Economic Council of Canada Conseil économique du Canada

Attais libetrand
JUN 261979
Y0/3904 LIBRARY

Discussion Papers are working documents made available by the Council, in limited number and in the language of preparation, to interested researchers for the benefit of their professional comments. Any other use of these papers is subject to prior agreement with the Council.

Table of Contents

Page
Preface and Acknowledgements 1
Abstract iii
Résumé v
List of Tables vili
List of Charts x11
Part I. Introduction 1
Regional economic disparities 1
Study objectives and outline
Part II. Examination of the Instruments of Regional Economic Expansion Policy 7
DREE programs 9
Functional breakdown of DREE expenditures 16
Efficacy of DREE instruments 21
Conclusions 39
Part III. Conceptual and Methodological Framework 42
The conceptual dimension of the framework 43
The methodological dimension of the framework 61
Conclusions 65
Part IV. The Empirical Results 67
The standard case 68
Alternative financing experiments 81
Alternative expenditure benefit experiments 86
Conclusions 94
Part V. Summary and Conclusions 98
Footnotes 104
Appendices
Appendix A. Calculation of Expenditure Incidence and Fiscal Incidence 110
Appendix B. Miscellaneous Tables 189
Appendix C. DREE Expenditures, By Function, 1969-70 through 1974-75 194
Appendix D. RDIA Incentive Grants: Job Erosion and Capital Bias 205
Bibliography 220
CAN.

Preface and Acknowledgments

The authors' combined interests in questions of regional economic expansion policies, and the distribution and redistribution of income in Canada led, through a set of exploratory discussions, to an earlier proposal to examine the distributive aspects of the expenditures of the Department of Regional Economic Expansion. The simultaneous interest of the Economic Council of Canada in questions of regional economic expansion and the active participation of the Regional and Urban Policy Analysis Centre located at Carleton University in a number of research projects for the Council combined to provide the impetus for the present investigation. We are especially grateful to N.H. Lithwick who provided valuable assistance throughout the study. We are also grateful to the Economic Council which provided financial support and encouragement to carry out such an investigation.

The purpose of this investigation is described in Part I. Briefly, we examine the net impact of regional economic expansion expenditures on the distribution of income across regions and among income classes in Canada. Given the current interest in questions of the costs and benefits of Quebec separating from Canada, we caution the reader that our discussion of Quebec is in the context of an analysis which examines one item of federal spending only - DREE spending and its financing. Consequently no valid conclusions can be drawn concerning even the limited question of how total federal spending redistributes income across Canada's regions. And, of course, total federal spending and taxing activities are only one of many factors that one would analyse in attempting a study of the costs and benefits to one province or region of Confederation. In fact we know of no theory or model that would even permit one to estimate the totaleconomic and non-economic-benefits and costs of Quebec separating from the rest of the country.

We presented our findings at a seminar held by the Economic Council on June 3, 1976, and benefitted from the following discussion. The study was completed by July 1976. We are grateful for the thoughtful comments of several readers of our July 1976 draft. Our final revisions and adjustments were completed by April 1977.

We benefitted from the generous input of many people throughout the study. We are indebted to Bob Lang who assisted us in the gathering of information on DREE programs. We are especially appreciative of the untiring efforts of our research assistant, Mary Zamparo, who had the unenviable task of reconciling the suggestions of two authors. Most of the detailed calculations of the Appendices is the result of her care and attention. We acknowledge, with thanks, the helpful critical comments of

Tom Brewis, Harvey Lithwick, Gilles Paquet, Neil Swan and Mary Zamparo on an earlier draft of the study. For any remaining errors of omission, commission or interpretation, we assume full responsibility.

Finally, we are grateful for the efforts of the secretaries in the Department of Economics at Carleton University. They handled our varied styles of writing and deadlines with grace and efficiency.

The views expressed here are those of the authors and should not be interpreted as those of the institutions in which they are employed.
W. Irwin Gillespie
(Carleton University)

Richard Kerr
(Department of Health and Welfare)

Abstract

Considerable economic disparities exist among the regions in Canada and have persisted through long periods of time and through many changes in the economic structure and political fabric of the country. The federal government has attempted to reduce income inequalities among families and among regions by providing subsidy payments to the provinces, to firms and to families directly.

We report in this study on our examination of the composition of a specific set of regional programs - those of the Department of Regional Economic Expansion (DREE) which was specifically charged in 1969 with encouraging a reduction in such disparities and reducing the inequalities in the distribution of wealth across the country.

The focus in our investigation is on the composition of DREE expenditures and their impact on the distribution of income across regions and among families in Canada.

The functional breakdown of DREE expenditures which we derive for each of the five regions in Canada demonstrates that expenditures for road construction have been equal in magnitude to the much more highly publicized incentives program. These categories, together with other industrial assistance and with sewage systems and other infrastructure, account for 75 percent of total DREE expenditures.

Our estimation of the regional income redistribution effects of DREE expenditures demonstrates that only the Atlantic Region has been a net beneficiary. Contrary to popular belief, Quebec receives little or no net benefit. Quebec and probably the Atlantic region as well would be better off with increased equalization payments than with the existing DREE program. Only when it is assumed that almost all of the benefits of DREE expenditures remain within the region of the initial spending is the Atlantic region better off with the DREE program rather than increased equalization grants; Quebec would still be better off with increased equalization payments.

Our findings also demonstrate that the lower income classes in all regions benefit from DREE expenditures to a much lesser extent than would be expected from the objectives of federal regional economic expansion policy. Only in the Atlantic region do representative lower income family units receive significant net benefits from the DREE program, and even in that region they receive smaller net benefits than do representative family units in higher income classes. The redistributive effect of DREE expenditures at the all-Canada level is, in general, away from representative family units in the upper-middle and upper income classes to representative family units in the lowest and richest income classes. In all regions the poor would be better off with increases in federal transfer payments to persons (perhaps in the form of a guaranteed annual income) rather than the present DREE program.

Résumé

Les importantes disparités économiques qui existent entre les régions du Canada persistent depuis longtemps et, ce, en dépit des nombreuses modifications apportées à la structure économique et au tissu politique du pays. Le gouvernement fédéral a tenté de réduire les inégalités de revenu entre les familles et entre les régions en versant des subventions directes aux provinces, aux entreprises et aux familles.

Dans cette étude, nous présentons les résultats de notre examen de la composition d'un groupe particulier de programmes régionaux, en l'occurrence ceux du ministère de l'Expansion économique régionale (MEER) qui, en 1969 , s'est vu confier la tâche de réduire ces disparités et de diminuer les inégalités dans la répartition de la richesse au pays.

Notre travail est axé principalement sur la composition des dépenses du MEER et leur impact sur la répartition du revenu entre les régions et les familles au Canada.

La répartition fonctionnelle des dépenses du MEER établie pour chacune des cinq régions du Canada montre que les dépenses pour la construction de routes ont été d'une importance égale à celles du programme de subventions qui a été l'objet d'une publicité beaucoup plus considérable. Ces deux catégories, ajoutées aux autres types d'aide industrielle et à l'aide financière ayant trait aux systèmes d'égouts et
aux autres travaux d'infrastructure, représentent 75 pourcent de l'ensemble des dépenses du MEER.

Notre estimation des effets des dépenses du MEER sur la redistribution du revenu régional montre que la seule véritable bénéficiaire a été la région de l'Atlantique. Contrairement à l'opinion générale, le Québec n'en tire à peu près aucun avantage net. Un accroissement des paiements de péréquation serait plus avantageux au Québec, et probablement aussi à la région de l'Atlantique, que le programme actuel du MEER. Ce n'est qu'en supposant que presque tous les avantages des dépenses du MEER échoient à la région où les dépenses premières ont été effectuées que la région de l'Atlantique est mieux servie par le programme du MEER que par des paiements de péréquation accrus; le Québec serait encore plus avantagé par une hausse de ces paiements.

Nos constatations démontrent également que dans toutes les régions, les familles à faible revenu bénéficient beaucoup moins des dépenses du MEER qu'on pourrait s'y attendre eu égard aux objectifs de la politique fédérale d'expansion économique régionale. Ce n'est que dans la région de l'Atlantique que des familles à faible revenu tirent des bénéfices nets appréciables du programe du MEER et, même dans cette région, ces bénéfices nets sont considérablement moindres que ceux des familles à revenu plus élevé. Au niveau national, l'effet redistributif des dépenses du MEER défavorise généralement les unités familiales des catégories moyenne supérieure et supérieure, mais favorise les unités familiales des catégories de revenus les plus faibles et les plus élevés.

Dans toutes les régions, les pauvres seraient mieux servis par un accroissement des paiements de transfert fédéraux aux particuliers (peut-être sous forme d'un revenu annuel garanti) que par l'actuel programme du MEER.

Table 2.1 DREE Expenditures, by Function, for Regions and Canada, 1969-70 to 1974-75, millions of dollars19

Table 2.2 DREE Determination of Job Incrementality 27
Table 3.1 $\begin{aligned} & \text { Alternative Methods of Financing Federal } \\ & \text { Regional Economic Expansion Expenditures }\end{aligned} 64$
Table 4.1 The Distribution Hypotheses of the $\begin{aligned} & \text { Standard Case }\end{aligned}$
Table 4.2 Incidence of Federal Regional Economic Expansion Expenditures, Canada and Regions, 1969-1975

Table $4.3 \quad$The Distribution of Family Units, By Income Class, Canada and Regions, 1969, percentages	72

$\begin{array}{lll}\text { Table 4.4 } & \begin{array}{l}\text { Fiscal Incidence of Federal Regional } \\ \text { Economic Expansion Expenditures, Canada } \\ \text { and Regions, 1969-1975 }\end{array} & 76\end{array}$
Table 4.5 Regional Expenditure, Tax and Fiscal Incidence of Federal Regional Economic Expansion Expenditures, The Standard Case and Alternative Experiments, Canada, 1969-1975, percentages

I'able 4.6 Fiscal Incidence of Federal Regional Economic Expansion Expenditures, Alternate Financing Experiments, Canada, 1969-197584

Table 4.7 Alternative Expenditure Experiments 87
Table 4.8 Fiscal Incidence of Federal Regional Economic Expansion Expenditures, For The Pro-Rich Experiment, Regions and Canada, 1969-1975

Table 4.9 Fiscal Incidence of Federal Regional Economic Expansion Expenditures, For The Pro-Poor Experiment, Regions and Canada, 1969-1975
Page
Appendix Tables
Table A-1 (a) Distributive Series, Canada 1969 111
Table A-1 (b) Distributive Series, Atlantic 1969 112
Table A-1 (c) Distributive Series, Quebec 1969 113
Table A-1 (d) Distributive Series, Ontario 1969 114
Table A-1 (e) Distributive Series, Prairies, 1969 115
Table A-l (f) Distributive Series, British Columbia, 1969 116
Table A-2 (a) Distributive Series, By Regions, 1969, percentages 117
Table A-2 (b) Distributive Series, By Regions, 1969, millions of dollars 118
Table A-3 Distribution of Expenditures, Tax Payments and Fiscal Amounts, Regions and Canada, Standard Case, millions of dollars 119
Table A-3 (a) Distribution of Expenditures, Tax Payments and Fiscal Amounts, Canada (Using National Series), Standard Case, millions of dollars 123
Table A-3 (b) Expenditure Incidence and Fiscal Incidence, Regions and Canada, Standard Case, percentages 124
Table A-4 (a) Distribution of Amounts for Alternative Financing and Expenditure Experiments, Atlantic Region, millions of dollars 126
Table $A-4$ (b) Distribution of Amounts for Alternative Financing and Expenditure Experiments, Quebec, millions of dollars 129
Table A-4 (c) Distribution of Amounts for Alternative Financing and Expenditure Experiments, Ontario, millions of dollars 132
Table A-4 (d) Distribution of Amounts for Alternative Financing and Expenditure Experiments, Prairie Region, millions of dollars 135
T'able A-4 (e) Distribution of Amounts for Alternative Financing and Expenditure Experiments, British Columbia, millions of dollars 138
Trable A-4 (f) Distribution of Amounts for Alternative Financing and Expenditure Experiments, Canada, millions of dollars 141

Table A-5		Fiscal Amounts and Fiscal Incidence, For Alternative Financing Experiments, Regions and Canada
Table A-5	(a)	Fiscal Incidence for Alternative Financing Experiments, By Region, percentages
Table A-5	(b)	Expenditure Amounts and Expenditure Incidence for Alternative Expenditure Experiments, Regions and Canada
Table A-5	(c)	Expenditure Incidence of Federal Regional Economic Expansion Expenditures for Alternative Expenditure Experiments, By Region, percentages
Table A-5	(d)	Fiscal Amounts and Fiscal Incidence of Federal Regional Economic Expansion Expenditures for the Pro-Rich Experiment, By Regions
Table A-5	(e)	Fiscal Amounts and Fiscal Incidence of Federal Regional Economic Expansion Expenditures for the Pro-Poor Experiment, By Region
Table B-1		Shifting Assumptions for Fiscal Incidence Study, Gillespie, 1975
Table B-2		Allocation of Highway Costs Between Users and Non-Users, and Between the Two Kinds of Users, Canada and Regions, 1969, percentages
Table C-1		Total DREE Budgetary Expenditures, By Program 1969-70 to 1974-75, millions of dollars
Table C-2		DREE Expenditures on Operating and Capital, by Program, 1969-70 to 1974-75, millions of dollars
Table C-3		DREE Expenditures By Function, For Regions and Canada, 1969-70 to 1974-75, millions of dollars
T'able C-4		DREE Expenditures By Function and Program, Atlantic Region, 1969-70 to 1974-75, millions of dollars
Table C-5		DREE Expenditures By Function and Program, Quebec, 1969-70 to 1974-75, millions of dollars
Table C-6		DREE Expenditures By Function and Program, Ontario, 1969-70 to 1974-75, millions of dollars

Table C-7	DREE Expenditures By Function and Program, Prairie Region, 1969-70 to 1974-75, millions of dollars
Table C-8	DREE Expenditures By Function and Program, British Columbia, 1969-70 to 1974-75, millions of dollars
Table D-1	Offers Accepted By Regions, 1973
Table D-2	Expected Direct New Jobs By Month, 1973
T'able D-3	Expected Direct New Jobs By Region, 1973
Table D-4	Amount of RDIA Grants By Region, 1973
Table D-5	Number of Jobs and Amount of Grant For 1973 Lost Through Offers Subsequently Declined or Withdrawn up to June, 1975
Table D-6	Capital and Labour Subsidies in Net RDIA Offers, 1973

List of Charts

Chart l.l Personal and Earned Income Per Capita 3
Chart 4.1 Family Unit Expenditure Incidence, By Region 74
Chart 4.2 Family Unit Fiscal Incidence, By Region 79
Chart 4.3 Family Unit Fiscal Incidence, By Region Pro-Rich Experiment 93
Chart 4.4 Family Unit Fiscal Incidence, 95

PART I

INTRODUCTION

> The policies and programs of my Department ... bear very directly on the hopes of many thousands of Canadians and their families. I have a responsibility to ensure that these hopes are not misplaced, Mr. Speaker, a continuing and pressing responsibility to seek an even stronger and more effective set of policies and programs -- so that, in time, the great inequalities in wealth and opportunity which have persisted in this country for so long will be greatly reduced.

The Honourable Jean Marchand, DREE Minister (1972a: 2)

PART I

Introduction

Regional Economic Disparities

Considerable economic disparities exist among the regions in Canada and have persisted through long periods of time and through many changes in the economic structure and political fabric of the country. Whether one chooses as an indicator of economic disparity across the regions earned income per capita, personal income per capita (or per family unit), value added, labour force participation rate, unemployment rate, or the investment rate per capita, one observes differences across the provinces and among regions within the provinces that have persisted.

The federal government has attempted to reduce income inequalities among family units and among regions by providing subsidy payments to the provinces, to firms and to families directly. Transfer payments by the federal government to the provinces permit those provinces to spend the funds on public goods and services. Transiers to low income provinces permit a reduction in disparities among per family public service levels among regions and among families although they by no mcans guarantee it. Subsidies to encourage firms to alter their investment decisions in favour of low income
regions could in theory help reduce income disparitics. Transfer payments to families, such as old age security pensions, guaranteed income supplements for the elderly, unemployment insurance benerit payments and others, also permit a reduction in disparities among per family personal income levels among families and among regions. A negative income tax could go further in attempting to reduce income differences among families and among regions.

Subsidies to firms have become an important component along with federal conditional shared-cost subsidies to provinces to finance infrastructure, social adjustment, and economic development - of an array of specific 'regional economic expansion' policies that have emerged, especially during the past two decades in Canada. The development of these 'regional economic expansion' policics is well-documented. ${ }^{1}$

Tconomic disparities in Canada are well-documented elsewhere. ${ }^{2}$ The recent behaviour of two widely used indices of economic disparity is shown in the accompanying chart. Tt is readily apparent that both the Atlantic rocion and Quebec have been consistently below the national average in terms of both personal income per capita and earned income per capita. Since the early 1950's, per capita personal income in the Atlantic region
(GANADA=100)
PERSONAL -
has slowly but quite steadily improved relative to the national average. During the latter half of the 1950's earned income per capita in the Atlantic region also showed a relative improvement, a trend that did not continue in the 1970 to 1975 period. In Quebec, while personal income per capita has approached the national level since 1970, there has been no improvement in the relative position in terms of earned income per capita. Despite the efforts of federal regional economic expansion policies aimed at stimulating economic activity in these two regions, per capita earned income in the two regions did not move any closer to the national average. Any improvement in the relative positions of these regions in terms of personal income per capita resulted from the effects of increased transfer payments to persons (DREE, 1976: 34; Economic Council of Canada, 1975: 21-41). Furthermore at least some of the earned income in those regions derived from the expenditure effects resulting from transfer payments to the families and governments of those regions.

Study objectives and Outline

Whatever the criterion which is chosen to measure economic disparities it is invariably expressed as an average for the persons or families of the regions cxamined. There is a presumption underlying some federal policies that a reduction in the disparities
in average per capita personal income across the regions will be matched by some reduction in the inequallty of the distribution of personal income across persons (Marchand, 1972 and 1972a). The assumption that federal regional economic expansion expenditures will alter the distribution of income in favour of the lower income classes has never been examined.

We consider that distribution questions are one important dimension of any government action. To date, research in the area of regional economic expansion has focused on questions of allocation of resources, growth rates of income across regions and the efficacy of policy instruments in contributing to expansion in output per head. ${ }^{3}$ In this study we focus directly on the redistribution of income effects of the policies of the federal Department of Regional Economic Expansion (DREE).

In Part II we discuss the instruments of federal repional economic expansion policy. We begin with those instruments that existed prior to the formation of DREE and follow up with those instruments which have been used extensively by the Department. We then derive a functional classification of DREE expenditures. The efficacy of these instruments is discussed with primary emphasis being placed upon capital incentive grants.

Part III includes a discussion of the conceptual and methodological framework within which the distribution
questions are posed. After a brief discussion of the theory of fiscal incidence we analyse the instruments of the Department of Regional Economic Expansion in a general equilibrium setting. We treat these instruments as though they were a 'new program' introduced in 1969^{4} and derive the long-run equilibrium effects of the program's instruments on relative factor and product prices. These effects are then translated into income changes by region and by size classes of income. Since both sides of the budget must be estimated in order to arrive at a true measure of the redistributive impact of any program we next examine the incidence of the financing of DREE programs.

In Part IV we present the empirical results. Part V summarizes our conclusions and suggests several areas of further research.

Do not speak only of the incentives because you have all the other instruments we are trying to use at the same time: the special areas and the corporations that we have set up.

The Honourable Jean Marchand, DREE Minister (1972b: 22)

With respect to the RDIA program, it tends to overshadow the other activities of the department in many respects, and I think this is a bit regrettable. It gets most of the publicity. Nevertheless, it is a very worthwhile tool for development.

The Honourable D.C. Jamieson, DREE Minister (1975: 14)

Now it seems to me that we have perhaps gone a bit too far in the area of infrastructure. The signing of the general development agreements has opened up for the department virtually unlimited possibilities in this area. I now wonder whether, after two years, it will not be necessary to curtail our action in this area somewhat and to come back a bit more to the actual industrialization that creates jobs. Infrastructure is a good thing... but it is not enough. If jobs are not created by means of industrialization, these infrastructures will not serve their purpose to the fullest.

The Honourable Marcel Lessard, DREE Minister (1975: 1)

PART II

Examination of the Instruments of Regional Economic

 Expansion PolicyWhen it was established in 1969 the Department of Regional Economic Expansion was presented as a bold new instrument for combatting regional disparities in Canada. Most of the activities performed under the new DREE umbrella had, however, been underway in one form or another prior to the Department's organization. To a large extent, DREE was simply a repackaging of existing programs.

Following its 1973 Program Review, DREE unveiled a new "multi-dimensional approach" under the heading of General Development Agreements (GDA's). Examination of the expenditures under these agreements shows them to be primarily on the same types of projects carried out under the existing programs. In several cases, agreements have simply extended the funding of projects initiated under earlier programs. In other words, foderal regional development efforts exhibit a much greater continuity through the years when they are viewed at the detailed expenditure level rather than at the program level. Prior to the formation of DREE, in DREE's early years and at present, expenditures on industrial incentives, roads, sewers and other infrastructure
have predominated.

DREE Programs

The Prairie Farm Rehabilitation Act (PRFA) was passed in 1935 to assist in the rehabilitation of farm lands in Manitoba, Saskatchewan and Alberta which had been severely damaged by drought and soil drifting. In addition to the promotion of improved conservation methods, the program encouraged land use adjustment, primarily through conversion of marginal land to PFRA-operated pastures. PFRA has been active in water conservation and management programs through individual farm dugout construction and large scale irrigation projects. Most recently, emphasis has been shifted to assisting the development of water and sewage services in selected agricultural service centres in the three provinces.

Under the Maritime Marshland Rehabilitation Act (MMRA), passed in 1948, assistance was given to the protection of about 100,000 acres of salt-water marshland in the provinces of Nova Scotia, New Brunswick and Prince Edward Island. This took the form of dyke rebuilding and related activities. As of September 1972, responsibility for this program has been turned over to the provinces. Engineering services developed under this Act were extended to cover such activities as land use and
watershed planning, surveying, soil conservation and hydrology.

The Agricultural Rehabilitation and Development Act (ARDA, later the Agricultural and Rural Development Act), became operational in 1951 in response to recognition of the high incidence of low incomes in rural areas. There have been three sets of agreements under this program, the most recent for a five-year period ending in 1975. Costs of projects agreed on under the program were shared equally by the provinces and the federal government. In the first set of agreements, most expenditures were directed to soil and water conservation and land use conversion. In the second set of agreements there was greater emphasis on human resource development through retraining and re-establishment of people affected by other ARDA activities. Through regular and special ARDA programs assistance has been provided to projects intended to help native people. ARDA III continued the types of activities supported under the earlier agreements and it is now winding down.

The Atlantic Development Board (ADB) was created in 1962 to advise the Minister of Transport on the formulation of a comprehensive and systematic approach to regional development for the Atlantic Provinces. In 1963, the ADB became responsible for administering a development fund for the Atlantic Provinces. The projects supported were
primarily large infrastructure investments. The ADB was disbanded following the creation of DREE, although expenditures on outstanding commitments continued.

The Area Development Agency (ADA) was set up in 1963 to induce industry to locate in areas of chronic high unemployment or underdevelopment. Until 1955, the ADA administered an incentive program consisting of three year income tax holidays and accelerated depreciation allowances for firms locating in designated areas. Beginning in 1955, when the Area Development Incentives Act (ADIA) was introduced, firms had the option of receiving capital grants on a specified sliding scale based on capital cost instead of the tax holiday. In 1967 the tax holiday option was removed. Although the Act itself would have allowed discretion in the awarding of incentives, in practice ADIA was administered on a non-discretionary basis. Qualifying firms automatically received the maximum allowable incentive which was based on a sliding percentage of capital costs. No grant was to exceed $\$ 5,000,000$. ADIA was discontinued after the introduction of the Regional Development Incentives Program (RDIA). While the cost of ADIA plus the pre-1965 tax concessions is known to have been in the hundreds of millions of dollars, a precise accounting has never been published.

The ADIA program has been replaced by RDIA grants, but commitments entered into prior to December 31, 1969
were still being honoured through 1973 and later (DREE, 1973a: 20; and DREE, 1973). By 1973, however, the bulk of capital incentive grants were RDIA grants, provided in designated regions under terms of the Act and in Special Areas.

The Regional Development Incentives Act came into effect in 1969 following the establishment of DREE. The objective of the program was to stimulate expansion of manufacturing industry in designated regions of Canada. The specific regions enjoying such designation have varied somewhat during the period of RDIA operation. The designated areas now include all of the Atlantic provinces, Manitoba and Saskatchewan, most of Quebec (except for the Montreal-Hull corridor) and a large part of Northern ontario. Parts of Alberta and British Columbia and also the Montreal-Hull corridor had previously been eligible for RDIA assistance. Incentive assistance could, however, still be provided to these and other undesignated areas under the General Development Agreements with the respective provinces.

RDIA assistance took the form of grants to firms starting a new manufacturing or processing operation or expanding or modernizing an existing one. Depending on the type of project and the period in which the grant application was made, grant offers were based on a
percentage of capital costs and a specificd amount per direct new job created (later changed to a porcentase of the salary bill). Up to 80 percent of the incentive is paid once the facility is in commercial production, with the remainder being paid after a specified performance period.

The establishment of the Fund for Rural Economic nevelopment (FRED) in 1966 was a significant step in the direction of comprehensive development programming. Agreements were signed with Prince Edward Island (covering the whole province), New Brunswick (for the Mactaquac and Northeast New Brunswick areas), Quebec (covering the Gaspé), and Manitoba (for the Interlake area). Land management, education, infrastructure investment and industrial development especially in the traditional primary sector, tourism and manufacturing were the major activities funded. Each of the programs was tailored to needs specifically identified in each of the agreement areas.

Newstart and the Newfoundland Resettlement Program wore begun prior to DREE and then phased out by the Department. Newstart was aimed at "preparing the disadvantaged for useful employment" (DREE, 1973a: 46). The Newfoundland Resettlement Program provided cash grants to persons in outport communities which were considered non-viable in order to permit such persons to move to selected growth centres (Copes, 1972: 98).

The Special Areas infrastructure program, introduced in 1969, has been geared to enhancing certain selected areas as sites for future private investment expansion (1)REE, 1973a: 27). To this end, federal-provincial development agreements are negotiated and federal expenditures are made on: municipal services such as water and sewer systems, transportation facilities, schools, social development (manpower services, libraries, housing and urban renewal), land acquisition and economic development (industrial parks, service facilities to industry and recreation and tourist developments). The coverage of projects within the Special Areas is extremely broad, encompassing almost all types of municipal public services. The infrastructure expenditures are heavily weighted in favour of roads, with expenditures on municipal services such as water and sewer systems ranking second in importance (APEC, 1971: 26-36, and Appendix Tables c-4 through c-8).

The highways expenditures outside the Special Areas are restricted to the Atlantic region and are a combination of commitments for infrastructure and trunk highways carried over from the Atlantic Development Board, and new highway programs launched by DREE in the early l970's. These highway expenditures accounted for 30 per cent of total expenditures of infrastructure assistance over
the early 1970's (DREE 1973a: 29).
DREE's review of its programs in 1973 argued that:
"most of them were producing useful results at reasonable cost and should therefore be continued. However it also made clear that these existing programmes, each of which attacked primarily a single factor in the total problem of regional disparities, were not in themselves sufficient to enable full realization of development opportunities identified in the various regions" (DREE, 1973c).

DREE concluded that a new "multi-dimensional approach" was required.

The response was to announce a new policy approach embodied in a series of General Development Agreements (GDA) and subsidiary agreements. Each GDA defines objectives, a broad strategy to achieve them, the extent of the activity and the types of co-operation and support that will be required. The details of projects to be carried out under these umbrella agreements are described in various subsidiary agreements. GDA's have been signed with all provinces except Prince Edward Island which is covered by a comprehensive FRED plan.

Examination of the content of the various subsidiary agreements signed to the end of $1974-75$ shows that the new multidimensional approach is more a cosmetic than a real change from previous practice. ${ }^{l}$ Most of the expenditures covered by subsidiary agreements do not differ from the sorts of projects carried out under
previously existing DREE programs. Some are in fact continuations of projects begun under Special Areas agreements or other programs. (For example, the \$10 million highways agreement signed with New Brunswick in June, 1974, was primarily a continuation of work begun under previous federal-provincial Special Highways Agreements; similarly, the King's Landing GDA agreement represented a continuation of work begun under the FRED Mactaquac Agreement [Federal-Provincial Relations Office, 1975: 295, 288]).

Functional Breakdown of DREE Expenditures

A functional classification of DREE expenditures is considerably more illuminating than the program classification provided in departmental publications (Appendix Table (-1). The classification of expenditures utilized by DREE in various publications provides little information on the composition of these expenditures. Frequent changes in classifications used in the Estimates and a reduction in the information provided in the Department's annual reports make the task of producing a meaningful expenditure breakdown extremely difficult.

Based on our examination of DREE programs we concluded that the most useful functional classification of DREE instruments would group expenditures according to the
following categories: industrial incentive grants and other industrial assistance, roads, sewers and other infrastrusture, agricultural assistance, manpower and other social assistance, education, and developmental planning and administration.

The industrial incentive grants category includes payments under both $A D I A$ and RDIA. Expenditures on roads occur as part of almost every program (Special Areas infrastructure, highways outside Special Areas, FRED, PFRA and GDA). Expenditures on other infrastructure such as sewage and water systems occur under Special Areas agreements, FRED, PFRA, ARDA and GDA. Expenditures on agricultural assistance, manpower and other social assistance have been made under special Areas agreements, FRED, ARDA, Newstart, PFRA and GDA. Finally, the expenditures on development planning, and administration of the projects are less directly linked to any one of the above-named functional categories and are more in the nature of a general expenditure that arises in the overall federal planning of regional cconomic policy.

We have concentrated on the functional disaggregation of r rants and contributions since they account for 87 percent of NRFF budgetary expenditures. The functional breakdown by region of DREE grants and contributions from the
establishment of the Department to March 31, 1975 is provided in Table 2.1.

We found it necessary to estimate this breakdown using a variety of published sources.? (The methodology of estimation is described in Appendix C). We are confident that the resulting functional breakdown is an accurate representation of the grants and contributions made by DREE.

Particularly striking is the discovery that four expenditure categories account for 75 percent of all grants and contributions: incentives 30 percent, other industrial assistance 9 percent, roads 30 percent, and sewage and other infrastructure systems 6 percent. The incidence of benefits from the DREE program as a whole will thus depend primarily on the incidence of these four categories of expenditure.

Evaluations of regional development programs in Canada have focussed to a great extent on the RDIA program. As we have seen above, industrial incentive grants under RDIA and ADIA have been a major DREE instrument, accounting for 30 percent of all grants and contributions made by the Department during its first six years. Although DREE expenditures for road construction have equalled the incentive grants programs in magnitude, there is almost no information available

Functional Classification	Region					Canada Total	Canada Percentage
	Atlantic	Quebec	Ontario	Prairies	B. C.		
Incentive grants	144.1	164.7	53.1	77.0	21.8	460.7	30
Other industrial assistance ${ }^{2}$	53.8	87.9	8.3	1.4	-	151.4	9
Roads and highways	272.3	173.7	0.6	14.1	2.5	463.2	30
Sewers and other infrastructure ${ }^{3}$	53.6	36.9	4.1	0.9	-	96.5	6
Social assistance ${ }^{4}$	34.4	22.9	2.2	16.5	1.2	77.2	5
Manpower ${ }^{5}$	6.1	-	-	19.6	-	25.7	2
Agriculture	24.2	16.4	26.9	53.5	7.6	128.6	8
Education	45.9	0.4	-	1.3	-	47.6	3
Planning and administration	42.2	17.5	-	0.8	0.4	60.9	3
Other	38.1	2.5	1.8	5.5	-	47.9	3
TOTAL EXPENDITLRES	714.7	522.9	96.9	190.6	33.5	1558.6	100
Percentage Distribution	46	34	6	12	2	100	
Functional classification for g Other industrial assistance als includes sewers, water, power a includes health, social assista includes adult education and ma	and contri des: tou strial pa using and assistanc	tions w st-rela s. ative	ch accou d indust ple.	for 87 al assist	cent of	EE budg	xpenditure
Source: Appendix Table C-3							

on the impact of this spending. With few exceptions, this is also true of the remainder of DREE programs. DREE is not unique in this respect. Few federal departments make available information that would permit outside evaluation of their programs.

It is worth noting the explanation of this lack of analysis that has been provided recently by the deputy minister of DREE:

> "This program RRDAJ seems to have attracted more specific interest from the academic community than all of the other DREE activities put together - in spite of the fact that it currently accounts for less than 20 percent of our program expenditures. The explanation may be in the fact that, for some people at least, incentives to industry are inherently dangerous or just plain bad. or it may be in the fact that the Minister is required by statute to make known to Parliament certain details about each action taken under the program, which means that a good deal of information is publicly available. To some extent, the information lends itself to quantitative examination. And, if economists have one basic failing, it is a tendency to focus on things that can be described by numbers"
(Love, 1975: 25)
Due to the absence of empirical evaluations of other DREE expenditures, the discussion which follows concentrates primarily on RDIA. The functional breakdown of DREE expenditures that we have derived in this study can be used to identify other major categories of spending whose impact should be studied. Investigation of the effectiveness of DREE expenditures on roads, sewers and other infra-
structure should receive the highest priority.

Efficacy of DREE Instruments

In this section we discuss available evidence on the effectiveness of various DREE programs. This exercise provides a guide for determining the extent to which DREE expenditures may be captured as windfall gains by various groups. It also assists with the determination of appropriate distributive series which is carried out in Part III.

Empirical evaluations of regional development policies outside Canada have concentrated on the extent to which an instrument of regional economic policy has been effective in influencing the location decision of firms; the results have supported the conclusion that such incentives have not been a primary factor in most firms' decisions about plant location, but have been a strong secondary factor in a small number of cases (Bridges, 1965 and 1965a; Gold, 1965; Hale, 1968 and 1969; and stober and Falk, 1969).

