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 OCEAN TURBULENCE AND CLIMATE HISTORY 

W. Richard Peltier
Department of Physics, University of Toronto, Toronto, Ontario, Canada 

Summary The global oceans play a critical role in the climate system, not only in the transport of heat from the equator towards 
the poles but also in the global carbon cycle. Although the wind driven component of this circulation continues to be of interest, 
the thermohaline or Meridional Overturning Circulation (MOC) component is of particular importance and interest from a 
fundamental fluid mechanical perspective. This is because its existence depends upon the continuous generation of small scale 
turbulence engendered primarily by the breaking of hydrodynamic waves. A primary source of excitation of these waves is the 
flow of the lunar barotropic tide over ocean bottom topography. The turbulence produced by wave breaking effects a vertical 
flux of mass that may be characterized by an effective turbulent diffusivity and it is this vertical flux of mass that enables the 
high density deep water that forms at the poles to return to the surface. Following a review of recent advances in the 
characterization of this diffusivity, it will be demonstrated that a previously unexplained phenomenon in climate system history, 
the so-called Dansgaard-Oeschger oscillation (see Figure 1), can be understood in terms of a global-scale relaxation oscillation of 
the Atlantic MOC. It is furthermore shown that this nonlinear oscillation is highly sensitive to the representation of stratified 
turbulence. This is an extreme example of a multi-scale dynamical phenomenon in which small scale turbulence controls not 
only the existence but also the millennium timescale of a truly global scale climate related oscillatory phenomenon. 

BREAKING WAVE INDUCED MIXING: MODEL PROBLEMS 

   Our interest is in the high Reynolds number regime that is appropriate for environmentally relevant circumstances, 
specifically but not exclusively for the oceans. Since we are interested in phenomenology in which the turbulence of interest 
develops in a background that is stably stratified in density, appropriate model problems will consist of “parallel” flows in 
which the background is destabilized by shear, in which case the primary instability leading to transition will be governed 
by the Miles-Howard Theorem which asserts that a necessary condition for instability is that the gradient Richardson 
number be less than 0.25 somewhere in the vertical. Although there are several distinct types of instability that may occur in 
such circumstances, the primary types are those first identified by Kelvin and Helmholtz (hereafter KHI) and by Holmboe 
(hereafter HI) which differ from one another by the ratio of the depth of the shear zone to that of the coincident density 
inversion. Both mechanisms generate waves which inevitably break at sufficiently high Re and the turbulence thereby 
produced may be analysed through DNS analyses to infer the diapycnal diffusivity that is characteristic of the typical life-
cycle of such an event [we employ the spectral element software of Fischer et al., 1, to obtain the DNS results to be 
described]. This requires careful distinction between the irreversible “mixing” associated with the event and the entirely 
reversible “stirring” that can contribute nothing to diapycal turbulent diffusion. This requires explicit use of the concept of 
Available Potential Energy (APE) that was originally introduced by Lorenz in the context of his analysis of the atmospheric 
general circulation [eg. 2]. We employ the results from these model problems to compare the turbulent diffusivities inferred 
on the basis of analyses of the associated stratified turbulence to reveal explicitly the nature of the errors incurred when 
these diffusivities are determined on the basis of several commonly employed models including the simplest model based 
upon the Prandtl mixing length idea as well as more sophisticated but nevertheless inaccurate models such as that due to 
Osborn [3] which continues to be widely employed in the area of physical oceanography [4]. 
   A critical issue that cannot be avoided in the inference of irreversible mixing is that of mixing “efficiency”, an estimate 
of which Osborn believed to be provided by the “flux” Richardson number and which he imagined could be assumed to be 
fixed to a constant value of 0.2 for practical oceanographic applications. It is now widely understood, however, that mixing 
efficiency is a strong function of at least two characteristics of the turbulence, respectively a measure of turbulence intensity 
as provided by the buoyancy Reynolds number and a parameter dependent upon the shear that is perhaps best represented 
by “bulk” Richardson number. In the oceans, where density may be strongly controlled by salinity due to the highly 
nonlinear nature of the equation of state, especially under cold temperature conditions, the Prandtl number may also exert a 
further impact upon mixing efficiency [5]. Its inference on the basis of the DNS data requires a complete sorting of the 
individual density elements of which the flow is comprised at each time step in its evolution so as to determine the evolution 
of the minimum potential energy state that could be reached by adiabatic rearrangement and thereby the extent to which 
irreversible processes associated with the destruction of small scale density variance have occurred.  

DIAPYCNAL TURBULENT DIFFUSIVITY AND MOC TIME DEPENDENCE 

Although it is well understood that the existence of the MOC depends entirely upon the action of small scale diapycnal 
turbulent diffusivity, it is an interesting issue as to what role this physical process might play, if any, in the time dependence 
of this global scale component of the ocean general circulation and thereby climate. Although such time dependence has 
often been invoked in the understanding of isolated events in the Climate System, it has only recently proven possible to 



make a connection between observations of climate variability and MOC time dependence. This has been possible by 
providing a detailed fluid mechanical understanding of the so-called Dansgaard-Oeschger oscillation phenomenon, an 
oscillation with a timescale of approximately a millennium in the temperature of the North Atlantic sector of the climate 
system which has been inferred to have occurred under cold glacial climate conditions. The data, shown on Figure 1, in 
terms of which the existence of the phenomenon has been inferred, consist of measurements of oxygen isotopes in ice cores 
extracted by drilling into the Greenland ice sheet, the modern data shown on this figure being derived from holes drilled at 
the Summit location. Inspection of the figure will show that the individually numbered D-O cycles appear to be triggered by 
events labelled “H” in the individual time series. These so-called “Heinrich” events correspond to intense inputs of floating 
ice from the eastern flank of the ice sheet that covered all of Canada at the last maximum of glaciation approximately 
21,000 years ago. When measured in an ice-core, the oxygen isotopic signal is a proxy for the temperature of the air from 
which the precipitation over Greenland derived. It is therefore a climate related signal that requires explanation. 
     The hydrodynamic explanation of this phenomenon, one that connects it unambiguously to the time dependence of the 
MOC, proves to be quite sensitive to the representation of turbulent diapycnal diffusivity employed in a global ocean model. 
In order to establish this fact, a modern coupled climate model that includes a detailed representation of ocean 
hydrodynamics, the CESM1 model of the US National Center for Atmospheric Research, has been integrated at high spatial 
resolution over a period of multiple millennia with the surface boundary conditions of ice cover and land-sea distribution 
appropriate to cold glacial maximum conditions. The results of this analysis have demonstrated that, when the surface ocean 
under these conditions is struck by a Heinrich event related transient forcing that causes intense cooling of the northern 
hemisphere, a fibrillation in the strength of the MOC on the observed millennium timescale occurs. The model also explains 
the temperature signal inferred on the basis of Greenland oxygen isotopic data as well as the related signal derived from ice 
cores drilled from the Antarctic ice sheet in the opposite hemisphere. I have referred to the D-O phenomenology as 
involving the action of a “kicked” salt oscillator in the Atlantic [6], the details of which I will explain in the presentation  
 

 
Figure 1. The upper frame illustrates the evolution of a number of climate related variables over the most recent 100,000 
years of Earth history including northern hemisphere summer solar insolation at 65 degrees north latitude (in blue), 
continental ice volume (in red) and the oxygen isotopipc signal from the NGRIP ice core from summit Greenland (in green). 
The lower frame shows a blow-up of the oxgen isotopic signal from NGRIP compared to that from the GRIP hole which 
was drilled some km distant, a comparison that demonstrates that the signals are very highly correlated. The numbered 
shaded regions correspond to Heinrich events while those number IS (for InterStadial) correspond to individual D-O cycles. 
References 
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MICROARCHITECTURED MATERIALS:  ARE THEY EFFECTIVE? 

 
Norman Fleck1a, 

1Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ, UK 
 
Summary An overview is presented of the role of microarchitecture in dictating the properties of engineering materials, ranging from the bulk 

to coatings and adhesive joints.  Some properties (modulus, strength) are remarkably insensitive to imperfections, whilst others (toughness and 

ductility) can be severely degraded by imperfections.  There is scope to reinforce by the addition of a second phase, and indeed to prestress, akin 

pre-stressed concrete.  The presentation considers 3 inter-related topics:  the effective properties of bulk lattices, microacrhitectured adhesive 

joints and the significance of boundary layers in composite coatings. 

 
FROM BRITTLE FOAMS TO TOUGH AND DUCTILE LATTICES 

 

Lattice materials are emerging with a broad range of properties due to their combination of microarchitecture, length scale 

and composition.  They have impressive properties: as bulk materials, as the cores of sandwich panels and as engineered 

surfaces.  Toughness knows no bounds, and high toughness can be achieved by the successive renucleation of fracture in the 

lattice ahead of a macroscopic crack tip.  Likewise, there are no theoretical bounds for tensile ductility.  There is a recent 

emergence of multi-phase lattice materials due to a combination of two or more constituent lattices.  Extreme properties, 

such as high strength are evident with a diminishing length scale, but new challenges (such as adhesion of neighbouring cell 

walls and low toughness) also appear.  

 

The sensitivity of toughness and ductility to microstructure of elasto-plastic lattices are assessed.  A range of imperfections 

are considered in order to attempt to explain the remarkably low tensile ductility of metallic and polymeric foams;  these 

include randomly displaced joints, missing cell walls and Plateau borders for the case of foams.  The formation of 

densification bands in compression is explored, and it is shown that buckling and volumetric lock-up can protect a lattice from 

failure of the struts.   

 

Reinforcement (and pre-stressing) of foams (and lattices) is possible by the addition of a second phase as an inter-penetrating 

lattice.  This is explored for the case of a foam-cored sandwich beam with pre-stressed faces. 

 
MICROARCHITECTURED ADHISIVE JOINTS 

 

Adhesive joints are used increasingly structural engineering components. There is a challenge to control the strength and 

toughness of the joint (under remote tension and under remote shear), by suitable design of the microarchitecture of the joint.  

A joint of ‘square-wave’ topology is manufactured using aluminium substrates and a silicone-based elastomeric adhesive 

layer.  Under remote tensile loading of the joint, the top and bottom faces of the square-wave behave as butt joints, while the 

side faces behave as lap joints.  The overall tensile strength and work of fracture of the ‘square-wave’ joint can thereby be 

predicted, see Fig. 1.  Maps are constructed to show the sensitivity of joint strength, toughness and transition flaw size to 

joint architecture (amplitude/wavelength of square wave).  Additionally, the crack resistance of the square-wave joint is 

measured by testing a double cantilever beam specimen.  Accurate macroscopic crack growth predictions are made by taking 

the tensile response of the square-wave joint to define a cohesive zone law between elastic substrates. 

 
EFFECTIVE PROPERTIES OF COMPOSITE LAYERS – FROM COATINSG TO ADHESIVE LAYERS 

 

Surface coatings and embedded layers are ubiquitous in engineering components, and serve a wide range of functions from 

environmental protection to low friction and wear resistance.  A related geometry to the surface coating is the embedded 

layer sandwiched between two substrates.  This geometry is also ubiquitous and is representative of adhesive joints, the 

mortar between the bricks of a building, and interphases at grain boundaries inter alia.   

 

Frequently, a coating comprises a multi-phase composite with, for example, particulate reinforcement in order to increase its 

stiffness and strength.  The question arises:  what are the effective properties of a composite coating?  A common 

assumption is to use the effective properties of the bulk composite for that of the coating.  Whilst this assumption is accurate 

when the correlation length of each phase is much less than the coating thickness, it is less accurate when the two length scales 

are of comparable magnitude.  The presence of the substrate or a free surface perturbs the stress field within the composite 

coating.  This can be re-phrased in a more mathematical manner, as follows.  The usual Hashin-Shtrikman variational 

approach for the bulk properties of a composite makes use of the infinite-body Greens function in order to determine the 

ensemble-averaged strain field in terms of a polarization in stress from one phase to the next.  For the embedded layer, the 



infinite-body Greens function is employed, whereas for a surface coating the half-space Greens function is exploited.  The 

presence of the substrate or free surface perturbs the ‘interaction stresses’ from phase to phase, and consequently the effective 

properties of the coating differ from those predicted for the bulk composite of equal thickness.  Boundary layers emerge 

within the coating, adjacent to the substrate and free surface. 

 

The purpose of this study is to make accurate predictions for the effective properties of a surface composite coating or an 

embedded composite layer, taking into account the presence of the substrate of differing properties, whether linear or non-

linear.  Effective properties and associated bounds are generated for composite coatings and for composite sandwich layers 

of finite thickness, based on the Hashin-Shtrikman approach, but suitably modified to account for the presence of a free 

surface in the case of a coating and of substrates in the case of a sandwich layer.  First, the linear properties are generated 

and then the method is modified to generate bounds and estimates for a non-linear composite coating.  We limit our scoping 

study to two-dimensional problems by considering anti-plane shear of an isotropic 2-phase composite on a single-phase 

substrate, with microstructure prismatic along the direction of anti-plane shear.   

 

 

  
   Fig. 1  A microarchitectured adhesive joint 
 

 

 

CONCLUSIONS 

 

There is scope to develop microarchitecture lattice materials with a wide range of topologies, and engineering properties.  Recent 

advances in additive manufacture and in nanoscale manufacture have stimulated this activity, due to the ability to co-deposit two 

or more lattices.  The effective properties for a wide range of topologies have been determined, and defect sensitivity assessed.  

Reinforcement and pre-stressing by a second phase can be used to increase strength and toughness.  Finally, the effective 

properties of composite coatings is explored, and the role of boundary layers emphasised. 
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APPLICATION OF NONLINEAR ELASTICITY TO SOFT TISSUE BIOMECHANICS

Ray W. Ogden∗1 and Gerhard A. Holzapfel2

1School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
2Institute of Biomechanics, Graz University of Technology, Graz, Austria

Summary After a short background discussion, this lecture will focus on the application of anisotropic nonlinear elasticity theory to the
modelling of the mechanical properties of soft biological tissues, with particular attention paid to the properties of artery walls and their
layered fibrous structure. We shall describe how our models have developed in sophistication as more and more experimental data have
become available to inform the modelling process, with particular reference to the details of collagen fibre dispersion and the most recent
model involving non-symmetric fibre dispersion. We shall also touch on recent work that shows how omitting the contribution of fibres
within a dispersion that are compressed during deformation makes a significant difference to the stress response of the material.

BACKGROUND

The theory of nonlinear elasticity was developed largely by Rivlin in the 1940s and 1950s because of the need to describe
the properties of rubberlike materials and to predict the behaviour of these materials for different geometries and under various
loading regimes. Rivlin’s substantial works are contained in the two-volume collection of papers edited by Barenblatt and
Joseph [1] and are a continuing source of reference for researchers in the area. In more recent years, while significant interest
in the application of the theory of elasticity, and also inelasticity, remains, much attention has turned towards applications in
the field of biomechanics, in particular for applications to the mechanics of soft biological tissues such as artery walls and
heart tissue, as exemplified in Humphrey’s book [2]. Further stimulus for the theory has been found relatively recently in the
need to analyze the properties of so-called ‘smart materials’, which include electro-sensitive and magneto-sensitive elastomers
capable of large elastic deformation induced by applied electric or magnetic fields. Such materials have been developed for
applications to sensors, actuators and artificial muscles, for example, and to fully understand their behaviour the theories of
nonlinear electro-elasticity and magneto-elasticity are required, as summarized in the recent volume [3]. This presentation,
however, focuses entirely on the biomechanics applications.

Soft biological tissues have a very complicated struc-
ture, only some of which can be seen depicted in this
widely used schematic figure from [4]. Within the struc-
ture the collagen fibres have a very important role since
they are considerably stiffer than the surrounding material
in which they are embedded and they endow the material
with anisotropic properties. To describe the elastic proper-
ties of soft materials with a fibrous structure the theory of
nonlinear elasticity that incorporates preferred directions,
the local fibre directions, is required. The two main solid
mechanically relevant layers of a healthy artery wall, the
media and adventitia, typically contain families of colla-
gen fibres that are arranged symmetrically in two helical
structures, and this (idealized) structure was the basis for
our first contribution to the elasticity of arteries described
in [4]. Subsequently it became apparent that a slightly more
sophisticated model that accounted for the dispersion in the
fibre orientations about the mean helical structure was re-
quired, and to accommodate this we introduced the notion
of a generalized structure tensor that incorporated a mea-
sure of the dispersion, and this was published in [5].

1
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Both papers have been very successful and the models they contain have been applied to a wide range of soft biological
tissues. However, recent very detailed and extensive experimental work [6, 7] highlighting the collagen fibre dispersion in a
range of different arteries has shown that a more general model is needed to account for the three-dimensional dispersion. In
particular, the rotationally symmetric dispersion model in [5] cannot account for these data. This prompted us to develop a
non-symmetric fibre dispersion model to accommodate the new findings, and this was published recently in [8].

∗Corresponding author. Email: raymond.ogden@glasgow.ac.uk



CONTENT OF THE LECTURE

In this lecture we shall describe the development of our constitutive models of arterial elasticity starting from the model
with two helically arranged families of fibres in [4] and then going on to the models of fibre dispersion in [5, 8]. The non-
symmetric fibre dispersion model in [8] is based on a bi-variate von Mises distribution of fibres and introduces new structure
tensors, one for each fibre family, which are incorporated into the constitutive law to model the fibre dispersion. Necessarily
we shall cover some background material on nonlinear anisotropic elasticity and constitutive laws that govern the nonlinear
elastic response of fibrous solids. Then, with reference to experimental data, models that have a specific structure but are
special cases within the general constitutive framework will be described, and their predictions will be examined for particular
simple deformations. The non-symmetric fibre dispersion model, in particular, will be described in detail. We shall also make
reference to the important effect that residual stresses in unloaded arteries have on their response when loaded.

In the literature it is often considered that collagen fibres do not support significant stress when under compression and so
should be excluded from constitutive models when the material is subject to deformations for which they are compressed. It
is debatable to what extent this notion should be applied since multiple fibres in the matrix within which they are embedded
may well support at least some compressive stress. Nevertheless, in recent (as yet unpublished) work we have explored the
effect of omitting compressed fibres within a dispersion from the analysis and we have found that this makes a considerable
difference to the stress response of the material when there is significant dispersion. This will be discussed briefly during the
lecture.
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FLUID DYNAMICS AT THE SCALE OF THE CELL

Raymond E. Goldstein∗

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, United Kingdom

Summary The world of cellular biology provides us with many fascinating fluid dynamical phenomena that lie at the heart of impor-
tant aspects of physiology, development, and ecology. Advances in imaging, micromanipulation, and microfluidics over the past decade
have allowed for high-precision measurements of such flows, providing tests of fundamental theories about microhydrodynamics and also
revealing a wealth of new phenomena which call out for explanation. In this lecture I summarize this progress in the context of four is-
sues: cytoplasmic streaming in plant and animal cells, synchronization of eukaryotic flagella, collective behaviour in dense suspensions
of microswimmers, and the interaction between swimming cells and surfaces. Throughout, I emphasize the role of fluid dynamics in an
interdisciplinary approach to the mysteries of biology.

∗Email: R.E.Goldstein@damtp.cam.ac.uk
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MODELS OF COHERENT STRUCTURES IN TURBULENT JETS AND THEIR RADIATED
SOUND

Tim Colonius∗1, Aaron Towne1, and Oliver Schmidt1
1Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA USA

Summary This paper provides an overview of recent research aimed at modeling the coherent structures that comprise the dominant source
of mixing noise in high-speed, turbulent jets. A trove of new data from numerical simulations and state-of-the-art measurement techniques
are being fruitfully combined with computationally-enabled access to the eigenspace of large, non-normal, linear systems, in order to
provide tools whereby turbulent structure and mechanism can be reliably educed, and through which quantitatively accurate models are now
emerging. Beyond jet noise, these models have a role to play in controlling turbulence in a variety of free and wall-bounded shear flows.

Background
Enormous progress has been made towards the accurate prediction, via large-eddy simulation (LES), of jet turbulence

and its associated radiated sound, a problem of profound and sustained interest in commercial and military aviation. While
LES is computationally expensive, motivating the continued pursuit of theory and reduced-order models, the realism of the
predictions makes its data a key resource for understanding the physics and modeling the relevant phenomena.

In high Reynolds number turbulent jets, coherent large-scale structures in the form of wavepackets (reminiscent of linear
instability waves in transitional flow) have long been observed (see the extensive review in [1]). Their length and time-scales
far exceed the integral scale of turbulence, and they propagate with a coherent wavelength and phase speed that is slowly
varying with downstream position along the jet potential core and beyond. Their spatiotemporal coherence renders them
more acoustically efficient than smaller-scale, more random turbulent fluctuations, especially in high subsonic and supersonic
jets. The signatures of these structures can be most clearly identified from modern multi-point measurements such as near-
field microphone arrays [2, 3] and time-resolved particle image velocimetry [3]. Within the turbulent jet itself, the envelope,
wavelength, and phase speed of these wavepackets have been accurately modeled, compared with these experiments, using a
variant of weakly nonparallel spatial linear stability analysis, namely parabolized stability equations (PSE) [2]. A key aspect of
the work has been using techniques such as proper orthogonal decomposition, which involve averaging, to extract the coherent
wavepacket from more random fluctuations present in the measurements in order to compare to the analytical models; models
should therefore be regarded as predicting the average wavepackets.

Unfortunately, particularly in subsonic jets, these linear models fail to accurately predict a consistent acoustic signature
of wavepackets in the far-field. Random variations in the wavepacket characteristics in different short-duration realizations
of the flow lead to preferential amplification to the acoustic field. Simply put, the average wavepacket does not necessarily
make the average sound. Thus to predict the acoustic field, it becomes necessary to model the “jitter” [4] of the wavepackets
through their stochastic forcing, either at the nozzle exit or in a distributed way throughout the jet.

Input/output models
In our recent work, we consider a more general modeling framework that is based on the full equations of continuity,

momentum, and energy, and the Reynolds decomposition separating the flow into mean and fluctuating components. Once
spatially discretized and specialized to the case of statistically stationary flow, these equations take the form of a set of large,
linear systems (one for each frequency and azimuthal wavenumber) driven by the (generalized) Reynolds stresses representing
triadic interactions coupling the frequency/wavenumber components.

In the absence of right-hand-side forcing, the linear system is then identical to that which would be used in modal or
transient stability analysis, but linearized about the turbulent mean rather than an equilibrium (laminar) solution. This provides
a commonality with previous models built around the weakly parallel flow theory, but allows for the full spectrum of modes
associated with the non-parallel flow to also be considered. Further, with nonzero forcing, the input/output (resolvent) behavior
of the system can be studied, similar to that being developed for wall-bounded flows [5]. The SVD can be used to extract
the highest-gain modes of the multiple-input, multiple-output system, forming a reduced-order (low rank) basis that can be
expected to span the energetic, large-scale coherent structures [6].

This approach, while computationally intensive in non-parallel flow, provides new insights into the wavepackets and their
associated noise radiation [7]. We note without elaboration that we have recently proposed more computationally efficient
solutions to these systems based on the notion of parabolization, or streamwise marching, of the equations [8]. Such methods
are in fact necessary if we are to develop “reduced-order” models of turbulence, since the SVD associated with the full
complement of frequencies and wavenumbers has a cost approaching LES.
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Ramifications for wavepackets and their radiated noise
The present analysis is fueled by an extensive LES database and companion experiment created by our collaborators for a

canonical Mach 0.9 jet [9] with Reynolds number 106 issuing from a round, converging nozzle. The LES model was carefully
developed to replicate, as closely as possible, the turbulent boundary layers emanating from the nozzle exit in the experiment.
Within the nozzle, synthetic turbulence injection and wall modeling were found to be of prime importance in accurately
predicting the overall jet turbulence and especially the spectrum of radiated sound [9]. Another critical aspect of the LES
was to assemble very long-duration records of the entire flow field to allow for adequate convergence of the low-frequency
statistics associated with the largest flow structures.

Based on the LES mean flow field, we have computed global and resolvent modes associated with the linear operator,
restricting our attention to the jet region downstream of the nozzle exit. Both analyses produce dominant modes in the form of
wavepackets over a wide range of frequencies. An interesting twist, however, is that over a range of frequencies, these modes
are coupled to what can be understood as trapped acoustic waves within the potential core. These modes appear as discrete
lightly damped modes in the global spectra, and their frequencies have also been observed as tones in the near nozzle acoustic
field of recent experiments, as will be reported in forthcoming publications.

The extensive LES data allows us to assess the impact of the nonlinear forcing term on wavepacket evolution by directly
tabulating, over a range of frequencies, both sides of the forced input/output system described in the previous section. In order
to focus the analysis on the dominant coherent structures, we have developed a data decomposition technique that we call
empirical resolvent-mode decomposition [10]. Given an ensemble of realizations for both the forcing and response, two sets
of linked, mutually orthogonal modes can be formed–one for the forcing (inputs) and one for the response (outputs)–that max-
imize the respective gain between them. For a full-rank dataset these would naturally reproduce the standard resolvent modes
associated with the input/output transfer function. For data constrained to lie in the space visited by the LES simulations, the
empirical modes are biased towards high-gain “events” that actually occurred, thereby serving as a diagnostic to determine
which kind of nonlinear interactions led to the observed coherent structures.

The results of this analysis were striking, in that the forcing modes that produced the highly coherent large-scale wavepack-
ets lacked a coherent wave structure, instead appearing more random and smaller-scale in nature, and particularly concentrated
in the near-nozzle thin shear layer region. Whereas a relatively small subset of the response modes were responsible for a
large fraction of the flow fluctuations, the forcing modes were essentially no more efficient than white noise in reconstruct-
ing their total forcing. These observations support the view that the dominant large-scale structures arise stochastically from
uncorrelated forcing from other scales, the structure being associated with the high-gain linear operator itself rather through
coherent nonlinear interactions amongst the dominant modes at other frequencies. This provides justifications for the earlier
PSE models, which are based on the premise that the waves are initiated stochastically in the near-nozzle region.

By restricting the output of the linear system to be the far-field pressure, acoustically dominant structures and their related
forcings can also be characterized. Again it is found that the wavepackets associated with the dominant (low-rank) far-field
structures are produced by incoherent, small scale fluctuations, dominant near the nozzle exit but also through the jet shear
layers, particularly near the region that would be marked as the critical layer (for a given frequency) in a weakly non-parallel
framework. To state the result in cartoon form, both the near-field-dominant wavepackets and far-field-dominant wavepackets
are the result of incoherent fluctuations amplified through the low-rank, non-normal operator associated with the mean of the
turbulent flow field. This suggests the potential for linear models that capture both the coherent flow and acoustic fields. One
approach would be to use RANS to predict the turbulent mean flow field, resolvent analysis (made computationally efficient
via the aforementioned spatial marching method), together with parameterizations of the stochastic forcing terms.
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Summary Liquid-infused surfaces are textured surfaces that have a lubricating liquid impregnated in the surface features. When these
surfaces are exposed to the flow of an immiscible liquid, it is possible to achieve substantial drag reduction in fully turbulent flow. Liquid-
infused surfaces may overcome some of the shortcomings associated with conventional superhydrophobic surfaces, namely failure under
turbulent flow fluctuations and conditions of high hydrodynamic pressure. Results are presented for turbulent Taylor-Couette flow with
longitudinal grooves. A number of different lubricating liquids are tested, and we find a strong dependence on the ratio between the
viscosity of water and that of the lubricating liquid. The drag reduction, remains fairly constant over the Reynolds number range tested
(100 ≤ Reτ ≤ 140) with a maximum of about 14%, as reported by [6]. The current study extends this previous work to examine the effects
of changing the characteristics of the surface features.

INTRODUCTION

It has variously been shown that modifications of the surface can lead to drag reduction for turbulent wall-bounded flows.
For example, [1] showed that for V-shaped grooves (riblets) drag was reduced when h+ < 25 and b+ < 30, with the maximum
drag reduction of 8% occurring for h+ = 10 and b+ = 15. Here, h+ = ρhuτ/µ, b+ = ρbuτ/µ, where h is the riblet height, b
is the riblet pitch, uτ =

√
τw/rho is the friction velocity, τw is the surface shear stress, and ρ and µ are the fluid density and

viscosity, respectively. Shark-skin surfaces, which are broadly similar to riblet surfaces, have been reported to reduce drag
by up to 10% [2]. Superhydrophobic surfaces, where water flows over a grooved surface with air infused in the grooves, has
shown particular promise for drag reduction, with some researchers reporting up to 75% drag reduction in turbulent flows [3].
However, the air pockets may fail when they are under high pressure and under high shear, and turbulent pressure fluctuations
can also cause failure at high Reynolds numbers [4].

Recently, a new technology that uses liquid-infused surfaces has been developed that exhibits negligible contact angle
hysteresis when in contact with various polar and non-polar fluids, low sliding angles for drops on the surface, rapid and
repeatable self-healing, and extreme pressure stability (at least 675 atm) [5]. These liquid/liquid systems are stable as long
as the two liquids are immiscible, the impregnating liquid preferentially wets the substrate compared to the working liquid,
and interfacial tension is stronger than destabilizing body and surface forces. Here, we report how this new surface treatment
responds to flow, and demonstrate that such liquid-infused surfaces can lead to sustainable drag reduction in turbulent flows.
The current study extends the recent work by [6] to examine the effects of changing the characteristics of the surface features on
the level of drag reduction that can be achieved. In addition, we discuss related analytical and numerical model development,
and preliminary results obtained in large-scale tests.

EXPERIMENTS

A Taylor-Couette flow was used to study the drag reducing characteristics of liquid-infused surfaces. The Taylor-Couette
flow was generated using a commercial rheometer (Brabender Rheotron). The inner cylinder was stationary, while the outer
cylinder was rotated over a range of angular frequencies ω (rad/s). The radial gap between the outer and inner cylinders, d
was 1.982± 0.013mm and the height of the inner cylinder H was 80.0± 0.1mm. The working fluid, deionized water, was
maintained at constant temperature to within ±0.1◦C for each experiment using a cooling jacket.

In the original experiments reported by [6], the surface of the aluminum inner cylinder was engraved with grooves aligned
in the flow direction that had a pitch b ≈ 106 µm. A confocal microscope (Olympus LEXT OLS4000) was used to measure
the surface topography (see figure 1a), and the features had an average height of h = 75 ± 3 µm.

Three configurations of the h = 75 µm surface were tested, as illustrated in figure 1b. These preparations were called
“hydrophilic,” “superhydrophobic,” and “oil-filled,” respectively. For the hydrophilic or “control” case, the surface was made
wettable so that the water completely filled the texture. For the superhydrophobic case the same cylinder was then placed in
an ethanol-based solution containing Masurf FS100 (Mason Chemical Co.), resulting in a strong repellency to water and the
entrapment of air in the grooves. For the liquid-infused cases using perfluorinated oils, the oils have a high chemical affinity for
the fluorinated aluminum. For the cases using alkanes such as heptane, the surface was made wetting with respect to alkanes by
removing the fluorination treatment in the plasma cleaner and then functionalizing the surface with n-Octadecyltrichlorosilane
(OTS). The physical and chemical properties of all test surfaces are summarized in table 1.

Figure 1c show the torque measured on the inner cylinder as a function of Reynolds number Re based on the gap size
and the outer cylinder speed (Re = ρwdωRo/µw). The Reynolds number range corresponds to turbulent flow with 100 ≤
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Figure 1: (a) Confocal microscope images of streamwise ridges fabricated by finely threading an aluminum cylinder; (b)
Control, superhydrophobic (air-filled), and liquid-infused configurations; (c) Measured torque data for each test surface; (d)
Drag reduction over the superhydrophobic and three liquid-infused surfaces. Figures (c) and (d) from [6].

Impregnating fluid Surface functionalization µw/µo ρo (kg/m
3) γow (mN/m)

Dupont Krytox GPL-101 fluorinated 1/30 1850 55− 56
3M Fluorinert FC-3283 fluorinated 1/1.5 1830 55− 56
Heptane OTS 2.7 or 1/0.37 684 51− 52
Air fluorinated 50 1.2 72.8

Table 1: Physical and chemical properties of each air- or liquid-infused surface at 20◦ C. Data from [6].

Reτ ≤ 140, where Reτ = ρwduτ/µw. In figure 1d, we show the percentage drag reduction achieved, where the torque
measurements have been corrected for the extraneous drag exerted by the water on the base of the cylinder. Both sets of data
indicate that substantial drag reduction is achieved, with the level of drag reduction increasing with decreasing µw/µo, that is,
for less viscous oils. The best performance achieved in these tests were given by the liquid-infused surface using heptane.

In previous work exploring riblet surfaces, the dimensions of the riblets were found to be critical in determining the level
of drag reduction, with some surfaces exhibiting drag increases (recall that the maximum drag reduction of 8% occurred for
h+ = 10 and b+ = 15) [1]. Similarly, the model developed by [7] for the drag reduction obtained using liquid-infused
surfaces indicates that, in addition to the viscosity ratio, the characteristic value of b+ is a governing parameter. Our current
experiments are directed to verifying this model, and are focused on the role of b+. These results will be reported in the
presentation.
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Summary As a consequence of the recent explosion in the amount and quality of data on turbulent flows, due in large part to direct numerical
simulations, the emphasis has moved from what information is available to the choice of how to analyse it. In particular, the deterministic
description of turbulence, although still a distant goal, does not appear any longer to be unreachable. We review recent advances in the
description of wall-bounded turbulence in terms of identifiable structures that remain coherent for substantial times. We outline their
properties and temporal evolution, and trace their connections with other descriptions of turbulence. We enumerate successes and failures,
and speculate on the future development of the field.

INTRODUCTION

As far as we know, the flow of Newtonian fluids is well described by the deterministic Navier–Stokes equations. This
includes turbulence, and its usual stochastic description can be seen as an admission of our inability to handle complex
solutions rather than as an intrinsic property of the flow. Even the usual argument that engineering is primarily interested
on mean quantities is disingenuous. While the point-to-point instantaneous description of an industrial flow may never be
required, a robust deterministic description would open the door to better prediction and even to control. To give an example,
full-scale weather control may always be impractical, but the prevention of individual tornadoes is a simpler proposition that
would still be very useful.

Coherent structures have always been part of these descriptive attempts. Ideally, they would be local flow configurations
that can be easily recognised and that stay recognisable for a while in a way that can be predicted from the equations. Unfortu-
nately, this is unlikely to be true in general, because pressure in incompressible flows satisfies an elliptic equation that spreads
globally the effect of local initial conditions, but it may work locally for strong events. This hope probably stems from the
observation of free-shear flows [3] or of eddies in rivers and in the atmosphere, although we now understand that coherence
in these systems is linked to fast inviscid instabilities that locally overwhelm the nonlinearity and chaos of the equations.

WALL-BOUNDED FLOWS

Most wall-bounded turbulent flows lack inviscid instabilities in the sense just mentioned, but they don’t lack structures
that can be ‘visually’ identified as coherent. That identification can be automated, and most of the results below have good
statistical support. Popular examples are streaks [11], hairpins[1], sweeps and ejections [14] and vortex clusters [5]. They
differ from the free-shear structures in that we lack a clear theory for their origin, although we believe that we know why they
survive once they have been created. For the same reason that there are no strong instabilities to create them, they are only
weakly damped once they form.

These structures have often been used as descriptive devices in wall turbulence, and each of them has fierce defenders and,
in some cases, detractors. The absence of a fast generation mechanism probably means that no single structure is likely to
dominate the flow everywhere. Most reasonable definitions imply a low-dimensional manifold in phase space towards which
the flow tends, and in whose neighbourhood it stays for some time, but the intrinsic dimensionality of even very-low-Reynolds
number turbulence is high [10]. Moreover, recent results suggest that the inertial range of turbulence is essentially attractor-
less, and temporal tracking of the growth and decay of individual structures is more consistent with a memoryless process
than with an organised evolution. On the other hand, the visually identified structures are far from being negligible. Streaks
carry a large fraction of the fluctuating kinetic energy, and the same is true of the momentum transfer (i.e. drag) by sweeps
and ejections.

A wealth of data, and a paucity of models
Some of the ambiguities plaguing coherent structures can be traced to the incomplete information that experiments provide

about extended objects. Until the recent appearance of time-resolved PIV, experiments were mostly restricted to time traces at a
few points. Even today, experiments rarely extend beyond two-dimensional sections. This left a lot of scope for interpretation
and hypothesising, and has been largely superseded by direct simulations that routinely provide three-dimensional time-
resolved fields of all flow variables. Numerical Reynolds numbers are also now comparable to experiments, although it is
striking that efforts to relate experimental with numerical structural data remain relative rare.

A case that has been studied in some detail are the carriers of intense ‘bursts’ of momentum transfer, originally defined
from point velocity data in terms ‘quadrants’ in a u–v diagram [14]. They were later generalised to a self-similar hierarchy
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of irregular three-dimensional objects [12], each of which contains, on average, a short streamwise roller and a side-by-side
pair of a sweep and an ejection. They have lifetimes of the order of the local eddy turnover, and owe much of their growth
and decay to a series of mergers and splits between objects of comparable size [13]. A sub-family of ‘wall-attached’ eddies
spanning the whole boundary layer carry 60% of the total momentum flux, even if they fill less than 8% of the total volume.

Unfortunately, while data are very useful to determine which hypotheses are untenable, they do not amount to a theory
of turbulence. Models incorporating structures are also being developed. For example, we have reasons to believe that the
origin of the observed bursts is the quasi-linear transient growth of perturbations to the mean profile [4, 6], and we know
that these transient structures exist in all the linearly stable turbulent shear flows in which they have been sought [7]. Linear
processes are thus excellent candidates for the driving engine of wall-bounded flows, and they can be easily analysed and
predicted. They are also fast and inviscid in the sense of free-shear flows, even if transient. However, it is unclear whether our
enthusiasm for these desirable properties simply reflects our inability to deal with fully nonlinear behaviour. A recent analysis
in our group reveals that only 10% of the volume and 40% of the drag are represented by ‘linear’ bursts.

Nonlinear exact solutions of the Navier–Stokes equations, such as permanent waves, cycles [9], and homoclinic and hete-
roclinic connections [2, 15], are also tantalisingly similar to some of the visual features of low-Reynolds number turbulence,
but they are hard to observe at higher Reynolds numbers, and it is even unclear how they could be recognised in a fully chaotic
flow if they were present. As long as this continues to be the case, we do not know how significant they are.

A worrying possibility is that we may be looking at the wrong objects. Structures are presently defined in terms of
variables, such as the Reynolds stresses, whose main justification is that they can be measured experimentally. But only their
divergence enters the equations, and the stresses themselves can be modified by an arbitrary divergence-less ‘gauge’ [8]. Most
present analyses use a particular ‘experimental’ gauge, but this needs not be the case with numerical data. It is intriguing
whether other gauges, or even gauge-invariant quantities, may give results that are easier to interpret.

CONCLUSIONS

The flood of data provided by numerical simulations, and up to a point by experiments, is shifting the focus of turbulence
research away from observation and back to theoretical modelling. In particular, coherent structures offer a promising path
to the deterministic description of at least the most energetic parts of the flow. This in turn may lead to practical applications
in control and modelling. There is by now a virtually unlimited supply of relevant data, including at Reynolds numbers
comparable to most experiments in which detailed measurements are possible. On the other hand, theoretical understanding
is still limited. In particular, we do not know how to restrict our analysis to a local region. We have argued that part of the
problem may be that our methods have inherited the limitations of experiments, and that adapting them to the new numerical
capabilities could be a first step in resolving the theoretical impasse.

This preparation of this paper was partially supported by the Multiflow and Coturb advanced grants of the European
Research Council. I am grateful to S. Dong, M.P. Encinar, C. Huertas–Cerdeira, A. Lozano–Durán and A. Vela–Martı́n for
much of the research cited here.
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HYDRODYNAMICS AND HAIRY SURFACES
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Summary Flexible slender structures in flow are everywhere. While a great deal is known about individual flexible fibers interacting with
fluids, considerably less work has been done on fiber ensembles, such as fur or hair, in flow. These hairy surfaces are abundant in nature
and perform multiple functions from thermal regulation to water harvesting to sensing. Motivated by these biological systems, we consider
two examples of hairy surfaces interacting with flow: (1) air entrainment in the fur of diving mammals and (2) symmetry breaking in hairy
microchannels.

THERMAL REGULATION VIA AIR ENTRAINMENT IN SEMI-AQUATIC MARINE MAMMALS

Arctic mammals are faced with the challenge of maintaining body temperature in extremely cold environments. The task
is further complicated by the fact that many of these animals must find solutions that are effective both on land and under
water. Unlike fully aquatic mammals which rely on blubber for insulation, semi-aquatic mammals (such as fur seals, otters,
and beavers) have specially adapted fur that serves as an effective insulator both above and below water. Many of these
animals have evolved pelts that naturally entrap air when they dive. This air: (1) provides additional insulation under water,
(2) provides added buoyancy, and (3) facilitates water shedding when the animals resurface. In this study we investigate diving
conditions and fur properties which amplify air entrainment in fur.

Our toy model of a furry animal diving into water consists of a textured surface plunged into fluid [1]. Studies of both
withdrawal and submersion of rigid surfaces into fluids have a rich history beginning with the pioneering work of Landau-
Levich-Derjaguin (LLD) [2]. Here we extend LLD to surfaces with mesoscale textures which are relevant to diving mammals.
Hairy surfaces are fabricated using laser cut molds and casting samples with PDMS (Figure 1, Middle). The sample is lowered
into a bath of silicone oil at a constant speed, simulating a dive. A representative snapshot of the dive is shown in Figure 1
(Right) in which the dark region indicates a wedge of air entrained by the hairs. The shape of the wedge is set by a dynamic
balance between fluid entering from the left between the hairs and air escaping out at the top of the wedge.

To estimate conditions under which we expect air entrainment, we construct a model in which hairs of lengthL are plunged
into liquid at a speed V . The x-direction is defined parallel to the hairs. As the hairs are plunged into the bath, liquid penetrates
between the hairs, forming a wetting front. This flow between hairs is analogous to flow in a capillary tube and the balance of
pressure at the liquid/air interface is given by

ρgy +
1

2
ρẋ2 = γκ+

µ

k

xẋ

r2

where γ represents surface tension, κ is the meniscus curvature, µ is the dynamic viscosity, k the effective permeability, r the
spacing of the hairs, and ρ is the density of the fluid. In our experiments, bending of the hairs, capillary forces, and inertial

Figure 1: (Left) Spotted seal. Photo credit M. Cameron [3]. (Middle) Fabricated PDMS hair surface. Photo credit Felice
Frankel. (Right) PDMS hair surface plunging into a silicon bath. Dark wedge shows a region of entrained air.
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effects are all negligible. Balancing hydrostatic pressure and viscous resistance we solve for the speed of the advancing front.
By comparing this speed with the diving speed, we find a maximum diving depth that can be achieved while maintaining an
insulating layer of air given by:

hmax

L
=

(
V µ

kρgr2

)1/2

.

The model is compared with experimental data from our toy system as well as with typical biological data from seals and
otters.

LOW REYNOLDS NUMBER SOLID STATE FLOW RECTIFIERS

A fundamental component in hydraulic systems is the flow rectifier in which resistance varies with the direction of the
flow. One of the simplest ways to generate such an asymmetry is with a ball valve in which flow is completely obstructed in
one direction and free to flow in the other. In this work we seek a variation that: (1) allows the designer to modulate the relative
resistances in the rectifier and (2) can be achieved with solid state state components (i.e. no moving parts). Such a device was
first proposed by Nikola Tesla who patented the “valvular conduit” in 1920 [4]. Tesla’s device relied on fluid inertia to break
symmetry in the rectifier. Later Groisman and Quake [5] demonstrated a microfluidic rectifier for viscoelastic fluids in which
the non-Newtonian properties of the working fluid break symmetry in the flow via nonlinear effects.

In this project, we design a fluid rectifier for low Reynolds number Newtonian flows [6]. In order to circumvent the time-
reversal symmetry inherent in Stokes flow, we again turn to mesoscale elastic hairs that are affixed to the channel walls. Hairs
are angled such that flow aligned with the hairs bends them towards the channel walls increasing the effective height of the
channel; flow in the other direction bends hairs away from the walls decreasing the effective height.

Consider a channel coated with a bed of elastic fibers, each of radius a and length L � a. The fibers are anchored to
a rigid substrate wall, and tilted at an angle θ0 to the z-axis. Flow is driven through the channel by an externally imposed
pressure differential. The channel, of height 2R, can be modeled using two zones. The interior zone corresponds to the space
in the center of the channel which is free of hairs, hence the flow corresponds to Poiseuille flow. The second zone is comprised
of flow through the fiber bed near the wall and is modeled as a porous medium using Darcy flow with a permeability that is
dependent on the local orientation of the fibers [7]. Coupling the two zones, we assume that the shear stress is supported by
the elastic fibers and that the flow velocity is continuous at the fiber tip. Finally, to close the system we require a model for the
deformation of the fibers. We consider two alternate models for fibers: (1) a linear elastic beam and (2) a rigid fiber attached
to the substrate via a torsional spring. This system can now be solved to find the equilibrium shape of the fibers which can
then be used to find flow rates and resistances.

For the torsional spring model, fiber orientation θ is given by the transcendental equation

cos θ
(
1− α

2
cos θ

)
= Te(θ − θ0).

Hence the system response is characterized by three dimensionless groups: Te = (Ksφs)/(πa
2Lµv) which represents the

ratio of elastic to viscous stresses, α = L/R the ratio of fiber length to channel height, and θ0 the undeformed angle of the
fiber. Here Ks represents the torsional spring stiffness, φs is the density of fibers, and v is the average fluid velocity. This
equation can be solved numerically to map and optimize impedance asymmetry. Note that in the limit of large Te the fibers are
nearly rigid and, owing to the time-reversal symmetry in Stokes flow, there is no impedance asymmetry. At the other extreme,
Te → 0, the fibers are extremely flexible and fold down to the walls regardless of the flow direction, again resulting in no
asymmetry. However, there is a region of parameter space in which elastic and viscous forces on the fibers are comparable,
maximizing the anisotropic resistive properties of the channel. These predictions are tested by constructing a fiber bed using
the fabrication techniques described above and directly measuring resistance asymmetries.
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THE TRANSITION TO THE ULTIMATE STATE IN TURBULEN THERMAL CONVECTION

E. Bodenschatz ∗, G. Ahlers, D. Funfschilling, D. van Gills, X. He, H. Nobach, and S. Weiss
Max Planck Institut für Dynamik und Selbstorganisation, Göttingen, Deutschland

Summary We report measurements on turbulent Rayleigh-Bénard convection using three cylindrical samples with aspect ratios (diame-
ter/height) Γ = 1.00, 0.50 and 0.33. All samples had the same diameter D = 1.12 m, but different heights L. Compressed sulfur
hexafluoride gas (SF6) at pressures up to 19 bar was used as the fluid at the Göttingen Turbulence Facility (see www.EuHIT.org). The
measurements were conducted over the Rayleigh-number range 1012 <∼ Ra <∼ 4 × 1015 and for Prandtl numbers Pr near 0.8. In three
independent measurements, namely global heat transport, local turbulent Reynolds numbers, and large-scale-circulation dynamics, we ob-
served a transition over a range of Ra from the classical regime to a new regime which has been referred to as “ultimate”. We discuss the
properties of the classical and the ultimate state, as well as the influence of rotation on this system.

INTRODUCTION

Rayleigh-Bénard convection (RBC), where fluid mass and heat are convected due to a vertical temperature difference ∆T
in the presence of gravity, has long been a model system for the study of thermal convection [1]. The fluid is contained
between two parallel horizontal plates and heated from below. The dynamics of the system depends on the Rayleigh number
Ra ≡ αg∆TL3/(κν) and the Prandtl number Pr ≡ ν/κ. Here g is the gravitational acceleration, L is the sample height, and
α, ν and κ are the thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity respectively. When Ra is
moderate, there are two thin laminar boundary layers (BLs), one adjacent to each of the plates. This system is referred to as
the “classical state”. Each BL emits plumes that rise or fall towards the opposite plate under the influence of buoyancy. The
plumes drive, and in turn are carried by, a large-scale circulation (LSC). When L and the diameter D of the sample are not too
different, then the LSC consists of a single convection roll occupying the bulk region between the BLs. As Ra increases and
exceeds a critical value Ra∗, the LSC mean flow, as well as fluctuations on somewhat smaller scales, will apply shear to the
BLs and, at sufficiently large Ra > Ra∗, will cause the BLs to become turbulent as well. Since no further structural changes
are anticipated as Ra increases beyond Ra∗, the system above Ra∗ is referred to as the “ultimate state”. The value of Ra∗ was
predicted to be of the order of 1014 for Pr ' 1 [2], and to increase as Pr increases.

Various properties, such as the Nusselt number Nu (a dimensionless form of the heat transport), the Reynolds numbers
Re, and aspects of the the LSC dynamics are expected to have different Ra dependences in the classical and ultimate states.
In agreement with the model of Grossmann and Lohse (GL) [2], measurements at the Göttingen Turbulence Facility gave
Nu ∝ Ra0.32 and Re ∝ Ra0.43 for the classical state. For the ultimate state they yielded Nu ∝ Ra0.38 and Re ∝ Ra0.50, as
predicted also by GL [3]. Recent measurements of the Reynolds number Reθm

(which describes the LSC azimuthal diffusivity)
revealed a transition from Reθm

∝ Ra0.28 for the classical state to Reθm
∝ Ra0.40 for the ultimate state [4].

EXPERIMENTAL FACILITIES AND MEASUREMENTS

The experiments were conducted with three large RBC samples known as the High-Pressure Convection Facilities (HPCFs)
which were located in an even larger pressure vessel known as the Uboot of Göttingen at the Göttingen Turbulence Facility.
The samples were cylindrical with diameter D = 1.12 m and heights L = 1.12, 2.24, and 3.40 m, corresponding to aspect
ratios Γ ≡ D/L = 1.00, 0.50, and 0.33. The fluid was gaseous pressurized sulfur hexafluoride (SF6) at ambient temperatures.
For a perfect gas Ra ∝ P 2 (P is the pressure). Thus, increasing P up to the maximum Uboot design pressure of 19 bar yielded
the highest possible Ra values. For L = 3.40 m Ra = 4× 1015 was reached. The value of Pr was close to 0.8. Details about
the facilities and experimental procedures were reported elsewhere [5].

EXPERIMENTAL RESULTS

Figure 1(a) shows Nu measurements for the Γ = 1.00 sample (known as “HPCF-IVb”) which cover the range 1012 <∼
Ra <∼ 1.5× 1014. For Ra < Ra∗1 ' 2× 1013 one sees that Nu ∝ Ra0.321, consistent with the classical-state prediction [2] and
previous measurements. For Ra > Ra∗2 ' 8× 1013 we find Nu ∝ Ra0.37, consistent with the prediction for the ultimate state
[3]. In the range Ra∗1 < Ra < Ra∗2 Nu gently increases from values corresponding to one state to those of the other, indicating
the existence of a transition range between the classical and the ultimate state.

Figure 1(b) shows the reduced Reynolds number ReV /Ra0.5 from a different Γ = 1.00 sample (known as “HPCF-IV”)
[5]. Here ReV ≡ V L/ν where V is the rms velocity fluctuation in the vertical direction. While the data do not give an
obvious indication of Ra∗1 (except for a slight increase of the scatter), they clearly show a discontinuity and a change of the Ra
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Figure 1: (a) The reduced Nusselt number Nu/Ra0.321 as a function of Ra on logarithmic scales. The solid line is the power-
law fit Nu = 0.0159Ra0.37 to the red squares, and the horizontal dashed line is at Nu/Ra0.321 = 0.0763. (b) The reduced
velocity-fluctuation Reynolds number ReV /Ra0.5 as a function of Ra [5]. The solid line is the power-law fit to the data
with Ra ≤ Ra∗1 = 2 × 1013, which gave an exponent of 0.43. The dashed line is the extrapolation of that fit beyond Ra∗1.
The horizontal solid bar corresponds to 0.0863. (c) The reduced Reynolds number Reθm

Pr1.2/Ra0.4 as a function of Ra.
Dashed line: Reθm

Pr1.2 = 0.124Ra0.278 as determined using the data from Ref. [6] for Pr = 4.38. The horizontal solid
bar corresponds to Reθm

Pr1.2 = 0.00364Ra0.40. In all panels the data are for Γ = 1.00 and vertical dotted lines represent
Ra∗1 ' 2× 1013 and Ra∗2 ' 8× 1013.

dependence at Ra∗2. Above Ra∗2 the data give ReV ∝ Ra0.50±0.02, in excellent agreement with the prediction for the mean-flow
Reynolds number ReU in the ultimate state [3] (to our knowledge there is no prediction for ReV ).

The orientation θm (measured at the height z = L/2) of the LSC plane diffuses in the azimuthal direction because of
the stochastic action of the small-scale fluctuations. From the LSC azimuthal diffusivity Dθm one can construct a Reynolds
number Reθm ≡ L

√
Dθm/ν as a quantitative measure of the stochastic azimuthal dynamics of the LSC. In figure 1(c) we show

ReθmPr1.2/Ra0.4 measured with HPCF-IVb. In the classical regime the Ra dependence agrees well with the extrapolation of
the result Reθm

∝ Ra0.28 obtained from a physically smaller Γ = 1.00 sample for Ra <∼ 1011 and Pr = 4.38 [6]. In the
ultimate state the data scatter much less than in the transition range, and yield Reθm

Pr1.2 = 0.0036Ra0.40±0.03. While a
theoretical explanation of the scaling of Reθm

(Ra,Pr) remains a challenge for both the classical and the ultimate state, our
measurements of Nu, ReV and Reθm for Γ = 1.00 clearly reveal the ultimate-state transition and yield consistent values of
Ra∗1 and Ra∗2.

Measurements of Nu and Re for Γ = 0.50 [7] and Γ = 0.33 also showed the same ultimate-state transition. As Γ
increased, the onset of the transition at Ra∗1 ' 2 × 1013 remained almost unchanged, while Ra∗2 decreased. This leads to a
shorter transition range at larger Γ. The data suggest that Ra∗1 = Ra∗2 for Γ >∼ 1.5, implying a sharp transition at a unique
value Ra∗ of Ra.
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Summary A decade ago, Yves Couder and Emmanuel Fort discovered that a millimetric droplet may self-propel on the surface of a vibrating
bath by virtue of a resonant interaction with its own wave field. This hydrodynamic system is unique in that it exhibits several features, both
dynamical and statistical, previously thought to be exclusive to the microscopic, quantum realm. Moreover, its dynamics are reminiscent
of an early realist model of quantum dynamics, Louis de Broglie’s pilot-wave theory. In my Sectional Lecture, I shall discuss prior and
ongoing work in the experimental and theoretical modeling of this rich hydrodynamic pilot-wave system, and its relation to the modern
extensions of de Broglie’s mechanics.

When a fluid layer is subjected to vertical vibration, its surface goes unstable to a field of Faraday waves when a critical
forcing acceleration is exceeded (Figure 1A-B). Below this Faraday threshold, millimetric drops can bounce indefinitely on
the surface (Figure 1C). Ten years ago, Yves Couder and Emmanuel Fort discovered that a droplet bouncing in this fashion
may destabilize into a dynamic state, interacting with its own wave field in such a way as to walk steadily across the surface
[4] (Figure 1D). These walking droplets, or ‘walkers’, are composed of both the droplet and an extended wave field. The
propulsive wave force imparted to the walker during impact is proportional to the local slope of the interface. Since the wave
field depends on both the walker’s history and environment, the walker dynamics are implicitly non-local in both space and
time, said to depend on the system’s ‘path-memory’ [9]. By virtue of this dynamical non-locality, as is most pronounced in the
high-memory limit when the waves are most persistent, the walkers exhibit several features previously thought to be peculiar
to the microscopic, quantum realm.

The walkers exhibit single-particle diffraction when they pass through a slit, on the basis of which one can infer an
uncertainty principle in position and momentum [5]. Single-particle interference has also been reported in the double-slit
geometry [5], although these results have recently been contested [1]. The walkers can tunnel across barriers consisting of
submerged obstacles, with the tunneling probability decreasing exponentially with barrier width [8]. Walkers in confined
geometries follow complex chaotic trajectories, but exhibit coherent statistics reminiscent of electrons in a quantum corral
[13]. When the droplets walk in a rotating frame, quantized inertial orbits analogous to Landau levels may emerge owing
to the droplet interacting with its own wake [11, 14]. Hydrodynamic spin states and analog Zeeman splitting have also been
explored [18]. Walkers in a harmonic potential execute orbits that are quantized in both energy and angular momentum,
analogous to the quantum simple harmonic oscillator [20].

When several bouncing or walking droplets interact, they couple through their wave fields to form a variety of static or
dynamic bound states. Pairs of identical walkers may either scatter, lock into circular orbits [4, 21] (Figure 1E), walk together
with one trailing the other, or walk side by side in the so-called promenade mode [2] (Figure 1F). Atom-like structures can
form from small drops near larger ones, with walkers orbiting static bouncers (Figure 1G). Multiple bouncers or walkers may
also lock into a stable lattice[7] (Figure 1H). All such multiple droplet arrangements, or ‘bound states’, are stable below a
critical forcing acceleration, beyond which wobbling instabilities set in, followed by the collapse of the compound structure.

Recent experimental studies have been directed towards an improved understanding of walker-boundary interactions.
When walkers interact with a planar boundaries, enigmatic reflection laws emerge. Specifically, the reflection angle depends
only weakly on the system memory and angle of incidence: for a broad range of incident angles, the angle of reflection is
nearly 70◦. When a walker scatters off a submerged pillar, it may lock onto a logarithmic spiral. The effective force required
to generate such a spiral is found to be proportional to the Coriolis force that would act on the walker if it were in a frame
rotating with its instantaneous angular velocity. The equivalent form of the Lorentz force acting on a charge in a uniform
magnetic field and the Coriolis force acting on a mass in a rotating frame suggests that the walker is behaving as would a
moving charge responding to the magnetic field generated by the current associated with its own motion. These scattering
experiments have thus revealed a surprising new behavior analogous to mechanical self-induction.

A hierarchy of theoretical models of increasing sophistication have been developed to describe the walkers [11, 16, 17, 15]
Theoretical models now allow for a quantitative description of the walker dynamics, and reveal a strong dependence of the
bouncing behavior on drop size and driving acceleration [16]. These models allow for a robust assessment of the stability
of a number of dynamical states, including straight line walking and circular orbital motion [17, 18]. The studies of orbital
dynamics have provided insight into the origins of quantization and quantum-like statistics in this hydrodynamic pilot-wave
system. Quantization arises by virtue of the dynamic constraint imposed on the walker by its monochromatic wave field. When
the orbital states destabilize, the chaotic walker drifts between unstable orbital states, the result being multimodal, quantum-
like statistics. A similar physical picture provides rationale for the statistical behavior reported for walkers in a circular corral
[13], wherein concentric circles may be considered as the quantized orbital states [12]. Current theoretical models are being
extended in order to consider walker-boundary interactions and the stability of multiple-walker states.
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Figure 1: (A) Schematic illustration of the experiment: a drop walks on the surface of a vibrating fluid bath. (B) Faraday
waves emerge on the bath when the Faraday threshold is exceeded. (C) A millimetric oil droplet bounces in place on a
vertically vibrating fluid bath just below the Faraday threshold. (D) An oil droplet walks due to a resonant interaction with its
own wavefield. E) A pair of identical walkers locked in orbit. (F) A pair of identical droplets walk from right to left in the
‘promenade mode’, their trajectories color coded according to speed. (G) Three drops form a bound state marked by nearly
circular orbits for each. (H) A stable lattice of identical bouncing droplets.

In an attempt to reconcile quantum mechanics and relativity, Louis De Broglie proposed that quantum objects such as
electrons consist of a localized vibrating particle moving in sync with a spatially extended particle-centered wave field [6].
The particle vibration is characterized by an exchange between rest mass energy and wave energy at the Compton frequency.
He proposed that the guiding or ‘pilot’ wave field consists of a monochromatic wave field with the de Broglie wavelength,
and asserted that the resulting pilot-wave dynamics could give rise to a statistical behavior consistent with the predictions of
standard quantum theory. While de Broglie did not specify the physical origins of his pilot-wave field, others have sought it in
the electromagnetic vacuum field [19]. The walking-droplet system, when considered in light of these modern, vacuum-based
pilot-wave theories, would seem to suggest the possibility of an unresolved quantum dynamics on the Compton scale, that a
successful non-local hidden-variable theory might be based on the physical picture of particles interacting with the vacuum,
and propagating in an equilibrium state of energy exchange within it [3].

References

[1] Andersen A, Madsen J, Reichelt C, Ahl S, Lautrup B, Ellegaard C, Levinsen M, and Bohr T: Double-slit experiment with single wave-driven particles
and its relation to quantum mechanics, Phys. Rev. E 92, 013006, 2015.

[2] Borghesi C, Moukhtar J, Labousse M, Eddi A, Fort E and Couder Y: Interaction of two walkers: Wave-mediated energy and force. Phys. Rev. E,
90:063017, 2014.

[3] Bush, JWM: Pilot-wave hydrodynamics, Ann. Rev. Fluid Mech. 47: 269–292-996, 2015.
[4] Couder Y, Protière S, Fort E, Boudaoud A.: Walking and orbiting droplets. Nature 437: 208, 2005.
[5] Couder Y, Fort E.: Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97: 154101, 2006.
[6] de Broglie L: Interpretation of quantum mechanics by the double solution theory. Annales de la Fondation Louis de Broglie 12: 1-23, 1987.
[7] Eddi A, Decelle A. Fort E and Couder Y: Archimedean lattices in the bound states of wave interacting particles, Europhys. Lett., 87: 56002, 2009.
[8] Eddi A, Fort E, Moisy F. Couder Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102: 240401, 2009.
[9] Eddi A, Sultan E, Moukhtar J, Fort E, Rossi, M, Couder Y.: Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 674:

433-463., 2011
[10] Eddi A, Moukhtar J, Perrard J, Fort E, Couder Y.: Level splitting at a macroscopic scale. Phys. Rev. Lett. 108:264503, 2012.
[11] Fort E, Eddi A, Boudaoud A, Moukhtar J, Couder Y.: Path-memory induced quantization of classical orbits. PNAS 107:41: 17515–17520, 2010.
[12] Gilet, T. Dynamics and statistics of wave-particle interactions in a confined geometry. Phys. Rev. E. 90: 052917, 2014.
[13] Harris DM, Moukhtar J, Fort E, Couder Y, Bush JWM: Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001,

2013.
[14] Harris DM, Bush JWM: Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739: 444-464, 2014.
[15] Milewski P, Galeano-Rios C, Nachbin A, Bush JWM: Pilot-wave hydrodynamics: modeling and computation. J. Fluid Mech., 778: 361–388, 2015.
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Summary We discuss some challenges arising in the mechanics of slender (quasi-1D) deformable bodies, such as a thin thread of polymer,
curly hair, or a carpenter’s tape for example. Slender bodies can exhibit a number complex and intriguing behaviors that are accessible
through simple experiments. The analysis of slender bodies exposes one to many of the fundamental concepts of 3D non-linear mechanics,
albeit in a simpler setting where explicit analytical solutions and fast numerical methods can be proposed. Based on examples, we review
some problems arising in the analysis of deformable bodies, including the derivation of accurate 1D mechanical models by dimensional
reduction, the solution of non-linear 1D models by analytical or numerical methods, and the analysis of material or geometrical instabilities.

There are many examples of slender (quasi-one dimensional) bodies around us, including computer cables, human hair,
sailing and climbing ropes. Being flexible, slender bodies commonly undergo large rotations. As a result, they are prone
to instabilities and can display complex behaviors, some of which are illustrated in the figure. In this talk, we will discuss
the specific challenges arising in the mechanics of slender deformable bodies. They include the derivation of dimensionally
reduced models and their analytical or numerical solution, especially in the non-linear range.

a)

b) c)

d)

Figure 1: (a) Shapes obtained by twisting a simple knot in both directions: comparison of experiments using a silicone filament
and numerical simulations using the Discrete Elastic Rods method [3]. (b) Curly hair: equilibria of a naturally curved rod
under its own weight, experiments (green) versus simulation (red) for different values of the natural curvature [8]. (c) 3D
origami obtained by pleating a flat annular piece of paper along a central ridge [7, 6]. (d) Patterns produced by a thin jet
of viscous fluid stretched by its own weight and impinging on a moving substrate, for different fall heights and substrate
velocities: comparison of dynamic simulations based on the theory of viscous rods (yellow) and experiments (black and
white) [2, 5, 1, 4].

Even though many aspects of the beam and rod theories are classical and well understood, fundamental (and often simple)
problems have been solved recently only, or have remained unsolved to date. This includes for instance the derivation of
accurate 1D models for curved strips (i.e. narrow shells) such as a carpenter’s tape, and for filaments made of non-purely



elastic materials (such as elasto-plastic or visco-plastic materials), the design of robust and efficient simulation methods, and
the derivation of explicit solutions to non-linear self-contact problems.

Being effectively one-dimensional, slender bodies are governed by equations that are simpler to write down, more likely
to have analytical solutions, and easier to solve numerically than the corresponding equations of 3D continuum mechanics.
This allows one to address problems that would be impossible to tackle otherwise. In this talk, we will illustrate the derivation
of solutions of this kind.
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ABSTRACT 
 

   Biomechanics underpins many areas of physiology. Anatomically based continuum models of the heart, lungs, skin and 
musculo-skeletal system have been developed and are essential for a quantitative understanding of the physiological 
function of these organs and organ systems. Solving the equations of large deformation continuum mechanics and three 
dimensional viscous fluid mechanics via finite element methods is now a relatively mature discipline. The challenge at the 
continuum level is to capture the nonlinear, anisotropic and inhomogeneous nature of the biological tissues and to link their 
constitutive properties to microstructural models. The bigger challenge is to understand the molecular processes that 
regulate tissue function and the processes of adaptation and growth that characterise all biological tissues. This talk will 
present work being done for the Physiome Project on these challenges at both the tissue scale and the molecular scale.              
 

THE PHYSIOME PROJECT 
 

   The Physiome project was initiated by the International Union of Physiological Sciences (IUPS) in 1997 in order to 
bring multiscale engineering modelling approaches to the physiological interpretation of the wealth of molecular data 
becoming available at that time [1]. The interaction between gene expression and the physical environment into which the 
genes are expressed is key to understanding physiological function. While diseases and drugs operate at the molecular level, 
the regulation of genetic transcription and hence the assembly of proteins (the building blocks of life) are both highly 
dependent on environmental factors governed by the physical world in which molecular biology operates. Engineering, and 
in particular the rapidly growing field of bioengineering, is the discipline that has the integrative skills and tools to put the 
molecular pieces back together again.  
   In 2003, six years after the establishment of the Physiome Project by IUPS in 1997, the US ‘Interagency Modeling and 
Analysis Group’ (IMAG) began funding physiome project grants. Four years later, in 2007, a consortium of European 
scientists and engineers published a roadmap ‘Seeding the EuroPhysiome: A Roadmap to the Virtual Physiological Human’  
(VPH) that persuaded the European Commission to call for research proposals under Framework 7 on healthcare related 
modelling. A VPH Institute (VPH-I) was subsequently established to provide continued global leadership for the 
VPH/Physiome Project with the goal of ‘using computational modelling of biological processes to integrate quantitative 

biological knowledge from molecular to cell, tissue, organ and whole body scales in order to understand physiological 

systems in terms of both their molecular components and their interaction with the environment and translate this 

understanding into clinical practice’ [2]. 
   Mathematics is the language of quantitative science and every scientific discipline should analyse its experimental data 
in the light of physical laws encapsulated in mathematical equations. The challenge facing the Physiome Project is the 
enormous complexity, including spatial and temporal scales, of molecular and physiological systems. Mathematical models 
of these processes quickly become difficult for anyone other than the author of a model to reproduce let alone understand. 
The engineering solution to this problem is to build models based on ‘standards’ and ‘modularity’. Data and modelling 
standards, with tools and model repositories based on these standards, ensure reproducibility and testability. And models 
must be built from modules that define the functional components of a system. To link models of proteins to physiological 
scale models (i.e. cells, tissues, organs and organ systems) also requires a hierarchy of models that are semantically rich so 
that an imported component module can be assembled automatically into the right place in the parent model.        
   A typical multiscale model is shown in Figure 1 [3]. Four spatial scales are shown: the cell (cardiac myocyte), tissue 
(myocardium), organ (heart) and whole body (torso). The cell model shown here is in fact made up of many individual 
protein models. Heart disease and heart drugs operate at the protein level, but the diagnosis of disease usually made at the 
level of the intact organ (e.g., the EKG for electrical function or ultrasound images for mechanical function). The challenge 
is to link models across these scales.     
   The talk will describe multiscale modelling work on the heart, lungs and musculo-skeletal system. It will also describe 
the framework being developed to ensure reproducible modelling using standards and standards-based tools developed for 
the Physiome Project.   
  
 



    
         
FIGURE 1 A multiscale model for electromechanics in the heart. The cell, tissue, organ and torso scales are shown here. The cell model 
is made up of many imported modules – corresponding, for example, to the individual membrane protein ion channels, pumps and 
exchangers, and to signalling pathways that control gene expression and growth processes. A microstructural model at the tissue level is 
used to derive constitutive laws that are used with the field equations of physics at the organ and whole body levels. 
      
   The initial focus for the Physiome Project has been on the establishment of standards, based on modular components, 
that help ensure reproducibility of models [4]. The syntax for the model equations is MathML, the w3c standard for both 
content and presentation of mathematics. The need for semantically rich metadata is addressed through RDF (Resource 
Description Framework), another w3c standard, using ontologies such as ChEBI for chemical identifiers, GO for cell 
components, the CellType ontology, the Foundation Model of Anatomy (FMA), and OPB for biophysical annotation. Based 
on these, two XML standards have been developed: one called CellML for lumped parameter (not spatially varying) 
algebraic and ODE models (e.g. the cell model shown in Fig.1) and another called FieldML for spatially varying (typically 
finite element) models (e.g. the tissue, organ and torso models shown in Figure 1). 
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Abstract 

Electromagnetic functional materials, such as ferroelectrics, ferromagnetics and magnetoelectric thin films and 

laminates, have been widely used in modern industries. Their deformation and fracture behaviors under mechanical loading 

are affected considerably by an external electric or magnetic field. To provide a deep understanding of the intrinsic coupling 

properties, a novel electro-magneto-mechanical multi-field nanoindentation apparatus and a novel multi-field bulge-test 

instrument were designed and constructed. The corresponding characterization method for the thin-film electromagnetic 

materials was also established. The experimental results reveal the size-dependency of various mechanical properties, 

ranging from the Young’s modulus, to the hardness as well as fracture toughness. Notably, these properties can be well 

controlled by applying external electric/magnetic fields. Furthermore, a new size-dependent nonlinear constitutive model is 

developed for the magnetoelectric laminates to account for the coupling mechanisms under multi-field loading. This model 

is managed to study the dynamic harmonic magnetoelectric response and the microwave magnetoelectric effect. 

 

Main text 

With the rapid advances in the materials science and technologies, the characteristic dimensions of electromagnetic 

functional materials have been pushed down to micro or even nanoscale, creating great challenges in the characterization of 

their multi-field coupling properties [1,2]. In this work, a novel electro-magneto-mechanical multi-field nanoindenter with 

powerful functions [Fig. 1(a)] was designed and constructed to study the local mechanical properties of electromagnetic 

materials [3]. The dependence of Young’s modulus and hardness of ferroelectric/ferromagnetic materials on applied 

electric/magnetic fields were systematically investigated [4]. The field tunable fracture behavior of thin-film structures was 

studied as well [Fig. 1(b)], which is found to be size-dependent. A new method is proposed to characterize the electro-

magneto-mechanical coupled performances resulted from the nanoindentation experiment, based on the field tunable scaling 

laws. This method can avoid the testing errors encountered in the Oliver-Pharr method for the estimation of contact area [5]. 

Moreover, a multi-field bulge-test instrument [Fig. 1(c)] was designed and constructed to explore the electro-magneto-

mechanical coupling properties of the electromagnetic thin films [6]. The corresponding characterization method for the 

elastic property and fracture toughness of thin films was also established. A few interesting phenomena were found, 

including the evident effect of mechanical deformation on the electric/magnetic behaviors (e.g., the ferroelectric hysteresis 

loops, butterfly curves, magnetization loops and magnetostrictive curves), as well as the underlying dependences of the 

fracture toughness of the magnetic thin films on both the thickness and the external magnetic field [Fig. 1(d)]. 

 



Fig. 1. (a) Photo of the multi-field nanoindenter. (b) Electric-filed dependency of fracture toughness of relaxor ferroelectric 

Pb(Mn1/3Nb2/3)O3-PbTiO3 crystals measured by nanoindentation. (c) Multi-field bulge-test instrument setup. (d) Fracture toughness of 

Ni thin films under different magnetic fields. 

In order to describe the multi-field coupling deformation behavior of magnetoelectric composites laminates, we 

develop a nonlinear constitutive model, which can reveal size dependency of coupling behaviors, by use of a probabilistic 

criterion of domain switching [7]. The various responses (e.g., the polarization, magnetization as well as strain) under 

combined electro-magneto-mechanical loading were investigated. The results demonstrate quantitatively the electric-field 

control of magnetization and magnetic-field tuning of polarization, as shown in Fig. 2, which can serve as a guideline for 

practical device applications. The size effect of the magnetoelectric coupling was also explored, which demonstrates the 

competition of the strain-mediated and charge-driven effects. Finally, the model is successfully extended to study dynamic 

harmonic magnetoelectric response and nonlinear microwave magnetoelectric effect. 

 
Fig. 2. Comparisons of theoretical results with experimental data: (a) The magnetic-field tuning of polarization. (b) The electric-filed 

control of magnetization. 
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Summary New concepts in mechanics provide routes to high performance electronics with physical characteristics matched to those of vital 

organs of the human body.  The resulting opportunities for integration of sensors, actuators, radios and computing capabilities directly on the 

surfaces or into the depths of targeted tissues have strong potential to improve current practices in clinical care and physiological monitoring.  

This paper outlines some of the key ideas, and describes their use in skin-mounted systems and 3D open-mesh networks. 

 
INTRODUCTION 

 

   Biology is soft, curvilinear and transient; modern semiconductor technologies are rigid, planar and everlasting.   

Electronic and optoelectronic systems that eliminate this profound mismatch in properties create opportunities for devices 

that can intimately integrate with the body, for diagnostic, therapeutic or surgical function with important, unique 

capabilities in biomedical research and clinical healthcare.  A convergence of concepts in mechanics, materials science, 

electrical engineering and advanced manufacturing has led to the emergence of diverse, novel classes of ‘biocompatible’ 

electronic platforms, with capabilities in intimate, persistent physical interfaces with the surfaces of biological tissues, and 

recent work that foreshadows possibilities in full 3D integration.  This paper describes the core ideas, with examples 

ranging from wireless, skin-like electronic ‘tattoos’ for continuous monitoring of physiological health to 3D mesoscale 

electronic networks as active cellular scaffolds. 

 

 

RESULTS 

 

   When mounted on the skin, advanced sensors, circuits, radios and power supply systems have the potential to provide 

clinical-quality health monitoring capabilities for continuous use, outside of traditional hospital settings or laboratory 

facilities.  The most well-developed component technologies are, however, currently available only in hard, planar 

 
Figure 1.  Upper left: Serpentine filamentary network of hard materials in a soft, surrounding elastomeric 

matrix, as a deterministic composite.  Lower left: The mechanical responses exhibit stress/strain relationships 

with characteristic J-shaped behavior similar to that of biological tissues.  Upper right: Image of a composite 

designed to match the properties of the epidermis.  Bottom right: Stress/strain relationships of composites 

engineered with mechanical responses that match those of the skin from different regions of the body. 

 

 



formats.  As a result, existing options in system design are unable to effectively accommodate integration with the soft, 

textured, curvilinear and time-dynamic surfaces of the skin, without irritation or interface failures.  Recent work 

establishes experimental and theoretical approaches for using soft materials, ultrathin micro/nanostructures, and controlled 

processes of mechanical buckling to achieve ultralow modulus, thin and highly stretchable, systems of state-of-the-art 

semiconductor devices, with options in quantitatively matching the effective non-linear stress/strain relationships of the 

epidermis.  The result is a ‘skin-like’ technology with measurement fidelity that can match that of large-scale tools 

currently used in clinical medicine.  Figure 1 shows an example[1]. 

   The essential 3D character of biological systems motivates the development of approaches to 3D electronics that adopt 

bio-inspired, mesoscale open network designs.  Of the many methods for fabricating such structures, few are compatible 

with the highest performance classes of electronic materials, such as monocrystalline inorganic semiconductors, and only a 

subset of these can operate at high speeds, across length scales, from centimeters to nanometers.  New strategies avoid 

these limitations, via the use of controlled compressive forces imparted by a pres-strained elastomeric substrates with the 

effect of transforming 2D micro/nanostructures with lithographically defined geometries and points of adhesion into 3D 

structures, with levels of complexity and control that significantly exceed those that can be achieved with alternative 

methods[2].  Examples include a diverse set of examples formed using silicon nanomembranes, plates and ribbons and 

heterogeneous combinations of them with micro/nanopatterned metal films and dielectrics.  Quantitatively accurate 

theoretical modelling of the solid mechanics of the transformation process provides a design tool to create targeted 

geometries that offer adaptable shapes and desired modes of operation. 

 

CONCLUSIONS 

 

  Advanced concepts in mechanics create new opportunities in the construction of 2D and 3D electronic systems with 

unmatched capabilities in bio-integration.  Research in these areas now ranges from the study of the foundational 

mechanical science to the development of clinically relevant biomedical devices. 
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Figure 2.  Colorized scanning electron micrographs of 3D mesoscale networks formed by mechanical 

assembly from corresponding 2D precursors.  The top two frames show helical coils (left: overlaid modeling 

results for the distributions of strain for a pair of anti-Helmholtz coils, where the chirality undergoes an abrupt 

change at the dashed red line) and nested toroids with a central, open-mesh basket (right), all formed in 

monocrystalline, device-grade silicon.  The bottom two frames show architectures that incorporate ribbons 

and membranes in complex architectures: left: sunflower-inspired structure; right: array of chiral and achiral 

features. 
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Summary Machines in engineering use mostly hard materials, whereas machines in nature are often soft.  This difference has 
been an inspiration for the nascent field of soft machines.  What does softness impart to the life of animals and plants?   
Softness enables deformation, and deformation provides functions.  Familiar examples include the beating of the heart, the 
sound shaped by the vocal folds, and the flapping of the wing.  In soft machines, the large deformation enable soft materials to 
behave as transducers, connecting multiple stimuli to multiple functions.  How do molecular processes enable new classes of 
actuators and sensors?  How efficiently can materials convert information from one form to another?  These questions are 
stimulating new and exciting developments at the interface between science and engineering.  This talk highlights the behavior 
of soft materials that enables the creation of soft machines.  Examples include highly stretchable and transparent devices that 
mimic the functions of muscles, skins and axons. 
 
 

LARGE DEFORMATION ENABLE MANY FUNCTIONS 
 
    A conspicuous feature of life is to receive and process information from the environment, and then move.  The movements 
are responsible for diverse functions.  Consider the accommodation of the eye, the beating of the heart, the sound shaped by the 
vocal folds, and the sound in the ear.  Abstracting these biological soft machines, we may say that a stimulus causes a material 
to deform, and the deformation provides a function.  Connecting the stimulus and the function is the material capable of large 
deformation in response to a stimulus. 
    An exciting field of engineering is emerging that uses soft materials to create soft machines.  Soft materials in engineering 
are indeed apt in mimicking the salient feature of life:  movements in response to stimuli. An electric field can cause an 
elastomer to stretch several times its length.  A change in pH can cause a hydrogel to swell many times its volume.  These soft 
active materials are being developed for diverse applications, including soft robots, adaptive optics, self-regulating fluidics, 
programmable haptic surfaces, and oilfield management [1,2].  
 

TOUGH WATER 
 
   What can we do if water is a tough solid?  A hydrogel aggregates water and a polymer network.  The polymer 
network makes the hydrogel a stretchable solid, but water retains its exceptional physical and chemical properties.  Several 
recent findings show that hydrogels can achieve properties and applications well beyond previously imagined. Most existing 
hydrogels, like Jell-O and tofu, are fragile and dry out in open air.  We make hydrogels as tough as rubber, and retain water 
in low-humidity environment [3,4]. We show that hydrogels outperform existing fire-retarding materials [5]. We also 
demonstrate fiber-reinforced hydrogels [6].   
 

ARTIFICIAL MUSCLES 
 
   Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of 
interconnects, sensors and actuators as components of stretchable electronics and soft machines. We describe a class of 
devices enabled by ionic conductors that are highly stretchable and fully transparent to light of all colors [7], capable of 
operation at frequencies beyond 10 kHz and voltages above 10 kV. We demonstrate a transparent actuator that can generate 
large strains, and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical 
transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic 
conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet 
resistance than all existing electronic conductors. 
 

ARTIFICIAL SKIN 
 
   Our skin is a stretchable, large-area sheet of distributed sensors.  These properties of skin have inspired the 
development of mimics, with differing levels of sophistication, to enable wearable or implantable electronics for 
entertainment and healthcare. We explore the potential of ionic conductors in the development of a new type of sensory 
sheet, which we call “ionic skin” [8].  The sensory sheet is highly stretchable, transparent, and biocompatible.  It readily 
monitors large deformation, such as that generated by the bending of a finger.  It detects stimuli with wide dynamic range 



(strains from 1% to 500%).  It measures pressure as low as 1 kPa, with small drift over many cycles. A sheet of distributed 
sensors covering a large area can report the location and pressure of touch.  High transparency allows the sensory sheet to 
transmit electrical signals without impeding optical signals.  
 

ARTIFICIAL AXON  
 
   We demonstrate a new type of interconnects to fulfill the primary function of axons:  transmitting electrical signals 
over long distances and at high speeds [9].  The interconnect, which we call “ionic cable”, uses ions to transmit signals, 
and is built entirely with soft, elastic materials—elastomers and gels. The ionic cable is highly transparent, and remains 
functioning after being stretched nearly eight times its original length.  We describe the design, theory and experiment of 
the ionic cable.  We show that the diffusivity of signals in the ionic cable is about 16 orders of magnitude higher than the 
diffusivity of ions. We demonstrate that the ionic cable transmits signals up to 100 MHz over 10 cm, and transmits music 
signals over meters. The ionic cable transmits enough power to turn on light-emitting diodes. Our theory shows that the 
ionic cables scale well, suggesting tremendous opportunities to create miniaturized ionic circuit.  Furthermore, we use the 
ionic conductors to demonstrate electroluminescence of giant stretchability [10]. 
 

CONCLUSIONS 
 

   A large number of examples in plants and animals demonstrate that deformation of soft materials connect diverse stimuli to 
many functions essential to the life.  An exciting field of engineering is emerging that uses soft materials to create soft 
machines.  To participate in advancing the field of soft active materials and soft machines effectively, mechanicians must retool 
our laboratories and our software, as well as adapt our theories.  This talk highlights this theme using recent advances in 
materials, devices, and theories. 
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Summary The micromorphic method is recalled and applied to continuum crystal plasticity in order to model size effects in the mechanical
behavior of single and polycrystals. The constitutive equations are discussed with respect to the prediction of scaling laws. The regularization
power of the model is illustrated in the case of crack propagation simulation in single crystals.

INTRODUCTION TO THE MICROMORPHIC APPROACH

The micromorphic approach consists in enhancing the continuum mechanical framework by introducing deformation–like
independent degrees of freedom [1]. The set of constitutive variables is then extended to the gradient of these additional
degrees of freedom. It originates from Eringen and Mindlin’s proposal to endow each material point with a second order
generally nonsymmetric microdeformation tensor representing the rotation and stretch of a triad or directors related to the
microstructure, in addition to the classical displacement degrees of freedom [2]. A whole hierarchy of generalized continua is
built in the micromorphic theory, including the celebrated Cosserat model when the microdeformation reduces to a microro-
tation [3]. The micromorphic approach was applied to crystal plasticity by [4, 5, 6] using the Cosserat framework and by [7]
where a generally nonsymmetric plastic microdeformation tensor is introduced. The latter model reduces to strain gradient
plasticity based on the disclocation density tensor when the microdeformation coincides with the plastic deformation itself
[8]. These models involve intrinsic characteristic lengths, in contrast to the conventional Cauchy continuum, which makes it
possible to describe size effects in the mechanical responses of elastic–plastic polycrystals, including Orowan and Hall–Petch
effects associated with the interaction of dislocations with precipitates and grain boundaries. The method can be extended
to strain–like scalar degrees of freedom related to elastic or plastic strain or damage [1]. The new scalar degree of freedom
must be constitutively related to some strain or internal variable of the original model. In the case of crystal plasticity, a
micromorphic variable was associated to an equivalent plastic slip measure by [9] and a microdamage variable was introduced
related microcrack opening along cleavage planes in [10]. Close links exist between the micromorphic approach and phase
field modeling as discussed by [11], with the difference that the phase field parameter is not necessarily related to a mechanical
variable.

SIZE EFFECTS IN THE CYCLIC BEHAVIOUR OF SINGLE CRYSTALS

Strain gradient plasticity theory represents a continuum model of dislocation plasticity. It can be used to represent dislo-
cation pile–up formation at interfaces in single crystals [12]. The microcurl model was shown in [7] to predict channel–size
effects in the stress–plastic strain response of laminate microstructures made of alternating elastic and plastic layers. The
choice of the constitutive functional related to the gradient terms is essential to the quantitative description of such effects.
In particular, the quadratic ansatz in the gradient terms, widely used in strain gradient plasticity and phase field models, was
shown to predict physically unrealistic scaling laws. Alternative potentials were proposed by [13]. The concept of reversible
plasticity is put forward in the latter contribution leading to unusual cyclic stress–strain loops with inflection points. It repre-
sents a continuum model of the first–in last–out concept in dislocation pile–ups initially proposed in the seminal paper [14]. A
remarkable effect was predicted by the microcurl model in the plasticity of polycrystals. Sub–micron grain sizes were shown
to promote plastic slip localization in the form of intense slip bands interconnecting grains of the polycrystals whereas more
diffuse slip is observed at larger grain sizes. This is due to the high energy cost associated with lattice curvature, as illustrated
in Fig. 1.

SIMULATION OF CRACK INITIATION AND PROPAGATION IN SINGLE CRYSTALS

Accumulated plastic slip is known to be responsible for crack initiation, especially under fatigue loading conditions. A
coupled plasticity–damage criterion was proposed allowing for damage strain associated with opening of crystallographic
planes as the result of a combination of normal stress and accumulated slip [16]. A micromorphic microdamage variable is
introduced akin to the cumulated damage variable. The introduction of microdamage gradient into the constitutive model
provides a regularization of damage localization into cracks of finite thickness. The regularization properties of the micro-
morphic approach to damage were used first by [17, 18]. Thermodynamical foundations of this class of regularized models
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Figure 1: Field of accumulated plastic slip in two idealized polycrystals with the same microstructure (grain shape and
orientations) but different grain sizes: 100 µm and 4 µm (right). The formation of intense slip bands crossing grain boundaries
is observed in the right picture where the traces of the slip planes are represented, after [15].

were provided by [1]. The simulations of crack initiation and propagation in single and polycrystals will be related to recent
experiments of 3D observations of short fatigue cracks combining microtomography and diffraction at the ESRF synchrotron
in Grenoble [19, 20]. The role of grain boundaries as barriers to short crack growth will be illustrated.
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Summary Proteins are long polypeptide chains of amino acids and their structure and biological function are directly related to 
their amino acid sequence. In this presentation I will discuss three different biological functions that are dominated by protein 
mechanics, each at their specific time and length scale. To relate structure to function, multiscale computational models have 
been developed for (i) the beating of cilia and flagella, (ii) the strain-stiffening of cross-linked cytoskeletal networks and (iii) 
transport through nuclear pores.  
 

PROTEINS 
 
Proteins are often referred to as the building blocks of life, playing critical roles in almost all structures and activities in 
biology. At the smallest, atomic length scale, proteins consist of amino acids. There are 20 different amino acids, each with 
their own atomic structure, chemical and physical properties. The amino acids form peptide bonds that form long 
polypeptide chains consisting of hundreds and sometimes thousands of amino acids. Depending on the specific amino-acid 
sequence the polypeptide chains fold into regular structures, such as α-helices and β-sheets (secondary structure). At a 
larger spatial level of organization, α-helices and β-sheets will fold into three-dimensional (tertiary) structures, i.e., the 
actual protein molecule. Finally, protein molecules can combine to form large protein complexes (quaternary structures).  
 

In this presentation I will take you on a journey through protein state space, addressing three different 
biological functions, each with their own time and length scale. 

 
 

MULTISCALE MODELLING OF PROTEIN MECHANICS 
 
At the largest length scale I will focus on cilia and flagella, long hair-like projections from the surface of cells that play an 
important role in cell motility [1]. Cells and micro-organisms use cilia and flagella to propel themselves or to propel the 
fluid surrounding them. Examples are the beating tails (flagella) of sperm cells (see Fig. 1), or the cilia that line the 
respiratory tract to propel mucus out of the lungs. The beating of cilia and flagella is enabled by their internal microstrucure, 
the axoneme, a big protein complex (tens of µm long and 250 nm wide) that is powered by a dense distribution of motor 
proteins, called dyneins. Motor proteins constitute an important class of proteins that, powered by the hydrolysis of ATP, 
undergo conformational changes and as such convert chemical energy into mechanical work. We developed a 
computational model based on a minimal representation of the axoneme. Our results demonstrate that an overall regular 
beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins [2].  

 
Figure 1: (a) Structure of an axonemal 
dynein (top). Dyneins at a regular 
spacing along the microtubules 
(bottom) [From: Goodenough and 
Heuser, J. Cell Biol. 95, 798–815 
(1982)]. (b) An electron micrograph of 
an axoneme cross-section [From: 
Afzelius et al., Tissue and Cell 27, 
241–247 (1995)]. (c) Flagellar beating 
of a spermatozoon. The three images 
(A-C) are 200 ms apart. [From: 
Woolley et al., J. Exp. Biol. 212, 18]. 
Figure is taken from [2]. 

  
From a biotechnology point of view, the beating of cilia and flagella are interesting examples for bio-mimicry, utilizing 
millions of years of biological evolution that led to optimized biological actuators at low Reynolds numbers. Here, artificial, 
bio-inspired cilia and flagella can be designed using light [3] or magnetic [4-7] actuation to mimic the non-reciprocal 
motion of their biological counter-part. Artificial cilia can effectively propel fluids in lab-on-chip microfluidic systems, 
resolving the scale-related problems of downsizing conventional pumping systems [8,9].  



At a somewhat smaller, subcellular length scale, living cells 
contain networks of cytoskeletal proteins (Fig. 2). The 
cytoskeleton is the key cellular component that is responsible 
for the mechanical behavior of the cell. The major 
cytoskeletal network is formed by the protein actin, which 
assembles into a filamentous quaternary structure, and is 
responsible for maintaining cell shape, stability and for cell 
motility. Depending on the function and location in the cell, 
the actin network is cross-linked by different cross-binding 
proteins, each with their own molecular structure. To capture 
the constitutive response of actin and other protein networks, 
we developed a discrete computational network model in two 
and three dimensions to study the strain stiffening of cross-
linked protein networks at large strains [10-12]. Our results 
show that a wide range of experimental tests on in-vitro reconstituted biopolymer networks can be captured by the 
competition between two fundamental stiffening mechanisms. 
 
It has long been thought, that proteins need to have a folded structure to perform their function, but more and more evidence 
is appearing that suggests that also natively unfolded proteins play an important role in many biological functions. One of 
these roles is in controlling the transport of proteins and nucleic acids in and out of the nucleus of living cells. This transport 
is mediated by a very large quaternary protein structure, the nuclear pore complex (NPC). The NPC is embedded in the 

membrane of the cell nucleus and features an 
internal structure that consists of a meshwork of 
natively unfolded proteins, called nucleoporins 
(nups), see Fig. 3. These nups are key in 
controlling transport, but how they exactly do that 
is unknown. To shed light on this we have 
developed a one-bead-per-amino-acid (1BPA) 
molecular dynamics model [13,14]. The 1BPA 
model distinguishes between all 20 amino acids of 
the nups and takes into account hydrophobic and 
electrostatic interactions. Our results show that 
these nups collectively form a high-density ring, 
which is encoded in the amino-acid sequence of 
the nups. The presence of the ring was found to be 
correlated with cell viability [14] and permeability 
[15]. 
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Figure 2: (left) Endothelial cells attached to a substrate, depicting the actin 
cytoskeleton (red), microtubuli (green) and the nucleus (blue) [from 
http://probes.invitrogen.com]. (right) Cross-linked actin filament networks 
[from: Schmoller et al., Biophys. J. 97, 83–89 (2009)]. 

Figure 3: Structural model of the NPC featuring a rigid scaffold constructed by 5 nm-
sized rigid beads (left). All natively unfolded nups are tethered to the scaffold at their 
anchor points (right). Figure is taken from: Ghavami et al., (under review). 
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Summary The lecture presents the study on modeling and simulating the dynamics of soft machines from the viewpoint of rigid-soft 
multibody systems. The study focuses on the description of nonlinear dynamics of coupled overall motion and large deformation of a soft 
body made of elastic or hyper-elastic material, the modeling of frictional contacts or even entanglements of soft bodies, as well as the 
efficient dynamic computation algorithm of rigid-soft multibody system governed by a set of differential-algebraic equations of very high 
dimensions. The lecture illustrates the proposed approach through a number of case studies, including the knotting of two threads, the 
deployment of a mesh reflector of satellite antenna and the deployment of a spinning solar sails of spacecraft, as well as the corresponding 
validations via ground experiments. 
 

INTRODUCTION 

 
The concept of soft machine covers a wide range of advanced industrial products, such as a soft robot making surgical 

operations or handling fragile objects, a snake robot crawling along tunnel corners, a morphing airplane wing and a 
deployable solar sail. Those soft machines are mainly composed of soft bodies, which are made of soft materials, including 
polyamide, polyimide, silicon elastomer and electro-active polymer, in order to adapt to very complex environments or 
missions. Furthermore, the soft bodies are connected via various joints so that they undergo not only large deformations, but 
also overall motions and frictional contacts with themselves or environments. The dynamic model of a soft machine, hence, 
is a rigid-soft multibody system, which gives rise to numerous open and tough problems. It is essential to establish proper 
modeling and efficient simulating approaches for soft machines in the design phase [1,2]. 
 

DYNAMIC MODELING AND SIMULATION 

 

Dynamic modelling of absolute nodal coordinate formulation 

The finite elements of Absolute Nodal Coordinate Formulation (ANCF) have served as useful tools to describe the 
coupling of large deformation and overall motion of a flexible body, such as a very slender beam. The fully parameterized 
beam element of ANCF is able to describe the shear and cross-section deformations of the beam, but suffers from locking 
problems. On the contrary, the gradient deficient beam element of ANCF is suitable for describing the slender beam and 
shows good accuracy. Hence, the lecture presents the new spatial curved beam element and shell element of gradient 
deficient ANCF to model cables and membranes [3], and shows how to deal with possible slacks and wrinkles of a 
membrane via the integrated stiffness reduction [4]. 

Numerical simulation of high efficiency 

The finite element of ANCF results in a constant mass matrix, and a complex expression of nonlinear restoring force 
vector, which requires high cost of computation. The lecture presents how to factorize the unknown generalized coordinates 
from the integration on a finite element level in the case of full parameters and how to reduce the model order on a soft 
body level so as to greatly speed up the computation. The lecture also shows how to solve the differential-algebraic 
equations of a soft machine in parallel on OpenMP [5]. 

The soft bodies in a soft machine may undergo complicated frictional contacts, such as multi-zone contacts between two 
surgical threads. The lecture presents a detection strategy for multi-zone contacts of two soft bodies, where the mutual 
penetration is a multi-peak function of the local coordinates of the soft body predicted to have a larger contact zone. It is 
quite efficient to locate the contact zones of two soft bodies by checking all the local minima of the function. The lecture 
shows how to compute the normal contact force by using the penalty method and the tangential friction force via the 
piecewise analytic expression of the LuGre friction model derived within an integration step [6]. 
 

CASE STUDIES 

 

Knotting of two threads 

To simulate the knotting process of threads of a surgical robot, the lecture presents the knot tightening and knot 
releasing of two identical threads with circular cross-sections meshed via the gradient deficient beam elements of ANCF. 
Figure 1a shows the initial configuration of the two straight threads placed crosswise with one end of each thread clamped 
at the black point. The two threads is deformed to generate three knots progressively by clamping temporarily other two 
internal nodes marked as smaller black points in Figure 1c and 1d, driving two chosen nodes marked as green points, to 
move under planning trajectories, and then freeing the temporarily clamped internal nodes. As shown in Figure 1f, at least 
four contact zones appear in the final configuration of knotting. Actually, the result may contain one or more contact zones 
separated by non-contact zones of very short lengths [6]. 



      

a. b. c. d. e. f. 
Figure 1 Knotting of two threads 

 

Deployment of a mesh reflector of satellite antenna 

   To show the feasibility of the above approach to complicated 
problems, the lecture presents the deployment of a satellite antenna, 
where the hoop truss and mesh reflector modelled via the gradient 
deficient beam elements of ANCF have about 200,000 degrees of 
freedom, as shown in Figure 2. 

To speed up the dynamic simulation, the mesh reflector is  
decomposed into several independent subsystems by cutting its joint. 
Then, the Schur complement method is used to eliminate the internal 
generalized coordinates of subsystem and the Lagrange multipliers 
for joint constraint equations associated with the internal variables. 
With an increase of the number of subsystems, the dimension of 
simultaneous linear equations in the numerical solution process will 
inevitably increase. By using the multilevel decomposition approach, 
the dimension of the simultaneous linear equations can be further 
reduced. Figure 2 illustrates the deployment process of the mesh 
reflector at six specific moments. 

0s 100s

200s 300s

400s 500s  
Figure 2 Deployment of a mesh reflector  

of satellite antenna 
 

Deployment of a spinning solar sail of spacecraft 

The spinning deployment of solar sails of spacecraft has called much attention due to their significant advantages since 
Japan Aerospace Exploration Agency launched IKAROS, the first spacecraft of spinning solar sail. The lecture focuses on a 
spinning-deployable solar sail shown in Figure 3, where the hexagonal membrane modeled via the shell elements of ANCF 
is wrapped around the spinning central hub at the initial moment 0s. With the rotation of central hub, the folded membrane 
is deployed gradually and finally stabilized by the centrifugal forces of the lumped masses at six corners of the solar sail in 
Figure 3a. The simulation shows the importance of proper description of wrinkle of the membrane. For example, the cyclic 
“deployment-shrinkage-deployment” shown in Figure 3b appears if the wrinkle is not properly modeled. In fact, the multi-
scale coupling effect of small wrinkles and large rotation plays a dominant role in the deployment dynamics [4]. 
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Figure 3 Deployment of a spinning solar sail predicted when membrane wrinkles properly modelled or not. 
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Summary The FInite Volume method with Exact two-material Riemann (FIVER) problems is a robust computational framework for the
solution of multi-material, Fluid-Structure Interaction (FSI) problems. It was validated for challenging applications characterized by com-
pressible flows, shocks, turbulence, highly nonlinear structures, and dynamic fracture. It couples an Eulerian, finite volume based approach
for solving flow problems, with a Lagrangian, finite element approach for solving solid mechanics problems. Most importantly, it enforces
the governing fluid-fluid and fluid-structure transmission conditions by solving local, one-dimensional, exact, two-material Riemann prob-
lems at evolving interfaces that are embedded in the fluid mesh. First, this framework is reviewed with emphasis on its unique contributions
to the field, and the challenging simulations it enabled. Next, recent advances pertaining to the mathematical underpinnings of this frame-
work are presented. Finally, novel capabilities related to viscous flows, porous media, embedded constraints, and sensitivity analysis and
optimization are described and demonstrated for realistic applications.

BACKGROUND

FIVER was originally developed in [1], in the context of explicit time-discretizations, for the solution of compressible,
inviscid, two-phase flow problems characterized by simple equations of state (EOS) but large contact discontinuities (density
jumps). In [2], it evolved into an Eulerian embedded boundary method (EBM) — or immersed boundary method — for the
solution of highly nonlinear fluid and FSI problems. These include those FSI problems that cannot be handled by Arbitrary
Lagrangian Eulerian (ALE) methods, because of large structural motions, finite deformations, and/or topological changes that
challenge the performance of mesh motion schemes. Unlike most other EBMs which operate exclusively on Cartesian grids,
FIVER can operate on arbitrary grids. This is noteworthy because even in the pure Eulerian setting, the ability of an EBM to
perform on arbitrary, unstructured grids is still particularly advantageous for complex geometries and viscous flows.

For multi-material problems with complex fluid EOSs, the solution of a local, one-dimensional, exact, two-material Rie-
mann problem may be either impossible to obtain analytically, or computationally intensive to evaluate numerically. To
address this issue, a computationally efficient sparse grid tabulation technique was developed in [3] for accelerating the nu-
merical solution of arbitrary fluid-fluid and fluid-structure Riemann problems, and thereby enabling the generalization of
FIVER to multi-material problems with complex fluid EOS. In [4], the generalized FIVER method was validated for the
solution of failure-induced FSI problems. Specifically, it was applied to the simulation of two experiments on the dynamic un-
derwater implosion of cylindrical shells. In both cases, it reproduced with high-fidelity the large deformations of the collapsing
structure and the compression waves emanating from it (see Figure 1-left).

FIVER was also extended to implicit time-discretizations in [5], and to viscous, multi-material fluid and FSI problems
in [6]. For turbulent viscous flows, Eulerian EBMs typically suffer from the fact that they do not track the boundary layers
around dynamic rigid or flexible bodies. Consequently, the application of these methods to such problems requires either
high mesh resolutions in a large part of the computational fluid domain, or adaptive mesh refinement. Unfortunately, the first
option is computationally inefficient, and the second one is labor intensive to implement. To address these issues, an ALE
variant of FIVER that maintains all moving boundary layers resolved during turbulent FSI computations was presented in [7],
and validated with the simulation of turbulent flows past a family of highly flexible flapping wings, and the prediction of the
vertical tail buffeting of an F/A-18 aircraft configuration at a high angle of attack (see Figure 2).

Most recently, a generic, comprehensive, and yet effective approach for representing a fractured fluid-structure interface
was developed in [8] and incorporated in FIVER. Specifically, this approach enables the coupling of FIVER with many
finite element based fracture methods for the solution of multi-material FSI problems with dynamic fracture. These methods
include, among others, the interelement fracture and remeshing techniques, the extended finite element method (XFEM),
and the element deletion method. Equipped with this fractured fluid-structure interface representation, FIVER was further
validated for highly nonlinear FSI problems with crack propagation, flow seepage through narrow cracks, and structural
fragmentation [8] (see Figure 1-right).
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Figure 1: Left: Validated simulation of the dynamic implosion of an underwater cylindrical aluminum shell – Right: Simula-
tion of the massive dynamic fracture of an underwater metallic structure induced by an explosive loading.

Figure 2: Validated simulation of the thrust generated by a highly flexible flapping wing.

RECENT THEORETICAL RESULTS AND NEW DEVELOPMENTS

In addition to an overview of the computational framework outlined above that emphasizes its physical and mathematical
underpinnings, the scope of this “Sectional Lecture in Fluids-Solids” covers recent theoretical advances in FIVER and newly
developed extensions and capabilities. Specifically, new results pertaining to numerical stability, energy conservation, and
local and global order of spatial and temporal accuracy are discussed with special attention to the behavior of the solution
at the material interfaces. In particular, the role of interface limiters in supporting higher-order spatial discretizations for
smooth problems and their effects on nonlinear stability is elucidated. The concept of a surrogate material interface, which is
ubiquitous in the context of EBMs, is revisited to guarantee the invariance of a predicted turbulent flow with respect to changes
in the position of an embedded discrete surface relative to the fluid meshing lines (or simply the fluid mesh). The concept
of a local, one-dimensional, exact, two-material Riemann problem is also revisited to incorporate in it a homogenization
approach that dramatically enhances computational efficiency in the presence of porous media such as parachutes or porous
plug nozzles, to name only a few. A new approach for enforcing embedded constraints in a fluid or FSI simulation based
on the same concept is also presented and illustrated with several applications ranging from the preservation of symmetry
boundary conditions, to the enforcement of non-trivial inlet boundary conditions on embedded discrete surfaces. Finally, an
exact sensitivity analysis capability for FIVER is described, and its potential for shape optimization problems with topological
changes is demonstrated for complex aeroelastic configurations.
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CAN SOLID MECHANICS HELP IN UNDERSTANDING FLUID VORTICES? 
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Summary Coherent vortices are the most important building blocks of complex flows, yet no universally accepted vortex definition has 
emerged in fluid dynamics yet. A reason is that most vortex definitions depend crucially on the frame of the observer who evaluates them, even 
though the significance of vortices arises from the frame-invariant material transport they induce. Recently, ideas from nonlinear dynamics and 
continuum mechanics have lead to new, objective notions of coherence in fluid dynamics. These reveal surprisingly coherent, previously 
undetected material vortices in turbulent flows. We survey these ideas and illustrate their efficacy on geophysical flow data. 
 

BACKGROUND 
 
Few would disagree about the intuitive statement that vortices are swirling domains of fluid. It has nevertheless proven 
surprisingly challenging to define coherent vortices unambiguously. Fluid mechanics has a classical focus on features of the 
velocity field, which indeed reveals all details of material transport in two-dimensional steady flows. Instantaneous velocity 
features and actual material transport, however, tend to differ vastly in unsteady flows. Still, there is a traditionally broad 
focus on identifying vortices in fluids from features of the velocity field or its spatial derivatives (see [1-3] for reviews). 

Most such velocity features depend on the observer, and hence fail to provide firm conclusions about the material 
transport induced by vortices. Still, it is precisely this material transport that makes coherent vortices significant in highly 
incoherent or even turbulent flow fields. Figures 1a-b show examples of mesoscale (100-200km in diameter) vortices in the 
ocean that owe their significance entirely to the material they carry. The exact perimeter and level of coherence of such 
vortices, however, cannot be fully ascertained form these sporadic images: a better understanding of what the underlying 
flow structure is, independent of the nearly passive scalar fields it carries, is highly desirable for environmental forecasting 
and decision making. Figure 1c shows a smaller-scale example of an unsteady material vortex, highlighted by the volcanic 
steam it captures and transports. Detection of such three-dimensional structures without reliance on the material they carry, 
even for steady 3D flows, has long been an outstanding question. 

                           

             (a)                         (b)                          (c) 
Figure 1. (a) Spiral eddies in the Mediterranean Sea, highlighted by biological surfactants (Paul Scully-Power/NASA) (b) Phytoplankton 
patch in the Agulhas leakage (Jeff Schmaltz/NASA) (c) Steam ring over Mount Etna (Tom Pfeiffer/ www.volcanodiscovery.com). 

With its traditional focus on material behavior, as opposed to velocity features, solid mechanics is well-positioned to 
contribute to the understanding of coherent fluid features in a frame-independent fashion. A new challenge on the solids-
side, however, is the development of objective notions of observed material coherence for large deformation fields. Over the 
past two decades, a number of advances have been made that address this challenge, leading to the emergence of the field of 
Lagrangian Coherent Structures, or LCSs [4]. Broadly speaking, LCSs are locally the most influential material surfaces in a 
moving continuum over a finite time interval of interest. Their unique influence is due to a special role they play in the 
Lagrangian stretching, shearing or rotation field of the continuum.  

Specifically, coherent material vortices (elliptic LCSs) can be approached via their distinguished signatures in any of the 
above fields. Accordingly, material stretching-based and material rotation-based principles have been developed that 
identify highly coherent flow regions at a previously unseen precision. Some of these approaches are inspired by techniques 
from nonlinear dynamics, others by continuum mechanics. Here we give a quick overview of both types of approaches, and 
show their power on real-life unsteady flow data.  

 
STRETCHING-BASED COHERENCE: AN APPROACH FROM NONLINEAR DYNAMICS 

 
There are well-known analogues of vortex boundaries in the phase space of conservative systems of nonlinear rigid bodies. 
These invariant surfaces are Kolmogorov--Arnold--Moser (KAM) tori filled with quasi-periodic motions [5]. While such 
idealized objects do not exist in a realistic, finite-time flow of fluid particles, the coherence properties of KAM tori, notably 



their complete lack of filamentation, can be expressed in a variational principle that applies under arbitrary time dependence 
as well. Namely, material vortex boundaries in fluids can be sought as outermost, closed stationary curves of the material-
surface-averaged relative material stretching functional. The stretching in this variational problem is meant with respect to a 
finite time interval over which sustained coherence is required. The corresponding Euler-Lagrange equations and boundary 
conditions can be reformulated into the equivalent problem of finding outermost limit cycles of a two-dimensional steady 
vector field [6]. These limit cycles are then guaranteed to remain coherent under advection by the original unsteady fluid 
flow, showing no filamentation over the time interval that was used in defining the underlying stretching functional. An 
example of the coherent vortices extracted through this dynamical systems approach is shown in the left plot of Figure. 2. 
 

 
 
Figure 2. Left: Families of uniformly stretching coherent Lagrangian vortices (black-hole eddies) computed from satellite-
detected surface velocities in the Agulhas leakage [6]. Right: A rotationally coherent material vortex in the Southern Ocean 
State Estimate (SOSE) data set [8]. Nearby level surfaces of the LAVD (green) illustrate the complexity in the incoherent 
water mass surrounding the extracted vortex. 
 

ROTATIONAL COHERENCE: AN APPROACH FROM CONTINUUM MECHANICS 
 
A recent alternative approach targets coherent vortices in terms of the coherent material rotation they exhibit. In continuum 
mechanics, the rotational component of the deformation is generally inferred from the polar decomposition of the 
deformation gradient. Rotations inferred from the classic polar decomposition, however, are neither objective nor material. 
A new dynamic polar decomposition developed in [7] identifies a dynamic rotation tensor that is material, i.e., serves as a 
self-consistently evolving rigid-body rotation component in the deformation gradient field over any finite time interval. 
Coherent vortex boundaries can then be identified as outermost convex level surfaces of an intrinsic dynamic rotation angle 
inferred from the dynamic rotation tensor. This objective material rotation angle turns out to be simply the Lagrangian-
averaged deviation (LAVD) of the vorticity field from its spatial mean [8]. An application of this result is shown in Fig. 5. 
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Directed percolation transition to turbulence 
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Summary We report that the transition to turbulence in Couette flow corresponds to a second order phase transition and falls into 
the directed percolation universality class. The increase of the turbulent fraction above the critical point as well as correlation 
lengths and times at the transition point are described by three critical exponents, which are in excellent agreement with the 
exponents of the directed percolation (DP) universality class.  
 

Introduction 
 
   The transition to turbulence in wall bounded shear flows (such as pipe, channel or Couette flow) has remained an open 
problem for over a century [1]. Typically here turbulence arises despite the linear stability of the laminar flow and results 
from perturbations of finite amplitude. At the lowest Reynolds numbers at which turbulence can be triggered it arises in the 
form of localised patches (e.g. puffs, spots or stripes) which coexist with laminar flow, resulting in complicated, disordered 
flow patterns  (spatio-temporal intermittency).  Individual turbulent domains can collapse or they can proliferate and seed 
other patches of turbulence. Balancing the growth and decay processes allows determining the critical point [2] above which 
turbulence first becomes sustained (in the thermodynamics limit). 
As shown previously [2] the time scales on which flows evolve are extremely large and likewise the relevant length scales 
(the size of the turbulent domains) is comparatively large (typically 20-30 pipe diameters or wall spacings). In order to fully 
characterize the transition process the interaction and evolution of many such domains has to be taken into account hence 
requiring experiments of very large aspect ratios and extremely long observation times.  
As first proposed by Pomeau [3] the transition to turbulence may be related to the universality class of directed percolation 
(DP), one of the simplest universality classes for non-equilibrium phase transitions. One illustration of directed percolation 
is that of a fluid percolating through a porous medium. Depending on the porosity the fluid will either progress through the 
medium or it will get stuck at a certain point. For increasing values of the connectivity of the pores (which is expressed by a 
single parameter, the probability P) a continuous phase transition occurs at a distinct critical point above which there is 
always a connected path. Figure 1a shows a model of this process (directed bond percolation). Connected bonds (open 
pores) are marked in blue (closed ones in black). 
The transition to turbulence (like DP) is a contact process where turbulence spreads by neighbour interaction, likewise the 
linear stability of the laminar flow ensures that if at any point in time all turbulent sites decay the flow will afterwards 
remain laminar for all times. The laminar state hence corresponds to what is called the unique absorbing state in the context 
of DP. Determining if the transition to turbulence indeed falls into this universality class has posed a major challenge. 
 
  

Results 
 
We report [4] experiments and direct numerical simulations of Couette flow. Experiments were carried out in a circular 
Couette set up (a fluid layer sheared between two concentric cylinders). The aspect ratio (gap width to cylinder 
circumference) was 2750 while the domain height (axial direction) was 8 times the gap size. In addition direct numerical 
simulations were carried out for Couette flow in a domain of 960 (azimuthally) by 5h (vertically), where h is the gap width 
between the two cylinders. Figure 1b shows the spatio temporal evolution of turbulent domains (in blue) in the numerical 
simulations. Notably (like for DP) new turbulent domains branch out from existing stripes (nearest neighbour interaction). 
A visualisation of turbulent domains/stripes in the experiment is shown in figure 1c. Extensive experiments and simulations 
covering the Reynolds number regime where turbulence can first be observed, allow us to explicitly measure the critical 
point at which turbulence becomes sustained in Couette flow. Likewise we determine how the turbulent fraction increases 
as the critical point is surpassed. Like for DP the transition is continuous and follows a power law with an exponent of 
~0.28 which is in excellent agreement with the universal DP value. Furthermore we determine the critical exponents 
describing the correlation length and correlation time close to the critical point and the respective values are again in 
excellent agreement with those predicted of the directed percolation universality class.  



 
Figure 1: a space time plot of directed bond percolation (active sites in blue, absorbing ones in black). b Space time plot of 
turbulence in Couette simulations with turbulent domains in blue and laminar ones in black. c Picture of the experimental 
flow, where turbulent stripes appear in dark whereas the brighter regions correspond to laminar flow.  
 
 
 

Summary 
We present evidence that the transition to turbulence in Couette flow corresponds to a second order non-equilibrium phase 
transition and falls into the directed percolation universality class. 
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EXACT COHERENT STRUCTURES IN TRANSITIONAL FLOWS: DYNAMICS AND
LOCALIZATION

John F. Gibson ∗ 1
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Summary Invariant solutions of the Navier-Stokes equations provide a mathematically sound framework for the long-standing idea of
coherent structures in turbulence. In recent years, computations of weakly unstable equilibria, traveling waves, and periodic orbits have
shed much light on the structure and dynamics of transitional of shear flows. In this talk we present (1) a brief overview of the methodology
and goals of invariant solutions or exact coherent structures as framework for analyzing transitional turbulence, and (2) recent results that
extend invariant solutions from spatially periodic solutions in minimal flow units to localized solutions in extended flows. The localized
solutions provide precise specifications of coherent structures long observed in turbulent shear flows and are potentially a first step towards
an understanding of the spatiotemporal dynamics of turbulence as a system of self-organized, interacting coherent structures.

BACKGROUND

In the past twenty years, many equilibrium, traveling waves, and periodic orbits have been calculated for canonical shear
flows as invariant solutions of the Naver-Stokes equations with appropriate boundary conditions [1, 2, 3, 4]. These solutions
capture commonly observed features associated with coherent structures in transitional shear flows, such as self-sustaining
wavey roll-streak structures, and dynamical processes such as bursting [5]. Moreover, numerical linear stability analysis
reveals that typical invariant solutions are weakly unstable at transitional Reynolds numbers, i.e. they have only a few un-
stable eigenmodes, with only weakly unstable eigenvalues. Thus a turbulent trajectory of a transitional shear flow can be
understood in dynamical-systems terms as a pseudo-random, chaotic walk between the flow’s unstable solutions, along the
low-dimensional network of their unstable manifolds. The appearance of an organized coherent structure in a turbulent flow
then corresponds to the trajectory making a close pass to a weakly unstable invariant solution. Hence we call such invariant
solutions exact coherent structures.

DYNAMICS

The dynamical-systems vision described above has been fleshed out explicitly in quantitative detail for transitional shear
flows in minimal flow units [6]. For example, figure 1 shows a state-space portrait of plane Couette flow in a minimal flow unit
at Re = 400. Equilibrium solutions are shown as solid dots and trajectories within their low-dimensional unstable manifold
as solid lines. The projection is from the O(105)-dimensional state space of a DNS to a three-dimensional subspace spanning
a few important equilibria, using the standard inner product associated with the L2 energy norm of the velocity field. The un-
stable manifolds of the depicted solutions are clearly intertwined; in fact heteroclinic orbits can be found that describe precise
dynamic connections between the nearby unstable equilibria. Farther away from laminar solution, the turbulent flow can be an-
alyzed as shadowing a sequence of periodic orbits and transitioning between them along the orbits’ low-dimensional unstable
manifolds. Animations illustrating the low-dimensional state-space dynamics of heteroclinic connections and periodic orbits
are available at http://www.chaosbook.org/tutorial and http://www.channelflow.org/movies.

LOCALIZATION

More recently spatially localized exact coherent structures have been computed in extended flows [7, 8, 9], with a number
of interesting features. Spanwise-localized forms of the Nagata equilibria exhibit homoclinic snaking, a process by which
additional structure is grown at the fronts of a quasi-periodic pattern through a sequence of saddle-node bifurcations [7]. This
behavior in 3D solutions of Navier-Stokes is remarkably similar to that of observed for the one-dimensional Swift-Hohenberg
equation, forming an intriguing connection between fluid dynamics and pattern formation theory. Spanwise-localized so-
lutions of plane Poiseuille flow and the asymptotic suction boundary layer bear remarkable resemblance to fundamental
staggered and mirror-symmetric roll-streak coherent structures observed in the high-shear region near the walls of boundary
layer and channel flows [8]. Doubly-localized solutions of plane Couette flow replicate the elongated turbulent spots from
which turbulence is triggered in extended systems [9].
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(a)

Figure 1: A state-space portrait of transitionally turbulent plane Couette flow, in the neighborhood of laminar flow. The
origin is placed at near the laminar equilibrium (uLM ). Solid dots correspond to unstable equilibrium solutions of the flow;
solid lines are trajectories in the low-dimensional unstable manifolds of the equilibria, computed with well-resolved DNS.

Figure 2: Exact near-wall traveling waves of plane Poiseuille flow. Swirling strength in blue (counterclockwise) and green
(clockwise), high-speed streaks in red, and isocontours of streamwise velocity perturbation in back plane.
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RESTRICTED NONLINEAR ROLL/STREAK DYNAMICS IN PLANE COUETTE FLOW
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Summary The recently developed restricted nonlinear (RNL) modeling framework is used to study a transitioning and turbulent plane
Couette flow at moderate Reynolds numbers. The results show that the critical roll and streak structures involved in the self-sustaining
process of turbulence are well represented by this model. The transitioning flow shows qualitative similarities in the development and
organization of these key flow features when compared to a direct numerical simulation (DNS) of the Navier Stokes (NS) equations.
However, there is greater transient energy growth in both the roll and streak structures in the RNL simulations. Further characterization of
RNL transitioning flows will determine the merit of studying transition using this type of model, which is an appealing prospect due to its
simplified dynamics and the order reduction that leads to significantly reduced computational requirements versus the NS equations.

Studies of disturbance energy growth in wall-bounded shear flows have identified streamwise constant disturbances as
preferential in developing the types of large energy amplification associated with bypass transition. This evidence of the
important role of streamwise coherent structures in linear energy growth as well as observations of their prevalence in fully
developed wall-turbulence motivates the use of a streamwise constant modeling framework to study transition and turbulence
in these flows. A streamwise constant projection of the Navier Stokes (NS) equations leads to a two dimensional flow field in
three velocity components, a 2D/3C model. Simulations of 2D/3C systems with persistent stochastic forcing have been shown
to develop turbulent flow fields that exhibit accurate turbulent velocity profiles and other structural features consistent with
turbulent plane Couette flow [1].

A more comprehensive model, which can self-sustain turbulence [2], is obtained by introducing a streamwise varying per-
turbation field that interacts with a 2D/3C mean flow. The corresponding model is obtained by decomposing the velocity and
pressure gradient fields in the NS equations into a streamwise averaged mean and perturbations from this mean, respectively
uT = U(y, z, t) + u(x, y, z, t) = (U, V,W ) + (u, v, w) and ∇pT (x, y, z, t) = ∇P (y, z, t) +∇p(x, y, z, t). The nonlinear
interactions between perturbations (u) are then neglected to obtain

Ut + U · ∇U +∇P − 1

R
∆U = −〈u · ∇u〉, (1a)

ut + U · ∇u + u · ∇U +∇p− 1

R
∆u = f (1b)

∇ ·U = 0, ∇ · u = 0. (1c)

Here f is a stochastic excitation that is used to initiate turbulence, it is removed once self-sustaining turbulence is achieved.
Previous work shows that simulations of the RNL model in (1) capture salient features of turbulent plane Couette flow at

low Reynolds numbers [2]. Two particular features of interest are the roll and streak structures, whose interactions are known
to play an important role in both transition and turbulence. In this work we focus on the development of these structures and
their characteristics after the transient phase in turbulent flows at two Reynolds numbers, Reτ ≈ 65 and Reτ ≈ 196.

Simulations of the RNL system and the NS equations are out carried using the spectral solver detailed in [2]. Turbulence
is initiated through the application of zero-mean delta-correlated (in y, z, and t) forcing in both the RNL simulations, through
f in (1b), and the DNS. We characterize the streak and roll structures based on their respective RMS velocity measurements,
which we define as follows.

UStreak :=

√∫ Lz

0

∫ δ

−δ
(U − [U ])

2
dy dz, URoll :=

√∫ Lz

0

∫ δ

−δ
V 2 +W 2 dy dz, (2)

where [·] indicates a spanwise average, and the spanwise and wall-normal channel extents are respectively [0, Lz] and [−δ, δ].
Figure 1 compares the development of the RMS roll and streak velocities in the RNL simulations and DNS at Reτ ≈ 65

and Reτ ≈ 190. These figures show that the streak and roll energies developed during the transition phase of the RNL
simulations are significantly higher than those of the DNS, for an equivalent f . One notable difference is the overshoot in the
RMS velocities of the RNL structures that is not present in the DNS. Figure 1 demonstrates how the nature of f affects the
transient behavior of the RNL systems. In particular, reducing the variance of f by 87.5% and 95% for the RNL simulations
with Reτ ≈ 190 lengthens the rise time and increases the magnitude of the overshoot. Although the energy growth of
these structures shows the distinct differences discussed above, an interrogation of the instantaneous velocity fields during the
transition phase uncovers qualitative similarity in both the development and organization of the roll and streak features. Once
the transition phase ends, the RMS velocities of the structures arising from the DNS and RNL simulations are very similar for
both Reynolds numbers, which is consistent with previous results [2].
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Figure 1: The evolution of the RMS streak velocities for RNL simulations and DNS at (a) Reτ = 66 and Reτ = 64 respectively and, (b) Reτ = 196 and
Reτ = 186 respectively. Panels (c) and (d) show the RMS roll velocities for same simulations as in (a) and (b). The variance of the zero-mean stochastic
excitation f , in (1b), is given for each simulation.

We further examine the nature of the rolls and streaks in the fully developed (self-sustaining) turbulent regime through
instantaneous snapshots of the flow in the cross stream (y − z) plane. Figure 2 shows the vT − wT vector field superimposed
on contour plots of the streamwise component of velocity field with the laminar solution U(y) = y removed, i.e. uT − U(y).
Figures 2c and 2d demonstrate that the similarity in the structural features previously observed at low Reynolds numbers [2, 3]
continues into this modest Reynolds number regime. The feature spacing and intensity of the roll structures also appears to be
consistent in the DNS and RNL simulations at Reτ ≈ 190, in accordance with the information provided in Figure 1.

Figure 2: Cross stream (y − z plane) contour plots of the streamwise velocity component with the laminar flow removed, i.e. uT − U(y) and the vT −wT
velocity vectors superimposed. (a) A RNL simulation at Reτ = 66, (b) a DNS at Reτ = 64, (c) a RNL simulation at Reτ = 196, and (d) a DNS at
Reτ = 186. The time step shown (t = 1760) is long after the initial excitation f in (1b) is set to zero.

The results presented here demonstrate that the RNL framework shows promise in capturing critical features of turbulent
plane Couette flow at modest Reynolds numbers. However, the energetics of the roll and streak structures in a transitioning
RNL flow require further examination to better understand how this process compares to current theories regarding turbulent
transition. Understanding the extent to which an RNL system can be used to study transition will help determine whether
the simplified dynamics that lend to the isolation of critical interactions and the inherent order reduction that makes RNL
simulations significantly less costly than DNS can be exploited in this important flow regime.
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Summary The properties of vortex-wave interaction states in shear high speed shear flows are investigated. In particular the relevance of
these high Reynolds number solutions of the Navier Stokes equations to turbulence is discussed. It is shown that the states usually referred
to as lower and upper branch states in the self-sustained process community have quite different stability properties. This explains why
lower branch states can act as edge states whilst upper branch states are more closely related to fully turbulent flows. It is shown that there
are three naturally occuring instabilities of VWI states and that bifurcation to the slow and fast time-periodic states found numerically by
Kawahara and Kida (2001) can be predicted by the theory.

.

VORTEX-WAVE INTERACTION STATES: VWI

In recent years it has been found that exact coherent structures found by numerical or asymptotic reductions of the Navier
Stokes equations play key roles in the both the process by which a flow becomes turbulent and the nature of fully developed
turbulence. Non-localized structures occurring in both external and internal shear flows naturally fall into two categories
at sufficiently high speed. The first kind is described by vortex-wave interaction theory, VWI for short, whilst the second
canonical type of structure due to Deguchi and Hall (2014a) is referred to as a free stream coherent structure and sits at the
edge of a boundary layer.

In a series of papers Hall & Smith (1989,1990,1991) gave formal asymptotic descriptions of quite general interactions
involving waves and stream wise vortices. The analysis described explicitly self-sustaining processes of waves existing as
instabilities of streaks and driving a roll flow through their Reynolds stresses. The process was shown to be closed because the
roll driven in this way itself drives the streak. The Hall-Smith framework applies to both inviscid and viscous waves though
the precise nature of the production of the rolls by the Reynolds stresses depends on the nature of the wave and whether the
flow is fully-developed. At about the same time Nagata (1990) discussed numerical results for nonlinear equilibrium states
in Couette flow. Subsequently, with the advent of more powerful computers, Waleffe and collaborators, see for example,
Waleffe (1997) or Wang et al (2007), found a number of equilibrium states in channel flows. A numerical interrogation of the
results showed that the process was a finite Reynolds number version of that described by Hall and Smith (1991). However
Waleffe was unaware VWI and so described the interaction as a ’self-sustained’ process. More recently such states and the
vortex-wave states have been loosely referred to as exact coherent structures.

The VWI approach shows that upper and lower branch states come into existence as a saddle node bifurcation when
the streamwise wavenumber of the wave is decreased. The lower branch is approached rapidly by finite Reynolds number
computations of the full equations with Reynolds numbers of a few thousand being sufficient for the asymptotic theory of
VWI to capture the finite Reynolds number results with remarkable accuracy. On the upper branch the approach is much more
slow and significantly higher Reynolds numbers are needed for the asymptotic and finite Reynolds number results to be in
excellent agreement.

Hall &Smith (2010) used the vortex-wave framework to describe equilibrium states in Couette flow and found remarkably
good agreement with Waleffe et al (2007). More recently Deguchi and Hall (2014b) extended the Hall and Sherwin results
to describe both upper and lower branch states. It is well-known in the exact coherent structure community that lower branch
states can act as edge states which determine whether disturbances to the unperturbed state ultimately cause the flow to become
laminar or turbulent. On the other hand upper branch states cannot act as edge states but are regularly visited by fully turbulent
flows. The different properties of the upper and lower branch states arise from their different instability properties with the
lower branch state having just a single unstable eigenvalue.

Here we will describe the stability properties of arbitrary VWI states and show how finite amplitude theory can be used
to describe the initial evolutions of some neutrally stable modes found. The analysis is based on the linear theory of Deguchi
and Hall (2016) who give an asymptotic description of the instabilities of both upper and lower branch states. It is shown that
upper and lower branch states are potentially unstable to three types of modes. The first rather ponderous mode corresponds
to a gentle oscillation in time of the vortex-wave state on the slow streak diffusion timescale. A second one is a fast Rayleigh
instability of the streak. At an intermediate timescale a new mode emerges and Deguchi and Hall (2016) referred to is as
the edge mode since it is the only mode of instability of lower branch states. Figure 1 is a schematic of how the instability
properties of VWI states vary along the lower and upper branches. On the bulk of the lower branch there is a single unstable
edge mode with growth rate O(R−1/2) together with stable slow modes of growth rate O(R−1). On the upper branch there
are unstable fast and slow modes and an unstable edge mode. Note also that neutral periodic forms of the slow and edge



Figure 1: Schematic of the connection of the eigenvalues along the lower and upper branches. The horizontal and vertical
axes represents the streamwise wavenumber α and the growth rate σr, respectively.

modes occur close to the saddle-node point. The stability classification found explains the results of numerical simulations of
shear flows by a number of authors and points to the existence of two time periodic equilibrium states living either on the slow
diffusion or edge mode timescales. The predictions of a weakly nonlinear extension of our stability calculation finds solutions
closely related to those found by Kalahari and Kida (2001). Since the latter solutions have been found to capture much of
the turbulent statistics of Couette flow it appears that the high Reynolds descriptions of time periodic states based on VWI
problem might sensibly be used to describe high Reynolds number turbulent flows.
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Summary We identified critical behavior of the transition to turbulence in channel flow. Turbulent domains continuously 

injected from an inlet ultimately decayed, or in contrast, spread depending on flow rates. Near a transition point, critical 

behavior was observed. We found that four critical exponents, a universal scaling function and a scaling relation, are all in 

agreement with the (2+1)-dimensional directed percolation universality class. 

 
INTRODUCTION 

 

    Transitions from laminar to turbulent flow have been extensively studied in the past century. Among these studies, the 

discovery of a well-defined transition to chaos in a fluid heated from below in a small box caused the rewriting of classical 

textbooks on the onset of turbulence. However, this concerns only temporal disorder. When and how spatio-temporal disorder 

emerge remains elusive in particular, for flows under shear, such as pipe and channel flows. Is the transition abrupt or 

continuous? Does it depend on a particular type of perturbation? Are there universal laws in the transition? These fundamental 

questions have to be revisited. Recently, Hof et al. (1) conducted a series of experiments on a pipe flow and found that the 

transition can be regarded as a spreading process of a localized turbulent puff created by perturbations that may duplicate or 

die out indefinitely. Situations are similar for other wall bounded flows. In such flows, the laminar flow becomes turbulent 

despite its linear stability; laminar states do not break up into turbulent states unless they are invaded by turbulent neighbours 

due to the stability against infinitesimal perturbations. If the tendency for invasion by a turbulent state increases, the turbulent 

state will eventually spread over the entire space. It is this behavior that led Pomeau to conjecture that the spatio-temporal 

intermittency observed at the transition from the laminar flow to turbulence belongs to the directed percolation (DP) 

universality class (2). DP is a stochastic spreading process of an active (turbulent) state with a single absorbing state, which 

diverse phenomena such as spreading of epidemics, fires, synchronization, and granular flows potentially belong to. If the 

transition is continuous and the interaction is short-ranged, universal critical exponents are expected. However, to observe the 

critical behavior in a pipe flow, if it exists, an extraordinarily long pipe is required. To overcome this difficulty, we chose a 

quasi-two dimensional channel flow and forced the inlet boundary condition to be active (turbulent) state. It enabled us to 

study the transition to turbulence as a surface critical phenomena. A clear transition between decay and penetration of the 

injected turbulent flow was observed. Quantification of the order parameter and the correlation length revealed critical 

behavior of the transition in channel flow; obtained three independent critical exponents support that the transition to 

turbulence in channel flow belongs to the DP universality class.      

 

EXPERIMENTAL SETUP 

 

   The flow channel has a length of 5880 mm in a streamwise ( x ) direction, a cross section of 5 mm in depth (the y direction) 

and 900 mm wide in a spanwise ( z ) direction. Thus the aspect ratio of the channel was 2 352 6023 h hh   . The flow 

dynamics in the (x,z) plane were visualized and recorded using a visualization technique and three CCD cameras. Instead of 

triggering turbulent spots by a local perturbation for each measurement as in the previous experiments, we continuously 

excited turbulent flow in the buffering box using a grid and injected it at the inlet ( 0x  ). 

