave fields that exploits smallness of nonlinearity and subtle
assumptions about quasi-Gaussianity of a statistically homogeneous wave field. This approach leads to a closed equation for
the second statistical momenta of the field which we will refer to as the kinetic equation (KE). Although the theory based upon
the KE has been able to predict the major features of wave field evolution (e.g. [Annenkov and Shrira (2006)]) and is widely
used (e.g. [Zakharov et al 1992 ]). However the basic question — to what extent the theory corresponds to actual behaviour
of physical systems — remains open. Here we address it by performing a detailed comparison of predictions of the KE and its
generalization (gKE) with the results of direct numerical simulations (DNS) employing the algorithm specially designed for
long term evolution of random weakly nonlinear wave fields [Annenkov and Shrira (2013)]. For certainty and without much
loss of generality we perform these comparisons for weakly nonlinear water waves.

To make the comparisons maximally clean and simple and retain as much generality as possible we do the following. We
take as the starting point the equation of motion in the form of the ”four-wave” Zakharov equation

i
∂b0
∂t

= ω0b0 +

∫
T0123b

∗
1b2b3δ0+1−2−3 dk123 , (1)

where the wave field is expressed in terms of canonical variables b(k) linked to the Fourier harmonics of the surface elevation

ζ(k) and potential ψ(k): b(k) = 1√
2

{√
ω(k)
k ζ(k) + i

√
k

ω(k)ψ(k)

}
+ O(ε), here asterisk means complex conjugation,

ω(k) =
√
g|k| is the linear dispersion relation, the compact notation used designates arguments by indices, e.g. ω0 = ω(k),

T0123 = T (k,k1,k2,k3), δ0+1−2−3 = δ(k + k1 − k2 − k3). Equation (1) is a generic equation describing dynamics of
weakly nonlinear waves with the fourth and higher order terms truncated. The specificity of each physical problem is only in
the dispersion relation ω(k) and the interaction coefficient T0123. We use the expressions for T0123 derived for water waves
by [Krasitskii(1994)]. Note that b(k) are not wave amplitudes in original variables, but appear as a result of a canonical
transformation (see [Krasitskii(1994)]). The statistical theory for waves is most naturally formulated in terms of b(k).

The wave field is taken to be statistically homogeneous in space, which implies ⟨b(k, t)b∗(k1, t)⟩ = n(k)δ(k − k1) ≡
nkδ01; here ⟨b(k, t)b∗(k1, t)⟩ means ensemble averaging. Under the key assumptions that wave field remains quasi-Gaussian
over the timescale of evolution the higher statistical moments can be expressed in terms of the spectra (the ”closure hypothe-
sis”) and spectral evolution can be described by a closed kinetic equation

∂n0

∂t
= 4π

∫
T 2
0123f0123δ0+1−2−3δ(ω0 + ω1 − ω2 − ω3) dk123, (2)

where n0 is the second-order correlator, < b∗0b1 >= n0δ0−1, and f0123 = n2n3(n0 + n1) − n0n1(n2 + n3). This classical
kinetic equation (KE) in the derivation employs large time limit. The equation without this approximation allowing for much
faster evolution, the generalized kinetic equation (gKE), reads (see [Annenkov and Shrira (2013)])

∂n0

∂t
= 4Re

∫ {
T 2
0123

[∫ t

0

e−i∆ω(τ−t)f0123 dτ

]
− i

2
T0123J

(1)
0123(0)e

i∆ωt

}
δ0+1−2−3 dk123 . (3)

where ∆ω = ω0 + ω1 − ω2 − ω3 and the correlator J (1)
0123(0) = ⟨b∗0b∗1b2b3⟩ is specified by the initial conditions.
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SIMULATIONS AND RESULTS

We study numerically the long-term evolution of wave spectra without forcing using three different models. For the
KE simulations we employ the WRT code kindly provided by G. van Vledder. For the gKE simulations we use a novel
algorithm described in [Annenkov and Shrira (2015)]. The DNS based on the Zakharov equation with ensemble averaging (1)
employs the algorithm described in [Annenkov and Shrira (2013)]. To examine the role of focussin/defocussing nonlinearity
we consider two physical systems described by the the Zakharov equation (1) differing by the sign of the interaction coefficient
only, i.e. with focussing and de-focussing nonlinearity.

For initial conditions we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum
with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected
in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the
cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both
spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band
modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use
these results to validate the initial stage of our DNS-ZE simulations. The advantage of the DNS-ZE method is that it allows
to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE.

In the first 150 periods, we find a nearly perfect agreement between our DNS-ZE results and simulations by Xiao et al
(2013), both for the evolution of frequency spectra and for the directional spreading. Over larger times all three approaches
demonstrate very close evolution of integral characteristics of spectra, approaching at large times the theoretical asymptotes
of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable
differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-
dimensional spectrum A the KE overestimates the amplitude of the spectral peak. The DNS-ZE results show considerably
wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much
larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the maximal rates of change of the spectra
obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of
evolution, rather than the statistical timescale of both kinetic equations. The DNS shows that the spectral evolution does not
depend on whether the nonlinearity is focussing or de-focussing.

CONCLUSIONS

The results show the presence and significance of coherent interactions not accounted for by the established closure for
the kinetic equations, which implies that the fundamental issue of closure for random wave field has to be revisited.

References

[Annenkov and Shrira (2006)] Annenkov, S. Y. , Shrira V. I.:Direct numerical simulation of downshift and inverse cascade for water wave turbulence. Phys.
Rev. Letters, 96, 204501, 2006.

[Annenkov and Shrira (2013)] Annenkov, S. Y. , Shrira V. I.:Towards a new picture of wave turbulence. Advances in wave turbulence. World Scientific,
2013.

[Annenkov and Shrira (2015)] Annenkov, S. Y. , Shrira V. I.:Modelling the Impact of Squall on Wind Waves with the Generalized Kinetic Equation. J. Phys.
Oceanogr., 45, 807812, 2015.

[Krasitskii(1994)] Krasitskii, V. P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 1–20, 1994.
[Nazarenko (2011)] Nazarenko, S. V. Wave Turbulence. Lecture Notes in Physics, 825, Springer, 2011.
[Onorato et al 2008] norato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., Osborne, A. R., Pakozdi, C., Serio, M.,

Stansberg, C. T., Toffoli, A. & Trulsen, K.: Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-
dimensional wave basin. J. Fluid Mech. 627, 235257, 2009.

[Xiao et al 2013 ] Xiao, W., Liu, Y., Wu, G., and Yue, D. K. P.: Rogue wave occurrence and dynamics by direct simulations of nonlinear wave–field
evolution. J. Fluid Mech. 720, 357392, 2013.

[Zakharov et al 1992 ] Zakharov, V. E., L’vov,V. S., Falkovich, G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer Series in Nonlinear
Dynamics, 1992.

1609



XXIV ICTAM, 21-26 August 2016, Montreal, Canada
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CENTIMETER-SCALE LANGMUIR TURBULENCE
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2University of South Florida, Florida, USA

Summary When wind starts to blow over a quiescent air-sea interface, both currents and surface waves are initially generated. The inter-
action between the wind-driven waves and currents leads to the generation of Langmuir circulations (LC) consisting of counter rotating
vortices aligned with the wind. Shortly thereafter, Langmuir turbulence (LT), that is multiple scales of LC, appear. In the field, LT length
scales range from several centimeters when short capillary waves first appear up to tens of meters when the spectrum of waves broadens. We
present results from a laboratory experiments where the evolution centimeter-scale LT are investigated. We present surface infrared imagery
and subsurface Particle Image Velocimetry. We show that evolution from organized small scale LC to LT leads to intense surface mixing
thereby disrupting the near surface molecular layers. Subsurface turbulence measurements are presented in the context of scalar (gas) flux
through the air-water interface.

INTRODUCTION

Succinctly, when wind blows over an initially quiescent air-sea interface, it first generates surface currents, then short
capillary waves which in time coexist with longer waves as part of a broad spectrum of waves. The interaction between the
wind-driven waves and shear current leads to Langmuir turbulence characterized by a spectrum of Langmuir circulation (LC)
consisting of counter rotating vortices roughly aligned in the direction of the wind. In the field, the typical length scale of
the vortices ranges from several centimeters when short capillary waves first appear up to tens of meters when the spectrum
of waves broadens. In this laboratory study, we focus on the centimeter-scale LC. These small scale LC are generated very
quickly with the gustiness in the wind field (and disappear very quickly as well), thereby providing, over intermittent and
repeated gust events, very intense turbulent bursts at the surface which may very well dominate the average surface renewal
processes. These renewal events are critical to our understanding of air-sea scalar fluxes. To date, direct numerical simulations
(DNS) of small scale LC and their evolution has not been made and measurements of surface renewal time scales and other
parameters influenced by these coherent structures have not been performed.

The overarching goal of this study is to characterize the effect of small scale Langmuir turbulence on the thin molecular
boundary layers beneath the air-sea interface. In this study, we are particularly interested in the effects of the LT on the thermal
molecular layer (i.e. the cool skin) and on the fluxes of slightly soluble gases across the interface. Accordingly, we set out to
perform a laboratory study to capture the growth stages of LC and transition to Langmuir turbulence during the wave growth
process.

a) Along-wind direction b) Cross-wind direction

Figure 1: Sketch of the wind/wave imaging system, positioned at a fetch of 10 m, shown for both the along-wind and cross-
wind setups. The PIV setup consists of PIV cameras recording underwater motion, a surface detection camera, and cameras
for the optical wave gauge system. Illumination is provided by two flashed Nd-Yag lasers for the surface detection and the
PIV. Both surface detection and optical wave gauge are using laser-induced fluorescence.

∗Corresponding author. Email: fveron@udel.edu
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RESULTS

The experiments were performed in the large wind wave tank of the University of Delaware. The tank’s overall length is
42 m with a 37 m long working section. It is 1 m wide and 1.25 m high. Water depth was kept at 0.71 m to allow sufficient
air space above the surface. The recirculating wind tunnel was computer-controlled and programmed to accelerate the wind
from rest to a final value of 10 m/s over times ranging from 30 s to 60s. The main data acquisition system consisted of several
imaging systems positioned at a fetch of 10 m (figure 1). The main Particle Image Velocimetry (PIV) setup consists of PIV
cameras recording underwater velocity, a surface detection camera, and cameras for the optical wave gauge system. PIV and
surface detection illumination was provided by two flashed Nd-Yag lasers. Both surface detection and optical wave gauges
used laser-induced fluorescence. The overall system was similar to that used by [3]. The PIV system was also rotated 90o

to measure cross-wind velocity fields (figure 1b). In that case, the camera was placed in a waterproof underwater housing.
In addition, the surface motion was detected using an Infrared camera (not shown) along with a CO2 laser which laid down
thermal markers on the surface. This led to a direct measure of the Lagrangian velocity at the interface (see [1] and [2]).

We completed a series of experiments consisting of 4 different forcing conditions. In each case, following the start of the
wind, (a) the surface accelerates and momentum is diffused in the water column under the effect of molecular viscosity; (b)
surface waves are then generated and shortly thereafter (c) LC appear in the form of well organized counter rotating vortex
pairs (figure 2); (d) the LC become unstable and the transition to LT occurs while the wave field is still growing. The LC (and
subsequently LT) disrupt the near surface molecular diffusive processes. The infrared surface data showed that the surface
cool skin is violently mixed while concurrently, the subsurface motion (measured with the PIV) becomes turbulent and the
momentum originally confined to the near surface laminar (molecular) shear layer is mixed down into the water column.
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Figure 2: Composite image showing the surface infrared image (unscaled gray color - white is hot, black is cold) where
the LC can clearly been seen, as well as fluorescent dye concentration (inner panel) and the velocity (outer panel) measured
with the PIV system. The white line on the surface shows the location (on the surface) of the subsurface PIV measurements.
Dimensions are shown in cm.

CONCLUSIONS

We have performed a comprehensive series of laboratory experiments on the generation of the LC, and their evolution
into LT. In this presentation, we show that the initial generation of the LC disrupts the surface molecular layers of heat and
momentum thereby providing an efficient and rapid near surface mixing mechanism. Surface infrared measurements confirm
that the heat (and gas) air-water transfer velocity is greatly influenced by the presence of the LC. In turn, subsurface turbulence
measurements reveal that the LC first appear in as downward jets (figure 2) which subsequently become unstable and evolve
into fully developed LT. We will present results linking the sub-surface turbulence measurements with estimates of the surface
fluxes and we will frame the results in the context of air-sea interactions.
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Summary We propose a variant of the fully-nonlinear weakly-dispersive Serre–Green–Naghdi equations involving a free parameter that

can be chosen to improve the dispersion properties. Contrary to other models of this kind found in the literature, the one proposed here

conserves the energy, thanks to the approximation procedure based on a variational principle. In addition to improved dispersion properties,

the new model admits limiting waves with angular crests. Numerical comparisons with the Euler equations show that the new model is

substantially more accurate than the classical Serre equations, specially for long time simulations and for large amplitudes.

INTRODUCTION

Water waves in channels and oceans are usually described by the Euler equations. Due to their complexity, several

approximate models have been derived in various wave regimes. In shallow water, the main restriction comes from the ratio

between the characteristic wavelength and the mean water depth d. Many approximate equations have been derived for waves

in shallow water, such as the Korteweg–deVries (KdV) equation for unidirectional waves, the Saint-Venant equations (SVE)

for bidirectional non-dispersive waves and many variants of the Boussinesq equations (BE) for dispersive waves propagating

in both directions [1]. Considering long waves propagating in shallow water but without assuming small amplitudes, Serre

[2] derived a so-called fully-nonlinear weakly dispersive system of equations which, after further approximations, include the

KdV, BE and SVE as special cases. For 2D (1D horizontal) gravity waves over a horizontal bottom, these equations are

ht + ∂x[hu ] = 0, ∂t[hu ] + ∂x
[

hu2 + 1

2
g h2 + 1

3
h2 γ

]

= 0, (1)

where h is the total water depth (bottom to free surface), u is the depth-averaged horizontal velocity, g is the acceleration

due to gravity and γ = h(u 2
x − uxt − uuxx) is the fluid vertical acceleration at the free surface. Serre’s equations represent

a substantial improvement with respect to the Boussinesq theory, but many shallow water phenomena involve significant

dispersive effects that are not well described by Serre’s equations.

One possibility to improve the Serre model is by including higher-order terms. However, this modification yields higher-

order derivatives in the model equations, making its numerical resolution (and thus its applicability) rather challenging. Ac-

tually, the numerical resolution of these high-order Boussinesq-like equations is slower (and less accurate) than that of the

irrotational Euler equations, at least for simple (e.g. periodic) domains.

An alternative way of improving the classical model consists in introducing a free parameter into the model that can be

appropriately chosen to improve some of the desired properties, in particular the dispersion relation. This can be achieved, for

example, by replacing the depth-averaged velocity variable by the velocity of the fluid evaluated at a certain depth in the bulk

of the fluid. Another possibility to introduce a free parameter is obtained from arbitrarily-weighted averages of different (but

of same order) approximations of some quantities. All the improved models of this kind we are aware of (e.g. [3, 4, 5, 6]) have

a common drawback: they do not conserve the energy. Thus, one may improve the dispersive properties of the model but, on

the other hand, loses the energy conservation property. For many applications, specially in the case of long time simulations,

the disadvantages can crucially override all the advantages. In the present work, we address this issue, proposing a method for

deriving an improved version of the Serre equations that preserves the energy, like the original Serre model.

IMPROVED MODEL

The classical Serre equations can be obtained from a variational principle involving the Lagrangian density

L1 = 1

2
hu2 + 1

6
h3 u 2

x − 1

2
g h2 + {ht + [hu ]x }φ, (2)

where φ is a Lagrange multiplier introduced to enforce the mass conservation. To the same order of approximation, an

alternative Lagrangian density can be introduced as [7]

L2 = 1

2
hu2 +

(

1

6
+ 1

4
β
)

h3 u 2

x − 1

2
g h2

(

1 + 1

2
β h 2

x

)

+ {ht + [hu ]x }φ, (3)
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Figure 1: Random wave field.

’—’: Euler; ’−−’: improved Serre equations (β = 2/15); ’− · −’: classical Serre equations (β = 0).

where β is a free parameter at our disposal. From L2, one can easily derive the improved Serre conservative equations

ht + ∂x[hu] = 0, (4)

qt + ∂x
[

uq − 1

2
u2 + gh−

(

1

2
+ 3

4
β
)

h2u 2

x − 1

2
βg(h2hxx + hh 2

x )
]

= 0, (5)

∂t[hu] + ∂x
[

hu2 + 1

2
gh2 + 1

3
h2Γ

]

= 0, (6)

∂t
[

1

2
hu2 + (1

6
+ 1

4
β)h3u 2

x + 1

2
gh2

(

1 + 1

2
βh 2

x

)]

+

∂x
[{

1

2
u2 + (1

6
+ 1

4
β)h2u 2

x + gh
(

1 + 1

4
βh 2

x

)

+ 1

3
hΓ

}

hu+ 1

2
βgh3hxux

]

= 0, (7)

where q = φx = u −
(

1

3
+ 1

2
β
)

h−1
[

h3ux

]

x
and Γ =

(

1 + 3

2
β
)

h
[

u 2
x − uxt − uuxx

]

− 3

2
βg

[

hhxx +
1

2
h 2
x

]

. Thus, these

modified Serre’s equations conserve mass (4), tangential momentum at the free surface (5), momentum flux (6) and energy

(7), for all values of the parameter β.