Tncentive Grants:

A Measure of Job and Capital Incrementality
It is extremely unlikely that of all jobs associated with RDTA - supported projects some would not have been
created in the absence of incentive grants (DREE, 1973: 38; Usher, 1975: 564-65). Job incrementality is the extent to which such grants are effective in calling forth new jobs. ${ }^{3}$

There have been very few published empirical investigations into the efficacy of DREE's capital incentive grants (APEC, 1971; Springate, 1972 and 1973; DREE, 1973; and Usher, 1975). 4 The Atlantic Provinces Economic Council in its Fifth Annual Review (APEC, 1971: 68-72) presented the findings of a mail survey of firms that had accepted capital incentive grants from DREE. Firms outside the Atlantic region were queried as to grants for new plant construction only, while firms receiving grants for projects inside the Atlantic region were queried as to all grants. Approximately 20 per cent of replying firms indicated that their capital projects would have proceeded in the absence of a grant. Of the remaining firms, the questionnaire was not sufficiently discriminating to determine the minimum size of grant that made operation a financial possibility; consequently somewhat less than 80 per cent of grants were effective in calling into place additional investment. Unfortunately the study was not able to determine the locational options open to the firms (DREE, 1973: 42).

Springate examined the business investment decisions of a sample of firms receiving incentive grants from DREE
during the period from DREE's creation to September 1971 (Springate, 1972 and 1973). Senior-level executives responsible for investment decisions of the firm were interviewed. They were questioned about how their firms had reached the decision to build a new plant or expand a facility and the extent to which the availability of an incentive grant had influenced the location, timing or size of the project. Springate found that, for the limited sample of firms, the overall effectiveness of incentive grants - the location, timing, size and investment amount - ranged from 30 per cent for large firms to 46 per cent for smaller firms (Springate, 1972: 155, 222-223, 285).

The location effect - the extent to which the grant facilitated or caused the firm to select a losation in a designated region - was extremely small for large firms (serving mostly to attract foreign investment to Canada) and not much more substantial for small firms (in several cases moving the location of the facility less than seventy miles in order to qualify for the grant). In large part this seemed to result from the firms' location choice process: large firms considered many sites before narrowing the range in terms of the most profitable; it was only if these few preferred sites were thought to be located where incentive grants were available that
the firm would seek out details of the available grants (Springate, 1973: 33). Small firms, on the other hand, considered first the existing plant location as a possible site, and only if it were not suitable did they look at other sites - usually only one or two others not too far removed from the existing plant. In such circumstances the firm considered the availability of an incentive grant as an integral part of the location choice decision (Springate, 1972: 229). Finally, for the firms examined the grant had no effect in speeding up the timing of the investment, although it had a modest effect in augmenting the size of the facility for small firms (Springate, 1972: 186, 275 and 1973: 40).

The Springate findings have come under critical scrutiny because of the methodology of relying upon unstructured subjective interviews and because of the difficulty of discerning biased information given in such interviews (DREE, 1973: 45). The Springate methodology, if it were adhered to rigidly, was not unstructured, although there were clearly situations in which the judgement of senior level executives was relied upon; it is not clear whether this would tend to overvalue or undervalue the importance of incentive grants in the location choice decision. It is possible
that any approach that relies upon extracting information from persons by discussion, and interview, or mail survey runs the risk of receiving biased information.

The Springate findings are based on a sample of thirtyone firms, recipients of grants as of September 31, 1971. Some may view this as too small a group of firms from which to draw general conclusions about efficacy of grants; we consider that it is necessary to be cautious about the weight to be attached to the findings. In addition it is possible that the early stage of development of DREE grants (and possibly limited information) at the time of the study reduced the number of firms that would have considered such grants as an integral part of the location choice decisions right from the beginning of the search - at least for small firms. It is difficult to judge whether this is a substantial reservation, especially in view of the fact that ADIA grants preceded the RDIA grants by a number of years, thereby providing oxtensive information on the existence of this type of rrant.

I'he Department of Regional Economic Expansion carried out an analysis of incrementality - the extent to which jobs and capital investment would not have been put into place in the absence of a grant - in order to determine the efficacy of the grants (DREE, 1973).

The first stage of DREE's analysis attempted to determine the incidence of RDIA projects in which the firm has a choice of location. A sample of projects was chosen in an unspecified manner and the following criterion was applied to determine the existence of a location option. If the project involved natural resources and if less than two-thirds of production were for sale outside the region, the firm had no location option. If the project involved no use of natural resources or if it involved use of natural resources and more than two-thirds of production were for sale outside the region, then the firm had a location option.

The second stage involved relying upon the classification by DREE provincial offices of incentive grants according to whether they were believed to have had location effects, size effects, timing effects and viability threshold effects.

The projects of any firms classified as having a location option were assumed to be 100 per cent incremental to the region. It was assumed that 20 per cent of the jobs associated with size and timing effects were incremental while two-thirds of the jobs associated with viability threshold effects were incremental. The outcome of the analysis is shown in Table 2.2. DREE concluded that RDIA incentive grants were 70 per cent incremental with respect to jobs (DREE, 1973: 40, 41, 45). 5

Table 2.2

DREE Determination of Job Incrementality

| Effect
 Subject to each effect | Percentage of Jobs
 Incrementality
 Weighting | contribution of
 effect to total
 incrementality |
| :--- | :---: | :---: | :---: |.

Source: adapted from DREE, 1973: 40-42
As a result of the 1973 program review DREE concluded:
"that the program was basically sound and was serving a useful purpose in the slowgrowth areas of the country. I must say that, in the several academic pieces written on the subject, I have not seen convincing evidence to the contrary. Nor have I seen much evidence that the Departmental assessment report to which I have referred has been read" (Love, 1975: 26).

What can one conclude from these three studies? The APEC findings suffer from a lack of discriminating questions and analysis that could have probed efficacy more carefully. The Springate findings are drawn from a very small sample, although they do have the merit of being derived from the investment decision-making process of the firms involved.

DREE's evaluation suffers from incorrect or arbitrary assumptions, and an approach that lacks a specific theoretical framework. The grants are found to be effective from a low of 30 per cent (Springate) to a high of 80 per cent (APEC). We reject the $70-80$ per cent effectiveness measures of DREE and APEC respectively for reasons given above. We are also hesitant to accept the Springate results because of the size of his sample. In the following discussion we derive the estimate of incrementality which will be used in this study to help determine the distribution of RDIA benefits. We begin with a discussion of some of the shortcomings of the approach used by DREE to determine incrementality.

DREE acknowledged the difficulty of evaluating incrementality and of testing the assumption that existence of a defined location option demonstrates an incremental impact. These inherent difficulties are, in our view, exacerbated by some parts of the methodology adopted by DREE.

The criterion for determining the existence of a location option through consideration of natural resource and market factors is derived by assumption rather than from any stated theoretical framework. Further, the regions utilized to categorize market sales are left undefined. The equating of a location option, however
derived, with complete incrementality is difficult to accept. One would expect that some firms with several location options would have chosen the designated region even in the absence of a grant. The impact of DREE's assumption is to bias the result by weighting all projects with any location option as completely incremental.

These considerations led us to reduce the incrementality weighting of cases with location options to 50 per cent (ie, half the value assigned by DREE). This is the sole adjustment to the DREE figures which is embodied in the incrementality estimate which we used as our standard working hypothesis. This adjustment alone produces an estimate of total job incrementality of 48 per cent (compared to DREE's 70 per cent: see Table 2.2). For the reasons set out below we believe that this is a very conservative adjustment and that the true incrementality figure is much less than 48 per cent. This estimate of incrementality does not take into account the possibility that even when a grant has an incromental effect, the size of the grant may be larger than would have been necessary to achieve that incremental effect. For example, if the grants paid could have been, on average, one third smaller and still have achieved the same incremental effect, the non-incremental proportion of grant monies paid would be about two-thirds.

In other words, if the objective of RDIA grants is to create incremental effects on jobs and investment, it is possible that one third or less of the amounts paid out have had genuinely incremental effects. This estimate is consistent with Springate's findings referred to earlier.

One additional factor which is not built into this estimate of incrementality is the "crowding-out" effect. If RDIA-supported projects cause reductions in investment and employment levels realized by firms not receiving DREE grants, then these reductions should be reflected in the net incrementality estimate. Such reductions could come about as a result of competition for limited resources (eg. fish stocks) or limited markets.

Furthermore, the sample of subsidized projects which DREE selected to determine the extent of the locational effect was not a representative one. Although it consisted of only one quarter of total net accepted offers these represented over half the total incentive commitments and expected jobs (DREE, 1973, 40). Thus the cases studied for locational effects were probably at least twice as large as the average RDIA project. If, as DREE argued, there was no evidence of location options for small projects (grants less than $\$ 50,000$), and the incidence of locational options was greatest amongst the
cases receiving grants in excess of $\$ 500,000$, the sample's bias towards larger projects would produce an estimate of incrementality due to location effects that would be too high.

The determination of size, timing and viability threshold effects by provincial offices is at best an imprecise, subjective affair and quite possibly misleading, without some idea of the datum on which such a selection was made. In addition, even if a project were advanced in time due to an incentive grant, the jobs created, while beneficial to some workers in the short run, would have been created anyway. The 20 per cent incremental factor was assigned by DREE in an apparently arbitrary fashion. There is also no theoretical substantiation of the two-thirds fraction of incremental jobs due to viability threshold effects.

One conclusion that follows out of this discussion is that it is extraordinarily difficult to quantify the qenuinc "incremental" jobs and capital investment attributable to quvernment-assistance programs. It is a difficulty that 1 races regional-policy makers everywhere:
"If a firm is to set up a branch in an area where it knows the government is ready to offer incentives, but that these incentives are available only to firms who would not otherwise have gone there, it is unlikely to present itself as other than a reluctant mover. In the same way, if incentives are
available only for "additional" expansions, as for example, where a multi-branch national firm is encouraged to expand a branch in an assisted area rather than elsewhere, the expansion will be presented as "additional", and no government will find it easy to prove what the firm proposes is not undertaken for the reasons that it says" (EFTA, 1971: 95).

Our earlier stated belief that the 48 per cent incrementality figure used in this study is probably too high is also supported by the following analysis of investment levels.

Another approach to determining the probable job creation impact of incentive grants would be to examine aggregate investment and employment levels before and after the introduction of such grants. This approach was attempted in the 1973 DREE program review; however the claims for investment generation and job creation made by DREE are greater than would be justified by the statistical evidence. Examination of DREE'S methodology reveals a peculiar logic.

Regression analysis was employed to determine the level of manufacturing investment in the Atlantic region, Quebec, Manitoba and Saskatchewan that would have been expected based on historic shares of national investment. Actual investment during the first three full years of RDIA activity was then compared to the "expected" value.

When investment in the Atlantic Region was found to be higher than predicted, DREE concluded that "it is reasonable to assume that the RDIA program made a substantial contribution" (DREE, 1973: 48). On the other hand, when manufacturing investment in Quebec was found to be less than predicted based on historical relationships, DREE argued, "It seems reasonable... to conclude from the estimates that, without the program, the province would have suffered from a more serious investment silump and would have been slower in showing signs of recovery" (DREE, 1973: 50). Similarly, when actual manufacturing investment in Manitoba and Saskatchewan fell short of expectations, DREE concluded that "although not insignificant, RDIA investment... was not sufficient to reverse a declining trend" (DREE, 1973: 52). We have serious reservations about this intcrpretation of the empirical results.

In the case of Quebec, DREE estimated that RDIAsupported investment in 1972 was $\$ 332.2$ million. Total manufacturing investment in Quebec in that year was $\$ 665.8$ million (DREE, 1973: 51). If we were to accept the 79.7 per cent incrementality figure claimed by DREE with respect to investment, DREE is in effect arguing that without the RDIA program, manufacturing investment in Quebec in 1972 would have been $\$ 400.7$ million

At this level, Quebec's share of total Canadian manufacturing investment would have been 13.4 per cent. This contrasts with Quebec's shares of 22.6 per cent and 23.5 per cent in the previous 5 and 10 year periods respectively. The share actually observed in 1972 of 22.2 per cent, would seem to be quite consistent with the historical averages. Without any evidence from DREE as to why Quebec manufacturing investment would in the absence of RDIA, have been two-fifths lower than the actual figure, it is difficult to accept the claim of 79.8 per cent incrementality. 6

Usher advances a similar argument (Usher, 1975). However, his case is marred by his use of the "expected eligible capital cost" figures from DREE (1973: 16) rather than the annual "estimated RDIA-supported investment" data provided by DREE (1973: 49, 51 and 53). Only 43 per cent of the projects with net accepted offers as of the end of 1972 had actually commenced production, so it is unreasonable to assign, as Usher did, all of the "expected investment" to the pre-December 1972 period. Similarly, Usher's treatment of employment creation uses "expected" rather than actual numbers for RDIA job creation. Since DREE has only rarely provided data on the number of actual jobs created, it is difficult to estimate to what extent the Usher
results are biased. At any rate, even if more appropriate figures for DREE job creation claims could have been used, we think that the conclusions that can be drawn from Tisher's analysis would remain valid. Available evidence on employment growth is inconsistent with DREE's claims of incremental job creation.

The DREE estimates of investment creation in Manitoba and Saskatchewan are similarly open to question. Actual eligible investment in the two provinces in 1971 and 1972 was only 79 per cent of the level predicted on the basis of the two provinces' historical share of national investment. If one were to use the 79.8 per cent investment incrementality figure, it would imply that manufacturing investment in the categories eligible for RDIA support was on average 60.7 per cent higher than it would have been in the absence of RDIA incentive grants. This is the basis of the conclusion that the incentives program "helped materially in...offsetting a lagging manufacturing investment in the Prairies" (DREE, 1973: 54). In the absence of supporting evidence the incremental investment impact claimed by DREE stretches the limits of credibility. ${ }^{7}$ Even though some projects may have gone ahead with RDIA support that would not otherwise have done so, they may have displaced other investment.

The investment data provided in (DREE, 1975) for the Atlantic region are also open to question because although an increase over the historic shares is shown, the data include large increases in investment in oil refineries, a linerboard mill and other projects not supported by RDIA grants (DREE, 1973: 48). If these particular categories of investment were eliminated from consideration, it is no longer apparent that the data would unequivocally support DREE's conclusions regarding investment stimulation.

In summary, based on the aggregate indicator approach it is possible that none of the amounts paid out have had genuinely incremental effects.

To the extent that RDIA grants are without
incremental effects they represent windfall gains to the owners of the firms in receipt of the grants. Where there is a location or a viability effect, the gain to the owner of the firm is the increased rate of return received due to the grant change. We are led to conclude that DREE's incrementality estimates for labour and capital are overestimates. It is most unlikely that true incrementality amounts to more than 48 per cent, and it possible that it is as low as zero. We have decided to select, for purposes of our standard case in the empirical estimation of Part IV, an
incrementality estimate of 48 per cent, although we think this is too high. We also examine the results employing incrementality estimates ranging irom completely eftective to one-third effective.

Other Programs

The literature on the efficacy of regional development programs other than capital incentive grants is even more limited than the literature on capital incentive grants. The Atlantic Provinces Economic Council expressed the view that the ADB "was not successful in establishing a development plan that would coordinate [infrastructure] expenditures toward specified targets" (APEC, 1971: 13).

In connection with the Newstart undertakings, many of which were quite innovative, evaluation of the life skills course showed that students developed greater seli-confidence and ability to discuss their problems. However, Newstart activities demonstrated the extreme difficulty of providing successful academic upgrading to disadvantaged adults. The Newstart corporations found that the jobs created by industrial and regional development plans were not filled by the poor of the development areas, "unless significant efforts are made to motivate, train, place, counsel and sustain such people in their preparation, entry and adjustment to the work environment" (Saskatchewan Newstart, 1971: 10 as quoted in Kerr and Tienhaara, 1973).

Copes judged the Newfoundland Resettlement Program to be a mixed success (Copes, 1972). The employment opportunities were enhanced somewhat while over the longer term the fishing industry was to be rationalized. However, counselling services were judged less than adequate and the limitation of assistance to intraprovincial migration inhibited the success of the program (Copes, 1972: 170).

One of the few public evaluations of PFRA, MMRA and ARDA was provided by Buckley and Tihanyi, (1967). Despite the fact that their findings derive from the experience of the pre-DREE period, it appears likely that they would also apply to the bulk of the DREE expenditures on these programs. It is not clear whether any changes initiated in these programs since 1967 would alter substantively the findings of Buckley and Tihanyi.

They found that the early PFRA programs were highly effective in halting soil destruction and in improving farming methods. They concluded, however, that grain farmers received little income benefit although some improvement in non-monetary benefits (i.e., lawns, gardens and recreation) and municipal water supplies were enjoyed. They found that,
"the income added through PFRA programs has been widely distributed among farmers but in relatively small amounts in most cases. There have been gains for larger operators
as well as small........The fact is, the smaller farmer has been in a weak position to reap the benefits of PFRA programs because his resources are few" (Buckley and Tinanyi, 1967: 11).

Buckley and Tihanyi found "no evidence that the now completed MMRA program has resulted in extensions to marshland agriculture or in more intensive utilization of the protected land," (Buckley and Tihanyi, 1967: 15). They further concluded that the program had failed to produce significant additions to farm income.

PFRA and MMRA were patterns for the initiatives undertaken by ARDA, particularly in the early agreements which concentrated on improvements in land use and the development of agricultural soil and water resources. Buckley and Tihanyi concluded that:
"Moreover, from such investments the poorest segment of the rural population will seldom benefit. The fragmented empirical evidence, as well as logical analysis suggest that few of the ARDA investments in land and water would satisfy either the minimum criterion of economic efficiency or the goal of income redistribution in favour of the poor....... Indeed, it is possible that ARDA has played a part in prolonging undesirable farm situations: the small addition to farm income that ARDA promises could have influenced some farmers to postpone or reject potentially better offfarm solutions" (Buckley and Tihanyi, 1967: 16-17).

Conclusions

Part II has provided a brief overview of the instruments of federal regional economic expansion. We have identified
the programs and agencies such as PFRA, MMRA, ARDA, ADB, ADIA, FRED, Newstart and the Newfoundland Resettlement which were in existence at the time DREE was established and were brought under the DREE umbrella.

We derived a functional breakdown of DREE expenditures for each of the five regions in Canada. It was discovered that DREE expenditures for road construction were equal in magnitude to the much more publicized incentives program. Expenditures for sewage systems and other infrastructure, agricultural assistance, and other industrial assistance were also major expenditure categories. Many of the programs established prior to DREE and during DREE's early years are being gradually phased out by the department. However, the types of expenditure made under these earlier programs continue to be made under the umbrella of the General Development Agreements. Evidence available from a variety of sources suggests that the incremental job creation resulting from the RDIA program is much less than DREE has indicated. In fact, of the jobs associated with RDIA grants it seems most unlikely that more than half are incremental and quite possible that this proportion is as low as zero. Similarly, available evidence suggests that the RDIA program has had little effect on capital investment. The absence of any publicly available analysis of the effectiveness of DREE spending on roads, sewers, or
any of its other major expenditure categories is unfortunate. The Department has even refused to provide details on the amounts it has actually spent on these types of expenditure. For this study it was necessary to derive estimates of these amounts based on the fragmentary evidence which DREE does release. This deficiency in information provided by DREE should be rectified.

Conceptual and Methodological Framework

> "Social reality is complex: too much concern for strict adherence to all aspects of reality and too much limitation on the development of a specialized language to deal with it may grind the scientific inquiry to a halt. Da Vinci was unable to construct a flying machine because he was trying to reproduce a bird. His planes resembled birds so much they could not fly. A bird with fixed wings and a propelling beak proved a much better "simulator" of the "real" thing than a straight copy.

Gilles Paquet, 1971: 51.

Part III

Conceptual and Methodological Framework The Conceptual Dimension of the Framework

In this Part we develop a framework within which existing data can be utilized to examine the effect of DREE expenditures on the redistribution of income by region and income class in Canada.

Fiscal incidence is a measure of the change in relative real income positions of family units in response to the taxation and public expenditure policies of the public sector. Theoretically it is a general equilibrium problem par excellence - the impact of the public sector on the redistribution of real income. Any instrument of budgetary policy - be it a tax instrument or an expenditure instrument - has the potential to affect the flow of income from its sources to a family unit relative to other family units and the uses to which such income can be put by a family unit relative to other family units. Analysis of the budgetary instruments in terms of these two effects provides the foundation upon which can be developed the redistributive effects of the public sector (Dodge, 1975; Gillespie, 1967 and 1975; and Johnson, 1968).1 This methodology is adopted in analysing the redistributive impact of DREE's major program instruments, enumerated above in Table 2.1.

Our approach in the following discussion is to analyse the general equilibrium effects of a DREE expenditure instrument within the context of a specific neo-classical model. Following

Musgrave (1958, chs. 15 and 16); Harberger (1962); Mieszkowski (1967 and 1969); and McLure (1971, 1972 and 1974); we derive, where possible, the predicted qualitative changes in the relative factor prices and relative product prices that permit one to discuss the income sources and income uses effects of fiscal incidence analysis, noted earlier. These predicted results provide theoretical guidelines for choosing the magnitudes which form the working assumptions of our standard case.

It is important to be clear about our methodology; we are not testing the derived hypotheses against the data in an econometric sense. Rather, we are arguing that if the economy behaves in the manner of our model then certain hypotheses can be derived about the direction of the changes in relative factor and product prices. We then choose magnitudes that are consistent with these derived hypotheses. This last step, while not based on actual empirical evidence, is necessary given the lack of solid information on such matters. The working assumptions of our standard case are subjected to a sensitivity analysis (see Part IV) in order to determine to what extent variations in the chosen magnitudes alter the general conclusions of the standard case. Given the small variation in results, we are confident that our methodology and findings are reasonable.

Capital incentive grants

We assume a two sector economy (a high income sector and a low income sector) with fixed total supplies of capital, labour
and land, perfect competition in the factor and product markets, and equal marginal propensities to consume, but not average propensities to consume, across demanders. There exists perfect mobility of capital, complete immobility of labour and land. For some reason, labour is not fully employed in the low income sector; for example, if a legal minimum wage law prevents the wage rate from falling sufficiently far to equilibrate with the value of the marginal product at a full employment level.

A subsidy or incentive grant to capital used in the low income sector is introduced. ${ }^{2}$ On the income sources side, the price of capital, the mobile factor, is increased as capital flows from the non-grant - receiving sector to the grant receiving sector in search of the higher net returns attributable to the grant. These net returns to capital are equalized at a higher price. The price of the immobile factor, labour, in the non-grant - receiving sector will fall because the outflow of capital lowers the marginal productivity and thus the value of the marginal product of labour. ${ }^{3}$ As capital flows into the grant-receiving sector, the marginal productivity of labour is increased and this effect may both bid up the price of labour and lead to increased employment of previously unemployed labour. This output effect has a positive impact on labour. What happens next depends on the degree of factor substitution.

If the degree of factor substitutability is low, there is little substitution of capital for labour, and the total effect is higher employment at the given wage rate in the grant-receiving
sector. In the grant-receiving sector, relative factor prices have changed in favour of capital owners, but relative factor incomes must have changed less in favour of capital owners, and may have not changed at all or changed in favour of labour. If, on the other hand, the degree of factor substitutability is high, there could be considerable substitution of the lower priced capital for labour in response to the inflow of capital; this reduced demand for labour puts downward pressure on the wage rate and tends to release some labour into unemployment. In other words, the factor substitution effect works in the opposite direction to the output effect noted above, and it could swamp it, resulting in a total effect of lower employment at the given wage rate. 4 Under these circumstances, relative factor prices have changed in favour of capital owners, and relative factor incomes have changed even more in favour of capital owners (as the amount of unemployed labour has increased).

On the income uses side, the product price in the grantreceiving industrial sector will fall relative to the product price in the non-grant-receiving sector, since the gross price of capital used in that sector has fallen. The relative change in product prices depends on the degree of factor substitution in the two sectors, and the relative uses effect depends on the consumption propensities of households across the products of the two sectors.

Given the context of regional economic expansion policy in Canada - the long-run persistence of per capita income differences
across regions, the immobility of land and the apparent immobility of labour (at least in response to considerable wage rate differentials across regions), considerable unemployment of labour in some regions while there is full employment in others - we think that this set of assumptions merits the major focus of attention. ${ }^{5}$ We acknowledge that labour is not perfectly immobile across regions over the long period (Courchene, 1974) but note that DREE policy is aimed at inhibiting such mobility rather than encouraging it. A relaxation of the assumption of complete labour immobility would, among other things, result in decreasing the benefits to the Atlantic region and increasing the benefits to Ontario (see Part IV).

The assumptions of a fixed total supply of labour and capital are convenient for analytical purposes, but as well, are not at variance with empirical evidence on the response of labour to variation in the net wage rate (Break, 1957; Barlow, 1966; and Fields and Stanbury, 1970). Given the instruments available and utilized to affect capital at the margin only, these assumptions are likely to be realistic for capital as well. It is unlikely that an incentive subsidy to additional capital that locates in designated regions
would have an impact sufficiently large that it would call forth an increase in the supply of total capital in the economy. The subsidies would simply alter the location of capital.

We are not unaware of the possibility that capital incentive grants will so alter the rate of return to call forth an increased inflow of foreign capital into the economy. For the purpose of this investigation we have assumed that such effects are sufficiently minor so as not to alter significantly the total stock of capital. In the empirical work discussed later we also ignore the possibility that some of the relative gains to capital might accrue to foreign capital, and we distribute the benefits entirely to family units located in Canada. In reality some income benefits are received by foreign owners of capital; hence some benefits of DREE spending spill out of the country, thus reducing the efficacy of DREE spending as a vehicle for improving the regional distribution of income. Our investigation does not deal with these aspects, and thus overstates the extent to which federal spending on regional economic expansion benefits Canadians.

We do not think that the assumption of perfect competition in product and factor markets is particularly restrictive especially in view of the way things tend to work out in the long run. Imperfect competition can be integrated into the analysis with relative ease and little variation in major conclusions so long as all economic agents continue to maximize utility or profits as their overriding objective. The prices of factors of production would no longer be equal to the value of the marginal product - economic profits could exist on either side of the market - but the earlier general conclusions would still hold. ${ }^{6}$

Finally, the industrial subsidies offered by DREE under the Regional Development Incentives Act (RDIA) can be analysed as subsidies that favour capital relative to labour (see Usher, 1975; Woodward, 1974, 1974a and 1975; and Appendix D).

In summary, the major effects of inserting a capital subsidy into the low income sector of our specified neoclassical model are as follows. On the income sources side, capital incomes
rise relative to labour incomes provided factor substitutability is high, or, if factor substitutability is low they may still rise. If factor substitutability is very low in the grantreceiving sector, and if the effect on the price of capital is less than the effect on the employment of labour, then labour incomes rise relative to capital incomes in that sector. On the income uses side the price of output of the grant-receiving sector falls relative to the price of output of the non-grantreceiving sector.

These results still fall short of a set of simplifying hypotheses that could be used to empirically allocate the differential benefits of the capital subsidy instrument of federal regional economic expansion policy. They do, however, suggest avenues for reducing the alternatives. Information on the degree of factor substitutability would guide a selection of the low or high factor substitution alternative for the low income sector. In the absence of such information we assumed low factor substitutability below. Information on the structure of industries in the low income sector which receive the capital incentive grants would permit us to conclude if the fall in the price of the output of that sector relative to the price of the output of the high income sector has any differential effect on the income uses side. Such differential effects could then be translated into consumption effects, depending on the consumption characteristics of households. We derived the differential consumption effects from the underlying data for our series on
grant-financed output below.
We judge that the major long run general equilibrium effects of a capital subsidy occur on the income sources side of the picture, and only minor effects can be traced through to the income uses effects. Consequently we adopt the following set of working hypotheses in order to render manageable the empirical estimations of the standard case. Total benefits are allocated between income sources and income uses effects, 75 percent and 25 percent respectively. We assume low factor substitutability and allocate two-thirds of the income sources benefits to capital everywhere and one third to labour in the low income sector. The income uses benefits are allocated to consumers of output of the grant-receiving sector and, given the mobility of output, this results in attributing the consumption benefits to all such consumers, regardless of where they live.

Our model predicts that some of the benefits of capital subsidies will accrue to family units outside of the regions or sectors in which the subsidies are initially provided. Many of the owners of subsidized capital reside outside the region in which the initial subsidy is provided, and the owners of capital that does not receive a subsidy benefit because the price of capital has been bid up everywhere. Similarly, many of the consumers of subsidized products reside outside of the region in which the subsidy is received and, given competitive conditions, consumers of substitutable output everywhere benefit as product prices are bid down.

We believe that this set of assumptions provides a reasonable model in the Canadian environment. Nevertheless, to test the sensitivity of our results to extreme variations in the share of benefits exported we also calculate the incidence of DREE spending on the assumption that all benefits remain within the region of initial spending (see Part IV). In addition we vary some of these magnitudes in order to provide a sensitivity analysis of the results based on the standard set of working hypotheses. 7 The full detail of the allocation procedure is found in Part IV. ${ }^{8}$

Expenditures on Roads

Many DREE programs provide expenditures on roads as part of the package of expenditures on the infrastructure of the designated regions and Special Areas.

Expenditures on roads can be considered as costs incurred on behalf of road users - the users of passenger vehicles and the consumers of the services of commercial vehicles - and nonusers (Dodge, 1975; Johnson 1968). The benefits flowing to non-highway use are related to the direct access provided by highways, roads and streets to the owners and renters of property. 9 Accordingly the expenditure share of costs incurred on behalf of non-users can be allocated to property owners and renters. We rely upon the cost allocation between users and non-users as derived in Gillespie, (1975: IV, 13), which allocates 32 percent to non-users and 68 percent to users at the all-Canada level. ${ }^{10}$

The benefits flowing to users from an improved or new road are related directly to the amount of use by passenger vehicle users, and, less directly, to the consumers of products and services that use transportation as an input in their production process. For the latter, given a perfectly competitive setting and a general equilibrium approach, a reduction in transportation cost associated with the increased time and maintenance saving attributable to the improved road system would operate similar to a product subsidy, benefitting the consumers of transported products relative to consumers of non-transported products. For the allocation of highway user costs between users of passenger vehicles and consumers of transported products we rely upon the results of Gillespie (1975: IV, 14), based upon the incremental cost technique used extensively in transportation economics (Pancoast, 1953; U.S. Congress, 1961; and U.S. Congress House Ways and Means Committee, 1961). The incremental cost technique results in an allocation of 67 percent to passenger vehicle users and 33 percent to consumers of transported products at the all-Canada level. 11

The above orthodox approach is based on the assumption of perfect mobility of labour and capital in a general equilibrium setting. The increased road expenditures are similar to a subsidy to the output of road passenger travel and road transportation in the low income region. The long run distributional effects are neutral on the income sources side; and on the income uses side relative product prices change in favour of road-passenger travel
and road-transported products relative to other product prices. The distributional implications depend upon the consumption characteristics of road-passenger travel and road-transported products (Musgrave, 1958: 357-359).

Our standard case, however, assumes that capital is completely mobile, while land and labour are completely immobile in a perfectly competitive setting. We assume that the nature of the immobility of labour assumption is such that labour is immobile across regions, but perfectly mobile within a region across industries (the pertinent industrial sectors being, in this analysis, the travel and transportation sector and the non-travel and transportation sector). ${ }^{12}$ In addition, for some reason, labour is not fully employed in the low income region. A subsidy to travel and transportation is provided in the low income sector.

A subsidy to travel and transportation in the low income region, which increases the attractiveness of this output relative to other output, encourages the mobile factor, capital, to flow from the high income region and from the non-subsidized sector in the low income region into the subsidized sector in the low income region. This results in an increase in the equilibrium return to capital, i.e., the price of capital everywhere rises (McLure, 1971: 38-40). The price of labour in the high income region falls as its value of marginal product is lowered by the outflow of capital. The value of marginal product of labour in the non-subsidized sector of the low income region also falls, but due to our employment assumptions, the price of labour
remains fixed while employment decreases in that sector. For similar reasons the value of the marginal product of labour in the subsidized sector rises, the price of labour remains fixed and employment in the sector rises. The inflow of capital from the high income region assures that the net result of the employment changes will be an increase in employment in the low income region and the mobility of labour within the latter region will assure that some of the labour released from the non-subsidized sector will find employment in the subsidized sector. On the income sources side, then, the price of capital rises everywhere, while the price of labour falls in the high income region and remains steady in the low income region. Income from capital rises, while labour income falls in the high income region and rises in the low income region provided the degree of factor substitutability is low. Given the relative factor shares of the two regions there is a presumption that income from capital will rise relative to the income from labour in both regions. However the presence of very low factor substitutability may lead to labour income rising relative to capital income in the Iow income sector.

On the income uses side the equilibrium adjustment effects are similar to the orthodox approach. The output price of the subsidized sector in the low income region falls relative to the output price of the non-subsidized sector in both regions and, given our competitive assumption, the output price of travel and transportation in the high income region adjusts as well.

Consequently the product price of travel and transportation falls relative to the product price of non-travel and transportation, and consumers of the former are better off relative to consumers of the latter.

This alternative formulation is our standard case and, in allowing for the immobility of labour, results in some distributional implications on the income sources side as well as the income uses side. Given our presumption that the bulk of effects are still to be found on the income uses side and the absence of any quantitative breakdown of the relative sources and uses shares, we allocate one quarter of the benefits to the sources side and three-quarters to the uses side. The low factor substitutability case is employed (as in the incentive grants case) and this results in allocating two-thirds of the income sources benefits to capital and one-third to labour in the low income sector. The full detail of the allocation procedure is found in Part IV. We also examine several alternative working hypotheses, employing the high factor substitutability case in order to provide a range of empirical results. ${ }^{13}$

Expenditures on Sewage Sanitation and Other Infrastructure
Several DREE programs provide expenditure on infrastructure broadly defined - sewage and sanitation facilities, water facilities, power installations and industrial park facilities. Expenditures on infrastructure can be considered as costs
incurred in the process of providing services for residential users and commercial users (Dodge, 1975; G1llespie, 1975; and Johnson, 2968). The benefits flowing to residential users are related to the flow of services from the improved sewer, water and power facilities that are provided to the owners and renters of residential property; accordingly, the expenditure share of costs incurred on behalf of such users can be allocated to property owners and renters. We rely upon the cost allocation between residential users and commercial users as derived in Gillespie (1975: IV, 22) which allocates 67 per cent to the former and 33 per cent to the latter, in the region subsidized.

The benefits flowing to commercial users are related to the reduced costs of the infrastructure input in their production processes, and would operate similarly to a product subsidy, benefitting the consumers of products using the improved infrastructure relative to consumers of other products. Provided that the improved infrastructure is available to a representative line of goods and services, the general product subsidy would accrue to all consumers in relation to their consumption expenditures.

This orthodox approach derives long run distributional implications that are neutral on the income sources side. On the income uses side relative product prices change in favour of residential users in the region receiving the improved infrastructure and in favour of consumers in both regions.

Our standard case, however, assumes that labour is completely immobile. This alternative formulation results in some distributional implications on the income sources side as well as the income uses side (the analysis is similar to the discussion on roads and does not need to be repeated). ${ }^{14}$ We allocate 25 percent of total benefits to the sources side and 75 percent to the uses side. The benefits on the sources side are allocated to capital income (and distributed accordingly); and the benefits on the uses side are allocated to residential users in the recipient regions and consumers of infrastructure-subsidized products in all regions.