 

ORDER PARAMETER 

 

   This setup enabled us to attain a steady state measurement of the area fraction of the turbulent region (the turbulent fraction 

ρ) as a function of x. ρ(x) was estimated by measuring the time fraction occupied by turbulent flow for each of the locations 

averaged over a long time (about 40 min, 100 times of flow circulation time). ρ(x) seemed to saturate for higher Re and for 

larger x. Therefore, we measured the turbulent fraction as a function of Re  at several distant locations x  satisfying 

/ 1280x h  . The curves for different positions overlapped, implying that ρ is almost saturated for Re  larger than a certain 

value. Order parameter increased continuously from zero as shown in Fig.1a. Thus we fit by 
0


     in the inset of Fig. 1a, 

where   is the reduced Reynolds number, ( ) /
c c

Re Re Re   . We obtained  =0.58(3) and 830(4)
c

Re   as the best 

fit. Non-vanishing order parameter is due to finite size effect as usual.   

 

 



DIVERGENCE OF CORRELATION LENGTH 

 

   Critical behavior is characterized by a divergence of the correlation length at the critical point. If the transition from the 

laminar to turbulent state belongs to the DP universality class, the correlation length of the cluster should reflect this critical 

nature. In order to test this, we measured a distribution of the durations   of the laminar state (laminar interval distribution) 

( )N   at fixed downstream locations for 
c

Re Re . For Re sufficiently close to 
c

Re , ( ) ~N


  with 1.25(5)  is 

obtained. This value is close to the universal exponent in DP, 
DP

1.204(2)


   which characterizes the scale invariance of 

critical clusters. We defined the correlation length  , by fitting the tail of a complementary cumulative probability, 

0
( ) ( )d / ( )dP N t t N t t

 


     with an exponential function, ~ exp / )( ) (P    . As we approached to 

c
Re , 

substantially increases. The correlation length as a function of   showed a divergence with a power law and saturation at 

the smallest   (Fig.1b). We fitted by ~    with an exponent   0.71(5) which agrees with 
DP

0.733(3)

  . In 

addition, we obtained 
||

 by looking at a spatial distribution of turbulent fraction ρ(x). The turbulent fraction showed an 

exponential decay; ( ) ~ exp( / )x x L   for Re<Rec. The decay length L increased near the critical point with a power law,

~| |L
 

 . We obtained 1.1(3)  . This value is again close to the critical exponent for the divergence of temporal correlation 

length, 
DP

||
1.295(6)  . Thus we obtained three independent critical exponents  , 


 , and 

||
 for DP together with the 

exponent for laminar interval distribution, 


 . which satisfies the universal scaling relation, 2 /
 

   . Therefore the 

results strongly support that the transition belongs to (2+1)-dimensional DP universality class. 

 

 
Figure 1, a; The turbulent fraction   vs. Re is plotted at different downstream locations: / 1292x h  ( ), / 1880x h 

( ), and / 2096x h  ( ). Inset: A log-log plot of   as a function of reduced Reynolds number  . b: Correlation length 

estimated from the tail of laminar length distributions as a function of  .  

 

CONCLUSIONS 

 

   Although larger scale experiments and DNSs are needed in the future, the largest channel flow experiment available at 

present strongly supports the idea that the transitions to turbulence in shear flows have a universal critical nature of non-

equilibrium phase transition, i.e., the transition belongs to the DP universality class.  
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Summary Investigation of the laminar–turbulent separatrix is performed in a boundary-layer flow. Constant homogeneous suction is applied
at the wall in order to prevent the spatial growth of the layer, leading to the parallel Asymptotic Suction Boundary Layer (ASBL). Edge
tracking is performed in a large computational domain allowing for full spatial localization on the separatrix. The obtained localized
structure experiences recurrent dynamics going through calm and bursting phases. During calm phases the structure’s active core consists
of a single low-speed streak which develops sinuous instabilities leading to a burst in energy. During the burst new streaks are created, with
the structure growing in size and its core drifting in both planar directions. The recurrent simple structure observed during calm phases is
compared with those seen in the early development of the minimal seed and during bypass transition. The implications on the dynamical
systems view of the transition process are discussed.

INTRODUCTION

Lately a stimulating breakthrough occurred in transition to turbulence, when researchers started adopting tools from deter-
ministic chaos theory and dynamical systems, supported by the on-going progress of computer simulations. One of the new
concepts arising from these recent developments is the idea of “edge states”: nonlinear flow structures living at the dynamical
border between laminar and turbulent flow [1]. They are relative attractors within the laminar–turbulent boundary and can
be simple objects, like fixed points or periodic orbits, or more complicated chaotic structures. In all cases they serve as an
example of simple dynamics in the high-dimensional system. As such they can be used for understanding the mechanisms of
the sustained non-trivial flow behavior. In addition, being saddles of the system, they guide the evolution of the flow going
towards turbulence.

Recently, this concept was applied to the Blasius boundary-layer flow over a flat plate [2]. However due to the spatial
growth of the boundary layer the proper asymptotic dynamics is inaccessible. One way to circumvent this is to apply suction
at the plate which counteracts the spatial growth. If the suction is constant and homogeneous the boundary-layer thickness
saturates and the associated flow is known as the Asymptotic Suction Boundary Layer (ASBL) [3].

Figure 1: Three-dimensional snapshot of the edge state. Low- (blue) and high-speed (red) streaks are shown with the isosur-
faces of the streamwise velocity fluctuations u′ = ±0.05. The vortical structures are shown using the λ2 = −10−4 isosurfaces
(green). Flow from lower left to upper right. The whole computational domain is shown.
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Figure 2: Top views of the edge state showing the typical structure of the active core during the calm phase. Three independent
events are displayed. The same color coding is used as in figure 1, however with higher isolevels (u′ = ±0.13 and λ2 =
−4×10−4) in order to capture the most energetic parts of the structure. Flow from left to right. Only part of the computational
domain is shown.

LOCALIZED EDGE STATES IN ASBL

The parameters for the current study were based on the previous results in the numerical domain of limited size [4]. We
perform edge tracking in domain of size [Lx, Ly, Lz] = [800δ∗, 15δ∗, 100δ∗] at Re = 500 (defined as the ratio of the free-
stream velocity U∞ to the suction velocity VS) using the fully spectral code with a DECI awarded allocation, as each flow
field has 200 million grid points. Here δ∗ is the laminar boundary-layer displacement thickness and together with U∞ they
are used for non-dimensionalization.

The obtained structure resembles a turbulent spot at the initial stages of its growth. It consists of low- and high-speed
streaks and vortical structures staggered along to the streaks (see figure 1). Both visual inspection and quantitative analysis
confirm the fully localized nature of the state. Its energy oscillates erratically showing no signs of regularization. Hence we
conclude that the edge state is chaotic in this set-up. Still, calmer and bursting phases alternating with irregular intervals can
be identified, indicating pulsating behavior with recurring dynamics.

In the calm phase the active core of the state consists of a single low-speed streak. It develops sinuous instabilities with
two counter-rotating vortices flanking the streak and sustaining it through the lift-up effect. The other streaks slowly decay.
The vortices above the active streak grow in strength and start leaning over it. When they cross, a region is created where the
fluid is pushed down instead of being lifted up.This leads to the breakdown and to a spanwise drift of the whole structure. The
vortices generated in the breakdown process create new low- and high-speed streaks and the cycle is closed.

IMPLICATIONS FOR TRANSITION TO TURBULENCE

The performed edge tracking is a way of mapping out parts of the edge manifold, where the edge can be followed for
arbitrary large times. Thus it allows to identify recurrent dynamics and the regions of phase space which are repeatedly visited
on the edge. The simple structure in the calm phase was identified as this recurrent structure (see figure 2). Surprisingly, very
similar structures are also seen as a part of the trajectory of the minimal seed [5]. Similar structures have also been reported in
many studies on transitional boundary layers [6] at the verge of the breakdown leading to creation of turbulent spots, the so-
called nucleation events. Thus, it is plausible that in bypass transition (e.g. induced by free-stream turbulence) the secondary
instability of the streaks can be associated with the approach to the stable manifold of the edge state and its linear instability.

Hence we can adopt the following dynamical systems view on the bypass transition process in boundary layers with
disturbances of moderate levels. The perturbations are viewed as a cloud of initial conditions of which some are on the
turbulent side of the stable manifold of the edge state. The corresponding trajectories approach the localized edge state for
a finite time. During the approach (the receptivity process) the perturbation evolves into a low-speed streak, the structure
repeatedly seen in the edge state computation. Once the sinuous instability builds up and grows, it leads to a burst of the
streak. For the trajectory constrained to the edge, the burst would be followed by a decrease of the energy. However being
slightly above, the burst leads to the breakdown into a turbulent spot. Thus the nucleation process of turbulent spots in bypass
transition is related to appearances of the edge-type structures which can be used in the understanding and modeling of the
whole process.
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Summary Direct numerical simulations of a pressure driven turbulent flow are performed in a large rectangular channel. Extreme and
moderate drag regimes within turbulence that have earlier been found to exist temporally in minimal channels at low Reynolds numbers have
been observed both spatially and temporally in full-size turbulent flows. These intermittent regimes, namely, “hyperactive”, “active” and
“hibernating” turbulence, display very different structural and statistical features. Using conditional sampling, we identify these intermittent
intervals and present the differences between them in terms of simple quantities like mean velocity, wall shear stress and flow structures. By
conditionally sampling of the low wall shear stress events in particular, we show that a Newtonian trajectory in large domains occasionally
approaches some of the exact coherent states that are characteristic of very low drag in Newtonian flows.

INTRODUCTION

A way of understanding the chaotic dynamics of turbulent flows is to look at the exact coherent states (ECS) of the Navier-
Stokes equations. The low-drag events in Newtonian flows resemble a recently-discovered family of ECS [1]. Similar transient
behaviour at low Reynolds numbers in minimal channels has also been observed in viscoelastic flows [2]. The objective of this
study is to establish whether temporal intermittency in minimal-channel Newtonian flows translates to temporal and spatial
intermittencies in large-domain Newtonian flows.

RESULTS AND DISCUSSION

To detect and sample low and high drag events happening locally with time, we measure the instantaneous wall shear
stress at a point on a wall. Our criteria for an event is that the wall shear stress (τw) at the point must surpass a threshold value
and it must stay on the same side of the threshold for a specified minimum time duration. Specifically, for an event to be called
hibernation, the wall shear stress must fall below the specified threshold and must last for a duration t∗ > 3, and for an event
to be hyperactive, τw must become higher than the corresponding threshold value and, as before, must stay high for t∗ > 3.
Figure 1(a) shows many low wall shear stress events measured at Reτ = 85 that satisfy the criteria for hibernation. The
beginning of each event shifted to t∗ = 0. We are calling such low-drag events hibernating turbulence. The ensemble average
of all the instantaneous hibernation events is shown as a thick green line. On average the wall shear stress during hibernation
falls to a plateau in the time interval 0.7 ≤ t∗ ≤ 2.8 and is preceded by a sharp peak in the wall shear stress (higher than the
mean, τw) during −0.8 ≤ t∗ ≤ 0. Similarly, for hyperactive intervals we select instances when the wall shear stress becomes
more than 110% and 120% of the mean and remains higher than the specified threshold for t∗ > 3 (Figure 1(b)).
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Figure 1: Instantaneous (thin grey lines) and ensemble-averaged (thick green solid line) wall shear stress before, during and
after the intervals of hibernation and hyperactivity at Reτ = 85. Here, t∗ is the time measured in units of eddy turnover times.

To identify low and high drag regions spatially, we choose a detector function, which is a function of flow properties at the
wall or in the fluid region. The detector function is lowpass-filtered and thresholded that results in demarcation of weakly and
strongly turbulent areas. The sum of the absolute values of the streamwise wall shear stress and the spanwise derivative of the
streamwise velocity is chosen as the detector function, i.e., D ≡ |∂U/∂y|w + |∂U/∂z|y+=15.
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The filtered signal is then thresholded using Otsu’s method. For a given snapshot, we divide the spatially-varying wall
shear stress into three classes – low, intermediate and high – and the range for each class is determined by the thresholds
obtained from Otsu’s method. Note that no time-criterion has been applied to the spatial sampling technique. The result of
the edge-detection algorithm is shown in Figure 2. The contours represent the wall shear stress patterns from an instantaneous
flow-field at Reτ = 85. Solid black line represents the demarcation line between high-drag and intermediate-drag regions and
white line separates the intermediate-drag areas from the low-drag areas. A distinct difference between the three regions is
observed – areas enclosed by black lines show high wall shear stress and strong fluctuations whereas the areas enclosed by
white lines are smooth, local wall shear stress values are low and the variations are small. Regions between red and black
lines lie in the intermediate-drag regime.

Figure 2: Edges between high- and intermediate-drag regions (black) and between intermediate- and low-drag regions (white).
Flow is from left to right.

Conditional mean velocity profiles for hibernating and hyperactive turbulence at Reτ = 85 occurring both in time and in
space are presented in Figure 3(a). It is observed that low-stress conditional averages from edge-detection scheme (spatial)
nearly matches pointwise thresholding results (temporal) – both profiles are shifted upward of the unconditional mean profile
and lie close to the Virk MDR asymptote. Similarly, the mean velocity profiles during hyperactivity, both temporal and spatial,
lie below the unconditional time-averaged profile. The hibernation profiles in a large domain Newtonian flow also lie close to
the lower branch ECS profile near the wall (up to y+ ≈ 25) observed in a minimal channel (Figure 3(b)).
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Figure 3: (a) Unconditional (solid lines) and conditional (symbols) streamwise mean-velocity profiles at Reτ = 85. (b) Mean
velocity profiles of lower and upper branches ECS (shown in yellow) in Newtonian flows in a minimal channel [1].

CONCLUSIONS

Intermittent excursions towards low and high drag states, that have earlier been found to exist temporally in minimal
channels, have also been observed to occur both temporally and spatially in large-domain Newtonian flows. Using conditional
sampling and edge-detection techniques, we identified these transient intervals and it was found that the mean near-wall
properties and structures of the low drag events in particular resemble some of the lower branch exact coherent states. These
low drag regions in time and space can serve as potential targets for drag reduction schemes to reduce energy consumption in
flow processes.
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Summary Bifurcations in rotating plane Couette flow are investigated when the Reynolds number, R, is relatively small. We clarified the
role of the second wavy vortex flow, called Ribbon, in the parameter space. In addition, a new type of tertiary flow with the symmetry
classified as A3 in Nagata (1986) is discovered.

INTRODUCTION

During the past few decades, the problem of plane Couette flow with system rotation has served as a suitable testing
ground for comparison between experiments and theories [1,2,3,4,5]. This classical problem is revisited in the current paper
in order to gain a new insight into transition to turbulence.

MODEL

We analyze the bifurcation of plane Couette flow subject to a constant spanwise rotation Ω∗, which is governed by the
dimensionless Navier-Stokes equations and incompressibility condition,

∂tu + u · ∇u + Ω× u = −∇p+
1

R
∇2u, ∇ · u = 0, (1)

expressed in the rotating frame of reference, where velocity u has components (u, v, w) in the streamwise (x), spanwise (y)
and wall-normal (z) directions, respectively, t denotes time and p is a modified pressure that includes the centrifugal force
term. All lengths have been scaled by half the fluid depth,D∗, while velocities have been scaled by the translational wall speed
V ∗. The Reynolds number,R = V ∗D∗/ν, with ν denoting the kinematic viscosity, and the rotation number, Ω = 2Ω∗D∗/V ∗,
where Ω = [0,Ω, 0], have been introduced. The laminar basic flow satisfying no-slip at the wall, u(z = ±1) = ∓1, is given
by u = (u0(z), 0, 0), where u0(z) = −z.

NUMERICAL METHODS

We superimpose disturbances on the laminar basic flow. The development of the disturbances is of our interest. A typical
physical disturbance component, q, is expressed in the following form,

q(x, y, z, t) =

L∑

l=−L

M∑

m=−M

N∑

n=−N
qlmn(t) exp[imα(x− ct) + inβy]Tl(z), (2)

where m and n are integers, α and β are the wavenumbers in the streamwise and the spanwise directions, respectively, c
is the wavespeed and Tl(z)’s denote modified Chebyshev polynomials which satisfy the no-slip condition. Upon using the
orthogonality property of the Fourier series, we discretize the equations at a selected wall-normal collocation points. The
resulting algebraic equations for the component amplitudes, qlmn’s, and the wave speed, c, are solved by Newton method. It
is found c is zero along all the solution branches presented in this paper,

RESULT

It is known that rotating plane Couette flow becomes unstable to streamwise-independent disturbances and, as a result,
two streamwise-independent secondary flows, one from the first instability mode [1] and the other from the second instability
mode [2], bifurcate. We call these secondary flows TV1 and TV2, respectively. Furthermore, it is known that the first and
second tertiary flows in the form of three-dimensional wavy vortex bifurcate from TV1 and TV2, respectively. We call these
tertiary flows WVF and Ribbon. We find that WVF, normally exists along a singly-connected branch, has a window of non-
existence for some wavenumber pair (α, β) as the rotation number, Ω, varies and this non-existence window of WVF is filled
by Ribbon. In this particular case, three-dimensional Ribbon bifurcates directly from the basic laminar state, as a secondary
solution, with its two bifurcation points on the basic state, one at a small Ω end and the other at a larger Ω end (see Figure
1(a) and (b)). It is found that in the limit of small α, Ribbon coincides with WVF, and that, as α is increased, the bifurcation
point at the small Ω moves toward a larger Ω value, until it collide with the bifurcation point of TV2. The bifurcation point of
Ribbon, then, climb up the TV2 branch, so that the Ribbon is now recognised as the second tertiary flow (see Figure 1(c)).

∗Corresponding author. Email: nagata@kuaero.kyoto-u.ac.jp
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図 5.5: ÆによるWVF解とリボン解の分岐関係の変化

Æが極めて小さい領域に於いてのみWVF解とリボン解は分岐関係にある
ことが判る。

5.2 対称性
WVF解の係数の性質 (4.11)に加えて、

(
aR, bI = 0 (l + m :偶)

aI , bR = 0 (l + m :奇)
(5.1)

なる性質がある。従って、次の対称性 A
[2]
0 を持つ。

¡

8
>>>><
>>>>:

cos(m+Æx) cos(n+Øy)fl++

cos(m++Æx) cos(n++Øy)fl+

sin(m+Æx) cos(n+Øy)fl+

sin(m++Æx) cos(n++Øy)fl++

√

8
>>>><
>>>>:

cos(m+Æx) sin(n+Øy)gl++

cos(m++Æx) sin(n++Øy)gl+

sin(m+Æx) sin(n+Øy)gl+

sin(m++Æx) sin(n++Øy)gl++

(5.2)

(5.2)を (2.16)にあてはめて考えるとリボン解はS,Z,Ωであることが判る。
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5.3 解の存在領域
リボン解は第一線形臨界レイノルズ数 Rec1 ' 20.663近傍まで存在する。

Rec1よりも僅かに高いレイノルズ数であるRe = 25に於いて、波数 (Æ,Ø)に
対する存在領域を調べた。Æ = 0での線は TV1解の存在領域を示している。
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図 5.6: 波数 (Æ,Ø)に対する存在領域

リボン解の Æ = 0近傍での Øの存在領域は TV1解の存在領域に一致した。

5.4 二次元解との関係
Re = 70,Ø = 1.34。
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図 5.7: Æによる分岐関係の変化

リボン解は外側からÆ = 0.04, 0.1, 0.3, 0.5, 0.6, 0.7, 0.9のものを示している。
Æが小さくなるにつれ、TV1解に近付き、Æが大きくなるとTV1解とは異な
る二次元解TV2解から分岐していることが判った。次節で説明するように図
5.7に於ける TV2解の基本波数はリボン解の二倍となる (Æ,Ø) = (0, 2.68)で
ある。
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Figure 1: (a) and (b): Bifurcation diagram along the Ω-axis for TV1 (thin pink), WVF (green) and Ribbon (red). The nonlinear
measure is represented by Uτ , the momentum transport at the wall. R = 50 and β = 1.5. (a):The non-existence window of
WVF at around Ω = 5 filled by Ribbon. α = 0.20. (b): Singly-connected WVF. α = 0.25. (c): The branches of Ribbon as α
varies. α = 0.04, 0.1, 0.3, 0.5, 0.7 and 0.9 from outside. R = 70. β = 1.34. TV2 (cyaan).

Further, we investigate Ribbon for a larger R. Ribbon bifurcates from TV2 at a smaller Ω-end as before when R = 160
(see Figure 2). Regarding its bifurcation point at the larger Ω, although it is hardly seen in the figure, we confirm that it now
starts from a new solution branch with the symmetry, A3, classified in [1]. The new solution branch of A3 bifurcates from
TV2 as a third tertiary flow.

6 A3解
6.1 A3解の発見

Re = 160, (Æ,Ø) = (0.8, 1.5)。
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図 6.1: 分岐線図
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図 6.2: 分岐の様子

Ωを増加させてもリボン解が図 5.18のようには TV2解に繋がらず、A3と
呼ばれる対称性 (6.3)を持つ解から分岐していることが判った。次節で説明
するように図 6.1に於ける A3 解の基本波数は (Æ,Ø) = (1.6, 3)である。尚、
(L, M, N) = (20, 11, 11)として計算した。
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Figure 2: Bifurcation diagram along the Ω-axis for TV2 (cyaan), A3 (blue) and Ribbon (red). R = 160. (α, β) = (0.8, 1.5).

CONCLUSIONS

In addition to the conventional two states, TV1 and WVF, we are able to identify three flow states, TV2, Ribbon and A3, at
a high rotation rate. The coexistence of the total five flow states may play an important role to guide the flow into a complicated
three-dimensional state, such as called Braided or Spaghetti state, which has not been resolved completely [3,4,5].
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Summary Drag-reducing polymers have profound impact on the dynamics of turbulence, not only in the statistically-converged stage but
also in its transient development. Understanding of the latter is essential for solving all major remaining problems in viscoelastic turbulence.
Direct numerical simulation is used to study the transient growth of the laminar-turbulent edge state into full turbulence and comparison is
made between Newtonian and viscoelastic fluid flows. Polymers are found to suppress turbulence growth throughout the process. Inspection
of flow fields further reveals a different pattern of turbulence development after polymers are introduced.

INTRODUCTION

Flexible long-chain polymer additives are known to cause drastic changes in flow turbulence, including significant re-
duction in its friction drag [1] and complex behaviors during the laminar-turbulent (L-T) transition [2]. Recent advances
indicate that major unsolved problems in viscoelastic turbulence can all be linked to the dynamics in the L-T transition re-
gion [3, 4, 5, 6]. Most notably, the edge state – an asymptotic saddle state on the L-T boundary [7, 8] – was found to have
invariant flow statistics with increasing polymer elasticity [4, 6], explaining the existence of a universal upper bound for
polymer-induced drag reduction (DR) – the well-known puzzle of maximum drag reduction (MDR) [1]. Specific solutions
responsible for MDR are yet to be identified, prompting us to shift our attention to the state-space region between the edge
state and the turbulent basin. Better knowledge of the dynamics in the region, especially polymer effects thereon, is also the
key to solving other important problems such as the transition mechanism of viscoelastic fluids and onset criterion of DR.

Using the edge state (perturbed by numerical errors only) as the initial condition, direct numerical simulation (DNS)
is used here to track the growth of a marginal turbulent spot into full turbulence. Newtonian and viscoelastic simulations
are compared to study the polymer effects. We focus on a minimal channel flow (720 and 230 wall units in streamwise
and spanwise directions, respectively) and a moderate Reτ = 84.85; viscoelastic simulation was performed with Wi = 40
(Wi, Weissenberg number, is the product of polymer relaxation time and wall shear rate; Wi � 1 indicates strong polymer
elasticity). Details of the simulation system and numerical procedures are found in recent publications [9, 6].

RESULTS
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Figure 1: State-space projections of dynamic trajectories initiated from the edge state:
(a) TKE vs. Ubulk; (b) peak value of the RSS profile vs. log-law slope at y∗ = 25 –
A∗

25 (dashed line marks A∗
MDR = 11.7).

State-space trajectories of the
process is projected using various
quantities of interest and shown in
Fig. 1. Fig. 1(a) focuses on global
statistics: bulk-average turbulent ki-
netic energy (TKE) and velocity
(Ubulk). Turbulence growth in both
Newtonian and viscoelastic systems
starts with a spike in TKE, which
is followed by a dip then a steady
climb toward the magnitude of turbu-
lent basin; Ubulk drastically decreases
during the process. In our recent
study [6], it became clear that quanti-
ties directly measuring near-wall tur-
bulent activities – in particular, the
peak value in the Reynolds shear
stress (RSS) profile |〈v∗xv∗y〉|max and log-law slope A∗ ≡ y∗(dU∗

m/dy∗) measured at y∗ = 25, A∗
25 – more clearly reflects the

dynamics of near-walls structures. (Here, superscript “*” indicates quantities in turbulent inner units based on instantaneous
wall shear stress [3, 10]; definition of A∗ comes from a log-law approximation of mean velocity profiles U∗

m = A∗ ln y∗+B∗.)
Projections using these variables are shown in Fig. 1(b). For both Newtonian and viscoelastic cases, turbulence growth starts
with a massive increase of RSS, which proceeds the growth of TKE: by the time TKE reaches the initial spike (instant B for
Newtonian and instant E for viscoelastic), the RSS has already dropped down to magnitudes typical of the turbulent basin.

∗Corresponding author. Email: xili@mcmaster.ca



Figure 2: Distribution of vx at y+ = 25: (a)-(c) correspond to Newtonian instants A-C, and (d)-(f) correspond to viscoelastic
instants D-F (instants defined in Fig 1). The color scale ranges from yellow for 0 to red for 1.

The overall picture arising from Figs 1(a)&(b) is that with a minute perturbation, the edge state, which takes form of a
localized turbulent spot [6], quickly grows into a structure with much stronger turbulent activity, whose RSS is even higher than
that of the turbulent basin. As RSS of this particular structure decays to typical values of the turbulent basin, its disturbance
spreads across the domain, causing the spike in TKE and drop of Ubulk. Growth at the global scale (Fig 1(a)) takes much
longer time, which does not converge in the 1500-time-unit (TU) period shown. Meanwhile, during the same time period,
the initial structure has already converged to the destination state (Fig 1(b)). Fluctuations afterwards reflect the intermittent
dynamics of self-sustaining turbulent cycles. In particular, for the viscoelastic case, these fluctuations lead to recurrent visits
toward the direction of the edge state, with A∗

25 occasionally approaching the magnitude of MDR. This corresponds to the
so-called hibernating turbulence, a type of MDR-like states becoming more exposed as Wi increases [3, 10].

Polymer stress acts as a restraining force and inhibits the development of both the initial structure and globle turbulence,
with lower TKE and RSS observed during the whole growth stage. Somewhat surprisingly, mean velocity – measured by A∗

25

in Fig. 1(b) – of the viscoelastic case drops more rapidly despite the lower RSS. This indicates that turbulent fluctuation is no
longer the only means through which energy is extracted from the mean flow. Indeed, we found that the conversion rate of
mechanical energy to polymer elastic energy is positive throughout the growth stage. This energy is not returned to the flow
motion until turbulent basin is reached.

Contour plots of streamwise velocity, of both Newtonian and viscoelastic cases, are shown in Fig. 2 for three representative
instants: before, at, and after the TKE peak in Fig. 1. Note that the edge state flow field (not shown here) is dominated by a pair
of smooth and elongated low-speed streaks [6]. In the Newtonian case, the initial perturbation first leads to the breakdown of
one of the streaks (Fig. 2(a)). When TKE reaches the peak value (Fig. 2(b)), both streaks have disappeared and are replaced by
high-density turbulent motions: short irregular streaks with strong streamwise variations. The final instant has similar irregular
patterns with lower intensity. By contrast, the viscoelastic case retained the double-streak configuration for the whole period
(Figs. 2(d)-(e)). Even at the TKE peak (Fig. 2(e)), the streaks are distorted in shape but do not break into smaller structures.
Regulated and elongated coherent structures are now increasingly associated with turbulent states with weak activity and low
drag [6]. Our observation here clearly indicates a qualitative change in the turbulent growth mechanism of viscoelastic fluids.

CONCLUSIONS

Starting from a marginal turbulent spot, an infinitesimal perturbation first triggers the growth of its turbulent intensity,
which then propagates across the domain toward full-scale turbulence. Polymer additives suppress the growth of turbu-
lent structures throughout the process, during which energy is extracted from the flow to the polymers. Different transition
pathways are observed in Newtonian and viscoelastic flows: development of Newtonian turbulence goes through a sharp
breakdown of coherent structures whereas for viscoelastic systems the changes are more continuous.
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Summary The role of Elasto-Inertial Turbulence (EIT) on the bounds of friction drag is investigated in channel flows from subcritical to
moderate Reynolds numbers. EIT is a newly discovered state of turbulence emerging from self-sustaining interactions between polymer
dynamics and velocity perturbations in parallel shear flows. At low Reynolds numbers, EIT creates an increase in friction drag. Beyond the
critical Reynolds number for Newtonian flows, EIT becomes the lower bound of the friction drag of the Maximum Drag Reduction (MDR)
state. The drag reduction properties of polymer control the upper bound of MDR.

INTRODUCTION

Elasto-Inertial Turbulence (EIT) [1] is a recently discovered new state of turbulence, where interactions between inertia and
elastic effects can sustain a turbulence-like state in channel and pipe flows at Reynolds numbers much lower than the critical
Reynolds at which Newtonian flows undergo a transition from laminar to turbulent state. The structure of EIT[2, 3] consists
of thin sheets of stretched polymers that are tilted upward by the mean shear and produce spanwise coherent flow structures
by opposition to the quasi-longitudinal vortices observed in Newtonian wall turbulence (See Fig. ??). The proposition
investigated here is that EIT is the bounding state preventing a flow with polymer additives from relaminarization.

EQUATIONS

The mathematical nature of the transport equations solved in the present direct numerical simulations is of critical impor-
tance for the understanding of EIT. The momentum is transported by the Navier-Stokes equation modified to account for the
viscoelastic stress:

∂tu+ (u ·∇)u = −∇p+ βRe−1∇2u+ (1− β)Re−1∇ ·T , (1)

where β is the ratio of the solvent viscosity to the zero-shear viscosity of the polymer solution and T is the polymer stress
tensor defined as:

T =Wi−1 (f(trace(C))C− I) . (2)

The non dimensional Weissenberg number Wi is the ratio of the polymer solution time relaxation to a relevant flow time
scale. The conformation tensor C is the tensorial product of the components of the end-to-end vector for a polymer molecule,
phased-average over a large ensemble of molecules. The Peterlin function f(r) =

(
1− r/L2

)−1
describes the restoring

spring force that polymers experience when stretched. L is the normalized polymer length. The transport equation for the
conformation tensor,

∂tC+ (u ·∇)C = C · (∇u) + (∇u) ·CT −T+ (ReSc)−1∇2C (3)

includes on the right hand side, the stretching of polymer molecules by the flow (first two terms), the restoring spring force
(third term) and a diffusion term governed by the Schmidt number Sc. This system of equations (supplemented by ∇ · u =
0 constitutes the FENE-P (Finite Elastic Non-linear Extensibility-Peterlin) model commonly used in the direct numerical
simulation of polymer flows. Note that the derivation of the FENE-P model requires Sc→∞.

As explained in [4] (where the numerical method used here is also described), A time scale analysis of the right-hand of
Eq. (3), for Sc→∞ reveals that polymer stretch on the time scale of the flow (first term) and recoil on time scale larger than
the Kolmogorov scale, as stipulated by Lumley [5]. Both terms are local, with no diffusion process. On the left hand side,
the nonlinear advection term, generates small scales if Sc→∞. A parallel can be made between Eq. (3) and the small scale
dynamics of passive scalar [6, 7]. In the following, a numerical experiment investigates the effect of Sc on the existence of
EIT.

OBSERVATION

Using direct numerical simulation in periodic 2D and 3D channel flows, the existence of EIT was established for Reynolds
numbers as low as 10, based on the bulk velocity and the channel height. Here EIT was found to arise from a variety of initial
perturbations including spatial variation of blowing and suction at the wall over a finite period of time and superimposition
of random noise. The increase in the coefficient of drag and deviation from laminar is shown in Fig. 1a for the lowest

∗Corresponding author. Email: ydubief@uvm.edu
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Figure 1: 1a: Coefficient of friction in a 2D channel as a function of the Reynolds number based on the bulk velocity and the
full heigh of the channel. (1b) Time history of the bulk Reynolds number for the simulation of [8] constant pressure-gradient
minimal flow unit for Sc → ∞ and Wiτ = 400 (blue), Sc → ∞ and Wiτ = 40 (red), Sc = 0.3 and Wiτ = 40 (green).
The black and cyan lines show the turbulent and laminar bulk Reynolds numbers, respectively. 1c: Flow visualization of EIT
at Wiτ = 40. The orange and blue isosurfaces show positive and negative regions of the second invariant of the velocity
gradient tensorQ. The side panels show contours of the polymer extension. The flow is from the left lower corner to the upper
right corner.

simulation. EIT was simulated for very long period of times, up to 500 flow-through time, and no decay was observed in the
space-averaged turbulent kinetic energy.

In our numerical experiment, we reproduce the minimal flow unit simulation of [8], where Sc = 0.3 to 0.5 was used. Fig.
1b shows that small Sc leads to a relaminarization of the flow, as observed by [8] forWiτ > 31 (here the Weissenberg number
is normalized by the wall shear, equivalent to the Kolmogorov scale). Our simulations at Sc → ∞ for Wiτ = 40 and 400
demonstrates that the flow does not become laminar, a snapshot of which is depicted in Fig. 1c. The spanwise, cylindrical-
looking structures of the regions of positive and negative Q (second invariant of the velocity gradient tensor) are a distinct
feature of EIT. As the Weissenberg number increases, the drag becomes quasi steady and the flow structure remains as shown
in Fig. 1c. These simulations demonstrate that the addition of a diffusion term with low Sc number filters out the dynamics
of EIT. A crucial component of EIT is therefore small scale, since EIT simulation requires Sc � 1 and numerical resolution
much finer than for an equivalent Newtonian flow. Our more recent investigation (not shown here) suggest that EIT is driven by
sub-Kolmogorov time scales but not necessarily sub-Kolmogorov length scales. Simulations in larger computational domains
and Reynolds numbers, demonstrate that EIT is present at MDR, even in systems that are intermittent, i.e. where the drag
oscillates between a low (but not laminar) and a high drag (not fully turbulent) state.

CONCLUSIONS

This abstract shows only a fraction of the body of evidence supporting that EIT is the bound on the friction drag of MDR.
For any large Wi, the flow can oscillate between two states: EIT (low drag state) and the state at which the polymer drag
reduction mechanism is at its peak efficiency (high drag). Even at the high drag state, we observe the present of EIT structures.
In summary, MDR is not a Newtonian state as previously thought.
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Summary The dynamical systems approach recently applied to understand subcritical transitions in wall-bounded shear flows is combined
with the use of large-eddy simulations to investigate the nature of large-scale coherent motions in turbulent Couette and Poiseuille flows.
Exact invariant solutions of the filtered Navier-Stokes (LES) equations are computed by using the Smagorinsky model to parametrize small-
scale motions. These solutions can be continued into exact solutions of the Navier-Stokes equations therefore providing a bridge between
coherent large-scale motions in wall-bounded fully developed turbulent flows and invariant solutions appearing in transitional flows.

BACKGROUND

The understanding of subcritical transition in wall-bounded shear flows has been dramatically improved by the computa-
tion and the analysis of invariant solutions of the Navier-Stokes equations. These solutions, whose existence is necessary for
subcritical transition, are thought to provide the skeleton of turbulent motions, at least up to moderate transitional Reynolds
numbers. When the Reynolds number is increased, however, additional invariant solutions appear and their nature can also
become increasingly complex both in phase space and in physical space. It is therefore not clear that turbulent motions at high
Reynolds numbers could be approximated with a reasonable number of invariant solutions of the Navier-Stokes equations.

In order to keep the number of degrees of freedom reasonable and to simplify the dynamics even at high Reynolds numbers,
invariant solutions are computed for the filtered Navier-Stokes equations. Subgrid-scale motions are modelled by using the
Smagorinsky eddy viscosity νt = D(Cs∆)2S where Cs is the Smagorinsky constant, ∆ is the average mean grid spacing, S
is the norm of the the rate of strain tensor associated to the filtered velocity and D(y+) is a standard wall damping function.
The reference value Cs = 0.05 provides the best a posteriori performance. Recent investigations [1, 2, 3] have shown that
coherent self-sustained large-scale motions can be isolated by moderately increasing Cs above its reference value in order to
artificially quench active processes at smaller scales in fully developed turbulent flows. When computing invariant solutions
the Smagorinsky constant is therefore used as a continuation parameter, in addition to the Reynolds number. Furthermore,
solutions of the Navier-Stokes equations can be retrieved by setting Cs = 0. A modified Newton-Krylov method based on
time-marching integrations of the filtered equations (LES) is used to compute steady and travelling wave solutions of the
filtered equations.

RESULTS

We first consider plane Couette flow in a horizontally periodic domain having the same size of turbulent large-scale
motions Lx × Lz = 10.9h× 5.5h (where h is the half-width of the channel). The edge state of coherent large-scale motions
is computed, at Re = 750 (roughly twice the transitional Reynolds number) and Cs = 0.14 (overdamped simulation), by
edge-tracking and is found to be a non-trivial lower branch exact steady solution of the filtered equations. By continuation to
higher values of Cs it is found that the computed edge state is connected to an upper branch of solutions via a saddle-node
bifurcation (see figure 1). Upper branch solutions of the filtered equations are computed up to Re = 2150 using specific paths
in the Re−Cs parameter plane (see figure 1). These solutions can be connected to Navier-Stokes solutions by continuation to
Cs = 0, where it is found that they belong to the Nagata-Clever-Busse-Waleffe branch of solutions. We next consider plane
Poiseuille flow where a recently computed [4] multi-streaks travelling-wave solution of the Navier-Stokes equations (Cs = 0),
computed in the periodic domain Lx × Lz = 2πh× 5.5h, is continued from Cs = 0 to Cs = 0.05 at Re = 2000.

The exact solutions consist of a combination of quasi-streamwise vortices and streaks (see figure 2) which, on average,
self-sustain via a coherent self-sustained process, as discussed in [1, 2, 3]. The computed ‘exact’ solutions of the filtered
(LES) equations take into account the effect of small scales but only through their averaged effect. This approach makes
possible to compute steady coherent solutions despite the fact that motions at smaller scale are unsteady and therefore focus
on the relevant dynamics of the large-scale coherent solutions without the complications associated to smaller-scales motions.
The spatial and Re dependence of the eddy viscosity associated with the averaged (residual) small-scale motions is naturally
embedded in the computed solutions (see figure 2).
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Figure 1: Continuation paths of the steady solutions of the filtered equations (LES) for plane Couette flow. TheCs continuation
in Cs at Re = 750 (red line) shows how upper-branch solutions can be accessed in this way. Continuation to Cs = 0 and
then in Re (black line, dashed) show that solutions continued from the turbulent case (square symbols) belong to the Nagata-
Busse-Clever-Waleffe branch of Navier-Stokes solutions. Coherent steady solutions at higher Reynolds numbers are found by
first continuing the solutions obtained for Cs = 0.1 to higher Re (blue line, dashed-dotted) and then reducing Cs.

Figure 2: Visualisation of the upper branch solutions of the filtered equations (LES) obtained in plane Couette (Re = 2150,
Cs = 0.05, steady solution, panels a and b) and Poiseuille (Re = 2000, Cs = 0.05, travelling-wave solution, panels c and
d) flow. Panels a and c represent the large-scale coherent (i.e. filtered) streaks (green) and quasi-streamwise vorticity (blue
if negative, red if positive) while panels b and d report the relative eddy-viscosity νt/ν associated to the residual small-scale
motions.
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Summary In order to study the natural evolution of a turbulent band without being affected by its nearby disordered patches or domain 
boundaries in plane-Couette flow, an individual isolated turbulent band in a large computational domain is used as the initial disturbance. It is 
shown that at Re=340 the turbulent band doesn’t grow remarkably in its tangential direction as the oblique extension found in plane-Poiseuille 
flow, but broadens in its transverse direction. With the increase of the band width, band splitting occurs.  

 
INTRODUCTION 

Transition to turbulence in linearly stable flows has remained unsolved over a century. Recent numerical and 
experimental investigations revealed that the splitting of localized turbulent patches plays an important role during the 
subcritical transition of Hagen-Poiseuille flow (HPF) [1]. Simulations in a tilted long narrow domain showed that the 
individual turbulent bands or stripes in plane-Couette flow (PCF) were transient as puffs in HPF, while it was found in 
simulations with large computational domains that the isolated turbulent band of plane-Poiseuille flow (PPF) could survive 
and continue to obliquely extend until the boundary influence couldn’t be ignored. In simulations of PCF with a large 
computational domain, initial localized perturbations were found to develop to turbulent bands in a zigzag manner [4]. Due 
to the interactions among these bands and disturbance residues, it is difficult to examine and distinguish a clear splitting 
process. Considering that different tilt angles of the narrow domain may lead to different transition scenarios [5] and the 
artificial periodic boundaries may change the real story of the splitting behaviour, it is necessary to study the spatiotemporal 
evolution of a single band of PCF in a large domain at moderate Reynolds numbers. This is the motivation of this paper.     
 

SIMULATIONS AND DISCUSSIONS 
We conduct numerical simulations of PCF in a large domain of size 800 h×2 h × 712 h, where h is the half height of the 

channel. A spectral code [6] is employed to solve the incompressible Navier–Stokes equations, where the velocity field is 
expanded in a basis of Fourier modes (in the x- and z-directions) and Chebyshev polynomials (in the wall-normal direction 
y). The numerical resolution is 2048 spectral modes in x, 33 in y and 2048 in z, which is as fine as the previous study [4]. 
The boundary conditions are periodic in x and z and no-slip at the walls (y =±h). 

 
Figure 3 Iso-contours of the disturbing streamwise velocity in the mid-plane (y=0) of Re=340 at time (a) t=0, (b) t=450 and 

(c) t=900 (h/U), where U is the amplitude of wall velocity. 
Different initial disturbances are tested at moderate Reynolds numbers, and an isolated and straight turbulent band is 

obtained eventually and is used as the initial perturbation for Re=340 (Fig.1a). It is shown that there are no other 
perturbations near the band and the domain boundaries are far enough from it. The band doesn’t show a fast extension in its 
oblique tangential direction as what happens in PPF, instead, it grows in its transverse direction and becomes ‘fat’ as shown 
in Fig.1(b). Later on, the band splitting occurs (Fig.1c). To our knowledge, it is the first time to show the ‘natural’ band 
splitting without being interfered by other bands, disturbances or boundaries. The phenomena illustrated above are similar 
with the simulation results obtained with a long narrow domain.  
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Summary We introduce an experimental set-up that enables us to create two dimensional shear flow with zero mean advection velocity.
We investigate a plane Couette-Poiseuille configuration, completing the first experimental results for this flow which had only been studied
theoretically to-date ([5]). Using flow visualizations we characterize subcritical transition to turbulence and we show the existence of
turbulent spots in plane Couette-Poiseuille flow. Due to zero mean advection velocity of the base profile, these turbulent structures are
nearly stationary (despite a non-zero pressure gradient in streamwise direction). We ascertain two characteristic wavenumbers correspond
to two different inner regions of the base flow. We also determine the evolution of streamwise and spanwise dimensions of turbulent spot as
a function of Reynolds number.

EXPERIMENTAL SET-UP

This new experiment is based on the classical plane Couette experimental set-up (see [2], [4]), where the base flow is
generated by imposing velocity at test section walls. This is achieved using a single loop of plastic belt which imposes the
opposite sign velocity at each wall. The main advantage of such an installation is the zero mean velocity of the profile, as
such the generated turbulent structure is not advected ([3]) and an investigation of long time dynamics of turbulent structures
is possible.

However, in our case, instead of using a single loop of belt (which can only impose the opposite sign velocity at each
wall), we use two loops of belt (one for each wall of the test section). This enables us to control independently the speed at
each wall. Let us assume that we set the same speed toward the right at both walls (fig.1, blue), then fluid in the vicinity of
plastic belts will be driven in the same direction which in turns will increase the pressure in tank on the right side. This will
result in a negative pressure gradient from right to left that will induce a reverse flow in the interior. These two factors (the
same positive speed at each wall and the negative induced reverse flow at the center of the gap) will create a parabolic profile
with mean advection velocity equal to zero (see the blue profile on right in the inset of fig.1).

Now we present the configuration with a single loop of plastic belt (fig.1, upper loop in red). This consists of upper moving
and lower stationary walls respectively. The resulting plane Couette-Poiseuille flow (see the black profile in the inset of fig.1)
can be considered as two subregions. The lower one is parabolic (Poiseuille like) and occupies approximately two-thirds of
the gap. In the upper region the velocity profile can be approximated by a straight line, like in plane Couette flow. In addition
the shear in the Couette region is much higher than that of the Poiseuille region.

RESULTS

We characterise the transition to turbulence with flow visualizations (fig.2). The flow is globally laminar in the test section
up to Re=427 (fig.2a), where the Reynolds number is based on the half-distance of gap and the speed of the moving wall. For

Tank 1 Tank 2

Figure 1: Schematic of the new experimental set-up, which consists of two independent closed loops of the belt which control
the speed at each wall independently. The upper loop (red lines) is used to generate the plane Couette-Poiseuille flow with zero
mean advection velocity (black profile in the inset). Plane Poiseuille flow with zero mean advection velocity can be generated
(blue profile on right side in the inset, [1]) if the lower loop is added (blue dashed lines).
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Figure 2: Visualisations in plane Couette-Poiseuille flow: a) featureless laminar flow for low Reynolds number (Re = 400),
b) nearly stationary v-shaped turbulent spot in transient regime (Re = 650), c) uniform turbulent state (Re = ∗750).

Figure 3: Streamwise velocity fluctuations in plane Couette-Poiseuille flow in fully turbulent flow: a) near the stationary wall,
b) at the center plane (plane Poiseuille region), c) near the moving wall (plane Couette region)

higher Reynolds numbers we observe a nearly stationary v-shaped turbulent spot which is very slowly advected through the
test section (fig.2b). The coexistence of laminar and turbulent phases is observed. Finally for high enough Reynolds numbers
the turbulent region occupies most of the test section (fig.2c). To our knowledge this is the first time when turbulent spots in
plane Couette-Poiseuille flow are observed and when the advection velocity of turbulent structures in a flow with non-zero
pressure gradient is so drastically reduced.

Building on this, we also introduce a finite-size perturbation (localized in space but permanent) to investigate a forced
transition to turbulence. We calculate an averaged spectrum kz using a continuous wavelet transform. The wavenumber kz is
related to the spacing of the streamwise vortices, which dominate the turbulent region (as can be seen in fig.2a,b). We observe
two different scales: kz = 0.68[cm−1] for low Reynolds number (Re = 200) and kz = 0.54[cm−1] for high Reynolds number
(Re = 520). The former and the latter are associated with the plane Couette and Poiseuille regions respectively.

In addition we show numerical simulations in fully turbulent plane Couette-Poiseuille flow. In fig.3 we present the in-
stantaneous streamwise velocity deviations from the base flow. Indeed the streak spacing near the moving wall (namely in
Couette region, fig.3c) is different than near the center plane (Poiseuille region, fig.3b). Near the stationary wall the signature
of streaks is less pronounced (fig.3a).

Finally, we determine the evolution of the spanwise and streamwise dimensions of turbulent spots as Reynolds number is
varied.
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Summary  Turbulence production processes in gradient boundary layer have been studied experimentally. The longitudinal localized 
disturbances arising in the boundary layer under the action of free-stream turbulence were artificially modeled using a blowing-suction 
technique. Wave packets, or forerunners, produced in the boundary layer, in the region preceding the abrupt local change of flow velocity 
near the longitudinal disturbance fronts, were examined. The results of the study make reason to consider the forerunners as wave packets 
of 3D instability (T-S) waves. It was observed that the forerunners are strongly amplified in the adverse pressure gradient flow. It was 
found that at downstream development of the forerunners they transform into so - called Lambda-structures. 
 

INTRODUCTION 

Researches of a bypass transition problem, whose scenario was proposed by Morkovin in 1984 [1] are still actual. Much 
attention has been given to the study of longitudinal localized disturbances, or localized streaks, arising in boundary layer 
under the action of high or enhanced level of free-stream turbulence. Such localized streaks create conditions for the 
development of high-frequency wave disturbances (secondary instability, wave packets) that can subsequently transform 
into turbulent spots; as a result, the boundary-layer flow changes its state from laminar to the turbulent [2]. At the same 
time, the mechanism of formation of secondary unstable oscillations is still far from complete understanding. In this study, 
it was shown experimentally that the longitudinal localized disturbances can be a source of localized wave packets leading 
to turbulence. 

Experiments under natural conditions fail to give exhaustive answers to posed questions because the emergence of 
boundary-layer disturbances is a stochastic process, and in most cases it is almost impossible to trace the origin and 
subsequent evolution of a particular disturbance. For a detailed study, the localized streaks are artificially modeled in 
boundary layer. In [3] it has been shown that in the boundary layer it is possible to simulate the longitudinal localized 
disturbances with characteristics close to natural. In [4] it has been shown that the amplitude of the streamwise velocity 
defect due to the presence of the longitudinal localized streaks can reach about 40 percent of free stream velocity; however, 
it does not lead to origination of turbulent spots. As it turned out, in these experiments, sufficient conditions for the 
appearing of instabilities (high-frequency wave packets evolving into the turbulent spots) were not provided. In the present 
study we show the conditions under which the instability is formed. 

 
WIND TUNNEL EXPERIMENTS 

 
The experiments [5] show that in the vicinity of the leading and rear edges of localized streaks the unstable high-

frequency wave packets (denoted below as forerunners) can appear. The forerunners were obtained as a consequence of an 
impact of a rectangular flow pulse on the boundary layer. In nature, an impact of the local disturbance from free stream on 
the boundary layer occurs. The rectangular pulse front consists of a continuous disturbance frequency spectrum, of which 
the most unstable disturbances are enhanced by the boundary layer. In previous experiments the behaviors of the artificial 
localized streaks and the Tollmien–Shlichting (TS) wave packets in flat plate Blasius boundary layer were studied. The 
localized streaks were artificially modeled from the incoming flow or wing surface using a blowing-suction technique. It 
was found that the magnitude of u/ t of the localized streaks, which was varied, is a critical factor in generating high-
frequency wave packet near the edge of the localized streak. Damping the local streamwise velocity gradient at the edge of 
the localized streak prevents the formation of the forerunners. 

Present investigations were carried out in the subsonic low-turbulent wind tunnels T-324 and MT-324 ITAM SB RAS. 
Free stream velocity was in the range 4 U 6 m/s at the turbulence level at varied from 0.04 to 0.18 %. Test model was s 
straight wing (see figure 1). The blowing-suction method was used to introduce longitudinal localized structures into the 
boundary layer through a thin slot arranged in the surface parallel to the leading edge, or from the incoming flow using thin 
pipe, located at 3 mm upstream of the model nose. Measurements of the flow fields were carried out using a single-wire 
probe of a constant-temperature hot-wire anemometer.  

Typical time traces and flow fields of localized disturbance propagation downstream are presented on figure 2 and figure 3 
respectively. Those pictures are demonstrate an appearance and development of the wave packet (forerunner) near the 
leading and trailing front of artificial localized structure. Forerunner is clearly seen from X/C1=0.48 for the leading front 
and from X/C1=0.83 for the trailing front at figure 2; at figure 3 for X/C1=0.62 at t=100 ms - leading front and for 
X/C1=0.83 at 100<t<150 ms - leading front and at 400<t<450 ms - trailing front. 

 



              Figure 1: Experimental geometry. 1 = 290 mm. Angle of  
                                             attack,  = -1.20.              
                       
                                                                                                                               Figure 2: Time traces of the hot-wire signal inside 

the boundary layer at Z=40 mm. Y=Yumax. 

 
 

Figure 3: Space evolution of the streak; isolines of longitudinal component of velocity fluctuations.  
U =3.2 m/s. Z-t plane is plotted at Y(umax) and Y-t plane at Z=40 mm. 

 
CONCLUSIONS 

 
The localization of longitudinal perturbations in space, namely, the presence of a large local velocity gradient near the 

front/rear front is a necessary condition of the occurrence of wave packets. The results of the study confirm that the 
forerunners are wave packets of 3D instability (T-S) waves. It was observed that the forerunners are strongly amplified in 
the adverse pressure gradient flow. It was found that at downstream development of the forerunners they transform into so-
called Lambda-structures.  
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Summary Characteristics of streaks in DNS flow fields of pre-transitional boundary layers are extracted and compared between streaks that

induce the formation of turbulent spots via secondary instability and the remainder of the population. The analysis shows that the two classes

of streaks differ in a variety of attributes, including their peak amplitude, distance to the wall and size. The data are used in a machine-

learning approach to predict transition to turbulence. An artificial neural network identifies the streaks that will induce the formation of

turbulent spots. The method is shown to achieve high prediction accuracy at low computational cost which makes the approach suitable for

real-time applications.

INTRODUCTION

In bypass breakdown to turbulence, the pre-transitional boundary layer is characterized by the presence of highly energetic

streaks. By introducing inflection points in the instantaneous velocity profile, the streaks promote the amplification of sec-

ondary instabilities which ultimately trigger the formation of turbulent spots [1, 2]. Recently, it was demonstrated in Ref. [3]

that linear instability analysis applied to cross-flow planes from DNS time series is able to accurately capture the properties

of the instabilities such as their growth rate and phase speed. The most unstable eigenfunctions identified the specific streaks

that transition to turbulence farther downstream. The work also demonstrated that while the streak amplitude is an important

factor, other properties such as their shape and distance to the wall are relevant as well. A visualization of the bypass process in

U∞

y
x

z

Figure 1: Transitional boundary layer with isosurfaces of low-speed and high-speed streaks and fully turbulent flow downstream with

isosurfaces of the λ2 vortex identification criterion. Enlarged detail: Low-speed streak with sinuous secondary instability.

a boundary layer is presented in figure 1. Only a small fraction of the entire streak population actively promotes the transition

process by amplifying secondary instabilities that eventually spawn a turbulent spot. The present work aims to characterize

the population of streaks in pre-transitional boundary layers. Streaks that break down into turbulent spots are differentiated

from the remainder of the population. This information is used in a machine-learning approach to identify unstable streaks.

ATTRIBUTES OF BOUNDARY-LAYER STREAKS

The properties of the streaks are extracted in cross-planes of the DNS time series (figure 2). Features such as the peak

streamwise and wall-normal velocity fluctuations, and the cross-sectional area are considered. Overall, 4,000 DNS snapshots

are analyzed and provide about 30,000 data samples of individual streaks, 300 of which are unstable. Discrimination between

stable and unstable streaks is achieved by tracking streaks in time and associating them with the formation of turbulent spots.

PDFs of attributes of both classes are presented in figure 3. The streamwise and wall-normal velocity fluctuations show the

most pronounced difference with an increase in the mean of the distribution by 80 and 155 percent, respectively.

The representation of each streak by a set of features yields a significant compression of the information contained in the

DNS fields. By using these low-dimensional data as inputs to an artificial neural network (ANN), an effective and reliable

classification scheme for stable and unstable streaks can be devised. In general, artificial neural networks are universal

approximators which can represent any continuous, smooth function.
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PREDICTION OF STREAK BREAKDOWN

Features are collected from streaks at 18 equidistant cross planes in the region 200 < Reθ < 350. The performance of the

neural network is evaluated using an independent test data set obtained from a second DNS time series of the same duration.

The relative prediction accuracy is defined as A ≡ 1

M

∑
M

m=1
1− |Pm − Tm|, where Pm is the prediction made by the neural

network and Tm is the target value (1 for unstable streaks and 0 otherwise) of the m-th streak. Figure 4(a) shows the accuracy

obtained with the ANN when using a single input feature. The peak wall-normal velocity fluctuation is the most significant

indicator and leads to an identification accuracy of stable and unstable streaks of approximately 75 percent. The reliability of

the approach can be further enhanced by combining inputs (figure 4b). Starting with the peak wall-normal fluctuation, other

features are added in the order of their relevance when used as single input feature. The best prediction accuracy, A ≈ 92%,

is achieved when all available input features are combined.
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Figure 4: Prediction accuracy A of the neural network. (a) Single input feature. (b) Accumulated input features.

The computational cost for the classification of a single streak is several orders of magnitude lower than the solution of

the eigenvalue problems which arise in classical linear stability theory. In addition to accurately identifying unstable streaks,

computational efficiency is thus another significant advantage of the ANN approach. Finally, the network trained with ZPG

data can be generalized to make predictions in more complex configurations, e.g. in the presence of pressure gradients.
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COLLECTIVE DYNAMICS OF CONFINED BACTERIAL SUSPENSIONS

Raymond E. Goldstein∗

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United
Kingdom

Summary It is now well-established that laterally unbounded dense suspensions of motile bacteria can exhibit collective behaviour consist-
ing of transient, recurring vortices and jets on scales large compared to the individual cells. Recently, through a combination of theoretical
and experimental work, attention has focused on the effects of confinement on such dynamics, with the discovery that in sufficiently small
circular domains there can be spontaneous circulation in the form of a spiral vortex. Subsequently it has been shown that lattices of intercon-
nected domains can exhibit ordered patterns that are, by analogy to magnetic systems, ferro- or antiferromagnetic depending upon details
of the coupling between adjacent domains. In this talk I present an overview of these systems and highlight very recent work on the role of
‘edge currents’ of bacteria in organizing the large-scale patterns.

Since the discovery [1] that concentrated suspensions of the aerobic bacterium B. subtilis exhibit collective behaviour
characterized by the formation of large, transient vortices and jets, there has been intense interest in the mechanisms that
create such flows. Considerable attention has been paid to the possibility that long-range hydrodynamic interactions set up by
the stresslet flow fields surrounding individual swimming cells are the ultimate cause of these patterns, which constitute an
intriguing form of low Reynolds number turbulence [2]. Motivated by phenomena in cytoplasmic streaming, it was conjectured
[3] and then verified experimentally [4] that confining such a system in a sufficiently small, quasi-two-dimensional domain
would lead to spontaneous circulation in the form of a spiral vortex. One striking and unexpected result to come from the
experimental study was that there is a thin layer of cells at the domain boundary that appear to swim in a direction opposite to
the interior bulk flow. A subsequent study [5] using a double-label fluorescence method to visualize separately the cell body
and flagella revealed that the cells in the vortex actually swim upstream against the flows set up in the boundary layer, and
computational studies of a discrete model of swimming cells revealed the crucial role of long-range hydrodynamic interactions
in the phenomenon. These results led to the question of how the cells would organize if confined to two circular domains
connected by a narrow neck through which edge currents might pass. Systematic study [6] of lattices of such connected
domains revealed that both ferromagnetic and antiferromagnetic order are possible depending upon the lattice structure and
the neck width. Returning to the simpler geometry of a channel, it is possible to see in detail [7] how the interplay between
edge currents and the tendency toward vortex formation compete to determine the observed flows.
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HYDRODYNAMIC COOPERATIVITY AND SELF-ORGANIZATION IN ACTIVE
SUSPENSIONS

Ignacio Pagonabarraga∗1

1Department of Fundamental Physics, University of Barcelona, Av. Diagonal, 645, 08028 Barcelona (Spain)

Summary I will discuss the role that hydrodynamic coupling, through self propulsion and active stress generation, has in the collective
motion of suspensions of self-propelled particles. I will exploit a powerful mesoscopic computational approach to reach the large length
and time scales required to sample the spontaneous structures in which these suspensions self-organize. I will describe the appearance of
stable cluster phases sustianed only through hydrodynamics and will describe their main features.

Active systems generate motion due to energy consumption, usually associated to their internal metabolism or to appropri-
ate, localized, interfacial chemical reactivity. As a result, these systems are intrinsically out of equilibrium and their collective
properties result as a balance between their direct interactions and the indirect coupling to the medium in which they displace.
Therefore, a dynamical approach is required to analyze their evolution and quantify their selfassembly and ability to generate
intermediate and large scale stable structures.
There has been significant advances in recent years to understand the basic physical mechanisms that control the collective
behavior of self-propelled particles and their connection with effective, equilibrium counterparts. The role of the mobility and
its coupling to the preferential direction of motion has emerged as a key player to understand how collections of self-propelled
particles move and self-organize. In many circumstances self-propelled particle swim and move inside a fluid environment.
The role of the medium in the collective behavior of such systems remains less well understood. In particular, the effect it may
have modulating or modifying the understood mechanisms for self-assembly in their absence has not been properly addressed.

The use of computational models that couple individually-resolved self-propelling particles and the continuum solvent in
which they move provides a useful means to analyze and quantify the properties of spontaneous emerging structures. I will
describe how to take advantage of these coarse grained computational methods that capture the essence of activity genera-
tion and the appropriate hydrodynamic coupling when ensembles of active particles move together. I will analyze the relevant
physical mechanisms underlying the specific properties of the collective behavior of model active suspensions. By focusing on
simplified models, it is possible to identify the relevant parameters which control such behavior. Understanding the mechani-
cal principles which determine the emergence of cooperativity will provide a solid basis to clarify the role of hydrodynamics
in active materials and understand how to combine them with biochemical interactions to control their properties and behavior.
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COLLECTIVE BEHAVIOR OF ACTIVE-PARTICLE SUSPENSIONS

Adam Wysocki1, Masoud Abkenar1, Thorsten Auth1, Roland G. Winkler1, and Gerhard Gompper∗1

1Theoretical Soft Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, Germany

Summary Active, self-propelled particles in suspension generically exhibit motility-induced clustering and phase-separation. A closer look
reveals a pronounced dependence on particle shape and alignment interactions, hydrodynamic interactions, and noise strength. Mesoscale
simulations of large ensembles of such particles help to unravel the complex dynamical behaviors of such systems. A rich variety of
emergent collective behaviors is observed, ranging from motile polar clusters to jets, swirls, and travelling fronts.

ARGGREGATION AND DYNAMICS OF SELF-PROPELLED PARTICLES

Assemblies of intrinsically active objects represent an exceptional class of non-equilibrium systems. A generic phe-
nomenon in such systems is the emergence of self-organized large-scale dynamical patterns like vortices, swarms, waves, or
self-sustained turbulence. This intriguing dynamics is a consequence of the complex interplay of self-propulsion, internal or
external noise, and steric and hydrodynamic interactions [1].

We have studied the collective behavior self-propelled rods [2, 3], spheres [4, 5], and beating flagella [6] or cilia [7] by
mesoscale computer simulations. For rods, we investigate structure formation of bacterial carpets or motility assays, where
the agents can repel and align, but also pass across each other. For spheres, we study aggregation of active colloidal particles
without alignment interactions. Clustering appears in all of these different systems. However, in many other aspects, structure
formation and collective dynamics strongly depend on the shapes and interactions of the active particles.

Self-Propelled Rods
Due to their excluded-volume interactions, rods align during collisions. This leads to the formation of polar motile custers,

which are typically elongated in the direction of rod orientation. Depending on concentration and propulsion velocity, a
disordered phase, a small-cluster phase, phase separation between a high-density polar cluster and a low-density disordered
phase, and a nematic laning phase are found. However, a phase of travelling waves, as observed experimentally in motility
assays, has not been found so far in simulations of self-propelled rods.

Self-Propelled Brownian Spheres
For Brownian spheres, orientation is completely decoupled from particle motion and interactions. Thus, active Brownian

spheres have no obvious alignment mechanism. Simulations show that a minimal propulsion strength is required for self-
propelled spheres to induce phase separation [5]. Interestingly, active Brownian spheres display the formation of large-scale
swirls and jets, see Fig. 1, despite of the absence of an alignment interaction. The origin of this dynamical behavior seems
to be an interfacial sorting mechanismi [5]. At the interface, particles are oriented preferentially toward the dense phase, so
that they are partially blocked. They can only start to move again after orientational diffusion makes them point parallel to the
interface. This implies a collection of particles with the same orientation in concave parts of the interface, which then together
push in the same direction.

Mixtures of active and passive Brownian particles
Natural extensions of single-component active Brownian particle (ABP) fluids are mixtures of particles with, e.g., different

activities, temperatures, or diameters. We consider mixtures of active and passive Brownian spheres. The emergent dynamics
in phase-separated mixtures is studied numerically in two dimensions [8]. A novel steady-state of well-defined traveling fronts
is observed, where the interface between the dense and the dilute phase propagates and the bulk of both phases is (nearly) at
rest. Two kind of interfaces, advancing and receding, are formed by spontaneous symmtry breaking, induced by an instability
of a planar interface due to the formation of localized vortices. Above a threshold in the fraction of active particles, necessary
to induce phase separation, the interface velocity decreases linearly with increasing fraction of active particles [8].

CONCLUSIONS

Mesoscale simulations of self-propelled particles provide new insights into the emergent non-equilibrium behavior of
active-particle suspensions. It becomes increasingly evident that this non-equilibrium behavior is much more complex than
previousy anticipated, and many more interesting phenomena can be expected to be discovered in the near future.

∗Corresponding author. Email: g.gompper@fz-juelich.de



Figure 1: Self-propelled Brownian spheres display phase separation and collective swirl-like motion on large length scales.
Particle displacements are shown in a cut through a three-dimensional system with periodic boundary conditions. Red (blue)
color indicates large (small) displacements in a fixed time interval.
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COPEPOD ESCAPE AND RELOCATION JUMPS IN TURBULENCE 

 
Markus Holzner & François-Gaël Michalec 

Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland 

 
Summary We study the swimming behaviour of copepods using three-dimensional particle tracking velocimetry by tracking simultaneously 

the motion of many organisms and the flow surrounding them. In this work we analyse the jump reaction of the organisms in response to 

hydrodynamic stress, focusing on the strong escape jumps and the weaker relocation jumps. We find that the two types of jumps are influenced 

differently by increasing levels of turbulence and hydrodynamic stress. This may be important for their survival and mating performance in 

dynamic environments 

 
INTRODUCTION 

 

   Planktonic copepods live in environments such as oceans and estuaries where they form the largest part of the zooplankton 

and where flows are typically turbulent. Because of their small size and relatively slow swimming speeds, zooplankton interacts 

very little with the large features of the flow, but at small scales swimming behaviour can overcome advective transport. Because 

three-dimensional observations of copepods swimming freely in turbulent flows remain scarce, most of what is known about 

their behaviour in energetic environments derives from extrapolation of results obtained in still water, where a local disturbance 

simulating turbulence is introduced [1-3]. Only recently have methods matured to enable the monitoring of many organisms in 

turbulent flows [4,5] and it has become possible to simultaneously measure the motion of finite sized particles [6] or organisms 

[7] and the flow surrounding them. In [5], an active response of copepods to background turbulence has been identified that 

cancels gender specific differences in motion strategy. A modification of escape reactions has been found when organisms were 

exposed to a contracting flow but no response has been noted in turbulence [7]. Here we focus on the response of copepods to 

turbulence and analyse relocation and escape jump reactions for varying turbulence intensity. 

 

METHODS  

 

   We carried out three-dimensional particle tracking measurements using three synchronized Mikrotron EoSens high 

speed cameras to track the turbulent flow and one EoSens camera fitted with a four view image splitter to simultaneously 

track the copepods. The measurements were conducted in a water tank containing a forcing device creating quasi 

homogeneous and isotropic turbulence [5]. We seeded the flow with neutrally buoyant tracer particles and introduced about 

1000 Eurytemora affinis parent individuals obtained from laboratory cultures at Wimereux Marine Station. 

 

RESULTS 

 

  The intensities of turbulence produced with our set-up are comparable to characteristic values observed in coastal zones, 

tidal fronts and estuaries. We observed that copepods do not behave passively even at substantial turbulence intensities. 

Jumps and swift movements were clearly visible in all our experiments. In particular we observed that both relocation jumps 

and strong escape jumps are influenced by turbulence intensity. 

 

CONCLUSIONS 

 

   This contribution will illustrate the potential of our method to characterize the behavioural response of copepods to local 

hydrodynamic conditions and to investigate their interactions in complex environments. 
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TRANSITION TO SPONTANEOUS DIRECTIONAL FLOWS IN CONFINED ACTIVE FLUIDS

Maxime Theillard1, Barath Ezhilan1, and David Saintillan∗1

1Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive,
La Jolla, CA 92093, USA

Summary Recent experimental, theoretical and computational studies have shown that confinement can profoundly affect self-organization
in concentrated active suspensions leading to striking features such as formation of steady and spontaneous vortices in radial confinement.
Motivated by these observations, we study the two-dimensional dynamics in a confined suspension of biologically active particles using a
mean-field kinetic theory for which we developed a novel numerical solver. The dynamics in both circular and racetrack geometries are
investigated, where we show that the interplay of confinement and activity can stabilize collective motion into spontaneous flowing states,
including steady vortices, unidirectional motion, and travelling waves. Our simulation results are also shown to compare favorably with
predictions from a linear stability analysis.

INTRODUCTION

Recent years have seen significant developments in the understanding of the emergence of collective motion in biologically
active suspensions. There is widespread consensus that self-organization in such suspensions are driven by the stresses exerted
by the active particles on the fluid as they propel themselves [1, 2]. Continuum kinetic theories,where a Smoluchowski
equation for the probability distribution of the active particle positions and orientations is coupled to the Stokes equation for
the flow arising from the active stresses is a powerful approach for understanding active fluids [3], in which the emergent
behavior in active systems is viewed as a breakdown of stability of the various equilibrium states. While most of the mean-
field based studies have focussed on unconfined systems, the interplay of confinement and activity has excited much interest
recently. Experiments have shown that confinement can stabilize the collective motion into defined patterns such as a double
vortex [4, 5, 6]. While various phenomenological models for active liquid crystals have focussed on the effect of confinement
on collective behavior and have predicted spontaneous flow transitions, such predictions have yet to be confirmed from a
hydrodynamics first-principles perspective.

Our primary motivation for this study are recent experiments [4, 5] and simulations [6] of active fluids in circular con-
finement. These experiments predicted that when the radius of confinement is below a critical value (or is within a critical
range of values), the suspension will spontaneously form a steady single vortex encircled by a counter-rotating boundary
layer closer to the wall. Their later particle simulations [6] using a simple model accounting for hydrodynamic and steric
interactions reproduced these experimental observations and also clarified details about the cell orientation and swimming
direction showing that the cells swim upstream against the flow. A unified picture that provides a complete characterization
of the stability properties and non-linear chaotic dynamics of circularly confined active suspensions for different degrees of
confinement, strength of activity and propulsion is still lacking, however, and we seek to address these questions using a con-
tinuum model and numerical simulations. A striking crucial result of our work is that several of the experimental results in the
literature including the double vortex [4, 5, 6] can be captured within the mean-field theory in the complete absence of steric
interactions. Hence, this double vortex could simply a result of a coupling between circular confinement and self-generated
fluid flows.

KINETIC MODEL

Starting from the Smoluchowski equation for the probability density function Ψ(x,p, t) of particle positions and orienta-
tions, hierarchical evolution equations for the concentration c, polarization m, and nematic order parameter tensor D can be
obtained [2], which are written in conservative form as:

∂tc = −∇ · Fc, (1)

∂tm = −∇ · Fm + 3
5βE ·m−W ·m− 2m, (2)

∂tD = −∇ · FD + 2
5βcE + 6

7βE ·D + W ·D−D ·W − 6D, (3)

where the dimensionless parameter β denotes Bretherton’s constant, and where the various fluxes are detailed in [2]. The
source terms arise from alignment and rotation by the rate-of-strain and vorticity tensors E and W of the disturbance velocity
field u, which satisfies the incompressible Navier-Stokes equations forced by the divergence of the active stress tensor αD:

∇ · u = 0, Re (∂tu + u · ∇u) = −∇p+∇2u + α∇ ·D. (4)

∗Corresponding author. Email: dstn@ucsd.edu



Fig. 1 Contour plots of concentrations superimposed on the streamlines of the net velocity of the active particles V (x) = Pesm(x)+u(x) showing three
distinct states (a) radial basestate with no flow (b) double vortex state (c) turbulent swirling state

viscosity? Relate to nematic alignment by self-induced flow

• A few results on capsules?? Number of vortex vs aspect ra-
tio??

• time series, more analysis in the chaotic regime??

3.2 Ring

The obtained results, presented on figure 1, illustrate the exis-
tence of three different regimes.

• Additional dimensionless parameter: rin/rout

• Phemonenology: equilibrium, steady flow, flow with waves,
flow with bands, turbulence

• Phase diagrams? Keeping alpha constant?

• Flow with bands: correlation length? Compared to vortex
size?

• Comparison to Plouraboue experiments

3.3 Racetrack

• Comparison to both Wioland and Plouraboue experiments

4 Discussion
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Fig. 2 (a-b)Phase diagram showing 3 distinct states: radial basestate with no flow (blue circles), double vortex state (green circles), turbulent swirling
state (red circles), as a function of swimming Peclet number Pes and activity parameter a, for L = 0.1 (a) and L = 0.5 (b). Vortex order parameter F as
a function of activity parameter a for various values of swimming Peclet number Pes, for L = 0.1 (c) and L = 0.5 (d). Transition from the base state to
the double vortex (e) and from Phase II to Phase III (f)
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Figure 1: Left: typical simulations in circular geometries, illustrating the three observed phases: quiescent equilibrium distri-
bution with wall accumulation; double vortex flowing state; chaotic motion. Right: phase diagram illustrating the transition
between phases (blue: equilibrium; green: vortex; red: chaos).

Upon non-dimensionalization, the equations are governed by four dimensionless parameters:

Re =
ρH2dr
µ

, Pe =
Vs

2drH
, α =

σ0n

µdr
, Λ =

drdt
V 2
s

. (5)

In particular, the swimming Péclet number Pe denotes the ratio of the persistence length of swimmer trajectories to the size of
the domain and is a measure of confinement. The activity parameter α compares the destabilizing effects of active stresses and
of concentration to dissipative processes, namely viscosity and orientation decorrelation by rotational diffusion. The equations
are solved numerically using an adaptive finite-volume algorithm on quad-tree grids.

RESULTS

Typical simulation results in circular confinement are illustrated in Figure 1 and exhibit the same phenomenology as in
experiments [5]. In very strong confinement (or at low activity/concentration), the distribution is axisymmetric and shows
wall accumulation with wall-normal polarization and zero flow. As confinement decreases or activity increases, a transition
to a double vortex state similar to that reported in experiments is observed. Finally, at very high levels of activity, the steady
vortex destabilizes leading to chaotic dynamics akin to those in bulk systems [3]. Figure 1 also shows a phase diagram in
terms of Pe and α.

We also simulation dynamics in periodic racetrack geometries, where a transition from equilibrium to spontaneous unidi-
rectional flow with net pumping is observed (not shown). Upon increasing activity, the formation of traveling concentration
waves is also reported in agreement with recent experiments on dense sperm suspensions [7] We further elucidate this tran-
sition to unidirectional flow by performing a linear stability analysis in a periodic channel geometry, which provides the
marginal curve for the transition and compares favorably with our simulations.
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Summary Micron-sized particles moving through solution by using self-generated chemical gradients serve as model systems for studying
active matter. The self-generated hydrodynamic and chemical fields, which induce particle motion, probe and are modified by the environ-
ment, including its boundaries. We show that near a hard planar wall such a particle may exhibit motion with a steady orientation and height
above the wall, or motionless, steady “hovering”. Furthermore, when also chemi-osmotic hydrodynamic flow at the wall is induced, we
predict that the interplay between this and the self-diffusiophoretic one can be “tuned” by chemical patterning of the wall such that one can
achieve controlled motion of the active particle, e.g., the particle following a chemical stripe.

MODEL

The model system we consider is shown in Fig. 1 (left panel). A spherical particle of radius R, covered by a catalyst
over a spherical cap region parametrized by ψ (black segment in Fig. 1, left panel), is suspended in a Newtonian liquid
solution bounded by a planar wall. The catalytic cap releases a solute which diffuses in the solution. The particle and the
wall are impenetrable to the solute and solvent. There are additional interactions, of range δ ≪ R, between the solute and
the particle surface, as well as between the solute and the wall. In the absence of thermal fluctuations, and if the wall is
chemically uniform, the particle moves only in the plane containing the wall normal and the particle’s symmetry axis. In
such case, the cap orientation θ and the height h of the particle’s center above the wall (see Fig. 1, left panel) completely
specify the particle configuration. (If the wall is chemically patterned, a situation discussed in the second part of Results, the
position and orientation of the particle in respect to the pattern are added to the variables characterizing the configuration.)
The translational and angular velocities are denoted by U and Ω, respectively. The hydrodynamic flow is assumed to have
a very small (vanishing) Reynolds number, and the diffusion of the molecular solute is much faster than the transport by
advection (small Péclet number). The motion of the sphere is assumed to be sufficiently slow and the diffusion of the solute
to be sufficiently fast such that at each instantaneous (h, θ) a quasi-steady state of the solute number density c(r) and of the
hydrodynamic flow u(r), respectively, is established.
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Figure 1: Schematic drawing of a chemically active Janus sphere above a planar wall located at z = 0 (left panel). (a) Sliding
and (b) hovering steady-states for bi = bw < 0; the coverage by catalyst is given by ψ ≃ 114◦ (a) and ψ ≃ 154◦ (b).
Streamlines (white lines) illustrate the flow field in the spatially fixed coordinate system; the color coding represents the solute
number density c(r) in units of the characteristic density c0 = KR/D. (Adapted from Ref. [3].)

U and Ω are calculated within the framework of the classical theory of diffusiophoresis [1, 2]. This accounts for the solute-
surface interaction via phoretic “mobilities bk (where k ∈ {i, c, w, s} indicates b can take different values at the ”inert“ or
”cap“regions of the particle, as well as at the wall or stripe), which are connecting the surface- gradients of solute density
with ”phoretic slip“ hydrodynamic boundary condition at the corresponding surfaces: vs(r) = −bk∇||c(r). The signs and
magnitude of bi and bc determine the direction of motion (catalyst- or inert-face forward). The Lorentz theorem is applied
in order to reduce the complexity of the hydrodynamic problem [1, 3]. The Laplace equation with uniform particle flux K
over the cap region of the particle (accounting for the activity), which governs the distribution of solute molecules) and the
incompressible Stokes equations, governing the hydrodynamics, are solved numerically using the Boundary Element Method
(BEM) (see details in Ref. [3]). For both problems (diffusion and hydrodynamics), approximate analytical expressions are
obtained by employing the standard point-singularities representation of the solution [3, 4]. The rigid-body overdamped
motion of the spherical colloid follows straightforwardly from the translational and angular velocities U and Ω.

∗Corresponding author. Email: popescu@is.mpg.de



RESULTS

The case of a no-slip wall (bw ≡ 0). In this situation, the no-slip hydrodynamic boundary condition applies at the wall. The
sole role played by the wall is that of reflecting back the density and hydrodynamic fields. By analyzing the dynamics in the
phase-plane (h, θ), we have established that certain steady-states of motion at fixed height h∗ above the wall and with fixed
orientation θ∗ of the symmetry axis of the colloid, and which are stable attractor points for the dynamics in the (h, θ) plane,
can emerge. The values h∗ and θ∗ depend on the coverage parameter ψ as well as on the phoretic mobilities bi and bc at the
inert and catalytic regions, respectively. Figs. 1(a) and (b) illustrate the distribution of solute and the hydrodynamic flow for
two examples of such steady states: (a) ”sliding“ (fixed height and fixed orientation ̸= the direction normal to the wall) and (b)
”hoverer“ (motionless particle at a fixed height above the wall, steadily pumping the surrounding fluid). Such states stem-out
from a complex feeback-loop: the coupling of the wall-induced chemical gradients to changes in the distribution of phoretic
slip on the particle surface gives rise to a hydrodynamic flow that does not rotate the particle once in configuration (h∗, θ∗).

The case of osmotic-flow response at the wall (bw ̸= 0). Here we focus on a particle with half of the surface catalytically
active (i.e., ψ = π/2), ”sliding“ above the substrate at a fixed height h and orientation θ ≃ π/2; i.e., the particle axis d̂ is
parallel to the wall. As an example of chemically patterned wall we choose a chemical stripe (see Fig. 2), i.e., b = bs on
the stripe and b = bw ̸= bs on the rest of the wall. The linearity of the Stokes equation allows to write the translational and
angular velocity of the particle U and Ω, respectively, as U = Usd +Uw and Ω = Ωw, where the superscripts indicate the
contributions from self-diffusiophoresis (phoretic slip at the wall set to zero) and from the wall (phoretic slip on the particle
set to zero), respectively. (the constraints on h and d imply Ωsd = 0.) Usd is treated as a model parameter (since it can be
computed separately, following the procedure in the previous Subsection). The wall-slip contributions are calculated using the
Lorentz theorem and the BEM method (similar to subsection [4]). Approximate analytical expressions for Uw and Ωw are
obtained by using a reduced set of singularities together with their corresponding images: the monopole and dipole terms for
the diffusion equation, the Stokselet or the rotlet for the hydrodynamics (auxiliary problems).
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Figure 2: Mechanisms (a) stabilizing and (b) destabilizing, respectively the stripe-bound state of an (a) catalyst-forward and
(b) inert-forward particle, respectively [4]. Here bw/bs = 3. Superscripts mp and dp indicate the monopole and dipole
contributions, respectively, to Uw and Ωw.

As shown in Fig. 2, a catalyst-forward moving active particle can follow a stripe: it is attracted to the center and aligns its
axis parallel to the edges of the stripe. The attraction to the stripe center is driven by the contribution from the monopolar
term Ump

x ; at the center, the contributions to Ump
x from the two edges cancel. The alignment of d with the edges of the stripe

is driven by rotations induced by the dipolar contribution Usd
x , which vanish at the aligned state (Fig. 2(a)). In contrast, for

an inert-forward particle, edge induced rotations of d towards a normal-to-the-stripe alignment are enhanced; for sufficiently
small Usd, the particle docks (Fig. 2(b)), while for large Usd the particle escapes the stripe region.

CONCLUSIONS

We have shown that by engineering the chemistry of an active particle and that of the near-be wall one can achieve control
of the motion of the particle, e.g., constrain the particle to slide along the wall and to follow a chemical stripe.
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STOCHASTIC GAIT-SWITCHING IN MOTILE MICROALGAE
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Summary Self-propulsion by flagella is a significant selective advantage for microorganisms which possess such capabilities. There is great
diversity in the number of flagella, their beating modes, and greater still in the ultrastructure of the basal apparatus into which the flagella are
inserted. For free-living unicellular eukaryotes with few flagella the question of their coordination has been receiving increasing attention
from theorists and experimentalists alike. We propose that this coordination is driven intracellularly, and use select algal species to perform
a comparative study of their swimming gaits. Over longer timescales, we can visualize at high spatiotemporal resolution the stochastic
transitions between different gaits which produce striking manifestations of a bacteria-like run-and-tumble locomotion.

GAITS OF FREE-LIVING FLAGELLATES
Uniflagellates including many species of plant and animal sperms navigate fluidic environments by undulating a posteriorly-

oriented flagellum. This single appendage can be used to effectuate directional changes, such as turning towards a source of
chemoattractant. In contrast, ciliated microorganisms including the freshwater protozoan Paramecium and the large colonial
alga Volvox [3] rely on a large-scale coordinated motion of large numbers of surface-attached cilia for swimming and feeding.
In this case coordination is thought to be largely due to hydrodynamic interactions between the neighbouring cilia, which tend
to drive pairs of cilia into in-phase synchrony, and arrays of cilia into metachrony. The generality of this phenomenon is chal-
lenged when one examines the robust in-phase breaststroke swimming of the unicellular alga Chlamydomonas, the physical
mechanism for synchrony between its two front-mounted flagella is the subject of extensive study and some contention. The
current view is that some form of intracellular coupling must be present, most likely through the contractility of connecting
fibers between the basal bodies whence emanate the flagella [1].

If this were true, then a correlation must be expected between observed gaits or modes of flagellar actuation and the
symmetries of the basal apparatus which not only define the configuration of flagella but also the strength and directionality
of the coupling between flagella. Here we explore the morphospace of distinct modes of flagellar synchrony maintained
by flagella across species of naturally-occurring quadriflagellate algae (for free-swimming or pipette-held individuals) in the
context of their differing basal architectures. Unicellular flagellates possessing more than four flagella are rare, with only a
few species that have either eight or sixteen flagella [1]– the selective advantage of having ever greater numbers of flagella
must be eventually be outweighed by the energetic and activity costs of flagellar synthesis and coordination. By analogy with
well-documented forms of locomotion in quadrupeds, we find that quadriflagellate gaits include the trot, the pronk, the gallop,
and even a stand gait in which all flagella are non-moving. Species-specific symmetries existing within the basal apparatus
are therefore implicated in constraining the possible phase relations between flagella.

GAIT SYMMETRIES
As in many biological systems exhibiting complex periodic behaviour, it has proved useful to consider a dimension-

reduced analysis of oscillations in terms of phase. We were able to measure the phases of individual flagella in several species
of quadriflagellates through a combination of micromanipulation, cell tracking, and high-speed imaging. For flagellar phases
ψj (flagellum index j) we compute the matrix ∆ij = ψi − ψj (i, j = 1, . . . , 4), where ∆ij = ∆ji, ∆ii = 0, and ∆ik =
∆ij + ∆jk. Each gait is then associated with a 3-tuple of phase differences: [∆12 ∆13 ∆14]. The primitive Prasinophyte alga

Figure 1: A) In free-living quadriflagellates, two possible configurations are possible (types 1,2). The flagella emerge from basal bodies
comprising a species-specific network whose symmetries may constrain observed swimming gaits. B) In T. suecica (type 2) the relative
phase between the remaining flagella is unchanged when beating is purposefully stalled in one flagellum.
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Figure 2: Flagellated eukaryote performs biased random walk by actively modulating the orientation and coordination of anteriorly-
positioned flagellla.

P. parkeae swims with two pairs of precisely alternating breaststrokes akin to the ‘trot’ of a horse, for which [∆12 ∆13 ∆14] =
[π 0π]. On the other hand the advanced green alga C. crucifera exhibits a rotary gallop gait ([∆12 ∆13 ∆14] = [π/2π 3π/2]).
Inspired by studies of central pattern generators (CPGs) in the control of multilegged locomotion in vertebrates, we sought
features of the basal apparatus in these species that may correlated with the spatiotemporal symmetries of observed gaits
(where a spatiotemporal symmetry comprises a permutation of flagella and a temporal phase shift that fixes the dynamics).
For instance the rotary gallop of four oscillators (Figure 1A) is fixed by the identity transformation, but also by interchange
of diagonals with a phase shift of π, and can emerge from a square network in which the coupling between all oscillators are
identical. This square symmetry is shown in electronmicrographs of sections through C. crucifera, in which basal bodies are
inserted radially at corners of a square.

GAITS SWITCHING DURING FREE-SWIMMING
The flagellate stand gait has the most symmetries (reflection in the horizontal, in the vertical, interchange of diagonals and

arbitrary phase shift) and has the symmetry group D2 × S1, where D is a dihedral group and S the circle group. Intriguingly,
bifurcation from the stand to an alternate swimming gait is observed in many species. Forward swimming can further bifurcate
to a shock response in which the front-mounted flagella change from a puller-type to a pusher-type motility, and the swimming
direction is dramatically reversed or altered. Such gait transitions can occur either stochastically or be induced by mechanical
perturbations, but the backward-swimming phase is transient and a steady-state beating pattern is re-established within a
few beats [2]. Over time (Figure 2), these episodic runs (forward-swimming) and tumbles (gait-switching) allow the cell to
navigate a much larger region (effective diffusion constant of D ∝ v2τ ≈ 10−4 cm2/s for an alga swimming at v = 200
µm/s and mean run duration τ of 0.5 s, compared to passive Brownian diffusion Db = 10−9 cm2/s for a 20 µm cell body).

CONCLUSIONS

Somewhat surprisingly, we find that motile algae can i) maintain precise gaits of swimming defined by specific phase
relations between flagella, yet ii) also rapidly modify these gaits in response to mechanical or biochemical cues to overcome
microscale diffusion barriers. Thus the propensity for a run-and-tumble like dynamics appears to be a general strategy adopted
not only by peritrichously flagellated bacteria [4, 5], but many species of eukaryotic flagellates alike. In light of these results
the control of flagellar coordination and synchrony must now be re-evaluated in the context of intracellular signalling.
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Summary Euglenids are unicellular aquatic organisms capable of moving either by beating a flagellum or by executing dramatic shape 
changes. These are accomplished thanks to a complex structure underlying the plasma membrane, made of interlocking proteinaceous strips, 
microtubules, and motor proteins. We study the mechanisms by which the sliding of pellicle strips leads to shape control and locomotion, by 
means of both theory (through the mechanics of active surfaces and its coupling to computational fluid dynamics for the surrounding fluid) and 
experiments. Moreover, we implement them into a new concept of surfaces with programmable shape, obtained by assembling 3d-printed strips 
in a construct mimicking the biological template. We show that the subtle balance between constraints and flexibility leads to a wide variety of 
shapes that can be obtained with relatively simple controls. This suggests that euglenids exploit the passive resistance of body parts to reduce 
the complexity of controlling their shape. 
 

INTRODUCTION 
 
   Euglenids are unicellular organisms (protists) living in a wide range of aquatic environments, which are capable of 
moving either by beating a flagellum, or by executing dramatic shape changes (metaboly, or euglenoid movement). Beneath 
the plasma membrane, they exhibit a complex structure made of interlocking proteinaceous pellicle strips, with 
microtubules aligned with the strips and localized at the strip junctions. It is commonly believed that shape changes 
associated with metaboly are achieved through the relative sliding of the pellicle strips, which is in turn driven by motor 
proteins running along the microtubules. While a quantitative check of this hypothesis is not yet available, analyzing the 
mechanisms of euglenoid movement is interesting from many perspectives. One is to assess whether it provides a viable 
motility strategy and, if so, when and how the organism switches between flagellar-based and shape-change-driven 
propulsion. Another one, is that shape control by the relative sliding of pellicle strips provides a new concept to program the 
shape of surfaces, namely, control by active surface shears, which is unexplored. 
 

SHAPE CONTROL BY ACTIVE SHEARS DUE TO RELATIVE SLIDING OF PELLICLE STRIPS 
 
   Pellicle structures are clearly visible in (dead) euglenids by Scanning Electron Microscopy. Fig. 1 (left) shows the 
correlation between local pellicle orientation and shape, with the organism thinner where the strips are parallel to the body 
“axis” (the mid curve), and thicker where they are at an angle. The mechanism by which the surface shears associated to 
relative sliding of pellicle strips determine the shape of the surface is complex. To highlight the main principles, we have 
implemented this mechanism in prototypes obtained by assembling 3d-printed strips, see Fig. 1 (center). This picture 
illustrates the mechanism quite vividly in a simple case, where a family of cylinders of increasing radius and decreasing 
height is obtained from a cylinder in which all the strips are initially aligned with the cylinder axis, and then a uniform 
relative sliding of the strips (hence a uniform surface shear) is imposed. Note that, in this way, surface area is preserved. 

 
Fig. 1 Left: SEM image of the pellicle structure in Euglena sp.; center: illustration of the mechanism of shape control by 
relative sliding of interlocking 3d-printed strips; right: snapshots of numerical simulations to calculate displacements 
induced by propagating a bulge along the body in a model mimicking metaboly in Distigma.  
 



   By allowing non-uniform relative sliding of the strips along their contour length (hence spatially variable surface 
shears), one can cause the propagation of a bulge along the cylinder, hence generating a propulsive force when the cylinder 
is immersed in a fluid. Building upon our previous work [1], we have explored this idea quantitatively. By solving 
numerically for the low Reynolds number flow induced by the shape changes observed in a variety of species of Euglena, 
and simultaneously solving the equation of motion for the swimmer subject to the forces transmitted by the surrounding 
fluid, we have computed the net displacements in one swimming stroke. We found that in some cases such as the one 
depicted in Fig.1 (right), displacements of the order of a few tenths of a body length per stroke can be attained. This 
suggests that metaboly can provide a viable motility strategy.  
   In order to validate the conclusions of our theoretical approach, we have studied the motion of euglenids executing 
metaboly by optical microscopy. Our preliminary observations show good agreement with the predictions of our model. In 
particular, Fig. 2 shows that shape changes are indeed directly correlated with the changes of orientation of the pellicle 
strips. An extensive campaign aimed at a quantitative comparison of theoretical predictions and experimental observations 
is the subject of ongoing work [2]. 

   
Fig. 2 Two light micrographs of the protist Euglena Ehrenbergii, showing that shape changes are correlated with changes of 
orientation of the pellicle strips. Images taken with an Olympus BX61 microscope equipped with a 100X/NA1.30 objective. 

   An interesting question arising naturally from our work is to characterize the shapes that are achievable by actuating a 
surface through active shears both in general (with an arbitrary continuous distribution of surface shears), and when specific 
discrete mechanisms (such as the interlocking 3d-printed strips of Fig. 1) are employed. The answer we find is that the 
range of achievable shapes is very large. For the general case, even restricting oneself to actuation by axisymmetric surface 
shears, we find that achievable shapes include portions of cones, spheres, pseudoshperes, or spindles [3]. By allowing non-
axisymmetric shears, non-axisymmetric bent shapes can be obtained. One implication is that shape control by the relative 
sliding of pellicle strips provides a subtle balance between constraints and flexibility: a wide variety of shapes can be 
obtained with relatively simple controls. This suggests that euglenids exploit passive resistance of body parts (the stiffness 
of the pellicle strips, the constraints due to interlocking) to reduce the complexity of controlling their shape, in agreement 
with the notion of morphological computation that has been proposed for the control of soft, bio-inspired robots. 
 

CONCLUSIONS 
 

   We have developed and validated a model of euglenoid movement based on active surface shears induced by the 
relative sliding of pellicle strips. Our results suggest that metaboly can provide a viable motility strategy. Moreover, we 
have implemented the mechanisms underlying shape changes in euglenids into a new concept of a surface with 
programmable shape, obtained by asssembling 3d-printed strips. We have shown that the subtle balance between constraints 
and flexibility leads to a wide variety of shapes that can be obtained with relatively simple controls. This suggests that 
euglenids exploit the passive resistance of body parts to reduce the complexity of the task of contolling their shape. 
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Summary Determining the conditions for persistence of species and populations is a question of paramount importance in population
biology. The problem was first theoretically investigated adopting a continuous reaction-diffusion equation for population dynamics in a
patch of finite size surrounded by a completely hostile environment, representing an oasis in a desert. The main result of this model, today
known as the KiSS model (after Kierstead, Slobodkin and Skellam), is that patches need to be larger than a critical size to let the population
survive. To explore the effects of discreteness and demographic stochasticity, here we propose an individual-based formulation of the KiSS
model. We investigate population dynamics in our discrete model, focusing on the average time to extinction (above and below the critical
patch size of the continuous model) and on the quasi-stationary distribution of the number of individuals for patch sizes larger than the
critical value.

INTRODUCTION

Biological and chemical processes often involve the dynamics of discrete entities (e.g., molecules or organisms) that
diffuse and interact with each other and/or with an external environment. If the number density of “particles” is very large,
a macroscopic description in terms of continuous fields is typically appropriate; a well established approach to model the
spatio-temporal evolution of the population density field is in terms of a reaction-diffusion equation. Conversely, if the density
of particles is not very large the discrete nature of the population cannot be neglected [1], new effects arise and the continuous
description becomes inaccurate. In order to account for such effects, we consider a system of particles diffusing in space
and interacting when they get within a given interaction distance [2, 3]. In particular, revisiting the continuous KiSS model
[4, 5], we investigate the effects induced by discreteness on the dynamics of a population inhabiting a favorable region (“an
oasis”) surrounded by a deadly environment (“a desert”). Accounting for such effects is important to assess the role of
demographic and environmental stochasticity on extinction dynamics [6]. A peculiarity of our work with respect to previous
investigations (see, e.g., [6, 7] and [8, 9] for studies respectively adopting non-spatial and spatial models) is that we fully
describe the movement of individuals in space and we do not restrict the attention to steady state properties but we also deal
with dynamical features of extinctions.

MODEL

The persistence/extinction problem was first ivestigated by Kierstead, Skellam and Slobodkin [4, 5] who considered a
continuous population logistically growing with rate r and diffusing with diffusion coefficient D within a one-dimensional
patch of size L surrounded by a deadly environment. For a given growth rate, higher diffusivities imply larger fluxes across
the boundaries, so that larger patches are necessary to compensate the population loss in order to allow stable persistence.
Standard eigenvalue computation for the linearized system (close to extinction the population density will be very small) gives
Lc = π

√
D/r for the minimal (critical) patch size ensuring persistence.

Among the various factors influencing extinction, demographic stochasticity, associated to the unavoidable random occur-
rence of birth and death events, is one of the most important ones. Here we introduce a discrete version of the KiSS model
(see [2, 3] for details) to examine its role. The model is constructed with the essential feature of reproducing the FKPP (Fisher-
Kolmogorov-Petrovskii-Piskunov) dynamics ∂tθ = D∂2xθ+rθ(1−θ), where θ is the population density, for large numbers of
particles [2]. The FKPP equation can be derived from the two coupled reaction-diffusion equations for the concentrations θA
and θB of the species undergoing an autocatalytic reaction, provided the diffusion coefficients of species A and B are equal
and θA + θB = 1 (i.e. local mass conservation). To discretize these equations we pass from the concentrations θA,B to a
particle description in terms of NA particles of type A and NB of type B, with N = NA +NB fixed. All particles undergo
independent diffusive processes with the same diffusion coefficient, D, within the favorable patch [0, L]. A simple way to
implement the interaction term rθAθB is to impose that an A particle changes into B with a probability rate depending on
the intrinsic rate, r, and on the number of B particles within an interaction distance R. Finally to reproduce the boundary
conditions of the KiSS model and locally ensure mass conservation, we impose that A particles hitting the boundaries are
reflected (nutrients are present only within the patch), and that if a B particle hits the boundary it is absorbed (as it cannot
survive outside the favorable patch) and it is replaced in-place by an A-particle.

∗Corresponding author. Email: stefano.berti@polytech-lille.fr
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Figure 1: (Left panel) Long-time limiting biomass B∞C in the continuous case and average biomass in the quasi-stationary
state, BQS , as a function of L − Lc for different values of N . The solid curve corresponds to the behavior B∞C (L) ≈ λ1
obtained with a mean-field-like argument, where λ1 is the largest eigenvalue of the linearized KiSS model. (Right
panel) Mean extinction time, Te, vs population size, N , for different patch sizes L = Lc + δL: from bottom to top
δL = −0.3,−0.1,−0.02, 0, 0.02, 0.1, 0.3, encompassing the extinction (empty red symbols) and persistence (blue filled
symbols) regions, as well as the critical point (black half filled symbols) of the continuous model. The continuous red lines
display the logarithmic prediction (see text) with b′ fitted from data; the dashed blue lines correspond to the exponential be-
havior (see text) with a fitted. For L = Lc we found a power-law behavior, Te ∼ Nγ , with best fitting exponent γ = 0.565.

RESULTS ON BIOMASS AND EXTINCTION TIMES

The main difference between the continuous model and the discrete one is that while the (continuous) stationary state
θ = 0 becomes unstable above the critical patch size, the (discrete) absorbing state NB = 0 can always be reached due to
demographic stochasticity, even when L > Lc. Nevertheless, the time taken by the system to be absorbed can be very long
(for N and L large enough) and, in that case, the system reaches a quasi-stationary state. We have investigated the properties
of this state at varying the system and population sizes by means of extensive numerical simulations. The results show that
above the KiSS critical patch size the biomass in the quasi-stationary state recovers the continuum limit value only if the
population is large enough (Fig. 1, left). On the other hand, when the population has a small number of individuals, the link
between biomasses, defined in the continuous and particle models, ceases to exist. In particular, when the patch size tends to
the critical value the number of individuals required to recover the continuum limit diverges.

We further analysed how the survival/extinction transition of the continuous KiSS model translates in the behavior of the
average time to extinction Te. Different functional dependencies of Te on the population size N were found in the extinction
(L < Lc), critical (L = Lc) and persistent (L > Lc) regions of the continuous model (Fig. 1, right). In the extinction region,
the population density exponentially decays to zero with a rate given by the first eigenvalue λ1 = 1 − (Lc/L)

2 (in non-
dimensional units), which implies the logarithmic dependence Te ∼ (logN)/|λ1|+b′ (where b′ = const). On the other hand,
for L > Lc, Te exponentially grows as Te ∼

√
NeaN (where a = const), similarly to what is observed in non-spatial models.

In the present case, such a behavior can be shown to be consistent, at least for L and/or N large enough, with Gaussianity
of the quasi-stationary distribution. Finally, at the transition, the logarithmic and exponential behaviors are separated by the
power-law Te ∼ Nγ . The value of the exponent is γ = 0.565 from a best fit, not far from the analytical prediction (γ = 1/2)
obtained in the non-spatial logistic model. Despite small, the difference is clearly measurable and might be due to the spatial
structure of the system under consideration.

We conclude mentioning that it would be interesting in the future to investigate the effects of population discreteness in
more complex heterogeneous environments and possibly in the presence of advection.
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Summary The talk will start with an introduction of multiphase flows seen in industrial applications. It will be followed by the current 

state of theoretical development for multiphase flows as proposed using the volume averaging method. The two viscous drag tensors 

proposed by the theoretical developments will be discussed. Then the results of experiments and simulations done using micromodels will 

be presented which describe different flow regimes possible in multiphase flows including viscous fingering, capillary fingering and 

stable displacement. At the end, the need for a new mathematics to explain the contradictions posed by these findings. 

 

   Since any typical porous medium consists of numerous smaller particles or fibers separated by interstitial spaces, it is not 

practical to conduct CFD simulations in the entire domain to predict flow and transport. Hence upscaling is employed to 

describe the phenomena in terms of averaged quantities so that flow and transport predictions can be undertaken in porous 

media. The volume averaging method is a well-established method to upscale flow and transport variables in porous media. 

Compared to other upscaling methods such as the mixture theory or the homogenization method, the volume averaging 

method establishes a good connection between the larger macroscopic domain of volume averaged variables used to 

describe the porous-continuum space and the smaller microscopic domain of point-vise variables used to describe the pore-

level (discrete) space. This allows the estimation of  macroscopic properties, such as the permeability or thermal diffusivity 

tensors that are used in the macroscopic or upscaled governing equations, using the closure formulation on pore-level 

microstructures [1,2].  

 

   Displacement of one fluid by another is an example of the multiphase flow in porous media. Such multiphase flows 

through porous media are quite common in the processing industry where the applications range from reducing void content 

during processing of composites to tracking the presence of water in gas diffusion layer in fuel cells to optimizing design of 

person hygiene pads. Using the volume averaging method, Whitaker and co-workers [3,4,5] showed that the upscaled 

Stoke’s equation will have the form:  

 

〈𝒗𝛽〉 =  − 
𝑲𝛽

𝜇𝛽
 ∙  (∇ 〈𝑝𝛽〉𝛽 −  𝜌𝛽 𝒈) +  𝑲𝛽𝛾 ∙  〈𝒗𝛾〉  (1) 

〈𝒗𝛾〉 =  − 
𝑲𝛾

𝜇𝛾
 ∙  (∇ 〈𝑝𝛾〉𝛾 − 𝜌𝛾  𝒈) + 𝑲𝛾𝛽 ∙  〈𝒗𝛽〉  (2) 

where 𝑲𝛽  and 𝑲𝛾  are permeability tensors and 𝑲𝛽𝛾  and 𝑲𝛾𝛽  are viscous drag tensors. The proposed form was different 

from the usual well-accepted form of the generalized Darcy’s law for the two phases, 𝛽 and 𝛾, that are identical to Eqns. (1) 

and (2) when the terms containing the viscous drag tensors are removed. Though this proposed form of Darcy’s law is novel 

and based on rigorous derivation, it is yet to find acceptability due to the absence of any experimental verification of the two 

viscous drag tensors. We explore the possibility of conducting some accurate pore-level simulations using modern methods 

such as the Lattice-Boltzmann method to simulate two-phase flow in a representative elementary volume and then using the 

closure formulations for the two phases to upscale and estimate the two viscous-drag tensors.  

 

   In the end, the further difficulties on the path of upscaling multiphase flow in porous media will be discussed. In 



particular, the three different flow regimes of capillary fingering, stable displacement and viscous fingering, encountered 

during the flow of two phases through porous medium [6], will be presented. These flow regimes have been shown to be 

strong functions of two dimensionless groups, the Capillary number and the viscosity ratio [6]. Development of capillary 

fingers is quite similar to the formation of large clusters (islands of wet phase) witnessed during drying which is simulated 

quite accurately using the invasion-percolation algorithm in network models [7]. A common feature of these formations is 

that they are governed entirely by the inhomogeneities seen at the pore level and lead to a rather disconcerting result—the 

concept of volume averaging becomes inapplicable since the presence of such fingers lead to creation of large structures of 

the same size as the solution domain. (A condition of volume averaging is that the REV (representative elementary volume) 

used for averaging the flow and transport variables should be smaller than the solution domain but much bigger than the 

individual pore-level formations seen in [7].) The challenge of developing a closure formulation, that can represent these 

three different flow regimes, is the current obstacle facing the volume averaging method as applied to multiphase flows.   
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Summary In this presentation, we discuss our new, experimentally driven, approach to foam expansion and polymerization modeling. We are 
working to develop high-fidelity computational models to be used to design and troubleshoot mold filling for polyurethane structural foam parts. 
 

INTRODUCTION 
 
    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The 
foam is over-packed to twice or more of its free rise density, to reach the density of interest. Developing a relevant model to 
represent the expansion, filling, curing, and final foam properties is quite challenging. PMDI is chemically blown foam, where 
carbon dioxide is produced via the reaction of water and isocyanate. The isocyanate also reacts with polyol in a competing 
reaction, which produces the polymer. A new kinetic model is implemented, which follows a simplified mathematical 
formalism that decouples these two reactions. The model predicts the polymerization reaction via condensation chemistry, 
where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam 
expansion kinetics are determined by tracking the molar concentration of both water and carbon dioxide. The conservation 
equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite 
element method [1]. We assume generalized-Newtonian rheology dependent on the cure, gas fraction, and temperature. The 
conservation equations are combined with a level set method to determine the location of the free surface over time.   
 

RESULTS 
 
The model is applied to a geometry similar to a flow visualization experiment we conducted of polyurethane foam expansion 
in a clear mold. Results from the model are compared to the experimental data (Figure 1) and post-test CT data for the density 
in a simpler bar geometry. 
 

 
Figure 1. The left three images show the filling profile and density variations of polyurethane foam expansion as 
predicted by the model. The right-most image shows a flow experiment for validation of the model. 

 
The model calculates the molar volume of carbon dioxide and uses that to predict the final density of the part. These results 
can be seen in Figure 2. The concentration of carbon dioxide is highest under the large circular feature and lower on the 
walls. The concentration is very noisy, possibly due to numerical oscillations. The density varies spatially with the lowest 
density seen at the bottom, including trapped gas below the largest feature.  The density is higher at the walls than in the 
interior of the mold. The model predicts a thin skin of higher density at the walls, mostly due to temperature gradients and 
internal exothermic heating.  
  Density predictions in the bar geometry have been compared to X–Ray CT data [2]. From this comparison, we have seen 
that the average density was fairly representative, but that the data showed much larger density gradients than the model, 
even when including an ideal gas law representation of the gas bubbles. It under predicts density gradients, especially in the 
gravity direction and the skin is much thinner in the computational model than in the CT data. We think that some of these 
effect are due to bubble-scale phenomena such as foam drainage, bubble migration, and wall shear rate effects. To capture 



this phenomenon, we plan to solve a Rayleigh-Plesset equation to determine the local bubble size over time, including both 
gas and liquid phase concentrations of CO2. 
 

 
Figure 2. Carbon dioxide concentration (.01 scaling of mmol/ml) and resulting density variations (g/cm3) in pie mold 
showing voids under large features. 

 
 

CONCLUSIONS 
 
   A numerical model has been developed for foam expansion and polymerization in complex geometries based on the 
finite element method and a level set method to capture the dynamic filling process. The method has been applied to various 
geometries and shown to capture average density and filling profiles well, though density gradients are still under predicted. 
 

FUTURE WORK 
 
   For the next generation foam model, we will need to have an estimate of bubble size so that we can include bubble-scale 
effects such as foam drainage, bubble-pressurization, and coarsening. To capture this phenomenon, we need to track the 
carbon dioxide in both the gas and liquid phases. A Rayleigh-Plesset equation is then used to determine the local bubble size 
(R) over time, including both gas and liquid phase concentrations of CO2, where ρliq is the density, ηpolymer is polymer viscosity, 
σ is the surface tension, and p is the pressure in either the bubble or the polymer. 

 23( ) 2 4
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From this equation, we can see that evolving viscosity and surface tension effects will be taken into account explicitly, 
allowing the bubble growth to halt even if excess carbon dioxide is present. The volume fraction φ and the foam density can 
then be determined from the bubble radius and an experimentally determined bubble number density. 
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The bubble size and number will then be used to predict the density and density gradients of the macroscopic foam, 
including a foam drainage model linked to bubble size. We hope this new model will be more predictive of the density 
gradients seen in the X-ray CT data. 
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Summary Particle agglomeration is important for many unit operations in process technology. A numerical calculation of such processes 
requires appropriate models for describing the agglomeration itself and the behaviour of the agglomerates in the flow. This implies the 
occurrence of collisions, the sticking probability of particles, the mapping of the agglomerate structure and the fluid dynamic drag of complex 
agglomerates. Models accounting for these elementary processes were developed, implemented in an in-house numerical code and tested for 
several flow situations, including a spray dryer. 
 

INTRODUCTION 
 
   In the process industries agglomeration of solid particles in gas or liquid flows is relevant for many unit operations. 
Such an agglomeration may be a desired or undesired phenomenon and results in an effective growth of particles forming 
more or less complex structures. Examples for eligible particle agglomeration are particle capture in a cyclone whereby the 
particle size effectively grows and separation efficiency improves as well as powder production in a spray dryer wherein 
larger particles with desired structures may be produced through on purpose agglomeration. 
   Nowadays many industrial areas apply multiphase flow CFD (computational fluid dynamics) for process design and 
optimization. For the considered dispersed particle-laden flows, the well-known hybrid Euler/Lagrange approach is most 
suitable since the particle size distribution is very important to be resolved. For industrial applications the mostly turbulent 
fluid flow is calculated by solving the Reynolds-averaged conservation equations (RANS) in connection with an appropriate 
turbulence model. In the Lagrangian part a large number of particles are tracked in the before-hand calculated flow field in 
order to eventually obtain reliable averaged dispersed phase properties. So far such calculations consider mostly spherical 
particles represented as point-masses which however is a bad approximation for agglomerates. Real agglomerates consist of 
many primary particles which may be organized in a compact way with relatively low porosity or are made up of numerous 
dendritic branches yielding very high porosities. In each case however, the effective size of agglomerates is much larger 
than the volume equivalent diameter so that the effective size and particle density need to be accounted for in particle 
tracking using resistance force coefficients also accounting for porosity. 
   Essential for the formation of agglomerates is the occurrence of inter-particle collisions which are mainly determined by 
high particle concentrations and large relative velocities between particles; the latter being induced by inertial effects and/or 
turbulence. Agglomeration of particles will only occur if interaction forces such as Van der Waals, electrostatic and liquid 
binding become strong enough. Consequently these three effects, namely particle collisions, agglomerate formation and 
tracking of agglomerates need to be appropriately modelled in a numerical calculation. 
 

LAGRANGIAN AGGLOMERATION MODEL 
 
   In order for appropriately conducting Euler/Lagrange calculations of agglomeration processes, a stochastic inter-particle 
collision model was developed, which also accounts for the impact efficiency [1, 2], i.e. a small particle might move around 
a larger particle with the relative flow and hence not collide. Once two particles collide it is necessary to decide whether 
they rebound or stick together forming an agglomerate. For dry particles, this may be done based on an energy balance, 
comparing the relative kinetic energy with dissipated and Van der Waals energy [1]. This yields a critical upper velocity for 
particle adhesion and agglomeration. If high viscous or mushy droplets collide (e.g. in a spray dryer) they may penetrate 
partially and form also structured agglomerates [3]. The penetration of a high viscous droplet into one with lower viscosity 
is calculated by considering Stokes drag and shear forces [3, 4]. 
   Agglomeration of solid particles might be modelled in different ways depending on the degree of information expected 
from the two-phase flow calculations. Different modelling approaches are summarized in Figure 1. The most straight 
forward approach assumes that the two agglomerating particles form a new volume equivalent sphere with a velocity 
resulting from a momentum balance. This model does however not provide any information on the realistic structure and 
size of agglomerates. The second model, called sequential model, assumes that for every two particle agglomeration a new 
spherical particle is formed with the volume consisting of the volume of the involved two spherical particles plus the void 
volume resulting from the convex hull wrapped around the two particles (see Fig. 1 middle). The new particle is now 
tracked with a size being larger than that resulting from the volume of the two primary particles and a porosity resulting 
from the two particle configuration. This procedure is successively repeated for each agglomeration considering however, 
that the “spherical” agglomerate has already porosity. This model was applied for calculating particle separation in a gas 
cyclone [5]. The most sophisticated agglomeration model (Figure 1 right) allows the estimation of the complete structure of 
agglomerates through statistical approaches. From an initial primary particle location vectors are stored for each new 
primary particle being collected by the agglomerate. This information is carried throughout the flow field for every 



Lagrangian agglomerate produced (Figure 1 right). Thereby it is possible to obtain a realistic agglomerate size from the 
convex hull volume, agglomerate porosity and effective particle density [4]. It should be noted that the agglomerate is yet 
treated as a point-particle. 
 

 
Figure 1: Overview of different approaches for modelling particle agglomeration. 

Figure 2: Simulated PDF of agglomerate sizes in homogeneous isotropic turbulence for different 
        particle properties; a) dry particles mono-sized (12 µm) versus size distribution; b) mushy 
        droplets with different viscosity for initially mono-sized particles (12 µm). 
 
   Having now a porous particle with an effective size and density the question arises, which drag coefficient should be 
used for tracking the agglomerate? It is known, that the drag coefficient decreases with increasing porosity since the flow 
intensity through the agglomerate increases. In order to determine the dependence of drag coefficients on porosity, Lattice-
Boltzmann simulations were conducted for different randomly generated agglomerates fixed in a cubic flow domain and 
exposed to a laminar plug flow [6]. The results showed, that even for a compact agglomerate with a porosity of ε = 0.8 the 
drag coefficient at low Reynolds number (i.e. 0.3) is about 10 % lower than for a compact sphere. 
 

RESULTS 
 
   For demonstrating the performance of the novel agglomerate structure model, first results obtained for particle motion in 
a homogeneous isotropic turbulence field are presented [4]. The results for example show that for a poly-sized population 
the agglomerates grow faster, have a higher porosity and become larger than for a comparable mono-sized population with 
the same mean diameter (Figure 2 a). Considering mushy droplets, like in a spray dryer, an increasing viscosity yields lower 
penetration and as a result larger Gyration diameters and more porous agglomerates (Figure 2 b). 
   Finally, numerical simulations for a spray dryer are being performed in order to obtain the properties of the produced 
agglomerates. In a spray dryer of course particle interaction is even more complex. Initially solution droplets are injected 
into the dryer, which, upon collision might coalesce. Due to further drying the droplet viscosity increases remarkably and 
the droplets become mushy yielding a penetration upon collision. The results show that the agglomerate structure obtained 
from the simulations is in qualitative agreement with experimental observations. 
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Summary: Acoustic forces are an attractive pathway to achieve directed assembly for two-phase materials via additive processes. On one hand, 
they can be used to align and consolidate particles in uncured matrices to effectively print composites in three dimensions. On the other hand, 
they can be used with traditional self-assembly to create hierarchical assembly techniques in which chemically-assembled 'meso-particles' (e.g., 
each consisting of multiple nanoscale particles) are aggregated at much faster time scales than those associated with diffusion. We present key 
scaling relationships controlling the time for aggregation and alignment of particles, which can be used to identify acceptable levels of acoustic 
excitation and the required dimensions for focusing regions. The results are used to predict optimal combinations of these parameters that lead 
to deposition of highly packed particles without jamming. 

 
   The impact of three-dimensional printing will be 
enhanced considerably by developing techniques to 
deposit multiphase materials with controlled density and 
alignment of the constituents. The optical, thermal, and 
electrical properties of two-phase functional materials can 
be improved by controlling particle distributions to 
introduce photonic band-gaps[1], coupled electro-
mechanical behaviors[2], coupled thermo-mechanical 
behaviors[3,4], etc. The control of particle aggregation 
and deposition within a single print stream is thus of 
interest for reducing the complexity and cost of 
multiphase printing for materials with advanced 
functionalities.  

   Acoustic forces created by standing pressure waves are an 
attractive pathway to increasing the density and alignment of 
particles: they are active over large distances and relatively material 
agnostic (i.e., they do not require specific surface functionalization, 
solution chemistries, or electromagnetic properties). In many of the 
above applications, the particles are micron-sized or larger, such that 
the magnitude of easily achieved acoustic forces is much greater 
than those associated with fluid drag, implying that particles can be 
transported and assembled over relatively long distances on the 
order of seconds or less. These benefits create new opportunities to 
incorporate acoustic excitation in nozzles used for three-dimensional 
printing, to dramatically increase the density and alignment of 
particles relative to that of the ‘ink'. 
   In this work, we use previously developed solutions for acoustic 
forces generated by standing waves in a channel[5] to identify the 

Figure 2: The predicted focusing behavior of 
particles experiencing primary radiation and 
secondary scattering forces, in parabolic and plug 
flows. 

Figure 2: Microchannel print nozzle geometry and 
coordinate system. The piezo is excited at a frequency 
corresponding to a standing half-wave in pressure.   



scaling relationships that control particle transport and ordering. The goal is to elucidate the connections between channel 
dimensions, particle dimensions, acoustic pressures, focusing zone size and flow characteristics needed to design effective 

nozzles for material deposition. We consider a standing half-wave in pressure and particles (with radius a) that are less 
compressible than the fluid, which implies that particles are driven to the center of the channel, i.e., there is a single 
focusing node at the center of the channel of width W and flow at uniform velocity vS. The coordinate system and device 
geometry used in this work is shown in Fig. 1, where the direction of the wave is transverse to the channel in the x−direction 
(with x = 0 being the center of the channel), while the flow direction is in the positive z−direction. Fig. 2. Shows the 
normalized focusing width, wF/W, as a function of time and as a function of the distance travelled. The effect of excitation 
energy of the piezoelectric element is illustrated in Fig. 3, where focusing width of particles is varied according to the 
applied voltage.  
   This analysis allows one to identify a dimensionless measure of focusing efficacy for a print nozzle, by balancing time 
scales for transverse focusing, and aggregation in the flow direction, as shown in Fig. 4. If the time required for axial 

aggregation is too small, the printed line will be have 
greater transverse density than axial density. 
Conversely, if the time for axial aggregation is too large, 
aggregates may form to that would lead to axial 
variations in printed microstructures (along the print 
line), critically, jamming might occur. Contours of the 
ratio of these time scales are shown in Fig. 4 as a 
function of the volume fraction of particles and the 
effective focusing zone length. This key result provides 
guidance as to the desired length of the nozzle as a 
function of the acoustic excitation and initial particle 
density. 
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Figure 3: Microstructural variation of printed lines (outlined by dashes) of barium titanate spheres in epoxy, illustrating 
the effect of the excitation voltage of the piezoelectric element on the focusing width of the particles. 

Figure 4: Contours of the aggregation parameter PA = τz/τx, 
where a value of one represents a balance of transverse 
focusing and axial aggregation time scales, as a function of 
the focusing zone length. For PA < 1, axial aggregation 
occurs faster than focusing; the opposite is true for PA > 1  
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Summary Trickle bed reactors (TBRs) are an important component in the refining processes. TBRs are widely popular in the 

hydro-treatment of the “bottom-of-the-barrel” components of medium and heavy oil fractions specifically the hydrocracking of 

residual oils, hydrogenation of aromatics in gasoil and the hydrocracking of lube-oils (Sie and Krishna, 1998). When such heavy 

oil suspensions are treated in TBRs, a residual fraction of fine particles may be deposited onto the bed surface. If continued 

unabated, the deposition even in small concentrations, will overtime cause pore plugging and increases the pressure drop over 

the TBR. The catalyst operates as a huge filter now capturing the fine particles instead of its primary role to the extent that the 

chemically active catalyst has to be replaced before the completion of its operating life that incurs economic costs. 

 
METHODOLOGY 

 

   In this work, we focus on multi-scale experimental investigations of the inter-play between flow regimes and fines 

deposition in trickle bed reactors in pursuit of mitigation of the pressure build-up problem. The experimental work includes 

the visualization and characterization of flow regimes in quasi-two-dimensional porous medium with an average pore 

diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes 

and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. 

Experimental observations are made to investigate the development and transition of these flow regimes over a wide range 

of liquid and gas velocities. Cylindrical particles are placed between two glass plates that are sealed on the sides and water 

and air are injected over them using an injection manifold to simulate multiphase flow in a TBR. A diffused LED light table 

is used to illuminate the experimental window while real time images are obtained using a high-speed camera (figure 1). 

A Pilot tubular TBR was used to determine the pressure drop across the Trickle Bed Reactor with and without fine 

particles brought in by the liquid feed (figure 2). The pilot plant consisted tubular reactor with length 0.79 m and dia. 0.0183. 

es. In order 

to prevent cake formation, Homogeneous mixing of the suspension was accomplished in the inlet tank which was equipped 

with a magnetic stirrer and were stirred continuously in different concentrations with LGO in the feed tank. The desired 

flow of LGO through the feed tank was pumped to the inlet of the reactor where it mixes with the desired flow of incoming 

gas and enters the Trickle Bed Reactor. 

In order to record pressure drop across the reactor, two pressure transducers were installed, each at the inlet and the 

outlet of the reactor. After passing through the reactor, the LGO-nitrogen mixture enters the separator where gas is 

separated and liquid goes into the collector tank. The amount of liquid that leaves the feed tank and enters the collector tank 

is measured by placing the tanks at the weighing scale. The pressure of the transducers can be monitored and recorded by 

the electronic unit associated with the pressure transducers. The system was single pass and LGO obtained at collector end 

was not recycled to the feed tank to maintain concentration of fine particles in the feed. 

 

 

Figure 1: Schematic representation of experimental 

setup to visualize flow regimes in a TBR 

Figure 2: The pilot tubular TBR for 

high pressure and fine deposition study 
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DISCUSSION 

 

In Figure 3, flow maps are reported depicting all four regimes and the transition regions between them. Transition 

regions occur where the characteristics of more than one flow regime coexist. The 2D experimental results are then 

compared with existing literature data of three dimensional results and found to be in good agreement. Emphasis is placed 

on the transition between the trickle and pulse regimes since that is the most important mode of operation in industrial 

trickle bed reactors. It is observed that the change in diameters of the cylindrical particles in a two dimensional trickle bed 

reactor has no significant effect on the transition between the flow regimes when the porosity of the bed is kept constant. 

Once the dominant flow regime in the TBR has been identified, the pressure drop was investigated for different fluids 

with pressure varying between 10-30 bars and varying liquid and gas velocities in the ranges of 0.1-0.5 cm/s and 20-95 

cm/s, respectively in a tubular TBR. Glass beads of different diameters were used instead of the catalyst in the tubular pilot 

reactor.  Pressure drop values were plotted against superficial liquid and gas velocities, operating pressures, glass bead 

diameters and fluid properties. The results thus compiled were used to obtain a correlation for the pressure drop in the pilot 

plant reactor within a given set of operating conditions. The correlation obtained was compared with data available in 

literature (Giri and Majumder, 2014) and was found to be in good agreement.  

It was mainly found that increases in the superficial fluid velocities, operating pressures, gas density and liquid 

viscosity caused a rise in the pressure drop whereas an increase in the size of the catalyst particles decreased the pressure 

drop in the reactor, as shown in Figure 4. 

 

 
 

 

Figure 3: Boundaries between flow regimes observed for 

different Reynold’s numbers where the lines 1-4 denote 

literature empirical relations (Trickle, Trickle-Bubble, 

Bubble, Bubble-Pulse, Pulse and Spray) 
 

Figure 4: Pressure drop in TBR with respect to different 

operating and geometrical parameters compared to 

literature data. 

 

 

The effect of fines deposition on the pressure drop is finally examined and compared with two-phase pressure drop in 

the absence of fine particles. It was found that with the deposition of the fine particles, the pressure drop across the reactor 

increases dramatically. 
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Summary The dynamics of DNA molecules play essential roles in the life cycle of cells. Large dynamical transitions in the conformations of 

single DNA molecules are required for many cellular functions including, for example, DNA transcription, replication and repair.  This paper 

summarizes how dynamical transitions of DNA can be simulated using a nonlinear rod theory that captures the nonlinear bending and twisting 

of the molecule on long length/time scales. The resulting numerical solutions describe conformational changes of DNA in the context of two 

examples; namely 1) the dynamic relaxation of DNA supercoils induced by enzymes, and 2) the dynamic ejection of DNA from viruses during 

host infection. 

 
BACKGROUND AND SUMMARY 

 

   DNA is a fascinating and enormously long biopolymer molecule that encodes the genetic information to sustain life. 

While the chemical composition of DNA has been known for over 50 years, many unresolved questions remain regarding 

how the structure of DNA affects its cellular functions [1, 2].  By structure, we refer to the shape and stress of the 

molecule and how these control DNA’s primary functions including DNA transcription, replication and repair. For example, 

the biomolecular motor RNA polymerase, which actively transcribes the genetic code within DNA, also mechanically twists 

the molecule and to a degree that frequently induces distant DNA supercoils that can hinder transcription. How supercoils 

and other DNA structures form, and the dynamics and energy required for their formation, are issues examined in this 

paper. The results contribute to our newly developing knowledge of the genome-scale dynamics of DNA. 

 

   The results in this paper follow from a nonlinear rod theory that describes the nonlinear twisting/bending dynamics of 

DNA on biologically relevant length/time scales [3-6]; refer to Fig. 1. This theory incorporates the physics of large 

twisting/bending of the DNA helical axis, DNA-protein interactions, electrostatic interactions, and the hydrodynamics of the 

surrounding fluid [7, 8]. These effects are present in two example systems reviewed in this paper. The first concerns the 

formation and the dynamical relaxation of DNA supercoils as further detailed in [7]. The second example considers the 

rapid ejection of DNA from viruses during host infection. In particular, we review salient results from [8] which reveal how 

the ejection process is initiated by a highly strained DNA supercoil that explosively straightens to prime the ejection 

process. 

 

 
Figure 1: The DNA double-helix is approximated as a nonlinear rod that captures the nonlinear and three-dimensional 

bending and twisting of the helical axis, and additional forces due to DNA-bound protein/enzymes, electrostatics and 

hydrodynamics. 

 

RESULTS AND DISCUSSION 

 

   Consider first the important example of DNA supercoil formation and relaxation. Note that a single DNA molecule, on 

the centimetre scale in length, must be compacted by four orders of magnitude to fit within the small confines of the 

micron-scale cell nucleus. Doing so requires that this exceedingly long but slender molecule bend and twist massively in the 

form of supercoils. Supercoiling is not static and it changes significantly during cellular processes including DNA 

transcription, replication and repair.  An excellent example of this is the effect induced by the aforementioned 



 

 

biomolecular motor RNA polymerase which, during transcription, locally untwists the double helix to gain access to the 

genetic code (base-pairs) tucked within. Sustained local untwisting during transcription alters the long-length scale 

supercoiling of DNA and can build strain energy that ultimately impedes further transcription.  Fortunately, nature 

provides a means to relieve that strain energy by relaxing tight supercoils.  That action derives from enzymes known as 

topoisomerases that chemically cut through one or both helical strands to relieve strain energy. This first example employs 

the nonlinear rod theory to model the dynamic relaxation of supercoils induced by the action of a particular enzyme known 

as human Topoisomerase IB (Topo IB) that cuts through a single DNA strand. Figure 2(A) reports the simulated relaxation 

of a large DNA supercoil which rapidly unwinds on the microsecond time scale. The relaxation manifests in large 

conformational changes of the molecule and in a cascading decrease in DNA elastic energy as signalled by the step-like 

decrease in the linking number Lk which describes the topology of the supercoil. 

 

   The second example concerns the packing of DNA in viruses during maturation and the subsequent ejection of the viral 

genome into a host during infection.  The example of our study concerns the bacteriophage virus 29 which is one of the 

smallest bacteriophages and it has long served as a model system to study virus structure, assembly, and ejection. Recent 

cyroelectron micrography [9] revealed a stunning, highly strained DNA toroidal supercoil within the so-called connector 

domain of the virus that connects the capsid to the tail tube through which DNA passes during infection. While the function 

of that highly-strained DNA is unknown, it was hypothesized to play a role during DNA ejection.  That role is confirmed 

in the simulated results reported in Figure 2(B) which illustrate a violent straightening of this energetic supercoil at the very 

start of the ejection process.  This large conformation change occurs on a microsecond time scale and prior to initiating the 

ejection of the remainder of the DNA contained in the capsid (now shown). Thus, the DNA toroid primes the ejection 

process through a rapid release of stored energy.  

  

 

    
Figure 2: (A) Dynamic relaxation of a large DNA supercoil (far left) through the action of Topo IB which locally relieves 

strain energy (green site) and induces large and rapid conformational changes of the molecule.  The strain energy (related 

to the linking number Lk) relaxes in a stepwise manner in a fraction of a microsecond. (B) Dynamic relaxation of a highly 

strained DNA supercoil confined to the connector region of the bacteriophage 29 . The explosive straightening of this 

constrained supercoil primes the DNA ejection process during host infection.   
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Summary In rigid-body mechanics, models that capture collisional contact as an instantaneous exchange of momentum may exhibit dy-
namics that include infinite sequences of impacts accumulating in finite time to a state of persistent contact. In this paper, we describe recent
observations of such chatter-like behavior both in forward and reverse time dynamics in several example systems. We review theoretical
tools that enable a successful analysis of transient and steady-state behavior with chatter in such systems by effectively bypassing the tail
end of a chatter sequence of impacts. Finally, we show how such theoretical insight informs computational implementations for forward
simulation as well as parameter continuation of associated boundary-value problems.

INTRODUCTION

In models of mechanical systems that account for persistent or intermittent contact with hard and rough obstacles, a
common approximation considers the limit of time-scale separation in which collisions are described as instantaneous im-
pacts associated with sudden changes to the system velocities, and sustained contact is described in terms of the set-valued
Coulomb-Amonton law of dry friction. Time histories of position and velocity coordinates are naturally partitioned into dis-
joint segments, governed by segment-specific force interactions, and characterized by termination conditions associated with
the onset or cessation of contact, or with transitions between relative stick and slip.

Following Goebel, Sanfelice and Teel [1], we characterize a segmented time history in terms of a subset E of R≥0 × N
given by a sequential union of sets ([tj , tj+1], j) with tj ≤ tj+1, possibly terminated by a set ([tN , T ), N) for some integer
N and T finite or T =∞. Here, the index j tracks the number of transitions, while [tj , tj+1] and/or [tN , T ) describe intervals
of absolute continuity of the system dynamics. A time history is said to be Zeno if E contains an infinite union of sets
([tj , tj+1], j), such that the sequence {tj} is bounded. It follows that a Zeno time history includes infinitely many transitions
in finite time and, by compactness, a finite time of accumulation of a subsequence of these transitions. We refer to the time of
accumulation as the corresponding Zeno point.

A forward-time Zeno point occurs naturally in a mechanical system with impacts governed by a dissipative impact law, e.g.,
the Newtonian coefficient of restitution model for normal impacts or the Stronge energetic coefficient of restitution model for
arbitrary impacts that include frictional interactions. Surprisingly, the analysis in Nordmark, Dankowicz, and Champneys [2]
shows the possibility also for a reverse-time Zeno point in the Stronge impact model, even for constant free-flight acceleration.
Indeed, as discussed in [2], both forward and reverse chatter is associated with one-parameter families of chatter sequences
with a common Zeno point. In the case of reverse-time chatter, such a degeneracy poses a serious challenge to the description
of the forward-time dynamics in terms of a unique time history past the corresponding Zeno point.

AN ANALYTICAL TREATMENT

A proper accounting of the exchange of momentum between a mechanical system and a rigid obstacle during a forward-
time chatter sequence necessitates an analysis of the asymptotic behavior at the tail end of chatter. In this paper, we review
the work of Nordmark & Piiroinen [3], wherein this asymptotic behavior is described in terms of dynamics along the stable
manifold of a fixed point corresponding to persistent contact in a suitably defined iterated map. In particular, [3] derives an
implicit equation for a bypass map that associates an impact late in the chatter sequence to the configuration and velocity state
at the corresponding Zeno point. An explicit approximation for the bypass map, including the corresponding jump in time, is
further provided in the form of a series expansion in the impact velocity.