To the linear approximation, the dispersion relation of the improved Serre equation is

c2

g d
=

2 + β (kd)2

2 + (2
3
+ β) (kd)2

≈ 1 −
(kd)2

3
+

(

1

3
+

β

2

)

(kd)4

3
, (8)

that should be compared with the exact relation c2/gd = tanh(kd)/kd = 1− (1/3)(kd)2+(2/15)(kd)4+ · · · , where c is the

phase speed and k is the wavenumber. The parameter β can be chosen such that the dispersion relation matches the exact one

up to the highest possible order in its expansion around k = 0. Thus, we have to take β = 2/15 to ensure that the two relation

match up to k4. This choice of β improves significantly the model, specially when high frequencies are involved (Figure 1)

but also for large amplitudes.

CONCLUSIONS

An improved Serre-like equations model has been derived. In addition to better dispersion properties and energy conser-

vation, these equations represents a mild modification of the classical model. Therefore, they can be easily incorporated into

existing numerical codes.

Several properties of this new model will be discussed at the conference, as well as generalisations in 3D and varying

bottom. It should be noted that our approach is rather general and thus not limited to model waves in shallow water.
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SummaryA multiscale asymptotic theory is constructed to explain the occurrence ofstrong acoustic streaming – with time-mean flow
velocities comparable to the instantaneous fluid velocities induced by a standing sound wave – as observed in high-intensity discharge
lamps. Neither the magnitude nor the orientation of the streaming velocity field in these lamps is correctly predicted by classical theories.
A new theory of acoustic streaming is developed here by analyzing two-dimensional flow of a density-stratified ideal gas in a channel in the
asymptotic limit of high-frequency acoustic waves. The analysis yields a novel wave/mean-flow interaction system that correctly predicts
the direction and magnitude of the streaming flow. The streaming is shown to be baroclinically rather than viscously driven.

INTRODUCTION

Acoustic streaming, the time-averaged, emergent Eulerian flow driven by time-periodic sound waves, is a classical topic
in wave/mean-flow interaction theory with a long and distinguished history in fluid dynamics [1]. Streaming flows have
been investigated extensively over the last century beginning with Rayleigh’s seminal work [2] and are crucial to a variety
of technologies ranging from the measurement of absorption coefficients in common fluids, to heat transfer enhancement to
or from oscillating particles, to mass transport in biomedical devices. In all these applications, streaming speeds are much
smaller than instantaneous velocities; i.e. the streaming is comparably weak. Indeed, in classical Rayleigh streaming theory,
which describes the streaming induced by the viscous retardation of standing sound waves in thin boundary layers adjacent to
channel walls, the ratio of the typical streaming speed to the maximum fluctuating wave-induced velocity isO(S−1), where
the Strouhal numberS ≡ a∗/U∗ ≫ 1, a∗ is the sound speed andU∗ is a characteristic speed of a fluid parcel [3].

NON-CLASSICAL ACOUSTIC STREAMING IN HIGH-INTENSITY DISCHARGE LAMPS

Curiously, in high-intensity discharge (HID) lamps,strongacoustic streaming is observed. HID lamps are a highly energy-
efficient type of electrical gas-discharge arc lamp. The arc heats and evaporates metal salts added to the gas, forming a plasma
and thereby greatly reducing power consumption. Owing to the temperature variations within the gas, however, undesirable
buoyancy-driven flows are induced. Sound waves, selectively excited by modulating the frequency of the current running
through the gas, can nonlinearly interact to drive time-mean flows that are able to counteract theO(50) cm/s buoyancy-driven
flows – speeds that arecomparablewith the acoustic-wave velocity fluctuations. Crucially, Dreeben & Chini [4] demonstrate
via numerical simulations and theoretical arguments that neither the magnitude nor the orientation of the cellular streaming in
HID lamps is correctly predicted by classical (Rayleigh) theory.

A NOVEL WAVE/MEAN-FLOW INTERACTION ANALYSIS

To understand the fundamental mechanism governing acoustic streaming in HID lamps, an idealized system involving the
two-dimensional flow of a density-stratified ideal gas in a channel geometry (withx parallel andY normal to the channel
walls) is investigated using multiple time-scale asymptotic analysis [5]. A time-independent, spatially-uniform volumetric
heat source is imposed to crudely model the hot arc region associated with the gas near the channel (lamp) centerline. The
compressible Navier–Stokes (NS) and energy equations are analyzed in the physically-relevantdistinguished limitin which the
Reynolds numberRe ≡ ρ∗U∗/(k∗µ∗) = O(S), whereρ∗ is a characteristic density ,k∗ is thex-wavenumber of the standing
sound wave, andµ∗ is the viscosity coefficient; the channel aspect-ratioδ ≡ k∗H∗ = O(S−1/2), whereH∗ is the channel half-
height; and the ratio of the difference between the centerline and wall temperatures to the wall temperature itselfΓ = O(1), as
S → ∞. Two time scales are introducedτ = t andT = S−1t so that generic dependent fieldf(x, Y, t;S) → f(x, Y, τ, T ;S),
and a slow/fast decomposition is performed:f(x, Y, τ, T ;S) = f(x, Y, T ;S) + f ′(x, Y, τ, T ;S). Finally, the following
asymptotic expansions are posited for the velocity vector (u,V ), pressure perturbationπ, temperature perturbationΘ and
densityρ:

(u, V ) ∼ S−1(ū1 + u′

1, V̄1 + V ′

1) + . . . , π ∼ S−1π′

1 + S−2(π̄2 + π′

2) + . . . ,

Θ ∼ Θ̄0 + S−1(Θ̄1 +Θ′

1) + . . . , ρ ∼ ρ̄0 + S−1(ρ̄1 + ρ′1) + . . .

Substituting these expansions into the governing equations, collecting terms at various orders inS and parsing the results
into mean and fluctuation components yields a novel set of PDEs governing the evolution of the fast (essentially linear and
non-dissipative) acoustic waves and the slowly-evolving (possibly steady) streaming dynamics.
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Figure 1: Upper plot: Theoretically predicted streaming velocity field for Γ = 2, R = 10
√

7/3, specific heat-ratioγ = 3/2
and Prandtl numberPr → 0. (The streaming flow pattern obtained from DNS of the compressible NS equations, although not
shown here, is closely similar.) Lower plot: Comparison of the centerline streaming velocityū1(x,Y= 1) predicted from the
asymptotic theory (solid curve) with the corresponding mean flow profileū(x,Y= 1) extracted from the DNS (dashed line),
with Pr = 0.1 in the DNS.

RESULTS AND DISCUSSION

Unlike classical theories of acoustic streaming, the new wave/mean-flow interaction equations derived here exhibit fully
two-way couplingbetween the acoustic waves and the streaming flow; that is, not only do the waves drive streaming flows
but because the streaming is strong, the background temperature and density profiles induced by the imposed heat source are
modified, in turn altering the acoustic wave dynamics (i.e. through the occurrence ofΘ̄0 andρ̄0 in the fluctuation PDEs). To
make further analytical progress, it is possible to consider a small Prandtl number limit, in which caseΘ0 = 0, making the
waves independent of the streaming. In this limit, the resulting streaming equations can be expressed as

ρ̄0
(

ū1∂xū1 + V̄1∂Y ū1

)

= −
1

γ
∂xπ̄2−∂x

(

ρ̄0u′2
1

)

− ∂Y

(

ρ̄0u′

1
V ′

1

)

+
1

R
∂2

Y ū1, ρ̄0 =
1

TB(Y )
,

J(Ψ̄, Ω̄)−

(

1

2ρ̄2
0

)

∂Y ρ̄0∂x[(∂Y Ψ̄)2] =
Γ

2
(1− Y ) sin (2x) +

1

R
∂2

Y Ω̄, ∂Y

[

TB(Y )∂Y Ψ̄

]

= −Ω̄,

whereΩ̄ ≡ −∂Y ū1, ρ̄0ū1 ≡ ∂Y Ψ̄ andρ̄0V̄1 ≡ −∂xΨ̄. TB(Y ) = 1 + ΓY (2− Y ) is the background temperature profile main-
tained by the imposed heat source, andR ≡ Re/S is the ‘streaming Reynolds number’. Note that the streaming vanishes as
Γ → 0; thus, the streaming is baroclinically driven. More specifically,fluctuating baroclinic torques generated within the bulk
of the fluid, rather than viscous torques arising in thin Stokes (oscillatory) boundary layers, are responsible for generating the
vorticity fluctuations required to induce the strong streaming. Indeed, Fig. 1, which compares the results of the new theory
with those from DNS of the full compressible NS equations, confirms that the baroclinic mechanism is capable of correctly
capturing the magnitude and the orientation of the induced streaming. We conclude by suggesting that beyond applications in
lighting, there is the possibility that baroclinically-driven acoustic streaming may find future application in the quiet cooling
of electronic components [6].
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Summary Mean streaming is often observed in precessing cylinder flows, yet the exact mechanism of its creation remains obscure. By

Reynolds-decomposition of the Navier–Stokes equation for a rotating frame of reference, we identify two forcing terms which, when

applied to an axisymmetric simulation, generate a streaming flow identical to that obtained from a full three-dimensional simulation. These

terms are (i), the usual Reynolds-stress term, and (ii), a term originating from the Coriolis term. The latter accounts for most of the energy

of the streaming flow at small nutation angles.

Mean streaming flows (MSFs) are due to the quadratic nature of the nonlinear term in the momentum equation. When

amplitudes are small, the nonlinear term is a second-order correction evaluated by substituting the linear solution into it. The

time-average of a linear wave solution is zero, simply because the average of a sinusoidal function of time is zero. However,

the nonlinear term is the square of a sinusoidal function, so its time average is nonzero. This provides a stress, effectively

the Reynolds stress, that can drive time-mean flows at second order. The nonlinear term in contained rotating flows is known

to lead to a variety of time-dependent phenomena explicable by triadic resonances [1, 2, 3, 4, 5]. However, the origin of the

mean streaming remains unclear.
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Figure 1: Schematic

of the precessing flow.

In rotating flows, inertial waves can exist which drive the streaming flow, as is regularly observed

in experiments and simulations. Kelvin modes, the inviscid eigenmodes of solid body rotation flow,

are usually considered a good approximation for inertial waves contained in a cylinder, however,

prior theory [6] has been interpreted to suggest that Kelvin modes cannot create mean streaming. Our

ultimate aim is to explain the observed streaming flow.

We use precession to excite inertial waves in a set-up shown in figure 1(a). Characterised by

the Poincaré number Po = Ω2/Ω1, precession directly injects energy into a mode referred to as the

forced mode. Certain combinations of forcing frequency and aspect ratio H/R enable energy transfer

via triadic resonance from the forced mode to a pair of free modes. Triadic resonance represents the

system’s first bifurcation, found to be ubiquitous at low nutation angles α [5].

In order to synthesise the streaming flow, we first integrate the full 3D problem. Once forced

and axisymmetric modes are saturated, we extract the reference streaming flow and correlations from

which we compute a number of forcing terms, details of which will be given shortly. These forcing

terms are then used to drive an axisymmetric DNS, and we expect the resulting flow to match the

reference MSF. Computing the isolated response to individual forcing terms provides further insight.

We compute the flow in the cylinder frame of reference, which has time-dependent angular velocity Ω = [Ωz, Ωr, Ωϕ] =
[Ω1 + Ω2 cosα, Ω2 sinα cos(−Ω1t), Ω2 sinα sin(−Ω1t)]

T . The rotating frame of reference is accounted for by Coriolis

terms in the incompressible Navier–Stokes equation

∂tu+ u · ∇u+ 2Ω × u+ ∂tΩ × x = −∇p+ Re−1∇2u, ∇ · ū = 0, (1)

where potential terms have been absorbed into the reduced pressure p, and the Reynolds number Re = RΩ1/ν. The walls are

at rest and the forced mode rotates at −Ω1. The streaming flow is defined as the time-averaged, axisymmetric component of

the flow. A comparison of numerical and experimental results showed excellent agreement [7].

The forcing terms are obtained by Reynolds-averaging the Navier–Stokes equation (1): decomposition of linear and an-

gular velocities and pressure into mean and fluctuating parts, a = ā + a′, a = (u,Ω, p), followed by averaging in time,

produces two additional terms through which higher azimuthal modes can generate the m = 0 mean streaming flow, where m
is the azimuthal wave number. First, the usual Reynolds-stress term R = ∇ · (u′u′), and, second, a term resulting from the

Coriolis force C = 2Ω′ × u′. Their respective axisymmetric part is used to force a steady, axisymmetric flow that satisfies

ū0 ·∇ū0 + 2Ω̄0 × ū0 + [∇ · (u′u′)]0 + [2Ω′ × u′]0 = −∇p̄0 + Re−1∇2ū0, ∇ · ū0 = 0, (2)

and boundary conditions ū0 = 0, where subscript 0 indicates m = 0. The Reynolds-stress term can be computed using all

azimuthal modes (referred to as R), just the (leading) forced m = 1 mode (R1), or either of the free modes (R5, R6), which

are known to participate in triadic resonances for these parameters [5].

∗Corresponding author. Email: thomas.albrecht@monash.edu
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Figure 2: Contours of the streaming flow in a meridional semi-plane with the axis on the left, for a case below the threshold of

triadic resonance: (a) reference MSF, (b) relative error (wsyn/wref − 1) of the total synthetic MSF, (c) synthetic MSF due to

R-forcing, only, and (d) ditto due to C-forcing, only. All MSF plots use the contour levels given in (a). H/R = 1.62,Re =
7670,Po = −0.153, α = 0.4◦. (e) Kinetic energy of the total streaming flow, and of the response to individual forcing parts,

vs. nutation angle.

Figure 2 shows results for a case where α = 0.4◦ is below the threshold αc of triadic resonance instability (for the present

aspect ratio, weakly nonlinear theory [3] predicts αc = 0.63◦). Hence, the asymptotic state is quasi-steady and essentially

consists of a rotating forced mode and the streaming flow. The Fourier kinetic energy Em of any azimuthal mode is steady,

with E1/E0 ≈ 141 and E2/E0 ≈ 0.044. Figure 2(a) shows the azimuthal velocity component w of the reference streaming

flow. It is negative throughout the domain (i.e., it opposes the solid body rotation), has an hourglass-like structure with a

maximum in the end wall layers, and is about an order of magnitude larger than the axial and radial components. Since

a contour plot of the synthetic streaming flow would be indistinguishable from the reference in figure 2(a), we plotted the

relative error wsyn/wref − 1 in figure 2(b). The error is well below 1% for most of the domain, confirming we identified

all terms required for the production of the streaming flow. If we decompose the total forcing into R- and C-parts, we can

compute the corresponding flow response individually, which is shown in (c) and (d). The hourglass-like structure is created

by the R-forcing, whereas C-forcing produces a columnar structure. Also, R-forcing creates a streaming flow which is

positive in the outer region of the cylinder.

We applied this procedure to a range of nutation angles. In figure 2(e), we plotted the kinetic energy of the total synthetic

streaming flow (black). It matches the reference to within 0.1%. Also shown are energies of the individual responses to

C-forcing, to R-forcing, or to forcings due to the free modes (R5 and R6). Solid lines show results where triadic resonance

is absent and the flow appears stable, either because it in fact is (α < αc), or because it has not evolved for long enough for

the free modes to accumulate significant energy. For these “stable” cases, C- and R-parts account for about 75% and 20% of

the total energy, respectively (these figures do not have to add up, since the underlying decomposition is not orthogonal).

Once triadic resonance is active (dashed lines), the response to R5- and R6-forcing becomes significant. However, for tilt

angles just above critical (0.6◦ ≤ α ≤ 0.8◦), the total streaming flow decreases as compared to the non-resonant flow, because

the free modes drain energy from the forced mode which reduces the C-response, and because parts of the R/R5/R6-response

is positive and opposes the main streaming flow.

In an attempt to explain the origin of mean streaming in a precessing cylinder flow, we identified all relevant forcing terms.

When applied to axisymmetric simulations, these forcing terms create streaming flows virtually identical to those obtained

from full three-dimensional simulations. The forcing can be decomposed into contributions from Coriolis and nonlinear

(Reynolds stress) terms for cases below and slightly above the threshold of triadic resonance. For all cases 0.1◦ ≤ α ≤ 1.4◦

we considered, the Coriolis forcing term creates the largest response, however, the effect of the Reynolds stress term grows

quickly when triadic resonance becomes active.
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NONLINEAR VS. LINEAR SUPERCRITICAL DEAD WATER

John Grue ∗1

1Mechanics Division, Department of Mathematics, University of Oslo, Oslo, Norway

Summary Nonlinear calculations of the internal wave wake behind a moving ship – dead water – differ largely from the state-of-the-art

linear calculations, where the ratio between the ship draught and surface layer depth constitutes the nonlinearity parameter. The fundamental

differences come from the local finite excursions of the flow at the complex ship geometry. Assuming a two-layer model, it is shown that

linear theory overpredicts the wave wake excursions by 50 per cent, when the ship draught is comparable to the surface layer depth. The

nonlinear calculations fit with observations. The ship speed is supercritical. Evaluation of the surface velocity and strain rate may be used

for observational interpretation.