Expenditures on Agricultural Assistance

We noted earlier that several DREE programs provide expenditures on assistance to agriculture, broadly defined. These can range from FRED plans to foster land use control, to develop forestry and inshore fishery industries through ARDA programs to "Improve opportunities for increased income and employment of people in rural regions" (DREE, 1973a: 32). 15

One can treat the allocation of benefits from such agricultural assistance programs as a benefit to farm family units, proportional to farm family income (Dodge, 1975; Gillespie, 1967; and Johnson, 1968). The support of agricultural research projects, and the provision of production and marketing services aimed at generating a supply of farm products competitive with an alternative but cheaper source of supply, operate as a subsidy
to agriculture, benefitting farm family units relative to nonfarm family units.

One can argue that the bulk of agricultural assistance expenditures accrue in relation to agricultural income, benefitting low income farmers proportionately just as much as high income farmers. It is arguable, however, whether the thrust of most DREE-related agricultural assistance programs - a thrust that focuses on low income agricultural regions and attempts to improve the agricultural income base of low income farmers - is randomly distributed across income classes among farm family units. Based on our examination of the agriculture-related programs it seems probable to us that the package of benefits accrues more heavily, especially within Quebec, to low income family units.

The practical difficulty we face is extracting a series of beneficiaries that approximates this presumed distributional pattern. In the absence of any clear-cut distributional series we have decided to assume that farm family units benefit by an equal amount per family unit, realizing that this may overstate some benefits to upper income farmers. On the other hand, such assistance programs as PFRA irrigation projects accrue in proportion to farm income, and as a result our allocation methodology may not be too wide of the mark.

Our standard case, then, allocates the benefits of expenditures on agricultural assistance to the farm community and distributes them by a series on farm family units. Given our
assumption of immobile labour, the benefits of such expenditures remain within the region expended.

Expenditures on Manpower and Social Assistance

Several DREE programs provide expenditures on manpower training assistance and social welfare expenditures, aimed at improving the health, housing, and job skills of family units in low income regions. One can treat such expenditures - both the transfer component and the purchase of goods and services as beneficial to the recipient family units and allocate the benefits accordingly (Dodge, 1975; Gillespie, 1975; and Johnson, 1968). We intend to follow the same procedure here. Given our assumption of immobile labour, the benefits of such expenditures remain within the region expended and are allocated by a series on manpower trainees. 16

Expenditures on Education

Several DREE programs provide expenditures on education and education-related facilities as part of a wider set of expenditures on the infrastructure of the designated regions and Special Areas. Fiscal incidence studies have consistently allocated the benefits of education expenditures at the provincial level to students (Gillespie, 1967; Johnson, 1968; Dodge, 1975); and occasionally they have allowed for a more extended treatment where some of the benefits accrue to the general public via externalities (Gillespie, 1975). It is preferable, in our view,
to examine the DREE-related expenditures on education in a similar vein. Whether education expenditures are made by a provincial department of education or partially subsidized by a federal department of regional economic expansion is not relevant to their ultimate beneficiaries, although it may be relevant to the distribution of benefits across Canada.

Expenditures on education provide personal benefits to the students educated by increasing their expected lifetime income compared with students receiving a lesser quality education or compared with non-students. These purely private benefits are distributed by a series on elementary and secondary students. Public expenditures on education may also provide benefits to others than the student. Whether through the existence of merit want preferences or pareto-relevant externalities in consumption, there can be a public good component in addition to the private consumption benefits generally associated with education. ${ }^{17}$ We assume here that there is a public good component of education expenditures. Given our assumption of relatively immobile labour, the public benefits of such education expenditures remain within the region. Therefore we assume that the pure public or general benefits of education expenditures are regional in scope, and they are allocated equally to all within the region according to general expenditure assumption B of Gillespie, (1975). ${ }^{18}$ We adopt, as a working hypothesis, the case in which the benefits of education are divided equally between private benefits and public benefits. ${ }^{19}$

The Methodological Dimension of the Framework

Financing Incidence

Regional economic expansion policies have to be financed and this requires us to note the tax side of fiscal incidence estimates. We do not intend to raise here the question of the shifting of various taxes since it has been dealt with extensively elsewhere (Gillespie, 1967 and 1975; Johnson, 1968; Maslove, 1972; and Dodge, 1975). We rely upon the set of shifting assumptions found in Gillespie (1975) for the purposes of this study (see Appendix Table B-1). Rather, our concern is focussed upon which tax or which mix of taxes can be taken as the means of financing the new government program.

There is no convincing theoretical reason to believe that the federal government prefers one tax over another in the financing of a new program. Taxes are not earmarked in Canada, and, short of earmarking of all taxes, this knowledge is of little help anyway. The major federal taxes seem equally flexible in an upward or downward direction; consequently any one could be a candidate for the financing source. In the light of this, it is probably acceptable to assume that regional economic expansion policies are financed out of general federal revenues and attribute this to a proportionate increase in the entire federal tax structure. We adopt this assumption as our standard case.

The importance of the personal income tax in the federal tax structure has long been acknowledged. It is the one federal
tax with a progressive set of statutory rates, and it has a considerable elasticity of response to changes in its underlying base. The latter characteristic can be cited as a favourable feature of the tax. Given these circumstances it is not unreasonable to consider the personal income tax as an alternative financing vehicle of regional economic expansion policies.

Governments need not rely upon increasing taxes to finance a new program; rather, they can reduce spending on program x in order to increase spending on program y. In such a case, the financing of y is effected by a reduction in expenditures (or a retardation in the rate of increase in expenditures) elsewhere. It is possible, therefore, that federal regional economic expansion policies could have been financed by cutbacks In other federal expenditures. The most general case would be to assume a proportionate decrease in the entire federal expenditure structure.

Regional economic expansion policies are often seen as a source of expansion in real output, an aid in reducing unemployment and a boost to incomes in the region assisted (Bird, 1968 and 1970; Brewis, 1971: 52-45; and Alonso, 1969). In this vein, then, such policies are seen as a long-term substitute for policies devoted to raising poverty-level incomes and sustaining incomes from temporary interruptions such as unemployment. One could assume, therefore, as an alternative vehicle of financing regional economic expansion policies, that federal
personal transfer payments are reduced.
The link between federal regional economic expansion policies and federal equalization payments to the provinces is a close one. The latter is a transfer payment which the recipient provinces can spend in any manner they choose. There is no necessary link between the transfer received and spending on regional concerns within the province, but it is likely that some of the funds go to increase personal incomes, reduce unemployment and provide social amenities within the province. In fact, the federal government argues that equalization payments primarily benefit lower income people in a receiving province (Turner, 1972). To this extent, then, regional economic expansion policies could be treated as a partial substitute for federal equalization payments, the former being financed via a reduction in expenditures on the latter. One could therefore assume, as an alternative vehicle of financing, that federal equalization payments to the provinces are reduced; this could result in either a proportionate increase in provincial taxation or a proportionate reduction in provincial expenditures.

These alternative financing assumptions are summarized in Table 3.1 below. All six alternative assumptions are derived and utilized in Appendix A (see Table $A-4$). Alternative A is chosen as the standard case. In addition, in Part IV we present differences that can occur when any one of the other alternatives is used.

- 64 -

Table 3.1

Alternative Methods of Financing Federal

Regional Economic Expansion
Expenditures

Alternative	Method of Finance
A	Proportionate increase in federal tax structure
B	Increase in federal personal income tax Croportionate reduction in federal expenditure structure
D	Proportionate reduction in federal personal transfer payments
F	Reduction in equalization payments to provinces; proportionate increase in provincial tax structure of affected provinces
Reduction in equalization payments to provinces; proportionate reduction in provincial expendi- ture structure of affected provinces	

Expenditure Incidence

The distribution of the benefits of regional economic expansion policies - expenditure incidence - is the focus of this study. We have analysed the conceptual framework of the treatment of such benefits above, and we present here the general methodological approach. We provided in Part II a detailed discussion of the instruments of federal regional economic expansion policies.

The expenditures of DREE are first allocated to beneficiaries according to the analysis above. These expenditures are then
distributed by region and by income class according to distributive series for the various beneficiary groups. Expenditure benefits attributed to each income class for different groups are then summed to result in an aggregate distribution of expenditure benefits by region and by income class. The elements in this distribution, when expressed as a percent of total DREE expenditures, result in the expenditure incidence estimates for the standard case.

Fiscal Incidence

When the distribution of tax payments by region and by income class is subtracted from the distribution of expenditure benefits by region and by income class, the result is the net fiscal amount. The net fiscal amount expressed as a percent of total DREE expenditures results in fiscal incidence estimates. The share of total DREE expenditures either gained or contributed by each income class in each region is our measure of redistribution attributable to DREE. The bulk of the empirical evidence presented and discussed in Part IV uses this measure of fiscal incidence.

Conclusions

Part III has explored two major points. First, we examined the effects of capital incentive grants, expenditures on roads, education, sewers and other infrastructure, agriculture, manpower and social assistance, on the distribution of income, deriving
conclusions as to their most probable impact. In addition, we emphasized that the financing of regional economic expansion policies is as important as the benefits derived from such policies. Of the six alternate hypotheses that could be defended, we chose a proportionate increase in the federal tax structure as our standard case.

Part IV

The Empirical Results
"I am ill at these numbers"
Hamlet, Shakespeare
"And, if economists have one basic failing, it is a tendency to focus on things that can be described by numbers"

> J.D. Love, Deputy Minister DREE, (1975: 25)

Part IV

The Empirical Results

In this part of the study we estimate the redistributional effects of DREE expenditures by region and by income class. We first discuss the empirical findings for our standard case. Next we consider alternative experiments for the financing of DREE expenditures. Finally, we examine the sensitivity of our results to alternative hypotheses regarding the incidence of benefits from DREE expenditures.

The Standard Case

The hypotheses which we have referred to throughout as the standard case are summarized in Table 4.l. For example, with respect to the capital incentive grants we have adopted the moderate conclusions of Part II that such grants are only 48 percent effective in generating new jobs and additional capital investment. The residual accrues as a windfall gain to capital owners. The remaining general equilibrium effects for the income sources and income uses aspects were derived in Part III for the standard case. The reader is referred to Appendix A for a detailed discussion of the distributive series.

Expenditure Incidence Results
Table 4.2 provides the empirical results of allocating federal regional economic expansion expenditures according to

Experiment Designation (1)	Item (2)	Distributional Hypotheses (3)	Distributive Treatment and Series (4)
B. 8	Capital Incentive Grants ${ }^{1}$	Grants partially (48%) effective; major impact (75%) on income sources side, with remainder on income uses side; low factor substitutability rcsults in 67% of income sources effect attributable to capital, the remainder to labour	76% tu capital income (dividends received) 12% to labour income (wages and salaries) 12% to uses (consumption of grant-financed output)
D. 13	Highway* Expenditures	Grants partially (67\%) effective; major impact (75\%) on income uses side, witl remainder on income sources side; low factor slibstitutability results in 67% of income sources effect attributable to capital, the remainder to labour; within income uses, nonusers receive 32% of benefits, while passenger vehicle users and consumers of transported products receive 67% and 33% respectively of the remainder (national pattern: see Table B-2 for regional allocations)	33% windfall to provincial taxpayers 11% to capital income (dividends received) 6% to labour income (wages and salaries) 16\% to non-users (property users) 23% to passenger vehicle users 11% to consumers of transported products
E. 16	Sewers and other infrastructure	Grants partially (67\%) effective; major impact (75\%) on income sources side; within income uses, residential users in the region and all consumers receive 67% and 33% respectively	33% windfall to provincial-inunicipal taxpayers 17% to capital income (dividends received) 34% to residential users (property users) 16% to consumers (total consumption)
H. 21	Manouwer and Social Assistance	All expenditures benefit recipients within the region	100\% to recipients (manpower trainees)
G. 19	Agricultural Assistance	All expenditures benefit farm family units within the region	100% to farm family units
C. 11	Education Expenditures	Benefits equally divided between private benefits within the region and pure public benefits within the region	50% to students (children $5-17$ years) 50% to all families (broad incuae)
F. 17	Planning and Administration	All expenditures are treated as national pure public goods	100\% to all families (broad income)
M. 24	Operating and Capital Expenditures	Proportional to the aggregate distributive effects of all other instruments	
H.A	Financing of Program	Total federal tax structure is increased.	100\% to total federal taxes
J. 23	Income Base Methodology	Lorenz distribution of fiscal amounts ($B^{*}+R^{*}-T^{*}$) for the given percentage distribution of family unites and for each percentile within the distribution	
	Source: $\begin{aligned} \text { Parts II and III, } \\ \text { experiment designati }\end{aligned}$	sim; and see Appendix A for description uf derivati refers to the original experiment designation as f	of allucation procedure. The nd in Aprendix A.
		1 incentive grants, encompasses thr two satefories: industrial assistance.	(1) capital incentive

- 70 -
TABLE 4.2
Incidence of Federal Regiunal Ecunomic Expansion Expenditures

Region	Family Muney Incume Class									
	$\begin{aligned} & \text { Linder } \\ & \$ 2000 \end{aligned}$	$\begin{gathered} \$ 2000- \\ 2999 \end{gathered}$	$\begin{gathered} \$ 3000- \\ 3999 \end{gathered}$	$\begin{gathered} \$ 4000- \\ 4999 \end{gathered}$	$\begin{gathered} \$ 5000- \\ 5999 \end{gathered}$	$\begin{gathered} \$ 6000- \\ 6999 \end{gathered}$	$\begin{gathered} \$ 7000- \\ 9999 \end{gathered}$	$\begin{gathered} \$ 10000- \\ 14999 \end{gathered}$	$\begin{aligned} & \$ 15000 \\ & \& \text { over } \end{aligned}$	Total
PANEL A: EXPENDITURE INCIDENCE (Percent of total										
1. Atlantic Region	1.44	2.20	3.09	2.75	2.93	2.91	6.99	5.65	2.80	30.97
2. Quebec	. 77	. 76	1.06	1.41	1.43	2.06	5.16	5.40	5.88	23.94
3. Ontario	. 46	. 52	. 47	. 68	. 45	1.00	2.46	3.41	9.74	19.25
4. Prairie Region	1.32	1.28	1.43	1.29	. 88	. 73	2.33	2.09	5.19	16.49
5. B.C.	. 09	. 07	. 39	. 37	. 19	. 67	. 81	1.34	5.44	9.35
6. CANADA	4.08	4.83	6.45	6.49	5.88	7.37	17.75	17.89	29.13	100.00
PANEL B: FAMILY UNIT EXPENDITURE INCIDENCE (Percent of Expenditures received by percentile of family units)										
7. Atlantic Region	1.03	3.67	3.43	3.06	3.26	3.64	4.99	6.28	14.00	3.73
8. Quebec	. 25	. 35	. 46	. 64	. 57	. 86	. 89	1.32	2.67	. 90
9. Ontario	. 13	. 21	. 22	. 28	. 16	. 37	. 30	. 41	2.50	. 52
10. Prairie Region	. 49	. 75	. 89	. 99	. 68	. 56	. 67	. 84	4.72	. 96
11. B.C.	. 06	. 09	. 43	. 53	. 32	. 84	. 28	. 61	6.80	. 84
12. C.ANADA	. 33	. 60	. 83	. 85	. 74	. 93	. 81	. 98	3.51	1.00

[^0]the distributive hypotheses of Table 4.l. The distribution of dollar expenditures by region and by income class (See Appendix Table $A-3$) is converted into a percentage distribution for easier analysis in Table 4.2. The results describe the income gains for each income class in each region attributable to DREE expenditures. ${ }^{1}$

The regional pattern of expenditure benefits is straightforward: the Atlantic region gains the most, followed by Quebec. Of passing interest is the relative size of the gain to Ontario, the third largest and not too far behind Quebec. This result is not unexpected, as several of the distributive hypotheses predict gains to capital, the bulk of whose owners reside in Ontario. Similarly,some of the consumers of subsidized products reside outside of the region in which the subsidy is received. ${ }^{2}$ It follows that due to these leakages the regional distribution of benefits from DREE expenditures will differ from the initial regional distribution of spending by DREE. The extent of the leakages implied by the model is indicated in Table 4.5 below by comparing the initial spending pattern incidence (line 4) with the regional distribution of expenditure benefits (line l).

Throughout the discussion of the empirical results we designate income classes according to the 1969 money income distribution. These designated income classes and the percentage distribution of family units for each region and Canada are presented in Table 4.3. As discussed in note l, the relative shares of the income classes have remained virtually constant
Table 4.3
The Distribution of Family Units, By Income Class, Canada and Regions, 1969

Family Money Income Class	Designated Income Class	Distribution of Family Units					
		Atlantic	Quebec	Ontario	Prairies	British Columbia	Canada
Under \$2,000	Poorest	1.4	3.1	3.6	2.7	1.4	12.3
\$2,000-4,999	Lower	2.4	6.7	7.0	4.6	2.4	23.4
5,000-5,999	Lower-middle	0.9	2.5	2.8	1.3	0.6	8.0
6,000-6,999	Middle	0.8	2.4	2.7	1.3	0.8	7.9
7,000-9,999	Upper-middle	1.4	5.8	8.3	3.5	2.9	22.0
10,000-14,999	Upper	0.9	4.1	8.4	2.5	2.2	18.2
15,000 and over	Richest	0.2	2.2	3.9	1.1	0.8	8.3
Total		8.3	26.7	36.8	17.1	11.1	100.0
Source: Appendix Tables A-1(a) through A-1(f)							
Note: Details	not add to to	due to	nding.				

during the time period studied. ${ }^{3}$
The distribution of expenditure benefits by income class at the all-Canada level is skewed towards the middle-upper and upper income classes. The richest income class, including 8.3 per cent of family units, receives 29 per cent of the expenditure benefits. Their share exceeds that of the five lowest income classes (44 percent of family units) combined.

If one's interest rests on relative income benefits to regions and/or to income classes, then the relevant ranking variable is the 'income class' measure of panel A. If one's interest rests on relative benefits to family units then the relevant ranking variable is the measure used in Panel B. Panel B normalizes the results and presents them in terms of the percentage of expenditure benefit received by a representative percentile of family units within each cell of the table. The Panel B results permit us to discuss the relative gains or contributions of a representative family unit within an income class or in a region, whereas the Panel A results permit us to discuss only the gains or contributions to an entire income class or to an entire region. 4 For example, the richest income group in Quebec received 5.88 percent of total DREE expenditure benefits. Since this group constitutes 2.2 percent of all family units in Canada, a percentile, representative of family units within this income class, receives 2.67 percent of total DREE expenditure benefits.

Within each region a family unit in the poorest income class
Chart 4.l Family Unit Expenditure Incidence, by Region

[^1]8

benefits least and a rich family unit benefits most from DREE expenditures. Representative family units by income class in the Atlantic region benefit relatively more than comparable representative family units in the other regions. The variation in benefits to representative family units across the five regions is highlighted in chart 4.1 (the chart presents the Panel B incidence measures of Table 4.2).

Fiscal Incidence Results

Table 4.4 presents the fiscal incidence estimates. The distribution of taxes required to finance federal regional economic expansion policies are subtracted from the distribution of expenditure benefits, and the resulting fiscal amounts are expressed as a percent of total DREE expenditures (see Appendix Table A-3). The results describe the percentage of DREE expenditures that emerges as a net fiscal gain or a net fiscal contribution for each income class in each region.

The regional redistribution of income effects are gathered together for easier comparison in Table 4.5. We discuss here the standard case results, and examine the rest of the table later. The fiscal incidence estimates are provided in line 3.

The Atlantic and Prairie regions are net gainers whereas Ontario, British Columbia and Quebec are net contributors. The Atlantic Region is the big gainer, with 25 percent of DREE expenditure showing up as a net gain. Ontario's net contribution is 23 percent of DREE expenditures. Given the possible imprecision
TABIE 4.4
Fiscal Incidence of Federal Regional Economic Expansion Expenditures
Canada and Regions, 1969-1975

Regiun	Fanily Money Incume Class									
	Under $\$ 2000$	$\begin{gathered} \$ 2000- \\ 2999 \end{gathered}$	$\begin{gathered} \$ 3000- \\ 3999 \end{gathered}$	$\begin{gathered} \$ 4000- \\ 4999 \end{gathered}$	$\begin{gathered} \$ 5000- \\ 5999 \end{gathered}$	$\begin{gathered} \$ 6000- \\ 6999 \end{gathered}$	$\begin{gathered} \$ 7000- \\ 9999 \end{gathered}$	$\begin{gathered} \$ 10000- \\ 14999 \end{gathered}$	$\begin{aligned} & \$ 15000 \\ & \& \text { over } \end{aligned}$	Total
PANEL A: FISCAL INCIDENCE (Percent of total										
1. Atlantic Region	1.31	2.00	2.71	2.31	2. 31	2.31	5.26	4.19	2.07	24.67
2. Quebec	. 50	. 39	. 39	. 42	-. 01	-. 02	-1.31	-1.29	. 06	-. 84
3. Ontario	. 08	. 02	-. 24	-. 32	-1.35	-1.34	-6.78	-9.31	-3.36	-22.60
4. Prairies Region	1.01	. 89	. 96	. 59	. 04	-. 38	-1.44	-1.96	1.32	. 90
5. B.C.	-. 05	-. 13	. 14	-. 06	$-.20$	-. 07	-2.33	-2.05	2.47	-2.23
6. CANADA	2.85	3.17	3.96	2.93	. 78	. 52	-6.61	-10.42	2.56	0.00
$\frac{\text { PANEL B: FAMILY UNIT FISCAL INCEDENCE (Percent }}{\text { of expenditures received(}+ \text {) or }} \begin{aligned} & \text { contributed }(-) \text { by percentile of family units) } \end{aligned}$										
7. Atlantic Region	. 94	3.33	3.01	2.57	2.57	2.89	3.76	4.66	10.35	2.97
8. Quebec	. 16	. 18	. 17	. 19	-	-. 01	$-.23$	-. 31	. 03	-. 03
9. Ontario	. 02	. 01	$-.11$	-. 13	-. 48	-. 50	-. 82	-1.11	-. 86	-. 61
10. Prairies Region	. 37	. 52	. 60	. 45	. 03	-. 29	-. 41	-. 78	1.20	. 05
11. B.C.	-. 04	-. 16	. 16	-. 09	$-.33$	-. 09	$-.80$	-. 93	3.09	$-.20$
12. CANADA	.23	. 40	. 51	. 39	. 10	. 07	$-.30$	$-.58$. 31	.00

due to rounding

Note: details may not add to totals
Source: Appendix Table A-3(b)
Table 4.5
Regional Expenditure, Tai and Fiscal Incidence of Federal Regional
Economic Expansion Expenditures, The Standard Case and Alternative
Exper1ments, Canada, 1969-1975

Line	Item	Region					
		Atlantic Provinces	Quebec	Ontario	Prairie Provinces	British Columbia	Canada
STANDARD CASE							
1.	Expenditure benefit incidence	31	24	19	17	9	100
2.	Tax incilience	6	25	42	16	12	100
3. Fiscal incidence ALTERU:ATIVE EXPERIMENTS ${ }^{1}$ Initial DREE Spending Experiment		25	-1	-23	1	-2	0
4.	Initial DREE spending pattern inciaence	46	34	6	12	2	100
5	Initial DREE spending pattern fiscal incivencel	40	9	-36	-4	-10	0
	Eirancing Experiments:						
	Fiscal Incitence ${ }^{2}$						
6.	Increase in federal personal income tax payments	26	0	-26	1	-2	0
7.	Proportionate decrease in federal expencitures	22	-2	-17	-2	-1	0
8.	Decrease in federal transfers to persons	21	-3	-16	0	-2	0
	Egualization Payments Experiment						
9.	Equalization payments expenditure incidence	40	51	0	9	0	100
10.	Equalization payments fiscal incidencel	35	26	-42	-7	-12	0
	Expenditure Experiments: Eiscal Incidence						
11.	Fro-Ricr: experiment	18	-3	-16	2	0	0
12.	Pro-Poor experiment	27	2	-26	0	-3	0

$\begin{array}{ll}\text { curce: } & \text { Appendix Tables } A-z, A-z(t), A-5(a), A-5(c), A-5(d) \text { and } A-5(3) \\ \text { ote: } & \text { Eetails may not sum to ioo or zero due to rounding; (}- \text {) net contribution; (}+ \text {) net gain; dollar items are expressez as } \\ & \text { a percentage of total DREE expenditures. } \\ \text { 1. } & \text { firancing hypothesis is for the standard case } \\ \text { 2. expenditure hypotheses are for the standard case }\end{array}$
in a study of this nature we can reasonably conclude that Quebec, the Prairies and British Columbia are neither net gainers from nor net contributors to the redistributive aspects of DREE programs.

It is interesting to note that, in terms of regional distribution of income effects, the Atlantic region and Quebec are net beneficiaries to a much lesser extent from the DREE program than is commonly supposed. Quebec in particular receives little or no net benefit. One of the major reasons is that Quebec and the Atlantic region contribute a substantial share towards the financing of DREE programs. In addition many of the benefits resulting from DREE expenditures flow outside of the recipient regions.

The income class pattern of fiscal incidence is found in the body of Table 4.4. Some of the values in Panel A are not substantially different from zero and are ignored in the following discussion. The redistribution is towards all income classes in the Atlantic region, the lowest income classes in Quebec and the Prairies and the richest income classes in the Prairies and British Columbia. The redistribution is at the expense of the upper-middle and upper income classes in all but the Atlantic region, with the range of contributing classes being broader in Ontario.

The normalized 'family unit' results are presented in Panel B of Table 4.4 and in Chart 4.2. In the Atlantic region a rich family unit enjoys a net gain that is larger than the net gain
Table 4.5
Regional Expenditure, Tax and Fiscal Incidence of Federal Regional
Economic Expansion Expenditures, The Standard Case and Alternative
Experiments, Canaja, 1969-1975

Line	Item	kegion					
		Atlantic Provinces	Quebec	Ontario	$\begin{aligned} & \text { Prairie } \\ & \text { Provinces } \end{aligned}$	British Columbia	Canada
STAMDED CASE							
1.	Expenditure benefit incidence	31	24	19	17	9	100
2.	Tax incijence	6	25	42	16	12	100
3.	Fiscal incidence	25	-1	-23	1	-2	0
	ALTER:ATIVE EXPERIMENTS ${ }^{1}$						
Inftial DPEE Spending Experiment							
4.	Initial DREE spending pattern inciaence	46	34	6	12	2	100
5.	Initial DREE spending pattern fiscal inciuencel	40	9	-36	-4	-10	0
	Eirancing Experiments:						
Fiscal Incijence ${ }^{2}$							
ϵ.	Increase in federal personal incore tax payments	26	0	-26	1	-2	0
7.	Proportionate decrease in federal expencitures	22	-2	-17	-2	-1	\bigcirc
8.	Decrease in federal transfers to persons	21	-3	-16	0	-2	0
	Egualization Payments Experiment						
9.	Equalization payments expenditure incidence	40	51	0	9	0	100
10.	Equalization payments fiscal incijencel	35	26	-42	-7	-12	0
	Expenditure Experiments: Eiscal Incidence						
11.	Fro-Rich experiment	18	-3	-16	2	0	0
12.	Pro-Poor experiment	27	2	-26	0	-3	0

Scurce: Appendix Tables $A-3, A-3(t)$, $A-5(a), A-5(c)$, $A-5(d)$ and $A-5(3)$
iote: \quad Details may not sum to 100 or zero due to rounding; (-) net contribition; (+) net gain; dollar items are expresse as

1. Eirancing hypothesis is for the standardard case
in a study of this nature we can reasonably conclude that Quebec, the Prairies and British Columbia are neither net gainers from nor net contributors to the redistributive aspects of DREE programs.

It is interesting to note that, in terms of regional distribution of income effects, the Atlantic region and Quebec are net beneficiaries to a much lesser extent from the DREE program than is commonly supposed. Quebec in particular receives little or no net benefit. One of the major reasons is that Quebec and the Atlantic region contribute a substantial share towards the financing of DREE programs. In addition many of the benefits resulting from DREE expenditures flow outside of the recipient regions.

The income class pattern of fiscal incidence is found in the body of Table 4.4. Some of the values in Panel A are not substantially different from zero and are ignored in the following discussion. The redistribution is towards all income classes in the Atlantic region, the lowest income classes in Quebec and the Prairies and the richest income classes in the Prairies and British Columbia. The redistribution is at the expense of the upper-middle and upper income classes in all but the Atlantic region, with the range of contributing classes being broader in Ontario.

The normalized 'family unit' results are presented in Panel B of Table 4.4 and in Chart 4.2. In the Atlantic region a rich family unit enjoys a net gain that is larger than the net gain

- 79 -

of any other family unit and much larger than the net gain of a poor family unit. In Quebec there is no income class in which a representative family unit is a significant net gainer or net contributor. In Ontario representative family units in the upper four income classes make relatively significant net contributions. In the Prairies and British Columbia a rich family unit enjoys the largest net gain, and a representative family unit in the next highest income class is a significant net contributor.

Our findings are based on an assumption that there is a benefit-cost ratio of one for DREE expenditures. We expect that there would be some projects for which the value would be greater than one and others for which the value would fall short of one. We have not seen any evidence to suggest that over all the ratio would exceed one.

It could be argued that the longer run developmentai effects of DREE programs reduce the value of examining their static impact on the regional distribution of income. However, to the extent that such programs generate windfall gains to capital owners or provincial governments, and crowd out investment or employment elsewhere in the economy, they do not generate future growth gains. Recent evidence demonstrates little or no developmental impact from DREE activities (Springate, 1972; Usher, 1975; and DREE, 1976).

Alternative Financing Experiments

The standard case has been developed with the hypothesis that DREE expenditures are financed by total federal taxes because it seemed to us the most reasonable hypothesis to make. Moreover, the notion of financing expenditures out of the general revenue fund is widely understood and accepted. However, the federal government is faced with a choice in financing any expenditure. It can increase a particular tax or decrease a particular expenditure. In order to test the sensitivity of the results to variations in our standard assumptions we estimated the results for the alternative financing experiments of Table 3.1 discussed in Part III. The detailed empirical results are found in Appendix Table A-5; we report here briefly on the major conclusions that can be drawn.

Regional Redistribution of Income

The fiscal incidence measures across the regions for the alternative financing hypotheses are provided in Table 4.5 above. The alternative of an increase in federal personal income taxes (line 6), a reduction in other federal expenditures (line 7), or a reduction in federal transfer payments to persons (Iine 8) results in no substantial change in the pattern of regional redistribution of income effected by DREE spending. There is, however, some change in the pattern of regional redistribution for the latter two financing experiments.

The regional pattern of redistribution is, however, most sensitive to the financing experiment that hypothesizes a substitution of DREE expenditures for equalization payments. This finding may be illustrated by comparing the regional distribution of benefits from increased DREE spending (line l) with the regional distribution of benefits from increased equalization payments (line 9) for a given level of financing by total federal taxes. The comparison may be of some interest given the extent to which it is commonly argued that DREE expenditures and equalization payments are alternative instruments to foster greater regional equality across Canada's five regions.

The regional redistribution of income effected by DREE expenditures and equalization payments is given in lines 3 and 10 respectively. It is clear that Quebec and the Atlantic provinces would be better off with increased equalization payments rather than increased DREE spending. Quebec is a net gainer to the extent of 26 percent of equalization payments, and receives no net gain from DREE spending.

We consider that our standard case, which predicts that some of the income benefits of DREE spending will accrue to family units outside of the regions of initial spending, is a reasonable model. Many of the owners of subsidized capital and consumers of subsidized products live outside the region in which the original subsidy occurs. Nevertheless, to test the sensitivity of our results to extreme variations in the share
of benefits exported we calculated the incidence of DREE spending on the assumption that all benefits remain within the region of initial spending. The assumption of zero benefit leakages results in the regional distribution of benefits from increased DREE spending being equal to the regional distribution of initial DREE spending (Iine 4). The regional redistribution of income that would be effected by such a benefit pattern is given in line 5. This polar case now predicts that the Atlantic provinces would be better off with increased DREE spending than with increased equalization payments, while Quebec would still be better off with the latter. Even with this extreme assumption the net benefit to Quebec is less than 10 percent of total DREE expenditures.

Redistribution of Income by Income Class

Financing federal regional economic expansion expenditures by an increase in personal income taxes rather than an increase in total federal taxes (the standard case) results in no significant change in the distribution of fiscal incidence in the regions. The lower income classes in all regions are slightly better off (compared with the standard case) and the upper income classes and the rich in Quebec, Ontario and the Prairies are slightly worse off. 5 The aggregate effect of these changes at the allCanada level can be seen in Table 4.6, line 2: the richest income class is now a net contributor, albeit by less than the upper-middle and upper income classes.
TABLE 4.6
Fiscal Incidence of Federal Regional Economic Expansiun Expenditures
Alternate Financing Experiments, Canada, 1969-1975

Financing Experiment	Pamily Muncy Inculue Class									
	$\begin{aligned} & \text { Under } \\ & \$ 2000 \end{aligned}$	$\begin{gathered} \$ 2000- \\ 2999 \end{gathered}$	$\begin{gathered} \$ 3000- \\ 3999 \end{gathered}$	$\begin{gathered} \$ 4000- \\ 4999 \end{gathered}$	$\begin{gathered} \$ 5000- \\ 5999 \end{gathered}$	$\begin{gathered} \$ 6000- \\ 6999 \end{gathered}$	$\begin{gathered} \$ 7000- \\ 9999 \end{gathered}$	$\begin{gathered} \$ 10000- \\ 14999 . \end{gathered}$	$\begin{aligned} & \$ 15000 \\ & \text { and } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { over } \end{aligned}$
$\frac{\text { FISCAL INCIDENCE, ALL CANADA LEVEL }}{\text { total expenditure) }}$ (Percent of										
1. Increase in total federal taxes	2.85	3.17	3.96	2.93	. 78	. 52	-6.61	-10.42	2.56	0
2. Increase in federal income taxes	6.01	4.38	5.32	5.59	2.23	1. 93	-5.23	-14.26	-3.23	0
3. Decrease in federal expenditures	-3.86	-2.67	-. 87	-. 37	-1.13	-. 08	-1.76	-1.36	10.34	0
4. Decrease in federal transfers	-11.46	-8.27	-4.33	-2.00	-2.14	-. 15	. 60	4.08	21.27	0
5. Decrease in federal equalization payments (increase in provincial taxes)	2.49	2.11	1.96	1.11	-1.39	-1.63	-7.91	-7.87	11.55	0
6. Decrease in federal equalization payments (decrease in provincial expenditures)	-2.06	-1.55	-1.43	-2.05	-3.67	-2.17	-6.32	-. 09	18.71	

Note: details may not add to totals due to rounding
Source: Appendix Table A-5(a)

Financing DREE expenditures by a proportionate decrease in federal expenditures redistributes away from all income classes with incomes less than $\$ 15,000$ to the income class $\$ 15,000$ and over (line 3). In other words the lower income classes would be better off with an expansion of total federal expenditures than with an increase in DREE expenditures. The Atlantic region differs from this national pattern with all income classes receiving net gains from DREE expenditures relative to their share of federal expenditures. The richest income class in every region gains more from DREE than from a proportionate increase in federal expenditures.