A critical border condition occurs along a family of time histories with forward-time chatter under variations in system
parameters when the Zeno point is associated with an immediate release (with zero acceleration) into sustained free flight.
When the border orbit is a periodic trajectory of the dynamical system, a persistent periodic trajectory in which the chatter
sequence is followed by a phase of sustained contact exists only on one side of the critical parameter value. As shown in
unpublished work by Nordmark and Kisitu [4], a complex bifurcation scenario is obtained on the opposite side of the critical
parameter value, including cascades of smooth saddle-node and period-doubling bifurcations, intervals of robust chaos, and
grazing bifurcations. In this paper, we provide a detailed review of the analysis in [4] and illustrate the predictions on example
physical applications described in Alzate and Piiroinen [5] and Fotsch [6] (cf. Fig. 1).
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This is illustrated in the brute-force bifurcation diagram shown in Fig. 3.5

and the enlargement in Fig. 3.6.

Figure 3.5: Brute-force bifurcation diagram of transition from complete to
incomplete chatter obtained by sampling steady state trajectories on the
Poincaré section y3 = 9.7 for di↵erent values of q. For each value of q, the
trajectory is sampled during approximately 200 periods of the border orbit.
The number of impacts between each intersection with the Poincaré increases
as q decreases. For the period-one orbits found near q ⇡ 0.0202, this number
equals 36.

This figure shows a complicated collection of changes in the steady state

dynamics over a small parameter region following the cessation of complete

chatter. There is an infinite shrinking sequence of intervals that accumulate

on qc. The behavior in each interval appears to be a scaled version of the

behavior in the neighboring interval.

The bifurcation structure in one of these intervals is shown for a narrower

range of q values in Fig. 3.6. The family of periodic orbits seen on the left of

this diagram is born in a saddle-node bifurcation (not shown) to the left of the

disappearance of the previous attractor. As q increases, the periodic orbits

undergo a sequence of period-doubling bifurcations followed by windows of

chaos and periodicity. The subsequent disappearance of the attractor close

29

Figure 1: Bifurcation cascade of the steady-state response of a mechanical pressure-relief valve [6] near a critical parameter
value qc corresponding to a periodic orbit with forward-time chatter accumulating at a transition to free flight. Here, y2 denotes
a sampled velocity and q describes a flow rate.

COMPUTATIONAL TOOLS

As discussed in [3], the bypass map associated with chatter may be encoded in computational tools for forward integration
and parameter continuation. Here, the tail end of the chatter sequence is replaced by the application of an approximate jump
in state space and time in such a way that an appropriate error estimate falls below a given tolerance. Using a shooting-based
approach, [3] investigates families of periodic orbits and their bifurcations under variations in problem parameters for a sample
two-degree-of-freedom mechanism.

As an alternative implementation, in this paper we briefly describe a collocation implementation of a forward-time trun-
cated chatter sequence in a computational toolbox compatible with the MATLAB-based COCO development platform. We
show how the toolbox may be embedded in a periodic orbit continuation problem for a mechanical system with impacts, and
how error estimation is used to make adaptive updates to individual segment meshes, as well as to the number of segments.

CONCLUSIONS

In hybrid dynamical systems, e.g., mechanical systems with impacts and friction, degenerate interactions between system
time histories and surfaces of discontinuity in the governing dynamics give rise to a unique set of phenomena that call for
advances in theoretical and computational tools. For the phenomenology associated with forward-time chatter, a relatively
mature theory provides insight and forms the foundation for computational tools for simulation and parameter continuation.
Predictions of reverse-time chatter in simple models of rigid-body dynamics add to a library of paradoxes that call attention to
the need for a better understanding of the effects of time-scale separation on the predictability of the forward-time dynamics.
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Summary Lyapunov exponents of chaotic attractors are hard to estimate, especially for non-smooth systems. One method to estimate the
maximal Lyapunov exponent is by using its relationship with the synchronization properties of coupled systems. The maximal Lyapunov
exponent is equal to the minimal proportional feedback gain necessary to achieve full state synchronization with a replica system. In this
paper, we prove this statement for the general class of nonsmooth systems in the framework of measure differential inclusions. Numerical
results of a mechanical impact oscillator illustrate the effectiveness of the method for nonsmooth systems.

LYAPUNOV EXPONENT

The spectrum of Lyapunov exponents is an important characteristic of limit sets. It measures the exponential convergence
or divergence of nearby trajectories, thereby capturing the sensitivity of solutions with respect to initial conditions. A chaotic
attractor has at least one positive Lyapunov exponent. Estimating the maximal Lyapunov exponent using chaos synchroniza-
tion has been proposed for mechanical systems with impacts and for discrete maps by the authors of [1]. In this paper, we
employ this idea for the class of nonsmooth systems written in framework of measure differential inclusions [2] as

dx
dμ

∈ F(x, t), (1)

where dx
dμ is the density of the measure dx with respect to a positive Radon measure dμ.

Consider a reference solution x(t) = ϕ(t,x0, t0) and a perturbed solution (x+Δx)(t) = ϕ(t,x0+eh, t0) for the initial
conditions x(t0) = x0 and Δx(t0) = eh. We define the normalized disturbance as

ξ(t, e, t0) := lim
h↓0,h/∈E

ξ

h

1

h
(ϕ(t,x0 + eh, t0)−ϕ(t,x0, t0)). (2)

The limit exists almost everywhere, if the following assumption is fulfilled.

Assumption 1. The difference of the solutions of system (1) is in the order of the perturbation, that is, ϕ(t,x0 + eh, t0) −
ϕ(t,x0, t0) ∈ O (h) a.e.

Assumption 1 implies continuous dependence on initial conditions and, consequently, uniqueness of solutions in forward
time. Uniqueness of solutions implies that the density dx

dμ is unique as well and the dynamics can be written as the measure
differential equation

dx
dμ

= f(x−, t) (3)

with f(x, t) ∈ F(x, t). The maximal Lyapunov exponent is defined using the normalized difference as

λmax := max
e

lim
t→∞

t/∈E
ξ
t

1

t
ln ‖ξ(t, e, t0)‖. (4)

CRITICAL COUPLING

We consider two coupled non-smooth systems, where (3) is accompanied by a replica extended by a proportional error
feedback in the form

dy
dμ

= f(y−, t)− k(y− − x−)
dt
dμ

, (5)

∗Corresponding author. Email: leine@inm.uni-stuttgart.de



Figure 1: Brute force diagram (top) and estimation of the maximal Lyapunov exponent λ̂max (bottom) with the bifurcation
parameter h. The chaotic solutions correspond to λ̂max > 0, while the periodic windows correspond to λ̂max < 0.

where k ∈ R is the proportional feedback gain. Let y(t) = ϕk(t,x0 + eh, t0) be the solution of (5) for a given k. Therefore,
local synchronization is achieved if the normalized synchronization error

ζ(t, e, t0) := lim
h↓0,h/∈E

ζ

h

1

h
(ϕk(t,x0 + eh, t0)−ϕ(t,x0, t0)) (6)

tends to zero. The normalized disturbance ξ in (2) and the normalized synchronization error ζ in (6) fulfill

ζ = ξe−k(t−t0) a.e. (7)

if Assumption 1 is fulfilled. The statement (7) together with (4) imply that local synchronization of systems (3) and (5) is
achieved if the coupling gain k is larger than the maximal Lyapunov exponentλmax. Conversely, k < λmax implies that no local
synchronization is achieved for some initial conditions. In practice, the perturbation for any initial condition will eventually
turn into the direction of maximal expansion. Therefore, the maximal Lyapunov exponent can be estimated using the minimal
proportional feedback gain for which synchronization is achieved.

NUMERICAL EXAMPLE

The results are illustrated using the example of a mechanical Duffing-oscillator with two geometric unilateral constraints.
The impact oscillator is excited by an external, harmonic forcing and the generalized Newton’s impact law is chosen. The
viscous damping coefficient is chosen as bifurcation parameter. The brute force diagram in Figure 1 shows the position at the
Poincaré sections for a sweep down of the bifurcation parameter. The estimated maximal Lyapunov exponent is positive for
the chaotic attractors and negative (λ̂max at zero is not considered) during the periodic windows.
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Summary Nonlinear free oscillations of a straight planar Timoshenko beam are investigated by means of the asymptotic development method. 
Attention is focused on the nonlinear coupling between axial and transversal oscillations of the beam, that are decoupled in the linear regime. 
The existence of coupled and uncoupled motion is discussed, and the softening vs hardening behaviour of the beam is investigated in depth. 
 

INTRODUCTION 
 
   It is known that the axial boundary conditions affect significantly the oscillation behaviour of beams. In particular, 
axially restrained beams exhibit hardening behaviour, while axially free beams have softening behaviour. This difference, 
already reported by Atluri [1], is a peculiarity of the nonlinear regime, since in the linearized framework the natural 
frequencies (for transverse oscillations) are unaffected by the axial restraint when the beam is initially straight. Luongo et al. 
[2] addressed the same problem by the Galerkin method, while Lacarbonara and Yabuno [3] applied the multiple scale 
method directly to the governing PDEs and also provided an experimental verification of the phenomenon. 
   Previous works considered slender beams, and perfectly restrained vs perfectly unrestrained boundary conditions. These 
limitations have been removed by the authors [4, 5]. Consistently, the (nonlinear) Timoshenko beam model has been 
considered, taking into account shear deformation and rotational inertia. In order to comprehensively revisit the problem, 
axial deformation and axial inertia have been included in the model, too. Moreover, an axial spring has been added at one 
hand to simulate the effect of an elastic constraint with stiffness κ. The limit cases of axially free and axially constrained 
boundary conditions have been obtained for κ = 0 and κ →∞, respectively. 
   In [4] the governing equations have been obtained, and the asymptotic development method, in the Poincaré-Lindstedt 
version, has been applied to obtain an analytical approximate solution. The expressions of the nonlinear correction 
coefficient ω2 have been obtained. In [5] a detailed investigation of the effects on ω2 of slenderness, end spring stiffness, 
axial and rotational inertia, and shear stiffness is reported. 
   To the first order of the asymptotic development, the linear regime is obtained. Here, the axial and transversal behaviour 
are decoupled. In [4, 5] it is assumed that to first order the axial oscillation is negligible with respect to the transversal one, 
which is an hypothesis commonly done in the literature. It is based on the observation that for slender beams axial natural 
frequencies are meaningfully larger than transversal natural frequencies. For stubby beams, however, the gap between axial 
and transversal frequencies reduces, and they become comparable. 
   To overcome the previous limitation, in this work the axial and transversal first order oscillations are considered 
simultaneously, and their (nonlinear) coupling at higher orders of the asymptotic development is investigated in depth. 
 

NONLINEAR TIMOSHENKO BEAM MODEL AND ANALYSIS 
 
   The following kinematically exact governing equations have been obtained in [4] for the free oscillations of a planar, 
linearly elastic, initially straight Timoshenko beam: 
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where W(Z,T), U(Z,T) and θ(Z,T) are the axial and the transversal displacements of the beam axis and the rotation of the 
cross-section, respectively. Z is the spatial coordinate in the rest rectilinear configuration, which ranges from 0 to the length 
L, T is the time, prime means derivative with respect to Z and dot means derivative with respect to T. 
   The considered boundary conditions are (H0 is the horizontal internal force and M is the bending moment) 

𝑊𝑊(0,𝑇𝑇) = 0,       𝐻𝐻0(𝐿𝐿,𝑇𝑇) + 𝜅𝜅𝑊𝑊(𝐿𝐿,𝑇𝑇) = 0,       𝑈𝑈(0,𝑇𝑇) = 0,        𝑈𝑈(𝐿𝐿,𝑇𝑇) = 0,       𝑀𝑀(0,𝑇𝑇) = 0,       𝑀𝑀(𝐿𝐿,𝑇𝑇) = 0. 

The beam is axially fixed at the left end (Z=0), while it has an axial linear spring, of stiffness κ, at the right end (Z=L). 
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   The previous equations and boundary conditions have been solved approximately by the Poincaré-Lindstedt method, up 
to the third order, to obtain the linear frequency ω0 and the nonlinear correction coefficient ω2. The details of the 
computations are reported in [6], where the following dimensionless parameters (z measuring the shear stiffness) are used 

𝑙𝑙 = 𝐿𝐿�𝐸𝐸/𝐸𝐸,    𝑧𝑧 = 1/[2(1 + 𝜈𝜈)𝜒𝜒] = 0.3205,    𝜅𝜅ℎ = 𝜅𝜅𝐿𝐿3/𝐸𝐸𝐸𝐸. 
 

COUPLED BEHAVIOR WITHIN A REVISITED OVERALL FRAMEWORK 
 
   The main results consist of determining the region of existence of the coupled axial-transversal oscillations, and the 
dependence of ω2 on the slenderness l and the end spring stiffness κh. The results are summarized in the behaviour chart of 
Fig. 1, where the meaning of the colours is the following: 
1. light red: only uncoupled solutions exist and they are hardening; 
2. dark red: only uncoupled solutions exist and they are softening; 
3. light green: coupled and uncoupled solutions coexist and they are both hardening; 
4. dark green: coupled and uncoupled solutions coexist and they are both softening; 
5. light blue: coupled and uncoupled solutions coexist; the coupled is softening and the uncoupled is hardening; 
6. dark blue: coupled and uncoupled solutions coexist; the coupled is hardening and the uncoupled is softening. 
Light/dark colours correspond to hardening/softening of the uncoupled solutions, that always exist. Apart from the region of 
low values of l and κh, the former behaviour occurs mostly for high κh (i.e. toward hinged-hinged) and low slenderness, 
along with the coexisting, prevailingly softening (light blue), coupled oscillation. In turn, the latter occurs for very low κh 
(i.e. toward hinged-supported) and whatever slenderness, along with the coexisting, prevailingly hardening (dark blue), 
coupled oscillation; but the uncoupled oscillation is again hardening (light green) for not too low values of κh.  
 

 
Figure 1. The behaviour chart of ω2 in the parameters space (l,κh) for the first bending mode and the first axial mode. 

 
CONCLUSIONS 

 
   An asymptotic solution of the PDEs of a planar beam with whatever slenderness and axial boundary condition has been 
obtained up to third order, with the aim to study the coupled axial-transversal nonlinear free oscillations. Behaviour charts show 
the dependence of the nonlinear behaviour upon the problem parameters and the existence of meaningfully coupled oscillations 
in some relevant regions. The addition of axial oscillations can meaningfully affect the character (hardening to softening or 
viceversa) of formerly uncoupled transverse oscillations. Numerical validation of asymptotic results is presently going on. 
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OPTIMIZATION OF LOCOMOTION FOR MULTIBODY SYSTEMS
MOVING ALONG A PLANE

Felix Chernousko1 and Tatiana Figurina∗2

1,2Institute for Problems in Mechanics of Russian Academy of Sciences, Moscow, Russia

SummaryDynamics and control of multibody systems moving along a horizontal plane are considered. The bodies perform translational
motions subject to friction along the plane and control forces due to the interaction between the neighboring bodies. The friction forces
obey Coulomb’s law. Several types of multibody systems are considered. Optimal motions are obtained that correspond to the maximum
average speed or to the shortest way of translation. The obtained results are applicable to mobile robotic systems.

OPTIMIZATION OF RECTILINEAR MOTION OF TWO-BODY SYSTEM

A system consists of two interacting bodies of massesm andM , m < M , moving along the horizontalx axis (Fig.1a).
The interaction forces acting upon massesm andM aref and−f , respectively. They are bounded by the constraintf ≤ f0,
wheref0 is a given constant, the inequalityf0 > Mgk holds to ensure the translational motion of the system. Hereafterk is
the dry friction coefficient andg is the acceleration due to gravity. Denote byx1 andx2 the coordinates of the bodiesm and
M , respectively. We find the controlf(t) and the corresponding motion of the system for the given intervalt ∈ [0, T ] under
conditionf ≤ f0 and the following assumptions:

xi(0) = 0, ẋi(0) = ẋi(T ) = 0, i = 1, 2, x1(T ) = x2(T ), 0 ≤ x2(t)− x1(t) ≤ L, ẋ2(t) ≥ 0, t ∈ [0, T ], (1)

whereL is fixed. Thus, the bigger massM does not move backwards. Also, we assume that the motion consists of several
phases with constant acceleration for both masses.

For several versions of optimal control problems, optimal motions subject to conditions (1) andf ≤ f0 are found [1]. For
example, the motion having the maximum average speed is described by explicit formulas. We have

v = max{[x2(T )− x2(0)]/T} = [gkLm(M −m)]1/2(M + m)−1 (2)

in the case wheref0 → ∞. The optimal ratiom/M that provides the maximumv in the last expression is 1/3; in this case
v = (gkL)1/2/4. Similar results are obtained for a more general situation where the coefficients of friction for the bodiesm
andM are different [1].

If the actuator creating the interaction force rapidly brings the bodies to a state of constant relative velocity, another
formulation of the locomotion control problem is reasonable. We can assume that the relative velocity of the bodies is the
control bounded by certain constraints. The analysis and optimization of such motions is considered in [2].

OPTIMAL RECTILINEAR MOTION OF A CHAIN OF IDENTICAL BODIES

Let us consider a system consisting ofn ≥ 3 bodies with equal massesmi = m, i = 1, ..., n, lying on a horizontal straight
line with dry friction acting between the line and the masses (Fig.1b). The interaction forces between the adjacent masses are
unbounded so that the velocities of the masses can change instantly. Letxi andvi be the coordinate and velocity of thei-th
mass, and letFi be the dry friction force acting on it. Denote byfi the control force applied by massi to massi + 1 (we
assumef0 = fn = 0). The motion of the system is governed by equations

ẋi = vi, mv̇i = fi−1 − fi + Fi, Fi = −kmg sgn vi, i = 1, .., n. (3)

Let at the initial and final time instants all masses be at rest and their positions be the same:

xi(0) = 0, vi(0) = vi(T ) = 0, i = 1, ..., n, xi(T ) = x1(T ), i = 2, ..., n. (4)

The problem is to find a motion of the system obeying relations (3) and (4), which maximizes the displacement of the system,
x1(T ) → max.

There exist infinite number of optimal motions with the same maximal terminal displacement [3].
Proposition 1. When optimal motion occurs, for anyt ∈ [0, τ ], τ = n(n − 1)−1T/2, one of the masses moves with

acceleration(n− 2)kg, and all other masses are at rest. At the end of its movement, each moving mass stops instantly giving
its momentum to another mass. At the time instantτ , all masses have the coordinaten(n−2)(n−1)−2kgT 2/8 and acquire the

∗Corresponding author. Email: tfigurina@mail.ru



Figure 1: Multibody systems on a plane

velocity equal to(n−2)(n−1)−1kgT/2. In the time interval[τ, T ], all masses synchronously decelerate with the acceleration
equal to−kg until they stop at the time instantT . The maximum displacement of the systemx(T ) subject to the optimal
control is equal to(n− 2)(n− 1)−1kgT 2/4. One of the possible optimal motions is defined by relations

vi =

 (n− 2)kgt, t ∈ [ti−1, ti],
0, t ∈ [0, tn]\[ti−1, ti],
kg(T − t), t ∈ [τ, T ],

ti =
√

ni

2(n− 1)
T, i = 1, ..n, tn = τ, t0 = 0. (5)

OPTIMIZATION OF QUASI-STATIC MOTIONS FOR THREE-BODY SYSTEM ON A PLANE

Let us consider the system consisting of three point bodiesMi with massesmi on a horizontal rough plane (Fig.1c).
Between each pair of bodiesMi andMj , control forcesf ij andfji = −fij act, changing the distances between the bodies.
The system moves along a plane when changing its configuration due to the dry friction forcesFi between the bodies and the
plane. We study possible quasi-static motions of the system, i.e. the motions with infinitesimal velocities and accelerations of
the bodies. In such motions, the equilibrium equations hold,Fi + fji + fki = 0. We suppose that point masses satisfy triangle
inequalitiesmi + mj ≥ mk, {i, j, k} = {1, 2, 3}, each of the inequalities is a necessary condition for bodyMk to move [4].

Proposition 2. Quasi-static motion of bodyM3 , with bodiesM1 andM2 fixed, is possible iff the straight line containing
point M3 and parallel to its velocity intersects setD. Here, setD is the intersection of the circles with centers in pointsM1

andM2 and radii|M1M2|m2/m3, |M1M2|m1/m3, respectively.
Let it be required to move quasi-statically bodyM3 from pointA to pointB with minimal work against friction, i.e., to

construct the trajectory of quasi-static motion for bodyM3 with the minimum length.
Proposition 3. If the straight lineAB intersects setD, then the trajectory with the minimum length for bodyM3 quasi-

statically moving from pointA to pointB is the segmentAB. If the the straight lineAB does not intersect setD, then the
trajectory with the minimum length is two-link broken lineACB with links AC andBC belonging to the supporting straight
lines of setD. Here, pointA and setD are located on different sides of straight lineBC, and pointB and setD are located
on different sides of straight lineAC.

The following algorithm for the displacement of the three–body system from any initial position to any given terminal one
can be used. At any moment, only one body is moving, and each body moves only during one time interval. The bodiesMi,
Mj , Mk move one after another, while two other bodies are at rest. During each time interval, the moving body follows along
the shortest trajectory which is either a straight line or a two-link broken line, according to Proposition 3. Comparing six ways
of displacement, with different sequences of moving body, the sequence corresponding to the minimum work easily can be
chosen.

CONCLUSIONS

Optimal motions of multibody systems along a horizontal plane are considered that correspond to the maximum average
speed or minimum work against friction. These results are useful for planning possible locomotion of mobile robots.
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ENTRAINMENT AND MULTISCALE DYNAMICS IN VIBRATIONALLY DRIVEN
NONHOLONOMIC SYSTEMS

Scott David Kelly∗1
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Summary Mechanical systems subject to nonholonomic constraints can exhibit surprising dynamics. A well-known system that illustrates
this point is the rattleback, which can reverse its direction of spin on a horizontal platform atop which it rolls without slipping, defying the
conservation of angular momentum in a dramatic way for a subtle reason. The present paper documents two new instances of unexpected
behavior by nonholonomically constrained mechanical systems, one characterized by a phenomenon akin to vibrational synchronization
and the other characterized by the emergence of dynamics on two distinct time scales in response to forcing on only one.

Hat trick
The left panel in Figure 1 depicts the Chaplygin beanie, so named in [1] because it combines features of two canonical sys-

tems in the mechanics literature, the Chaplygin (or Carathéodory) sleigh and Elroy’s beanie. A balanced rotor (the “beanie”)
surmounts the center of mass of a cart (the “sleigh”) that’s supported in the front by casters and in the rear by a wheel that
rolls without slipping relative to the ground. The casters and wheel are assumed to have negligible inertia. If the system is
initially at rest and the rotor is induced thereafter by internal actuation to rotate relative to the cart, then the cart will translate
forward. In particular, if

JLT = mẋ cos θ +mẏ sin θ, JRW = −mẋa sin θ +mẏa cos θ + (B + C)θ̇ +Bϕ̇

represent the system’s forward translational momentum and its angular momentum relative to a vertical axis passing through
the center of the rear wheel, respectively, then the system’s dynamics satisfy

J̇LT =
ma

(
JRW −Bϕ̇

)2

(ma2 +B + C)
2 , J̇RW =

−a
(
JRW −Bϕ̇

)
JLT

ma2 +B + C
.

Here m, B, and C represent the system’s total mass and the rotational inertias of the rotor and cart relative to their centers,
respectively. The fact that m and a are necessarily positive requires that the forward momentum JLT be nondecreasing.
Sinusoidal oscillations of appropriate amplitude in the rotor’s orientation relative to the cart will induce the cart to advance in
a slaloming motion, speeding up as it goes. A movie of this is visible at http://tinyurl.com/gm4h2nh.

Imagine that two such devices, one with an actuator coupling the rotor to the cart and the other with a linear torsional
spring in place of the actuator, are placed atop a horizontal platform. If the platform has finite mass and is free to translate in
response to forces arising from its interaction with the carts, then an analogy is apparent between this system and that studied
by Huygens in the 1660s [2] comprising a pair of pendulum clocks with a shared nonrigid support. In Huygens’ case, the
oscillations of each clock contributed to small movements of the support and thus exerted influence on the motion of the other
clock, inducing the clocks to exhibit an “odd kind of sympathy” by synchronizing their oscillations. The present problem is
asymmetric — one rotor will be actuated in a prescribed way while the other responds passively — but the reader familiar
with Huygens’ study will suppose correctly that if the actuated rotor is driven sinusoidally so that the first cart slaloms forward
relative to the platform, then the platform will vibrate, inducing the second cart to pivot back and forth about its rear wheel,
and the unactuated rotor will begin to oscillate, inducing the second cart to translate forward relative to the platform as well.

The number of degrees of freedom in the motion of each cart distinguishes the present system from that comprising
Huygens’ clocks. In principle, energy transferred through the platform from the actuated cart to the passive cart could excite
any combination of translational and rotational dynamics, perhaps depending on the initial position or orientation of the one
cart relative to the other. The fact that the cart with the passive rotor is biased to translate forward in response to arbitrary
platform vibration suggests an analogy to the more recent experiment described in [3], in which the flexible corpse of a fish
was observed to swim forward — against a background flow — when excited to undulate by vortices shed from a bluff body.

What’s surprising about the present system is the way in which the relative orientation of the carts evolves. The passive cart
doesn’t merely begin to move forward relative to the platform when the actuated cart does. If the initial orientation of the driven
cart differs substantially from that of the passive cart, then the latter will reorient as it translates — in some cases gradually,
over many cycles of oscillation — in order to follow the former. This is true even if the carts are initially antiparallel, back
to back. Numerical simulation with a variety of initial conditions indicates that the asymptotic average difference between
the carts’ orientations — “average” because both carts undulate persistently as they translate — is generally not zero, but is
consistently small regardless of the initial difference in the carts’ orientations. Typical results are shown in the center and right
panels of Figure 1.
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Figure 1: Left: Chaplygin beanie. Center: Trajectories of two such devices relative to a common planar support with finite
mass, when the rotor atop the blue cart is driven such that ϕ = sin t and the rotor atop the orange cart is coupled to the orange
cart through a linear torsional spring. The carts are depicted in their initial configurations; their trajectories are shown through
t = 20 (top) and t = 400 (bottom). The parameters m, B, C, and a are set to unity for both carts, as are the mass of the
platform and the stiffness of the spring. Right: The average long-term difference in the carts’ headings as a function of the
initial orientation θ(0) of the passive (orange) cart, with the initial positions of the two carts as depicted in the center panel.
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Figure 2: Top left: Three-link snake with spring-loaded hinges. Remainder: Trajectory relative to a platform induced to
vibrate sinusoidally in the y direction with unit amplitude, at t = 30 (middle), t = 80 (right), and t = 2000 (bottom left).

Snake on a plane
The top left panel in Figure 2 depicts a mechanical system comprising three identical coplanar rigid links joined at two

hinges. Two links are supported by wheels that roll without slipping, the third by a caster. With a third wheel in place of the
caster, this system has been called a kinematic snake in the robotics literature [4]. If the hinges are fitted with linear torsional
springs and the platform beneath is induced to vibrate, the system will begin to translate relative to the platform. In particular,
suppose that the plane of the platform is the (x, y) plane, the three links are initially aligned at rest along the x axis, the masses
and rotational inertias of the links are set to unity, and the platform is induced to accelerate perpendicular to the links from
rest with ÿplatform = cos t. If the torsional springs have equal unit stiffness, the system will exhibit long-term dynamics on
two distinct time scales, settling into a slaloming trajectory that corresponds in the net to translation along the y axis. If the
stiffness of the spring between the center wheel and the caster is reduced to zero, the system will instead be attracted to a
slaloming path along the x axis. The latter is depicted in the remaining panels of Figure 2.
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MBS APPROACH FOR A CHAIN FOUNTAIN

Friedrich Pfeiffer, Johannes Mayet
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Summary Chain fountains are known since long time, and many efforts have been taken to model and to explain the dynamics of such
a chain fountain. A chain consists of many small elements starting from an inertial beaker, moving upwards by forming an arc and
coming to an inertial position again after a rather long vertical distance. As the chain elements are all connected by a bearing type
structure, they all have to go with the same velocity v. In the following we shall consider the stationary case and assume small chain
elements (Fig. 1).

MODELING

The strange behavior of a chain leaving a beaker has interested many scientists, in the nineteenth century for ex-
ample Routh [5] and Painleve [3], more recently Biggins [1] and internally Mayet [2]. Most of the contributions
try a kind of a belt approach with good success. In spite of the not too complicated dynamics there remain open
questions, which could not be answered completely. This paper tries a multibody approach (MBS), also with good
results. Geometry and forces are depicted in Figure 2, from which we receive the following equations of motion:

spherical chain bead

connection of the
beads

sperical joint
bearing

h

H

v

Figure 1: Chain Fountain and Chain Structure

Δmẍi =Ficosβi − Fi−1cosβi−1 + FTisinβi

− FT,i−1sinβi−1

Δmÿi =Fisinβi − Fi−1sinβi−1 − FTicosβi

+ FT,i−1cosβi−1 −Δmg. (1)

The frictional force writes FTi = μ(signα̇)Fi, and the centrifugal
effects with the force FCi = Δm v

2

Ri
and κi = 1

Ri
= (dα

ds
)i, are

included in the acceleration terms. The initial conditions are F0 =
k0(λv

2), α = α0, β = β0, The curvature κi depends on the change
of the angle α with the trajectory coordinate s. The form of the chain
fountain requires κi < 0. The factor k0 takes uncertainties with respect

to the force at the start into account. For the very small beads including their connection bars we may discretize with
(ds ≈ Δs ≈ di, dx ≈ dicosβi, dy ≈ disinβi, κi ≈ (Δα

Δs
)i ≈ (Δα

d
)i). Introducing the abbreviations (fi =

Fi

Δmg
, wi =

v
2

gdi
), rearranging the eqs (1) and regarding the discretizations we come out with

fi =fi−1[cos(βi − βi−1)− μ(sign(Δα))sin(βi − βi−1)] + sinβi − κidiwisin(αi − βi),

κidiwicos(αi − βi) + μ(sign(Δα))(fi−1 + sin(βi))−

fi−1[sin(βi − βi−1) + μ(sign(Δα))cos(βi − βi−1)] + cosβi = 0, (2)

which within the framework of small magnitude assumptions allows the solution

Δαi ≈ −
( cosαi + μαsinαi

wi − fi−1 −
1
2sinαi +

1
2μαcosαi

)
. (3)

Knowing Δαi we find from the first equation (2) also fi. Moreover, within the framework of these approximations we
can write the first of the equations (2) in the reduced form (fi ≈ fi−1 + sinβi). Summing up this gives the well-known
result (FN − F0 ≈ λgH). The difference of the two ground forces FN and F0 is the weight of the chain part below the
arc.

Considering work and energy according to Figure 2 there are several possibilities to regard the ground forces FN and
F0. This is one of the open questions. We choose a form, where F0 ”works” along the fountain with length sE :

E =

N∑

i=1

{
1

2
Δmv2 − (Δmg)yi} − F0sEsinβ0 =

1

2
λsEv

2 +
1

2
λgH2 − λk0v

2sEsinβ0. (4)

The centrifugal forces over the complete fountain have to carry the whole chain together with the forces at the ground.
With Figure (2) and the results above we get the balance

N∑

i=1

FCicosαi =

N∑

i=1

Δmg − FNsinαE + F0sinα0, sE ≈ (1− k0)(sinα0 − sinαE)(
v2

g
) +HsinαE . (5)
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Figure 2: Chain Model - Geometry and Forces

Together with the energy equation (4) and with the property, that the fountain coordinate y can be approximated by two
linear functions with respect to s, we thus can evaluate

(
Hg

v2
) ≈

1

2
(1− 2k0sinβ0)

{
1−

√

1− 4
(1− k0)(1 + sinα0)

(1− 2k0sinβ0)

}
, (

sEg

v2
) ≈ −

[ (Hg

v2 )
2

1− 2k0sinβ0

]
. (6)

With the above MBS structure we come out with one iteration, because a good approximation of the two magnitudes H
and sE is known. We have to iterate the empirical magnitude k0 in dependence of the initial chain angle α0 for meeting
the height ratio ( h

H
) ≈ 0.14, which is an experimental finding and something like a general law connected with the chain

fountain. It belongs to the open questions. For (50◦ ≤ α0 ≤ 85◦) we get (0.75 ≤ (Hg

v2 ) ≤ 1.07) with a k0 value around
k0 ≈ 5

6 .

RESULTS AND CONCLUSIONS

In addition to the calculations some measurements have been performed. Additional calculations have been carried
through for a belt approximation, which appears in literature (for example [6]) but has also developed by a co-worker to
appear later [2]. The comparisons are good and confirm the model, Figure 3.

(h/r)

(h
/H

)

(H
/r

)

(h/r)

Figure 3: Results for the MBS and belt approximations compared with measurements (scaled with the arc radius r): black
lines MBS approximation, blue circles belt approximation, red stars measurements (adaptation of the force F0 by the
starting coefficient k0 to come out with a ( h

H
) ≈ 0.14)

The dynamics of the first and the last bead in the fountain includes still open questions. The equations of motion allow
a derivation of the difference of the forces connected with the first and last beads to be proportional to the weight of the
chain height H (FN − F0 ≈ λgH). Many publications connect this result with the initial bead force only, which is not
correct. On the other hand the initial force F0 alone can be evaluated for the starting bead to be F0 = λv2, which does
not fit into real dynamics. Therefore we put F0 = k0(λv

2) and adapt k0 to the ratio h

H
≈ 0.14. As stated by literature

the fountain process is also highly dissipative. But it is not yet clear, where dissipation takes place and if it is necessary to
regard that for an analysis. First investigations indicate the ground processes, start and end.

References

[1] J.S. Biggins, M. Warner Understanding the chain fountain. Proceedings of the Royal Society A, March 2014
[2] J. Mayet Chain Fountain. Internal Communication, AM-TUM 2015
[3] P. Painleve Cours de Mecanique I. Ecole Polytechnique, 2eme Division, 1919-1920
[4] F. Pfeiffer, Th. Schindler Introduction to Dynamics. Springer Berlin Heidelberg 2015
[5] E.J. Routh Dynamics of systems of rigid bodies, with numerous examples. MacMillan, London, UK, 1860
[6] E. Willerding Dynamik von Weltraumseilen - Space Elevator. E. Willerding 2014



 

 

a) Corresponding author. Email: kirillov@mi.ras.ru 
 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada  

PRECESSION ON A ROTATING SADDLE: A GYRO FORCE IN AN INERTIAL FRAME 
 

Oleg Kirillov,1a Mark Levi2 

 
1Russian Academy of Sciences, Steklov Mathematical Institute, 119991 Moscow, Russia 

2Mathematics Department, Pennsylvania State University, University Park, State College, PA 16802 

 
Summary Particles in rotating saddle potentials exhibit precessional motion which, up to now, has been explained by explicit computation. We 
show that this precession is due to a hidden gyroscopic force which, unlike the standard Coriolis force, is present in the inertial frame. We do so 
by finding a hodograph-like “guiding center” transformation using the method of normal form, which yields a simplified equation for the guiding 
center of the trajectory that coincides with the equation of the Foucault’s pendulum. In this sense, a particle trapped in the symmetric rotating 
saddle trap is, effectively, a Foucault’s pendulum, but in the inertial frame. 

 

INTRODUCTION 

 
   The existence of Trojan asteroids in a triangular Lagrange libration point on the orbit of Jupiter is a consequence of the 
basic fact that a particle can be trapped in the rotating saddle potential [4,9]. Stability conditions for a heavy particle sliding 
without friction on a rotating saddle surface in the presence of gravity (Fig. 1) were obtained by Brouwer as early as 1918 
[1,11]. Brouwer explicitly demonstrated that the saddle can be stabilized by rotation of the potential (in two dimensions) in 
contrast to the Paul trap for suspending charged particles in an oscillating electric field by analogy with the so-called 
Stephenson-Kapitsa pendulum in which the upside-down equilibrium is stabilized by vibration of the pivot [3]. Stabilization 
of the unstable saddle equilibrium by both rotation and vibration is well described by the concept of effective potential, which 
is equal to the kinetic energy of the high frequency motions of the system generated by the imposed oscillating field and 
affects the energy spectrum of the averaged motion [5-7]. In the case when the saddle potential is symmetric, the trajectory 
of the particle trapped by the rotating saddle in the non-rotating frame exhibits a slow prograde precession, Fig 1. This 
somewhat mysterious precession discovered first in the context of accelerator physics [2] and particle traps [8-10] is specific 
in that the standard averaging methods do not grasp the phenomenon [6]. 
 

 

 
 

Fig. 1 (Left) A heavy particle on a symmetric rotating saddle surface and (right) prograde precession of its orbit in the non-
rotating frame (figure adapted from [12]) 
 

HODOGRAPH TRANSFORMATION AND THE GUIDING CENTER EQUATION 

 
   We consider a point mass sliding without friction on a saddle surface rotating about a vertical axis with the angular velocity 

, , Fig 1. Assuming the principal curvatures of the saddle at the equilibrium point to be equal, linearized 
equations near the equilibrium in the non-rotating frame after appropriate rescaling of time take form 
 

                                     (1)  
where 

 



 
 
Fig. 2 (Left) Trajectory of the guiding center u (thick curve) tracking the corresponding trajectory x (thin curve). The view is 
in the inertial frame with = 0.45. (Right) A possible mechanical realization of the rotating saddle trap. Here, x and y are the 
angular variables of the inverted pendulum, and the graph of the potential energy is shown (figure adapted from [12]). 
 
   Theorem. Given a vector function , consider its “guiding center”, or the “hodograph” image 
 

 

If  is a solution of (1), then  satisfies 
 

 
 

where  is a  function linear in ,  and analytic in , in a fixed neighbourhood of . The guiding center therefore 
behaves, (ignoring the  - terms) as a point charge of unit mass in the potential  in the magnetic field of 
constant magnitude  perpendicular to the -plane. 
 
Fig.2 illustrates a possible mechanical implementation of the rotating saddle trap as a light rod with a massive ball mounted 
on a turntable via a ball joint. Two springs are attached to the rod, and the height of the ball is adjustable, like in a metronome. 
If the ball is placed sufficiently low then the springs will stabilize the pendulum in the x-direction while the y-direction remains 
unstable; thus, the potential acquires a saddle shape. 
 

CONCLUSIONS 

 
   We demonstrated that the rapid rotation of the symmetric saddle potential creates a weak Lorentz-like, or a Coriolis-like force, 
in addition to an effective stabilizing potential - all in the inertial frame. As a result, the particle in the rotating saddle exhibits, in 
addition to oscillations caused by effective restoring force, a slow prograde precession in the inertial frame caused by this pseudo-
Coriolis effect. By finding a hodograph-like “guiding center” transformation using the method of normal form, we found the 
effective equations of this precession that coincide with the equations of the Foucault's pendulum. 
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Summary The Euler equations are derived for spinning spheroids whose mass distribution slightly loses the axial symmetry.  
Based on the obtained equations, the motion of a spheroid spinning on a flat surface is studied by numerical simulations, and it is 
found that a significant nutation is induced with a precession and it generates a beat, both by the slight break of its axial 
symmetry.  As the initial spin rate increases, the period of nutation becomes smaller while its amplitude does larger. 
 
 

INTRODUCTION 
 

Motions of spinning bodies are so attractive, as represented by spinning tops, that many studies have been carried out 
up to now.  However, it seems that some curious motions are left mysterious and unexplained.  In fact, it was just the 
beginning of this century when the rising of a spinning egg was explained [1], its jumping was predicted [2] and observed 
[3], and the spin reversal of celt stone (or, a rattleback) was clarified [4].  Hard-boiled eggs are basically axisymmetric 
bodies, but the celt stones slightly lose the axial symmetry, which results in a little misalignment of the celt’s principle axes 
of inertia and its axes of curvature at the point of contact with the table, and leads to the spin reversal. 

In 2012, Cross [5] introduced to the author what he called a ‘pathological egg’, which shows a freaky motion.  He 
put the “blu-tack” into the bottom of a toy egg for the axial symmetry to be lost, and spun it at a small spin rate to find its 
axis of geometrical symmetry oscillates between the horizontal and the vertical positions.  He conjectured from his 
observation that spheroids with the axisymmetric structure never show such a big nutation and that it is caused by a slight 
break of the structure’s axial symmetry. 

In the present study, we derive the Euler equation for such quasi-axisymmetric spheroids to verify the Cross’s 
conjecture by numerical simulations and study the feature of the nutation. 
 

THE EULER EQUATIONS FOR QUASI-AXISYMMETRIC SPHEROIDS  
 

   As a quasi-axisymmetric spheroid, we study the 
kind as illustrated in Figure 1.  Inside of a spheroid, 
there is a blunt mass M at its bottom like a weighted 
toy tumbler. The ellipse has the dimensions a and b, 
and the parameter c denotes the distance between the 
centre of shape and the blunt end of the mass 
distribution on the axis of symmetry.  We add a 
small mass  of point to the surface of the blunt 
end to make it slightly lose the original axial 
symmetry.   
   Provided the friction could be neglected, the 
Euler equations of order up to O( ) are derived for 
such quasi-axisymmetric bodies as in Figure 1, 
whose centre of mass is displaced a little bit off the 
axis of geometric symmetry and whose principle 
axes of inertia and its geometrical axes are 
misaligned generally.  So, the spin angle itself 
comes into the Euler equations through sinusoidal 
functions. 

The Euler equations of O(1) predicts, as a result of Moffatt, Shimomura and Branicki [6] and Shimomura [7], the 
critical angular velocity n along z axis, over which the vertical spin state is stable.  Figure 2 shows the critical angular 
velocity n as a function of = − /  in the case of / = 3/2.  Here, we should note that the spheroids with < −0.3 
is always stable even for zero spin. 
 
 
 

Fig.1 



RESULTS OF NUMERICAL SIMULATIONS 
 

     Simulations for a spheroid with = 3 , = 2 , = −0.5 spinning on a frictionless flat surface are carried out 
by numerically solving a full system of five first order ODEs using the fourth-order Runge-Kutta method with the time step 
about 5μs. The initial conditions for the angle  are = 0.01 for = 0 and = 0.4 for = 1.0, which mean the 
almost balanced states of rest for the still spheroid not spinning. After the spheroid in this almost balanced state is spun at = 0 with a spin rate n (the angular velocity along the z-axis), the variations of  in time are obtained. 
     First, it is confirmed that significant nutations are observed with a precession in the quasi-axisymmetric case of =1.0, but not in the axisymmetric case of = 0.  Second, as shown in Figure 3, it is also found that the nutations generate a 
beat, and as the initial spin rate n increases, the period of nutation becomes smaller while its amplitude does larger. 
     In the lecture, a demonstration will be available to observe the freaky motion of an egg-shaped body with a quasi-
axisymmetric structure.  
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
CONCLUSIONS 

 
   The Cross’s conjecture [5] is validated by numerical simulations of the Euler equations in the frictionless case: a slight break 
of the axial symmetry of a spinning spheroid gives rise to a significant nutation, which leads to its freaky motion with a 
precession.  It is found that the nutation generates a beat, and the period of nutation becomes smaller and its amplitude does 
larger as the initial spin rate increases. 
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Summary A new type of a passive vibration absorber is proposed and investigated as a non-linear non-holonomic system. It consists of
a semi-spherical horizontal cavity in which a ball of a smaller diameter is rolling. The system of six degrees of freedom with three non-
holonomic constraints is investigated. Instead of conventional way via Hamiltonian functional and Lagrangian procedure, the respective
differential system is derived using the Gibbs-Appel function and related steps. Comparison of both approaches has been done. The system
has an auto-parametric character and hence the semi-trivial solution and dynamic stability is investigated. Some principal post-critical
regimes are outlined and qualitatively evaluated in the resonance neighborhood. Numerical experiments are performed and physically
interpreted.

INTRODUCTION

Passive vibration absorbers are very widely used in engineering to suppress vibration induced by various environmental
resources, e.g. wind, earthquake, technology, etc. Among many commonly used types widely discussed in literature, a non-
conventional type being based on a heavy ball rolling inside a spherical cavity appeared recently. It approved many advantages
over other systems in certain conditions. Schemes of pendulum and ball absorbers are outlined in Fig. 1. Dynamic character of
a ball absorber is much more complicated and unlike conventional types its non-linear space character must be ever respected.

Figure 1: Tuned mass damper: a) pendu-
lum principle; b) rolling ball principle.

It is basically an auto-parametric system with several bifurcation points of the gen-
eralized Hopf type being very prone to achieve a local or global stability limit and
to fall into a post-critical state.

Authors tried in the past to formulate this problem by a classical way construct-
ing the Hamiltonian functional with non-holonomic constraints for the planar and
space problem. Then the respective Lagrangian governing system has been car-
ried out. The planar configuration leads to the quite transparent system, see [1],
which can be treated analytically. However, the full space approach provides the
differential system which is too complicated and its physical interpretation can be
multivalent, [2]. The system should be treated almost only numerically. There-
fore it is not very suitable for further discussion. For easier analysis of a dynamic
system is the problem formulated using Appel-Gibbs function. For theoretical
background see, e.g., [3] and others. A similar problem related with anti-seismic
protection of a building has been discussed for instance in [4]. The main advantage
of the Appel-Gibbs function consists in easier problem definition and easier more
transparent introduction of non-holonomic constraints.

GOVERNING DIFFERENTIAL SYSTEM

The Appel-Gibbs approach is used to formulate the governing non-linear differential system. The basis is the Appel
function (often referred to as an energy acceleration function) defined as follows, see for instance [3]:

S =
1

2
M(ü2Gx + ü2Gy + ü2Gz) +

1

2
J(ω̇2

x + ω̇2
y + ω̇2

z), (1)

where M - mass of the ball, J - central inertia moment of the ball with respect to point G, ω - angular velocity of the ball with
respect to the center G, uG - velocity of the ball center, x, y, z - cartesian coordinates with origin in the point A.

The function S allows to write the Appel differential system:

∂Sr/∂ω̇x = Fx, ∂Sr/∂ω̇y = Fx, ∂Sr/∂ω̇z = Fx, (2)

where Sr is the reduced Appel function where only terms with 2nd time derivatives (üG, ω̇) are kept, FG - external force vector
acting in G. Vector FG can be determined using the virtual displacements principle. The system (2) should be completed by
three non-holonomic constraints including a conjecture of non-sliding contact between the ball and cavity:

u̇Gx = u̇Ax − ρ(ωy(uCx −R)− ωzuCy), u̇Gy = u̇Ay − ρ(ωzuCx − ωx(uCz −R)), u̇Gz = −ρ(ωxuCy − ωyuCx) (3)
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where ρ = 1− r/R, r - ball radius, R - cavity radius. Final form of the differential system reads:

ω̇x = L [ üAy(uCz −R)− guCy + (R− r)ωn(uCyωz − (uCz −R)ωy)] ,
ω̇y = L [−üAx(uCz −R) + guCx − (R− r)ωn(uCxωz − (uCz −R)ωz)] ,
ω̇z = L [üAxuCy − üAyuCx + (R− r)ωn(uCxωy − uCyωx)] ,

L = ρ/((R− r)2 + 0.4r2), ωn = [ωx, ωy, ωz] · n,

(4)

where üA = [üAx, üAy, 0]
T - vector of external acceleration, uC - displacement in the contact of the ball with cavity. The

system Eqs (4) should be solved simultaneously together with kinematic constraints following from non-holonomic constraints
Eqs (3):

u̇Cx = −ρ(ωy(uCx −R)− ωzuCy), u̇Cy = −ρ(ωzuCx − ωx(uCz −R)), u̇Cz = −ρ(ωxuCy − ωyuCx) (5)

The Eqs (4, 5) make up the system of six differential equations with six unknowns ω,uC .

NUMERICAL EXPERIMENTS

A large program of numerical experiments with Eqs (4, 5) has been performed regarding general and special configura-
tions. A sample solution is plotted in Fig. 2. It represents free movement without external excitation and initiated by initial
conditions. The ball in t = 0 is placed at angle α = 0.1 above point A in the vertical plane declined from (xz) plane in
γ = 1.0. Damping ratios δ1 = 0.21, δ2 = 0.22. Plots ϕ, θ, ψ are respective Euler angles evaluated as quasi-coordinates from
parameters of the above solution to enable a comparison with Lagrangian approach. Coincidence was perfect. Nevertheless a
number of additional configurations have been examined and compared with results obtained earlier, e.g. [2], using analytical
and numerical procedures. For instance: rolling the ball on a horizontal plane (R → ∞), forced movement of the ball in the
cavity in a horizontal plane, spin processes (ωn 6= 0) and its independency on other coordinates, limit cycles, etc.

Figure 2: Sample solution of governing system in quasi-coordinates.

CONCLUSIONS

The heavy ball in a spherical cavity used as a TMD has been investigated. Unlike other systems it must be modeled in the
non-linear domain. Any attempt for a linear approach failed completely. Appel-Gibbs formulation of a non-holonomic system
dynamics approved excellent efficiency in comparison with a conventional way being based on Lagrangian differential system
and non-holonomic constraints adjoined via indefinite Lagrange multipliers. Nevertheless, it reveals that the Lagrangian
procedure can be defined as a special case of the Appel-Gibs formulation for a certain choice of quasi-coordinates, which,
however, are not very convenient for detailed investigation. A simple model of the damping mechanism has been incorporated
into the Appel-Gibbs system.
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Summary Predicting the escape from a potential energy well is a universal exercise, governing myriad engineering and natural systems,
e.g., buckling phenomena, ship capsize, and human balance. Criteria and routes of escape have previously been determined for 1 degree
of freedom (DOF) mechanical systems with time-varying forcing, with reasonable agreement with experiments. When there are 2 or more
DOF, the situation becomes more complicated, and the theory of tube dynamics provides the criteria for which phase space states will escape.
We report the validation of the tube dynamics theory for a 2 DOF experiment of a ball rolling on a surface. This experimental validation
establishes a theoretical framework which can be exploited for purposes of control, e.g., avoiding or triggering escape or transition between
metastable states in mechanical systems.

INTRODUCTION

Our objective is to study routes of escape from a potential well in an experimental 2 degree of freedom system. For this
aim we study the chaotic motion of a rolling ball on a surface (H(x, y)) which has 4 potential wells, one in each quadrant of
the (x, y) plane, Fig. 1(a)(b) [1]. We adopt a global geometric view of the motion analysis, using techniques which have been
fruitful in other areas of mechanics, such as celestial mechanics [2] and physical chemistry [3]. The equations of motion are
obtained from the Lagrangian; L(x, y, ẋ, ẏ) = T (x, y, ẋ, ẏ)− U(x, y). The kinetic energy (translational plus rotational for a
ball rolling without slipping) is,

T (x, y, ẋ, ẏ) =
1

2

7

5

(
ẋ2 + ẏ2 + (Hxẋ+Hy ẏ)2

)
(1)

and the potential energy is U(x, y) = gH(x, y), where,

H(x, y) = α(x2 + y2)− β(
√
x2 + γ +

√
y2 + γ)− ξxy +H0. (2)

We use parameter values (α, β, γ, ξ) = (0.07, 1.017, 15.103, 0.00656) in the appropriate units, along with H0 = 12.065 cm
and g = 981 cm/s2. The ball’s mass factors out and is not included.

Small damping is present, but over short time-scales, the motion approximately conserves energy, and the conservative
dynamics are the dominant contributor to transition between wells. LetM be the energy manifold given by setting the energy
integral (E(x, y, vx, vy) = T (x, y, ẋ, ẏ)+U(x, y)) equal to a constant, i.e.,M(E) = {(x, y, vx, vy) ⊂ R4 | E(x, y, vx, vy) =
E} where E is a constant. The projection of the energy manifold onto configuration space, the (x, y) plane, is the region of
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Figure 1: (a) Surface height H(x, y). (b) Experimental apparatus. (c) For a fixed energy, E, above a critical value Ee, the permissible region (in white) has
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energetically possible motion for a ball of energy E, M(E) = {(x, y) | U(x, y) ≤ E}. The zero velocity curves are the
boundary of M(E) and are the locus of points in the (x, y) plane where the kinetic energy vanishes. The ball’s state is only
able to move on the side of this curve where the kinetic energy is positive, shown in white in Fig. 1(c). The critical energy of
escape, Ee, is the same as the energy of the saddle points in each neck (which are all equal), and divides the global behavior
into two cases, according to the sign of ∆E = E − Ee:

Case 1, ∆E < 0 : the ball is safe against escape since potential wells are not energetically connected.
Case 2, ∆E > 0 : “necks” between all the potential wells open up around the saddle points, permitting the ball to move

between the two potential wells (e.g., Fig. 1(c) shows this case).

TUBE DYNAMICS: TUBES LEADING TO ESCAPE
Within a given potential well the set of all states leading to escape to a different potential well (or having just escaped a

different potential well) are within a cylindrical manifold or tube, as shown in Fig. 1(c). This tube bounds the set of all states
for a fixed energy which will soon reach, or have just passed from, a different potential well [2, 3] (nested energy manifolds
will have correspondingly nested tubes). For each E, the boundary of the tubes in phase space (or more precisely, within
M(E)) are the stable and unstable manifolds of an unstable periodic orbit of the same energy residing in the neck connecting
the adjacent wells. The resulting geometric framework for understanding escape and transition we term ‘tube dynamics’.

EXPERIMENTAL RESULTS
We use a Poincaré section which is selected based on the symmetry of the surface and the equations of motion, and which

are best described in polar coordinates (r, pr); U±
1 = {(r, pr) | θ = π

2 , sign(pθ) = ±1}. Taking Poincaré sections of 120
experimental trajectories (e.g., the typical trial shown in Fig. 2(a)) should reveal the tube cross-sections. We first determine the
instantaneous ∆E for every point on the Poincaré section U1, so we can consider only narrow ranges of ∆E, to approximate
a single energy manifold. In Fig. 2(b) we see an example of the Poincaré section U+

1 for all intersections in the energy
range 200 < ∆E < 300 (cm/s)

2. The intersection points which are about to transition from quadrant 1 to 2, determined by
following the experimental trajectory forward in time, and are marked with red circles.
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erratically between the ‘wells’. Some height iso-contours are also shown, in light gray. (b) Histogram of energy for crossings of the U+

1 Poincaré section
(blue: ∆E < 0, gray: ∆E > 0, red: transitioning). (c) On U+

1 , we consider only a narrow range of energy (∆E ∈ [0, 100 (cm/s)2]) and label intersecting
trajectories by their recent past or future; black: no transition, red: recent transition to quadrant 1 from quadrant 2 and magenta: imminent transition from
quadrant 1 to 4. (d) Fraction of transitioning trajectories as a function of energy above the saddle.

CONCLUSIONS
The transitioning points at each energy are all found to be within the theoretical tube boundary (blue curve); as in, e.g., Fig.

2(b). Furthermore, the fraction of transitioning trajectories increases linearly with ∆E, Fig. 2(c), as expected theoretically
from arguments related to the phase space flux over a saddle [4]. This experimental validation of tube dynamics establishes a
theoretical framework which can be exploited for purposes of control, e.g., avoiding or triggering escape or transition between
metastable states in mechanical systems. SDR thanks the NSF for partially funding this work through grant 1537349.
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Summary In this work we demonstrate that the addition of properly-tuned nonlinearities to a nonlinear system can increase the range over
which a specific resonance responds linearly. Specifically, we seek to enforce two important properties of linear systems, namely the force-
displacement proportionality and the invariance of resonance frequencies. Theoretical findings are validated through numerical simulations
and experiments.

Devices used for sensing, imaging and detection are usually required to exhibit linear behavior in their dynamic range.
However, nonlinearity is a frequent occurrence in physical and engineering applications. Nonlinearity may result in plethora
of dynamic phenomena which can drastically limit the performance of the devices [1]. One well-established approach for en-
forcing linear behavior is feedback linearization, which uses feedback control to cancel the undesired nonlinearities. However,
feedback linearization requires an accurate monitoring of the system’s states, an actuator and an external source of energy,
which complicates its practical realization.

We propose a fully passive, resonance-based approach for dealing with undesired nonlinearities in mechanical systems.
Properly-tuned nonlinearities are introduced in the nonlinear system to increase the range over which a specific resonance
responds linearly. Specifically, we seek to enforce two important properties of linear systems, namely the force-displacement
proportionality and the invariance of resonance frequencies. Our approach relies on a principle of similarity [2] which states
that the added nonlinearity should possess the same mathematical form as that of the original nonlinear system. This principle
of similarity enables us to extend the linear regime over a larger range of motion amplitudes.

We consider an n-degree-of-freedom (DoF) mechanical system with concentrated nonlinearities subject to harmonic ex-
citation:

M̃ẍ + C̃ẋ + K̃x + b̃nl (x) =
√
εṽf cosωt, (1)

where ε is a small bookkeeping parameter. The vector b̃nl (x) contains both the original and additional nonlinearities, which
are of polynomial nature. According to the principle of similarity [2], the additional nonlinearities should possess the same
exponent as the original nonlinearity. Without loss of generality, cubic nonlinearities are considered herein.

The objective of this study is to linearize one specific resonance of system (1) through the proper design of the additional
nonlinearities. To this end, the nonlinear normal mode (NNM) theory is exploited, because nonlinear resonances are known
to occur in the neighborhood of NNMs [3]. First, we transform Eq. (1) into modal space through the change of variables
x = Uy where U contains the normal modes of the underlying linear system, and we define normalized modal displacements,
q = y/ (

√
εf), such that

q̈ + Cq̇ + Ωq + bnl (x) = v cosωt, (2)

where Ω = diag
[
Ω2

j

]
j=1,n

, C = [cij ]i,j=1,n and bnl (x) =
[
. . . , εf2

∑
h1+...+hn=3 bjh1...hn

∏n
i=1 q

hi
i , . . .

]T
. bnl (x)

is the projection of b̃nl (x) in modal space, thus, even if b̃nl (x) is sparse, bnl (x) can be fully populated. bjh1...hn
are scalars,

where j indicates the mode number and varies according to the rows of bnl (x), while subscripts h1 . . . hn are in accordance
with the exponents of the modal coordinates of the corresponding terms. We assume that the system features no internal
resonances, i.e., natural frequencies Ωj are incommensurate.

The NNMs are now calculated by removing damping and forcing terms in Eq. (2). Following a standard perturbation tech-
nique and limiting the solution to the fundamental harmonic, the approximate solution has the form q =

(
q0 + εq1 + O

(
ε2
))

sin
((
ω0 + εω1 + O

(
ε2
))

t
)
, where q0 = [· · · , qj0, · · · ]T and q1 = [· · · , qj1, · · · ]T. Imposing resonance condition at order

ε0 and solving terms of order ε1 yields for the lth NNM

qj0 = 0, qj1 = −3

4

bj0...3...0q
3
l0

Ω2
j − Ω2

l

for j = 1, n, j 6= l, ω0 = Ωl, ω1 =
3

4

bl0...3...0q
2
l0

2Ωl
. (3)

qj0 and qj1 (j 6= l) represent the influence of the nonresonant modes on the lth mode. ω1 is the variation of the lth natural
frequency with respect to the amplitude of oscillation ql0. Thus, if bl0...3...0 > 0 (< 0), the resonance is of hardening
(softening) type.

In order to relate the undamped, unforced NNM motions to the resonances of the damped, forced system, the energy
balance criterion [4] is utilized: ∫ T

0

ẋ(t)TC̃ẋ(t)dt =

∫ T

0

ẋ(t)T√εṽf cosωt dt, (4)
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where T is the period of motion. Eq. (4) indicates that at resonance the energy dissipated by damping over a full period is
equal to the input energy. Inserting the approximate solution for q in Eq. (4) gives

ql0 =
vl

Ωlcll
, ql1 =

Ωlql0

(∑n
j=1
j 6=l

cljqj1 +
∑n

j=1
j 6=l

cjlqj1

)
−
∑n

j=1
j 6=l

qj1vj

vl − 2Ωlql0cll
+

ω1q
2
l0cll

vl − 2Ωlql0cll
(5)

and xk =
√
εf
(
uklql0 + ε

(∑n
j=1 ukjqj1

)
+ O

(
ε2
))

. Eqs. (3) and (5) completely define the lth resonance of system (1) and
form the basis of the design procedure developed in this paper. Based on these equations, force-displacement proportionality
for coordinate xk of the lth resonance can simply be enforced through

∑n
j=1 ukjqj1 = 0. Similarly, invariance of the lth

resonance frequency can be enforced through ω1 = 0, such that the lth natural frequency ωl ≈ ω0. Since these two conditions
involve the n coefficients of the nonlinear terms bj0...3...0, they can be used to design the additional nonlinearities in function
of the original ones.

An experimental set-up is utilized to demonstrate the proposed idea. It comprises a cantilever beam made of steel to which
a doubly-clamped beam is connected (Fig. 1a). A thin steel lamina located at the free end of the cantilever and the doubly-
clamped beam itself generate two hardening nonlinearities, which can be modeled using cubic springs. A two-DoF reduced
model of the system was identified experimentally. From this model, applying the aforementioned procedure, the nonlinearity
of the doubly-clamped beam was designed, such that the second resonant peak satisfies force-displacement proportionality.
In Fig. 1b, solid and dashed lines depict the envelopes of the normalized amplitude of the second resonant peak, respectively
with and without the nonlinearity related to the doubly-clamped beam. The red circles depict the measured resonant peaks.
These circles are almost aligned horizontally, which translates the fact that the displacement of the cantilever beam around
the second resonance is proportional to the amplitude of the harmonic forcing. This condition is not verified if the additional
nonlinearity is not included (dashed line).

Successively, in order to compensate the frequency shift of the first resonance, due to the hardening nonlinearities, a couple
of permanent magnets was placed on the doubly-clamped beam and two others were placed symmetrically next to them on a
fixed support. The two couples of magnets are mutually attractive in order to generate a softening nonlinearity. The amplitude
of this nonlinearity was controllable by varying the distance between the two magnets. Choosing the appropriate distance,
according to the analytical procedure proposed, we were able to linearize the frequency backbone of the first resonance, as
illustrated in Fig. 1c (solid black lines). Dashed red lines in Fig. 1c show the frequency response of the system if the nonlinear
magnetic force is neglected. The blue circles depict the resonance peaks measured experimentally.
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Figure 1: (a) experimental set-up. (b) first part of the experiment, envelops of resonant peak for different forcing amplitude;
dashed line: nonlinearity of doubly-clamped beam neglected, solid line: nonlinearity of doubly-clamped beam included, red
circles: experimental results. (c): second part of the experiment, frequency response without (dashed red lines) and with (solid
black lines) magnetic nonlinear force; blue circles: experimental results.
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Summary Passage through and capture into the resonance of a rigid rotor with the attached self-balancing device and driven by an induction 

engine of limited power is investigated using an averaging procedure for a partially strongly damped system. The approach is closely related 

to a singular perturbation technique. It is demonstrated that the system’s dynamics can be reduced on the slow manifold to three first-order 

differential equation predicting both stationary and transient solutions of the original system. Solutions captured into the resonance differ 

strongly from those in the system without self-balancing devices. The velocity of the rotor oscillates slowly around a certain value while 

the resonant vibrations of the rotor’s axis are strongly modulated in the vicinity of the resonance. The approximate results are compared 

with the direct numerical simulations of the full system and demonstrate very good accuracy everywhere except in the small vicinity of the 

bifurcation point. 

 
INTRODUCTION 

 

   Self-balancing devices providing the perfect balancing of rigid rotors in the overcritical speed range is well known [1, 2]. 

However in the undercritical domain these devices maximize the overall unbalance which leads to significantly increasing 

amplitudes of vibrations or even to capture into the resonance while accelerating or decelerating the rotor. The last effect (also 

known as the Sommerfeld effect) is well analyzed and easy to understand for simple rotors [3]. Many important mathematical 

results on passage through and capture into the resonance have been achieved for weakly damped systems [4]. The significant 

complexity of this analysis even in two-frequency systems is connected to the appearance of the so-called semi-slow 

oscillations [5]. However, a rotor with a self-balancing device has at least four frequencies, which makes the appropriate 

analysis extremely elaborate [6]. On the other hand, damping in technical systems is usually not too small. The corresponding 

asymptotic approach suggested in [7] enables efficient analysis of strongly damped systems.  

   In the present paper the last approach is applied to investigation of the strongly nonlinear interaction between the rotor 

with self-balancing device mounted on a linear carrier system and the induction motor while passing through the main 

resonance. Especial attention is payed to the slowly modulated solutions arising in case of capturing resonance. 

 

MINIMAL MODEL OF A ROTOR WITH A SELF-BALANCING DEVICE DRIVEN BY AN INDUCTION 

MOTOR 

 

   The simplest model of the rotor with the attached self-balancing device is shown in figure 1a.  

 

 
 Figure 1. (a) Model of the rotor with self-balancing device; (b) the torque characteristics of the induction motor.


The rotor of mass M and mass moment of inertia Jr is elastically suspended by a spring-damper of a certain stiffness c and 

damping r. Its center of mass has an offset  relative to the rotation axis. Two pendulum balancers of mass m, mass 

moment of inertia Jp and length r are placed on the axis of rotation of the rotor. A rotational damping  is applied between 

the rotor and each of the balancers. The rotor is excited by an induction motor of limited power which static characteristics 

is displayed in figure 1b.  



   Equations of motion of the system are as follows: 
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ASYMPTOTIC ANALYSIS OF THE PASSAGE THROUGH THE RESONANCE AND COMPARISON WITH 

NUMERIC SIMULATIONS 

 

   Approximate asymptotic solutions for these equations have been obtained using averaging technique for strongly 

damped systems [7] under the assumption that the unbalance of the rotor 2/Jr and the mass ratio m/M are small 

parameters of the same magnitude order. Dimensionless damping coefficients are assumed to be not small. The whole 

dynamics of the system can be reduced to three first order differential equations for the velocity of the rotor and two phase 

differences between the pendulum balancers and the rotor. Two examples of the transient solutions obtained by solving the 

averaged equations are shown in comparison to the numerical simulations of the full system (1) are presented in figure 2. 

 
Figure 2. (a) Rotation speed of the rotor while passing through resonance (blue lines) and for capture into the resonance (red lines) (b) 

amplitude of the vibrations of the rotor’s axis; numerical results – solid lines, analytical results – dashed lines. 

 

   Stationary capture into the resonance is not possible in a wide range of the system’s parameters although the rotor speed 

does not reach the objected value (figure 1, red curves). Instead of the stationary solutions usual for Sommerfeld effect, 

periodic oscillations of the rotor speed are taking place accompanied by the slowly modulated resonance vibrations of the 

rotor axis attached to the carrier system (figure 2, red curves). In case of the successful passage through the resonance (blue 

curves) vibration of the system can be also slowly modulated. The attraction basin for the captured solutions depends strongly 

on the initial orientation of the pendulum balancers. The qualitative and quantitative discrepancies between the analytical and 

the numerical results are quite small. 

 

CONCLUSIONS 

 

   Passage through and capture into the resonance are investigated for the unbalanced rotor with the attached self-balancing 

device. The system is driven by an induction engine and mounted on a linear carrier. Averaging for strongly damped systems 

appears to be a very efficient analytical method enabling to identify the slow manifold of the system and to obtain accurate 

analytical approximations. This method can be used for analysing a wide class of strongly nonlinear systems operating close to 

resonance in presence of significant dissipation. 
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Summary The dynamics of a visco-elastic belt drive is investigated after loss of stability of its steady configuration. It is well known, that
for sufficiently large drive speeds the steady configuration generically loses stability by either a zero eigenvalue or a pair of purely imaginary
eigenvalues. Using bifurcation theory we investigate the branching behaviour and stability of the bifurcating solution. Special attention will
be paid to the influence of viscous material damping on the stability boundary and the postcritical branching behaviour.

INTRODUCTION

A stable steady configuration of a belt drive is an important operating requirement in many industrial applications. The
stability of the steady state of a stretched cable with bending stiffness and different boundary conditions at the endpoints has
already been derived in [1]. It is shown, that after the transport speed exceeds the wave speed, either a zero eigenvalue occurs or
two pairs of purely imaginary eigenvalues collide and leave the imaginary axis. This scenario is well known as “Hamiltonian
Hopf Bifurcation” or as “Trojan Bifurcation” ([2, 3]). By calculating the Normal Form equations at the bifurcation point, one
can determine whether the bifurcating periodic solution branches are stable or unstable.

Since the Hamiltonian Hopf bifurcation applies only to conservative systems, but in real world applications there will
always occur non-conservative forces like damping, we either have to include non-conservative perturbation terms in the
nonlinear analysis of the double imaginary eigenvalues, or introduce these perturbations already in the initial setup.

Frequently it has been observed, that small viscous damping forces may considerably influence the stability properties
of oscillatory systems. Although it leads to a decay of the kinetic energy, it sometimes destabilizes the equilibrium state,
especially, if two pairs of eigenvalues close to the imaginary axis approach each other.

Usually the tension forces for belt drives are assumed sufficiently large, such that the belt moves along a straight line
during normal operation. If for some reason the tension force is considerably smaller, the belt may display a considerable sag.
In this case the oscillations around the steady configuration contain also axial components and it becomes necessary to study
two-dimensional motions of the system.

MODELLING AND TREATMENT OF THE BELT DRIVE

We investigate an inextensible, unshearable visco-elastic cable with bending stiffness, which travels with constant speed
V between the eyelets. First we present the equations of planar motion in an Eulerian frame using the fundamental equations
of Kirchhoff rods. Assuming a constant velocity of the belt, we first calculate the equilibrium configuration.

Stability boundaries of the equilibrium configuration
Starting with the known results for the straight, undamped configuration we study the influence of viscous damping and

gravity on the equilibrium state and on the distribution of eigenvalues and stability boundaries. It should be noted, that
in this case also the equilibrium configuration depends on the damping, because the belt’s particles are not at rest in the
equlibrium configuration, but move along the center line with constant speed. Therefore also a steady sagged configuration
causes damping forces. Since the damping coefficient is usually very small, the governing equations for the steady state and
the eigenmodes are singularly perturbed boundary value problems.

Preliminary results indicate, that already the introduction of a very small viscous damping changes the spectral properties
considerably: Without damping most eigenvalues lie on the imaginary axis. Variation of the drive speed into the critical range
causes some eigenvalues to move into the right half plane. As soon as some tiny amount of damping is added to the model,
almost all eigenvalues reside in the left half plane, far away from the imaginary axis. A few eigenvalues, corresponding to low
mode numbers, may still cross the imaginary axis at some critical values of the drive speed.

Bifurcations of the equilibrium configuration
Depending on the critical eigenvalues at the stability boundaries, we investigate 3 different bifurcation problems:

1. For a zero eigenvalue we calculate the bifurcating branch of steady solutions. Since in the undamped problem this
zero eigenvalue occurs, when a pair of imaginary eigenvalues approaches the origin, the bifurcation point is actually a
Bogdanov-Takes bifurcation with a non-semisimple pair of zero eigenvalues. In the absence of dissipative forces the
investigation of that bifurcation reduces to the treatment of the ordinary steady state bifurcation.
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2. For a double pair of purely imaginary eigenvalues a Hamiltonian Hopf bifurcation has to be investigated. Proceeding as
in [3], we calculate the Normal Form equation and derive the branching conditions and stability properties of a family
of periodic solutions. In the conservative case the bifurcating oscillations are either elliptic or hyperbolic, depending on
a certain coefficient, which is calculated in the Normal Form procedure.

At this stage it is also possible to consider a small perturbation by non-conservative forces. This perturbation usually
destroys almost all periodic solutions and leaves distinct periodic orbits, which are either stable or unstable. The
situation is quite similar to the Van der Pol equation, where for ε 6= 0 only the trivial state and the periodic orbit of
radius 2 survive.

3. The generic Hopf bifurcations occur at the stability boundary of the damped system. Due to the sag of the equilibrium
configuration the periodic oscillations have vertical and horizontal components.

CONCLUSIONS

In this talk we extend the available results about instabilities of a driven belt in two directions: We consider the influence
of viscous damping on the equilibrium configuration and its spectral properties. Second we allow a moderate sag of the
equilibrium state.
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Summary  We present an electrostatic MEMS actuator exhibiting superharmonic resonances as well as chaotic behaviour in soft vacuum, 500 
mTorr. The displacement and velocity of the electrostatic actuator are measured with a laser vibrometer. These responses are analysed and 
presented in the time and frequency domains. 
 

INTRODUTION 
 

Electrostatic actuator have been reported to exhibits diverse nonlinear behaviors, such as superharmonic resonances [3] 
and aperiodic motions [1, 2, 4]. In this paper, we demonstrate a strange attractor that is experimentally observed when an 
electrostatic microplate actuator is excited by a biased harmonic signal in vacuum. 
 

FABRICATION 
 

The actuator is fabricated in the PolyMUMPs process, FIG. 1-(a). It consists of two cantilever beams (100×5×1.5 µm) 
supporting a microplate (90×30×1.5 µm) equipped with three dimples (3×3×0.75 µm), green colored in the top and fronts 
views of FIG 1-(b) and (c), on each side of the microplate. The bottom electrode, made in the Poly 0 layer, is narrower than 
the microplate, so that the dimples can land on the insulating Si3N4 layer. This design is adopted to prevent dielectric charging 
and electrical short between the microplate and the bottom electrode when the microplate lands on the substrate. 
 

EXPERIMENT 
 

To reduce squeeze film damping and increase the quality factor of the actuator, we perform all experiment inside a vacuum 
chamber at soft vacuum, 500 mTorr. The bottom electrode is electrically connected to a function generator, while the 
microplate is grounded. This test set-up minimizes charge leakage from the microplate to the Si3N4 layer during contact. The 
velocity and displacement of the microplate mid-point are measured using a laser Doppler vibrometer. 

When excited by a harmonic signal, 5 Vdc, and 2 Vpp (peak-to-peak) at f = 10 kHz, the actuator exhibits a forced harmonic 
response as seen in FIG. 2. However, when the actuator is excited by the same waveform at f = 33 kHz, superharmonic 

 
 

 

FIG. 1-(a) Top view of the actuator FIG. 1-(b) Magnified view of the plate FIG. 1-(c) Cross-sectional view 

  

FIG. 2. Forced response of the actuator at 10 kHz  FIG.3. Superharmonic resonance at 33 kHz 



resonance of order three is observed in FIG. 3. Superharmonic resonances of order four and five were also observed at 25 kHz 
and 20 kHz as well as the superharmonic resonance of order two at 46 kHz and 50 kHz. 

The phase portrait of the actuator excited with the same waveform shows a stable period-one periodic orbit in the vicinity 
of primary resonance, FIG. 4-(a), at 79 kHz. The phase portraits at 81 kHz and 90 kHz, FIGs. 4-(b) and (c), respectively, show 
that periodicity is lost to be replaced with an aperiodic chaotic attractor [2, 4]. The resulting strange attractor evolves from 
filling a limited area in the phase-space to a banded structure, as the excitation frequency increases from 81 kHz to 90 kHz.  

The FFTs of the stable periodic orbit at f = 79 kHz are, FIG. 5, show a typical electrostatic response with peaks at the 
excitation frequency, 79 kHz, and its second harmonic, 158 kHz. The FFTs of the attractor at f = 81 kHz show elevated noise 
floors [2, 4] over a wide frequency range (wide-based peaks) as opposed to the flat noise floors of the stable orbit. Phase 
portraits that fill (wander in) areas of phase-space as well as wide-based peaks are typical characteristics of chaos.  

 
CONCLUSIONS 

 
We experimentally observed four superharmonic resonances as well as strange attractors, aperiodic motion confined to closed 

regions of phase-space, in the response of an electrostatic actuator in soft vacuum. The actuator demonstrates a softening 
nonlinearity and the attractors appear to belong to its primary resonance. The FFTs corresponding to the aperiodic attractors display 
wide-based peaks confirming that those attractors are chaotic. 
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(a) (b) (c) 

FIG. 4. Phase portraits of the actuator response to the harmonic signal, sin (2π f t) + 5 [V], at the frequencies: (a) f = 79 kHz, (b) f = 81 
kHz, and (c) f = 90 kHz. The negative slope of the phase portraits is due to phase delay in the vibrometer’s velocity decoder with respect 
to the displacement decoder. 

  

FIG. 5. FFTs of the measured velocity and displacement of the 
microplate at f = 79 kHz show flat noise floors. 

FIG. 6. FFTs of the microplate excited at f = 81 kHz show elevated 
noise floors over a wide frequency range. 



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

DIFFERENCE COMBINATIONAL INTERNAL RESONANCE IN NONLINEAR VIBRATIONS
OF THIN PLATES

Marina Shitikova∗1, Yury Rossikhin1, and Jean Claude Ngenzi2

1Research Center on Dynamics of Solids and Structures, Voronezh State University of Architecture and Civil
Engineering, Voronezh, Russia
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Summary In the present paper, the dynamic response of a nonlinear plate embedded into a fractional derivative viscoelastic medium is
studied by the method of multiple time scales under the condition of the combinational internal resonances of difference type using a newly
developed approach resulting in uncoupling the linear parts of equations of motion of the plate. The influence of viscosity on the energy
exchange mechanism between interacting nonlinear modes has been analyzed.

PROBLEM FORMULATION

It is well known that the nonlinear vibrations of plates are an important area of applied mechanics, since plates are used as
structural elements in many fields of industry and technology [1]. Moreover, nonlinear vibrations could be accompanied by
such a phenomenon as the internal resonance, resulting in multimode response with a strong interaction of the modes involved
[2] accompanied by the energy exchange phenomenon.

Nonlinear free vibrations of a thin plate embedded into a fractional derivative viscoelastic medium have been considered
recently [3] for the case when the plate motion is described by three coupled nonlinear differential equations. It has been shown
that the occurrence of the internal resonance results in the interaction of modes corresponding to the mutually orthogonal
displacements. As this takes place, the displacement functions are determined in terms of eigenfunctions of linear vibrations.
The procedure resulting in decoupling linear parts of equations has been proposed with the further utilization of the method
of multiple scales for solving nonlinear governing equations of motion, in so doing the amplitude functions are expanded
into power series in terms of the small parameter and depend on different time scales. It has been shown that the type of the
resonance depends on the order of smallness of the fractional derivative entering in the equations of motion of the plate.

In the recent paper [3] it has been shown that the following three combinational resonances could occur during vibrations
of a free supported non-linear thin rectangular plate:

ω1 + ω2 = 2ω3, (1)
ω1 − ω2 = 2ω3, (2)
ω2 − ω1 = 2ω3, (3)

where ω1 and ω2 are some particular natural frequencies of in-plane vibrations, and ω3 is one of the natural frequencies of the
out-of-plane modes.

Reference to (1)-(3) shows that the combinational resonance (1) is of the additive type, while combinational resonances
(2) and (3) are of the difference type. In the present paper, we will focus our attention on the qualitative analysis of the case of
the difference ω1 − ω2 = 2ω3 combinational internal resonance, when two different modes of in-plane vibrations are coupled
with a certain mode of out-of-plane vibrations.

Difference combinational resonance ω1 − ω2 = 2ω3

Now let us consider the case of the difference combinational resonance (2), when ω1−ω2 = 2ω3. Then the set of equations
describing the modulations of amplitudes ai and phases ϕi (i = 1, 2, 3) has the following form:(

a2
1

).
+ s1a

2
1 = −2ω−1

1 ζ1k6a1a2a
2
3 sin δ, (4)(

a2
2

).
+ s2a

2
2 = 2ω−1

2 ζ2k7a1a2a
2
3 sin δ, (5)(

a2
3

).
+ s3a

2
3 =ω−1

3 (ζ13k6+ζ23k7)a1a2a
2
3 sin δ, (6)

ϕ̇1 =
1
2
σ1 + ω−1

1 ζ1k5 a
2
3 + ω−1

1 ζ1k6a
−1
1 a2a

2
3 cos δ, (7)
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ϕ̇2 =
1
2
σ2 + ω−1

2 ζ2k6 a
2
3 + ω−1

2 ζ2k7a1a
−1
2 a2

3 cos δ, (8)

ϕ̇3 =
1
2
σ3 +

1
2
ω3

−1ζ13k7a
2
1 +

1
2
ω3

−1ζ23k8a
2
2 +

1
2
ω3

−1 (ζ13k2 + ζ23k4) a2
3

+
1
2
ω3

−1 (ζ13k6 + ζ23k7) a1a2 cos δ, (9)

where the phase difference has the form δ = 2ϕ3 + ϕ2 − ϕ1, and

si = µiτ
γ
i ω

γ−1
i sinψ, σi = µiτ

γ
i ω

γ−1
i cosψ, ψ =

1
2
πγ (i = 1, 2, 3). (10)

Reference to (10) shows that damping coefficients si depend of natural frequencies of the coupled modes ωi and the
fractional parameter γ, i.e., the order of the fractional derivative.

Thus, during free vibrations of the plate with internal resonances three regimes can be observed: stationary (absence of
damping at γ = 0), quasi-stationary (damping is defined by an ordinary derivative at γ = 1), and transient (damping is defined
by a fractional derivative at 0 < γ < 1).

For a particular case at Σ = 0 and s1 = s2 = s3 = s, introducing a new function representing a relative displacement
ξ(T2), it is possible to obtain two first integrals of nonlinear set of Eqs. (4)-(9), one of which gives the energy distribution,
while the other results in the stream function

G(ξ, δ) = (c3 + ξ)
√

(c1 − ξ)(c2 + ξ) cos δ − 1
2
K1b

−1(c1 − ξ)2 +
1
2
K2b

−1(c2 + ξ)2

+
1
2
K3b

−1(c3 + ξ)2 = G0(ξ0, δ0), (11)

where c1, c2, and c3 are constants of integration such that 4c1 + 2c2 + 2c3 = 1, and Ki are certain coefficients.
The stream-function allows us to construct phase portraits in terms of two functions, ξ and δ. The phenomenological

analysis carried out for the combinational internal resonance of the difference type with the help of the phase portraits con-
structed for different magnitudes of the plate parameters reveals the great variety of vibrational motions: stationary vibrations,
two-sided energy exchange between two subsystems under consideration, and onesided energy interchange resulting in the
complete one-sided energy transfer. Under the presence of small viscosity all regimes attenuate with time.

CONCLUSIONS

The proposed analytical approach for investigating the damped vibrations of a nonlinear plate in a fractional derivative
viscoelastic medium subjected to the combinational internal resonances of the difference type has been possible owing to the
new procedure suggested recently in [3], resulting in decoupling linear parts of equations with further utilization of the method
of multiple scales for solving nonlinear governing equations of motion.

The phenomenological analysis carried out for the difference combinational internal resonance using the phase portraits
constructed for different magnitudes of the plate parameters reveals the great variety of vibrational motions: stationary vibra-
tions, two-sided energy exchange between two subsystems, and complete one-sided energy transfer. The analysis of the phase
portraits for various oscillatory regimes shows that they contain closed and non-closed streamlines separated by the rectilinear
and curvilinear separatrixes, along which analytic solutions have been found, which define the irreversible energy transfer
from one subsystem into another and are inherently soliton-like solutions in the theory of vibrations.
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Summary This work concerns the dynamics of nonlinear systems that are subjected to delayed self-feedback. Perturbation methods applied
to such systems give rise to slow flows which characteristically contain delayed variables. We consider two approaches to analyzing Hopf
bifurcations in such slow flows. In one approach, which we refer to as approach I, we follow many researchers in replacing the delayed
variables in the slow flow with non-delayed variables, thereby reducing the differential-delay equation (DDE) slow flow to an ordinary
differential equation (ODE). In a second approach, which we refer to as approach II, we keep the delayed variables in the slow flow. By
comparing these two approaches we are able to assess the accuracy of making the simplifying assumption which replaces the DDE slow
flow by an ODE.

INTRODUCTION

When investigating a differential-delay equation (DDE) by use of a perturbation method, one is often confronted with a
slow flow which contains delay terms. It is usually argued that since the parameter of perturbation, call it ε, is small, ε << 1,
the delay terms which appear in the slow flow may be replaced by the same term without delay, see e.g. [1, 2, 3]. The purpose
of the present paper is to analyze the slow flow with the delay terms left in it, and to compare the resulting approximation with
the usual one in which the delay terms have been replaced by terms without delay.

EXAMPLE 1: DUFFING EQUATION

For example take the following version of the Duffing equation with delayed self-feedback.

ẍ+ x = ε
[
−αẋ− γx3 + k xd

]
(1)

where xd = x(t − T ), where T = delay. We treat eq.(1) with the two variable perturbation method, where x(ξ, η), where
ξ = t and η = εt. We expand x = x0 + εx1 +O(ε2) and obtain the following equation on x0:

Lx0 ≡ x0ξξ + x0 = 0 ⇒ x0(ξ, η) = A(η) cos ξ +B(η) sin ξ (2)

Eliminating secular terms in the x1 equation gives the following slow flow:

dA

dη
= −α A

2
+

3 γ B3

8
+
γ A2B

8
− k

2
Ad sinT −

k

2
Bd cosT (3)

dB

dη
= −α B

2
− 3 γ A3

8
− γ AB2

8
− k

2
Bd sinT +

k

2
Ad cosT (4)

where Ad = A(η − εT ) and Bd = B(η − εT ) are delay terms in the slow flow.
Method I involves replacing the delay terms Ad, Bd in the slow flow (3),(4) respectively by undelayed terms A, B,

resulting in a slow flow of ODEs. It is argued that such a step is justified if the product εT is small:

Ad = A(η − εT ) ≈ A(η) +O(ε), Bd = B(η − εT ) ≈ B(η) +O(ε). (5)

Method II involves studying the slow flow (3),(4) as it is.

Figure 1 (left side) shows a comparison, in the case of the Duffing equation (1), between the analytical Hopf conditions
obtained via the two approaches and the numerical Hopf curves. The approach II plotted by red/dashed curves gives a better
result than the approach I (black/dashdot curves). Therefore in the case of Duffing equation, treating the slow flow as a DDE
gives better results than approximating the DDE slow flow by an ODE.
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Duffing example, eq.(1) van der Pol example, eq.(6)

Figure 1: Numerical Hopf bifurcation curves (blue/solid). Also shown are the results of approach I (black/dashdot), and the
results of approach II (red/dashed)

EXAMPLE 2: VAN DER POL EQUATION

As a second example, we consider a version of the van der Pol equation with delayed self-feedback [4]:

ẍ+ x = ε
[
ẋ(1− x2) + k xd − k x

]
(6)

We apply the same procedure here as we did for the Duffing equation (1) and show the results in Figure 1 (right). Figure
1 (right) shows that approach II gives better results than approach I. However approach I still gives a good fit for the lower
Hopf curve.

CONCLUSIONS

When a DDE with delayed self-feedack is treated using a perturbation method (such as the two variable expansion method,
multiple scales, or averaging), the resulting slow flow typically involves delayed variables. In this work we compared the be-
havior of the resulting DDE slow flow with a related ODE slow flow obtained by replacing the delayed variables in the slow
flow with non-delayed variables. We studied sample systems based on the Duffing equation with delayed self-feedback, eq.(1),
and on the van der Pol equation with delayed self-feedback, eq.(6). In both cases we found that replacing the delayed variables
in the slow flow by non-delayed variables (approach I ) gave better results on the lower Hopf curve than on the upper Hopf
curve.

Our conclusion is therefore that the researcher is advised to perform the more lengthy approach II analysis on the DDE
slow flow in situations where values of the product εT is relatively large, as in the upper Hopf curves in Figures 1.
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Summary The equivalence between systems with state-dependent delays and systems with constant delays is studied. Systems with state-
dependent delays appear when the dynamics of the system does not only depend on the instantaneous configuration but also on a delayed
configuration of the system, and the size of the delay depends on the state of the system. It is shown that, indeed, the condition for a
transformation to a constant delay is related to the mechanism that generates the state-dependent delay. With an example for the cutting
force in turning it is demonstrated that variable and state-dependent delays in metal cutting vibrations can be transformed to constant delays.

INTRODUCTION

Time delay systems can be found in many engineering applications. They range from metal cutting vibrations and laser
dynamics to traffic models and teleoperation of mobile robots (see [1] and Refs. therein). In some systems, as for example
in laser dynamics, the assumption of time-invariant delays is quite reasonable. However, in many applications, the delays are
actually time-varying or state-dependent. For example, in metal cutting the vibrations of the tool directly affect the time delay
and lead to a state-dependent delay [2]. Moreover, variable delays are used for a better control of the system. Indeed, metal
cutting vibrations can be suppressed by an active variation of the spindle speed, which is equivalent to a time-varying delay
[3]. Thus, the analysis of systems with time- or state-dependent delays is relevant in many research areas.

Here, we focus on the analysis of systems with state-dependent delays because time-varying delays can be put in the
framework of state-dependent delays. However, in contrast to the well-established theory for systems with constant delays
there are many open problems in systems with state-dependent delays [4]. In this contribution we shown how a system with
state-dependent delay can be transformed to a system with constant delay. It turns out that, indeed, the mathematical condition
for the existence of such a transformation is fulfilled in many real word examples.

TRANSFORMATION FROM STATE-DEPENDENT DELAYS TO CONSTANT DELAYS

In general, a system with state-dependent delayτ(xt) can be described by the delay differential equation (DDE)

ẋ(t) = f (x(t),x(t− τ(xt))) , (1)

wherex(t) is the configuration of the system at timet. The state of the DDE can be specified by the vector functionxt =
x(t − θ), θ ∈ [0, τmax], where the constantτmax is the maximum delay [4]. A nonlinear time scale transformationϕ = Φ(t)
can be used to change the delayed argumentt − τ(xt) of the DDE Eq. (1). The functionΦ(t) is assumed to be bijective,
which means that there is a one-to-one mapping between the timet and the new independent variableϕ. The configuration
in terms of the new variableϕ is given byy(Φ(t)) = x(t). We demand for a constant delayδ in the new representation,
x(t− τ(xt)) = y(ϕ− δ), which is equivalent to the condition

Φ(t)− δ = Φ(t− τ(xt)) ↔ δ =

t∫

t−τ(xt)

Φ̇(t′)dt′. (2)

Eq. (2) can be interpreted as follows. The state-dependent delayτ(xt) is the traveling time for a transport of a particle over
the constant distanceδ with the velocityΦ̇(t). The absolute distance covered by the particle at timet is given by the function
Φ(t). A graphical illustration of the condition is presented in Fig. 1 a). The functionΦ(t) defines a mapping between timet
(horizontal) and spaceϕ (vertical). A vertical shift of the functionΦ(t) by the constant distanceδ leads to a variable horizontal
displacement (red lines), which is equal to the time delayτ(xt). In particular, a state-dependent delay occurs if the absolute
distanceΦ(t) covered by the particles is a component of the configurationx(t) or affected by the configurationx(t) of the
system. In the spatial domain the system can be described by the DDE

y′(φ) =
(
Φ−1

)
′

(ϕ)f (y(ϕ),y(ϕ− δ)) . (3)

Thus, a DDE with state-dependent delayτ(xt) Eq. (1), whose time delay is specified by the condition Eq. (2), is equivalent
to the DDE Eq. (3) with constant delayδ. In other words, every delay that can be interpreted as a variable transport over a
constant distance can be transformed to a constant delay. These delays are sometimes called variable transport delays and
occur in many applications [5]. On the other hand, it is also possible that variable delays are generated by a transport over a
variable distance. In this case it is not clear a priori if the delay is a variable transport delay or not.
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Figure 1: a) Illustration of the condition Eq. (2) between theconstant delayδ (vertical shift) and the state-dependent delay
τ(xt) (red horizontal displacement). b) State-dependent delay in turning (see text for explanations).

STATE-DEPENDENT DELAYS IN METAL CUTTING APPLICATIONS

The occurrence of undesired large vibrations at machine tools is still a significant problem in metal cutting applications.
These so-called chatter vibrations are not acceptable in manufacturing industry because they cause noise, bad surface finish
and increased tool wear. As a consequence the prediction of machine tool vibrations and the stability of metal cutting processes
is an important field in research and industry.

An example of a turning process is shown in Fig. 1 b). Small fluctuations of the cutting forceF (t) lead to dynamic
displacementsx(t) = col(x1(t), x2(t)) of the turning tool and a wavy surface of the workpiece. The instantaneous and time-
delayed vertical displacementsx2(t) andx2(t − τ(xt)) determine the inner and the outer surface of the chip, respectively,
and lead to dynamic variations of the chip thickness and the cutting force. In particular, the time delayτ(xt) between the
present and the previous cut at the same location of the workpiece is equivalent to the time for one revolution of the workpiece.
Hence, the delay in turning is defined by a variable transport delay similar to Eq. (2) with the constant distanceδ = 2πR,
whereR is the radius of the workpiece. In this case, the spatial variableΦ(t) can be interpreted as the absolute machined
distance given byΦ(t) = ΩtR−x1(t), whereΩ is the angular velocity of the workpiece andx1(t) are the horizontal dynamic
displacements of the tool. This mechanism of self-excitation of the vibrations in machining is called regenerative effect (see
[2], [3]). If the closed-loop of the regeneration is unstable, chatter vibrations occur. In many other cutting processes the time
delay is similarly defined by a constant distance between two subsequent cuts.

Since the structural dynamics can be described by ordinary differential equations, metal cutting processes, in general, can
be described either in time domain by Eq. (1) with state-dependent delay or by a system similar to Eq. (3) with constant
delay. For Eq. (3) the linearization of the system is much simpler, whereas for systems with state-dependent delay similar to
Eq. (1) the linearization is not straight forward [2], [3]. In addition, many methods for the stability analysis of linear non-
autonomous DDEs can be only applied to systems with constant delay, which follow from the linearization of Eq. (3), whereas
the equivalent linear system of Eq. (1) is a DDE with time-varying delay.

CONCLUSIONS

The transformation of a system with state-dependent delay to a system with constant delay is studied, which can be used
to simplify the analysis in many applications. It is shown that the transformation is possible if the state-dependent delay is
generated by a variable transport over a constant distance. Using the example of a turning process it is demonstrated that the
time-varying and state-dependent delays in metal cutting applications belong to the class of variable transport delays and can
be transformed to constant delays.

References

[1] Kyrychko Y.N., Hogan S.J.: On the Use of Delay Equations in Engineering Applications. J. Vibr. Control 16:943960, 2010.
[2] Insperger T., Stepan G., Turi J.: State-dependent delay in regenerative turning processes. Nonlin. Dyn. 47:275-283, 2007.
[3] Otto A., Radons G.: Application of spindle speed variation for chatter suppression in turning. CIRP J. Manuf. Sci. Technol. 6:102-109, 2013.
[4] Hartung F., Krisztin T., Walther H.-O., Wu J.: Functional Differential Equations with State-Dependent Delays: Theory and Applications. In: Canada

A., Drabek P., Fonda A. (editors): Handbook of Differential Equations: Ordinary Differential Equations 3:435-545, North-Holland, 2006.
[5] Zhang F., Yeddanapudi M.: Modeling and simulation of time-varying delays. Proc. TMS/DEVS 34:1-8, San Diego, CA, USA, 2012.



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

HIGHER-ORDER ESTIMATION OF LIMIT CYCLE AMPLITUDE IN METAL CUTTING

Tamás G. Molnár ∗1, Tamás Insperger1, and Gábor Stépán1
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Summary Global dynamics of an orthogonal cutting model is discussed, which is governed by a nonsmooth delay differential equation
(DDE), namely, the delayed term intermittently disappears if the amplitude of the vibrations exceeds some critical value. Along the linear
stability boundaries of the fixed point of the DDE, subcritical Hopf bifurcation occurs and consequently, a parameter domain of bistability
can be identified where the stable fixed point, an unstable periodic orbit, and a large-amplitude stable bounded motion (chatter) coexist. The
first approximation of the amplitude of the unstable periodic orbit is the standard square-root function of the bifurcation parameter that is
the chip width. A non-standard higher-order approximation is proposed that takes into account that the periodic solution disappears as the
chip width approaches zero. This allows the construction of a more accurate still simple formula for the size of the bistable region, which is
highly important for the real-world application of regenerative cutting theory.

MECHANICAL MODEL

Consider the single-degree-of-freedom mechanical model of orthogonal cutting where the tool’s motion is governed by

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

1

m
Fx (h(t)) . (1)

Here, ωn is the undamped natural angular frequency, ζ is the damping ratio, and m is the modal mass of the machining system
corresponding to vibrations in the feed direction x. The x-component Fx of the cutting force acting on the tool is proportional
to the chip width w and can be given as a cubic polynomial of the chip thickness h according to [1]:

Fx(h) = w
(
ρ1h+ ρ2h

2 + ρ3h
3
)

if h > 0 , (2)

where ρ1 = 6.1096× 109 N/m
2, ρ2 = −5.41416× 1013 N/m

3, and ρ3 = 2.03769× 1017 N/m
4 were identified in [1] for a

milling tool of four teeth. Note that for non-positive chip thickness (h ≤ 0), loss of contact takes place between the tool and
the workpiece and the cutting force is zero. The instantaneous chip thickness can be calculated from the feed h0 per revolution
according to the theory of regenerative machine tool vibrations:

h(t) = h0 + x(t− τ)− x(t) , (3)

where τ = 2π/Ω is the regenerative delay related to the angular velocity Ω of the workpiece.
Transforming Eq. (1) to shift its equilibrium to zero, scaling the tool position by h0 and the time by ωn, one obtains the

dimensionless equation of motion in the form

ξ′′(t) + 2ζξ′(t) + ξ(t) = p
(

(ξ(t− τ)− ξ(t)) + η2 (ξ(t− τ)− ξ(t))2 + η3 (ξ(t− τ)− ξ(t))3
)
. (4)

Here, p is the dimensionless chip width, η2 and η3 denote dimensionless cutting-force coefficients:

p =
w
(
ρ1 + 2ρ2h0 + 3ρ3h

2
0

)
mω2

n

, η2 =
ρ2h0 + 3ρ3h

2
0

ρ1 + 2ρ2h0 + 3ρ3h20
, η3 =

ρ3h
2
0

ρ1 + 2ρ2h0 + 3ρ3h20
. (5)

ANALYSIS OF THE HOPF BIFURCATION AND REGION OF BISTABILITY

Analyzing the stability of Eq. (4) by the D-subdivision method, one obtains the linear stability boundaries in the form

pst(ω) =

(
ω2 − 1

)2
+ 4ζ2ω2

2 (ω2 − 1)
, τst(ω) =

2

ω

(
jπ − arctan

(
ω2 − 1

2ζω

))
, Ωst(ω) =

2π

τst(ω)
, j ∈ N+ . (6)

The linear stability boundaries are shown by solid line in the left panels of Fig. 1 for ζ = 0.02. Along these boundaries, a
subcritical Hopf bifurcation occurs [2, 3], which gives rise to an unstable limit cycle of approximate angular frequency ω.

The standard approximation [4, 5] of the amplitude r(ω, p) of the unstable limit cycle is given by a square-root function
of the bifurcation parameter p:

r(ω, p) ≈

√
− γ(ω)

∆cr(ω)
(p− pst(ω)) , (7)
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Figure 1: Left and middle panels: stability charts of the cutting process. Right panel: the corresponding bifurcation diagrams.

where γ(ω) is the crossing speed (root tendency) of the critical pair of imaginary eigenvalues and ∆cr(ω) is the Poincaré-
Lyapunov constant, which can be obtained by center manifold reduction and normal form calculations [2, 3]. A non-standard
higher-order approximation of the amplitude can also be obtained by taking into account that for p = 0 the right-hand
side of Eq. (4) vanishes and the system reduces to a damped free oscillator with no periodic solution. That is, the unstable
limit cycle disappears as the bifurcation parameter p tends to zero, and it happens so that its amplitude tends to infinity:
limp→0 r(ω, p) =∞. Accordingly, the proposed approximation of the amplitude of the unstable limit cycle becomes

r(ω, p) ≈

√√√√√− γ(ω)

∆cr(ω)

p− pst(ω)

1 +
p− pst(ω)

pst(ω)

. (8)

The estimations (7) and (8) of the amplitude of periodic solutions bifurcating from points A, B, and C indicated in the left and
middle panels of Fig. 1 are shown for h0 = 250 µm in the right panel by dashed and dash-dot line, respectively. The results
obtained by the proposed approximation (8) overlap with numerical results computed using DDE-BIFTOOL [6].

Due to the existence of an unstable periodic solution, the basin of attraction of the linearly stable equilibrium is bounded.
Consequently, a parameter domain of bistability exists where the linearly stable equilibrium associated with stationary cutting
coexists with large-amplitude stable solutions (chatter), which involve intermittent loss of contact between the tool and the
workpiece [7]. The boundary pbist(ω) of the bistable region is located where the amplitude of the unstable limit cycle reaches
the critical value rbist(ω) for which loss of contact (h ≤ 0) occurs [7] (see points a,b,c, and α, β, γ in Fig. 1). The boundary
of the bistable region computed from Eqs. (7) and (8) is indicated in the left panels of Fig. 1 by dashed and dash-dot lines,
respectively. The bistable region obtained from Eq. (8) is shaded with dark grey, the globally stable region is light grey. Using
the proposed approximation (8), the relative width of the bistable region can be approximated by a simple formula

Rbist(ω) =
pst(ω)− pbist(ω)

pst(ω)
≈ 3ρ3h

2
0

4ρ1 + 8ρ2h0 + 15ρ3h20
, (9)

which allows engineers to select the technological parameters needed for a globally stable chatter-free cutting process.
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[7] Dombóvári Z., Barton D. A., Wilson R. E., Stépán G.: On the global dynamics of chatter in the orthogonal cutting model, Int J Nonlin Mech 46(1):330-

338, 2011.



XXIV ICTAM, 21-26 August 2016, Montreal, Canada

DELAY EFFECT ON MOTION CONTROL OF A TWO-WHEELED INVERTED PENDULUM

Yusheng Zhou1 and Zaihua Wang ∗1

1State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

Summary Two-wheeled inverted pendulum (TWIP, for short) is an open-loop unstable nonlinear system, the delay effect arising in the
feedback loop has not been reported in the literature. This paper designs a delayed robust control for controlling the back-and-forth motion
of a TWIP against the influence of uncertainties, and shows that the delay effect cannot be neglected in control design.

INTRODUCTION

Two-wheeled inverted pendulum, an inverted pendulum mounted on two parallel wheels, is a common mechanical model
of two-wheeled robots. A TWIP is an essential nonlinear and under-actuated system, subjected to nonholonomic constraints.
It is a system of open-loop unstable, different control strategies are required for different control tasks under different envi-
ronment [1]. If the stabilization of the inverted pendulum is addressed only and uncertainty is not considered, a proportional
feedback of the acceleration signal can be used to stabilize the inverted pendulum. Analysis shows that the inevitable time de-
lay in the controller has a substantial influence on the stability of the closed-loop [2]. When uncertainties must be considered,
more delicate control strategies are usually used, such as H∞ control, adaptive control, disturbance observer, and especially
the sliding mode control that is the mostly used strategy in controlling TWIPs. No results about delay effect on the control
of TWIPs with delayed feedback have been reported in the literature [1]. This paper shows that the delay has an important
influence on the robust motion control and the delay effect must be taken into account in controlling a TWIP.

DYNAMIC MODEL AND CONTROL DESIGN OF THE TWIP

Let us consider a basic motion of a TWIP, Back-and-Forth motion, for which the TWIP is required to move forward to
pass a prefixed point and return back to the starting point, keeping the inverted pendulum stabilized during the whole process.
Figure 1(a) shows a 2-DOF model of the TWIP, without considering the turning motion. Let L = Tw + Tb − P be the
Lagrangian function, where Tw, Tb are the kinetic energies of the wheels and the intermediate body respectively, and P is the
gravitational potential energy of the system. Then the Euler-Lagrange equation gives the dynamic equation of the TWIP

{
(Ml2 + IB)ϕ̈+Mlcosϕẍ−Mglsinϕ = −T,

Mlϕ̈cosϕ+ (Mw +M + Iw

r2
)ẍ−Mlϕ̇2sinϕ = T

r
,

(1)

where T is the control. With the delay in control taken into consideration, T can be written as T = u(t − τ), where τ > 0
is the time delay. Let X = [x1, x2, x3, x4]

T = [ϕ, ϕ̇, x, ẋ]T, let ω(t) stand for the integrated effect of the linearization error
and bounded system uncertainties, then the dynamic equation can be rewritten on the basis of the linearized system Ẋ(t) =
AX(t) + Bu(t− τ) + ω(t). The control takes place only when t ≥ τ . Let X̄ = [x̄1, x̄2, x̄3, x̄4]

T = [ϕ̄(t), ˙̄ϕ(t), x̄(t), ˙̄x(t)]T

be the trajectory tracking target vector depending on the control task, and let Y(t) := X(t)− X̄(t), σ(t) := AX̄ − ˙̄X, then

Ẏ(t) = AY(t) + Bu(t− τ) + ω(t) + σ(t). (2)

To reduce the linearization error, a quadratic performance criterion with large weight of tilt angle error is introduced

J =
1

2
YT(tf )MY(tf ) +

1

2

∫
tf

0

[
YT(t)QY(t) + uT(t− τ)Ru(t− τ)

]
dt, (3)

where M,Q are nonnegative definite symmetric matrices, R is a positive definite matrix, and tf (> 2τ) is the terminal
time of the control. With a large weight of the tilt angle error in J , the tilt angle error can be “forced” to be small when
an optimal control is applied. Thus, the linearization error is small enough and can be considered as bounded, and thus
the integrated disturbance ω(t) can be assumed bounded. A robust controller can be designed in two parts: u(t − τ) =
u0(t− τ)+u1(t− τ), t ∈ [τ, tf ], where u0(t− τ) is an optimal controller for the nominal error system (2) that minimizes the
performance criterion J in (3), and u1(t− τ) is a switched control based on an integral sliding manifold for compensating the
effect of the integrated disturbance significantly. In designing the optimal delayed control u0(t − τ), it is usually required to
convert (2) into a delay-free one and then to design the controller in terms of the state of the reduced system, while in [3] the
optimal controller u0(t−τ) can be represented directly in terms of the state Y(t). In constructing the switch control u1(t−τ),
the optimal state of the nominal error system can be chosen as the integral sliding mode manifold. In this way, the controller
not only works well in implementing the control task, but also has strong robustness against the integrated disturbance.

∗Corresponding author. Email: zhwang@nuaa.edu.cn



NUMERICAL SIMULATION ON THE CONTROL PERFORMANCE

For the Back-and-Forth motion, the trajectory tracking target can be chosen in different form, for example, [ϕ̄(t), x̄(t)]T =
[0, (at − t2)e−αt]T, where ϕ̄(t) = 0 means that the inverted pendulum should be kept stable, the numbers a and α are to
be determined by the distance s and the weight matrices in J . The terminal time is tf = +∞ for simplicity. To addresses
the special feature of this paper that uses linear optimal control theory to design a robust controller for systems with strong
nonlinearity and an input delay, ω(t) is assumed for simplicity to be ω(t) = [0, ω2, 0, ω4]

T, where ω2, ω4 are linear com-
bination of ϕ2, ϕ̇2 and ϕϕ̇, with the coefficients assumed in the form of fi sin(Ωt), (i = 1, 2, 3). Case studies are made
for a given parameter comination with τ = 0.01 and Ω = 200Hz or Ω = 0.02Hz respectively. Figs.(b)-(d) and Figs.(g)-(i)
show the time-histories of the inverted pendulum and the TWIP respectively, which imply that the control task has been well
implemented; While Figs.(e)(f) and Figs.(j)(k) show the corresponding time histories by neglecting the delay in the controller,
and Fig.(l) is the plots of the performance criterion with respect to time, which mean that the time delay, although very small
in quantity, has a significant influence on the control performance and cannot be neglected in control design.
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Figure 1: The model of the TWIP and its control performance.

CONCLUSIONS

The designed controller based on the linearized model works well for the TWIP with strong nonlinearity, by introducting
a quadratic peformance criterion with large weight to make the linearization error small enough, and by using integral sliding
mode control to make the controller very robust against the integrated effect of disturbance. The results show that in the
applications of the widely used sliding mode control to TWIPs, the delay effect cannot be neglected in control design.
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Summary In this paper, we propose an archetypal self-excited smooth and discontinuous oscillator, which is constructed with the smooth
and discontinuous (SD) oscillator and the classical moving belt. Phase portraits are depicted to present the hyperbolic structure transition,
multiple stick regions and the friction-induced asymmetry phenomena. Chaotic thresholds of the perturbed self-excited SD oscillator are
derived by using the Melnikov’s method. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple
stick-slip phenomena and the stick-slip chaos for the perturbed self-excited system.

INTRODUCTION

Much attention has been paid on self-excited vibration induced by friction in mechanical engineering system, i.e. brake[1],
drill string[2] and others. In this paper, we propose an archetypal self-excited smooth and discontinuous oscillator[3] based upon
the SD oscillator[4] and classical moving blet, which comprises a block of mass M , supported by a moving belt, connected to
a fixed support by a inclined linear spring of stiffness coefficient K, as shown in Fig. 1. The mass vibrates under the influence
of dry friction FS modeled as Coulomb friction existing in the contact zone created by the mass ’s surface and the outer belt’s
surfaces that moves with a constant velocity V0.

H

L

M M

X

F

V0

S

Fig. 1. The dynamical model of a self-excited oscillator.

The dimensionless equation of motion in the sense of differential in-
clusion of Filippov type is given by

ẍ+x
(
1− 1√

x2 + α2

)
∈ µ

(
g1−α+

α√
x2 + α2

)
Sign(v0−ẋ), (1)

where µ is the friction coefficient of contacting surfaces and assumed
to be constant in this friction model and Sign(·) denotes the set-
valued sign function Sign(p)=p|p|−1 for p ̸= 0, and Sign(0) =
[−1, 1].

EQUILIBRIUM BIFURCATION AND MULTIPLE STICK REGIONS

In this section, we discuss the complex phase portraits by
investigating the equilibrium and the bifurcation of this system.
The transition set H of the equilibrium surface in a parameter
space (α, µ) can be obtained and plotted in Fig. 2, where

H = {(α, µ)|F (x, α, µ) = Fx(x, α, µ) = 0, α, µ > 0},

F (x, α, µ) = x
(
1− 1√

x2 + α2

)
−µ

[
g1 − α

(
1− 1√

x2 + α2

)]
.

The bifurcation diagram is constructed and depicted in Fig.
2. In the parameter space (α, µ), the surface M can be divided
into two persistence regions by H, marked by I and II, as shown
in Fig. 2(M). Suppose that a point Q(α, µ) in the parameter
plane (α, µ) starts from region II into region I, the stationary
(x1, 0) state exhibits the transition from hyperbolic structure to
non-hyperbolic at H. All the corresponding phase portraits of
system (1) are presented in Figs. 2(a)-2(j).
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Fig. 2. Bifurcation diagram and corresponding phase portraits.
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The blue dots denote the centers and the saddle points connecting the corresponding homoclinic orbits, marked by red,
see Figs. 2(b) and 2(e). While small cycles indicate non-standard or saddle-like equilibria[4] connecting the corresponding
homoclinic-like orbits, marked by pink, as shown in Figs. 2(f) and 2(g). Especially, Fig. 2(a) shows a orbit, marked by blue,
connecting with a non-hyperbolic equilibrium called the center-saddle point. In all the phase portraits, the symbol Σ denotes
the discontinuous boundary y = v0 for this self-excited system, in which, the stick regions marked by green indicate the mass
have a same velocity with the belt. Hence, the difference between the SD oscillator and the self-excited SD oscillator can be
seen from Fig. 2. For µ = 0, the system (1) becomes the SD oscillator shown in Figs. 2(c)-2(f). For µ ̸= 0, Figs. 2(a)-2(b)
and 2(g)-2(j) present the phase portraits of the self-excited SD oscillator. Obviously, the moving belt friction destroys the
symmetry of the original SD oscillator. In conclusion, the self-excited SD oscillator with dry friction is characterized by
friction-induced asymmetry and multiple stick regions in the phase plane.

PERTURBED DYNAMICS

It is assumed that the system (1) is perturbed by a viscous damping of coefficient c and an external harmonic excitation of
amplitude f an frequency ω, the equation of motion can be written as

ẍ+ cẋ+ x
(
1− 1√

x2 + α2

)
∈ f cosωt− µ

[
g1 + α

(
1− 1√

x2 + α2

)]
Sign(v0 − ẋ), (2)

The chaotic boundary obtained by using the Melnikov’s method for this system is shown in Fig. 3. This criterion predicts
that above this curve chaos can appear. In Fig. 4(a)-4(d), the short horizontal parts marked with green lines in phase portraits
correspond to the sticking during the motions. A pair of asymmetric stick-slip period 1 solutions coexist f = 0.2, as shown in
Fig. 4(a), the system dynamic responses are regular motions. With an increase of amplitude f , the regular motion vanishes and
the multiple stick-slip chaotic motion follows when f = 0.474, as depicted in Fig. 4(b). These results are in good agreement
with the Melnikov’s criterion. When f = 0.5125, a period-3 solution with three stick-slip motions is shown in Fig. 4(c).
when f increases to f = 0.85, chaotic motion occurs and the chaotic attractor is depicted in Fig. 4(d).

0.2 0.4 0.6 0.8 1 1.2

0.1

0.2

0.3

0.4

0.5

0

0

0 6.

v0

f

Chaos

Nonchaos

Fig. 3. Chaotic boundaries for system (2) in the (f, v0) plane
for α = 0.4.

x

y

( )a

y

( )c ( )d

( )b

y

x x

-1 -0.5 0 0.5 1 1.5

-0.2

-0.1

0

0.1

0.2

- .1 5
- .0 3

x

y

-1 0 1 2

-0.5

0

0.5

1

-1

1.50.5-0.5-1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-1

-2 -1 0 1 2 3

-2

-1

0

1

2

-3

Fig. 4. The periodic motion and chaotic attractors of system (2) for
α = 0.4. (a) f = 0.2, (b)f = 0.474, (c) f = 0.5125, (d) f = 0.85.

CONCLUSIONS

In this paper, we have proposed a novel self-excited SD oscillator driven by moving belt friction. The self-excited system
is characterized by the existence of multiple stick regions in the phase portraits which exhibit the hyperbolic structure transi-
tion and friction-induced asymmetry phenomena. The obtained results characterized the existence of the multiple stick-slip
chaos in a range of the excitation force amplitudes as predicted by the Melnikov’s criterion.
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Summary In this paper we discuss whirling motion of the Bottom Hole Assembly (BHA) that occurs in downhole drilling, with particular
attention to the co-existence of forward and backward whirls. First we present experimental results obtained on the unique drilling rig
developed in Aberdeen and described in [2, 3], which are then used to calibrate a non-smooth low-dimensional model to investigate complex
dynamics of the whirling motion.

INTRODUCTION

During a downhole drilling process, excessive vibrations can occur, which in most cases have a negative effect on the
effectiveness of the process and the drilling equipment. Such vibrations may lead to an accelerated wear and a premature
damage of the expensive drilling equipment. Often different dynamic effects such as bit-bounce, stick–slip, forward and
backward whirl may appear simultaneously. In this work we focus on the whirling of the BHA inside the borehole, which
nature is still not well understood and can lead to a catastrophic failure of the the drill-sting. .

EXPERIMENTAL OBSERVATIONS

In this section we present examples of experimental results showing co-existing forward and backward whirls, which
have been observed on the unique experimental rig [2, 3]. The most important feature of the experimental apparatus is its
versatility, which means that depending on chosen configuration, different type of drilling associated phenomena could be
analyzed including stick-slip, bit-bounce and whirling. Here we concentrate on the whirling motion only to get further inside
into its dynamics. Therefore, the experimental configuration depicted in Fig. 1(a) is used, where the main part is the loose
bearing, that holds the BHA in place. A radial clearance between the BHA and the holding bush is 1 mm, what allows us to
observe different types of whirling motion. The BHA is driven from the top using a flexible shaft and at its other end there is
a drill-bit, that drills in a sandstone sample.

Interestingly, it has been possible to capture for the first time experimentally co-existence of forward and backward
whirling, which can be seen in Figs. 1(c)-(d). Both of these phenomena can be observed for the same set of parameters
(WOB=2.59 kN and angular velocity at the top, ϕt = 9.36 rad/s). Type of whirling motion is determined by comparing
the angular displacements at the top, ϕt with the angular displacement of the BHA inside the bearing, θ, which are depicted
in panels (e) and (f) for backward and forward whirling motion respectively. When comparing the phase portraits shown
in panels (c) and (d), we notice that the qualitative responses are different, but both cases can be characterized as periodic
whirling.

The top angular speed ϕt is constant (marked as black curve in panels (g) and (h)), whereas there is a considerable
difference in amplitude between the angular velocity of the BHA, ϕ̇b for the backward and forward whirls. In the case of
the forward whirling, the amplitude of the BHA’s angular velocity oscillations is considerably smaller than for the backward
whirling . This demonstrates the fact that the backward whirling is more dangerous for the drill-string than the forward one
due to a higher amplitude of torsional vibrations, which in turn result in higher stresses in the drill-string.

MATHEMATICAL MODELING

In order to understand the physics behind whirling phenomenon we introduce a simplified model of the analyzed experi-
mental setup. Thereby, the model is similar to a Jeffcott rotor with a snubber ring, which has been studied extensively in the
literature, e.g. [4]. We introduce a simplified rotor model depicted in Fig. 1(b), which consists of a disc having mass m and
radius r, which spins inside the borehole with a constant angular velocity Ω. The position of the disc inside the borehole is
described using polar coordinates r and θ, that constitute a two degree-of-freedom model. We assume a small imbalance of
the disc. The disc is assumed to be supported by a radial bearing having a stiffness k1 and a viscous damping c in the radial
direction. The model does not include damping due to the rotation of the disc. The radial clearance between the disc and the
borehole is γ. Due to the fact that two modes of operation are present, contact and non-contact, there are two sets of equations
which need to be switched. We model contact of the BHA with the borehole using a spring of stiffness k2, and dry friction

∗Corresponding author. Email: m.wiercigroch@abdn.ac.uk
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Figure 1: (a) A part of the drilling rig, showing the BHA and the bearing to simulate whirling motion; (b) schematic of the
rotor model; (c)-(h) comparisons between co-existing periodic backward and forward whirling observed forWOB = 2.59 kN;
panels (c)-(d) show phase portraits, where panels (e)-(f) compare angular displacement of top ϕt vs. angular displacement
inside the borehole θ and panels (g)-(h) show the angular velocity of top, ϕ̇t and bottom, ϕ̇b for backward and forward whirl
respectively.

friction μ between the disc and the borehole in tangential direction. Therefore, the system can be described by following set
of equations: {

Mr̈ −Mrθ̇2 + k1r + cṙ = MΩ2ρ cos(Ωt− θ)− k2(r − γ)H(r − γ),

Mrθ̈ + 2Mṙθ̇ + crθ̇ = MΩ2ρ sin(Ωt− θ)− μk2(r − γ)H(r − γ)sgn(vc),
(1)

where H( ) stands for a Heaviside function switching between contact and non-contact states [1]. In other words this means
that the disc can be in contact (C) or noncontact (N ) state, depending on the value r − γ. There are other modes of operation
for the model, including the condition when the disc sticks to the wall [3].

CONCLUSIONS

In this paper first we have shown experimentally the co-existence of forward and backward whirling. Then a low dimen-
sional non-smooth model to study the complexity of the whirling behaviour is introduced. After a careful calibration of the
proposed model, one is able to analyze conditions that trigger forward and backward whirls [3] and ultimately to control the
BHA dynamic behaviour.
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Summary In the measurement procedure of vibrating-type sensing systems, the frequency response curve under external or forced
excitation has been conventionally used. For instance, viscosity measurement and mass sensing are preformed from the estimation
of difference in the Q-value related to the resonance amplitude and of shift in the resonance frequency, respectively. However, in the
high viscosity range, it is very difficult to accurately measure these values. To overcome such difficulties, we propose the utilization
of self-excited oscillation without relying on the frequency response curve; the positive velocity feedback is applied to compensate
the damping force and to produce the self-excited oscillation. In the presentation, we introduce some measurement systems using
self-excited microcantilevers as ultra-sensitive mass sensor, viscometer for high viscosity sensing, and AFM.

INTRODUCTION

Vibrating-type sensing devices allow for instantaneous and continuous measurements of changes in the viscosity and
the mass of the sample occurring with time, i.e., on-line monitoring. In the measurement procedure of vibrating-type
viscometers, the frequency response curve under external or forced excitation is employed. The viscosity is estimated
by the Q-value related to the resonance amplitude (for example, see Ref. [1]) and in the mass sensing, the shift of the
resonance frequency is utilized (for example, Ref. [2]). However, in the high viscosity range, it is very difficult to
accurately estimate differences in Q-values and the shifting of the resonance frequency. To overcome such difficulties,
we have proposed the utilization of self-excited oscillation without relying on the frequency response curve; the positive
velocity feedback is applied to compensate the damping force and to produce the self-excited oscillation. First, merits of
the use of self-excited oscillation are indicated using an application to the viscometer for high viscosity sensing. Next,
the concept is implemented to micro-cantilevers which is widely used as a resonator for high sensitive measurement. In
particular, non-contact AFM using van der Pol-type self-excited microcantilever beams are proposed and the performance
of ultra-sensitive mass sensor using self-excited coupled cantilevers are experimentally shown.

SELF-EXCITED OSCILLATION BY POSITIVE VELOCITY FEEDBACK AND HIGH-VISCOSITY SENSING

We consider a resonator expressed as spring-mass-damper system with external force whose equation of motion is

m
d2y

dt2
+ c

dy

dt
+ ky = f, (1)

where m and k are the equivalent mass and stiffness of the resonator, respectively. c expresses the viscous environment
for the resonator and the viscosity sensing corresponds to the measurement of c [3]. In conventional viscometers, f is
set to be sinusoidal force as a cos νt. However, in the case of high viscosity, the frequency response curve has no peak
and there is no Q value and the identification of c is impossible from the frequency response curve. To overcome the
difficulty, f is set based on the following positive velocity feedback as f = ccontdx/dt, where ccont is positive feedback
gain. Then, the critical feedback gain to produce the self-excited oscillation ccont−cr is equal to c and c can be estimated
from the critical feedback gain which can be experimentally obtained. This method can be applicable regardless of the
magnitude of viscosity [4].

AFM USING VAN DER POL-TYPE POL-TYPE SELF-EXCITED MICROCANTILEVER

FM-AFM carries out the imaging of the surface of sample in nano-meter accuracy by detecting the natural frequency
shift of the cantilever due to the variation of the atomic force. The compensation of viscosity based on the above positive
velocity feedback makes the eigenstate of the resonator emerge. The response frequency of the self-excited oscillation
produced under the positive velocity feedback gain near the critical one corresponds to the natural frequency and the
detection is easy even in liquid environments. The equation of motion of the cantilever is expressed as follows:

ρA
∂2(y +Δy)

∂t2
+ EI

∂4y

∂t4
= 0, (2)

where y is the deflection of the beam and Δy is displacement of the supporting point which is applied to produce the
self-excited oscillation in the cantilever. In the actuation accoridng to the feedback as

Δy = clin

∫

ydt+ cnon

∫

y3dt, (3)
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the linear term produces the above mentioned self-excited oscillation. Furthermore, the additional nonlinear feedback of
the second term can avoid the monotonically increasing response amplitude and realizes the self-excited oscillation with
small steady state amplitude under high gain nonlinear feedback. Then, the non-contact imaging in AFM is achieved [5].

MASS SENSING USING SELF-EXCITED COUPLED MICROCANTILEVERS

Mass sensing by a resonator has been also based on the shift of the natural frequency, i.e., eigenvalue of the resonator
system, depending on the mass. In contrast with this method, it is clarified that the utilization of the shift of an eigenmode
in weakly coupled oscillators realizes more accuracy mass detection [6]. The frequency response curve under the external
excitation is used to detect the eignemode. Similar to the above measurement, it is impossible in a viscous environment.
Accordingly, we propose the self-excited coupled cantilevers which is modeled to two-degrees-of freedom systems as Fig.
1, where m is equivalent mass of the resonator and Δm is a measured mass. The base excitation of Δy is established by
the displacement of one of cantilevers to produce the self-excited oscillation [7]. The detection of the displacements of

m m+�m

y1 y2

k k

cc

kc

��y ��y

Figure 1: Sprin-mass-damper model for self-excited coupled microcantilevers.

the coupled cantilevers is carried out two laser Dopper vibrometers by the experimental apparatus as shown in Fig. 2. The
experiment demonstrated mass sensing of the order of ng [8].

Coupled cantilevers

LDVs

Figure 2: Experimental apparatus of self-excited coupled microcantilevers.
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Summary We have developed an efficient shape optimization procedure for tailoring the nonlinear dynamic performance of microbeam
resonators with electrostatic excitation. By relatively simple modifications of the cross-sectional dimensions along the length of the beam
we demonstrate a considerable degree of control over the characteristic cubic nonlinear coefficient, allowing e.g. for extending the linear
range of operation for resonant MEMS devices, which is important for improving signal-to-noise and other performance metrics.

INTRODUCTION

Recently, we demonstrated in a numerical study [1] the possibility to significantly alter the nonlinear dynamic behavior
of beams and frames by employing shape optimization of the cross-sectional beam dimensions based on direct finite element
calculations of the cubic nonlinear coefficient. This was later supported by experimental observations for microbeams for
MEMS applications [2]. Both an increase of more than a factor 3 and a decrease of almost a factor 3 in the characteristic cubic
nonlinear coefficient was demonstrated for beams with optimized height profiles.

In the present paper the design procedure is extended to cover electrostatic excitation which is of major relevance for
MEMS applications. Furthermore, it introduces an additional nonlinearity in the problem due to the electrostatic force that
depends on the transverse displacements. In addition to the added complexity in modelling, the extra nonlinearity offers in-
creased possibility for tailoring the behavior since two nonlinear effects counteract: the structural hardening nonlinearity (due
to midplane stretching) and the electrostatic nonlinearity which is softening. Examples of shape optimization of electrostat-
ically actuated microbeams have recently appeared (eg. [3]), however, with focus on control of pull-in voltage and stability.
To the authors’ best knowledge we here present the first study on structural optimization with the aim to control the nonlinear
dynamics of electrostatically actuated microbeams.

COMPUTATIONAL MODEL

The basis for the optimization procedure is a model of a clamped-clamped beam including nonlinear effects from mid-
plane stretching and from electrostatic actuation caused by a symmetric set of fixed actuators located at distanced from the
undeformed beam midplane (Figure 1 left). The basic beam equation with a variable beam heighth = h(x) reads:

ρhbẅ +
Eb

12
(h3w′′)′′ −

Eb

2L
w′′

∫ L

0

h(w′)2dx =
εbV 2

DC

2

( 1

(d− w − h
2
)2

−
1

(d+ w − h
2
)2

)
(1)

here,w is the transverse beam displacement,ρ is the mass density,E is Young’s modulus,b is the out-of-plane thickness,
L is the beam length,ε is the permittivity of air andVDC is the constant DC voltage applied to both fixed electrodes (the
time-dependent actuation part is here omitted). The r.h.s. represents a simplification of the electrostatic actuation force but has

d

VDC

VDC+V0cosΩt

h(x)

L

x
w(x,t)

Figure 1: Left: Microbeam with variable heighth(x) with two fixed electrodes on each side at the nominal distance ofd from
the beam centerline. Deflections of the beam are given asw(x, t). Right: Example of optimized beam profile.
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recently been experimentally supported for a similar configuration [5]. The model is discretized using Bernoulii-Euler beam
finite elements as outlined in [1].

As the first step in the analysis the corresponding linear FE eigenvalue problem is solved and based on the fundamental
linear modeΦ1 we directly compute the cubic nonlinear coefficient using normal forms [1, 4] as

α =

ne∑

e=1

Ebhe

8l
(ΦT

1 KgΦ1)
2 −

ne∑

e=1

εV 2

dcb

d5e

∫ l

0

(NT
Φ1)

4dx (2)

whereNT is the shape function matrix andKg the geometric stiffness matrix.

PARAMETRIZATION AND OPTIMIZATION PROCEDURE

We choose the height of each beam element to be our design variables, i.e. we set

hmin < he < hmin (3)

where the minimum and maximum values of the beam height are chosen from fabrication tolerance (min) and minimum
allowable distance to the electrodes (max).

The optimization problem is now defined as a minimization problem wrt. the cubic nonlinear coefficient:

min
h

: α(he)

s.t. ω1(he) ≤ ω∗

f(he,Φ1(he)) ≥ f∗

(4)

where we have introduced constraints in form of the maximum value of the first eigenfrequencyω∗ and on the minimum
value of the modal excitation forcef∗. To solve the optimization problem we apply an iterative gradient-based approach with
analytically computed sensitivities and use the robust mathematical programming tool MMA [6] to obtain design updates.

RESULTS

A preliminary beam design is shown in Figure 1 (right). The initial configuration has a softening nonlinearity due to the
dominating electrostatic effect. However, by modifying the shape of the beam the magnitude of the nonlinear coefficient has
been reduced by a factor of approximately 5. At the same time both the fundamental eigenfrequency as well as the modal
excitation force is unchanged compared to the initial straight beam.

CONCLUSION

We have demonstrated that it is possible, by simple variations of the beam cross-sectional geometry along the beam, to
significantly reduce out the effective nonlinearity while keeping the actuation level and linear dynamic unchanged. The results
shows promising perspectives for enhancing the linear operation range for electrostatically actuated microbeams and also more
complex microsized structures and devices. Further work include modifying also the shape of the electrostatic actuators as
well as experimental validation of the results.
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Summary  We provide experimental evidence for an intermittency route to chaos in an electrostatic MEMS actuator. To our knowledge, this is 

the first time that an intermittency route to chaos has been observed in an electrostatic MEMS actuator. We present our experiment results obtained 

by a laser vibrometer that measures the displacement and the velocity of the actuator in both of the time and frequency domains. 

 
INTRODUTION 

 

   Chaos has, thus far, been experimentally observed in the response of three MEMS/NEMS devices: a non-interdigitated 

comb actuator [1, 2], a nano-resonator [3], and an RF MEMS switch [4]. Chaos occurs along different routes including a 

homoclinic tangle [1, 2], multi-frequency excitation following the Ruelle-Takens criteria [3], or a cascade of period-doubling 

bifurcations [4]. Intermittency is another route to chaos, having not been experimentally observed to date in electrostatic 

MEMS devices. 

   This article reports on experimental observations for an intermittency-type III route to chaos subsequent to a subcritical 

period-doubling bifurcation in the motions of an electrostatic MEMS actuator. 

 

EXPERIMENT 

 

   The electrostatic actuator is made of a micro-plate supported by two micro-cantilever beams presented in Fig. 1, and it is 

fabricated out of an electroplated gold structural layer in the UW-MEMS process [5]. A bottom electrode below the micro-

plate provides the actuation voltage 

𝑉(𝑡) = 𝑉𝑑𝑐 + 𝑉𝑎𝑐 cos(2𝜋𝑓𝑡) (1) 

   Two dimples are fabricated onto both sides of the micro-plate, in Fig. 3, so as to act as stoppers in case of pull-in in 

conjunction with two contact pads in Fig. 2. The actuator is held close to its pull-in point by applying a DC bias voltage close 

to but less than the pull-in voltage that is measured to be 12 V. It is actuated by a DC biased AC signal throughout the 

experiments reported below. A laser vibrometer is used to measure the displacement and velocity of the micro-plate in both 

of the time and frequency domains. The screenshot in the upper panel of Fig. 4 shows the actuator superimposed with a grid 

of the measurement points used by the vibrometer. 

 

RESULTS 

 

   The lower panel in Fig. 4 shows the frequency spectrum of the micro-plate velocity averaged over of all 85 measurement 

grid points, when excited by the sinusoidal signal: Vdc = 8.0 V, Vpp = 1 V at f = 10 kHz. Period-doubling is indicated in  

Fig. 5-(a) by the peaks appearing at half of the excitation frequency and its integer multiples. However, the measured velocity 

and displacement signals of the micro-plate centre point in the time domain, Fig. 5-(b), show aperiodic responses characterized 

by bursts occurring at irregular periods, typical of intermittent behaviours. The bursts occur over long time intervals; for 

example, three bursts are observed in Fig. 5-(b) within 40 seconds. 

 

   

FIG. 1. Top view of the actuator FIG. 2. Top view of the micro-plate FIG. 3. A cross-sectional view 



   Intermittency was observed over a wide frequency range, f = [8-10] kHz, and for the waveforms characterized by a 

combination of large DC bias 8 V and small AC 1 Vpp. Furthermore, as the DC bias voltage increases from Vdc = 8.5 V to Vdc 

= 9.5 V, while the AC excitation amplitude and frequency are held constant at Vpp = 1 V and 8 kHz in Fig. 6, we found that 

the bursts occurred more frequently and took less time to develop. This is also a typical characteristic of intermittent 

behaviours, as it approaches toward fully developed chaos with bursts interrupting shorter intervals of almost periodic 

(laminar) response more frequently. 
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FIG. 4. Screenshot of a vibrometer interface with the 

actuator post-processed with the measured velocity 

(top panel) and its FFT (bottom panel), when 

actuated by the signal, 8 Vdc and 1 Vpp at 10 kHz. 

Peaks observed at 
𝑛𝑓

2
 indicate a period-doubling 

bifurcation. 

FIG. 5-(a) Measured velocity in 

the frequency domain indicates a 

period-doubling (top), (b) 

Measured velocity and 

displacement in the time domain 

show evidence of intermittency. 

FIG. 6. Bursts occur more frequently as the 

intermittency approaches towards fully 

developed chaos with the DC bias voltage 

increasing from (a) Vdc = 8.5V to (b) Vdc = 

9.5V. 