INTRODUCTION

Accurate calculations of the internal wave wake behind a moving ship – dead water – have been actualized by some recent

measurements in a Canadian sub-Arctic fjord (Bourgault, 2014, private communication). Improved modelling of internal

wave wakes are relevant in relation to construction of new infrastructure such as submerged floating tunnels, where the wave

loads should be accurately accounted for. Numerical predictions of the phenomenon are vital in relation to surveiance. We

present novel nonlinear calculations at supercritical speed which significantly improve the existing linear methods, where the

linear theory overpredicts the amplitudes of the wave wake by 50 per cent, for a ship draught comparable to the surface layer

depth.

Ship generated internal wave wakes occur in coastal waters where a surface layer of brackish water is overlaying the salty

sea water. The phenomenon is visible by its signature on the ocean surface, cause an additional resistance on the ship and

may even affect the maneuverability. Existing methods for the prediction of ship generated internal wave wakes, where the

actual geometry of the hull is accounted for, are linear, see e.g., Miloh et al. [1], Yeung and Nguyen [2]. Papers on simplified

methods assuming generation by pressure or source distributions are found in the references in these papers. A nonlinear

method assuming a pressure distribution was given by Parau et al. [3]. Requests for improved models of the wave wake and

its generation, more specifically accounting for the effects of nonlinarity, were requested by Watson et al. [4], discussing

observations carried out in the Loch Linnie experiment in UK. In the present paper, the internal wave wake at supercritical

speeds is analyzed, generalizing the subcritical strongly nonlinear calculations by Grue [5].

STRONGLY NONLINEAR MODEL

A two-layer model is assumed where to fluids of different densities are separated by an interface. The fluid motion is

driven by a ship moving at forward speed U along the upper boundary of the two-fluid system, where the Froude number is

given by Fr = U/c0, where c0 denotes the linear long wave speed of the two-fluid system. The ratio between the ship draught

(d0) and thinner upper layer depth (h0), i.e., d0/h0, defines the nonlinearity parameter and is varied up to d0/h0 = 1.2, where

the interface in the supercritical conditions is pushed downward right below the ship geometry. Essential differences between

the nonlinear and linear calculations stem from fundamental differences of the representation of the flow at the complex ship

hull. The interfacial excursions are comparable to the thinner upper layer depth.

Laplacian potentials in each layer are obtained by integral equations involving the potentials and their normal derivatives

along the interface and ship surface. Assuming a small density jump, the rigid lid condition at the free surface is justified.

Inversion of the integral equations are obtained by the method of successive approximations. This leads to rapid convergence

of the set of expansions. Use of Fourier transform, extensively applied in the inversion procedure, leads to fast evaluations of

the integrals. The prognostic equations, obtained by the kinematic and dynamic boundary conditions along the interface, are

used to integrate forward in time, the evolving interfacial wave system, driven by the ship geometry, starting from rest.

Results

Let (x1, x2) denote horizontal coordinates. The computational horizontal plane has length by width of L1 by L2 and is

discretized by 0.5 · 106 points. The ship geometry is specified lengthwise and sideways by sixth order polynomials. In the

computations, the ship length by width are 29.6 by 4 times the upper layer depth (h0), corresponding to an actual observation

of a large tanker causing an internal wave wake. Nonlinear and linear calculations show that the latter overpredict by 50

per cent, the amplitudes of the internal wave wake (figure 1a), when the draught is comparable to the upper layer depth, and

Fr = 4 and 8, see figure 1c-d. The overprediction is about 20 per cent for a moderate draught of d0/h0 = 0.5 and Fr = 4

(figure 1b).

∗Email: johng@math.uio.no
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Bourgault (2014, personal communication, unpublished) measured, at a lateral distance of 133h0 from the ship track,

a train of about 8 internal waves of height of 1-2 m, moving laterally, along a pycnocline localized at an average depth of

h0 = 7.5 m in the actual fjord. The nonlinear computations of the trough amplitudes in figure 2, for Fr = 8 and d0/h0 = 1.2,

give wave heights of 0.2h0 = 1.5 m at x2 = 133h0, fitting very well to the observations. Linear calculations give wave

heights of 0.3h0 = 2.3 m which exceed the observations. By the nonlinear calculations we evaluate other quantities like

surface velocity and strain rate as requested by Watson et al. [4].
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Figure 1: a) Nonlinear interfacial elevation η/h0 of internal wave wake. Fr = 8. d0/h0 = 1. (x1, x2) scaled by h0. b)-d)

Nonlinear (red solid line) and linear (black dashed line) interfacial elevation η/h0 as function of the lateral coordinate, x2, at

fixed downstream positions x1−Ut in the wave wake, for increasing ship draught and Froude number. b)-c) (x1−Ut)/h0 =

370, Fr = 4, ship draught d0/h0 = 0.5, 0.9. d) (x1 − Ut)/h0 = 840, Fr = 8, ship draught d0/h0 = 1.2. Ship model of

length l0 = 29.4h0 and width w0 = 4h0.
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Figure 2: Amplitude of trough 1 (∗), trough 2 (•), trough 3 (2), trough 4 (◦), trough 5 (∇) vs. lateral coordinate x2.

Solid/dotted lines: fitted algebraic decay. Fr = 8, d0/h0 = 1.2.
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GENERATION AND RUNUP OF TRIPLE SOLITARY WAVES ON PLANE SLOPE 
 

Yiyi Rong 1, Wei Wu1 & Hua Liu2a), 
1 School of NAOCE, Shanghai Jiao Tong University, Shanghai, China 

2 MOE Key Lab of Hydrodynamics, Shanghai Jiao Tong University, Shanghai, China 
 
Summary An experimental study on generation and runup of the wave train of three solitary waves (referring as Triple Solitary Waves, TSW) 
on a plane slope has been conducted in a wave flume. The modified Goring’s method and the third order solution of a solitary wave are 
integrated to generate a wave train of three solitary waves with different distance between the crests of two successive solitary waves. Time 
series of the surface elevation and waterline movement are measured. With regard to a train of three solitary waves with same height, the runup 
amplification coefficient of the individual wave varies and the runup coefficient of the second wave is smallest among them. Details of 
experimental results and discussion on the details of velocity field and energy budget of TSW will be presented. 
 

METHODOLOGY 

 
   Run-up and back-wash process of waves on a plane beach belong to one of the important hydrodynamic phenomena in 
coastal water. An experimental study on runup of the double solitary waves on a plane beach was carried out by Lo et al. 
(2013) and Pujala et al. (2015). Xuan et al. (2013) implemented the generation and runp of two successive solitary waves 
with different wave amplitudes in a wave flume. We carried out experiments on the runup characteristics of triple solitary 
waves in the wave flume of the MOE Key Laboratory of Hydrodynamics at Shanghai Jiao Tong University. The facility 
consists of a wave flume (65m long×1.8m deep×0.8m wide), a piston-type wave generation system and a wave elevation 
measurement system. A piston-type wave generator is installed at the left end of the wave flume and the paddle is moved 
horizontally in a prescribed trajectory by means of a hydraulic servo-system. At the right end of the wave flume, a slope 
beach is installed to eliminate the wave reflection. There are total 9 wave gauges along the wave flume, as shown in Fig. 1. 
The maximum wave runup is recorded by two high-speed cameras.  
 

 
 
 
 
 
 

Figure 1 Experimental setup 
 

 The modified Goring’s method (Goring, 1978), proposed by developed Malek-Mohammadi and Testik (2010), is used to 
generate a wave train of two successive solitary waves (referring as TSW). Using the third order solution of a solitary wave, 
the target wave train consisting of three solitary waves with different phase difference can be constructed and, then, the time 
series of the displacement of the wavemaker can be obtained. The time series of the surface elevation measured by the wave 
gauges, for the case of the relative wave amplitude H/d=0.1, are plotted in Fig. 2. The solid line represents the double 
solitary wave and the dashed line denotes the triple solitary wave and the parameter ε represents the phase difference among 
waves. 

 

 
Figure 2 Time series of surface elevation of TSW 

Wavemaker Wave guages Camera 
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RESULTS AND DISCUSSION 

 

The runup amplification coefficient of a solitary is defined as the ratio of the maximum runup to the wave amplitude 
R/H. The distance between the peaks of two successive solitary waves δL is proportional to the phase difference parameter ε. 
For the case of TWS with identical amplitude, the same referred amplitude is adopted to calculate the runup amplification. 
The measured runup amplification coefficients for individuals are presented in Fig. 3. 

It is found that influence of the leading solitary wave is obvious to the following wave due to strong swash current 
appearing in the stage of rundown of the first wave. The relationship between the runup amplification coefficient of the 
second waves and initial phase difference will change with the increase of the relative amplitude of incoming wave. 
However, the runup amplification coefficient of the third wave increases with the increase of initial phase difference and the 
relationship is independent of the relative amplitude of incoming wave. Basically, the runup amplification coefficient of the 
first waves is larger than that of the second wave, while the runup amplification coefficient of the third wave is larger than 
that of the second wave.    

 
Figure 3 Runup amplification of TSW Figure 4 Energy budget during run-up of waves 

                 
In order to understand the mechanism of the variation of the runnup amplification of individual waves, numerical 

simulations of runup of two successive solitary waves are carried out. Based on the computed velocity field and the wave 
profile by the RANS equations based numerical model, the kinetic energy and potential energy of the water in the 
computational domain can be obtained. Fig.4 depicts the time series of the kinetic energy, potential energy and total energy 
of two successive solitary waves with identical amplitude during the period of runup and rundown on a plane slope. Three 
different phase difference of initial linear superposition of waves are considered. There are three peaks in the time series of 
the potential energy and three troughs in that of the kinetic energy. The first and third peaks of the potential energy appear at 
the time when the first solitary wave and second solitary wave reach the maximum runup respectively. The highest peak of 
the potential energy appears when the second solitary wave propagating from left to right meets the first reflected solitary 
wave from the beach. The kinetic energy is basically equal to zero at the head-on collision time. When the initial position of 
these two solitary waves separate with large distance between two peaks for cases of ε=1.0 and 0.8, the variation of the 
energy budge of these two solitary waves in the process of each runup are identical with each other, which means that the 
influence of the first runup and rundown on the second runup can be ignored. If we look at the bottom panel of Fig. 4 for the 
case of ε=0.6, where the distance between two peaks is seventeen times as large as water depth, it can be seen that these two 
runup processes of the two successive solitary waves overlap partly and the maximum potential energy for the second runup 
is smaller than that of the first runup.  
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TRANSPORT OF PARTICLES BY INTERNAL WAVES
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Summary We study experimentally the effect of internal waves on slowly settling particles in a stratified environment. The granular column
formed by the particles oscillates around an equilibrium position due to the presence of the internal gravity waves. Depending on the
frequency and the amplitude of the internal waves, the column can even be displaced as a whole. Surprisingly, this displacement is directed
towards the source of the waves. A resonant behavior of this displacement with the frequency of the internal waves is observed. A theoretical
approach based on the drift induced by internal waves is developed.

INTRODUCTION

The settling of organic particles from the upper layers of the ocean to the deep sea (known as oceanic snow) has an intense
effect on global ocean properties. It is substantial for the development of diversified life in the benthic layer and it also
sequesters large quantities of CO2 from the atmosphere. The dispersion and concentration of these particles will be strongly
attached to the dynamics of the ocean via its carrying fluid. Internal waves, omnipresent in the ocean, can act as a mechanism
producing resuspension of particles lying in the boundary layers [1] and generate net transport of the oceanic snow that could
play a role in the behavior of marine habitat [2].

Experimental and numerical efforts have been performed to understand the dynamics of a single body settling in a stratified
environment [3], as well as the collective dynamics of particles settling in a stratified fluid [4]. In our work, we include an
additional degree of complexity, by trying to study experimentally the main effects of an internal plane wave propagating
through a column of slowly settling particles, in a stratified fluid.

(a) (b)

Figure 1: (a) Snapshot of an internal wave beam passing through a column of settling particles. The column oscillates
following the group velocity of the wave. The colormap indicates the intensity of the horizontal gradient of density. (b)
Column displacement obtained for a particular set of control parameters. The value of the displacement after a given time is
denoted δx. In both figures, the wave field is generated in the upper-left corner and propagates to the lower-right corner.
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EXPERIMENTAL SET-UP

A rectangular test tank of size 80 × 17 × 42.5 cm3 is filled with a linearly salt-stratified fluid with a buoyancy frequency
N ' 1 rad·s−1. Internal plane waves are introduced into the system by an internal wave generator, consisting of stacked
moving plates. This wave maker is built so that the frequency, phase shift and amplitude of each plate can be controlled
independently. The gradient of density of the wave field is then observed using Synthetic Schlieren technique.

A quasi-2D granular column is formed by injecting polystyrene grains (d = 200 µm , ρp = 1.05 g·cm−3) at the surface.
After some time, a stationary homogeneous column (width dc ' 3 cm) is produced with a packing fraction φ ∼ O(10−2).

RESULTS

For the particle concentrations explored we do not detect a difference in the amplitude of the waves between the cases
with and without column of particles: the particles have no influence over the waves.

We observe that internal waves produce an oscillatory effect on the column as shown in figure 1(a). It oscillates with a
phase velocity equal to the phase velocity of the waves. It is remarkable that oscillations are observed outside the wave beam
as well. In addition, frequencies not contained in the wave spectra are measured within these oscillations, which could be
consequence of non-linear effects of the waves in the column or because of collective effects of the particles.

The column can also be displaced as a whole (see figure 1(b)). This displacement is observed to be always towards the
generator. It was measured for experiments presenting two different density gradients (in our case large density gradient
implies small sedimentation velocity). For the largest sedimentation velocity (figure 2(a)), the displacement is very small for
small amplitudes of the wave and is independent of the frequency. For larger amplitudes, it increases with the frequency. For
the case with smaller sedimentation velocity and larger amplitude, we observe a resonant behavior of the displacement with
the frequency (figure 2(b)).

CONCLUSIONS

We have developed a set-up capable of performing experiments to study the interaction between internal gravity waves
and particles in suspension. We observed two main effects produced by internal waves over the column: it oscillates around
an equilibrium position and it is displaced as a whole toward the source of the waves. The dependency of the displacement of
the column has been measured as a function of the density gradient and amplitude of the waves for a range of frequencies of
the incoming waves. In addition, a model which considers the drift produced by the internal waves [5] and the excursion time
of the particles in the wave beam achieves to explain the direction of displacement of the column.
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Figure 2: Displacement of the column after 500 seconds (δx < 0: the motion is towards the generator) normalized by the
width of the column dc as a function of the forcing frequency ω0 normalized by the buoyancy frequency N . (a) N = 0.8
rad·s−1 (large sedimentation velocity) and A = 0.4 cm, 0.6 cm, 0.8 cm and 0.9 cm. (b) N = 1.1 rad·s−1 (small sedimentation
velocity) and A = 0.9 cm.
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Summary Internal gravity waves that exist in a continuously stratified fluid are particularly important in the ocean. They transport energy
and are thought to generate turbulent mixing which contributes to the deep ocean circulation. Through fully non-linear and linear direct
numerical simulations the stability of a gravity wave beam, we show that the stability properties and transient growth intensity strongly
depend on the mean flow intensity. Small scale instabilities dominate for small mean flow as for internal tide. For lee waves or more
generally strong mean flows, large scales lead the instability but small scales dominate the short time growth. Computing the linear impulse
response of a monochromatic internal wave we propose an interpretation based on an extension of absolute and convective theory to 2D
periodic base flow and make the connection with the classical triadic instability theory [1].

GLOBAL STABILITY

We compute in a two dimension domain the stability properties of an internal gravity wave beam solution of the non-linear
Navier-Stokes equation under the Boussinesq approximation and a linear stratification. The wave is generated using a penal-
ization localized in space that forces an internal gravity wave of specific horizontal wavelength and frequency propagating
down as in the experiment [2]. In this case equivalent to a tidal wave where the tidal flow oscillates over a topography and
generates a wave, experiment results of [2] are recovered. The beam destabilizes (see figure 1 (b)) and we show that the insta-
bility mechanism involves a small triadic resonance. To extend the results of [2], we consider the effect of a horizontal mean
advection velocity U∞. The forcing frequency ω′ in the wave maker frame is ω′ = ω0 + U∞k0x where ω0, the frequency in
the fluid frame and U∞k0x the doppler effect. In all the computations ω0 is kept constant in order to have locally in the fluide
the same wave. A limit case appears when mean advection velocity of U∞ = −Uφ where Uφ = ω0/k0x then ω′ decreases to
zero: the forcing is stationary. This case is equivalent to a lee wave appearing when a stratified fluid flows over a topography.