Financing DREE expenditures by a decrease in federal transfer payments to persons is most favourable to the richest income classes and least favourable to the poorest income classes (line 4). In other words, the lower income classes would be much better off with an increase in federal transfers to persons than with increased DREE expenditures. Even in the Atlantic region the lowest income class benefits less from DREE expenditures than it would from a proportionate increase in federal transfers to persons. ${ }^{6}$

Financing DREE expenditures by a decrease in federal

 equalization payments can have a very different impact on the distribution of income within each region and at the all-Canada level, depending on whether the provinces respond by increasing taxes or by decreasing expenditures in order to compensate for the loss of revenues. If the recipient provinces respond byincreasing taxes the results demonstrate that the lower income classes would be slightly better off with equalization paymentis than with DREE expenditures. ${ }^{7}$ If the provinces respond to the loss of equalization payments by decreasing expenditures, the lower income classes would be considerably better off with equalization payments than with DREE expenditures. The higher income classes are better off with DREE expenditures than with increased equalization payments for both methods of provincial compensation.

Alternative Expenditure Benefit Experiments

We are confident that our standard case provides a good approximation of the general pattern of fiscal incidence attributable to DREE expenditures. Throughout this study we have referred to a number of circumstances in which alternative hypotheses might be entertained. In the absence of empirical verification, we test the sensitivity of our results to variations in the set of underlying expenditure hypotheses.

The alternative expenditure experiments are summarized in Table 4.7.8 In each experiment the standard case is assumed to hold for all instruments except the instrument(s) designated in the experiment. Three major kinds of alternative hypotheses are considered. First, we varied the effectiveness of an instrument, with consequent implications for the amounts of windfall gain. Second, we varied the degree of factor substitutability, which altered the relative gains between labour and
Alternative Expenditure Experirents

[^2]capital. We also developed alternative series to distribute the benefits for several instruments.

Regional Redistribution of Income

The results of the first nine alternative experiments did not substantially alter the regional redistribution of income effected by DREE spending as developed for our standard case.

Experiments 10 and 11 differ from the other experiments in that they combine those hypotheses that seem to be most prorich and most pro-poor respectively, in order to provide a set of limits bracketing the results for our standard case. We report here on the results for these limiting experiments; the reader can find the results for all eleven experiments in Appendix Tables $\mathrm{A}-5(\mathrm{c}), \mathrm{A}-5(\mathrm{~d})$ and $\mathrm{A}-5(\mathrm{e})$. The regional redistribution of income effects for the limiting experiments is summarized in Table 4.5 (lines 11 and 12).

The pro-poor experiment results in no substantial change in regional redistribution compared with the standard case. The regional pattern of redistribution is more sensitive to the pro-rich experiment: the net gain of the Atlantic region and the net contribution of Ontario both fall, while the net contribution rate of Quebec increases marginally. These results follow because experiment 10 encompasses those hypotheses that allocate relatively larger gains to capital which benefits family units in Ontario and British Columbia relative to family units in Quebec and the Atlantic region.

We think it unlikely that either of the limiting cases is a more accurate description of reality than our standard case. However, the empirical results do suggest that there is scope for some variations in regional redistribution as one entertains progressively more favourable-to-the-rich hypotheses. In other words, to the extent that we have overestimated the effectiveness of capital incentive grants and underestimated the degree of factor substitutability (among other things), our standard case will overestimate the degree of regional redistribution effected by DREE expenditures - especially between Ontario and the Atlantic region. Empirical work on both the degree of factor substitutability in grant-financed firms and the effectiveness of such grants in generating incremental expenditures on capital and labour would aid in confirming the standard case or moving towards either of the two limiting cases. Empirical work on the benefits of highway and infrastructure expenditure and on the extent to which DREE contributions are substituted for similar planned expenditures would also be desirable.

Redistribution of Income by Income Class

The empirical results of the first nine experiments did not substantially alter the redistribution by income class within each region or at the all-Canada level derived for our standard case (see Appendix Tables $A-5(c)$ and $A-5(d)$).

The distribution of fiscal incidence by income class for the pro-rich limiting case and the pro-poor limiting case is

$$
\text { Table } 4.8
$$

Fiscal Incidence of Federal Kegicral Eccno:. ic Exparsion

Source: Appendix Table A-5(d)
Note: Details may not add to totals due to rourding.

$$
6.7 \partial \tau 0 . e \tau
$$

Fiscal Incidence of Federal Regional Ecunomi: Expansion Expencitures

[^3]summarized in Tables 4.8 and 4.9 respectively. These empirical results should be compared with the empirical results for the standard case of Table 4.4.

The empirical results of Table 4.8 demonstrate that the general pattern of fiscal incidence by income class for the prorich limiting case at the all-Canada level is similar to the standard case, but with increased net benefits for the richest income class, mostly at the expense of the income classes in the bottom half of the income distribution. There is some variation on this national pattern within the regions. 9

The normalized 'family unit' results are much as one would expect, given the Panel A results. At the all-Canada level, a family unit in the richest income class receives a net gain that is larger than that received by any other representative family unit (see Table 4.8). The general pattern of net gains to a representative family unit in all income classes in the Atlantic region shifts downward (particularly significantly for a representative in the richest income class family unit). A representative rich family unit in each of the remaining regions is better off. In Ontario such a family unit is still a very small net contributor (small enough, given the imprecision in a study of this nature, to be assumed to just break even). Finally, a representative family unit in the upper income class is worse off in Quebec and the Atlantic region but better off in Ontario, the Prairies and British Columbia (see Table 4.3 for our characterized income classes). These results are illustrated in chart 4.3 .
Chart 4.3 Family Unit Fiscal Incidence by Region, Pro-rich Experiment

The empirical results of Table 4.9 demonstrate that the general pattern of fiscal incidence by income class for the pro-poor limiting case at the all-Canada level is similar to the standard case, but with increased net benefits for income classes between the lower middle to upper income classes mostly at the expense of the richest income class which becomes a net contributor.

The normalized 'family unit' results of Panel B reflect these results and show little variation from the standard case. At the all-Canada level a family unit in the richest income class now is a net contributor while the net contribution rate of a family unit in the next highest income class decreases. This pattern masks some variation at the regional level. A representative rich family unit in Quebec and the Atlantic region experiences no change from the standard case, whereas a rich family unit in the remaining regions experiences a decrease in its fiscal incidence rate. There is very little change for representative family units in lower income classes. These results are illustrated in chart 4.4.

Conclusions

Our estimation of the regional income redistribution effects of DREE expenditures demonstrates that only the Atlantic region has been a net beneficiary. Contrary to popular belief, Quebec receives little or no net benefit. One of the major reasons for this is that these regions contribute a substantial share
Chart 4. 4 Family Unit Fiscal Incidence by Region, Pro-poor Experiment

1
i
i
i
i
i Atlantic
Quebec
Ontario
Prairies
B.C.

$\ldots . . .$.
Income in thousands cis
ŞT
$\cdot \infty$

$$
00 \varepsilon
$$

towards the financing of DREE. Secondly, many of the benefits resulting from DREE expenditures flow outside of the recipient regions. Quebec and probably the Atlantic region as well would be better off with increased equalization payments than with the existing DREE program. Only when it is assumed that almost all of the benefits of DREE expenditures remain within the region of the initial spending is the Atlantic region better off with the DREE program rather than increased equalization grants; Quebec would still be better off with increased equalization payments.

The empirical results also demonstrate that the lower income classes benefit to a much lesser extent from DREE expenditures than would be expected from the policy objectives of the program. The richest tenth of family units receive about the same total share of expenditure benefits as do the lowest half of family units. Only in the Atlantic region do representative low income family units receive significant net benefits from the DREE program, and even in that region they receive smaller net benefits than do representative family units in higher income classes.

We noted earlier that one of DREE's objectives is that the "great inequalities in wealth and opportunity which have persisted in this country for so long will be greatly reduced" (Marchand, 1972a:2). What now seems clear is that the federal government's chosen instruments for regional economic expansion cannot achieve that objective. In all regions the relative economic position of the poor would improve much more with increased federal transfers to
persons (perhaps in the form of a guaranteed annual income) than it does with the existing DREE program.

Part V

Summary and
Conclusions

The reduction of regional disparities -- or better put, the growing equality of economic opportunity -- has been a high priority of this government. The policies pursued by my colleague, the Minister of Regional Economic Expansion, are bearing fruit.

> The Honourable John Turner, Minister of Finance, (1974: 4)

The search for more effective mechanisms to reduce regional disparities has involved the Department of Regional Economic Expansion in a major policy review and evaluation and has resulted in a renewed resolve to make existing and future programs more effective. These initiatives have placed DREE at the forefront in the attempt to achieve a more equitable distribution of wealth, people and opportunity across Canada.

DREE, Annual Report, (1974-1975: 2)

Summary and Conclusions

The existence of regional economic disparities in Canada has led to federal government attempts to reduce such disparities through a variety of policies and to the creation of DREE, specifically charged with the task of encouraging a reduction in such disparities and a reduction in the inequalities in the distribution of wealth across the country. That the effects of such policies have been modest in reducing per capita income differences among the regions was recently documented in evidence published by DREE (DREE, 1976: 34).. In this study we have briefly described the development of these policies and programs.

We derived a functional breakdown of DREE expenditures for each of the five regions in Canada (Part II). It was discovered that DREE expenditures for road construction have been equal in magnitude to the much more highly publicized incentives program. Expenditures for sewage systems and other infrastructure, agricultural assistance, and other industrial assistance were also major expenditure categories. Many of the programs established prior to DREE and during DREE's early years are being gradually phased out by the Department. However, the types of expenditures made under these earlier programs continue to be made under the new label of General Development Agreements.

Evidence available from a variety of sources demonstrates that the incremental job creation resulting from the RDIA program is much less than DREE has indicated (DREE, 1973). In fact the incremental jobs are likely no more than half of the
number of jobs associated with RDIA grants and it is possible they are as low as zero. Similarly, available evidence suggests that the RDIA program has had little effect on capital investment. The absence of any publicly available analysis of the effectiveness of DREE spending on roads, sewers or any of its other major expenditure categories is unfortunate. This deficiency and the absence of comprehensive information on the amounts spent on these categories are omissions that should be rectified.

In Part III we examined the general equilibrium effects of the major DREE instruments (capital incentive grants, expenditures on roads, sewers and other infrastructure, etc.,) on the income uses and income sources side of a famlly unit's budget. We estimated the income redistribution effects of DREE expenditures by region and by size classes of income (Part IV). The empirical results demonstrate that the Atlantic Region and Quebec are net beneficiaries from the DREE program to a much lesser extent than is commonly supposed. Quebec receives little or no net benefit. Quebec and the Atlantic region would be better off with increased equalization payments rather than the existing DREE program. Only when it is assumed that almost all of the benefits of DREE expenditures remain within the region of the original expenditure is the Atlantic region better off with the DREE program rather than increased equalization grants; Quebec would still be better off with increased equalization payments.

The results also demonstrate that the lower income classes in all regions benefit from DREE expenditures to a much lesser extent than would be expected from the objectives of federal regional economic expansion policy. Only in the Atlantic region do representative lower income family units receive significant net benefits from the DREE program, and even in that region they receive smaller net benefits than do representative family units in higher income classes. The redistributive effect of DREE expenditures at the all-Canada level is, in general, away from representative family units in the uppermiddle and upper income classes to representative family units in the lowest and richest income classes. In all regions the poor would be better off with increases in federal transfer payments to persons (perhaps in the form of a guaranteed annual income) rather than the present DREE program.

Our investigation has provided partial answers to questions concerning the distribution of income effects of federal regional economic expansion expenditures in Canada. Throughout we have noted areas of investigation where further research work is needed. The incrementality measures of new job creation and new capital formation that follow from the capital incentive grants are still open to debate. We tried a range of incrementality ratios with little effect on the distributive conclusions of our standard case. More substantive research in this area would be required to determine the effectiveness of the incentives program.

Empirical work on the degree of factor substitution between labour and capital in grant-financed firms and also within the non-subsidized sector is needed. The same can be said for interindustry factor substitutability within the low income regions resulting from expenditures on roads, sewers and other infrastructure.

More attention should be focussed on the impact of infrastructure expenditures and other social adjustment expenditures on the distribution of income across regions and family units. DREE has correctly pointed to the absence of such analysis in the work of academic researchers who have examined the RDIA incentive grant program in detail. However, the absence of a disaggregated functional breakdown of DREE expenditures until now has rendered any empirical work impossible. We have employed our estimates of DREE expenditures in the analysis of infrastructure and other social adjustment expenditures. We would be the first to point out, however, that our examination is a very limited one. Further work is urgently needed on several counts the extent to which DREE-financed activities at the municipal and provincial level are substituted partly or wholly for planned expenditures by those governments; the extent to which DREEfinanced activities of such governments so change relative prices as to divert provincial and municipal spending from other expenditures to the areas of subsidized spending; the derivation of distributive series that are more appropriate to the spending function than several used in our study; and estimation of the
developmental impact of these expenditures.
Further work is needed on comparing the income distribution impact of DREE programs with alternative federal fiscal choices. We examined a limited number of such fiscal choices and found considerable variation in impact, both by region and by size classes of income. Specifically, further analysis of the effects of particular federal transfers to persons and responses to changes in equalization payments (either formula changes, revenue changes or changes in responses of recipient governments) would be useful information in choosing among expanding or cutting back various federal government activities.

Our findings illuminate some of the outcomes of federal regional economic expansion policies as effected by DREE. These results, if even approximately accurate, raise more interesting questions in light of the government's commitment to reduce regional disparities in Canada.

Why have DREE programs provided little or no net benefit to Quebec? Has the concentration of DREE expenditures on subsidies to firms and on road and sewer construction been appropriate? Why have DREE programs not had any significant effects on regional economic disparities?

What is needed in order to answer these questions adequately is a theory of federal government behaviour with respect to regional economic expansion policies. We suggest this to others as a challenge that merits attention.

Footnotes

Part I

1. See, for example: Atcheson, Cameron and Vardy (1974: 53-59), Atcheson and Kerr (1972), Brewis (1975), Buckley and Tihanyi (1967), DREE (1969, 1973a and 1973b), Economic Council of Canada (1968), Francis and Pillai (1971), and Springate (1973: 11-28).
2. See, for example: Atcheson and Kerr (1972: 1-9), Brewis (1969), Chernick (1966), Economic Council of Canada (1965 and 1975), Green (1967) and McInnis (1968).
3. APEC, (1971), Brewis (1969), Chernick (1966), DREE (1973 and 1976), Springate (1972 and 1973), and Woodward (1974, 1974a and 1975). Usher (1975: 569-570) raises the possibility that the subsidy program of the Regional Development Incentives Act may act to transfer income from the rich region to the poor region while transferring it, on average, from poor to rich people, but this is a minor example in his paper.
4. In reality the formation of DREE in 1969 was a consolidation of ongoing activities with substantial revisions to the incentive grant program. The details are discussed in Part II.

Part II

1. This can be verified by reference to Federal-Provincial Relations Office (1975), and Tables C-4 through C-8.
2. The absence of any public data on DREE expenditures by functional classification seemed to us to be a serious deficiency in information that would be crucial for purposes of policy analysis. DREE has recently estimated a functional breakdown of expenditures by region, but the Department was not willing to make the information available to us for use in this investigation. We doubt that there would be much variation between our estimates and DREE's estimates (if and when the latter become public information).
3. For a discussion of job erosion - the difference between the number of jobs announced at the time of an RDIA grant offer by DREE and the number of jobs that actually materialize when the subsidized firm is fully geared up for commercial production - see Appendix D.
4. It has also been demonstrated in Woodward (1974a) that RDIA grants - which, due to their capital bias, are similar to capital subsidies - create fewer new jobs per firm and fewer new jobs per dollar of grant than other alternatives, such as, a labour subsidy and a production subsidy. In this sense capital incentive grants are an inefficient method of generating new employment opportunities. Our focus here is a different one, examining the extent to which the grant assisted in calling forth new jobs and new capital investment in the designated regions.
5. DREE goes beyond the analysis of incremental jobs and capital investment to mention the effect of "economic multiplier and job spinoffs" in magnifying the total economic impact of RDIA grants (DREE, 1973: 46). Given the large propensity to import for small areas and the small magnitude of such multipliers for development areas as a whole, it is unlikely that such secondary effects are at all substantial (Wilson, 1968: 390). This proposition is consistent with our approach below.
6. As it turns out the observed level of Quebec manufacturing investment during 1972 would be consistent with an assumption of zero incrementality. In other words, our revised estimate of 48 per cent incrementality may still be much too high.
7. No details are provided of the economic situation in Manitoba and Saskatchewan that would suggest that without RDIA grants investment would have been so far below the actual or historical trend levels as would be required to satisfy the 79.8 per cent incrementality estimate. As with the Quebec investment levels, there is little evidence to suggest that incentive grants had any net incremental effect on investment.

Part III

1. The income sources: income uses dichotomy is drawn from Musgrave's seminal discussion of general equilibrium effects of budget policy (Musgrave, 1958: chs. 15-16). For a more complete discussion of the theory of fiscal incidence as derived from such general equilibrium analysis, see Gillespie (1967 and 1975) and Johnson (1968).
2. The discussion of general equilibrium effects draws heavily upon the seminal contribution of Musgrave (1958: chs. 15 and 16) and the literature that developed thereafter; see, Harberger (1962), Mieszkowski (1967 and 1969) and McLure (1971, 1972 and 1974).
3. There have been several instances identified in which firms closed plants in non-subsidized regions while receiving DREE incentive grants in subsidized regions (eg. Union Carbide, Acme Seely, etc.).
4. Many of the RDIA grants given for plant modernization provide examples of high factor substitutability in which the factor substitution effect works in the opposite direction to the employment effect and little or no additional employment is created.
5. In an earlier version of this paper we examined the results for several other sets of assumptions in greater detail (perfect mobility of all factors; perfect mobility of capital and complete immobility of labour and land with no wage inflexibility; and perfect mobility of capital, complete immobility of land and partial mobility of labour). The small differences in predicted results for these alternative cases and the added realism of the assumptions discussed in the text led us to concentrate our attention solely on the standard case.
6. Musgrave (1959: 361-364) and Mieszkowski (1969: 1115).
7. See Part IV. Empirical support of our chosen ratios or other ratios would be a valuable aid in fiscal incidence studies of this nature. With the alternative magnitudes that we test in Part IV there does not seem to be a major effect on the conclusions derived using the standard case.
8. We have analysed the effects of capital subsidies throughout Part III on the presumption that they are completely effective (i.e., do call forth changes in regional resource allocation and relative gains to capital and/or labour). The standard case is based on this presumption, as is the working hypothesis that allocates the impact of the grants between labour and capital. We discussed in Part II the effectiveness of capital incentive grants and the allocation of any windfall gains that accrue. Both effects are combined in empirical calculations of Part IV.
9. It may well be that these benefits are captured as increased capitalized values of land; if this is so the beneficiaries would be property owners.
10. See Appendix, Table $B-2$, for the detailed results of allocation of costs between users and non-users for the regions as well as Canada.
11. See Appendix, Table B-2, for the detailed results of allocation of user costs between passenger vehicle users and consumers of transported products for the regions as well as Canada.
12. The alternative would have been to assume that labour was immobile across regions and industries. This seemed to us a too rigid framework within which to work. The output, road passenger travel and road transportation, has been shortened to the term, travel and transportation for convenience sake.
13. See Part IV. We have analysed the effects of DREE expenditures on roads on the presumption that they are completely effective (i.e., do call forth changes in provincial resources devoted to highway expenditures). Given the substitution effect available in provincial governments' reaction function to the receipt of such grants, and given the likelihood that at least some of the road spending would have occurred in the absence of DREE financing, the grants are unlikely to be completely effective. The empirical results of Part IV utilize a range of effectiveness measures to provide the reader with a range of results that could follow from such diverse assumptions.
14. The benefits accruing to capital owners may be greater than we have assumed if the expenditure benefits are capitalized in increased land values.
15. The instruments of regional economic expansion are discussed in greater detail in Part II.
16. See Part IV, where we consider the effect of substituting a series on social assistance benefits for the series on manpower trainees, with little substantive effect on the results.
17. For a discussion of the merit want principle, see Culyer (1971), Head (1966 and 1968), McLure (1968) and Musgrave (1958:14); and for a discussion of pareto-relevant externalities, see Buchanan and Stubblebine (1962), Hettich (1972) and Turvey (1965).
18. One problem remains. If labour is immobile in the low-income region, then the public or general benefits would seem to accrue to family units within the low-income region. However, federal funding of some education expenditures through DREE implies that family units beyond the low-income region, via the merit want principle or via externalities of consumption, are benefitting. In short, a case can be made that the
public or general benefits are more national in scope. The tendency of education to increase the mobility of labour enhances the possibility that the external consumption benefits associated with education will extend beyond the boundaries of the low-income region. In view of these considerations it is possible that the public benefits are national, rather than regional, in scope.

We originally intended to consider an alternative experiment that would treat the public benefits as national in scope. However, the change in the distribution of education benefits generated by such an assumption was so small that we decided not to work out a completely new experiment (see Appendix Table A-4).
19. Experiments with variations in the ratio of private benefits to public benefits of provincially-financed education resulted in very ifttle effect on the overall pattern of expenditure incidence (Gillespie, 1975: Table IV.12).

Part IV

1. The empirical results are carried out using a fiscal incidence study for 1969 (Gillespie, 1975), the last year for which such data are available. Consequently the family money income brackets for all tables are for incomes in 1969. While average incomes increased during the period, the distribution of income remained relatively stable. (Love and Wolfson, 1976; - The richest twenty percent of family units had 42.6 percent of total income in 1969 and 42.4 percent in 1974). Therefore observations concerning 1969 can be applied to the entire period with little loss of accuracy, if one identifies income groups according to their relative positions rather than their absolute dollar amounts of income (e.g., one focuses upon the richest 8.3 percent of family units, rather than family units with incomes $\$ 15,000$ and over: see Table 4.3).

See Appendix Table A-3 for detalled information on the distribution of expenditure benefits for each functional category in each region for the standard case. It can be noted in passing that the slightly more attractive expenditure benefit shares over the lower income classes in the Atlantic and Prairie regions are primarily accounted for by manpower and social assistance expenditures in the former and agricultural assistance, manpower and social assistance expenditures in the latter. The significantly more attractive benefit shares over the richest income classes in

Ontario, the Prairies and British Columbia are partly accounted for by the benefit to capital owners, primarily located in these three regions, of the capital incentive grants, other industrial assistance and expenditures on highways and roads.
2. The subsidized products include grant-financed products, transported products, infrastructure-subsidized products, etc.
3. We note in passing that since at least 1951 the distribution of income shares in Canada has not changed significantly (Love and Wolfson, 1976).
4. Throughout the discussion of the empirical results we use the terminology 'income class' to refer to gains (contributions) that accrue to (are made by) the group of family units in a given income class (usually panel A results). We use 'family unit' to refer to the gains (contributions) that accrue to (are made by) a representative family unit in a given income class (usually, panel B results).
5. See Appendix Table A-5 for the detailed results by regions and by income class. We intend to review briefly the major conclusions only in the text; for the detailed regional variation the Appendix tables should be consulted.
6. See Appendix Table $A-5$ for the fiscal incidence share in each region.
7. Compare lines 1 and 5, Table 4.6. The lowest income class gains less from DREE spending financed by reduced federal equalization payments (2.49 percent) than it does when financed by increased total federal taxes (2.85 percent). Therefore, for a given level of total federal taxes, the lowest income class loses more through foregone equalization payments than it gains through DREE spending. Thus the poor would be better off with increased equalization payments rather than increased DREE spending.
8. We initially considered a much longer list of alternative hypotheses, especially within the important incentive grant category, but in view of the trivial differences (when compared with the standard case) that were emerging in the preliminary empirical results, we pared our final set of experiments to the contents of Table 4.7 .
9. The reader is referred to Appendix Table A-5(d) for the details of these experiments in the regions.

APPENDIX A
Calculation of Expenditure
Incidence and Fiscal Incidence

$$
\text { Distributive Series, }
$$

Atlantic Provinces, 1969, pe

		Family Money Income Slass									
Line	Item	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{gathered} \$ 2,000- \\ 2,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{gathered} \$ 4,000- \\ 4,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 5,000- \\ 5,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 6,000- \\ 6,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 7,000- \\ 2,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 10,000- \\ 14,999 \\ \hline \end{gathered}$	$\begin{aligned} & \$ 15,000 \\ & \text { \& over } \\ & \hline \end{aligned}$	Total
1.	Total federal taxes	2.0	3.2	6.2	7.0	9.9	9.4	27.6	23.3	11.6	100.0
2.	Personal income tax	0.2	1.2	2.7	3.9	6.9	8.7	30.4	31.1	14.9	100.0
3.	Total federal expenditures	11.0	9.7	10.0	8.9	9.7	8.2	19.3	15.1	8.5	100.0
4.	Federal personal transfers	19.2	15.0	11.9	10.1	9.5	7.1	14.7	9.4	3.3	100.0
5.	Total provincial taxes	1.8	3.6	6.7	7.0	9.6	9.7	25.2	23.7	10.6	100.0
6.	Total provincial expenditures	6.0	6.8	9.7	9.8	10.9	10.1	23.9	16.8	6.8	100.0
7.	Dividends income	0.8	0.7	10.8	2.7	2.9	0.6	8.6	23.8	49.1	100.0
8.	Consumption of.grant-financed output	2.5	5.8	8.1	8.3	10.6	10.6	27.8	19.5	6.4	100.0
9.	Wages and salaries	1.5	2.5	4.3	7.8	10.9	11.0	26.6	25.5	9.9	100.0
10.	Children age 5-17	1.4	6.0	9.6	11.0	12.6	12.3	27.4	16.2	3.4	100.0
11.	Broad income	1.9	2.7	5.2	7.3	9.1	9.6	24.8	24.1	15.0	100.0
12.	Family units (number in thousands)	90.7	41.2	55.2	57.9	57.3	48.4	92.8	58.4	15.3	537.3
13.	Family unit (percentage distribution)	16.9	7.7	10.3	10.8	10.7	9.0	17.3	10.9	2.8	100.0
14.	Property users .	4.8	7.2	9.2	7.7	9.4	10.3	26.1	19.2	6.0	100.0
15.	Miles driven	1.2	3.3	6.8	8.7	11.3	11.1	30.4	21.8	5.4	100.0
16.	Consumption of transported commodities	3.2	6.3	8.7	8.1	8.9	10.5	28.1	19.8	6.4	100.0
17.	Total current consumption	3.2	5.8	8.4	8.2	10.3	10.2	27.6	19.9	6.4	100.0
18.	Manpower trainees	16.4	17.0	18.7	15.7	11.4	7.6	10.6	1.4	1.4	100.0
19.	Total provincial-municipal taxes	2.2	4.0	7.2	7.1	9.5	9.6	25.2	23.3	10.3	100.0
20.	Net farm income	5.4	7.7	24.2	6.0	0.0	5.6	17.6	32.8	0.7	100.0
21.	Farm family units	2.7	18.9	21.9	8.9	0.0	8.7	16.2	14.5	3.2	100.0
22.	Social assistance expenditures	13.4	10.4	12.3	10.4	10.8	8.7	28.6	12.5	4.4	100.0
	ACjusted broad income ABY (millions of dollars)	213.8	216.2	291.5	351.0	399.2	395.2	932.0	861.4	545.1	4186.9
25	(millions of dollars) Family units as per cent of all-	217.7	222.2	299.6	357.9	406.1	402.1	947.8	874.0	551.3	4260.9
	Canada	1.4	0.6	0.9	0.9	0.9	0.8	1.4	0.9	0.2	8.3

[^4]Note: Details may not add to totals, due to rounding.
(0) Tータ चrigd Distribużve Seide.
Ontario, 1969, Dercenisies

Note: Details may not add to totals, due to rounding.
TABLE $A-1(e)$
Distributive Series,
Prairies, 1963 , percentaoes

Line	Item	Family Money Income Class									
		$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{gathered} \$ 2,000- \\ 2,999 \end{gathered}$	$\begin{gathered} \$ 3,000- \\ 3,999 \end{gathered}$	$\begin{gathered} \$ 4,000- \\ 4,999 \end{gathered}$	$\begin{gathered} \$ 5,000- \\ 5,999 \end{gathered}$	$\begin{gathered} \$ 6,000- \\ 6,999 \end{gathered}$	\$7,0009,999	$\begin{gathered} \$ 10,000- \\ 14,999 \end{gathered}$	\$15,000 \& over	Total
1.	Total federal taxes	2.0	2.5	3.0	4.5	5.4	7.1	24.2	26.0	24.8	100.0
2.	Personal incme tax	0.3	0.7	1.5	2.7	4.1	6.3	24.1	31.0	29.2	100.0
3.	Total federal expenditures	8.6	8.9	8.4	7.8	6.9	6.4	18.8	17.0	17.0	100.0
4.	Federal persorial transfers	18.0	14.6	12.3	9.3	8.0	7.1	15.4	9.7	5.6	100.0
5.	Total provincial taxes	2.9	3.6	4.5	5.3	5.9	7.4	23.9	25.2	21.5	100.0
5.	Total provincial expenditures	6.4	6.0	7.2	7.5	7.9	8.2	23.5	19.4	12.7	100.0
7.	Dividends income	1.1	1.3	2.7	4.6	1.3	2.2	11.8	12.2	63.0	100.0
8.	Consumption of grant-financed output	4.4	5.2	5.2	6.0	6.7	8.0	25.3	25.0	13.9	100.0
9.	Wages and salaries	1.1	1.7	3.3	4.0	5.5	7.9	28.0	29.7	18.8	100.0
10.	Children Age 5-17	2.0	3.6	6.3	6.9	8.9	9.7	29.2	23.3	9.5	100.0
11.	Broad income	1.8	3.9	4.2	4.7	5.3	6.8	23.7	25.0	26.0	100.0
12.	Family units (number in thousands)	175.6	109.3	105.9	85.1	82.8	84.6	225.9	162.0	70.3	1101.3
13.	Family units (percentage distribution)) 15.9	9.9	9.6	7.7	7.5	$7 \cdot 7$	20.5	14.7	6.4	100.0
14.	Property users	6.8	6.6	7.2	6.5	6.7	8.3	25.4	21.6	11.2	100.0
15.	Miles driven	3.1	4.1	5.5	7.1	7.7	9.0	26.1	25.7	11.7	100.0
16.	Consumption of transported commodities	- 4.5	5.2	5.5	6.0	6.7	8.1	25.2	24.8	13.6	100.0
17.	Total current consumption	4.2	5.2	3.5	6.1	6.8	8.0	25.3	24.4	18.9	100.0
18.	Manpower trainees	16.4	17.0	18.7	15.7	11.4	7.6	10.6	1.4	1.4	100.0
19.	Total provincial-municipal taxes	3.5	4.2	4.9	5.5	6.1	7.4	24.0	24.5	19.9	100.0
20.	Net farm income	2.9	10.3	10.7	10.0	8.5	2.8	17.2	21.7	15.9	100.0
21.	Farm family units	19.9	17.2	16.7	10.3	7.4	3.6	10.8	10.1	4.0	100.0
22.	Sccial assistance expenditures	11.9	9.7	9.0	8.7	8.1	8.1	20.6	15.3	7.4	100.0
23. 24.	Original adjusted broad income, ABY (millions of dollars) New adjlisted broad income,	$\begin{aligned} & 395.5 \\ & 398.5 \end{aligned}$	$\begin{aligned} & 605 \cdot 1 \\ & 607.8 \end{aligned}$	$\begin{aligned} & 602.9 \\ & 605.8 \end{aligned}$	$\begin{aligned} & 609.3 \\ & 611.1 \end{aligned}$	$\begin{aligned} & 627.0 \\ & 627.1 \end{aligned}$	$\begin{aligned} & 712.3 \\ & 711.2 \end{aligned}$	$\begin{aligned} & 2347.4 \\ & 2343.1 \end{aligned}$	$\begin{aligned} & 2308.4 \\ & 2302.5 \end{aligned}$	$\begin{aligned} & 2327.5 \\ & 2331.5 \end{aligned}$	$\begin{aligned} & 10443.2 \\ & 10445.9 \end{aligned}$
24.	New adjlisted broad income, ABY* (millions of dollars)	398.5	607.8				711.2	2343.1	2302.5		1044, 9
25.	Family units as per cent of allCanada	2.7	1.7	1.6	1.3	1.3	1.3	3.5	2.5	1.1	17.1

[^5]Eritish Columbia, 1957, percentages

		Salily ソoney Income Class									
Iine	Item	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{gathered} \$ 2,000- \\ 2,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{gathered} \$ 4,000- \\ 4,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 5,000- \\ 5,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 6,000- \\ 6,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 7,000- \\ 9,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 10,000- \\ 14,999 \end{gathered}$	$\begin{array}{r} \$ 15, \text { coo } \\ \& \text { over } \end{array}$	Total
1.	Total federal taxes	1.2	1.7	2.2	3.7	3.4	0.4	27.1	29.2	25.6	10c.0
2.	Personal income tax	0.2	0.5	C. 9	0.5	2.6	6.2	27.1	34.9	26.3	100.C
3.	Total federal expenditures	8.1	7.0	7.7	5.8	$4 . ?$	6.5	21.2	19.8	20.0	100.0
4.	Federal personal transiers	16.3	13.6	12.5	7.7	4.5	6.8	19.0	13.5	5.9	100.0
5.	Total provincial taxes	1.6	2.0	2.8	4.0	3.8	0.9	26.9	28.5	23.4	100.0
O.	Total provincial expenditures	5.3	4.8	5.1	5.7	7.2	7.4	27.9	24.3	14.3	100.0
7.	Dividends income	0.4	0.3	3.7	3.0	1.0	7.0	4.6	11.7	68.3	100.0
8.	Consumption of grant-financed output	3.3	3.4	3.5	5.1	4.6	7.3	30.6	29.8	12.6	100.0
9.	Wages and salaries	0.7	0.9	1.8	3.2	3.6	5.6	31.8	34.0	18.3	100.0
10.	Children Age 5-17	0.9	2.1	3.1	4.9	2.9	7.3	38.1	31.3	12.7	100.0
11.	Erozd income	0.8	1.0	2.8	3.5	3.0	5.8	26.4	29.0	27.8	100.0
12.	Family units (number in thousands)	92.7	48.4	56.9	46.8	39.4	50.9	187.4	139.3	54.1	716.4
13.	Family units (percentage distribution)	12.9	6.8	7.9	6.5	5.5	7.1	26.2	19.4	7.6	100.0
14.	Property users	3.1	2.9	7.4	18.1	8.5	8.7	29.3	16.1	5.9	100.0
15.	Miles driven	0.8	2.0	2.3	4.3	5.0	6.8	36.8	29.9	12.1	100.0
10.	Consumption of transported commodities	2.7	3.4	3.2	5.0	4.4	7.2	30.6	30.1	12.9	100.0
17.	Total current consumption	2.8	3.4	3.3	4.8	4.5	7.3	30.8	29.9	13.2	100.0
18.	Manpower trainees	16.4	17.0	18.7	15.7	11.4	7.6	10.6	1.4	1.4	100.0
19.	Total provincial-municipal taxes	2.0	2.5	3.2	4.3	4.0	7.0	27.4	28.2	21.8	100.0
こ0.	Net farm income	-7. 5	2.2	5.7	7.3	0.9	9.4	17.5	26.3	38.3	100.0
21.	Farrs family units	6.1	2.6	13.4	13.3	9.0	12.4	13.3	13.5	16.4	100.0
22.	Social assistance expenditures	10.3	8.2	7.3	6.9	5.9	7.5	25.7	20.7	7.7	100.0
23.	Original adjusted broad income, ABY (millions of dollars)	179.8	166.2	293.1	286.1	286.1	413.1	1781.7	1855.5	1769.8	6960.1
	New adjusted broad income, $A B Y^{*}$ (millions of dollars)	179.7	165.8	293.5	285.9	285.5	412.9	1774.7	1849.4	1777.2	6953.4
	Family units as per cent of allCanacia	1.4	0.8	0.9	0.7	0.6	0.8	2.9	2.2	0.8	11.1