 

   To examine the mechanism driving the intermittency, we present 

the FFT of the measured velocity in Fig. 7 for three subsequent 

intervals during a laminar build-up to a burst similar to those shown 

in Fig. 6. As the laminar interval develops, the power in the peaks at 

integer multiples 
𝑓

2
 increases from -120 dB to -82.5 dB, indicating 

unstable period-doubled oscillations leading to pull-in (the burst). 

Upon pull-in, the dimples come into contact and the actuator rebounds 

back to flight (i.e., it is re-injected into the basin of safe motions) to 

start another laminar interval. 

 

CONCLUSIONS 

 

   In this experiment, we observe the period-doubling and the 

intermittency route to chaos in electrostatic MEMS actuators for the 

first time, while exciting the electrostatic actuator with a simple 

harmonic signal with a DC bias. Due to the aperiodic nature and low 

frequency components of the intermittency, we observe the 

intermittency mainly in the time domain at a slow time scale. 

However, we observe the period-doubling bifurcation mainly in the 

frequency domain at a fast time scale because the period-doubling 

bifurcation cannot be distinguished from the measured velocity signal 

in the time domain. 

FIG. 7. Peaks in the measured velocity appear at 
𝑛𝑓

2
 and 

grow, as laminar flow develops towards a burst; a 

sinusoidal waveform is used as an excitation signal, 

Vdc = 8.5 V, Vpp = 1 V at f = 8 kHz. 
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MULTISTABILITY OF A CANTILEVER MEMS/NEMS CAPACITIVE SWITCH MODEL
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Summary In order to fully understand nonlinear dynamics of cantilever beam micro- and nanoelectromechanical capacitive switches, thor-
ough knowledge of static behavior is vital. Presented herein is the analysis for equilibrium positions of a generalization of such devices. The
representative system model employs multiphysics features based on Euler-Bernoulli beam theory, parallel plate capacitance for electro-
statics, and a form of surface interaction with both attractive and repulsive regions. The geometry, material properties, and surface features
of a device are condensed into just a few dimensionless quantities, creating a parameter space of low enough dimensionality to provide
accessible representations of all system equilibria within physically relevant ranges. The results offer insight into the breadth of obtainable
multistability as well as sensitivity to parametric uncertainty, which is crucial for informing studies on switching dynamics and various
device performance metrics.

INTRODUCTION

Micro- and nanoelectromechanical systems (MEMS/NEMS) based switches are of great interest in low-power, portable
electronics and RF telecommunications devices due to their favorable operating voltages, low-insertion loss, switching time,
and size [1]. Mathematical models of electrostatically actuated MEMS and NEMS switches have been key to understanding
the dynamic behavior of such systems [2]. Toward this end, a first goal is to explore the eventual states of an electrostatically
actuated cantilever and understand the connection between the various physical properties and the occurrence of bi- and
tristability in these switches.

Many past works have focused on multistability without explicit inclusion of surface forces [3, 4, 5]. Broadly speaking,
these tend to be interested in the relationship between the electrostatic forces and equilibrium positions. Conversely, varius
studies have analyzed surface forces relevant to MEMS/NEMS switches without directly extending results to the breadth of
multistability that may be present [6, 7]. Finally, there are a couple examples of research groups assessing both concepts for
specific purposes. Stulemeijer, Bielen, Steeneken, and van den Berg analytically and experimentally identified equilibrium
positions of a rectangular plate capacitive MEMS switch suspended by for spring-like supports[8], while Ouakad and Younis
looked specifically at the influence of capillary forces on instabilities of a cantilever beam [9]. A void exists in discussing
the basic relationship between surface forces and equilibrium positions of a cantilever capacitive switch in its most simple
representation.

MODEL FORMULATION

Cantilever MEMS/NEMS capacitive switches are manufactured with a small air gap between the beam and the dielectric-
coated substrate, as shown in Fig. 1 (a). Device operation is controlled by the electric potential applied between the metallic
beam and underlying electrode beneath the dielectric. When a high enough potential is applied for a given configuration, it is
possible for the deflecting beam to come into contact with the dielectric. Thus, surface forces between the two materials play a
key role in determining final resting states and shapes of the cantilever, and, in turn, the overall capacitance of the component.

For each contributing multiphysics interaction in the model, a simple formulation is chosen to capture the most basic
behavior relevant to the analysis. Bernoulli-Euler beam theory is assumed to be sufficient for deformations, as is parallel
plate capacitance for the electrostatic actuation. For surface interactions, a model based on the Lennard-Jones potential is
incorporated. This is physically appropriate when assuming flat surfaces approaching contact, but could also be extended as
a fit to imperfect scenarios. When combined, nondimensionalized, and assessed at rest, the resulting form studied is shown
in Eqn. (1). The left side is the remaining static term from beam theory, and the right side terms are from electrostatics and
surface interactions, in order, where all symbols are dimensionless. Here, w is related to the deflection of the beam at a point
x along the beam length, as in Fig. 1 (a), while the parameters V , g, H , and z0 come from applied voltage, dielectric effects,
surface force strength, and zero-pressure gap, respectively. It is helpful to note that the nondimensionalization of w, g, and z0
are all done by simply dividing by the manufactured air gap, but that of V and H are more intricate, involving beam stiffness,
geometry, and material properties.

∂4w

∂x4
=

V 2

(1 + g − w)2
− H

(1− w)3

[(
z0

1− w

)6

− 1

]
(1)
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(a) (b) (c)

Figure 1: (a) Equilibrium shapes: floating (top), arc-shaped (middle), s-shaped (bottom). (b) Multistability diagram for
g = 0.0.066667, z0 = 0.005. (c) Parameter uncertainty with nominal values g = 0.0.066667, z0 = 0.005.

ANALYSIS

Investigation methodology is composed of 1-parameter continuation in V of nonlinear Eqn. (1), followed by successive
distillations of key outcomes toward a final depiction of multistability behavior. Continuation itself is implemented in the
AUTO bifurcation software using the boundary value problem structure, while stability is inferred from direct time integration
about equilibrium solutions. These solution branches can be identified as three different static equilibrium shapes: floating
(freestanding, no contact), arc-shaped (point-contact), and s-shaped (line-contact), as depicted in Fig. 1 (a). Furthermore,
they can be collected into various multistability categories by determining locations of turning points, as shown for one set
of dimensionless parameters in Fig. 1 (b). While slices in parameter space reveal underlying behavior, the parametric sensi-
tivity of the multistability regions is investigated using a Monte Carlo scheme. Per chosen physically-reasonable parameter
distributions, the outcome provides indication of high sensitivity to the given parametric uncertainty, shown in Fig. 1 (c).

Results are relevant to the design and performance of cantilever capacitive switches, as their intended operation between
capacitive states depends on what configurations are possible. Knowledge of anticipated mono-, bi-, and tristability is critical
to investigations on switching dynamics, while the simplicity of the proposed model serves to inform a basic understanding
of the relationship between surface interactions and multistability in the context of an ideal case.
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Summary The non-linear modes of vibration of carbon nanotubes are investigated. For that purpose, a p version finite element is 
implemented; it takes into account geometrically non-linear and non-local effects. For the first time in this problem, the free, steady-state, 
oscillations - which occur when the conservative system is vibrating in one of its modes of vibration – are not enforced to be harmonic by 
the solution procedure. Furthermore, not only the first, but also higher order modes are analysed. Modal interactions are found and it is 
shown that they are fundamental in some oscillations. Non-local effects are known to be influential in carbon nanotubes of very small 
length. However, it is demonstrated here that, because of modal interactions, non-local effects influence the non-linear oscillations of CNTs 
with longer lengths than what was previously believed. 
 

INTRODUCTION 
 
   Vibrating carbon nanotubes (CNT) can be used as sensors, based on changes in the natural frequency or on alterations of 
the response to excitations [1]. If CNTs experience oscillations with amplitudes above about 10%-20% of their very small 
diameter, one should take geometrical non-linear effects into account. Furthermore, one can take advantage of geometrical 
non-linearity to enhance the properties of nanodevices [2, 3]. Studying the non-linear modes of vibration of CNTs is important, 
because these modes define essential vibratory properties. 
   This communication is devoted to the study of the modes of vibration of CNTs oscillating in the geometrically non-linear 
regime. To carry out the study, a beam p-version finite element for CNTs is implemented. In order to take the small scale 
effects into account, the non-local elasticity theory of Eringen is followed [4,5]. The equations of motion are solved by the 
harmonic balance method (HBM), in conjunction with an arc-length continuation method. For the first time in this problem, 
several harmonics are considered in the HBM, allowing us to describe modal interactions on CNTs, and to find previously 
undetected impacts of non-local effects on the non-linear modes of vibration of CNTs. 
 

FORMULATION OUTLINE 
 
   In a non-local Euler-Bernoulli beam, the constitutive equation is [5]: 
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where x(x, t) and x (x, t) represent, respectively, the axial stress and the axial strain, E the Young modulus and  a non-local 
parameter. The non-local parameter is defined as =(e0a)2, with a representing an internal characteristic length and e0 a 
constant that depends on the material; it is determined via comparisons with experiments or with molecular 
mechanics/dynamics simulations [4-6]. 
   The geometrically non-linear relation between the axial strain and the displacement components u(x,t) and v(x,t) is: 
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   In this work, a p-version finite element method (pFEM) approach is followed; this is characterized by the fact that, when 
more detailed FE models are required, the number of shape functions and generalized coordinates in the finite elements is 
increased, but the mesh is not altered. The pFEM equations of motion have the following form 
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There are two mass matrices in equation (3), Mv and Mv; the former is the local mass matrix, the latter represents the effects of 
transverse inertia on the non-local part of the bending moment. In the stiffness matrices K, numbers in superscript specify the 
dependence of the matrices on the transverse generalised displacements qv(t) in the following way: number 0 indicates that the 
matrix is constant; number 1 indicates that the matrix is a linear function of qv(t) and number 2 indicates a quadratic dependence. 
The letters in subscript identify the displacement components or non-local effects that are related with the matrix. The influence 
of non-local effects on the stiffness of CNTs only transpires when the geometrical non-linearity is taken into account. 
   We are specifically interested in periodic solutions of equations of motion (3) and, therefore, the generalised displacements 
qv(t) can be written as a Fourier series. Applying the harmonic balance method, a system of non-linear algebraic equations is 
obtained. This system is solved by an arc-length continuation method. 



SAMPLE RESULTS 
 
   Several tests were carried out, of which only a small ample is given in this short text. Figure 1(a) shows the variation of 
the amplitude of the first harmonic with the vibration frequency when CNTs oscillate in their first mode of vibration; Figure 
1(b) when CNTs oscillates in the second mode of vibration. The local and one non-local case are compared. The non-
dimensional non-local parameter  , where L represents the length of the CNT,isequal to 0.04. The horizontal axes 
provides the natural frequency of vibration in the non-linear regime, represented by , divided by the natural frequency of 
vibration in the linear regime, represented by n. 
   Analysing Figure 1(a), one sees that the influence of non-local effects on the main branch of the backbone curve of the 
first mode of vibration is not large: it changes slightly the hardening spring effect, showing that non-locality has a stiffening 
effect at larger displacement amplitudes. Both when  =0 and  =0.04, a 1:5 internal resonance due to an interaction between 
the first and third modes of vibration is found. But the non-dimensional frequency and vibration amplitude at which this 
internal resonance occurs is strongly affected by the non-locality. Furthermore, close to 1=1.84 a second bifurcation 
occurs if  =0.04. It is due to the excitation of the 4th mode of vibration and higher harmonics, where the fifth harmonic 
outstands. This bifurcation is not visible if non-local effects are neglected. 
   Proceeding to the second mode, Figure 1 (b), the backbone curves are initially similar, with non-local effects inducing a 
small increase in hardening. However, the non-local effects have a major influence on bifurcations. Plots of shapes assumed 
by the CNTs along a vibration cycle, as well as plots of time histories and projections of trajectories on phase planes – not 
shown here due to space limitations – complete the demonstration that, due to bifurcations and modal couplings, non-local 
effects can have an influence on the dynamics of CNTs that is stronger that what has been previously found. 

   
   (a) First non-linear mode and bifurcations      (b) Second non-linear mode and bifurcations 
Figure 1. Amplitudes of first harmonic of the transverse vibration displacement of CNT, when =0 ■ and when  =0.04 ●. 

 
CONCLUDING COMMENTS 

 
   A pFEM, non-local, formulation is applied to investigate the modes of vibration of CNTs vibrating in the geometrical 
non-linear regime. It is shown that the modes of vibration of non-local CNTs can be very different from the modes of local 
CNTs, chiefly due to the alterations that non-local effects cause on internal resonances promoted by the non-linearity. Internal 
resonances result in rich vibrations, with contributions of more than one harmonic and with significant variation of the shape 
assumed along a vibration period. It is also found that, because of internal resonances, the non-local effects are still noticeable 
at lengths that are longer than what has been previously detected. 
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Summary Due to their accuracy and their size, M/NEMS resonant sensors are present in a lot of domain such as automotive, aerospace and
biotechnology. They are used as accelerometers, gyroscopes for inertial navigation and also mass detection which is the target application
of this investigation. The literature essentially focus on improving the sensitivity of a single resonator. Mass sensors are now able to detect
a mass around a few zeptograms. This work presents a three-nanomechanical-resonator array analysis. The original contribution lies in the
use of the array symmetry-breaking for mass detection.

ARRAY OF THREE NANOMECHANICAL RESONATORS

An array of three clamped-clamped beams is considered, as sketched in Fig. 1. All beams are assumed to have identical
dimensions ( length l, width b, height h, moment of inertia I , gap g between two adjacent beams) and identical material
properties (Young’s modulus E and material density ρ). Each beam is subjected to the electrostatic forces due to its two
adjacent beams. The two beams at both ends of the array (beam 0 and n+ 1) are clamped and non-deformable.

0 1 2 3  nano-beam

Vdc10

Vac10
Vdc32
Vac32

g
h

w (x,t)
s

x

O

Vdc21
Vac21

Vdc43

Vac43

4

Figure 1: Array of three clamped-clamped M/NEMS beams.

Let w̃s be the lateral displacement in the plane x − z along the z-axis of the s-th beam and Vs,s+1 = V dcs,s+1 +
V acs,s+1 cos(Ωt) the voltage between s-th and s+1-th beams. The s-th resonator motion equation can be written as [1, 2]:

EI
∂4w̃s(x̃, t̃)

∂x̃4
+ ρbh
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=
ε0bCn

2

[
V 2
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g + w̃s+1 − w̃s

)2 −
V 2
s−1,s(

g + w̃s − w̃s−1
)2
]

(1)

where s = 1, .., 3 and Ñs is the axial force acting on the s-th beam and resulting from an externally applied load or from
residual manufacturing stress. ε0, CN are the dielectric constant and fringing field coefficient respectively. First and last
resonators are clamped, therefore the following conditions apply:

w̃0(x̃, t̃) = w̃N+1(x̃, t̃) = 0. (2)
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By assumption the three identical beams have the same eigenmodes. First, a Galerkin expansion is used to eliminate the
spatial dependence of the lateral displacement. Then the electrostatic forces in Eq. (1) are treated by either multiplying by the
denominator or either using Taylor series expansions. Then the Harmonic Balance Method associated with the Asymptotic
Numerical Method (HBM+ANM) [3] is used to solve Eq. (1). The ANM is preferred to a more conventional Newton- Raphson
method because of the robustness of the ANM-based continuation and its ability to follow very complicated solution branches.

MASS DETECTION USING SYMMETRY-BREAKING OF NANOMECHANICAL RESONATOR ARRAYS

In order to use the symmetry-breaking of the resonator array for mass detection, a symmetric configuration is considered,
with symmetric voltages as defined in Table 1. The electrostatic forces acting on both sides of the central beam are therefore
compensating each others. Consequently, the central resonator will not vibrate. The symmetry-breaking appears when a mass
fall on either the first or the third resonator. The symmetry is then broken and the central resonator starts to vibrate. The
presence of a mass is thus detected.

Depending on the value of the added mass, different responses are obtained. The corresponding curves are plotted in Fig.
2. The central figure represents the response of the central beam. Without added mass (m = 0) the central beam does not
vibrate. As soon as a mass is added on the first or the third beam, the symmetry is broken and the vibration amplitude of the
central beam is not null anymore and increases with the value of the added mass.

V dc10 V ac10 V dc21 V ac21 V dc32 V ac32 V dc43 V ac43
0 0 5.3 1 5.3 1 0 0

Table 1: Voltage configuration of the three array beams.
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Figure 2: Array of three clamped-clamped M/NEMS beams.

CONCLUSIONS

A new mass detection method using symmetry-breaking of a M/NEMS array has been proposed. This method gives an
original way to detect particles and to determine their mass. This work is a first step towards MEMS-based mass spectrometry
via the implementation of thousands resonators in parallel.
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Summary A nonlinear identification technique is presented to obtain the damping of isotropic and laminated sandwich rectangular plates and 

curved panels subjected to harmonic excitation as a function of the vibration amplitude. The response of the structures is approximated by (i) 

reduced-order models with 10 to 100 degrees of freedom and (ii) a single-degree of freedom Duffing oscillator. The method uses experimental 

frequency-amplitude data and the least-squares technique to identify parameters and reconstruct frequency-response curves by spanning the 

excitation frequency in the neighbourhood of the lowest natural frequencies. In order to obtain the experimental data, a sophisticated measuring 

technique has been used. The results reveal a strongly nonlinear correlation between the damping and the vibration amplitude. 
 

Introduction 
   A challenging concept in nonlinear system identification is the characterization of damping from experimental data. 

Dissipation is intrinsically a nonlinear phenomenon. The modal damping assumption is a convenient tool that has been 

extensively used to model dissipation. However, this model generally does not take into account that damping changes with 

the vibration amplitude. Different nonlinear damping mechanisms have been proposed, the most common being the 

quadratic damping [1]. Other forms of nonlinear damping include quadratic and cubic powers of relative velocity [2]. 

Another damping model that is quite often used is the viscoelastic model [3]. Although there have been numerous studies 

about nonlinear damping, so far none has discussed the change of damping with the vibration amplitude. Therefore, 

different from previous studies, we propose a nonlinear identification technique to examine the damping behavior of plates 

and panels during large amplitude vibrations. In order to perform the identification technique, first nonlinear experiments 

are conducted on isotropic and laminated sandwich plates and curved panels with (i) free edges and (ii) clamped boundary 

conditions by using a Laser Doppler Vibrometer and a LMS signal processing system to obtain nonlinear experimental 

frequency-response curves. Then, the frequency-amplitude data obtained from experiments are used as the inputs for the 

identification scheme and the least squares method is utilized to minimize the error between the measured response and the 

identified model. It is observed that damping grows very significantly with the vibration amplitude. 
 

Experimental procedure 

   The non-linear vibration tests have been performed by increasing and decreasing the excitation frequency in very small 

steps in the frequency neighbourhood of the fundamental mode by using a stepped-sine testing technique [4]. The excitation 

has been provided by an electro-dynamic shaker, driven by a power amplifier, via a stinger connecting the shaker to the 

piezoelectric miniature force transducer (B&K type 8203) attached to the structure. The response is then measured by using 

a very accurate Polytec single point Laser Doppler Vibrometer (sensor head OFV-505 and controller OFV-5000) in order to 

have non-contact displacement measurement with no introduction of added mass. The time responses have been measured 

by using a SCADAS III front-end connected to a workstation and the LMS Test.Lab software has been used for signal 

processing, data analysis and excitation control. In particular, the MIMO Sweep & Stepped Sine Testing application of the 

LMS system has been utilized to generate the excitation signal and its closed loop control has been used to keep the force 

constant while the excitation frequency is varied in the neighbourhood of the fundamental frequency. 
 

Modelling and identification method 
   In order to identify the damping for the experimental data, two procedures are used and their results are compared. First, 

a very accurate reduced order model with a number of degrees of freedom of the order of 10 to 100 is built and the 

equations of motions are integrated numerically by using a pseudo-arclength continuation and collocation scheme and the 

damping is varied until the experimental results are matched. The details on the reduced-order models are given in [4]. In 

the second procedure, the response of the tested structures is approximated by a single dimensionless nonlinear oscillator 

with viscous damping, quadratic and cubic non-linearities as follows: 

 2 2 3

2 3
cos( ) ,r x x x x x tζ η η λ+ + + + =�� �       (1) 

where x and t are made dimensionless with respect to the structure’s thickness and the excitation frequency, respectively. 

Moreover, ζ is the damping ratio, λ is the dimensionless force, r is the frequency ratio (the ratio between the excitation 

frequency and the fundamental frequency), and η2 and η3 are the dimensionless quadratic and cubic non-linear terms, 

respectively. Next, the harmonic balance method is applied and the solution of equation (1) is approximated by 
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where N is the chosen order of truncation and xN is the truncated Fourier series representation of x. A system of algebraic 

equations is obtained that relates the frequency ratio r to the amplitudes xN. Next, the identification is conducted by 

assuming that the vibration amplitude xN, the frequency ratio r and the harmonic force amplitude are already known for 

every frequency step from experiments. Therefore, in order to obtain the damping and the non-linear parameters, the 
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where m is the number of excitation frequency steps for which the experimental data was obtained at a specific excitation 

level. Sx, Px and Qx are vectors comprising truncated Fourier coefficients of x, x
2
 and x

3
, respectively, and Sf is the 

dimensionless force vector. System (3) is over-constrained, since it contains (2N+1)×m equations. Therefore, in order to 

obtain the damping ratio and the non-linear parameters the least squares technique has been applied. 
 

Non-linear identification results 
   The procedure outlined in the previous section has been applied to (i) AISI 304 stainless steel plate with 

0.25×0.24×0.0005m dimensions bolted to a AISI 410 stainless steel rectangular frame exhibiting clamped boundary 

conditions; (ii) AISI 304 stainless steel circular cylindrical panel (0.199×0.132×0.0003m) inserted in a heavy rectangular 

steel frame made having V-grooves designed to hold the panel and to avoid displacement of the edges; (iii) a stainless steel 

rectangular plate (0.3×0.45×0.0008m) with free-edge boundary conditions; (iv) a free-edge sandwich plate 

(0.46×0.9×0.0033m) with Carbon/Epoxy skins having (0/90) stacking sequence and a DIAB® Divinycell foam core; (v) a 

second free-edge sandwich plate (0.46×0.9×0.0036m) with Carbon/Epoxy skins having (0/90) lay-up and a PLASCORE® 

PN2 aramid fiber honeycomb paper core. For the clamped cases the response is measured at the center while for free edges 

the response is measured at one of the corners. Figures 1(a), 1(b) and 1(c) compare the experimental frequency response 

curves for different excitation levels and the identified ones for three cases: the free edge rectangular plate, the clamped 

plate and the curved panel, respectively. It can be observed that the identification (red *) is reasonably accurate and the 

identified amplitudes are perfectly following the experimental data (blue •) predicting hardening response in case of the flat 

plates and softening for the curved panel. Figure 1(d) depicts the evolution of damping (normalized with respect to the 

small-amplitude linear damping) with the normalized peak amplitude for all studied cases (including the two sandwich 

plates). It is interesting to see that the damping ratio varies nonlinearly with the increase of the peak vibration amplitude. It 

is evident that for the supported plate and sandwich free-edge plates, the damping could increase more than 250% for 

vibration amplitudes greater than 1.5 times the thickness. This increase is about 50% for the curved panel and for the same 

vibration amplitude. However, for the completely free steel plate the increase in damping is around 280% for vibrations 

greater than 3 times the thickness. This behavior confirms the presence of large dissipation during large-amplitude 

vibrations. 

(a) (b)  (c)  (d) 

Fig. 1. (a) Comparison between the experimental and identified curves for the tested free-edge isotropic rectangular plate; 

(b) comparison between the experimental and identified frequency-amplitude curves for the tested clamped rectangular 

plate; (c) comparison between the experimental and identified curves for the tested clamped curved panel; (d) nonlinear 

variation of damping (normalized with respect to the linear damping) versus the peak vibration amplitude (normalized with 

respect to the thickness) for all the studied cases. In (a), (b) and (c) red * denote harmonic balance identification while blue • 

indicate experimental results. 
 

Conclusions 

   A nonlinear identification technique is presented to track the evolution of damping during large-amplitude vibrations. The 

identified damping parameters confirm the presence of a strongly nonlinear correlation between damping and vibration 

amplitude in plates and curved panels. Particularly, it was found that plates and panels exhibit much larger dissipation during 

large-amplitude vibrations than in case of small-amplitude vibrations. Specifically, the damping increases with the vibration 

amplitude well over twice the linear damping ratio for the isotropic and sandwich plates experimentally investigated, and over 50 

% for the circular cylindrical panel. 
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Abstract We study stress wave propagation in an impulsively forced split Hopkinson bar system with a frictional interface. By first 
considering only the primary-wave transmission and reflection, we reduced the problem to a first-order, strongly nonlinear ordinary 
differential equation. An Iwan element is chosen to model the frictional interface. The primary-wave propagation model is used to identify 
the Iwan parameters by maximizing the R-squared value between the experiment and simulation results. Using the optimized Iwan 
parameters, a high-order finite element model is used to simulate multiple transmissions and reflections across the interface. The results 
demonstrate that the primary-wave propagation model can be used for nonlinear system identification at a lower computational cost 
compared to higher-order models.  
 

INTRODUCTION 
 

   High-order finite element (FE) models are often employed to identify system parameters, leading to high computational 
costs. As such, it is often desirable to develop low-cost reduced order models (ROMs) that can be used to identify accurately 
system parameters. One area where this proves difficult is in the prediction of mechanical wave propagation across a nonlinear 
interface in a waveguide due to an impulsive load. A conventional waveguide is the split Hopkinson pressure bar (SHPB) [1].  
Recently, an SHPB system has been used to study the effects of threaded interfaces [2]. This work presents a new nonlinear 
system identification method based on the primary-wave propagation (PP) model proposed in [3]. We show that the PP model 
can accurately identify the parameters in an Iwan element used to model the nonlinear interface studied in [2] at a reduced 
computational cost. 
 

PROBLEM FORMULATION 

 
   We consider the system depicted in Figure 1, composed of two linear elastic layers coupled by a nonlinear interface. The 
equation of motion governing the longitudinal waves in each layer is 
 2 2 2 2/ / 0, 1, 2,

i i
u t u x i        (1) 

where  ,
i i

u u x t  is the th
i  longitudinal displacement. Additionally, all variables are normalized such that 0 1.x   The 

layers are assumed to start with zero initial conditions, with 0t   defined as the time when the primary pulse reaches the left 
boundary 0x   of the layer. The boundary conditions for the layers are 
      2 2 21 10 1 0 1, , , , , 0,/ / / /

inx x x x
u x F t u x K z z u x K z z F u x

   
               (2) 

where the relative displacement is      
2 1

, 0 ,1 .z t u t u t   With the system defined, we turn to the method developed by 
Pilipchuk in [3], which reduces the problem to a single first-order, nonlinear, ordinary differential equation (ODE) by 
considering only the primary transmission and reflection. Pilipchuck provides a full derivation in [3]; here only the resulting 
equations are presented:  
      

01 / 2 , 0,,
in t

z K z z F t z


     (3) 

      
2 1/ 2 ,

in
F t F t z    (4) 

where 2F is the transmitted force. Additionally, the reflection into the first layer is  
 

 
Fig. 1 Impulsively forced dual-layer system with nonlinear interface 
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Fig. 2 Resulting waves for a preload of 25 ft-lbf and a striker velocity of 44.3 ft/s predicted using PP model and FE model. 
 

      
1 2 1 ,

in
t F t K t        (5) 

where 1  is the reflection in the first layer based on the D’Alembert representation of the solution. Thus, by solving for z in 
(3), the transmitted and reflected forces are calculated using (5). By matching the predicted forces with the experimentally 
measured strains (converted into forces), the system parameters can be identified.  
 

NONLINEAR SYSTEM IDENTIFICATION 

 
   We study an SHPB system composed of two hardened AISI 1566 steel bars with a threaded interface. Both the incident and 
transmission bars had a length of 48 in. and a diameter of 1.5 in. The threaded interface was made using 1”-8 UNC threads 
with male threads on the incident bar and female threads on the transmission bar. An initial static torque preload, applied by 
hand (near zero torque) or by using a handle-less strap wrench, ranged from 25 ft-lbf to 40 ft-lbf. The incident bar was 
dynamically excited by a 6 in. long striker, propelled by an air gun, at velocities ranging from 23.0 to 44.9 ft/s. Strains were 
measured at two locations before and two locations after the interface using uniaxial semiconductor strain gages. The Air 
Force Research Laboratory at Eglin Air Force Base, FL conducted all experiments and documented them fully in [2]. 
   The frictional interface is modeled using an Iwan element [4], which contains an infinite distribution of Jenkins elements 
in parallel, where each Jenkins element consists of a linear spring in series with a Coulomb friction slider. All springs are 
chosen to have equivalent stiffness, but the slip forces vary in the form of a band-limited distribution as used by Iwan in [4]. 
Due to the lack of striker force measurements, the input force was modeled using a half-sine impulse in the simulations. The 
Iwan and forcing parameters are identified using MATLAB’s patternsearch optimization algorithm with the objective of 
maximizing the R-squared value between the experimental data and the PP model results. The PP model simulations were 
computed up to a dimensionless time of 2.5 before any secondary transmissions and reflections. Using the optimized Iwan 
parameters, a high-order FE model was used to predict the secondary transmissions and reflections. Figure 2 presents the 
results for a static torque of 25 ft-lbf and a velocity of 44.3 ft/s. 
 

CONCLUDING REMARKS 

 
   This paper presented a nonlinear system identification method for identifying nonlinear interfaces in waveguides based only 
on primary transmissions and reflections. In this way, the problem was reduced to a first-order, nonlinear ODE, resulting in 
a reduced order model, the PP model, without sacrificing the interface nonlinearity. Using the PP model, Iwan parameters 
were identified to model a threaded interface in an SHPB system. The PP model accurately captured the primary transmission 
and reflection across the interface, allowing accurate identification of the Iwan parameters. Additionally, multiple 
transmissions and reflections were computed using a high-order FE model with the Iwan parameters identified from the PP 
model and the results compared to those from the ROM. 
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Summary Nonlinear resonators employing 1:2 internal resonance have been proposed as sensing elements in some Micro-Electro Mechan-
ical Systems (MEMS). A critical aspect of their performance is their robustness of performance with respect to variations resulting from
fabrication uncertainties. In this study, an uncertainty quantification analysis is performed on several candidate designs for 1:2 internal
resonances obtained via a computational synthesis method, and the interplay of geometric fabrication errors and robustness is illustrated.

INTRODUCTION

MEMS Devices operating on the principal of resonant behavior under 1:2 internal resonance have been proposed in
applications such as mass and chemical sensors [1]. Additionally, new synthesis methods have been developed [2] which can
generate several candidate designs for such resonators. Resonators based on 1:2 internal resonances are often designed so as
to have their first two natural frequencies in the ratio of 1:2. In the computational synthesis method in [2], structures composed
of beams having constant cross section joined orthogonally to each other are linearly designed as candidate structures for 1:2
internal resonance by varying the shape and size of structural elements. The intended properties of 1:2 frequency ratio are
achieved by optimizing topology of the linear structure and dimensions of individual beams. As manufacturing processes have
some inbuilt variability in the dimensions they can produce, it is critical to analyze the candidate resonators for their ability
to provide sufficient performance in the face of dimensions achieved in actual fabrication compared to the nominal structure.
While applicable for linear resonators as well, such uncertainty quantification and robustness considerations are especially
important for nonlinear systems as the resonators are quite sensitive to variations in the frequency ratio from nominal value.
In this work, four resonators synthesized using the method described in [2] are compared for robustness of their nonlinear
resonant performance in face of uncertainties induced in dimensions due to manufacturing tolerances.

STRUCTURE SYNTHESIS AND NONLINEAR REDUCED ORDER MODEL

As stated in the introduction, the candidate resonators for 1:2 internal resonances consist of constant cross-section beams
joined orthogonally to each other and undergoing planar vibrations. A hierarchical optimization method described in detail in
[2] is used to synthesize these structures so that their first and second natural frequencies are in the ratio 1:2. Figure 1 shows
four of these candidate structures for 1:2 internal resonance obtained using the hierarchical optimization method. Note that
when the structures are fabricated using MEMS fabrication techniques, the structures deviate from nominal designs.

To obtain the nonlinear equations of motion for the candidate structures, Euler-Lagrange conditions coupled with the
method of averaging are used. It is assumed that the overall nonlinear structural response of these systems consists predomi-
nantly of the lowest two modes. The transverse deflection of the ith beam of the structure can be written as:

vi = ϵ(A1ϕi1 +A2ϕi2) , (1)

where A1 and A2 are the modal amplitudes that are only functions of time, and ϕi1 and ϕi2 are the first and second linear
modes of the ith beam, respectively. Following the standard averaged Lagrangian approach [3], the two-mode nonlinear
resonant dynamics with quadratic (inertial) nonlinearity is reduced to four first-order equations describing the slow evolution
of the amplitudes A1 and A2 in Eq. (1) and the frequency response is obtained using these first-order equations. It is well-
known [1, 2, 3]that when the second mode is excited near its natural frequency, under the 2:1 internal resonance, the first
mode is excited due to its nonlinear modal coupling with the second mode. The strongest coupling is when the two modal
frequencies have a ratio of 2. In the presence of frequency mistuning, the response of the first mode goes down significantly.
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Figure 1: Optimized structures obtained for 1:2 frequency ratio as obtained in [2]. The planar structures are clamped at the
red ground. The ratio of the first two natural frequencies for each of the structures is 2.0000.
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Figure 2: Histograms of the frequency ratio ω2

ω1
of the structures shown in Fig 1.

Figure 3: Mode 1 amplitude at zero external mistuning (excitation frequency equal to ω2) of the structures shown in Fig. 1.
The red line indicates the failure criterion amplitude.

UNCERTAINITY QUANTIFICATION

Variations in structural dimensions of the optimized structures result in the natural frequency ratios of the structures to
deviate from 2 and thus, a degradation in device performance. To study the effects of variations in the beam lengths on
the nonlinear response of the structure, consider the variations in lengths to be governed by a uniform distribution. Thus,
beam length variations are assumed to be ±10% from the nominal. Samples generated using the Latin Hypercube Sampling
technique are then used to compute the variation in natural frequencies with respect to the beam lengths. This relationship is
expressed in the form of a response surface using the Multiadaptive Regression Splines (MARS) [4] which can be sampled to
study the effect of dimensional uncertainties on nonlinear response of the first mode, and thus the device performance.

To compare the four candidate structures shown in Fig. 1 from the point of view of robustness of the nonlinear response,
a test is defined to quantify each resonator’s operational success or failure. This test can be stated as,“If for a given set of
parameters along with a fixed value of forcing at the second natural frequency, the amplitude of the first mode response is
more than or equal to 50% of the first mode amplitude for the nominal case, the device is said to be successful”. This is based
on the expectation that when a certain number of devices (or structures) are fabricated using identical manufacturing process,
a certain fraction will not exhibit strong internal resonance, and thus the coupled mode nonlinear response. Figure 2 shows
the histogram of the frequency ratios for the four structures. Figure 3 shows the mode 1 amplitudes of the four candidate
structures at exact external resonance. Mode 1 amplitude is highest when the design is at its nominal point (i.e., the frequency
ratio is equal to 2), and deviations from a frequency ratio of 2 cause a gradual drop in efficacy of modal coupling finally
leading to the mode 1 amplitude becoming zero. The device failure rates for the respective structures are 28.98%, 34.62%,
35.30% and 97.14%. Thus, it is clear that among the four structures Structure 1 from Fig. 1 is the most robust to fabrication
errors.

DISCUSSION AND CONCLUSIONS

Several candidate structures were compared for resonant coupled mode dynamics with regards to their ability to provide
functionality in face of dimensional variability. The study brings forth the added aspect of nonlinear resonator design for
internal resonances as some optimal designs, such as structure 4, may not be robust enough to handle uncertainties in device
fabrication.
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STUDIES OF ROTOR-STATOR SYSTEM SUBJECTED TO NOISE EXCITATIONS
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Summary In this work, the authors present stochastic averaging studies conducted to examine torsional vibrations of a Jeffcott rotor sub-
jected to continuous stator contact. The rotor drive input includes a deterministic input and white noise. The influence of noise on both
forward and backward whirling motions is considered. In the experimental arrangement, noise is introduced through the drive motor signal.
The experimental results are presented along with the results of the analytical-numerical studies and discussed.

INTRODUCTION

Noise is unavoidable and present is a range of engineering systems, and it can play a significant role in influencing system
dynamics. In the current study, a combination of experimental and analytical-numerical studies are undertaken to understand
the response of a rotor-stator system subjected to noise. The authors make use of the stochastic averaging method [1] to
determine the response of the rotor-stator system. This averaging method has been used quite effectively to study the response
of linear and nonlinear systems subjected to a combination of deterministic and noise inputs (e.g., [2, 3]). The physical system
of interest here is a drill-string system, a representative illustration of which is provided in Fig. 1. Drill strings are long,
tubular structures that are used for boring holes in the ground. These systems can undergo large torsional deformations as well
as lateral displacements.. In general, noise is considered undesirable for the performance of an engineering system. However,
noise may have beneficial effects on the dynamical behavior of systems and it can have a significant influence on the system
dynamics (e.g., [4]). As an extension of their prior study, the authors consider the influence of noise on the dynamics of a
flexible rotor with continuous stator contact.

EXPERIMENTAL ARRANGEMENT

The experimental arrangement consists of a rotor disc attached to a rotating rod. The rotating rod is made of aluminium
and referred as a string due to its slenderness. In the experiments, this structure has a diameter of 3.2 mm and spans a length
of approximately 2.0 m. The rotor is made of aluminium and has a diameter of 15.2 cm, and this rotor is enclosed within a
circular stator with an inner diameter of 20.3 cm. A small mass is attached to the rotor in order to create an imbalance and
eccentricity in the string-rotor system. The complete assembly is shown in Fig. 2.

Figure 1: Representative drill-string system [5].
∗Corresponding author. Email: vagarwal@umd.edu



Figure 2: Experimental Arrangement. (a) Complete Experimental Arrangement, (b) Top Assembly, (c) Bottom Assembly

The entire string-rotor assembly is driven by a three-jaw self centering chuck that is connected to a stiff stainless steel
driven shaft and motor. Additionally, a slip ring placed along the drive shaft allows for strain gages to be secured to the string.
The strain due to bending and torsional vibrations may be measured depending upon the configuration of strain gages. For
certain drive speeds, the rotor comes into contact with the stator and is subjected to frictional forces. The rotor may either
stay in continuous contact in stator while it experiences different types of whirling motions or return back to the center of the
stator. In the present study, the authors consider the constant contact cases in the experiments.

MODELING AND ANALYTICAL-NUMERICAL STUDIES

To complement the experiments, analytical-numerical studies based on the stochastic averaging method is carried out. The
rotor-stator system is nonlinear in nature. The torsional and lateral vibrations are coupled by the eccentricity of the unbalanced
mass through the inertial terms and rotor is also subjected to discontinuous forces that arise from the contact with the stator.
A reduced-order model, in the form of a modified Jeffcott rotor model, is used for the averaging and numerical studies when
noise is present in the system input. As part of the studies, the averaged Fokker-Planck-Kolmogrov equation is solved by using
the path integration method. Numerical results are obtained for making comparisons with the experimental observations.

CONCLUDING REMARKS

The stochastic averaging method has been used to study the response of a flexible rotor system in continuous stator contact.
Experiments are conducted with a laboratory scale arrangement of a portion of a drill-string system. The effectiveness of noise
in influencing backward and forward whirling motions is examined through the analytical-numerical and experimental studies
and discussed.
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TRANSIENT RESPONSES OF A FORCED TRIPLE WELL POTENTIAL SYSTEM WITH 
FUZZY UNCERTAINTY
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Summary Transient responses of a forced triple-well potential system with fuzzy uncertainty are studied by means of the Fuzzy Generalized 
Cell Mapping (FGCM) Method. The FGCM method is first introduced. A rigorous mathematical foundation of the FGCM is established as a 
discrete representation of the fuzzy master equation for the possibility transition of continuous fuzzy processes. The FGCM offers a very 
effective approach for solutions to the fuzzy master equation based on the min-max operator of fuzzy logic. A fuzzy response is characterized 
by its topology in the state space and its possibility measure of membership distribution functions (MDFs). This paper focuses on the evolution 
of transient MDFs of the fuzzy response. It is found that as the time goes on, transient MDFs spread around three potential wells. The 
evolutionary orientation of transient MDFs aligns with unstable invariant manifolds leading to stable invariant sets. 

FUZZY GENERALIZED CELL MAPPING 

   Consider a dynamical system with fuzzy uncertainty, 
( , , ),t S x� �x f x D� (1)

where x is the state vector, t the time variable, S a fuzzy set with a membership function ( ) (0,1]S s� �  where s S� , and f
is a vector-valued nonlinear function of its arguments. D is a bounded domain of interest in the state space. When the 
system parameter S is a fuzzy number, Equation (1) is a fuzzy differential equation. The equation of the FGCM system is 
given as follows by discretizing the time t, state variables x and the fuzzy set S in Equation (1) 

          ( 1) ( ), ( ) (0), ( 1) max min[ , ( )]n
i ij jj

n n n p n p p n� � � � �p P p p P p� � (2)

where 1n n� �P P P�  and 0 �P I . �  denotes the min-max operation. The matrix P denotes the one-step transition 
possibility matrix, nP denotes the n-step transition possibility matrix. The vector p(n) is called the n-step membership 
distribution vector and p(0) the initial membership distribution vector. The (i, j)th element pij of the matrix P is called the 
one-step transition possibility from cell j to cell i. Equation (2) describes the evolution of a fuzzy response process and its 
MDFs.

Consider the fuzzy master equation for the possibility transition of continuous fuzzy process [1], 

            
0

0 0 0 0( , ) sup[min{ ( , , ), ( , )}],p t p t t p t
�

� �
x D

x x x x x D . (3)

where x is a fuzzy process, p(x, t) is the membership distribution function of x at t, and p(x, t, x0, t0) is the transition 
possibility function. Equation (2) of the FGCM can be viewed as a discrete representation of fuzzy master equation (3). The 
solution to this equation is in general very difficult to obtain analytically. The FGCM offers a very effective method for 
solutions to this equation, particularly, for fuzzy nonlinear dynamical systems [2] 

TRANSIENT ANALYSIS OF MDFS  

   Consider a forced Duffing oscillator with a triple-well potential driven by additive fuzzy noise, 

            3 50.35 0.5 0.05 0.2cos
x y

y y x x x t S
��
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�
�

 (4)

where S is a fuzzy parameter with a triangular MDF, 
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0 0 0
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(5)

where 
 >0 is a parameter characterizing the intensity of fuzziness of S and is called fuzzy noise intensity. s0 is the nominal 
value of S with membership grade 0( ) 1S s� � . We take s0=0,
 =0.4.  
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SYNCHRONIZATION OF SELF-INDUCED FRICTION OSCILLATORS 
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Summary In this paper, the synchronization properties of self-induced dry friction oscillators coupled in array are investigated. As a 
research tool which allows one to predict the synchronization thresholds, the method called master stability function is applied. It is 
realized in the form of the reference probe of two coupled oscillators. Our results demonstrate that this technique can be successfully 

applied for such strongly non-smooth systems with discontinuities. 

 
INTRODUCTION 

 

Phenomenon of synchronization can be defined as a correlation (adjustment) in time of two or more different processes. 

Collective motion of dynamical systems has been known for a long time, i.e., since the second half of 17th century, when 

Christian Huygens observed that two pendulum clocks hanging at the same beam can synchronize in phase [1]. Next, this 

phenomenon has been observed and investigated in various types of mechanical or electrical systems [2]. Recently, the idea 

of synchronization has taken a more interdisciplinary character as a powerful basic concept in nature regulating a large 

variety of complex processes [3]. 

A concept called master stability function (MSF) is a useful tool to determine the complete synchronization (CS) 

thresholds for different coupling configuration of identical oscillators [4]. In general, we can define the MSF as a surface of 

the largest transversal Lyapunov exponent (TLE) over the complex numbers plane  representing arbitrary eigenvalue 

 of the connectivity matrix Gn (see Sec. II), where Re(and Im(. In mechanical oscillators one has mutual 

and symmetrical interaction yielding to real coupling, i.e. 0. Then the MSF is a function of the real number , such that  

         (1) 

If all the eigenmodes corresponding to discrete spectrum of eigenvalues i (i = 1, ..., n) of the can be found in the ranges of 

negative TLE then the synchronous state is stable. According to the idea of two oscillators probe these synchronous ranges 

of  are approximated (via relation (1)) by corresponding -intervals of zero synchronization error [5]. Concluding, results 
obtained for a pair of oscillators allow us to approach possible synchronization ranges for any configuration of coupled 

oscillators. 
  

 
Figure 1. Array of friction oscillators coupled by springs 

 

 

MODEL 

 

Consider an array composed of forced stick-slip friction oscillators shown in Fig. 1. A single oscillator is described by 

the following equation 

)()cos( rN vfFΩtUxkxm  ,      (2) 

 

where k is the stiffness constant, U amplitude of kinematic excitation,  forcing frequency, FN normal load force, 

xvv br
 is a relative velocity between the contact surfaces and    sgn)exp()()( avf kskr   represent 

assumed friction characteristic. Introducing mk0 , static deflection 
2
00 gx  , dimensionless time t0   and 

the following substitutions: 0  , 0xUu  , mgFN , 00 xbb  , yb
  we obtain dimensionless 

equations of friction oscillators array in form 
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is a the connectivity matrix defining the structure of array connections. Coupling coefficient  defines the overall strength 
of the coupling. 

RESULTS 

 

Let us consider the array composed of four coupled oscillators. For the assumed driving frequency  = 1.40 the single 

oscillator operates in chaotic regime. Other parameters are:  =0.1, s=0.3, s=0.15, a=2.5, =2.0, u=0.1. In Fig. 2 the 

MSF, represented by synchronization error eII() calculated from two oscillators probe, is projected via eigenvalues of 

connectivity matrix G4 on the bifurcation diagram of average synchronization error eIV evaluated for four coupled 

oscillators. Synchronization error eII() is scaled according to Eq.(1) by absolute value of non-zero eigenvalue of 

connectivity matrix G2 (i.e 21  ) in order to obtain eII() function. This function is plotted vertically on top left part of 

Fig. 2, whereas eigenvalues spectrum i on top right. At the bottom, average synchronization error for four coupled 

oscillators as a function of coupling strength  is presented. The synchronization occurs if all eigenmodes corresponding to 
the discrete spectrum of eigenvalues are found in the ranges of zero synchronization error for two oscillators test probe 

(horizontal grey regions in Fig. 1). As one can see in Fig. 2, synchronization of four oscillators occurs only in very narrow 

interval of , i.e. 0.153 ≥  ≥ 0.177, where all three eigenvalues are located in the -region of zero error eII() . Thus, 
knowing beforehand the synchronization thresholds for two oscillators probe, we are able to predict synchronization 

thresholds for longed chains of oscillators. 

 

 
Figure 2. The MSF eII(α) projected onto average synchronization error for three coupled self-induced dry friction oscillators via 
eigenvalues of connectivity matrix, for excitation angular frequency ω = 1.40. Synchronous regions are depicted with grey. 

 
CONCLUSIONS 

 

We investigated the synchronization properties of coupled self-induced dry friction oscillators. The array of four 

oscillators coupled by linear springs was analyzed in order to determine the synchronization thresholds using the MSF 

approach, basing on synchronization error of two oscillators probe. Our results confirmed that this technique can be 

successfully applied for the networks of strongly non-smooth dynamical systems. 
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Summary We formulate an initial-boundary-value problem that consistently couples an elastic field for a panel immersed in a two-dimensional 

viscous compressible fluid field. A finite-difference numerical solver is formulated to investigate strongly nonlinear spatio-temporal fluid-

structure interaction in uniform compressible laminar flow (100<Re<1000). The investigation reveals a complex bifurcation structure that 

includes quasiperiodic and chaotic-like non-stationary limit-cycles that evolve from stability loss of periodic ultra-sub-harmonic solutions. 

These bifurcations correspond to transitions in wake formations and transitions between two distinct fluctuation modes. 

 
   The field of fluid-structure interaction (FSI) incorporates a wide range of phenomena that are of great scientific and 

engineering interest in various disciplines, including aerospace and ocean engineering, biology, energy harvesting, heat 

removal and acoustics. The essence of this interaction is in the information transfer between the structure and the 

surrounding fluid, where the fluid exerts a load on the structure, which in turn complies and disturbs the flow in its vicinity.  

One of the highly investigated FSI problems is the complex motion of an elastic rectangular panel immersed in a uniform 

stream parallel to the longitudinal panel direction [1]. In spite of the comprehensive research done to-date, there are large 

discrepancies between documented experiments and the outcome of proposed simplistic analytical models [2]. Moreover, 

the existing numerical analytical and computational studies lack the full insight of the complex physical bifurcation 

structure which includes non-stationary dynamics and culminating with a possible chaotic spatio-temporal complexity. 

 

   We thus consistently formulate an initial-boundary-value problem that incorporates a two-dimensional viscous 

compressible fluid field described by the Navier-Stokes equations and an extensible Euler-Bernoulli elastic panel truncated 

to cubic order (Fig.1-left). Following [3] we implement a first-order loose coupling where the structure and fluid are solved 

alternatively by a fluid and structural solvers respectively. The fluid filed is solved via a Beam-Warming finite-difference 

scheme whereas the structure is solved using a fourth-order Runge-Kutta method [4]. Validation of the FSI solver is done 

by comparison to results obtained for an elastic panel both the flutter (Hopf) and a secondary bifurcation thresholds (Fig.1- 

middle) where periodic limit-cycle solutions become aperiodic, is consistent with the curve-fitting thresholds obtained in [5] 

as a function of both Reynolds number (100<Re<1000) and mass ratio (0<m*<0.3). A characteristic bifurcation diagram 

(Fig.1-right) depicts the free-edge amplitude (Aw) vs. the mass ratio for Re=750 which includes steady solutions (region I),  

periodic limit-cycles (region II), quasiperiodic (region III) and non-stationary chaotic-like (region V) solutions that are 

separated by an ultra-sub-harmonic (m/n=5/3) solution (region IV). 

 

 
 

Figure 1: Elastic panel definition sketch (left), stability map (middle), bifurcation diagram (right). 

 

    The panel position snapshots for constant time-stepping intervals (Fig.2) reveals for Re=1000 a growing spatio-

temporal complexity for increasing mass ratios. The periodic solution (m*=0.1) reveal an organized multi-mode spatial 

motion (Fig.2-left) whereas the quasiperiodic (m*=0.125) and non-stationary (m*=0.131) solutions reveal an irregularity 

with alternating spatio-temporal complexity which is more extensive for the chaotic-like oscillations (Fig.2-right).  

 

 

 

 
 



 

 

 
Figure 2: Panel position: periodic (left), quasiperiodic (middle), non-stationary (right). 

 .  

 The non-stationary temporal behaviour (Fig.3) is demonstrated for Re=1000 and m*=0.131 via the panel edge time-series 

(Fig3-left), its wide-banded power spectra (Fig.3-middle) and irregular state-space overlaid with a stroboscopic sampled 

Poincare’ map (Fig.3-right) that is the outcome of torus breakdown. 

 

 
Figure 3: Chaotic time-series (left), power spectra (middle), overlaid state-space and Poincare’ map (right). 

 

   The vorticity field snapshots (Fig.4) of the non-stationary solution (Re=1000, m*=0.131) reveal that the fluid dynamics is 

governed by an intermittent "2P" vortex shedding formation. This behaviour includes interplay between primary and secondary 

vortices which are governed by different distinct frequencies. 

 

 
 

Figure 4: Snapshots of vorticity (corresponding to selected times denoted in Fig.3 left). 

 
   The results of this investigation reveal a complex bifurcation structure that includes quasiperiodic and non-stationary chaotic-

like limit-cycles that are foliated with periodic ultra-sub-harmonic solutions. These bifurcations correspond to transitions in wake 

formations, and transitions between two distinct fluctuation modes. 
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Summary In this paper nonlinearities in the fluid-structure interactions of an elastically supported cylinder moving in the uniform fluid flow
are discussed. A new two degrees-of-freedom wake oscillator model [1, 2] is utilised to describe vortex-induced vibrations of elastically
supported cylinders capable of moving in cross-flow and in-line directions. Total hydrodynamic force acting on the cylinder is obtained here
as a sum of lift and drag forces, which are defined as being proportional to the square of the magnitude of the relative flow velocity around
the cylinder. The two van der Pol type oscillators are then used to model fluctuating drag and lift coefficients. The resulting equations
of motions of the cylinder in cross-flow and in-line directions are coupled through the fluid forces. Experimental data and Computational
Fluid Dynamics (CFD) results are used to calibrate the proposed model and to verify the obtained predictions of complex fluid-structure
interactions for different mass ratios.

INTRODUCTION

As offshore oil and gas fields are moving into deeper waters, the nonlinearities in the slender marine structures such as
risers, mooring cables and umbilicals, and the fluid-structure interaction phenomena such as vortex induced vibrations (VIVs)
become more and more important. Many of VIV aspects still require further advanced modelling to investigate the impact
of the phenomenon which significantly affects the service life of marine structures. This work is motivated by the need of
industry to predict loads and fatigue damage on riser systems, especially most common Top Tensioned Risers (TTRs) and
Steel Catenary Risers (SCRs). Accurate prediction of VIVs can help to produce more robust structural design and lead to
substantial savings in the offshore applications. Although the problem of vortex-induced vibrations could be addressed by
different approaches, which include experimental studies, computational fluid dynamics modelling and analytical models, in
present work, we focus on analytical model known as wake oscillator model.
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Figure 1: (a) Wake oscillator model for the cylinder moving in transversal and in-line directions; (b) Fluid forces acting on
the structure [3]. Drag force F⃗D acts in line with relative stream velocity U⃗R and lift force F⃗L acts in perpendicular direction.

MATHEMATICAL MODELLING

In this work we consider an elastically supported cylinder experiencing VIV shown in figure 1(a), that is free to vibrate in
cross-flow and in-line directions. As discussed in [1, 2], for a cylinder capable of oscillating in both directions, the equations
of motion on an XY plane in terms of the displacements in in-line and cross-flow directions, x and y, are

m⋆ẍ+ rsẋ+ hx = FX , (1)
m⋆ÿ + rsẏ + hy = FY , (2)

where the total hydrodynamic force components in X and Y directions are FX and FY . Here m⋆ is mass per unit length
including an added mass m⋆ = ms +

1
4πCMρfD

2, rs is structural damping, and h is stiffness of the support.
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This total hydrodynamic force, F⃗ = FX i⃗+ FY j⃗, is the result of the actions of the sectional vortex-induced drag F⃗D and
lift F⃗L forces which are shown in figure 1(b). As can be seen from this figure, the drag force F⃗D is acting along the velocity,
U⃗R = U⃗ − V⃗ which is the fluid velocity relative to the cylinder (V⃗ is velocity of the cylinder and U⃗ = Ui⃗ is the velocity of
the flow). The lift force F⃗L is then acting in the perpendicular directions and the magnitudes of lift and drag forces depends
on the magnitude of relative velocity U⃗R

(
|U⃗R| =

√
(U − ẋ)2 + ẏ2

)
:

F⃗D =
1

2
ρfCDD|U⃗R|2

U⃗R

|U⃗R|
, F⃗L =

1

2
ρfCLD|U⃗R|2

ẏ i⃗+ (U − ẋ)⃗j

|U⃗R|
. (3)

Here the parameters are ρf , the fluid density,CL, lift coefficient, andCD = CD0+C
fl
D , total drag, which can be represented as

a sum of constant mean sectional drag CD0 and fluctuating drag, Cfl
D . Following the approach employing nonlinear oscillator

equations of the van der Pol type (see for example [4]), the fluctuating lift CL and drag Cfl
D coefficients could be modeled by

two wake oscillators using q and w variables (q = 2CL/CL0 and w = 2Cfl
D /C

fl
D0

). Thus the system can be described by the
following set of the equations where the acceleration coupling recommended by Facchinetti et. al [5] was adopted in the wake
oscillator equations:

(ms +
1

4
πCMρfD

2)ẍ+ rsẋ+ hx =
√

(U − ẋ)2 + ẏ2
(1
4
ρfCL0qDẏ +

1

2
ρf (CD0 +

1

2
Cfl

D0
w)D(U − ẋ)

)
, (4)

(ms +
1

4
πCMρfD

2)ÿ + rsẏ + hy =
√
(U − ẋ)2 + ẏ2

(1
4
ρfCL0qD(U − ẋ)− 1

2
ρf (CD0 +

1

2
Cfl

D0
w)Dẏ

)
, (5)

ẅ + 2ΩF εx(w
2 − 1)ẇ + 4Ω2

Fw = (Ax/D)ẍ, (6)
q̈ + εyΩF (q

2 − 1)q̇ +Ω2
F q = (Ay/D)ÿ. (7)

The developed equations of motion (4)-(7) describe the vibrations of the cylinder in the fluid flow. However, a careful
calibration of the model is required and specifically empirical wake oscillators equations parameters Ax, Ay, εx and εy
need to be found. In case of a single degree-of-freedom system, numerical results by Facchinetti [5] where fitted against
experimental data, with Ay and εy estimated as 12 and 0.3 respectively. However, further investigation and calibration for
2DOF models are essential. It should be noted that in general these coefficients may be a function of various parameters of
the system such as mass ratio, damping ratio, reduced velocity, added mass coefficient, Reynolds number, etc.

In this study, first, the published experimental results were utilised to calibrate the proposed wake oscillator model. Three
sets of experimental data [6, 7, 8] were considered, and comparisons are made for different mass-damping ratio parameters.
Then, CFD model has been created in ANSYS Fluent 12.0.16 utilizing User Defined Functions (UDFs) in order to compute
the displacement of the cylinder on each time step based on the forces obtained from the dynamic pressure. Relatively low
Reynolds numbers (600 to 2000) were considered for the sake of simplicity. However, even for these low Reynolds numbers
(Re > 300) the vortex street is turbulent, and a high quality grid is required for solution to converge. The results of the
simulations and comparisons with both experimental data and CFD calculations will be presented in this paper.

CONCLUSIONS

In this paper nonlinearities in the fluid structure-interactions of an elastically supported cylinder moving in the uniform
fluid flow are discussed utilising new two degrees-of-freedom wake oscillator model. Equations of motion of the cylinder in
cross-flow and in-line directions are coupled through the fluid forces calculated from the instantaneous relative flow velocity
around the cylinder. This description of the fluid forces allows one to generalise the problem statement for the flexible structure
and conduct the analysis similar to transversal vibration case considered in [3].
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Summary The dynamic behavior of an electro-mechanical coupled system excited by harmonic voltage is numerically and experimentally
studied. The system governing equations involve coupling quadratic nonlinearity; as a result, the obtained numerical and experimental
results show the occurrence of the non-linear resonance related to the current quadratic nonlinearity and a jump, after which the mass of the
mechanical oscillator undergoes large amplitude oscillations and coexisting attractors appear.

INTRODUCTION

The dynamic experimental response of a system in which a mechanical linear oscillator is nonlinearly coupled to a linear
electric circuit through an electromagnet is studied. Previous analytical and numerical studies were carried out by the authors
on this type of multi-physics system [1]. According to these studies, when the mechanical oscillator is excited via harmonic
voltage applied to the electric circuit, interesting nonlinear phenomena arise such as the non-linear resonance related to the
current quadratic nonlinearity which imposes a natural linear resonance at half the frequency of the linear oscillator, jump
phenomena and transitions to complex chaotic interaction dynamics. The experimental investigations here presented aims at
validating these theoretical findings.

ELECTRO-MECHANICAL MODEL

The system consists of a linear oscillator coupled nonlinearly through an electromagnet to a linear electric circuit. The
motion is governed by the following two coupled differential equations:

ẍ+ 2ζmωmẋ+ ω2
mx = εαq̇2 + f̂

(1 + αx)q̈ + (2ζeωe + αẋ)q̇ + ω2
eq = ê,

(1)

in which m, c, k denote mass, dissipation and stiffness parameters of the linear oscillator and L,C,R denote the inductance,
capacitance, and resistance of the electrical circuit. The variables x and q denote the mechanical and electrical displacement
(charge), respectively. The velocity of the mass and the electric current are v ≡ ẋ, i ≡ q̇, respectively; f and e denote external
mechanical forcing and voltage excitation. The inductance is approximated by L(x) = L0 + L1x. The remaining parameters
are defined as: ω2

m ≡ k
m , ω

2
e ≡ 1

L0C
, ζm ≡ c

2
√
km
, ζe ≡ R

√
C

2
√
L0

, ε ≡ L0

2m , α ≡ L1

L0
, f̂ ≡ f

m , ê ≡
e
L0

,µ ≡ ωm/ωe. Therefore
the considered multi-physics coupled system is a nonlinear dynamical system with its coupling nonlinearity stemming from
the dependence of the inductance on the metallic mass displacement. The interest lies in investigating how the mechanical

Figure 1: Experimental setup of the electro-mechanical system and parameters of the numerical and experimental tests.
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part will respond when it is actuated by the electrical part. Previous Slow Invariant Manifold analytic approximations and
numerical investigations [1] have shown that the system has a slow periodic response over a well-defined region of the forcing
parameters. This region starts from low frequencies and includes the frequency at which the linear system undergoes a
resonance due to the presence of the quadratic nonlinear dependence on the current. At some critical value depending on µ
the amplitude-frequency response loses its smoothness via bifurcation mechanism that creates a finite jump.

NUMERICAL AND EXPERIMENTAL RESULTS

In Figure 1 the experimental realization of the above described coupled dynamical system is shown through a sketch and
a picture. The experimental setup located in the Nonlinear Dynamics Lab at N.T.U.A. consists of the following components:
electromagnet, steel cantilever beam, two acceleration sensors, sound measurement sensor, electric current recording sensor,
frequency generator, power and sensor signal amplifiers. The experimental tests have been carried out by applying a constant
voltage amplitude of 25 V and performing quasi-static forward and backward frequency sweeps. Different values of gap
between the surface of the electromagnet and the cantilever tip were investigated in order to tune the strength of the nonlinear
coupling. In the numerical and experimental investigations the system parameters are set as reported in Figure 1.

Figure 2a shows the numerical frequency-mechanical response amplitude plot. The different branches corresponding to
forward and backward sweeps show how the coupling nonlinearity affects the dynamics. As shown in [1], starting from
Ω = 2.5, as the frequency decreases the upper branch of the period-1 attractor grows until an instability is reached around
Ω = 1.55. At the critical frequency Ω = 0.966 (dashed red line) the period-1 attractor suffers an abrupt downwards finite
jump; afterwards, the lower branch shows the resonance around Ω = 0.5 (dashed blue line). The experimental results are

Figure 2: Numerical (a) and experimental (b) oscillator frequency-amplitude plots (forward (x) and backward (•) frequency
sweep). (c)-(d) Experimental coexisting attractors on the current-mechanical displacement plane (I-x).

shown in Figure 2b; the qualitative agreement with the numerical results obtained by direct numerical integration of (1) can
be seen in terms of both, the non-linear resonance related to the current quadratic nonlinearity, which imposes a natural linear
resonance at half the frequency of the linear oscillator given by Ω = 6.4 Hz (dashed blu line) and a jump at the cantilever
natural frequency occurring at Ω = 12.86 Hz (dashed red line). The coexistence of (at least) two periodic attractors can be
seen by the experimental phase portraits reported in Figures 2c,d for Ω = 12.7 Hz.

CONCLUSIONS

The dynamics of a coupled nonlinear electro-magneto-mechanical system was addressed by means of numerical and exper-
imental approaches. The numerical predictions obtained via Poincaré mappings were qualitatively validated experimentally
in a cantilever steel beam coupled to an electromagnet driven by harmonic voltage.
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Summary The paper presents some dynamical aspects of dynamics of a human middle ear reconstructed by means of a prosthesis made of 
shape memory alloy. A two degrees of freedom nonlinear model is developed. On the base of the model a bifurcation analysis is performed and 
an influence of external excitation and temperature on system dynamics is presented. 
 

INTRODUCTION 
 
   The human middle ear contains three ossicles: malleus, incus and stapes. The ossicles form a sound conduction system 
which transmits sound from the external ear to the fluids of the inner ear. The ossicles are connected to each other by 
incudomallear and incudostapedial joint. Such a complex bio-system is modelled in the literature from the last half century. 
The first study in this field was published in 1961 by Mőller [1] where also the first scheme of middle ear mechanism was 
proposed. Next, a similar model was investigated by Zwislocki [2]. In both publications, authors used an electrical circuit to 
analyse middle ear system. In the last decades mechanical models are developed where ossicles are represented by lumped 
masses, connected with springs and dashpots. In the literature, one can find three or four degrees of freedom (dof) model 
and sometimes even six dof but always they are linear. Usually these models focus only on kinematics of an intact middle 
ear however hardly ever, dynamics models are built. 
   Moreover, in medicine practice middle ear can be damaged e.g. by chronic otitis media. In this case usually middle ear 
prostheses is applied to reconstruct connection between stapes and malleus or tympanic membrane. Therefore, here a 
nonlinear model of reconstructed middle ear with shape memory prosthesis is proposed. Next, an influence of temperature 
on a reconstructed middle ear behaviour is analysed. 
 
 

MIDDLE EAR MODEL 
 
   Adjustment of the prosthesis size and location is one of the main problem occurring during surgery operation. Therefore, 
a new concept of shape memory prosthesis (AMP) is proposed here to improve a process of implementation in a human 
body. The SMP can be made of shape memory alloy (SMA) which characteristic is given by the stress (σ) polynomial of the 
strain (ε) [3]: 
 3 5

1 2 5( )Ma T T a aσ ε ε ε= − − +  (1) 
where, a1, a2, a3 are the material constants, T is temperature and TM is phase temperature where martensite is stable.  
   Since, in most cases the incus is damaged and should be removed from ossicluar chain, the proposed model is nonlinear 
with 2dof presented in Fig.1  
 

 
Fig.1: Two degrees of freedom model of middle ear with shape memory prosthesis. 

 
The differential equations of motion, governing the model presented in Fig.1 is presented in the form 
 



 2 3
2 3

sin
0

P P TM P TM P SMA

S S C S AL S AL S AL S C S AL S SMA

m x k x c x F Q
m x k x k x k x k x c x c x F

ωτ+ + + =

+ + + + + + − =

 

  

  (2) 

 
where, the spring force FSMA is given as 
 3 5

1 2 3( )( ) ( ) ( )SMA M p s p s p sF a T T x x a x x a x x= − − − − + −   (3) 
 
Dynamical behaviour of the stapes tested in the normal temperature of human body (36.6oC) is presented as a bifurcation 
diagram in Fig.2 showing different kind of possible solutions. 
 

 
Fig.2: Bifurcation diagram of stapes vibrations versus excitation amplitude 

 
More, examples will be given in a full paper (presentation). 
 
 

CONCLUSIONS 
 
• Smart prosthesis of human middle ear, made of shape memory alloy is an interesting alternative for classical prosthesis 

for the sake of possibility of easy adjustment its length and shape to individual medical case.  

• Strong external excitation of middle ear system with the smart prosthesis generates irregular vibrations which lead to 
deterministic chaos. 

• Behaviour of the SM prosthesis depends also on temperature and system nonlinearities.  
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ASYMPTOTIC APPROACH TO FLUTTER CONTROL VIA HYSTERETIC ABSORBERS
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Summary The aerodynamic control problem in long-span suspension bridges is discussed. A reduced-order bridge model (see Fig. 1) is
augmented by the degree of freedom of a hysteretic mass nonlinearly tuned to control two aeroelastic instabilities: vortex-induced parametric
resonances and limit cycle oscillations (LCO) past the flutter speed. The model comprises the plunge (vertical) and pitch (torsional) motions
while the aerodynamic lift and moment are governed by a quasi-steady formulation. The restoring force of the absorber is characterized by
linear and cubic elastic terms together with a hysteretic part governed by the Bouc-Wen differential model. The method of multiple scales
is adopted to obtain an asymptotic approximation of the LCO behavior. An optimization procedure based on the Differential Evolutionary
Algorithm is employed to obtain the set of constitutive parameters that lead to an optimal mitigation of the wind-induced oscillations.

INTRODUCTION

Parametric resonances and flutter are aerodynamic instabilities that affect engineering structures such as civil and mil-
itary aircraft wings or long-span suspension bridges [1]. A study on a lifting airfoil [2] revealed that a vibration absorber
characterized by a hysteretic restoring force can enhance the pre- and post-flutter behavior of the structure. In [3] the wind-
induced oscillation problem was tackled in the context of long-span suspension bridges showing that the Hopf bifurcation due
to the aerodynamic effects can be considerably shifted towards higher wind speeds by the introduction of multiple arrays of
hysteretic mass dampers tuned to the lowest two flexural-torsional flutter modes.

Here, an asymptotic approach based on the method of multiple scales is applied to a bridge sectional model [4] comprising
a hysteretic vibration absorber to provide proper control force and moment. The absorber hysteresis is described by the Bouc-
Wen differential law [5] and an optimization procedure based on the Differential Evolutionary Algorithm [6] is developed to
obtain the set of absorber design parameters that lead to optimal control.

EQUATIONS OF MOTION

The equations of motion for the sectional bridge model coupled with the hysteretic absorber in the vicinity of flutter can
be expressed in nondimensional form as

q̇− p = 0,

Maṗ + Cap + Kaq + nk = −ε2σu(C̄ap + K̄aq)
(1)

where the vector q = (h, α, x) lists the plunge h, the pitch angle α of the cross section and the absorber displacement x, and
p = q̇ represents the velocities. To study the Hopf bifurcation and the associated LCOs, the wind speed is expressed as a
perturbation of the critical speed according to U = Uc + ε2σu, where Uc is the flutter speed and ε is a small nondimensional
ordering parameter. The subscript a denotes the fact that the aeroelastic effects were absorbed into Ma, Ca and Ka which thus
represent the modified mass, damping and stiffness matrices, respectively, whereas C̄a and K̄a denote the perturbed damping
and stiffness aerodynamic matrices. On the other hand, the vector nk collects the nonlinear terms due to the bridge structural
quadratic and cubic nonlinearities and also to the VA hysteresis. According to [5], the hysteresis evolution law is solved
analytically, and a Taylor series expansion yields the hysteretic force as a summation of linear, quadratic and cubic terms.
These hysteretic terms are piece-wise continuous along the hysteresis cycle and the subscript k denotes the branch index (see
the hysteresis loop in Fig. 1). The other investigated instability is induced by vortex shedding occurring at a frequency Ω
nearly twice one of the bridge frequencies with an aerodynamic forcing term expressed by εf(α, ḣ, α̇) cos Ωt.

ASYMPTOTIC APPROACH AND OPTIMIZATION

The state-space coordinates are expressed according to the method of multiple scales as q =
∑3
i=1 ε

iqi(t0, t2) and p =∑3
i=1 ε

ipi(t0, t2), where t0 = t and t2 = ε2t are the fast and slow time scales, respectively. Under these assumptions, by
collecting terms of like powers of ε, the typical hierarchy of perturbation problems is obtained. The unique aspect of the
associated perturbation problems is the piece-wise nature of the inhomogeneous terms.

When dealing with the flutter instability, the linear problem coincides with the eigenvalue problem, which furnishes the
critical flutter speed and the associated mode shape. The quadratic problem does not contain resonant terms, but only the
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terms due to structural and hysteretic nonlinearities. The linear and quadratic solutions, substituted into the cubic problem,
give rise to the resonant terms which are removed by the solvability conditions. Since the problem is piece-wise across the
four branches of the hysteresis loop, the solvability conditions are enforced via the following integrals:

4∑
k=1

∫ τk+1

τk

w̄>r(k)
3 dt0 = 0 and

4∑
k=1

∫ τk+1

τk

w>r(k)
3 dt0 = 0 (2)

where r(k)
3 represents the right-hand-side vector of the cubic problem on the kth branch; w is the solution of the adjoint

problem and w̄ its complex conjugate; τk denotes the time instant within the linear oscillation period associated with the
characteristic displacements where velocity reversal or full unloading takes place. Equations (2) govern the slow modulation
of the amplitude and phase of the critical mode when the wind speed is in the vicinity of the flutter condition. The modulation
equations provide the bifurcation diagrams for the LCO.

An optimization procedure, based on the Differential Evolutionary Algorithm [6], is employed to determine the optimal
design parameters for the hysteretic absorber that shift the flutter condition to higher speeds and further minimize the LCO
amplitude. The results on the flutter response shown in Fig. 1 demonstrate that, besides shifting the flutter bifurcation to
higher speeds, the introduction of hysteresis has the ability to reduce the LCO amplitude. In particular, while the linear VA
reduces the LCO amplitudes by 33%, the hysteretic VA reduces the LCO amplitudes by 50%.

Figure 1: Left part: sectional bridge model endowed with the hysteretic vibration absorber. Inset (top left): hysteretic loop of
the absorber where z represents the hysteretic part of the restoring force, the four branches are denoted by the red, black, blue
and green lines. Right part: LCO bifurcation diagram of the uncontrolled system, system endowed with the linear VA or with
the hysteretic VA. The red dashed lines represent the solution obtained numerically via path following, the black lines indicate
the asymptotic solution.

CONCLUSIONS

The asymptotic procedure proposed here in the context of the bridge sectional model is in good agreement with the fully
numerical solution. The extreme rapidity and low cost associated with the use of the asymptotic solution in computing the
cost function were critical to enhance the multi-parameter optimization procedure. Moreover, the use of nonlinear hysteretic
vibration absorbers leads to a considerable enhancement in the flutter oscillation mitigation task compared to linear absorbers.
This is true also for vortex-induced parametric resonances.
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DYNAMIC BEHAVIOR OF A TUNABLE MAGNETIC VIBRATION ABSORBER
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Summary A magnetic vibration absorber (MVA), completely relying on magnetic forces, is used to reduce the displacement of a vibrating

structure. The distinctive feature of this absorber is the ability of tuning its linear stiffness together with its nonlinear cubic and quintic

stiffnesses. Repulsive and corrective magnets are used to finely tune the values of these stiffness coefficients. A modelisation, relying on

a multipolar expansion of the magnetic fields of each magnets, is used to predict the values of the stiffnesses from the geometry. Using

only three geometrical parameters the MVA can be passively designed either as a nonlinear tuned vibration absorber (NLTVA), a nonlinear

energy sink (NES), or a bi-stable absorber with negative linear stiffness.

INTRODUCTION

Due to its passive feature, the vibration mitigation of mechanical structures using vibration absorbers is an important

solution for engineering issues. Linear vibration absorbers like the well-known Tuned-Mass Damper (TMD) [1, 2] have been

studied for the vibration reduction of both linear undamped [3] and damped [4] primary structures (PS). However, the main

drawback of the TMD is related to its narrow bandwidth of optimal control. To overcome this limitation a Nonlinear Energy

Sink (NES) with an essentially nonlinear restoring force can be used. Having no natural frequency, the NES can thus adapt

itself to the frequency of the PS [5, 6]. Another idea is to use the nonlinearity of the absorber in order to control the nonlinearity

of the PS and has led to the concept of the nonlinear tuned vibration absorber (NLTVA). Recently, bi-stable vibration absorber

devices have been investigated to make smaller the energy barrier required to activate the energy transfer between the PS and

a NES [7]. If numerous experimental devices have been proposed to experiment these absorbers they are often designed for a

specific application [8, 9, 10].

The proposed magnetic vibration absorber (MVA) has the ability of properly tuning its linear and nonlinear characteristics.

Thus, this flexible device can be used either as an NES, an NLTVA, or a bi-stable vibration absorber, all these tunings being

realized passively with a simple change in the geometry of the system. The experimental realisation of the MVA is presented

in this paper. Then, preliminary results of the reduction of the PS vibration are presented when the MVA is tuned as an

NLTVA, an NES and a bi-stable absorber.

THE MAGNETIC VIBRATION ABSORBER

The magnetic vibration absorber is shown in Fig. 1. It is composed of 7 permanent ring magnets. Their length, internal

Figure 1: Diagram of the magnetic vibration absorber (MVA).

and external diameters are denoted L, Dint and Dext respectively. Oscillating around the central position x = 0, the magnet

1 plays the role of the vibrating mass of the absorber. The other magnets (2, 3, 4, 5, 6 and 7) are fixed on plastic rods. The

black and white parts of each magnet give the direction of their axial magnetisation. Magnets 2 and 3 are named the repulsive

magnets since their magnetisation is the opposite of the magnetisation of the magnet 1. The amplitude of the repulsive

force is tuned by modifying the geometric parameter r. Magnets 4, 5, 6 and 7 are named the corrective magnets since their

magnetisation is the same that the magnetisation of the magnet 1. The amplitude of the corrective force is tuned by modifying
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the geometric parameters R and d. Therefore, the total force FTot applied on the mass of the MVA is tuned by the independent

modifications of the geometric parameters r, R and d. Modeling the MVA using a multipolar expansion, this force can be

written as

FTot(x) ≈ −K1 x−K3 x3 −K5 x5.

Modifying the geometric parameters r, R, and d, the linear, cubic and quintic stiffness terms can be tuned to change the

properties of the MVA designing it as an NLTVA, an NES or a bi-stable absorber. More details about the design of the MVA

can be found in [11].

VIBRATION MITIGATION

The MVA is then used to reduce the displacement of a plate selected as a PS vibrating with a large amplitude around one

of its modal frequencies. Two opposite sides of the rectangular plate are clamped, whereas the other two are free. The device

is attached to the PS and tuned successively as an NLTVA, an NES and a bi-stable absorber. Figure 2 shows the measured

maximum displacement of the PS in each case and when the MVA is removed from the plate. These results present the effects

of the linear stiffness coefficient tuning.
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Figure 2: Maximum displacement of the primary structure without the MVA [ooo] and with the MVA tuned as an NLTVA

[ooo] (K1 > 0), an NES [ooo] (K1 ≈ 0) and a bi-stable absorber [ooo] (K1 < 0). The gray circles [ooo] indicate the linear

displacement of the primary structure for a lower excitation force. Circles and dots correspond to forward and backward

sweeps respectively.

The measurements first show undoubtedly the effect of the vibration absorber on the nonlinear dynamics of the plate.

Depending on the tuning, one can expect to control different parameters area in the frequency response curve. Current

measurements are realised in order to analyze more deeply the advantages of each configurations as well as showing the best

tuning that can be expected.
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Summary A condition for non-synchronous free oscillations is addressed, which can be satisfied by systems with non-symmetric stiffness 

matrix. The dynamical response of a previously buckled Ziegler’s column subjected to a follower force is looked at, leading to a high-frequency 

motion of the tip mass and a low-frequency motion of the mid span mass. Localization phenomenon can also take place, depending on the 

system initial conditions.  

 
PROBLEM STATEMENT 

 

   In structural dynamics, the linear normal modes play a fundamental role. For such motions, all physical coordinates 

oscillate with the same frequency and phase, so that they simultaneously attain their maximum (minimum) values. Hence, 

by definition, they are synchronous modes and, for undamped systems, they are periodic too. This concept has been 

extended by Rosenberg [1] to nonlinear systems, through the definition of the “nonlinear normal modes” as vibrations in 

“unison”. Shaw and Pierre [2] enlarged the meaning of nonlinear modes, defining them as motions restricted to an invariant 

manifold of the phase space tangent to the respective eigenplanes and containing an equilibrium point. In the general case, 

Shaw and Pierre’s nonlinear modes are potentially non-synchronous, since they are influenced by both the displacements 

and the velocities, and phase differences between these two fields can happen. The consequence is that the vibration modes 

are not necessarily a standing wave. By the way, even linear systems with non-proportional damping can behave like that. 

   Yet, it is neither necessary, nor essential, to evoke the nonlinear modes to address non-synchronicity at this very 

moment. Indeed, it suffices focusing the linearized undamped free-vibration equation of a discrete system about an 

equilibrium configuration (which may, of course, require nonlinear analysis to be assessed) 

Mu + Ku = 0 . (1) 

In (1), both M  (mass matrix) and K  (stiffness matrix) are typically symmetric and positive definite. Yet, at times, this 

latter can be non-symmetric (for circulatory systems, such as those with follower forces, caused by internal/external fluid 

flow or friction) and even non-positive definite (static instability caused by conservative non-gyroscopic or centrifugal 

forces, for example). Of course, u and u  stand for the displacement and acceleration vectors with respect to the 

equilibrium configuration. For undamped 2DOF systems, the so-called isolated non-synchronous vibration modes are 

connected to its possible non-conservativity, although this is not mandatory. A necessary condition for non-synchronous 

harmonic response 0
sini i iu u t  of a system described by (1) states that there should co-exist at least two generalized 

coordinates 
ju and 

k
u , oscillating with distinct frequencies

j and 
k

 [3]. Suppose that these frequencies are non-null 

12 2 1

1 1

... ... ...  and ... ... ...  .
j jj kj Nj jkk kk Nk

j k

j jj kj Nj k jk kk Nk

K K K K KK K K

M M M M M M M M
                

 

(2) 

Hence, the condition 
j k

   implies that the stiffness matrix cannot be symmetric (
jk kj

K K ), assuming that the mass 

matrix is symmetric. 

 

   The study of Ziegler’s column under follower force loading is an iconic problem to start with, since it is a simple model, 

yet displaying a rich dynamical behaviour. Moreover, it is a natural introduction to vibration problems in pipes carrying 

fluid flows. Other than flutter instability, it is seen that it can also display non-synchronous free oscillations, with 

characteristics of the localization phenomenon which may eventually be explored in energy harvesting applications or 

vibration control. 

 

BUCKLED ZIEGLER’S COLUMN ACTED UPON BY A FOLLOWER FORCE 

 

   It is considered the Ziegler’s column of Figure 1, subjected to both a conservative loading (weights 𝑚𝑔 and 𝛼𝑚𝑔 plus 

the compressive vertical force 𝐹 applied at the middle hinge) and a non-conservative loading (follower compressive force 

𝑃 applied at the free end) that supposedly causes it to buckle and a stable post-critical equilibrium configuration (�̂�1, �̂�2) 

is then attained. Forces 𝐹 and 𝑃 are calibrated so that the system oscillates synchronously/non-synchronously about the 

post-critical equilibrium configuration. The post-critical equilibrium configuration must comply with 

   1 1 2 2 2 1 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 sin sin        and       sin  F P         


           
 

(3) 



where
mg

k



  and F

F

mg
  . The necessary condition for non-synchronicity (2) requires that: 

 

(1 + 𝑐𝑜𝑠�̂�2)[1 − 𝛿(Λ𝐹 − 1 − 𝛼)𝑐𝑜𝑠�̂�1 + 𝛼𝛿𝑐𝑜𝑠(�̂�1 + �̂�2)] − 𝛿𝑐𝑜𝑠(�̂�1 + �̂�2)[1 + 2α(1 + 𝑐𝑜𝑠�̂�2)] = 0 

 

Λ𝑃 =
(1 + 𝑐𝑜𝑠�̂�2)

𝑐𝑜𝑠�̂�2
[
1

𝛽
+ 𝛼𝛿𝑐𝑜𝑠(�̂�1 + �̂�2)] − 𝛼𝛿

𝑐𝑜𝑠(�̂�1 + �̂�2)

𝑐𝑜𝑠�̂�2
 

 

 

(4) 

 
 

Figure 1: Buckled Ziegler’s column acted upon by a follower force 

 

For a convenient choice of parameters, such as: 5m kg , 1
100k Nmrad


 , 1m , 1  , 1  , 0.5  ,  

3.26615F   and 2.450234
P

  , the post-critical equilibrium solution is 
1
ˆ 0.91431   , 

2
ˆ 0.291614  , fulfilling 

simultaneously conditions (3) and (4). Figure 2 displays a typical dynamical response for the system with such parameters, 

for a particular choice of initial conditions. 

 

 
 

Figure 2: Example of non-synchronous motion of the masses at mid span and column tip (see Fig. 1 for the definition of
i

 ) 

 

CONCLUSIONS 

 

   The tip mass can be excited by both the first (𝜔1=2.03694rads
-1

) and the second (𝜔2=5.30312rads
-1

) modes, whereas the one 

at mid span will not be excited by the second mode. Hence, depending on the initial conditions, the motion can be practically 

localized and the system energy would be concentrated in just a part of the system (possibly with large amplitude and high 

frequency). Both conditions can be of interest in the design of energy harvesting and vibration control systems. 
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Summary Nonlinear oscillation is treated for a piezoelectric vibratory energy harvester. The harvester consists of a circular composite
plate with the clamped boundary, a proof mass and two steel rings. The harvesting system is analytically modeled, numerically simulated, 
and experimentally tested. A lumped parameter model of the harvester is established with its parameters identified from the experimental 
data. The equivalent capacitance and the electromechanical coupling coefficient are analytically determined. A technique is proposed to 
identify the electrical parameter. A fifth polynomial is employed to approximate the nonlinear restoring force. The measured response can 
be approximately described by the nonlinear lumped model. Both the experimental and the numerical results demonstrate that the circular 
plate harvester has soft characteristics under low excitation and both hard characteristics and soft characteristics under high excitation. 
The characteristics can be used to broaden the working bandwidth of the harvester and thus to enhance the energy harvesting. 

INTRODUCTION 

   Vibratory energy harvesting from the environment is now an active and promising research field. Nonlinearities can be 
employed to broaden working frequency bandwidth of harvesters [1,2]. The circular plate structure has an axial symmetric 
structure which is easy to be processed and thus attracts more and more attentions.  

MODELING AND PARAMETER IDENTIFICATION 

   As shown in Fig.1, the piezoelectric composite plate is fabricated from a brass plate (Rb=25 mm and hb=0.2 mm) and 
two piezoelectric plates (Rp=25 mm and hp=0.2 mm). The brass plate (2.5 mm) is clamped by 2 steel rings (Rs=22.5).  

The lumped-parameter model is governed by a set of equation with respect to z(t)=za(t) zb(t) and u as 
2 3 4 5

1 2 3 4 5 b L p L, 0mz cz k z k z k z k z k z u mz R z C R u u    (1) 
where, RL is the load resistance, and the fifth polynomial approximates the restoring force. Damping coefficient c and ki
(i=1,…,5) can be identified from measured accelerations and its integration filtered by the empirical mode decomposition. 
The electromechanical coupling coefficient and the equivalent capacitance can be derived from the elasticity solution as 

2 2 2
p p b p s 2

p p2
s p

4 ln ln 1 2
,

1 1

T E
zr zz rr zr

E E
rr rr

R d h h R R s d
C R

R s s h
     (2) 

where  is PZT Poisson’s ratio, T
zz is the permittivity, T

zz is the elastic compliances constant, and dzr is the piezoelectric 
constant. Based on the jth experiment with excitation frequency j, load resistance RLj, mass acceleration amplitude Aj, and 
output voltage amplitude Uej, N times of experiments yield the parameter identification via the least square method 

2 L
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p L

min ,
1

N
j j

j j j
j

j j j

R A
U U U

C R
  (3) 

The theoretical and the identification results as well as the theoretical results of a beam [18] are listed in table 1. 
Table 1. Electromechanical coupling coefficient and equivalent capacitance 

parameter unit experimental results theoretical results cantilevered beam [3] 

N/V 0.0108 0.0115 0.0037
Cp nF 65.5 62.98 58.14 

Figure 1 (a) Cutaway view of the circular plate harvester. (b) Lumped-parameter model. 
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   The beam is with larger area of piezoelectric bimorph and thicker piezoelectric layers than the plate, where the 
electromechanical coupling coefficient of the beam is much smaller than that of the plate. Thus a circular plate has the much 
high electromechanical coupling coefficient than a beam in similar sizes, which is beneficial to energy harvesting. 

AMPLITUDE-FREQUENCY RESPONSE 

   The amplitude-frequency responses are determined by the experiment and the simulations. Figures 2 and 3 show the 
voltage response under 1.5 g and 2 g excitation, respectively. The results show softening characteristic in Fig. 2 and both 
softening and hardening nonlinearities in Fig. 3. In Fig. 3 the curve bends to the right with the jumping both in the 
experiment and the simulation, and at the left side of the resonance peak, a slight jump resulted from the softening can be 
found. The possible reason for coexistence of the soft and the hard characteristics lies in the expression of the restoring 
force, in which the coefficient of the quintic term is positive, and that of the cubic term is negative.  

CONCLUSIONS 

   The experimental and the numerical investigations yield the following conclusions: (1) the circular plate harvester has a 
higher electromechanical coupling coefficient than the cantilevered beam system, which is beneficial to energy harvesting; (2) 
the proposed technique to identify the electrical parameter is effective; (3) the experiment and the simulation show that the 
harvester has softening nonlinearity under small excitation, which may be caused by the negative cubic term in the nonlinear 
restoring force function; (4) both hardening nonlinearity and softening nonlinearity are discovered when the harvester is 
subjected to sufficient large excitation, which can be used to broaden the bandwidth of the harvester. 
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Summary This paper describes and analyse a novel harvester-absorber device that uses magnetic levitation (maglev) in order to recover
energy. The energy harvester is mounted in a pendulum which plays a dynamic absorber role. The non-linearity of the magnetic field
suspension exhibits a hardening Duffing’s characteristics. We propose a new model of an electromechanical coupling which depends on a
magnet position in a coil. Theoretical investigations are followed by a series of experimental tests that validate the theoretical predictions
and allow us to obtain a final model of optimized harvester.

INTRODUCTION

Energy harvesting is promising research area as demands for renewable energy sources increase. Electromagnetic energy
harvesters (EEH) are based on Faradays law of induction - the property that a change in the magnetic flux of a circuit will
result in the induction of an electromotive force. Maglev systems are electromechanical devices that suspend ferromagnetic
materials using electromagnetism, and are characterized by non-linear dynamics, instability and are described by highly non-
linear differential equations.

HARVESTER-ABSORBER MODEL

Energy harvesting under investigation is based on motion of the autoparametric vibration absorber. The model of a
harvester-absorber system (HAS) consists of the main mass (oscillator) with the attached the pendulum vibration absorber.
The pendulum is made of nonmagnetic tube with two magnets fixed on the ends, which ensure the levitation of a third moving
magnet (Fig.1c). A coil of wire is wrapped around the outside of the pendulum tube (Fig.1d). While, the moving magnet
oscillate it induces the electromotive force. The view of the laboratory rig is presented in Fig.1b. The system works as the
dynamical vibration absorber with the energy recovery at the same time.

Figure 1: Model of harvester absorption system: a physical model (a), laboratory rig (b), scheme (c) and experimental device
of the maglev system (d)

A schematic diagram of the proposed model is shown in Fig.1a. This is a coupled three mechanical and one electrical degrees
of freedom system. The mass m1, spring k1 and damping component c1, are connected to the base. The pendulum m2 with
magnet m3 creates the vibration absorber engaged with oscillator motion, which is kinematically excited by the spring k2 in
the vertical direction. If the pendulum swings, then amplitude of the oscillator can be reduced.
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EQUATION OF MOTION AND MAGLEV CHARACTERISTICS

The governing equations of the non-linear harvester-absorber system derived from the Lagrange’s equations of the second
kind have the form

(m1 +m2 +m3)ẍ+ (m2s+m3(z + r))[ϕ̈sin(ϕ) + ϕ̇2cos(ϕ)] +m3(2ṙϕ̇sin(ϕ)− r̈cos(ϕ)) + c1ẋ+ k1x = k2x0, (1)

(I0 +m3(z + r)2)ϕ̈+ (ẍ+ g)[m2s+m3(z + r)]sin(ϕ) + 2m3ϕ̇ṙ(z + r) + c2ϕ̇ = 0, (2)

m3r̈ −m3[ẍcos(ϕ) + ϕ̇2(z + r)] −m3gcos(ϕ) + F (r) + α(r)i = 0, (3)

Li̇+RT i− α(r)ṙ = 0. (4)

The first three equation (1)-(3) describe motion of mechanical parts (i.e. oscillator, pendulum and magnet), while the last
equation (4) characterizes electrical circuit obtained by applying Kirchoffs law. The i is the electrical current, RT is the total
resistance (internal coil and external load resistances), and α(r) means the electromechanical coupling coefficient.

The magnetic restoring levitation force F (r), given by the sum of the repulsive forces acting on the top and bottom
magnets, leads to the the form of hardening Duffing’s characteristic F (r) = k3r + k4r

3, where k3 and k4 are estimated
experimentally (see Fig.2a). The changes in the magnets separation cause alter stiffness leading to resonance [1]. For small
values of relative displacements r of the moving magnet, the levitation suspension can be reduced to a linear problem.

Figure 2: The force displacement characteristic (a), and electromechanical coupling coefficient vs. magnet’s position for the
magnet velocity v = 0.7m/min (b).

Usually, in literature, the coupling coefficient (α) is constant [1, 2], assuming the magnetic flux density as uniform. The
experimental investigations show that α strongly depends on the magnet position in the coil (Fig.2b). This is due to the fact,
that magnetic flux density depends on the separation distance between the magnet and the coil. We propose a five-degree
polynomial function to describe coupling coefficient α(r) =

∑5
n=0 αnr

n, where αn are coefficients computed in order to fit
the experimentally determined characteristic.

CONCLUSIONS

The design and analysis of a novel energy harvesting device that uses maglev to produce energy is presented in the paper.
The magnetic suspension leads to the Duffing’s type equation. The coupling coefficient strongly depends on the magnet’s
position (but does depend on velocity) and has sinusoidal form. The highest values of α occurs at the coil ends. The system is
strongly non-linear producing several interesting phenomena, including regions of multiple solutions and chaotic behavior.
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SummaryNoisemust be restrained at sensing and data processing. However, in nature, noise inevitably appears through energy spread
surrounding us. From a viewpoint of energy harvesting, it has been shown that resonators can absorb energy from the excitation around
each resonant frequency. In the sinusoidal vibration, the energy exchange depends on the on-site resonance and inter-cite phase between
resonators and exciters. The simple noise with finite number of frequencies causes the difficulty of energy extraction. This paper discusses
the stochastic resonance, when unidirectional energy flow works for energy harvesting.

STOCHASTIC RESONANCE AND EFFECT OF NOISE

Stochastic Resonance (SR) is known as a phenomenon in which a signal is enhanced by noise of moderate strength. As
an example, here consider the following system,

mẍ = −mγẋ− dU

dx
+ h cosΩt+R(t), U(x) =

1

4
x4 − 1

2
x2. (1)

Wherem denotesmass of a particle,x displacement of the free particle,γ damping constant,h cosΩt sinusoidal external
force, andU(x) bistable potential. (˙) is time differentiald/dt. Assuming the sinusoidal external forceh cosΩt changes
relatively slow to noiseR(t), which is the zero-mean white Gaussian noise of auto-correlation function:

⟨R(t)R(t+∆t)⟩ = 2γmkTδ(∆t). (2)

Wherek denotes Boltzmann constant andT noise temperature.⟨ ⟩ shows the operation of ensemble average. The effect of
noise with sinusoidal external forcing is given by the following potential:

V (x) =
1

4
x4 − 1

2
x2 − xh cosΩt. (3)

Depending on the frequency of sinusoidal excitation, the noise response shows various features. The faster frequency than
a certain frequencyΩ0, the lower probability of the stochastic switching. (see Fig.1).Ω0 is obtained by Kramers rate [1]:

Ω0/π =W/2. (4)

Figure1: Response depending onΩ with kT = 0.07 andh = 0.20 kept constant;0.04 (upper),0.08 (middle), and0.12
(bottom). Blue broken curve draws the sinusoidal forceh cosΩt.

The rate implies the duration required for transition from one state to the other in the bistable potential wells. The rate
increases with the noise intensitykT and decreases with the potential barrierU [1]. It corresponds to the mechanical transition
probability depending onkT [2].
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EXTRACTION OF ENERGY FROM NOISE

The amplitude of displacementx, the velocity of displacementẋ and their power spectrum are direct input to the transducer
from mechanical energy to electrical energy at harvesting. Electrically potential will not generate the energy flow between
resonators, so that the velocity is focused. In the sinusoidal vibrations, the velocity keeps the phase shift atπ/2 to the
displacement. Figure 2 is the displacement of resonator and the power spectrum. It shows the clear enhancement of power
from input because of stochastic resonance. However, under the long-term free vibration with noise, the power will finally
converge one of balanced states between resonators. Therefore it is inevitable to push the range of power spectrum narrower
for producing the energy flow from the displacement [3]. This requests the resonator and the attached transducer to match the
mechanical to electrical impedances and vice versa.

The energy exchange between resonators is

Figure2: Displacementx and the power spectrum with sinusoidal forceh cosΩt (blue broken line) under the noise intensity
kT = 0.07, h = 0.20, andΩ = 0.04.

CONCLUSIONS

This paper began to discuss the possibility of energy extraction from noise through stochastic resonance. The concept is
not established but includes the general directions of research including power exchange between harmonic generators like
a synchronous generator. The research on energy extractions form noise will be a rich research seed not only in nonlinear
dynamics but also in applications of nonlinear characteristics [4].
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Summary We address non linear torsional vibration absorbers (TVA), used in rotating machinery to counteract irregularities of rotation at a
some order of the engine speed of rotation. The TVA is analogous to a tuned mass damper (TMD), tuned on the desired order. It exhibits
non-linearities of various natures which affect resonance and antiresonance frequencies at large amplitude of motion, which consequently
causes the detuning of the system from the targetted order. This study focuses on some non linear systems (several TVA designs and a
more general Duffing like system) to study the impact of non-linearities on the hardening / softening behavior of antiresonances. Non linear
solutions are obtained by a numerical continuation procedure coupled with the harmonic balance method to follow periodic solutions in
forced steady-state. Moreover, we propose an original direct antiresonance continuation method for undamped systems.

INTRODUCTION

Primary

Secondary

inertia

inertia

Non linear
interactions

T (t)

Figure 1: TVA scheme

Non linear torsional vibration absorber (TVA) is used in rotating machinery
to counteract irregularities of rotation, called “acyclisms”, at a some order of the
engine speed of rotation. It is compose of a primary and secondary inertia and
acts as the classical tuned mass damper (TMD). It is tuned on the desired engine
order. In practice, the secondary inertia represents a mass subjected to move in
a particular path on the primary inertia which is linked to the rotating assembly.
However the TVA includes strong non-linearities. Geometric non-linearities
and those due to Coriolis effect, intrinsic to rotating articulated systems. They
cause the detuning of the TVA and the shifting of the operating order of TVA (an
antiresonance of the whole system) from the targeted engine order. Knowledge
of operating point behavior of the device is therefore essential to ensure optimal
acyclisms filtering. This study focuses on tow points. First, several non linear
systems, including torsional and translational systems, are studied to highlight
how the hardening / softening behavior is modified by non-linearities. Non

linear frequency responses in steady state are obtained by numerical continuation procedure, the harmonic balance method
(HBM) [3] coupled with the asymptotic numerical method (ANM) [1], which leads to a fast and robust algorithm. Secondly,
we propose an original direct antiresonance continuation method for undamped systems.

MODELLING

The equations of motion of the TVA can be written in general following form :

M(x)ẍ+ fin(x, ẋ) +Cẋ+ fint(x) = F cos (ωt) , (1)

where x is the vector of unknowns. M(x) is the mass matrix and depends on x. C is the damping matrix. fin(x, ẋ) is the
inertial forces vector, including Coriolis terms, and depends on x and ẋ. fint(x) is the internal forces vector and depends on
x. Here, because only one oscillator is forced, the external forces vector is F = [0 · · · f · · · 0] where f is the amplitude
of excitation of the forced oscillator. Assuming a periodic solution of (1), the vector of unknowns is expanded in truncated
Fourier series :

x(t) = x0 +
H∑
i=0

xci cos(iωt) + xsi sin(iωt). (2)

Then substituting (2) into (1) and applying HBM, we obtain a system of algebraic equations relating x0, xci, xsi, ω and f .
The accuracy of the periodic solution depends on H , the number of harmonics retains on (2). The final system to solve can be
written :

R(U , w, f) = 0. (3)
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Where U = [x0 xci xsi ... xcH xsH ]. Finally, (3) is solved by an asymptotic numerical method, for which a quadratic recast
of R(U , ω, f) is convenient [2]. In practice, the software Manlab 2.0 is used [4]. Unlike to predictor-corrector algorithms,
where the solution is computed point by point, ANM adopts a piecewise continuous representation of the solution using a
power series expansion of the pseudo arc length along the branch of solution.

ANTIRESONANCE CONTINUATION

Standard continuation procedure consist in considering ω and f as continuation parameters and compute the solutions
with respect to one of them in forced vibration [2]. In free vibration (f = 0), the oscillation frequency can also be computed
as a function of the amplitude, obtaining so-called backbone curves. In this case, the system has to be conservative so that
periodic solutions are obtained and damping must be cancelled (C = 0)[5]. Here, we propose an original method to perform
non linear antiresonance continuation, i.e. the computation of the antiresonance frequency as a function of the amplitude of
forcing. Unlike free oscillations continuation, the system has to be forced. For a linear system, an antiresonance occurs only
for undamped systems, for which the response of one of the unknowns is strictly zero, xi(t) = 0 ∀t at a given frequency, xi
being the i-th component of x. If the system shows non-linearities, the antiresonance is not strict and only some harmonics
of xi(t) can be set to zero, whereas the others are non zero. The antiresonance continuation is obtained by solving (3) with
ω and f left free and by adding an additional condition: here the first harmonic of a given unknown is set to zero.

RESULTS
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Figure 2: Frequency responses of the non linear TMD for several amplitudes of excitation (a) and antiresonance continuation
(black bold line) (b)

Here, we consider a free-free non linear TMD. The equations of motion can be written :{
ẍ1 (m1 +m2) + ẍ2m2 = f cos (ωt) ,

ẍ1m2 + ẍ2m2 + kx2 + γx32 = 0,

(4a)

(4b)

where γ and k are the non linear and linear stiffness constants, respectively. Figure 2(a) shows the frequency responses of
the first harmonic of the primary mass, subjected to an harmonic forcing, for several amplitudes of excitation f . The system
exhibits a hardening behavior due to the positive non linear stiffness constant. The backbone curve (red bold line), represents
the oscillation frequency in free vibration. The antiresonance continuation can be viewed on the three dimensions representa-
tion, on the figure 2(b), and also on the plane (ω,f ), on the figure 2(c). This procedure is very useful to accurately predict the
detuning with respect to the amplitude of excitation. Moreover, it avoids redundant frequency responses simulations.
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Summary We present an extension of recently developed approach to stationary and non-stationary resonance  dynamics of strongly nonlinear 

two degree of freedom (2DoF) systems to finite strongly nonlinear oscillatory chains (strong nonlinearity implies impossibility to use the 

linearized equations of motion even as a starting point of dynamic analysis). The proposed extension allows revealing new nonlinear effects in 

series of widely used mechanical and physical systems. There are in particular: i) breaking the symmetry caused by instability of almost all 

nonlinear normal modes (NNMs) and appearance of stable elliptic modes (EMs) in the initially un-stretched strings and membranes carrying 

discrete masses; ii) mobile breathers excitation by localized initial pulse in the un-stretched membrane; iii) efficient inter-cluster energy 

exchange and transition to energy localization in the un-stretched membrane and in the finite system of weakly coupled pendulums. The 

applications of revealed strongly nonlinear effects to solution of significant mechanical and physical problems are discussed.  

 
NONLINEAR EFFECTS 

 

   The resonance processes are responsible for energy exchange, localization and transfer in many significant mechanical 

and physical systems. Among them, there are un-stretched strings and membranes carrying discrete masses; arrays of 

Josephson junctions, ferromagnetic chains and oligomer crystals (all three latter ones can be modelled by the finite system 

of weakly coupled pendulums). We consider the case of strong nonlinearity when the equations of motion may not be 

linearized even as a starting point of dynamic analysis. Our new approach which was examined in the case of 2DoF models 

implies a closeness of the system to 1:1 internal resonance only. We describe briefly the revealed strongly nonlinear effects 

which include such phenomena as symmetry breaking because of instability and bifurcation of almost all NNMs, formation 

of mobile transversal breathers, transition from intense energy exchange to energy localization, and appearance of a chaos 

accompanying such transition. 

 

The symmetry breaking caused by instability of NNMs in un-stretched string and membrane. The simplest model of 

such system is presented in Fig.1. 

 

 

Fig. 1. The model of grounded unstretched string (symplest  

model of unstretched membrane) carrying n  particles and 

possessing linear interchain and lateral stiffneseses (for the 

sake of clarity only the lateral spring supporting the  

particle is depicted). If the lateral springs are absent one deals 

with un-stretched string. 

   As it is shown by us recently ([1],[2],[4]) the asymptotic equations of motion in the case of dominating transversal motion 

can be written as  

 

where is normalized transversal displacement of j-th oscillator, N is a number of the oscillators. These equations admit N 

exact solutions for NNMs:  for k-th NNM, k=1,…,N. The direct analytical study reveals instability 

of all NNMs except the mode with highest wave number. The result of this instability can be identified as uni-directional 

energy flow from given NNM to those with larger wave numbers (an inverse energy flow is not observed) (fig. 2). This 

strongly nonlinear effect is illustrated below on the example of non-grounded un-stretched string carrying 10 particles. 

   The highly non-stationary dynamics of the system can be adequately described in terms of Limiting Phase Trajectories 

(LPTs) corresponding to maximum possible energy exchange between different parts (clusters) of the string. This process is 

shown in Fig.3 for the same system. For grounded string (membrane) a threshold from complete inter-cluster energy 

exchange to energy localization on the initially excited cluster is (Fig.4) revealed. 

  

 

i th



 
 

Fig. 2. Instability of third NNMs and uni-directional energy flow to fifth 

and tenth NNMs. 

Fig. 3. Energy exchange between two parts of 

oscillatory chain. 

 

System of weakly coupled pendulums 

   Similar transition can be observed in other significant strongly nonlinear model which is a finite system of N weakly 

coupled pendulums (without any restrictions on the amplitudes of oscillation). Behavior of this system in the vicinity of 

internal 1:1 resonance in terms of cluster variables {1, 2} can be described by complex equations (derived for parricular 

case of 2DoF model in [3]): 

 

where is a resonant frequency, is a coupling parameter, k=/N, J1 – modified Bessel function of 1
st
 kind, 

. The inter-cluster energy exchange is similar to that presented in 

Fig.3. The transition to energy localization is illustrated in Fig.5. 
  

 
 

Fig. 4. Localization of the displacement (leading to energy 

localization) on the initially excited part of the grounded 

string in the presence of grounding supports. 

Fig. 5. Energy distribution along the chain of pendulums 

after transition to energy localization. Amplitude of the 

pendula oscillation Q=/2. 

 

CONCLUDING NOTES 

 

   The analysis of considered strongly nonlinear systems reveals instability of NNMs and abrupt transition from intensive 

inter-cluster energy exchange to energy localization on the initially excited cluster. The analytical prediction of this 

transition is confirmed by the results of computer simulation. The analytical results for grounded string as well as for 

weakly coupled pendulums were obtained in the framework of resonance asymptotics. 
The above described strongly nonlinear effects can be directly applied for solution of targeted energy transfer problem and 

the series of physical problems mentioned in Introduction. 
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Summary We describe a novel class of dynamical excitations -- accelerating oscillatory fronts in nonlinear sonic vacua with strongly non-local 

effects. Such models naturally arise in dynamics of common and popular lattices. In this study, we consider a chain of particles oscillating in the 

plane and coupled by linear springs, with fixed ends. When one end of this system is harmonically excited in the transverse direction, one 

observes accelerated propagation of the excitation front, accompanied by an almost monochromatic oscillatory tail. The front propagation obeys 

the scaling law 4/3~l t . This scaling law results from the nonlocal effects; we derive it analytically (including the scaling coefficients) from a 

continuum approximation. Moreover, a certain threshold excitation amplitude is required in order to initiate the front propagation. The initiation 

threshold is explained on the basis of a simplified discrete model, further reduced to a new completely integrable nonlinear system.  

 
   We start with simple numeric experiment: a fragment of common straight linear mass-and-spring chain without pre-

tension is allowed to move in plane. One end of the chain is fixed, and the other is forced to move in the direction 

transversal to the chain axis, in accordance with harmonic law: 1 siny A t . Energy distribution in the chain is presented in 

Figure 1.  

 
Figure 1. Propagation of the oscillatory front.  

 

   One can observe  the propagation of the excitation front, accompanied by an apparently monochromatic oscillatory tail. 

Propagating fronts with oscillatory tails are well-known in models of phase transitions in solid state and similar problems. 

However, the solution presented here has very interesting new feature, not known in the settings mentioned above. It 

follows from Figure 1 that this front accelerates in the course of propagation. 

   In order to explain this finding analytically, we use continuum approximation of the transversal dynamics of the chain. It 

is described by the following well-known equation [1,2]: 

 2

0

0
2

L

xx

tt

y
y y dx

L
                                                                                (1) 

   Here ( , )y x t  is continuous field of transversal displacements of the chain. Density and stiffness characteristics of the 

chain are set to unity without effecting the generality, L is the chain length. Equation (1) exemplifies the concept of the 

sonic vacuum, since it has no linear sound velocity. Moreover, due to integral term the nonlinear interactions turn out to be 



non-local. Besides modal characteristics, the nonlinear dynamics and wave propagation in such systems were almost not 

addressed in previous studies. 

   We then consider a simplified model of the oscillatory region in the chain and suppose a monochromatic wave in the 

oscillatory tail after the front: 
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                                                                (2) 

   Here l(t) is the instantaneous coordinate of the front, and k is the wavenumber. It is also assumed at this stage that the 

front propagation is slow enough compared to the frequency of transverse oscillations of the particles. An additional 

condition can be obtained from the assumed stationary character of the front propagation. To this end, the phase velocity of 

the oscillatory tail should be equal to the front velocity. Substituting (1) into (2), keeping principal terms and applying the 

condition of the phase velocity, one obtains the following explicit expression for the front propagation dynamics: 
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                                                                     (3) 

   Quality of approximation (3) is illustrated in Figure 2 for three different sets of parameters, with the curves depicting the 

front position versus time (shifted by ln K). One can observe that the curves perfectly collapse, proving the self-similar 

nature of the observed regime. 

 
Figure 2. Numeric simulation: position of the oscillatory front versus time for different parameter values (double 

logarithmic scale). Line slope is 4/3. 

 

   The front formation and propagation is observed for given excitation frequency, if the amplitude overcomes certain 

threshold value. This value can be evaluated from discrete counterpart of Equation (1), derived recently in paper [3]. This 

estimation yields: 

 2crA a L                                                                                   (4) 

   Numeric simulations completely confirm scaling predictions for critical excitation amplitude (4). Numeric value of 

coefficient a is also predicted with accuracy of about 15%. 

   To conclude, we revealed a new type of excitations in a lattice representing a nonlinear sonic vacuum with strong 

nonlocal dynamical interactions (despite only next-neighbour physical coupling). Such fronts reveal themselves in most 

well-known and popular models, such as the suspended string without pre-tension and the chain of linear springs and 

masses with fixed ends. Simple analytic considerations allow derivation of all main parameters of the front, including the 

scaling characteristics and the excitation threshold. 
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Summary The energy exchanges between two coupled systems during extreme nonlinear interactions between them around a 1 : 1 reso-
nance is studied. The auxiliary nonlinear oscillator, named as nonlinear energy sink (NES) [1, 2, 3, 4, 5], which is used for controlling the
main one and/or to harvest its energy, possesses both global and local potentials and can be under external forcing terms. Slow invariant of
the system and detected equilibrium and singular points provide design tools for tuning parameters of the NES for the aim of its usage.

MATHEMATICAL MODEL OF THE SYSTEM

The main forced oscillator with scaled displacement, damping and natural frequency as y, a and ω0 is coupled to a forced
NES with scaled displacement and local potential x and g̃(x), respectively. Its global potential is split in linear (ω2

c ) and
nonlinear (W ) parts. The two nonlinear potentials W and g̃ are supposed to be odd functions. We can summarize governing
equations of the system as it follows: ÿ + aẏ + ω2

0y + c(ẏ − ẋ) + ω2
c (y − x) +W (y − x) = εf0 sin(ωt)

εẍ− c(ẏ − ẋ)− ω2
c (y − x)−W (y − x) + g̃(x) = εf0NES sin(ωN t)

(1)

The ε parameter is the mass ratio of the NES and the main oscillator. We assume that 1 < ε� 1.

TREATMENTS OF THE SYSTEM AND ITS BEHAVIORS AT DIFFERENT TIME SCALES

• The system is shifted to the center of masses (v =
y + εx

1 + ε
) and relative displacement (w = x − y). Then complex

variables of Manevitch [6] as ψeiωt = v̇ + iωv and ϕeiωt = ẇ + iωw are introduced to the system (i2 = −1).

• A Galerkin technique is endowed: first harmonics are kept and higher ones are truncated. This technique for an arbitrary
function Γ reads:

S =
ω

2π

∫ 2π
ω

0

Γ(t)e−iωtdt (2)

We assume that ψ, ϕ are independent of fast τ0 = t time scale, but could depend on slow τ1 = ετ0, τ2 = ε2τ0,... scales.

• System equations at fast time scale provide its slow invariant while at slow time scale around its invariant we can detect
its equilibrium and singular points. These points correspond to potential periodic and strongly modulated responses.

Moreover, following assumptions are made:

• We investigate 1:1:1 resonance of the main system: ω = ω0(1 + σε) and ωN = ω0(1 + σN ε).

• Damping coefficients are at ε1 order: c = εd and a = εa0.

• Linear part of the global potential is at the order of ε1: ω2
c = εΩ2. Nonlinear part of global potential and local potential

are assumed to be at the ε1 order: g̃(z) = εA0z3 and W (z) = εB0z3.

• We introduce polar coordinates ψ = N1e
δ1 and ϕ = N2e

δ2 .

In following sections we present two examples corresponding to two cases: the NES without external excitation and forced
NES. All analytical predictions are compared with results obtained from direct numerical integration of equation (1).

The NES without external excitation: f0NES = 0
Slow invariant of the system possesses three branches namely, branch l, l = 1, 2, 3. At slow time scale we can trace

two levels of N2 which prepare the system for bifurcations. We name them as N21 and N22 which are called as fold lines.
Meanwhile, for each branch l two functions Hjl = 0, j = 1, 2 are defined. Intersections of Hjl out of fold lines are
equilibrium points of the system while their intersections on fold lines are singular points of the system. Figure 1 illustrates
prediction of all possible regimes (periodic and strongly modulated regimes) of the system for given parameters. It can been
seen that due to the existence of singular point no. 2 (see Figure 1(a)), the system presents strongly modulated response (see
Figures 1(d) and 1(e)).
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Figure 1: A = 0.25, B = 0.6, ω0 = 1 and f0 = 0.81: (a), (b), (c) Positions of equilibrium points and fold singularities on
branch 1, 2 and 3 of the slow invariant, respectively. The system has two equilibrium points (no. 1 and no. 3) and one fold
singularity on fold lineN21 (no. 2)- (d) Slow invariant (in red, dashed line) and corresponding numerical results (in blue, solid
line) - (e) Numerical results of the evolution of the energy of the NES N2 - IC stands for “Initial Conditions”

The NES with external excitation: f0NES 6= 0
Here, we consider the system with forced NES. Analytically predicted results and corresponding numerical ones are

depicted in Figure 2. The system finally is attracted by an equilibrium point (see green line in Figure 2(b)) which is predicted
by analytical techniques that has not been presented in this paper.
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Figure 2: Slow invariant of the system and corresponding numerical results in blue - A = 2, B = 0.5, f0NES = 0.1 and
f0 = 0.3 - (a) N1 vs N2; (b) N1 vs δ2 - ”IC” stands for initial conditions - Behavior of the system around the equilibrium
point predicted via analytic technique at slow time scale is plotted in green. (c) δ2 vs t; (d) N2 vs t; (e) N1 vs t.

CONCLUSIONS

Time multi-level energy exchanges and nonlinear interactions between a main forced oscillator and an auxiliary forced
nonlinear system with local and global potentials are studied. Detected slow invariant and equilibrium and singular points at
slow time scale provide design tools for tuning parameters of the auxiliary system for the goal of its implementations which
can be passive control and/or energy harvesting of the main oscillator. Same method will be applied for an oscillator coupled
to a chain of light nonlinear oscillators for localization of its vibratory energy.
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Summary We investigate energy transfer between frequencies in lattices of interacting magnets with defects. The nonlinear coupling between 
localized and extended lattice modes enables to convert energy between arbitrary frequencies (i.e., non related by integer ratios). In addition, in 
systems with multiple defects, this frequency conversion mechanism allows harvesting energy from several input frequencies in a synchronized 
manner. These results may inform the design of new vibration energy harvesting systems. 
 

   Vibration energy harvesting systems are able to convert ambient vibrations into electric power and are receiving a lot of 
interest in recent years [1]. Regardless of the transduction mechanism (e.g., piezoelectric, electromechanic), these systems 
operate optimally at or close to resonance. However, ambient vibrations are in general broadband or composed of multiple 
frequencies, which render these devices unsuited in most practical situations. A possible way to solve this issue is to 
introduce a frequency conversion mechanism in the system in order to match the spectrum of the excitation with the 
resonance frequency of the transducer. Typical uses of nonlinearity for frequency conversion are based on the phenomena 
of harmonic generation [2] and parametric down conversion [3]. In these mechanisms, the energy transfer occurs at a 
frequency that is an integer multiple or submultiple of the excitation frequency, limiting the applicability of these 
techniques. In this work, we demonstrate a frequency conversion mechanism in lattices of interacting magnets with mass 
defects that transfers energy between arbitrary frequencies, i.e., without being necessarily related by integer ratios.  

   To illustrate this behavior we consider two cases: a lattice with a single defect [Fig. 1(a)] and a lattice containing two 
defects [Fig. 1(b)]. The linear spectrum of these lattices is composed of two types of modes: extended modes, which are 
responsible for the propagation of energy in the lattice; and defect modes, which are localized around the defect. Localized 
and extended modes represent respectively the inputs and outputs of our system. Due to the hardening nonlinearity of the 
magnetic potential [5], when the defect mode is excited harmonically at a frequency close to its resonance frequency, the 
mode undergoes hysteretic cycles in which the mode pumps the input energy to the chain [5]. This results in a modulation 
of the localized mode amplitude that creates an energy transfer from the localized modes to the extended modes. 

 
Figure 1. (a) Linear spectrum of the single-defect lattice. (b) Linear spectrum of the double-defect lattice. 

 
   We first illustrate this frequency conversion mechanism in the single defect lattice. The defect is excited harmonically at 
frequency 𝑓!" = 𝑓! + 𝑓!where 𝑓! and 𝑓! are, respectively, the resonance frequencies of the second extended mode and 
the defect mode, see Fig. 1(a). The left panel in Fig. 2(a) shows the amplitudes of mode 2 (𝐴!,  black line) and the defect 
mode (𝐴! ,  red line) as a function of time. After the transient regime (𝑡 ≈ 15𝑠) we observe that the amplitude 𝐴!   becomes 
modulated by 𝐴!, which indicates a transfer of energy from the input frequency 𝑓!" to the frequency of the extended mode 
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𝑓!. This modulation can be clearly observed in the right panels of Fig. 2(a), which zooms in the modal amplitudes 𝐴! and 
𝐴! in the time window [32 − 40]s. 
 

 
Figure 2. (a) Left panel, A2 (black line) and Ad (red line) as a function of time for the single defect lattice. Right panels, 
zoom in on the region 32-40 s. (b) Right panel, A3 (black line), Ad,1 (red line) Ad,2 (blue line) and as a function of time for the  
lattice with two defects. Right panels, zoom in on the region 32-36 s. 
 
 
An interesting aspect of this frequency conversion mechanism is that in systems with multiple inputs (defects) the energy 
extracted from each input is added up in phase to the output signal. This is because the amplitude of the extended mode 
synchronizes the modulation of each defect mode. To illustrate this phenomenon, we show in Fig. (b) the modal amplitude 
of the two defect modes and the third extended mode in the double defect lattice [see Fig. 1(b)], respectively denoted 
respectively by 𝐴!,!, 𝐴!,!, 𝐴!. In this case, the input frequencies are 𝑓!",! = 𝑓!,! + 𝑓! and 𝑓!",! = 𝑓!,! + 𝑓!, where  𝑓!,!, 
𝑓!,!, and 𝑓! are the resonance frequencies of the two defect modes and the third extended mode. Again, passing the 
transient regime the amplitude of the defect modes 𝐴!,! and 𝐴!,! become modulated by the amplitude of the extended 
mode 𝐴!, showing a synchronized energy transfer from the two input frequencies 𝑓!",! and 𝑓!",! to the output frequency 
𝑓!. 
 
The results shown in this work were obtained integrating numerically the equations of motion of the system. We are 
currently developing an analytical model containing a reduced number of modes in order to gain physical insight on the 
underlying phenomena. In addition, an experimental validation of this frequency conversion mechanism is in progress. 
Additional results coming out from this ongoing work will be presented.  
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Summary The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical 

and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite 

homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is 

characterized by a certain number of oscillators which escape from the synchronized chimera’s cluster or behave differently than most of 

uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect 

chimera can be realized in simple experiments with mechanical oscillators, namely metronomes. The mathematical model of our experiment 

shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton’s laws that are ubiquitous 

in many physical and engineering systems. 

 

MODEL OF COUPLED PENDULA 

 

   Chimera states correspond to the spatiotemporal patterns in which synchronized and phase locked oscillators coexist with 

desynchronized and incoherent ones1-2. Dynamically, it represents a sort of spatially extended symmetry breaking which 

develops in networks of identical oscillators, surprisingly without any evidence of asymmetry or external perturbation. 

Furthermore, this surprising hybrid behavior obeys a substantial reserve of robustness surviving at different kind of 

perturbations.  The experimental proof of chimeras' existence has only recently been provided for optical, chemical, 

mechanical and electronic systems. 

Here, we show that other pattern, the so-called imperfect chimera state, which is characterized by a certain, small 

number of oscillators (solitary states) which escape from the synchronized chimera’s cluster or behave differently than the 

most of uncorrelated pendula can be observed in the networks of identical oscillators. As a proof of concept we use the 

network of coupled metronomess, i.e., the system of coupled pendula which are excited by the escapement clock’s mechanism. 

  

 
 

Figure 1:(a). n pendula coupled on the ring through springs and dampers, (b) Experimental implementation of the system of Figure 1(a) 

with n=20 metronomes which pendula are coupled by spring elements 



We consider the system of n pendula which hung from the unmovable disc as shown in Figure 1(a). Pendula of length 

l and mass m are coupled through the linear spring with stiffness coefficient kx and linear dampers with damping coefficient 

cx. Pendula’s displacements are given by the angles i. Springs and dampers are connected to each pendulum at distance ls 

from the pivot. Each pendulum is connected with the nearest neighbor (green spring) and the second nearest neighbor (red 

springs). Additionally, the motion of each pendulum is damped by the linear damper characterized by damping coefficient c. 

The pendula are excited by the escapement mechanism which for I<N generate excitation torque MN. This system can be 

implemented experimentally using the metronomes with the pendula connected by the spring elements as shown in Figure 

1(b).  

The dynamics of the system of Figure 1(a) can be analyzed using the equations of motion which are derived from 

Newton’s laws of dynamics. We present the results for two different coupling schemes, (i) each pendulum is coupled with the 

nearest neighbor (local coupling), (ii) each pendulum is coupled with two nearest neighbors (nonlocal coupling). 

 

RESULTS 

    

Numerical simulations show that the state of complete synchronization of all pendula co-exists with the state of phase 

synchronization in which there exists the constant phase shift between neighboring pendula and various chimera states 

(including imperfect chimeras). These results have been confirmed experimentally. 

 

 
 

Figure 2: Experimentally observed imperfect chimera state. 

 

The example of experimentally observed imperfect chimera is shown in Figure 2(a-c). The group of metronomes at 

the background of Figure 2(a) is synchronized. Their escapement mechanisms are switched on and they oscillate with the 

frequency equal to the nominal frequency of 200 tics per minute . The metronomes on the first plane of Figure 2(a) are either 

at rest or oscillate with smaller amplitudes. The escapement mechanisms of most of them are permanently switched off but 

metronome 15 (see Figure 2(c)) oscillates with larger amplitude and different frequency (approximately 23 tics per minute). 

Its escapement mechanism is intermittently switched on. The yellow arrows in Figure 2(b,c) indicate the actual positions of 

the pendula (snapshot). The imperfect chimera states coexist with the state of complete and phase synchronization and perfect 

chimeras. Imperfect chimera states are easily observed for both local and nonlocal coupling and the wide range of initial 

conditions (moreover, in our experiment it is easier to observe imperfect chimera states than the perfect ones). 
 

 

CONCLUSIONS 

 

We have constructed the simple experimental setup to explore the spatio-temporal dynamics of the network of the 

coupled pendula. The nodes in the network are locally and nonlocally coupled pendula (Huygens' clocks realized by 

metronomes). We observe the formation of coexisting coherent and incoherent domains in which the newly discovered 

patterns of imperfect chimera or multi-headed chimera are the most typical one. This behavior is observed experimentally and 

confirmed in numerical simulations. 
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Summary Recently, it is well-known as the symmetry-breaking phenomena in the field of physics, the block-diagonalization method (BDM) 

based on representation theory of group with the utilization of symmetry has come to be utilized to exploit structural analysis of the symmetric 

structure. According to the fact that topological factor is unclear in the homogeneous structures, in this paper, we present the mechanism of the 

breaking-down from high-symmetry of the stratified symmetry which is developed by the translation law of group theory. We propose that 

there is the finite element mesh issue of numeric error of computing analysis which it is confirmed hidden symmetry and its symmetry-breaking 

on the dynamic simulation problem by using group representation. It is possible to trace the dynamic nonlinear process from symmetric 

structures with strange behavior. It is found that there are different solution on dynamic process without the issue of the numeric method, it 

depends on the number of divided elements on symmetric structure. 

 

  
THEORY OF MFM FOR A DESCRETE CYLINDRICAL STRUCTURES 

 

   We review the interesting eigenvalues problem of a folding truss allowing for the deformation using both analytical and 

numerical approaches. An experimental approach by Holnicki [1] showed an active shock-absorber based on the truss 

system. From these approaches the authors developed the concept of a pantograph truss to model the multi-folding of 

microstructures [2]. The paper [2] presents the theoretical basis for both static and dynamic numerical approaches to the 

elastic stability of a folding multi-layered truss. Both analyses are based on bifurcation theory and include geometrical 

nonlinearity. Comparisons are made between published experimental folding patterns and the patterns obtained from both 

numerical methods in which bifurcations are demonstrated as having elastic unstable snap-through behaviour. The authors 

suggest that understanding this behaviour will be very useful for the development of lightweight structures subject to 

dynamic loading based on the bifurcation static analysis and dynamic analysis.  

In this paper, we investigate the mechanism of several folding patterns for the numerical work to trace the folding 

patterns of the system shown in Fig.1. This structure is similar to the carbon nano-tube, and inside this cage sets up the 

membrain structure. We consider the folding mechanisms for the cylindrical (pantographic) truss structure subject to a 

vertical load at the top node of the system. The system is a pin-jointed elastic truss and all nodes of the system displace 

vertically only. No allowance is made for friction or gravity for this geometrically nonlinear problem. 

 

THEORETICAL APPROACH FOR A FOLDING DIAMOND TRUSS [2] 

 

We focus a diamond truss with right-left symmetry in MFM system. Hence in this paper the theoretical bifurcation 

analysis, is limited to considering a collapse with symmetric deformation.  

Now let's consider a theoretical estimation for a folding diamond truss model. We assume a periodic height for each layer 

of  where the width L of the truss is fixed. Therefore, the initial length for each bar in geometry of the figure is 

expressed as 

 

The deformed length of each bar denoted as , is a function of the height and the nodal displacement variables 

 
 

HILL-TOP BIFURCATION EQUILIBRIUM PATHS [3] 

 

By allowing for symmetric model, we can therefore consider nonlinear equilibrium equations based on the total strain 

energy theoretically. 

For the 1st and 2nd equilibrium equations chained 

 



 

 
Figure 3: D6-invariant axes-symmetric structure with MFM 

 

 

These equations equal 0 in the limit value problem of total potential energy. It is possible to solve all variables  

by substituting the obtained solutions into the next limited condition using the theorem of implicit function. 

 

 
 

where F( . ) denotes a function of the nonlinear solutions. Finally, we obtain all solutions completely as equilibrium paths 

and it is shown the nonlinear kinetic equation in the following; 

 

 
 

We can consider this differential equation with nonlinear stiffness for dynamic problem. Here, M is mass, C is damping and K is 

nonlinear stiffness matrices. 

 

References 

 

[1]  I. Ario and A. Watson: Structural Stability of Multi-Folding Structures with Contact Problem: Int. J. Non-Linear Mechanics, Vol.324 (1-2), pp.263-282. 

[2]  I. Ario and M. Nakazawa: Nonlinear Dynamics behavior of Multi-Folding Microstructure Systems based on Origami Skill: Int. J. Non-Linear Mechanics, 

Vol. 45(4), pp. 337-347, 2010. 

[3]  I. Ario: Structure with the expanding and folding equipment as a patent (No.2006-037668), 2006. 



 

 

a)Corresponding author. Email:s.biswas90@gmail.com. 

 

XXIV ICTAM, 21-26 August 2016, Montreal, Canada 

A NEW VERSATILE TWO-STATE FIVE-PARAMETER HYSTERESIS MODEL  
 

Saurabh Biswasa) & Anindya Chatterjee 
Mechanical Engineering, IIT Kanpur, Kanpur, Uttar Pradesh, India 

 
Summary: We present a new five-parameter two-state hysteresis model, derived from a high dimensional frictional system. The model 
captures a useful range of hysteretic behaviours, including minor loops. Several examples are presented to show the versatility of the model. 
 

INTRODUCTION 
 
Hysteresis is a rate-independent, irreversible phenomenon observed in material stress-strain relations, damping,  magnetism, 
and other areas. For mechanical systems with elasticity and friction, a model due to Iwan [1] seems promising, but is high 
dimensional. In contrast, the Bouc-Wen model [2,3] is one-dimensional, but is unrealistic under small reversals within 
larger load paths (minor loops are not captured, leading to unrealistic dissipation estimates). With this motivation, we have 
recently studied [4] a high dimensional frictional hysteretic system given by 
                                                                       � sgn(�̇) + �� = ��(�),                                                                                   (1)      
where � is diagonal, � is symmetric and positive definite, � is a column matrix, and �(�) is scalar and differentiable. From 
Eq. 1, in [4] we developed a reduced order model with 6 states based on a new simple approximation for the frictional 
dissipation. However, some shortcomings remained in [4]. The choice of basis vectors was non-intuitive; order reductions 
below 6 gave poor results; and there were too many free parameters for practical use. Here, we report further on subsequent 
developments reported by us in [5]. A new high-dimensional model has now been studied, motivated by the Iwan model. 
The basis vectors are intuitively more pleasing. A model with just 2 states shows usefully rich behavior.  The number of 
fitted parameters is 5, which is usefully small. Numerical solution is simplified, requiring solution of a 4 × 4 eigenvalue at 
each step. Use of the model by many analysts is now practical. 
 

HIGH DIMENSIONAL FRICTIONAL SYSTEM 
 
Figure 1(a) shows the underlying high dimensional frictional system [5]. In this system, each spring has stiffness 1/�, and 
frictional coefficients are linearly varying μ� = μ�/�, μ� = 2μ�/�,..., μ� = �μ�/�. As indicated in the figure, �(�) is a 

displacement input, for which a force �(�) is needed. Friction forces at the slip sites are �� = − μ�sgn(��̇), �� =

− μ�sgn(��̇),..., �� = − μ� sgn(��̇ ).  

 
 

Figure 1. (a) A high dimensional frictional system. (b) Hysteresis curve obtained for the 500 dimensional system. 
 
The governing equation of the system is  

                                                                            � sgn��̇� + �� = ��(�),                                                                           (2) 
Equation (2) resembles Eq. (1) but is in fact has simpler structure. Equation (2) is first incrementally solved via an LCP [6]. 
For our numerical simulation, we use � = 500, μ� = 0.002, �(�) = 0.554 sin(�) + 0.317 sin(4.858 �). The solution 
shows hysteresis with minor loops (see Figure 1(b)). Such minor loops are not predicted by the Bouc-Wen model. 
 