We show that the stability property of beams made locally of the same gravity wave strongly depends on mean advection
velocity. For small magnitude of advection velocity, small scale instabilities develop as in the tidal case. Then the beam
stabilizes at intermediate advection velocity and destabilizes again when we keep increasing the advection. At this second
threshold, down to the lee wave case, the instability is of much larger scale than for the tidal case reported by [2]. Increasing
the Reynolds number or the beam size makes the stable domain to disappear but the instability scale selection stays the same
with small scale instability in the tidal rgime with scale decreasing when increasing the Reynold number, and large scale
instability in the lee rgime with scales indpendante on the Reynolds number or beam size.

We show that the instability may be interpreted using the triadic instability [1] and that scale selection corresponds to
different branch of triadic resonance. We confirm the presence of a stability region for intermediate value of the mean
advection velocity by computing the linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and showing that
the leading eigenmode has a negative growthrate.
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Figure 1: Buoyancy perturbation field of an internal wave beam simulation for the two limit case, the lee (a) and the tidal (b)
case.
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Figure 2: Buoyancy perturbation field of this optimal perturbation that maximize the total energy over a lee wave beam for
two time horizon (a) Th = 7T0 and (b) Th = 7T0, where T0 is the lee wave period T0 = 2π/ω0.

LINEAR GLOBAL STABILITY AND TRANSIENT GROWTH

We confirm the presence of a stability region for intermediate value of the mean advection velocity by computing the
linear eigenmode as Floquet mode with an Arnoldi-Krylov technique and show that the leading eigenmode has a negative
growthrate. In the lee wave case the flow is unstable and a selective frequency damping method [3] is used to first compute
the steady base flow solution. Then we implement a direct-adjoint method to access the optimal perturbation that maximize
the total energy growth at different time horizon using a similar Arnoldi-Krylov technique. At short time horizon, the optimal
perturbation is small scale and is advected by the flow while at large time, the perturbation switches to a large scale solution
and converges to the perturbation characteristic observed through nonlinear simulation (previous section). Analyzing optimal
perturbations and optimal responses in fourrier space seems to indicates that small scale short time transient corresponds to
the small scale triadic instability advected by the flow whereas the long time large scale instability corresponds to large scale
bra,nah of the triadic instability that is able to sustain the flow.

LINEAR LOCAL STABILITY

We propose an interpretation of the different instability selection in term of absolute and convective instability. We
conjecture that, In the case of the lee wave, the large scale instability is absolute whereas the small scale instability is convective
and leads short time transient growth because its local growth rate is larger. When the mean advection flow is varied the
properties of small scale and large scale instabilities exchange and in the tidal case the short scale instability is absolute and
the large scale convective. This conjecture is confirmed by computing the impulse response around a plane monochromatic
internal gravity wave in an extended two dimension periodic domain. The spatiotemporal evolution of a localized in space
and time perturbation (a multipolar gaussian vorticity perturbation) evidences the formation of three different wavepackets.
From their fourrier space characteristic, we show that each of these wave packets corresponds to a different branch of triadic
instability. Two of the wavepacket are small scale and have a small group velocity compared to the fluid while the third wave
packet is large scale and has a much larger group velocity compared to the fluid. Using the triadic theory with finite detuning
[4] we derive the group velocity at the maximum growthrate of the three different branches of triadic instability and find good
agreement with the velocity of the three wave paquet maxima in the impulse response.

Analyzing the impulse response energy not versus space but along rays i.e. at x/t and z/t constant, we compute the absolute
growth rate along all possible rays and show that our conjecture seems valid.

In the lee reference frame the large scale mode corresponding to the large scale triadic instability has a positive absolute
growth rate and therefore the lee wave is absolutely unstable toward the large scale mode whereas in the tidal reference frame
the small scale mode corresponding to the small scale triadic instability has a positive absolute growth rate and therefore the
tidal wave is absolutely unstable toward the small scale mode.
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STRUCTURE OF THE AIRFLOW ABOVE SURFACE GRAVITY WAVES

Marc P Buckley∗1 and Fabrice Veron2
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Summary The exchanges of momentum and scalars between the atmosphere and the oceans are influenced by the small-scale dynamics at
the wavy air-sea interface. We present 2D PIV measurements of the kinematics in the airflow as low as 100 µm above the water surface for
different wind-wave conditions (wave ages Cp/u∗ between 1.4 and 66.7). Laboratory data were obtained at University of Delaware’s (42-m
long) wind-wave-current facility, using a multi-camera multi-laser setup that combines PIV with laser induced fluorescence. Field PIV
measurements are also reported. We observe coherent turbulent structures in the airflow, including ejections of low velocity fluid away from
the surface and downward sweeps of higher velocity fluid. Wave-phase-resolved quadrant analysis suggests that these events are modulated
by the waves. Airflow separation occurs past young wave crests (Cp/u∗ < 3.7), producing intense phase-locked turbulence. When Cp/u∗
= 6.5, the mean wave-coherent airflow is qualitatively consistent with linear critical layer theory.

INTRODUCTION

Small-scale physics at the wavy air-sea interface strongly impact the coupled oceanic and atmospheric boundary layers,
and have received increased interest in recent years [4, 5]. The fluxes of momentum, energy, heat, and mass depend upon a
number of wind-wave parameters, including wave slope and wave age [4]. Wave age, generally defined as Cp/u∗, or Cp/U10,
where Cp, u∗, an U10 are respectively the peak wave velocity, air friction velocity, and 10-m wind speed, controls wind-wave
coupling mechanisms [1, 3, 2] and air-sea momentum fluxes as a whole [4]. Recent fixed probe measurements at heights
of O(10) m above the ocean surface have confirmed the wave age dependence of wind-wave growth/attenuation, and shown
evidence of a critical layer mechanism for wind-wave momentum fluxes [3]. In this study, we present direct measurements of
the fine two-dimensional structure of the airflow, within the first 10 cm above the wavy water surface, and up to 100 µm from
the air-water interface, for a wide range of wave ages (1.4 < Cp/u∗ < 66.7). We are able to identify instantaneous viscous
and turbulent characteristics of the airflow within the wave boundary layer, and, using phase-averaging and quadrant analysis
techniques, understand how the waves influence the mean structure of the air-water momentum flux.

RESULTS
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Figure 1: (a) Sketch of the wind/wave imaging system, positioned at a fetch of 22.7 m. Velocities in the airflow are measured
by PIV, and the air-water interface is detected using laser-induced fluorescence (LIF). LIF is used for 3 types of measurements:
large field of view images of the water surface for wave phase detection (LFV), PIV field of view images for surface detection
on PIV images (PIV SD), and single point wave gauge data (WG).(b) Example of instantaneous horizontal velocity field in
the air, obtained by PIV, above a wind-generated wave.

We present experimental results obtained in the large wind-wave-current tank at the Air-Sea Interaction Laboratory of
University of Delaware. The tank is 42 m long, 1 m wide and 1.25 high. For this study, the water depth was 0.70 m, and
the recirculating wind tunnel generated winds with 10-m speeds ranging from 0.9 to 16.6 m s−1. In some cases, the waves
were solely wind generated. In other cases, wind waves were combined with longer mechanically generated waves. The
experimental setup, positioned at a fetch of 22.7 m, is sketched in figure 1(a). PIV and LIF techniques were combined, in
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order to simultaneously provide 2D airflow velocity fields (PIV), high resolution water surface profiles for the PIV images
(PIV SD), large field of view water surface profiles (LFV), and single point wave gauge time series (WG). Data were acquired
for 17 different wind-wave conditions, yielding thousands of airflow-velocity/wave-profile snapshots, such as the one plotted
in figure 1(b), where we show an instantaneous 2D PIV velocity field above a young wind-generated wave (U10 = 15 m
s−1, Cp/U10 = 1.6). Airflow separation takes place past the crest of this steep wave, where important sheltering occurs, as
suggested by the dramatic drop in airflow velocities downwind of the crest.
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Figure 2: Instantaneous 2D velocity (u (m s−1) and w (m s−1)) and vorticity (ω (s−1)) fields, and normalized along-surface
viscous stress (τν/(ρu2∗)), above segments of waves for 2 different experiments, with mean wave ages Cp/u∗ = 3.7 (a), and
27.7 (b). Each row contains consecutive snapshots from one experiment.

Slightly older wind waves can also cause airflow separation, as depicted in figure 2a, where Cp/u∗ = 3.7. We show
the horizontal (panel 1) and vertical (2) components of the velocity field above the waves, the vorticity (3), and the along-
surface viscous stress (4). Quadrant analysis and phase averaging of turbulent quantities (obtained by triple decomposition)
show that the systematic drop in viscous stress past wave crests (panel a4), combined with the detachment of high vorticity
layers past wave crests (see panel a3), leads, on average, to an enhancement of turbulent stresses downwind of crests, and
important sheltering and boundary layer thickening effects on the phase-averaged airflow. These phase-locked mechanisms
cause important fluxes of viscous, turbulent and wave-coherent momentum into the wave field. Older swells on the other hand
(see figure 2a, where Cp/u∗ = 27.7), show a very different airflow regime, whereby the vertical motions in the air (panel b2)
are forced by the underwater orbital motions. In this case, ejections of high vorticity layers take place upwind of the crest, and
the surface stress drops at the crest, which suggests that the waves are being attenuated by the wind.

CONCLUSIONS

Using a novel complex experimental system, we were able to measure the detailed two-dimensional structure of the airflow
above wind-forced surface gravity waves, within the logarithmic, buffer and viscous layers of the airflow. Coherent turbulent
structures in the airflow are organized by the waves, leading to phase-locked distributions of turbulence and momentum in
the airflow. We observe 3 distinct regimes in the instantaneous and mean (wave-coherent) airflow properties, dependent upon
wave age: Very young waves (Cp/u∗ < 4) experience a large sheltering effect (generally accompanied by flow separation);
over older wind waves (Cp/u∗ = 6.5) a critical layer appears, below which the airflow is directly coupled with the underwater
orbitals; finally old swells (Cp/u∗ > 27.7) cause a reversed, upwind sheltering effect.
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AIR ENTRAINMENT AND BUBBLE STATISTICS IN THREE-DIMENSIONAL BREAKING
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Summary We investigate air entrainment and bubble statistics in three-dimensional breaking waves through novel direct numerical sim-
ulations of the two-phase air-water flow. The dissipation due to breaking is found to be in good agreement with previous experimental
observations and inertial-scaling arguments. For radii r larger than the Hinze scale, the time-averaged bubble size distribution is consistent
with a N̄(r) ∝ r−10/3 scaling, as observed experimentally. Moreover, we find that the time dependent and time averaged bubble size
distribution scale linearly, respectively, with the time dependent and time averaged dissipation rate due to the breaking event. Based on
these numerical results, existing laboratory data, earlier models, and the balance between mechanical dissipation and work done against
buoyancy forces, we propose a phenomenological turbulent bubble break-up model, that describes both the bubble size distribution and the
total volume of entrained air, as a function of the external wave parameters.

CONTEXT

Surface wave breaking plays an important role in the coupling between the atmosphere and the ocean from local weather
to global-climate scales [1]. Wave breaking limits the height of surface waves, transfers momentum from waves to currents
and significantly enhances the transfer of heat, moisture, marine aerosols and gases between the atmosphere and the ocean.
Approximately 30% of the CO2 released into the atmosphere is taken up by the ocean, much from the entrainment and
dissolution of bubbles by breaking and the associated mixing. Moreover, large bubbles entrained by breaking rise back to
the surface and collapse, ejecting aerosols, which are transported into the atmosphere and ultimately evaporate leaving water
vapour and salt crystals that affect the radiative balance of the atmosphere and form cloud condensation nuclei. Therefore,
improvements in our understanding of the coupled ocean-atmosphere system and climate requires a detailed understanding
of the physics of air entrainment and subsequent bubble generation. Due to the complex nature of the breaking process, a
coupled two-phase turbulent flow, an understanding of the dynamical and statistical properties of the generated bubbles is still
elusive.

RESULTS

We present novel Direct Numerical Simulations (DNS) of breaking waves by solving the three-dimensional two-phase
air-water Navier-Stokes equations, using the open source solver Gerris [2]. These DNS resolve accurately the relevant length
scales for the bubble formation problem: the capillary length and the Hinze scale (the scale at which surface tension prevents
bubble break-up due to turbulence). These simulations permit tracking in space and time of both fluids, therefore accessing
the bubble and droplets size distributions, together with the local turbulent properties of the flow.

The dissipation due to wave breaking is found to be in very good agreement with previous experimental observations,
inertial-scaling arguments and with our previous two-dimensional DNS [3].

The air-entrainment properties and bubble-size statistics are investigated for various initial characteristic wave slopes.
An example of a plunging breaker is shown in Figure 1. We observe air entrainment through different mechanisms: the
entrapment of an air pocket when the jet reconnects with the water, entraining a large cavity and large bubbles; entrainment
around the jet impact site entraining smaller bubbles; entrapment by the subsequent splash events, and finally, entrainment
by the turbulent breakdown of the forward face of the wave. Entrainment of air also occurs when the jet impacts the surface,
during the subsequent splashing, and when high velocity droplets fall back into the water.

The time-averaged bubble size distribution for radii larger than the Hinze scale (the bubble radius for which surface tension
prevents break-up by turbulence, typically r ∼ 1mm) is found to scale initially as N̄(r) ∝ r−10/3, as observed experimentally
[4], and in agreement with a turbulent break-up scaling argument [5]. Moreover, we find that the time-dependent bubble size
distribution N(r, t) is linearly dependent on ε(t), the time dependent turbulent dissipation rate, and that the time-averaged
bubble size distribution N̄(r) scales with εl = ρAε̄(t), the wave dissipation rate per unit length of breaking crest, with
A = πh2/4, the area of the initial air pocket entrained by the breaking wave, and h the height at breaking. We propose
an extension of the existing turbulent break-up model [5], constraining the entrained volume of air to be proportional to the
dissipation rate.

∗Corresponding author. Email: ldeike@ucsd.edu
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Figure 1: Interface of a breaking wave obtained by three-dimensional
direct numerical simulations of the two-phase Navier Stokes equa-
tions, using the solver Gerris, showing the impact and entrainment of
the initial air pocket (top left); splashing and fragmentation of the air
pocket (top right); large dense bubble plume with numerous bubbles
of various sizes in the water, together with droplets in the air.
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Figure 2: Rescaled bubble size distribution according
to our theoretical model (Eq. 2), as a function of the
rescaled radius r/rm. Color symbols are DNS results
for various initial slopes, black diamond are lab data
from [4]. Dashed line shows the theoretical model,
B(r/rm)−10/3, with B = 0.05 and dot-dashed line is
B(r/rm)−10/3, with B = 0.11, which gives an esti-
mation of the constant B. For 0.1 < r/rm < 1, our
model, based on the bubble cascade idea, is compatible
with the lab and DNS data.

This extended model describes the time evolution of the bubble cloud during the active breaking stage in that it relates the
bubble size distribution to the instantaneous turbulent dissipation rate. In the same spirit, it describes the time-averaged bubble
size distribution for one breaking event. In the end, for radii larger than the Hinze scale, our model describes the bubble size
distribution by

N(r, t) = B
3

4π

ε(t)

Wg
r−2/3
m r−10/3V0, (1)

where rm is the maximum bubble radius, V0 = ALc the initial volume of air entrained with Lc the length of breaking crest,W
is a weighted vertical velocity of the bubble plume andB a dimensionless constant. The time-averaged bubble size distribution
is then given by

N̄(r) = B
3

4π

εlLc

Wgρ
r−10/3r−2/3

m . (2)

Within the scatter of the data, the model is fully consistent with the DNS and the available experimental data, as shown in Fig.
2. It leads to an estimation of the constant B, which says that between 5 to 11% of the energy lost by the breaking event is due
to entrainment of air. From the bubble size distribution, the total volume of air entrained can be physically scaled to the energy
dissipated due to breaking and to the characteristic wave slope at breaking, and the averaged total volume of entrained air,
V̄ , is, V̄ = B(3/2)(εlLc/Wgρ), which leads to a relationship to the slope, S, of V̄ ∝ S5/2. Again, a reasonable agreement
between the lab data, the DNS data and the model is observed.

This numerical modeling study of entrainment by breaking waves has led to a formulation of the amount of air entrained
as a function of the external wave parameters. We foresee the possibility of using these results, along with field measurements
of breaking to improve the models of air entrainment, and ultimately air-sea gas transfer. The work described in this abstract
is in review in the Journal of Fluid Mechanics [6].
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Summary An experimental study was conducted with the aim of validating the kinematic criterion introduced for breaking of shoaling waves, 
based on approach by Shemer and Liberzon (2014) [2]. Special attention was dedicated to the relation between the instantaneous horizontal water 
velocity U and the instantaneous propagation speed of the crest on a verge of breaking. It was found that the inception of a breaker occurs when 
the monotonically increasing water particle velocity on the crest exceeds that of the slowing steep crest. Additionally, an objective method of 
breaking detection was developed utilizing the Phase-Time Method [1]. These results' main expected contributions are the formation of an 
applicable criterion, accompanied by wave breaking detection method independent of human decision. Incorporation of these into existing waves 
prediction models will contribute significantly to marine projects efficiency and eventually reduce design, construction and operational costs.  
 