Note: Details may not add to totals, due to rounding.

$$
\text { TABLE } A-2(\bar{a})
$$

Distributive Series by Resion, 1969
percentages

Line	İem	$\begin{gathered} \text { Atlantic } \\ \text { Region } \\ \hline \end{gathered}$	Quebec	Ontario	$\begin{aligned} & \text { Prairie } \\ & \text { Region } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { British } \\ \text { Columbia } \\ \hline \end{array}$	Caraoja
1.	Total federal taxes	6.3	24.8	41.9	15.6	11.6	100.0
2.	Federal personal income tax	4.7	24.0	45.1	15.1	11. 1	100.0
3.	Total Federal expenoitures	9.1	26.3	35.9	18.9	10.9	100.0
4.	Federal personal transfers	10.2	26.9	35.0	16.4	11.6	100.0
5.	Toual provincial taxes	6.4	28.4	4 C .7	13.8	10.7	100.0
6.	Total provincial expenditures	8.3	31.0	34.5	16.1	9.8	100.0
7.	Lividends income	4.7	14.5	38.3	20.6	21.9	100.0
8.	Consumption of grant-financed output	26.7	49.2	7.5	14.3	2.3	100.0
9.	Wages and salaries	6.1	26.0	42.6	14.2	11. 1	100.0
10.	Children age 5-17	9.8	29.6	38.0	15.3	7.3	100.0
11.	Broad income	6.0	25.3	41.1	15.8	11.6	100.0
12.	Family units (number in thousands)	537.3	1721.4	2373.9	1107. 3	716.4	6450.2
13.	Family units (percentages)	8.3	26.7	36.8	17.1	11.1	100.0
14.	Property users	4.8	21.4	46.3	15.9	12.3	100.0
15.	Highway users and non-users	12.0	23.0	37.6	18.3	9.5	100.0
16.	'Iotal consumption	6.8	26.1	41.0	15.5	10.8	100.0
17.	Manpower trainees	n.a.	n. ${ }^{\text {a }}$	n.a.	n.a.	n.a.	n.a
18.	Total provincial-municipal taxes	5.8	27.3	41.9	14.5	10.5	100.0
19.	Net farm income	3.9	17.6	35.4	38.8	4.4	$100 . \mathrm{C}$
20.	Farm family units	4.9	20.3	21.6	47.2	5.9	100.0
21.	Social assistance expenditures	6.1	36.0	33.0	14.9	9.8	100.0
'22.	Original adjusted broad income, ABY	6.8	26.1	38.8	16.9	11.3	100.0
23.	New adjusted broad income ABY*	6.9	26.1	38.7	16.9	11.3	100.0

Note: Details may not add to total due to rounding
（a）$\overline{\text {（ }}$－IIGUI
Distributive Series bj Pegion， 1969

Line	Item	Atlantic Region	Quekec	ontario	Prairies	$\begin{array}{r} \text { British } \\ \text { Columbia } \\ \hline \end{array}$	Carada
1.	Total federal taxes	838.3	3305.2	5591.0	2078.6	1546.8	13ミころ．
2.	Federal personal income tax	262.6	1341.1	$2520 . ?$	843.8	620.3	55EE．I
3.	Toさal federal expenditures	1128.2	3254． 8	4442.5	2341.6	1351.5	12 ミミシ．7
4.	Federal personal transfers	494.6	1302.9	10́9́． 4	796.3	562.9	$48+9.2$
	Toさal provincial taxes	534.6	2380.8	3414.7	1157.1	899.9	8381.1
6.	Total provincial expenditures	796.8	2969.5	3304.3	1540．8	939.7	9579.2
7.	Dividends income	85.9	264.9	E99．8	376.4	400.1	1827.2
8.	Ccnsumption of grant－financed output	20.5	37.8	5.7	11.0	1.7	70.7
9.	Wages and salaries	2628.8	11204.7	18358.4	6119.4	4784.0	$43095 . \mathrm{C}$
10.	Cnildren age 5－17	215.0	650.5	833.7	335.5	160.4	2195.2
11.	Broad income	3569.7	15122.5	24594.7	9435.3	6953.0	59839.6
12.	Family units（number in thousands）	537.3	1721.4	2373.9	1101.3	716.4	645 C .2
13.	Fainily units（percentages）	8.3	26.7	36.8	17.1	11.1	100.0
14.	Property users	51.3	290.9	438.2	139.6	119.8	103 c .3
15.	Highway users and non－users	11.2	21.5	35.1	17.1	8.9	93.4
16.	Total consumption	5.0	19.1	30.0	11.3	7.9	73.1
17.	Manpower trainees	n．a．	n．a．	n．a．	п．a．	n．a．	n． 2.
18.	Total provincial－municipal taxes	5749.5	333.7	1567.5	2410.2	834.6	5749.5
19.	Net farm income	58.9	265.9	534.9	586.3	06.5	1511.0
	Farm family units（number in thousands）	18.6	76.6	81.1	177.7	22.3	376.2
21.	Social assistance expenditures	244.1	1431.8	1309.7	591.3	387.5	3971.8
22.	Original adjusted broad income，ABY	4186.9	16078.1	23925.3	10443.2	6960.1	61662.3
23.	New adjusted broad income，ABY＊	4260.9	16075.6	23857.5	10445.9	6953.4	61662.3

[^6]| | | Eraily nonej Incone Clase | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| － 5 | Item | $\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$ | $\begin{array}{r} \$ 2,000 \\ 2,999 \\ \hline \end{array}$ | $\begin{array}{r} \$ 3,000- \\ 3,939 \\ \hline \end{array}$ | $\begin{array}{r} \$ 4,000 \\ 4,999 \\ \hline \end{array}$ | $\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$ | $\begin{gathered} \$ 6.000- \\ 6,999 \\ \hline \end{gathered}$ | $\begin{gathered} \$ 7,000- \\ 9.999 \\ \hline \end{gathered}$ | $\begin{array}{r} \$ 10,000- \\ 14,990 \\ \hline \end{array}$ | \＄15，OCO \＆over | Tcts： |
| | EXPENDIEURES | | | | | | | | | | － |
| | ASIASTIC REGION | | | | | | | | | | |
| 1. | Crpital Ircentive Grants（B．8） | .12 | .23 | ． 62 | ． 49 | ． 65 | ． 60 | 1.69 | 1.85 | 1.80 | E．c8 |
| 2. | Kishways（D．13） | .97 | 1.73 | 2.79 | 2.89 | 3.78 | 3.88 | 10.10 | 8.80 | 3.21 | 38．0？ |
| | Owher Incustrial Assistance（B．8） | ． 05 | ． 08 | － 22 | ． 17 | ． 24 | ． 22 | ． 60 | ． 65 | ． 60 | 2.79 |
| 4. | Manpower anc Social Assistance（H．2l） | 2.13 | 2.21 | 2.43 | 2.04 | 1.48 | ． 99 | 1.38 | － 28 | ． 18 | 13.00 |
| 5. | Asriculture（G．19） | ． 11 | ． 76 | ． 88 | ． 35 | －－ | ． 35 | ． 65 | ． 38 | ． 13 | 4.00 |
| | Sewers and other Infrastructure（E．16） | ． 23 | ． 35 | ． 51 | ． 46 | ． 59 | ． 63 | 1.61 | 1． $2 \cdot \frac{4}{4}$ | ． 56 | 6． 3 |
| 7. | Pianning and Administration（F．17） | ． 01 | ． 02 | ． 03 | ． 04 | ． 00 | ． 00 | ． 15 | ． 25 | ． 09 | ． E 1 |
| 8. | Eucation（C．11） | 3.12 | ． 33 | ． 57 | ． 70 | ． 8.63 | ． 84 | 2.00 | ，1．：5 | ． 71 | 7．6．3 |
| 9. | 3ub－toちal | 3.74 | 5.71 | 8.05 | 7.15 | 7.63 | 7.59 | 18.18 | 24.71 | 7.28 | 80.50 |
| 10. | Operating enc Capital（M．24） | ． 58 | 6.88 | 1.24 | 1.10 | 1.17 | 1．16 | 2.80 | 2.25 | $\frac{1.12}{8.12}$ | $\underline{12.32}$ |
| 11. | TCTAL Expenditures | 4.32 | 6.59 | 9.29 | 8.25 | 8.80 | 8.75 | 20.98 | 16.6 | 8.40 | SE．${ }^{7}$ |
| | 2UEBEC | | | | | | | | | | |
| 12. | Sapit三1 Incentive Grants（B．8） | .44 | ． 20 | .40 | ． 66 | ． 60 | 1． 3.35 | $\frac{2}{6} \cdot 73$ | | 6.14 | 16.28 |
| 13. | Fitheys (D.13) | .37 | ． 51 | ． 79 | 1.21 | 1． 44 | 2.32 | 6.86 | 6.73 | 4.93 | 25.15 |
| $7=$ | C－her Industrial Assistance（B．8） | .15 | ． 07 | ． 16 | ． 24 | ． 24 | .49 | 1.08 | 1.42 | 2.16 | 5． 22 |
| 12. | Wanpower and Social Assistance（H．2l） s～riculture（G．19） | ． 71 | .74 .24 | ． 81 | ． 68 | ． 49 | ． 23 | ． 46 | ． 06 | ． 06 | 4.33 |
| 17. | Sewers and Other Infrastructure（E．16） | .13 | ． 18 | ． 21 | .30 | － 32 | .47 | 1.32 | 1． | 1.03 | 5.20 |
| 18. | Pianning and Administration（F．I7） | ． 02 | ． 04 | ． 08 | ． 12 | .17 | ． 13 | ． 60 | O | .69 | 2.57 |
| 19. | Eulicetion（C．11） | －－ | | | | S | －－ | － | －－ | －－ | |
| 20. | Sub－total | 2.01 | 1． 98 | 2.76 | 3.66 | 3．71 | 5.8 | 13.42 | 14．び） | 15．0 | 52.26 |
| 21. | Operating and Capital（M．24） | ． 31 | ． 30 | ． 42 | ． 56 | ． 51 | ． 82 | 2.05 | 2.15 | C． | 9.5 ？ |
| 22. | TOTSL Expenditures | 2.32 | 2.28 | － 18 | 4.22 | 4.28 | 6.19 | 15.47 | 10.20 | 17.64 | 71.73 |

ThBIA $A-$? (Con'a.

TAET: $\therefore=3$
12,10
Distribution of Expencitures, riax Faj!ier.
Regions and Canada, standard care, millinr, o! rollar

Note: Details may not add to totals due to rounding
ThPLS $\therefore-3(a)$
Distrinution of Expenditures. Tax. Ta:nents and T'iscal Amourts

-ing	Family Voney Income Slass									
	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000 \\ 14,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \end{array}$	Tote
Expenditures										
1. Capital incentive grants (B.8)	1.17	1.19	2.08	2.65	1.82	4.24	9.54	13.75	40.35	76.78
2. Other industrial assistance (B.8)	.38	. 39	. 69	. 86	. 60	1.39	3.13	4.57	13.22	25.17
3. Highways (D.13)	2.01	2.20	2.99	3.56	4.20	5.38	17.42	20.42	18.97	77.17
4. Sewers and othei. Infrastructure (E.16)	. 63	. 61	. 82	. 82	. 86	1.07	3.37	3.73	4.08	15.00
5. Nanpower and social assistance (H.21)	4.18	4.34	4.77	4.00	2.91	1.94	2.70	. 3	. 36	25.50
6. A.griculture (G.19)	3.05	2.71	3.10	2.62	1.85	1.23	2.77	2.32	1.85	21.50
7. Education (C.II)	. 13	. 17	. 30	. 39	. 50	. 64	2.17	2.06	1.50	7.84
8. Planning and administration (F.17)	. 09	. 18	. 32	. 42	. 55	. 65	2.35	2.7ミ	2.75	10.17
9. Cperating and capital	1.62	1.92	2.56	2.58	2.33	2.93	7.06	7.11	11.58	39.75
10. Total	13.26	13.71	17.63	17.90	15.62	19.48	50.51	57.00	94.66	299.86
11. Taxes: Increase federal taxes	4.80	5.40	8.70	12.00	15.90	19.80	69.30	83.20	80.10	299.86
12. FISCAL AMOUNT	8.46	8.31	$\begin{array}{r} 8.93 \\ \hline \end{array}$	5.90	-. 28	-. 32	-18.79	$-25 . \therefore 0$	14.56	0.00

[^7]Tabie $A-3(i)$
Expenditure Incidence and Fiscal Ircidence, Pegions and
Canada, Standarc ase, percertミそes

Table A-3(0)
Expenditure Incidence anc Fiscal Incioerce Fivers ant
Canada, Standard Case, percertazes

Note: details may not add to totals due to rounding.
Experiments, Atlantic Secion, millions of collars

FINANCING EXPERINENTS

어․
8.36

.38	.60	1.17	1.32	1.87	1.77	5.21	4.40	2.19	18.87
.03	.177	.38	.55	.97	1.22	4.28	4.38	2.10	14.08
3.00	2.64	2.73	2.43	2.64	2.24	5.26	4.12	2.32	27.26
5.87	4.58	3.64	3.09	2.90	2.17	4.49	2.87	1.01	30.56
2.21	4.43	8.24	8.61	11.81	11.93	31.00	29.15	13.04	123.00
7.38	8.36	11.93	12.05	13.41	12.42	29.40	20.66	8.36	123.00
.15	.32	.71	.50	.62	.56	1.66	1.64	1.66	7.84
.09	.16	.54	.29	.35	.28	.95	1.22	1.72	5.64
.07	.12	.49	.23	.27	.19	.65	1.11	1.73	4.96
.03	.03	.39	.10	.10	.02	.31	.86	1.77	3.61
.23	.46	.88	.95	1.25	1.20	3.19	3.01	1.81	12.95
.09	.17	.54	.37	.47	.40	1.23	1.53	1.78	6.59

TABIE $\therefore-(\therefore)$

Experiments, Aclantic Region, millions o: iollars

		Family Money Income Class									
- ine	ALTEPNATIVE EXPERIMENT	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000 \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000-1 \\ 14,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \& \text { over } \\ \hline \end{array}$	Tots.
OTHER INLUSTRIAL ASSISTANCE											
13. B. 3 Hish factor substitutability (100\% effective) 14. B.5 Hijh factor substitutability (33\% effective) 15. B. 7 Low factor substitutability (100\% effective) 16. B. 9 Low factor substitutability (33% effective)		. 05	. 11	. 24	. 16	. 21	. 19	. 55	. 54	. 55	2.57
		. 02	. 04	. 16	. 07	. 09	. 07	. 24	.37	. 57	1.63
		. 07	. 16	. 30	. 34	. 45	. 43	1.12	1.04	. 62	4.52
		. 03	. 06	. 18	. 13	. 17	. 15	. 43	. 53	. 59	2.25
HIGHWAYS											
17. D.12 High factor substitutability (100% erfective) 18. D. 14 Neutral sources effect (100% effective')		1.01	1.72	2.61	2.51	3.14	3.27	8.75	6.44	2.22	31.56
		1.32	2.24	3.31	3.29	4.21	4.30	11.29	8.20	2.33	40.39
MANPOWER AND SOCIAL ASSISTANCE											
19. H. 22 Using social assistance series AGEICULTURE 20. G.20 Using farm income series		1.74	1.35	1.60	1.35	1.40	1.23	2.42	1.63	. 57	13.00
		. 22	. 31	. 97	. 24	--	. 22	. 70	1.31	. 03	4.00

Note: Details do not add to totals due to rounding.

$$
\text { Table } A-4(b)
$$

Distribution of Amourts for Alternative Financing and
Expenditure Experiments, EuE:ec, riiliors of dollars

Alternative Experiment	Family Soney Income class									
ne	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000 \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000 \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000 \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \text { \& Over } \\ \hline \end{array}$	
FINARCING EXPERINENTS										
1. Increase total federal taxes	. 82	1.11	2.01	2.97	4.31	5.24	19.39	20.06.	17.46	74.30
2. Increase federal personal income tax	. 07	. 29	. 93	1.65	3.31	4.67	17.90	21.86	21.50	71.90
3. Decrease total federal expenditures	5.99	5.44	5.44	5.91	6.62	6.30	15.36	13.87	13.87	78.79
4. Decrease federal transfer payments	11.44	9.59	7.74	7.58	7.6.6	6.6,9	14.35	9.83	6.04	80.59
5. Decrease equalization payments [increase provincial taxes]	1.84	2.91	4.13	6.27	8.57	13.31	40.24	42.08	33.97	153.00
E. Decrease equalization paymẹnts [decrease provincial expenditures]	9.49	9.33	9.95	11.78	13.31	14.23	37.18	28.61	19.28	153.00
INCENTIVE GRAITS										
7. B. 3 Hign factor suostitutability (l00\% effective)	. 52	. 30	. 49	. 79	. 71	1.53	3.24	4.10	6.10	17.80
8. B. 4 High factor substitutability (48% effective)	. 47	. 37	. 31	. 56	. 39	1.18	1.96	3.11	F. 15	14.33
9. B. 5 High ractor substitutability (33 5 effective)	. 45	. 13	. 25	. 50	. 29	1.07	1.57	2.81	6.15	13.23
10. B.E High factor substitutability (no price effect)	. 42	. 04	. 14	. 37	. 10	. 8 8	. 78	2.20	6.18	11.13
11. B. 7 Low factor substitutability (100% effective)	. 45	. 38	. 67	. 98	1.13	1.87	4.86	5.33	6.01	21.73
12. B. 9 Law factor substitutability (33% eifective)	. 43	. 16	. 31	. 56	. 43	1.08	2.08	3.23	E. 25	14.58

Table $\therefore-4(\therefore)$
Distribution of Amounts for Alternative Financinp and
Expenditure Experiments, quebec, millicns of iollars

Alternative ExperimentSne	Family Money Income Class									
	$\begin{array}{r} \text { Under } \\ \$ 2,000 \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 24,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \\ \hline \end{array}$	Tots:
OTHER IND"STRIAL ASSISTANCE										
13. B. 3 figh factor substitutaioility 100% effective)	. 17	. 10	. 16	. 26	. 23	. 50	1.05	1.34.	2.00	5.84
14. B. 5 High factor substitutability 33 (ffective)	. 15	. 04	. 08	. 16	. 10	. 35	. 52	. 93	2.01	4.35
15. B. 7 Low factor substitutabinity	. 15	. 15	. 26	. 38	. 47	. 73	1.97	2.15	2.32	8.59
16. B. 9 Low factor substitutability (33% effective)	. 15	. 06	. 12	. 20	. 18	. 42	. 80	1.19	2.11	5.23
HIGHWAYS										
17. D. 12 High factor substitutability (100% effective)	. 41	. 49	. 72	1.22	1.23	2.15	6.00	5.73	4.20	22.13
18. D. 14 Neutral source effect:(100% effective)) .40	. 63	. 90	1.47	1.57	2.53	7.62	6.82	3.48	25.41
MANPOWER AND SOCTAL ASSISTANCE										
19. H. 22 Using Social assistance series.	. 46	. 40	. 35	. 36	.37	. 38	. 98	.f9	. 35	4.33
Agriculture										
20. G.20 Using farm income series	. 04	. 14	. 18	. 37	. 42	. 09	. 15	. 23	1.05	2. ${ }^{4}$

Table A-4 (b)
Distribution of Amounts for Alterrative rinarcing and
Expenditure Experimerts, Zuelec, williors of doliars

Note: Details do not add to totals due to rounding
TABIE $A-4(C)$
Distribution of Amounts for Alterrative rinancirs ar.j Expenditure
Experiments, Ontario, milliors of dollars

*Because Ontario does not receive equalization payments, these experiments have no effect.
TABLE A-4(c)
Distribution of fmounts for Alterrative Financir: and expenditure Experiments, Ontarıc, millions of doilars

Note: Details do not add to totals due to rounding.
TABLE $a-4$ (d)
Distribution of Amounts for Alternative Vina:cirg ard Expercittire
Experiments, Prairie Rerion, millions of dollars

TABLE A-4'd)
Distributior of Amounts for Alternative Financir. ar. Expenditre
Experiments, Frairie Re-ion, : illions oi rollars

e		$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,999 \end{array}$	$\begin{align*} & \$ 15,000 \\ & \text { \& over } \end{align*}$	Tota
	CT:ER IIIDUSTRIAL ASSISTANCE										
13.	E. 3 High factor substitutability (100\% effective)	. 08	. 10	. 16	. 23	. 11	. 15	.F9	. 70	2.58	L. 79
14.	E. 5 Igh factor substitutability ! 33 effective)	. 06	. 08	. 15	.24	. 08	. 12	.63	. <5	3.05	5.05
15.	3.7 Low factor substitutability (100\% effectivie)	. 07	. 08	. 12	. 17	. 09	. 13	. 55	. 55	1.78	3. 54
15.	B. 9 Low factor substitutacility (33\% effective)	. 06	. 08	. 14	. 22	. 08	. 12	. 58	.60	2.78	4.65
	EIGLNAXS										
17.	D. 12 High factor substitutability (100\% effective)	.60	. 20	.27	.36	. 25	. 32	1.19	1.19	2.89	6.80
18.	D. 14 Neutral sources effect (100\% effective)	. 17	. 19	. 21	. 24	. 25	. 32	.96	. 92	.47	3.73
	MANPOVER AND SOCIAL ASSISTANCE										
19.	H. 22 Using social assistance series	. 85	.70	.65	. 62	.58	. 58	1.48	1.10	.53	7.17
	AGRICULTURE										
20.	G. 20 Using farm income series	.26	.93	.96	.90	.77	. 25	- 1.55	1.95	1.43	9.00
	SETIERS AND OTHER INFRASTRUCTURE										
21.	E. 15 High factor substitutability (100\% effective)	. 05	. 05	. 06	. 08	. 07	. 08	. 28	.27	. 62	1.52
22.	E.IGa Low factor substitutability (67% effective)	. 02	. 02	. 03	. 04	. 03	. 04	. 18	. 18	.33	.89

PABIE, A-2íd!
Distribution of Amounts for Alternative Financir. arc xpenditure Experimerts, Frairie Refion, miliiors o: rolians

	Family \because \%ey Ineome Slass									
${ }^{*}$	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{gathered} \$ 2,000- \\ 2,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{gathered} \$ 4,000- \\ 4,999 \end{gathered}$	$\begin{gathered} \$ 5,000- \\ 5,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 6,000- \\ 6,099 \end{gathered}$	$\begin{gathered} \$ 7,000- \\ 9,999 \end{gathered}$	$\begin{aligned} & \$ 10,000- \\ & 14,099 \end{aligned}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \\ \hline \end{array}$	Tota -
DIATMIT.G ATD ADNINISTRATION										
23. F. 2 Eenefits as pure public good EDUCATION (67\% effective)	. 02	. 04	. 05	. 05	. 0^{\prime}	.07	. 28.	. 29	. 29	1.14
24. C.l0 Putlic beneiits are national	. 01	. 02	. 04	. 04	. 04	. 05	. 18	. 18	.17	.71
OPERATING AND CAPITAL			,							
25. N. 25 Benefits as pure public good 20. M. $2 E$ Benefits as pure public good (67\% effective)	. 117	$\begin{aligned} & .24 \\ & .18 \end{aligned}$.26 .21	.30 .24	.33 .27	.43 .36	1.49 1.26	1.57 1.33	1.63 1.27	$\begin{aligned} & 5.28 \\ & 5.15 \end{aligned}$

Note: Details do not add to totals due to rounding.
TAENA. A-4 (e^{\prime}
Distributior: of Amounts for Altertative rirannins ard Experaitire
Experiments, Britist Solmmia, millious o: aollars

Alternative Experiments	Family lioney Income Class									
	$\begin{aligned} & \text { Under } \\ & \$ 2,000 \end{aligned}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,299 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000 \\ 5,399 \\ \hline \end{array}$	$\begin{gathered} \$ 6,000- \\ 6,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \& \text { over } \\ \hline \end{array}$	Total
FITALICI:G EXPERIMENTS										
1. Ircrease total federal taxes	. 42	. 59	. 76	1.29	1.18	2.22	9.42	10.15	8.90	34.75
2. Ircrease personal income tax	. 07	. 17	. 30	. 17	. 85	2.06	9.01	12.61	8.75	$33.2{ }^{\prime}$
3. Decrease federal expenditures	2.65	2.29	2.51	1.89	1.3?	2.12	6.92	6.47	6. 53	32.6 f
4. Decrease federal transfer payments	5.66	4.73	4.34	2. 68	1.50	2.37	6.60	4.69	2.05	34.75
5. Decrease equalization payments [increase provincial taxes]*	.	.	,	-	.	-75
6. Decrease equalization payments [decrease provincial expenditures]*	-	.	-	-	-	-	-	-	-	-
INCENTIVE GR4NTS										
7. B. 3 High factor substitutability (100\% effective)	. 06	. 05	. 49	. 40	. 15	. 91	. 71	1.61	8.67	13.05
8. 3.4 Hign factor substitutability (485° effective)	. 07	. 05	. 55	. 45	. 16	1.0'f.	.74	1.79	10.14	15.01
9. B.5 High factor substitutability (33? effective)	. of	. 05	. 57	. 47	. 16	1.09	. 75	1.85	10.59	15.F1
10. 3. High factor substitutability (no price effect)	. 07	. 05	. 62	. 50	. 17	1.18	. 77	1.97	11.48	16.81
11. B. 7 Low factor substitutability (100\% effective)	. 05	. 05	. 35	. 30	. 13	.67	. 81	1.42	5.97	9.76
12. B. 9 Low factor substitutability (330° effective)	. 06	. 04	. 53	. 44	. 16	1.02	. 78	1.79	9.72	14.5F.

TABIE A-4(e)
Distritution of Amcunts for Alternative Finarcins anc Exper.diture Experiments, Eritish Columidia, milliors o dollars
Cumily

TABLL A-'t (e)
Distribution of Anounts for Alterrative inancir was arncriiture
Experiments, British Columbia, millions of ciollars

Eine	Family Money income Class									
	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000 \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} . \$ 4, .000 \\ 4,999 \\ \hline \end{array}$	$\$ 5,000$5,999 $\begin{array}{r}\$ 6,000 \\ \hline\end{array}$		\$7,000 9,999	$\begin{gathered} \$ 10,000- \\ 14,999 \\ \hline \end{gathered}$	$\$ 15,000$ \& over	Total
SENERS AND OTHER INFRȦSTRUCTURE										
21. E. 25 High factor substitutability (l00\% effective)	. 01	. 01	. 04	. 05	. 03	. 09	. 17	.23	. 66	1.31
22. F. 16A Low factor substitutability (67% effective)	. 01	. 01	. 02	. 02	. 01	. 05	. 11	. 14	. 31	. 6.7
PLANTING AND ADMINISTRATION										
23. F.l8 Benefits as pure public good EDUCATION (67\% effective)	. 01	. 01	. 02	. 03	. 03	. 05	. 21	: 23.	. 22	. 79
24. C.lc Public benefits are national OPEAFTING AND CAPITAL	--	--	. 01	. 02	. 02	. 03	. 12	. 13	.13	. 45
25. M. 25 Bendfits as pure public good 26. M. 26 Bendits as pure public good	. 04	. 05	. 13	. 16	. 17	.27	2.22	1.34	1.28	4.61
(67\% effective)	. 02	. 03	. 09	. 12	.12	. .29	.87	.95	. 89	3.25

[^8]* Because British Columbia does not receive equalization payments these experiments have no effect.
TABIT: A-4(f)
Distribution of Amounts for Alterative Pinancinf anf Expenditure Experiments, Cauada, willions o dollars

TABIF $(-4 i f)$
Distribution of Amounts for Alterrative Eirancinir and
Experditure Experiments, Canada, milicrs o: clollars

	Under $\$ 2,000$	$\begin{array}{r} \$ 2,000-999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{aligned} & \$ 6,000- \\ & 6,999 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,099 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ 8: \text { over } \\ \hline \end{array}$	Tota?
OTHER IND:STRIAL ASSISTANCE										
13. B. 3 High factor substitutability ' 100% effective)	. 41	. 49	. 81	. 90	. 10	1.53	3.31	4.24	12.73	25.17
14. B. 5 High factor substitutability (33 . effective)	. 35	. 37	. 68	. 82	. 41	1.33	2.48	3.83	14.84	25.17
15. B. T Low factor substitutability (100\% effective)	. 36	. 51	. 85	1.11	1.14	1.77	4.45	5.05	9.92	25.17
16. B. 9 Low factor substitutability (33% effective)	. 35	. 38	. 70	. 89	. 57	1.42	2.84	4.09	13.93	25.17
HIGHWAYS										
$\text { 17. D. } 12 \text { High factor substitutability }$ $\text { (} 100 \% \text { effective) }$	1.82	2.73	4.02	4.63	5.06	6.82	18.38	If. 6	18.09	77.27
18. D. 14 Neutral source effect (100\% effective)	2.07	3.25	4.96	5.31	6.35	7.70	21.95	18.29	7.77	77.17
MANPOWER AND SOCIAL ASSISTANCE										
19. H. 22 itsing social assistance series A GRICULTURE	3.14	2.51	2.6κ	2.38	2.17	2.15	5.06	3.59	1.53	25.34
20. G. 20 Using farm income series	. 48	1.52	2.38	1.78	1.211	. 86	3.26	4.28	5.72	21.50
SEWERS AND OTHER INFRASTRUCTURE										
21. E. 15 High factor substitutability (200\% effective)	. 50	. 64	. 87	. 92	. 97	1.28	3.49	3.34	3.96	16.00
22. E.I6a Low factor substitutability (67 effective)	. 45	. 63	. 86	. 95	1.12	1.40	3.89	3.68	3.03	16.00

TABIE $A-4(f)$
Distribution of Amounts for Alternative Einancing and
Expenditure Experiments, Canada, millions of dollars
Alternative Experiment

ne	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{gathered} \$ 3,000- \\ 3,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{gathered} \$ 5,000- \\ 5,999 \\ \hline \end{gathered}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 7,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,999 \end{array}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \end{array}$	Total
PLANNING AND ADMINISTRATION										
23. F.I8 Benefits as pure public good EDUCATION (67\% effective)	. 12	. 20	. 33	. 43	. 69	. 77	2.46	2.80	2.32	10.17
24. L. 10 Public benefits are national	. 08	. 30	. 49	. 59	. 69	. 73	1.99	1.76	1.22	7.84
OPERATING AND CAPITAL										
	. 40	. 72	1.12	1.60	2.71	2.56	9.16	11.12	10.85	$\begin{aligned} & 39.75 \\ & 30.75 \end{aligned}$
26. M. 26 Benefits as pure public good (67% effective)	.37	. 56	1.12	1.69	2.31	2.74	9.50	11.55	9.83	39.75

Note: Details do not add to totals due to rounding.
Table A-5
Fiscal Amounts and Eiscal Incidence Oor AIternative
Firancine Experiments. Fenjons an Oancdi

Table A-5
Fiscal Amounts and Fiscal Incidence for Alternative

Table $A-5$
Fiscal Amounts and Fiscal Incidence =on A.t ernati!e
Financing Ixperimerts, ereions and saracia

Financing Ixperinerts, eerions ana araca
Experiment and ה̄esion
Fiscal Amonts and Fiscal ncidence for 'Itiernative
Financing Eyperimerts, Rerions a d Canala
Faliil: \because : e ?ncome rlass

$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,9,99 \\ \hline \end{array}$	$\begin{gathered} \$ 5,000- \\ 5,390 \end{gathered}$	$\begin{gathered} \$ 6,000- \\ 6,999 \end{gathered}$	$\begin{array}{r} \$ 7,000- \\ 9,9,99 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,099 \\ \hline \end{array}$	$\begin{aligned} & \$ 15,000 \\ & \text { \& cover } \end{aligned}$	Totas
$\frac{\text { 三. C. - }}{\text { total }}$ expencifitures)									
Increase federal income tax . 07	. 01	29	. 31	-. 10	-. 02	-2.10	-2.53	2.52	-1.74
Decrease rederal expenditures -.79	-. 70	-. 44	$-.21$	-.?	-. 04	-1.50	-. 82	3.19	-1.54
Decrease federal transfer payments -1.80	-1.51	-1.05	-. 53	-. 34	-. 12	-1. 39	-. 23	$4.7=$	-2.23
Deerease equalization grants [fprov.taxes] .09	. 07	. 39	. 37	. 19	-67	. 81	1.34	5.44	9.35
Decrease equalization granits[lprov.exp.] .09	. 07	. 39	. 37	. 19	. 7	. 31	1.34	5.44	9.35
CANALA - FISCAL AYOUNTS (millions of dollars)									
Increase federal income tax 11.79	13.13	15.99	14.13	6.74	5.79	- 15.70	-42.79	-9. $=8$	0.00
Decrease federal expenditures -11.59	-8.02	-2. ${ }^{4}$	-. 77	-3.37	. 75	-5.25	-4.10	37.22	0.00
Decrease federal transfer payments -34.36	-24.80	-12.99	-5.99	- 4.43	-. 45	1.80	15.24	FK. 78	0.00
			3.33		-4.89		-23.f2	34.64	0.00
Decrease equalization grants[\downarrow prov.exp.] -6.17	-4.64	-4.25	-f. 15	-10.99	-6. 49	-18.95	-. 27	5.12	0.00
CANADA - FISCAL INCIDENCE (percent of total expenditures)									
Increase federal income tax 3.93	4.38	5.32	4.71	2.23	1.93	-5.23	-14.2f	-3.23	0.00
Decrease federal experditures -3.86	-2.67	-. 87	-. 37	-1. 13	-. 08	-1.76	-1.36	10.34	0.00
Decrease federal transfer payments -11.46	-8.27	-4.33	-2.00	-2.14	-. 15	-.fo	4.08	21.27	0.00
Decrease equalization grants[1prov.taxes] 2.49	2.17		1.11	-1.39	-1. 3	-7. 91	-7.87	11.55	0.00
Decrease equalization grants [山prov.exp.] -2.06	-1.55	-1.43	-2.05	-3. 7	-2.17	- 6.32	-. 09	18.71	0.00

Note: Details do not add to totals due to rounding.