REDUCED-ORDER MODEL 

 
Singular value decomposition of high dimensional data from the solution suggests that a two-state reduced order model is 
feasible (details omitted). From graphical inspection of the singular vectors, we chose basis vectors �� = exp(− ���.�) 
(��.� )���, where � = 1, 2 and the power of 1.5 is based on heuristic observations (omitted). The free parameter � gives 
some flexibility. We orthonormalize the �� 's for analytical convenience. We then derive a reduced order model based on a 



slip-and-work criterion. Slip cannot occur if the associated frictional dissipation exceeds the external work input minus the 

internal increase in potential energy. Let � = ��, and �̇ = ��. The criterion yields  
                                                                  ����μ sgn(��) + ��(����)� − ��(���)� ≤ 0.                                                     (3)     
Thus, if the minimum value of the above is positive, then slip cannot occur; and the minimizing � gives the direction of 
potential slip. We minimize the left hand side of Eq. (3) at each time step to find �. Here, though the first term of Eq. (3) is 
complicated, we have found a useful approximation [4]  

                                                                                          ����μ sgn(��) ≈
(����)�

(���)���.�                                                                   (4) 

where � = 0.5 gives convenient yet near-optimal results, and the fitted � is symmetric and positive definite. Let ���� =

��, ��� = ��, ����� + ������ − ��� = �. Based on Eqs. (3) and (4), we develop the following reduced order model  

�̇ = �
����

�����
�̇ − ��|�̇|� .{� ≤ 0}, 

�̇ = ��̇ {�̇ > 0}, 
where �̇ is the slip rate, and � is a user-defined positive number (like unity), and � can be found by solving a 4 × 4 
eigenvalue problem (details in [5]). 
 
 

FITTING PARAMETERS TO GIVEN DATA 
 
Our reduced order model has three system matrices, namely �, ��, and ��. The model has 2 + 1 + 2 = 5 parameters. Figure 
2 shows several loop shapes that can be captured by changing the five fitted parameters. 
 

 
 

Figure 2. Various behaviours and loop shapes, to match application requirements, can be captured by the model. 
 

CONCLUSIONS 
 

The two-state hysteresis model has several advantages over many hysteresis models in the literature. These advantages 
include a minimal number of states for capturing minor loops (see [4]), a small number of fitted parameters, and the ability 
to match a reasonable range of hysteretic behaviors. It can now be easily used for modelling various phenomena. 
 
References 
 
[1] Iwan, W. D: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech., 33:4, 893-900. 1966. 

[2] Bouc R: Forced vibrations of mechanical systems with hysteresis. Proc. the Fourth Conf. on Nonlinear Oscillation, Prague. p. 315. 1967. 

[3] Wen Y. K: Method for random vibration of hysteretic systems. J.  Eng. Mech. Div., ASCE, 102:2, 249-263. 1976.   

[4] Biswas S. & Chatterjee A: A reduced-order model from high-dimensional frictional hysteresis.  Proc. R. Soc. A. 470: 20130817. 2014. 

[5] Biswas S. & Chatterjee A: A two-state hysteresis model from high-dimensional friction.  R. Soc. Open Sci. 2: 150188. 2015. 

[6] Cottle R. W., Pang, J. S. & Stone, R. E.: The Linear Complementarity Problem. New York, NY: Academic Press. 1992. 



a) Corresponding author. Email: qdudjy@126.com.

XXIV ICTAM, 21-26 August 2016, Montreal, Canada

HARMONIC DIFFERENTIAL QUADRATURE METHOD FOR NONLINEAR VIBRATIONS 
OF TRANSMISSION BELTS 

Jieyu Ding1,2a), Wei Zhang3,2 
1College of Computer Science & Technology, Qingdao University, Qingdao, China 

2 Beijing Center for Scientific and Engineering Computing, Beijing University of Technology, Beijing, China 
3College of Mechanical Engineering, Beijing University of Technology, Beijing, China 

Summary Harmonic differential quadrature method (HDQ) is developed for the nonlinear vibration of axially moving viscoelastic belts. 
Different types of quadrature nodes such as Chebyshev-Gauss-Lobatto, Gauss-Legendre points, and triangle basis functions are used to discrete 
the partial differential vibration equations to ordinary differential equations with respect to the time. Hadamard product and SJT product are 
used to improve the computational efficiency of the discretized nonlinear equations. Numerical results show that the HDQ method has 
advantages both in efficiency and stability. 

INTRODUCTION 

   Differential quadrature method (DQ) is a popular approach used in the area of engineering and mechanics because of its 
advantages of less computation, simple form and convenience. The DQ method was firstly introduced by Bellman and 
Casti[1], in which the partial derivatives of a function in one direction is expressed as a linear combination of the function 
values at all mesh points along that direction. The following studies of the DQ method were focused on the choice of mesh 
points, the treatment of boundary conditions, the choice of basis function, the property of weight coefficients and the 
convergence of solution. In the Harmonic differential quadrature (HDQ) method, the researchers chose the trigonometric 
functions to determine the weight coefficients, which is appropriate to the periodic solutions and is applied to structural and 
vibration area [2,3]. 
   In this paper, the HDQ method is applied to the analysis on the nonlinear vibrations of two-pulley belt-drive system 
which is obtained in paper [4]. The different types of the quadrature nodes, such as Chebyshev-Gauss-Lobatto, Gauss-
Legendre points, Hadamard product and SJT product [5], are used to discuss the nonlinear vibrations of two-pulley belt-drive 
system, the efficiency and stability of the algorithm. 

HARMONIC DIFFERENTIAL QUADRATURE METHOD 

   The basis function in the DQ method can be chosen as Legendre polynomial, Lagrange interpolation polynomial, spline 
function, radial basis function, etc. Striz et al. developed the DQ method by using the following trigonometric functions to 
determine the weight coefficients, which is called harmonic differential quadrature method (HDQ). In the recent study, the 
basis function of the HDQ method can be chosen as  

1 1 1

1 1 1

sin ( ) sin ( )sin ( ) sin ( )
4 4 4 4( )

sin ( ) sin ( )sin ( ) sin ( )
4 4 4 4

j j N

j

j j j j j j N

x x x x x x x x
l x

x x x x x x x x

, (1) 

where 1, ,j N , and N is the number of grid points which is normally an odd number, and 0 ≤x≤1. The corresponding 
explicit forms of weight coefficients for each order derivatives can be calculated by equation (1) and easy programed.  

The grid points can be chosen as Chebyshev-Gauss-Lobatto, Gauss-Legendre points etc. The different types of 
quadrature nodes have different influences on the solutions. 

NONLINEAR VIBRATIONS OF AXIALLY MOVING VISCOELASTIC BELTS 

   The two-pulley belt-drive system, in which the accessory shaft and the driven pulley are coupled by a wrap spring with 
stiffness Kd as illustrated schematically in Figure 1, where c and P0, respectively, are the axial speed and the initial axial 
static tension of the translating belt and are assumed to be constant and uniform, l is the length of the belt spans, x1, x2 are 
the neutral axis coordinates of the belt span, ω1(x1,t), ω2(x2,t) are the transverse vibration displacements of the belt span at x 
and time t, θ1(t) and θ2(t), respectively, are the angular vibration displacements of the driven pulley and the driving pulley, 
M1 is the preload between the accessory shaft and the driven pulley, Ja and θa(t) are the rotational inertia and the angular 
displacements of the accessory, respectively. 



Considering the bending stiffness of the belt, the two spans of the translating belt are both modelled as Euler Bernoulli 
beams. The equation of transverse motion of the belt spans is nondimensionalized as 

2 2

2 2 2 1

1 1 1 2 1 1 1 c 1
1

1
1 1 1
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r
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The boundary conditions are 0, 0, 1, 0, , 0, , 1,
i i i ii i i x x i x xw t w t w t w t l r . 

Using the HDQ method, we discrete the equation (3) to an ordinary differential equation set with respect to the time. 
Hadamard product and SJT product are used to reduce the computational complexity of the nonlinear equations. The results 
of different types of quadrature nodes are compared to show the influences of the grid points on the solutions. 

FIGURE 2: The time history and phase portrait of belt span 1 and belt span 2 

CONCLUSIONS 

   The HDQ method is an efficient approach which can be used to solve the equations on the nonlinear vibrations of the axially 
moving viscoelastic belts. The HDQ method with Guass quadrature nodes illustrates the better convergence. Using Hadamard 
product and SJT product can reduce the computational complexity of the nonlinear equations. For the further study, 
localized harmonic differential quadrature method can be developed to avoid the illness of the coefficient matrices when the 
number of grid points reaches a certain value. 
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Summary Steering Gear transmission plays an important role in various transmission systems. This paper investigates the dynamic behaviour 

of a steering system with several backlashes. First, the motion equations of a 3-DOF system about relative movements were established. Then 
the modal analysis was used to analyse the natural frequencies and amplitude-frequency curves of the system using the harmonic balance 

method. Second. the system was numerically simulated by Runge-Kutta method. Bifurcation, chaos and other complex dynamic phenomena 

were presented. Finally, influences of rotational speed ratio, gear backlashes, load force and damping coefficients on dynamics of the system 
were analysed. The result of the paper indicates that both the operating conditions and the structural parameters of the steering gear system can 

be designed properly to avoid undesirable dynamic motion and realize better mechanical properties. 

 
INTRODUCTION 

 

   Transmission systems are widely used in automotive, aerospace and other industrial machinery. Based on dynamic 

analysis of the steering gear parts, a transmission system can be designed with high stability, durability and efficiency. 

Ozguven and Hourser [1] presented a review on gear dynamics with 188 references, which also gives a summary of the 

mathematical models. Another review by Wang [2] presents the gear dynamic behaviours under the influence of nonlinear 

factors. Basic concepts, mathematical models and the solving methods were also summarized. Backlashes between the 

meshed gears can influence heavily on the system vibration behaviour, as described in more theoretical researches recently 

[3-5]. Though the electric steering gear system is an important type of transmission system, which often contains several 

gears and a feed screw-nut structure, the dynamics of this type of gear system has been seldom investigated. Therefore, the 

dynamics of a 3 degree-of-freedom steering gear system with backlashes is analysed in this paper by using of the harmonic 

balance method. Influences of the operating conditions and structural parameters on the system dynamics are also presented. 

 

EQUATION OF MOTION AND MODAL ANALYSIS 

 

   The steering gear system considered is shown in Fig.1. Three gear wheels and one feed screw-nut structure, acted by the 

external torque T1 on gear 1 and concentrating force T4 on the feed screw-nut structure respectively. The displacement 

excitations e(t), acting on each gear, are resulted from the relative gear errors of the meshing teeth. Due to the backlashes, 

the restoring force generated during gears meshing can be modeled by piecewise linear function in Fig 2. Considering the 

relative movement of the meshed gears and screw-nut, the steering gear system can be reduced as a 3 degree-of-freedom 

system without rigid displacements. Then dynamic equations can be established and non-dimensionalized by introducing 

   and   as the nominal size and nominal time. The harmonic balance method based on discrete Fourier transform is 

adopted to modal analysis of the transmission system with backlashes. Natural frequencies and amplitude-frequency curves 

are presented, as an example shown in Fig 3. They indicate that the resonances occur at the nondimensional frequencies 

0.67, 1.01 and 1.85 respectively. All relative vibrations are intense at the first natural frequency. Whereas at the second and 

third natural frequencies, only one or two relative vibrations are quite intense. 

 
Fig. 1 The structure of a steering gear system        Fig. 2 Piecewise linear function of backlash       Fig. 3 A /F diagrams (b=1.2e-4 m) 

 

DYNAMIC TRANSMISSION ERROR AND COMPLEX DYNAMIC PHENOMENA 

 

   The dynamical behaviors of the steering gear system are numerically solved and illustrated by bifurcation diagrams, 

mean value, mesh state ratio, root-mean-square (RMS) of dynamic transmission error (DTE), and so on. Results of one gear 



pair are shown in Fig 4-6 over the dimensionless rotating frequency Ω range of 0 to 4. In the range of 0-0.4, the mean value 

of DTE changes slightly and the RMS value is small, which means that the gears engage with each other only in one side 

and there is no collision between them at all. That is the gear engagement state is steady. In the Ω range of 0.4-0.6, the RMS 

value rises significantly while the mean value jumps down, and mesh state ratio of the front side is reduced by about 50%, 

which reflect the occurrence of double sides’ collisions between the gears under the resonant conditions. As Ω increases and 

the mean value, RMS value and mesh state ratio value fluctuate extensively, which reflect intense gear collisions. Further 

increase of Ω brings the system returns back to steady movement.  

         
Fig 4. Mean value of DTE                     Fig 5. RMS value of DTE                      Fig 6. Mesh state ratio 

 

INFLUENCES OF THE PARAMETERS 

 

  In general, the gear backlash is the cause of nonlinearity and has a significant effect upon the system dynamics. The 

research shows that every single backlash in the system can cause complex motion and the sensitive frequency areas of each 

backlash are different. Fig 7-9 presents the bifurcation diagrams of the system using gear backlash, dimensionless load force 

and damping coefficient as the bifurcation parameter, respectively. The results demonstrate the reinforce power of the 

complex motions when backlashes increase and the effectiveness of the higher load force and damping coefficient in 

suppressing non-periodic motions of the spur gear system. What is more realistic is that the parameters could be used as 

control parameter to avoid chaotic responses. 

     
Fig 7. Bifurcation with increase of backlashes      Fig 8. Bifurcation with increase of load force     Fig 9. Bifurcation with increase of damping 

 

CONCLUSIONS 

 

   Dynamics of a steering gear system with gear backlash nonlinearities and transmission error excitation are investigated by 

harmonic balance method and numerical simulations in this paper. The result shows that gear backlash is a significant factor to 

the bifurcations and chaos phenomenon in the steering gear system which cannot be ignored. According to the diagrams of mean 

value of dynamic transmission error, mesh state ratio and RMS value, bifurcations and chaos can cause gear collisions and 

unstable transmission to the system. Variations of the rotational speed ratio, gear backlash, dimensionless load force and 

damping coefficients can influence the state of the system response. The unexpected chaotic behavior, collisions within parts of 

the system as a result, can be avoided by designing the parameters with suitable values. 
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Summary Two dynamic phenomena in automotive transmissions are investigated, which both arise while shifting. The first one is the radial 
displacement between the rotation axes of the clutch’s discs. The second one is friction induced flutter provoking vibrations, noise and sometimes 
significant durability problems. The interaction between the sliding clutch and the helical gearing in the transmission is of crucial importance for 
both phenomena. A minimal model of a gearbox incorporating a flexible clutch disc is presented and the relevant instability mechanisms are 
discussed. The stability analysis based on linearization is compared to transient simulations of the complete nonlinear system, which enable to 
identify the main mechanisms limiting the vibration amplitude: stick-slip transitions within the clutch due to strong rotational vibrations, contact 
losses between the clutch discs and between the gears due to axial vibrations. It is shown that complex sequences of these events can take place 
within one limit cycle. 
 

INTRODUCTION 

 
   Shifting gearboxes are common elements of mechanical transmissions, which are used both in industrial and automotive 
drivetrains. Combined with friction clutches they enable to operate the motor under optimal conditions and cover a wide range 
of operation speeds and torques. A great variety of gearboxes established itself especially in the automotive area. Manual and 
automatic transmissions combined with dry or wet operated clutch systems have to be mentioned here alongside with double 
clutch systems, which became very popular because of its fast and comfortable shifting without interruption of drive power. 
Friction induced phenomena are of principal importance for all these systems, because sliding within friction clutches is an 
inevitable part of each gear shifting. Two of the phenomena have attracted high interest of the research in the last years. The 
first one is the radial displacement between the engine side (primary side) disc and the gearbox side (secondary side) disc of the 
clutch [1, 2]. The second one is eek-noise (also called squeal) accompanied by strong vibrations of the transmission components. 
Different models describing particular mechanisms of the eek-noise’ excitation have been suggested in the literature [3 – 5]. 
However, they were mainly concentrated on the modelling of the friction clutch itself (except [5]) and primarily limited to the 
linear stability analysis.  
   In the present paper, the depth of detail of the gearbox model is significantly increased concerning clutch and gears. 
Besides the identification of new instability mechanisms and the recognition of the governing parameters, the full nonlinear 
dynamics is simulated in order to distinguish between effects of different nonlinearities limiting the amplitudes of vibrations. 
 

MINIMAL MODEL OF A HELICAL GEARBOX WITH ELASTIC LAMELLA 

 

   In the studied model, the complex structure of a real gearbox is reduced to its main components. The clutch primary side 
is taken to be a flexible lamella (L, cf. Figure 1), which is attached to the flywheel, mounted on the crankshaft and rotating 
with the constant rotational velocity The lamella is modelled using Kirchhoff’s plate theory in a rotating frame. 
 


(a) 






(b) 

Figure 1. (a) Model of the shifting gearbox with a flexible lamella L; (b) contact between the lamella and the eccentric friction disc.


The clutch disc CD is attached to the gearbox’ input shaft G1. It has four degrees of freedom 𝒖(1) = [𝑢𝑥
(1), 𝑢𝑦

(1), 𝑢𝑧
(1)
] and 

𝝎(1) = [0,0, �̇�(1)]. The compound is elastically supported by springs representing the rolling bearings. Bending or tilting of 
the input shaft is not taken into account, because the corresponding effects have been elaborately discussed in [3, 4]. The teeth 
on the input shaft contact with those placed on the secondary shaft G2. In the stationary case, this contact can be modelled as 
a non-holonomic constraint. For transient simulations, the unilateral tooth contact is not necessarily closed. An alternative 
tooth force model is needed here which is obtained through regularization of the line tension at both front and rear of the 



flanks. The contact between the elastic lamella and the clutch disc occurs along the contact circle (cf. Figure 1b). The gear 
normal force shifts the input shaft away from the engine’s axis, leading to a radial displacement which depends strongly on 
the transmitted torque. In this context, non-symmetrical deformation of the lamella arises which requires taking the 
corresponding elastic modes into account. 
 

FRICTION INDUCED FUTTER AND NONLINEARITIES LIMITING VIBRATION AMPLITUDES 

 
   Depending on design parameters and operating conditions, different instability mechanisms can occur in the described 
system, which are all of the type friction induced flutter due to mode coupling. However, depending on the dominant 
oscillation modes, the instabilities can be split into several groups: 

 radial-torsional instability of the input shaft 
 wobbling instability of the lamella alongside with torsional vibrations of the input shaft 
 combination of both 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Instability domains in the parameter space for different values of the lamella’s thickness h: I –radial-torsional flutter, II –
wobbling instability of the lamella, III – combination of I and II; (b) and (c) steady state oscillation: green – opening in the clutch, blue 
– opening and partial sticking in the clutch, magenta – opening and sticking in the clutch, impacts between the gears. 

 
The existence domains for each type of instability are calculated in the parameter space (cf. Figure 2a). Here  𝑗1 =

𝐽1

𝑚1𝑅
2 is 

the ratio between the gear unit input shaft’s rotational inertia and its mass times square of the friction radius, 𝛽𝑏 is the gear 
helical angle and sign( isthe slip direction within the clutch. 
   The amplitudes of the self-excited vibrations can be limited by different nonlinearities. Contact losses between the lamella 
and the clutch disc (gap function < 0) alongside with the impacts within the gears are of main importance at low clamping 
force in the clutch which results in the low transmitted torque. At a high level of the clamping force, temporal (local) sticking 
along the friction circle becomes the most important nonlinearity. Complex behaviour can be observed in the intermediate 
range of the clamping forces, where all these mechanisms can contribute to the occurrence of the limit cycle (cf. Figure 2 (b) 
and (c)).  
 

CONCLUSIONS 

 
   A wide variety of friction induced effects exists in a gearbox with attached dry friction clutch, such as radial displacement and 
several types of instabilities. The suggested minimal model enables the parameter value- and operation dependant description of 
both effects. The influence of different nonlinearities on the amplitude of the transient oscillation demonstrates the principally non-
smooth character of the system, making the numerical analysis extremely difficult. Nevertheless, some approaches could be 
identified, which enable to capture the principal behaviour of a gearbox with a more complex structure. 
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Summary Under the author’s use Petroviċ’s elements of mathematical phenomenology, especially mathematical analogy, new expressions of 

post-collision outgoing angular velocities of two rolling rigid bodies are determined. Advances to theory of collision between two bodies are 
generalized to collision of two rolling rigid bodies. Using these results, nonlinear dynamics in the vbro-impact system with trigger of coupled 
singular points and homoclinic trajectory in phase trajectory portraits is study. Use phase portraits of two nonlinear dynamical systems in which 

appear central collision of thin rolling different size disks are studied. In first vibro-impact system disks is in rolling along straight line and 
coupled by springs, and in second rolling disks are moving along a circle line rotate with constant angular velocity around vertical central axis. 
In both considers system dynamics exist a trigger of coupled singular points. 

 
ADWANCES TO THEORY OF COLLISION OF TWO RIGID ROLLING BODIES 

 

   Advances to theory of collision between two bodies are generalized to collision of two rolling rigid bodies. Under the 

authors’ use Petroviċ’s elements of mathematical phenomenology [1,2,3,4], especially mathematical analogy, new expressions 

of post-collision outgoing angular velocities of two rolling rigid bodies are determined in following forms (see Figure 1.a*):. 
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Figure 1. a* Plans of the impact velocities of possible points at corresponding circles at same height of balls in central and skew 
collisions of two rolling heavy balls different radiuses: left for first smaller ball and  right for second bigger ball. b* and c* Two vibro-
impact systems each containing two rolling thin different radiuses disks in central successive collisions. 

 

NON-LINEAR DYNAMICS OF TJE VIBROIMPACT SYSTEMS WITH TRIGGESR OF COUPLED SINGULAR 

POINTS AND HOMOCLINIC ORBITS IN FORM NUMBER EIGHTIN PHASE PORTRAITS 

 
   In Figure 1.b* and c* two mechanical vibro-impact systems containing two rolling thin different size disks are 

presented. Each disks, in both considered systems dynamics, a corresponding trigger [5,6] of coupled three singular points 

and homocclinic orbit in the form of number “eight” posses in corresponding phase portraits for corresponding relation of 

parameters of system, In both system exists a bifurcation parameter and with its variation in the phase portraits layering of 

phase trajectories appear, as well as appearance and disappearance of trigger of coupled singular points. Kinetic parameters 

and phase portraits of each vibro-impact system (in Figure 1. b* and c*) in ideal constraints as conservative and, also,  in 

the field of turbulent damping as no conservative, and of each of the rolling disks are determined and graphically presented.  

in Figure 2 a* and b* phase trajectory branches in phase portraits of two rolling disks for motion in interval between 
configurations of the initial condition configurations and configurations of pre-first-collision and post-first-collision 

between two rolling disks for corresponding conservative systems are presented. On the phase portraits alternations of the 

pre-collision impact velocities of the disks into post-collision corresponding translator or angular velocities are visible.   
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a*          b*  
Figure 2. Phase trajectory branches in phase portraits and total mechanical energy branches of two rolling disks for motion in interval 
between initial condition configuration and configurations of pre-first-collision and post-first-collision between two rolling disks with 
vibro-impact dynamics (a*) along a line and (b*) on rotate circle trace with constant angular velocity around vertical central axis for the 
conservative systems presented in Figure 1,b* and 1.c*. 
 

CONCLUDING REMARKS 
 

   Advances to theory of collision of two rolling rigid bodies open new possibilities for progress in knowledge of vibroimpact 

system dynamics.  Obtained results are related to different ceases of conservative as well as no conservative vibro-impact 

dynamics. Emery analysis for turbulent damping with generalized function of energy dissipation  3/3xb&=Φ  gives rate of total 

mechanical energy degradation in the form: ( ) Φ−=+ 3/ dtEEd pk
.  
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SWITCHING SENSITIVE AND INSENSITIVE RESPONSES IN A PIECEWISE SMOOTH 
RUBBING ROTOR SYSTEM

Jun Jianga), Ling Hong
State Key Laboratory for Strength and Vibration, Xi'an Jiaotong University, Xi’an 710049, China 

Summary In this work the response characteristics of a two-degree-of-freedom piecewise smooth nonlinear isotropic rubbing rotor system,
which consists of a linear subsystem and a nonlinear subsystem controlled by a switching surface that gives the rubbing condition, are 
investigated. It is found that the parameters of the piecewise smooth system can be classified into the switching sensitive and insensitive regions. 
We show that the responses of the full non-smooth system in the switching insensitive regions can be well determined through the analysis of 
the responses both the linear and the nonlinear subsystems by the theory of nonlinear dynamics. In the switching sensitive regions, some 
responses of the full non-smooth system, although unpredictable theoretically, can still be explained from the response characteristics of the 
subsystems, and some other responses cannot be well understood from our current knowledge. 

PIECEWISE SMOOTH MODEL FOR A RUBBING ROTOR 

   Rotor/stator rubbing is a malfunction in rotating machinery that degrades the machine performance and may lead to the 
catastrophic failure of a whole machine through dry whip in the worst case [1]. A rubbing rotor system (see Fig.1) can be 
modeled by a piecewise smooth system [2]:  
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   deflection magnitude 2 2r x y	 �             (1) 

where x,y are the deflections of the rotor in the horizontal and vertical directions, and m,c,ks are mass, damping and stiffness 
of the rotor. e is mass eccentricity and � the rotating speed of the rotor. kb is the stiffness of the stator. r0 and � are clearance 
and friction coefficient between the rotor and the stator.  

� is Heaveside function with �=0 when the deflection amplitude r <r0, that is, there is no rubbing in the rotor and the 
system is govern by linear equations. �=1 when r � r0 is the rubbing case whereby the system is governed by the nonlinear 
equations. Therefore, the rubbing condition is governed by the switching surface by  

2 2
0{( , , , ) | 0}x x y y x y r� 	 � � 	� �                                                            (2)

The piecewise smooth system possesses some specific features: (1) the switching surface is defined as a deflection 
magnitude of two displacement coordinates of the system; (2) when a periodic trajectory of the system begins to touch the 
switching surface, it touches switching surface at all points to make it different from gazing in the usual non-smooth 
systems; (3) there is no periodic motion formed by crossing the switching surface between the two subsystems. 

DYNAMICS OF LINEAR AND NONLINEAR SUBSYSTEMS 

By solving the equations of the linear subsystem of (1) when �=0, the existence boundaries of the periodic solution of 
linear subsystem are obtained by considering the switching condition (2), which are shown by the red dashed lines marked 
respectively by �L and �U in Fig.1(left). Here � is the non-dimensional rotating speed defined by � over the natural 
frequency of the coupled rotor/stator system. These two lines also give the rotating speeds at which the piecewise smooth 
system (1) is in the grazing state.  

The periodic solutions of the nonlinear subsystem of (1) when �=1 can be also solved analytically. There are two 
branches periodic solutions of the nonlinear subsystem, one is stable and the other is unstable. The existence ranges of the 
periodic solutions are decided by three saddle-node bifurcation points denoted by the black solid curves in Fig.1(left). 
However, when the switching condition (2) is taken into account, the periodic solutions are meaningless in the ranges 
between SN1 and �L as well as in right side of SN3 because the amplitudes of the periodic solutions are smaller than the 
clearance r0. The boundaries of Hopf bifurcation for each of the two periodic solutions are also derived analytically and 
shown by the green solid curves in Fig.1(left). It is found that the meaningful stable periodic solution of the nonlinear 
subsystem exists only in the range between �L and SN2 and under the green curve (+). So a meaningful quasi-periodic 
solution with amplitude fluctuating around r0 exists after Hopf bifurcation in the corresponding region but above the green 
curve (+). Through numerical simulations, the nonlinear subsystem possesses only a pair of meaningless periodic solutions 
in the range between SN1 and �L, but there are meaningful chaotic and quasi-periodic responses in the ranges between SN2
and SN3, or in the region in the right side of SN3, where another pair of meaningless periodic solutions exist. The dynamical 
characteristics of subsystems have significant influence on the behavior of the full piecewise smooth system. 
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MIXED-MODE OSCILLATIONS IN A SLOW-FAST FLEXIBLE 
 JOINT SYSTEM WITH TIME DELAY 
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Summary Mixed-mode oscillations (MMOs) are observed in a delay-coupled flexible joint system with multiple time scales, which behaves as 
a complex oscillatory pattern consisting of small amplitude oscillations followed by large excursions of relaxation type in a period. The 
existence of homoclinic orbits induced by Bogdanov-Takens bifurcation of the fast subsystem is proposed to explain the mechanisms of the 
occurrence of MMOs. It is numerically proved that the small parameter in a slow-fast system influences the convergence rate of oscillatory 
trajectories and thus leads to the transitions of mixed-mode oscillations. 
 

THE SLOW-FAST FLEXIBLE JOINT SYSTEM 
 

A delay-coupled flexible joint robot manipulator is remodelled and transformed into a typical slow-fast system in [1] as 
( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
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⎪ = − − − − − − − +⎪⎩

            (1) 

where 1θ  and 1p  are defined as fast variables, 2θ  and 2p  are fast variables and the parameter ε  is usually called as 
the small parameter. It is obtained that the small parameter multiplies the highest derivative of the state variables in Eq. (1), 
which leads to the fact that the order of the system for 0ε =  becomes lower than that for 0ε ≠ . This is just why the 
singularity comes up in a slow-fast problem. According to geometric singular perturbation theory [2], the limit of the 
original full system as 0ε →  is defined as the reduced slow subsystem while the limit of the rescaled full system with 
t tε=  and 0ε →  is the reduced fast subsystem. 
 

EXISTENCE OF HOMOCLINIC ORBITS 
 

Projecting the 4-dimensional fast subsystem onto the 2-dimensional plane 1 1-p θ  and regarding the state variable 

( )2 tθ  as a constant, the fast subsystem on the 1 1-p θ  plane is obtained as 

( ) ( )
( ) ( ) ( )( ) ( )

1 1

1 1 1 20 1 1

,

sin .

t p t

p t p t t t

θ

α τ θ θ τ β θ

′⎧ =⎪
⎨ ′ = − − + − − −⎪⎩

                    (2) 

After a translation of the equilibrium to the origin, the corresponding characteristic equation is derived as 
( ) ( )2

1 10cos 0.F e eλτ λτλ λ α λ β θ− −= + + + =                        (3) 

It tells that 0λ =  is a double zero root of the characteristic equation ( ) 0F λ =  when the condition 1 0α τ− =  
holds. Namely, the characteristic equation (3) has a zero eigenvalue with multiplicity two. Bifurcation theory in dynamical 
system [3] says that when the characteristic equation of a linearized system has a zero eigenvalue with multiplicity two, a 
BT bifurcation may occur in the original nonlinear system. Fig. 1 illustrates a series of boundary curves dividing the 
parameter plane 1-τ θ  into nine areas, where the boundary curves iH and iS correspond to the pure imaginary eigenvalues 

           
Fig. 1 The stability boundaries near the BT point.   Fig. 2 The critical boundary of homoclinic bifurcation.    Fig. 3 The BT bifurcation diagram on the 

parameter plane 1-τ θ . 
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(a)                                   (b) 

Fig. 4 Structure and stability of the slow manifold with 0.653τ = .            Fig. 5 Limit cycles and corresponding time-history plots, (a) limit cycles, 
(b) time-history plots. 

and the zero eigenvalue respectively. Fig. 3 illustrates the corresponding phase diagrams in each region separated by critical 
bifurcation curves shown in Fig. 2. Fig. 4 explains the structure of the slow manifold with two limit cycles near the 
homoclinic points 1Homo  and 2Homo . The corresponding phase portraits and time histories of two limit cycles starting 
from different initial points are presented in Fig. 5. Numerical results show that with the variation of time delay, these two 
limit cycles could be infinitely close to the homoclinic orbits. So far, the existence of homoclinic orbits is identified. 
 

OSCILLATION ANALYSIS AND EFFECTS OF SMALL PARAMETER 
 

Once the fast manifold fails to intersect with the stable segments or the stable limit cycles bifurcated from unstable 
segments of the slow manifold, the flows in the phase space would not be attracted to any of the stable attractors and they 
would have to wander in the space. In fact, it is just these wandering flows that result in the mixed-mode oscillations. The 
phase portraits and the time-history plots corresponding to =0.05ε  and =0.01ε  are displayed in Fig. 6. From the 
comparison of Fig. 6(a) to (d), one may easily figure out that with the reduction of the small parameter ε , the convergence 
rate of flows being attracted to the stable segment 4M  is slowed down. Based on the results obtained above, it can be seen 
that with the same time delay, the mixed-mode oscillations can be transferred via adjusting the small parameter ε . Besides, 
the scales of the small parameter influence the attraction rate of flows to the stable segments. 

 
(a)                            (b)                             (c)                           (d) 

Fig. 6 Mixed-mode oscillations, (a) phase portraits with =0.05ε , (b) time series with =0.05ε , (c) phase portraits with =0.01ε , (d) time series with =0.01ε . 

CONCLUSIONS 
 

A slow-fast flexible joint system is investigated in this paper to explain the mechanism of mixed-mode oscillations. The 
eigenvalue analysis of the fast subsystem achieved the condition of BT bifurcation and then confirmed the existence of 
homoclinic orbits around the slow manifold. Numerical results reveal that the mixed-mode oscillations can be transferred from 
one to another through the scale variation of the small parameter. The smaller the parameter is, the slower the convergence 
rate of the flows to the stable homoclinic orbit and the stable segment of the slow manifold are. 
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Summary In order to ensure integrity of thermal protection system for hypersonic vehicles, the stochastic dynamic response induced by 
the combination of thermal and acoustic loadings has been investigated for a thin panel resting on a two-parameter elastic foundation. A 
theoretical model is developed based on the Kirchhoff thin-plate assumptions and general von Kármán-type equation through Galerkin 
method. A dynamic response evolution parameter deduced from the primary-mode modal equation and the Fokker-Planck distribution 
function is proposed to characterize a transition from linear vibration to fully nonlinear dynamic snap-through for a thermally-buckled 
panel. The study demonstrates the combination of acoustic excitation, thermal effect and structural stiffness including elastic foundation 
stiffness governs the dynamic response evolution. As the elastic foundation stiffness increases, the buckling temperature increases and the 
postbuckling deflection decreases, which promote the nonlinear dynamic snap-through response remarkably for the postbuckled panel 
with reducing snap-through amplitude.   
 

INTRODUCTION 
 
   In order to protect the substructure of a hypersonic flight vehicle, a multi-layered structure with a plain-woven C/SiC 
composite thin skin panel adhesively bonded to a very thick and light Si-C-O aerogel thermal insulator is used as a typical 
thermal protection system (TPS) structure. However the ceramic based composite thin skin panel is structurally weak and 
can fail easily. Under the overall sound pressure level (OASPL) of 140-170 dB, an erratic fully nonlinear large amplitude 
snap-through behavior has been observed experimentally for the thin panel at elevated temperature, which might lead to the 
so-called thermal–acoustic fatigue damage. In order to ensure structural integrity, it is desired to have a computationally 
efficient methodology to predict the dynamic response of the thin skin panel subjected to a combined loading. Few 
investigations have been conducted to characterize the dynamic response of the top facesheet panel for the multi-layer TPS. 
Current methods can neither characterize and predict occurrence of the snap-through response for the examined structure 
under a certain combination of thermal and acoustic loadings, nor provide an efficient way to understand the effects of the 
model parameters, such as elastic foundation stiffness, loadings, boundary conditions, and material properties on the 
stochastic dynamic response due to high computational expenses.  
 

THEORETICAL MODEL 
 
   The top facesheet panel of the multi-layer TPS can be modeled as a thin composite plate resting on a Pasternak-type 
elastic foundation, where the thick thermal insulator has been considered as an elastic foundation. The theoretical model is 
developed based on the Kirchhoff thin-plate assumptions and general von Kármán-type equation that includes the plate-
foundation interaction and the contribution of the membrane load on the transverse deflection. The governing equation has 
been derived using the first four symmetric modes through Galerkin method and a set of higher order coupled nonlinear 
ordinary differential modal equations (ODEs) have been given. It is noteworthy that three contributions to the linear 
stiffness term include the usual structural linear stiffness, the elastic foundation stiffness and the temperature variation, 
which are not related to the nonlinear stiffness terms. The modal equations can be expressed with the primary mode only 
and the stationary density function of the oscillator is given by the Fokker-Planck distribution: 

𝑓𝑓(𝑞𝑞) = 𝑁𝑁0 𝑒𝑒𝑒𝑒𝑒𝑒 �−(2𝜉𝜉𝜉𝜉/𝐷𝐷0)[1
2
𝑘𝑘𝑜𝑜(1 − 𝑠𝑠)𝑞𝑞2 + 1

4
𝛼𝛼𝑞𝑞4]�                         (1) 

Hamiltonian of the oscillator is:  
𝐻𝐻 =  1

2
�̇�𝑞2 + 1

2
𝑘𝑘𝑜𝑜(1 − 𝑠𝑠)𝑞𝑞2 + 1

4
𝛼𝛼𝑞𝑞4                                 (2)              

and the depth of the potential energy well ℎ can be determined by substituting the static postbuckling displacement 
amplitude into the Hamiltonian. The parameter 𝛥𝛥 is proposed to characterize the gradual evolution from no snap-through 
to persistent snap-through by the ratio between the density of zero-crossing and the density of reaching the static 
postbuckling equilibrium positions.   

𝛥𝛥 =  𝑓𝑓
(𝑞𝑞)𝑞𝑞=0

𝑓𝑓(𝑞𝑞)𝑞𝑞=𝑄𝑄
= 𝑒𝑒

�−�𝜉𝜉�𝑘𝑘𝑜𝑜𝐷𝐷0
 𝑘𝑘𝑜𝑜

2 (𝑠𝑠−1)2

2𝛼𝛼 ��
                                 (3) 

where the combination effect of the acoustic sound pressure level, the strength of the thermal effect and the structural 
stiffness including the elastic foundation stiffness on the dynamic response evolution have been taken into account in one 
parameter. Three distinct cases can be identified. As 𝛥𝛥 → 0, it represents the motion characteristic of the oscillator with 
high potential energy well depth or low energy input level. The oscillator is confined entirely in one of the double potential 
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energy wells and no snap-through occurs; As 𝛥𝛥 → 1, it represents the motion characteristic of the oscillator with low 
potential energy well depth or high energy input level.  The oscillator is driven out the potential energy well constantly and 
the persistent dynamic snap-through appears. As 0 < 𝛥𝛥 < 1, it represents the intermittent snap-through and can be 
expected that the snap-through motion is more frequent with higher value of 𝛥𝛥. The parameter clarifies the competition 
mechanism among the excitation energy, the strength of the thermal effect, the structural stiffness including the foundation 
stiffness and the nonlinear cubic stiffness, and can predict the characteristic of the dynamic response of the postbuckled 
panel with system parameters. 
 

RESULTS AND DISCUSSIONS 
 

   
 Figure 1. The surface plot of 𝛥𝛥 for      Figure 2. The surface plot of 𝛥𝛥 for     Figure 3. The surface plot of 𝛥𝛥 for 
    𝐾𝐾1 = (0, 5) and D0= (0.1, 10)         𝐾𝐾2 = (0, 3) and D0 = (0.1, 10)       for 𝐾𝐾1 = (0, 10) and 𝐾𝐾2= (0.0, 5.0). 

   The variations of the parameter 𝛥𝛥 with the excitation energy level and the foundation stiffness for the post-buckled 
panel have been given in Fig. 1 - 3. The results demonstrate some significant finds the first of which is the contribution of 
the stiffness to the dynamic response for the panel. Higher elastic foundation stiffness can promote the nonlinear snap-
through response significantly. As the excitation energy level decreases, the dynamic response evolution parameter 𝛥𝛥 is 
more sensitive to the elastic foundation stiffness. The evolution parameter is more sensitive to the shear layer stiffness 
compared with the Winkler foundation stiffness.  
   The remarkable contribution of the foundation stiffness to the dynamic response evolution can be explained through its 
effects to the buckling and post-buckling behavior of the panel. The thermal buckling temperature increases and the 
postbuckling deflection decreases significantly for the panel resting on the two-parameter elastic foundation. Hence the 
depth of the potential energy well reduces by increasing the elastic foundation stiffness, which can promote the nonlinear 
snap-through response with reducing the snap-through amplitude. However, from the point of view of acoustic fatigue 
damage to the panel, although the dynamic snap-through motion between two symmetric post-buckling equilibrium 
positions with zero mean is activated more easily by increasing the elastic foundation stiffness, the amplitude of the 
dynamic snap-through vibration decreases significantly with increasing the foundation stiffness. For the panel without the 
elastic foundation subjected to the same combination of loadings, it might exhibit small-amplitude linear vibration around 
large static postbuckling deflection. Thus the comparison of acoustic fatigue damage induced by a persistent nonlinear 
dynamic response around zero mean and a linear dynamic vibration around large thermal induced static postbuckling 
deformation needs to be investigated further.     
 

CONCLUDING REMARKS  
 
   The stochastic nonlinear dynamic response of a thermally buckled composite panel resting on a two-parameter elastic 
foundation, where the uniform temperature rising with in-plane thermal gradient has been considered has been studied using 
based on Galerkin procedure. The transverse displacement w time history, the histogram and the accompanying pseudo-
phase plane have been provided to demonstrate the global dynamic behavior. A dynamic response evolution parameter 
deduced from the primary-mode modal equation and Fokker-Planck distribution function can be used to characterize the 
transition from a persistent snap-through to no snap-through for the postbuckled panel. The contribution of the foundation 
stiffness to the nonlinear dynamic snap-through response has been clarified by the depth of the potential energy well, which 
decreases by increasing the elastic foundation stiffness and can lead to a transition from no snap-through to persistent snap-
through.  
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Summary In this work, we present application of geometric and topological approaches of phase space transport to dynamical systems which
exhibit transition out of a potential well or escape from the realm of bounded motion. This phenomena is observed in problems of celestial
mechanics, chemical kinetics and ship dynamics where by transition and escape may be beneficial or detrimental. We present results in the
context of mechanical systems that can be geometrically reduced to two-dimensional maps using invariant manifolds of unstable periodic
orbits and suitable Poincaré surfaces-of-section. We apply a recently developed notion of controlling a dynamical system, in the presence
of a random bounded disturbance while applying a smaller control, to avoid transition and escape into an undesirable realm of phase space.

PROBLEM DESCRIPTION
In a myriad of natural and engineering systems, there are instants of critical motion when the trajectory escapes from a (or

transitions into another) metastable state, often characterized by a potential well. This phenomenon may be undesirable if it
implies a catastrophic event or could be desirable from a control and design perspective. In any case, it is of paramount interest
to understand the mechanisms underlying such critical motion, providing in essence a reduced order model of transitions. The
discovery of such mechanisms will also lead us to propose strategies to avoid or trigger escape/transition and make better
predictions.

We will illustrate our results in the context of a ship dynamics problem. Consider a model of ship dynamics that has
nonlinear coupling of roll and pitch degrees of freedom (DOF) and is of interest in naval engineering for ship safety against
capsize in the presence of wave forcing. The dynamical system of interest can be expressed by the Lagrangian L(x, y, x̊, ẙ)
given by

L(x, y, x̊, ẙ) = T (̊x, ẙ)− V (x, y)

=
1

2
x̊2 +

1

2

(
2

R2

)
ẙ2 −

(
1

2
x2 + y2 − x2y

)
x̊ = vx

ẙ = vy

v̊x = −x+ 2xy + fx(t)

v̊y = −R2y +
1

2
R2x2 + fy(t)


(1)

with V (x, y) = 1
2x

2 + y2 − x2y as the corresponding effective potential energy, x, y denotes the roll and pitch degrees of
freedom which is non-dimensionalized using the roll and pitch angle of vanishing stability, R = ωθ/ωφ, ratio of the pitch to
roll natural frequencies. In what follows, R = 1.6 is chosen so as to lessen the effects of parametric resonance. The equations
of motion can be expressed in first order ODE form given by (1), where time is non-dimensionalized using the natural roll
frequency and the non-conservative time-varying generalized forces, fx(t), fy(t), which denote rescaled angular accelerations
due to wave moments. Our objective is to apply a geometrically motivated approach of identifying trajectories that lead to
capsize and find if a control smaller than a disturbance can be used to avoid such event.

TUBE DYNAMICS AND PARTIAL CONTROL
When the system is autonomous i.e., (fx(t) = fy(t) = 0), Eqn. (1) conserves the energy, E(x, y, vx, vy) = 1

2v
2
x +

1
2

(
2
R2

)
v2y + 1

2x
2 + y2 − x2y since damping isn’t considered and which represents a hypersurface in R4. However, by using

a suitable geometric reduction technique we can classify orbits with varied fates for a given instantaneous energy, e. This is
typically done by using a Poincaré surface-of-section (S-O-S), in this case a plane R2, that captures motion leading to escape
from the potential well i.e., capsize. We consider a Poincaré S-O-S that is intersected by trajectories with motion to the right
and given by ΣU1

= {(y, vy)|x = 0; vx > 0} (where vx > 0 captures motion to the right) and shown in Fig. 1(a) and
Fig. 1(b). Furthermore, the regions of energetically accessible motion for a ship of given energy, e, is defined by considering
the projection of energy surface onto the configuration space, (x, y) plane, given by M(e) = {(x, y)|V (x, y) 6 e} which
is historically known as Hill’s Region (see [1]). Using basic dynamical systems theory, we obtain the critical points for the
conservative system at (±1, 0.5, 0, 0) which is a rank-1 saddle (with eigenvalues ±λ,±iω). The energy of saddle equilibrium
points is defined as critical energy given by E(±1, 0.5, 0, 0) = Ecritical = 0.25 and all motions leading to escape from
the potential well occur above this value i.e., a ship rolling and pitching with instantaneous energy e will capsize when
e > Ecritical.

This can be systematically explained by considering the invariant manifolds of the rank-1 saddles (this theory goes by
the name of tube dynamics and is applied to celestial mechanics in [1]) to organize trajectories exhibiting ship’s safe and
capsize configuration. For a 2-DOF system (phase space is R4) the globalized manifolds are topologically a cylinder or tubes
(hypersurface in R4 and co-dimension 1) and forms a boundary between capsize and non-capsize trajectories i.e., escape
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Poincare S-O-S, 
tube manifold

periodic orbit
of energy, e 

ΣU1

(a)

ΣU1

(b)

Figure 1: Fig. 1(a) shows a schematic of escape (red) and non-escape (blue) trajectory, while tubes form the boundary for
such critical motion and Poincaré S-O-S reduces the analysis to a study of map on R2. The boundary of Hills region i.e.,
zero velocity curve (kinetic energy vanishes) is shown in the (x, y) plane. Fig. 1(b) shows the Hill’s region as shaded (where
kinetic energy is negative) and the white regions are energetically accessible for e > Ecritical. The stable tubes of the rank-1
saddle equilibrium points are shown in green which act as the boundary for escape and non-escape trajectories.

beyond the saddles of potential well as shown schematically in Fig. 1(a). Therefore dimension of tubes for a 2 DOF system is
given by S1 × R1 and thus its intersection with a Poincaré S-O-S, ΣU1

, is S1 or 1-sphere in R2. On the plane, ΣU1
the closed

curves represent forbibben region (shown as white inside the blue in Fig. 2(a)) and trajectory entering this region will lead to
imminent escape from the potential well. When the systems is non-autonomous, this geometric picture still forms the skeleton
on which the escape manifests itself.

In presence of any disturbance, e.g., wave forcing or unmodeled fluid-vessel interaction, escape from the potential well
becomes more prominent and our objective is to ask if it is possible to avoid escaping i.e., not entering the forbidden regions
by exploiting the topology of tubes of the rank-1 saddles. This can be answered using a recently developed approach of partial
control which is based on the notion of a safe set (see [2]). A safe set, say S, is a subset of the set we want to stay in, say Q,
such that for every point q ∈ S, we have maxq∈S,||ξ||6ξ0

dist(f(q) +ξ, S) = u0 < ξ0. When the safe set exists, we can find

(a) (b) (c) (d)

Figure 2: Fig. 2(a) shows the initial set in blue on the Poincaré S-O-S, ΣU1
with white regions inside the blue denoting intersec-

tion of tube manifolds. Fig. 2(b), 2(c) and 2(d) show the safe sets in blue for ξ0 = 0.05, 0.05, 0.1 for u0 = 0.405ξ0, ξ0, 0.445ξ0
respectively. The red and green disks denote the disturbance and control magnitudes that are applied on the map.
safety by using a control that is smaller than the disturbance. This is illustrated for an arbitrary disturbance, ξ0, acting on the
return map ΣU1

→ ΣU1
in Fig. 2 and computed using the sculpting algorithm in [3].

CONCLUSION
We considered two arbitrary disturbance magnitudes, for illustration here, ξ0 = 0.05, 0.1 and show that the safe sets exist

for a minimum control magnitudes of u0 = 0.405ξ0, 0.445ξ0 for an instantaneous energy, e = 0.25307. Thus, a ship’s safety
can be ensured by controlling the trajectories from entering the stable tubes that lead to imminent escape from the potential
well. However, from a ship’s motion stand point, the magnitude of a disturbance needs to be related to the wave forcing that
acts in a rough/regular sea environment while interpreting the applied control magnitude in the form of a algorithmic control
law.
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SYMMETRY-INDUCED DYNAMIC LOCALIZATION IN LATTICE STRUCTURES
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Summary The existence of internal symmetry in lattice structures may give rise to stationary compact solutions, even in the absence of
disorder or nonlinearity. These compact solutions are related to the existence of flat dispersion curves (bands). Nonlinearity can be a
destabilizing factor for such compactons. This can be illustrated by a simple one-site model, in which the compacton corresponds to a single
hidden antisymmetric mode. This antisymmetric mode can lose its stability through parametric resonance, when accounting for nonlinear
interactions.

SETTING AND LINEAR ANALYSIS

A chain of linearly coupled elements with symmetric internal structure is considered, as presented in Figure 1.

Figure 1: Schematic plot of the basic setting.

The boxes are considered to be massless. Evidently, due to internal symmetry, the antisymmetric mode in each box will
not interact with the other modes in the system. Thus in the considered case, one obtains a completely localized solution
(compacton). This localized solution emerges already in a linear homogeneous system. Therefore, in addition to two well-
known origins of localization in lattices − disorder [1] and nonlinearity [2] − there appears to be a third possible source of
localization: internal symmetry. Due to lack of direct interaction with external excitation, the aforementioned compactons
may also be referred to as ”hidden modes”. The dispersion curves for the system depicted in Figure 1 are presented in Figure
2.

Figure 2: Oscillatory spectra for the system described in Figure 1.

One of the dispersion curves (bands) is flat, i.e. independent of the wavenumber, k. Its frequency corresponds to the
frequency of compactons. In the specific system depicted in Figure 1, this flat band always lies above ”regular” dispersion
bands. However, for more complicated structures (for instance, for the case when internal transverse motion of particles
is permitted), the emerging flat bands may also intersect other dispersion bands. In such cases, the regular ”intersection
avoidance” of dispersion curves is absent (due to lack of linear coupling between the modes). The existence of compactons in
the model system described above depends only on the symmetry in the considered system. For a single site of such lattice,
we demonstrate that slight perturbation to the symmetry can reveal the ”hidden mode” under external excitation, with an
additional, thin, resonance peak emerging. However, small damping (proportional to the asymmetry) can efficiently destroy
this additional resonance peak, restoring the mode ”hiding” effect.
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NONLINEAR DYNAMICS

The inclusion of (symmetric) nonlinearities does not affect the existence of compacton solutions. In the same time, in
the nonlinear case, the compacton mode becomes coupled to the other modes of the system. Such nonlinear coupling can be
destructive for compacton existence − stability can be lost through the mechanism of parametric resonance. To explore this
scenario, we consider the same single-site (sub)system, only with the addition of internal cubic nonlinearity. The emerging
system can represented by the following equations:

mẍ1 + k1(x1 − x0) + p(x1 − x0)
3 = 0

mẍ2 + k1(x2 − x0) + p(x2 − x0)
3 = 0

k0x0 − k1(x1 − x0)− p(x1 − x0)
3 − k1(x2 − x0)− p(x2 − x0)

3 = 0

(1)

In Eqs. (1), x1 and x2 denote the displacements of the masses, and x0 − the displacement of the external box. The last
equation in the system is algebraic, as arising due to the zero box mass assumption. Evidently, system (1) admits symmetric
and antisymmetric nonlinear normal mode (NNM) solutions. The antisymmetric mode is ”hidden” and corresponds to the
compacton solution. Partial results of numerical Floquet analysis for the NNMs of Eqs. (1) are presented in Figure 3.

Figure 3: 1st (finite-width) and 2nd (degenerate) instability tongues of the purely antisymmetric mode (in solid red) with asymptotic
expansions for tongue boundaries (dashed black), and multiple (finite-width) instability tongues of the symmetric mode (in solid blue). Y0

denotes the (normalized) amplitude of (x1 + x2)/2− x0.

In addition to a finite-width instability tongue for small k1/k0 ratios, there exists a 2nd narrow region of instability, char-
acterized by emerging resonance-related KAM islands, around the rightmost red curve in Figure 3, as shown in Figure 4.

Figure 4: Poincaré sections at x1 = x2 for k1/k0 = 1.25 for (rightwards) increasing amplitudes Y0 = 0.31, 0.313, 0.316, 0.325

CONCLUSIONS

In view of the above, one finds that in the presence of internal symmetry, a localized solution (a ”hidden” mode, or,
a compacton) exists even with no nonlinearity or disorder, and can either remain stable, when accounting for nonlinear
interactions, or be destroyed by them, depending on the parameters.
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DATA-BASED METHOD FOR EXTRACTING NAVIGATIONAL LEADERSHIP BETWEEN
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Summary We study the navigational leadership roles in bats by implementing a recently developed dynamical systems tool, convergent
cross mapping, to detect the information transfer between two bats. Small groups of bat paths are continuously tracked, from which 3D path
points are extracted and converted to 1D curvature-based time series data to perform convergent cross mapping analysis. This work seeks
to answer the question of whether individuals fly independently of each other or interact to plan flight paths.

NAVIGATIONAL INFORMATION TRANSFER BETWEEN A PAIR OF BATS

Collective behavior in groups of social animals is the interaction and negotiation of individuals to reach an agreement,
examples of which are coordinated motion and synchronous migration. Bats are unique among such social animals in that they
use active sensory echolocation or “bio-sonar”, wherein they emit ultrasonic waves and sense echoes to detect and navigate
surroundings. Jamming occurs when multiple bats are using echolocation and each individual’s calls become difficult to
distinguish, which may lead to misinterpretation of echoes and thus their environment. In the biological literature, there
is evidence of such jamming happening in bats and of their different strategies to avoid misinterpretation, like frequency
modulation or vocalization cessation. Also, there are instances where bats purposefully jam conspecifics during competition
for food. Hence, it is clear that bats act differently in groups than alone and, in many situations, this can benefit their survival.

In real bat swarms, understanding the navigational leadership roles is a challenge and quantitative assessment of leadership
appears to be an entirely untouched area of study. Given the broadcast nature of bio-sonar, the active sensing of one individual
can directly influence the motion of others, making the directionality of leadership unclear. Here, we seek to understand
navigational leadership in bats from direct observation of bat swarms in flight. The exploration of this area is refined by
focusing efforts on pairs of bats and pursuing a method of analysis involving the evaluation of directional information transfer.

Real-world leader-follower interactions can be studied as information transfer by the use of the concepts of Granger
causality (GC) [1], transfer entropy (TE) [2], and convergent cross mapping (CCM) [3]. These different tools measure the
directional information transfer between two random processes. We focus on CCM which is a recently developed method
for determining causality between two time series [3]. We choose this method because of the following reasons. First, it
can be extended to nonlinear, non-separable dynamical systems, involving weakly coupled variables and in the presence of
a third driving variable, in each of which GC does not apply [3]. Secondly, the principal difficulty to calculate TE from
experimental data is in estimating probability distributions which are computed using binning methods such as histograms
[4]; such challenges can be overcome with CCM.

We seek to understand the navigational leadership in a pair of bats, for which we perform CCM analysis to detect the
information transfer which is assumed to flow from leader to follower. For each bat in the pair, we compute a curvature-based
time series from 3D trajectories that are captured in a field experiment in a mountain cave in Jinan, China.

Convergent cross mapping (CCM)
CCM was first introduced in [3], in which it has been reported as a necessary condition for causation. This method is

based on an algorithm that compares the ability of lagged components of one process to estimate the dynamics of another.
Given two time series, X(t) and Y (t) are causally linked if they share a common attractor manifold, M , where t denotes

time index. From Taken’s theorem, generically a shadow version of the original manifold M can be reconstructed from the
projection of any of this time series. The time series data X(t) and its delayed components, X(t − τ) and X(t − 2τ),
where τ is the time delay, can be used as variables to construct the shadow version of the original manifold called MX . The
reconstructed manifold preserves the properties of the original system, such as the topology and the Lyapunov exponents. This
method represents a one-to-one mapping of the original manifoldM and the reconstructed manifold, MX , and similarly maps
one-to-one to the reconstructed manifold, MY , built from the time series Y . The next step is to find the nearest neighbors in
MY , and use the time indices to find the corresponding points in MX . If these points are also nearest neighbors in MX , then
X and Y are causally related. This allows the historical records in Y to estimate states in X , and vice-versa. This method is
used to find an estimate of Y, labeled as ˆY (t)|MX . Finally, a correlation coefficient is calculated between the original time
series and an estimate of Y . For a pair of time series, we will have two correlation coefficients corresponding to considering
each bat as a leader in turn; these are then compared to determine the CCM causality and its directionality. A more detailed
description of the algorithm can be found in the supplementary materials of [3].
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Figure 1: Inverse radius of curvature plotted for a pair of bats. Green and yellow represent front and rear bat, respectively [8].

The CCM technique requires the knowledge of the two parameters, namely embedding dimension and the time delay. To
determine the minimum embedding dimension, we use the method as described in [5] because of the following advantages.
First, it depends on time delay only, and does not depend on any other system parameters, unlike the method of false neighbors
[6]. Second, this method is computationally very efficient.

Time delay is a required parameter for both the methods to calculate embedding dimension and CCM. If the time delay, τ is
chosen to be very small, for a two dimensional construction of the state-space,X(t) andX(t+τ) will be indistinguishable and
all the trajectories will appear to lie on the line, X(t) = X(t+τ). This can be avoided by the choice of τ that makesX(t) and
X(t + τ) independent. Linear independence can be achieved by choosing the corresponding τ for which the autocorrelation
function first passes through zero. However, we choose mutual information since it measures the general dependence of two
variables.

CURVATURE TIME SERIES

The 3D path points of each bat were extracted from the video data collected in a mountain cave in Jinan, China, where
small groups of bat paths were continuously tracked. In order to perform CCM analysis of pairs of bats, it is necessary to
generate 1D time series from 3D path data. We choose an inverse radius of curvature metric for representing 1D time series
for the following reasons. First, a curvature-based time series is a reflective of a bat’s steering and hence provides a good
depiction of the 3D navigation of the bat pairs. Secondly, an absolute inverse radius of curvature formulation ensures the
data remains positive and close to zero, resulting a logarithmic binning strategy possible to calculate the minimum embedding
dimension. Finally, curvature-based metrics are frequently used to assess the motion of interacting agents, such as in the study
of laboratory insects [7]. Figure 1 presents an exemplary 1D time series plot for a pair of bats. In a previous study, we have
seen that information flows from bats which are positionally in front to those behind as measured using TE [8]. These results
are compared to the analogous analysis with CCM in this work.

CONCLUSIONS

Here we study the navigational leadership roles in bats who use active sensing making it a challenge to understand the
directionality of leadership. We implement the above mentioned tools to detect the navigational information transfer between
a pair of the bats, in terms of a curvature-based time series that are captured in a field experiment in a mountain cave in Jinan,
China. We observe that the front bat in particular plays a leadership role for the pair and the rear bat displays path coupling
behavior with the leading bat using TE, and we compare these results to those measured with CCM.
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Summary The present paper investigates the characteristics of a string vibrating against a smooth unilateral obstacle pertaining to the Indian
stringed musical instruments. In particular, we have studied the effect of coupling due to the variable tension and the geometry of the
obstacle. The mathematical model has been developed using Hamilton’s principle followed by system discretization using the Galerkin
approach and numerical investigations using runge-kutta algorithm. Numerical simulations have divulged the transition in characteristics of
a string beyond a certain amplitude.

BRIEF BACKGROUND
Theoretically, the problem of a string vibrations against a parabolic obstacle, considering the inelastic impacts, was first

studied by the Burridge et al[1]. Subsequently equations of motions were derived, assuming smooth wrapping and unwrapping
and a conservative model, in the literature [2, 3, 4]. However, all these analysis were carried out for planar motions of a string.
In the present paper, we have developed a mathematical model, assuming the conservative system, for non-planar vibrations
of a string vibrating against a obstacle with known geometry. The model is relevant to the Indian musical stringed instruments,
since the motion of a string in such case is non-planar and quite complicated.

FORMULATION
The schematic representation of the physical system under consideration is shown in figure 1. It consists of a ideal

string(no bending stiffness) vibrating against a smooth unilateral obstacle which is assumed to be fixed and rigid in our model.
The tension in the string is assumed to be variable, giving rise to stretching non-linearity(σ in our case) which introduces
coupling between the mutually perpendicular modes. We further assume that the string remains tangent to the bridge surface

(Γ1(t), Y (Γ1(t),Γ2(t)),Γ2(t))

B

L
Y

Z

X
HrO

Figure 1: Simplified model for the string vibrations in musical instruments like tanpura and sitar.

at the point of separation (X = Γ1(t) and Z = Γ2(t)) in figure 1. The continuity of string along with slope continuity
implies zero velocity at the point of separation and thus a conservative system. The geometry of the obstacle is defined, in
non-dimensionalized form, by the following surface

YB(x, z) = ax(b− x) + c

(
d

2
− z

)(
d

2
+ z

)
. (1)

Using Hamilton’s principle and calculus of variation, the governing equations for the wrapped portion comes out to be

2cz
∂2z
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(
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)2

− 2cz
∂2z
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− 2c

(
∂z

∂x

)
+σ

∂

∂x

(
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(
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))
− 2a+ λ = 0, (2)

−∂
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+
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+ σ
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(
zx

(
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))
+ λ(2cz) = 0. (3)
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Here, λ(x, z) represents the constraint force between the string and the obstacle. For the free portion of a string the governing
equations(non-dimensional form) are

−ytt + yxx + σ
∂

∂x

(
yx

(
y2x + z2x

))
= 0, γ+1 ≤ x ≤ 1 (4)

−ztt + zxx + σ
∂

∂x

(
zx

(
y2x + z2x

))
= 0. γ+1 ≤ x ≤ 1. (5)

Discretization
We discretize the system using Galerkin projection approach. The functional form of the modes are assumed as

z = α(t) sin(πx), 0 ≤ x ≤ 1 (6)

y = aγ1 (b− γ1) + c

(
d

2
− α(t) sin(πx)

)(
d

2
+ α(t) sin(πx)

)
, 0 ≤ x ≤ γ−1 (7)

y =
aγ1 (b− γ1) + c

(
d
2 − γ2

) (
d
2 + γ2

)
1 − γ1

(1 − x) + β(t) sin

(
π(x− γ1)

1 − γ1

)
, γ+1 ≤ x ≤ 1. (8)

Here, γ1 and γ2 are the non-dimensional forms of Γ1(t) and Γ2(t). For clarity, γ−1 and γ+1 are the positions just before
and after the separation point respectively. To begin with, the above representation is restricted to unimodal analysis, since
that alone can capture the underlying fascinating characteristics. Besides this, unit tangent vector continuity engenders the
following condition

aγ21 − 2aγ1 + ab+
cd2

4
− cγ22 − 2cπγ2α(t) cos(πγ1) + 2cπγ2γ1α(t) cos(πγ1) − πβ(t) = 0. (9)

KEY RESULTS
The resultant ODEs are numerically investigated using runge-kutta algorithm. Numerical simulations unearth the peculiar

features of string dynamics, i.e, the behavior of a string changes qualitatively beyond the certain amplitude of vibrations. The
results in figure 2 are reported for chosen obstacle parameters, i.e, b = 0.05, a = 1440, c = 0.1, d = 2 and σ = 0.001. The
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Figure 2: Fig (A),(B) and (C) correspond to the initial condition β(0) = 1 and α̇(0) = 1, and fig (D),(E) and (F) correspond
to β(0) = 3 and α̇(0) = 1. Fig (A) and fig (D) represent the variation of β with non-dimensional time, and fig (D) and fig
(E) represent the variation of α with non-dimensional time. Fig (C) and fig (F) represent the trajectories of the mid point of a
string for corresponding initial conditions.

transition in the characteristics of the string beyond a certain amplitude indicates onset of unstable solutions, which can be
checked using Floquet theory. Numerical study also suggests that number of planar motions reduced to one unlike infinitely
many in the absence of obstacle.
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Summary An effect of thermal loading on vibration of a nonlinear circular plate considered as extended Mindlin model with nonlinear
terms due to large deflections is analysed in the paper. The coupled thermal and mechanical model is derived first in the form of
nonlinear partial differential equations and then the problem is reduced by modal projection. The importance of the elevated temperature
around the main resonance for varied temperature is shown and the nonlinear characteristics with bifurcation points have been computed
for selected thermal and mechanical loadings.

INTRODUCTION AND A NONLINEAR THERMO-ELASTIC MODEL OF A CIRCULAR PLATE

The structural elements like beams, shells or plates which are used in many branches of engineering often are subjected
to mechanical and thermal loadings leading to large amplitude vibrations [1]. The temperature may change transient
dynamics of the structure or even may shift the response to a new dynamic state [2]. In many cases, especially when
structures are not very thin and they are subjected to an intensive and short heat flux or even convective heating, the
consideration of the propagation of the temperature along the structure is important and then the coupled thermoelastic
problem should be considered [3, 4]. These problems are quite complicated from a computational point of view, therefore,
simplified techniques which allow reducing the governing partial differential equations into a reduced number of modal
coordinates are applied. Such an approach is very effective for nonlinear models due to the fact that it enables the advanced
bifurcation analysis as well as a detection of chaotic oscillations [5, 6].

The considered in this paper thermo-elastic model of a circular plate of radius R and thickness h is based on Midlin
model. It takes into account large deflections, linear curvatures, shear deformation and rotary inertia. The derived PDEs
subjected to mechanical and thermal loadings take the form:
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where u(r, t) is the in-plane displacement, w(r, t) is the transverse displacement, r and ψ are polar coordinates and E

is the Young modulus, G is the shear modulus, ν is Poison’s ratio, αT is the coefficient of thermal expansion, c1 and c2
denote the damping coefficients and mechanical load intensity is p(r, t). The heat flow acting on the plate is included
in functions γT and κT and is not reported here. The model has been studied for a particular case for fixed elevated
temperature uniformly distributed through the plate span. The PDEs have been reduced to ODEs by modal projection
for a clamped plate, taking just one mode projection, defined by Bessel functions obtained from the eigenvalue problem.
After the reduction the nonlinear ODE take the dimensionless form

q̈1(t) + 2ξ1ω1q̇1 + ω2
1q1 + CLq

3
1 + CTΔTq1 = p1 sin(Ωt) (2)

where ω1 is the first natural frequency, ξ1 a modal damping coefficient, p1 and Ω are the amplitude and frequency of
mechanical excitation, CT and CL are constant coefficients, and ΔT is the temperature difference.

PLATE DYNAMICS AT ELEVATED TEMPERATURE

The numerical example aims to illustrate the impact of the thermal and mechanical loadings on the structure’s re-
sponse. The results are obtained for the clamped circular plate and uniformly distributed elevated temperature. The plate
of radius R = 0.1 m, thickness h = 0.0025 m is assumed to have the material parameters: ρ = 2778kg/m3, E =
0.7× 1011 N/m2, G = 2.612× 1010N/m2, ν = 0.34, αT = 2.39× 10−5K−1. For the assumed structural parameters
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Figure 1: Resonance curves (a) for ΔT = 0 (black) and ΔT = 0.5 (red) and time histories (b) for Ω = 0.08: ΔT = 0 –
steady state (upper plot), ΔT = 0.5 – transient state (middle plot), ΔT = 0.5 – new steady state (lower plot).
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Figure 2: Bifurcation diagram (a) amplitude versus ΔT and fixed mechanical loading p1 = 1×10−6, Ω = 0.08, and time
histories (b) for ΔT = 4.0 (upper plot) and below for ΔT = 4.5 – transient states.

the coefficients of Eq.(2) take values: ω1 = 0.08321077, CL = 0.21319, CT = −0.0016501. The resonance curves
presented in Fig.1(a) exhibit nonlinear stiffening effect. The small increase of temperature ΔT = 0.5 makes an essential
shift of the resonance zone (red curve). The sensitivity of the system to the temperature is demonstrated on time histories
in Fig.1(b); the first plot corresponds to a steady state for Ω = 0.08 and ΔT = 0. Below, due to the change of the
temperature to ΔT = 0.5 transient beating phenomena is observed, which finally goes to a new steady state (lower plot).
The influence of the elevated temperature for fixed mechanical loading is presented in Fig.2. There are two possible situ-
ations. For ΔT up to 4.2 (black line) we observe one region of vibrations increase reminding rezonanse zone. But above
the critical point ΔT = 4.2 (red line) the plate loses stability and after buckling, new post-buckling oscillations around
shifted vibration centre take place. The steady state for ΔT = 4.0 and then transient states for ΔT = 4.5 are presented in
Fig.2(b).

CONCLUSIONS

The nonlinear resonance curves with hardening characteristic of Duffing type have been obtained for the extended
nonlinear Mindlin plate model. The elevated temperature influenced the resonance zone and an occurrence of the bifurca-
tion points and new solutions with different amplitudes and periods have been observed. The small temperature difference
resulted in large shift of resonance curves and above a certain threshold new post-buckling dynamics has been observed.
The transition between states is followed by complex transient dynamics.
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 STATIONARY CONTROL OF A FLOATING AIRPORT IN WAVES 
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Summary This paper presents a nonlinear feedback control to suppress the surge motion of a serially connected multi-module 
floating airport in order to improve its operating condition in rough sea environment. An auxiliary system for dealing with the 
output saturation of actuators is introduced to design a series of the control laws based on Lyapunov stability. Numerical 
simulations indicate the effectiveness of the control method. 
 

CONTROL MODEL FOR FLOATING AIRPORT 
 
   The concept of floating airports has been proposed [1] for land reclamation from sea and to avoid noise contamination 
on crowded cities. A floating structure with multi-modules may swing badly in wave, sensitive to the wave height and 
frequency. Since the operation condition of the floating airport requires for stringent tolerances on instability, it therefore 
seems natural to consider a control method to keep the floating structure stable [2]. This paper will use the backstepping 
approach [3] with considering the output saturation of actuators. 
   The floating airport with multi-modules is illustrated in Fig. 1 where adjacent modules are connected by elastic 
connectors in addition with actuators for control. The two ends of the floating airport are constrained by anchor chains to 
resist drift. Since each module acts as an oscillator, the connected modules can be viewed as a network where the network 
theory [4] can be applied. 

 
Fig. 1. Sketch for a floating airport with multi-modules connected by connectors and actuators 

 
   The network model of the floating airport [5] together with control can be in general written as 
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By considering a two-dimensional problem, the vector [ , , ]T
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where jv  is the control law to be designed. Without control, the floating airport excited by waves may encounter large 
oscillations induced by resonances and strong nonlinearity. 
 

CONTROL LAW WITH OUTPUT SATURATION 
 
   Since the surge motion is most significant, the aim here is to suppress the surge motions, which may reduce the other 
motions as well due to the synergetic effect of the network [5]. To halt the surge motions of  number of modules,  
actuators are required. A propeller-type actuator is mounted at the first module, and the rest actuators are installed at the 
same positions of connectors between adjoining modules. The actuator force of 
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where  is the ith control law. For the ith module, the coordination is converted by backstepping approach, let error 
variables  where  is a virtual control. Taking 
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where ix  is defined by Eq.(1). Because the outputs of actuators are in saturation, to keep the control system globally stable, 
an auxiliary system is introduced for the ith module, defined by  
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NUMERICAL SIMULATIONS  

 
   The data of the floating airport [2] is used for this numerical simulation. Fig.2(a) shows the significant suppression of 
the surge motion of the third floating module under control. The heave and pitch motions also appear relatively regular and 
mild. Owing to the coupling effect among the modules, the controlled motions of the rest modules are similar not presented 
here. Fig1(b) shows the variation of the control forces actuated on the third module. It can be seen from the first few 
truncated peaks that the output forces of the actuators are bounded by an assigned limitation of -200kN. 

 
Fig.2 a) the responses of the floating airport with/without control, b) the actuator forces acted on the third floating module. 

 
CONCLUSIONS 

 
   A nonlinear control strategy is proposed for suppressing the surge motion of a floating airport excited by waves. An 
auxiliary system is devised to deal with the output saturation of actuators. The numerical simulation illustrates that the 
stability of the floating airport is greatly improved, and the control method is effective. Thanks for the support of National 
Natural Science Foundation of China (11472100), the 973 research grant (2013CB036104). 
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Summary As a self-excited vibration, chatter in cylindrical grinding is mainly incurred by subcritical Hopf bifurcation and is of large
amplitude, which forces grinding wheel to leave workpiece and interrupts the grinding. Normally, interactive wheel-workpiece force is
described by regenerative theory and fixed time delays. However, for the self-interrupted, the theory requires modification as the regeneration
can be absent. Therefore, instead of using delayed differential equations (DDEs), a model with partial differential equations (PDEs) is
proposed for monitoring the regeneration. Results of the PDEs illustrate a smaller amplitude of the chatter compared with the DDEs.

CYLINDRICAL GRINDING

Cylindrical grinding uses a rotating wheel to rub a rotating workpiece, removing workpiece material and regenerating its
surface. Besides, as seen in Figure 1(a), the wheel also has a translational motion for feed, which is plunge[1, 2] for wheel
moving toward the workpiece and transverse[3] for that along the workpiece. When only the first mode of the workpiece is
considered, the continuous model is discretized, which yields the equivalent model in Figure 1(b). Moreover, the interactive
grinding force between the wheel and the workpiece is proportional to the instantaneous grinding depth determined by the
doubly regenerative effect depicted in Figure 1(c), introducing time delays into the governing equation of the grinding. The
grinding force repels the wheel and the workpiece, exciting the system to vibrate when system damping is insufficient.

LARGE-AMPLITUDE GRINDING CHATTER OBTAINED BY DDE

Regarding the dynamical model in Figure 1, the grinding dynamics is governed by

dy(τ)
dτ

= Ay(τ) + Fdde = (A + D)y(τ) + Dwy(τ − τw) + Dgy(τ − τg) + f, (1)

where y(τ) is the state vector of the grinding, A is the coefficient matrix of the system, D, Dw and Dg are coefficient matrices
from the grinding force, and f includes all the nonlinear terms. Using Eq. 1 and eigenvalue analysis, the stability boundary
for the grinding is obtained, which is also a critical value for the Hopf bifurcation. Near the boundary, performing bifurcation
analysis yields the subcritical Hopf bifurcation illustrated in Figure 2(a). As seen, the branch of periodic motions folds and
introduces large-amplitude chatter coexisting with the stable grinding in the linearly chatter-free region. To illustrate, Points I
and II have the same parameter value, but presents different time series in Figures 2(b) and (c). Specially, Figure 2(b) shows
the grinding chatter accompanied by loss-of-contact effect, and thus the grinding is self-interrupted.

In the transverse grinding, as seen in Figure 2(d), the wheel is slowly moving along the workpiece, introducing a time-
varying parameter into the system, and thus the grinding process is quasi-static. Thus, for each fixed wheel position P , the
grinding dynamics is investigated by bifurcation analysis. Then, letting P varies between 0 and L and borrowing the idea
of fast-slow system, one can construct the chatter of the transverse. Two typical cases are displayed in Figures 2(e) and (f),
which are intermittent and of losing contact (dg < 0) as well.
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Figure 1: Schematics of the (a) plunge and transverse grinding process, (b) equivalent discrete model of the grinding with
respect to the first workpiece mode, and (c) doubly regenerative effect in the wheel and workpiece surfaces.
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Figure 2: (a) Bifurcation diagram, (b) large-amplitude chatter, and (c) stable grinding in the plunge. (d) Wheel motion, (e)
intermittent chatter, and (f) another typical chatter in the transverse.

DDEs PDEs
40

0

dg

0

dg

20

0

dg

20

0 100 τ 300 70 τ 90 250 τ 270

I II

I II

(a) (b) (c)

Figure 3: (a) Grinding chatter obtained by PDEs, with Regions I and II blown up and replotted in panels (b) and (c).

LARGE-AMPLITUDE GRINDING CHATTER OBTAINED BY PDE

Instead of the DDEs, PDEs can also be used to monitor the regeneration of workpiece surface by using [4]

dy(τ)
dτ

= Ay(τ) + Fpde and
∂r̃(τ, θ)

∂τ
+

2π

τw

∂r̃(τ, θ)

∂θ
= 0, (2)

where r̃ is the workpiece radius. Employing Galerkin Projection transforms Eq. (2) into ODEs, and solving it directory yields
the grinding dynamics, which is illustrated in Figure 3. As seen in Figure 3(b), the solutions obtained from the DDEs and the
PDEs are the same when the wheel keeps grinding the workpiece (dg > 0). By contrast, the time series plotted in Figure 3(c)
are different, where the result of the PDEs presents a smaller chatter amplitude when multiple-delay effect shows up.

CONCLUSIONS

Grinding chatter is of large amplitude and accompanied by loss-of-contact effect, making the grinding self-interrupted and
introduce multi-regeneration. In this situation, the DDEs cannot describe the multi-delay effect with fixed delays. Therefore,
PDEs is employed to record the workpiece profile, obtaining chatter with smaller amplitude.
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Summary The rotational motion of the parametric pendulum can be applied to energy harvesting from vibrations and movements of nature.
In the pendulum system for the power conversion, the output power depends on the load resistance. For this reason, the output power can be
controlled by regulating the load through a power converter on the basis of the Maximum Power Point Tracking (MPPT). The characteristic
power curve implies that the maximum power point cannot be directly tracked by measured power. This paper finds out another variable to
estimate the maximum power point for a MPPT method of the converting pendulum system.

INTRODUCTION

The parametrically excited pendulum inherently exhibits a conversion from a vertical vibration into its rotational motion.
The converting motion, which can directly drive a rotational generator, is associated with energy harvesting from vibrations
and movements of nature such as sea wave. The concept of the power conversion through the parametric pendulum is orig-
inated from a series of studies [1, 2, 3]. Among a variety of motions of the pendulum, the periodic rotation is suited for the
application with respect to the amount of converted power. The system considered for the power conversion consists of a
mechanical pendulum excited vertically or a so-called parametric pendulum, and a DC generator connected with the rota-
tional shaft of the pendulum, and an electrical resistance as the load of the generator, as shown in Figure 1. For a vertical
vibration, the output power depends on the load resistance. For this reason, the output power can be controlled by regulating
the load through a power converter. The technique to maximize output power is used for wind turbines and photovoltaic
systems as Maximum Power Point Tracking (MPPT) [4, 5]. A variety of control methods have been proposed for the MPPT
of the systems [4, 5]. However, these methods cannot be applied to the MPPT of the converting pendulum system because the
characteristic power curve of this system is different from the conventional ones. The power characteristic is described by a
hysteresis curve including a jump phenomenon at the maximum point. This implies that the maximum power point cannot be
directly tracked by measured power. This paper finds out another variable to estimate the maximum power point for a MPPT
method of the converting pendulum system.

MATHEMATICAL MODEL

For the converting pendulum system as shown in Figure 1, a non-dimensional mathematical model is derived as

d2θ

dt2
+ γ

dθ

dt
+ (1 + p cosωt) sin θ = 0, (1)

where θ denotes the angular displacement of the pendulum from the downward position, γ is a non-dimensional parameter
governed by the load resistance, and p cosωt corresponds to the vertical excitation with amplitude of p and angular frequency
of ω. The parameter γ is called the load coefficient. Without any losses, the input power Pin and the output power Pout are
respectively expressed as follows:

Pin = −1

2

(
dθ

dt

)
ω cosωt sin θ and Pout = γ

(
dθ

dt

)2

. (2)

θ

(a) Parametric pendulum. (b) Electrical circuit.

Figure 1: System for the power conversion through a pendulum.
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Figure 2: Bifurcation diagram of periodic rotation with respect to the load coefficient γ.

MAXIMUM POWER CONVERSION

The load coefficient γ is regulated to control the amount of the output power Pout. Figure 2 shows the bifurcation diagrams
of periodic rotation with respect to γ at p = 0.5 and ω = 2. These diagrams indicate the existence range of periodic rotation
in the load coefficient γ. This implies that the load coefficient γ has to be regulated with the pendulum rotating for the
power conversion. The output power Pout increases in almost proportion to γ, as shown in Figure 2(b). The power Pout

is maximized at the maximum limit of γ in the range. Therefore, the load coefficient γ should be carefully regulated to
establish the maximum power conversion because the coefficient γ beyond the limit prevents the periodic rotation for the
power conversion. For this reason, this control previously requires the information of the maximum limit of γ. The maximum
limit of γ is estimated with a variable that is less influenced by the parameters because it is difficult to directly predict the limit
that severely depends on the system parameters,

A variable is found to estimate the maximum limit of γ or the maximum value of Pout from an analytical approach. The
solution for periodic rotation can be written as θ = ωt + ϕ + α(t), where ϕ corresponds to the phase and α(t) is a periodic
function with period 2π/ω. In the analysis, it is assumed that the function α(t) is negligibly small. The averaging with the
solution transforms the input power Pin into the averaged input power ⟨Pin⟩ = −(ωp/2) sinϕ. This expression indicates that
the input power, which is equal to the output power, is maximized at ϕ = −π/2. The phase ϕ is not dependent on the system
parameters on the assumption. Thus, the output power is maximized at ϕ = −π/2 regardless of the system parameters. From
the stability analysis of the solution, it is found that the phase ϕ within −π/2 and 0 corresponds to stable periodic rotations.
The phase ϕ is employed as the variable to estimate the maximum limit of the load coefficient γ. The efficacy of the phase ϕ
is confirmed numerically, as shown in Figure 2(c). The phase ϕ converges from 0 to the vicinity of −π/2 as the increased load
coefficient γ. On a control method for the MPPT, the load coefficient γ is regulated on the basis of the feedback variable ϕ to
control the output power Pout.

CONCLUDING REMARKS

This paper finds out a variable to estimate the maximum output power for a MPPT method of the converting pendulum
system. The analytical and numerical studies verify that the phase component of periodic rotation performs as the feedback
variable. In the presentation, we will show experimental evidences for the estimation through the phase and a feedback control
for the MPPT.
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Summary We study wave transmission through a damped nonlinear periodic structure of finite length, subjected to continuous harmonic
excitation at one end. Nonlinearity leads to supratransmission phenomenon by which enhanced wave transmission occurs within the stop
band of the periodic structure when forced at an amplitude exceeding a threshold. Here, we study supratransmission in the presence of
deviations from periodicity (disorder), introduced as small variations in stiffness parameters throughout the structure. We find that disorder
does not influence the supratransmission force threshold in the ensemble-average sense, but it reduces the average transmitted wave energy.

INTRODUCTION

A linear periodic structure exhibits filtering characteristics, whereby wave transmission is prohibited within certain fre-
quency intervals known as stop bands. The presence of nonlinear forces provides a route to achieve enhanced transmission
within a stop band, known as supratransmission [1]. This phenomenon occurs when the periodic structure is harmonically
driven with a frequency within its linear stop band. In this case, energy transmission may become possible if the driving
amplitude is larger than a certain threshold. The frequency components of the nonlinearly transmitted waves lie within the
linear pass band of the structure. This has significant consequences for the transmitted energies if the periodic structure is
disordered. The reason is that disorder results in localization of energy near the source of excitation (Anderson localization),
particularly for frequencies within the linear pass band [2]. Thus, it is natural to expect a competition between nonlinearity
and disorder with regards to transmitted energies above the supratransmission threshold. Our goal is to study this interaction.

MAIN RESULTS

We use a macro-mechanical nonlinear periodic structure that consists of coupled suspended cantilevers beams, shown in
Fig. 1. See [3] for the corresponding mathematical models. The supratransmission phenomenon is explained in Fig. 2 for a
periodic structure with N = 10 units. A key feature for supratransmission is that the motion is no longer periodic beyond the
onset of transmission. As a result, the average transmitted energy (EN ) increases by orders of magnitude, where we define

EN ≡ 1

(m2 −m1)T

∫ m2T

m1T

(
uN (t)

F

)2

dt where T = 2π/Ω,m1 = 500,m2 = 2500. (1)

We introduce disorder throughout the structure by small variations in the stiffness parameter of each unit, drawn from a
uniform statistical distribution. The strength of disorder is characterized by the ratio D/C, where D is a relative measure of
the deviations in stiffness parameters and C is a measure of the strength of coupling between units [2].

We found that supratransmission persists in the presence of disorder. The change in threshold force amplitude, and whether
it occurs or not, depends on the particular realization that is being considered. Nevertheless, when averaged over an ensemble
of different realizations of disorder at a fixed D/C, the average onset of supratransmission remains unchanged; see Fig. 2(b).

When excitation is within the linear stop band, increasing the strength of disorder has negligible influence on transmitted
energies below the onset of supratransmission, Fig. 3(a). In contrast, the average transmitted energies decrease with disorder
above the transmission threshold, Fig. 3(b). This happens because the average frequency spectrum of transmitted waves lies
within the linear pass band of the structure, where disorder localizes the response to the driven unit (Anderson localization).

CONCLUSIONS

Disorder does not influence the supratransmission force threshold in the ensemble-average sense, but it reduces the average
transmitted wave energy. Generally, the influence of disorder decreases as forcing frequency moves away from the pass band
edge, reminiscent of dispersion effects subsuming disorder effects in linear periodic structures. These results are generic to
nonlinear disordered periodic structures and may be exploited for design of phononic crystals and acoustic metamaterials[4, 5].
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Figure 1: The schematic of the periodic structure made of N repeating units. The unit cell is indicated by the dashed box. An
external harmonic force, f(t ) = F cos(Ωt), is applied to the first unit only. Two electromagnets, operated by direct currents,
are fixed under the beam in each unit, such that the electromagnets have the same polarity facing the beam. Thus, the linear
restoring force of each beam is combined with a strong nonlinear magnetic force to produce on-site nonlinearity. The magnetic
force can be tuned, providing control over the strength of nonlinearity, as well as its type (softening or hardening).
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Figure 2: (a) Energy transmitted to the end of the exactly periodic structure (EN ) as a function of driving amplitude (F ) at
a forcing frequency above the linear pass band (Ω = 1.30). The dashed grey line corresponds to the linear response of the
system. The black curve indicates the evolution of periodic solutions. Circle markers indicates results from direct numerical
integration of the governing equations, with filled markers indicating harmonic response and empty markers indicating non-
periodic response. The periodic solutions lose their linear stability through a saddle-node bifurcation, which is depicted by the
red star. (b) The red solid curve depicts the threshold curve for a periodic structure: locus of supratransmission force threshold
(Fth) as a function of Ω. The filled circles indicate the average value of Fth for a disordered structure with D/C = 2. The
corresponding standard deviations are shown using the empty circles. An ensemble of 1500 realizations is used here.
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Summary The motion of self-propelling limbless locomotion systems in a linear viscous environment is considered. The resistance force acting 
on an element of the systems is assumed to be proportional to the velocity of this element relative to the environment. Two models of 
interaction of the locomotor with the environment are distinguished. In the first model, the coefficient of friction is constant for a mass element, 
whereas in the second model, this coefficient is constant for a length element. It is shown that progressive locomotion is impossible for the first 
model and is possible for the second model. This is explained by the fact that in the second model, the coefficient of friction for a mass element 
is in fact controlled by changing the length of this element due to deformation of the locomotor's body. 
 

INTRODUCTION 
 
   This paper relates to mechanics of limbless locomotion. The limbless locomotion systems move without special 
propelling devices, such as wheels, legs, fins, or caterpillars, due to change in their shape and interaction with the 
environment. In a number of studies [1-2], the motion of particular systems of lumped masses (particles) along a straight 
line in a resistive environment was investigated. The motion of the systems was excited by a periodic change in the 
distances between the adjacent particles. The authors of the cited papers were interested mostly in the steady-state motion, 
in which the entire system moves with a periodically changing velocity. It was shown that if the resistance forces applied to 
each of the lumped masses are linear functions of the velocities of these masses relative to the environment, then 
progressive steady-state motion is impossible for the respective system. In [3], for a particular model, it was shown that a 
one-dimensional worm-like distributed-mass locomotor can move progressively in a viscous medium with linear rheology 
in a quasi-static approximation. 
   We investigate the specific features of the interaction of limbless locomotion systems with the environments possessing 
a linear rheology that allow or prevent self-propulsion of such systems in these environments. We consider both lumped-
mass and distributed-mass systems. We assume that the resistance (friction) force applied by the environment to each 
element is a linear function of the velocity of the respective element relative to the environment with constant coefficient of 
friction. Unlike [3], we do not confine ourselves to a quasi-static approximation and proceed from the full dynamic equation 
of motion. 
 

LUMPED MASS LOCOMOTION SYSTEMS 
 
   Consider a set of n  particles (point masses) that can move along a horizontal straight line (Figure l). 
 

 
Figure 1. A one-dimensional lumped mass locomotion system. 

 
Let ix  denote the coordinate of the ith  particle measured along the line of the motion from a point O  fixed in an 

unmovable (inertial) reference frame; iM  the mass of the ith particle; MMm ii /= , ∑=
=

n

i
iMM

1
; the coordinate of the ith 

particle measured relative to point 1  is 1xxii −=ρ . Each particle interacts with the other particles of the system and with 
the environment. We assume that the environmental forces are linear functions of the velocity: iiii xxF  µ−=)( , where iµ  
is the coefficient of friction. The motion of the center of mass X  of the system is governed by the equation 
 

ξ −−= kVV , VX = , 0)0( XX = , 0)0( VV = , ∑ −=
=

n

j
jjj kkm

1
)( ρξ , Mk ii /µ= , ∑=

=

n

j
jkk

1
, ni ,,1= .    (1) 

 



If the function )(tξ  is bounded, i.e., Ct ≤)(ξ , where C is a constant, then the solution )(tX  of system (1) is 

estimated by ( ) kCVXtX /)0()( 00 ++<− ξ . Hence, the center of mass of a lumped mass locomotion system on a straight 
line cannot move by an arbitrary prescribed distance in a linear resistive environment, irrespective of the control law, 
provided that the change in the distances between the system's particles is constrained. Assume that (i) the system starts 
moving from a state of rest and, hence, 00=V , (ii) the relative position of the system’s particles changes during a finite 

time T , i.e., 0)( ≡tξ  and )()( Tt ξξ ≡  for Tt >  and, in addition, (iii) )()0( Tξξ = . Then 0)(lim XtX
t

=
∞→

. Therefore, if 

the system starts moving from a state of rest, and the configuration of the system at the terminal instant of the excitation 
coincides with the initial configuration, then the system eventually returns to its initial position after the excitation has been 
terminated. 
 

DISTRIBUTED MASS LOCOMOTION SYSTEM 
 

Consider a worm-like locomotion system the body of which has a shape of a thin circular cylinder (Figure 2). The 
system moves along the axis of the cylinder. The locomotion occurs due to the longitudinal deformation of the cylinder and 
its interaction with the environment. The motion of the system is excited and controlled by internal forces that act between 
the parts of the worm’s body. We assume that in the reference (undeformed) configuration, the cylinder has length L and 
mass density per unit length )(xρ ; the total mass of the system is M . Introduce the notation: 0x  is the coordinate of the 
left edge of the cylinder measured from a point O fixed in the inertial reference frame; x , 0 ,x L≤ ≤  is the coordinate of a 
current section of the cylinder measured for the undeformed configuration from the left edge; ),( txu  is the displacement 
of the section identified by the coordinate x  at the time t  from its position in the reference configuration. 
 

 
Figure 2. A distributed mass worm-like system: a) undeformed, b) deformed. 

 
The position η  of section x  of the deformed cylinder with respect to point O  is defined by ),(),( 0 txuxxtx ++=η , 

0),0( =tu . We assume that the resistance (friction) force acting on an element of the system is proportional to the velocity 
),( txη  of this element relative to the environment, with the coefficient of proportionality (coefficient of friction) being 

constant. Two models of the interaction between the system and the environment are considered; the coefficient of friction 
is constant per unit mass for the first model and per unit length for the second model. The motion of the center of mass of 
the system to an arbitrary position is proved to be impossible for the first model and possible for the second model. It is 
explained by the fact that for the second model, the coefficient of friction related to a mass element changes, since the 
length of this element changes due to deformation of the system. The locomotion of the distributed mass system is studied 
in detail for the case where a periodic deformation wave runs with a constant velocity along the system. It is shown that if 
the length of the undeformed system is a multiple of the deformation wave length, then for the steady-state mode of motion, 
at which the system arrives from any initial state, the system’s center of mass moves at a constant velocity in the direction 
of the propagation of the wave, irrespective of the wave shape. For a sinusoidal wave the length of which is 
incommensurable with the length of the undeformed system, the center of mass of the system moves on the average in the 
direction of the propagation of the wave with a velocity periodically changing in time. 
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Summary We employ the theory of equivariant bifurcation to investigate the mode localization in a cyclic self-excited structure with 
symmetric delayed feedback. The method of multiple scales is applied to obtain the equation of amplitude based on which the condition for the 
existence mode localization is given. Our result shows that in the presence of time delays, strong nonlinearity may induce mode localization in 
the cyclic self-excited structure without imperfections in parameters. 
 

INTRODUCTION 
 
   Mode localization is commonly interpreted as a dynamic phenomenon induced by mistuned parameters of a symmetric 
structure. Namely, the irregularities of the structure will trap the energy in a substructure while it is believed that in the 
absence of imperfections the energy will be uniformly distributed. The theory of equivariant bifurcation [1] provides 
another perspective to study this problem, i.e., the symmetry is the reason that induces non-symmetric (asynchronous) 
oscillation, including localization. This group-theoretic based method has been employed to investigate mode bifurcations 
[2] and localization of some forced vibration system [3]. However, from the view point of nonlinear dynamics, the 
mechanism of localization is still not quite clear especially for the self-excited structure which can be found in dry-friction-
induced oscillation, the interaction between fluid and structure and so on. Van der Pol-Duffing system is one of the standard 
models of self-excited structures and will be used in the present paper to investigate the mode localization. The equilibrium 
of such system is unstable and thus people usually introduce feedback control which brings the time delay. With the aid of 
equivariant bifurcation theory, we show that in the presence of time delay, the symmetry of the structure can induce mode 
localization and the nonlinear stiffness has a strong impact on it.     
 

MODEL SETUP AND STABILITY SWITCH BOUNDARIES 
 
   In this paper, we consider the following self-excited system of Van der Pol-Duffing type to study the mode localization 
phenomenon induced by the nonlinearity and delays [4]: 

2 3

1 2 1 2 1 1 2 1 2 1

( 1)

( ( ) ( ) 2 ( )) ( ( ) ( ) 2 ( )),
j j j j j

j j j j j j

x x x x x

x t x t x t x t x t x t

 

          

   

           

 
  

      (1) 

where 0 3x x , 4 1x x ,   is the damping coefficient,   the nonlinear stiffness,  ,   are the gain parameters for 
position and velocity feedback, respectively, 1 , 2  the time lag of self-connection and mutual-connection, respectively. 
From the point of view of nonlinear dynamics, oscillations can be thought of as bifurcated from the equilibrium. In order to 
investigate the localization phenomenon, we need to analyze the stability of the equilibrium first. The characteristic 
equation of the linearized system of (1) around the trivial equilibrium is  

   1 2 1 2
22 21 2( )(e e ) 1 ( )(2e e ) 0                                 (2) 

where   is the eigenvalue. The curves representing roots of (2) in the plane consisting of 1  and 2 are plotted in Fig. 1. 
The expression in the first pair of parentheses is the condition for switching to synchronous oscillation (red curve) while the 
one in the second pair (blue curve) is the condition for switching to asynchronous state, which may correspond to the 
localization. In region III, there exists the asynchronous oscillation induced by equivariant Hopf bifurcation. The 
asynchronous oscillation and its stability will be studied by means of the method of multiple scales, as shown in next section.    
 

MODE LOCALIZATION ANALYSIS 
 
   In order to investigate the oscillator behaviour of (1), the method of multiple scales is employed to obtain the equation 
that the amplitudes of 1x , 2x  and 3x  have to satisfy. It follows from the standard procedure of equivariant Hopf 
bifurcation analysis that the solution can be assumed as 

0 0i i1 1
1 1 2 2 1 2i ( , )e i ( , )e . ( ), 1,2,3,T Tj j

jx A T T B T T cc o j          

where 2 i/3
1 e   , 2 i/3

2 e   , 0T t , 1T t , 2
2T t . Up to ( )o  , the equation of amplitude is obtained as 



 
Figure 1: Stability switch boundaries for 0.05  , 0.005  , 0.1  , 1  , where the equilibrium is stable in Region I.  

 
   (1,0) (1,0)

0 1 0 1( 2 ) , (2 ) ,A A p p AA BB B B p p AA BB       

where 0p and 1p  are (complex) functions of the parameters. (0,1)A and (0,1)B  can be obtained in the similar way and 

then the final equation of amplitude follows by combining (1,0)A , (1,0)B , (0,1)A and (0,1)B . To provide an example, for 
0.05  , 0.005  , 0.1  , 1 0.7  , 2 3  (Region III in Fig. 1), we find that 0 0.004 0.0045ip   , 

1 ( 0.027 0.037 ) (0.007 1.526 )ip       . Based on the results of [1] (Theorem 3.1, pp. 382), we claim that when 
0.73  , the travelling wave (non-localization) is stable, as shown in Fig. 2(a); when 0.73   the standing wave (mode 

localization) is stable and thus the mode localization can be observed, as shown in Fig. 2(b). 
 

 
 Figure 2: Numerical simulations for (1): (a) 0  ; (b )(c) 1  , all integrated from 1 2 3( , , ) (1.1, 0.08, 0.97)x x x    . 
 

DISCUSSIONS 
 

   It should be noticed that the mode localization studied in the present paper persists when the structure symmetry breaks, as 
shown in Fig.2(c) where the damping coefficients are 0.045, 0.052, 0.05, respectively. This implies that the present result 
provides another possible explanation for mode localization in self-excited cyclic structure.  
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Summary: Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature 

networks) form naturally to provide essential functions in even the most basic forms of life.  Compelling opportunities 

exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in 

materials growth and assembly.  We report routes to previously inaccessible classes of 3D constructs in advanced 

materials, including device-grade silicon.  The schemes involve geometric transformation of 2D micro/nanostructures into 

extended 3D layouts by compressive buckling.  Demonstrations include experimental and theoretical studies of more than 

40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble 

spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-

level configurations. 

 

 

Controlled formation of 3D functional mesostructures is a topic of broad and increasing interest, particularly in the last 

decade, due to important envisioned uses in nearly every type of micro/nanosystem technology, from biomedical devices to 

microelectromechanical components, photonics and optoelectronics, metamaterials, electronics, energy storage and others.  

Although volumetric optical exposures, fluidic self-assembly, residual stress-induced bending and bio-templated/guided 

growth can be used to realize certain classes of structures in certain types of materials, techniques that rely on rastering of 

fluid nozzles or focused beams of light provide the greatest versatility in design. Applicability of these latter methods, 

however, only extends directly to materials that can be formulated as inks or patterned by exposure to light/energetic 

particles, and indirectly to those that can be deposited onto or into sacrificial 3D structures formed with these materials.  

Integration of more than one type of any material into a single structure can be challenging. Furthermore, the serial nature of 

these processes sets practical constraints on operating speeds and overall addressable areas. These and other limitations 

stand in stark contrast with the exceptional fabrication capabilities that exist for the types of planar micro/nanodevices that 

are ubiquitous in state-of-the-art semiconductor technologies. Routes to 3D mesostructures that exploit this existing base of 

competencies can naturally provide options in high performance function that would otherwise be unobtainable. Methods 

based on residual stress induced bending are naturally compatible with modern planar technologies and they offer yields and 

throughputs necessary for practical applications. Such schemes provide access to only certain classes of geometries, through 

either rotations of rigid plates to yield tilted panels, rectangular cuboids, pyramids or other hollow polyhedra, or rolling 

motions of flexible films to form tubes, scrolls or related shapes with cylindrical symmetry. Here, we present a different set 

of concepts in which strain relaxation in an elastomeric substrate simultaneously imparts forces at a collection of 

lithographically controlled locations on the surfaces of planar precursor structures (1). The resulting processes of controlled, 

compressive buckling induce rapid, large area geometric extension into the third dimension, capable of transforming the 

most advanced functional materials and planar microsystems into mechanically tunable, 3D forms with broad geometric 

diversity. 

 

We also introduce ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures 

of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts (2).  

Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in 

materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed 

those that can be achieved in any other way. A broad set of examples includes 3D silicon mesostructures and hybrid 

nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical 

dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an 

application example of this Kirigami process, enabled by theoretically guided design. 

 

Finally, Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to 

its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the 

micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the 

transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami 



assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales 

from nanometers to centimeters (3). This approach relies on a spatial variation of thickness in the initial 2D structures as an 

effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the 

assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a 

continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, 

bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic 

boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model 

houses, cars, and multi-floor textured buildings.  
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Summary Extensive experimental investigations revealed unexpected features of the mechanical behaviour of soft biomembranes. A 

comprehensive protocol including mechanical measurements in different stress states and history of loading was applied to human amnion and 

Glisson’s capsule. Highly repeatable mechanical parameters were determined and mechanisms of deformation were identified based on in situ 

experiments in a multiphoton microscope. This allowed formulating simple model equations able to represent the main features of the observed 

mechanical response. Liquid phase influx and efflux from the collagenous membrane were shown to play an important role during deformation, 

and this points at osmotic processes as a mechanism for active control of stress state and membranes deformation. 

 
INTRODUCTION 

   Examples of highly deformable biological membranes are leaflets of aortic valves, tympanic membrane, connective 

tissues layers forming skin or arteries, or the capsules covering internal organs. The mechanical behavior of these layers is 

important for fulfilling their function. We have recently organized a Euromech Colloquium on this topic and part of the 

contributions were presented in a special issue of the Journal of the Mechanical Behavior of Biomedical Materials [1]. 

Characterizing and modelling the deformation behaviour of soft biomembranes is relevant for medical applications, such as 

tissue engineering, surgery planning, car accident simulation, or elastography. 

   Our interest for soft biomembranes began with the investigation of fetal membranes (FM), i.e. the compliant membranes 

surrounding the developing fetus inside the uterus. In normal pregnancy FM are progressively deformed due to the 

increased intrauterine pressure and are further stretched when the fetus moves and pushes against the uterine wall. Thus, the 

life of the fetus depends on the integrity of a thin biological layer (few hundred m thick) exposed to severe mechanical 

loads. Premature rupture of FM represents a devastating complication of pregnancy that accounts for 30 to 40% of preterm 

deliveries and is associated with a high risk of fetal morbidity and mortality. In order to understand conditions favouring 

premature rupture of FM, we have developed a comprehensive protocol for characterization of their deformation behaviour. 

On samples from the same human FM (in particular on the amnion layer) we performed mechanical measurements in 

different stress states (uniaxial, strip biaxial, equibiaxial), and history of loading (slow and fast monotonic loading, 

relaxation, creep, low and high number of loading cycles). We also performed the mechanical measurements in situ in a 

microscope for multiphoton non-linear laser scanning imaging, and thereby could visualize FM tissue through its full  

thickness, in quasi-physiologic conditions [2]. We thus measured local in-plane stretches based on the relative position of 

epithelial cell nuclei, local thickness changes during loading, and quantified the orientation and alignment of collagen fibre 

bundles when stretched. We recently applied the same experimental protocol to other collagenous membranes: bovine 

Glisson’s capsule (GC, the connective tissue layer covering the liver), skin and pericardium. In particular, for GC we 

applied the whole set of experimental configurations that were used for the characterization of FM. The experimental 

findings and corresponding model predictions will be presented, illustrating unexpected features and striking similarities in 

the mechanical behaviour of soft collagenous membranes. 

EXPERIMENTS 

   Details of the loading protocols for investigation of the monotonic, time and history dependence of the mechanical 

response in different stress states were described in [2-5] and reference therein. Local deformations were quantified using 

image analysis and correlation algorithms. Biomembrane samples were tested within few hours after extraction from the 

body and most experiments were performed with test pieces submerged in physiological saline solution. Figure 1 illustrates 

the set-up used for in situ measurements in the multiphoton microscope, with examples of collagen fiber orientation 

analysis, full-thickness visualization and cell nuclei staining for local strain measurements [2,4]. Common to all 

biomembranes is the fact that the uniaxial compliance is much larger than the biaxial one. The analysis of the in-plane 

behavior in uniaxial tension tests showed that the kinematic response is highly reproducible and that the incremental in-

plane and out-of plane Poisson's ratios are very large (of up to 8). Elongation was associated with substantial volume 

reduction (water efflux), down to about 30% of the initial value for 20% elongation. This behavior was rationalized by 

mechanisms of rotation, stretching and buckling of the thin fibers which constitute the collagen network of the 

biomembranes. FM (amnion) and GC showed a large tension reduction during relaxation and a small inelastic strain 

accumulation in creep. Data indicated that the dissipative behavior is related to two mechanisms: (i) short term volume 

reduction due to water outflow and (ii) long-term relaxation of collagen fibers without macroscopic deformation and no 

global reorientation. Recoverable water efflux and influx was evident from the stabilized response in cyclic experiments. 

The importance of liquid motion was demonstrated also through comparison of experiments using liquids of different 

osmolarity. 



 

 

Figure 1 (from [2-6]): top row: in situ tensile devices, two axis, uniaxial and inflation. Bottom row: extraction of collagen fibers’ 

orientation and 3D stack for measurement of thickness changes during loading (showing very large thickness reduction upon in-

plane stretching). Right: images of the nuclei of epithelial cells are used to determine in-plane deformation during loading. 

MODELING 

   A large strain viscoelastic continuum model was formulated able to represent the observed deformation mechanisms. 

The collagen network is phenomenologically represented by N representative and mechanically equivalent fiber families 

that are uniformly distributed in the membrane plane (quasi-isotropic) but slightly inclined out of plane, and embedded in a 

compressible matrix. The dissipative behavior is represented through the evolution of internal variables, in a way equivalent 

to a time dependent bulk modulus of the ground matrix (water efflux and influx) and to a viscoelastic deformation of the 

fibers. The model accurately captures the uniaxial and biaxial monotonic response, as well as the time history of tension in 

relaxation and strain in creep experiments, and the same formulation can be successfully applied to both, FM and GC [4,5]. 

While the model include a large number of parameters associated with the different terms in the strain energy function and 

the evolution equations of the internal variables, it was possible to fix the values of all but 1 of these parameters (for GC and 

FM respectively) out of one single experimental configuration and predict the response in all other tests by changing one 

single parameter (addressing sample to sample variability). Next to this continuum model, we developed a discrete fiber 

network model able to represent the main features of the multiaxial deformation behavior of the biomembranes [6]. 

Importantly, the discrete model represents non-affine deformations of collagen fibers and this allowed rationalizing 

differences in the mechanical response of GC and FM based on characteristics of their microstructure.  

CONCLUSIONS 

   The wide range of experimental data provided evidence of unique features of the deformation behavior of these 

biomembranes. Correspondingly, several biomechanical parameters were highly repeatable among different samples. Based 

on a simple interpretation of the microstructural observations, it was possible to rationalize the complex mechanical 

behavior of FM and GC using continuum equations as well as a discrete fibre network model. Application of the 

experimental protocol to other biomembranes will allow “comparative biomechanics”, i.e. identifying commonalities and 

differences in the deformation mechanisms and their relation to the function of each membrane. In particular, our current 

investigations focus on osmotic mechanisms for active control of stress state and membranes deformation .  
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Summary In-vitro studies over the last three decades revealed that neurons generate tension on culture dishes. But the 
physiological significance of this tension remained unclear. Here we show, using embryonic fruit flies (Drosophila), that (1) in 
vivo neurons actively maintain a rest tension, (2) neurons employ actomyosin machinery to maintain and regulate the tension, (3) 
this tension is critical for accumulation of neurotransmitor vesicles at the synaptic terminals (junction with muscle or another 
neuron), i.e., without tension the accumulation disappears, but reappears with the supply of tension, (4) this tension regulates 
transport of vesicles along the axon of the neurons. Neurotransmission is the single most function of neurons, and it mediates 
memory and learning in animals. Since neuronal force regulates transport and accumulation of neurotransmitter vesicles, it 
follows that the neuronal forces are fundamentally linked with memory and learning, and they offer a new and untapped 
paradigm in understanding neurological diseases. (150 words) 
 

BACKGROUND 
 
   Most neurons have a long axon that innervates muscles or other neurons to form neuro-muscular or neuron-neuron 
junctions. Neurotransmitters are packed in small vesicles and are clustered at the presynaptic terminal of the junction. Upon 
arrival of an action potential or a voltage spike at the presynaptic terminal travelling through the axon, synaptic vesicles 
exocytose releasing the neurotransmitters, which activate the post synaptic terminal. Thus the signal is transmitted from one 
neuron to the next, or the muscle is stimulated. The more a synapse is used, the higher is the transmission efficiency, i.e., 
higher is the post synaptic current due to the same action potential. This usage dependence of efficiency, known as 
plasticity, forms the basis of memory and learning. Vesicle clustering had long been believed to result from biochemical 
signaling processes that require the connectivity of the presynaptic terminal with the cell body, the central nervous system, 
and the postsynaptic cell. Mechanics had no role to play. During late last century, it was realized that neurons cultured on 
perti dishes adhere to the substrate and apply contractile traction [1]. It was hypothesized that in vivo neurons generate 
tension as well, which results in folding in the epical cortex of the brains. However, the evidence of tension in in vivo 
neurons was missing, and the role of tension in neuronal function remained elusive.  
 

FRUITFLY (DOSOPHILA) EMBRYO AND NEUROMUSCULAR JUNCTIONS AS MODEL TEST BEDS 
 

    Embryonic fruit flies have extensively been used in Neuroscience for decades to develop fundamental insights on 
neuronal functions. We chose to study embryonic motor neurons of 
transgenic flies in which all neurons emit green light when shined with blue 
light (Fig. 1, [2]). This allows us to visualize the neurons. The cell body of 
the motor neurons reside at the central nervous system (CNS), but the axons, 
about 100 µm long and 500 nm in diameter, emanate from the CNS and 
innervate the muscles at the end forming neuro-muscular junctions. We 
asked the following questions: (1) are the axons are in tension, and if so (2) 
what is the origin of tension, (3) does this tension influence neurotransmitter 
vesicle accumulation at the junction, and their transport through the axon [3]. 
The significance of these questions is that if indeed tension is found to be 
related to vesicle accumulation at the junction, then neuro-mechanics 
becomes a critical component in understanding neuroscience.  

 
EXPERIMENTAL RESULTS  

 
In vivo axons are under tension: We measure tension in the axons of the motor neurons by dissecting live embryos and 
pulling single axons holding at the middle using a nano scale force sensor (Fig. 2). From the force-deformation relation of 
the axons we quantify that the axons are at a rest tension of about 2 nN [2]. If the stretch of the axons is held fixed, they 
relax with time reaching a steady tension with a value higher than the unperturbed tension. If the stretched axons are 
released, the slackned axons shorten to regain the rest tension. If the axons are slackened significantly by bringing the 
neuro-muscular junction close to the CNS, the axons shorten, by as high as 40%, to regain the tension (Fig. 3). Thus, axons 
actively maintain a steady rest tension. (2) Actomyosin machinery maintains the tension: We apply a series of drugs to the 
embryo independently. These drugs selectively inactivate specific cytoskeletal components. We find, slackned axons fail to 

Figure 1. Embryonic fruit 
fly. Neurons glow green 
when blue light is shined on 
the embryo. The axons of 
motor neurons emanate 
laterally from the central 
nervous system (CNS). 
They are about 100 µm 
long and 500 nm in 
diameter. Each forms a 
neuromuscular junction at 
the end (muscle not shown). 
 

CNS 

Brain 

Axon 



shorten if myosin II is inactivated, or 
cortical actin is disrupted, but the 
axons shorten faster if microtubules 
are depolymerized. (3) Axonal 
tension regulates neurotransmitter 
vesicle accumulation at NMJ and 
transport [3] through axons: We 
dissected an axon using a laser beam 
at mid length. This relieves the axon 
from its tension. We find, vesicle 
accumulation at the NMJ disappears. 
However, when the cut end of the 

axon is pulled by a micropipette, vesicle accumulation reappears (Fig 4), implying that tension alone is 
sufficient for vesicle clustering. A 10% mechanical stretch on the axon results in 200% increase in vesicle 

accumulation at the NMJ. We present a simple mechanistic model to explain the above observations. In this model, actin 

network at the NMJ serves as a scaffold for 
neurotransmitter vesicles allowing them to accumulate. 
This actin network is mechanically linked with the cortical actin and the rest of the cytoskeleton. Its stability of maintained 
by the tension it is subjected to due to the acto-myosin activity of the cortical actin. If tension is disrupted, the actin scaffold 
disappears, and hence the vesicle accumulation (Fig 5). 
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Figure 2. Measurement of axonal tension using a nano 
mechanical force sensor. 
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Figure 5. Schematic of the model of axon and the neuro-muscular 
junction. 
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Summary Mechanochemically responsive (MCR) elastomers have been synthesized by incorporating mechanophores – molecules whose 
chemical reactions are triggered by mechanical force – into conventional polymer networks. Deformation of the MCR elastomers applies force 
on the mechanophores and triggers their reactions, which manifest as phenomena such as changing colors, varying fluorescence and releasing 
molecules. In this talk, we first present a microphysical model of MCR elastomers, which quantitatively captures the interplay between the 
macroscopic viscoelastic deformation of the MCR elastomers and the reversible activation of mechanophores on polymer chains. Our model 
consistently predicts both the time-dependent stress-strain behaviours and the color or fluorescence variation of the MCR elastomers under 
large deformations. We then discuss model-guided design of structures and devices with extraordinary functions and applications enabled by 
MCR elastomers such as synthetic squid skin capable of dynamically varying colours and surface textures on demand. 

 
Introduction 
 A novel strategy for fabricating mechanochemically responsive (MCR) polymers has been developed by covalently 
incorporating molecules capable of force-triggered chemical reactions, or so-called mechanophores, into polymer 
networks[2-5]. Deformation of MCR polymers stretches polymer chains which apply forces on the mechanophores and 
triggers their reactions, leading to phenomena such as changing colors, varying fluorescence and releasing molecules of the 
MCR polymers. During the design of MCR devices, it is highly desirable that the MCR polymers can be reversibly and 
repeatedly activated and deactivated. However, most existing MCR polymers are in glassy or semicrystalline states, whose 
activation requires irreversible plastic deformation or fracture of the polymers. As a result, these MCR polymers cannot 
fully recover their initial shapes after the first activation, and therefore cannot be activated reversibly or repeatedly [6-13]. 
While mechanophores have been incorporated into thermoplastic elastomers[7, 11, 12, 14-16], little success has yet been achieved 
to activate the MCR polymer repeatedly to fully recover its initial shape at the room temperature.    
 Recently, we developed new MCR elastomers by covalently coupling spiropyrans [7] – mechanophores that can 
change color and emit florescence under sufficiently high forces – into the backbone chains of a highly stretchable 
elastomer network, polydimethylsiloxane (PDMS) Sylgard 184 [17, 18]. The MCR elastomers can recover their initial shapes 
under multiple cycles of large deformation, allowing for reversible and repeated variations of the color and fluorescence of 
the elastomers on demand. The MCR elastomers can also be assembled into devices such as a display that is remotely 
controlled by external physical stimuli (e.g., electric fields) to generate on-demand fluorescent and color patterns (Fig. 1A). 
These MCR elastomer systems open promising venues for creating flexible MCR devices with diverse applications in 
flexible displays, optoelectronics, biomedical luminescent devices and dynamics camouflage skins [17]. Despite the potential, 
the microscopic mechanical details underlying the performance of the MCR elastomers have yet to be investigated, and 
those mechanistic insights might enable the optimization of MCR elastomer response. For example, the relationship 
between the macroscopic viscoelastic deformation of the MCR elastomers and the extent of activation of mechanophores 
embedded along those polymer chains is not understood. This understanding, if achieved, can help guide the development 
of MCR elastomers, and improve the design of various MCR-elastomer devices.  
 

 
 
Figure 1. Schematics of the mechanochemically responsive elastomer with mechanophores spiropyran/merocyanine 
covalently coupled on the network (A), and the double-network model to account for the coupling of viscoelastic 
deformation and mechanochemical reactions in the elastomer (B).  



2．．．．Model formulation 
   We aim to develop a simple thermodynamic-based model for mechanochemically responsive viscoelastic elastomers to 
account for the interactions between viscoelasticity and mechanochemical reactions in the elastomers. Adopting the 
generalized Maxwell model, we assume the viscoelastic behaviour of the elastomer can be attributed to two polymer 
networks acting in parallel as illustrated in Fig 1B. The first network (i.e., network A) characterizes the time-independent 
mechanical behavior of the elastomer using a non-linear spring, and the second network (i.e., network B) accounts for the 
time-dependent mechanical behavior of the elastomer using a non-linear spring and a dashpot in series. To account the 
mechanochemical reactions in the elastomers, we further couple modules of mechanophores in series with the non-linear 
springs in both networks (Fig. 1B).  
 Assuming Langevin chains in both networks that undergoes affine deformation, the chain forces can be calculated 
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where Bk  is the Boltzman constant, T is the absolute temperature, l  is the length of a Kuhn monomer; Λ is the stretch 

in polymer chains of both networks;vΛ  the viscous component of the stretch in network B; and vΛΛ / the elastic 
component of the stretch in network B. The chemical kinetics between spiropyrans and merocyanines on both networks of 
the MCR elastomer can be expressed as (Hänggi et al., 1990) 
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where Mc and Sc  are the concentrations of merocyanin and spiropiran in either network, andfk and rk are the forward 

and reverse reaction rates in either network, as indicated by the subscripts. The reaction rates can be further expressed as 
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where 0fk and 0rk  are forward and reverse reaction rates of the mechanophore under no force, andx∆ is a length scale 

the applied chain forces that affect the reaction rates.    
 Further adopting the standard nonlinear viscoelastic model, the chain forces in the elastomer can be quantitatively 
related to the viscoelastic deformation of the elastomer, which therefore affects the chemical reaction of the elastomer 
through Eqs. (1)-(3). 
 
3．．．．Summary and applications 
 In summary, we present a theoretical model for mechanochemically responsive elastomers to quantitatively reveal 
how the macroscopic viscoelastic deformation of the elastomer translates to the molecular forces in polymer networks, and 
how the chain forces subsequently affect chemical reactions of mechanophores coupled to the networks. We further 
program the constitutive model into finite-element models, through which we demonstrate the MCR elastomers’ potential 
applications for strain imaging and color/fluorescence displays. These models can further facilitate the design of MCR 
polymers in the macro/micro structure level to create MCR devices for diverse applications, such as sensors, memories, 
flexible displays, optoelectronics, biomedical luminescent devices and dynamics camouflage skins. 
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Summary We present theoretical models and predictions of how mechanics due to elastic interactions in actively beating heart cells can lead to 
synchronization of beating both within single cells and between nearby cells. Our research is motivated by recent experiments that show a 
correlation between the registry of adjacent muscle fibers and the beating strain of a single, embryonic cardiomyocyte and others that show how 
a mechanical probe can “pace” the phase and frequency of a nearby heart cell. The theory is generic and analytical in nature and focuses on the 
role of elastically mediated interactions of oscillating, active force dipoles in these cells. For the single cell, the theory successfully maps the 
registry data to the strain data.  Similar ideas are used to predict the conditions under which an oscillating mechanical probe will or will not 
“pace” the beating of a nearby heart cell. 
 
   Experiments on single, embryonic cardiomyocytes [1] show that both striation, an indication of the structural registry in 
muscle fibers, as well as the contractile strains produced by beating cardiac muscle cells, can be optimized by substrate 
stiffness. We show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the 
strain measurements. The elasticity-mediated structural registry is determined [2] including both the elastic interactions of 
neighboring, actively contractile acto-myosin units as well as the noise inherent in biological systems. By assuming that 
structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both structural striation 
and beating strain measurements of embryonic heart muscle cells on substrate stiffness in a unified manner. The agreement 
of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural registry of the 
myofibrils which in turn is regulated by their elastic environment. 
 

 
 
    
   Very recent experiments [3] on the synchronization of beating of two nearby neonatal cardiomyocytes has shown that a 
mechanical probe can “pace” a beating cell to within about twice or a quarter of its natural beating frequency. This is expected 
to be indicative of how nearby cardiomyocytes embedded in the extracellular matrix or on an elastic substrate can regulate 
their mutual beating. We predict theoretically [4] the synchronization of the beating phase and frequency of two nearby 
cardiomyocyte cells or a cell and a mechanical probe. Each cell is represented as an oscillating force dipole in an infinite 
viscoelastic medium that allows us to predict the propagation of the elastic signal within the medium. We then show that 
based on elastic interactions alone, two nearby cells can synchronize their phase and frequency in a manner that depends on 
their mutual orientation. The theory predicts both in-phase and anti-phase synchronization depending on the relative cell 
orientations and also shows how mechanics can predict the conditions for frequency synchronization of nearby cells. These 
results may be relevant for the design of cardiomyocyte-based micro devices and other biomedical applications. 
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Summary A new approach to the analysis of the spreading of cells on micro-patterned substrates is presented. A thermodynamically consistent 
active cell model with non-local conservation of the total number of cell cytoskeletal proteins is used to simulate a range of spread states. The 
minimum free energy of the system is identified and corresponding stress fibre distributions are found to match experimental observations.  

INTRODUCTION 
   Several experimental studies demonstrate that control of cell spreading using substrate micro-patterning has a significant 
impact on cell behaviour. A study by McBeath et al. [1] reveals that stem cell differentiation can be controlled by limiting 
cell spread area. It has also been shown that the contractility of smooth muscle cells increases with increasing cell area (Tan 
et al. [2]). Lamers et al. [3] show the spread geometry and stress-fibre (SF) distribution of osteoblasts on grooved surfaces is 
highly dependent on groove spacing. Wide grooves result in polarized cells with SFs aligned along the grooves. Narrow 
groove spacing leads to randomly oriented cells and SFs. Finally, a study by Théry et al. [4] has shown that cells spread on 
V-shaped fibronectin patches exhibit SFs align along the free edge of the cell. 
 The bio-mechanisms underlying such experimental observations are not fully understood. In the current study we 
propose a new approach to the analysis of the spreading of cells on micro-patterned substrates. We demonstrate that a non-
local thermodynamically consistent active cell model explains several of the key phenomena observed experimentally. 

MODEL DEVELOPMENT 
The thermodynamically consistent kinetic equation for SF formation/dissociation proposed by Vigliotti et al. (2015) [5] 

reduces to 
�̂�𝜂 = �𝑁𝑁�𝑢𝑢 𝜋𝜋𝑛𝑛�⁄ �𝑒𝑒𝑒𝑒𝑒𝑒[𝑛𝑛�(𝜇𝜇𝑢𝑢 − 𝜇𝜇𝑏𝑏) 𝑘𝑘𝑘𝑘⁄ ]             (1) 

under steady state conditions in a representative volume element (RVE) within a cell. �̂�𝜂 is the SF concentration per unit 
surface area of the RVE, 𝑛𝑛� is the number of actin-myosin contractile units along the length of the RVE, 𝜇𝜇𝑏𝑏 is the free 
energy of the bound contractile units in a stress fibre, 𝜇𝜇𝑢𝑢 is the free energy of unbound SF proteins, while k and T are the 
Boltzmann constant and absolute temperature. 𝑁𝑁�𝑢𝑢 is the number of unbound SF proteins. Here we implement non-local 
conservation of the total number of SF proteins within the cell, 𝑁𝑁�𝑇𝑇, under the assumption that the diffusion of unbound 
proteins through the cytoplasm is infinitely fast relative to the timescale of SF remodeling. The number of unbound proteins 
in the whole cell is therefore given as  

𝑁𝑁�𝑢𝑢 = 𝑁𝑁�𝑇𝑇 − ∫ ∫ �̂�𝜂+𝜋𝜋 2⁄
−𝜋𝜋 2⁄𝑉𝑉𝑐𝑐

𝑛𝑛�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     (2) 
where the inner integral computes the number of bound proteins in a RVE, and the outer integral provides a summation over 
all the RVEs in the entire cell volume Vc. At steady state, 𝑛𝑛� in a SF at orientation 𝑑𝑑 is given as 

𝑛𝑛� = �1 + 𝜀𝜀𝑛𝑛(𝑑𝑑)� (1 + 𝜀𝜀�̃�𝑠𝑠𝑠)⁄      (3) 
where 𝜀𝜀𝑛𝑛 is the SF nominal axial strain. When a SF is extended, contractile units are added, with the effect that the internal 
strain in the SF is reduced until a steady state value 𝜀𝜀�̃�𝑠𝑠𝑠 is achieved. Conversely, when a SF shortens, functional units are 
removed. In both cases, the internal fibre steady state strain is different from the axial material strain in the direction of the 
fibre, 𝜀𝜀𝑛𝑛(𝑑𝑑). The formulation is completed by the addition of a non-linear hyperelastic formulation (Ogden, N=8) in 
parallel with the SF model in order to represent the passive components of the cell.  

SIMULATIONS AND RESULTS 
The model described above is used to simulate two separate cell spreading experiments: 
Experiment 1: As shown in Fig. 1, cells spreading across a series of parallel grooves and fibronectin adhesion patches, both 
of width Lr , is simulated. In order to spread on N grooves the cell must deform from its reference configuration in the x-
direction by a stretch 𝜆𝜆𝑥𝑥, after which it may spread along the groves by deforming in the y-direction by a stretch 𝜆𝜆𝑦𝑦. A 
parametric study is conducted for a range of spread states (𝜆𝜆𝑥𝑥 and 𝜆𝜆𝑦𝑦). For each spread state the free energy of the system 
�̅�𝐺 is computed from 

�̅�𝐺 = 𝑊𝑊𝑒𝑒𝑒𝑒𝑎𝑎𝑠𝑠 + (𝜌𝜌𝑘𝑘𝑘𝑘)𝑙𝑙𝑛𝑛�𝑁𝑁�𝑢𝑢�     (4) 
where 𝑊𝑊𝑒𝑒𝑒𝑒𝑎𝑎𝑠𝑠  is the elastic free energy due to deformation of the passive components of the cytoplasm during cell 
spreading. The second term is the cytoskeleton free energy, where 𝜌𝜌 is the density of cytoskeletal proteins. Eqn.(4) can be 
interpreted as a competition between the elastic free energy, which increases with cell spreading, and the cytoskeleton free 
energy, which decreases with cell spreading (in accordance with eqns.(1-3)).  
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As shown in Fig. 2(a), results reveal that when the groove spacing is wide (𝐿𝐿𝑐𝑐/𝐿𝐿𝑟𝑟=3) �̅�𝐺 is minimized when the cell 
extends along the grooves in the y-direction (𝜆𝜆𝑦𝑦 = 1.5) while spanning only one grove (N=2 and 𝜆𝜆𝑥𝑥 = 0). Such spreading 
in the y-direction, coupled with the global conservation of cytoskeletal proteins, dictates that SFs align primarily in the 
direction of the grooves. Spreading in the x-direction is discouraged by the high elastic penalty, as shown for the case of 
N=4. Fig.2(b) considers the case of a small groove spacing (𝐿𝐿𝑐𝑐/𝐿𝐿𝑟𝑟=12). Here �̅�𝐺 is minimized when 𝜆𝜆𝑥𝑥 ≈ 𝜆𝜆𝑦𝑦 ≈ 1.55 and 
an isotropic distribution of stress fibres is obtained. Notably, global conservation of cytoskeletal proteins dictates that the SF 
concentration in any given direction, 𝜂𝜂(𝑑𝑑), in Fig.2(b) is lower than the concentration of SFs along the grooves in Fig.2(a). 

 

 
Figure 2: Free energy of the system (�̅�𝐺) and vector plot of SF concentration (𝜼𝜼�) for: (a) Cell is spread on wide 

(𝑳𝑳𝒄𝒄/𝑳𝑳𝒓𝒓=3) grooves; (b) Cell spread on narrow (𝑳𝑳𝒄𝒄/𝑳𝑳𝒓𝒓=12) grooves. 
 
Experiment 2: In a second series of simulations, a circular unadhered cell spreads on a V-shaped adhesion patch of length 
𝐿𝐿𝑎𝑎, as shown in Fig. 3. For a cell of radius rc , the spreading process is parameterized in terms of the proportion of the cell 
perimeter 𝜔𝜔𝑟𝑟𝑐𝑐  that adheres to the patch. The stretch along the patch is therefore given as 𝜆𝜆𝑝𝑝 = 𝐿𝐿𝑎𝑎 𝜔𝜔𝑟𝑟𝑐𝑐⁄ . The influence of 
the ratio of initial cell size to groove length is also considered.  
 For the longest adhesion patch (𝑟𝑟𝑐𝑐 𝐿𝐿𝑎𝑎 = 0.38)⁄  �̅�𝐺 is high due to high levels of elastic deformation required for 
spreading. For the shortest adhesion patch (𝑟𝑟𝑐𝑐 𝐿𝐿𝑎𝑎 = 0.44)⁄ , �̅�𝐺 is high due to the low levels of SF formation associated with 
limited cell spreading. The minimum free energy spread state, characterized by 𝜆𝜆𝑝𝑝, is dependent on the length of the 
adhesion patch. The lowest value of �̅�𝐺 is computed for 𝑟𝑟𝑐𝑐 𝐿𝐿𝑎𝑎 = 0.40⁄ , with 𝜆𝜆𝑝𝑝 = 1.24. In this configuration highest 
strains occur in the region of the free unadhered edge of the cell. Global conservation of cytoskeletal proteins therefore 
dictates that the SFs form predominantly parallel to the free edge.  

DISCUSSION 
 The modelling framework presented here 
captures the key trends reported in the studies by 
Lamers et al. [3] and Théry et al.[4], suggesting that 
cells tend to assume a minimum free energy (�̅�𝐺) 
spread state. This minimum free energy state is 
determined by competition between the elastic free 
energy due to deformation of the passive cytoplasm 
and the cytoskeleton free energy, subject to a non-
local conservation of cytoskeletal proteins 
throughout the cell. Simulations suggest that the 
evolving strain distribution during spreading is a 
critical determinant of the SF distribution. This 
model represents a significant advance on recent 
phenomenological approaches to the analysis of cell 
spreading and SF remodeling [6, 7]. 
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Summary A number of biological filament network are able to generate contratile forces and deformation over large regions with the help of
motor proteins, allowing filament to slide along one-another. A particularity of such networks, such as the acto-myosin network in adherent
cells, is that the assembly display a mechano-sensitive behavior, that is, contraction can be tuned by the effect of external forces and stiffness.
This paper presents a mechanistic model, based on the concept of catch bond, that explains how such responses can be observed at fairly
large scales. Particular examples pertaining to the contractile mechanics of adherent cells are presented.

INTRODUCTION

The contraction of adherent cells is a phenomenon that plays a large role in many biological events such as morphogenesis,
wound contraction, stem cell differentiation and cell migration. These phenomena particularly rely on contractile filaments,
or stress fibers, that anchor to the cell substrate and are capable of sustaining appreciable levels of contraction thanks to their
underlying acto-myosin machinery powered by ATP. In the past decade, numbers of studies have shown that the architecture
and contraction of the stress fiber cytoskeleton are highly responsive to the cells mechanical environment; the origin of which
remains poorly understood. This paper discusses how this mechano-sensitive response can be explained by invoking an
ubiquitous element used by biological systems known as the catch bond. We here investigate its role by deriving a model
based on an energetic approach and complemented by numerical simulations. The latter show that the catch-bond hypothesis
can explain the dependency of cell contraction on substrate stiffness, adhesion or the application of external forces on the
cell boundary. The agreements between model predictions and experimental observations not only confirm that catch bonds
may play a significant role in the mechano-sensitivity of adherent cells but also pinpoint the importance of the hierarchical
structure of acto-myosin filaments across the scales.
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Figure 1: Summary of the approach depicting, from left to right, the energy landscape of a catch bond, the simplified structure
of an acto-myosin filament and the cytoskeleton of a cell lying on a bed of micro-pillars and finally, simulation results of the
acto-myosin network and contractility of an adherent cell.