Introduction 

The energy balance in the ocean is maintained partially due to the mechanism of waves breaking. Part of the energy being 
transferred throughout the ocean is accumulated in steepening waves to the point of breaking, resulting in energy dissipation 
and redistribution. The complete understanding of the mechanism of waves' breaking has numerous applications in various 
scientific and engineering concerns. Besides directly affecting the energy balance, breaking process involves production of 
sea spray and influences the boundary layer of the wind flow through the coupled wind-waves system close to water surface, 
hence directly governing wind waves' growth/decay rates. Near the shore, breaking is a part of sediment transport and coastline 
formation, therefore being of high significance in engineering considerations. A structure that is present at a site of breaking 
should be planned to absorb the impact of breaking. An engineering project, such as a harbor, that relies on specific near shore 
characteristics, such as water depth and coastline, should consider wave breaking and its effects on local features.  

 
Hypothesis 

The most common rule of thumb for the inception of a breaker relates to the wave's steepness, meaning its geometric 
characteristics, but the determination of such in actual breaking wave is nontrivial. First, the wave profile close to breaking is 
highly irregular, which introduces ambiguity in the definition of local wave's parameters. Second, breaking waves are highly 
unsteady and they deform rapidly. Even with accepted definitions, the timing for the determination of the wave parameters 
by a direct spatial measurement of the surface profile is problematic. Through the last decades, progress has been made in 
numerous numerical and experimental studies of the topic, and various geometric, dynamic and kinematic criteria for waves 
breaking has been suggested and examined. Nevertheless, an applicable universal method for determination of the conditions 
required for breaking occurrence in the open sea is not yet available.  

Recently an applicable and potentially universal kinematic criterion was suggested [2]. Kinematic breaking criterion often 
involves the horizontal velocity on the crest U, while the phase or group speed (c) is taken to be constant along the examined 
wave, then wave breaking occurs when U exceeds c. However, application of such criterion should address the asymmetry of 
a nonlinear wave, hence the kinematic criterion for wave breaking should be applied to the relation between local 
instantaneous U and the instantaneous propagation speed of a steep crest on a verge of breaking. Such kinematic criterion 
addresses the high non-linearity of the near-breaking wave and therefore is a promising candidate to be universally valid for 
all types of breakers and breaking conditions (i.e. deep water waves groups, shoaling, and propagation over barriers, etc.). 

 
Methods 

A new kinematic criterion was recently suggested and tested for deep-water non-linear waves breakers [2], based on 
accurate measurements of Lagrangian water surface velocities at the wave's crest. Implementing similar methods, we have 
examined the feasibility of this kinematic criterion for the breaking of shoaling waves by staging measurements in a large 
wave tank. In order to simulate the process of shoaling, an artificial shore with changeable inclination angle was built and 
installed in the flume. Important parameters of mechanically generated waves, shoaling on the artificial beach, were obtained 
using a combination of flow visualization techniques (PTV) and traditional wave gauges. Comparing water surface velocity 
on the wave's crest with the instantaneous crest propagation speed up to and at the inception of a breaker allowed validating 
the kinematic criterion. 

The experiments were performed in a large, 30 m long and 2.5 m wide, wave tank, holding water at depth of up to 1.25 
m. An artificial, 6 m long shore, was built and installed at 15 m fetch, in order to allow mechanically generated waves to 
naturally shoal and break. Shore’s frame allowed setting a desired inclination angle in the range between 2 and 20 degrees. 
To collect the experimental data acquiring both the velocities of the water parcels at waves' crests and the local near and 
breaking crest shapes a combination of several measuring instruments was used. Two fast 4 MPix resolution cameras were 
used. One camera was filming the motion of small buoyant particles on the water surface, following the motion of water 
parcels. Lagrangian velocity and acceleration values on the water surface were then obtained from these records by PTV. 
Simultaneously, the second camera filmed the motion of the wave profile, being pointed toward tank's wall.  
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Results 

In the following images a record of a representative breaking wave is presented. 
 

 
Figure 1- Images from both high speed cameras of a wave on the verge of breaking. Left image: particles 

floating on water surface, right image: instantaneous wave profile 

 
Instantaneous fluctuations of water surface of the approaching and then shoaling waves' were recorded by several 

consecutive resistance type wave gauges, providing an independent measurement of various important waves' parameters 
such as height, steepness, and phase and group velocities. Besides the confirmation of waves' parameters along the flume, 
data acquired from the wave gauges were used to develop an objective method for breaking detection, based on the local 
frequency variations in the highly nonlinear wave. A PTM (Phase-Time Method) method of data processing, based on Hilbert 
transform [1], was implemented here to detect occurances of breakers. Deriving an expression for the instantaneous/local change 
in phase referred to as the local frequency, and examination of breaking waves' data allowed determining a specific pattern in 
the local frequency fluctuations associated with the appearance of a breaker. A linear pre-breaking part, and an exponential 
post-breaking part was recognized (Figs. 2 and 3), and an automatic algorithm for detection of breaking waves was developed. 

 
Figure 2- Hilbert frequency variation with relevant water level of breaking site 

 

 
Figure 3- typical exponential fits for Hilbert frequency before and after wave breaking 
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OPTIMAL DISTRIBUTION OF RIVERINE TURBINES IN A LINEAR ARRAY WITH
SYSTEMATIC FLOW MANIPULATION

Niall Mangan1 and Shreyas Mandre ∗2
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Summary Hydrokinetic turbine arrays must be optimized not only to extract the maximum power from the fluid flow, but also to reduce
navigational and environmental impacts. We recently showed that an array with minimal footprint, oriented in-line with the river flow, could
extract an order of magnitude higher power by deflecting the flow through the array at angle α. Here we derive the optimal distribution of
turbines along such an array. For small α, corresponding to weak deflection, we find the turbines should ideally be distributed uniformly
between recirculation zones at the edge of the array. The size of the recirculation zones depends on the strength of deflection. For α above
≈ 45◦, the distribution deviates from uniform, with the downstream turbines generating almost twice the power per unit length compared
to those upstream.

OVERCOMING PRACTICAL LIMITATIONS ON ARRAY PLACEMENT THROUGH FLOW MANIPULATION

Practical considerations often constrain the placement of hydrokinetic turbines in an array away from the location where
they could collectively extract maximum power. The ideal configuration of a tidal or riverine turbine array is in the form of a
fence that spans the width and depth of the channel at its narrowest. However, navigation and environmental considerations
prohibit construction of such arrays (see ref. [1] and references within). Any alternative array arrangements, besides the
fence, suffer from a severe reduction in power conversion efficiency because placing turbines in the wakes of other turbines
deteriorates their performance. We re-frame the problem from organizing the turbines in a configuration with maximum power
to redirecting the flow to a the array, using deflectors within the array. Ultimately we would like to understand how to optimize
turbine and deflector placement in the array to maximize power density.
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Figure 1: (a) Arrangement of hydrokinetic turbines and deflector plates in a linear array aligned with the freestream. The
spacing between the turbines is non-uniform to maximize the extracted power. (b) The flow field resulting from optimal
operation of a deflector-turbine array in the continuum limit for the case α = 63◦. Light curves show streamlines, and the
bold curves show the streamtube intercepted by the array. An extreme value of α is chosen for demonstration of the important
features of the flow, namely the recirculation regions near the ends of the array. Also shown in red is a sample pillbox control
volume for energy balance. (c) The profiles of the power coefficient per unit length w along the array for the optimal flow
reduction factor as a function of the deflected-flow strength. The profiles are color coded with the deflected-flow strength
Q0/UL ranging from 0.02 to 20 depending on α.

Consider turbines placed along the centerline of a “river,” such that the length L of the array is parallel to the freestream.
Without flow redirection, there is negligible power incident on the turbines; the turbines are augmented with deflectors to
redirect the flow. In a recent paper [2], we developed an inviscid fluid dynamics framework for analyzing the energy conversion
by an idealized version of such a deflector-turbine array. Here we present results on the distribution of installed capacity in
this array for a given flow deflection.
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Background: Improving limits on array power using deflection
The flow around the array is described in terms of bound and free vorticity. The bound vorticity is chosen such that the

fluid velocity u makes a constant angle α with the freestream at the array. The array also sheds free vorticity along the two
extreme streamlines, in the form of a vortex sheet. The magnitude of this shed vortex sheet is chosen such that, for a given
α, the power extracted by the array is maximized. The flow is solved by determining the shape of the vortex sheets, which
according to inviscid fluid dynamics, coincides with streamlines.

Using this framework we determine an upper bound on the array power. We predict that we could increase the power from
1.2× 10−2ρU3L for an array relying on natural turbulent fluctuations for recovering the wake deficit to 0.3ρU3L using state
of the art deflectors, achieving α ≈ 40◦.

TURBINE DENSITY DISTRIBUTION WITHIN ARRAY TO MAXIMIZE POWER EXTRACTION

Next we wish to gain insight about how to arrange turbines in the array to realize this optimum array power conversion.
To determine the arrangement of turbines, we calculate the power conversion per unit length as a function of the location
along the array and the angle of deflected flow α. Due to the confounding factors of non-local influence of deflectors and the
resistance offered to the flow by the turbines extracting power, the optimal profile of the power per unit length (and therefore
the distribution of turbines) is non-obvious.

Calculating power density distribution from flow field
The fluid mechanical energy flux is e = up0, where p0 is the stagnation pressure p∞+ 1

2ρ|u|
2. The mechanical energy is

conserved, and therefore it is divergence free, everywhere except on the array. On the array, the flux jumps discontinuously,
by an amount equal to the power extracted by the array. Furthermore, the Bernoulli principle for inviscid flow imply that the
stagnation pressure is one of two values; it is p∞ + 1

2ρU
2 outside the wake, and p∞ + 1

2ρV
2 within the wake. Therefore, the

power converted in a small pillbox (see Figure 1 (a)) of length ∆L along the array is Warray = 1
2ρ(U2 − V 2)u · n ∆L.

Since the jump in the stagnation pressure is uniform across the array, the variation of the power density with location
arises from the profile of normal component of the fluid velocity. We obtain the normal component from our calculations as
described in [2], and determine the profile of power density.

We use the deflected flow rate Q0, which occurs in the absence of any energy extraction, to non-dimensionalize the power
density. The dimensionless version we define is

w =
Warray

1
2LρU

2Q0

. (1)

CONCLUSIONS: NON-UNIFORM TURBINE DENSITY ENABLES OPTIMAL POWER EXTRACTION

The calculated power density distribution, w, is plotted in Figure 1, and shows the optimal distribution of turbines for
deflected-flow strength ranging from weak to strong. For weaker deflection, from 0◦ < α < 45◦ the normal velocity
component of the fluid across the array is approximately uniform, and therefore the corresponding density of turbines is
also uniform. However, with increasing deflected-flow strength, α > 45◦ the normal component of the fluid velocity becomes
larger at the far end of the array. The range along the deflector-turbine array where power density is significant (non-zero), also
decreases dramatically at the highest deflection strengths. This decrease in array efficiency, due to increasing recirculation
regions, is outweighed by the massive gain in increased flow strength.

The power density distribution for the highest deflection flow strength indicates an un-intuitive strategy for maximizing
power conversion in this type of array. If such deflection strengths were attainable turbines should be placed in only 1/5th of
the total array length at center of the array, and increase in density toward the back of the array. We estimate current airfoil
technology can achieve angles of α ≈ 40◦ without flow separation [2], which corresponds to a deflected flow strength of 1
(grey data in Figure 1 c). Therefore, for existing deflector technology, the turbines should be placed in the inner 2/5ths of the
array with slightly non-uniform optimal turbine distribution. To maintain the deflected flow strength, the deflectors will also
need to be optimized across the array, which is a topic of future research.
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WAVE MODULATION: THE GEOMETRY, KINEMATICS, AND DYNAMICS OF
SURFACE-WAVE PACKETS

Nick Pizzo∗and W.K. Melville

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Summary We derive a set of conserved quantities and moment evolution equations for the modified nonlinear Schrodinger equation (Dysthe
1979; MNLSE), with application to interpreting the geometry, kinematics, and dynamics of deep-water surface gravity wave packets. Our
theory predicts modifications to the group velocity and explains the asymmetric leaning forward of the wave packet as focusing occurs.

The theory is examined numerically for dispersive focusing wave packets, and these results are compared to numerical simulations of the
fully-nonlinear potential flow equations. It is found that the MNLSE models the bulk scale features of the focusing event, and that the
numerical results are consistent with the theoretical predictions.

INTRODUCTION

This paper reports on a theoretical and numerical study of the properties of weakly nonlinear narrow-banded deep-water
wave packets (i.e. compact wave groups). Weakly nonlinear Stokes waves are subject to the Benjamin-Feir instability (Ben-
jamin & Feir 1967), so that the subsequent nonlinear evolution of the wave field is of considerable interest from both a
mathematical and physical point of view.

Our model equation in this study is the spatial modified nonlinear Schrodinger equation (Dysthe 1979), subsequently
derived by (Lo & Mei 1985), and given by

∂A

∂χ
+ i

∂2A

∂τ2
+ i|A|2A+ β0|A|2

∂A

∂τ
+ iα0AH

(
|A|2τ

)
= 0, (1)

where A = A(ε2χ, ετ) is a slowly varying complex valued function, related to the lowest order coefficient of the first mode of
the velocity potential expansion, H is the Hilbert transform, χ = k0x, τ = ω0(2k0/ω0x− t), β0 = 8ε, α0 = ε and ε = a0k0
is a small parameter for (a0, ω0, k0) the characteristic amplitude, angular frequency and wavenumber, respectively.

Equation (1) governs weakly nonlinear narrow-banded surface gravity waves and has been shown (Lo & Mei 1985) to
predict certain features of wave train evolution that are not apparent at lower order (i.e. for ε ↓ 0), including asymmetric wave
envelope growth, a better prediction of the modulation instability growth rate (Dysthe 1979), asymmetric spectral growth, and
the coupling of an Eulerian mean flow to the wave amplitude evolution. These asymmetries arise from the term in equation
(1) with coefficient β0, while the induced mean flow is related to the term with coefficient α0.

RESULTS

By employing Whitham’s method, we derive equation (1) from the Lagrangian for deep-water irrotational inviscid surface
gravity waves, making the variational structure of the equation manifest. Through Noether’s theorem, this allows us to deduce
conserved quantities of the MNLSE, connected to the symmetries of the action.

The first of these conservation laws, associated with the phase-shift invariance of the action, is shown to be

∂|A|2

∂χ
+

∂

∂τ

(
i (A∗Aτ −AA∗τ ) +

β0
2
|A|4

)
= 0. (2)

Note, if (A∗Aτ − AA∗τ ) is constant in τ , then equation (2) takes the form of the inviscid Burger’s equation in the variable
|A|2. This explains the asymmetric leaning of the envelope, which is commonly observed in laboratory experiments.

An example of a focusing wave packet is shown in figure 1, where the forward leaning of the wave packet is evident.
Here, dispersive focusing is used to induce wave packet focusing; that is, by generating longer waves before shorter waves,
the packet converges . As the packet focuses, we see that the forward face of the wave group steepens. As this steepening
occurs, dispersion begins to act more strongly, leading to a spreading out of the wave packet, arresting the self-steepening due
to the nonlinear term in equation 2 (i.e. ∂τ (β0|A|4/2)).

∗Corresponding author. Email: npizzo@ucsd.edu
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Next, based on equation (2), we consider the evolution of the centroid of the energy density of a compact wave group. We
define the centroid as M =

∫∞
−∞ τ |A|2 dτ/

∫∞
−∞ |A|

2 dτ , which serves as an unambiguous marker of the packet location.
Now, in the laboratory frame, the speed of the centroid, which we define as U , can be found via equation (2) to be

U =
ω0

2k0

(
1− ε

2

dM
dχ

)−1
=

ω0

2k0

(
1− 2k20K

)−1
, (3)

where K is a measure of the concentration of the linear energy density, and is defined as K =
∫
|B|4 dt/

∫
|B|2 dt, where

B = a0A. This equation says that changes in the speed of the centroid depend on the evolution of the distribution of linear
energy density in the wave group, and in particular on the integral term K = K(x). Recall, K is a measure of the focusing of
the linear energy density, so we expect it to increase as the packet focuses. Hence, wave packets speed up as they focus.

To examine the applicability of this asymptotic result, the MNLSE and the fully nonlinear potential flow equations are
integrated. The fully nonlinear equations are integrated using the scheme of Dold & Peregrine (1985: DP). Note, the initial
conditions are the same as those considered in figure 1.

Figure 1: The evolution of the modulus of the wave envelope,
|A|, in (χ, τ) coordinates. As the packet focuses, the enve-
lope becomes asymmetric with the face at larger τ leaning
forward.

Figure 2: The evolution of the speed of the centroid of
the potential flow theory (blue) and the MNLSE (red),
normalized by the linear group velocity cgs, versus
downstream position, compared to theoretical model
U , shown by the solid red line.