そney Incoút びlass

（x）M以O I
＇x）Mlo－tino

－ 148 －

	－	Family Ouney Income Ulass									
Ine	$\begin{gathered} \text { Experimert anc Region } \\ \text { Fiscal Incicence } \\ \text { [percent of total expenijtures] } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000 \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000 \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000 \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ \hline 9,999 \\ \hline \end{array}$	$\begin{aligned} & \$ 10,000- \\ & 14,999 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \\ \hline \end{array}$	Total
Increise Federal Ircome Tax											
17.	Stlantic region	1.43	2.14	2.97	2.57	2.61	2.50	5.57	4.20	2.10	20.26
2.	Quebec	． 75	． 66	． 75	． 86	.32	． 51	－． 80	－1．89	－1．29	－． 04
3.	Ontario	． 41	． 39	． 11	． 09	－． 85	－． 84	－6．50	－11．45	－7．24	－25．86
4.	Prairie region	1.27	1.18	1.20	． 88	． 26	－． 22	－1．31	－2．${ }^{\text {c }}$	． 58	1．－5
5.	B．CANADA	.07 3.93	.01 4.38	.29 5.32.	.31 4.71	. .10 -.23	－．-.02	-2.19 -5.23	－2．23	2.52 -3.23	-1.74
Decrease Feieral Expenditures＇											
7.	Atlantic region	． 44	1.32	2.19	1.94	2.05	2.16	5.24	$\therefore .28$	2.03	21.87
8.	Quebec	－1．22	－1．05	－． 75	－． 56	－． 78	－． 36	． 04	． 78	1.26	－2．34
9.	Ontario	－1．98	－1．84	－1．71	－1．18	－1．70	－1．36	－4．32	－4．48	1.99	－16．68
10.	Prairie region	－． 31	－． 40	－． 16	－． 19	－． 43	－． 48	－1．22	－1．12	1．87	－2．40
11.	B．C．${ }_{\text {CANADA }}$	-.79 -3.86	-.70 -2.67	－． 44	－． 26	-.27 -1.13	-.04 -.08	-1.50 -1.76	-.82 -1.36	3.19 10.34	-1.54
	CANADA	－3．86	－2．07	－． 87	－． 25	－1．13		－1．76			
Decrease Federal Iransfers											
13.	Atlantic region	－．． 52	． 67	1.88	1.72	1.97	2.19	5.50	4.70	2.46	20.77
	Quebec	－3．04	-2.44	－ 1.5 ？	－1．12	-1.13	－． 17	． 38	2.12	3.87	-2.34
15.	ontario	－4．47	－3．88	－3．06	－1．83	－2．21	－1．62	－3．69	－2．01	7.01	－15．76
16.	Prairie region	－1．63	－1．11	－． 58	－． 24	－． 43	－． 43	－． 20	－． 50	4.17	． 10
17.	B．C．	－1．80	－1．51	－1．05	－． 53	－． 34	－． 12	－1．39	－． 2^{2}	4.76	-2.23
18.	CANADA	－11．46	－8．27	-4.33	－2．00	－2．14	－． 15	． 60	4．c8	22.27	－1．40

TABLE $A-5(a)$

[^9]TAB1：T $\therefore-5(b)$
Expenditure Experiments，Berion：anc Canáa

 OMNH H，H，IOMMMEM
 UCUMMMMIUN EVM

HMon ino rinolnoo $\dot{N} \dot{\operatorname{NiN}} \dot{\operatorname{NiN}} \dot{\sim}$
 11）！！！い！！！！！いい！！！

 ヘホMciNciN ふM

ONr OMINNOCOM
 NMMNNNGN KM
 $\dot{\operatorname{Nivimivi}} \dot{\operatorname{Ni}}$
 Mmмণinmoi cim
 $\dot{\sim} \dot{\sim} \dot{\sim} \dot{H} \dot{H} \dot{H}$

OOMORLO OMOR $0.010,000$ J -100 $\cdots \times \infty \times \infty \times \infty$

	のm～のio oncorroos －NoO UO LNA LSMM o boincoin in ju

？

o bi ino inin ji Fఓmily voney Iracome Císss

$$
\begin{aligned}
& \text { ・ゴゴゴコ }
\end{aligned}
$$ Experiment 1 （B．3 and D．12） Experiment 2 （ 5.5 and D．12 Experiment $4\left(\begin{array}{l}\text { B．} 22 \\ \text { En }\end{array}\right.$ Experiment 5 （．20） Experiment σ（E．16a） Experiment $8(\mathrm{M} .26$ and F .18 ）

Experiment 9 （A．2）
Experiment 10 （Pro－Rich）
Experiment 11 （Pro－Poor）

Expenditure Amounts and Expenciture Incidence rir Alternatire
Expenditure Experinents，Petions and そaraba

UMOMMHF：OHHD
mmio Oncor－（vis）

すડM6かOLONO：

 ベーヘ்ヘ்ベヘ்ヘ்ベウ்ヘ

 H2OHMM．タun

 カ－HनウनHनH－1

how in noo ommain

$\dot{\square}$－ $\begin{aligned} \\ \text {－iriri } \\ \text {－}\end{aligned}$

anvicuav Hinc
のペMJcuOOcolnの

$\frac{\text { Expenditure Incidence }}{\text {（per cent of total expenditures）}}$

jinciocooriniv
$A B B I_{1} \leq-2(E)$

Expenditure 玉xperiments, Rejic:s ard こanatia

TABLE A－5（b）
Expenditure Amounts and Expenciture Incidence jow Alterrativ＝
Expenditure Experiments，Regions and Canaoja

かん～MMーJ1000000 जus in＝f Nrymom

©

 さM．M．Jロハのののळ．M

$$
\begin{aligned}
& \text { OOONCOMGレNN.. }
\end{aligned}
$$

न-नल तनल त
 xperiment $2(B .5$ and $D .12)$ Experiment 2
Experiment 3 $\left\{\begin{array}{l}\text { B．} 5.7 \text { ）and }\end{array}\right.$ xperiment 4 H．22）
与己 N \rightarrow quəぃ！ xperiment $\% ~(M .25)$ xperiment $8 \quad$ M． 26 and F．l8） Experiment 10 （Pro－Rich） Expenditure Incidence （per cent of total expenditures） x．periment 2, B． 5 and D．12

TABI：$\therefore-510$

BRIMISH COLUMBIA

$\frac{\text { Ictal Exeenciture Amount }}{\text {（nillions of dollars }}$

hinct arymos aion

$-1 \quad M r$

スペ○ぺーウヘのロ
－－0 O OO O GOMo．
MッMN6ににニーOM〒owiobo oloiocoo

ao int into onno in
OO non inc o ON noo

GMA LIONGOMルM

きコनいOONOLnNr

000 OOSNEN NA
…．．．．．．
TABLE $A-5(b)$
Expenditure Amounts and Experditure Incidence For fiternative
Expenditure Experiments，Regions and Canada

 $-\operatorname{sio} \rightarrow \ln (\alpha)+\sigma 1$

 Noo inmminino rion
inj inininting int

NOMGNminまolom －मलंウ்ウiबiom

 otnonctrriga

Hronrontryo

T

Total Expenditure Amount

（millions of dollars
 $\left.\begin{array}{l}\text { 112．Experiment } 2 \\ 113 \text { ．Experiment } 3\end{array}\right\} \begin{aligned} & 3.5 \\ & \mathrm{~B} .7)\end{aligned}$ 2

Experiment 6
Experiment 7 $\left(\begin{array}{l}\text { E．} \\ M .25 \text { ）})\end{array}\right.$
NOIV象 CNV TNAWIUTdX＇G

？

Note：Details may not add to totals due to rounding．
TABIE A－5＇c）
Expenciture Incidence of Federal Perioral Fecromic 玉u゙paision zxperajt res
For Alternative Expenditure Experiments，\because repior，percertages

Under	$\$ 2,000-$	$\$ 3,000-$	$\$ 4,000-$	$\$ 5,000-$	$\$ 6,000-$	$\$ 7,000-$	$\$ 10,000-$	$\$ 15,000$	
$\$ 2,000$	2,999	3,799	4,999	5,999	6,999	9,099	14,599	\＆over	Tota2

$00 \cdot 00 \tau$
M
M
～～
Ni

8
8
8

8
0
-
-

10．62
MNOGO
JMO
Mホ M M
31.73

No inoln
ヘiv
いن゙べニ

于尗 Nor

ナ 17

17.41

－
16.20
 M
\cdots
$\dot{-}$
-

$\stackrel{\sim}{M}$
$\stackrel{\sim}{i}$
HNO
N．

$\stackrel{\rightharpoonup}{\circ}$

7.81
agnoo
ari．
5．f 5

$\stackrel{\rightharpoonup}{\sim}$
$\stackrel{y}{n}$
$\stackrel{\mathrm{r}}{\stackrel{\mathrm{C}}{2}}$
 $\stackrel{\infty}{\rightarrow}$
 6.57
 6.38

 $\Sigma+\cdot 6 \tau$
 Nr －
M．
M－ － 6.57
 6.40
 whin ヘ $\dot{\sim} \cdot \stackrel{\text { Ln }}{\sim}$ 5.02 5.02 $\stackrel{\infty}{\infty}$ MNO No 4.88
 4.93 1.48
 4.23
 4.20
 4.11

Expenciture Incidence of Federal Regional Economic xpansion Fxpenditures

$\begin{aligned} & \text { Under } \\ & \$ 2,000 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 2,000 \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{gathered} \$ 4,000- \\ 4,999 \end{gathered}$	$\begin{array}{r} \$ 5,000- \\ 5,0,99 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \text { \& over } \\ \hline \end{array}$	Tota:
$\begin{array}{r} 1.29 \\ .68 \\ .45 \\ 1.19 \\ .08 \end{array}$	$\begin{array}{r} 1.86 \\ .63 \\ .50 \\ 1.08 \\ .06 \end{array}$	$\begin{array}{r} 2.72 \\ .88 \\ .44 \\ 1.16 \\ .38 \end{array}$	$\begin{array}{r} 2.48 \\ 1.28 \\ .66 \\ 1.09 \\ .36 \end{array}$	$\begin{array}{r} 2.90 \\ 1.38 \\ .44 \\ .78 \\ .18 \end{array}$	$\begin{aligned} & 2.96 \\ & 2.08 \\ & 1.00 \\ & .75 \\ & .67 \end{aligned}$	$\begin{aligned} & 7.38 \\ & 5.36 \\ & 2.49 \\ & 2.40 \end{aligned}$	$\begin{aligned} & 6.21 \\ & 5.64 \\ & 3.45 \\ & 2.47 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 5.99 \\ & 9.76 \\ & 5.23 \\ & 5.44 \end{aligned}$	$\begin{array}{r} 30.96 \\ 23.93 \\ 19.24 \\ 16.48 \\ 9.35 \end{array}$
3.69	4.13	5.58	5.87	$5 .+8$	7.45	18.5 5	19.12	29.37	100.00
$\begin{array}{r} 1.48 \\ .71 \\ .28 \\ .73 \\ .02 \end{array}$	$\begin{array}{r} 2.02 \\ .72 \\ .44 \\ 1.05 \\ .07 \end{array}$	$\begin{array}{r} 3.13 \\ 1.01 \\ .37 \\ 1.22 \\ .35 \end{array}$	$\begin{array}{r} 2.70 \\ 1.38 \\ .53 \\ 1.28 \\ .33 \end{array}$	$\begin{array}{r} 2.93 \\ 1.41 \\ .38 \\ .91 \\ .15 \end{array}$	$\begin{array}{r} 2.86 \\ 2.01 \\ .97 \\ .70 \\ .76 \end{array}$	$\begin{aligned} & 7.00 \\ & 5.08 \\ & 2.43 \\ & 2.55 \\ & .83 \end{aligned}$	$\begin{aligned} & 5.90 \\ & 5.43 \\ & 3.30 \\ & 2.49 \\ & 1.40 \end{aligned}$	$\begin{array}{r} 2.76 \\ 6.16 \\ 10.50 \\ 5.48 \\ 5.57 \end{array}$	$\begin{array}{r} 30.96 \\ 23.93 \\ 19.24 \\ 16.48 \\ 9.35 \end{array}$
3.22	4.30	6.08	6.22	5.78	7.20	17.89	18.52	30.47	100.00
$\begin{array}{r} 1.44 \\ .77 \\ .46 \\ 1.31 \\ .09 \end{array}$	$\begin{array}{r} 2.20 \\ .76 \\ .52 \\ 1.28 \\ .07 \end{array}$	$\begin{array}{r} 3.09 \\ 1.06 \\ .47 \\ 1.43 \\ .39 \end{array}$	$\begin{array}{r} 3.09 \\ 1.41 \\ .58 \\ 1.28 \\ \cdots .36 \end{array}$	$\begin{array}{r} 2.95 \\ 1.43 \\ .45 \\ .87 \\ .18 \end{array}$	$\begin{array}{r} 2.93 \\ 2.07 \\ 1.00 \\ .73 \\ .77 \end{array}$	$\begin{array}{r} 7.03 \\ 5.20 \\ 2.46 \\ 2.31 \\ .81 \end{array}$	$\begin{aligned} & 5.70 \\ & 5.42 \\ & 3.39 \\ & 2.08 \\ & 1.33 . \end{aligned}$	2.81 5.88 9.65 5.02 5.41	31.12 24.01 19.13 16.41 9.28
4.07	4.83	6.44	6.82	5.88	7.40	17.81	17.92	28.77	100.00

TABLE A-5(c)
Expenditure Inciderce of Feãeral Regional Icol:onic Jopans:on Eroentitures
For Alternative Expenditure Experimerts, ors Fesicn, Eeraentäes

\#ne	$\frac{\text { Expenciture Ircidence }}{\text { total expenditures) }} \text { (percent of }$	Fawily Monev: -ncome \%lass									
		$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \end{array}$	$\begin{gathered} \$ 3,000- \\ 3,999 \end{gathered}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,0,99 \\ \hline \end{array}$	$\begin{gathered} \text { s6,000- } \\ 6,099 \end{gathered}$	$\begin{array}{r} \$ 7,000- \\ 0,999 \\ \hline \end{array}$	$\begin{gathered} \$ 10,000- \\ 14,099 \end{gathered}$	$\begin{aligned} & \$ 15,000 \\ & 8 \text { over } \end{aligned}$	mota=
	Experiment 7 (M.25)										
37.	Atlantic region	1.26	1.92	2.69	2.44	2.6	2.00	8.26	5.10	2.55	27, こう
38.	Querec	. 70	. 71	1.03	1.37	1.45	2.04	5.26	5.54	6.00	2L. 21
39.	Ontario	. 44	. 52	. 51	. 77	. 64	1.15	3.31	4.7	10.07	22.11
40.	Prairie region B. C.	1.18 .09	1.19 .07	1.33 .38	1.22 .37	.27	.78	?.51	2.33	$\begin{aligned} & 4.94 \\ & 5.15 \end{aligned}$	16.39
42.	CA.NADA	3.67	4.41	5.94	¢. 17	5.80	7.25	13.45	19.25	28.71	100.00
	Experiment 8 (M.26 and F.18)										
43.	Atlantic region	1.28	1.96	2.79	2.57	2.80	2.78	f. 70	5.52	2.69	29.30
44.	Quebec	. 70	. 71	1.03	1.36	1.45	2.04	5.26	5.52	5.90	23.9!
45.	Ontario	. 43	. 51	. 49	. 73	. 5	1.15	3.28	4.54	9.89	21.77
47.	Prairie region B.C.	1.17 .08	1.17 .07	1.30 .37	1.19 .35	.84 .20	.74 .74	2.40 .96	2.22 1.44	4.78 4.98	25.85 9.0
48.	CAINA.DA	3.66	4.42	5.98	¢. 20	5.91	7.35	18.60	19.34	28.24	100.00
	Experiment 9 (A.2)										
49.	Atlantic region	. 18	. 27	. 33	. 45	. 58	. 6 I	1.5 ?	1.53	. 95	E. 33
50.	Quebec	. 23	. 70	. 81	1.14	1.54	1.90	5.87	$=.52$	-. 80	25.29
51.	Ontario	. 29	. 53	. 74	1.37	1.85	2.22	8.75	12.94	12.28	41.08
52.	Prairie region B.C.	. 28	. 62	. 32	.74 .41	.84 .42	1.07	3.74 3.06	3.95	4.11	$\begin{aligned} & 15.77 \\ & 17 \end{aligned}$
54.	CANADA	1.07	2.24	2.86	4.06	5.33	6.47	22.99	28.30	27.36	100.00

TABLE $A-5$ (c)
Expenditure Incidence of Federal Regicnal Economic Expansion Expenditures
for Alternative Expenditure Experiments, iy ?eivion, percentases
Note: Details may not add to totals due to rounding.
TAEIE $\therefore-5!2)$
Fiscal Amolints ard Fiscal Inciderce o lecieral erioral - $0: 00$ I?
Expansion Experditures for the Ero- ich roerinent. Éc..

TABLE $\left.A-5^{\prime}{ }^{\prime}\right)$ Fiscal Amounts and Fiscal Incidence of Federal Repioral Ecoronaic
Expansion Expenditures for the Fro-Ricl? Experiment, by Re-ion

[^10]TABIE f-5'e)
Fiscal Amounts and Fiscal Incidence of ederal e ional Fconcific
Expansion Expenditures for the Pro-Poor xperinert, feior

	Region	Family Mone: Thcome Class									
ne		$\begin{array}{r} \text { Under } \\ \$ 2,000 \\ \hline \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,9 y 3 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 10,000- \\ 14,099 \\ \hline \end{array}$	$\begin{array}{r} \$ 15,000 \\ \times \quad \text { over } \\ \hline \end{array}$	Tota
FISCAL AMOUNTS (millions of dollars)											
1.	Atlantic region	4.04	6.28	8.F2	7.10	7.32	7.85	17.98	14.2?	F. 18	81.09
2.	Quevec	1.47	1.45	1.54	1.13	. 90	. 74	-. 1.1	-1.34	-. 08	5.74
3.	Ontario	. 15	-. 16	-. 80	-1.13	-4.05	-4.45	-20.89	-28.82	-1F. 87	-7E.98
4.	Prairie region	3.10	2.74	2.92	1.69	. 28	-. 91	-3.95	-5.52	. 28	. 24
5.	B.C.	-. 15	-. 38	. 37	-. 24	-. F. 3	-:33	-7.11	-f. 42	6.12	-8. 55
ϵ.	CANADA	8.61	9.93	12.65	9.55	4.32	2.90	-14.58	-27.82	-4.37	0.00
	FISCAL INCIDENCE (percent of total expenditures received (+) or contributed (-))										
7.	Atlantic region	1.35	2.09	2.87	2.53	2.61	2. 52	5.99	4.79	2.06	27.01
8.	Quebec	. 49	. 48	. 5.1	. 54	. 30	. 25	-. 20	-. 45	-. 03	1.91
9.	Ontario	. 05	-. 05	-. 27	-. 38	-1.35	-1.48	-6.96	-9.7	-5.62	-25. $=6$
10.	Prairie region	1.03	. 91	. 97	. 56	. 09	-. 30	-1.32	-1.84	. 09	. 21
11.	B.C.	-. 05	-. 13	. 12	-. 08	-. 21	-. 11	-2.37	-2.14	2.04	-2. 88
12.	CANADA	2.87	3.30	3.97	3.17	1.44	. 98	-4.86	-9.25	-1.46	0.00

TABLE A-5(e)
Fiscal Amounts to and Fiscal Incidence of Federal Perional Esonomic
Expansion Expenditures for the Pro-Poor Experinent, \vdots Y Recion

Note: Details may not add to totals due to rounding.

Appendix A Source Notes

Table A-1 (a)

Except where otherwise noted, the source of the following explanatory notes for the A-l distribution series is Gillespie, 1975: Appendix D for the all-Canada data, and Appendix A for the regional data. For the sake of clarification we have kept separate here the explanatory notes for the all-Canada data (Table A-I (a) and the regional data (Tables A-1 (b) to (f) inclusive).

Line 1 The percentage distribution of total federal taxes is derived by converting to percentages the data in Table D-2, line 8 .

Line 2 The percentage distribution of personal income tax is from Table D-l, line 1.

Line 3 The distribution of total federal expenditures is derived by expressing in percentages the data in Table D-5, line 12B.

Line 4 The federal personal transfers item is the sum of public health, housing, social security, and veterans expenditures. This distribution was arrived at by expressing in percentages the total of these items, the source being Table D-5, lines 4 and 5 .

Line 5 The distribution of total provincial taxes is derived by converting to percentages the data in Table D-2, line 17.

Line 5a This item is the total of the changes in the provincial taxes that would occur in the absence of federal equalization payments. The provincial taxes of the Atlantic region, Quebec, and the Prairies (as a region), would be increased by the amounts indicated in the following table, which is calculated by applying the provincial tax rate per income class (line 5 here) to the aggregate equalization grant received by the recipient regions. The source of these aggregate amounts is Kerr, 1975: table 4c. See Table 1 below.

Line 6a Similarly, line 6 a indicates the changes in provincial expenditures that would occur in the absence of equalization payments. It was calculated by applying the provincial expenditure rates per income class (line 6 here) to the aggregate equalization grants received by the recipient regions.

				ES IN PR OCCUR	Table INCIAL T HE ABSE lions o	ES AND EX OF EQU dollars	NDITURE ZATION	NTS			
					mily Mone	Income					
	$\begin{array}{r} \text { Under } \\ \$ 2,000 \end{array}$	$\begin{array}{r} \$ 2,000- \\ 2,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 3,000- \\ 3,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 4,000- \\ 4,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 5,000- \\ 5,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 6,000- \\ 6,999 \\ \hline \end{array}$	$\begin{array}{r} \$ 7,000- \\ 9,999 \\ \hline \end{array}$	$\begin{gathered} \$ 10,000- \\ 14,999 \end{gathered}$	$\begin{gathered} \$ 15,000- \\ \text { \& over } \end{gathered}$	Total	\%
Caxes											
Atlantic	5.0	9.9	18.5	19.3	26.5	26.8	69.6	65.4	29.3	276	41
Ruebec	4.1	6.5	9.3	14.1	19.2	29.8	90.2	93.4	76.1	343	51
Prairies	1.6	1.9	2.4	2.9	3.2	4.0	12.9	13.6	11.6	54	8
Cotal,	10.7	18.3	30.2	36.3	48.9	50.6	172.7	172.4	117.0	673	100
canada	1.6	2.7	4.5	5.4	7.3	9.0	25.7	25.6	17.4		100
expendit	ures										
ttlantic	16.6	18.8	26.8	27.0	30.1	27.9	66.0	46.4	18.8	276	41
Quebec	21.3	20.9	22.3	26.4	29.8	31.9	83.3	64.1	43.2	343	51
Prairies	3.5	3.2	3.9	4.1	4.3	4.4	12.7	10.5	6.9	54	8
rotal,	41.4	42.9	53.0	57.5	64.2	64.2	162.0	121.0	68.9	673	100
lanada	6.2	6.4	7.9	8.5	9.5	9.5	24.1	18.0	10.2		100

Line 6 The distribution of total provincial expenditure has as its source table D-5, line 23B.

Line 7 Dividends income is derived from table A-I(a), line 9.
Line 8 In this series we have grouped by region the net (active) RDIA incentives for 1973 according to the standard classification in Family Expenditure in Canada (Statistics Canada, cat. no. $62-535$). The steps in the creation of this series are as follows:
i. The projects were grouped by region according to their product or process using the above-mentioned scheme of classification. A general category was added to accomodate problematic types of cases, such as products which were inputs rather than end products (for example, machine parts), and cases where the RDIA Monthly Report's description was ambiguous or inadequate for our purposes (for example when the process of a firm was described simply as "sawmill").
ii. The incentive grants of the firms were added for each of the consumption expenditure categories by region. These were then distributed by income class according to the corresponding percentage rates of consumption for each category, the source of the latter being table D-1, lines 21-37 for Canada, and tables A-2, lines 1 to 17 for the regions. The general category was allocated by the respective rates of total consumption in these sources.
iii. The consumption expenditures per income class resulting from the allocation in step ii. were then added to give the total consumption for each income class for Canada and the regions.
iv. These totals were then converted to percentages to reflect the distribution among income classes of consumption of RDIA - subsidized products for Canada and the regions.

Line 9 The wages and salaries distribution is taken from table A-1, line 1.

Line 10 The distribution of children age 5 to 17 is taken from table A-1, line 27.

Line 11 The distribution of broad income is from Gillespie 1975: part 11, p. 30b, table 2.2.

Lines 12 The number of family units and the percentage distribuand 13 tion are from table D-1, lines 18 and 20 respectively.

Line 14 The following steps are taken to create the distribution of property users.
i. It is noted in Gillespie, 1975: Appendix notes, p. a20 that the proportional breakdown of property-users is as follows:
renters: 33 per cent
owners : 67 per cent :
farm-owners 20% of $67 \%=13.4$ per cent residential owners
80% of $67 \%=53.6$ per cent
ii. These proportional percentages, 33 per cent, 13.4 per cent, and 53.6 per cent are then allocated among income classes according to the relevant rates in table D-1 for Canada and A-1 for the regions. That is to say, the percentage distribution of rent expenditures (table D-l, line 12) is used to distribute the 33 percent; the percentage distribution of the rental value of owned farm (table D-l, line 3) is used to distribute the 13.4 per cent; and the distribution rates of the rental value of owned home ($\mathrm{D}-1$, line 4) are used to distribute the 53.6 per cent. For the regional tables the respective rates of allocation are to be found in tables A-1, lines 24, 14, and 15.
iii. For each income class, for Canada and the regions, these items are then added to give the percentage distribution by income class of property-users.

Line 15 The distribution of miles driven is taken from table D-1. line 13.

Line 16 The distribution of consumption of transported products is taken from table $D-1$, line 40.

Line 17 The source of the distribution of total consumption is table $D-1$, line 2.

Line 18 The distribution of manpower trainees is taken from table A-l(a), line 29.

Line 19 The total provincial-municipal taxes distribution is an average of the sum of total provincial and total municipal taxes. The source of the former is table $\mathrm{D}-2$, line 17; the source of the latter is table D-2, line 23. The averages that result are converted into percentages.

Line 20 The farm income series is from table A-1 (a), line 4.

Line 21 The distribution of farm family units is derived from Income Survey data.

Line 22 The distribution of social assistance expenditures is derived by adding the provincial expenditures on public health and housing, social security and veterans to the municipal expenditures for these items. The resulting distribution is expressed here in percentages. The source of the expenditures is table D-5, line 16 and 17 (provincial) and lines 25 and 26 (municipal).

Line 23 The distribution of original adjusted broad income is derived from Gilespie, 1975. Since Gillespie, 1975 included an adjustment on the income base to allow for the treatment of DREE expenditures, this adjustment had to be subtracted out in order to result in an income base that would be consistent with this investigation in which we are assuming that DREE is a new program introduced in 1969. This adjustment procedure results in the original adjusted broad income base of line 23 .

Line 24 The new adjusted broad income is derived by adding to the original adjusted broad income the actual DREE expenditures set out in tables A-3 and subtracting federal taxes sufficient to finance DREE, tables A-3, lines 57-62.

Tables A-1 (bto f inclusive)

Line 1 The percentage distribution of total federal taxes is derived by converting to percentages the data in tables A-5, line 8 .

Line 2 The source of the percentage distribution of personal income tax is tables A-1, line 12.

Line 3 The distribution of total federal expenditures is derived by converting to percentages the data in tables $A-12$, line 12B.

Line 4 The federal personal transfers item is the sum of expenditures on public health and housing, social security and veterans. This distribution is calculated by expressing in percentages the total of these items, the source of the expenditures being tables $A-12$, lines 4 and 5.

Line 5 The distribution of total provincial taxes is derived
from tables A-5, line 17.
Line 6 The distribution of total provincial expenditures is calculated by converting to percentages the data in tables A-12, line 23B.

Line 7 Dividends income is derived from tables A-1, line 9.
Iine 8 See explanatory note for table A-l (a) here.
Line 9 The wages and salary distribution is taken from tables A-1, line 1.

Line 10 The distribution of children age 5 to 17 is taken from tables A-1, line 27.

Line 11 The percentage distribution of broad income is from Gillespie, 1975: part 11, p. 30b, table 2.2.

Lines 12 The number of family units is taken from tables A-4, 13 line 28. This is converted into percentages for line 13.

Line 14 See explanatory note for table A-1 (a) here.
Line 15 The distribution of miles driven is taken from tables A-1, line 30.

Line 16 The source of the distribution of transported products is tables A-2, line 20 .

Line 17 The source of the distribution of total consumption is tables A-l, line 13.

Line 18 The distribution of manpower trainees is from table A-1 (a), line 29. We have used the all-Canada distribution for each of the regions because this series is not available at the regional level.

Line 19 See explanatory note for table A-1 (a). The source of the regions' distribution of provincial taxes is line 17 of the A-5 tables. The municipal taxes are found in the A-5 tables, line 23 .

Line 20 The series on net farm income is from tables A-1, line 4.
Line 21 The distribution for the regions of farm family units are derived from the Income Survey.

Line 22 The social assistance series is derived for the regions as it is for the all-Canada table. The source for the expenditures is tables A-12, line 16, 17, 25, and 26.

Line 23 The original adjusted broad income base for the regions is derived by the same steps used in the all-Canada table.

Line 24 The new adjusted broad income base is derived by adding DREE expenditures (table $A-3$) and subtracting federal taxes used to finance DREE (table A-3) from the original adjusted broad income base of line 23.

Line 25 Family units as a per cent of all - Canada expresses the number of family units set out in line 12 of this table as a percentage of the total number of family units in Canada, found in table A-1 (a), line 12.

Table A-2

Except where otherwise noted, the source of the following explanatory notes for the A-2 Distributive Series by Region is Gillespie, 1975: Appendix A. This information is presented in percentages in table $\mathrm{A}-2$ (a) and in millions of dollars in table A-2 (b). Since the sources for corresponding data in both tables are the same, we shall present here only explanatory notes for table A-2 (a).

Line l The regional distribution of total federal taxes is derived by converting to percentages the data in table A-3 (c), line 14.

Line 2 The regional distribution of federal personal income tax is from table $\mathrm{A}-3$ (c), line 1.

Line 3 The regional distribution of total federal expenditures is derived by expressing in percentages the data in tables A-12, a to e inclusive, line l2B.

Line 4 Federal personal transfers is the sum of public health and housing, social security and veterans expenditures. The regional distribution is derived by expressing the sums of these items in each region as a percentage rate of the all-Canada total. The source is tables A-12, a to e inclusive, line 4 and 5.

Line 5 The regional distribution of total provincial taxes is derived by converting to percentages of the all-Canada total the total provincial taxes within each region. These data are in tables A-5, a to e inclusive, line 17.

Line 6 The distribution of total provincial expenditures by region is derived by expressing in percentages the data in tables $A-12$, a to e inclusive, line 23B.

Line 7 The regional distribution of dividends income is derived by expressing the total dividends income in each region as a percentage of the all-Canada total. The source of the regional totals is tables $A-4$, a to e inclusive, line 15.

Line 8 The regional distribution of the consumption of grantfinanced output reflects the totals, by region, of the net (active) RDIA incentive offers for 1973. These totals have been expressed as percentages of the allCanada total. The source of this data is Report on Regional Development Incentives, January 1973 to March 1975 Inclusive. See explanatory note for line 8 of table A-1 (a) here.

Line 9 The regional distribution of wages and salaries expresses in percentage rates the data in table $A-4$, line 2.

Line 10 The regional distribution of children age 5 to 17 is a percentage distribution of the data in table A-ll(b), Line 1.

Line 11 The distribution of broad income by region is a percentage distribution of the data in table A-4, line 24.

Lines 12 The number of family units by region is taken from table and 13 A-4, line 28. This distribution is expressed in percentages in line 13.

Line 14 The steps used to create the regional distribution of property users are as follows:
i. It is indicated in Gillespie, 1975: Appendix notes, p. a-20, that the proportional breakdown of property users in Canada is the following:
renters: 33 per cent
owners : 67 per cent: farm owners: 20% of $67 \%=13.4$
ii. The following regional distribution of rent expenditures is taken from Family Expenditure in Canada, 1969, vol.11, 1969: tables 6, 19, 32, 45, and 58.

$\underline{\text { Region }}$	No. of units in population	Average expenditure on rent
	'000	\$
Atlantic	494	250
Quebec	1,596	498
Ontario	2,198	450
Prairies	1,008	312
British Columbia	635	428

From this information we can derive the total expenditure on rent per region and express this as percentages of the Canadian total. These calculations are performed in the following table.

Region	Total expend- iture on rent	Per cent all-Cana
	\$ millions	$\%$
Atlantic	123.5	5.0
Quebec	769.9	31.2
Ontario	989.1	40.1
Prairies	314.5	12.7
British Columbia	271.8	11.0
Canada	$2,468.8$	100.0

These regional percentages are then expressed as percentages of 33 per cent, the proportion of renters noted in step i.
iii. The regional distribution of the rental value of owned farm home is derived by expressing in percentages the data in table $A-4$, line lla. These rates are then expressed as percentages of 13.4 per cent, the proportion of farm owners indicated in step i.
iv. The regional distribution of residential home owners is a percentage distribution of the data in table A-4, line 11b. These rates are then expressed as percentages of 53.6 per cent, the proportion of residential home owners noted in step i.
v. These three percentage rates, that is, for renters, owners of farm homes, and owners of residential homes respectively, are then added for each region to yield the distribution by region of all property users.

Line 15 The regional distribution of highway users and nonusers is derived by converting to percentages the data in table A-ll(a), line 2.

Line 16 The distribution by region of total consumption is calculated by converting to percentages the data in table A-3(c), line 6iii.