MODEL

In this paper, we investigate the mechanical response of an acto-myosin segment segment by considering its internal
structure made of a mixture of actin and myosin filaments that can slide on one-another thanks to the energy provided by
ATP hydrolysis (Fig. 1). Because actin filaments are polarized, these sliding motions generate an overall shortening of the
unit, and depending on the mechanical environment, the application of a more or less pronounced contractile force. The
mechanics of this assembly was captured by considering an energetic approach for an acto-myosin segment that comprises:
(a) the entropic contribution of the large number of acto-myosin bonds within the unit, (b) the stored elastic energy arising
from the deformation of acto-myosin bonds, (c) the potential energy Eb stored in the acto-myosin bonds, (d) the work done by
external forces F applied on the extremities of the filament, (e) the active power generated by ATP hydrolysis and finally (f)
the energy dissipation associated with the sliding motion of myosin on actin. Using energetic principles, this approach allowed
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us to obtain three Euler-Lagrange equations that govern the ratio η of activated acto-myosin bonds, the sliding velocity vs of
myosin on actin and the elastic deformation de of acto-myosin bonds:

ηNk∆de = F ; Eb + kBT ln (η/(1 − η)) = 0 ; vs = v0s (1 − f/ζ) (1)

where v0s is the sliding velocity in the stress-free state, ζ is the active force generated by myosin on actin and N is the total
number of available acto-myosin bond in the segment. The first equation is interpreted as the mechanical equilibrium of the
control segment, while the second denotes its chemical equilibrium (equality of the chemical potentials) of bonds in attached
and detached states. The last equation describes how the cross-bridge velocity is affected by the balance between the active
force ζ and passive force f = k∆de. In the range 0 < f < ζ, this relation may be thought of as a simplified (bi-linear) form
of the velocity-tension relationship that describes how the sliding velocity decreases if an opposing force f is applied to the
acto-myosin unit. To complete the model, we then expressed the fact that the actin-myosin complex displays a catch-bond
behavior by considering the energy landscape of a single bond shown in Fig. 1 (in which ∆E is the energy barrier separating
the bound and unbound states). Typically, the larger the energy barrier, the longer a bond can live under thermal fluctuations.
When subjected to a tensile force f , the energy barrier of a conventional “slip bond” typically decreases according to Bell’s
law as Eb(f) = E0

b − f∆x where E0
b is the reference energy of the bond and ∆x ≈ 3nm is the width of the barrier. Since

acto-myosin complexes are known to be temporarily stabilized when moderate pulling forces are applied, a response that can
be interpreted as an temporary increase in the energy barrier ∆Ed with forces. This response is well captured by the following
two-parameter function:

Eb(f) = E0
b + α

[
1 − e−f/f0

]
− f∆x (2)

where α measures the catchiness of the bond and f0 is used to scale the force at which the bond stabilizes. We note that
when α = 0, the above expression degenerates to that of a slip bond following Bell’s law. Based on this model, we then
constructed a simplified model of the stress fiber cytoskeleton of adherent cells, made of a random assembly of force-sensitive
acto-myosin filaments (Fig. 1). This computational procedure was then used to investigate the contractile behavior and
cytoskeleton architecture of adherent cells laying on beds of micro-posts, for which a variety of experimental data have been
documented.

RESULTS AND SUMMARY

We investigated how the mechano-sensitive response of a stress fiber segment as described by the above equations can
give rise to a complex architecture of the actin cytoskeleton observed in most adherent cells. In this context, we simulate the
contraction of an adherent cell on soft circular pillars (Fig. 1, right) as presented in various experimental studies. Numerical
simulations allow us to predict the evolution of the stress fiber activation, cortex deformation and the corresponding overall
force per pillar for different values of the bond catchiness α. Overall results show that at stady state, the cytoskeleton is able
to better activate and generate stronger contractile forces as the external environment becomes stiffer. Temporally, we observe
a sharp increase in stress fiber density and micropost forces and a steady increase of the average pillar force in time. From
a local viewpoint, we note that the unbalanced forces on the cell boundaries are responsible for the cortex deformation into
curved arches and the large micropost deflection on the edge of the cell. In contrast, interior pillars, being subjected to more
isotropic forces, tend to marginally deform. This restricted deformation in turn, makes interior posts effectively stiffer and
prone to adhere to a higher number of stress fibers. Eventually, the final cytoskeleton organization is strongly dependent on the
adhesion pattern, micropost stiffness as well as the overall morphology of the cell. The effect of bond catchiness is significant
is these processes; a strong catch bond leads to a fairly high level of stress fiber activation and force generation while a slip
bond only yields a marginal contraction and a quasi-nonexistent stress fiber cytoskeleton.

In summary, we presented a model of acto-myosin interactions within filament structures that shows that the presence of
a catch-bond behavior can explain the activation of the cytoskeleton of adherent cells in response to force and stiffness. The
model importantly shows that the consideration of catch bond iss enough to explain a number of experimental measurements
of cell contractility with stiffness and size, in both the static and dynamic regimes. These results may therefore enable a better
understanding of important biological processes and the development of active and mechano-sensitive polymeric materials.
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Summary Tumor growth is a complicated process involving genetic mutation, biochemical regulation, and mechanical deformation. In this 

paper, a thermodynamics-based nonlinear poroelastic model is established to interrogate the coupling among the mechanical, chemical, and 

biological mechanisms underpinning the growth of avascular tumors. A volumetric growth law accounting for mechano-chemo-biological 

coupling is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the growth of tumor 

spheroids are revealed under different surrounding environments. We show that the mechano-chemo-biological coupling triggers anisotropic 

and heterogeneous growth, responsible for the formation of layered structures in growing tumors. There exists a steady state, in which tumor 

growth is balanced by resorption. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly 

dictate the volume of tumors at the steady state. The results are in consistency with relevant experimental results. 

 
INTRODUCTION 

 

   Solid tumors account for more than 85% of cancer mortality [1]. Examples of solid tumors are sarcomas, carcinomas, 

and lymphomas, which often originate from the transformation of small nodes of normal cells into tumor cells that either 

lose or cease to respond to the normal physiological regulations. The development of solid tumors is a biological process 

involving multifactorial determinants, e.g. cell molecular and genetic abnormalities, cell–cell and cell–extracellular matrix  

interactions, and the supply of oxygen and nutrients.  

It has been recognized that, besides genetic alterations and biochemical factors, mechanical cues sensed by or 

transduced to tumor cells also play a vital role in the expansion, invasion, and metastasis of tumors [2]. The mechanical 

stresses in solid tumors mainly arise from two ways: the heterogeneous growth of tumor itself and the confinement of host 

tissues. Experiments evidence that tumors respond to stresses through actively altering biochemical pathways and through 

passively impeding fluid transport. Therefore, the coupling among the mechanical stresses, biological factors, and the 

reaction–diffusion of chemical species is of paramount importance in tumor pathology [3]. In the present paper, we establish 

a biochemomechanical theory incorporating the mechano-chemo-biological coupling mechanisms to investigate avascular 

tumor growth. The tumor tissue is treated as a poroelastic material, which is capable of mass addition and resorption 

regulated by mechanical, chemical, and biological factors. The system is open and thermodynamic continuous, permitting 

the transport of mass, momentum, and energy across its boundaries. A growth law that accounts for the interplay among 

mechanical stresses, biochemical homeostasis, and nutrient transport within tumors is proposed. Furthermore, we also 

examine the regulatory role which the stiffness of the surrounding host tissues plays in tumor growth. 

 

THEORETICAL MODEL 

 

   An avascular tumor is a mixture of cellular elements, ECM constituents, and interstitial space. It corresponds to the 

primary stage of tumors development before angiogenesis. The cells and ECM in a tumor provide the structural and 

mechanical integrity and can be considered as a solid skeleton, while the interstitial space is filled with fluid consisting of 

solvent, generally, water, and solutes such as nutrient, oxygen, and waste. Therefore, a solid avascular tumor is here 

modelled as a porous medium at the tissue level, and the theory of poroelasticity is applied to characterize its mechanical 

behavior. To incorporate its volumetric growth, we decompose the geometric deformation gradient tensor F  as  F A G , 

where A  denotes the elastic deformation tensor and G  is the growth tensor describing the change in mass. On the basis 

of thermodynamics, we establish the growth evolution law of a tumor 

   g T

h H+
W

f c W W 


 
      
G A I b G

A
 

where gc  denotes the concentration of the  -th constituent.  gf c   is a positive definite scalar function describing 

chemical kinetics of the  -th constituent. Furthermore, it satisfies  g 0f c    when gc  approaches the threshold for 

cell survival. W  and hW   are the Helmholtz free energy of the solid skeleton and the incoming mass per unit volume in 

the intermediate configuration, respectively. I  is a unit tensor. Hb  stands for the homeostatic stress tensor, that is, the 

mechanical representation of the biochemical and cellular activity in the steady state of tissues. 

 

NUMERICAL RESULTS 

 



   The proposed theory is validated by experimental data in the literature [4]. Recently, microfluidic experiments were 

performed to examine the morphogenesis of multicellular spheroid in response to external forces or confinements [4]. In the 

experiments, the spheroid of CT26 mouse colon carcinoma cells underwent free growth (Case I) or confined growth within 

alginate microcapsules of different radii and thicknesses (Cases II-IV), as shown in Fig. 1(a). The microcapsules were 

permeable and, hence, enabled outer nutrient and oxygen to flow into interior freely, providing a standard environment for 

cell proliferation. The following four typical cases were studied: (i) in Case I, the freely growing spheroid exhibited an 

initial exponential expansion followed by a power-law volume increase, and further growth led to the formation of a 

necrotic core (the dark region in the image) and a rim occupied by the proliferative cells. (ii) in Case II, the microcapsule 

was large and thick and, thus, the spheroid initially underwent a free growth. After the spheroid reached the microcapsule, 

its growth was almost leveled off. (iii) in Case III, the microcapsule was small and thick. The expansion of the spheroid was 

completely inhibited by the confinement of the microcapsule. (iv) in Case IV, the microcapsule was small and thin. The 

expansion of the spheroid drove the deformation of the microcapsule until the latter burst. After microcapsule ruptured, the 

spheroid can resumed the exponential growth observed in the free spheroid (Case I). To simulate the transition from 

confined growth to free growth in Case IV, we remove the boundary constraint applied on the tumor when the microcapsule 

bursts. The numerical results show that the proposed theoretical model can well reproduce the experimental observations at 

different situations, confirming the efficacy and robustness of our theory (Fig. 1(b)). 

 

   
                                     (a)                                             (b) 

 

Fig. 1 (a) Microfluidic experiment of in vitro tumor growth under four typical environments [4]; (b) Comparison between 
theoretical predictions and experimental data. 

 

CONCLUSIONS 

 

   Based on thermodynamical compatibility, we develop a nonlinear elastic theory to investigate the interplay among stresses, 

nutrients, and growth in a solid tumor. The tumor is treated as a porous growing medium allowing for nutrient transport 

modulated by stresses. As an example, the proposed theory is applied to decipher the MCB coupling in a spheroid avascular 

tumor under various growing environments such as free growth, compressed growth, confined growth, and the transitions 

between them. Our model can predict typical features of tumor growth, in agreement with a number of pervious experiments. 

Although we focus on growth of an avascular tumor, the theory and the results may provide important information for 

understanding development of a vascular one. The method of present study can also be extended to examine embryogenesis and 

the development of normal tissues, e.g. hearts, brains, lungs, and blood vessels. 
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Summary Brittle materials propagate cracks under tensile or shear stresses. When these increase beyond a critical magnitude, then quasi-static 
crack propagation becomes unstable. In the presence of several pre-cracks, a brittle material always propagates only the weakest crack, leading 
to catastrophic failure. We show that all these features of brittle fracture are modified when the material susceptible to cracking is bonded to a 
hydrogel, a common situation in biological tissues. In the presence of the hydrogel, the brittle material can fracture in compression and can 
hydraulically resist cracking in tension. Furthermore, the poroelastic coupling regularizes crack tip dynamics and enhances material toughness 
by promoting multiple-cracking. 
 

INTRODUCTION 
 
   Epithelial cell layers are two-dimensional, active materials capable of performing a variety of functions (e.g., 
morphogenesis, wound healing, protection against environmental pathogens) and routinely operating in the presence of 
significant levels of stretch, such as those arising from breathing manoeuvres or peristaltic contractions. Failure to withstand 
stretch causes epithelial fracture, leading to developmental defects and severe clinical conditions. 
   In vitro experiments that resemble the natural environment of epithelial layers have been recently performed [1] on cell 
clusters adhered to a hydrogel substrate, showing that i) failure of the monolayer can take place under compression, and that 
ii) this is typically accompanied by the simultaneous growth of multiple, intercellular cracks. The interest for this 
phenomenology stems from the fact that brittle materials typically fracture under tensile stresses. When these attain a 
critical magnitude, then quasi-static crack growth becomes unstable and, in the presence of several pre-cracks, catastrophic 
failure occurs by the propagation of the weakest crack only [2]. 
   In this study, fracture of epithelial layers adhered to a hydrogel substrate is extensively explored by means of a 
mathematical model [3]. The hydraulic coupling between the fractures and the gel substrate is accounted for, revealing its 
key role in regularizing crack tip dynamics and in promoting material toughening by multiple-cracking. 
 

SINGLE CRACK DYNAMICS WITH HYDRAULIC COUPLING 
 
   We first develop a simplified model [3] to examine the problem of a pre-cracked, elastic solid adhered to a hydrogel 
substrate, see Fig. 1(a) for a sketch of the geometry. Solutions from Linear Elastic Fracture Mechanics are employed to set 
the model, while accounting for the hydraulic coupling between the fracture and the gel substrate. Specifically, this requires 
the time rate of crack area 𝐴 to equal the solvent flux 𝑞 from the hydrogel into the edge crack. The flux 𝑞 is approximated 
by means of Darcy’s law, whereas the solvent pressure 𝑝 acts on the crack faces. Additionally, the geometry is subject to a 
uniform, remote strain 𝜀 that can be either positive (tensile) or negative (compressive). 

 
Fig. 1 Sketch of the model system at rest and under stretch (a). Distinct crack opening or closing scenarios (b), depending on 
the strain rate 𝜀 and on the ratio of the shear modulus 𝐺  of the hydrogel to the effective Young’s modulus 𝐸 of the brittle 
material. The color map represents the time rate of the solvent flux towards the crack cavity immediately after strain 
application. The labels in (b) describe the dominant driving force at the crack, hydraulic (H) or elastic (E); the 
phenomenology, fracture (F) or crack arrest (A); and the nature of the imposed deformation, tensile (+) or compressive (−). 
For instance, HA+ stands for hydraulic (H) arrest (A) under tension (+). (figure adapted from [3]) 
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   It is found that, thanks to the hydraulic coupling, distinct fracture scenarios become possible depending upon the 
material parameters (specifically, the ratio of the shear modulus 𝐺  of the hydrogel to the effective Young’s modulus 𝐸 of 
the brittle layer) and the loading sign, such that, for instance, the brittle material can fracture in compression (HF-) and can 
hydraulically resist cracking in tension (HA+), see the representation in Fig. 1(b). Remarkably, it is also shown that the 
hydraulic coupling regularizes crack tip dynamics allowing for quasi-static crack growth: Irrespective of the failure mode 
(tensile or compressive), crack tip velocity is dictated by the solvent diffusivity 𝑘 and the loading rate 𝜀. 

 
TOUGHENING BY MULTIPLE CRACKING 

 
   We now extend our study to the problem of multiple, competing edge cracks. To this purpose, we consider a detailed 
nonlinear Finite Element model, coupling large deformations of a neo-Hookean elastic solid with cohesive surfaces along 
predefined vertical paths, a finite deformation model for the mechanics and fluid transport in the hydrogel [4], and a one-
dimensional hydrodynamic model for flow within the crack invoking lubrication theory. For the sake of simplicity, we 
restrict our computations to the ideal case of two edge cracks, see Fig. 2(b)-(d), and explore the role of solvent diffusivity. 

 
Fig. 2 Dynamics of two competing cracks at different solvent diffusivities 𝑘, in tension (a)-(b) and in compression (c)-(d). 
The plots in (a) and (c) show the relative crack length difference ∆𝑎 for decreasing values of 𝑘. The contour plots in (b) and 
(d) show the longitudinal stress in the brittle layer and the solvent pressure in the hydrogel immediately prior to failure. The 
solvent flux in the hydrogel is depicted by means of arrows. (figure adapted from [3]) 

   It turns out that, at high diffusivities, the cracks elastically compete in such a way that localized fracture prevails. This 
behaviour is similar to that exhibited by a brittle solid in the absence of the poroelastic coupling [2]. In sharp contrast, 
decreased diffusivity conveys material toughening by promoting multiple-cracking. 
 

CONCLUSIONS 
 

   We have shown that the hydraulic coupling between a brittle solid and a poroelastic medium significantly modifies 
fracture physics. Depending on the sign of strain and the relative stiffness of the two materials, the system can exhibit 
unexpected fracture modes. We have also shown that, at low diffusivities, the bilayer system develops a toughening 
mechanism by promoting the simultaneous growth of multiple cracks. We believe that our results may contribute to the 
understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials. 
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Summary Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists,
biologists, and mechanicians over the last decade. These studies aim to utilize advanced materials in novel, adaptive ways to fabricate smart
actuators or mimic living tissues. Our recent work investigates how the underlying geometry of thin sheets will morph into shells when
exposed to a local isotropic expansion, which may represent several stimuli such as nonuniform heating, local swelling, and differential
growth. We present an analytical model built on a framework of differential geometry and mechanics to predict the mean and Gaussian
curvatures of the growing shells. We confirm our results through both numerical analysis, and an experimental technique that relies on the
residual swelling of soft, geometric composites.

GROWING SHEETS AND SHELLS

The continuous shape change during the growth and decay of biological structures is a constant presence within the nat-
ural world. Structures morph to accommodate an in flux of new material, either growing from an external nutrient source, or
swelling from the absorption of water. Often, these morphological changes result in shapes that enhance the biological struc-
ture’s functionality, for instance the Venus flytrap’s leaves snap closed after osmotically swelling – a structural reconfiguration
that is essential for its nutrition. Some of the most dramatic growth–induced deformations occur with slender structures, such
as growing leaves, wrinkling skin, and the writhing of tendril–bearing climbers. Thin structures like these significantly deform
to adopt nontrivial three dimensional shapes because they must bend to release their stretching energy. The coupling between
growth and large deformations presents an interesting opportunity for the morphing of synthetic structures, whereby if specific
regions within a thin material can be prescribed to stretch the overall structure will adopt a new shape.

In this work, we considered the programmatic shaping of 3D structures by residual swelling. The general concept is
straightforward: we prepared a thin structure (beam, plate, shell) with a local excess of free monomer chains, and as this
residual solvent diffused it induced a strain in the plate, causing it to morph into a 3D shape. Since the free chains equilibrate
within the entire structure, the final shape is permanent. To accomplish this controlled morphing, we prepared geometric
composites – structures whose geometries would be incompatible following this material diffusion – and placed the excess

Figure 1: a. Flat sheet grows into a saddle as the green annular gets larger while the pink disk gets smaller due to residual
swelling. b. Buckling of a flat ribbon due to residual swelling. c. Growth of a bilayer spherical cap mimicking the pollen grain
isometry. d. Partial bilayer shell exhibiting a mirror buckling isometry. e. The cylindrical isometry of growing thin plates.
The mean curvature of this shell can be predicted analytically from the curvature of a similar growing bilayer beam.
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monomer in one region. A diffusive–like “growth” of the thin shell followed, forming shapes that can be predicted by
minimizing the structure’s energy. A comparison of the energies for stretching and bending suggests that, if possible, a thin
sheet exposed to such stimuli should adopt an isometric deformation in the limit of large stretch. We analytically describe
the realization of this asymptotic isometry, corresponding to a zero Gaussian curvature K and a nearly stretch-free sheet.
However, when an isometry cannot be realized, a structure will bend as much possible to avoid stretching. An example of this
can be seen in Fig. 1a. & 1b., where an initially flat disk and ribbon grew into a saddle as material migrated from the inner
disk (pink) to the outer annular ring (green) [1].

When an isometric, or nearly isometric, deformation is available to the growing structure, its morphing becomes quite
straightforward as stretching will be avoided entirely, and the structure’s shape will be determined by a minimization of its
bending energy. This presents a direct approach to identify and exploit near isometries for growing plates and shells with or
without topological constraints, i.e. a plate versus a cylinder. One such example is the “pollen grain” isometry of a spherical
cap [2], where a growing bilayer shell breaks symmetry and adopts a folded structure which conserves the original shell’s
Gaussian curvature (Fig. 1c.). Growth of a partial bilayer shell accesses a more subtle isometry – the mirror buckling of a
cap wherein the apex of the shell everts to a curvature with an opposite sign (Fig. 1d.). By recognizing the structures search
for isometric deformations, it is evident that these shells morph in predictable ways in response to residual swelling. This
controlled morphing provides a direct way to use the governing underlying geometry as a means for inducing minimally
energetic shape changes.

Finally, to fully characterize this class of near–isometries, we investigate the simplest shell growth – growth of a flat sheet
into a cylindrical shell. Cylindrically curved thin structures result from the nano-scale fabrication of semiconductor nanotubes,
and the nonuniform heating, local swelling, and differential growth of thin sheets. For laminated composites, electrolytic thin
film deposition, and concrete slabs, this cylindrical curling presents an engineering challenge, while recent work has utilized
it as a mechanism for stimuli responsive self-assembly. The length scales of these examples range from the nanometer to
the meter, suggesting that geometry dominates the deformation processes. Mechanically, these structures are bilayer disks
in which one layer isotropically expands relative to the other. By coupling geometry and mechanics, we show that in the
asymptotic limit of large bilayer growth, any arbitrarily shaped disk will adopt a cylindrical shape whose mean curvature
is three-fourth’s the natural curvature (Fig. 1e.). We developed an analytical model that captures both the bifurcation from
spherical to cylindrical curvature and the isometric limit, verified by numerics and experiments [3]. To predict and explain the
transition that turns a spherical growth into a flat state, we compare the energies of the spherical and isometric states, without
any a priori assumptions of a stress state or displacement. These assumptions usually rely on the consideration of an Airy
stress function, which is known only for a very small number of sheet’s shapes, and on the account of a linearized version
of the Gauss’s theorem. Away from large stretches, the two principal curvatures are equal to each other and homogeneous
throughout the sheet. However, the morphing into a spherical cap becomes too costly for the sheet when the stretch, or the
natural curvature, reaches a critical value. While for small amounts of growth, it is convenient for the sheet to stretch and
increase its Gaussian curvature, above a critical threshold it is cheaper to morph isometrically. Thus, we fully characterize the
growth of a bilayer with any arbitrary shape from its flat state, through a spherical shell, and finally into a cylindrical isometry
by use of an analytical, geometric model.

CONCLUSIONS

We present a novel means to grow thin sheets into shells while analytically predicting their resulting shape. In plane
growth, as demonstrated through residual swelling, presents a way to take flat sheets and prescribe a non–zero Gaussian
curvature. These results generalize Timoshenko’s formula for beams into 2D by expressing how the dimensionless Gaussian
curvature varies with material and geometric ratios. We have demonstrated how bilayer disks subjected to dome-like natural
curvatures, regardless of their shape, will morph into cylindrical shells with a predictable mean curvature and orientation.
We also showed how this simple experimental framework can identify near–isometries in thin shells containing arbitrary
topological constraints. The capability to morph 2D shapes into 3D shells by in-plane and transverse residual swelling opens
intriguing avenues towards the precise design of soft structures.
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Summary The popular microsphere model, used for creating fully three-dimensional constitutive equations from single polymer chain
models, relies upon an energetic relaxation argument. This formulation presents an improvement to the earlier microplane model that
is predicated upon an affine, Taylor-like, assumption. While the microsphere framework has been previously applied to a wide variety
of phenomena, its application has always involved relaxation only as it relates to quasi-incompressible mechanical motions but affine
with respect to all other phenomena. In this presentation, we show how to lift these restrictions, thereby permitting the development of
fully relaxed constitutive equations based on well characterized one-dimensional micromechanical models even in the presence of other
evolutionary microstructural phenomena – such as strain induced crystallization, viscous flow, and other active phenomena.

OVERVIEW

A great deal of experimental and theoretical effort has been expended upon carefully characterizing the behavior of poly-
meric materials at the chain level. Crowning achievements in this realm include the Gaussian chain model, suitable for long
chain polymers stretched to moderate degrees relative to their end-to-end length, and the Langevin chain model for large
deformations of chains. These models have been successfully validated experimentally and are thus ubiquitously present in
many theories of polymer-system mechanics. Despite these major achievements, among others in polymer chain mechanics,
it is still quite challenging to develop mechanical models for networks of polymer chains, say, continuum level constitutive
laws, even though good models are available at the chain level. The two primary hinderances that give arise to this situation
are: (1) chain-chain interactions are difficult to model and (2) these networks are topologically complex and insufficiently
characterized. Despite these complexities, the need for a scheme to transition from one-dimensional mechanical response to
three-dimensional behavior is still present.

The original network models for achieving this are the well-known 3-, 4-, and 8-chain models; see e.g. Treloar (1958),
Flory (1977), and Arruda and Boyce (1993) or the more general Wu and van der Giessen (1993) and Puso (1994) frameworks.
These models are fully affine in nature or quasi-affine. More recently Miehe et al. (2004) proposed an improvement in the
mathematical framework that encompasses all of these models by formulating the development of a macroscopic free energy
for a network as a constrained relaxation problem – akin to a classical homogenization problem. This further permitted the
incorporation of constraint effects as well as internal evolutionary processes, albeit affinely (see e.g. Miehe and Göktepe
(2005) or Mistry and Govindjee (2014)). Separately, the line of papers that developed the microplane model (Bazant and
Gambarova, 1984) should be noted as intermediate to the earlier cited works and Miehe et al. (2004). The microplane model
is in the spirit of the microsphere model, excepting that it is fully affine. Notwithstanding, the developments under this line of
thinking provide important discoveries that relevant to a properly formulated relaxed model; see e.g. Carol et al. (2004).

In our proposal, we postulate at the microstructural level that the chain stretch is described by a tensor Um = λn⊗ n+
ν(1 − n ⊗ n), where λ is the chain stretch, n is the unit chain orientation vector, and ν is the transverse constraint stretch.
The connection to the macroscopic right-stretch tensor is given in terms of Hencky measures by

lnU =
1

S

∫
S

lnUm dS , (1)

where S is the microsphere. Following the microplane developments as outlined in Carol et al. (2004), we advocate that in the
finite deformation case that the microscopic motion be described by a microstructural Jacobian j = λν2 and a microstructural
deviatoric stretch ξ = (λ/ν)1/3. This permits us to postulate a relaxed macroscopic free-energy

Ψ(lnU) = inf
ln j,ln ξ

1

S

∫
S

ψmv(ln j) + ψmd(ln ξ) dS subject to (1) (2)

where ψmv and ψmd are chain level energy functions emanating from microstructural polymer mechanics. The macroscopic
constitutive relation follows as the gradient of the free energy, τ = ∂lnUΨ.
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The extension to the case of evolutionary processes leverages the evolutionary formulation of Biot (1955). This framework
formulates inelastic evolutionary equations utilizing a dissipation potential, a concept valid for a wide variety of internal
evolutionary processes. The primary postulate is that the evolution of any internal material parameters z is given by the
variational problem:

inf
ż

{
Ψ̇ + ∆

}
, (3)

where ∆ is the dissipation potential for the phenomena characterized by z and Ψ now additionally depends upon z. In
the present context, the macroscopic dissipation potential ∆ is constructed from an additional relaxation process on the
microscopic dissipation potential ∆m:

∆(z, ż) = inf
zm,żm

1

S

∫
S

∆m(zm, żm) dS (4)

subject to the constraint z = (1/S)
∫
S
zm dS. Additionally, the free energy relaxation must now include a relaxation with

respect to zm the microscopic internal variables as ψmv and ψmd will necessarily depend on the new microscopic internal
variables.

Combined together, this formulation permits the modeling of a wide variety of phenomena encountered in polymer systems
where single (non-interacting) chain mechanics dominates. The elemental ingredients are chain energy relations and micro-
state dissipation potentials. The mathematical framework produces sensible macroscopic constitutive laws that are computable
and energetically fully relaxed with respect to stretching, transverse constraints, and internal evolutionary processes. Examples
will be shown for a variety of systems and compared to prior non-fully relaxed proposals.
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Summary In the first phase of axon growth, axons sprout from neuron bodies and are extended by the pull of the migrating growth cones
towards their targets. Thereafter, a second phase of axon growth, called stretch growth, ensues as the mechanical forces from the growth of
the animal induce rapid extension of the nerves. Here we propose a mathematical model for stretch growth of axon tracts in which the rate
of production of proteins required for growth is dependent on the membrane tension. We show that there is a length dependent maximum
stretching rate that an axon can sustain without disconnection, and that axon length is increased near the cell body. Our model also predicts
that the diameter of an axon subjected to stretch growth must increase. Our results could inform better design of stretch growth protocols to
create transplantable axon tracts to repair the nervous system.

INTRODUCTION

Smith and colleagues [1] have previously developed tissue-engineering techniques that exploit a natural “second phase” of
axon growth creating long tracts of axons spanning two populations of neurons. In the well known “first phase” of axon growth,
axons sprout from neurons guided by chemotactic and haptotactic factors and typically extend only up to a few millimeters
to reach their targets. Thereafter, the second phase of purely mechanically stimulated, “stretch growth of integrated axon
tracts,” begins as the animal’s body grows. Here, integrated axons spanning body regions that progressively move further
apart undergo continuous mechanical tension. These forces appear to trigger growth somewhere along the center lengths of
the axons, otherwise they would be stretched to the point of disconnection. To explore the cellular dynamics and boundaries
of axon extension during the first phase of axon growth, several groups have developed computational models, with a focus
on polymerization of microtubules as axon cytoskeleton building blocks. In most of these models, as the growth cone is
guided forward, tensile forces are induced at the axon terminal or tip, just behind the growth cone. In turn, it is assumed that
these forces trigger building of the microtubule selectively in this region. However, once the target is reached typically not
more than a few millimeters away, integration and synapse formation essentially abolish the growth cone. Therefore, current
mathematical models do not appear to account for mechanical influences during the extreme second phase of axon growth
and expansion of tracts over tens of centimeters for humans and even many meters for very large animals. Furthermore, the
specific role of membrane tension and stretch activated ion channels in axon stretch growth have not been explored. Here, we
propose a model for stretch growth of integrated axon tracts based on overall mechanical stimulation resulting in very regional
microtubule polymerization and relative contribution of stretch activated channels in the process.

Growth modeled as a polymerization process
A summary of the equations describing stretch-growth, assuming polymerization occurs at the soma (see figure 1(a)),

is [2, 3]:
dL

dt
= αQs − β,

dQt
dt

=
DA

VtL
(Qs −Qt),

dQs
dt

=
I

Vs
− DA

VsL
(Qs −Qt) +

G

Vs

dL

dt
, (1)

where L is the length of the axon, α = ekon is related to the on-rate kon for polymerization with e the monomer size,
β = ekoff is related to the off-rate koff for polymerization, Qs is the concentraton of monomers in the soma, Qt is the
concentration of monomers at the tip of the axon, D is a diffusion constant, A is the axon cross-sectional area, Vt is a small
volume at the tip of the axon, I is the rate (in units of number of monomers per unit time) of production of tubulin monomers
in the soma, Vs is a small volume in the soma where the polymerization reaction occurs and G is a constant. The steady state
solution to these equations is:

L = L0 + Ut, Qs = Qt = Q =
β

α
+
U

α
, (2)

whereU = I/G is the speed of growth. We believe that the rate of monomer production I depends on the membrane tension τ .
As a cell is stretched it must ‘sense’ the increasing membrane tension and increase the rate of production so that growth keeps
up with the stretching. A potential source of this cell signaling during stretch growth is likely mechanosensitive channels in
cell membranes that have been shown to open in other circumstances when the tension increases. Opening of these channels
can cause an influx of ions such as Na+ and Ca2+ that can influence monomer production in the soma by various means.
While the exact mechanism may not be known it is reasonable to assume that I depends linearly on the probability popen
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of the mechanosensitive channels being open, which in turn depends on τ in a known way [4]. Using those expressions we
assume that the monomer production rate I is a monotonic function of the tension τ and is given by:

I(τ) = C

[
1

1 + exp(−∆G+τ∆A
kBT

)
− 1

1 + exp(−∆G+τ0∆A
kBT

)

]
, (3)

where C is a constant, kBT is the thermal energy scale, ∆G = Gclosed −Gopen < 0, the free energy difference between the
closed and open states of the channel is several kBT , ∆A = Aopen−Aclosed > 0, the cross-sectional area difference between
the open and closed states is on the order of tens of square nanometers, and τ0 is the rest tension of the axonal membrane.
When τ = τL, the lytic tension of the membrane, I(τL) is at its maximum and this corresponds to U ≈ 30µm/hour.
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Figure 1: (a) Schematic of the axon with microtubules polymerizing at the junction between the axon and the soma.
Mechanosensitive channels in the axonal membrane open in response to increased tension due to stretching causing an in-
flux of ions. This sends a signal to the soma to increase the rate of production of monomers. (b) A limiting L(t) curve is
shown as the green line. Growth programs (blue and red dashed lines) that cross this line from below cause disconnection of
the neurons.

The major result of the model above is a limiting growth trajectory which when crossed from below will cause the axons
to disconnect. Suppose during initial stretching of a neuron the lytic tension is reached, and the cell responds by increasing the
monomer production to its maximum value I(τL). As a result the axon grows by the addition of new material and eventually
settles into a steady state with τ < τL, and constant growth rate U . Hence, the limit on the growth program is set by the
requirement that τ = τL at all times. Since, I and A are functions of τ only, they remain fixed for this L(t). With these
assumptions we can integrate eqns. (1) to find the limiting growth trajectory L(t). This limiting growth trajectory is plotted as
the green curve in figure 1(b) in terms of non-dimensional length and time variables. A comparison of the x- and y-axis of this
figure to figure 4A of Smith [1](who arrived at the limiting trajectory through experiment) suggests that tscale is about 1 day
and Lscale is about 0.2mm for axons in stretch growth. In contrast, Wisnner-Gross et al. [5] fitted the ODE model of Samuels
et al. [2] to their experiments on growth of neurons without stretch and concluded that tscale was about 6.4 hours and Lscale
was about 51 microns. The reason for a lower kon in stretch growth can be that polymerization occurs against a compressive
load that the microtubules are experiencing due to increased tension in the membrane caused by stretching.

CONCLUSIONS

We have presented a microscopically based model in which membrane tension modulates the production rate of materials
required for neuron growth. We obtain a limiting growth trajectory that is similar to one obtained from experimentss [1].
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Summary In this study, we use the characteristic phase lag between the applied oscillation indentation displacement and the force on the 
indenter due to the energy dissipation from solvent flow in the gel to characterize the poroelasticity of gels. We will show that the phase 
lag degree is a function of two parameters, Poisson’s ratio and normalized angular frequency. The solutions are derived for several shapes 
of indenters. The maximum value of the phase lag over a spectrum of actuation frequencies can be used to characterize the Poisson’s ratio 
of the gel, and the characteristic frequency corresponding to the maximum phase lag can be used to characterize its diffusivity. 
 

INTRODUCTION 
 
Gels composed of crosslinked polymeric network and solvent molecules, can swell or contract in response to external 

stimuli, such as relative humidity, temperature, pH, electric field and light. Gels are almost everywhere in nature, from cells, 
tissues, to organs. Gels are also important engineering materials, which have been widely used as cell culture scaffold, drug 
carrier, microfluidic device, sensors, actuators, soft robots, fuel cell membrane, transparent loudspeaker, swellable packers 
for sealing oil well, etc. Most gels are soft, with a typical modulus of 1~102 kPa. Some gels are also saggy, brittle, and 
slippery. Most bio-gels are often inhomogeneous, degradable as time and of gradient properties. These characters of gels 
raise many practical difficulties in mechanical testing. Traditional techniques such as tension, compression, bending, torsion 
and shearing are very difficult to apply. Recently there is a growing interest in indentation on soft materials, but most 
previous works focus on characterizing the elastic modulus of gels. In the PI’s pervious work, a poroelastic relaxation 
indentation method has been developed allowing the poroelastic properties of gels including shear modulus, drained 
Poisson’s ratio and diffusivity to be measured all from one test.1 While this method is applicable in large scales (mm), it 
remains challenging to be applied in small scale (1~10 µm), when inhomogeneous and local properties are of interests. In 
the relaxation indentation technique, identifying the contact point on soft materials and accurately measuring the initial 
force right after a rapid ramping of displacement are very difficult to realize in small scale. Alternatively, most commercial 
instruments for small scale testing, such as Atomic Force Microscope and Instrumented Nanoindenter, can perform accurate 
dynamic measurement with high resolution. Motivated by this fact, we develop a dynamic indentation method to 
characterize poroelasticity of gels for micro-scale measurement. 

 
METHODOLOGY AND RESULTS 

 
To define quantities of interest, we use the theory of poroelasticity to describe the diffusion-coupled-deformation of 

gels.2 The initial gel is taken to be in a homogeneous state, subject to no mechanical load, with C0 being the number of 
solvent molecules per unit volume of the gel, and µ0 being the chemical potential of solvent in the gel. When the gel 
deforms, the displacement is a time-dependent field, ui(x1,x2,x3,t), and the strain is εij = (∂ui/∂xj+∂uj/∂xi)/2. The conservation 
of solvent molecules requires that ∂C/∂t=-∂Jk/∂xk, where C is the concentration of the solvent in the gel, and Jk the flux 
which is driven by chemical potential gradient Jk=-
(k/ηΩ2)∂µ/∂xk, where k is the permeability, η the 
viscosity of the solvent, and Ω the volume per solvent 
molecule. The stress in the gel is given by 
σij=2G[εij+εkkδijν/(1-2ν)]-δij(µ-µ0)/Ω, where G is the 
shear modulus, ν Poisson’s ratio. The gel is in 
mechanical equilibrium, so that the field of stress 
satisfies ∂σij/∂xj=0. A combination of the above 
equations leads to a familiar diffusion equation 
∂C/∂t=D∇2C, with the diffusivity being D=[2(1-ν)/(1-
2ν)]Gk/η. Summarily, the material is fully described 
by three parameters G, ν and D. 

To characterize these three parameters, we 
develop a dynamic indentation method. As shown in 
Figure 1, a depth of indentation ho is applied on a 
swollen gel with a constant velocity, and then is held 

Fig.1: Schemetic of the dynamic indentation method. A 
depth of indentation h0 is pressed into the swollen gel and 
held for a period of time. After this period of holding, an 
oscillation displacement is applied with different 
frequencies. Meanwhile, the force is measured as a function 
of time, and the phase lag between force spectrum and 
displacement spectrum is recorded as actuation frequency. 
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for a period of time. Following this period of stress relaxation, 
an oscillatory displacement 𝛿𝑒!!"#  (δ<<ho) is applied. 
Meanwhile the force on the indenter is measured as a function 
of time. The poroelastic gel is characterized by three 
parameters: shear modulus G, drained Poison’s ratio v, and 
diffusivity D. During the loading period, solvent molecules in 
the gel do not have time to migrate, so the gel is 
incompressible, and the slope of the measured force φ can be 
used to obtain shear modulus G through elastic solutions,  

 G=3φ/16R1/2u3/2.  (1) 
The real difficulty lies in how to get v and D. The phase lag 

between the displacement and force spectrum characterizes the 
time-dependent behavior of gels. As the oscillatory 
displacement sweeps through a spectrum of frequencies, a 
peak value of the phase lag Δc between oscillatory 
displacement and the force measurement is obtained. The 
angular frequency ωc corresponding to the peak is a 
characteristic value with respect to diffusion that scales with D/a2 with a being the contact radius. The oscillation 
indentation problem is solved and the characteristic curve ∆=f (Dω/a2, v) is obtained (Fig. 2). The solution derived here is 
for spherical indenter. 

As is shown in Figure 2, the phase lag is plotted as a function of normalized angular frequency. It reaches a peak at a 
particular value of the actuation frequency. The value of the peak highly depends on the Poisson’s ratio of the material. 
When Poisson’s ratio is small, the amount of liquid that can be squeezed out of the gel is larger. Consequently, more energy 
is dissipated due to flow of solvent, which corresponds to a larger value of the phase lag. When Poisson’s ratio is close to 
0.5, liquid does not diffuse in or out of the material, no energy is dissipated, and the phase lag is zero. For ease for 
extraction of material properties from experimental data, the relation between peak phase lag Δc and Poisson’s ratio ν is 
fitted with a continuous function as 

 ν = 0.5-0.02Δc , (2) 
 

and the relation between the normalized critical angular frequency and Poisson’s ration ν is also fitted with a function as 
 

 D = a2ωc/(0.72+0.29ν+0.48ν2)  (3) 
 
Therefore, equations (1)-(3) can be used to extract the three material parameters from dynamic indentation measurement. 
 

CONCLUSIONS 
 
A dynamic indentation method has been developed that is suitable for characterizing the mechanical and transport 

properteis of polymer gels. In this technique, a spherical indenter is used to probe the response of gels under oscillatory 
loading conditions. Solvent transport within the gel is driven by chemical potential gradient. The flow of solvent defines the 
time-dependent behavior of gels and energy dissipation due to flowof solvent through the network. In dynamic response, a 
lag of phase appears between the spectrum of responsive force and actuation displacement. Theoretical caculation shows 
that the peak value of the phase lag can be used to extract Poisson’s ratio of the material, and the corresponding critical 
angular frequency can be used to extract the diffusivity of solvent in polymeric network of gels. 
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Fig.2: Phase lag is plotted as a function of normalized 
angular frequency for materials of different Poisson’s 
ratio. 
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Abstract: The mechanical gradients (e.g., stiffness and stress/strain gradients) of extracellular matrix play an important role in guiding cellular 

alignment, especially in tendons and muscles. Though various methods have been developed to engineer graded mechanical environment to 

study its effect on cellular behaviours, most of them failed to distinguish stiffness effect from stress/strain effect during mechanical loading. 

Here, we construct a mechanical environment with strain gradients by using a hydrogel of a linear elastic property. We demonstrate that the 

pattern of cellular alignment can be rather precisely tailored by substrate strains. The experiment is in consistency with a theoretical prediction 

when assuming that focal adhesions would drive cell to reorient to the directions where they are most stable. This work not only provides 

important insights into the cellular response to local mechanical microenvironment, but can also be utilized to engineer patterned cellular 

alignment that can be critical in tissue remodelling applications. 

 
MAIN TEXT 

 

   Mechanical gradient microenvironment has been found to widely exist in native tissues and play an important role in 

regulating cell behaviors including alignment, migration, proliferation and differentiation in vitro for tissue remolding and 

regenerative medicine applications
[1-2]

. Up to now, a variety of methods based on hydrogels have been developed to 

engineer mechanical gradient microenvironment of cells in vitro
[3-4]

. However, mostly of these studies were focused on 

stiffness gradient construction and with less effort for engineering stress/strain gradient microenvironment, which are also 

associated with normal physiologic processes such as gut peristalsis and heart contraction. Recently, several approaches 

have been developed to simulate in vitro 3D cell environment with mechanical loading and investigated cell response to 

varying stress/strain conditions, which are discontinuous and lack of controllability to form gradient environment. Besides, 

the effects of stiffness and stress/strain are intertwined. Therefore, there is still an unmet need for a simple and controllable 

method to engineer hydrogels with stress/strain gradients for cells. Here, we developed a simple and facile method based on 

molding and photolithography approaches to fabricate methacrylate gelatin (GelMA) hydrogels with strain gradients 

ranging from 0~20%, which covers the muscle and heart contraction in vivo (Figure 1). The separation of the effects of 

stiffness and stress/strain has been achieved through the hydrogels with linear elastic properties in the testing strain range. 

Hydrogels with programmable strain gradients were formed by UV crosslinking reaction with designed shapes and then 

applied by static stretch loading. (Figure 2) The orientation of C2C12 cells seeded on gradient hydrogels was assessed 

under static stretch loading conditions (Figure 3). The analysis results of cellular stress fiber orientation have shown that 

cell alignment gradients will formed under strain gradients on hydrogels. For large strain region (17.0 ± 0.5%~19.7 ± 1.0%) 

on gradient hydrogels, cells aligned predominantly perpendicular to stretching direction whereas cells randomly oriented in 

control group (non-strech loading). With decreasing strain from 15.4 ± 0.4% to 13.5 ± 0.7%, stress fibers gradually oriented 

towards the stretching direction. Stress gradient generated on hydrogels also ranged from 1.9 ± 0.3 kPa to 3.2 ± 0.1 kPa. 

These results indicated that cellular response to gradient hydrogels supports the principle that cells orient in the direction of 

minimal substrate deformation, known as strain-avoidance or stretch-avoidance, and is in agreement with the existing 

findings from corresponding model systems. The gradient hydrogel fabrication approach we developed here holds great 

potential to impact a wide range of fields, such as cell mechanics, tissue engineering and regenerative medicine. 

 
Figure 1. Schematics of fabrication method for hydrogels with stress/strain gradients. (a) Hydrogels with designed trapezoidal shape are 

fabricated with PMMA mold through an UV crosslinking reaction; (b) Hydrogels with programmable gradients including three levels of strain 

gradients under stretching. 



 

 
 

Figure 2. Characterization of strain/stress of different hydrogels. (a) Representative images depict the microbeads used in the texture 

correlation algorithm before (left) and after (right) stretch to determine strain distribution. (b) Stress/strain curve of hydrogels. 

 

 
 

Figure 3. Analysis of cellular alignment generated on gradient hydrogels. (a-b) florescent images and quantification of cell orientation on 

gradient hydrogels with stretch loading after 3 days culture (cellular F-actin fibers were stained by phalloidin (green) and nuclei by DAPI 

(blue)). 

 

   In conclusion, we here developed a simple and feasible method to engineer patterned cellular alignment in vitro. 

Programmable stress/strain gradients on GelMA hydrogels are realized by stretching hydrogels with linear elastic property. 

When seeding cells on such hydrogels subjected to static stretches, we find that cells on hydrogels align almost perpendicularly 

to stretch direction in regions of large strains, and gradually align towards to stretch direction in regions of relatively small strains, 

whereas cells orient randomly in control group. The effect of substrate strains on cellular alignment is explained with the theory 

by assuming that focal adhesions would drive cell to reorient to the directions where they are most stable. The current work not 

only provides important insights into the cellular response to local mechanical microenvironment for understanding cellular 

mechanosensitivity, but can also be utilized to engineer patterned cellular alignments that can be critical in tissue remodelling 

and regeneration. 
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Summary The natural animals and insects integrate muscles and skins providing excellent actuating and sensing functions. Inspired by the natural 
structure, we present various structures of dielectric elastomer (DE) elastomer with various characteristics such as integrated actuating and sensing, 
bi-stable actuation, and anisotropic actuation. The structure can deform when subjected to high voltage loading and generate corresponding output 
signal in return. We investigate the mechanical instabilities of the soft active structure of dielectric elastomer both theoretically and experimentally. 
It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane 
changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the 
electromechanical behaviours and guide the structural design of the soft robot.   
 

INTRODUCTION 
 
Electro-active polymer (EAP) actuators have recently attracted increasing research interests due to their various performances. 
As a typical EAP, dielectric elastomer (DE) is one of the most promising electro-active polymer actuators because of its large 
deformation, light weight, high energy density, and rust free. When an electric field is applied through the thickness direction, 
a DE membrane expands its area and reduces its thickness. This electromechanical behaviour of DE material has been widely 
studied into various application including actuators, sensors and generators [1-5]. Specially, basing on the fact that electric 
properties such as resistance, capacitance change in accordance with the external forces, the ability to sense its position, 
deformation or force of dielectric elastomer has also been investigated [6-9]. Recently, numerous works have been done, 
including the dynamic response of the dielectric elastomer for capacitive sensing [6], a method to monitor capacitance change 
of the dielectric elastomer actuator during its operation [7], the resistance of electrode changes when actuating [8] and a 
dielectric elastomer actuator with self-sensing capability [9]. Various methods to actuate and sense the deformation or the 
displacement of the dielectric elastomer actuator can be applied into the smart structures. Mechanical investigations may 
further guide the design and optimization of the soft active material and structures [10-13].  
 

SENSING AND ACTUATING 
 
This paper presents a dielectric elastomer structure with integrated function of actuating and sensing Fig.1. Working principal 
is established to explain the experimental results. And the numerical simulation is also conducted, which corresponds well 
with the experimental results. This work provides a new method to design and fabricate the dielectric elastomer structure with 
both actuating and sensing performances, which has a variety of potential applications such as prosthetic sensing and physical 
monitoring. There are 10 layers of dielectric elastomer in the structure. The layers which are black, blue, yellow represent 
electrode, VHB4905 membrane, VHB9473 membrane respectively. VHB4905 membrane is worked as driven muscles, 
whereas VHB9473 membrane is employed to protect electrode and to avoid direct contact with high voltage. Fibers which 
are tightly sandwiched between elastomer membrane and electrode are shown as the white circles in the schematic. The right 
part that contains fibers is the actuating module of the structure, and the left part is sensing module correspondingly. Since 
VHB membrane is extremely sticky, actuating module and sensing module can tightly laminated.  

 
Figure 1. Images of the snap-through deformation process of the hydrogel structure 

 
 



ELECTRO-MECHANICAL INSTABILITY 
The DE active structures such as inflated elastomeric balloon and bi-stable beam are quite promising in the application 

of soft robot as elastomeric actuators and artificial muscles. We carry out both experiment and modelling, focusing on the 
pre-stretch effect on non-linear behaviours of inflated elastomeric balloons. In the experiment, the pre-stretched elastomeric 
balloon is subjected to air pressure while the ends are fixed with rigid ring. The shape evolutions of the telastomeric balloons 
are illustrated. An analytical model based on continuum mechanics is developed to investigate the inflation behaviour of the 
tubular balloons, and the analytical results agree well with the experimental observation. Analysis shows that snap-through 
instabilities may happen during the inflation of t. Pre-stretch along the axis of the balloon can suppress instability during 
inflation and regulate the reaction force along the axial direction. In the buckled structure of DE membrane integrated with 
rigid frame, fibers can be embedded into the DE membrane and integrate together with the soft active structure to enhance 
the performances of the soft active device. We demonstrate the effects of fibers in the planar actuator. The long fibers are 
parallel distributed with fixed spacing in the perpendicular direction. We use nylon fishing lines as the fibers with 80 mm in 
length and 0.3 mm in diameter. We attach several fibers on one side of the pre-stretched membrane and then put another pre-
stretched membrane on the fiber and make the fiber sandwiched between two membranes, and then exclude the air between 
the two membranes. The DE structure with multi-functions and electromechanical instabilities can be applied in the soft robot.. 
 

CONCLUSIONS 
   We have investigated soft active structures driven by dielectric elastomer possessing characteristics of snap-through 
actuation, integrated actuating and sensing. The performances of the smart structures are explored with both experiments and 
FEM simulations. Pre-stretch and structural stiffness play important role before the smart structure is applied with voltage. 
The buckling curvature will increase while the pre-stretch increases or the structural stiffness decreases. Fiber-reinforced 
dielectric elastomer structure with integrated function of actuating and sensing can also be combined in to the soft active 
structure as a functional device.The sensing module deforms by the bending of the DE structure and changes its capacitance. 
By measuring capacitance variation, we can monitor the deformation of the DE laminates in return. Experiments and FEM 
simulation have been conducted to investigate the electro-mechanical behaviours of the structure.  
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Summary This paper presents a theoretical model for equilibrium swelling of polyelectrolyte gels immersed in ionic solutions. By 
varying the ion concentrations in the external solution, the polyelectrolyte gel may undergo a smooth transition in the swelling 
ratio or a discontinuous volume phase transition. The theoretical model is further extended for the cases with mixed solvents and 
compared closely with experiments. 
 

INTRODUCTION 

 
   Polyelectrolytes are polymers that contain ionizable groups on the polymer chains. Immersed in an aqueous solution (e.g., 
water), the polymer network imbibes a significant amount of solvent and those ionizable groups dissociate into mobile charges 
(counter-ions) in the solvent and fixed charges on the polymer chains. As a result, a polyelectrolyte gel forms. Polyelectrolyte 
gels are sensitive to many stimuli, such as pH, temperature, ionic strength, electric field, and light. One of the most interesting 
phenomena is the volume phase transition of polyelectrolyte gels induced by various external stimuli. Instead of a smooth, 
continuous change of volume in response to a varying stimulus, a discontinuous, abrupt change of volume may occur at a 
critical condition, similar to the first-order phase transition. While the volume phase transition due to temperature change has 
been studied extensively, fewer studies have considered volume phase transition induced by the effect of salinity or ion 
concentration in the external solutions. Ohmine and Tanaka [1] observed in experiments that an ionized acrylamide gel 
underwent a discrete phase transition in equilibrium volume upon varying the salt concentration in an external solution. In 
this paper, we present a theoretical model that is capable of predicting equilibrium swelling of polyelectrolyte gels with both 
smooth and discrete transitions upon changing the ion concentration in external solutions. 
 

THEORETICAL MODEL 

 
Following Hong et al. [2], we write the free energy density of a polyelectrolyte gel as a function of the deformation 

gradient, the nominal electric displacement, and the nominal concentrations of the solvent and ions, including four parts due 
to stretching of the polymer network, mixing of the polymer and the solvent, mixing of the solvent and ions, and polarizing 
of the gel, respectively. It is assumed that the polymer network and the mobile particles (solvent molecules and ions) are 
incompressible at the molecular level, which is imposed as a kinematic constraint by using a Lagrange multiplier. The nominal 
electric field and the electrochemical potentials are then obtained from the free energy density function. To simplify 
calculations, we assume relatively low ion concentrations in the gel so that 𝐽 ≈ 1 + 𝑣𝐶𝑠. The nominal concentrations of the 
ions in the gel can then be obtained explicitly as a function of the electrochemical potential and the volume swelling ratio 𝐽. 

Next, by a Legendre transform, the free energy density of the gel is rewritten as a function of the deformation gradient, 
the nominal electric field, and the electrochemical potentials. The nominal stress in the gel is then obtained as the derivative 
of the free energy density function with respect to the deformation gradient, which includes an elastic part, an electrical part 
(Maxwell stress), and osmotic pressures of the solvent and ions. For homogeneous free swelling, the stress vanishes and the 
volume swelling ratio can be solved as a function of the chemical and electrochemical potentials.  

When the gel reaches equilibrium with the external solution, the chemical potential of the solvent and electrochemical 
potentials of the ions in the gel equal to those in the external solution. We treat the external solution as an ionic liquid with a 
mixture of neutral solvent molecules (e.g., water) and positive/negative ions. The treatment is similar to that for 
polyelectrolyte gels, but the free energy density function contains only two parts, due to ion/solvent mixing and polarization. 
Assume an infinitely large reservoir such that the concentrations of the ions are fixed deep in the external solution (far away 
from the gel), where the electric potential is set to be zero and the solution is assumed to be electrically neutral and stress free. 
Under these conditions, the electrochemical potential for the ions is obtained as: 𝜇𝑏 = 𝑣Π0 + 𝑘𝑇 ln(𝑣𝑐0

𝑏), where 𝑐0𝑏 is the 
ion concentration in the external solution and Π0 = −𝑘𝑇∑ 𝑐0

𝑏
𝑏  is the osmotic pressure. Correspondingly, the chemical 

potential of the solvent is: 𝜇𝑠 = 𝑣Π0. Therefore, by changing the ion concentrations in the external solution, the chemical 
potential of solvent and the electrochemical potential of the ions change simultaneously, which leads to change of the 
equilibrium swelling of the gel.  

 
RESULTS AND DISCUSSION 

 
First consider a simple polyelectrolyte gel with two monovalent ions of opposite charges. The valence of the fixed charge 

is set to be -1. Let c0 be the true concentration of the ions deep in the external solution. In this case, the electrical potential of 



the gel (far away from the interface) can be obtained explicitly as a function of the volume swelling ratio (J) and the ion 
concentration. The equilibrium swelling ratio can then be solved by setting the stress to zero for free swelling. The result 
depends on two key parameters: the Flory-Huggins parameter 𝜒 and the nominal concentration of the fixed charge 𝐶𝑓𝑖𝑥. 
Figure 1a shows the effect of 𝜒 for gels with 𝑣𝐶𝑓𝑖𝑥 = 0.02 and 𝑁𝑣 = 0.001. As the ion concentration changes in the 
external solution, three distinctive swelling behaviours of the polyelectrolyte gels can be identified: (i) a smooth transition 
when 𝜒 = 0.5 or smaller (good solvents); (ii) a discontinuous volume phase transition when 𝜒 = 0.7; and (iii) nearly no 
transition when 𝜒 = 0.9 or larger (poor solvents). A phase diagram is constructed in Fig. 1b, showing that the discontinuous 
volume phase transition from the highly swollen phase to the collapsed phase occurs only within a narrow range of 𝜒 (around 
0.7). This range depends on the fixed charge as shown in Fig. 1c. Interestingly, a minimum value of 𝑣𝐶𝑓𝑖𝑥 is required for the 
discontinuous volume phase transition.  

   
Figure 1. (a) Equilibrium swelling ratio as a function of ion concentration in the external solution; (b) A phase diagram; (c) 
Different transition behaviours in the two-parameter panel. 
 

Next we take into account the effect of composition on the parameter 𝜒 by assuming 𝜒 = 𝜒0 + 𝜒1/𝐽. By varying the two 
parameters, 𝜒0 and 𝜒1, the equilibrium swelling of the gel may undergo a smooth or a discontinuous transition. In the 
experiments by Ohmine and Tanaka [1], partially ionized acrylamide gels with acrylic acid groups (–COOH) were immersed 
in a mixed solution of water, acetone, and salt with varying compositions. To compare with the experiments, we extend the 
model for a mixed solvent with two components (water and acetone) by using an effective interaction parameter that depends 
on the acetone concentration as: 𝜒 = 𝜒𝑎𝜑𝑎 + 𝜒𝑏𝜑𝑏. For the polyelectrolyte gel immersed in the mixed solution with NaCl, 
there are four types of mobile ions: H+, OH-, Na+ and Cl-. Deep in the external solution, the concentrations of Na+ and Cl- are 
identical and set by the salt concentration c0. The concentrations of H+ and OH- are determined by pH, which is set to be 7. 
Under these conditions, the chemical and electrochemical potentials are all determined as a function of the salt concentration. 
Figure 2a shows the equilibrium swelling ratio of the gel as a function of NaCl concentration in the mixed solutions with 
different acetone concentrations. When the acetone concentration is low (0-40%), the equilibrium swelling ratio undergoes a 
smooth transition as the salt concentration changes. With relatively high acetone concentration (50-60%), a discontinuous 
volume phase transition occurs, whereas no swelling transition is observable for 70% acetone concentration. These results 
agree remarkably well with the experiments. To further test the model, we consider mixed solutions with MgCl2 where the 
positive Mg2+ ions are not monovalent. In this case, the condition of electroneutrality leads to a more complicated relation 
between the ion concentrations in the gel and the electrical potential. Nevertheless, the equilibrium swelling ratio can be 
determined numerically by solving two coupled nonlinear algebraic equations. As shown in Fig. 2b, the result is qualitatively 
similar to Fig. 2a, but the discontinuous transition occurs at lower acetone concentrations (40-50%). In particular, for 50% 
acetone concentration, the critical salt concentration for the volume phase transition is about three orders of magnitude lower 
than that for the monovalent salt NaCl. This again agrees with the experiments. 

  
Figure 2. Equilibrium swelling ratio as a function of salt concentration in a mixed solution with (a) NaCl and (b) MgCl2. 
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Summary The literature on polymeric gels is burgeoning at a remarkable pace. However, the majority of the mechanics work has been
directed toward modeling and computational aspects, and not nearly as much on validation. This work overviews recent research on a
combined experimental and modeling effort on polymeric gels, from a mechanics based framework. This integrated approach leads to a data
set useful to mechanicians to further refine those models found in the literature. Most importantly, it shows some serious faults in current
modeling efforts.

INTRODUCTION

An elastomeric gel is no more than a polymer network swollen with a suitable solvent. Many gels can absorb large
quantities of solvent, leading to a volumetric swelling far beyond its initial volume. This swelling allows for gels to be
exploited in a variety of applications, including actuation and sensing in microfluidics, drug delivery and tissue engineering,
and packers for sealing in oilfields. Correspondingly the literature has seen an explosion of interest in recent years for this
class of materials (for brevity, see [2] and references therein). However, recent evidence indicates that current constitutive
models may not be adequate in describing the real coupled deformation-diffusion behavior of gels [4].

The purpose of this work is to develop an integrated research approach that includes combined modeling and experiments
of polymeric gels. This combined approach is used in order to fully characterize the coupled deformation-diffusion behavior
of polymeric gels and understand the mechanisms that drive the material behavior.

MODELING AND EXPERIMENTS

For the modeling portion we closely follow our recently published work [1, 2] which is summarized here. We denote the
solvent concentration per unit reference volume by cR, and per unit current volume by c. We employ the decomposition

F = FeFs, (1)

of the deformation gradient into elastic and swelling parts, where Fs = (Js)
1/3

1, with Js = 1 + ΩcR, is the swelling
distortion, and Ω the molar volume of the solvent. Further, we define the polymer volume fraction φ = (1 + ΩcR)

−1,
such that φ = 1 is a fully dry polymer, and φ < 1 is a swollen gel. We note that due to the decomposition (1), we have
B = φ−2/3Be so that the state of stretch is composed of both swelling and elastic deformation. The final form of the Cauchy
stress is given by

T = J−1 [GB− P1] , (2)

where the shear modulus G is stretch dependent and of the form G = G0ζ. With ζ =
(
λL

3λ̄

)
L−1

(
λ̄
λL

)
, and λ̄ =

√
TrB/3,

a scalar measure of the three-dimensional state of stretch, which includes both swelling and elastic stretching. Here L−1 is
the inverse of the Langevin function given by L(•) = coth(•) − 1/(•). Also, G0 is the initial shear modulus, and λL is the
locking stretch. These two parameters are the only parameters required to fully characterize the “dry” mechanical response of
the material.

Turning attention to the diffusion, the fluid flux is assumed isotropic and proportional to the gradient in chemical potential,

j = −m gradµ, with m =
Dc

Rθ
, and µ = µ0 +Rθ

(
ln(1− φ) + φ+ χφ2

)
− ΩG0φ+ ΩPφ. (3)

Here, R is the gas constant, θ the absolute temperature, D the diffusivity which may be constitutively prescribed, and µ is the
chemical potential. The key parameter in the chemical potential is χ, the interaction parameter (sometimes called the Flory
parameter), which represents the dis-affinity between the solvent and the polymer network. The final form of diffusion of the
fluid flux takes the form φ̇ = JΩφ2divj.

To verify the constitutive forms, and obtain the material parameters appearing in the theory an experimental program was
undertaken. Summarizing, the set of material properties to be determined are {G0, λL, D, χ}.

Dry tension
Dry tension tests, including loading and unloading, were carried out to determine the baseline “dry” material behavior.

The tests were carried out quasi-statically at room temperature on flat dog-bone samples with a gauge section 0.25 in wide and
0.22 in thick. The axial deformation was measured using a non-contact digital image correlation system.
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Figure 1: Dry tension tests on vinylpolysiloxane. a) Virgin state and
λ = 2.4. b) Measured true stress stretch response.

Figure 1a shows a few snapshots of the specimen
in the virgin state, as well as the fully stretched
(λ = l/l0 ≈ 2.4) state. Also, Figure 1b shows
the measured behavior. Clearly from Figure 1b
we can see that this material is essentially hyper-
elastic with very little hysteresis or time depen-
dence (not all results are shown here). Using the
model described above, withG0 = 0.056 MPa and
λL = 3.9, the corresponding fit shown Figure 1b.

Free swelling
Free swelling experiments were performed to obtain the parameters associated with the equilibrium chemistry. Specifi-

cally, with the elastic parameters known, after equilibrium stress free swelling, we have µ = µ0 everywhere in the body, which
we may exploit to find χ. Assuming equilibrium conditions, we have 0 = ln(1−φe)+φe+χφ2

e+ ΩG0

Rθ

(
ζφ

1/3
e − φe

)
. Then,

upon measuring the initial and swollen shapes, we may determine φe in this freely swollen equilibrium state. Figure 2a,b
show the initial and swollen specimen, respectivly. Based on the change in geometry we find the dry volume is 7912.2 mm3,
the swollen volume 34050 mm3, so that Je = 4.3035, and φe = 1/Je = 0.2324, and correspondingly compute χ = 0.5682
using Ω = 1.3162× 10−4 mol/m3 for hexane.

Further experiments were performed on various compositions of PDMS swollen in Pentane. Fig. 2c shows the mechanical
locking stretch λL, determined through dry tension tests, as well as the steady-state swelling stretch λss determined from free
swelling experiments as a function of PDSM composition. It is clear that a major discrepancy exists in these results as the
measured swelling stretch is larger than the measured locking stretch, an unphysical condition.
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Figure 2: Free-swelling of vinylpolysiloxane in hexane: a) Initial dry body, and b) swollen body after 48 hours in hexane. c)
Locking and swelling stretches for PDMS in pentane vs. gel composition.
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Figure 3: Constrained swelling
force vs. time for PDMS swollen in
pentane at various compositions.

Obtaining repeatable data to measure the diffusivity is difficult, and still an open
area of research. One method of obtaining data regarding the transient behavior of
the polymer consists of swelling a gel against a platen and measuring the resulting
force as a function of time. Results from such experiments are shown in Fig. 3 for
PDMS of various compositions swollen in Pentane along with finite-element simulation
results replicating the experiments. Clearly the currently used functional form for the
diffusivity is incapable of capturing the correct, experimentally measured, transient and
furthter consideration needs to be given to the constitutive form of the diffusivity D.

CONCLUSIONS

We have initiated a combined experimental and modeling effort toward better un-
derstanding the behavior of polymer gels. Our results to date show that current constitu-
tive models are in need of improvement. Work is underway to resolve the discrepancies
between the experiments and models, and also examine other polymer/solvent systems.
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Summary Cavitation is often observed in soft materials. Many studies focused on cavitation in elastomers, and more recently also in
hydrogels, where drying–induced cavitation can determine fractures. In this paper, we investigate cavitation in hydrogel–based structures
with the aim to highlight the physical principles which drive a few unique mechanisms in Nature world, which view cavitation as a tool to
generate fast movements.

INTRODUCTION

Soft active materials are largely employed in Nature to realise mechanisms whose specific function is triggered by specific
stimuli [1, 2]; they are also used to realize man–made devices (actuators), where deformations and displacements are triggered
by a wide range of external stimuli such as electric field, pH, temperature, and solvent absorption [3, 4, 5, 6]. The effectiveness
of these actuators critically depends on the capability of achieving prescribed changes in their shape and size and on the rate
of changes. In particular, in gel–based actuators, the shape of the structures can be related to the spatial distribution of
the solvent inside the gel, to the magnitude of the solvent uptake (refusal), and to the rate of solvent uptake (refusal) rate.
Currently, several approaches to the shape control of swellable materials are being pursued, which involve materials in the
form of thin non–homogeneous sheets realized through a controlled assembly of different gels which may be isotropic or
anisotropic [10, 11, 12, 13].

The present study focus on cavitation in hydrogels as a tool to generate fast movements in hydrogel–based structures.
The starting point is the observation of the cavitation–triggered catapult of fern sporangia, whose function is the realisation
of a perfect dispersal mechanism. Therein, the key structural element is the annulus, which can be viewed as a curved beam
composed by soft material organized in cells separated by stiffer walls. We start by modelling and implementing via a finite
element code the mechano–chemical processes occurring in a mechanical analog of a single cell of the anulus: swelling, de–
hydration, and building up of water tension up to a critical value corresponding to cavitation; and illustrates in the following
the key idea behind our modelling through a simple toy problem.

A MECHANICAL ANALOG

The first step of our work, illustrated in the present abstract, refers to a mechano–chemical toy problem which can be
easily solved, and is useful to illustrate the key idea behind our model. Our starting point is the multiphysics model presented
and discussed in [14], where three different states of a gel body were introduced: the dry state Bd, a swollen and stress–free
state Bo, and the actual state Be. Within a classical Flory–Rehner thermodynamic contex, the constitutive equation for the
stress Sd at the dry configuration Bd, from now on denoted as dry–reference stress, and the chemical potential µ are:

Sd = GFd − pF?
d and µ = µ(Jd) + Ωp , with µ(Jd) = RT

(
log

Jd − 1

Jd
+

1

Jd
+

χ

J2
d

)
, (.1)

being Fd the deformation gradient from Bd to Be and Jd = detFd; moreover, G ([G] =J/m3), Ω ([Ω] =mol/m3), R
([R] =J/Kmol), T ([T ] = K), and χ are the shear modulus of the gel, the solvent molar volume, the universal gas con-
stant, the temperature, and the Flory parameter, respectively. The swollen and stress–free state Bo is attained from Bd for
Fd = λoI; in this case, it holds GFo−pF?

o = 0 and µ = µ(Jo) + Ωp = µo, with µo the value of the bath’s chemical potential
which completely determines the corresponding swelling ratio λo.

We consider a cubic gel whose freely swollen state Bo is a cube with sides of length Lo and faces anchored through linear
elastic springs at a solid and permeable container (see figure 1 (left panel)); at Bo springs are relaxed. Due to a change in the
chemical potential of the bath, from µo to µe, a further deformation process arises; the corresponding deformation gradient F
from Bo to the actual state Be is determined by F = FdF

−1
o . Depending on the boundary constraints, the latter deformation

process can have different characteristics. In our toy problem, due to the uniformity of the elastic springs over the boundary,
we assume that F can be represented as an isotropic deformation process of homogeneous intensity λ: F = λI; we also
assume that it is controlled by the chemical potential µe of the solvent’s bath and by the stiffness κo of the boundary springs.
The swollen–reference stress S corresponding to F, the push–forward of the dry–reference stress Sd,

S =
G

Jo
FFoF

T
o − pF? , (.2)
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is homogeneous and the corresponding balance equations of forces prescribe that S = σeF
?. The corresponding equation of

chemical equilibrium prescribes that
µ(λ3oλ

3) + Ωp = µe . (.3)

When the chemical potential is reduced, that is µe < µo, the gel expels solvent and shrinks, so reducing its volume (see figure
1 (left panel)); springs elongate, thus generating an uniform tension σe = −ko ε on the faces, being = ε = λ− 1.

With this, the hydrogel goes from a stress–free swollen state Bo (blue dot in figure 1 (right panel)) to a shrunken and under
tension state Be, determined by the intersection between the coloured iso–chemical potential lines and the black straight line
in figure 1 (right panel). The final state and the uniform tension’value depend on the new value µe of the chemical potential
through the equations (.2)–(.3) which involve λ, and on the stiffness κo of the springs. When σ = σcr (red dot on the critical
iso–chemical potential line) the solvent inside the gel begins cavitation, hydrogel volume increases, and the spring shorten
releasing the elastic energy previously stored.
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Figure 1: Left: We consider a cubic gel in a free swollen state (light red) whose faces are anchored through linear
springs at a solid container (shaded frame). When the chemical potential is reduced, the gel expels solvent, reduces
its volume (red square), and the springs elongate, thus generating a tension on the faces. Right: The de-swollen
cube is under uniform tension whose value depends on the new value of the chemical potential through ∏, and
the stiffness of the spring.
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Figure 2: Pressure-strain curves for different values of the external chemical potential µe . We consider a case for
which the free-swollen reference (blue point) is realized withµe =°100 (J/mol). By decreasingµe , the cube shrinks
following the line æ=°ko "= ko(∏°1). When æ=æcr (red point) the solvent inside the gel begins cavitation.
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Figure 1: Left: We consider a cubic gel in a free swollen state (light red) whose faces are anchored through linear springs at a
solid container (shaded frame). When the chemical potential is reduced, the gel expels solvent, reduces its volume (red square),
and the springs elongate, thus generating a tension on the faces. Center: The de-swollen cube is under uniform tension whose
value depends on the new value of the chemical potential through λ, and the stiffness of the spring. Right: Pressure-strain
curves for different values of the external chemical potential µe. We consider a case for which the free-swollen reference (blue
point) is realized with µe = −100 (J/mol). By decreasing µe, the cube shrinks following the line p = −ko ε = ko(λ − 1).
When σ = σcr (red point) the solvent inside the gel begins cavitation.

CONCLUSIONS

The toy problem illustrated above contains the key idea which is behind our investigation about the effects of cavitation on
hydrogel–based systems. More complex deformation processes may occur when a series of units as the one shown in figure 1
is shown, and the contribution of the elastic walls surrounding the gel is not uniform.
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Summary In this paper, we consider the problem of pressure-driven fluid flow through a gel-filled channel. This subject, which is relevant
to many areas, has been addressed by several authors. Our interest here is to investigate how the network elastic response affects the solvent
flow profile under steady-state conditions. We show that there is a class of elastic materials for which the flow profile is not affected by the
applied pressure gradient. This class includes both neo-Hookean and Mooney materials but excludes Gent materials.

INTRODUCTION

A polymer gel is a two-component material composed of a cross-linked polymer network, which is usually described as an
elastic, isotropic and incompressible solid, and an incompressible fluid, solvent for short, that permeates the interstices of the
network. Such materials exhibit unusual and complex phenomena as a result of the coupling between large deformation and
fluid permeation. In this paper, we study the problem of pressure-driven fluid flow through a gel-filled channel. This problem
has been investigated by several authors to investigate, for instance, the phenomenon of pressure-induced channel formation
(Cogan & Keener (2005)) . This work builds upon Duda, Souza & Fried (2010). Due to lack of space, details will be omitted.

PRELIMINARIES

Solvent permeation in polymer gels is governed by a set of equations comprised by the constraint of local volume preser-
vation, which represents the conventional assumption that the solid and solvent are both incompressible, and a pair of field
equations that describe the mechanical force and solvent content balances. These equations are conveniently organized as
follows:

detF = φ0/φ, divT = 0, div (υ+ v) = 0. (1)

Here and henceforth, F is the deformation gradient, φ0 and φ are the polymer volume fractions in the reference and actual
configurations, υ is the volume occupied by an individual solvent molecule, T is the Cauchy stress tensor,  is the solvent
flux per unit spatial area, and v is the network velocity field. External body forces, inertial effects, and solvent supply are
neglected here.

From the constitutive point of view, the theory is fully specified by the response functions ψ̂ and M̂s determining the free
energy density ψ and the mobility tensor Ms. Hereafter we suppose that ψ̂ incorporates three contributions: the energy of
the “unmixed” pure solvent; the isotropic elastic energy due to network deformation; and the energy of mixing. Invoking the
Frenkel–Flory–Rehner hypothesis, we assume that the latter two contributions are additive and separable. As for the mobility,
we assume a concentration-depedent isotropic response. It then follows that

ψ̂(F, c) = µ0c+ ψ̂e(I1, I2) + ψ̂m(c), Ms = m̂(c)I, m̂(c) > 0, (2)

where µ0 is a reference chemical potential, c = (detF−φ0)/υ is the number of solvent molecules per unit reference volume,
and I1 = trB and I2 = (I21 − trB2)/2 are the first and second principal invariants of the left Cauchy-Green tensor B = FF>.
Notice that both ψ̂m and m̂ can be viewed as a function of φ or I3 = detB, the third invariant of B. With these constitutive
choices, it can be shown that T and  can be written as

T = Tn − pI,  = −υm̂(c) gradp (3)

where
Tn = β0I+ β1B+ β−1B

−1 − πI, π = −(∂ψ̂m/∂c)/v, (4)

and
β0 = 2I2α2/

√
I3, β1 = 2α1/

√
I3, β−1 = −2

√
I3α2, (5)

with α1 = ∂ψ̂e/∂I1 and α2 = ∂ψ̂e/∂I2. The quantities p and π are often called the fluid and osmotic pressures (e.g. Doi
(2013)). Thus, the total Cauchy stress T results from two contributions, one due to the network, Tn, and other due to the
solvent, −pI. By its turn, the network stress arises from network elasticity and the osmotic pressure.
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PRESSURE-DRIVEN FLOW THROUGH A GEL-FILLED CHANNEL

Consider the space between two infinitely long parallel plates separated by a gap 2d and completely filled by a gel which
is fixed to and impermeable at the plates. We introduce a Cartesian coordinate system with the x-axis chosen parallel to the
flow, the y-axis orthogonal to the plates, and z-axis orthogonal to the (x, y)-plane. We take the plates to be located at y = 0
and y = 2d. Suppose that the gel is in a stress-free state with polymer volume fraction constant and equal to φ0. Then, a
pressure gradient a is applied causing the solvent to flow through the gel. Our interest here is to investigate the influence of
the gel properties on the characteristics this flow under steady-state conditions.

Specifically, we suppose that the pressure p is given up to an arbitrary and constant pressure p0, that is,

p(x, y) = −ax+ p0, (6)

with the constant a given. Taking (1)3 into account, this implies that the x-component of the solvent flux  is given by jx =
m̂(φ)a, whereas the remaining components vanish. Since the the solvent flux is fully characterized by jx, its characteristics
depend on the material function m̂ and the polymer fraction distribution φ, which needs to be determined by invoking the
interaction between mechanics and permeation. This issue is discussed in what follows.

We begin by assuming the gel undergoes a special time-independent deformation in which the spatial (x, y, z) and ref-
erential (X,Y, Z) coordinates of a gel particle are related by X = x + f(y), with f symmetric with respect to the central
line between the two plates, Y = g(y), and Z = z. Since the gel is fixed to the plates, the functions f and g must obey the
boundary conditions f(0) = f(2d) = 0, g(0) = 0, and g(2d) = 2d. A simple calculation shows that the deformation gradient
F can be viewed as the result of the superimposition of an uniaxial extension with stretch η = 1/g′ on a simple shear with
amount γ := −f ′/g′. In this case, the incompressibility constraint imposes that φ = φ0/η which in turn yields that φ can
depend on y only. This implies, along with the fact that v = 0 and that jx is the only non-null component of , that the solvent
content balance (1)3 is trivially satisfied in the case under consideration. Further, as a consequence of the boundary condition
on g, it is easy to see that η must satisfy the condition

2d =

∫ 2d

0

(1/η(y)) dy. (7)

We now observe that the mechanical force balance (1)2 can be written as divTn = gradp which, under the conditions
discussed in this section, implies the following equations for the network shear and normal stresses τnxy and σn

y :

τnxy(γ(y), η(y)) = −a(y − d), σn
y (γ(y), η(y)) = k, (8)

where k is constant,

τnxy(γ, η) = 2γ(α1(I1, I2) + α2(I1, I2)), σn
y (γ, η) = 2η(α1(I1, I2) + 2α2(I1, I2))− π(η), (9)

I1 = 2 + γ2 + η2, and I2 = 1 + γ2 + 2η2.
The problem under investigation here consists in solving (7) and (8) for γ(y), η(y) and k. Once this problem is solved,

φ is obtained via the relation φ = φ0/η and the solvent flow via jx = m̂(φ)a. The main results are as follows. When a
pressure gradient is applied, the shear stress τnxy is developed in the network to ensure mechanical equilibrium. This stress is
accompanied by the amount of shear γ, the determination of which requires the knowledge of the“shear modulus” 2(α1+α2).
This in turn is a function of γ and η through I1 and I2. On the other hand, the polymer volume fraction φ is obtained by using
φ = φ0/η, with η being obtained by solving (8)2. This equation does not involve γ wherever α1 + 2α2 is constant. For this
class of materials, it is immediate to see that the polymer volume fraction φ, and hence the flow profile, is not affected by the
pressure gradient a. A simple calculation shows that both neo-Hookean and Mooney elastic materials belong to this class of
materials, whereas Gent elastic materials do not.

CONCLUSIONS

We have shown that the shear stress τnxy is a function of the pressure gradient a. Whether the same conclusion applies or
not to the normal stress σn

y depends on the elastic response. When it does not apply, the polymer volume fraction, and hence
the flow profile, is not affected by the pressure gradient. This is the case for both neo-Hookean and Mooney elastic materials.
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Summary We consider the elastocapillary rise between swellable structures using a favorable solvent. We study the elastocapillary rise
and subsequent swelling–induced bending, and characterize the dynamic deformations and resulting equilibrium configurations for various
beam geometries. Our analysis highlights the importance of two characteristic length scales, and uses these lengths to predict both the
elastocapillary rise and the critical curvature for peeling. We predict the transition between coalescence dominated beams and bending
dominated beams using a balance of bending, stretching, and surface energies, and use a relaxed constraint on Euler’s elastica to describe
the fluid ratcheting.

INTRODUCTION

Fluid-structure interactions occur across many length scales within synthetic and biological systems. At large scales,
inertial flows and fluid weight can cause substantial structural deformations, while at small length scales, surface forces may
dominate a material’s deformation. In addition to the forces that a fluid exerts externally onto a flexible structure, the diffusion
of a favorable solvent into the material’s elastic network can cause substantial swelling-induced deformations. Balancing
the relevant energies in each problem leads to an elastocapillary length scale [1, 2], beyond which the fluid’s surface tension
will dramatically deform it, and an elastoswelling length scale, beyond which swelling by the fluid will cause significant
bending. Capillary rise is a classical problem dating back to Leonardo da Vinci, and the description of the diffusive dynamics
of the wetting front is attributed to Bell & Cameron, Lucas, and Washburn. The coupled problem of capillary rise between
flexible sheets has received attention rather recently [1], with consideration given to the static equilibrium shapes [3] and
dynamic imbibition [4, 5, 6] from a fluid bath and fluid droplets. Study of the equilibrium swelling of rubber has classical
ties to polymer physics, and its theoretical and experimental origins begin with Flory & Rehner and Treloar. Recent work has
focused on the dynamic, swelling-induced deformations that occur when a fluid swells a structure in a non-uniform manner,
causing bending [7]. The coupled problem of capillary rise between swellable, flexible structures is new to our knowledge,
yet is relevant due to the flexibility and porosity of biological tissues, microfabricated structures, and permeable membranes.
In this work, we will study the elastocapillary rise between flexible, swellable sheets to study the dynamic deformations that
result from these competing phenomena.

Figure 1: Images of two flexible beams deforming initially due to capillary rise (ii), and then subsequently due to swelling–
induced bending (iii).
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EXPERIMENTS

Two polyvinylsiloxane (PVS, Zhermack Elite Double 22) elastic beams with a Young’s modulus E=0.884 MPa, and
rectangular cross sections of length L, width b, and thickness h are separated by a distance d0, clamped at the top, and hung
vertically in a gravitational field. We varied the length L from 15mm-24 mm, the initial gap d0 from 1.2mm-4.9 mm, kept
the width constant at b=3.5 mm for all experiments, and studied two thicknesses h=0.5 mm and h=0.8 mm. The beams are
then lowered until the tips contact a bath of silicone oil (ν =5 cSt, Sigma Aldrich). Capillary action causes the fluid to rise
between the two beams, and the flexibility of the elastic beams enable the capillary pressure from the silicone oil to bend the
structures until they coalesce. Silicone oil is a favorable solvent for these silicone rubber beams, so the fluid diffuses through
the beam’s thickness and swells the elastic network in a nonhomogenous manner. This nonhomogenous swelling causes the
beams to bend away from each other [7]. Once the beam’s curvature increases beyond some critical point, the deformation is
enough to cause separation with the fluid bath, and the swelling-induced bending continues until fluid has permeated through
half the beam’s thickness. Over the course of this process a volume of fluid is transporting upwards in a ratcheting fashion
(Fig1-iii). At long times the beams relax back to their initially straight configuration, and this process repeats itself.

DISCUSSION

In our experiments, E, ν and the surface tension γ are constant, leaving the geometric parameters L, h, and d0 as our
independent variables. By rescaling some of our experimental results by the characteristic length scales in this problem, we
gain some insight into the underlying mechanics. First, we can split the elastocapillary rise between swellable beams into two
parts by recognizing that the predominant forces act in opposing ways to deform the beam - elastocapillarity bends the beams
together, and swelling curls the beams away from each other. The elastocapillary deformation is dominant until the beams
peel from the surface of the fluid.

Capillary rise between flexible beams comes from a competition between the force per unit area required to bend the
structure and the capillary pressure exerted by the wetting fluid. In this context, minimizing the total energy of this system
with respect to the dry length gives [1]: Ldry =

(
9
2

)1/4√
d0`ec,where a characteristic elastocapillary length scale `ec =

√
B/γ

is introduced. The elastocapillary characteristic length scale also arises in the case of a naturally flat flexible sheet in contact
with a wetted cylinder [2]. Here, the situation is reversed as the fluid’s surface tension exerts a force that tries to flatten a beam
with a swelling–induced natural curvature κb = R−1. The result is the same – the coalesced beams will curl apart when the
natural curvature reaches a critical value Rc ∝ `ec.

The short time dynamics of our experiments are dominated by capillary rise. At longer times, the swelling–induced
bending becomes the main form of deformation. If capillary rise occurs, two general modes of deformation are observed: 1.)
elastocapillary coalescence is dominant, and bending is localized near the bottom of beams, or 2.) swelling–induced bending
is dominant, and the beams peel apart. We measured the maximum radius of curvature Rc that the beams reached while
completely in contact the fluid bath, and observed that above a critical curvature the beams spontaneously peeled away from
the fluid surface. The corresponding critical radius of curvature is on the order of `ec. Finally, we rationalize the ratcheting
of the fluid integrating using Euler’s Elastica equations with the appropriate set of boundary conditions, thereby revealing the
energy landscape underpinning the fluid’s motion.

In conclusion, we note that the deformations are dramatically different from those observed during traditional elastocapil-
lary rise, and present a rich framework for studying coupled problems with multiple characteristic length and time scales. Our
scaling analysis appears to capture some of the underlying mechanics, but we expect that a more robust theoretical approach
will be necessary to capture the interplay between wetting, adhesion, and swelling. There is much to be done experimentally
as well – in this work the silicone oil swells at a fairly slow rate, and both the solvent and elastomer can be changed to see
enhancements in the swelling dynamics and the magnitude of deformation. Preliminary results on increasing the beam’s width
indicate that out–of–plane twisting can occur, in addition to the in–plane deformations discussed here. It is likely that swelling
occurs in various elastocapillary environments, and while similar deformations may not be observed, confinement could lead
to unexpected residual stresses, and localized deformations.
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Summary This paper presents the manufacturing and testing results of a soft composite film, consisting of stacked layers of fabric mesh and 3M 

VHB tapes. The mechanical testing results show that the strength and toughness of the composite is highly dependent on the composition, and in 

certain range, the composite exhibits much higher mechanical strength and toughness compared with the base materials. The toughening 

mechanism of the composite is believed to be similar to that in the well-known double-network hydrogels [1]. A 1D shear-lag model is developed 

to illustrate the damage-distribution toughening mechanism of the composite. The prediction of the model agrees well with the measured 

properties of the composite in different compositions. 

 

INTRODUCTION 

 

   Double-network (DN) hydrogels have drawn much attention as a soft material having both high mechanical strength and 

toughness, while containing up to 90% of water [1]. It consists of two interpenetrating polymer networks: one consisting of 

relatively short and stiff chains (the 1st network) and the other with much longer and initially coiled chains (the 2nd network). 

The origin of strength and toughness has been attributed to the energy dissipation in the irreversible structural change during 

deformation, induced by the partial damage of the 1st network [2, 3]. Inspired by the structure and working mechanism of DN 

gels, a highly stretchable soft composite was designed and fabricated. The experimental samples were made by stacking VHB 

acrylic tapes and layers of fabric mesh. The two constituents serve the same purpose as the two networks in a DN gel: the stiff 

but brittle mesh provides the high strength as the 1st network of a DN gel, and the soft but stretchable VHB tape serves as the 

ductile substrate, just like the 2nd network. The two materials were well-bonded initially, but exhibit significant sliding after 

the fracture and fragmentation of the mesh, which enables distributed partial damage in the mesh. After optimization, the DN 

composite is as strong as the mesh, and at the same time as stretchable as the VHB tape. With the energy dissipation 

mechanism similar to that in the DN gels, the DN composite has a toughness at least one order of magnitude higher than either 

of the base materials. 

 

EXPERIMENTATION 

 

   The samples were prepared by stacking nylon fabric mesh with hexagonal grids alternatingly with VHB acrylic tape 4910 

(3M Co.). The interlayer bonding is due entirely to the adhesion of the VHB tape. Unless otherwise stated, each sample was 

cut into rectangular shapes of width 25mm and height 30mm (gauge length between grips). As the mesh has negligible 

thickness compared to the tapes (~1mm thick), the sample thickness is approximately the total thickness of the VHB tapes. 

The mechanical tests were carried out over an Instron 5960 dual column testing system. The nominal stress was calculated by 

dividing the force data by the original cross-sectional area of the sample (i.e. that of the VHB tapes).  

 

RESULTS AND DISCUSSION 

 

   As shown by the snapshots C-F in Fig.1a, the DN composite exhibits stable necking during uniaxial tension, just as DN 

hydrogels [1]. The necking zone corresponds to the area of partially damaged fabric mesh, as shown by the enlarged picture 

in Fig.1b. After partial damage in the mesh, the load is carried locally by the much softer tape with large deformation. Due to 

the ductility of the tape, the subsequent step is the fracture of the mesh in other areas, instead of the rupture of the tape. Similar 

as in a DN gel [3], the propagation of the partial damage zone (necking) corresponds to the stress plateau on the loading curve, 

as shown by Fig.1a. It is believed that such a damage-distribution mechanism is the key to the toughness of the DN composite 

as well as the DN gels [2]. This toughening mechanism and the stress-strain behavior are rationalized by the following 1D 

model. 

   Experimental observations suggested significant sliding between the mesh and the VHB tape in the partially damaged 

area, as shown by Fig. 1b. Due to the sliding, a shear stress is present between the mesh and the tape, which transfers the axial 

load gradually between the two layers. For simplicity, we approximate this interaction by a shear-lag model with constant 

shear stress 𝜏. Using the shear lag model, the effective stress-stretch curve of the composite is reconstructed theoretically, as 

in Fig. 2b, with the material parameters extracted from independent experiments on the base materials. The deformation and 

damage process of the DN composite can be divided into three stages. In stage I, prior to any damage, the behavior of the 

composite is close to linear elastic, with the stiffness mainly given by the mesh. At a critical stretch, the damage in the mesh 

initiates, and the stress plateaus at the value 

3
1

f H
s

H k


 

  
 

,      (1) 



where 𝑘 is the effective tensile stiffness of the mesh, 𝐻 the original thickness of the tape, 𝜇 the initial shear modulus of 

the VHB tape, and 𝑓∗ the tensile strength of the mesh layer. The monotonic increasing curve in stage III is governed by the 

behavior of the tape layer, and the stress is bounded by a value set by the strength of the tape. 

 

 
Fig 1. (a) Stress-strain curves of a VHB tape, a fabric mesh, and the DN composite with 1 layer of mesh and 2 layers of tape. For comparison, the nominal 

stress of the mesh is normalized by the same cross-sectional area as the DN composite. The insets (A-F) are snapshots of the sample correspond to the 
specific points along the loading curves. (b) Comparison between the undamaged and partially damage zones in the DN composite, and a similar 

mechanism in DN gels, after Ref. [2]. 

 

   Comparing to the experiment results in Fig. 2a, the agreement between the shear lag model and experiments is reasonably 

well. 

 
Fig 2. (a) Nominal stress-stretch curve of the DN composite at various compositions. (b) Theoretical prediction by considering the interaction in the sliding 

zone with a shear-lag model. The four curves have the same composition as the corresponding ones on (a). Material parameters are extracted from 
independent experiments on base materials. 

 

CONCLUSIONS 

 

   Using a fabric mesh and a VHB acrylic tape, a soft but highly stretchable DN composite is manufactured. The DN 

composite follows the same damage-distribution and toughening mechanisms as in the well-known DN hydrogels. The DN 

composite is as strong as the mesh, as stretchable as the tape, and much tougher than both materials. The DN composite 

exhibit stable necking as the DN gels. By using a simple shear lag model to capture the finite interlayer sliding, a theory is 

developed and its prediction in the stress-strain behaviour agrees well with the experiments. On the other hand, the DN 

composite itself may be regarded as a macroscopic model for the study of DN hydrogels. 
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Summary Liquid crystal (LC) glassy polymers co-polymerized with azobenzenes respond to ultra-violet (UV) light by undergoing anisotropic 

dimensional changes. Such a light-induced mechanical response can be used to generate topographical deformations when LC films are fixed to 

rigid substrates. Various topographical changes, dynamically controlled by light, can be produced by controlling the internal distribution of the 

average orientation of the liquid crystal molecules. In this presentation, we review our recent simulation results of light responsive 

topographical transformations of LC polydomain coatings [1].  

 
LIGHT RESPONSIVE SURFACES 

 

   Switchable surface topographies enable many potential applications in manipulating friction and adhesion in the design 

of robotics and human-interactive haptics. In addition, the control of small-scale surface roughness can alter the effective 

hydrophobicity and thus the wetting properties. Light-driven actuations are preferable over thermal and electrically 

stimulations, because there is no need to build surrounding heating devices or electrodes. Photo-responsive systems are 

particularly advantageous in cases where remote control and localized actuation are desired.  

 
Figure 1: A 3D schematic representing the photo-physics and opto-mechanical response of azo-LC polymers under UV 

illumination. UV-triggered isomerizations of the embedded azobenzene molecules (blue) decrease the orientational order of 

the neighboring LC molecules (green) and results in a contraction along the director ( ⃑ ) and expansions along the two 

perpendicular directions. Isomerization from trans (straight) to cis (bent) is driven by UV-light and the back-isomerization is 

driven by visible light and temperature. 

 

   Liquid crystal (LC) polymers can respond to ultra-violet (UV) light in the presence of co-polymerized azobenzene 

molecules [2]. As schematically shown in Fig. 1, triggered by UV-light, conformational changes from the natural trans state 

azobenzene (rod-like) to the bent-like metastable cis state decreases the orientational order of the liquid crystal network. 

These changes lead to a density decrease and a spontaneous contraction along the common direction of the LC moieties, i.e., 

the director, and expansions along the two perpendicular directions [3]. If LC films are fixed to rigid substrates they are able 

to produce surface topographical changes because their in-plane deformations are suppressed and the density changes 

manifest themselves as height variations. LC coatings with a spatially pre-designed patterning of the director distribution 

were recently constructed, which generates reversible protrusions and corrugations under UV illumination [4]. This 

switchable surface topography can be utilized to dynamically control the coating's friction properties [5]. 

 

CMPUTATIONAL MODEL AND RESULTS 

 

   In order to understand the underlying actuation mechanisms and to build a tool for design and optimization, a numerical 

model has been developed to simulate the light-induced surface topography changes of various LC coatings. Using the 

model, we study the dependencies of the generated surface roughness on the material properties and geometric features. A 

nonlinear light absorption model was developed to calculate the UV light attenuation through the thickness of the coating.  

With the absorption model, the corresponding isomerization process of the embedded azobenzenes can be described as a 

function of the director distribution and the type of the incoming light, i.e., diffuse light or polarized light. The light-

triggered spontaneous deformation of the azo-LC polymer was incorporated through an anisotropic eigenstrain which is 

directly proportional to the relative fraction of azobenzene molecules in the cis state. An anisotropic linear-elastic 

constitutive relationship was adopted since the glassy LC polymers remain in the elastic regimes under UV illumination.  



   The key to generate a surface transformation from a flat to a corrugated coating is to create a non-uniform director 

distribution. For regions where the directors are parallel to the electric field of the incoming light, the azobenzenes inside 

have maximal absorbance and thus a higher trans-to-cis conversion level is triggered, leading to a large opto-mechanical 

response. In regions where the directors are perpendicular to the electric field, a much lower deformation is expected due to 

the low cis fraction. Creating a non-uniform director distribution thus produces switchable corrugations. Various types of 

liquid crystalline structures were tested. One of the tested cases is a polydomain film (see Fig. 2), in which the director 

distribution is randomly distributed over different domains and the corresponding photo-induced topographical textures 

feature domain-wise corrugations. The resulting topographical changes of this type of LC glassy films lead to surface 

profiles that are found to be in close agreement with the experimental measurements [1]. Roughness parameters were used 

to quantify the generated surface corrugations. The dependencies of these parameters on the structure's dimensions, 

illumination conditions and opto-mechanical properties of the LC polymer were studied. 

 

 
Figure 2: Simulation results of the light-triggered topographical transformation of a liquid crystal polydomain coating and a 

detailed texture for the boxed region. The polydomain film features domain-wise corrugations [1]. 

 

    

CONCLUSIONS  

 

   A computational tool was developed to simulate UV-triggered surface transformations based on azobenzene-modified 

liquid crystal glassy coatings. Combined with experiments, we show three-dimensional surface topographical changes that 

can be switched by light. Various optimized topographical textures can be produced depending on the specific director 

distribution. 
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Summary Capillary forces acting at the surface of a liquid drop can be strong enough to deform small objects and recent studies have
provided several examples of elastic instabilities induced by surface tension. We present such an example where a liquid drop sits on a
straight fiber and we show that the liquid attracts the fiber which thereby coils inside the drop. We model the system behavior as a phase
transition between a stretched phase, where the drop sits on a straight fiber, and a condensed phase, where the fiber is coiled inside the drop.
The force-plateau regime during the transition between the two phases is seen as a Maxwell line, reminiscent of the Martensite-Austenite
transition in Shape Memory Alloys.

PACKING OF ELASTIC WIRES

A large variety of physical phenomena can be modeled with elastic filaments packaged in cavities [10], see for example
the ejection of DNA from viral capsids [6, 5], or the windlass mechanism in spider capture threads [12]. In the case of a
mechanical wire spooled in a sphere, or DNA in a capsid, the presence of a motor is necessary for the packing process, the
energy to bend the filament being provided by this external actuator. In the case the cavity is a liquid drop (or a bubble in a
liquid medium) surface tension may provide the actuation energy: if the affinity of the filament for the liquid is stronger than
that of the filament for the surrounding gas, then the bending energy required for packing could be provided by the difference
of surface energies. As always, surface energy prevails at small scale and for millimeter-sized drop-on-fiber systems [7],

Figure 1: Elastomer beam of 140 µm section bent in a silicone oil drop (diameter ∼ 2.7 mm). The system is immersed in a
water tank to provide buoyancy.

the competition between capillary and elastic forces is not automatically won by the former: a threshold length emerges and
separates systems in which packaging is possible from those in which the fiber remains straight. This threshold length, called
elastocapillary length [9], plays a central role in problems in which surface tension bends or buckles slender rods or thin
elastic sheets [8]. Computations of configurations of a filament packaged in spherical cavities have been performed using
finite elements [11], molecular mechanics [3], or statistical physics [1] approaches. Here we study the buckling and coiling of
an elastic rod in a sphere. The rod is held in tension at its extremities and we record this tension as a function of the length of
the rod packed in the sphere, while monitoring the different configurations the systems adopts.

RESULTS

We model the system of Figure 1 as an elastic rod in interaction with a rigid sphere. The rod is flexible but inextensible
and unshearable, yielding a deformation energy of the form

Estrain =

∫ L

0

(1/2)
[
K1 U

2
1 (S) +K2 U

2
2 (S) +K3 U

2
3 (S)

]
dS (1)

where K1 and K2 are the bending rigidities, K3 is the twist rigidity, U1 and U2 are the curvature strains, and U3 is the twist
strain [2, 4]. A liquid spherical drop of radius R is attached to the rod. The rod enters (exits) the drop at meniscus point A
(B). The rod is then divided in three regions: (I) where S ∈ (0;SA), (II) where S ∈ (SA;SB), and (III) where S ∈ (SB ;L),
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with region (II) lying inside the liquid drop. In regions (I) and (III) the solid-vapor interface has an energy γSV per unit area.
In region (II) the solid-liquid interface has energy γSL per unit area. The total surface energy then scales linearly with the
contour length:

Esurface = P [γSVSA + γSL(SB − SA) + γSV(L− SB)] (2)

where P is the perimeter of the cross-section of the rod. We minimize this energy under geometrical constraints (encapsulation
in the drop, fixed end-to-end distance, etc) and find the different equilibrium configurations of the system as more and more
fiber length is spooled inside the drop, see Figure 2.

Figure 2: Bifurcation curve showing the end tension T as function of the end-shortening ∆.
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Summary

A BRIEF INTRODUCTION TO PULL-IN INSTABILITY 

A membrane of a dielectric elastomer deforms subject to a voltage through the thickness. The voltage induced 
deformation is highly nonlinear and even non-monotonic, inducing the pull-in instability. A cylindrical elastomeric tube 
subject to an internal pressure exhibits quite similar instability behavior. We study the deformation behavior a dielectric 
elastomer tube subject to electromechanical coupling loading. Explicit expressions for the critical conditions of electro-
mechanical bifurcation are derived. The post-bifurcation path and the steady state propagation is comprehensively 
investigated.  

 

 
From our common experience, when a rubber balloon is inflated to a certain size it will cost less strength to blow it 

larger. The characteristic of transition from a stiffer balloon to a softer balloon defines a peak pressure on the pressure-
stretch curve. The presence of the peak pressure is due to the strong coupling of the true stress with deformation and high 
nonlinearity of the material. A pressure inflates the balloon and in turn the true stresses increases such that a mechanism of 
positive feedback exists, inducing the so-called pull-in instability. Another characteristic of inflating a rubber balloon is the 
stiffening effect at large stretch due to the limiting length of polymer chains. These two characteristics give the well known 
N-shaped pressure-stretch curve. A membrane of a dielectric elastomer sandwiched between two compliant electrodes 
undergoes large deformation subject to a voltage across the thickness. The voltage induced deformation is due to Columbic 
force and thus the electric field determines the intensity. Like the coupling between the true stress and stretch in inflating a 
rubber balloon, the electric field couples strongly with deformation. The Columbic force squeezes the membrane and the 
decreased thickness amplifies the electric field. The positive feedback competes with the elasticity of membrane, inducing 
the electrical instability. Similarly, the electrical instability defines a peak voltage on the voltage-stretch curve. The curve 
eventually becomes N-shaped due to strain stiffening. 
 

INSTABILITY OF A DIELECTRIC ELASTOMER TUBE UNDER ELECTROMECHANICAL LOADING 
 

When inflating an initially flat membrane clamped at the boundary from one side, the snap-through behaviour at the 
peak pressure is usually observed. And the snap-back occurs in deflation. On inflating a purely spherical membrane, refined 
stability analysis and experiments show that the spherical configuration in inflation is unstable. The spherical membrane 
may bifurcate into a pear-shaped configuration through a localized thinning near one of the poles. When inflating a tubular 
balloon, the localized bulging instability is usually observed at a critical pressure. As more fluid is pumped into the tube, the 
localized aneurysm develops until its radius reaches a critical value. With continuous pumping, the pressure stays 
unchanged and the aneurysm shifts along the tube with more and more sections bulging up at the expense of unbulged 
sections. Consider an infinitely long cylindrical DE tube subjected to an internal pressure p, an axial load F at two ends and 
a voltageΦ through the thickness. We first establish the governing equations of the tube as 
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The first two equations represent the force balance along longitudinal and hoop directions respectively, while the last 
equation represents the electric balance. By using a simplified mathematical approach, we can analytically obtain the critical 
conditions for bifurcation. 

 



POST BIFURCATION PATH AND STEADY PROPAGATION 
 

In the bifurcation diagram, a 45 degree straight line represents the homogenous deformation while coloured curves show 
the bifurcated solutions. The dashed lines represent solutions which are either periodic or unbounded. The blue and red lines 
represent the solutions at different levels of constant voltage or pressure. A pre-stretched membrane by pressure becomes 
stiffer while a pre-stretched membrane by voltage becomes more compliant. We can also analyze the bifurcation behavior 
from the loading-state diagram. The black curve represents the homogeneous deformation while coloured curves represent 
the inhomogeneous bifurcated deformation. Consider the pressure induced bifurcation under a constant voltage. The 
bifurcation path can be clearly traced from the bifurcation diagram. The original state is marked as O, which derivates from 
the undeformed state a little due to the presence of a constant voltage. Upon inflation, the deformation follows a 
homogenous path until the bifurcation point A. After bifurcation, the bulging solution becomes larger, following the red 
curve. Meanwhile, the solution at infinity becomes smaller, going back from A to O, which means that the infinite parts 
undergo unloading and remain uniform. Correspondingly, as shown in loading-state diagram, the black curve represents 
homogeneous deformation. The bifurcation point coincides with the peak of curve. When reaching the bifurcation condition, 
the peak of the curve, the homogenous deformation becomes unstable and bulging occurs. After bifurcation the pressure 
drops down and stretches bifurcate into two paths at point A, one to the right as indicated by the red curve representing the 
bulging section and the other to the left as indicated by the blue curve representing the unbulged section. When the pressure 
drops to the coexistent pressure (the dashed line), corresponding to the turning point B. Subsequently the steady propagation 
starts. The unbulged part gradually bulges up and the inhomogeneous transition zone shifts with its shape unchanged. The 
propagation continues from B to B until the whole tube bulges up. For an infinitely long tube the propagation will not 
terminate by itself as long as the gas continues to be pumped in. In the steady propagation the stretches remain unchanged 
so that points B and C coincide. After the whole tube bulges up, if we continue to pump in gas the pressure and 
homogeneous stretches will increase again following C to D. If we deflate the tube, necking occurs following D to E and 
then to F.  

 
CONCLUSIONS 

 
A cylindrical dielectric elastomer tube under an internal pressure, an axial force, and a voltage across the thickness is 

considered. The bifurcation condition is analytically established. The post bifurcation path and the steady propagation are 
analyzed in details. This work characterizes the bifurcation mechanism of rubber-like materials under complex coupling 
loading. The analogy between charging a dielectric elastomer and inflating a rubber balloon helps to better understand the 
inherent mechanisms. 
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Summary This paper investigates instability and phase transition in a membrane of a dielectric elastomer. It is found that 
prestretches play a significant role in determining its instability modes. In the absence of prestretches, the membrane 
buckles without forming local wrinkles. When the applied prestretches are intermediate, the membrane exhibits 
discontinuous phase transition from the flat to wrinkled states. The flat and wrinkled regions not only coexist, but also keep 
moving with the respective areas changing (depending on the variation of the charges). When the prestretches are large, the 
membrane exhibits continuous phase transition, and the membrane forms wrinkles simultaneously throughout the surface. 
 

INTRODUCTION 
 
   A dielectric elastomer actuator, one class of soft actuators, consists of a thin layer of elastomer sandwiched between two 
compliant electrodes. This soft actuator can deform in response to voltage and can exhibit interesting attributes including 
large deformation, high energy density and fast response [1]. The dielectric elastomer actuators are being extensively 
explored as artificial muscles for soft robots [2]. 
   The dielectric elastomer may suffer loss of tension and form wrinkles when the applied voltage reaches a critical value. 
Plante and Dubowsky observed the coexistence of the flat and wrinkled regions in a circular membrane (Fig. 1), when the 
membrane suffers electromechanical instability [3]. Zhou et al. simulated the propagation of the instability, using a 
meshfree method [4]. Huang and Suo theoretically analyzed the phase transition from the flat to wrinkled states in a 
dielectric elastomer subject to an uniaxial load [5]. Kollosche et al. studied a membrane which is subject to a deadload 
vertically but is clamped horizontally. The experiments showed three types of phase transitions, including the discontinuous 
transition from the flat to wrinkled states, continuous transition from the flat to wrinkled states, and discontinuous transition 
from the wrinkled to wrinkled states [6].  

This paper investigates instability and phase transition in a circular membrane of a dielectric elastomer, which is subject 
to equal-axial prestretches (Fig. 1). It is found that the membrane may buckle or wrinkle, dependent on the applied 
prestretches (λpre, Fig. 1b). 
                                           

EXPERIMENTS 
 

Figure 1 shows the schematic of the experimental setup. At the 
reference state (Fig. 1a), a circular membrane is subject to no 
mechanical and electrical loads, and has a radius B and a thickness 
H (= 1mm). The active part (which will be smeared with the 
electrodes later) has a radius A. At the prestretched state (Fig. 1b), 
the membrane is subject to a radial prestretch λpre and has a radius 
Bλpre (= 6cm), and its boundary is fixed to a rigid circular frame. 
The active part is brushed with the compliant electrodes and has a 
radius Aλpre (= 3cm). At the current state (Fig. 1c), the membrane is subject to voltage, the active part expands its area and 
reduces its thickness, and the point R at the reference state moves to a position with a radius r at the current state.  

We employ VHB 4910 (3M) as the elastomer, and carbon grease as the compliant electrodes.  Voltage is programmed 
through Labview (BNC-2120, NI) and is amplifed by a high voltage amplifier (FR30P10, Glassman).  We then investigate the 
electromechanical behaviour of the membranes with different prestretches. 
 
Buckling 
  In the absence of prestretches (λpre = 1), the 
experiments show that the actuator buckles without 
forming any wrinkles on the surface, when voltage 
reaches a critical value (Φ = 6kV). Figure 2a shows the 
state at Φ = 0, and Figure 2b show the buckling of the 
membrane when the voltage is larger than the critical 
value. This experimental observation can be interpreted as follows. The active part of the membrane expands when subject 
to voltage, which will compress the passive part. Consequently, the passive part also applies a compressive force to the 
active one. In the absence of any prestretches, the thickness of the membrane is large. Meanwhile, at λpre = 1 (or when the 

Fig. 1 A schematic of a circular membrane of a 
dielectric elasotmer 

 
      (a) Voltage off                  (b) When Φ = 21kV 
        Fig. 2 Buckling of the membrane with λpre = 1



stretch is close to the stretch limit), the stiffness of the membrane is generally large. As a result, the membrane is too stiff to 
form local wrinkles. However, the compressive stress may make the membrane buckle globally without forming local 
wrinkles, as shown in Fig. 2b. 
                                      
Discontinuous transition from the flat to wrinkled states  
   When the membrane is subject to intermediate prestretches (λpre = 3), the membrane exhibits a discontinuous phase 
transition from the flat to wrinkled states. When the voltage is small, the active part expands. When the voltage reaches a 
critical value (Φ = 7.38kV),  the flat and wrinkled regions coexist. Different from [6], in the current experiments we fix the 
voltage at the critical value (i.e. 7.38kV). It is observed that both the flat and wrinkled regions keep moving with the flat and 
wrinkled areas changing. Finally the membrane fails by electrical breakdown. Figure 3 show a sequence of still images of 
the membrane at the fixed voltage. Theoretical analysis shows that the voltage-stretch curve may have a shape of going up, 
down and up again. When the voltage reaches a critical value, the flat and wrinkled states have the same free energy 
densities.  As a result, the flat and wrinkled states coexist. Since we do not control the charges on the electrodes, the flat 
and wrinkled regions may move as the charges vary.  

                 
Fig. 3 The membrane of a dielectric elastomer exhibits discontinuous phase transition from the flat to wrinkled states, when 
voltage reaches a critical value. (a) – (j), the state of the membrane at the fixed voltage (Φ = 7.38kV). 
 
Continuous transition from the flat to wrinkled states  
    When the membrane is subject to larger prestretches (λpre = 4.5), the membrane may form wrinkles simultaneously 
throughout the surface, when the voltage reaches a critical value (Φ = 6.4kV). Theoretical analysis shows that the voltage 
increases monotonically with the stretch. When the voltage reaches the critical value, the active part of the membrane 
suffers loss of tension, and the membrane forms wrinkles. After loss of tension, the voltage still increases with the stretch.    
    When the membrane is subject to intermediate or even larger prestretches (but not close to the stretch limit), say λpre = 3 
or 4.5, both its thickness and stiffness are small. Consequently, the membrane may form wrinkles locally, but may not 
buckle globally. 
 

CONCLUSIONS 
 
    This paper investigates instability and phase transition in a circular membrane of a dielectric elastomer. Prestretches are 
found to play a significant role in determining instability modes of the membrane. In the absence of prestretches (λpre = 1), 
the membrane buckles without forming local wrinkles. When the prestretches are intermediate (λpre = 3), the membrane 
exhibits discontinuous phase transition from the flat the wrinkled states. The flat and wrinkled regions not only coexist but 
also move on the surface of the membrane. When the prestretches are large (λpre = 4.5), the membrane exhibits continuous 
phase transition, and the membrane form wrinkles simultaneously throughout the surface.  
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Summary Phononic crystals are periodic, composite materials that exhibit phononic band gaps – frequency ranges in which elastic waves are 
prohibited. When the periodic structure is deformed, these frequency ranges may be manipulated. Hence, frequency band gaps in phononic 
crystals made from elastomers may be reversibly tuned through large deformation. Furthermore, dielectric elastomers – materials in which 
deformation is induced through the application of an electric field – may be used in phononic crystals, opening the door for electrically actuated 
tunability. In order to realize this exciting capability, robust simulation and design tools are needed. We have developed finite-element technology 
to address this problem and have applied these tools to designing phononic crystals with band gaps tuned through electrical actuation. We present 
an application of our simulation capability to the design of a phononic crystal consisting of a square array of circular-cross-section threads 
embedded in a dielectric elastomeric matrix. 
 

BACKGROUND 
 
A solid phononic crystal utilizes constructive interference through Bragg scattering (see e.g., [1]) to create phononic band 
gaps – frequency ranges in which elastic waves cannot propagate. These materials have attracted a good deal of research 
attention in recent years and small-strain (e.g., metallic) phononic crystals have been extensively studied. Tunability of small-
strain phononic crystals has been explored using piezoelectrics [2] and magneto-elastics [3,4], but because of the high wave 
speeds in stiff materials, the physical dimension of the required unit cells tend to be large. Soft materials offer the advantage 
of slower shear wave speeds which do not require very large unit cell dimensions. Since elasticity of elastomers is nonlinear, 
it is straightforward to change the stiffness properties of the unit cell through large deformation – thereby changing the speed 
of wave propagation. Achieving tunability through soft materials is just beginning to be explored. For instance, Bertoldi and 
Boyce [5] demonstrated significant tunability of band gaps through finite pre-deformations in soft elastomeric phononic 
crystals containing voids. Moreover, they showed that pre-deformation was not only capable of shifting band gaps but also 
that new band gaps could be created.  
 
Dielectric elastomers (DEs) offer a unique way to achieve the large reversible deformations required for tunability through 
an externally applied electric field. These materials – which began appearing in the literature in the late 1990s [6,7] – are 
characterized by the ability to deform significantly when an electric field is applied. DEs are distinct from piezoelectric 
materials in that DEs are capable of large, reversible deformations, possess a quadratic relation between electric field and 
stress, and are non-polar, amorphous materials, while – on the other hand – piezoelectric materials typically only undergo 
small deformations, possess a linear relation of electric field to stress, and are polar, crystalline materials. The use of DEs in 
phononic crystals was first discussed by Shmuel [8] who developed analytical solutions for elastic wave propagation in a one-
dimensional periodic laminate undergoing large homogeneous deformations in response to an electric field. Shmuel [9] 
expanded on this work by deriving analytical solutions for a DE phononic crystal composite made up of an array of cylindrical 
fibers in a matrix, but this was again limited to homogeneous deformations. 
 
Numerical simulation is certainly required in order to study tunability induced by inhomogeneous deformations, but these 
simulation techniques are largely new to DEs [10,11]. Here, we utilize the finite-element approach of Henann et al. [11] 
through an Abaqus user-element (UEL) subroutine. This – in conjunction with a Representative Volume Element (RVE) and 
Bloch-Floquet boundary conditions (see e.g. [5]) – allows us to explore band-gap dependence on electric field magnitude and 
direction without restriction. 
 

RESULTS 
 
Our simulation approach – consisting of the finite-element implementation [11], the RVE (shown in Fig. 1), and Bloch-
Floquet boundary conditions [5] – has been verified by reproducing the analytical work of Shmuel [9] for homogenous 
deformation of a phononic crystal consisting of cylindrical inclusions arranged in a square matrix. However, for brevity, we 
do not show that result here, instead focusing on the more interesting case of inhomogeneous, electrically-actuated pre-
deformation. Representative simulation results for one set of material properties and volume fraction (50/50) is shown in Fig. 
1. An electric field is applied along the diagonal of the unit cell with increasing magnitude, as shown in Figs. 1 (a)-(c). The 
frequency as a function of wave vector for several electric field magnitudes is shown along the top of the figure, demonstrating 
that phononic band gaps (depicted as blue bars) can be manipulated. 
   



 
Figure 1. Effect of an external electric field on deformation and phononic band gaps in the composite DE. From left, (a) no 
electric field, (b) an electric field of 100V/unit cell in both the horizontal and vertical directions lowers the band gaps, and (c) 
an electric field of 200V/unit cell in each direction lowers the band gaps further and also opens new ones. Note that the voltage 
is per unit cell, and hence, in a phononic crystal of 20x20 unit cells, the actual applied voltage will be 2kV and 4kV for (b) 
and (c) respectively. In the figure, φ represents the voltage field, u represents the deformed shape of the unit cell, and the blue 
bars represent the band gaps. The band gap angular frequencies, ω, are normalized by the unit cell dimension, A, and the 
composite unit cell shear wave speed,	 0.5 0.5⁄ . The unit cell is composed of a matrix M and an 
inclusion, I, both modelled using the Gent hyperelasticity model. For material properties: ρ is the mass density, ϵ is the 
dielectric permittivity, Imax is a material parameter for the Gent hyperelasticity model, μ is the ground-state elastic shear 
modulus, and K is the elastic bulk modulus – taken to approximately enforce incompressibility. The properties used are 
representative of 3M VHB 4910 DE for the matrix and nylon for the inclusion material. 
 
In this talk, we will further demonstrate the dependence of phononic band gaps on the direction of the applied electric field, 
shear modulus contrast, density contrast, electric permittivity contrast, volume fraction, as well as unit cell geometry (i.e., 
hexagonal instead of square lattice). In summary, phononic crystals made from dielectric elastomers provide an attractive 
strategy for achieving electrically tunable band gaps, and our work demonstrates a robust numerical simulation capability for 
the design of these electrically tunable phononic crystals.  
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Summary Magnetorheological elastomer (MRE) is a kind of soft solid magnetic field-responsive material composing of micron-sized 
magneto-sensitive particles and non-magnetic hyper-elastic matrix. The mechanical or physical behaviour of MRE can be adjusted by using 
external magnetic field, and the behaviour is strongly correlated with the underlying particle-aggregated microstructures of MRE. This work 
aimed to find the relation between the microstructure and the property of MRE, and studied the particle aggregation of MRE in curing process 
and predicted the microstructure-dependent property of cured MRE using particle-level dynamics simulation and finite element analysis, 
respectively. It is suggested that combining particle-level dynamics with finite element analysis is a preferred way to reveal the dominating 
mechanism giving rise to the macroscopic performance of MRE. 
 

INTRODUCTION 

 

   Magnetorheological elastomer (MRE) is a kind of smart magnetic field-responsive composite material. Usually, MRE is 
prepared by embedding micron-sized magneto-sensitive particle into magnetically insensitive polymer or rubber matrix. 
Attractively, the mechanical or physical property of MRE can be altered by using external magnetic field, making MRE be 
widely developed in vibration absorbers, vibration isolators, sensing devices, etc.[1] When preparing MRE, the composite 
material behaves as a high-viscosity fluid-like mixture in the curing process. Thus, an external magnetic field is usually 
applied to control the particle-aggregate microstructure and go further the post-curing property of MRE. Though it is clear 
that the macroscopic property of MRE is strongly correlated with its underlying microstructures, the microstructure-based 
dominating mechanism giving rise to the macroscopic property has never been identified clearly [2]. Therefore, it is 
imperative to reveal the dominating mechanism. As for an analogue to the high-viscosity fluid-like mixture (i.e. MRE in 
curing process), the microstructure-based mechanism of the performance of magnetorheological plastomer has been well 
studied by using particle-level dynamics simulation [3,4]. Given this, in this work, particle-level dynamics combining with 
finite element analysis is developed to study the particle-aggregating mechanism in the curing process and the effect of 
particle-aggregated microstructure on the post-curing property of MRE. 
 

       

       
Fig. 1 Magnetic field-induced change of particle-aggregated microstructure in MRE’s curing process. 
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MODELING AND SIMULATION 

 
   MRE composes of magneto-sensitive particles and non-magnetic matrix with a small quantity of dispersing agent, 
surfactant, vulcanizing agent, etc. The particle and the matrix are the dominating components of MRE and thus the primary 
factors considered to model MRE. To the particle, it is vital to take its magnetic property and size distribution into 
consideration. The particle used here is a soft magnetic material and has a log-normal size distribution. To the matrix, its 
pre-curing, in-curing and post-curing states, as well as their mechanically analytical models, need to be identified clearly. 
The pre-curing or post-curing matrix affects little on the particle-aggregating structure comparing to the in-curing state. The 
matrix in curing process behaves as a high-viscosity fluid-like medium, while behaves as an elastic material after curing 
process. After the models of particle and matrix are identified, the particle-particle interaction and particle-matrix 
interaction can be constructed accordingly. In this work, a cubic cell with the edge length of 200 μm and the particle volume 
fraction of 20% is considered for modelling MRE. Then particle-level dynamics simulation is implemented to study the 
particle aggregation in curing process, and finite element analysis is applied to predict the performance of cured MRE. 
 

RESULTS AND DISCUSSION 

 
   Fig. 1 gives the magnetic field-induced microstructural evolution of MRE in curing process. As the top-left subfigure 
and the bottom-left subfigure show, the particles initially and randomly disperse in the cubic cell before magnetically curing 
process proceeding. After applying an external magnetic field, the particles gradually aggregate to form chain-like and go 
further column-like microstructures, as the right subfigures show. In addition, the porous microstructure is formed by 
magnetic particles from the view of a top point. With the change of particle-aggregated microstructure, the microstructure-
based macroscopic properties of MRE, such as storage modulus, damping, thermal conductivity, permeability, electricity, 
etc., will change a lot. As an example of microstructure-dependent properties in two-dimensional case, Fig. 2 shows that the 
thermal conductivity of MRE is strongly microstructure dependent. That is to say, the isotropic particle dispersion leads to 
isotropic thermal conductivity, while the anisotropic conductivity results from anisotropic particle-aggregation, as a result of 
that the thermal conductivities of particle and matrix are not the same and they differ much to each other. 
 

  
Fig. 2 The microstructure-based isotropic (left) and anisotropic (right) thermal conductivity of cured MRE. 

CONCLUSIONS 

 
   1) Particle-level dynamics simulation can be developed to study the magnetic field-induced particle aggregation of MRE in 
curing process. Finite element method can be utilized for analysing the microstructure-based property of cured MRE. 
   2) Combining particle dynamics with finite element analysis is a suggested way to reveal the microstructure-based 
dominating mechanism giving rise to the macroscopic property of MRE. 
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Summary Piezoelectric unimorph is composed of a piezo-layer (with top and bottom electrodes) uniformly laminated on an 

inactive flexible substrate. Because of their simple construction and flexibility, unimorphs are widely used as flexible sensors 

and actuators. Here we report a comprehensive theoretical framework to investigate the effects of the film-to-substrate thickness 

ratio on voltage, charge, and energy outputs when the unimorph is subjected to eight different boundary/loading conditions. For 

not so thin unimorphs, there is non-zero normal stress in the thickness direction (3), in which case d33 can play a significant role. 

Non-monotonic voltage and energy generation versus thickness ratio relations have been found in some cases and optimum 

thickness ratio for unimorph generator can be predicted. When the unimorph is actuated by voltage applied across the piezo-

layer, non-monotonic actuated deflection versus thickness ratio relation is also found. 

 
INTRODUCTION 

 

   Piezoelectric materials have found wide applications in energy harvesting as well as actuation because of their unique 

combination of mechanical form factors and energy transduction capabilities. Existing unimorph models [1-3] are mostly 

limited to cantilever configurations and the d33 contribution has been neglected because  3 is always assumed to be zero. 

However, unimorphs can also operate under the boundary conditions of pure bending or simple-simple support and can be 

subjected to variety types of load or displacement excitations. Moreover,  3 is non-zero for thick unimorphs and may have 

significant contributions to the outputs. To find a remedy for aforementioned deficiencies, we derive closed-form solutions 

for unimorphs subjected to eight different boundary/loading conditions [4]. To validate our theory, finite element modeling 

(FEM) was performed using COMSOL Multiphysics. Non-monotonic electrical outputs versus thickness ratio curves are 

found for several boundary value problems (BVP). To resolve the discrepancy between theoretical and FEM results for 

some scenarios, the d33 effect had to be taken into consideration. Simple models to determine average  3 along beam length 

has been proposed and turn out to be very effective in accounting for the d33 contribution.  

 

METHOD AND RESULTS 

 

   Suppose the piezoelectric layer and the substrate have thicknesses of h1 and h2 and Young’s moduli of Y1 and Y2, as 

labeled in Fig. 1(a), calculating the voltage, charge, and power output of such a unimorph first requires the determination of 

the neutral axis and the effective second moment of inertia of the bilayer. The distance from the neutral axis to the bottom 

surface of the substrate is represented by Δh1, as labeled in Fig. 1(a), where Δ has been given by [5] 

 𝛥 =
1 + 2𝛴𝜂 + 𝛴𝜂2

2𝜂(1 + 𝛴𝜂)
 (1)  

where 𝛴 = 𝑌1̅/𝑌2̅ is the film-to-substrate modulus ratio with �̅� = 𝑌/(1 − 𝜈2) being the plane strain modulus, Y being the 

Young’s modulus,  being the Poisson’s ratio, and 𝜂 = ℎ1/ℎ2 is the film-to-substrate thickness ratio. 

The effective second moment of inertia of the bilayer is given by [4] 

 𝐼 = ℎ2
3 {𝛴 [𝜂(𝛥𝜂 − 1)2 − 𝜂2(𝛥𝜂 − 1) +

𝜂3

3
] + 𝛥𝜂(𝛥𝜂 − 1) +

1

3
} = ℎ2

3𝐼 ̅ (2)  

where 𝐼 ̅ represents the non-dimensional second moment of inertia and hence the bending stiffness of the unimorph can be 

written as �̅�2𝐼. For given piezoelectric and substrate materials (i.e., Ʃ fixed), the only dimensionless variable in the problem 

is the thickness ratio , whose effect is the focus of this study.  

Based on Euler- Bernoulli beam theory, the bending induced normal stress in x direction and its vertical 

distribution of the unimorph is given by 𝜎1 = (𝑧 − 𝛥ℎ1)𝛴𝑀/𝐼. When the beam is thick, non-zero 𝜎3 may also exist. By 

the linear piezoelectric effect [6], deformation induced polarization density is proportional to stress through the piezoelectric 

coefficient, i.e. 𝑃𝑖 = 𝑑𝑖𝑗𝜎𝑗  (𝑖 = 1,2,3, 𝑗 = 1,2, … ,6), therefore z direction polarization is given by 

 𝑃3 = 𝑑31𝜎1 + 𝑑33𝜎3 (3)  
Since charges are only collected from the top and bottom surface electrodes of the piezo-layer, only top (z = h1 + h2) and 

bottom (z = h2) surface polarization density will be considered to calculate the total amount of charges. Therefore surface 

charge density can be calculated as the total charge from the surface polarization density divided by the surface area:  

Home
Text Box



 𝜌 =
𝑄

𝑆
=

− ∫ 𝑎n ∙ 𝑃3𝑆
𝑑𝑆

𝑆
. (4)  

where an stands for the surface normal vector and S stands for the overall surface area. Subsequently, the voltage derived 

through the definition of capacitance, V=Q/C, where 𝐶 = 𝜀𝑝
′𝐿 ℎ1⁄ , with 𝜀𝑝

′  being the effective permittivity of the 

piezoelectric material [2]. Lastly, the generated energy density can also be calculated by U=V/2. Following this procedure, 

the unimorph electric outputs versus thickness ratio has been analysed for different boundary/loading conditions. As an 

example, Figs. 1(b)-(e) offers the results of simply supported unimorph subjected to central point load. The analytical 

results (curves) show excellent agreement with finite element modelling (FEM) results (markers) if the effect of 𝑑33 (or 𝜎3) 

is considered. Non-monotonic outputs also suggest that optimal thickness ratio exists.   

Thickness ratio also affects the actuated displacement of a unimorph subjected to applied electric field 𝐸 = 𝑉0/ℎ1 

across the thickness of the piezo-layer [7]. As a result, a uniform stress 𝜎1 = 𝑑31𝑌1̅𝑉0/ℎ1 is generated in the piezo-layer, 

while stress in the substrate remains zero. The resultant moment will therefore bend the unimorph and the actuated 

displacement is again found to be non-monotonic with respect to the thickness ratio, as displayed in Figs. 1(f) & (g). 

 

 
Fig. 1 (a) Illustration of basic variables of the unimorph. (b) A schematic for the simply supported unimorph subjected to 

central point load. (c) Free body diagram used to calculate average 3. (d, e) The analytical and FEM results of normalized 

voltage, charge density, and energy density as functions of the thickness ratio. (f) A schematic of a simply supported 

unimorph actuator subjected to constant electric potential. (g) The analytical and FEM results of normalized actuated 

displacement of the unimorph as a function of the thickness ratio. 

 

CONCLUSIONS 

 

   We investigate the electromechanical behaviors of flexible unimorph power generators and actuators. Analytical and 

numerical models are built to unveil the effects of piezo-layer-to-substrate thickness ratio and piezoelectric material constants on 

energy conversion under eight different boundary/loading conditions. Our theory reveals that when the unimorph is subjected to 

displacement-controlled loading conditions, the charge, voltage, and energy outputs are monotonic functions of the thickness 

ratio whereas when the unimorph is subjected to load-controlled conditions, optimal thickness ratios for maximum voltage and 

energy outputs exist. Our linear piezoelectric theory has been fully validated by FEM. We have also found that except pure 

bending conditions, all cantilever and simply supported unimorphs should care about the d33 (i.e.  3) contribution when the 

unimorph length is not much larger than the thickness. A simplified average stress model is proven effective in accounting for 

the d33 effect. d33 effect may also change the outputs of displacement controlled problems from monotonic to non-monotonic. 

The effects of elastic mismatch and thickness-to-length ratio have been discussed and analytical solutions for unimorph based 

actuators are also offered. This work provides a comprehensive and accurate solution for the design and optimization of 

unimorph based power generators and actuators. 
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Summary We explore the fracture toughness of a polymer gel containing a Mode I growing crack. First, an expression is derived for the
energy release rate within the linearized, small-strain setting. This expression reveals a velocity independent toughening that stems from
the poroelastic nature of polymer gels. Then, we establish a poroelastic cohesive zone model that allows us to describe the micromechanics
of fracture in gels by identifying the role of solvent pressure in promoting poroelastic toughening. We confirm our theoretical findings by
means of numerical simulations.

INTRODUCTION

Soft biological tissues, such as cartilage, epithelium and muscles, can withstand relatively high levels of strain without
fracturing. Since hydrogels are commonly considered as proxies for soft biological tissues, their fracture behavior is the
subject of intense theoretical and experimental investigations.

In general, toughening of hydrogels relies on the energy dissipation that takes place in the process zone around the crack
tip [1]. Building upon such a principle, much research currently focuses on the development of experimental techniques for
the synthesis of high-toughness hydrogels, where dissipation mechanisms [2, 3] are introduced at the material scale. At the
same time, a theoretical effort is needed in modeling diverse fracture modes and sources of toughening in soft materials,
starting with the basic, classical fracture mechanics problems.

In this spirit, here [4] we study the propagation of a semi-infinite crack in an infinite polymer gel that is loaded in Mode I
conditions and immersed in a solvent. We present a detailed energy analysis that evidences the existence of a velocity-
independent toughening, which is innate in the poroelastic nature of polymer gels. Further, we establish a poroelastic cohesive
zone model that provides a framework to describe the micromechanics of fracture processes in polymer gels.

ENERGY ANALYSIS FOR A PROPAGATING CRACK IN A POLYMER GEL

We consider a gel consisting of an infinite polymer network immersed in a solvent. The gel contains a semi-infinite crack
propagating with velocity v along the e1 direction. The crack faces are traction-free and in chemical equilibrium with the
surrounding solvent. At infinity, the Mode I stress field is applied with intensity factor K∞v , and the material responds as an
incompressible elastic solid, under the assumption that fluid flow is confined to a small process zone surrounding the crack
tip. We develop our theory in the linearized, plane-strain setting.

Manipulations of the energy balance statement appropriate for gels [6] lead to the following definition of the energy release
rate G, in a coordinate system (x̂1, x̂2) centered at crack tip [4, 5]:

G =

∫
C

(
ψn · e1 −Tn · ∂u

∂x̂1

)
dS −

∫
R
p
∂ε

∂x̂1
dA , ψ(E) = GE ·E +

1

2

(
κ− 2

3
G

)
ε2 , (1)

where ψ is the free energy of the gel in the linearized poroelasticity framework [7], T is the Cauchy stress, n is the outer
normal to the (arbitrary) contour C encircling the domain R and containing the crack tip, u is the displacement field, p is the
solvent pressure within the gel, G and κ are the poroelastic moduli of the gel, and ε is the trace of the small-strain tensor E.
The first integral on the right hand side evaluated on a contour C∞ far away from the tip provides the far-field energy release
rate G∞v = (K∞v )2/Ēu, where Ēu = 4G is the undrained plane strain modulus. Then, we rewrite eq. (1) as

G∞v = Γ +

∫
R∞

p
∂ε

∂x̂1
dA , (2)

where we have enforced the criterion G = Γ for crack propagation. The area integral may be estimated using the near-tip
fields obtained through an asymptotic analysis of the governing equations for crack propagation, thus providing an analytical
estimate for the degree of toughening, which is reported in Fig. 1(Left) and is confirmed by numerical simulations [4]. This
result shows that the applied stress intensity factor needed for crack propagation at a certain velocity v 6= 0, which represents
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Figure 1: (Left) Degree of toughening K̃∞v = K∞v /K
∞
o as a function of the dimensionless crack tip velocity ṽ = vΓ/DcG,

for a Mode I crack, with Dc the effective diffusivity [4] of the solvent. Numerical results (solid lines) and analytical estimates
(dashed lines) obtained from eq. (3) using the asymptotic crack tip fields. Blue line corresponds to κ/G = 1, cyan line to
κ/G = 2, red line to κ/G = 10 and green line to κ/G = 50. (Right) Degree of toughening as a function of the dimensionless
crack tip velocity, for a Mode I crack. The dashed line is the numerical result for the cohesive zone model, with κ/G = 10.
The continuous line is the result obtained computing eq. (1)1 from the numerical solution, without the cohesive zone model
(see Fig. 1-Left).

the effective toughness of the system, is greater than the critical stress intensity factor needed to initiate propagation of a
stationary crack in a purely elastic material, i.e. the intrinsic fracture toughness K∞o =

√
ĒΓ of the polymer network. Here,

Ē = E/(1− ν2) is the effective plane-strain modulus, where E and ν are computed from G and κ through standard relations
of isotropic linear elasticity. Physically, this toughening effect may be explained as follows. The stress concentration in front
of the crack tip causes the material to expand. Since expansion requires an increase in solvent volume fraction, a reduction
of solvent pressure develops in the process zone to draw solvent towards the crack tip. This solvent flow implies viscous
dissipation that is quantified by the area integral in eq. (2). We note that toughening depends on the ratio κ/G (Fig. 1-Left).