Figure 2 shows the normalized centroid velocity as predicted by the MNLSE, as well as the theory (equation 3). The
prediction of the fully nonlinear model is shown by the blue triangles, while the linear prediction is shown by the black dashed
line. There is good agreement between the predictions of the asymptotic model, i.e. the MNLSE, and the fully nonlinear
potential flow equations. Both sets of equations predict that the packet accelerates as it focuses, with a magnitude that is
around 4% larger than the linear prediction in the region of maximum focusing (which is denoted by xf ).
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ENERGY PROPAGATION AND GROUP SPEED FOR COMPLEX EXPONENTIAL WAVES
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Summary In classical dispersive wave equations, the solution is specified by a superposition of plane waves of the form exp(i(k ·x−ωt))
(with k and ω real valued) along with a dispersion relation G(ω,k) = 0. However, in many problems one needs to consider solutions of
the form exp(d · x + st), where d and s are complex and correspondingly related by G(is,−id) = 0. In these cases the classical theory
providing the speed and direction of the energy propagation no longer applies. In this paper we derive general energy propagation formulas
for generic complex exponential wave solutions. We show that: parallel to the direction of the exponential spatial envelope, the energy
propagation speed is ce‖ = −Re(s)/Re(d‖), while in the orthogonal directions it is cei⊥ = −∂Im(s)/∂Im(di⊥). In the classical limit
this is consistent with the standard group velocity.

BACKGROUND

Consider a linear, conservative, dispersive wave equation with classical dispersion relation G(ω,k) = 0. In many cases
the need to consider more general complex exponential wave solutions arises. These generalizations occur often when the
bulk medium is absorbing [1, 2], but can also be important for conservative media. These are solutions of the form ed·x+st,
where s and d are complex valued and satisfy the generalized dispersion relation G(is,−id) = 0 — here G is the analytic
extension of the classical dispersion relation. Examples of these type of solutions arise naturally in problems that include
evanescent waves or absorbing boundaries [3], and through use of Laplace transforms.

THEORY

We present the derivation first for a one-dimensional problem, and then generalize it to the case of arbitrary dimension.

1D Group Velocity
In 1D the solutions of interest take the form edx+st, where d is a complex scalar and G(is,−id) = 0. In the classical case,

where d = ik and s = −iω, the group velocity (and therefore the energy propagation speed) is given by cg = −Gk/Gω [4].
Now write d and s in terms of its real and imaginary parts, d = m+ik and s = σ−iω — where we use notation consistent

with the classical theory for the imaginary parts. The energy for the wave can be written in the form

E = e2mx+2σtΦ(x, t), (1)

where Φ is an oscillatory function in x and t. This follows because, in general, the energy in a conservative linear field is
quadratic in the field and its derivatives[4]. From this we see that the average velocity of the energy is given by

cg = − σ
m

= −Re(s)

Re(d)
, (2)

as long as m 6= 0. Next we note that m = 0 with σ 6= 0 is not allowed for a conservative system, while m = σ = 0 is the
classical case given above. A simple calculation shows that (2) yields the classical case in the limit m → 0. Note that, as
should be expected, evanescent waves, m 6= 0 and σ = 0, have zero velocity.

Multi-Dimensional Case
In multiple dimensions, where the waves have the form ed·x+st, we can always change coordinates so that the real part

of the d vector is entirely in the first coordinate. Then the problem splits into calculating the group velocity in the envelope
direction (first component) and the orthogonal directions. In the envelope direction the 1D result still applies. In the orthogonal
directions (for a given σ and m) one can use either modulation theory or averaged Lagrangians [4], to show that a classical
wave packet can be constructed, with velocity

cei⊥ =
−∂(Im(s))

∂(Im(di⊥))
=

∂ω

∂ki⊥
. (3)

Where the real derivative is evaluated at complex values d, s .
∗Corresponding author. Email: rzeznik@mit.edu
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APPLICATIONS

Evanescent Mountain Waves
As an interesting example, we investigate evanescent mountain waves, which are trapped modes of internal gravity waves

created over obstacles [5, 6]. Consider a constant profile wind with velocity U in the horizontal direction x, and stratification
N in the vertical direction z. Let the bottom boundary be a sinusoidal surface with wave number k1 and small amplitude. The
generated wave will have the form φ = Aeik1x+ik2z−iUk1t where k2 is given by the dispersion relation

k2 = ±k1

√
N2

ω2
− 1 = ±k1

√
N2

U2k2
1

− 1. (4)

When Uk1 > N , k2 is imaginary — since the solution must decay as z →∞, it must also be positive imaginary. We can now
use the formula in (3) to calculate the group speed in the x direction. This yields

cgx = U(1− U2k2
1

N2
) (5)

If Uk1/N >
√

2 then cgx < −U . Thus some trapped evanescent waves may travel upwind along the lower boundary.

Laplace Transform Solutions
In terms of Laplace transforms, the (general) solution to a linear wave equation has the form [7]

u(x, t) =
1

2πi

∫
Γ

U(x, s)estds (6)

where U(x, s) is the Laplace transform of u, and Γ is an appropriate contour in the complex plane. Here U(x, s) can often be
expressed as some integral over complex exponentials, resulting from solving the equation forU using Greens’ functions. This
results in u being expressed as a linear combination of waves of the form eκ(s)x+st where κ(s) = d is given by some branch
of the (complexified) dispersion relation. Which precise branch(es) should be used when solving for U , so that causality is
not violated, can then be determined using the theory presented here.

CONCLUSIONS

The theory here gives a tool for determining the group velocity and direction of energy propagation for plane waves with
complex-valued phase velocity and wave number. This is useful in itself for examining the energy propagation properties of
non-standard waves, and also as a tool for performing more advanced mathematical operations like Laplace transforms on
wave equations where energy propagation conditions matter. The results match up with intuition, and are shown to agree for
simple cases with current theory, such as evanescent waves.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under
Grant No. 1122374, which funded A. Rzenzik. Any opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This work was
also partially supported by the NSF grant DMS-1318942, and by the Hertz Foundation.
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STATIONARY SOLITARY WAVES ABOVE BUMPS OR RAMPS 
 IN TURBULENT OPEN CHANNEL FLOW 
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Summary Steady two-dimensional turbulent free-surface flow in a channel is considered. The slope of the channel bottom is 
assumed to be small, and the bottom roughness is assumed to be constant. An unevenness of the bottom in the form of a bump or 
a ramp of large length, but very small height, is taken into account. Asymptotic expansions for large Reynolds numbers and Froude 
numbers close to the critical value 1, respectively, give a steady-state version of an extended Korteweg-deVries equation for the 
surface elevation. No turbulence modelling is required. In case of ramps, stationary solitary waves of the classical shape are 
obtained as particular solutions. For bumps, there are solutions that describe stationary solitary waves with a ‘tail’. 
 

INTRODUCTION 
 
   A simple momentum balance shows that stationary solitary waves cannot exist in two-dimensional steady turbulent open 
channel flow over a plane bottom of constant roughness. However, stationary solitary waves were predicted for a roughness 
that varies along the plane bottom [1], and the predictions were confirmed by measurements in a water tunnel [2]. In the 
present paper, it is investigated whether channel bottoms with bumps or ramps of small height may also give rise to stationary 
solitary waves. 
 

GOVERNING EQUATIONS 
 
   The basic differential equations are the continuity and momentum equations, respectively, for the ensemble-averaged 
variables of steady two-dimensional flow. Flows that differ only slightly from fully developed flow are considered. For large 
Reynolds numbers the viscous wall layer is known to have universal properties [3]. Thus, it suffices to consider the turbulent 
bulk flow (defect layer), where the viscous stresses are negligible, whereas the Reynolds stresses are of essential importance. 
Non-dimensional variables are introduced, with the fully developed flow far upstream serving as the reference state. Thus, 
the averaged surface height in the fully developed flow is the reference length, while the volumetric mean velocity is chosen 
as the reference velocity. The near-critical flow conditions are characterized by a small parameter 𝜀𝜀, which is defined by the 
relation 

   Fr = 1 + 3
2ε     (0 < ε ≪ 1) ,      (1) 

where Fr is the Froude number. Cartesian coordinates X and Y are introduced. With the aim of considering long waves, the 
longitudinal coordinate X has been stretched with 3√𝜀𝜀, while the lateral coordinate Y remains unstretched. 
   At the free surface, the conventional kinematic and dynamic boundary conditions are prescribed. Concerning the boundary 
conditions at the bottom, the shape of the bottom that exhibits a bump or a ramp is given as 𝑌𝑌 = 𝐵𝐵(𝑋𝑋). The tangential-flow 
condition is then applied at the bottom. Furthermore, matching of the defect layer and the viscous wall layer is accomplished 
by making use of the well-known logarithmic overlap law (“law of the wall”) [3], modifying the procedure pursued in [1] as 
follows: The time-dependence is dropped, the roughness is taken as constant, and the matching conditions are applied for 
𝑌𝑌 → 𝐵𝐵(𝑋𝑋) instead of 𝑌𝑌 → 0. This implies that the thickness of the viscous sublayer must be much smaller than the height of 
the bump/ramp, i.e. the Reynolds number in terms of the reference friction velocity, Re𝜏𝜏, has to be sufficiently large to satisfy 
the condition 𝜀𝜀5/2Re𝜏𝜏 ≫ 1.  
   

ASYMPTOTIC EXPANSION FOR 𝜺𝜺 → 𝟎𝟎 
 

   It was observed in [1] that the analysis can be kept free of turbulence modelling if the slope of the (undisturbed, plane) 
bottom, 𝛼𝛼, is as small as 𝜀𝜀2. Furthermore, an analogous reasoning for the height of the bump or ramp leads to the condition 
that B ought to be of the order of 𝜀𝜀5/2 or, equivalently, 𝛼𝛼𝜀𝜀1/2. Thus, we introduce a bottom shape function 𝜓𝜓(𝑋𝑋) according 
to the relation 

      𝐵𝐵 = 𝛼𝛼𝜀𝜀1/2𝜓𝜓(𝑋𝑋) ,           (2) 
where 𝜓𝜓(𝑋𝑋) = O(1) and satisfies the following conditions far upstream and far downstream, respectively: 
                𝜓𝜓 → 0  as  𝑋𝑋 → ±∞ for a bump;     (3a) 
     𝜓𝜓 → 0  as  𝑋𝑋 → −∞ , 𝜓𝜓′ → 0  as  𝑋𝑋 → +∞ for a ramp.     (3b) 
   The dependent variables are then expanded in terms of powers of 𝜀𝜀 . In particular, the non-dimensional, ensemble-
averaged surface height, 𝐻𝐻�, is expanded as follows: 
        𝐻𝐻�(𝑋𝑋; 𝜀𝜀) = 1 + 𝜀𝜀𝐻𝐻1(𝑋𝑋) + 𝜀𝜀2𝐻𝐻2(𝑋𝑋) + 𝑜𝑜(𝜀𝜀2).    (4) 
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   The expansion of the governing equations is performed following [1]. As the last step, a solvability condition for the 
second-order perturbation equations gives the following ordinary differential equation for the first-order surface elevation, 
𝐻𝐻1(𝑋𝑋): 
          𝐻𝐻1′′′ + (𝐻𝐻1 − 1)𝐻𝐻1′ = 𝛽𝛽(𝐻𝐻1 − 𝜓𝜓′) ,           (5) 
with 𝛽𝛽 = (1 3⁄ )𝛼𝛼𝜀𝜀−3/2 . It can be shown that 𝛽𝛽 is proportional to the square of the friction velocity, i.e. it characterizes 
dissipation. The limiting case 𝛽𝛽 = 0 corresponds to inviscid flow, for which (5) reduces to the steady-state version of the 
Korteweg-deVries equation. For turbulent flow, however, 𝛽𝛽 ≠ 0, though it is quite small in cases of practical interest, cf. [2].  
   Eq.(5) is to be solved subject to the boundary conditions 
               𝐻𝐻1 → 0   as   𝑋𝑋 → ±∞ .     (6) 
   Integrating (5) from −∞  to +∞  and accounting for the boundary conditions (6), the following integral relation, 
representing the conservation of momentum, is obtained: 
         ∫ (𝐻𝐻1 −

+∞
−∞ 𝜓𝜓′)d𝑋𝑋 = 0 .     (7) 

 
SOLUTIONS 

    
   For a ramp of the shape 
                                         𝜓𝜓(𝑋𝑋) = 6 [1 + tanh (𝑋𝑋/2)]     (8) 
an exact solution of (5) with boundary conditions (6) is 
          𝐻𝐻1 = 3 sech²(𝑋𝑋/2) ,     (9) 
i.e. the classical solitary wave solution for inviscid flow. Since the right-hand side of (5) is identically zero in this particular 
case, the solution (9) has the remarkable property of being valid for any value of the dissipation parameter 𝛽𝛽. 
   In case of a bump, the boundary conditions (3a) apply, and it is obvious that the integral relation (7) cannot be satisfied 
with a solution resembling (9), i.e. a stationary solitary wave of the classical type. However, the integral relation can be 
satisfied for a stationary solitary wave with a tail. For small values of 𝛽𝛽, the negative surface elevation in the tail is of the 
order of 𝛽𝛽, while the length of the tail is as large as 1/𝛽𝛽. A simple example for a solitary wave with a tail is provided by a 
bump with triangular cross section, i.e. piecewise constant values of 𝜓𝜓′, see Fig. 1. Note that the inclination angle of the flank 
of the bump is as small as 𝜀𝜀3. For inviscid flow, a bump with triangular cross section was considered in [4]. 
 
 
 
 
 

 
 

   Fig. 1. A solitary wave with a tail above a symmetric 
triangular bump. The bump is in the region −2 ≤ 𝑋𝑋 ≤ +2 , 
while its maximum height is 𝐵𝐵(0) = 𝛼𝛼𝜀𝜀1 2⁄ 𝜓𝜓(0) , with 
𝜓𝜓(0) = 13.8 . Numerical solution of (5) with boundary 
conditions (6), 𝛽𝛽 = 0.1. 

 
 

CONCLUSIONS 
 

   It has been shown that a very small unevenness in the channel bottom can produce much larger surface elevations in 
steady near-critical turbulent open channel flow. For a ramp of a particular shape, the shape of the surface elevation has been 
found to be that of the classical solitary wave of inviscid flow. In case of bumps, the solutions can be interpreted as stationary 
solitary waves with a tail. It will be of interest to compare the analytical results with numerical solutions of the full equations 
of motion with modelled Reynolds stresses, e.g. by applying the iteration method described in [5].    
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Summary An exact solution of the problem of a convergent shock wave and dynamic compression of the gas in a spherical vessel with
an impermeable wall has been constructed in Lagrangian coordinates. At the initial time a negative velocity is set at the gas border; when
t > t0 the shock wave spreads in the gas. The boundary of the ball will move under the certain law, which is agreed with the motion of
the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of
the gas flow between the shock front and gas border have been found as a function of time and the Lagrangian coordinate; the dependence
of the entropy on the speed of the shock wave has been found too. In Lagrangian coordinates the problem is solved for the first time, and
it is fundamentally different from previously known formulations of the problem of the self-convergence of the shock wave to the center of
symmetry and its reflection from the center, in which there is no boundary of the gas.

Attempts to construct analitical solutions in order to create the conditions for energy cumulation were made for more than
half a century. The solutions were usually constructed for an infinite region in Euler coordinates. In contrast to [1-5], we
consider the solution of the problem of dynamic compression of the gas sphere with finite size in Lagrangian coordinates
in the following formulation. At the time t0 in a spherical region with Lagrangian coordinate m0 the cold ideal gas with
parameters ρ0 = const, P0 = 0, u0 = 0 is located (ρ0 is the density, P is the pressure, u is the velocity). At the point t = t0,
m = m0 a negative velocity of the ball boundary is given. When t > t0 the shock wave spreads from this point to the gas.

The flow of gas between the shock wave and the boundary of the ball is determined by the equation of the trajectory, the
law of mass conservation and the equation of motion: (

∂r

∂t

)
m

= u, (1)

(
∂ρ

∂t

)
m

+ 4πρ2
∂(r2u)

∂m
= 0, (2)(

∂u

∂t

)
m

+ 4πr2
∂(Fργ)

∂m
= 0. (3)

The condition of constant entropy along the path is considered instead of the energy equation. We pass on from the old
functions r, u, ρ to the new functions

R = r3, ρ, C = r2u. (4)

In the new variables the equations (1) – (3) take the form:(
∂R

∂t

)
m

− 3C = 0, (5)

(
∂ρ

∂t

)
m

+ 4πρ2
∂C

∂m
= 0, (6)(

∂C

∂t

)
m

+ 4πR
4
3
∂(Fργ)

∂m
− 2C2R−1 = 0. (7)

Equations (5) – (7) are essential for finding the R, C, ρ in the area of integration: 0 ≤ m ≤ m0, t0 ≤ t ≤ tf .
To solve the problem we pass on from the variables t, m to the new variables t, ξ(t,m). As a result of the transition we

consider the following equation instead of equations (5) – (7)(
∂R

∂t

)
ξ

+

(
∂R

∂ξ

)
t

(
∂ξ

∂t

)
m

− 3C = 0, (8)
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(
∂ρ

∂t

)
ξ

+

(
∂ρ

∂ξ

)
t

(
∂ξ

∂t

)
m

+ 4πρ2
(
∂C

∂ξ

)
t

(
∂ξ

∂m

)
t

= 0, (9)

(
∂C

∂t

)
ξ

+

(
∂C

∂ξ

)
t

(
∂ξ

∂t

)
m

− 2C2

R
+ 4πR

4
3

[
ργ

(
∂F

∂ξ

)
t

(
∂ξ

∂m

)
t

+ γFργ−1
(
∂ρ

∂ξ

)
t

(
∂ξ

∂m

)
t

]
= 0. (10)

We define the relationship ξ(t,m) so that it would be a constant across the shock wave. The easiest way is to take it in the
form

ξ =
m

m0

(
tf − t
tf − t0

)−n
To find the solution of (8) – (10) we use the method of separation of variables, which is based on the following representation
of functions

ρ = αρ(t)δ(ξ), R = αR(t)T (ξ), C = αC(t)Z(ξ). (11)

On the shock wave at ξ = 1 these functions are of the form

αρ = ρ0, δw(1) =
γ + 1

γ − 1
, αR =

(
tf − t
tf − t0

)n
,

Tw(1) = R0, αC =

(
tf − t
tf − t0

)n−1
, Zw(1) = C0.