Line 17 The regional breakdown of manpower trainees is unavailable to us at this time.

Line 18 The regional allocation of provincial-municipal taxes is derived by expressing in percentages the averages of the total provincial and municipal taxes. The source of these is tables A-5, lines 17 and 23.

Line 19 Net farm income is calculated by expressing in percentages the data in table A-4, line 5.

Line 20 The farm family units breakdown is derived from the Income Survey.

Line 21 The regional breakdown of social assistance expenditures is derived by expressing in percentages the sums by region of provincial and local expenditures on public health and housing, social security and veterans. The source of these is tables A-12, lines 16 , 17, 25 and 26 respectively.

Line 22 The regional breakdown of original adjusted broad income sets out in percentage form the total original broad income for each region. The explanatory note for line 22 of table $A-1(a)$ here describes the steps in the formation of this concept.

Line 23 The regional breakdown of new adjusted broad income sets out the regional totals for this item. The derivation of this concept is explained in the note for table $A-1$, line 24.

Table A-3

The basic methodology used in the derivation of the expenditure amounts is described in the explanatory note for line 1 . only pertinent information concerning assumptions and sources is given for lines 2 to 55 inclusive. Henceforth references to the $A-1$ and $A-2$ tables should be understood to mean the $A-1$ and $A-2$ tables in this appendix, (i.e., not in the Gillespie, l975, study.)

Line 1

Line 2

In the standard case treatment of capital incentive grants we assume that factor substitutability is low and that the grants are 48 per cent effective, with 75% of the impact on the sources of income and 25% on the uses. Within the 75\% affecting the sources of income we assume 67\% accrues to capital and the remaining 33% to labour. The overall breakdown of benefits is as follows:
i.) 76% to capital income
ii.) 12% to labour
iii.) 12% to consumption of the grant-financed output.

To distribute the 76% to capital which is mobile we allocate to the regions shares of the sum of 76% of each region's average annual expenditure on capital incentive grants. The regions' shares of this amount are in proportion to their share of dividends income. This information is taken from table A-2(a), line 7. The amount that results in each region is then distributed within the region according to the region's internal distribution of dividends income. The source of this distribution is line 7, tables A-1.

The benefits allocated to labour we assume to remain within the region, so that 12% of the expenditure in each region is distributed according to the distribution of wages and salaries in that region, found in the $A-1$ tables, line 9.

The benefits allocated to consumption of grantfinanced output are assumed to be mobile benefits. The sum of 12 per cent of each region's average annual expenditure is allocated to the regions according to their share of consumption of grant-financed output, taken from table $A-2(a)$, line 8. The share that results in each region is then distributed according to the region's internal distribution of consumption of grant-financed output. The source of this distribution is tables A-1, line 8.

The sum, for each income class, of these allocations is the distribution shown here in line 1.

The standard case treatment of highway expenditures assumes that factor substitutability is low and expenditures are 67% effective. The allocations that result are as follows:
i.) 33% to the province as a windfall gain. The reasoning behind this assumption is that DREE is building some highways that the provincial government would otherwise have to build. Thus there is
a type of windfall gain to the province. This gain is fixed within the region, so that 33% of the expenditure in each region is distributed according to the region's distribution of provincial taxes, taken from the A-l tables, line 5.
ii. ll\% to capital. This is assumed to be mobile. See above explanatory note for the description of the treatment of a mobile factor. The share in each region is distributed by the region's own distribution of dividends income.
iii. 6% to labour. This type of benefit remains within the region and is distributed to the income classes by the region's distribution of wages and salaries.

The remaining 50\% we allocate to the uses of income. Benefits received on the income uses side fall into the following categories: highway non-users, passenger vehicle users, and consumers of transported products. The benefits flowing to non-users of highways are fixed within the region and are distributed by the series on propertym users, line 14 of tables $A-1$. Benefits accruing to passenger vehicle users are fixed within the region and are distributed by the region's own distribution series on number of miles driven, table A-l, line 15. The benefits accruing to consumers of transported products are assumed to be mobile, and are first allocated by the regional breakdown of total consumption, table A-2(a), line 16 before being distributed by the region's internal distribution of consumption of transported commodities, line 16 of tables A-1.

The proportions of these three categories vary from region to region according to Appendix Table $B-2$. For the standard case we pro-rate these ratios to reflect proportional shares of 50% of the average annual expenditure on highways and roads.

Line 3 Other industrial assistance is treated identically to capital incentive grants. Readers should therefore consult the explanatory note for line 1.

Line 4 Average annual expenditures on manpower and social assistance are assumed to remain within the region and to benefit the direct recipients. The series we use in the standard case to represent the beneficiaries is the distribution of manpower trainees, tables A-1, line 18.

Line 5 In the standard case we assume that expenditures on assistance to agriculture yield equal benefits to each farm assisted. The average annual expenditure in each region is distributed according to the series on farm family units from tables $\mathrm{A}-1$, line 21.

Line 6 The sewers and other infrastructure expenditures are assumed to be 67% effective. A windfall gain of 33% is allocated to the provinces and municipalities. It does not seem unlikely that DREE's activity in this field enables the provincial and municipal governments to divert elsewhere resources they would have ordinarily directed to thoseprojects now financed by DREE. Thirty-three per cent of the expenditure in each region is distributed according to the region's provincialmunicipal tax average, tables A-1, line 19.

To capital we allocate 17 per cent. This is a benefit which need not remain within the region. After being adjusted for this mobility it is distributed by the region's distribution of dividends income, tables A-1, line 7 .

The remaining 50\% we assume accrues to income uses. To residential users we allocate 34% and to commercial users 16%. The benefits going to residential users are assumed to be fixed and are distributed by the region's distribution of propertyusers, tables $\mathrm{A}-1$, line 14. The benefits to commercial users are assumed to be mobile. Regional shares are first allocated according to the regional breakdown of total consumption, table A-2(a), line 16. The shares that result are distributed by the region's series on total consumption, tables A-1, line 17.

Line 7 We assume that the benefits of planning and administrative expenditures are general benefits, that is, benefits which accrue equally to all families in the country. The total expenditure in this category is allocated to the regions according to their proportional share of broad income, table $\mathrm{A}-2(\mathrm{a})$, line ll. (This is general expenditure assumption B in Gillespie, 1975). The amount that results in each region is distributed by its own series on broad income, line 11 of tables A-1.

Line 8 In the standard case treatment of expenditures on education we assume that 50% of the benefits are private and accrue to the student. The remaining
50% we consider to be public benefits which remain within the region. The former are distributed by the region's series on children age 5 to 17, tables A-l, line 10. The latter benefits are distributed according to the region's distribution series on broad income. (general expenditure assumption B)

Line 9 The sub-total is the total of expenditure amounts for each income class in each region.

Line 10 We allocate shares of DREE's operating and capital expenditures in proportion to the regional breakdown of the expenditures discussed thus far. The amount in the "total" column in the sub-total distribution (line 9) is expressed as a percentage of the all-Canada total. These rates determine the proportional breakdown of the operating and capital expenditures, which we have treated here as a residual. The amount allocated to each region is distributed to the income classes in proportion to the distribution of the sub-total, that is, line 9.

Line 11 Total expenditures shows the total expenditures for each income class which is the result of the allocations discussed in the above explanatory notes.

Lines 12- These lines correspond to their respective counter55 parts in lines 1 to 11.

Line 56 The total expenditures distribution for Canada is the sum of the total expenditures in the five regions. We prefer this method to carrying out the allocations using all-Canada data because the additive totals reflect the weighted averages and therefore seem more appropriate. The standard case using Canadian data is presented for comparison in table $\mathrm{A}-3(\mathrm{a})$. The operations used in that table are identical to those discussed here for lines 1 to 11.

Lines 57- These distributions are the result of financing The regional breakdown of total federal taxes, table A-2(a) line l is used to determine the amount to be distributed in each region, with the total amount for Canada being $\$ 299.86$ million. The amount in each region shown in the total column
is distributed to the income classes according to the region's distribution of total federal taxes, tables $\mathrm{A}-1$, line 2 .

Line 62	The tax amounts for Canada are additive totals for each income class. See the explanatory note for line 56.
$\begin{array}{cl} \text { Lines } & 63- \\ & 67 \end{array}$	The fiscal amounts shown for each region are the net result of subtracting tax amounts (Iines 57 to 61) from the corresponding total expenditure amounts (lines 11, 22, 33, 44, 55). Fiscal amount is the dollar value of the benefit from $(+)$ or contribution to (-) DREE expenditures for each income class in each region.
Line 68	The distribution of fiscal amounts for Canada is the additive total of the fiscal amounts for each income class for the five regions. The distribution of fiscal amounts using national data is calculated in table $\mathrm{A}-3(\mathrm{a})$, line 12.

Table $A-3$ (a)
See explanatory note for line 56, table A-3.
Table A-3 (b)
Lines 1 -5 Expenditure incidence expresses an expenditure as a percentage of the total average annual expenditure of $\$ 299.86$ million. The distri butions in lines 1 to 5 express as expenditure incidence rates the total expenditure amounts in table $\mathrm{A}-3$, lines 11, 22, 33, 44, and 55.
Line 5 Canada's distribution of expenditure incidence is the additive total of each region's expenditure incidence for each income class.
Lines 7- Expenditure incidence per family unit is a measure 11 of expenditures received by one percentile of family units in each income class. It is calculated by dividing, for each income class in each region, the expenditure incidence by the corresponding distribution of number of family units as a per cent of the all-Canada total, tables A-1, line 25.
Line 12 For Canada, the procedure described for lines 7 to ll is followed except that the distribution of family units in line 13 of table $A-1(a)$ is used as
the denominator.
Lines 13-17 Fiscal incidence expresses fiscal amounts as a percentage of total expenditure or $\$ 299.86 \mathrm{mil}-$ lion. The distributions of fiscal incidence thus express the fiscal amounts for each region in table $A-3$ as a percentage of total average annual expenditure.

Line 18 Fiscal incidence rates at the all-Canada level are the additive totals of fiscal incidence rates in each of the five regions.

Lines 19-23 Fiscal incidence per family unit is a measure which expresses the fiscal incidence of one percentile of family units in each income class. The rates of fiscal incidence in lines 13 to 17 are divided by the respective distributions of family units as a per cent of the all-Canada total, tables A-l, line 25.

Line 24 The procedure above is relevant for the all-Canada distribution of family unit fiscal incidence except that the denominator is line 13 of table A-I (a).

Tables $A-4$ (a to f)

The A-4 tables contain the distributions that result when we experiment with our assumptions concerning the allocations of benefits from expenditures and the method of financing DREE expenditures. The distributions in these $A-4$ tables will be used selectively in the $A-5$ tables.

Line I In our standard case we suggest that DREE is financed through an increase in total federal taxes. This procedure is explained in the note for table A-3, lines 57 to 61.

Line 2
In this experiment we finance DREE through an increase in the federal personal income tax. The regional breakdown in table A-2, line 2 is applied to $\$ 299.86$ million to get the amounts per region, which are distributed according to the region's distributive series on federal personal income tax, tables $A-1$, line 2.

Line 3 In this experiment we finance DREE by decreasing total federal expenditures. The regional breakdown of shares of total federal expenditures, line 3 of table A-2 (a) are applied to Canada's total average annual expenditure. The amounts that result in each region are distributed by the region's series on total federal expenditures, tables $A-1$, line 3.

Line 4 A decrease in federal personal transfers is the method of financing shown in line 4. Here we allocate regional shares of $\$ 299.86$ million according to the regional breakdown in table A-2 (a), line 4. The amount per region is distributed by the region's distribution of federal personal transfers, tables A-l, line 4.

Lines 5, 6 In these experiments we finance DREE by using part of the funds that finance the equalization grants scheme. In the explanatory notes for lines $5 a$ and $6 a$ of table $A-1(a)$ we discuss the changes that would occur in the recipient regions' tax and expenditure rates if the equalization scheme were decreased. In lines 5 and 6 here for the receiving regions, i.e., the Atlantic, Quebec, and the Prairies, we apply the regional tax and expenditure rates respectively to the amounts which result per region when the proportional breakdown in the table just mentioned is applied to $\$ 299.86$ million.

Since Ontario (table A-4 (c)) and British Columbia (table A-4 (e)) do not receive equalization payments, there would be no effect in these regions, as far as their provincial tax and expenditure distributions are concerned, of financing DREE through funds of the equalization payments program.

For Canada, table $A-4(f)$, the distributions in lines 5 and 6 are the additive totals of the respective distributions of the receiving regions.

Line 7 In line 7 we present the first expenditure (B.3) experiment concerning capital incentive grants. In this experiment we assume high factor substitutability with expenditures being 100% effective. To income sources or capital we allocate 75%. To income uses we allocate the remaining 25\%. Both of these types of benefits are assumed to be mobile. See the explanatory note for table A-3, line 1 for a description of the process of allocating shares to regions of benefits considered to

Line 8

Line 9

Line 10

Line 11

Line 12

Lines 13-
16
be mobile between regions. The amounts allocated to capital in each region are distributed by the region's distribution of dividends income, tables A-1, line 7. The amount allocated to uses in each region is distributed by the region's distribution of consumption of grant-financed output, tables A-3, line 8.

In the B. 4 experiment we assume that the grants expenditures are 48% effective, with high factor substitutability. To capital we allocate 88% of the benefits, and to uses, 12%. See the explanatory note for line 7 for relevant details.

In the $B .5$ experiment we assume that the expenditures are 33% effective with high factor substitutability. We allocate 92% to capital and 8% to uses. See line 7's explanatory note for relevant details.

In the B. 6 experiment we assume high factor substitutability and no price effect. The total amount of the capital incentive grants is therefore allocated to capital, that is, by dividends income.

In the B. 7 experiment we assume low factor substitutability and 100% effectiveness. To capital we allocate 50%, to labour, 25%. The benefits allocated to capital are treated as elsewhere in this appendix. The benefits to labour are assumed to remain fixed within the region where the expenditure was made, and are distributed by the region's distribution of wages and salaries, line 9 of tables $A-1$. The remaining 25% we allocate to the uses of income. See the explanatory note for line 7 for relevant details.

In the B. 9 experiment we assume low factor substitutability and 33\% effectiveness. To capital we allocate 84% and to labour 8%, both of these components making up the income sources side. To income uses goes the remaining 8 per cent. See explanations for lines 7 and 11 for relevant details.

Other industrial assistance is treated identically to the corresponding experiments for capital incentive grants, lines $7.9,11$, and 12 respectively. The B. 6 experiment discussed in the note for line 10 above was not conducted for other industrial assistance.

Line 17

Line 18

Line 19

Line 20

Line 21

Line 22

In the D. 17 experiment we allocate 25% to capital. See the explanatory note for line 7 for relevant details of this procedure. The remaining 75\% is allocated to highway non-users, passenger vehicle users, and consumers of transported commodities. Table $\mathrm{B}-2$ is pro-rated to reflect proportions of 75%. See the explanatory note for table A-3, line 2.

In the D. 14 experiment we assume that the expenditures on highways are 100% effective with a neutral effect on sources. The proportions in Table B-2 are applied at full value in this experiment. See the explanatory note for line 2 of table $\mathrm{A}-3$ for relevant details.

In the H. 22 experiment we distribute the benefits of expenditures on manpower and social assistance, which we assume to remain fixed within the region, according to the region's series on social assistance expenditures, tables A-1, line 22.

In the G. 20 experiment we treat the benefits of expenditures on agricultural assistance as being fixed and in proportion to net farm income. The source of the latter series is tables $A-1$, line 20.

In the E. 15 experiment we assume that the expenditures on sewers and other such infrastructure are 100% effective with high factor substitutability. To the income sources side we allocate 25% which goes to capital. To the uses of income we allocate 75% : 50% to residential users and 25% to commercial users. See explanatory note for table A-3 line 6 for relevant details.

The E.l6a experiment is very similar to the standard case described in the explanatory note for line 6, table A-3. In the standard case we allocated the full income sources effect, 17%, to capital. Here, in the E.l6a experiment, we break down the income sources side's benefits so that ll\% of the total ex-

Line 23

Line 24 In the C. 10 experiment, as in the standard case, we allocate 50% of the benefits to the student. The explanatory note for table A-3, line 8 should be consulted for relevant details. The remaining 50% is assumed in this experiment to yield public benefits which need not remain in the region in which the expenditure is made. The regional breakdown of broad income, table A-2 (a), line 7, is used to determine the amounts that are distributed within the regions by the series on broad income, line 7 of the A-1 tables.

Line 25

Line 26
In the $F .18$ experiment we assume that the expenditures on planning and administration are 67% effective. One third, or 33% of the expenditures, is allocated to the bureaucracy in the region where the expenditures are made. This amount is distributed by the region's distribution of wages and salaries. The remaining 67% is treated as a pure public good. See the explanatory note for table A-3 line 7 for relevant details.

In the M. 25 experiment we allocate to the regions shares of the total average annual capital and operating expenditures which amount to $\$ 39.75$ million. This allocation is done according to the regional breakdown of broad income, table A-2 (a), line ll. The amounts that result are then distributed within the regions by their internal distributions of broad income, line 11 of tables $\mathrm{A}-1$.

The M. 26 experiment is very similar to the M. 25
penditures in this category benefit capital and 6% benefit labour. except that here we assume that these expenditures are only 67\% effective. This 67% is treated as a pure public good in the same manner as described above.

The remaining 33% may be considered a benefit accruing to the bureaucracy. In the absence of the actual breakdown by region of DREE personnel we utilize the information in the 1974-75 Annual Report that 40% of the DREE personnel are in Ottawa and 60% in the regions. We allocate Ottawa's 40% to Ontario and break down the remaining 60% according to the original pattern of DREE expenditures given in Table $C-3$. The
amounts that result in each region are then distributed according to the region's internal distribution of wages and salaries.

> Table A-4 (f)

At the all-Canada level the distributions are the sums of the respective regional distributions. We conducted the experiments using national data but do not present the results here because we consider the additive method conceptually a more accurate measure.

Table A-5

Lines 1-50 In this table we present the fiscal amounts and fiscal incidence rates for financing experiments discussed in the A-4 tables, lines $2-6$. The fiscal amounts in table A-5 are derived by holding the standard case total expenditures constant and subtracting each successive financing distribution, i.e., lines 1 to 5. The fiscal amounts are then converted to percentage rates of $\$ 299.86$ million to express the fiscal incidence rates. For example, if DREE were financed through an increase in federal income tax the fiscal amounts and fiscal incidence rates that would result in the Atlantic region are those shown in lines 1 and 6 respectively.

Note that in the cases of Ontario and British Columbia the fiscal amount distributions for the experiments concerning decreasing equalization grants (lines 24, 25 and 44, 45) are equal to the distribution of total expenditures in table A-3, lines 33 and 55. Similarly, the fiscal incidence rates for Ontario and British Columbia for these experiments, lines 29, 30 and 49,50) are identical to the total expenditures incidence rates in table $\mathrm{A}-3$ (b), lines 3 and 5. This result follows because these provinces, in contrast to the recipient regions, would stand to gain the full amount of their DREE expenditures if the DREE program were financed by reductions in equalization payments, a scheme which they already support as contributors of general taxes.

Canada as a whole represent the additive totals of the regions' fiscal amounts and fiscal incidence rates.

Table A-5(a)

This table organizes the fiscal incidence rates in table $\mathrm{A}-5$ by region for each experiment.

$$
\text { Table } A-5(b)
$$

In this table we calculate expenditure amounts and expenditure incidence rates that would result if we altered some of our assumptions concerning the allocation of benefits from DREE expenditures. These experiments are carried out by holding constant the distributions in the standard case (table A-3) for which we do not adopt different assumption, and simultaneously adding the particular distributions that are the result of shifting assumptions in the expenditure categories we wish to experiment with. The distributions arising from shifting assumptions are in the A-4 tables. Since the experiments are conducted uniformly across all regions we discuss in these notes only the lines 1 to 22.

Line 1
In this experiment we subtract from the standard case total expenditure distribution (line 11, table $\mathrm{A}-3$) the distributions concerning capital incentive grants (B.8), highways (D.13), other industrial assistance (B.8), and the operating and capital expenditures (M.24).

We insert the distributions that result from the assumptions of $B .3$ for capital incentive grants and other industrial assistance and of D. 12 for highways. The source of the B. 3 distributions are lines 7 and 13 of table A-4(a). The source of the D. 12 distribution is line 17 of table $\mathrm{A}-4(\mathrm{a})$. Because we treat the operating and capital expenditures as a type of residual that shifts in relation to the sub-total of all other expenditures, we calculate a new distribution for that item.

We add this new residual to our new sub-total to arrive at the new distribution of total expenditures shown in line 1. The remaining experiments follow this methodology, except that lines 8 and 9 do not treat capital and operating expenditure as a residual.

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

In the second experiment we adopt the assumptions of B. 5 concerning capital incentive grants and other industrial assistance and of D. 12 concerning highways. The source of these distributions is table A-4 (a), lines 9, 14, and 17.

In the third experiment we adopt the assumption of $B .7$ concerning capital incentive grants and other industrial assistance. The source of these is table $\mathrm{A}-4(\mathrm{a})$, lines 11 and 15.

In the fourth experiment we adopt the assumptions of H. 22 concerning manpower and social assistance expenditures. The source of this distribution is line 19 of table $A-4(a)$.

This experiment contains the assumptions G. 20 concerning agriculture assistance expenditures, the source of which is table $A-4(a)$, line 20.

In experiment six we adopt the assumptions E.16a holds concerning expenditures on sewers and other infrastmucture. The E.16a distribution may be found in table $\mathrm{A}-4(\mathrm{a})$, line 22.

In this experiment we adopt M.25's assumption that capital and operating expenditures are a pure public good and are thus distributed according to broad income. The M. 25 distribution is taken from table $\mathrm{A}-4(\mathrm{a})$, line 25.

In the eighth experiment we adopt the assumption that the capital and operating expenditures, along with the planning and administrative expenditures are a pure public good but are only 67% effective. The source of these distributions is table $A-4(a)$, lines 23 and 26.

In this experiment we test the experiment that the benefits of DREE expenditures, as a pure public good, are in proportion to broad income. To carry this out, we allocate shares of $\$ 299.86$

Line 10

Line 11

Lines l2-22

Lines 111-132
million to the five regions according to the breakdown in table $A-2(a)$, line 11. The amount in each region is distributed by that region's internal distribution of broad income, line 11 of the $A-1$ tables.

In the pro-rich experiment we choose a set of assumptions favouring the upper income classes and insert this combination into our standard pattern. This distribution contains the assumptions of B.5, D.12, H.22, G.20, and M.25, all of which have been discussed in the explanatory notes for this table.

In the pro-poor experiment we insert into our standard pattern the distributions of B. 7 and E.16a, both of which have been discussed in the notes for this table. This distribution shows the result of holding assumptions that weigh the expenditures relatively heavily in favour of the lower income classes.

The expenditure incidence rates express the expenditure amounts above as percentages of $\$ 299.86$, the total average annual expenditure amount.

The expenditure amounts and expenditure incidence rates for Canada are the sums of the regions' expenditure amounts and expenditure incidence rates.

Table A-5.(c)

In this table we present the data which appeared in table $A-5(b)$. In this table, however, we organize the data in such a way that the reader can readily compare the different results among regions of each experiment. Readers should therefore refer to table A-5 (b)'s explanatory notes for pertinent information.

Table A-5 (d)

This table shows the fiscal amounts and fiscal
incidence rates for the regions and Canada for the pro-rich experiment described in the explanatory note for table $A-5(b)$, line 10. Canada's distributions are the sums of the regions' respective distributions.

Table $A-5(e)$

In this table we show the fiscal amounts and fiscal incidence rates for the pro-poor experiment discussed in the note for line ll, table $A-5(b)$. Canada's fiscal amount and fiscal incidence rates are the sums of the regions' distributions.

APPENDIX B
Miscellaneous Tables

Gillespie, 1975

Line	Item	Shifting Hypothesis.	Distributive Series
Tax Hypotheses			
Federal Taxes			
1.	Individual income tax	not shifted	Individual income tax payments
2.	corporation income tax	capital owners consumers $\binom{.5}{.5}$	aividend income total consumption
3.	General sales tax	consumers of taxe sms	consumption of commodities subject to federal sales tax
4.	Selective excise taxes 1) alcohol 11) tobacco 111) other excises	alcohol consumers tobacco consumers other consumers	alcohol consumption tobacco consumption total consumption
5.	Social security taxes 1) unemployment insurance	labour taxed	unemployment insurance payments
	1i) Canada/Quebec pension plans	labour taxed	CPP/QPP covered wages and salaries
	1ii) public service pensions contributions	labour taxed	other pension payments
6.	Customs import duties	consumers of imported items	consumption of 1 mported commodities
7.	Succession and estate taxes	recipients	succession and estate income
Provincial Taxes			
8.	Individual income tax	not shifted	Individual income tax payments
9.	Corporation income tax	capital owners (.5) consumers (.5)	dividend income total consumption
10.	Provincial sales tax	consumers of taxed items	consumption of commodities subject to provincial sales tax
11.	Selective excise taxes 1) alcohol ii) tobacco iii) fuel oil iv) other excises	alcohol consumers tobacco consumers vehicle users other consumers	alcohol consumption tobacco consumption number of miles driven total consumption
12.	Social security taxes 1) workmen's compensation 11) public service pension contributions	labour covered	workmen's compensation payments, covered wages other pension payments
		labour taxed	
13.	Medical-hospital premiums	unshifted	prepaid public health plan payments
14.	Succession and estate taxes	recipient	succession and estate tax income
15.	Other taxes 1) motor vehicle licenses		total consumption automobile purchases
		commercial users (.5) passenger vehicle users (.5)	
	i1) taxes on premium income of life insurance companies	policy owner	personal insurance expenditures
	111) natural resource revenues a) royalties b) rental payments	consumers resource owners	total consumption dividend income
	1v) amusement taxes	consumers	admission to events
	v) capital stock taxes	capital owners	dividend incom

Isine	Item	Shifting Hypothesis	Distributive Series
	Municipal Taxes		
16.	General sales tax	consumers	admission to events
17.	Property tax a) on land		
	a) 1) business	capital owners	dividend income
	11) farm	farm capital owners	farm income
	111) residential	residential capital owners	rental income
	b) on improvements		
	iv) bus Iness	consumers	
	v) farm vi) residential: owner-occupied	consumers of food owner (.67)	consumption of food value of owned home
	renter-occupied	renter (.33)	rent expenditures
${ }^{-18}$	Business taxes	consumers	total consumption
19.	Poll taxes	unshifted	family units
20.	Other taxes	consumers	total consumption
	Expenditure Hypotheses		
	Federal Expenditures		
21.	Education Highways	post secondary students	post secondary students
	1) non-user share	property owners (.57) property renters (.33)	value of owned homes rent expenditures
	11) passenger vehicles	passenger vehicle users	number of miles driven
	1ii) transport vehicles	consumers of transported products	consumption of transported products
22.	Other transportation	passenger consumers (.5)	other transportation services, beyond the city
		consumers of transported products (.5)	consumption of transported products
23.	Public health and housing		
	i) general public health		
	i1) hospital care iii) general housing ex-	users of hospital services family units	hospital users family units
	1ii) general housing expenditures		
24.	Social security and veterans		
	1) unemployment insurance	unemployment insurance recipients	unemployment insurance benefit income
	11) Old age benefits	old age benefit recipients	
	iii) family allowances	family units with children veteran family units	family allowance income veteran family units
	iv veteran's penefits	pension recipient	other retirement pensions
25.	Regional economic expansion		
	1) national unity share	family units (${ }^{\text {a }}$ (25)	family units
	11) real output gains	consumers (.09) urban family units (.02)	total consumption urban family units
		labour in lagging regions (.14)	wages and salaries in lagging regions
	1ii) inefficiency share	capital owners (.50)	đividend income
26.	Manpower		
	1) growth and stability gains	trainees (.37) all family units (.38)	manpower trainees broad income
	1i) equity gains iii) regional balance	$\begin{aligned} & \text { trainees (.15) } \\ & \text { all family units (.10) } \end{aligned}$	manpower trainees broad income
27.	Agriculture	farm owners	farm income
28.	Interest on public debt	recipients	interest income on public debt
29.	General expenditures (pure public goods) : Assumption B	all family units	broad income

| Line | Item | Shifting Hypothesis |
| :--- | :--- | :--- |\quad Distributive series

Source: Gillespie, 1975: passim and Appendix A. For each item the assumptions of the standard case have been chosen. The reader is referred to Gillespie, 1975: Tables 3.5 and 4.11 for alternative assumptions on both the tax and expenditure side of the analysis respectively.

Table B-2

Allocation of Highway Costs Between Users

 and Non-Users, and Between the Two Kinds of Users,Canada and Regions, 1969
percentages

Source: columns (1) and (2): Gillespie (1975:IV, 11-13), based upon Dalvi (1969)
columns (3) and (4): Gillespie (1975:IV, 13-15), based upon U.S. Congress (1961) and U.S. Congress House Ways and Means, (1961).

APPENDIX C

DREE Expenditures, By Function,
1969-70 through 1974-75

1. See source notes at end of the tables.
TABTE C-1
TOTAL DREE BUDGETARY EXPENDITURES, BY PROGRAM, 19F9-70 to 1974-75, millions of dollars

DROGRAM CIASSIFICATION	GRANTS AND CONTRIBUTIONS							TOTAL BITDGETARY EXPENDITURES						
	$\begin{aligned} & 1969- \\ & 1970 \end{aligned}$	$\begin{aligned} & 1970- \\ & 1971 \end{aligned}$	$\begin{aligned} & 1971- \\ & 1972 \end{aligned}$	$\begin{aligned} & 1972- \\ & 1973 \end{aligned}$	$\begin{aligned} & 1973- \\ & 1974 \end{aligned}$	$\begin{aligned} & 1974- \\ & 1975 \end{aligned}$	Total	$\begin{aligned} & 1969- \\ & 1970 \end{aligned}$	$\begin{aligned} & 1970- \\ & 1971 \end{aligned}$	$\begin{aligned} & 1971- \\ & 1972 \end{aligned}$	$\begin{aligned} & 1972- \\ & 1973 \end{aligned}$	$\begin{aligned} & 1973- \\ & 1974 \end{aligned}$	$\begin{aligned} & 1974- \\ & 1975 \end{aligned}$	Total
1. Development Planning and Administration	5.7	5.7	6.9	3.7	5.4	9.8	37.2	12.1	15.6	18.8	18.8	22.0	36.8	124.1
2. Industrial and Commercial Development (incentives)	54.5	60.4	102.0	85.9	101.9	99.0	503.7	56.2	62.0	105.5	91.0	106.6	99.0	520.3
3. Infrastructure Assistance	38.3	106.6	95.7	88.8	121.2	118.9	569.5	40.5	107.6	96.2	88.8	121.2	118.9	573.2
4. Social Adjustment and Rural Economic Devel?pment	54.3	61.5	73.4	83.8	90.8	96.1	459.9	71.2	76.3	88.2	101.6	109.9	123.9	571.1
5. Contrıbutions to Superannuation	-	-	-	-	-	-	-	-	-	1.8	2.0	2.1	3.0	8.9
TCTAL EXPENDITURES	152.8	234.1	278.0	262.2	319.2	323.8	1570.1	180.0	261.5	310.5	302.1	361.7	381.5	1797.4

[^11]TABLE - -2
DREE Expenditures on Operating and Capital, Sy Program, 1969-70 to 1974-75, millions of dollars

Program Classification	OPERATING							CAPITAI,						Total
	$\left\lvert\, \begin{aligned} & 1969- \\ & 1970 \end{aligned}\right.$	$\begin{aligned} & 1970- \\ & 1971 \end{aligned}$	$\begin{aligned} & 1971- \\ & 1972 \end{aligned}$	$\begin{aligned} & 1972- \\ & 1973 \end{aligned}$	$\begin{aligned} & 1973- \\ & 1974 \end{aligned}$	$\begin{aligned} & 1974- \\ & 1975 \end{aligned}$	Total	$\begin{aligned} & 1969- \\ & 1970 \end{aligned}$	$\begin{aligned} & 1970- \\ & 1971 \end{aligned}$	$\begin{aligned} & 1971- \\ & 1972 \end{aligned}$	$\begin{aligned} & 1972- \\ & 1973 \end{aligned}$	$\begin{aligned} & 1973- \\ & 1974 \end{aligned}$	$\begin{aligned} & 1974- \\ & 1975 \end{aligned}$	
1. Developmental Flanning and Administration	6.5	9.5	11.5	14.8	16.3	26.3	84.9	-	0.4	0.4	0.3	0.4	0.6	2.1
2. Industrial Development	1.7	1.6	3.5	5.0	4.8	-	15.6	-	0.1	0.1	-	-	-	0.2
3. Infrastructure Assistance	-	-	-	-	-	-	-	2.1	1.1	0.5	-	-	-	3.7
4. Social Adjustment and Rural Economic Development	70.0	11.4	11.3	11.6	23.7	13.9	71.9	6.9	3.4	3.5	6.1	5.4	23.8	39.1
5. Contributions to Superannuation	-	-	1.8	2.0	2.1	3.0	8.9	-	-	-	-	-	-	-
TOTAL	18.2	22.5	28.1	33.4	36.9	43.2	182.3	9.1	5.0	4.5	6.4	5.7	14.4	45.1

$$
\frac{\frac{\text { TABIF C-3 }}{\text { DREE Expenditures, by Function, for Regions and Canada }}}{\frac{1969-70 \text { to } 1974-75,^{1} \text { millions of dollars }}{}}
$$

Functional Classification	Region					Canada Total
	Atlantic	Quebec	Ontario	Prairies	B.C.	
Incentive grants	144.1	154.7	53.1	77.0	21.8	460.7
Other industrial assistance ${ }^{2}$	53.8	87.9	8.3	1.4	-	151.4
Roads and highways	272.3	173.7	0.6	14.1	2.5	463.2
Sewers and other infrastructure ${ }^{3}$	53.6	36.9	4.1	0.9	-	96.5
Social assistance ${ }^{4}$	34.4	22.9	2.2	16.5	1.2	77.2
Manpower ${ }^{5}$	6.1	-	-	19.6	-	25.7
Agriculture	24.2	16.4	26.9	53.5	7.6	128.6
Education	45.9	0.4	-	1.3	-	47.6
Planning and administration	42.2	17.5	-	0.8	0.4	60.9
Other	38.1	2.5	1.8	5.5	-	47.9
TOTAL EXPENDITURES	714.7	522.9	96.9	190.6	33.5	1558.6

[^12]TABII C- 4
DREE Expenditures,ByFunction and Program, AtIantic Rerion, 1969-70 to 1974-75, millions 0: dollars

Functional Classification	Progran Classirication								
	Incentives	Special Area Agreements	Special s ADB Trunk Highways	$\begin{aligned} & \text { ABD } \\ & \text { Infra- } \\ & \text { structure } \end{aligned}$	GDA	FRED	ARDA	Other	Total
Incentive grants .	144.1	-	-	-	-	-	-	-	144.1
Other industrial assistance	-	-	-	-	24.1	22.4	6.2	1.2	53.8
Roads and highways	-	216.8	98.1	7.7	35.6	24.1	-	-	272.3
Sewers and other infrastructure	-	32.4	-	8.1	4.0	8.7	0.4	-	53.6
Social assistance	-	-	-	-	0.1	22.2	5.4	6.7	34.4
Manpower	-	-	-	-	-	0.8	-	5.3	6.1
Agriculture	-	-	-	-	1.0	17.8	5.4	-	24.2
Education	-	36.1	-	-	0.8	8.8	-	0.2	45.9
Planning and administration	-	-	-	-	1.1	21.0	-	13.5	42.2
Other ${ }^{\text {? }}$	-	-	-	18.2	-	-	5.9	16.1	38.1
TOTAL EXPENDITURES	144.1	185.3	98.1	34.0	66.7	115.8	23.3	42.9	714.7
1. See notes to Table $c-3$. 2. $\$ 4.4$ millions were added to the "other" category to account for amounts not accounted for at some point amount was probably in ABD infrastructure since the provincial totals for this category are about $\$ 4 \mathrm{ml}$ more than the functional breakdown total.)									