Next we introduce a poroelastic cohesive zone model [4]. In this case, energy balance arguments similar to those leading
to the previous equation provide the following expression for the remotely applied energy release rate

G∞v = Γ−
∫ 0

δf

pc dδ +

∫
R∞

p
∂ε

∂x̂1
dA , (3)

where pc is the solvent pressure within the cohesive zone and δf is the crack opening at failure. We observe that pc will be
negative in the cohesive zone due to the pressure gradient required to draw solvent into it. Therefore, we conclude that the
second term on the right hand side of eq. (3) contributes a positive increment to the toughness of the gel (Fig. 1-Right), in
addition to toughening contribution provided by the third term on the right hand side.

CONCLUSIONS

We have demonstrated the existence of a velocity-independent toughening in a Mode I-loaded polymer gel specimen
containing a semi-infinite, propagating crack. Physically, this toughening derives from the work performed by the solvent
pressure against volume expansion within the process zone. For the cohesive zone case, we have shown that the applied stress
intensity factor needed for propagation increases with crack tip velocity, thanks to the resistance to crack opening offered by
the negative solvent pressure within the cohesive zone. Our results highlight the importance of poroelasticity to reveal and
quantify possible toughening mechanisms.
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Summary Soft elastic foams, which consist of flexible and stretchable ligaments, exhibit extremely high fracture toughness. Comparing the 
cellular structure of elastic foams with the network structure of rubbery polymers, this paper proposes a scaling law for the fracture energy of 
soft elastic foam. A phase-field model for the fracture processes in soft elastic structures is developed to verify the scaling law. The numerical 
simulations in 2D foam structures of different unit-cell geometries agree with the scaling law very well. In addition, the dependences of the 
macroscopic fracture energy on geometric parameters such as the network connectivity and spatial orientation have also been revealed by the 
numerical results. To further enhance the fracture toughness, a type of soft foam structures with folded ligaments has been proposed and its 
effective fracture energy is one order of magnitude higher than the base material can be reached by using the soft foam structure. 
 

INTRODUCTION 
 
   Solid foam, a state of highly porous cellular structure, is commonly found in nature and in daily life. Scaling laws 
between fracture properties and porosity have been proposed and widely accepted [1]. However, most existing theories are 
based on linear elastic fracture mechanics, their applicability becomes questionable to those consisting of soft and highly 
stretchable materials, such as elastomers. The major difference between stiff brittle foam and soft elastic foam lies in the 
slenderness of ligaments. In contrast to the cell walls of rigid foam which partially shares the load after rupture, a fractured 
cell wall of soft foam merely dangles over the rest of the structure. 
   Let us start from the fracture process of a rubber, in which the crosslinked network of long polymer chains could be 
regarded as an extreme case of soft foam when each slender ligament shrinks down to a molecular size. The classic Lake-
Thomas model suggests that the fracture energy of a rubber scales with the number of chains per unit cross-sectional area 
[2]. Analogously, we deduce that the scaling relation for the fracture energy of a soft foam is 

lWcψα≈Γ .      (1) 
Here, we use 𝑊𝑊𝑐𝑐 to represent the critical energy density of cell wall at rupture, 𝜓𝜓 for the volume fraction of the solid 
phase, and 𝑙𝑙 for the characteristic size of the foam. Even though the scaling law (1) seems natural and plausible, it could be 
hard to verify directly through experiments. Alternatively, we seeks to verify the scaling law numerically through the 
following phase-field model.  
 

PHASE FIELD MODEL OF FRACTURE 
 
   The phase-field model for fracture, which is capable of calculating the crack growth according to the energy criterion 
without a predetermined crack path, is very suitable for structures with complex geometries such as soft elastic foams.    
To describe the state of material damage and to avoid tracking the crack front and faces, a phase field 𝜙𝜙(𝐗𝐗, 𝑡𝑡) varying 
continuously between the intact region (𝜙𝜙 = 1) and a fully damaged region (𝜙𝜙 = 0) is introduced. Following Karma et al. 
[3], we write the free energy density function as: 

( ) ( ) ( ) ( )[ ] 20

2
1,, φκφφφφ ∇+−+=∇ cs WgWgW FF ,    (2) 

where 𝑊𝑊𝑠𝑠
0 is the strain-energy density of undamaged material, 𝑔𝑔(𝜙𝜙) an interpolation function between 𝑔𝑔(0) = 0 and 

𝑔𝑔(1) = 1, and 𝜅𝜅 the coefficient of the gradient energy term. 𝑊𝑊𝑐𝑐 is the critical strain-energy density beyond which the 
material will degrade spontaneously to lower the total free energy. For the evolution of the phase field variable 𝜙𝜙, we 
assume a linear kinetic law with isotropic mobility, so that the rate of change in 𝜙𝜙 is proportional to the variation of the 
system free energy with respect to 𝜙𝜙. 
   The system has an intrinsic length scale 𝑟𝑟 = �𝜅𝜅/𝑊𝑊𝑐𝑐, which represents the characteristic length of the fracture process 
zone. The intrinsic fracture energy of the solid described by this model is approximately 2𝑟𝑟𝑊𝑊𝑐𝑐 . 
 

RESULTS AND DISCUSSION 
 
   The scaling relation (1) is verified through the simulation on the fracture processes of hexagonal soft foams. A set of 2D 
hexagonal foams of the same volume fraction but different ligament lengths are modelled first. For the hexagonal foams in 
both orientations, the dimensionless fracture energy Γ/𝑟𝑟𝑊𝑊𝑐𝑐 is approximately linear in the ligament length 𝑙𝑙/𝑟𝑟, as shown 
by Fig. 1c. Similarly, we fix the ligament length and vary the solid volume fraction 𝜓𝜓. The results are plotted in Fig. 1d. At 
relatively small volume fraction, the fracture energy is approximately proportional to the volume fraction just as predicted 
by (1). 



 

Fig 1. (a) Part of a 2D hexagonal foam structure. (b) Strain energy density of a hexagonal foam near a propagating crack tip. (c) Fracture energy as a 
function of the ligament length. (d) Fracture energy as a function of the volume fraction of the solid phase. 

 
   To further enhance the fracture toughness, a new kind of soft elastic foams with non-straight ligaments is proposed. As 
an example, the numerical model is constructed by repeating the unit cell sketched in Fig. 2a. By varying the width of the 
serpentine ligaments, we evaluate the fracture energy of several structures with different solid volume fraction. As plotted in 
Fig. 2c, the scaling law (1) still holds for the foam structures with serpentine ligaments. However, the dimensionless 
fracture energy has been significantly improved to Γ/𝑟𝑟𝑊𝑊𝑐𝑐 ≈ 25, more than one order of magnitude higher than the foam 
structures with straight ligaments or the same bulk material. 
 

 
Fig 2. (a) Unit cell of a soft elastic foam containing serpentine ligaments. (b) Calculated dimensionless strain energy density of the soft elastic foam. (c) 

Calculated fracture energy of soft foam structures with serpentine ligaments, as a function of the solid volume fraction 𝜓𝜓. 
 

CONCLUSIONS 
 

   The scaling relation between fracture energy and structural properties of soft foam structures is proposed by making an 
analogy between compliant ligaments in a soft elastic foam and the polymer chains in an elastomer. Through a phase-field model 
developed specifically for the fracture of elastomers, the scaling law is verified on soft foam structures of various geometries. 
Finally, a type of soft foam structures with serpentine ligaments is introduced and numerical study shows such structures may 
achieve an effective fracture energy much higher than that of the corresponding base material. 
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Summary The availability of reversible components that can alter their shapes in response to environmental changes is crucial for active 
materials. The rapid development of 3D/4D printing technologies also enables the fast implementation of sophisticated designs for 
sensors and actuators. This paper demonstrates a new reversible component that is 3D printed to combine shape memory polymers and 
hydrogels. This new method uses the swelling of hydrogel as the driving force for the shape alternation and the change of the modulus 
of shape memory polymers as a function of temperature to regulate the time of such shape alternation. The component can be activated 
by changing temperature and aqueous environment, without any other further mechanical loading and unloading. The obtained structure 
is stiff in two different configurations. Several 2D and 3D shape changing actuators are demonstrated to illustrate the broad application 
potentials of the proposed design. 
 

INTRODUCTION 
 

Structures and devices that can change its shape in response to environmental stimuli are highly desirable in a wide 
range of applications [1]. Shape memory materials, such as shape memory alloys (SMAs) and shape memory polymers 
(SMPs), are candidates that have been widely explored. However, both materials have limitations: SMAs exhibit 
reversible actuations with sufficient stiffness, but the amount of actuation is low[2]; SMPs have been studied as an 
alternative with large shape change, but most SMPs can only achieve one-way actuation[3]. Although some new 
developments in SMPs can achieve reversible actuation, but they either involve complicated fabrication[4] or 
sophisticated chemistry[5]. One exception is environmentally responsive hydrogels[6], whose capability to hold aqueous 
solution can be tuned by temperature and thus to generate a large volume change. However, hydrogels have low stiffness, 
with the typical Young’s modulus in the range of a few tens to hundreds of kPas.  

3D printing allows materials to be deposited in a layer-by-layer manner to form a 3D component. In addition, the 
recent development of multi-material 3D printing enables digital materials, whose properties can vary almost continuously. 
Such capabilities, i.e. printing complicated geometries and digital materials, empower 3D printing to create components 
with unprecedented properties [7-10].  More interestingly, 4D printing concept was developed where active materials are 
used to create shape changing components[11-13], which added the 4th dimension (or time) to the 3D printing process.  

In this work we achieve reversible actuations through a composite where SMPs and hydrogels are spatially distributed 
through a careful design, which can be easily implemented by a multi-material 3D printer[14]. We use mechanical 
constrains to transform an isotropic hydraulic pressure from equiaxial swelling to a uniaxial driving force that powers the 
shape change of the component; we also utilize the shape memory effect in the SMP to regulate the time of such shape 
changes. In addition, the SMP provides the stiffness to the component that is much higher than one would achieve in 
purely hydrogel-based component. Finally, by applying the basic design concept, we demonstrate a folding origami 
structure.  

 
METHODS AND RESULTS 

 
Design concepts 

The two key concepts to our design are to convert the hydrogel swelling force from equiaxial to a linear force that can 
drive the shape change in one particular direction or in one particular plane, and to use the sensitivity of the SMP 
properties to temperature to regulate the time for actuation. To achieve this, the hydrogels and the elastomer columns are 
sandwiched between a layer of the SMP (top) and a layer of the elastomer (bottom). Small holes are placed in the 
elastomer layer to allow water flowing in and out. During a reversible actuation cycle, the printed component is straight 
after printing. It is then immersed into water at a temperature ~0oC for a certain amount of time to allow the hydrogel to 
absorb water; in addition, due to the low temperature, the stiffness of the SMP is high; therefore the volume swelling of 
hydrogel is highly constrained and the strip does not show significant shape change. Next, the strip is brought into a high 
temperature environment (such as water bath) where the SMP softens significantly, which allows the hydrogel swelling to 
induce large shape change. In addition, the elastomer columns that connect the top and bottom layers impose constraints 
on hydrogel swelling in the z-direction, thus converting the swelling force into the x-y plane, which drives the strip 
bending. After actuation at high temperature, we cool the strip to a temperature below the Tg of the SMP; due to the 
increase of the SMP stiffness, the strip is stiff. In the ambient environment, the hydrogel will lose water and dry. After the 
hydrogel is fully dry, immersing the strip into a high temperature environment will recover the straight shape of the strip. 
At low temperature, the strip becomes stiff again. This finishes one cycle of reversible actuation, which can be repeated 
multiple times.  



Design Demonstration 
   This design concept is demonstrated in Fig.1 The 
printed strip is shown in Fig.1a. It was firstly immersed in 
cold water (3oC) for 12hrs and showed a small amount of 
bending (Fig 1b). The strip was then immersed in water 
(temperature of 75oC) and bent into the shape showing in 
Fig. 1c in ~10 sec. The strip was then removed from the 
water and is cooled down to the RT (Fig. 1d). The strip 
maintained the bending shape (Fig. 1e). At the low 
temperature, the strip was stiff. Fig. 1f also shows the bent 
strip can support the deadweight of 25g. After drying at low 
temperature, the strip was immersed in high temperature 
water again and it recovered to the flat shape. 
 
3D Reversible Structure 

As an example for 3D structure, we demonstrate a 
flower that is capable for reversible folding and unfolding. 
First, we designed and printed a flower-shaped 3D structure 
composed of three groups of petals, which had different 
thickness ratios of layers of the elastomer, the hydrogel, and 
the SMP to allow different folding speeds. The printed 
structure is shown in Fig. 2a. After being put in low 
temperature water for 12hrs, then being immersed in high 
temperature water, all the layers bent immediately, forming 
a flower-like shape (Fig. 2b). Taking the structure out and 
let it dry, the structure maintained the flower shape and was 
stiff. As shown in Fig. 2d, it can carry a load of 25g. The 
flower-like structure was then put into hot water and the 
structure became flat again (Fig. 2c). This process could be 
repeated many times. 
 

CONCLUSIONS 
 

Components with large reversible shape change are 
highly desirable for many engineering and biomedical 
applications. However, the materials available for large and 
reversible shape change are rare. In this paper, by combining shape memory polymers with hydrogels, we demonstrated 
components with reversible shape changes by using 3D printing. The concept in this paper can be applied to design 
actuators with faster response and with other actuation method, such as electromagnetic field.  
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Figure 1. The bending angle of two activated shape 
memory strip in the desired shape memory cycle. a) The 
printed strip is straight; b) it bends slightly after 
immersing in cold water for 12hrs; c) it bends quickly 
when immersing in hot water; d) it is then taken out of 
water to the room temperature air; e) it is then air dried; 
f) the strip is stiff and can carry a load of 25g. If it is 
heated, it returns to the straight shape. 

 
Figure 2. A self-folding/unfolding flower. a) The 
printed structure; b) After immersing in water then 
being transferred to hot water, the structure folds; c) 
After dry, it becomes flat again when being put into hot 
water. g) The structure in b) is stiff after it is dried. It 
can carry a load of 25g. 
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CONSTITUTIVE THEORY FOR MECHANOCHEMICALLY-BASED ENERGY DISSIPATING
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Summary Mechanochemically responsive polymers can be designed through the incorporation of mechanophores, molecular groups with
a tailored productive response to applied force. Here we present the design and corresponding constitutive theory for an elastomer that
dissipates mechanical energy through the incorporation of length unveiling mechanophores. These mechanophores activate as the elastomer
approaches its finite extensibility, but prior to chain scission. The reversible release of contour length temporarily increases the failure strain
of the polymer chains subjected to the largest local force. The behavior of the model will be presented for monotonic, cyclic, and stress
relaxation loading. Required mechanophore energetics and characteristic recovery times will be discussed.

INTRODUCTION

Mechanochemically responsive (MCR) polymers can be realized through the covalent incorporation of mechanophores
chemical units that undergo a specific chemical transformation in response to applied force. While most of the demonstrated
MCR to date have shown optical responses to mechanical loading, these systems have potential to adapt mechanical properties
in response to mechanical load. Here we propose a synthetic analog to an approach often utilized in biological systems -
length release at a critical force. Stress relief by mechanophore-based length extension has been experimentally demonstrated
in single polymer chains, but not in polymer networks[1]. Here, we present a constitutive theory for an elastomer with length
extending mechanophores.

THEORY

The constitutive theory for the MCR elastomer combines transition state theory for force-biased chemical reactions
with polymer mechanics and builds on our prior work for an optically responsive elastomer based on covalently linked
mechanophores[2]. Polymer chain segments between cross-links are assumed to follow the freely jointed chain model. The
parameters governing the highly non-linear response of a single chain segment are the Kuhn segment length that sets the
initial chain stiffness and the number of segments between crosslinks that sets the locking stretch. The mechanophore state
is determined using transition state theory. The energy barrier between the closed (initial length) and open (extra length)
states is assumed to depend linearly on force (Figure 1). When the mechanophore opens the number of segments between
crosslinks increases thereby decreasing the force on the polymer chain segment. In addition to mechanophore opening,
mechanochemically-driven polymer chain scission is also included. These equations are analogous to those governing the
mechanophore state except that the reverse reaction (healing of the chain) is prohibited. A chain that is broken supports no
force. A single polymer chain segment can occupy any one of four states: closed and intact, closed and broken, extended and
intact, extended and broken. The polymer chain segments then act in concert to form the polymer network with the same force
that drives the mechanophore transition and chain scission summing to give the overall network stress.
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Figure 1: The application of force across a mechanophore reduces the barrier for mechanophore opening.
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RESULTS AND DISCUSSION

The average force-stretch behavior of an ensemble of aligned polymer chains stretched at a strain rate of 0.01s−1 is
shown in Figure 2a. The polymer chain with no mechanophore behaves hyperelastically breaking at a stretch of 1.77, which
corresponds to the the prescribed number of Kuhn segments along the length of the chain N = 3. The ensemble of polymer
chains with the mechanophores incorporated initially behaves identically to those without, however at a force of 0.55 nN per
chain the mechanophores start to activate, N increases to 3.6, and the force drops rapidly. Because of the highly nonlinear
force response, all the chains in the ensemble have their mechanophores open over a relatively narrow stretch range. The
chains are extended further the force again increases until it reaches a value that causes chain scission. This force is the same
as that which causes scission in the chains without mechanophores, however the stretch is significantly larger (1.94 vs 1.77
for these particular chain and mechanophore parameters).

The polymer behavior is qualitatively quite similar to that of the ensemble of aligned chains. The polymer is initially
compliant and hardens nonlinearly as the most oriented chains approach the single chain locking stretch. Under monotonic
loading the work to when the first damage occurs is nearly twice as large with the mechanophore than without. Further,
this model assumes that all mechanophores in a given chain segment activate at once. The energy dissipation performance
could be significantly improved by a more gradual length extension that would maintain the chain closer to its present locking
stretch. Under cyclic loading (Figure 2b) the difference between the elastomer with and without mechanophores is most
apparent in the reloading behavior. The polymer without mechanophores reloads along the unloading curve representing the
damaged polymer; the polymer with mechanophores reloads nearly along the initial loading curve since most of the open
mechanophores closed during unloading.

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Stretch

F
o

rc
e

 p
e

r 
C

h
a

in
 (

n
N

)

 

 

without mechanophore

with mechanophore

(a)

0 0.2 0.4 0.6 0.8
0

2

4

6

8

10

Engineering Strain

E
n

g
in

e
e

ri
n

g
 S

tr
e

s
s
 (

M
P

a
)

 

 

without mechanophore

with mechanophore

loading

unloading

& reloading

loading &

reloading
unloading

(b)

Figure 2: Simulation results for numerically implemented length-extending mechanophore constitutive theory compared to behavior with-
out mechanophores. (a) Force-stretch response of an ensemble of single chains undergoing monotonic extension at a constant strain rate (b)
Stress-strain response of a polymer subjected to load-unload-reload to a strain of 0.75 at a constant strain rate magnitude.

CONCLUSIONS

A constitutive model has been presented for an MCR elastomer with repeat energy dissipation capabilities. This model
will guide the design and testing of such a material in subsequent work. Acknowledgements: This work was funded in part by
the National Science Foundation under Grant DMR-1307354.
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Summary Soft dielectrics undergo large deformations in response to an electric field and consequently have attracted a lot of interest as

smart active materials with a wide range of applications. The literature on this topic has historically been split between either theoretical

studies or device level experiments, with limited communication. In this paper we report on our modeling capability calibrated to VHB

4910, a widely studied soft dielectric material in the literature, which exhibits a significant level of dissipation. We use specially developed

finite elements to study the role of visco-elasticity on instabilities in soft dielectrics. Our results show that viscoelastic effects tend to

suppress instabilities under cyclic loading.

INTRODUCTION

As soft dielectrics deform under the action of an applied electric field, it is not uncommon to encounter various instabilities.

Instabilities of soft dielectrics – a heavily studied topic in the recent literature – are well known under idealized conditions,

however work still remains for non-ideal conditions. Using the terminology in [6], instabilities in soft dielectrics may be cate-

gorized into three generic modes: i) pull-in, ii) electro-creasing, and iii) electro-cavitation, with the incurred instability based

on the boundary conditions. Realizing that such instabilities may be harmful, the mechanics for suppressing an instability and

enhancing the performance of soft dielectrics has also been investigated. Some of the proposed methods include applying a

mechanical pre-stretch, using materials with “stiffening” properties, and constructing soft dielectric composites to suppress

instabilities ([6, 2, 1]).

Motivated by experimental data, and the trend of the literature, the objective of this work is to produce a numerical

simulation capability for the broader community that takes the real material behavior into account for more realistic simulation,

including the working limits of devices that are susceptible to instability.

CONSTITUTIVE EQUATIONS

Guided by the experimental data for VHB shown in Figure 1, we assume the deformation is accommodated by a com-

bination of one equilibrium mechanism, and N non-equilibrium mechanisms denoted by α = 1, 2, . . . , N . The equilibrium

mechanism provides the “long-time” response of the material using the total deformation gradient, whereas the remaining N

mechanisms capture the inelastic response of the material using internal variables. Based on the work of [5], we introduce

a set of symmetric stretch-like tensorial internal variables A(α) for the N viscoelastic mechanisms. Although not discussed

directly in this paper, thermodynamics and any restrictions required to satisfy the second law are discussed in both [3] and [5]

for this class of materials and for brevity are not repeated here. In this work, the Cauchy stress is given by

T = J−1G(Bdis)0 +K(J − 1)1+ ǫ
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Figure 1: Comparison of the exper-

imental data (shown as points) to

our model (shown as lines) in sim-

ple tension. The experimental data

is taken from [4].

where we have used the notation G = Geq

(
λL

λ̄

)

L−1

(
λ̄

λL

)

for a stretch dependent

shear modulus. Also, P is a fourth order projection tensor P = I− 1

3
C

−1⊗C such that

the viscous mechanisms have no volumetric contribution. Furthermore, the referential

and spatial electric displacements, respectively, are given by

DR = ǫJC−1
ER, D = ǫE, (2)

where ǫ is the permittivity, and we denote the electric potential by ϕ, such that the

spatial electric field E = −gradϕ.

The calibration of material parameters is straightforward process. First, we cali-

brate the pure mechanical parameters appearing in our model by fitting to the exper-

imental stress-stretch data found in the literature. Then the electrical parameters are

estimated based on values appearing in the literature. Our model fit to the experimental

data of [4] is shown in Figure 1.
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NUMERICAL SIMULATIONS

Now that the material parameters of our theory are calibrated for VHB, in this section we demonstrate our numerical

simulation capability in a variety of interesting applications where instabilities in soft dielectrics are prone to arise. We hope

to simulate such electro-mechanical instabilities in order to gain deeper understanding of the mechanisms and conditions for

the onset of instability. Following the recent work of [6], we consider the following list of simulations; pull in and thinning,

and creasing.
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The deformation of an unconstrained soft dielectric film coated with compliant elec-

trodes on both surfaces is prone to pull in and thinning under electro-mechanical load-

ing. As the film thickness reduces, a constant applied voltage will induce a higher true

electric field, resulting in a higher stress that further deforms the film. At a critical

point, the positive feedback may cause the elastomer to thin down abruptly, resulting

in the pull-in instability. Figure 2 shows the stretch (λ) corresponding to monotonic

loading for multiple rates, for both equilibrium and visco-elastic material responses. It

is clear that the addition of visco-elasticity acts to stabilize the instability, delaying the

onset of instability with increased loading rates. Also, as reported in [6], in the equi-

librium case, the onset of pull-in would occur at a critical stretch of λcr = 0.63, which

agrees well with our finite element simulations.

Also, in many situations one surface of a soft dielectric is attached to a rigid elec-

trode and another surface free from constraint. In such cases lateral motion is con-

strained by the rigid electrode, a condition very prone to creasing, and experimental

evidence has shown this to be the case [6]. Creasing generally occurs during the application of an applied electric potential,

as the soft dielectric begins to attempt to thin down, the potential eventually reaches a critical value where regions of surface

on the unconstrained face will form a creasing pattern. Figure 3 shows a few snapshots of a typical plane-strain creasing

simulation for cyclic loading as well as a summary of the results for this suite of simulations. Also, as reported in the literature

[6], in the equilibrium case, the onset of creasing occurs at a critical electric field of Ec ≈ 1.03
√
Geq/ǫ, which agrees well

with our finite element simulations at the slowest loading rate.
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Figure 3: (Left and center) Simulation of a two-dimensional plane-strain crease at a single loading rate showing the maximum

log strain. (Right) The relative normalized displacement δ = (utip−uedge)/l0 as a function of the applied potential for a cyclic

load and unload at a constant rate. Here the arrows indicate the direction of loading and unloading.

CONCLUSIONS

Using our finite element capability we are able to show how viscoelasticity provides stabilization that may fully sup-

press instabilities under certain conditions, specifically under cyclic electrical loadings, which may be desirable for many

applications. However, much research work yet remains, from both numerical and experimental points of view.
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Summary In the talk, I will present our recent research progress on the optically/ thermally actuated motion and deformation in liquid crystal 

elastomer structures.   

 
INTRODUCTION 

   A combination of liquid crystal and polymer network can form a new material—liquid crystal elastomer (LCE). The 

special molecular combination endows LCE with many unique properties such as soft or semi-soft elasticity and multi-

responsiveness, which have led to myriad applications ranging from artificial muscle to stretchable optical devices. 

Recently, several biological materials such as actin filament network and fibrillar collagens have also been found to have 

similar molecular structure and behaviors as man-made LCEs. In this talk, I will discuss some recent progresses made in our 

group for the active motion and deformation of LCE structures driven by light or heat.  

 

Experiments 

 Material synthesis 

We adopt the chemical reaction recently developed by Yakacki et al [1] to synthesize LCEs. The synthetic process is 

briefly summarized as follows. First, RM257 (liquid crystal monomer), PETMP (crosslinker) and EDDET (spacer) and 

multiwall carbon nanotubes  are dissolved in toluene by heating and vigorous mixing. The molar functionality composition 

of thiol monomers from PETMP and EDDET is fixed as 20:80 while that between thiol monomers and acrylate monomer 

from RM 257 is fixed as 1:1.15 so that there is 15% excess molar functional group of RM257 to that of PETMP and 

EDDET. A value of 0.5 wt% of HHMP to total monomers and 1.1 wt% of DPA to thiol monomers are added in the solution. 

After the solution is homogeneously mixed, it is placed in the vacuum chamber to remove bubbles trapped inside the 

solution. The solution is then transferred to the mold and left overnight at room temperature for the first step reaction. 

During the first-step reaction, RM257 reacts with PETMP and EDDET through thiol-acrylate Michael addition to form a 

lightly-crosslinked polydomain LCE film which are ready for applying mechanical stress and second-step reaction after the 

complete evaporation of toluene at 80℃. In the second-step reaction, LCE film can be completely cured by the photo-

polymerization of unreacted LC monomers under the UV light exposure.  

 

 Different active motion and deformation modes in LCE structures induced by light and heat 

1. Omnidirectional bending of a LCE cylinder induced by light  

As shown in Figure 1, a LCE cylinder is fabricated. With the illumination 

of light from one side, the LCE cylinder can quickly bend toward the light. The 

bending is caused by the inhomogeneous contraction of the LCE cylinder 

induced by the light. There is an optimized diameter of the LCE cylinder which 

can have the largest light-induced bending curvature.   

 

2. Light-driven rolling of a LCE cylindrical tube 

As shown in Figure 2, a LCE cylindrical tube can roll in a flat surface with 

the light illumination from on direction. When the tube is exposed to light from 

one side, the tube deforms inhomogenously which will shift the gravity center 

of the tube. Therefore the gravity of the tube can generate a moment to roll the 

cylindrical tube forward.  

 

 

 

 

 

 

Fig. 1  A LCE cylinder bends toward a 

light source 

Fig. 2 Rolling of a LCE tube driven by light 

illumination.  

 

Fig. 3 Rolling of a LCE tube driven by heating.  

 



3. Heat-driven rolling of a LCE cylindrical tube 

As shown in Figure 3, the same LCE tube can also roll in a fat surface when it is heated from the bottom. The 

mechanism is still under investigation.  

 

CONCLUSIONS 

 

   The active motion and deformation mode discussed in the presentation can be potentially useful for designing and fabricating 

various soft structures and devices.  
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Summary As a promising technology for renewable energy harvesting, dielectric elastomer generators (DEGs) have drawn much attention 
from the research community due to their flexibility, light weigh, low cost, large deformation capacity, and most importantly, high energy 
density. However, their energy harvesting schemes are relatively complex and can be affected by various material properties and failure 
modes. Based on a particular harvesting scheme, this work presents a theoretical study on the performance of DEGs under equi-biaxial 
loading. From the simulation results, it is found that the material viscoelasticity exerts a strong effect on the harvested energy. The general 
framework developed in this paper is expected to provide guidance for the optimal design of DEGs. 

 
INTRODUCTION 

 
   Dielectric elastomers (DEs), as a category of soft electroactive materials, can convert energy from one form to another. 
Due to their large deformation capability and high energy density, DEs are desirable materials for power generators that 
transduce mechanical energy to electrical energy. In fact, much effort has been devoted to studying the energy harvesting 
performance of dielectric elastomer generators (DEGs). At the early stage, Pelrine et al. proposed a “rectangular” 
electromechanical harvesting scheme for DEGs, which is relatively easy to manage [1]. Later, various prototypes of DEG 
have been developed based on this “rectangular” energy harvesting scheme [2-5]. According to these studies, the achieved 
energy density of DEGs is already more than one order of magnitude higher than that of the piezoelectric and 
electromagnetic generators, while it is still far less than the predicted maximum energy density [6]. 
   As discussed in the earlier studies, the performance of DEGs can be affected by various factors such as electrical 
breakdown (EB), loss-of-tension, current leakage, loading configurations and material viscoelasticity. Particularly, it is 
reported that the efficiency of DEGs is strongly affected by the material viscoelasticity that may lead to high energy 
dissipation and loss-of-tension [5, 7]. Moreover, to gain a better understanding on the influence of the material 
viscoelasticity, it is essential to investigate the finite-deformation viscoelastic behavior of DEs since they commonly 
undergo large deformation during the operation of DEGs. Based on the finite-deformation viscoelasticity model by Hong 
[8], this work investigates the influence of the material viscoelasticity on a “triangular” harvesting scheme and the harvested 
energy, aiming to provide an increased understanding on the harvesting mechanisms of DEGs  
 

THE ENERGY HAVESTING MECHANISM AND SCHEME OF DEGS 
 
   Regardless of the electromechanical energy harvesting scheme, the energy harvesting principle of a DEG always lies in 
the cyclic change of the capacitance of the embedded DE, which is realized by its electromechanical deformation. In 
addition, the electromechanical deformation of a DE is limited by the electrical breakdown (EB) failure and its material 
extensibility. Figure 1(a) illustrates the electrical breakdown curve on the dimensionless voltage-charge ( -Q) plane of a 
DE. The operation of the DEG is safe when voltage level of the DE is below the EB curve, otherwise it fails by electrical 
breakdown. Also, the deformation of the DE is commonly restricted within a prescribed range from min to max, where min 
and max are the minimum stretch ratio and the maximum stretch ratio, respectively. Therefore, the maximum achievable 
energy for such a DEG can be indicated by the area enclosed by the min, max and EB curves in figure 1(a).  
   According to this enclosed area, a desirable scheme to maximize the harvested energy should be a triangle as denoted by 
A-B-C in figure 1(a), which was recently proposed by Shian et al [9]. Figure 1(b) shows the energy harvesting circuit of this 
“triangular” harvesting scheme. At state A, a DE coated with compliant electrodes on both surfaces is stretch to max by an 
equi-biaxial force P (figure 1(c)). Then switch 1 is closed, which connects the DE and the transfer capacitor to the power 
supply. Thus, charges flow from the power supply to the DE and the transfer capacitor until the voltage of the DE ( 
increases to the level of the power supply (L) at state B. The diode between the DE and the transfer capacitor only allow 
charges flow from the DE to the transfer capacitor when >C (C is the voltage of the transfer capacitor). After state B is 
reached, switch 1 is opened and force P is gradually decreased, which allows the DE to shrink back. When the DE shrinks 
back, its capacitance C decreases (C=C04, where C0 the capacitance of the undeformed DE and  is the stretch ratio) and 
voltage increases, which forces some charges to flow to the transfer capacitor and increases its voltage. The slope of B-C 
line is proportional to -1/Cp, where Cp is the capacitance of the transfer capacitor. At state C, the DE shrinks back to min 
and most of the charges on the DE have been transferred to the transfer capacitor. After state C is reached, switch 2 is closed 
and the charges from both the DE and the transfer capacitor flow to the harvesting circuit since they are at the highest level 
of voltage. After switch 2 is closed, the DE membrane is stretched again, which causes its capacitance to increase and its 



voltage to further decrease (the decrease of its voltage is partly due to the discharging). When the deformation of the DE is 
back to max (at state A), switch 2 is opened and the harvesting cycle is finished.  

 
Figure 1. Schematics of a dielectric elastomer generator: (a) energy harvesting scheme and simulation results; (b) energy 
harvesting circuit diagram; (c) a dielectric elastomer under equi-biaxial loading. 
 
Simulation results and discussion 
   Based on the finite-deformation viscoelasticity model [8], figure 1(a) shows the simulation result of the energy 
harvesting cycle of the DEG denoted by A1-B1-C1-D1-A1. Due to the material viscoelasticity, loss-of tension occurs before 
the DE can reach state C in our simulation. This phenomenon is also in agreement with the experimental results by Shian et 
al [9]. Therefore, another state (state C1 in the simulation) has to be prescribed to determine the time for closing switch 2. In 
addition, from state B1 to state C1 (the DE shrinks back), only a small amount of charges on the DE have been transferred to 
the transfer capacitor. After state C1 is reached, switch 2 is closed and the DE continues to shrink back until it reaches a 
loss-of-tension condition at state D1, during which time the charges on both the DE and the transfer capacitor flow to the 
harvesting circuit. After state D1 is reached, DE is stretched again. When the DE is stretched back to max (at state A1), 
switch 2 is reopened and the harvesting cycle is complete. Although the area enclosed by A1-B1-C1-D1 is much smaller than 
that enclosed by A-B-C, a DEG adopting this harvesting scheme has experimentally demonstrated the highest energy 
density so far [9]. 
   Since the harvested energy is still significantly less than the maximum achievable value, there is much room for the 
improvement of the performance of DEGS. Based on the “triangular” harvesting scheme, our simulation results suggest that 
the harvested energy of DEGs could be improved by some approaches such as increasing the rate of the deformation of the 
DE (which weakens the viscoelastic effect of the material), optimizing the position of state B1 and C1 (the position of state 
B1 is determined by the voltage level of the power supply), and choosing an appropriate transfer capacitor (the slope of line 
B1-C1 is determined by the capacitance of the transfer capacitor).  
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Summary In this work, we present a mechanistic and physics-based constitutive model to describe and design the finite strain viscoelastic
behavior of elastomers. Mathematically, the viscoelasticity of elastomers has been decomposed into hyperelastic and viscous parts, which
are attributed to the nonlinear deformation of the cross-linked polymer network and the diffusion of free chains, respectively. Combing the
non-affine network model for hyperelasticity and modified tube model for viscosity, both understood by molecular simulations, we develop
a mechanism-based constitutive model for finite strain viscoelasticity of elastomers. All the parameters in the proposed constitutive model
have physical meanings, which are signatures of polymer chemistry, physics or dynamics. The finite strain viscoelasticity obtained from
our simulations agrees qualitatively with experimental data on both un-vulcanized and vulcanized rubbers, which captures the effects of
cross-linking density, the molecular weight of the polymer chain and the strain rate.

INTRODUCTION

Elastomers consist of long polymer chains joined together by chemical bonds through cross-linkers. They are usually
capable of recovering their original shapes after finite deformation due to covalent cross-linkages. Under equilibrium con-
ditions, long polymer chains making up an elastomer are irregularly coiled together. However, when the elastomer is under
tension, polymer chains tend to stretch out and straighten along the pulling direction. Upon unloading, the chains return to
their original compact and random arrangement. During such a loading-unloading process, energy dissipates due to friction
between polymer chains and the elastomer exhibits viscoelastic behavior (cf. Fig. 1). Examples of elastomers include polyiso-
prene (natural rubber), polybutadiene (butadiene rubber), polychloroprene (chloropene rubber) and the copolymer comprised
of butadiene and acrylonitrile (nitrile rubber). These materials have a broad range of applications in engineering and industry.

(a) (b)

Figure 1: Experimental and computational results on uniaxial stress-strain curves during loading and subsequent un-loading
of (a) un-vulcanized and (b) vulcanized natural rubber (NR) with strain rate 0.003 s−1 at room temperature. Experimental
results are taken from [1].

Due to differences in the degree of cross-linking, the viscoelastic behavior of un-vulcanized natural rubber (NR) can be
very distinct from that of vulcanized NR. For un-vulcanized NR under uniaxial tension, the stress initially increases linearly
with strain during the elastic deformation stage, followed by a strain-softening stage with a stress plateau, depicted in Fig. 1(a).
Upon increasing the strain further, the stress starts to increase rapidly, reminiscent of strain-hardening behavior. When the
applied tension is released, the stress drops rather quickly and the polymer chains tend to return to a coiled equilibrium state
that might be very different from the initial state. Therefore, the stress-strain curve of un-vulcanized NR exhibits pronounced
hysteretic behavior, representing large energy dissipation. Contrary to the behavior of un-vulcanized NR, the vulcanized NR

∗Corresponding author. Email: yingli@engr.uconn.edu



exhibits only the strain-hardening behavior without showing strain-softening, as given in Fig. 1(b). During the unloading
stage, the stress slowly reduces with decreasing strain, signaling a much smaller hysteresis with less energy dissipation,
because of the constraints applied through the cross-linkages. Moreover, the elastic modulus of vulcanized NR is about 20-
30 times larger than that of un-vulcanized NR due to large differences in cross-linking densities. The above stress-strain
curves for un-vulcanized and vulcanized NRs characterize the most important mechanical behavior of elastomers, which can
greatly affect their performance in applications. However, a reliable constitutive model that is able to capture these qualitative
differences in mechanical behavior for un-vulcanized and vulcanized NRs simultaneously does not presently exist.

DEVELOPMENT OF CONSTITUTIVE MODEL

To better understand the viscoelastic behaviors of elastomers, they have been decomposed into a cross-linked network
with superimposed free chains. Mathematically, the viscoelasticity of elastomers has been decomposed into hyperelastic and
viscous parts, which are attributed to the nonlinear deformation of the cross-linked polymer network and the diffusion of free
chains, respectively. The hyperelastic deformation of a cross-linked polymer network is governed by the cross-linking density,
the molecular weight of the polymer strands between cross-linkages, and the amount of entanglements between different
chains, which we observe through large scale molecular dynamics (MD) simulations. Moreover, a recently developed non-
affine network model [2] is confirmed in the current work to be able to capture these key physical mechanisms using MD
simulation. The energy dissipation during a loading and unloading process of elastomers is governed by the diffusion of free
chains, which can be understood through their reptation dynamics. The viscous stress can be formulated using the classical
tube model [3]; however, it cannot be used to capture the energy dissipation during finite deformation. By considering the
tube deformation during this process, as observed from the MD simulations, we propose a modified tube model to account for
the finite deformation behavior of free chains. Combing the non-affine network model for hyperelasticity and modified tube
model for viscosity, both understood by molecular simulations, we develop a mechanism-based constitutive model for finite
strain viscoelasticity of elastomers. All the parameters in the proposed constitutive model have physical meanings, which
are signatures of polymer chemistry, physics or dynamics. More importantly, the finite strain viscoelasticity obtained from
our simulations agrees qualitatively with experimental data on both un-vulcanized and vulcanized rubbers (see Fig.1), which
captures the effects of cross-linking density, the molecular weight of the polymer chain and the strain rate.

CONCLUSIONS

The hyperelastic and viscous behaviors of elastomers are attributed to the nonlinear deformation of a cross-linked network
and diffusion of free chains, respectively. Large scale molecular simulations were performed to reveal the detailed physical
mechanisms of the cross-linked network and free chains under uniaxial tension, simple shear and equal-biaxial tension. For
the cross-linked network, its stress response is attributed to the cross-linking and entanglement. Therefore, the classical
Arruda-Boyce model [4] is not applicable as it does not include the effect of entanglements. The recently developed non-
affine network model [2], simultaneously considering the contributions of cross-linking and entanglement, is identified as the
most proper continuum model to describe the hyperelastic behaviors of elastomers. For the free chains, the primitive chain
length and tube diameter are found to be dependent on the applied deformations in the molecular simulations [5, 6], which
can be captured by our theoretical formulations based on an affine deformation assumption. Based on these observations, the
viscous contribution of free chains can be reformulated according to the classical tube model proposed by Doi and Edwards
[3], which is named as the updated tube model. Combining the non-affine network model with the updated tube model, a
new constitutive model has been proposed for studying the finite strain viscoelastic behavior of elastomers. This new model
is found to be able to capture the mechanical responses of un-vulcanized and vulcanized rubber under uniaxial loading and
unloading with different strain rates. Moreover, parametric studies have been performed based on the proposed constitutive
model, which demonstrate that different viscoelastic behaviors can be achieved through tuning these physical parameters.

References

[1] Amnuaypornsri S., Toki S., Hsiao B.S., Sakdapipanich J.: The effects of endlinking network and entanglement to stressstrain relation and strain-induced
crystallization of un-vulcanized and vulcanized natural rubber. Polymer 53: 3325-3330, 2012.

[2] Davidson J.D., Goulbourne N.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids. 61: 1784-1797, 2013.
[3] Doi M., Edwards S.F.: The Theory of Polymer Dynamics. Clarendon Press, Oxford 1986.
[4] Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids,

41:389-412, 1993.
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Summary In this work, we propose a new viscoelastic model for shape memory polymers (SMPs) based on phase transition, which has 

clear physical significance and includes the time history. To describe the phase transition phenomenon of SMPs, our new model has 

different constitutive structures above and below transformation temperature. As the proposed viscoelastic model is based on phase 

transition, it can be used both for different types of SMP materials and to treat large strain problems. To validate the model accuracy and 

show the model's capability in reproducing the shape memory effect, two test examples are predicted using the new constitutive model. 

The simulated and predicted results are compared with available experimental results and good agreement can be observed.  

 
INTRODUCTION 

 

   Shape memory polymers (SMPs), a kind of soft and smart material, have been widely used in aerospace structures, 

biomedical devices, functional textiles and other soft machines/devices. Increasing usefulness of SMPs motivates us to 

further understand its thermomechanical properties and deformation behavior. With that in mind, the development of more 

suitable constitutive models for SMPs is imperative. To develop new macro constitutive models for SMPs, two general 

approaches have been adopted: viscoelastic modeling and phenomenological modeling. The existing viscoelastic models 

may be able to describe the behavior of SMPs, but they lack a clear physical meaning. The phenomenological models based 

on phase transition have a clear physical meaning, but do not include the time factor and cannot describe the creep and 

stress relaxation of rubber. In order to overcome the shortcomings of these two types of models, we propose a new 

viscoelastic model based on phase transition, which has physical significance and includes the time factor. In previous 

research work, there is still a lack of unified constitutive model with shape memory effect. At the same time, most studies of 

SMPs are only based on a specific material. These factors narrow the application of models. Many models are limited to 

small strain (within 10%). The proposed new viscoelastic model not only can be used for different materials, but can also be 

used to treat large strain problems. In order to validate the model, simulated and predicted results are compared with the 

available experimental results. Good agreement between predict values and experimental data can be observed.  

 

CONSTITUTIVE MODEL   

 

   With the phenomenological approach, the shape memory effect of SMPs is described by a phase transition at 

transformation temperature. Normally, SMPs have different microstructures at different temperature ranges. To depict the 

phase transition phenomenon, we propose a new viscoelastic model for SMPs. The biggest difference between the ordinary 

viscoelastic model and the proposed model is that the proposed model has different constitutive structures (as shown in Fig. 

1) above and below transformation temperature. When the temperature is higher than the transition temperature Tr, the 

SMPs are in the rubbery state. Rubber is often treated as isotropic incompressible hyperelastic materials in a short time 

period of loading, but from the point of view of a long time period of loading, the materials in the rubbery state still exhibit 

stress relaxation and creep viscosity effect. Thus a simple model for SMPs at rubbery state is proposed, as shown in Fig. 

1(a). This model is composed of two incompressible hyperelastic element and a viscous damping element. It represents the 

rubber phase which is responsible for the permanent shape at a temperature higher than transition temperature. It can be 

called the rubber phase element. As the temperature decreases below Tr, the material enters the glass state. In the glass state, 

a kind of reversible phase, the second crosslinking chain may be formed in the local area of reticular structure of SMPs, 

which act as small locks. The second crosslinking chain lock the material’s reticular structure to fix the temporal shape at a 

temperature lower than transition temperature. When the temperature increases above Tr, the second crosslinking chain 

disappear and permanent shape is recovered. The second crosslinking chain can be considered as small springs with viscous 

effects. As such, two spring elements and a viscous damping element are introduced to the model to simulate the reversible 

phase – the second crosslinking chain (as shown in reversible phase of Fig. 1(b)). It can be called the reversible phase 

element. The constitutive model for SMPs consists of a rubber phase element and a reversible phase element placed in 

parallel at T≤Tr, as shown in Fig. 1(b). In the model, the effect of thermal expansion, which is assumed to be independent of 

the mechanical behavior, is also considered (as depicted in Fig. 1(a) and Fig. 1(b)). 
   The advantages of the new viscoelastic model are that it has good physical significance and includes the time factor 

essential to describe the creep and stress relaxation of rubber. From the corresponding experimental results, the parameters 

of the model can be determined for different SMP materials. 



(a)         (b)   

Fig. 1. (a) Constitutive model for SMPs at T>Tr (rubbery state); (b) Constitutive model for SMPs at T≤Tr (glass state). 

 

VERIFICATION OF THE CONSTITUTIVE MODEL  

 

   In order to validate the acuracy of our proposed new model, two examples of uniaxial tests with two different types of 

SMP materials are simulated. The constitutive model is implemented and the simulated results are compared with available 

experimental results. 
   Example one considers the unconstrained free strain recovery experimental test that had been performed by Tobushi et al 

[1, 2]. First, Tobushi et al [1] had developed a linear viscoelastic model and performed a series of experiments on 

polyurethane-SMP. Then, Tobushi et al [2] further modified the linear model to a nonlinear model which can treat the 

behavior of larger strains. Their work can describe the shape memory behavior qualitatively, but it does not have a clear 

physical meaning. We use the newly proposed constitutive model and corresponding material parameters extracted from 

experiment results [1, 2] to simulate the uniaxial tests. The stress-strain relationship, the stress-temperature relationship and 

strain-temperature relationship in an unconstrained free strain recovery cycle are shown in Fig. 2. From Fig. 2, it can be 

observed that the proposed new constitutive model can successfully predict the shape memory behavior of SMPs. In order 

to compare model predictions, Tobushi’s predicted results are also illustrated in  Fig. 2. Better agreement can be observed 

between the new model and experimental data. 
    The second example is to predict experimental test done by McClung et al [3] for large strain recovery test. To verify 

the ability of the new model in large strain and show the validity for different materials, the experiments of the Veriflex E 

epoxy-SMP reported by McClung et al [3] are simulated. As shown in Fig. 3, the simulation results match quite well with 

the experimental data in describing the loading procedure as well as the following strain recovery process. 

                        
(a) Stress-strain curves      (b) Stress-temperature curves       (c) Strain-temperature curves 

Fig. 2. Predicting the shape memory behavior of polyurethane-SMP. Experiments reported by Tobushi et al [2, 3]. 

     
(a) Stress-time curves         (b) Strain-time curves   

Fig. 3. Predicting the shape memory behavior of Veriflex E epoxy-SMP, Experiments reported by McClung et al [4]. 

 

CONCLUSIONS 

 

   Proposed constitutive model of SMPs combines the advantages of phase transition constitutive and viscoelastic 

constitutive. It has a good physical meaning and also includes the influence of loading time. As we did not make more 

special assumptions for different materials and the viscoelastic model is based on phase transition, the new model can be 

used for modeling different materials and large strain problems. 
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Summary Stimuli responsive soft nanomaterials are of growing scientific and technological interest. Polymer brushes are densely packed,
surface tethered polymer chains. A brush behaves like an elastic surface layer with residual surface stress which produces deformation of
the substrate. In a thermoresponsive brush, temperature reversibly changes the residual surface stress as well as the elastic modulus of the
surface layer due to coil-globule phase transition in the brush. A mechanics model incorporating Young-Laplace effect is developed for high
grafting density brush (graft density > 0.2) which produces large surface stress. The model is then applied to experiments on a poly(N-
isopropylacrylamide)-co-Poly(N,N-Dimethylacrylamide) (PNIPAm-co-PDMA) polymer brush grafted on a plasticized poly(vinyl chloride)
(pPVC) film using surface-initiated atom transfer radical polymerization (SI-ATRP). The model estimates effective surface stress due to the
brush to be ∼ −10 N/m which can be halved by applying temperature.

THERMORESPONSIVE POLYMER BRUSH

Long polymer chains grafted to a surface arrange themselves into a brush like structure when the grafting density exceeds
a threshold value [1] (see Fig. 1(a)). This structure arises due to the competition between entropic spring force associated
with each polymer chain and inter chain repulsive forces. The entropic spring force tries to keep the two ends of a polymer
chain together. Repulsive force between monomers, arising due to steric effects, is relieved by chain extension, resulting in
brush like shape. Significantly, these interactions make a brush behave like an elastic surface layer with reversible residual
surface stress which may cause deformation in the substrate [2, 3]. Establishing relationship between the molecular scale
parameters of the brush with its continuum level properties is an ongoing work [2, 4]. Furthermore, polymer brush made of
thermoresponsive polymers show conformation change when temperature is applied to it. This conformation change leads to
a change in the residual surface stress as well as the elastic modulus of the surface layer [2]. This behaviour can be utilized in
sensing and actuation applications [5].

MECHANICS MODEL OF A POLYMER COATED BEAM

We have developed a mechanics model for a thin flexible beam coated with a polymer brush layer on its top surface (see
Fig. 1(c))). The polymer brush has been treated as an elastic surface layer with a residual stress, causing deflection in the
beam. Mechanical equilibrium for the surface layer introduces correction in stress in the substrate through Young-Laplace
relation. For a rectangular cross section of a substrate with thickness t, the correction is considerable if t ∼ νσs

E , where E
and ν are the Young’s modulus and the Poisson’s ratio of the substrate, and σs is surface stress in the surface layer. For a
pPVC substrate E ∼ 107 Pa and ν ∼ 10−1. For surface stress, σs ∼ −10 N/m, correction due to Young-Laplace relation is
considerable if t ∼ 10−7 m. The mechanics model incorporates this effect. Assuming small strain in the beam, the following
relation between the surface stress due to polymer brush and the curvature of the beam is derived:

σs = σ0
s + εsEs =

E

1− ν2

(
t2κ

6 + ν
1−ν tκ

)
, (1)

where σ0
s is the residual surface stress in the undeformed substrate, and εs and Es are strain and elastic modulus of the surface

layer. (1) is akin to Stoney’s equation with a correction term in the denominator (ν(1− ν)−1tκ) arising due to Young-Laplace
effect. Surface stress due to polymer brush can be estimated by measuring curvature of a polymer coated beam experimentally,
and applying the above formula.

EXPERIMENTAL ESTIMATION OF SURFACE STRESS

To estimate surface stress due to polymer brush, Poly(N- isopropylacrylamide)-co-Poly(N,N-Dimethylacrylamide) (PNIPAm-
co-PDMA) polymer brush was grafted on one side of a part of a plasticized poly(vinyl chloride) (pPVC) film using surface-
initiated atom transfer radical polymerization (SI-ATRP). Note that by varying polymerization time, molecular level properties
of the brush can be varied. For this experiment, it was fixed to six hours. The grafting procedure ensures very high graft den-
sities (number of polymer chains attached to unit area of the substrate) and ultrahigh molecular weight of the polymer chains

∗Corresponding author. (graduate student, UBC) Email: manav@alumni.ubc.ca
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Figure 1: (a) SEM images of pPVC substrate partially coated with polymer brush [5]. (b) Partially coated pPVC beam in a
water bath. Rise in temperature leads to decrease in curvature of the coated part of the beam and it is reversible. (c) Schematic
of a partially coated beam. 1 cm of the 3 cm long beam is coated with polymer brush. (d) Variation of curvature and surface
stress with temperature for polymer brush coated beams of thicknesses (t) 355 µm and 254 µm.

(∼ 106 g/mol) leading to high surface stresses. The pPVC beams used in the experiment are 3 cm long, 5 mm wide, and
254 µm and 355 µm thick. Only 1 cm of the beam near its fixed edge is coated with polymer brush. Young’s modulus and
Poisson’s ratio for the pPVC film are 12 MPa and 0.3 respectively. Bending rigidities of the beams are 8.19× 10−8 N−m2

and 2.24× 10−7 N−m2 respectively.
PNIPAm-co-PDMA is a temperature sensitive polymer. To measure curvature of a beam coated with the temperature

sensitive polymer brush, the beam was placed in a water bath with temperature control. After reaching the desired temperature,
we waited for a minute for the brush to reach steady state before proceeding with measurement at the temperature. At different
temperatures of the bath, curvature of the beam changes (see Fig. 1(b)) due to change in effective surface stress. The beam was
photographed at different temperatures by a fixed camera. Using image processing in MATLAB, the shape of the cantilever
beam was traced. Using circle fitting on the part of the traced curve where brush is present, curvature of the coated part is
determined, which is in turn used to find effective surface stress in the beam (Fig. 1(d)). It can be observed from Fig. 1(d)
that surface stress is of the order of −10 N/m and it can be halved by increasing temperature. The change in temperature
produces change in surface stress through conformation change in the brush. However, the transition is not sharp and happens
over a range of temperature near lower critical solution temperature (LCST) (∼ 320 C) for the polymer. Furthermore, small
difference between surface stresses for the two thicknesses, even though curvatures (and hence εs) at a particular temperature
are widely different, suggests that the elastic modulus of the surface layer is very small.

CONCLUSIONS

Equation governing finite deformation of a beam with a coating of a polymer brush on its top surface has been derived
including the Young-Laplace term needed to satisfy surface equilibrium. The modified stress-curvature relation was then used
to extract surface stress due to polymer brush grafted on a pPVC substrate. The surface stress is found to be on the order of
−10 N/m and it can be halved by applying temperature. The ability to control surface stress by varying temperature permits
the design and development of soft actuators based on polymer brush material system.
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Summary Humans are unique among primates in having arched feet that provide a stiff propulsive lever for locomotion. Using mathematical
and physical models of the foot as a curved elastic shell, we show that the transverse curvature is the primary determinant of foot stiffness.
The stiffness of shallow thin shells has two asymptotic regimes, one that resembles a soft thin plate, and the other that shows a power-
law dependence of stiffness with an exponent of 3/2. Curvature induced coupling between bending and in-plane stretching underlies the
power-law dependence. Analysis of discrete realizations of a shell also show a similar transition, but with an exponent of 2. We present
implications of our work to understanding the mechanical origins of stiff human feet, and to the evolution of human feet through an analysis
of extant and fossil feet.

Figure 1: Observations on the effect of curvature on stiffness. A. The human foot has two distinct arches in the longitudinal and transverse
directions. B. Common experience and simple experiments show that curvature in the transverse direction significantly increases the
longitudinal bending stiffness of thin continuum shells. C. Discrete realizations of a shell, namely, rigid bars connected by soft elastic
“ligaments” also shows a similar large increase in stiffness upon increasing curvature in the transverse direction.
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Figure 2: Mathematical and physical analyses of shells, and their implications to human evolution. A. Numerical model of curved elastic
shells. B,C. Experimental fabrication and measurement of stiffness of transversally curved shells. D. The inset shows dimensional data, that
collapse according to the asymptotic predictions. Comparing the dimensionless curvature of various biological feet, relative to the crossover
point of the asymptotes, predicts that a human-like stiff foot might have emerged at least 3.4 million years ago. E. Ongoing work to address
the mechanics of discrete mimics of the foot, with stiff “bones” and softer interconnecting “ligaments”.

Just as a drooping dollar bill stiffens upon curling it in the transverse direction (figure 1B), we hypothesize that the
transverse arch of the foot plays a central role in longitudinal bending stiffness. We observe a similar increase in stiffness for
physical mimics of the foot, which resemble a discrete realization of the dollar bill (figure 1C).
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MODELS OF THE FOOT

Mathematical models: We modeled the foot computationally (using COMSOL) and experimentally (static loading experi-
ments) as a continuum elastic shell of length L, width w, and thickness t. The shell has radii of curvature RL and RT in the
longitudinal and transverse directions respectively (figure 2A,B). To isolate the dependence of the stiffness K of the shell on
the geometrical parameters L, w, t, RL, and RT , but eliminate material nonlinearities, the shell is assumed to be made of a
uniform linear elastic solid with Young’s modulus E and Poisson ratio ν.

For flat thin plates, it is well known that stretching can be neglected and is decoupled from bending if the deflection of
the end is much smaller than the thickness [Landau and Lifshitz(1959)]. For curved shells, however, stretching with bending
could be a dominant effect even for small out-of-plane deflections. For a radial displacement by an amount w, the strain scales
as ∼ w/R, where R is the typical radius of curvature. The elastic stretching energy therefore scales as Es ∼ EtA(w/R)2.
When deformations are uniform, pure bending energy scales as Eb ∼ Et3A(w/R2)2, always resulting in a large stretching-
to-bending ratio, r = Es/Eb ∼ (R/t)2 � 1.

When the deformation is caused by an external normal force applied to the shell and the characteristic length scale of the
range of this deformation is `, bending energy will scale as Eb ∼ Et3lW (w/`2)2, whereW is the projected width of the shell.
Numerical experiments indeed show the localization of the deformation for curved shells (figure 2A). Hence, by balancing the
stretching and bending energies (equivalent to minimizing the total elastic energy), we derive a scaling law for the deformation
depth, namely ` ∼

√
R t. Therefore, for some function f depending on the precise loading of the shell, dimensional analysis

implies K
Bw/L3 = f(RT t/L

2, RLt/L
2), where the bending rigidity of the cross section of the shell isB = Et3/(12(1−ν2)).

Physical models: Experimental realization of this shell was made using the soft elastomer polydimethylsiloxane (PDMS)
(figure 2B). The shell was clamped at one edge, and an external force was exerted on the other, to mimic the loading experi-
enced by the foot during toe-off (figure 2C). The ratio of the applied force to the relative displacement between the edges of
the shell in the limit of small displacements gives stiffness K.

RESULTS

The inset of figure 2D shows the calculated and measured stiffnessK of the foot for shells with different geometries. Using
the dimensionless forms of stiffness and curvature cause these data to collapse, in agreement with the asymptotic predictions.
There was no such effect on longitudinal bending stiffness because of longitudinal curvature. We also plot the curvature
of human, gorilla, chimpanzee and several fossil feet [Harcourt-Smith and Aiello(2004), Pontzer et al.(2010)], shown in the
lower half of figure 2D. Among living primates, humans are the only feet that belong to the 3/2 power-law regime, i.e. correctly
predicted to exhibit a stiff shell-like behavior [Ker et al.(1987)]. On the other hand, the gorilla and chimpanzee are flat, and
correctly predicted to be soft like a thin plate [Bennett et al.(1989)]. The fossil feet show a clear increase in curvature at least
1 million years (Ma) before the emergence of the genus Homo. The ∼ 3.4 Ma foot (Burtele, Ethiopia), which was previously
thought to resemble the gorilla, has a human-like arch even if we assume its proportions to be that of a gorilla.

CONCLUSION

The curvature of the transverse arch in humans is expected to contribute to a 200% increase in stiffness, all else held
the same. Human feet are approximately 220% stiffer than chimpanzee feet [Bennett et al.(1989)], after adjusting for size
differences and assuming equal Young’s modulus (using our dimensionless stiffness). In contrast, the elastic tissue that
constitute the longitudinal arch account for less than 30% of the human foot stiffness [Ker et al.(1987)].

Measurements of stiffness as a function of curvature using the discrete foot shown in figure 1C are in agreement with
theoretical predictions (with two fitting parameters). However, the power-law now exhibits an exponent of 2, different from
the continuum model. We are continuing to investigate the origins of this difference in the exponent.

Our results aid in the study of fossil feet, to infer function from form. There are also implications for flatfoot disorders,
and for the the design of lightweight, yet stiff, robotic or prosthetic feet. Finally, we propose that control of the transverse
curvature is an attractive method to modulate foot stiffness because of the strong dependence of stiffness on curvature.
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Summary As typical smart soft materials, ionic gels can present a large deformation induced by environmental temperature, electric 
field and chemicals, which maintain great potentials in soft actuator, environmental sensor, drug delivery, etc. In this paper, the 
coupling mechanism of reaction kinetics, deformation of polymer network, mass diffusion and polyelectrolyte effect in the gels 
will be uncovered, and a general dynamic electro-chemo-mechanical model will be proposed for common ionic gels. Further 
investigations showed that the dynamic deformation and response time of an ionic gel are dependent on the concentration of 
reactive and non-reactive ions, the time of exposure to external stimuli, the initial state and the density of ionizable groups on the 
polymer chains. At the end, a brief introduction will be additionally given on the application of smart soft materials, especially for 
the space technology. 

INTRODUCTION 

   Ionic gels consist of ionic polymers and a solution. These gels exhibit large amounts of deformation in response to 
mechanical forces, temperature, pH, light and electrical fields. Natural ionic gels in the periphery of plant and animal cells 
have important roles in the regulation of water and in stabilizing the shape of cells. Synthetic ionic gels have been widely 
used in engineering as environmental sensors, biomimetic actuators, autonomous flow controller and drug delivery systems. 
In these applications, the dynamic characteristics of ionic gels are important in device performance and improvements in the 
response time of devices based on ionic gels has become a critical parameter in their design. However, ionic gels usually 
undergo large dynamic deformations accompanied by the migration of ions in and out of the gel as a result of a nonequilibrium 
ionic chemical reaction. There is therefore a need to develop theoretical models for the design and optimization of devices 
based on ionic gels. The exploration of the dynamic behavior of ionic gels in response to chemical stimuli is of particular 
interest. 

We consider here the system of a block ionic gel immersed in a dilute solution of reactive and non-reactive ions. The gel 
has a dynamic behavior (swelling or shrinking) as the result of a nonequilibrium chemical reaction within the gel. By coupling 
the theories of large deformation, the Donnan effect and the nonequilibrium kinetics of chemical reactions, a 
chemomechanical theory has been developed to describe the dynamic behavior of the gel. We validated the predictions from 
the proposed theory using existing experimental and theoretical results. As examples, we report here the oscillation 
deformation of an actuator changing with the period of externally applied chemical stimuli and the response time of a sensor 
affected by the initial state, the density of ionizable groups on the polymer and the measured concentration. 
   When immersed in a solution containing several reactive ions, a polymer network with fixed ionizable groups begins to 
swell or shrink as a result of the ionic reactions between the fixed and mobile species. This results in a non-equilibrium ionic
gel. We focused on a specific system, but without a loss of generality, i.e., a non-equilibrium process for the dissociation and 
association of ionizable groups 

1

2
AB A Bk

k
� ���� �

where k1 and k2 represent the rate constants of the forward and reverse processes, respectively. When the network imbibes a 
number of solvent molecules, the ionisable groups AB, chemically bonded on the polymer chains, dissociate into mobile ions 
B+ in the solvent and conjugate bases A– fixed on the polymer chains. During the reversible reaction, the network of polymer 
chains charges and discharges. For example, the increasing number of conjugate bases A– gives rise to the fixed electrical 
charges of the polymer chains and consequently induces the deformation of the reactive ionic gels (forward reaction). The 
opposite process occurs during the backward reaction. In addition to the mobile ions B+ and the water molecules, the solution 
also contains non-reactive counter ions (+) and co-ions (–). This reaction-deformation system represents the basic working 
mechanism of a broad range of applications, such as hydrogel-based testing devices and drug-delivery systems. 

RESULTS AND DISCUSSIONS 

   We validated the theoretical model by comparing the steady solutions of a previously reported pH-sensitive gel (a familiar 
ionic gel: A– are carboxylic acids groups, B+ is H+) with the long time-limited solutions of our model (approximating to a 
steady-state). The solutions of our theoretical model at longer dimensionless times agreed well with the steady-state solutions1

(Fig. 1a and 1b). We then compared the swelling ratio of our theoretical predictions at longer dimensionless times ( 100� � )
with previously reported steady-state experimental results with different concentrations of B+ ( B

Ac N
� ). Here A– is the 

methacrylic acid-co-acrylic acid group and B+ is H+. The solutions of our theoretical model at longer dimensionless times 
agreed well with the previous experimental results2 (Fig. 1c). 



Fig. 1 The swelling ratio of a pH-sensitive gel changes (a) as a function of the concentration of B+ ( B
Ac N

� ) and (b) as a 
function of salt concentration ( ( )

Ac N� ) at different dimensionless time points. The red dots are the steady solution from 
Marcombe et al.1 The molar fraction of the ionizable group f = 0.05 and the dissociation constant k1/NAk2 =10-4.3. (c) 
Comparison between the swelling ratio of our theoretical predictions at a longer dimensionless time ( 100� � ) and the 
experimental results at steady-state with different concentration of B+. The scattered dots are experimental data from 
Eichenbaum et al.2 and the solid lines are the simulated results from our theoretical model.  

CONCLUSIONS 

   A chemomechanical theory has been proposed to describe the dynamic behavior of ionic gels under non-equilibrium processes. 
We found that the dynamic behavior of an ionic gel depends not only on the dissociation constant of the ionisable groups on the
polymer chains, but also on the concentration of the reactive and non-reactive ions in the external solution. When the ionic gel
undergoes alternating stimuli from reactive ions in the external solution, the corresponding behavior is significantly affected by 
the frequency of the stimulus. The response time of an ionic gel for different measured concentrations of reactive ions is correlated 
with the initial state and the density of the ionizable groups on the polymer chains. 
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Abstract Stimuli-Responding structures can be actuated by the swelling/shrinking of hydrogels. The response process is slow, 

due to its strong dependence on the diffusion rate of the inward/outward creeps of solvent within the polymer networks of 

hydrogel. Inspired by plants like Venus flytrap, which enables “snapping” action with prompt actuation, mechanical 

instability may be built in a multilayer hydrogel structure. Tough thermo-responsive hydrogel is used to assemble the structure. 

The shape changing behaviour of the structures can be significantly increased by building blocks with a thermo-responsive layer. 

At a critical point, a small actuation may tip the structure to undergo a large deformation by fast snap-through mechanism. Finite 

element simulation is performed to guide the design and to illustrate the versatile responses of the hydrogel structures. 

 
INTRODUCTION 

 

Stimuli-responding hydrogels, with characteristics such as adaptability, biocompatibility, tuneable mechanical 

properties, and low cost, have broad applications in fields such as actuators, tissue engineering, drug delivery, soft 

biomimetic robotics and microfluidic control systems [1,2]. Similar to the movements in plants, hydrogels are driven mainly 

by swelling and shrinking of water. Mechanical motion with large deformations was achieved in those hydrogels by stimuli 

under pH, light, temperature, magnetic and/or electric fields [3,4]. Conventional structures made of stimuli-responsive 

hydrogels are actuated directly by the volume change of hydrogels. The size reduction of specimen may speed up the 

actuation of hydrogel structures. The response time, nevertheless, strongly depends on the diffusion rate of the 

inward/outward creeps of solvent within the polymer networks of the hydrogel. Attributed to the snap-buckling instability of 

the structure, plants like Venus flytrap and bladderwort exhibit “snapping” action with ultrashort response time (<1ms) [5-7]. 

Recent experiments demonstrate bio-inspired structures made of soft materials with various geometry and material 

properties for the fast, stimuli-responding motion assisted by a snap-through instability [8-10]. However, developing 

stimuli-responsive hydrogel structure with rapid response remains a challenge.  

   In this work, we synthesise thermo-responding and non-responding hydrogels with reasonable toughness, by the method 

of double-network hydrogel [11]. The two hydrogels are assembled into a multilayer structure to harness mechanical 

instabilities with rapid actuation. The hydrogel structure operates in two steps. In the first step, a temperature raise changes 

the hydrophilicity of the material, resulting in slow shrinking of the thermo-responding hydrogel. This step is relatively slow 

due to the limited diffusion rate. As the hydrogel keeps shrinking, the elastic energy of the hydrogel structure accumulates. 

When the structure deformation reaches the critical condition to trigger a snap-through action, the second step intervenes. 

The structure snaps from one state to another with fast actuation, while the stored mechanical energy in the first step is 

quickly released into kinetic energy. 

 

A HYDROGEL STRUCUTRE ENABLING FAST ACTUATION 

 

Built-in mechanical instability 

   By triggering snap-buckling instability, the Venus flytrap undergoes ultra-fast movement. To design a structure with 

built-in mechanical instability, one starts with a thin hydrogel plate under circumferential stress. The circumferential stress 

drives the thin plate to bend upward or downward and to transform into a spherical shell. When the buckled thin plate to 

deform and to snap from one stable state to another stable state, the sudden fast actuation is manifested. The structure may 

be accomplished by a tri-layer hydrogel. The first layer is composed of thermo-responding hydrogel, which provides the 

driven force for the structure deformation. The second layer is a pre-stretched non-responding hydrogel ring, which 

provides a constant circumferential stress on the structure. The third layer is a balancing layer of non-responding hydrogel, 

which also maintains the structure symmetry. 

 

Actuated motion of the structure 

Experiments are carried out in 0.0025wt% CaCl2 solution. The solution is initially transparent and maintained at 22℃. 

We put the structure into the solution as the initial state, shown as in Fig. 1(a). The temperature of the solution is then raised 

to trigger the snap-through action of the structure. As the solution warms up, the thermo-responding hydrogel undergoes 

phase transition and turns write. The solution turns milk-like simultaneously by the spread of polymers squeezed from the 
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hydrogel. The transparency of the solution could indicate the degree of phase transition of the thermo-responding hydrogel. 

During the test, the thermo-responding hydrogel in the structure slowly pumps water out and shrinks. The volume change of 

the thermo-responding hydrogel induces an inverse bending moment on the structure, flattening the structure curvature. It 

takes 350 seconds for the structure to be flattened counting from the moment of the temperature raise (Fig. 1(a-c)). At the 

critical point of the structure inversion, the structure instability is triggered. The structure suddenly snaps-through into 

another stable state with the inversely buckled shape. It only takes less than one second for the structure to snap. 

Furthermore, the impact force of this snap-through process drives the structure to jump up from the vessel base (Fig. 1(d-f)).  

 
Figure 1. Images of the snap-through deformation of the hydrogel structure. 

 

CONCLUDING REMARKS 

 

   In summary, the mechanical instability is induced by a multi-layer hydrogel structure, and fast actuation speed is 

achieved. A variety of snapping behaviours may be presented when pursued along this avenue. Further mechanics analyses 

for the snapping procedure are desirable. In addition, the mechanical principle of built-in mechanical instability in stimuli-

responding hydrogel may open a door for enabling snapping behaviour of other stimuli-responding materials such as liquid 

crystal elastomers and shape memory polymers. 
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Summary Tough adhesion for synthetic hydrogels is challenging and only achieved very recently by chemically anchoring long-chain 

polymer networks of tough hydrogels on solid surfaces. Here we provide a quantitative understanding of the mechanism for the tough 

adhesion of hydrogels on solid materials by using a coupled cohesive-zone and Mullins-effect model. Numerical simulations reveal the 

toughening mechanism of the energy dissipation and the importance of the high intrinsic work of adhesion as well as the interfacial 

strength. These findings shed light on the reported strong bonding of tough hydrogels that the chemical anchoring gives high interfacial 

strength and large intrinsic work of adhesion to trigger significant energy dissipation and further enhance the interfacial toughness. 

 
INTRODUCTION 

 

   Adhesion plays an essential role in applying hydrogels to biological load-bearing materials and structures; for 

example, tough bonding of tendons and cartilages on bones in animals and tough adhesion of mussel’s plaque on 

rocks. Furthermore, tough interfaces between hydrogels and various solids, such as metal, ceramic, silicon and 

polymers, have been the foundations of the well integration and function in devices and systems in the engineering 

applications of hydrogels as diverse as biomedicine, biocompatible stretchable electronics, actuators for optics and 

fluidics, soft robotics and machines.  Although the tough hydrogel adhesion is extremely important in both biological 

and engineering application, it is very challenging to achieve strong adhesion between hydrogels and non-porous 

solids, as the presence of water complicates the interfaces interaction. Most of reported hydrogel adhesions are not 

very strong.  

   Great progress was recently made by Hyunwoo and colleagues [1], who developed a strategy for designing tough 

hydrogel bonding on various nonporous solid surfaces via chemically anchoring the stretchy polymer networks of 

tough hydrogels to the solid surface. Through the standard 90-degree-peeling test, the bonding was found to be very 

strong with an interfacial toughness over 1,500 J/m2 and robust in the wet environment, i.e., stable during constrained 

swelling under water. Although the real detachment process was complicated and involved finger instabilities, 

viscoelasticity and possible cavitation, it has been experimentally and numerically demonstrated the strong chemical 

anchors and energy dissipation were the key factors to achieve the tough bonding of hydrogels. The design 

methodology is expected to benefit the adhesion of various tough hydrogels for diverse engineering applications and 

thus calls for more in-depth theoretical understanding of the mechanisms of tough interfaces to guide the rational 

design of tough bonding and hydrogels. Furthermore, the fundamental toughening mechanisms of the synthetic tough 

hydrogel interfaces can also shed light on the orders magnitude difference between the work of adhesion of the DOPA 

molecular interfaces and macroscale mussel’s plagues [2].  
   Here we systemically examine the fundamental mechanisms of strong adhesion of the tough hydrogels due to 

chemical anchors and energy dissipations e.g., Mullins effect, with the coupled cohesive zone and Mullins effect 

model. We will present the validation of the simulation model and comparison between simulations and previous 

experiments and conducts parameter studies of the adhesion enhancement by varying the key materials parameters, 

such as interfacial strength and maximum energy dissipation ratio. 

 

 

THEORETICAL MODEL 

 

   We developed a 2D finite-element model to simulate the 90-degree-peeling test of soft materials bonded on solid 

substrates. A stiff backing film (i.e., Young’s modulus on the order of GPa) was attached on the top of the soft material 

film to reduce the elastic energy stored in the detached part so that the work of adhesion can be directly converted 

from the measured peeling force. The deformation of the system was assumed to be under plane-strain condition. The 

thickness of the soft material film and stiff backing are denoted as t and b, respectively. 

   To describe the intrinsic failure of the interface, we adopt the cohesive zone model. The specific model used in the 

current study is characterized by a triangular cohesive law with interface strength Sinterface and maximum separation 

distance δmax. The damage of the cohesive interface follows the quadratic nominal stress criterion, 
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where  t  represents the nominal surface tractions on the crack surface, and the subscripts n and s indicate normal 

and tangential directions, respectively. The elastic properties and energy dissipation of the soft materials are modeled 

as the Ogden hyperelastic material [3] and Mullins effect [4], respectively. 

 

 

CONCLUSIONS 

 

   We conduct extensive numerical simulations of tough hydrogel adhesion and show that the total work of adhesion 

linearly scales with the intrinsic work of adhesion of the interface and the contribution form the energy dissipation to the 

work of adhesion can be much larger than the intrinsic value. In addition, the simulations can capture the nontrivial 

thickness dependent work of adhesion observed in the experiments. We then explored the fundamental principles to design 

tough and adhesive soft materials by systematically varying the key bulk and interface material properties. For a material 

with given shear modulus and intrinsic work of adhesion, it is found that high interfacial strength and large energy 

dissipation (high value of hmax and small value of m) are the key of the strong bonding. 
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   Summary Considering the organization and engagement behavior of extracellular matrix (ECM) constituents in the 
arterial wall, here we proposed a new constitutive model of ECM mechanics that consists of medial elastin, medial collagen, 
and adventitial collagen, to incorporate the layer-specific distribution of elastin and collagen fiber orientations and the 
sequential fiber engagement in arterial mechanics. Planar biaxial tensile testing method was used to characterize the 
orthotropic and hyperelastic behavior of porcine thoracic aorta. Fiber distribution functions obtained previously [1] were 
incorporated into the constitutive model. Considering the sequential engagement of ECM constituents in arterial mechanics, 
a collagen recruitment function was incorporated into the model to capture the delayed engagement of adventitial collagen. 
A freely jointed chain model was used to capture the mechanical behavior of elastin and collagen at the fiber level. The 
tissue-level ECM mechanics was obtained by incorporating fiber distribution, engagement, and elastin and collagen content.  

INTRODUCTION 

   With a goal to understand how elastin and collagen fibers interrelate and modify the dynamic behavior of the arterial 
wall, we previously studied the ECM fiber organization, realignment, and recruitment by coupling mechanical loading and 
multi-photon imaging [1]. Our study provides quantitative evidence on the sequential engagement of ECM constituents in 
response to mechanical loading. We found that the adventitial collagen exists as large wavy bundles of fibers that exhibit 
delayed fiber engagement after about 1.15-1.2 tissue stretch. The medial collagen is engaged throughout the stretching 
process, and prominent elastin fiber engagement is observed up to 1.2 tissue stretch after which the engagement plateaus. 
These findings suggest that there are intrinsic interrelations between the major ECM constituents, medial elastin, medial 
collagen, and adventitial collagen fibers, which determines the mechanics of arteries and may carry important implications 
to vascular homeostasis and mechanobiology. In this study, a new constitutive model is proposed that considers the 
structural and mechanical interrelations of the three major ECM constituents. The medial elastin, medial collagen, and 
adventitial collagen each play unique structural and mechanical roles, and their distinct contributions to arterial mechanics 
are considered. Material parameters in the constitutive model resemble key structural and biological information in the 
arterial ECM. The layer-specific structural and biological information from quantitative multi-photon imaging and analysis, 
and biochemical assay is incorporated into the model to study the fitting and predicting capability of the model.  

MATERIALS AND METHODS 

Biaxial tensile testing 
   Porcine thoracic aortas from 12-24 month-old pigs were harvested from a local slaughter house and cleaned of adherent 
tissues. Square aortic samples of about 20 mm × 20 mm were prepared for biaxial tensile testing (n=7). Equi- and nonequi-
biaxial tensile tests were performed to characterize the mechanical behavior of the aortic tissue. Following the 
preconditioning cycles, a preload of 2 ± 0.050 N/m was applied in order to ensure tautness of the sutures. Equi-biaxial and 
two nonequi-biaxial tensions were applied to each aortic sample according to the following protocols: fl:fc = 2:3, 1:1, 3:2. 
Where fl:fc is the ratio of tension applied in the longitudinal and circumferential directions, respectively. 

Constitutive Modeling 
   A constitutive model of ECM mechanics is developed that considers the contribution from medial elastin (i = E), medial 
collagen (i = M), and adventitial collagen (i = A) constituents, to incorporate their layer-specific distribution orientations 
Ri(θ) and the sequential fiber engagement in the hyperplastic and anisotropic arterial behavior. The total strain energy 
function of the arterial wall is the sum of the constituent strain energy, Wi, and can be represented as W=∑i=E,M,AWi. A fiber 
distribution network model is used to incorporate the experimentally measured fiber distribution function Ri(θ), and the 
elastin and collagen content ni. The ECM constituent strain energy function, Wi, is assumed to be the sum of the individual 
fiber strain energies and can be expressed as: , where wi(ρi) is the strain energy function at the 

fiber level and is characterized by a freely-jointed chain model [2].  
   Considering the sequential recruitment of ECM constituents in response to mechanical loading, a normal recruitment 
function [3] is included to capture the delayed adventitial collagen engagement. The fiber orientation distribution of the 
ECM constituents, Ri(θ), were incorporated in two ways: A) the distributions of fiber orientation of each constituent are 
incorporated directly based on the analysis of multi-photon images [1]; and B) the measured distribution functions of each 
constituent were fitted with a three-term von Mises distribution (Figure 1). Parameter ni is related to the content of ECM 
constituents. These parameters were allowed to vary within a physiological meaningful range considering the elastin and 
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π

π
ρ θ θ
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collagen content in the arterial tissue [4]. The material parameters were determined by minimizing the objective function 
using the Nelder-Mead direct search method implemented in the fminsearch subroutine in Matlab. 

RESULTS AND DISCUSSION 

   The fiber orientation distribution function (Figure 1a) shows remarkably different structural characteristics in ECM 
constituents. The elastic fibers are relatively more uniformly distributed compared to collagen. The medial collagen shows a 
preferred circumferential distribution, however the multi-fiber family distribution is evident in adventitial collagen. For all 
three ECM constituents, the three-term von Mises fittings were able to capture the fiber distributions in the arterial wall. The 
collagen recruitment function was determined based on the straightness parameter analysis of adventitial collagen fibers 
from our previous study by Chow et al. [1]. Adventitial collagen was shown to exist as large wavy bundles of fibers that 
exhibit delayed fiber engagement. The values of the mean and standard deviation of the normal distribution were fixed as 
1.25 and 0.05, respectively, which captures a peak recruitment at about 1.25 stretch and an overall collagen engagement 
between 1.15-1.35 stretch (Figure 1b). Considering the structural characteristics and contributions of elastin, medial 
collagen, and adventitial collagen, the measured fiber orientation distributions were directly incorporated into the 
structurally motivated constitutive models and, hence, reduce the number of estimated parameters to only intrinsic fiber 
properties and fiber content. The model predicts the biaxial mechanical behavior of arteries reasonably well, while requiring 
less mechanical datasets for reliable estimation. With this constitutive model, we can study the mechanical contributions 
from the major load-bearding ECM constituents in the arterial wall (Figure 1c). Understanding the mechanical contributions 
of ECM constituents in the arterial wall may shed light on the underlying mechanisms of vascular remodeling and disease 
progressions. The small load bearing of adventitial collagen at lower stretches is consistent with its role in preventing the 
artery from overstretch and rupture. However contributions from the ECM constituents to the mechanical behavior of the 
arterial wall are highly dependent on the mechanical loading conditions. It is important to understand the interactions 
between elastin and collagen in arterial wall, which are currently unclear. The coexistence of multiple ECM constituents and 
their interrelations may be important in maintaining the fiber distributions in the arterial wall and contributing to the 
anisotropic tissue behavior.   

 
Figure 1: (a) Fiber orientation distributions of medial elastin, medial collagen, and adventitial collagen under 140% equi-
biaxial tissue stretch. Symbols represent measured distribution [1] and lines represent the corresponding three-term von 
Mises distribution function fitting; (b) Straightness parameter of adventitial collagen fibers [1], and the recruitment 
distribution density function that captures the delayed adventitial collagen engagement in response to mechanical loading; 
and (c) stress-stretch relationship of the ECM constituents, medial elastin, medial collagen, and adventitial collagen, when 
the arterial tissue is under equibiaxial tension. 

CONCLUSIONS  

   In this study, we developed a new multi-scale structure-based model of ECM mechanics from a fundamental mechanics 
perspective coupled with critical biophysical input. The model uniquely integrates the ECM microstructural information, 
such as fiber distribution, recruitment, elastin and collagen content, and fiber properties, for tissue-level biomechanical 
function. Contributions from layer-specific ECM structural constituents, medial elastin, medial collagen, and adventitial 
collagen were considered in the model to reflect the different mechanical and structural role of each individual ECM 
component. Moreover, the integrated model shows promises in fitting and predicting with a small set of material 
parameters, which has physical meanings and can be related to the structure and properties of the ECM constituents. 
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SummaryWe consider shape and topology optimization problems with uncertainties in the loadings, the material properties or the ge-
ometry. In view of minimizing the CPU cost of solving such problems, we propose two deterministic approximation methods, based on
the assumption of small uncertainties. The first one solves the so-called worst-case design scenario for a linearized approximation. The
computational cost is at most twice that of the unperturbed case since it involves three adjoint equations on top of the state equation. The
second one minimizes averaged objective functions (mean value, variance) of second-order Taylor expansions of standard cost functions,
under the additional assumption that the (small) uncertainties are generated by a finite numberN of random variables. The computational
cost is now similar to that of a multiple load problems where the number of loads isN . We demonstrate the effectiveness of our approach
on various geometric optimization problems in 2-d linearized elasticity. We rely on a gradient algorithm with shape derivatives in a level set
framework.

GEOMETRIC OPTIMIZATION SETTING

We consider geometric optimization in the context of linear elastic structures. A shape is a bounded, Lipschitz domain
Ω ⊂ IRd (d = 2, 3), filled with a linear isotropic elastic material with Hooke’s lawA. Every such shape is clamped on a part
ΓD of its boundary, submitted to given body forcesf and surface loadsg, applied on a subsetΓN ⊂ ∂Ω disjoint fromΓD,
and only its free boundaryΓ := ∂Ω \ (ΓD ∪ ΓN ) is subject to optimization. The displacementuΩ of a shapeΩ is the unique
solution of the linear elasticity system: 





−div(Ae(u)) = f in Ω
u = 0 onΓD

Ae(u)n = g onΓN

Ae(u)n = 0 onΓ

. (1)

For some integrand functionsj(u) andk(u), we consider the optimization problem

inf
Ω∈Uad

{

J(Ω) =

∫

Ω

j(u) dx+

∫

ΓN

k(u) ds

}

, (2)

with the set of admissible shapesUad :=
{
Ω ⊂ IRd is open, bounded and Lipschitz, ΓD ∪ ΓN ⊂ ∂Ω

}
. When it comes to

evaluating the sensitivity of such functionals, we rely on Hadamard’s boundary variation method. Namely, variations of a
shapeΩ are of the form

Ωθ := (I + θ)(Ω), θ ∈ C1(IRd, IRd), ‖θ‖C1(IRd,IRd) < 1

and shape derivatives are just usual functional derivatives with respect to the vector fieldθ.

Figure 1:Uncertainty, parametrized by a vector fieldV , of the geometry of the shapeΩ.

The same Hadamard setting is useful to define uncertainties with respect to the geometry. Denoting now byV a vector
field, a perturbation of a given shape is defined asΩV (see Figure 1). It is assumed to be small in the continuous norm,
‖V ‖C0(IRd,IRd) ≪ 1. Uncertainties or perturbations of the forces or material properties are defined in a standard way [1], [2]
(many more references can be found in the bibliography of these papers).
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A LINEARIZED APPROACH TO WORST-CASE DESIGN

For a given level of uncertaintym > 0, we choose to optimize the worst-case scenario, namely

inf
Ω∈Uad





J (Ω) = sup

V ∈C1(IRd,IRd), ‖V ‖
C0(IRd,IRd)

<m

J(ΩV )





.

In order to simplify the inner maximization, assuming thatm is small, we linearize the objective functionJ(ΩV ) with respect
to V . Linearizing the state equation (1) requires a standard ajoint statep. Then, the linearized worst-case design problem can
be written as

inf
Ω∈Uad

{

J lin(Ω) = J(Ω) +m

∫

Γ

h(u, p) ds

}

, (3)

where the integrandh depends on bothu andp and is integrated on the free boundaryΓ only (like a shape derivative). Then,
it is a standard matter to compute the shape derivative of (3) and to implement a gradient descent algorithm. Note that this
shape derivative requires two additional adjoint (see [1] for details). A similar (albeit simpler) method applies to other types
of uncertainties in the forces or material properties. In Figure 2, one can see the effect of geometry uncertainties for a gripping
mechanism: the small joints are thickened by considering the linearized worst-case approach.

Figure 2:Gripping mechanism: loadings (left), unperturbed optimal design (middle), linearized worst-case design (right).

A SECOND-ORDER APPROACH TO AVERAGED OPTIMIZATION

We now switch to the optimization of an average of the objective function, with respect to to the probability distribution
of the uncertainties. Still for small uncertainties, we further assume that they are generated byN uncorrelated and normalized
random variables. We now perform a second-order Taylor expansion of the cost function (2) with respect to these small
uncertainties and we optimize its mean (or combination of mean and variance). It turns out that, for compliance minimization,
this expansion is exact and leads to a problem equivalent toN multiple loads optimization [2]. In any case, the only used
informations on the random distribution are its mean and variance. In Figure 3 one can see the effect of (vertical) force
uncertainties generated by two random variables in the blue region). The optimal design for the mean is clearly more robust
than the unperturbed one. This approach extends to other type of uncertainties, including geometrical ones.

Figure 3:Minimal compliance bridge: loadings (left), unperturbed optimal design (middle), second-order averaged optimal
design (right).
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Summary The recent and rapid advancement of additive manufacturing technologies has provided engineers the capability to fabricate tailored 
structures with significant complexity at unprecedented length scales.  In order to fully leverage these technologies, the associated new 
capabilities and limitations must be integrated into the design process.  Herein, we extend projection-based topology optimization algorithms 
to address a number of advanced manufacturing methods including both polymer and metal additive manufacturing, and three-dimensional 
weaving. Fundamentally, all algorithms draw upon and extend the Heaviside Projection Method in order to impose manufacturing constraints, 
essentially utilizing tailored geometric and functional relationships between the independent design variables and the physical (and analysis) 
space. Specifically, we present new topology optimization algorithms for designing with multiple materials, considering support anchors for 
overhang regions, and respecting various geometric restrictions associated with 3D weaving. Through this, the end goal is to eliminate solution 
post-processing such that the optimized topologies are directly manufacturable. 
 
 

DESIGN FOR ADDITIVE MANUFACTURING 
 
   With the surge of industry interest in additive manufacturing (AM) comes the increasingy need to properly design 
components for this truly game-changing manufacturing technology. Topology optimization and AM are a natural design-
manufacture pair, with both being capable of addressing and leveraging complexity when such complexity leads to 
enhanced performance.  While manufacturing constraints may be considered reduced for AM as compared to traditional 
manufacturing technologies, they are of course still present and must be considered in the design process.  In this paper, 
several projection-based topology optimization algorithms are highlighted, which design for a number of advanced 
manufacturing methods including direct metal laser sintering (DMLS), material jetting, and 3D weaving. All algorithms are 
derived from the Heaviside Projection Method (HPM) to topology optimization [1].  
 

MAXIMUM OVERHANG ANGLES AND APPLICATION TO DIRECT METAL LASER SINTERING (DMLS) 
 
  Direct Metal Laser Sintering (DMLS) is a powder bed additive manufacturing technology in which metal powder is 
selectively sintered or melted in a layer-wise fashion. After one layer is selectively sintered/melted, the machine sweeps 
another thin layer of powder across the build plate. While possessing the capability of making truly novel metal parts, this 
energy-intense process is susceptible to processing errors including curling and shrinkage due to development of large 
residual stresses. These stresses develop when the heat of the weld-like process cannot dissipate from the point of melting.  
  To mitigate this deleterious effect, designers often introduce support structures to help anchor the part to the build plate. 
Not only is the curling from residual stresses counteracted, but these stresses are reduced as the heat can more effectively 
dissipate from the point of melting. That said, there are signficant advantages to eliminating these material using, sacrificial 
support materials during the additive manufacturing build process. As such, by stipulating that the built part not possess an 
overhang angle greater than the maximum observed printable overhang, the need for support material is completely 
eliminated, thus ensuring that all material used is for an efficient, structural purpose. Here are shown some solutions 
designing for various overhang angles and printing directions. 
 

         

   
Figure 1: Topology optimization under a 45° overhang angle constraint building from bottom-up and top-down.  

 



   As expected, the build directly significantly influences the optimized topology. Building in the bottom-up direction, the 
topology optimization algorithm designs up to the 45° overhang, creating 45° peaks in the design. Conversely, in the top-to-
bottom build, the algorithm creates 45° “wells”.  
   As in the case of imposing the minimum length scale constraint [1], the maximum overhang constraint is imposed 
through a projection of independent design variables onto the finite element space.  The key difference here is the 
introduction of an additional projection operation from the support material zone onto an element [2].  This leads to a 
series of two projections, one from the support material region and one from the local region, leading to overhang angle and 
minimum length scale constraints being observed.  
 

MULTI-MATERIAL TOPOLOGY OPTIMIZATION AND APPLICATION TO MATERIAL JETTING 
 
Multi-material additive manufacturing processes, such as Stratasys PolyJet [3] and 3D Systems MultiJet [4] technologies 
possess the ability to print multiple materials during the same build. In this material jetting process, the printer extrudes 
liquid photopolymeric material in a drop-by-drop manner, which is “instantaneously” solidified by ultraviolet light. This 
technology is clearly unique in its ability to place up to 10+ materials on a pixel-by-pixel basis. To design for this capability, 
a new projection based topology optimization algorithm is introduced in which a single design variable is capable of not 
only determining topology, but critically, the material selection.  
   Recently the authors demonstrated the use of topology optimization to design compliant mechanisms with multiple 
materials [5]. The algorithm chose to place stiff material where load transfer was critical and compliant material in hinge-
like regions to maximize motion (Figure 2).  In this approach, the overall Young’s modulus E of a particular finite element 
in the design domain was expressed as a summation of the Young’s modulus contribution 𝛥𝐸  of the material placement 
variable, 𝜙, as follows:  

𝐸! = 𝜌!!(𝜙!)
!

!

𝛥𝐸! 

Herein, we introduce a thresholding Heaviside function to allow the independent design variables to specify whether a 
particular material phase is actively projecting material.  Just as in the overhang algorithm, there are two levels of 
projection. The first level determines which material phase contributions are active, while the next level projection imposes 
typical minimum length scale control.  
 

 
   Figure 2: Compliant mechanism designed for E=0,1,2. Mechanical testing seen on right [5] 

 
CONCLUSIONS 

 
In order to fully leverage the capabilities of advanced manufacturing processes, design engineers and optimization algorithms 
must properly account for the process capabilities and limitations, even if such limitations are significantly reduced over 
traditional manufacturing processes. This paper presents advancements in projection-based topology optimization algorithms 
towards this goal, including addressing overhang angles and multiple materials in AM, with extensions to lattice-like materials 
manufactured through 3D weaving [6] also being achievable.  
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Summary This paper introduces a simple-to-implement, multiscale-inspired approach to improve convergence speed in topology optimiza-
tion. To ensure convergence toward globally optimal Michell-like structures, topology optimization approaches often apply continuation
schemes where e.g. the penalization exponent is increased gradually. In this way, one nudges the process by going from an initially convex
problem (variable thickness sheet) to a penalized, black and white solution. Iteration counts for such continuation approaches are usually
counted in many hundreds or up to thousands. By introducing an extra constraint that limits the p-norm of the difference between the
local density field and a smoothed (homogenized) one, the continuation scheme can be eliminated. It is demonstrated that this approach
systematically creates extremely detailed and highly optimized Michell-like structures within at most 200 iterations.

THEORY AND METHOD

The standard density-based minimum compliance topology optimization problem reads

min
ρρ

: C(ρρ)

s.t. : K(ρ̂ρ(ρρ))D = F

: V (ρ̂ρ(ρρ)) ≤ V ∗

: 0 ≤ ρρ ≤ 1 (1)

where ρρ is the vector of element-based design variables, ρ̂ρ(ρρ) are the (density) filtered, physical design variables using a filter
size rmin, C(ρρ) is compliance, K, F and D are global stiffness matrix, load and displacement vectors, respectively, and V
and V ∗ are volume and volume bound, respectively. The optimization problem (1) is set up for a density filtering approach,
however, it can easily be simplified to a sensitivity filtering approach by substituting ρ̂ρ(ρρ) with ρρ or applied with PDE-based
filtering [1]. The relation between density design variables and local (isotropic) stiffness is modelled by the SIMP interpolation
scheme

E(ρ) = Emin + ρ̂q(E0 − Emin), Emin ≪ E0 (2)

where E0 and Emin are Young’s modulus of solid and void material, respectively, and q is the penalization factor.
In its standard form, the optimization problem (1) is solved by selecting appropriate penalization factors (c.f. q = 3) and

filter radii and is then run until convergence. However, this usually results in convergence towards suboptimal topologies,
where design features tend to agglomerate, resulting in suboptimal objective values and feature sizes much bigger than those
allowed by the filter size. In order to circumvent this, researchers often use continuation approaches where e.g. the (SIMP)
filter factor is increased from 1 to 3 in steps of 0.2, c.f. [2]. The increase in penalization factor is performed upon convergence
or every say 100 iterations. Although this scheme probably can be tuned, e.g. by a recent constrained approach [3], total
iteration counts are often reported to exceed a thousand.

To reduce the iteration count, the original optimization formulation (1) is appended with an extra constraint

min
ρρ

: C(ρρ)

s.t. : K(ρ̂ρ(ρρ))D = F

: V (ρ̂ρ(ρρ)) ≤ V ∗

:
||ρ̄ρ(ρ̂ρ(ρρ))− ρρc||p

||ρρc||p
≤ ϵ, (V (ρρc) = V ∗)

: 0 ≤ ρρ ≤ 1 (3)

where || · ||p indicates p-norm, ϵ is a small number that sets the allowed error, ρ̄ρ is a smoothed version of the physical density
field using a large filter radius Rmin and ρρc is an auxiliary smoothed density field with subscript c for “coarse” to make the
association to multiscale approaches, although its meaning and function can be seen in several different perspectives. The
basic requirement to the coarse field ρρc is that it satisfies the volume constraint. If this is fulfilled and ϵ is small enough,
this implies that the volume constraint on the physical density field (third line of (3)) is automatically satisfied. However, the
volume constraint is maintained in the optimization problem since it tends to stabilize convergence and allows some freedom
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Figure 1: a) Optimized Michell-like half-cantilever structure based on continuation approach. b) Result without continuation.
c) Result with proposed scheme and large coarse scale filter radius (radius indicated with circle). d) Result with proposed
scheme and small coarse scale filter radius (radius indicated with circle) and finer mesh.

in selecting ϵ. The choice of coarse scale filter radius Rmin for the ρ̄ρ constraint influences the distance between local features,
i.e. it introduces a weakly enforced maximum length scale both on solid and on void regions of the optimized designs.

The added p-norm constraint in (3) effectively introduces a local smoothed density constraint everywhere in the design
domain. Hence, choosing different properties of the coarse field ρρc allows a range of interesting features and effects to be
controlled. Here we discuss and apply a concept where ρρc is obtained as the optimized solution from the variable thickness
sheet problem. Here one first solves the convex q = 1 SIMP problem (i.e. the variable thickness sheet problem in 2d), possibly
on a coarse mesh which afterwards can be smoothed and projected to the fine mesh. This added local density constraint hinders
design features in agglomerating and hence ensures convergence to very detailed and highly optimal Michell-like solutions.

RESULTS

Preliminary results are presented in Fig. 1. Subfigure a) shows an optimized half beam obtained through the continuation
approach using 1472 iterations. Subfigure b) shows the optimized half beam obtained without continuation approach after
273 iterations. Neither the visual resemblance to an analytical Michell structure nor a quantitative comparison to subfigure a)
in terms of objective function speak in favour of subfigure b). Subfigures c) and d) are obtained using the following strategy:
A) ρρc is obtained from running (1) on a coarse mesh. B) Based on A), (3) is run with q = 2 and a minimum filter size of
rmin = 1.2 times the element size, either up to 100 iterations or a certain measure of non-discreteness, whichever comes
first. Then the added constraint is turned off. After 150 iterations the local filter is switched off and the optimization is
continued up to a maximum of 200 iterations. This makes for a fair comparison of approaches and settings if the goal is to
provide an efficient algorithm that can converge to excellent designs in less than 200 iterations. Clearly there may be settings
that can speed up convergence even further. Usually, one would not remove the local filter entirely, however, it is necessary
here in order not to penalize fine detail structures in terms of optimized compliance values. Fine featured structures have
large perimeters and hence have more intermediate density elements than coarse scaled structures. The resulting designs in
subfigures c) and d) are obtained using two different coarse scale filter sizes Rmin as indicated with circles. Both visual
comparison to the analytical Michell solution as well as objective function values compare favourably to those of subfigure a)
that were obtained with the inefficient standard continuation approach.
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Summary This paper presents a systematic approach for topology optimization under uncertainty. The approach integrates an efficient
non-intrusive polynomial chaos expansion with design sensitivities for reliability-based and robust topology optimization. Uncertainty is
introduced in the loading and elemental densities to address the manufacturing variability. The manufacturing variability is represented via a
random process with a Karhunen Loeve expansion on underlying uncertain parameters. To demonstrate the effect of uncertainty, the results
of the optimization under uncertainty are compared with deterministic optimization results.

TOPOLOGY OPTIMIZATION UNDER UNCERTAINTY

The subject of topology optimization has received considerable attention in the past two decades [1]. A majority of these
works assume deterministic material distribution parameters and boundary and load conditions in the optimization process.
However, the performance of a structure varies due to the inherent uncertainty in these quantities. More recently researchers
have developed robust and reliable designs by incorporating the effects of uncertainty into their optimization studies.

In robust design optimization (RDO) researchers minimize the effect of variations on their designs by including higher-
order statistics such as variance in the cost and constraint functions. Typically, the statistical moments are obtained via a
Monte Carlo approach which requires numerous realizations or a perturbation technique that uses Taylor expansions which
requires the computation of higher-order sensitivities with respect to the random variables [2, 3]. Alternatively, in reliability
based design optimization (RBDO) researchers constrain the probability of failure. The probability of failure is often approx-
imated via First-Order Reliability Methods (FORM) or Second-Order Reliability Methods (SORM) [4, 5]. The FORM and
SORM require the solution of a constrained optimization problem, and hence the RBDO requires the solution of a nested,
i.e. two-level, optimization problem. It is evident that the Monte Carlo approach is computationally intractable particularly
in conjunction with an optimization process for large scale problems. Moreover, while numerical techniques based on Taylor
expansions are efficient, they may not yield enough accuracy when there is a significant variation in uncertain parameters.

POLYNOMIAL CHAOS BASED DESIGN OPTIMIZATION UNDER UNCERTAINTY

In the present study, we adopt a different perspective and pursue a methodology based on polynomial chaos expansion
(PCE) for uncertainty propagation[6, 7]. PCE provides a systematic approach to characterize the random response and is an
attractive approach due to its fast convergence property and its ability to provide a mapping between the random response and
random model parameters.

The PCE greatly facilitates the calculation of statistical moments and their design sensitivities. And for this reason the
majority of existing design optimization efforts that utilize PCE concentrate on RDO [8, 9]. Insofar as RBDO is concerned,
the PCE can be used to evaluate the probability of failure by integrating the probability of the random variables over the failure
region. Indeed, this integral is easily evaluated via Monte Carlo, but bear in mind that the realizations in this Monte Carlo
computation are based on the PCE, and thus the computational burden is minimal. The probability of failure design sensitivity
computation is another story however. It requires knowledge on the failure region’s boundary, and more importantly, how the
boundary varies as the design parameters vary. This information is not explicitly available and thus RBDO is problematic,
even with PCE.

We provide a systematic framework for design optimization under uncertainty that addresses both RDO and RBDO via
the PCE. Uncertainty is introduced in the loading and geometry to address the load and manufacturing variability. The
geometry variability is represented via a random process with a truncated Karhunen Loeve expansion that maps the assumed
low dimensional underlying uncertainty to correlated random variables in the random field. Accordingly, the PCE of quantities
of interest such as volume and compliance are developed on the basis of the low dimensional underlying uncertainty.

We demonstrate the easily implemented non-intrusive PCE in the topology optimization of benchmark problems such
as Messerschmitt-Blkow-Blohm (MBB) beam and cantilever beam. To show the significance of uncertainty, the response
of designs which considered uncertainty are compared to those that do not, i.e. deterministic designs. Not surprisingly
deterministic designs do not necessarily satisfy the probabilistic RDO and RBDO constraints.
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Summary This paper studies concurrent topology optimization with multi micro material design. Unlike traditional concurrent topology 

optimization presented by Liu et al. [1], where a uniform micro material is used, the macro structure in this research is composed of sub 

domains, each with a different micro material design. This gives more flexibility to industrial use and is more reasonable as materials in 

different domains may experience different stress states. In micro material design, in order to overcome the zig-zag boundaries and grey 

elements in SIMP interpolation scheme, the Moving Morphable Component (MMC) approach is used to get a clear and smooth topology in 

favour of manufacturing applications, like the 3-D printing techniques. A numerical example is given to show the validity of this method. Issues 

of manufacturability related to 3-D printing techniques are discussed.  

 
INTRODUCTION 

 

   Structures with periodic porous material are widely used in engineering applications due to their high specific stiffness, 

strength and other good performances. In the design of this kind of structures, two-scale concurrent topology optimization is 

an effective approach. However, there are still some disadvantages of this approach. First, the macro structure is assumed to 

be composed of a uniform micro material, whereas, in practical applications, micro materials in different areas of the 

structure may be subject to different stress states, which makes a uniform micro material design not efficient. The second 

disadvantage is due to the limitation of SIMP interpolation scheme in the micro material design. With the development of 3-

D printing technique, porous material with complex geometric micro-structures could be made in industrial applications. 

However, optimal micro materials with SIMP method may suffer from zig-zag boundaries and grey elements, which make 

3-D printing of these materials difficult to implement. In order to overcome this problem, we try the Moving Morphable 

Component approach, the distinctive feature of which is that a set of morphable components are used as building blocks of 

topology optimization and the optimal topology is found by optimizing sizes and layout of these components, to obtain a 

smooth and clear boundary of micro materials in favour of manufacturing perspectives. 

   In this paper, we consider plane stress continuum with a number of sub domains and each domain is assigned a micro 

material. The MMC approach is used in the micro scale design to get a clear topology of the micro material. 

 

PROBLEM FORMUILATION AND A NUMERICAL EXAMPLE 

 

   Consider a periodic porous structure subject to plane stress in Figure 1(a), where the design domain Ω of the porous 

structure is divided into s sub domains, denoted as Ω1, Ω2 ,……, ΩS respectively. Each sub domain composed of porous 

material with different micro structure is homogenized as an equivalent anisotropic continuum in the macro scale. The 

effective modulus matrix of the equivalent anisotropic continuum is assumed as D
H1

, D
H2

 ,……,D
HS

 for sub domains Ω1, 

Ω2 ,……, Ωs respectively. 

For topology optimization of macro structure, the design domain Ω is meshed into N finite elements. An artificial 

density is assigned to each element Pi, which is the design variable in macro-scale structural topology optimization. The 

modulus matrix of ith macro element with density Pi is expressed in the PAMP approach, which is the abbreviation for 

Porous Anisotropic Material with Penalty [1]: 

  3 1,2, ,MA H

i iP P i N D   (1) 

Where D
H
 could be D

H1
, D

H2
,……,D

HS
 depending on which sub domain ith element belongs to. 

 
Figure1. (a). A periodic porous structure subject to plane stress; (b). Initial micro design 
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With MMC approach, the unit cell of micro material is composed of n components and each component has a number of 

design parameters. The effective property D
H
 is calculated by the asymptotic homogenization through MMC approach and 

the ersatz material model. Thus, D
H
 is a function of parameters of components in the unit cell of the micro material, denoted 

as ω1, ω2,… , ωS respectively. For the example shown in Fig.1, sub domain Ω1 has components 1 to n, sub domain Ω2 n+1 to 

2n and sub domain Ω3 2n+1 to 3n. The design variable of jth component is written as 

    0 0 1 2 3 sin 1,2, ,3
Tj x y L t t t j n D   (2) 

The design variables of the two scale optimization problem should be 

       1 2 3

1 2, , , , , , ,
T

T T T
n

NP P Pd D D D   (3) 

The optimization problem is to minimize the compliance subject to volume constraints on both the macro beam and 

micro material. The optimization problem can be written as 
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Where
1 2 3, , ,V v v v  denote prescribed volume fraction for macro beam, micro material ω1, ω2 and ω3 respectively. 

For the example structure in Fig.1, the size parameters of the L-shaped beam are L1=2, L2=1, L3=1 and L4=2. The beam 

is discretized with 4-node plane stress element of size 0.1×0.1 and into N=500 elements. The distributed force of the macro 

beam is p=1. The three units in micro materials scale are of size 2×2 and discretized into 400 elements. The properties of the 

base material are E=10, ν=0.3.  

The prescribed volume fractions for both macro beam and micro materials are 50%. The initial design of the macro plate 

is uniform and the initial design of the micro material is n=8 components for each sub domain, as plotted in Figure 1(b). 

During optimization, the calculation of effective property D
H
, the macro beam analysis, and sensitivities is done in Matlab 

through proper modification of 188-line MMC Matlab code in Zhang et al. 2016 [2]. The MMA optimizer is used. 

The optimal topologies are plotted in Figure 2 with minimum compliance C=4.19. 

 
Figure 2. Optimal topologies  

 

CONCLUSIONS 

 

   In this paper, a two-scale concurrent optimization is carried out. The macro design domain is divided into three sub 

domains where micro materials differ from each other. This gives more design flexibility than the traditional concurrent 

optimization procedure as different parts of the macro structure are subject to different stress state. A trial application of the 

MMC approach to the micro scale design is given, which achieves smooth boundaries of micro materials, and is more 

appealing to manufacturing applications. There are also some minor problems with this method. For example, some 

oscillation may occur during optimization process and the iteration number needed to converge is comparatively large, 

which will be amended in our future work. 
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Summary A methodology for the design of solid particles in suspension is presented as an extension of the material design 

problem in topology optimization.  The tensor describing the interactions of the particles with the surrounding fluid is 

provided as a target and shapes of particles matching this mobility tensor are identified. The theoretical framework describing 

the motion of single and ensemble of particles is introduced and discussed in the context of its application to topology 

optimization.  

INTRODUCTION 

  

   Nanoparticles and colloids with exotic shapes and functionality are engineered today at the nanometer and micrometer 

scales and can exhibit interesting flow-induced patterns and result in unusual assembled systems [1,2]. Novel synthesis and 

fabrication techniques allow the production of particles with various degrees of asymmetry, and a wide range of shapes (fibers, 

rings, cubes, prisms), and anisotropic interactions. Such shapes include “nano-acorns”, “nano-centipedes”, “nano-guitars”, 

“nano-squids” and “nano-whiskers” [1].  It is now clear that the shape of particles plays a crucial role, especially at the small 

scale, in determining many of the interesting physical  properties observed. In this work a framework for the design of 

particles based on topology optimization is presented to identify possible particle shapes allowing the realization of desired 

orientation states. The design problem is posed as a material distribution problem as in [3,4,5] in which the goal is to find an 

actual distribution of a material in the fluid that matches the prescribed mobility or fluid interaction tensor for a desired 

orientation state. The proposed approach is outlined below, beginning with an overview of suspension hydrodynamics. 

 

SINGLE PARTICLE DYNAMICS 

 

   The dynamics of neutrally buoyant, rigid ellipsoidal particles in Newtonian fluid flow was first studied theoretically 

by Jeffrey [6] and he showed that the time-rate-change of the unit vector p parallel to particle’ symmetry-axis can be 

expressed as     2 21 / 1 : .e e       p W p E p E ppp E and W are the symmetric and asymmetric components 

of the velocity gradient. The scalar parameter e  represents the fiber-fluid coupling coefficient for particles with certain 

axisymmetric shapes. This theory has been generalized by Bretherton [7] where a third rank tensor B is employed to describe 

the coupling between the shape of a particle and its rate of rotation. For a single particle of arbitrary shape, a formulation 

based on a “grand resistance matrix” is sometimes employed,  which relates exerted force ( F ), torque ( L ) and stresslet (

S ) to particle motion and which can be expressed as 

    
        
         

F X P u - U

L P Y ω-Ω

S E

                         (1) 

where , ,X Y P  are second order tensors while , ,  are third order tensors. B  can be solved for a force-free particle 

as    
1

1 12 .


          Y P X P P X  Simple cases for which all entries of the tensors are known include 

ellipsoids and various special cases e.g. the sphere. Such cases can be used for validation purposes. In addition, Bretherton 

[7] proposed a configuration of arrays of ellipsoids connected with a sphere, which won’t tumble but only migrate in the shear 

flow. Figure 1 below shows a possible candidate of a complex particle. This particle design greatly reduces the particle-

particle interaction and facilitates particle aggregation and alignment. If such shapes could be produced and aerosolized, they 

could deliver, for example, a much larger amount of drugs deep in the lungs when compared to a spherical particle with similar 

frontal area (a fibrous particles would rotate, thus increasing its propensity at being captured by a sticky surface) . 
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Figure 1. Illustration of a non-axisymmetric particle of finite length that will not rotate in simple shear flow but will migrate laterally toward 

a center of a channel (adapted from [4]).  

ENSEMBLE OF PARTICLES 

The flow-induced alignment of ensemble of particles can be described by an orientation distribution function. For rod-

like particles it satisfies the following continuity equation in orientation space [8]: 

 
D

Dt


   p p              (2)                                                                                                                  

In the above, p  represents the angular velocity of a particle. /D Dt  is the material derivative of the orientation 

distribution function. The differential operator 
p

 is defined as ( ) I pp on a surface of a unit sphere. The 

microstructure of spheroidal suspension is characterized by the second and fourth moments of  : 
2 2

0 0 0 0
sin , sind d d d

   

               pp pp pppp pppp ,                               (3)                                                                                                                                                     

where ( , , )sint d d   x p  represents the fraction of particles with orientation vectors between p  and p p .  

The well-known evolution equation for the second moment  pp  must be solved to identify the orientation states for a 

given flow field [8]. The theory has been extend by our group based on a formulation introduced by Rallison [9] involving a 

rotation tensor R which include all three Euler angles.  

 

PARTICLE DESIGN PROBLEM 

 

In the material design problem as described in [3,4,5], a target tensor is given and the goal is to find the vector of design 

variables that result in an effective tensor that matches the target as closely as possible.   The problem can be cast as an 

optimization problem where a prescribed amount of material is provided and the weighted mean square deviation from the 

target tensor is minimized.  The same approach is employed here. We first estimate the shape tensor  that characterizes 

the hydrodynamic interactions. The problem is formulated as in [10] for estimating the relevant entries of the mobility tensor 

of a specific realization. For simple cases where the steady-state solutions of the orientation tensor can be achieved, it is 

straightforward to solve  directly by setting the equations to a steady state. For simplicity the rotational diffusion is 

assumed small, i.e., 0RD  , and the concentration of particles   are approximately uniform. 

 

SUMMARY AND CONCLUSION 

 

Preliminary work on a methodology for the design of particles is introduced in the work that allows to identify shapes of particles 

with desired motion. The problem can be cast as a material design problem.  Extension of this work is possible for large ensemble 

of interacting particles in which the target would be specific rheological properties.   
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Summary Technological capabilities, such are 3d printing and microfabrication, allow a huge variety of structures to be manufactured for
roughly the same price, and one wants to know “the best” structure, or how composite microstructures can be optimized. There is no gap
between optimal designs and the optimal composites that are structures at at the micro level. So far, the vast majority of related results
deals with two-material composites because of theoretical limitations. Meanwhile, numerous applications call for the optimal design of
multimaterial composites, or of porous composites made of two materials and void. The paper describes various structures of optimal
multi-material composites, the bounds of their effective properties that are achievable by these structures, and optimal designs from several
materials. We show designs from two elastic materials and void.

BOUNDS AND OPTIMAL MULTIMATERIAL STRUCTURES

The bounds show the range of improvement that can be achieved for overall composite properties by varying the structure.
In particular, we study the bounds of the stored energy, find the exact bounds and the set of matching structures, and use these
structures to compose an optimal design. In the past few years (2009-2012), [2, 3, 4, 5] a new approach for optimal bounds
of multimaterial mixtures was suggested and tested on several examples. Calculating the lower bound, we also determine
sufficient conditions on the fields in materials (wells) in an optimal structure [1, 8, 2]. The bound also provides a hint for
optimal structures such as high-rank laminates [1, 8], wheel-type structures [4], or other structures.

Optimal microstructures of multimaterial composites differ drastically from two-material ones. The latter have a steady
and intuitively expected topology: a strong material always surrounds weak inclusions, as in Hashin-Shtrikman coated circles
and second-rank laminates. In contrast, optimal three-material structures [3, 5, 4], see Figure 1 show a large variety of patterns
and the optimal topology depends on the volume fractions.

Optimal structures are diverse; they may or may not contain a strong envelope, and they may contain “hubs” of inter-
mediate material connected by anisotropic “pathways” - laminates from the strong and weak materials, envelopes, and other
configurations that reveal a geometrical essence of optimality. The parameters of the A-E of the optimal structures (Figure 1)
depend on the volume fractions and the ratio of eigenvalues of the applied external stress σ0. It is observed that the strongest
material is always placed in the most stressed parts, the field in the intermediate material stays isotropic if passible and in the
strongest material it is anisotropic.

Testing optimal structures, we stay in the class of structures with explicitly computable effective properties. These struc-
tures are obtained by hierarchical modeling, and they are interesting objects for study. These structures may or may not be
optimal, but they all provide convenient and realistic models for the various sophisticated geometries; acting like LEGO pieces
that are used in the process of modeling to create metamaterial hybrids between composites and machanisms.

L(123,2) Region A2

L(13,2,13,2) Region A1 L(13,2,13) Region B L(13,2,13,1,1) Region D1

L(13,2) Region C L(13,2,1) Regions D2, E

Figure 1: Left: Cartoon of optimal multi-rank laminates that minimize elastic energy (compliance) of a three-material com-
posite [3, 5]. Black fields denote void (an infinite compliance), striped fields denote a material of intermediate compliance
and white fields denote the stiffest material. Center: The wheel assemblage resembles the Hashin?Sthrikman coated spheres.
Right: The cuboudal structure in a 3d development of Gibiansky-Sigmund 2d structure [7].

∗Corresponding author. Email: cherk@math.utah.edu



OPTIMAL DESIGN

The most popular problem in structural optimization today, called “topology optimization”, is a problem of optimal layout
of a material and void. The optimal structural designs are commonly known as “black-and-white” or “grey” designs. Optimal
multilateral composites allow us to instead deal with with “multi-colored” designs, see Figure .

The first obtained optimal designs from three materials are shown in Figure The designs are made from an expensive
strong material, a cheap weak material, and void. This design shows that the strong material tends to form elongated beam-
like ligaments at the contour of the design, the weaker material is concentrated in the areas where the stress is moderate and
close to isotropy.

CONCLUSIONS

1. Investigation of the range of fields in optimal multimaterial structures will allow for prediction of their microstructues
and for for computing of optimal design from several materials. The presented examples prove that the problem can be solved.

2. The optimal structures are in fact fractal minimizing sequences of alternating materials. To make the theory usable for
practitioners, these structures need to be transformed to a coarse scale designs for suboptimal projects.
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Summary. The paper describes an application of a hybrid algorithm to optimal searching for new, stable atomic arrangements of two-
dimensional graphene-like carbon lattices. The proposed approach combines the parallel evolutionary algorithm and the conjugated-
gradient optimization technique. The main goal of the topology optimization is to find stable arrangements of carbon atoms under certain 
imposed conditions such as density, shape and size of the unit cell. The objective function is formulated as the total potential energy of an 
atomic carbon system. The optimized structure is considered as a discrete atomic model and interactions between atoms are modeled 
using the AIREBO potential, especially developed for carbon and hydrocarbon materials. The parallel approach used in computations 
allows significant reduction of computation time. Validation of the obtained results and examples of the models of the new grapheme-like 
materials are presented.  
 

 INTRODUCTION 

 
   Carbon atoms form various types of bondings and spatial configurations. This ability is determined by the atoms’ 
hybridization states, which depend on their particular electronic configuration. This phenomenon is responsible for the 
existence of many different allotropes of the carbon. This is due to unique electronic, thermal and mechanical properties of 
such structures. Additionally, 2D graphene-like materials can be used to create another, more complex class of 
nanostructures, such as nanotubes. Graphene-like materials can be classified as periodic, flat atomic networks, made of 
stable configurations of carbon atoms in certain hybridization states. Since the stable configurations of atoms correspond to 
the global minima on the Potential Energy Surface (PES), such a task can be considered as a special topology optimization 
problem in which optimal material layout is searched on the nano-scale. However, the number of local minima increases 
almost exponentially with the number of atoms in the considered structure, thus searching for the global minimum on a PES 
became a non-trivial, NP-hard problem. 
 

HYBRID EVOLUTIONARY-GRADIENT OPTIMIZATION METHOD 

 

   The hybrid algorithm, proposed and presented in this work, combines the parallel Evolutionary Algorithm (EA) 
prepared by the authors, and the classical Conjugated-Gradient (CG) minimization of the total potential energy of the 
optimized atomic system. Since the processed structure is considered as a discrete atomic model, the behavior and the 
potential energy of carbon atoms are determined using the Adaptive Intermolecular Reactive Empirical Bond Order 
(AIREBO) potential developed for molecular dynamics simulations of hydrocarbons [2].  
Chromosomes represent design variables in the form of real-valued Cartesian coordinates of each atom in the considered 
unit cell of the newly created atomic lattice. Each chromosome represents a certain spatial arrangement of atoms. In the 
initial population, atoms have randomly generated coordinates and are placed in the area of the unit cell with periodic 
boundaries. Dimensions, the rectangular or triclinic type of the unit cell, as well as the number of atoms, are part of a set of 
parameters of the simulation. Such an approach allows to control the value of atomic density of the newly-created structure. 
The periodicity of the atomic structure significantly reduces the number of design variables. 
The fitness function is formulated as the total potential energy of the considered atomic system, i.e., the total sum of all 
potential energies of particular atomic interactions. The AIREBO potential in the following form is used in computation: 

, , ,

REBO LJ TORSION

ij ij kijl

i j i k i j l i j k

FF E E E
  

 
   

 
    (1) 

where:  E
REBO corresponds to the short range interactions between covalently bonded pair of atoms, ELJ

 is responsible for 
the long range interactions and is computed in a simplified way, using the Lennard-Jones-like function with additional 
distance-dependent switching functions and E

TORSIONAL is torsional potential which depends on the neighboring atom’s 
dihedral angles.  
In order to avoid the situation when distances between atoms are very small, the initial and offspring populations have to be 
equilibrated, i.e., the potential energy has to be minimized by correction of the positions of atoms. The CG algorithm is used 
for this purpose. This routine is invoked in each iteration of EA for all individuals in the processed population and 



temporarily pushes solutions into the local minima. Such an approach 
assists in forming of the new, real carbon-based molecular structure, i.e., 
during the CG minimization, each individual – a certain spatial 
configuration of atoms, starts to form a unique, hybridization-dependent, 
geometry of flat carbon networks. This step ensures that EA does not 
process the sets of randomly placed atoms, but operates on fragments of 
properly bonded carbon structures. Additionally, this method ensures that 
the optimized structure of atoms is properly equilibrated. The coordinates 
of atoms are exchanged between EA and the LAMMPS software and the 
equilibration process is performed using the minimization method based 
on the Polak-Ribiere algorithm. The periodicity of the newly-created 
structure is also achieved in this step by proper boundary conditions, 
imposed on the unit cell. After the CG minimization of the potential 
energy, the objective function is computed for each individual in the 
population. The CG optimization is the most time-consuming part of the 
algorithm.  To overcome this problem, the authors decided to parallelize 

the proposed algorithm and make it suitable for running on multiprocessor computers. Thus, the population is scattered into 
certain number of parts using the MPI library. In the next step, each part is further processed in the parallel way using the 
dedicated instance of LAMMPS running on a separate core or node of the computer (Figure 1).  
 

VALIDATION AND RESULTS FOR KNOWN GRAPHENE-LIKE MATERIALS 

 
  In order to validate the accuracy of the results, certain arrangements of carbon atoms already known from literature have 
been examined, e.g. the supergraphene (triclinic unit cell containing 8 carbon atoms) and the graphyne (triclinic unit cell 
containing 12 carbon atoms). Since all the tests yield promising results, the proposed optimization algorithm has been 
applied to search for new stable configurations of a given number of carbon atoms in a unit cell of given size and periodic 
boundaries [1]. For eight carbon atoms placed in the 4 Å ×7 Å rectangular unit cell obtained a stable  flat network named 
X (Figure 2A) and for the same number of carbon atoms placed in the rectangular unit cell 4 Å ×6 Å obtained a stable flat 
network named Y (Figure 2B). 

A)                                                        

           
Figure 2. Layout of new stable carbon networks X (A) and Y (B) found by the hybrid algorithm 

 
CONCLUSIONS 

 
   The main purpose of this paper was to present the hybrid parallel algorithm, applied to searching for new 2D graphene-
like materials. The proposed method is able to find already-known structures like supergraphene and graphyne as well as 
new stable ones, named X and Y. Examples performed for new carbon networks clearly show that the final form and 
properties of optimized structures depend on the assumed size, type and atomic density of the unit cell. Thus, the considered 
topology optimization problem can be reformulated and applied to searching for a molecular structure with predefined 
material properties, not only in the case of carbon-based structures.  
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ON TOPOLOGY OPTIMIZATION OF INERTIA DRIVEN DOSING UNITS
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Summary This paper describes how topology optimization can be used to design inertia driven dosing units for the continuous dosage of
one fluid into another. These components often referred to as eductors, utilize the low static pressure in a venturi-type nozzle to drive the
dosing flow. The fluids are modeled using the steady state incompressible Navier-Stokes equations and the two fluids are considered having
the same properties. A Brinkman penalization term is added to the governing equations such that a control problem of the flow topology
is obtained. Optimized component geometries for a range of flow conditions are obtained efficiently by using a gradient based numerical
optimization scheme in order to investigate the performance limit.

INTRODUCTION

The engineering problem of continuous dosage of one fluid into another has multiple solutions. One easy, but also expen-
sive solution is to use a pump for each fluid and by means of adjusting the flow rate ensure a proper dosage. A more elegant
solution is one where a single pump is driving the primary fluid and the secondary fluid is dosed by elaborating on the venturi
principle. Figure 1 show a sketch of such a unit where the primary inflow is the one driven by the pump. Assuming that the
fluid is inviscid and following the Bernoulli principle the dynamic pressure is increasing as the valve contracts and the static
pressure is therefore decreasing. The low static pressure at the throat (minimum cross sectional area of the nozzle) will allow
fluid to enter through the secondary inlet and mix with the primary fluid and eventually leave at the outlet. The principle is
well known and has been used for e.g. ground water pumps, spray paint guns and firefighting foam proportioners.

Primary inflow Outflow

Secondary inflow

0

1

1 40

−0.2

2.4 2.6 5

Design domainΓin Γout

Γs
Γ0 Γ0

Γ0

Figure 1: Sketch of an eductor, an inertia driven dosing unit.
Left boundary is primary inflow. Right boundary is outlet.
The secondary dosed fluid enters from the lower port and is
driven by the lower static pressure right after nozzle.

Figure 2: Physical conditions for the optimization problem.
Left boundary (Γin) is a fully developed laminar profile with
mean flow rate U . Right boundary (Γout) is modeled as
stress free outlet with p = 0. Secondary flow port (Γs) has a
stress free condition. The remaining thick solid line bound-
aries (Γ0) have no-slip condition.

The optimization of such devices, primarily operating at high speed conditions, has previously been studied in the context
of shape optimization c.f. [1]. This paper investigates the performance limit at low to moderate flow speeds for such devices
by applying topology optimization to the design of the nozzle geometry. The method used in this paper relies on the work
published in the seminal paper on topology optimization in Stokes flow[2] and the extension to Navier-Stokes flow[3]. The
design problem is shown in Figure 2 where the gray design domain is subject to change controlled by the gradient based
optimization algorithm MMA[4]. The objective of the optimization is to maximize the amount of incoming secondary fluid
in order to investigate the upper limit for such devices.

Modeling
The flow is modeled by the steady-state incompressible Navier-Stokes equations with an additional Brinkman penalization

term yielding

−∇ · (µ(∇u + (∇u)T )− Ip) + u · ρ∇u + α(ξ)u = 0 (1)
∇ · u = 0 (2)

where u is the velocity, p the pressure, µ the dynamic viscosity and ρ the mass density. The α parameter (inverse permeability)
is interpolated using the scheme from [2]

α(ξi) = α+ (α− α)ξi
1 + q

ξi + q
(3)



Figure 3: Optimized flow geometry for Re = 20 and γ = 10. Upper: Component design with pressure contours (outlet is
p = 0). Lower: Flow speed, inflow has mean speed 1, and streamlines seeded at the inlet port (black), secondary port (red)
and the recirculation opposite the secondary port (yellow). Mesh has a uniform element size with 100 × 300 elements in the
design domain.

which is dependent on the spatial design field ξ ∈ [0; 1] where 0 represents solid material (black) and 1 represents fluid (white).
The inverse permeability is limited by (α, α) = (0, 106) and the parameter q determines the non-linearity of the interpolation.

The gradients needed for the optimization procedure is obtained using the adjoint method that for this problem is a linear
problem of the same size as the original, thus much less computationally demanding. The numerical solution is obtained by
discretizing the problem using stabilized finite elements. The implementation is done in a framework of Comsol Mutiphysics
used for the modeling and Matlab for the optimization.

RESULTS

The optimized designs depend on the operating conditions. In order to compare the results the Reynolds number is
introduced as Re = ρUH

µ , where U mean flow rate and H is the channel height. The design also depends on the allowed
pressure drop over the component why this is unified in terms of relative pressure drop over the component (primary inlet to
outlet) in comparison to an empty channel i.e. γ = ∆p/∆pempty. The study investigates the performance limit and resulting
component designs for flow conditions with low to moderate Reynolds numbers. Here only a single design case is presented.

Figure 3 shows the result of an optimization for Re = 20 and γ = 10. From the upper figure it is clear that the design
consists of a contracting nozzle that speeds up the fluid flow thus lowers the static pressure right after the nozzle throat. This
is also evident from the printed pressure contours that are relative to the condition p = 0 at the outlet. After the throat the flow
area is suddenly expanded however, at the lower boundary a structure is formed that could be seen as half a diverging nozzle.
This structure creates a semi open cavity near the secondary inlet port.

The color surface of the lower figure shows that fluid speed at the throat is increased with almost a factor 7 in comparison
to the incoming mean flow rate. After the throat the flow expands and the interface between the diverging fast flow from the
nozzle and the surrounding fluid creates a vortex at the upper boundary while fluid is dragged into the component at the lower
boundary. This is also illustrated by the colored streamlines that are black if the fluid is entering through the primary inlet and
red if it enters from the secondary inlet. The streamlines that illustrates the recirculating vortex opposite the secondary inlet
are colored yellow.
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Summary Laminate selection in composite structure optimization can be formulated as a topology optimization problem with N 

materials. To interpolate the material properties of the candidate materials, we extend the Shape Function with Penalization (SFP) 

parameterization introduced by Bruyneel (2011). With the SFP parameterization and Lagrange shape functions, the number of possible 

materials is limited to the number of nodes found in classical finite elements (N=3, 4, 8…). We show here that is possible to consider any 

number of materials by resorting to Wachspress functions, which have been used to define finite elements with an arbitrary number of nodes. 

The generalized parametrization is presented before being validated by solving academic test problems. Then the new parametrization scheme 

is illustrated in solving composite structures and topology optimization of structures fabricated by additive manufacturing making use of lattice 

structures subdomains. 

 
INTRODUCTION 

 

   High performance structures take advantage of composite materials or cellular materials with superior physical 

properties per unit of mass. The component layout can be optimized to take benefit of the full capabilities of the porous 

composite materials to sustain efficiently the applied loads. To this end, topology optimization [1] is an efficient design tool 

to suggest the best material distribution to maximize the component performance. While black and white designs have been 

searched for a long while, now availability of additive manufacturing techniques makes possible to fabricate structures 

including regions of intermediate density made of porous cellular materials. In particular the lattice microstructures have 

received quite a long of attention in the literature (e.g. Ref [2]). However other microstructural configurations of porous 

microstructures should be investigated in order to have better material usage under given loading conditions. Some recent 

pieces of work have focused in optimizing simultaneously the macrostructural material distribution and the local 

microstructural layouts in all points of the design domain (see Ref [3, 4]).  

   In this work we adopt a rather practical approach based on the selection of porous cellular materials out of a given 

catalogue. To this end, we follow along the idea inspired by Stegmann and Lund [5] with the so-called Discrete Material 

Optimization (DMO). The fundamental items of the approach are 1/ to formulate the design optimization problem as an 

optimal material selection problem in which the different kinds of cellular porous solids as well as their orientations if 

orthotropic are considered as different materials, 2/ to solve the selection problem using the topology optimization with 

multiple materials, 3/ to solve efficiently the optimization problem using continuous existence variables. To transform the 

discrete problem into a continuous one, one introduces a suitable parametrization identifying each material by a unique set 

of continuous design variables while the material properties are expressed as a weighted sum of all candidate materials. 