(12)

Using relations (11), (12) we transform the system of equations (8) – (10) to the form

A1T
′ = A4, B2Z

′ + ξB3δ
′ = 0, ξC2Z

′ + C3δ
′ = C4, (13)

where

A1 = ξ, A4 = T − 3Zm0

W0
, B2 = 1, B3 = − W0

4πρ0δ2
,

C2 = −W0

m0
, C5 =

4πργ0F0

m0
, C3 = C5γξ

2n−6
3n T

4
3 δγ−1,

C4 =
2Z2

T
− (n− 1)W0Z

m0n
− C5

(
2n− 6

3n

)
ξ

−n−6
3n T

4
3 δγ .

Equations (13) are the system of linear inhomogeneous equations regarding to the T ′, δ′, Z ′. The determinant of the system
is the following

∆ = A1(B2C3 − ξ2B3C2) 6= 0.

We can write the solution of the system (13)

T ′ =
A4

A1
, δ′ =

B2C4

∆
, Z ′ = −A1B3C4

∆
. (14)

Functions T (ξ), δ(ξ), Z(ξ) are found by integrating the equations (14) in 1 ≤ ξ ≤ ∞. Next, using the relations (11) and (4),
the dimensional quantities can be found.

Thus, an analytical solution of the problem of converging shock wave in the collapsing gas has been constructed in
Lagrangian coordinates.
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Summary Numerical simulations of tsunami propagation on various sloping beaches are carried out based on the fully nonlinear and highly
dispersive Boussinesq model. Different wave patterns near the shoreline are obtained. The characteristics of the nearshore tsunami waves
including solitary waves, N-waves and undular bores are discussed. Scenarios of real and hypothetic tsunamis are simulated and different
tsunami patterns in the nearshore regions are compared with the field observation. The impacts of the topographies on the nearshore tsunami
waveforms are analyzed.

INTRODUCTION

Usually, the submarine earthquakes occur in the pressure zone of two plates, so a seabed deformation with an uplift zone
and a subduction zone motivates an N-shape tsunami wave. This type of tsunami wave was observed in the recent tsunami
events, for example, Chile tsunami[1] in 1960, Okushiri tsunami[2] in 1993 and Indian Ocean tsunami[3] in 2004, etc. It was
shown that tsunami waves with N-shape are stable over transoceanic propagation distances in deep ocean. Models based on
the KdV equations and the Boussinesq equations can well catch this specific phenomenon[4,5].

Though tsunami waves propagate long distance without deformation in the deep ocean, they will develop into different
types of waveforms in the nearshore region. When they propagate on the shallow continental shelf, solitary waves or undular
bores may emerge in the wave front. In this paper, the enhanced fully nonlinear and highly dispersive Boussinesq model is
used. Numerical simulations of tsunami propagation on various sloping beaches are carried out. The tsunami waveforms near
the shoreline are quite different on steep and mild sloping beaches, which could not be predicted by the analytical solution
of the nonlinear shallow water equations. N-shape tsunami waves develop into long wave trains on the steep sloping beaches
and form undular bores on the mild sloping beaches. Due to the emergence of undulations, the wave heights increase a lot,
which is quite different comparing with the linear theory. Several scenarios of real and hypothetic tsunamis are presented.
Different tsunami wave patterns in the nearshore regions are obtained. The impacts of the topographies on the nearshore
tsunami waveforms are analyzed.

NUMERICAL SIMULATIONS

The tsunami propagation model used in this paper is based on the horizontal one-dimensional fully nonlinear and highly
dispersive Boussinesq equations which developed by Madsen et al.[6]. In order to compute the fifth-derivatives numerically,
seven points difference stencil is introduced. For time integration, the fifth-order Cash-Karp-Runge-Kutta scheme is used.
The dispersion effect of the model makes it possible to describe the dispersive waves or the undulations well.

The numerical simulations are carried out on sloping beaches where the slopes are from 1:20 to 1:6000. It covers large
scale of the real undersea slopes basically. For example, the continental shelf in the East China Sea is extremely gentle, the
mean slope is only 1:6000 there. The slope of the seabed in the South China Sea is between 1:300 to 1:800.

Obvious differences of wave profiles near the shoreline can be found. Small undulations appear at the crests and the
troughs of the N-shape waves in the numerical results on milder slopes. However, these undulations cannot be obtained by the
analytical solution of the nonlinear shallow water equations. Because of the emergence of the undulations, the wave heights
of the numerical results are larger than the analytical solution. When the slopes become steeper, the waves disperse into long
dispersion waves. The wave trains extend much longer on the steep sloping beaches, which indicates that the dispersion effect
is more obviously for the steeper sloping beaches.

NEAR SHORE TSUNAMI PATTERN ANALYSIS

The waveforms of tsunamis in the nearshore region may appear to be solitary waves, undular bores, N-shape waves and
long wave trains. The tsunami waves have the chance to develop into leading solitons if the shoaling distance is long enough.
Meanwhile, the water depth and the dispersion are also important factors. Wave shoaling on very shallow water leads to the
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accumulation of dispersion. Proper numerical model with dispersive terms can perform the dispersion effect of wave shoaling.
If the propagation distance of tsunami waves on the shallow and gentle sloping beach is not long enough, the undular bores
may appear. Besides, if the epicenter is quite near the shore and the propagation distance of the tsunami wave is short. Maybe
there is not enough time to form undulations. So a typical N-shape wave or long wave trains will be observed in the nearshore
region.

SCENARIOS OF TSUNAMI ON REAL TOPOGRAPHIES

Several tsunamis are simulated by the numerical model. The real cases are Indian Ocean tsunami in 2004, Chile tsunami
in 1960 and Sendai tsunami in 2011. The hypothetic tsunamis are from the Manila trench to the South China Sea and from
the Okinawa trench to the East China Sea. The nearshore tsunami patterns are quite different due to the diverse topographies.
It appears to be solitary waves, N-waves or undular bores. The numerical results are also compared with waveforms from
the field observation. In the Indian Ocean tsunami, the tsunami waves are leading-depression N-waves near Banda Ache of
Sumatra. However, undular bores are observed in the nearshore region of Thailand. The numerical simulations indicate that
N-shape tsunami waves develop into solitary waves after shoaling on the long gentle continental shelf in the East China Sea
and form undular bores in the South China Sea.

CONCLUSIONS

In this paper, we study the tsunami waveforms in the nearshore region after a distance of propagation numerically. The
numerical model is the fully nonlinear and highly dispersive Boussinesq model which can perform the nonlinearity and
dispersion characters of water waves quite well. The numerical simulations are carried out on various sloping beaches. N-
shape tsunami waves will develop into long wave trains on the steep sloping beaches and form undular bores on the mild
sloping beaches. As tsunamis propagate on the real topographies, different waveforms in the nearshore regions are obtained.
The N-shape tsunami waves evolve into long wave trains, undular bores or solitons in the coastal area. The circumstances of
formation of different waveforms are discussed.
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Summary One-dimensional mathematical model of a confined gas flow is developed on the basis of uniform pressure approximation. Com-
pressibility, heat conduction, boundary displacement and mass sources are taken into account. General solution is obtained for perfect gas
in case of negligible convective heat transfer thanks to decoupling of energy equation. Explicit analytic solutions are found for a set of
particular statements in planar, axial and central symmetries. The validity of the obtained solutions is demonstrated by comparison to cor-
responding numerical solutions of the full system of conservation equations. The approach is efficient for obtaining exact and approximate
analytic solutions in terms of integral calculus.

Due to compressibility, the confined gases can flow with velocity normal to the vessel boundaries, unlike confined non-
compressible liquids forming circulating flows. One-dimensional gas flows frequently appear, for example, in microgravity
experiments for measurement of particle transport properties in planar, cylindrical or spherical cells. We assume that the gas
density perturbations are slow enough to consider the pressure uniform in the cell, in other words the flow Mach number is
low. In one-dimensional geometry it excludes momentum equation from the consideration allowing obtaining velocity from
the mass and energy conservation laws. This approximation excludes acoustic and thermoacoustic waves from the solution. In
[1] numerical solutions are obtained for the processes where the gas compressibility plays important role causing significant
convective heat transfer. In the present work we consider processes with negligible influence of the convective heat transfer.
We found analytic solutions for the pressure and velocity in flows driven by possible boundary heating, boundary motion and
mass sources: both boundary and distributed.

Consider an inert compressible gas confined between two boundaries r2(t) ≥ r ≥ r1(t) ≥ 0, where t denotes time. The
boundary motion laws ri(t) should be known as well as functions of distributed mass production rate J(r, t) and matter fluxes
ji(t) at the boundaries. Combining total mass conservation law with the equation of state of perfect gas and factoring the
pressure p(t) out of the space integral, we get:

p = p0

{∫ r20

r10

ξndξ

T0(ξ)
+
R

p0

∫ t

0

(∫ r2

r1

J(ξ, τ) ξndξ + rn1 j1 − rn2 j2
)
dτ

}/∫ r2

r1

ξndξ

T (ξ, t)
(1)

where n is the geometry-dependent exponent (n = 0 in planar, n = 1 in axial and n = 2 in central symmetry), R is the
specific gas constant, T (r, t) is the gas temperature, and ji(t) is r-projection of ji(t). Subscript “0” stands for the initial value
of a variable.

Integrating the continuity equation, the local gas velocity is found as the motion law of a virtual surface containing constant
gas mass of the reference volume:

u =
T

T1

(r1
r

)n
ṙ1 +

T

rn

[∫ r

r1

∂T

∂t

ξndξ

T 2(ξ, t)
+
R

p

(
rn1 j1 +

∫ r

r1

J(ξ, t) ξndξ

)
− ṗ

p

∫ r

r1

ξndξ

T (ξ, t)

]
(2)

where Ti designates the temperature on the i-th boundary. Here the reference volume is confined between the first boundary
r = r1(t) and the imaginary moving surface with coordinate r. The influence of the rest of the volume and of the second
boundary is represented by the multiplier ṗ/p, which we did not expand for brevity.

The assumption of the negligible convective heat transfer allows writing partial differential equation with respect to the
temperature in the form close to the standard heat equation:

∂T

∂t
=

χ

rn
∂

∂r

(
rn
∂T

∂r

)
+Q+

γ − 1

γ
T

(∫ r2

r1

∂T

∂t

ξndξ

T 2(ξ, t)

)/∫ r2

r1

ξndξ

T (ξ, t)
(3)

The heat diffusivity χ is taken constant, γ is the specific heat ratio and Q(r, t) represents heat sources. Expression (3)
differs from the heat equation by the integral containing term, which defines the pressure work. At high Fourier number
Fo = χt

/
(r2 − r1)2 � 1 this term as well as the term with time derivative can be omitted. In case of low Fourier number,

neglecting the pressure work underestimates the temperature variation out of the region influenced by the heat diffusion.
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Figure 1: Example solution for a gas in a planar gap with periodic temperature variation on the right boundary. Dimensionless
temperature and velocity profiles at Fo = 0.01 (a, c) and Fo = 100 (b, d). The oscillation phases are next to the curves in
terms of ωt/π. Analytic profiles are shown by solid lines; diamonds represent numerical solutions.

As an example, we consider here gas motion between two planar rigid non-moving walls at temperatures T1 = T0 and
T2 = T0 + A sin(ωt) and in absence of mass and heat sources, J = 0, ji = 0, Q = 0. Known analytic solution [2] of (3)
without the last term is used to find the velocity from (2). Calculations are done forN2 at T0 = 300K and two pressure values:
p0 = 1atm (Fo = 0.01) and p0 = 10−4atm (Fo = 100). Temperature oscillation parameters: A/T0 = 0.1, ω/2π = 20Hz.
The velocity is normalized by maximal value umax = A(r2 − r1)ω/8T0 corresponding to Fo→∞.

As it is seen on figure 1, the analytic solution well corresponds to the numerical solution of full conservation equation
system. The numerical sulution is obtained by the ANSYS Fluent software. The discrepancies at low Fo are caused by
neglecting pressure work term in (3). It was found that at Fo� 1 no velocity zeroes appear in the domain, and at Fo < 1 one
velocity zero can appear as well as one inflection point. Generally, velocity extreme value drops with decreasing Fo.

Analytic solutions for the flows driven additionally by the motion of walls, boundary and distributed mass sources are also
obtained and verified by comparison to numerical simulation. The results are generalized for all three type of symmetries
when it is possible.

The analytic solutions obtained are applicable as reference solutions for validation of numerical methods in compressible
fluid dynamics at low Mach number. A possibility to estimate gas creep at non-stationary thermal conditions is demanded
for accurate processing of experimental measurements of the kinetic coefficients and particle transport properties. The results
can be of interest for specialists in bubble dynamics, aerosol physics, condensation/evaporation experiments, especially in
microgravity. Proposed methodology should be valuable in university coursework in fluid dynamics as it allows obtaining
exact solutions and approximations for large variety of tasks using integral calculus.

European Space Agency PRODEX program and Belgian Federal Science Policy Office are kindly acknowledged for their
support.
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Capital Territory, Australia

Summary Turbines harvesting energy from the motion of flapping foils have attracted significant research attention in the last 10 years.
Several numerical and experimental studies have shown that a leading edge vortex (LEV) can provide lift enhancement and improve the
performance of a flapping foil turbine. To overcome the obstacle for optimization and engineering design due to the substantial resources
required for computational fluid dynamics (CFD) methods, a discrete vortex method (DVM) which incorporates motions of LEVs with
computational time at least two orders of magnitude less than that for CFD is modified for flapping foil simulations. Semi-empirical
functions are introduced to account for the effects of the trailing edge flow separation. Instantaneous power coefficients from the DVM with
trailing edge flow separation corrections are compared against those from a dynamic stall model and CFD method. Results from the DVM
shows good agreement with CFD simulations.

INTRODUCTION

Studies on flapping foil power generators indicate that the formation and evolution of the LEV plays a significant role in
improving the performance of a flapping foil[1]. While advances in CFD methods have improved our understanding of vortex
shedding, exploring the applications of reduced order models for predictions is worthwhile because of their low computational
expenses.

Studies of unsteady aerodynamics accounting for the LEV formation are motivated by the phenomena of dynamic stall
in the analysis of helicopter blades from 1970s. Some semi-empirical models, for example, Office National D’Etudes et
de Recherches Aerospatiales (ONERA) and Leishman-Beddoes (LB) model[2] have been developed for analysing unsteady
aerodynamic loads on helicopter blades. To extend the application of the ONERA model for flapping foil simulations, Bryant
et al[3] have tuned constants with respect to unsteady effects using the CFD results of Kinsey and Dumas[4]. Another approach
to model unsteady flows with LEV formation is the discrete vortex method (DVM) [5]. However, models based on the DVM
assume that the flow separates at the leading edge, neglecting the influence of the trailing edge flow separation.

In this study, empirical functions used in the LB model are introduced into the DVM to account for the influence of the
trailing edge flow separation. The aim of this study is to examine the feasibility of using a surrogate method to reduce the
computational cost in the optimization and engineering design of a flapping foil power generator.

METHODOLOGY

Kinematics
In this study, a two-dimensional NACA0015 foil undergoing prescribed pitch and plunge motions in a uniform flow with

velocity U is considered:

θ (t) = θ0 sin (2πf0t) , h (t) = h0 sin (2πf0t+ ϕ) (1)

where θ (t) and h (t) are the instantaneous angular and plunge positions respectively; θ0 and h0 are the angular and plunge
amplitude; f0 is the frequency; and ϕ is the phase angle between the pitch and plunge motion.

Dynamic Loads
In the LB model, Theodorsen’s theory is used to predict the lift when the flow is fully attached to the foil. However, this

classical method is limited by assumptions of planar wake and small amplitudes and is unsuitable for flapping foil motions.
Here, the DVM developed by Katz and Plotkin[6] which eliminates small amplitude approximations is used.

To predict the initiation of the LEV formation, a leading edge suction parameter (LESP) determined by the aerofoil profile
and Reynolds number (Re) regardless of kinematic parameters is introduced. LESP=0.19 (NACA0015 foil, Re = 1100)
given by Ramesh et al[5] is used here. Since the separation point is fixed at the leading edge, the DVM with LESP cannot take
into account the influence of the trailing edge flow separation. Here, Kirchhoff flow approximation is used for trailing edge
flow separation corrections (TEFSC). This simple model has been extended for unsteady flow predictions in the LB model[2].
With the use of the DVM incorporating the TEFSC, the lift coefficient (CL) is given as
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CL =
2

U2c

[(
1 +

√
f
)2 ∫ c

0

(
ḣ sin θ + U cos θ +

∂φ

∂x

)
γ (x) dx+

∫ c

0

∂

∂t

∫ x

0

γ (x0) dx0 cos θ + π
[
lim
x=0

γ
√
x
]2√

f sin θ

]
(2)

where φ is the potential; γ is the chordwise circulation; x is the chordwise position; xpiv is the pivot location; and f represents
the position of flow separation. The integrals for the moment coefficient (CM ) calculation are similar to those treated in Eq.(2).

RESULTS

The DVM with the TEFSC is validated against CFD results from Kinsey and Dumas’ work[4] for non-dimensional plunge
amplitude h = h0/c = 1 and φ = 90◦. The dimensionless frequency f∗ is defined as f∗ = f0c/U , where c is the chord
length. To evaluate the power extracted from the flow, the power coefficient CP = (CLḣ+ CM θ̇c)/U is used.

(a) (b)
Figure 1: Predictions of power coefficients with (a)f∗ = 0.14, θ0 = 76.3◦ and (b) f∗ = 0.18, θ0 = 60◦

To assess CP predicted by the DVM, two cases are selected for comparison because strong LEVs are predicted in the
first case (f∗ = 0.14, θ0 = 76.3◦) and no LEV is observed in the second case (f∗ = 0.18, θ0 = 60◦)[4]. In the first case
(Figure 1a), the time history of CP predicted by the DVM with TEFSC agrees with the CFD results[4] much better than the
DVM without TEFSC and Bryant model[3]. The averaged CP for DEVM with TEFSC and without TEFSC are 0.86 and
1.12 respectively, compared with 0.86 of Kinsey & Dumas[4] and 0.87 of Bryant model[3]. In the second case (Figure 1b),
although the time history of CP predicted by the DVM without TEFSC follows similar trend as that of Kinsey & Dumas[4],
its magnitude is almost double for most part of the cycle, but the results of the DVM with TEFSC are much closer to [4].
The averaged CP for DEVM with TEFSC and without TEFSC are 0.37 and 0.41 respectively, compared with 0.27 of Kinsey
& Dumas[4] and 0.24 of Bryant model[3]. In these two cases, the DVM provides better approximations of the time history
to the CFD method compared with the Bryant model[3]. Furthermore, empirical constants used in the DVM with TEFSC
are determined only by the flow condition and the foil profile, whereas constants tuned to match CFD results in the Bryant
model[3] are determined by both the geometry and kinematic parameters which limit the application of the Bryant model[3].

CONCLUSIONS

In this paper, a reduced order model based on the Discrete Vortex Method (DVM) to capture the complex aerodynamic
effects of a flapping foil power generator at a Reynolds number of 1100 has been presented. Results of the DVM incorporating
the trailing edge flow separation correction show reasonable agreement with the CFD results in terms of the power coefficient
amplitude, trend and phase. The computational time required is only 40 minutes compared to over 100 hours for the CFD
method on a single P4/3.2-GHz processor [4]. This study demonstrates the potential of using DVM with TEFSC to explore
the optimization and design of a flapping foil power generator.
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INVISCID COUNTERFLOW JETS FROM ALIGNED NOZZLES

Adam D. Weiss∗, Stefan Llewellyn Smith, Antonio L. Sánchez1

1Department of Mechanical and Aerospace Engineering, UCSD, USA

Summary This paper examines the inviscid interaction of two planar counterflowing streams of different gases issuing from two aligned
nozzles of equal radius R separated a distance H . The problem is relevant in connection with the counterflow burners used in laboratory
experiments to characterize flame response to strain. The computation of the inviscid flow involves integration of the Euler equations, with
the outer jet boundaries and the interface separating the two jets appearing as free surfaces, to be obtained as part of the solution. It is
shown how introduction of a single density-weighted stream function facilitates the description. While conformal mapping can be used
to determine the solution for irrotational flow, numerical integration is required in general, with simplified limiting solutions arising in the
limiting cases H/R � 1 and H/R � 1.

A canonical problem of interest in connection with the high-Reynolds-number flows typically encountered in burners is
that of counter-flowing jets. Counterflow structures that move with the mean velocity can be abstracted from the interface
dynamics of shear and mixing layers [1]. Similarly, local counterflow configurations emerge in typical combustion chambers
around the stagnation point that forms near the injector exit as a result of vortex breakdown of the swirling air-feed stream [2].
Both axisymmetric and planar counterflow configurations have been widely employed in laboratory experiments for studying
reacting and non-reacting flows [3] as well as in numerical simulations to address the effects of strain on flames [4].

Consider the planar flow of two gaseous jets impinging from opposed aligned nozzles of semi-widthR separated a distance
2H , as sketched in Fig. 1(a), corresponding to a typical counterflow arrangement employed in combustion experiments. The
velocity profiles in the feed streams are given by vx = (Q1/R)U1(y) and vx = −(Q2/R)U2(y). Here, 2Q1 and 2Q2

denote the volume fluxes for the two streams and U1(y) and U2(y) represent nondimensional shape functions, such that∫ 1

0
U1dy =

∫ 1

0
U2dy = 1, with y being the distance from the center line scaled with R (i.e. U = 1, U = 2(1 − |y|), and

U = 3
2 (1− y2) for uniform flow, Couette flow, and Poiseuille flow, respectively).
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Figure 1: (a) Sketch of the counterflow configuration investigated here (b) sample distributions of stream function for Couette
jets with H/R� 1 and Λ = 1.

In applications, the Reynolds numbersQ1/ν1 andQ2/ν2 based on the kinematic viscosities of the two fluids ν1 and ν2 are
typically moderately large, so that the flow in the impinging region is laminar and inviscid. Since the Mach number is assumed
to be small, the flow in each of the impinging jets is effectively incompressible, although the corresponding densities ρ1 and
ρ2 are in general different. For this ideal planar flow, both the vorticity ω and the stagnation pressure remain constant along
each stream line. In principle, the problem involves integration of the incompressible Euler equations for the two gas jets,
including as free boundaries the vortex sheets separating the jets from the ambient stagnant air and the vortex sheet separating
the two gases. Because of symmetry, only the semi-space y ≥ 0 needs to be considered in the description.

The existence of two different fluids requires in principle introduction of two different stream functions ψ1 and ψ2 in
the description, with the condition of equal pressure on both sides of the separating surface yielding ρ1|∇ψ1|2 = ρ2|∇ψ2|2,
to be used as matching condition in determining the location of the separating surface. This last condition suggests that
one can simplify the description, removing the need for treating the separating surface as a free boundary, by introducing a
renormalization factor (ρ2/ρ1)1/2 in the definition of new kinematic variables (i.e. velocity, vorticity, and stream function)
for the gas of density ρ2, resulting in a single stream function ψ = ψ1 = (ρ2/ρ1)1/2ψ2 satisfying

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω(ψ), (1)

∗Corresponding author. Email: a2weiss@ucsd.edu
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as follows from the definition of the vorticity, with R and Q1/R used as length and velocity scales. The associated boundary
distributions of stream function and vorticity in the feed streams are

ψ =

∫ y

0

U1dy and ω = −dU1

dy
as x→ −∞ for 0 ≤ y ≤ 1 (2)

and

ψ = −Λ

∫ y

0

U2dy and ω = Λ
dU2

dy
as x→∞ for 0 ≤ y ≤ 1, (3)

where Λ = (ρ2/ρ1)
1/2

(Q2/Q1) is a measure of the ratio of the momentum fluxes of both jets. The distribution of vorticity
ω(ψ) is different in both jets (i.e. for ψ > 0 and for ψ < 0), with corresponding expressions following from the boundary
values of ψ and ω given in (2) and (3). For example, for Poiseullie flow one obtains

∫ y
0
Udy = (3−y2)y/2 and dU/dy = −3y,

yielding

ψ =
ω

6

[
3−

(ω
3

)2]
for 0 ≤ ψ ≤ 1 and ψ =

ω

6

[
3−

( ω
3Λ

)2]
for − Λ ≤ ψ ≤ 0 (4)

as an implicit representation for ω(ψ), whereas for Couette flow one finds

ω = 2 for 0 ≤ ψ ≤ 1 and ω = −2Λ for − Λ ≤ ψ ≤ 0. (5)

The problem reduces to that of integrating (1) with the boundary distribution given in (2) and (3) as x±∞ and the additional
boundary conditions ψ = 0 at y = 0 for −∞ < x < +∞, ψ = 1 at y = 1 for −∞ < x ≤ −H/R, and ψ = −Λ at y = 1
for H/R ≤ x < +∞, with the condition of constant pressure on the jet surfaces ψ = 1 and ψ = −Λ written in the form
(∂ψ/∂x)2 + (∂ψ/∂y)2 = constant.

It will be shown that, while conformal mapping can be employed to determine the solution for U1 = U2 = 1 [5],
numerical integration is needed in general for rotational flow. Results will be obtained for different values of H/R and
different profile shapesU1(y) andU2(y), with particular attention given to the important case of Poiseuille flow, corresponding
to long injectors. The solution will be seen to simplify in the limit H/R � 1, when the collision region appears near the
exit of the jet with lower momentum flux, the other stream approaching as a free jet of constant radius, and also in the limit
H/R� 1, where the opening acts as an annular sink for the flow in the pipe. In the latter limit, the solution can be facilitated
by expressing ψ as the sum of a potential stream function

ψp = y − 1 + Λ

π
arctan

[
eπx sin(πy)

eπx cos(πy) + 1

]
, (6)

carrying the mass flux of the two streams, and a vortical stream function ψv , with associated zero mass flux, determined by
integration of

∂2ψv
∂x2

+
∂2ψv
∂y2

= −ω(ψ) (7)

with boundary conditions ψv = 0 at y = 0, 1 for −∞ < x < ∞ and far-field distributions for 0 ≤ y ≤ 1 given by
ψv =

∫ y
0

(U1 − 1)dy as x→ −∞ and by ψv = −Λ
∫ y
0

(U2 − 1)dy as x→∞. The function ω(ψ) must be evaluated in terms
of ψ = ψp + ψv with ψp obtained from (6). Sample distributions of ψp and ψv obtained with Λ = 1 for the Couette vorticity
distribution given in (5) are shown in Fig. 1(b).
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Summary Analysis of flows in channels with vibrating walls has been carried out as a part of search for the new drag reducing strategies. 

Vibrations in the form of waves travelling up- and down-stream have been considered. Their effect is assessed by evaluating the pressure 

gradient correction required to maintain the same flow rate in the stationary and vibrating channels with the same mean opening. It is 

shown that drag reduction can be achieved using waves travelling in the downstream direction. 

 

INTRODUCTION 

 

   It is known that deformed channel walls have significant effects on drag changes. It has been recognized that stationary 

transverse grooves always increase drag; however, some types of longitudinal grooves may result in drag reduction [1]. In 

this work effects of vibrating surfaces on channel flow are investigated. Vibrating boundaries can be found in many 

engineering and biological applications. Design of roller pumps for fluid pumping without pump components coming into 

contact with the fluid represents one example. Another example is the use of these boundaries to push urine from the kidney 

to the bladder. These boundaries also help to push food forward through the gullet. In addition, bile moving from the gall-

bladder to the duodenum is caused by moving boundaries as well as ovum movement in the fallopian tube. In the present 

study, pressure losses in channels with vibrating walls have been analyzed. Surface vibrations were assumed to have the 

form of travelling waves. The spectrally accurate immersed boundary conditions (IBC) method based on the Fourier 

expansions in the flow direction and the Chebyshev expansions in the transverse direction has been developed [2]. The 

results show dependence of the pressure losses on the phase speed of the waves.  
 

PROBLEM FORMULATION AND RESULTS 

 

   Consider steady, two-dimensional flow of a fluid confined in a channel bounded by two parallel walls extending to   

in the 𝑋-direction and placed at a distance 2ℎ apart as shown in Fig.1. The flow is driven in the positive 𝑋-direction by a 

pressure gradient. This flow is modified by wall vibrations in the form of travelling waves. The resulting time-dependent 

channel geometry is described as 

 

 
 

Figure 1. Physical domain with vibrating boundaries. 

 

𝑌𝑈 (𝑡, 𝑋) =  1 +  ℎ𝑈(𝑋 − 𝑐𝑡),                    𝑌𝐿 (𝑡, 𝑋) = −1 +  ℎ𝐿(𝑋 − 𝑐𝑡),                                     (1a,b) 

where ℎ𝑈  and ℎ𝐿  describe the known wave shapes, the subscripts 𝐿  and 𝑈  refer to the lower and upper walls, 

respectively, and 𝑐 denotes the wave phase speed. Our interests are in the waves that do not affect the mean channel 
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opening. The system response is described by the Navier-Stokes and continuity equations subject to boundary conditions of 

the form 

𝑢𝑇  (𝑡, 𝑋, 𝑌𝑈(𝑡, 𝑋)) =  0,        𝑣𝑇  (𝑡, 𝑋, 𝑌𝑈(𝑡, 𝑋)) =  
𝜕𝑌𝑈(𝑡,𝑋)

𝜕𝑡
 = − 𝑐ℎ′

𝑈(𝑋 − 𝑐𝑡),                                 (2a) 

𝑢𝑇  (𝑡, 𝑋, 𝑌𝐿(𝑡, 𝑋)) =  0,         𝑣𝑇 (𝑡, 𝑋, 𝑌𝐿(𝑡, 𝑋)) =
𝜕𝑌𝐿(𝑡,𝑋)

𝜕𝑡
 = − 𝑐ℎ′

𝐿(𝑋 − 𝑐𝑡)                                           (2b) 

where subscripts 𝑡, 𝑋 and 𝑌 denote the arguments of partial differentiations and prime denotes differentiation with respect 

to the argument. The system is subject to the mass flow rate constraint of the form   

𝑄(𝑡, 𝑋)|𝑚𝑒𝑎𝑛 = (∫ 𝑢(𝑡, 𝑋, 𝑌)
𝑌𝑈(𝑡,𝑥)

𝑌𝐿(𝑡,𝑥)
𝑑𝑌)|

𝑚𝑒𝑎𝑛
=

4

3
,                                                        (2c) 

i.e. the flow rate through the vibrating channel must be the same as the flow rate through the stationary reference channel. 

The additional pressure gradient required to maintain such flow rate is represented in the form of 
𝜕𝑝𝑇

𝜕𝑋
|

𝑚𝑒𝑎𝑛
=

−2

𝑅𝑒
+

𝜕𝑝1

𝜕𝑋
|

𝑚𝑒𝑎𝑛
                                                                            (3) 

where 𝑝𝑇  stands for the complete pressure and the second term on the right hand side represents the correction. Positive 

values of this correction signify the vibrations-induced drag reduction. Detailed results are presented for a sinusoidal wave 

propagating along the lower wall resulting in the shape of the flow domain of the form 

𝑌𝑈 = 1,         𝑌𝐿 = −1 + 𝐴 cos[𝛼(𝑋 − 𝑐𝑡)]                                                               (4) 

where 𝐴 and 𝛼 are the amplitude and the wave number of the wave, and 𝑐 denotes its phase speed. An explicit solution 

determined in the limit of small wave amplitude (𝐴 → 0) demonstrates that drag change increases proportionally to 𝐴2 

[3]. Figure 2 illustrates variations of (𝑅𝑒/𝐴2) ∗ (𝑑𝑝1 𝑑𝑥⁄ ) as functions of the wave speed for selected wave and Reynolds 

numbers. In general, waves propagating in the downstream direction lead to drag reduction with its magnitude increasing 

with 𝑐. The trend is different for the short wavelength waves and depends on 𝑅𝑒 as such waves propagating in the 

upstream direction result in drag decrease if 𝑅𝑒 is large enough.   

 

 
         (A)                    (B)                 (C)                    (D) 
 

Figure 2. Variations of (𝑅𝑒/𝐴2) ∗ (𝑑𝑝1 𝑑𝑥⁄ ) for small-amplitude sinusoidal waves as functions of the wave speed 𝑐 for: 

(A)𝛼 = 0.1; (B)𝛼 = 1; (C)𝛼 = 5; (D)𝛼 = 10. Solid, dashed and dash-dotted lines correspond to 𝑅𝑒 = 1, 𝑅𝑒 = 100, and 

𝑅𝑒 = 500, respectively.     

 

CONCLUSIONS 

 

   The pressure losses in a pressure-driven flow in a vibrating channel have been analyzed. The results show dependence 

of the pressure losses on the phase speed of the waves, with the waves propagating in the downstream direction reducing 

these losses. This argument is not always correct in the limit of small wave amplitude. As it can be seen in Fig.2 (D) when 

𝛼 and 𝑅𝑒 are large enough, waves which propagate in downstream direction with the phase speeds higher than a certain 

critical speed result in a significant drag increase while similar waves propagating in upstream direction lead to drag 

reduction.   
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