   The first contribution of this work consists in proposing a novel efficient formulation of the parameterization scheme. 

For composite structures, Bruyneel [6] has proposed an efficient interpolation scheme based for the Finite Element 

functions namely the Shape Function Parameterization (SFP), but the extension to any number of plies is still difficult. To 

this end, the Binary Coded Parametrization (BCP) was proposed by Gao et al. [7]. However the procedure can deal with a 

catalogue of 2
N
 materials. Here we show that it is possible to build shape function for an arbitrary number of materials by 

resorting to the Wachpress rationale functions [8,9] used in polygonal finite elements [10]. The interpolation schemes are 

compared with the particular perspective of solving large-scale applications. The influences of the penalization factor and 

initial design variables are studied and discussed. 

   As a second contribution, we also apply the generalized SFP approach to design components made of void / solid but 

also different patterns of porous microstructures including lattice microstructures. In order to evaluate the advantages of 

including subdomains made of porous microstructures, we revisit some of the classical examples of topology optimization. 

The influence of the types of the porous pattern is investigated for single and multiple load cases applications.  

   The developments are illustrated by several numerical applications including academic examples and benchmarks 

inspired by industrial applications.  

 

INTERPOLATION SCHEME OF MATERIAL PROPERTIES USING WACHPRESS FUNCTIONS 

 

   The discrete optimal orientation design of the laminate can be treated as an optimization material selection problem with 

multiple materials. Following the idea by Stegmann and Lund [5], the material stiffness of the local material is a linear 



anisotropic material stiffness matrix Ci of a composite ply/ material noted ‘i’ as a weighted sum over the stiffness of some 

candidate materials {j}: 
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        (1) 

The weighting function wij are associated with the jth material phase. From the last conditions of (1), it comes that one ends 

up with a 0/1 design satisfying the constraints. This is achieved by using a penalization of the intermediate densities. 

   When dealing with the classical balanced composite aerospace structures based on laminates made of plies of the four 

discrete orientations 0°/90°/45°/-45°, Bruyneel [6] proposed a parameterization model named SFP (Shape Function with 

Penalization) based on the four node finite element shape functions that, obviously, satisfies the conditions (2): 
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     (2) 

As in the SIMP method, the penalization factor p is applied to push the design variables to their extreme values +/-1. SFP 

introduces only two variables for four materials, which is an advantage to reduce the size of the optimization problem. The 

presence of one material phase is characterized by a specific combination of design variables taking values of +1 and/or -1.  

   Extending the SFP scheme to more than four materials by building complex shape functions related to ‘N’ node finite 

elements satisfying the conditions (1) is not straight forward using Lagrange interpolation functions. To account for a 

variable number of material candidates in the catalogue, the original idea is to use the Wachspress rationale functions [8,9] 

used in a N-node polygonal reference finite element [10]. As depicted in Figure 1, the shape functions of a regular N-node 

finite element are used as interpolation schemes between the mechanical properties of the candidate materials.  

 
Figure 1: N-Polygonal reference element 

 
Figure 2: 6-Polygonal interpolation functions 

 

Ref [11] provides a simple expression for Wachpress basis functions: 
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   (4) 

Where A(pi-1, pi, pi+1) denotes the area of the triangle with the three vertices pi-1, pi, pi+1. This expression can be further 

simplified since the reference element is a regular polygon so that A(pi-1, pi, pi+1) is the same for all i. Figure 2 shows the 

interpolation function after applying a power law penalization with p=3 
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Summary Thermo-mechanical transient problems impose major design challenges for a wide range of applications. This paper focuses on
topology optimization for transient thermo-mechanical problems with extreme precision requirements. The transient nature causes standard
adjoint sensitivity formulations to suffer from backward time integrations, leading to computational inefficiency. To overcome this obstacle,
reduced-order models are used to evaluate the transient thermo-mechanical responses and the associated adjoint sensitivities. Aspects of
investigation include the construction of reduced-order models, application of mode acceleration, accuracy of the transient response and
associated adjoint sensitivities and their use in topology optimization. It is shown, that good topological designs are obtained, whereas
costly adjoint sensitivities are replaced by relatively inexpensive counterparts involving simple backward convolutions.

INTRODUCTION

Transient thermo-mechanical problems emerge in a wide range of applications, for example, energy conversion, combus-
tion processes, but also instrumentation and tooling. The present paper aims at problems with relatively small temperature
fluctuations, but with major impact on ultimate performance. Examples are instruments operating at the nanometer scale
and precision (manufacturing) tools. For these applications, transient thermal effects cause thermal drift of instruments or
thermally induced errors in manufacturing processes [1].

Designing advanced thermo-mechanical systems is very challenging as multiple physics domains are interacting, the
transient nature of the problems at hand, complex layouts are required and active thermal management systems might be
integrated. Given this complexity, application of topology optimization is an obvious choice. Topology optimization relies
on adjoint sensitivities to deal with a large number of design variables. The transient nature however, is severely hindering
adjoint sensitivity analysis, as it requires a backward time integration for transient problems.

In the present paper, reduced-order models are investigated to overcome the difficulties caused by the backward time
integration. Reduced-order models are based upon so-called thermal modes. Herewith, the tedious backward time integrations
can be replaced by simple backward time convolutions. The latter rigorously eliminates the need for huge memory storage
and associated computational costs. Different schemes for model reduction are investigated and their effects on sensitivities
and application in topology optimization is investigated.

THERMAL MODES

A discretized linear thermal problem can be described by

CTθ̇(t) +KTθ(t) = q(t), (1)

here θ(t) denotes the temperature difference with respect to a reference temperature, CT denotes the heat capacity matrix, KT
the heat conductivity matrix and q the thermal load. The thermal modes (ϕk), see [2], and associated thermal time constants
(τk) follow from the eigenvalue problem defined by setting the thermal load to zero and substituting θ(t) = e−t/τkϕk into
(1). Like in structural dynamics, the thermal problem can be represented on the modal basis.

Reduced models may be formulated by selecting only the most relevant modes. Effective mode selection is however
paramount and should account for (i) thermal excitation, (ii) observability and (iii) time relevance. Thus, the thermal problem
is modeled using a limited number of carefully selected modes. The efficiency and accuracy of these reduced-order models
can be improved significantly if a static correction is added, a so-called mode acceleration technique [3]. It is important to
emphasize, that the transient behavior is now determined by simple time convolutions which provide the modal coordinates
as functions of time.

For the applications mentioned in the Introduction, the relevant thermal time constants are orders of magnitude larger than
their mechanical counterparts. This allows for a one-way coupling between the thermal and mechanical domain. Hence, the
thermo-mechanical effects are modeled using equivalent loads which enter the equations of motions. If inertia and damping
effects can be neglected, then the transient thermo-mechanical solution is determined by

Kuu(t) = f(t) + fθ(t), (2)

here u denotes the nodal degrees of freedom and Ku the constant mechanical stiffness matrix. The load is divided into
a mechanical load (f) and an equivalent thermal load (fθ). The latter is evaluated via a reduced-order transient model as
summarized above.

∗Corresponding author. Email: A.vanKeulen@tudelft.nl
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Figure 1: Left, thermo-mechanica topology optimization problem. Heat sources Q1–Q4 switch on alternatingly, whereas the
center of the heat exposed area should exhibit minimal displacement once the heat load is activated. Sensitivities obtained
with a reduced-order model without and with mode acceleration (MAM) are depicted. Right, the resulting topology.

ADJOINT SENSITIVITIES

For transient problems, adjoint sensitivities require backward time integrations. The latter implies that many intermediate
results obtained during the forward response evaluations must be kept, thus, severely hindering topology optimization of
transient problems [4].

The adopted reduced modal basis is used as a staring point for the adjoint sensitivity analysis as well. Since for the
reduced modal basis the transient thermal behavior is described by decoupled ordinary differential equations, the adjoint
sensitvity formulation can be formulated in such a manner that exhaustive memory requirements are avoided and ultimately
results in simple backward convolutions. This adjoint sensitivity formulation can be easily adapted to also accommodate a
static correction as used in the mode acceleration method.

APPLICATION TO TOPOLOGY OPTIMIZATION

Figure 1 shows a typical test case of a system subjected to convection and alternating heat loads (Q1–Q4). The objective
is to obtain minimal center displacement of the area which is exposed to an active heat load. The figure provides results for
the sensitivities based on 100 modes and 30 modes but with mode acceleration. It is clearly seen, that the sensitivities with
fewer modes, but with mode acceleration are significantly more accurate. The resulting topology design is also provided.

CONCLUSIONS

The proposed topology optimization scheme for transient thermo-mechanical problems makes efficient use of a reduced
modal basis. The fact that the transient thermal analysis reduces to a set of ordinary differential equations provides an excellent
starting point for an efficient adjoint sensitivity analysis. The best efficiency and accuracy of both response evaluations and
adjoint sensitivities are obtained if the modal reduction is combined with a mode acceleration scheme. The advocated method
turns out to be effective for topology optimization problems with transient thermo-mechanical responses.
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Summary The design of high performance instruments often involves the attenuation of poorly damped resonant modes. Current design
methods typically rely on informed trial and error based modifications to improve dynamic performance. In this contribution, we present a
multi-material topology optimization as an alternative, systematic methodology to design structures with optimized damping characteristics.
A parametric, level set-based topology optimization is employed to simultaneously distribute structural and viscoelastic material to optimize
the structure’s damping characteristics. To model the viscoelastic behavior a complex-valued material modulus is applied. The structural
loss factor is determined from the complex-valued eigensolutions and its value is maximized during the optimization. We demonstrate the
performance of the optimization by maximizing the damping of a cantilever beam.

INTRODUCTION

In this contribution we address the optimization of components containing both viscoelastic and structural material to
achieve optimized damping characteristics. The design of high-performance instruments often involves the attenuation of
poorly damped resonant modes, as has been encountered in the design of optomechatronic instruments at the Netherlands
Organisation for Applied Scientific Research (TNO) [1]. Current design methods typically start from a baseline design and
introduce stiffening or damping reinforcements to modify these modes. Difficulties in predicting the influence of these rein-
forcements leads to a time-consuming, trial and error based design proces. To overcome this, we propose a multi-material
topology optimization routine as a systematic method for the design of these structures.

Multi-material designs containing viscoelastic material are known to provide high structural damping [2]. These type of
materials dissipate energy during deformation. To increase the structural damping, we can therefore introduce viscoelastic
materials at locations that undergo deformation. Moreover, the geometrical design could be modified to promote deformations
in the regions of viscoelastic material. This provides a challenging optimization problem, where to goal is to achieve optimal
structural damping: both the location and the geometry of the viscoelastic regions are determined during the optimization. In
previous works these two aspects have been investigated separately: by shape optimization of (un)constrained layer damping
[3] and by topology optimization of the material distribution within predefined damping configurations [4, 5]. These methods
are limited by the initial design configuration of the viscoelastic material.

To overcome these restrictions, we present a multi-material topology optimization routine to simultaneously distribute the
viscoelastic and structural material throughout the design to optimize the damping characteristics. The proposed method is
able to achieve freeform material distributions, resulting in higher structural damping. Moreover, the method does not require
the designer to specify any initial (un)constrained layer configuration for the viscoelastic material.

TOPOLOGY OPTIMIZATION OF VISCOELASTIC AND STRUCTURAL MATERIAL

In this work we aim to optimize the damping characteristics for structures subjected to harmonic excitations. This allows
to represent the viscoelastic material behavior using a complex-valued material modulus [6]. Either a complex-valued shear,
bulk or Young’s modulus can be applied. In the remainder of this work, it is assumed that only shear deformation dissipates
energy and therefore a complex-valued shear modulus is implemented. The structural loss factor is applied to quantify the
damping of these designs [7]. However, compared to the referred implementation the complete complex-valued eigensolutions
are used for the formulation of the structural loss factor to achieve better prediction of the structure’s Q-factor.

A multi-material, parametric level set method allows to describe multiple material regions within the design domain [8].
We have opted for a level set-based approach, in order to obtain clearly distinct material regions. Trials using density-based
multi-material topology optimization often resulted in designs containing mixture of materials that are difficult to interpret.
For each material a level set function is defined, which are parameterized using radial basis functions [9]. The numerical
implementation applies four-node square quadrilateral (Q4), plane stress elements to discretize the domain. The material
properties of any elements near the boundaries of the level set functions are scaled by the ersatz material model. Also,
the discrete Heaviside and its derivative are implemented with continuous approximations. Finally, the Method of Moving
Asymptotes (MMA) solves the gradient-based optimization problem [10].

The optimization aims to maximize the structural loss factor corresponding to the specified number of eigenmodes. Con-
straints are applied to limit the volume of viscoelastic material and enforce a minimum eigenfrequency. An exact formulation
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of the structural loss factor are found by an adjoint sensitivity analysis. The complex-valued eigenvalue problem encountered
in the adjoint sensitivity analysis is dealt with similarly as presented in [11].

To illustrate the performance of the optimization routine the maximization of the damping of a cantilever beam is presented.
Figure 1a shows the initial design domain with L = 70 and H = 20 elements.. The average damping of the first and second
resonant modes is maximized during the optimization. The volume of viscoelastic material is constrained to 40% of the domain
volume and a minimum eigenfrequency for the first resonant mode is imposed. The materials have the following properties:
structural E = 200GPa, ν = 0.3, ρ = 7.85× 103 kg/m3 and viscoelastic: E = 1GPa, ν = 0.3, ρ = 1× 103 kg/m3

and a material loss factor equal to 1. Figure 1b shows the final converged design after 35 iterations. All constraints are
satisfied and an objective value of 0.5057 is obtained. The design shows a freeform distribution of viscoelastic material and
achieves higher structural loss factors compared to conventional CLD configurations which vary between 0.26 and 0.39 for
the analyzed domain. Since a complex-valued shear modulus was assumed, the dissipated energy is directly related to the
shear strains during resonance. Figure 1c and 1d present the shear strain distribution and illustrate that almost all viscoelastic
material contributes to the total energy dissipation for the optimized modeshapes.

CONCLUSIONS

A well-performing topology optimization approach has been presented which is able to generate multi-material designs
with optimized damping properties. The level-set based formulation provides a clear separation between the different material
phases compared with previous investigations using density-based approaches. With the presented example, we have demon-
strated that the optimized designs achieve significantly higher structural loss factors compared to conventional constrained
layer damping configurations by applying a freeform distributions of the viscoelastic and structural material. This offers new
potential for applications where high structural damping is an important design aspect, e.g. high precision equipment and
satellite instruments.

Design domain

L

H

(a) Initial design domain

Structural Viscoelastic

(b) Final design at iteration 35.

(c) Shear strain for eigenmode 1. (d) Shear strain for eigenmode 2.

Figure 1: Example of loss factor maximization of a cantilever beam. (a) design domain, (b) obtained distribution of viscoelastic
and structural material after 35 iterations, (c) shear strain in first resonant mode and (d) shear strain in second resonant mode.
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DESIGN OF BEAM CROSS SECTIONS WITH EXTREME STRUCTURAL PROPERTIES
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Summary Optimal topologies and material distributions are presented which minimize the individual components of the beam cross sec-
tion compliance matrix (e.g., transverse shear stiffness, shear-torsion coupling, among other). The entries of the compliance matrix are
determined using a finite element based cross section analysis tool. A multimaterial topology optimization framework is employed which
accommodates any number of isotropic and anisotropic materials. Results are presented for minimization of the individual entries of the
cross section compliance matrix subjected to a volume constraint. Some non-intuitive cross section designs are obtained which help shed
light on the role of different topological features and material combinations for design of beam structures with non-trivial static and dynamic
behaviour. This approach will be used in the future for large scale structural topology optimization of wind turbine blades with nonlinear
aeroelastic constraints.

INTRODUCTION

A beam is a type of structure whose length dimension is much larger than its cross section width and height. Beam type
structures include wind turbine, helicopter, and airplane rotor blades, among other. The structural response of beam structures
can be correctly analysed using beam finite elements. The analysis of the beam response is split in two steps. Firstly the
stiffness properties of the beam cross section are analysed. Secondly, these properties are integrated along the length to build
the beam finite element stiffness matrix. The author has previously presented results in which structural topology optimization
techniques are used to design beam cross sections to control the static and dynamic properties of beam structures ([1, 2]). This
paper follows the same approach to focus on the identification of cross section designs - topology and material distribution
- which minimize the entries of the cross section compliance matrix (e.g., transverse shear stiffness, shear-torsion coupling,
etc.). The work is analogous to design of microstructures to tailor the material properties whereas here the cross section is
designed to tailor the beam properties.

METHODOLOGY

For a linear elastic beam there exists a linear relation between the cross section generalized forces T and moments M in

θ =
[
T TMT

]T
, and the resulting strains τ and curvatures κ in ψ =

[
τTκT

]T
(see Figure 1). This relation is given in its

compliance form as F sθ = ψ, where F s is the 6× 6 cross section compliance matrix. In the most general case, considering
material anisotropy and inhomogeneity, all the 21 compliance parameters in F s may be required to describe the deformation
of the cross section. The entries of F s,ij are determined here following the description and nomenclature in [1] of the theory
in [3]. The formulation relies on a finite element discretization of the cross section to approximate the three-dimensional cross
section deformation or warping. The cross section compliance matrix F s is obtained as

F s =W
TGW , whereW is the solution toKW = F (1)

where the coefficient matrix K and G are associated with the stiffness of the cross section. Furthermore, the solution matrix
W contains the cross section rigid body motions ψ and the three dimensional warping displacements u. Finally, the load
array F is associated with a series of unit load vectors θ.

(a) Forces and moments (b) Strains and curvatures

Figure 1: Cross section coordinate system, foces and moments (a), and corresponding strains and curvatures (b).



The optimal design problem is formulated within a multi-material topology optimization context as

minimize
ρ∈Rne×nc

F s,ij(ρ)

subject to V (ρ) ≤ V (P1)
nc∑

m=1

ρem(ρ) < 1 , ∀e = 1, ..., ne

0 ≤ ρem ≤ 1, ∀e = 1, ..., ne , ∀m = 1, ..., nc

where V (ρ) is the total volume of the beam occupied with material. The design variable ρem represent the volume fraction
of candidate material m at element e of the cross section finite element mesh, where nc and ne are the number of candidate
materials and finite elements, respectively. The sensitivities of the cross section compliance matrix F s(ρ) are analytically
determined as described in [1]

NUMERICAL RESULTS

A few illustrative results are presented in Figure 2. The design domain defining the beam cross section is 1 × 1 m and is
meshed using 120 × 120 elements with three degrees of freedom per node. In view of future plans to manufacture and test
the resulting beam designs, results are obtained using Polylactic Acid (PLA), an isotropic material typically used in additive
manufacturing. The designs presented in Figure 2 refer to the cross sections of the beam. A three-dimensional beam structure
with constant cross section can be obtained by simply extruding these cross sections.

(a) min Fs,11 (b) min Fs,22 (c) min Fs,12 (d) min Fs,16 (e) min Fs,44 (f) min Fs,55 (g) min Fs,45 (h) min Fs,66

Figure 2: Optimized beam cross section topologies (a) minimizing Fs,11 (transverse shear compliance in x direction); (b)
minimizing Fs,11 (transverse shear compliance in x direction); (c) minimizing Fs,12 (transverse shear-shear coupling); (d)
minimizing Fs,16 (transverse shear-twist coupling); (e) minimizing Fs,44 (bending compliance around x); (f) minimizing Fs,55

(bending compliance around y); (g) minimizing Fs,45 (bending-bending coupling); (h) minimizing Fs,66 (torsion compliance).
The topology minimizing Fs,26 is the same as in (c) rotated 90 degrees with respect to the z axis. The remaining coupling
terms (e.g., Fs,46) cannot be activated using isotropic materials.

CONCLUSION

Initial results are presented for the optimal design of beam cross sections with extreme stiffness properties using isotropic
materials. Further results show that including material anisotropy it is possible to activate the remaining coupling terms which
were not active using a single isotropic material. Future work will utilize the solutions presented here to establish the bounds
on the entries of the cross section compliance matrix to formulate a new class of Free Beam Section Optimization (FBSO)
problems, an approach identical to Free Material Optimization applicable to beam structures. The aim is to use this approach
to develop a computationally very efficient framework for large scale structural topology optimization of wind turbine blades
with nonlinear aeroelastic constraints.
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SummaryThe engineering approach of fully stressed design is a practical tool with atheoretical foundation. The analog approach to
structural bifurcation instability optimization is presented with its theoretical foundation. A numerical redesign procedure is proposed and
illustrated with examples. For the ideal case, an optimality criterion is fulfilled if the design have the same sub-domain ”critical load”
(local Rayleigh quotient). Sensitivity analysis results in a simple relation between system critical load and local ”critical load” for a given
bifurcation mode.

For a general continuum subjected to loads and boundary conditions, the stability analysis is rather complicated and is
normally based on non-linear finite element (FE) analysis. In the present work focus is on bifurcation instability that after non-
linear displacement analysis involve an eigenvalue problem to determine a critical load factor at which bifurcation take place.
The design problem of maximizing such a load factor by optimized distribution of a given amount of material within a specified
design space is the the subject of our work. With analysis being complicated, this synthesis problem seems to relay on pure
numerical procedures, but theoretical results are obtained. Due to recent experience on optimal design of eigenfrequencies in
[1], simplified results are expected also for the bifurcation eigenvalue problem. This holds for the sensitivity analysis that is
necessary for optimizing a design. A simple optimality criterion is derived from the obtained sensitivities..

DIFFERENT STIFFNESS MATRICES FOR ANALYSIS

The static equations of equilibrium for an elastic problem, including reversible non-linear elastic problems, is for a model
with a finite number of degrees of freedom written as[Ss]{D} = {A} where the stiffness matrix[Ss] is the system secant
stiffness matrix that directly relate the resulting displacement vector{D} and the corresponding force vector{A} and may
express equilibrium for a total model (system) or for a single element. For the differential of the displacement vector{dD}
and the differential of the corresponding force vector{dA} the relation is described by the tangent stiffness matrix[St] by
[St]{dD} = {dA}

System stiffness matrices may be obtained by accumulating (FE assembled) over all the element stiffness matrices[Ss] =∑
e[Ss]e and[St] =

∑
e[St]e. For non-linear models different stiffness matrices are involved

• [S0], symmetric stiffness matrix for a non-displaced model,

• [Ss], non-symmetric secant stiffness matrix for a displaced model,

• [Sγ ], symmetric displacement gradient stiffness matrix for a displaced model,

• [Sσ], symmetric stress stiffness matrix for a displaced model and

• [St] = [Sγ ] + [Sσ], symmetric tangent stiffness matrix for a displaced model.

For a simple triangular 2D plane element analytical expressions for all these different stiffness matrices are available. These
results are derived in [2] and important information follows from these analytical results.

Analysis for bifurcation buckling
With the tangential stiffness matrix available for a FE model, buckling may be determined as described in [3], Chapter 18.

In bifurcation buckling two close equilibrium states are possible for the same load. The procedure is here based on an already
solved non-linear elastic equilibrium. A such solution is given the indexn to indicate a step of a possible incremental load
{A}n =

∑ñ=n

ñ=1
{∆A}ñ. The determined solution gives a determined stress stiffness matrix[Sσ] by

[Ss]n{D}n = {A}n ⇒ {D}n ⇒ [Sγ ]n and σn ⇒ [Sσ]n (1)

with assumed linearity betweenλ{∆A}n+1 andλ[Sσ]n giving

([Sγ ]n + λ[Sσ]n) {∆D}n+1 = λ{∆A}n+1

([Sγ ]n + λ[Sσ]n) ({∆D}n+1 + {∆}) = λ{∆A}n+1 (2)



where{∆} is the bifurcation mode from{∆D}n+1. The difference of these two equations give an eigenvalue problem

([Sγ ]n + λC [Sσ]n) {∆} = {0} ⇒ the eigen pairλC , {∆} (3)

The critical load{A}C corresponding to the bifurcation displacement{∆} is

{A}C = {A}n + λC{∆A}n+1 (4)

BIFURCATION LOAD SENSITIVITIES

The eigenvalue problem (3) presented without indexn andC is

([Sγ ] + λ[Sσ]) {∆} = {0} (5)

This is pre multiplied by the transposed bifurcation eigenmode{∆}T to

Uγ + λUσ = 0 with Uγ := {∆}T [Sγ ]{∆} and Uσ := {∆}T [Sσ]{∆} (6)

with the Rayleigh quotientλ = −
Uγ

Uσ

.
The sensitivity of the bifurcation eigenvalue with respect to the densityρe is

∂λ

∂ρe

= −
∂

Ûγ

Uσ

∂ρe

−
∂

Uγ

Uσ

∂∆

∂∆

∂ρe

= −
∂

Ûγ

Uσ

∂ρe

(7)

simplified by the stationarity of the Rayleigh quotient with respect to change of eigenmode and applying a hat notation for
gradients with unchanged eigenmode, see [4]. Expanding the final term in (7) give

∂λ

∂ρe

= −
∂Ûγ

∂ρe

1

Uσ

+
∂Ûσ

∂ρe

Uγ

U2
σ

= −
1

Uσ

(
∂Ûγ

∂ρe

+ λ
∂Ûσ

∂ρe

)
(8)

where the energies are accumulated from element energies

Uγ =
∑

e

(Uγ)e and Uσ =
∑

e

(Uσ)e (9)

The stiffness matrices are here assumed to depend explicitly only on the local element densityρe and this dependence is
assumed to be linear proportionality, that give

∂λ

∂ρe

= −
1

Uσ

(
∂(Ûγ)e

∂ρe

+ λ
∂(Ûσ)e

∂ρe

)
= −

1

Uσρe

((Uγ)e + λ(Uσ)e) =
(Uσ)e

Uσ

1

ρe

(λe − λ) (10)

Optimality criterion
With the objective of maximizing the bifurcation load{A}n + λ{∆A}n, i.e., of maximizingλ subject to a constant of

unchanged total mass/volume

Maximize λ for g =
∑

e

ρeVe − V = 0 (11)

the necessary optimization criterion with a constantC is

∂λ

∂ρe

= C
∂g

∂ρe

= CVe ⇒
∂λ

∂ρe

1

Ve

= −
1

Uσ

1

ρeVe

((Uγ)e + λ(Uσ)e)) =
(Uσ)e

Uσ

1

ρeVe

(λe − λ) = C (12)

whereUσ may be normalized to 1 by normalizing the bifurcation mode{∆}.
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Summary This paper presents an efficient topology optimization methodology for dynamic structural design problems. The key to the
method is to utilize dynamic substructering, or component mode synthesis, i.e. the Craig-Bampton reduction method to speed up the
transient analysis. The dynamic substructuring concept is used for both the forward (the state equation) and the backward (adjoint equation).
The developed optimization scheme is demonstrated on design problems for linear elastic Mindlin plates subject to impact loads, where the
goal is to minimize the deflection in a specified region.

INTRODUCTION AND MOTIVATION

Structural shape and topology optimization for transient problem is known to be computionally expensive and thus less
attractive than its steady state counterparts. This is partly due to the fact that a transient analysis is more expensive than a static
analysis - especially for implicit time integration schemes - and partly because the sensitivity analysis requires the solution
to a terminal value problem. To illustrate the extra computional efforst required one may use an example from non-linear
static optimization. Here one have to solve a non-linear problem for the state equation, bu the adjoint problem turns out to be
linear and thus much cheaper than the state problem [1]. Despite this obvious drawback several works on transient structural
topology optimization have been presented and studied in the past decade. The approach has, among others, been used for 1D
pulse modulators and filter design in [2], material microstructure design in [3] and design of composites in [4].

The focus of this work is to develop a methodology which is capable of speeding up the computations by orders of
magnitude. To realize this goal the dynamic substructering method, namely the Craig-Bampton method, is applied [5], [6].
The main idea of dynamic substructuring, or component mode synthesis, is to partition the computational domain into a set
of smaller substructures. The finite element equations on each substructure is then reduced in size by its normal modes while
retaining the interface, or boundary degrees of freedom, by so-called constraint modes. The reduced substructure stiffness,
mass and damping matrices (also known as super elements) are then assemblied into a reduced global system which can be
orders of magnitude smaller than the original, full finite element system. Based on the reduced system, it is now possible to
perform the transient analysis very fast which paves the way for a fast transient topology optimization methodology.

THEORY

The mechanical problem considered in this work is based on Mindlin plate theory for which the unknowns are the out of
plane displacement w and the two rotations θ = {θx, θy}. The governing equations can be stated compactly as follows

∇TG (∇w − θ) = ρh
∂2w

∂t2
(1)(

α1
∂

∂x
+α2

∂

∂y

)T
D

(
α1

∂

∂x
+α2

∂

∂y

)
+G (∇w − θ) = ρh3

12

∂2θ

∂t2
(2)

where h is the thickness,G andD are constitutive matrices and α1 and α2 are appropriate 3× 2 matrices.
When discretized by the standard Galerkin finite element method and including proportional damping, i.e. C = αM+βK

the matrix equations becomes as follows

Mü+Cu̇+Ku = F (t), t ∈ [0;T ] (3)

where u ≡ u(t) is a vector collecting both displacement and rotational degrees of freedom and M , C, K and F (t) are
the mass-, damping-, stiffness-matrices and load vector, respectively. The system, together with appropriate boundary and
initial conditions, can now be solved by a time integration scheme from 0 to time T . In this work the unconditionally stable
Newmark algorithm is used [5].
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Solving Eq. (3) will lead to the aforementioned issues with computional time and we will therefore study a reduced system
obtained by the Craig-Bampton method first. For each substructure i in the domain the following reduction is performed

Rj =

[
Φj Ψj

0 I

]
(4)

where I is the identity matrix, Φj is the matrix with n normal modes computed on the interior i of substructure j, i.e. the
solution to the eigenvalue problem (Kii

j − ω2M ii
j )Φj = 0 and Ψj is the static correction matrix for the interface b degrees

of freedom , i.e. Ψj = −
(
Kii
j

)−1
Kib
j . The super elements are then obtained by

M r
j = RT

jMjRj , Cr
j = RT

j CjRj , Kr
j = RT

j KjRj F
r
j andRT

j Fj (5)

Once assemblied into a system equivalent to Eq. (3), the time response is obtained effeciently by the Newmark algorithm.
The optimization problem investigated in this work can be posed in discrete form as a standard mathematical programme.

min
x∈Rn

φ =
∫ t2
t1
w(t)Tw(t) dt

s.t. Mü+Cu̇+Ku = F (t)

V (x)/V ∗ − 1 ≤ 0

0 ≤ xi ≤ 1, i = 1, n

(6)

where the objective function is the out of plane displacement evaluated in a specified region from time t1 to t2. The first
constraint refers to the state equation, the second to a volume constraint and the last to a box constraint on the design variables
denoted by x. The optimization problem is solved using the Method of Moving Asymptotes [7] and the sensitivities are
determined using the adjoint method obtained purely from the discretized state equation and objective. This leads to the
solution of a terminal value problem for the Lagrange multiplier λ.

M
¨̂
λ+C

˙̂
λ+Kλ̂ =

∂φ

∂u

T
∣∣∣∣∣
T−τ

, λ̂ = λ(T − τ) (7)

here formulated as an initial value problem by a change in variables. The sensitivity can then be obtained from the following

∂φ

∂xe
=

∫ T

0

∂(wTw)

∂xe
+ λT

(
−∂M
∂xe

ü− ∂C

∂xe
u̇− ∂K

∂xe
u

)
dt (8)

To reduce memory requirements, the developed implementation uses a check pointing scheme to avoid storing all displace-
ments, velocities and acceleration from the forward problem.

DISCUSSION

The presented study shows that it is possible to reduce the computational effort of transient topology optimization by
order(s) of magnitude by use of dynamic substructering. As expected, the price for the obtained speed up is the more involved
sensitivity analysis and the bookkeeping associated with the substructuring (i.e. a domain decomposition). The findings
presented here can, with some modifications, be applied to e.g. acoustic-structural interaction problems and thus pave the way
for new, interesting multi-physical transient topology optimization problems.
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Summary In this work finite strain rate-independent plasticity is combined with topology optimization. The employed constitutive model

is based on rate-independent isotropic hardening plasticity and to separate the elastic deformation from the plastic deformation, use is made

of the multiplicative split of the deformation gradient. The mechanical balance laws are solved using the finite element method and the

optimization problem is solved using the method of moving asymptotes. The sensitivity is derived using a coupled transient adjoint strategy.

A boundary value problem where the plastic work is maximized is used to demonstrate the capability of the presented model.

INTRODUCTION

Most research related to topology optimization has been concerned with linear problems and only a small fraction of the

published research has been concerned with non-linear elasticity. Although topology optimization formulations combined

with plasticity are rare they do exist and an early example of topology optimization combined with a path-dependent material

is provided by [1]. So far, topology optimization combined with plasticity has, however, been restricted to the assumption of

small strains.

One application of topology optimization of path-dependent materials is design of energy absorbing structures and mate-

rials where finite strain plasticity evidently is highly relevant. In the present work an isotropic finite strain elasto-plastic model

is implemented in a finite element environment and combined with topology optimization.

For path-dependent problems the sensitivity is also path-dependent and as a consequence the sensitivity will be obtained

by the solution to a terminal value problem. In the present paper the adjoint procedure for calculating the sensitivity for

transient coupled problems proposed in [3] will be utilized. The resulting optimization problem is solved using the method

of moving asymptotes (MMA), cf. [4]. The presented formulation will be used to find topologies that generates maximum

plastic work when subject to a prescribed displacement.

ELASTO-PLASTIC BOUNDARY VALUE PROBLEM

The employed constitutive model is an isothermal version of the model presented in [2] and it is based on the multiplicative

split of the deformation gradient. The strain energy governing the elastic response is a Neo-hookean potential function defined

in terms of the elastic Finger tensor. The non-dimensional density, c, reduces the strain energy, or stiffness, using the canonical

scaling cp where the penalty exponent is chosen as p = 3.

To distinguish plastic response from elastic response, use is made of the von-Mises yield function formulated in terms of

the Kirchhoff stress tensor. Similar to elasticity, the initial threshold to plasticity is scaled with the non-dimensional density,

however, for the yield stress the penaly exponent q = 2 is employed. The plastic evolution laws are based on the postulate of

maximum dissipation, i.e. associated plasticity is utilized. In each integration point throghout the structure, the evolution laws

for the plastic deformation and the internal variables are integrated using the implicit backward Euler scheme.

The mechanical balance laws are formulated in the reference configuration and discretized using a total Lagrangian finite

element formulation. The set of non-linear equations govering the equilibrium is solved using the Newton-Raphson scheme.

Since the problem is path-dependent, the load is applied in a number of load steps and for each step the non-linear mechanical

balance laws are solved together with the non-liner constitutive equations.

OPTIMIZATION

The objective of the optimization is to maximize the total plastic work for given prescribed displacements. Based on the

spatial and temporal discretization, the plastic work can be expressed as a function of the internal variables in all gauss points

and all time steps. The optimization problem will be solved by using the method of moving asymptotes (MMA), cf. [4] and

consequently the gradients of the constraints and the objective function with respect to the design variables are required. In

contrast to elasticity, plasticity is path-dependent which requires that the entire load path needs to be included in the sensitivity

analysis. In this work, the adjoint method for coupled transient problems presented in [3] will be exploited. In this approach

the discrete constitutive equations and mechanical balance laws are enforced via Lagrangian multipliers in each load step. The

Lagrangian multipliers are then obtained from the solution to a sequence of adjoint problems. To avoid mesh sensitivity, use

is made of a PDE based filter strategy.

∗Corresponding author. Email: Mathias.Wallin@solid.lth.se
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NUMERICAL RESULTS

The finite strain plasticity model has been used to simulate the response of the simple boundary value problem depicted

u

Figure 1: Illustration of geometry of the design domain and boundary conditions used in the numerical example. Due to

symmetry only the right hand side of the structure is included in the numerical model.

in Fig. 1. Initially, the design domain is filled with 50% material and after the optimization procedure the optimal design is

shown in Fig. 2.

a)
wp

106

[
J
m3

] b)

Figure 2: a) Distribution of plastic work, wp, throughout the design in the deformed state. b) Optimal design.

From Fig. 2a it can be concluded that the plastic work is at maximum where the load is applied and where the structure is

attached to the wall. The peak of the plastic work is located at the upper right corner of the structure. In Fig. 2b, the optimal

design is plotted and a comparison to simulations using the assumption of small strains reveals that the optimal design will be

highly influenced by the load level.
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Summary This article proposes a method to identify optimal wind turbine blade structures fabricated by additive manufacturing based on 

topology optimization techniques. The structural model is based on the beam cross-sections through a 2D finite element representation. The 

optimization problems are formulated through the blade properties and response at the cross-section level. The numerical experiments performed 

challenge the topology optimization method proposed against several problem formulations, geometries and candidate materials. 
 

 INTRODUCTION 

 

   Large scale wind turbine blade designs are heavily influenced by the manufacturing constraints currently inherent in their 

production using fiber-reinforced composites. The emergence of industrial-scale additive manufacturing techniques has the 

potential to release most manufacturing constraints from design, thus enable novel blade structures which are more efficient 

in the use of material in order to withstand loads and capture wind power. Topology optimization techniques allow the highest 

degree of design freedom for the optimal allocation of structural mass inside an available design space. Therefore, it is 

considered here as the methodology for conceptual design of wind turbine blades built by additive manufacturing. 

 

 METHODOLOGY 

 

   The optimization problems are based on the structural model of a blade by Timoshenko beam finite elements. These are 

defined from the stiffness and mass matrices at the beam cross-section level. Through a 2D solid finite element discretization 

of a beam slice, its cross-section stiffness matrix is obtained using the cross-section analysis tool BECAS [1]. The formulated 

problems use the 2D FE discretization of the beam cross-sections as design variables through the SIMP parameterization 

extended for multiple materials. The objective is to minimize the overall structural mass of the blade with constraints 

formulated in terms of the cross section deformations described by the in- and out-of-plane strains and curvatures, due to the 

forces and moments along the blade. The restrictions on the deformations along the blade are set attending to structural and 

aero-elastic criteria. The loads and deformations are pre-processed from the DTU-10MW-RWT [2] benchmark blade, from 

nonlinear time-domain wind turbine simulations using the aero-elastic code Hawc2 [3]. The optimization is solved by the 

interior point solver IPOPT [4], using the analytical solutions of the objective and constraint functions and their sensitivities. 

 

 RESULTS AND DISCUSSION 

  

   The results presented demonstrate the ability of the proposed methodology to generate optimal topologies of a set of cross-

sections along a wind turbine blade, by achieving the lowest mass possible while ensuring that it withstands multiple extreme 

load cases. The topologies for each cross-section are obtained from a very fine discretization of the design space available 

inside a predefined aero-foil surface. The computational expense of these problems is orders of magnitude lower than the full 

blade discretization with solid 3D finite elements. This level of refinement can reflect the low volume fraction that 

characterizes modern wind turbine blade structures. The solutions for multiple material topology optimization problems reflect 

the influence of combining orthotropic materials in the topology to optimally carry loads inside a blade. The topologies 

obtained are reproduced as small-scale prototypes through additive manufacturing. 

 

 
Figure 1 Topologies with minimum mass that comply with deformation restrictions on the cross-sections of the 10MW-

RWT blade at 15m, 21m and 28m, respectively. Each topology is composed of unidirectional (blue) and bidirectional 

(red) glass fiber composite laminates. The design space is the area enclosed by the dashed line. 



 

 

 
Figure 2 Topologies with minimum isotropic material that comply with deformation restrictions on each strain and 

curvature component set by the benchmark 10MW-RWT blade at 21m. The topology on the left fulfills a more restrictive 

constraint for the curvature around the in-plane horizontal axis (higher flapwise stiffness). The central topology allows a 

lower curvature around the in-plane vertical axis (higher edgewise stiffness). The topology on the right is restricted to a 

lower twist (higher torsional stiffness).  
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Summary This work aims at developing tools to design structures that can sustain a certain level of degradation, i.e. structures that present
a low sensitivity to damage. To achieve this goal, an optimization approach is chosen. The analysis of the structures is performed resorting
to an XFEM-level set framework. The damage propagation is represented through a non-local model and solved resorting to a non-linear
analysis controlled by prescribed displacement. To optimize structures considering a potential degradation, a sensitivity analysis of the
damage process is required. The latter is carried out through a fully analytical approach and considering both the direct and the adjoint
formulations. Finally, the developed methodology is applied to design 2D structures undergoing damage constraints. The influence of the
degradation of the materials constituting the structures can be observed on the optimized designs.

INTRODUCTION

Composite materials exhibits extremely interesting properties as they combine a high stiffness and a very light weight.
However, their integration in structures is made difficult because of their high damage sensibility. The latter is scarcely
taken into account while designing structures. Therefore, this work aims at developing a systematic methodology to design
structures exhibiting a certain resistance to degradation. An optimization approach is chosen. To represent complex geometries
and deal with large shape modifications, a level set representation of the geometry advantageously combined with the extended
finite element method (XFEM) is used. The degradation of the material is represented using a non-local damage model, which
reduces the material stiffness by a scalar damage value D. To solve optimization problem with damage constraints, a sensitivity
analysis of the damage process is required. As damage growth is an irreversible process, the history of the structural response
has to be taken into account. A fully analytical approach is developed to perform the sensitivity analysis accurately and
efficiently. Finally, ongoing work aims at applying the developed tools to design structures with damage constraints.

FRAMEWORK

The structural response is obtained combining the XFEM and a level set representation of the geometries. The XFEM
allows representing discontinuities, such as material interfaces, within finite elements. A fixed mesh can be used through
the optimization process and costly remeshing operations are avoided. The level set description of the geometries enables to
represent discontinuities, interfaces . . . implicitly. It allows an easy handling of moving boundaries.

DAMAGE MODEL

The degradation of the materials is represented using a non-local damage model. The damage is given by a scalar value
D evaluated at each Gauss point of the structure. The stiffness of the materials are directly reduced by these damage values.
The damage growth is characterized by an evolution law depending on the displacement u: D = g(u). The obtained damage
variables D are then smoothed using a smoothing function fS to avoid abrupt change from zero to non-trivial values. Finally,
a damage filter is applied to the smoothed damage values DS to prevent the localization of the degradation in a thin strip of
elements.

DAMAGE PROCESS ANALYSIS

The damage process is non-linear and presents a limit point in its force-displacement curve. Classical iterative solvers,
as Newton-Raphson, can no longer be used except if dealing with low damage values. A displacement controlled solver,
based on imposed incremental displacements at each iteration, is then implemented to be able to reach high degradation in
the materials. The problem is solved simultaneously on the displacement u and the damage D state variables, collected in a
global one y. The damage propagation is an irreversible process and the damage growth history has to be taken into account.
This path dependence shows through the residuals, given as functions of the current (k) and the previous (k − 1) iterations
and the design parameters s:

R(k) = R(y(k),y(k−1), s). (1)

∗Lise.Noel@ulg.ac.be



DAMAGE PROCESS SENSITIVITY ANALYSIS

To perform the sensitivity analysis, a fully analytical approach, inspired from Michaleris et al. [3] is developed. The
evaluation of the derivatives is following and extending the basic methodology explained in Noël et al. [2]. The derivatives of
an objective/constraint function F with respect to a particular design parameter si is given as:

F (k) = F(y(k), s),
dF (k)

dsi
=
∂F (k)

∂si
+
∂F (k)

∂y(k)

dy(k)

dsi
. (2)

To evaluate this expression, the derivatives of the state variables y with respect to the considered design parameter si are
required. They can be obtained through the computation of the derivatives of the residuals R:

dR(k)

dsi
=
∂R(k)

∂si
+
∂R(k)

∂y(k)

dy(k)

dsi
+

∂R(k)

∂y(k−1)

dy(k−1)

dsi
. (3)

Using the direct (resp. adjoint) approach and proceeding from the first (resp. last) to the last (resp. first) iterations, the
derivatives of the objective/constraint function can be recovered provided that ∂R

(k)

∂si
, ∂R

(k)

∂y(k) and ∂R(k)

∂y(k−1) are known.

VALIDATION

The accuracy of the developed sensitivity analysis is illustrated on a simple benchmark example: a plate with a hole. The
considered problem is illustrated in Figure 1 and all the used parameters are given in Table 1. The derivative of the compliance
with respect to the four design parameters a, b, ξ, η is shown in Figure 2. One can see that the sensitivity results using finite
difference (FD) are in very good agreement with the analytical ones either resorting to the direct (A Direct) or the adjoint (A
adjoint) formulations.

Figure 1: Plate with a hole: description.

u E1

E2

Table 1: Plate with a hole: parameters.

Dimensions [m] L = 7.5, l = 3
Elastic moduli [N/m2] E1 = 3 ∗ 1010, E2 = 3 ∗ 104
Displacement [m] u = 10−4

Level set function φ(x, s) = (xa )
ξ + (yb )

η − 1
Gauss points per subelement ngp = 7
Strain threshold εth = 10−4

Smoothing parameter ηS = 7

Figure 2: Plate with a hole: sensitivity analysis.

CONCLUSIONS

An optimization approach to design structures resistant to degradation is developed. The analysis is performed within an
XFEM-level set framework and resorting to a displacement controlled iterative solver. The sensitivity analysis of the damage
process is carried out through a fully analytical approach. Finally, the optimization procedure will be applied to design
structures under damage constraints.

The first author, Lise Noël, is supported by a grant from the Belgian National Fund for Scientific Research (F.R.S.- FNRS)
which is gratefully acknowledged.
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Summary In topology optimization, there are two formalisms for computing derivatives : one where the variations of the shape are given

by a transformation by a diffeomorphism, and another one where they are described by the flow of a regular vector field. In the level-set

approach, a shape is represented by the negative domain of a scalar function, and its variations are performed trough a transport equation,

namely the Hamilton-Jacobi equation. The present work focuses on computing derivatives in that context. The knowledge of the second

order shape derivatives gives also different indications on numerical aspects, that we illustrate with a few examples at the end.

SHAPE DERIVATIVES

The derivation with respect to a shape - a variable subset of R
d - is a crucial tool in shape optimization. It was widely

developed by many authors [5], [6], [12] (and references therein). Here we follow the approach and notations of Murat and

Simon [6, 11]. Given a bounded open set Ω0 of Rd, a variation of the domain is a perturbation by a regular mapping : any

domain Ω ”close” to Ω0 can be seen as Ω =
(
Id + θ

)
(Ω0), where θ is a small displacement field and Id the identity operator

on R
d. Following this idea, one can define Fréchet derivatives of functions depending on Ω. Zolésio and co-workers [3, 12],

proposed another point of view which consits in considering a moving domain

[0, τ [∋ t 7→ Ωt,

with Ωt = XV (t,Ω0), where XV : [0, τ [×R
d → R

d is the maximal flow of a regular vector field V ∈ Ck
(
R+ × R

d;Rd
)

:

∂tXV (t, x) = V
(
t,XV (t, x)

)
with XV (0, x) = x. This allows one to derive a function of the shape with respect to the time

parameter t. The structure of the second order shape derivatives is also known in this context.

DERIVATION WITH RESPECT TO NORMAL EVOLUTION

The goal of this work is to derive along time trajectories, in the framework of the level-set method [1], when the vector field

is aligned with the outer normal to the shape at every point of its boundary. Let φ0 be a level-set function representing Ω0 :






x ∈ Ω0 if φ0(x) < 0,
x ∈ ∂Ω0 if φ0(x) = 0,

x ∈ R
d\Ω0 if φ0(x) > 0.

(1)

The boundary of Ω0 is given by the level set {x ∈ R
d | φ0(x) = 0}. Given a regular vector field v ∈ Ck

(
R+ × R

d;R
)
, let

φv ∈ Ck
(
[0, τ [×R

d
)

be a classical solution of the following Hamilton-Jacobi equation (with t small enough) :

{
∂tφv(t, x) + v(t, x) |∇xφv(t, x)| = 0,
φv(0, x) = φ0(x).

(2)

For 0 ≤ t < τ we define Ωt as being the set of negative values of φv(t, ·) : Ωt = {x ∈ R
d | φv(t, x) < 0}. The perturbation

by the Hamitlon-Jacobi equation corresponds to a normal evolution of the shape. Thanks to the bicharacteristics method

for solving the Hamilton-Jacobi equation [10], we can compute shape derivatives in this framework. It appears that the first

derivatives are all the same, and that the second derivatives are all different.

EXTENSION OF A SCALAR FIELD - APPROXIMATION OF THE SHAPE HESSIAN.

The first shape derivatives only depends on the trace of the field v on ∂Ω. It is then necessary to extend v to R
d. This question

has already been studied in [2, 4]. As a result, v being a descent direction we may choose any extension method from ∂Ω
to R

d. On the first hand, the structure of the second order shape derivatives allows to find an extension method that may be

efficient. On the other hand, it helps to approximate the shape Hessian, which is the basic idea of a quasi-Newton method [7].

∗Corresponding author. Email: viej@cermics.enpc.fr



NUMERICAL EXPERIMENTS

At the end we show some numerical comparison between the presented quasi-Newton, the Newton method and the gradi-

ent method. For example, we consider the case of a bridge, and try to minimize the compliance with a fixed penalization

on the volume. We consider three algorithms : the gradient method (GExt0,GExt1 in Figure 2), the Newton method

(NExt0,NExt1) and a Quasi-Newton method (QExt0,QExt1). We also try on each algorithm two extension method.

Below we plot the evolution of the objective L, where L(Ω∞) is the minimum of each method.

Figure 1: Initial and Optimal domains.
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GExt0  18.707567
GExt1  18.82805
NExt0  18.260595
NExt1  18.19258
QExt0  18.258097
QExt1  18.222209

Figure 2: Evolution of the error with each optimal value

L(Ω∞). The value of L(Ω∞) is different for each method;

it is given in the legend.

CONCLUSION

The computation of the second order shape derivatives in the level-set framework and the knowledge of their structures allowed

us to propose some extension method coupled to a gradient, a Newton and a Quasi-Newton algorithms. This combination

seems at first to be efficient in some basics numerical examples.
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Summary It is well known that material distribution topology optimization problems often are ill-posed if no restriction or regularization
method is used. A drawback with the standard linear density filter is that the resulting designs have large areas of intermediate densities,
so-called gray areas, especially when large filter radii are used. To produce final designs with less gray areas, several different methods
have been proposed; for example, projecting the densities after the filtering or using a nonlinear filtering procedure. In a recent paper, we
presented a framework that encompasses a vast majority of currently available density filters. In this talk, we present that these nonlinear
filters ensure existence of solutions to a continuous version of the minimal compliance problem. Moreover, we show numerical experiments
that illustrates that cascades of these nonlinear filters can be used to efficiently solve large-scale topology optimization problems.

INTRODUCTION—THE fW -MEAN FILTERED CONTINUOUS MINIMAL COMPLIANCE PROBLEM

Since the seminal paper by Bendsøe and Kikuchi [2] regarding topology optimization of linearly elastic continuum struc-
tures, the field of topology optimization has been subject to intense research. It is well known that material distribution
topology optimization problems often are ill-posed if no restriction or regularization method is used. Amongst the most popu-
lar techniques to achieve mesh-independent designs is to use a filtering procedure. In a classic paper, Bourdin [4] established
existence of solutions to a continuous version of the linearly filtered minimal compliance problem. Since the introduction of
the linear density filter by Bruns and Tororelli [5], a whole range of nonlinear filters developed to produce final designs with
less gray areas has been presented [6, 8, 9]. We have recently introduced the class of generalized fW -mean filters that include
the vast majority of filters used in topology optimization [10] and provide a common framework for analyzing and evaluating
various filters.

Here, we consider a standard test problem, namely the problem of designing a linearly elastic structure with minimal
compliance given a certain load-case and an upper bound V on the availiable volume. Let Ω ⊂ Rd be a bounded and
connected domain in which we want to place our structure. We describe the design by using the material distribution approach
to topology optimization and define the spatially varying forth order elasticity tensor E(ρ) = (ρ+(1−ρ)P (F (ρ)))E0, where
ρ > 0, F (ρ) is a continuous version of the fW -mean filter, P : [0, 1] → [0, 1] is a smooth and invertible penalty function, and
E0 is a constant forth order elasticity tensor. The above formulation includes the case when the problem is penalized using
SIMP [3], that is the case when P (x) = xp for some p > 1. The continuous fW -mean filtered density is, for x ∈ Ω, given by

(
F (ρ)

)
(x) = f−1

(∫
Ω

w(x, y)(f ◦ ρ)(y) dy
)
, (1)

where f : [0, 1] → [fmin, fmax] ⊂ R is a smooth and invertible function and w(x, ·) is a non-negative normalized weight
function. We let A =

{
ρ | 0 ≤ ρ ≤ 1 a.e. on Ω, ‖F (ρ)‖L1(Ω) ≤ V

}
⊂ L∞(Ω) denote the set of admissible designs and

assume that the boundary ∂Ω is Lipschitz and that the structure is fixed at a non-empty open boundary portion ΓD ⊂ ∂Ω.
The displacement of the structure u solves the problem, find u ∈ U such that a(ρ;u, v) = `(v) ∀v ∈ U , where U ={
u ∈ H1(Ω)d | u|ΓD

≡ 0
}

is the set of kinematically admissible displacements, a is the energy bilinear form, and ` denotes
the load linear form. In this setting, the minimal compliance problem admits solutions, that is, we can formulate and prove
the following theorem.

Theorem 1. There exists a solution to the following variation of the minimal compliance problem. Find u∗ ∈ U∗ such that
`(u∗) = inf

u∈U∗
`(u), where U∗ =

{
u ∈ U | ∃ρ ∈ A such that a(ρ;u, v) = `(v) ∀v ∈ U

}
.

Remark 1. Theorem 1 also holds true for a cascade of fW -mean filters of the form (1) with different filter functions f .

NUMERICAL EXPERIMENTS

Figure 1 shows the final physical designs (not post processed nor sharpened!) of cantilever beams optimized with aim of
minimizing their compliance when a load is uniformly distributed over the middle 10 % of the beam’s right side; a standard
test problem in topology optimization. Here, we use an open–close filtering strategy (comprising a cascade of four fW -
mean filters) over octagonal shaped neighborhoods as suggested by Sigmund [8]. However, instead of using exponential
averaging, we use harmonic averaging as introduced in topology optimization by Svanberg and Svärd [9]. Remark that even
though the open–close filtering strategy in general does not guarantee minimal size control for both structure and void [7], our
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Figure 1: Optimized cantilever beams using 1536 × 1024 elements, and different harmonic open–close filters. The filter
neighborhoods are indicated in the upper-right corner of each sub-figure, and the upper neighborhood corresponds to the open
step while the lower corresponds to the close step. Top row, the relative ratio between the filter radius used in the open and
closed step is 4 for all experiments, filter radii increases toward the right. Bottom row, the relative ratio between the filter
radius used in the open and close step is from left to right, 4, 1, and 1/4, respectively.

numerical experiments for the minimal compliance problems suggest that this strategy in combination with a gradient based
optimization method guides the design into a desirable configuration. The volume fraction used was 0.5 and the final measure
of non discreteness (of the physical design) is at most 0.3 %. To the best of our knowledge, previously no contribution has
used an open–close or close–open filtering strategy to solve problems with more than a few tens of thousands degrees of
freedom. Here, we capitalize on our fast filtering strategy [10] and use a modified version of the 2D multigrid-CG topology
optimization code by Amir et al. [1] to solve design problem with approximately 1.5 million degrees of freedom. In each sub-
figure in Figure 1, the upper neighborhood corresponds to the open step that should impose a minimum size on the material
regions while the lower neighborhood corresponds to the close step that should impose a minimum size on the void regions.
The beams in the top row are optimized with increasing filter radii from left to right while the beams in the bottom row are
optimized by using a different ratio between the filter radii in the open and close step. As reference, the leftmost figures on
both rows shows the same design.

For the cantilever beam in the third subfigure from the left in the top row in Figure 1, the size of the filter neighborhoods
are 3, 465 elements for the open step and 249 elements for the close step. The solution process required 182 iterations and
took 3 hours, the filtering and modification of sensitivities accounted for around 20 % of this time, on a desktop equipped with
an Intel Xeon E5-1650 v3 CPU and 32 GB RAM. It should be noted that the fast summation algorithm was executed almost
40, 000 times and that the elementwise evaluation of the nonlinear functions, corresponding to f in equation (1), dominated
the time required for the filtering and evaluation of the sensitivities.
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Summary Structural topology optimization problems are commonly defined using material interpolation schemes. One of the challenges
observed in the review article [3] for this density based topology optimization is the slow convergence of the solvers when an almost solid-
and-void design is found. In this work, we numerically investigate the reasons for slowly moving boundaries, which are often encountered
in practice, and attempt to indicate how this problem can be remedied.

INTRODUCTION

The recent review article [3] studies, among many other topics, the way optimization algorithms generate the designs in
structural topology optimization. The design parametrization is based on density based topology optimization combined with
the SIMP approach [2]. The review article [3] reports that “the optimization rapidly finds a fairly good design but requires a
very large number of iterations for just slight improvements in objective function but rather large changes in geometry”. Thus,
the final geometry is found by slowly moving the boundaries. This behaviour is illustrated in [3] by two different examples,
namely the inverter mechanism design and a minimum compliance problem resulting in a two-bar truss like structure.

The authors of [3] suggest that the underlying reasons for the slowly moving boundaries is the use of the SIMP approach.
However, other reasons could be the choice of problem formulation, the choice of optimization algorithms, the choice of
regularization technique, a combination of several of these issues, or even something completely different.

The problems presented in [3] are only formulated in the nested approach. In contrast, this note shows the results using also
the Simultaneous Analysis and Design (SAND) formulation of the problem. Furthermore, only two numerical optimization
algorithms were tested in [3], the Method of Moving Asymptotes (MMA) method [5] and the Optimality Criteria (OC) method
[6]. These two algorithms are first-order methods developed for structural optimization. However, none of the general purpose
state-of-the-art nonlinear methods have been tested. The benchmarking study in [1] suggests that interior point methods, such
as IPOPT [4], work particularly well for structural topology optimization problems. In fact, since they are second-order
methods, the number of iterations is considerably reduced. Furthermore, special purpose second-order optimization methods
have been successfully implemented in [1] for the minimum compliance problem, such as TopSQP (Sequential Quadratic
Programming solver) and TopIP (interior point method).

We expect that the issue of slowly moving boundaries in topology optimization problems can be avoided, or at least
decreased, by using different optimization solvers. The numerical results in this work support our hypothesis and suggest that
this issue can potentially be reduced or even remedied by changing optimization methods.

PROBLEM FORMULATION

The structural topology optimization problem which is considered throughout is the classical single load minimum com-
pliance problem

minimize
t

uT (t)K(t)u(t)
subject to v(t) ≤ V

0 ≤ t ≤ 1,
(1)

where v(t) is the volume of the structure described by the design variables t and V > 0 is the volume limit. The nodal
displacements u(t) are obtained from the equilibrium equations K(t)u = f. The stiffness matrix is described with K(t). More
details about the formulation of the problem (in both nested and SAND formulation) can be found in e.g. [2] and [1].

NUMERICAL EXPERIMENTS

In [3] a simple minimum compliance problem, namely 2-bar (see Figure 1), is used to illustrate the slowly moving bound-
aries issue. The design domain is discretized using 50 by 20 elements, with a volume fraction equal to 0.2. A density filter is
used to avoid checkerboards and mesh-dependency problems. The SIMP penalization parameter is set to p = 3. Finally, the
contrast gap between the Young’s modulus of the void and solid material is set to E0/Emin = 103 as in [1].

Two different initial designs are considered to compare and study the slowly moving boundaries behaviour as in [3]; an
uniform density (of 0.2) and a solid bar in the middle of the domain satisfying the volume constraint, see Figure 1.
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Figure 1: Design domain of the studied minimum compliance benchmarked problem (left), uniform density starting point
(middle) and solid bar starting point (right).

Table 1: The table contains the objective function value and the number of iterations when the benchmarked problem is
solved with MMA, TopSQP, TopIP, IPOPT-N and IPOPT-S. The table shows the results using two different starting points;
the uniform design (U) and the solid band (S B).

Solver MMA TopSQP TopIP IPOPT-N IPOPT-N∗ IPOPT-S

Initial point U S B U S B U S B U S B U S B U S B

Compliance 11.18 11.47 11.23 11.47 11.19 11.22 11.72 11.37 11.81 11.80 11.18 11.22

Iterations 40 173 34 108 58 48 60 266 74 111 50 85

Different optimization algorithms, such as MMA, TopSQP, TopIP (monotone approach), and IPOPT, are used to conduct
the numerical experiments. In particular, the interior point solver in IPOPT is used to solve both the nested (IPOPT-N) and
the SAND (IPOPT-S) formulation. All details of the parameter selection and implementation can be found in [1].

Table 1 shows the number of iterations and the objective function value at the local minima obtained by the solvers for the
two different starting points. All the executions are run until some first-order necessary optimality conditions are numerically
satisfied (norm of the KKT conditions is less than or equal to 10−4 for MMA and 10−6 for the rest).

For this particular problem, the slowly moving boundaries cannot be visually observed in most of the interior point meth-
ods presented, such as TopIP, IPOPT-S, and IPOPT-N∗ (monotone barrier parameter strategy selected with an initial barrier
parameter value equal to 10). IPOPT-N uses a BFGS approximation while TopIP and IPOPT-S use the exact Hessian of the
Lagrangian. Thus, the two latter solvers requires fewer iterations. In contrast, TopSQP behaves similar to MMA even if
second-order information is used.

The reason of this performance is the ability of the interior point method to take advantage of the barrier function. Within
few iterations, interior point methods modify the starting point to a “grey” design.

Nevertheless, further investigations are needed to avoid the slow moving boundaries when it is produced close to the
optimal design, as in the inverter example. Since this effect occurs at the end of the optimization process, the barrier penalty
parameter is very small and it will have very little effect in the solver.

CONCLUSIONS

The numerical results presented in Table 1 suggest (but by no means prove) that the choice of the optimization method
might affect the slowly moving boundaries behaviour observed in the review article [3]. The remedy to this issue is thus to
switch to second-order interior point solvers. However, this suggestion is only supported by a small and specific numerical
experiment and must therefore be confirmed (or refuted) by additional and extensive numerical and theoretical surveys.
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Summary Additive manufacturing can build parts of complex shape through support structures. The fabrication of such support structures
leads to the waste of the materials, build time and energy. This paper presents an approach for incorporating support structure consideration
into topology optimization for additive manufacturing. A new measure based on the perimeter length of boundary with undercut, projected
along the build direction, is developed to characterize the support volume. By constraining this projected undercut perimeter in topology
optimization, the amount of support structures in the resulting designs can be effectively controlled. Our study has also revealed one
interesting finding, that is, accounting for support structures in topology optimization can, in some cases, lead to designs with better
performance, in addition to the reduction of support volume.

INTRODUCTION

Additive manufacturing builds part by depositing materials layer-by-layer under computer control. For part shapes with
undercuts, sacrificial support structures are usually used to hold the subsequent layers. The fabrication of such support
structures leads to the waste of the materials, build time and energy. Topology optimization [1] is a computational design tool
that can generate optimal topology and shape under physical constraints. As a design tool, it has been become the method
of choice for exploiting shape freedom of additive manufacturing. However, thus far, limited research [2] has been done in
reducing support structures during the part design stage.

In order to consider support structures in topology optimization, a new measure based on the perimeter length of boundary
with undercut, projected along the build direction, is developed in this paper to characterize the support volume. By con-
straining this projected undercut perimeter (PUP) in topology optimization, the amount of support structures in the resulting
designs can be effectively controlled.

CONSIDERING PROJECTED UNDERCUT PERIMETER IN TOPOLOGY OPTIMIZATION

Our topology optimization formulation for considering support structures via PUP is as follows

min
u∈U,γ

C(u) Compliance (1a)

s.t. aE(u,v) = l(v),∀v ∈ U0 Equilibrium (1b)∫
Ω
γ dΩ

V0
≤ θ0, γ[0, 1] Volume fraction constraint (1c)∫

Ω

H(b · ∇γ)b · ∇γ dΩ ≤ P0 Projected undercut perimeter constraint (1d)∫
Ω

4γ(1− γ) dΩ

V0
≤ ε0 Density grayness constraint, (1e)

where V0 represents the volume of the design domain, θ0 represents the allowed volume fraction of the material, P0 represents
the allowed projected undercut perimeter, and ε0 the specified grayness measure [3]. In this formulation, equations (1a),
(1b), (1c) form the standard formulation of density based topology optimization of a minimal compliance problem under an
equilibrium equation and the volume constraint. In order to take into account the support structures, we here add two additional
constraints with (1d) constraining the projected undercut perimeter and (1e) constraining the grayness in the resulting design.

For a density field γ, its spatial gradient ∇γ and directional gradient b · ∇γ along build direction b, the LHS of (1d)
represents the integration of the directional gradient multiplied with the Heaviside functionH(b ·∇γ) over the design domain
to obtain. Therefore, when the directional gradient b · ∇γ is negative, i.e. there is no undercut, this term does nothing. When
it has undercut, i.e. the directional gradient is positive, it has contribution to the term in (1d). By constraining this term within
a pre-specified value, we constraint the amount of support needed in a design.
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(a) No constraint, P = 3.647, C=1.448e5 (b) P/P0=1.45/2.0, C=1.294e5 (c) P0 = 1.0, C=1.286e5

(d) P0 = 0.5, C=1.400e5 (e) P0 = 1.0e-3, C=1.656e5 (f) P/P0 =-0.02/1.0e-4, C=3.583e5

Figure 1: 3D minimal compliance optimization under different undercut perimeter constraint.

NUMERICAL RESULTS

Figure 1 shows optimized 3D designs under different projected undercut perimeter area. The domain is of size 4× 2× 2
and is divided into 9,600 linear tetrahedral elements, consisting of 18,081 nodes. The volume fraction θ0 is 15% of the design
domain. The Young’s modulus is 1 for solid and 10−9 for the void. The r in the PDE filter is 0.087. All designs are obtained
with ε0 = 0.2, except the last two designs. The last two designs are obtained with ε0 = 0.15. Figure 1(a) shows two views
of the optimized design without the PUP constraint and the compliance is 1.448e5. Optimized design under various PUP
constraints and the corresponding compliance are shown in the figure. It can be seen that, as the PUP becomes smaller, the
resulting designs have less support volume. In the end, when the PUP becomes close to zero, the resulting designs, Fig. 1(e)
and (f), have no undercut. This suggests that the proposed PUP is an effective measure for controlling the support structures.
Also, an optimized 3D design with PUP constraint does not necessarily lead to worse compliance since the design in Fig. 1(b),
(c), and (d) are all have smaller compliance than the design in Fig. 1(a). This can be ascribed to the fact that multiple local
minimums exist for the non-convex optimization problem.

CONCLUSIONS

This paper presents a formulation in topology optimization to take into account support structures via PUP and grayness
constraints. Our numerical results demonstrate that PUP is an effective in controlling the amount of support in the optimized
design. Accounting for support structures in 3D topology optimization for additive manufacturing may lead to designs with
better performance, in additive to the reduction of support structures. This PUP formulation is also computationally efficient
and involves just one extra constraint, without the need for solving any state equation.
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Summary As manufacturing methods undergo huge evolution thanks to the emergence of additive manufacturing techniques, the interest of
a coupling with the topology optimization design tool is highly demanded by industries (such as automotive and aerospace). The challenges
are still numerous around such coupling and this work focuses on the overhanging problem related to the metalic additive manufacturing
technics (LBM and EBM). To tackle the problem, various research directions are investigated and compared to another.

INTRODUCTION

Topology optimization is widely used as a design tool for advanced application in mechanical, aerospace and automotive
industries. This technique offers an optimal distribution of a predetermined amount of material in a given design space. In the
last years, a lot of efforts has been invested into the development of high performance methods such as homogenization, SIMP
or BESO. However as the state of the art in manufacturing experiences evolution, a coupling between topology optimization
and additive manufacturing is needed.

Additive manufacturing has numerous advantages that fits the characteristics of topology optimized designs. It can man-
ufacture highly complex design without high cost increase and furthermore continuous density material of the SIMP method
could be manufactured by lattice structures. With all the opportunities given by the additive manufacturing the urge to bind
the last one to topology optimization is heavily required.

Specific constraints related to manufacturing issues have to be taken into account [1] such as the need of supports structures
to ensure a good heat evacuation during the manufacturing process, as well as to hold up overhanging section as shown in
Figure 1. Some researches have been done to try to include this constraint in the optimization problem such as Leary and al [2]
or Andrew T. Gaynor [3]. However this work focuses on 3 different methods (projection scheme, computer vision techniques
and mechanical approach) to tackle the overhanging problem and compare them .

Figure 1: Overhanging problem

METHODS TO TACKLE THE OVEHANGING PROBLEM

Projection scheme Approach
The first approach to be investigated is similar to the idea proposed by Gaynor [3] in his work. A projection scheme [4]

with particular shape has to ensure a self supported design. The choice of the shapes are guided by the need to have a big
library of different shapes and the superformula of Geilis [5] offers us this diversity of the projective domain. The optimization
problem can be expressed as fellows for the projection scheme:
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minρn,u fTu (1)
s.t. K(ρn)u = f (2)∑

e∈Ω

ρe(ρn)v
e ≤ V (3)

ρminn ≤ ρn ≤ 1 ∀n ∈ Ω (4)

In the expression, the nodal densities ni are linearly projected onto the element e if

distnie ≤ r(θnie) =
1

[(| 1acos(θnie
m
4 )|)n2 + (| 1b sin(θnie

m
4 )|)n3 ]

1
n1

(5)

Computer Visison Approach
The second approach tends to use the work done in computer vision researchers to construct the skeleton of the design and

check if the latest does not show overhanging problem. This view of using computer vision technics in topology optimization
problem was initially introduce by Sigmund [6] and opens up lots of new possibilities.

Body load Approach
The last approach relies more on a mechanical approach by adding body load cases [7] during the manufacturing process.

Hence the optimization problem is formulated by introducing multiple body load cases to simulate the printing process and
thus tackling the overhanging problem.

Figure 2: Body load approach
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Summary The application of energy-based topology optimization methods together with two-level design method for 

determination of structural sizes is considered. Main stages of such evolutionary approach to synthesis structural layouts of 

aircraft components are described. The approach is demonstrated on the example of structural optimiza tion of helicopter wing 

and tail boom. It is shown that sizing optimization with including strength/buckling/aeroelasticity constraints results in to the 

design with significantly less weight compared with the one obtained by conventional approach.  

 
INTRODUCTION 

 

   Nowadays, leading aviation companies often use topology optimization methods as an efficient tool for obtaining new 

and lighter structural component designs. Most of such researches are related with design of small structural parts such as 

ribs, spars, door intercostals, etc. [1]. The application of topology optimization for determination of reasonable structural 

layout was proven to result in advanced designs. Significant weight reducing is achieved after the sizing optimization of the  

obtained structural layout. The purpose of this research is to develop novel approach which combines modern topology 

optimization methods with two-level sizing optimizat ion technique for design of larger aircraft components such as wing, 

tail and fuselage. Some approaches to design of wing structures with using topology optimization were demonstrated in the 

papers [2, 3]. The proposed method is based on the integration of the global-local method for sizing optimization described 

in [4] together with topology optimization in the unified cycle of mult idisciplinary design which includes aerodynamic and 

aeroelasticity analyses.  

 

METHODOLOGY OF TOPOLOGY/SIZING OPTIMIZATION 

  

   The general flow-chart of the developed approach is presented in Figure 1 on example of wing design. The first step of 

the procedure is to build solid topology optimization model and aerodynamic model which are specified by geometric 

outlines from CAD system. The specified geometric outlines of mechanical body define the place of load -bearing structure 

or design domain. Some part of the domain is supposed to be fixed and another part is subjected by external loads. The 

design domain is subdivided in detail on 3D finite elements for analysis of displacements and stresses.  

 

CAD, manufacture

Engineering interpretation (alternative concepts)

Solid model

Topology optimizationSizing optimization

Design models

Global-local 

approach

Manufacturing 

constraints

 

Fig. 1 – Flowchart of topology/sizing optimization 

 

   The second step is to perform a set of topology optimizations with different control parameters . The topology 

optimization results can be slightly different for these parameters. For example, manufacturing constraints with extrusion in  

vertical direction can give pattern with more exp licit place fo r wing box. The obtained topology patterns allow us to  reveal 

where load-bearing material should be located in global sense. Location of ribs is specified by intuition and then it can be 

determined by sizing optimization taking into account buckling constraints. 



   The third step is most complicated and it implies engineering interpretation of the obtained topology results . It is 

difficult  to determine one optimal structure. So  we should imagine several alternative structural layouts  to choose one of 

them as optimal. The forth step is generation of finite element models for the alternative structures. These structures we 

consider as shell/beam ones which usually include skins, ribs and spars. At generation of the models it is necessary to take 

into consideration various manufacturing constraints such location of control surfaces, fuel tanks and technology factors.  

The fifth step is accomplishment of design optimization for determination of sizes of structural elements with satisfying 

stress/buckling/aeroelasticity constraints. Stress and aeroelasticity constraints are involved into the optimization process on 

the global level model while the buckling constraints are engaged on the local level models of structural panels. The final 

step is ranking of obtained structural layouts based on comparison of optimal weights. 

 

NUMERICAL RESULTS 

 

   The proposed method is demonstrated on the example of helicopter wing design. An aerodynamic model of the wing was 

developed to determine aerodynamic forces in extreme load cases and to perform aeroelasticity analyses . It was important for 

this problem to correctly transfer pressure loads from aerodynamic model to FE model. It  was performed by interpolation of the 

obtained pressures with using polynomial function of nodal coordinates on outer surfaces of the FE model. Topology 

optimization was performed with the aim to minimize compliance at saving 50 percent of initial solid model weight in the final 

design. The obtained patterns where the load-bearing material should be distributed are shown in Figure 1 (right). Seven 

alternative structural layouts based on these results and engineering intuition were proposed. The structural optimization under 

strength/buckling/aeroelasticity requirements for the layouts leads to the final optimal design with different weight values. 

Comparison of the chosen alternative structural layouts with optimal distribution of material showed that the weight benefit was 

about 10 percent owing to the choice of location of the primary elements. The best structural layout is two-spar wing with 

additional sloped ribs at the wing end rear part. Note that this design is lighter by 60% than the design obtained by traditional 

methods used in design companies. The second example is a helicopter tail boom. The optimization procedure and topology and 

sizing results are presented in pictures in Figure 2. 
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Fig. 2 – Optimization results for helicopter tail boom structure 

 

   The solid finite element model was generated based on CAD drawing and the nodes of its larger section were fixed. Forces 

which modelled vertical/horizontal bending and torsion were applied to the nodes on the opposite section. Two extreme load 

cases were considered. Topology optimization was performed at saving 30 percent of initial weight in the final design. It can be 

seen that the obtained design can be treated as a semi-monocoque, namely a structure including stiffened shell. Such structure is 

traditional for aircraft fuselages. In this example the topology optimization results show some regions which can be considered 

as design variables for sizing optimization. Four alternative structural layouts were proposed based on the topology pattern. 

Strength/buckling optimization identified optimal design which had three frames separating the regions of different panel 

thicknesses. 
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2Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy

Summary This paper aims at designing microstructures using stress-based topology optimization. Most of the developments so far have been
made for compliance design in various field of applications as reflected in the literature. The emergence of the new additive manufacturing
techniques allows to consider porous material, such as lattice structures for instance, which ca be used for the design of structural components
subject to various solicitations. Those components must account for the stress level to prevent failure everywhere in the microstructures
and by extension the whole structure itself. This work proposes to design such microstructures using topology optimization with limitation
on the stress level within the microstructures before printing the result. The homogenization technique is used to determine the equivalent
material properties. The issues and perspectives are also discussed.

ABSTRACT

Topology optimization aims at giving the optimal distribution of the material within a design domain, enabling to place
the material where it is the most efficient while staying with void in less effective regions. Problems based on the discrete
valued approach (0-1) of the optimal distribution of material are difficult to solve numerically but they are also ill-posed
exhibiting convergence issues. To overcome this difficulty, Bendsøe and Kikuchi [2] proposed to relax the problem by in-
troducing porous material, made of an infinite number of holes, whose effective properties can be computed thanks to the
homogenization techniques, see e.g. Hassani and Hinton [4, 5, 6]. Even if the numerical solution of the problems is tractable,
the manufacturability of the optimized design based on classic machine tooling techniques is not straightforward. Thus clear
designs, i.e. nearly black-and-white designs, can be enforced by introducing a penalization of intermediate densities. To this
end, a successful approach is the famous SIMP approach as proposed in Bendsøe. [3]. However nowadays, thanks to the
emergence and the effectiveness of the novel additive manufacturing techniques, structures including regions made of porous
microstructures are now becoming possible to fabricate and topology optimization using homogenization methods receive a
revived interest as attested by recent works of Andreassen et al [1] and Xia [8]. The practical applications of these designs
including microstructures is motivated by the great performances that can be achieved compared to classical solutions of
topology optimization.

In this work, a stress based–topology optimization procedure is considered along with the homogenization technique for
the computation of the equivalent material properties of the porous material. Most of the contributions dealing with the
design of porous material are indeed focused on compliance minimization in a wide variety of applications. The design using
stress–based topology optimization is however gaining in interest, as pointed out by Le et al [7], and it has become critically
important to account for the strength of the microstrucutres and not only their stiffness. To this end, we investigate here the
problem of bounding the stress level within microstructures, problem that has not been much considered so far, to the author
knowledge. The design problem is to find the optimal material distribution within the periodic base cell subject to prescribed
macro strains and bounded stress criterion everywhere in the microstructure and de facto ensure the structural intregrity of the
whole component.

The adopted approach continues along the work developed by the authors. The SIMP approach is adopted while a sequen-
tial convex programming approach using MMA is used to solve the optimization problems. The paper discusses the design
problem formulation as well as the choice of the considered failure criterion (von Mises, principal stresses, etc) while solving
numerical applications. The numerical procedure is at first validated against some analytical results proposed by Vigdergauz
[9, 10] for a single inclusion before investigating more complex loading conditions. Design obtained with pure stress–based
topology optimization is compared to a formulation embedding both stress constraints and a global compliance constraint.
The former method has proven to exhibit better numerical performances, i.e. reduced CPU time . The work focuses also on
an efficient and accurate way to measure the stress field coming from the solution of the adopted finite element procedure.
Numerical issues and perspectives for further works are also discussed.

Finally the optimized designs are fabricated using a multimaterial inkjet polymer printer (Connex by Stratasys) to assess
the actual performance of the optimized designs compared to more conventional results such as compliance–based designs.
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Summary The design of periodic microstructural composite materials to attain specific properties has been carried out by a new combination 

method of the parametric level set method (PLSM) and the energy-based homogenization method (EBHM) in this article. The PLSM is utilized 

to determine microstructural architecture of the representative volume element (RVE) in composites. And its objective function is defined by 

the EBHM which is employed to predict specific material properties. The key characteristic of the PLSM is that the implicit level set function is 

interpolated by a series of compactly support radial basis functions (CSRBF). Besides, the EBHM eliminates the bound of macro structure and 

material microstructure design based on the energy principle and has an easier numerical implementation compared with the numerical 

homogenization method. Finally, some optimal microstructures are achieved by the proposed method, and which validate the design capability 

and favourable features compared with the other design method. 

 
PARAMETRIC LEVEL SET METHOD 

 

The level set method has become popular recently for tracking and modelling the motion of a dynamic interface. 

Because many favourable characteristics of the PLSM [1] are quite benefit to numerical implementation, it is chosen as the 

basis of the microstructural optimization formulation, and which is to determine the layout of materials with a specified 

volume fraction in the RVE. The mathematical formulation could be approximately divided into four key parts. The first 

part is that the structural design boundary is implicitly described by the zero level set of a higher dimension scalar function, 

the dynamic evolution of design boundary is equivalent to propagating the LSF. The second part is that the dynamic 

evolution process of structural boundary is formulated by the rigorous mathematical function. The structural design domain 

is modeled as the zero level set and updated with the merging and splitting of the design boundary. By introducing a 

pseudo-time t into zero level set function and then differentiating on both sides with respect to time, the motion of the 

structure boundary is modelled by a first-order H-J PDE. It is shown at Eq (1). 
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The intention of the third part is to eliminate these poor numerical features of the standard LSM based on above two 

parts. The LSF is interpolated by a series of compactly supported radial basis functions (CSRBF) and unknown expansion 

coefficients, so that the time and space have been decoupled in LSF. It is shown as follows: 
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The Eq (2) has shown that the LSF have been completely transformed into a linear algebraic system equation based on 

the discretized design domain. The final part is that the velocity function is computed by the shape derivative analysis. 

 

ENERGY-BASED HOMOGENIZATION METHOD 

 

   The homogenization theory [2] is built on the small asymptotic expansion theory, and which is utilized to evaluate the 

homogenized effective properties of the periodical composites from directly analysing its periodic RVE. The homogenized 

effective elasticity tensor and the subjected elasticity equilibrium function are reflected at Eq (3). 
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The Eq (3) could be transformed into the sum of the integration of the finite-element based on the FEA. 
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Observing the marked Eq (4), the part surrounded by the dotted red line could be interpreted as the average strain energy 

of each finite-element, and which is named by the element mutual energy densities [3]. Hence, it is important to note that 

the elasticity tensor is calculated by the summation of the element mutual energy densities. It is necessary to build 

appropriate boundary conditions in order to evaluate element mutual energy based on the FEA. 



MICROSTRUCTURAL DESIGN MODEL AND SENSITIVITY ANALYSIS 

 

The intention of material design [4] is defined by seeking optimal configuration of the RVE in order to obtain the 

improved homogenized properties. In this article, a new systematic design method is constructed by integrating the PLSM 

with the EBHM. The material microstructural optimization formulation is defined as follows: 
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The OC method is employed to update design variables in the proposed method, and which requires first-order 

derivatives of the objective function and volume constraint function with respect to design variables. as follows: 
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NUMERICAL EXAMPLES 

 

In all examples, the Young’s modulus are defined 𝐸0
𝑠 = 1 of the solid phase, and 𝐸0

𝑣 = 0.001 of the void phase. The 

Possion’s ratio are equal 0.3. The lower and upper bounds of design variables 𝛂 are defined as α𝐿 = 2 × 𝑚𝑖𝑛 {α𝑖} and 

α𝑈 = 2 × 𝑚𝑎𝑥 {α𝑖} (𝑖 = 1,2, ⋯ , 𝑁𝐸) in OC method. Finally, the optimization will be terminated when the difference of 

objective functions between two successive steps is less than 10-4. 

Parameters PLSM + EBHM 3*3 Repetitive RVE PLSM + NHM 𝐽 

0.40 

120 120  

Bulk modulus 
2

, 1

H

iijj

i j

J K E


   

   

0.136 

0.50 

100 100  

Shear modulus 

1212

HJ G E   

   

0.130 

Tab 1: the optimal configuration of the RVE in different parameters 

 

CONCLUSIONS 

 

   In conclusion, a new systematic, scientific and efficient computation design method is proposed to design the cellular 

material microstructure, and which optimize the shape and topology of the RVE by the PLSM subjected to the objective function 

defined by the EBHM. Based on above results, it is summarized that the optimized results have the distinct and smooth structure 

boundary and the optimal microstructures derived by two different homogenization methods are mostly identical. 
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Summary A new method for density-based topology optimization is presented in which the density field is parametrized using Bernstein
polynomial basis functions on a finite-element mesh. This parametrization permits a continuous variation of the density between mesh
elements to suppress checkerboards without a filter. In addition, rather than refining the design variable mesh, the material boundary is more
accurately captured by elevating the order of the basis functions. Standard meshing techniques may be used to define the design variable
mesh, even with complex domain shapes, and different meshes may be used to define the design variables and the finite element analysis.
Results are presented for two structural topology design problems.

DENSITY FIELD PARAMETRIZATION

In density-based topology optimization with element-based design variables, each finite element is assigned a design
variable to indicate whether that element is solid material or void. Important issues with optimal solutions computed using
element-based design variables include checkerboards of solid and void elements, ragged edges of features not aligned with
the design mesh, and mesh-dependence of the optimal topology. Typically, these issues are mitigated using a filter. In a filter,
the density value of a given element is computed using a weighted average of the density variables in a small neighborhood of
that element. This approach leads to a “gray” transition between solid and void regions whose size depends on the filter size.
Material boundaries are then identified using a projection method.

Several alternative density-field parametrizations also exist to mitigate the issues identified above without using filters.
Matsui and Terada [1] assign design variables to linear shape functions to define a continuous distribution of the density
field. Ngyuen et al. [2] define a multiresolution topology optimization scheme (MTOP) in which each element contains many
constant-density regions with corresponding design variables. Kang and Wang [3] assign density design variables to points in
the domain and use Shepard interpolation to compute the density at any other point in the domain. Qian [4] embeds the design
domain in a tensor-product B-spline mesh and assigns design variables to the B-spline basis functions.

We propose a density field parametrization based on Bernstein polynomial basis functions. The degree-n basis functions
are given by

bk,n(x) =

(
n

k

)
xk(1− x)n−k k = 0, ..., n. (1)

Over the interval x ∈ [0, 1], these n + 1 functions are nonnegative and sum to one regardless of the choice of n. These
properties make the Bernstein polynomials ideal for parametrizing a density field whose values must stay between zero and
one. Figure 1 shows the cubic Bernstein polynomials as basis functions for two adjacent one-dimensional elements, compared
to the cubic Lagrange polynomials over the same interval. Figure 2 shows two example basis functions for adjacent square
elements.

This particular parametrization has several attractive features. First, we are not restricted to using linear basis functions,
so more detailed features of the density field may be revealed with fewer elements. Second, the support size of the basis
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Figure 1: The cubic Bernstein polynomials (left), unlike the cubic Lagrange polynomials (right), never take values greater
than one or less than zero.
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Figure 2: Bicubic Bernstein basis functions for square Q16 elements. The left image shows a nodal basis function while the
right shows a basis function on the edge between elements.
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Figure 3: Design domains of (left) the MBB beam and (right) the cantilever beam with a circular hole.

functions is restricted to adjacent elements, so feature size control is naturally integrated into mesh generation and refinement.
Third, the parametrization may be applied to domains with complex geometry and may use a different mesh than that used in
the finite element analysis. Finally, analogous to an h-p finite element method, the design variable mesh may be refined using
both element size reduction and order elevation.

TEST PROBLEMS

We study two example problems from the literature: the classical MBB beam problem and a cantilever beam with a
circular hole. Figure 3 shows the geometry and boundary conditions for these problems. The objective of both optimization
problems is to minimize the compliance of the loaded structure subject to a volume fraction constraint of 0.5. We use deal.ii
[5] for the design variable parametrization and finite element analysis and IPOPT [6] for the optimization.

Our results demonstrate the absence of checkerboard patterns in our optimized designs and the recovery of well-known
topologies. We also show the effect of using higher-order basis functions on the optimal designs, especially on the identifi-
cation of the material boundary with a coarse design variable mesh. Finally, we conduct a preliminary study of refining the
design variable mesh using both element size reduction and order elevation.
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Summary Here the author reports a novel structural design optimization method that deals with the orthotropic strength properties of Fused 

Deposition Modelling (FDM) structures. The proposed Strength-Based Evolutionary Structural Optimization (SBESO) method inherits the 

concept of the traditional ESO with a new severeness index to evaluate the stresses in all directions based on the orthotropic strengths. Material 

rejection in the finite element analyses and the topology evolution is performed based on the proposed severeness index. 

 
INTRODUCTION TO THE PROBLEM 

 

   Fused Deposition Modelling (FDM) is a popular type of 3D printing technology, where molten material is ejected 

through a nozzle and deposited layer by layer to form a 3D object. Various thermoplastic polymers such as acrylonitrile 

butadiene styrene (ABS), polycarbonate (PC), or the others in the form of a filament are used as the raw material.  It has 

been discovered that the structures fabricated using the FDM method exhibit significant anisotropy in the ultimate strength 

[1]. In the preliminary testing performed by the author for the properties of the FDM structures, similar results were 

observed. The ultimate strengths were found to be 26.5MPa along the filament direction, 11.98MPa in the direction normal 

to the filament, and 18.67MPa for shear. When forming a design guide for the designer aiming at achieving mass optimized 

FDM structures, such anisotropy should be considered for better accuracy. In this research, the author adopted the concept 

of the Evolutionary Structural Optimization (ESO) method for its simplicity and ease of implementation [2], noting that 

other sophisticated methods for topology optimization exist [3]. A Strength-Based ESO (SBESO) was devised to reflect the 

orthotropic strength characteristics of the FDM structures. A severeness index was defined to evaluate the stresses, instead 

of the von Mises stress commonly used for isotropic materials. The ultimate strengths mentioned above were used as the 

reference for calculating the severeness index of each stress component of each finite element. In this study, the SBESO was 

demonstrated with a short cantilever problem. A strategy of direct incrementing and fixed material removal rate was also 

adopted [4]. 

OPTIMIZATION PROCESS 

 

   The optimization process is detailed in Figure 1. A finite element model of the design envelop was first created with 

boundary conditions applied. The calculated stress components of each finite element were used to compute the severeness 

indices by taking the ratio of the stress to the strength. For each finite element, the maximum severeness index among the 

six components would be taken as the representative index of that element. All the elements would then be ranked based on 

the representative index, and the lowest 1% of the elements would be rejected for the next finite element calculation until a 

desired percentage of total material removal has been achieved. 

 

 
 Figure 1. The procedure of the Strength-Based Evolutionary Structural Optimization. 

 

RESULTS AND DISCUSSIONS  

 

  A plane stress short cantilever problem was attempted using the proposed SBESO. The length of the beam is twice as 

much as the height; line constraints were applied at the right side of the beam, and a point load was applied at the bottom 



left corner (Figure 2 (a)). The optimized topology of the three cases calculated was shown in Figure 2. For the isotropic case, 

von Mises stress was used for evaluation. In the horizontal case, the filament direction was assumed to be horizontal; in the 

vertical case, the filament was vertical. The finite element model has 5000 elements in total. For each calculation increment, 

1% of the total elements that have the lowest severeness indices were rejected. Thus, the volume fraction was controlled to 

be steadily decreasing until 20% as shown in Figure 3(a). The conventional rejection rate and evolutionary rate were not 

adopted [2]. However, for comparison reason, equivalent rejection rates were calculated by taking the ratio of the rejected 

severeness index to the maximum severeness index for every increment. The results were also shown in Figure 3(a). Note 

that although the evolutionary process of the topology was not driven by the rejection ratio, the history of the rejection ratio 

exhibits a similar increasing trend with progressing evolution. As a rough confirmation of the effectiveness in topology 

optimization, the collective representative severeness indices of the final models were compared with each other, along with 

some arbitrary topology (see Figures 2(e)&(f) and 3(b)&(c)). The optimized topology appears to have the lowest deviation 

from the average severeness index, indicating the highest efficiency in material usage in terms of stress distribution. 

 

    
(a)  (b) Isotropic benchmark (c) Horizontal filament (d) Vertical filament 

 

  

 

 (e) Arbitrary design 1 (f) Arbitrary design 2  

Figure 2. The problem of a short cantilever beam: (a), and the results of the optimized topology: (b), (c), & (d). Arbitrary 

designs for comparison: (e) & (f). 

 

   
(a)  (b)  (c)  

Figure 3. (a) Evolutionary histories of the equivalent rejection ratio and the volume fraction; (b) Distributions of the 

normalised severeness indices of the final models; (c) Averages and standard deviations of the normalized severeness 

indices. 

CONCLUSIONS 

 

   A Strength-Based Evolutionary Structural Optimization method was proposed for the structures of the Fused Deposition 

Modelling, which exhibits significant orthotropy in the ultimate strength. Instead of using the von Mises stress as the rejection 

index, a severeness index for each stress component was defined, and the maximum value among the six components was taken 

as the representative index of every finite element. A strategy of direct incrementing and fixed material removal rate was also 

adopted. Results of a short cantilever problem showed that the optimized topology exhibited the highest efficiency in material 

usage in terms of stress distribution while compared with some arbitrary designs. 
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SummaryThe paper is concerned with the topology optimization of elastic bodies in unilateral contact with a given friction. The aim of
the optimization problem is to find such distribution of the material density function to minimize the normal contact stress. The phase field
approach is used to analyze and solve numerically this optimization problem. The original cost functional is regularized using Ginzburg-
Landau free energy functional including the surface and bulk energy terms. These terms allow to control global perimeter constraint and the
occurrence of the intermediate solution values. The Lagrangian approach is used to calculate the derivative of the regularized cost functional
and to formulate a necessary optimality condition. The optimal topology is obtained as the steady state of the phase transition governed
by modified Cahn-Hilliard equation. The finite difference and finite element methods are used as the discretization methods. Numerical
examples are provided and discussed.

TOPOLOGY OPTIMIZATION PROBLEM

Consider deformations of an elastic body occupying two–dimensional domainΩ with the smooth boundaryΓ [6]. The
body is subject to body forcesf(x) = (f1(x), f2(x)), x ∈ Ω. The boundaryΓ of domainΩ is split into three mutually
disjoint parts such thatΓ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2, Γi ∩ Γj = ∅, i 6= j, i, j = 0, 1, 2. The body is clamped along the portionΓ0 of the
boundaryΓ. The surface tractionsp(x) = (p1(x), p2(x)), x ∈ Γ, are applied on a portionΓ1 of the boundaryΓ. The contact
conditions with Tresca friction are prescribed on the portionΓ2 of the boundaryΓ. Letρ = ρ(x) : Ω → R denote the material
density function at any generic pointx in a design domainΩ. It is a phase field variable taking value close to1 in the presence
of material, whileρ = 0 corresponds to regions ofΩ where the material is absent, i.e. there is a void or weak material. In
the phase field approach the interface between material and void is described by a diffusive interfacial layer of a thickness
proportional to a small lenght scale parameterǫ > 0 and at the interface the phase fieldρ rapidly but smoothly changes its
value [1, 2, 3, 5]. We require that0 ≤ ρ ≤ 1. Theρ values outside this range do not seem to correspond to admissible material
distributions. The elastic tensorA of the material body is assumed to be a function depending on density functionρ:

A = g(ρ)A0, A0 = {aijkl}
2
i,j,k,l=1 (1)

andg(ρ) > 0 is a suitable chosen function [5, 7]. It is assumed, that elementsaijkl(x), i, j, k, l = 1, 2, of the elasticity tensor
A0 satisfy [1, 6] usual symmetry, boundedness and ellipticity conditions. We denote byu = (u1, u2), u = u(x), x ∈ Ω, the
displacement of the body and byσ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in the body. Consider elastic bodies obeying
Hooke’s law, i.e., forx ∈ Ω andi, j, k, l = 1, 2

σij(u(x)) = g(ρ)aijkl(x)ekl(u(x)) where ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)), uk,l(x)

def
=

∂uk(x)

∂xl
. (2)

We use here and throughout the paper the summation convention over repeated indices. The stress fieldσ satisfies the system
of equations in the domainΩ [6]

−σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, where σij(x),j =
∂σij(x)

∂xj
. (3)

The following boundary conditions are imposed on the boundary∂Ω

ui(x) = 0 on Γ0, i = 1, 2, and σij(x)nj = pi on Γ1, i, j = 1, 2, (4)

uN ≤ 0, σN ≤ 0, uNσN = 0 and | σT |≤ 1, uTσT+ | uT |= 0 onΓ2, (5)

wheren = (n1, n2) is the unit outward versor to the boundaryΓ. Let us introduce the setUad of admissible domains. This
set has the form:Uad = {Ω : Ω ⊂ D ⊂ R2 : Ω is suitable regular, V ol(Ω) − V olgiv ≤ 0, PD(Ω) ≤ const1} where
V ol(Ω) =

∫
Ω dx andPD(Ω) =

∫
Γ dx. The subsetD as well as constantsV olgiv, const1 > 0 are given. The setUad is

assumed to be nonempty. Consider the following structural optimization problem:for a given functionη ∈ M st, find a
domainΩ⋆ ∈ Uad such that

Jη(u(Ω
⋆)) = min

Ω∈Uad

Jη(u(Ω)) where Jη(u(Ω)) =
∫

Γ2

σN (u)ηN (x)ds. (6)

The setM st = {η = (η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 onD, i = 1, 2, ‖ η ‖[H1(D)]2 ≤ 1} and the functionalJη(·)
approximates the normal contact stress.
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Phase field based topology optimization problem
We apply phase field approach to formulate a necessary optimality condition and to solve numerically the optimization

problem (6). We shall consider domainΩ as a two phase domain. We use Ginzburg-Landau energy functional [3] as a
regularization term rather than standard perimeter term. Material density functionρ describes the concentration of one of the
phases in the domainΩ. The other phase is obtained as(1− ρ). This variable is used to describe the phase transition. In order
to indicate the evolution of the material density functionρ let us assume this function depends not only onx ∈ Ω but also on
the artificial time variablet ∈ [0, T ), T > 0 given, i.e.ρ = ρ(t, x). Let us introduce the regularized cost functionalJ(ρ, u) in
the form:

J(ρ, u) = Jη(u) + E(ρ), E(ρ) =

∫

Ω

ψ(ρ)dΩ, ψ(ρ) =
γǫ

2
| ∇ρ |2 +

γ

ǫ
ψB(ρ), (7)

where the functionalJη(u) is given by (6) andǫ > 0 is a constant,γ > 0 is a parameter related to the interfacial energy
density,ψB(ρ) is a double-well potential which characterizes the two phases [3] usually taken as an even-order polynomial of
the formψB(ρ) = ρ2(1 − ρ2). The structural optimization problem (6) takes the form:find ρ⋆ ∈ U

ρ

ad
such that

J(ρ⋆, u⋆) = min
ρ∈U

ρ

ad

J(ρ, u), (8)

whereu⋆ = u(ρ⋆) denotes a solution to the state system (3)-(5) depending onρ⋆ andUρ

ad
= {ρ : V ol(Ω) = V olgiv} denotes

the set of admissible material density functions.

NUMERICAL IMPLEMENTATION AND RESULTS

Necessary optimality condition for the optimization problem (8) in the form of the gradient flow generalized Cahn-Hilliard
equation has been formulated. Finite difference and finite element methods have been used as approximation methods. Primal-
dual active set method has been used to solve state and adjoint systems. Biconjugate gradient method has been used to solve
generalized Cahn-Hilliard system. Fig. 1 presents the optimal domain obtained by solving structural optimization problem
(8) in the computational domainD using the optimality condition. The areas with low values of density function appear in
the central part of the body and near the fixed edges. The obtained normal contact stress is almost constant along the optimal
shape boundary and has been significantly reduced comparing to the initial one (see Fig. 2).
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Figure 1: Optimal material density distribution in domainΩ⋆.
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Figure 2: Initial and optimal normal contact stress.

CONCLUSION

The obtained numerical results indicate that the proposed numerical algorithm allows for significant improvements of the
structure and reduction of the normal contact stress. Phase field approach based on the Cahn-Hilliard equation is flexible and
can be easily combined with material density field. In this sense this approach follows SIMP method.

References

[1] Blank L., Garcke H., Sarbu L., Srisupattarawanit T., Styles V., Voigt A.: Phase-field approaches to structural topology optimization.Constrained
Optimization and Optimal Control for Partial Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M.
Ulbrich, S. Ulbrich (Eds.), International Series of Numerical Mathematics, Birkhäuser, Basel, 160:245-256, 2012.
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ON OBJECTIVE FUNCTIONS IN TOPOLOGY OPTIMIZATION FOR VIBRATION AND 
WAVE PROPAGATION PROBLEMS 
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Summary This paper deals with the topological design of continuum structures for vibration and wave propagation problems. Different 
definitions of objective functions for minimizing vibration response and transmission are compared, and a new optimization model is proposed 
for minimizing the vibration response and the material used. The minimization of vibration transmission is also related with the bandgap design 
of wave propagation. Plane and plate structures are optimized using different optimization formulations in numerical examples. The influence 
of excitation frequencies, the eigenfrequencies of the structure, and damping are discussed in the numerical examples. 

 
INTRODUCTION 

 
Topology optimization on vibration and wave propagation problems has been widely studied. In comparison with 

well-known static compliance minimization, various objective functions are proposed in literature to minimize the response 
of vibrating structures, such as power flow, sound radiation, vibration transmission, and dynamic compliances, etc. Even for 
the dynamic compliance, different definitions are found in literature, which have quite different formulations and great 
influences on the optimization results. It has been found that the minimization of vibration transmission is also related with 
the bandgap design of wave propagation. The bandgap design may be realized by the maximization of the frequency gap of 
the free vibration of a structure, maximization of the frequency gap of wave propagation in a periodic microstructure, or 
maximization of the wave attenuation in a structure. The aim of this paper is to provide a comparison of these different 
objective functions for design optimization of vibrating and wave propagation problems. A more appropriate optimization 
model will be proposed based on the comparison results. 

    
PROBLEM DEFINITION AND OPTIMIZATION FORMULATIONS FOR VIBRATING 

 
An objective function termed as dynamic compliance is proposed to minimize the global response of vibrating 

structures by Olhoff and Du [1], where the objective function is calculated by the square of the product of force vector and 
displacement vector. By introducing damping, the optimization problem is reformulated as: 
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where P and p  are the prescribed amplitude and the frequency of the time-harmonic external mechanical loading 

  pi tt e p P  respectively, and U is the amplitude of related displacement vector   pi tt e a U . The problem will reduce to 
the well-known compliance minimization in static topology optimization when 0p  . K and M are the stiffness matrix 
and mass matrix, C is the damping matrix, ex  denotes the design variable of the e-th element, and NE is the total number of 
finite elements. *

0V V  is the given volume of material, and   is the volume fraction. Overbar denotes the conjugate 
of a complex quantity. 

Jog [2] has introduced a new measure for the dynamic compliance, which is computed as the average input power over 
a cycle of the excitation. Minimization of the average input power T1 2 p sP U  is chosen as the design objective, where 

sU  is the imaginary part of the displacement amplitude vector U. 
The minimizing the vibrating magnitude at a point, a line, or an area of a structure subjected to periodic loading was 

studied by Sigmund [3]. Olhoff and Niu [4] proposed an optimization formulation for vibration transmission in a lightweight 
building from vibrating machinery by simultaneous minimization of the power flow and the material used for the base plate 
design of the machinery. The minimization of vibration transmission is found to be related with the bandgap design of wave 
propagation. The optimization formulations for realizing bandgap structure are compared and discussed next.  

 
PROBLEM DEFINITION AND OPTIMIZATION FORMULATIONS FOR WAVE PROPAGATION 

 



By designing a periodic structure with band gap, it is effective to prevent the wave in the range of the band gap from 
propagating. The classical formulation for maximizing the bandgap is rewritten as, ref. Sigmund [3]: 
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where j is the jth order frequency, K and M are stiffness matrix and mass matrix of the unit cell, k is the wave vector, and 

1 2,   are two scalar variables that denote the upper and lower bound parameters in the constraint equations, respectively. 
The maximization of a frequency gap of the free vibration of a structure can result into a periodic structure, which has been 

demonstrated by Olhoff et al.[5] for a beam band gap design for travelling wave. The results demonstrate that there is almost 
perfect correlation between the bandgap size/location of the emerging band structure and the size/location of the corresponding 
natural frequencygap in the finite structure. The optimization formulation is written as: 
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Bandgap design can also be realized by maximizing the loss/attenuation of propagating waves as in Søe-Knudsen [6], 
Andreasen and Jensen [7] 
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where the complex wave number k k' ik"  , and c is a bound variable.  
 

CONCLUSIONS 
 

The topology optimization of continuum structures for vibrating and the wave propagation problems is studied in this 
paper. Different objective functions are presented and compared by numerical examples of plane and plate structures. The 
validity and efficiency of the objective functions are discussed for realizing the minimization of vibration response and 
transmission.  
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Summary Recent developments in additive manufacturing now allow one to contemplate the fabrication of lightweight parts by the use of
lattice structures. Most lattices to date are designed with a structured configuration (with repeated truss cells), while the freedom provided
by additive manufacturing technologies does not impose this restriction on the design. We propose here a numerical methodology to design
unstructured lattices such that material is only placed where it is needed. Lattices are described in terms of bar, beam and torsion models in
order to handle the simulation of the lattice, even if they possess a large amount of trusses. For given operational constraints, we search for
the truss configuration that minimizes the energy of deformation to weight ratio. The optimization is performed adaptively using a succession
of increasingly complex models. This design process is finally tested on several numerical examples to demonstrate its performance.

INTRODUCTION

Additive manufacturing technologies, such as stereolithography and electron beam melting, now allow for the creation of
complex structural parts using various materials like plastic and titanium alloy. In particular, one could replace solid parts by
lattice structures with the main advantage of being lightweight while respecting geometrical and mechanical requirements.
Lattices are therefore attractive to the aerospace and automobile industries because lighter parts lead to significant savings.
Researches have been made in order to describe the mechanical strength of structured and/or conformal lattices. Also, pub-
lished works have investigated the optimization of some parameters (e.g. the truss diameter) in order to obtain a homogeneous
distribution of mechanical stresses within the lattice [1, 2].

Structural
system

Structured
lattice

Unstructured
lattice

However, one faces several challenges when trying to optimize the design of an unstructured lattice. First, the entire lattice
must be analyzed in a ”discrete” way, meaning that each truss member must be represented. Hence, the number of degrees of
freedom rapidly increases as the lattice becomes denser. Second, obtaining a somewhat optimized configuration of the truss
with respect to loads applied to the system is computationally hard because the position and the size of each truss correspond
to parameters of the optimization problem. We now briefly explain the novel strategies we employ to tackle some of these
challenges.

DESCRIPTION OF THE LATTICE MODEL

We address the first challenge by modeling each truss member as unidimensional single bar, beam and torsion elements.
This allows us to significantly reduce the number of degrees of freedom. For example, if one takes a cubic lattice of 15cm of
length filled with truss members of minimal length of 5mm, one obtains approximatively 230 000 truss members connected
by 30 000 nodes. Thus, using for example the bar model to describe each truss member, one would have about 90 000
degrees of freedom compared to millions of degrees of freedom if one was to discretize each bar solving for the 3D continuum
linear elasticity equations by the finite element method. This approach can therefore considerably reduce the complexity and
computational cost of simulating the mechanical behavior of the lattice.
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ADAPTIVE DESIGN PROCESS

The simple models presented in above section to simulate the mechanical response of a lattice can be used for design in
such a way that the quantity of material involved be minimized while satisfying the specific operational requirements of the
lattice. The design variables of the lattice are for example the number of truss members, their diameters, and their position
within the computational domain. The following diagram describes the methodology of the adaptive design process.

Optimize
Intermediate

Model

Optimize
Complex Model

Model Optimization

Compute
Deformation

Compute
Sensitivities

Adapt
Configuration

Initial
Configuration

Optimize
Simple Model

Tolerance
is met

Tolerance
is met

If tolerance
is met

If not

The adaptive process, with the objective of minimizing the computational cost, consists of two stages: 1) one is to start
with a coarse lattice and refining it with truss members until mechanical tolerance is met, 2) the second is concerned with
adaptive modeling in the sense that each lattice is first described with the simple bar model, which can be locally adapted with
finer models, e.g. beam and torsion models, in order to reduce the modeling errors.
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MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION  
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Summary Topology optimization can provide creative conceptual designs for industry design in the preliminary design stage. However, 

the traditional topology optimization approaches focus on searching for one optimal solution which may be invalid due to the refinements 

of models or the additional design requirements. This paper presents the Multiple Designs Approach (MDA) to get several diverse topology 

designs, which can reduce the risk of lacking full knowledge of the designs by providing multiple designs. Weighting function is used as 

the objective function to evaluate the performances of multiple solutions. Diversity function is used as constraint to measure the diversity 
between different topology solutions.    

MOTIVATION  

  

Many researchers are focused on finding an optimal topology design since Bendsøe and Kikuchi[1] first applied 

homogenization technique for generating optimal topology designs. In fact, topology optimization plays an important role in 

obtaining conceptual designs in the preliminary design stage[2]. These conceptual designs from topology optimization can 

give researchers the insights for shape and sizing optimization in detailed design stage. However, preliminary design stage 

lacks of full knowledge of all the constraints and objectives. In detailed design stage, more latent structural and 

multidisciplinary performances like strength, structural stability, thermal property, etc., need to be taken into consideration. 

Furthermore, it is a common practice to use coarse discretization and simpler models in simulations. This occasionally results 

in rendering the optimum design deficient or useless when checked with a refined model. Moreover, objectives and constraints 

may change in detailed design stage. If a tight constraint changes, the optimal solution may be out of the new feasible region. 

Hence designers would like to have multiple design alternatives to single optimal solution in the preliminary design stage.   

In order to reduce design risks in detailed design stage, Villanueva[3] used k-means clustering algorithm in sub-regions 

surrogate-based optimization to find all global and local optimal solution. However, the local optima sometimes are not worth 

finding because they are not competitive. Also it is difficult to find all the optimal solutions for high-dimensional problems. 

Later, Zhou, Haftka[4] introduced several surrogate based algorithms to get two diverse competitive solutions in the design 

domain.   

In topology optimization, it is usually a single objective problem to obtain material distribution under material volume 

constraint and other functional constraints. This paper presents a Multiple Designs Approach (MDA) for topology 

optimization with diversity constraint to get multiple designs. Thus it is not necessarily required to obtain global optimal 

solution in this paper.   

  

MULTIPLE DESIGNS APPROACH  
  

General topology optimization formula for MDA  
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Where n represents the number of topology configurations, m represents the number of functional constraint. Topology 

optimization problem applied to find optimal material distribution 𝜌�𝑖�(𝐱�) in design domain 𝛺� to minimize the objective 

function 𝐹�𝑖� with material volume constraint 𝐺�0𝑖� and other functional constraint 𝐺�𝑗�. In the formula, 𝑉� is volume of design 

domain, 𝑉�𝑓� is material volume fraction.  

Here, MDA uses a multi-objective problem to get multiple solutions simultaneously and tries to use the weighting 

function to solve this problem. 𝛼𝑖 ∈ [0,1]  is weighting coefficient. Furthermore, we add diversity constraint to obtain 

different topology configurations. 𝐺� is the diversity constraint and 𝜂� is the upper bound for diversity constraint.   

Diversity constraint and similarity/difference functions  

To obtain two topology configurations in MDA, we need to define a diversity constraint in equation (3). Diversity 

constraint is a function of 𝜌�1 and ρ2 which can measure the difference between topology configurations. The function should 

be continuous, smooth and bounded for gradient algorithm.  



  

In graphics, there are many approaches to measure difference or similarity between two images, including Cross-

Correlation(CC), Sum of Squared Differences(SSD), Sum of Absolute Differences(SAD) and their derivative algorithm. Here, 

we give a simple Similarity Function as the diversity constraint.   
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For multiple design problems, all the objective and constraints as well as the material volume fraction for the designs 

are the same. In this case, the codomain of SF is related to 𝑉�𝑓� for binary configurations as follow:  

SF ∈ [max(0,2𝑉𝑓 − 1) , 𝑉𝑓]                                                          (3)  

It is worth noting that upper bound for diversity constraint must be larger than the low bound of SF.   

As the codomains of 𝑆�𝐹� are not uniform in different 𝑉�𝑓�, this paper presents a uniform metric for description of the 

diversity between topology configurations. Here, the difference function is defined by normalizing 𝑆�𝐹� in the range of 𝑆�𝐹�.  
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                                                                                                                                                     (4)  

In this case, DF represents the relationship between non-overlap volume and material volume. DF is used as diversity 

measurement in the rest of the paper.  

  

NUMERICAL EXAMPLE   

  

In this paper, we give an example of L beam for minimization compliance topology problem. Design domain and 

dimensions of L beam are shown in figure 1 left. Its volume is 4800 and it is discretized into 4800 bi-linear elements. 

Design variables are element densities. Upper edge of model is clamped and unit load is applied on up-right vertex in figure  

1 left. The upper bound of elastic modulus 𝐸�0 is 1, and the lower bound of elastic modulus 𝐸�𝑚�𝑖�𝑛� is 10−6. Poisson’s ratio of 

material ν is 0.3. Penalty of SIMP is 3, filter radius of sensitivity filtering is 1.5. Volume fraction of material 𝑉�𝑓� is 50%. 

Weighting factor 𝛼�1 = 𝛼�2 = 0.5. To get two configurations and ensure DF is equal to 0.2, 𝜂� can be calculated by equation 

(5). Hence 𝜂� are 0.4. The result is shown in figure 1 middle and right, which the middle one is Configuration I, and the 

right one is Configuration II. It is very different between the two configurations.  

𝜂� = 𝑚�𝑎�𝑥�(0,2𝑉�𝑓� − 1) + (1 − 𝐷�𝐹�)[𝑉�𝑓� − 𝑚�𝑎�𝑥�(0,2𝑉�𝑓� − 1)]                                           (5)  

  
Figure 1 Domain of L beam (Left) Configuration I (middle) Configuration II (right)  

DF=0.2, 𝐹�1=83.08, 𝐹�2=82.82, F=82.95  

  

CONCLUSIONS  

  

This paper introduces multiple designs approach (MDA) for topology optimization to get diverse designs and presents 

the similarity and difference function as the diversity constraint. Compliance minimization examples based on SIMP method 

are tested in MDA algorithm framework to verify the validity of MDA.   
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Summary Bone resorption is one of the main issues that lead to aseptic loosening and revision surgery after total hip arthroplasty. 

One of the reasons for bone resorption is stress shielding caused by the prosthesis stiffness usually much higher than that of the 

bone tissue. To address this problem, we present a mechanically biocompatible hip implant that consists of a graded-density 

lattice material obtained via multi-scale multi-constraint topology optimization (TO). Asymptotic homogenization is used to deal 

with the multi-scale mechanics of the implant and a modified proportional TO is used to obtain the relative density distribution 

of the implant. The result shows that bone resorption for the optimized implant is only 9% of that of a fully solid titanium 

implant that is commonly used in current total hip arthroplasty.  

 

INTRODUCTION 

 

   Total hip arthroplasty (THA) is an effective treatment for osteoarthritis and has been successfully performed on over 1 

million patients every year worldwide [1]. Current orthopedic prostheses are generally made of metals, such as 316L 

stainless steel, cobalt chromium alloys, titanium-based alloys and tantalum [2]. These materials, however, are much stiffer 

than the surrounding bone tissue, thereby yielding to stress shielding [3], one of the reasons for bone resorption. Currently, 

13% of hip prostheses require revision surgeries as a result of bone resorption [4]. Khanoki and Pasini [2] introduced a hip 

replacement implant made of a lattice material with graded relative density capable to simultaneously reduce bone 

resorption and bone-implant interface stress. To solve the multi-objective optimization problem, they resorted to an 

evolutionary scheme, which was time consuming and applied to a planar domain only. In this paper, we focus on the 

minimization of bone resorption in a 3D lattice hip implant via a multi-scale multi-constraint topology optimization scheme, 

which is gradient free, more accurate and more efficient than the approach previously used [2].  

 

METHODS 

 

   Figure 1 shows the scheme proposed in this paper to design a graded lattice implant with minimal bone resorption. The 

main steps are briefly described below. 

 

Bonded

Frictionless

Design domain

F1F2 F3

F4

F5

F1F2 F3

F4

F5

S.t.

b b b b ={ }   Relative density of each element

(design variables)

 
Figure 1. Design flow chart to obtain the optimal density distribution for the hip implant.  

 

   (1) A finite element (FE) model is created by processing the CT-scan data from the femur of a 38-year old patient. Two 

FE models are generated, one for the intact femur and the other for implanted femur; the difference in strain energy between 

them is used as proxy to quantify bone resorption [3]. The distal end and condyle are fixed and the loads, written in the (X, 

Y, Z) coordinate system, are F1 (-486, -295, 2063), F2 (75, 6, -111), F3 (9, 15, -111), F4 (-1, -1, 24) and F5 (-1, 19, 93). 

   (2) The macrogeometry of the implant is a minimally invasive design clinically relevant to current THA, whereas the 

microgeometry of the unit cell is a tetrahedron, which is used to aperiodically tessellate the implant domain. This unit cell is 

selected for its smooth mapping relationship to the tetrahedral solid element.   



   (3) The properties of the unit cell are obtained via asymptotic homogenization (AH), e.g., the homogenized elastic 

modulus and the yield surfaces of the cell topology under multi-axial loading conditions. More details about the AH procedure 

can be found in [5]. 

   (4, 5) The full strain and stress regimes for both the intact femur and the implanted femur are obtained via FEA. The 

mean and alternating stresses are used in the Soderberg’s fatigue criterion to obtain the implant safety factor (SF).  

   (6, 7) A multi-constraint topology optimization (TO) scheme modified from the proportional TO [6] is used to optimize 

the relative density distribution of all elements associated to the 3D design domain. In particular, the maximal compliance 

problem is solved by using a density-continuous optimization approach modified from the proportional TO. In addition, the 

constraints of average porosity, pore size and cell wall thickness are directly taken into account during the optimization 

process by converting them into lower and upper bounds of relative density. Failure and fatigue analyses are performed at 

each iteration, and the design variables are updated to satisfy the failure and fatigue requirements. The optimal density 

distribution is obtained upon convergence of the modified TO.   

 

RESULTS 

 

   Figure 2 (a), shows the optimal relative density distribution, and Figure 2 (b) the graded lattice obtained with an in-

house code that can create the geometric model of the lattice ready for manufacturing. The performance of the optimized 

lattice implant is compared with a fully solid implant in Figure 2 (c), which shows that the former can greatly reduce bone 

resorption (1.4% vs 15.7%). Bone loss for the porous implant is only 9% of that for a benchmark implant with solid material. 

Comparing to our previous work [2], where the optimization time required to design a 2D implant was almost 3 days, the 

method presented in this paper for a more realistic 3D implant needs 10 minutes only, a factor that proves the superior 

efficiency of the scheme here proposed.  

 

 
Figure 2. Results of optimized 3D lattice implant: (a) relative density distribution, (b) CAD model of the lattice implant and 

(c) bone resorption comparison with a fully solid implant. 

 

CONCLUSIONS 

 

   In this paper, a multi-scale multi-constraint topology optimization method is proposed to optimize the relative density 

distribution of a 3D hip implant made of graded lattice material. Compared to a fully solid implant, the optimized implant here 

presented can reduce bone resorption of more than 90%. 
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Summary Waves in periodic media undergo dispersion, namely the propagation velocity depends on the frequency. This effect 

can be modeled by an additional term in the homogenized wave equation. This paper presents the estimation of upper and lower 

bound of the dispersive effect in the two-dimensional wave equation in the case of an 8-fold symmetric periodic microstructure 

with constraints of volume, perimeter and homogenized properties. 
 

 

 
INTRODUCTION 

 

 Dispersive effect is observed on wave propagation in inhomogeneous media. It is well known that the dispersive effect is 

modelled as a higher order terms (namely a fourth order term) in the homogenized wave equation. The fourth order term can 

be obtained by the method of two-scale asymptotic expansions or by the Bloch wave method. That is, wave propagation in 

periodic inhomogeneous media considering dispersive effect is modelled by the following equation. 

 

 

(1) 

 

where  is the ratio between the period size and a characteristic length scale,  is homogenized material property  is a 

fourth-order tensor, called Burnnet tensor studied in [1,2,3],  is a source term and  is second-order tensor. The Burnnet 

tensor satisfies for any ℝ  [2] 

 

 
(2) 

 

where and  are defined as follows: 

 

      for  (3) 

   

      for  (4) 

 

The dispersive effect is very important in engineering standpoint, because the periodic size of microstructure is finite. This 

work presents numerical estimates of upper and lower bounds of the dispersive effect in the two-dimensional wave equation. 

We assume that the microstructure is imposed an 8-fold symmetric configuration and consist of two isotropic phases. Under 

this assumption, the Burnett tensor is characterized by two scalar parameters as follows: 

 

 (5) 

 

where is ℝ+ defined as follows: 

 

 
(6) 

   



 
(7) 

 

 

 

FORMULATION OF THE OPTIMIZATION PROBLEM 

 

We introduce an additional assumption that the microstructure is made of two phases with boundary Γ and imposed 

constraints of phase proportions, interface perimeter and prescribed homogenized tensor. In order to estimate the upper and 

lower bound of the dispersive effect, we consider the multi-objective problems 

 

 or  (8) 

 subject to: Volume constraint 

Perimeter constraint 

Prescribed homogenized tensor 

(9) 

 

That is, we compute the upper and lower curve in  coordinate system. In this work, the curve is estimated as a set of 

optimal solutions respect to a parameter  utilizing level set-based shape optimization method [4]:. 

 

              (10) 

 

where is a parameter and 

 

 

(11) 

 

where , , , are maximum and minimum value of α , maximum and minimum value of , 

respectively. That is, the Pareto optimal solutions are obtained by optimizing the interface  in the microstructure based on 

the optimization problem (10) and (11). 

 

 

 

CONCLUSIONS 

 

This works presents an optimization problem for the estimates of upper and lower bounds of the dispersive effect for wave 

propagation in two-phase periodic media. 
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Summary The concurrent multiscale optimization design of composite frames is investigated with gradient-based optimization algorithms. The 

winding angle in micro-material scale and the geometrical parameter of components of the frame in macro-structural scale are introduced as the 

independent variables on the two geometrical scales. The coupling effect of macro- and micro-scale design variables can be fully considered in 

the established multiscale optimization model to probe the potential of composite structures. The feasible domain is found to be non-convexity 

with the fiber winding angle as micro-material design variable. Then a new two-step optimization scheme is proposed to investigate the 

optimization design of the composite frame with minimum structural compliance, which increases the possibilities to find the global optimum 

with the gradient based algorithm. 

INTRODUCTION 

Fiber-reinforced composite frame structure is considered to be an ideal load carrying structure for aerospace structures. The 

composite frame can be considered as a geometrical multiscale structure, since the fiber-reinforced composite is 

characterized by its microstructure. With the point view of multiscale structure [1-3], the composite frame can be optimized 

concurrently at the macro-structural scale of geometrical parameters of components of the frame and at the micro-material 

scale of fiber winding angle. Significantly, filament winding parameters (filament winding angle, winding thickness and 

stacking sequence) can be considered as micro-material design variables which greatly influence the mechanical 

performance of the composite frame. However, one of the major difficulties using the filament winding angle as design 

variables is that the feasible domain of the optimization problem is non-convexity. This leads classical gradient-based 

optimization algorithms may be not effective, which is difficult to ensure the optimization converges to the global optimum 

[4]. The present paper presents a new two-step optimization scheme and investigates the optimization of composite frame 

with minimum structural compliance. It should be pointed out specially that the feasible domain is convex when the 

structural stiffness parameters (tension stiffness, bending stiffness, torsional stiffness) are considered as the design variables. 

The global optimum can be found in this case. Then adopting layer-wise constant shear beam theory, the equivalent 

structural stiffness parameters of composite beam can be explicitly integrally expressed as functions of filament winding 

angle. With ensuring the filament winding angle invariance of physical quantities, the sub-optimization problem between 

structural filament winding angle and equivalent structural stiffness parameter has been presented. Then implement the 

independent sub-optimization problems in the non-convex filament winding angle space and the convex structural stiffness 

parameter space iteratively. The objective sensitivity information with respect to design variables has been solved with the 

semi-analytical method [5] for the two kinds of design variables, i.e., the optimizations in the filament winding angle space 

and the equivalent structural stiffness parameter space. Numerical examples show that the proposed two-step optimization 

scheme can effectively improve the quality of optimization solution of the composite frame, which provides an effective 

method to approach a global optimum for the composite frame structure.  

CONCURRENT OPTIMIZATION OF COMPOSITE FRAME 

The schematic figure of concurrent multi-scale optimization of composite frame structure is shown in Fig. 1. For easy of 

deduction and no loss of generality, we assume the composite frame structure studied in this paper is composed with 

circular tubes. In macro-scale, the radius of cross-section (ri) is recognized as macro design variable. As in classical 

topology optimization of frame structure, the tube’s radius can be recognized as the size and topology variables at the same 

time. When the radius reaches its lower limit, the tube can be regarded to be deleted from the ground structure to realize the 

structural topology optimization. In micro-scale, the fiber winding angle (the continue fiber winding angles θi,j) is 

recognized as the micro design variable.  
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Fig. 1 Schematic of two-scale optimization of the composite frame structure 

 

THE TWO-STEP OPTIMIZATION SCHEME FOR COMPOSITE FRAME 

To cope with the non-convexity problem using the fiber winding angle as design variable, we propose a new two-step 

optimization scheme for composite frame optimization. The schematic diagram of the two-step optimization scheme is 

shown in Fig.2. Where x-axis represents the angle and the stiffness parameter space, y-axis is the value of optimized 

objective function. The solid black line represents the non-convex domain of fiber winding angle space. In the diagram, 

point A represents the local optimum, and point E is the global optimum. The black dashed line represents the convex 

domains of the stiffness parameter space.  

  
  Fig. 2 Schematic diagram of the two space optimization 

A two-step optimization scheme is established to lead the design domain to switch from a non-convex domain to a convex 

domain. Firstly, we generate a set of random or specified initial filament winding angle θi,j 
𝑆𝑃  as shown in Fig.2 with 

corresponding to the point O. Secondly, carry out the minimize optimization to obtain the local optimum point A with 

filament winding angle θi,j 
𝑂𝑃𝑇  in fiber winding angle space. Thirdly, converse the filament winding angle θi,j 

𝑂𝑃𝑇  to 

stiffness parameter space, then obtain the local optimum stiffness parameter ( 𝑆𝑡𝑖𝑃̅̅ ̅̅ ̅̅ k
 

𝑂𝑃𝑇 ) corresponding to point A. Finally, 

with the local optimum stiffness parameter ( 𝑆𝑡𝑖𝑃̅̅ ̅̅ ̅̅ k
 

𝑂𝑃𝑇 ) obtained by the previous step, we can obtain its corresponding 

objective function point F in the stiffness parameter space. Then set up the multi-objective minimized optimization problem 

in the parameter space min 𝐼
θi,j

, where 𝐼 = {4𝑓1 + 𝑓2}, and following the constraints as 𝑓 {( θi,j 
𝑆𝑃 )

𝑘+1
} ≤ 𝑓 {( θi,j 

𝑆𝑃 )
𝑘

} ∩

( θi,j 
𝑆𝑃 )

𝑘+1
≠ ( θi,j 

𝑂𝑃𝑇 )𝑘 . By this minimize optimization problem, we can get point G in stiffness space which is 

corresponding to point D in fiber winding angle space as the new starting point of design variables ( θi,j 
𝑆𝑃 )

𝑘+1
 in fiber 

winding angle space. Using the value of ( θi,j 
𝑆𝑃 )

𝑘+1
 as the new start point to optimize iteratively to approach point E. 

Repeat the third step and last step in this process until the min 𝐼
θi,j

 can not determine a new start point for the optimization. 

Thus 𝑓𝐸 will be regarded as the global optimum for the optimization of composite frame. 

CONCLUSIONS 

The present paper investigates the concurrent multiscale optimization design of composite frame with global optimization 

problem. With the layer-wise constant shear beam theory, we get the equivalent structural stiffness parameter by explicitly 

integrally expressed with respecting to the filament winding angle. To overcome the difficult of local optimum problem in 

case of the fiber winding angle as design variable, a new two-step optimization scheme is proposed. The multi-objective 

minimize optimization problem is established between the fiber winding angle space and stiffness parameter space, which 

can obtain a new optimized starting point in the fiber winding angle space and greatly increase the probability to approach 

the global optimal solution.  

References 
[1] Duan Z.Y., Yan J., Zhao G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material 

model. Structural and Multidisciplinary Optimization, 2015 51, 721-732. 

[2] Ferreira R.T.L, Rodrigues H.C., Guedes J.M., et al: Hierarchical optimization of laminated fiber reinforced composites. Composite Structures, 2014, 107: 

246-259. 
[3] Yan J, Duan Z.Y., Lund E., Zhao G.Z.: Concurrent multi-scale design optimization of composite frame structures using the heaviside panealization of 

discrete material model. Acta Mechanica Sinica, 2015, 1-12. 

[4] Foldager J., Hansen J. S., Olhoff N.: A general approach forcing convexity of ply angle optimization in composite laminates. Structural Optimization, 1998. 
16(2-3):201-211. 

[5] Lund E: Buckling topology optimization of laminated multi-material composite shell structures. Composite Structures, 2009. 91(2):158-167 

 

Home
Text Box


	ICTAM Proceedings Preface _ TOC-Vol 1 - 2017.01.20
	1-2
	3-4
	5-6
	7
	8
	9-10
	11-12
	13-14
	15-16
	17-18
	19-20
	21-22
	23-24
	Untitled
	Untitled

	25-26
	27-28
	29-30
	31-32
	33-34
	35-36
	37-38
	39-40
	41
	42-43
	44-45
	46-47
	48-49
	50-51
	52-53
	54-55
	56-57
	58-59
	60-61
	62-63
	64
	INTRODUCTION
	SIMULATIONS AND DISCUSSIONS

	65-66
	67-68
	69-70
	71
	72
	73
	74-75
	76
	77
	78-79
	80-81
	82-83
	84-85
	86-87
	88
	89-90
	91-92
	INTRODUCTION
	RESULTS
	CONCLUSIONS
	FUTURE WORK

	93-94
	Introduction
	Lagrangian Agglomeration model
	RESULTS

	95-96
	97-98
	99-101
	102-103
	104-105
	106-107
	108-109
	INTRODUCTION
	NONLINEAR TIMOSHENKO BEAM MODEL AND ANALYSIS
	COUPLED BEHAVIOR WITHIN A REVISITED OVERALL FRAMEWORK

	110-111
	112-113
	114-115
	116-117
	118-119-
	120-121
	122-123
	124-125
	126-127
	128-129
	130-131
	132-133
	134-135
	136-137
	138-139
	140-141
	142-143
	144-145
	146-147
	148-149
	150-151
	152-153
	154-155
	156-157
	158-159
	160-161
	162-163
	164-165
	166-167
	168-169
	170-171
	172-173
	174-175
	176-177
	INTRODUCTION
	MIDDLE EAR MODEL
	CONCLUSIONS

	178-179
	180-181
	182-183
	184-185
	186-187
	188-189
	190-191
	192-193
	194-195
	196-197
	198-199
	200-201
	202-203
	204-205
	206-207
	208-209
	210-211
	212-213
	214-215
	216-217
	218-219
	INTRODUCTION
	THEORETICAL MODEL
	RESULTS AND DISCUSSIONS
	Figure 1. The surface plot of 𝛥 for      Figure 2. The surface plot of 𝛥 for     Figure 3. The surface plot of 𝛥 for
	,𝐾-1. = (0, 5) and ,D-0.= (0.1, 10)         ,𝐾-2. = (0, 3) and ,D-0. = (0.1, 10)       for ,𝐾-1. = (0, 10) and ,𝐾-2.= (0.0, 5.0).
	CONCLUDING REMARKS

	220-221
	222-223
	224-225
	226-227
	228-229
	230-231
	CONTROL MODEL FOR FLOATING AIRPORT
	CONTROL LAW WITH OUTPUT SATURATION
	NUMERICAL SIMULATIONS 
	CONCLUSIONS

	232-233
	234-235
	236-237
	238-239
	INTRODUCTION
	LUMPED MASS LOCOMOTION SYSTEMS
	DISTRIBUTED MASS LOCOMOTION SYSTEM

	240-241
	242-243
	244-245
	246-247
	248-249
	250-251
	252-253
	254-255
	On THE THE FREE ENERGY OF cellS spread on micropatterned substrates
	INTRODUCTION
	MODEL DEVELOPMENT
	SIMULATIONS AND RESULTS

	256-257
	258-259
	260-261
	262-263
	264-265
	266-267
	268-269
	270-271
	272-273
	274-275
	276-277
	278-279
	280-281
	282-283
	284-285
	286-287
	288-289
	290-291
	292-293
	A BRIEF INTRODUCTION TO PULL-IN INSTABILITY
	INSTABILITY OF A DIELECTRIC ELASTOMER TUBE UNDER ELECTROMECHANICAL LOADING
	POST BIFURCATION PATH AND STEADY PROPAGATION

	294-295
	296-297
	298-299
	300-301
	302-303
	304-305
	306-307
	308-309
	310-311
	312-313
	314-315
	316-317
	318-319
	320-321
	322-323
	324-325
	326-327
	328-329
	330-331
	332-333
	334-335
	336-337
	338-339
	340-341
	342-343
	344-345
	346-347
	348-349
	350-351
	352-353
	354-355
	356-357
	358-359
	360-361
	362-363
	364-365
	366-367
	368-369
	370-371
	372-373
	374-375
	376-377
	378-379
	380-381
	382-383
	384-385
	386-387
	PARAMETRIC LEVEL SET METHOD
	ENERGY-BASED HOMOGENIZATION METHOD
	MICROSTRUCTURAL DESIGN MODEL AND SENSITIVITY ANALYSIS
	NUMERICAL EXAMPLES

	388-389
	390-391
	392-393
	394-395
	396-397
	398-399
	400-401
	402-403
	404-405


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