TABLE 2.5
DREE Expenditures, by Function and Program, Guecec, 10 o-70 to 1974-75, millions of Gollars

Functional Classification	Progran Olassification						
	Incentives	Special Area Agreements	GDA	FRED	ARDA (c) ?	ARDA (r)	Total
Incentive grants and other industrial assistance	264.7	9.6	14.5	43.4	20.4	-	252.6
Rcads and highways	-	120.3	10.9	42.5	-	-	173.7
Sewers and other infrastructure	-	24.9	2.0	10.0	-	-	36.9
Social assistance	-	4.6	-	16.7	-	1.6	22.9
Agriculture	-	-	-	11.2	5.2	-	26. 4
Education	-	0.4	-	-	-	-	0.4
Planning and administration	-	7.7		9.8	-	-	17.5
Other	-	1.0	0.9	0.6	-	-	2.5
TOTAL EXPENDITURES	164.7	168.5	28.3	134.0	25.6	1.6	522.9

1. See notes to table $C-3$. 2. $\operatorname{ARDA}(c)$ refers to shared cost programs, whereas $A R D A(r)$ refers to grants to Indian Reserves.
TABIE C-6

$\frac{\text { DREE Expenditure }}{1969-70}$	ABIE $\mathrm{C}-6$ Function an $+-75 \mathrm{C}^{1}$ million	gram	O,	
Functional Cla	Program Classification			
	Incentives	GDA	ARDA	Total
Incentive grants	53.1	-	-	53.1
Other industrial assistance	-	-	8.3	8.3
Roads and highways	- .	0.6	-	0.6
Sewers and other infrastructure	-	4.1	-	4.1
Social assistance	-	-	2.2	2.2
Agriculture	-	-	26.9	26.9
Other	-	-	1.8	1.8
TOTAL EXPENDITURES	53.1	4.7	39.2	96.9

1. See notes to Table $\mathrm{C}-3$.
TABIE C-7
DREE Expenditures, by Function and Program, Prairie Region,
1969-70 to 1974-75, ${ }^{1}$ millions of dollars

Functional Classification	Program Classification						
	Incentives	Special Areas	GDA	FRED	ARDA	Other	Total
Incentive grants	77.0	-	-	-	-	-	77.0
Other industrial assistance	-	0.9	0.3	0.2	-	-	1.4
Roads and highways	-	4.3	5.7	4.1	-	-	14.1
Sewers and other infrastructure	-	0.9	-	-	-	-	0.9
Social assistance	-	0.9	3.6	2.6	6.3	3.1	16.5
Manpower	-	2.6	0.4	4.7	-	11.9	19.6
Agriculture	-	-	-	6.7	37.1	9.7	53.5
Education	-	1.3	-	-	-	-	1.3
Planning and Administration	-	-	-	-	-	0.8	0.8
Other	-	2.1	1.1	3.3	-	-	5.5
TOTAL EXPENDITURES	77.0	15.4	11.1	21.6	43.4	25.5	190.6

1. See notes to Table $\mathrm{C}-3$.
TABTE C-8

Functional Classification	Program Classification				
	Incentives	GDA	ARDA	Other	Total
Incentive grants	21.8	-	-	-	21.8
Roads and highways	-	2.5	-	-	2.5
Social assistance	-	-	1.2	-	1.2
Agriculture	-	-	7.6	-	7.6
Planning and administration	-	-	-	0.4	0.4
TOTAL EXPENDITURES	21.8	2.5	8.8	0.4	33.5

Appendix C-1: Source Notes

The amounts shown in the preceding tables (Tables C through $\mathrm{C}-8$) account for $\$ 1559.4$ millions of the total budgetary expenditures of $\$ 1797.4$ from the Public Accounts (1.e. 86.8%). They also account for 99.3% of the grants and contributions made during this period (\$1570.1). The remaining 13.2% of budgetary expenditures are accounted for by budgetary operating expenditures (10.0\%), by budgetary capital expenditure, (2.5\%) and by unallocated grants and contributions (0.7%; see Table C-2).

Incentives, special areas infrastructure, Special Highways, GDA, ADB infrastructure, FRED and ARDA cost-shared account for 94.5% of grants and contributions (82.4% of budgetary expenditures). Most of the remainder is accounted for by such social development programs as Newstart, Manpower Corps, ARDA on Indian Reserves and Special ARDA and by studies.

Tables $C-1$ and $C-2$ are also based on data derived from varlous issues of the Public Accounts. Table C-3 aggregates the functional breakdown of program expenditures for the flve regions (as provided in Tables $\mathrm{C}-4$ through $\mathrm{C}-8$).

J'able C-4, the distribution of DREE expenditures by function and by program activity for the Atlantic region is built up from a similar table (project worksheets) for each of the Atlantic provinces. The functional breakdown for prorram activities is derived in a similar manner for each province. For the Special Areas program, a functional allocation of planned commitments agreed to in the signed tederal-provincial agreement is derived for each special Arca and summed to provide a total. Where possible, the percentage distribution of derived Special Areas spending by function was compared with information in DREE, 1973b as a cross check (we found, in most cases, a reasonably close correspondence of distributions). The percentage distribution derived from the agreements was then applied to actual expenditures in the Special Areas as provided in the Public Accounts, Anmual leports for various years, DREE, 1973b and Fedral-Provincial Relations Office (1975), in order to derive a fiunctional breakdown, in dollars, of actual Special Areat: : pending.
l'or the General Development Agreements signed with provincial government:; the actual expenditures as described in Pederal-Provincial lielations Office (1975) were used to entimate our functional breakdown. Jnformation provided in
the Annual Reports for various years, DREE, 1973b, and the Public Accounts was used to derive estimates of the functional breakdown of ARDA expenditures.

For FRED programs actual expenditures are provided in some disaggregated functional detail in the Public Accounts, although the method of classification changed in 1972-73. We rearranged these data (with the assistance of the descriptions of various FRED commitments made in the signed agreements) to match our functional breakdown.

The ADB infrastructure was derived from the Public Accounts in the following manner.

Since a functional breakdown of these expenditures is only given for the first three years of the period, it was necessary to estimate the allocation of the expenditures in the last three years. This was done by applying the breakdown for the first three years to the total expenditures in the last three. Since 89% of the expenditures occurred in the first period, the error will not lizely be large.

Tables C-5 through C-8 are derived in a similar manner.

APPENDIX D

RDIA INCENTIVE GRANTS: JOB
EROSION AND CAPITAL BIAS

Appendix D
RDIA Capital Incentive Grants: Job Erosion and Capital Bias
A. Job Erosion

There can be a difference between the number of jobs expected to be created as a result of an RDIA grant offer by DREE to a firm and the number of jobs that actually materialize when the subsidized firm is fully geared up for commercial production. One of the more contentious issues prior to DREE's 1973 program review was the reliability of departmental press releases announcing the expected creation of new jobs as a result of RDIA grant offers to firms. ${ }^{l}$ DREE acknowledged, in its 1973 program review, substantial erosion of announced expected jobs and attempted to quantify the extent of this erosion under three headings: 1) offers accepted and later withdrawn or declined, 2) closure of supported projects and 3) scale and other adjustments. The Department argued that, "experience with offers accepted in the earlier years of the program [1969 and 1970] suggest [sic] that some 18 per cent are either withdrawn or declined." (DREE, 1973: 34). DREE noted that this figure may not apply to accepted offers in later years because an improved economic climate would reduce the rate of erosion; in addition

> "the rate of 'fall-out' should decline as techniques for processing applications are perfected and expertise accumulates ... Undoubtedly there has been a learning process in the administration of the incentives program. ... Thus... the adjustment made should be recognized as possibly unduly large." (DREE, l973: 34).

Has the job erosion rate improved? To examine this we have investigated the experience up to June 1975 with 'fall-out' from

RDIA offers announced during 1973. The results are shown in Appendix Tables $D-2, D-3$ and $D-5$. By June $1975,16.3$ per cent of the expected jobs announced during 1973 were no longer expected due to the fact that the associated offer had been declined or withdrawn. Since even in mid-1975 fall-out was still occurring with respect to offers announced during 1972, it is reasonable to expect that the erosion from the expected jobs announced in 1973 will continue for at least one year beyond the period covered by our analysis. ${ }^{2}$ It thus appears quite likely that the final figure for job fall-out from the 1973 announcements will be at least 18 per cent. The expected effects of improvements in the economic climate and accumulation of expertise do not appear to have been realised. ${ }^{3}$

The second factor leading to a reduction of the number of jobs expected is the closure of RDIA-supported projects after firms have commenced production. Up to the end of 1972,31 such closures had taken place (DREE, 1973: 35). The lost jobs associated with these closures represented 6.4 per cent of the "jobs paid". (Presumably jobs paid refers to jobs associated with projects on which partial or final payments had been made.)

DREE argued that

> "with approximately half the projects now in commercial production, 31 have ceased operations or become bankrupt with a potential loss of 2,168 jobs. Assuming that a similar pattern emerges as the remaining half of the projects come into commercial production, another approximate 2,200 jobs could be lost. Combining these two figures would give - keeping in mind the adjustment of l23 jobs already contained in the parliamentary releases - a total adjustment on
behalf of closures of 4,250 or 5 per cent of the December 31, 1972 figure of 81,752 jobs." (Dree, 1973: 36)

Actually payments had been made in only 43.3 per cent of projects; thus the total adjustment should have been 6.0 per cent of the December 1972 job total.

The issue here is whether it is appropriate to use for predictive purposes the jobs lost through the 31 closings out of 847 projects which had begun commercial production by the end of 1972. Our view is that to do so would be to seriously underestimate job losses. An implicit assumption underlying DREE's technique is that no more of the 847 projects would close. This is the same methodological error that DREE made prior to its 1973 program review with respect to offers subsequently declined or withdrawn. When this methodological error is corrected for the estimate of lost jobs due to closures rises to 13.8 per cent of paid jobs, which is ll. 3 per cent of announced jobs.

A third source of job erosion is the scale adjustment process, i.e., firms changing the scale of their operation after the offer has been accepted. DREE experience at the time of the 1973 program review suggested a 17 per cent shortfall in the number of jobs actually in existence at the time of final payment, compared to the expected jobs initially announced when the offers were accepted by the recipient firms (DREE, 1973: 36). It is not clear from the program review whether this shortfall is only with respect to projects
in which the amount of the grant was dependent on the number of jobs created. It seems likely that this is the case since in the early years of the incentive grants program the effects of expansions and modernizations on job levels were not recorded. It also seems likely that the shortfall in the number of jobs actually in existence at the time of final payment occurring in projects where the amount of the grant does not depend on job creation, would be greater than that occurring where the number of jobs created determines the amount of the grant. It will be shown in the following section that a very large proportion of the incentives offered are tied not to job creation but to capital 7 investment.

A further consideration is that DREE based its 17 per cent shortfall estimate on job counts at the time of final payment. It has been suggested at the time of the 1973 program review the average shortfall for cases in which only partial payment had been made was about one-third of the expected jobs. A reasonable estimate of such shortfalls could quite well be between these boundaries for an average of 25 per cent, which would represent 20.5 per cent of initially announced jobs.

When the job erosion rates are combined for the effects of offers accepted and later declined or withdrawn, closure of supported projects, and scale and other adjustments, the total job erosion is 49.8 per cent of initially announced jobs.

In other words, of the jobs associated with DREE announcements of offers accepted, the likelihood is that half of them will never materialize. Jobs eroded due to (l) offers accepted and later declined or withdrawn and (2) scale and other adjustments do not, for the most part, attract grant funds, and therefore impose no substantive burden on the taxpayer. Jobs lost through closures and bankruptcies, on the other hand, do attract grant funds to the firm prior to closure and these impose a burden on the taxpayer. B. The Capital Bias of Incentive Grants

Woodward has analysed in considerable detail possible labour or capital biases of RDIA grants and has dealt with the hypothetical effects of grants at the maximum allowable size. (Woodward, 1974, 1974a, and 1975). The actual incentive offers are, however, seldom equal to the amounts or proportions of the legal maxima. In this section, we compare the capital component and the labour component of incentive grants, using actual figures for accepted offers which occurred during 1973.

Incentive grants offered with respect to expansions and modernizations are based solely on a percentage of the eligible capital cost. Thus while a certain number of "expected new jobs" may be announced as associated with the offer, the full amount of the offer can be paid without any of these jobs actually being created. Indeed it is even possible for a firm in receipt of such an offer to reduce its employment
through modernization and still receive the full amount of the grant offered.

We have derived the amount of captial subsidy and labour subsidy in Appendix Table D-6. Section A presents, for incentive grant offers based solely on capital costs, the value of the incentive grant, the value of fixed costs to 9 be subsidized and the expected number of jobs.

In the case of proposals to establish a new facility or to expand a facility to produce a product not previously produced in the operation, the amount of the offer could be based on a percentage of capital cost and a certain number of dollars per eligible new job created. In this instance, the amount of the grant offer based on the capital cost could be paid without any jobs being created. Only the portion of the grant offer which was based on so many dollars per job would actually require that the full number of eligible jobs be created in order for the full amount to be paid. Section B of Table D-6 presents those offers accepted during 1973 in which the offer was based partly on a percentage of capital cost and partly on job creation. The amounts of money not actually tied to job creation are shown as are the jobs which were included in the expected job total but were not actually tied to grant.

Section C combines the information from Sections A and B to arrive at totals for 1973 of grants offered which are not dependant on job creation and also the number of jobs included
in the totals of "expected job" creation which were not actually tied to grants. The data support the conclusion that two thirds of the total value of incentives offered during 1973 were based on capital costs rather than job creation. Two fifths of the "expected jobs" announced during that year were not linked with offers in such a way that their creation was a requirement of grant payment. In other words, the RDIA grants had a relatively greater capital bias than labour bias.

Footnotes

1. An exchange between the Honorable Jean Marchand, the Minister for DREE, and Conservative MP James McGrath in February 1972 indicates the basis of the disagreement, McGrath charged that an analysis of incentives offered in 1969 and 1970 showed that " 25 per cent of announced jobs did not materialize either because the department withdrew its offer, the company refused ti, or the company went bankrupt". (Globe and Mail, February 11, 1972). McGrath went on to question whether even the majority of jobs claimed by DREE would ever actually materialize and referred to "DREE's penchant for secrecy in this area (of actual job creation)". In his reply (Globe and Mail, February 25, 1972), Mr. Marchand concluded that Mr. McGrath's analysis "was prepared in great haste and with little thought". The Minister claimed that since DREE's monthly summaries of expected new jobs reflected reductions due to offers that had been withdrawn or declined up to that point, they were neither secretive nor misleading, and thereby ignored the effect that future withdrawals or declines, bankruptcies, etc. would have on these "expected jobs".
2. If we consider the job announcements during the first four months of 1973, (for which a longer period of study is available), the fall-out factor increases to 16.8 per cent.
3. Three - quarters of the job erosion took place within a one year period of announcement of the grant. Since the offers examined in this analysis were for 1973 the bulk of the job erosion took place while the economic climate was relatively favourable.
4. Payments had been made in 847 of 1957 projects, and the total adjustment should have been 4884 jobs (DREE, 1973: 15).
5. 393 firms had received payments as of January 31, 1972 (see following note). Thus 454 of the 847 projects (53.6%) received their initial payment in the last 11 months of 1972. In other words about half of the projects which had received payments, had been in production for less than a year. This is too short a period to judge their long-run viability. It seems quite probable that almost all of the 31 closings referred to above would be from the 454 projects which had received payments by January 31, 1972. If this is assumed, then a more reasonable estimate of the 'paid jobs' loss would be 13.8 per cent. It may be that some of the 31 closings were of projects receiving payments after February l, 1972 and this would tend to reduce the 13.8 per
cent loss factor. On the other hand, it is almost certain that there have been further closings among the 393 projects which had received support by January 31, 1972. For this reason, we feel that 13.8 per cent is a reasonable estimate of paid jobs lost through closings.
6. Correspondence from W.J. Lavigne, Assistant Deputy Minister, Incentives Division of DREE to P. Nowlan, M.P., March 10, 1972.
7. DREE experience with the scale adjustment from 1969 through December 31, 1975 for firms for which the final payment had been made (not including some bankrupt firms) suggests that the job erosion rate for grants which are tied to job creation is 20.5 per cent. The scale adjustment factor for grants which are not dependent on job creation led to an increase in jobs of 9.5 per cent. The latter adjustment factor is less reliable because only during the last few months have efforts been made to improve the accuracy of this category of job data. Unfortunately, these data were provided too late to be integrated into the methodology of this study, (Correspondence from ADM, Planning and Coordination, DREE, received April 12, 1976).
8. In a conversation with one of the authors around the time of the 1973 DREE program review, a DREE official suggested that job counts at the time of initial payments (30 days after the start of commercial production) indicated an average shortfall of about one-third.

There are several possible explanations of the discrepancy between the erosion factors of 17 per cent and 33 per cent. The firms in question may have temporarily increased their employment levels around the time of the final payment; certainly there was an incentive to do so. The firms in question at the time of initial payment might still be gearing up their production levels to planned capacity level. Then too, the difference in sample size between firms for which final payments had been made and the firms for which partial payments had been made (a larger sample) might account for the difference.
9. In DREE's publications, jobs expected to arise out of grants to finance expansions and modernizations are referred to as ineligible jobs; jobs expected to arise out of grants to finance new projects generate grant dollars and are thus referred to as eligible jobs.

RDIA Incentive Grants, 1973

Table D-1
Table D-2
Table D-3
Table D-4
Table D-5

Table D-6

Offers accepted by region, 1973
Expected direct new jobs by month, 1973
Expocted direct new jobs by region, 1973
Amount of RDIA grants by region, 1973
Number of jobs and amount of grant for 1973 lost through offers subsequently declined or withdrawn up to June 1975.

Capital and labour subsidies in net RDIA offers, 1973

Sources and Notes for the Appendix D Tables

The source of the data in these tables is the Report on the Regional Development Incentives, published monthly by the Department of Regional Economic Expansion. The data was compiled on the basis of the RDIA offers for 1973, but in order to reflect as much as possible the current status of these offers, all revisions on the 1973 offers up to and including March 1975 have been carried out.

It should be noted that all of this data excludes a special \$12 million grant to Manitoba Forest Resources Inc. in March 1973. This was excluded because of ambiguities in the rate structure of the incentive offer.

Table D-I

Offers Accepted By Region, 1973

Region	Gross	D/W* \% Percent	Net	
Atlantic	150	15	10.9	135
Quebec	450	87	19.3	363
Ontario	54	4	7.4	50
Prairies	84	10	11.9	74
B.C.	10	1	10.0	9
Total	748	117	15.6	631

* D / W is used throughout Appendix D to denote that the relevant offers, jobs, or incentive grants were subsequently declined or withdrawn.

Table D-?
Expected Direct New Jobs, By Month, 1973

Month	Gross	D/W	Net
January	2991	711	2280
February	1756	224	1527
March	2222	371	1847
April	2636	304	2332
May	3764	461	3303
June	3190	614	2576
July	3170	865	2305
August	2450	244	2206
September	2606	396	2210
October	2153	271	1882
November	1545	157	1388
December	1156	218	938
Total	29,634	4836	24,798
per cent	100.0	16.3	83.7

Table D-3

Expected Direct New Jobs By Region, 1973

Region	Gross	D/W	\% Per cent	Net
Atlantic	4634	506	10.9	4128
Quebec	19,246	3513	18.3	15,733
Ontario	1738	125	7.2	1613
Prairies	3510	661	18.8	2849
B.C.	506	31	6.1	475
Total	29,634	4836	16.3	24,798

Table D-4
Amount of Grant By Region, 1973

Region	Gross	D / W	\% Per Cent	Net
Atlantic	$\$ 23,554,337$	$\$ 3,085,683$	13.1	$\$ 20,468,654$
Quebec	$44,203,138$	$6,441,726$	16.9	$37,761,412$
Ontario	$6,060,131$	319,115	5.3	$5,741,016$
Prairies	$12,560,663$	$1,576,768$	12.5	$10,983,895$
B.C.	$1,958,879$	229,653	11.7	$1,729,226$
Total	$\$ 88,337,148$	$\$ 11,652,945$	15.2	$\$ 76,684,203$

Table D-5
Number of Jobs And Amount of Grant For 1973 Iost Through Offers

Subsequently Declined Or Withdrawn Up To June, 1975

Number of Number of Cumulative Amount of grant Cumulative total Cumulative \%

$11,652,945$

 100.0

 100.0

\section*{| 0 |
| :--- |
| 0 |
| 0 |}

Table D-6
Capital and Labour Subsidies in Net RDIA Offers, 1973
A: Offers Based Wholly On Capital Cost

		l.	
Region	No. of Offers	No. of Jobs	Amount of Grant
Atlantic	84	1722	$\$ 8,644,860$
Quebec	179	5364	$8,868,707$
Ontario	18	471	969,701
Prairie	42	929	$5,463,210$
B. C.	2	18	282,810
Total	325	8504	$24,229,288$

B: Offers Based On Jobs And On Capital Costs

| Region | No. of
 Offers | No. of elig-
 ible jobs | Amt. of Grant
 associated
 with 5. | Number of
 ineligible
 jobs | Remaining amount
 of Grant |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Atlantic | 51 | 2323 | $\$ 6,088,500$ | 83 | $\$ 5,735,294$ |
| Quebec | 184 | 9403 | $14,531,225$ | 966 | $14,361,480$ |
| Ontario | 32 | 1112 | $2,229,200$ | 30 | $2,542,115$ |
| Prairie | 32 | 7666 | $2,679,550$ | 254 | $2,841,135$ |
| B. C | 7 | 388 | 785,400 | 69 | 661,016 |
| Total | 306 | 14,892 | $26,313,875$ | 1402 | $26,141,040$ |

C: Number of Jobs And Amount of Grant Not Based On Job Creation

	$9 .(2+7)$	$10 .(3+8)$
Region	Number of Jobs	Amount of Grant

Atlantic	1805	$\$ 14,380,154$
Quebec	6330	$23,230,187$
Ontario	501	$3,511,816$
Prairie	1183	$8,304,345$
B. C.	87	943,826
Total	9906	$50,370,328$

Bibliography

Alonso, William, (1969), "Equity and Its Relation to Rfficiency in Urbanization," in Regional Development and Planning, (eds.), John Friedman and William Alonso, M.I.T. Press Cambridge, pp. 40-57.

APEC, (1971), Fifth Annual Review, The Atlantic Economy, Atlantic Provinces Economic Council, October, 118 pp.

Atcheson, J., D. Cameron and D. Vardy, (1974), Regional and Urban Policy in Canada, Monograph II, Regional and Urban Policy Analysis Centre, Carleton University, Ottawa, mimeo, pp. 53-59.
--------, and Richard Kerr, (1972), Federal Regional Development Activity in Canada with Emphasis on the Regional Development Incentive Act, Ottawa, April, mimer, pp. 1-9.

Barlow, R. (1966), The Effects of Income Taxation on Work Choices, Studies of the Royal Commission on Taxation, no. 4, Queen's Printer, Ottawa.

Baumol, W.J., (1967), Business Behaviour, Value and Growth, Rev. Ed. Harcourt, Brace and World, N.Y.

Bird, Richard M., (1968), "Tax Incentives for Regional Development," Report of Proceedings of the Twenty-First Tax Conference, Canadian Tax Foundation, Toronto, pp. 192-199.
------------, (1970), "Further Thoughts on Regional Tax Incentives," Canadian Tax Journal, Vol. XVII, No. 6 November - December, pp. 549-554.

Break, G.F., (1957), "Income Taxes and Incentives To Work", American Economic Review, Vol. XLVII, September, pp. 529-549.

Brewis, Thomas N., (1969), Regional Economic Policies in Canada, Macmillan Co. of Canada Ltd., Toronto.
----------------, (1971), Regional Development in Canada: Experience and Prospects, United Nations Research Institute for Social Development, GE.71-14601; c. 37.
---------------, (1975), "Regional Development In Canada In Historical Perspective" in Regional Development and Planning:International Perspectives, (eds.), Antoni R. Kuklinski, Lythoff International Publishing Co., (Leyden).

Bridges, Benjamin, Jr., (1965), "State and Local Inducements for Industry: Part I," National Tax Journal, Vol. XVIII, No. 1, March, pp. 1-14.
-----------------, (1965a), "State and Local Inducements for Industry: Part II," National Tax Journal, Vol. XVIII, No. 2, June, pp. 175-192.

Buchanan, James, (1968), The Demand and Supply of Public Goods, Rand McNally and Co.
--------------, and W.C. Stubblebine, (1962), "Externality," Economica, November, pp. 371-384.

Buckley, Helen and Eva Tihanyi, (1967), Canadian Impact of ARDA, PFRA and MMRA, Economic Council of Canada, Special Study No. 7, Queen's Printer, Ottawa.

Cameron, Gordon C., (1970), Regional Economic Development: The Federal Role, Resources for the Future Inc., The Johns Hopkins Press, Baltimore.

Chernick, S.E., (1966), Interregional Disparities in Income, Economic Council of Canada, Staff Study No. 14, Queen's Printer, Ottawa.

Copes, Parzival, (1972), The Resettlement of Fishing Communities In Newfoundland, Canadian Council on Rural Development, Ottawa, April.

Courchene, Thomas J., (1974), Migration, Income and Employment: Canada, 1965-68, C.D. Howe Research Institute, Montreal.

Culyer, A.J., (1971), "Merit Goods and the Welfare Economics of Coercion," Public Finance, 1971, No. 4, pp. 546-572.

Cumberland, John H., (1971), Regional Development Experiences and Prospects in the United States of America, United Nations Research Institute for Social Development, Mouton \& Co., Paris.

Dalvi, M.Q., (1969), "Highway Costs and Expenditures in Canada," Canadian Journal of Economics, Vol. II, No. 4, November, pp. 509-525.

Dodge, David A., (1975), "Impact of Tax, Transfer and Expenditure Policies of Government on the Distribution of Personal Income in Canada," Review of Income and Wealth, Series 21, No. 1, March, pp. 1-52.

DREE, (1969), Salient Features of Federal Regional Development Policy in Canada, Department of Regional Economic Expansion, Ottawa.
----, (1971), Annual Report, 1970-71.
----, (1973), Assessment of the Regional Development Incentives Program, a staff paper prepared by the federal Department of Regional Economic Expansion as part of the regional development policy and program review, Ottawa, April.
----, (1973a), Regional Development Programs, a staff paper prepared by the federal Department of Regional Economic Expansion as part of the regional development policy and program review, Ottawa, April.
----, (1973b), Regional Development Programs By Province, a staff paper prepared by the federal Department of Regional Economic Expansion as part of the regional development policy and program review, Ottawa, April.
----, (1973c), Annual Report, 1972-73.
----, (1975), Annual Report, 1974-75.
----, (1976), Climate for Regional Development, Ottawa.
Economic Council of Canada, (1965), Second Annual Review, Queen's Printer, Ottawa, Ch. 5 .
---------, (1968), Fifth Annual Review, Queen's Printer, Ottawa, Ch.7.
-----------------., (1975), Twelth Annual Review; Options for Growth, Information Canada, Ottawa.

EFTA, (1971), Regional Policy in EFTA, Industrial Mobility, An Examination of Industrial Mobility in the Context of Regional Policies in EFTA Countries, Geneva, September, 1971.

Federal Provincial Relations Office, (1975), A Descriptive Inventory of Federal-Provincial Programs and Activities, As of June 1975, mimeo, December, Ottawa.

Fields, D.B. and W.J. Stanbury, (1970), "Incentives, Disincentives and the Income Tax: Further Empirical Evidence", Public Finance, Vol. XXV, No. 3, pp. 381-415.

Francis, J.P. and N.G. Pillai, (1971), Regional Development and Regional Policy, Department of Regional Economic Expansion, Ottawa, December.

Gillespie, W. Irwin, (1967), The Incidence of Taxes and Public Expenditures in the Canadian Economy, Studies of the Royal Commission on Taxation, Number 2, Queen's Printer, Ottawa.
---------, (1975), The Redistribution of Income in Canada, 1969, An Analysis of The Incidence of Taxes and Public Expenditures in the Canadian Economy, research monograph, March.

Gold, Ronald B., (1966), "Subsidies to Industry in Pennsylvania," National Tax Journal, Vol. 19, No.3, September, pp. 286297.

Green, Alan G., (1967), "Regional Aspects of Canada's Economic Growth, 1890-1929," Canadian Journal of Economics and Political Science, Vol. 33, No. 2, May, pp. 232-245.

Hale, Carl W., (1968), "The Optimality of Local Subsidies in Regional Development Programs," Quarterly Review of Economics and Business, Autumn, pp. 35-50.
---------. (I969), "Industrial Development Corporation in Texas (part 2)," Business Review, March, pp. 3-9.

Harberger, A.C., (1962), "The Incidence of the Corporation Income Tax," Journal of Political Economy, Vol. LXX, June, pp. 215-240.

Head, G.J., (1966), "On Merit Goods," Finanzarchiv, Band 25, pp. 1-29.
---------, (1969), "Merit Wants," Finanzarchiv, Band 28, pp. 214-225.

Hettich, Walter, (1972), "Consumption Benefits from Education," Canadian Higher Education in the Seventies, (ed.)
Sylvia Ostry, Economic Council of Canada, Information Canada, Ottawa, pp. 177-198.

Ireland, Derek J., (1974), "A Model of Income Differentials in the Atlantic Region," M.A. Thesis, Carleton University, Ottawa, Fall.

Jamieson, Honourable D.C., (1973), Minutes of Proceedings and Evidence of the Standing Committee on Regional Development, May 29.
-----------, (1975), Minutes of Proceedings and Evidence of Standing Committee on Regional Development, March 11.

Johnson, James A., (1968), The Incidence of Government Revenues and Expenditures, A Study Prepared for the Ontario Committee on Taxation, Queen's Printer for Ontario, Toronto.

Kerr, R., (1975), "Equity and Equalization Grants," mimeo, Carleton University, Ottawa, August.
--------, and Nancy Tienhaara, (1973), Impact of Manpower Policies on Rural People, Canadian Council on Rural Development, Ottawa,

Krutilla, John V., (1969), "Criteria for Evaluating Regional Development Programs," in Regional Development and Planning, (eds.), John Friedman and William Alonso, M.I.T. Press, Cambridge, pp. 40-57.

Lessard, Honourable Marcel, (1975), Interview reported in Telescope, Vol. 2, No. 4, December.

Leven, Charles L., (1968), "Establishing Goals for Regional Economic Development," in Regional Development and Planning, (eds.) John Friedman and William Alonso, M.I.T. Press, Cambridge, pp. 581-598.

Love, J.D., (1975), "Social Sciences and Regional Development," a paper delivered by the Deputy Minister of Regional Economic Expansion to the National Social Science Conference, Ottawa, November 2l, mimeo.

Love, Roger and Michael C. Wolfson, (1976), Income Inequality: Statistical Methodology and Canadian Illustrations, Statistics Canada, Catalogue 13-559, Information Canada, Ottawa, March.

Lynn, James H., (1974), "A Model to Simulate the Impact of Regional Development Policies: A Progress Report," in O.J. Firestone, (ed.), Regional Economic Development, University of Ottawa Press, Ottawa, pp. 51-75.

Marchand, Honourable Jean, (1972), Speech, delivered to Atlantic Development Council, mimeo, Ottawa, January 14.
-------., (1972a), Speech, delivered to the House of Commons, mimeo, Ottawa, February 29.
----------, (1972b), Minutes of Proceedings and Evidence of the Standing Committee on Regional Development, May 24.
----------, (1972c), Minutes of Proceedings and Evidence of the Standing Committee on Regional Development, May 30.

Maslove, Allan M., (1972), The Pattern of Taxation in Canada, Economic Council of Canada, Information Canada, Ottawa, December.

McInnis, R. Marvin, (1968), "The Trend of Regional Income Differentials in Canada," The Canadian Journal of Economics, Vol. 1, No. 2, May, pp. 440-470.

McLure, Charles E., Jr., (1968), "Merit Wants," Finanzarchiv, Band 27, pp. 474-483.
-------, (1970), "Tax Incentives for Regional Development: A Critical Comment," Canadian Tax Journal, Vol. XVII, No. 6, November - December, pp. 545-548.
-------. (1971), "The Theory of Tax Incidence with Imperfect Factor Mobility," Finanzarchiv, Vol. 30, No. 1, pp. 27-48.
-------, (1972), "The Theory of Expenditure Incidence," Finanzarchiv, Vol. 30, No. 3, pp. 432-452.
-------, (1974), "A Diagrammatic Exposition of the Harberger Model with One Immobile Factor," Journal of Political Economy, Vol. 82, No. I, January - February, pp. 56-82.

Mieszkowski, Peter M., (1967), "On the Theory of Tax Incidence," Journal of Political Economy, Vol. 75, No. 3, pp. 250261.
-----------, (1969), "Tax Incidence Theory: The Effects of Taxes on the Distribution of Income," Journal of Economic Literature, Vol. 7, No. 4, December, pp. 1103-1124.

Morris, R., (1964), The Economic Theory of Managerial Capitalism, Free-Press Macmillan CO., N.Y.

Musgrave, Richard A., (1958), The Theory of Public Finance, McGraw-Hill, N.Y.

Paquet, Gilles, (1971), "Social Science Research as an Evaluative Instrument for Social Policy," in Social Science And Social Policy, (eds.) Gwynn E. Nettler and Karol J. Krotki, Human Resources Research Council of Alberta, Edmonton, pp. 51-66.

Pancoast, D.F., (1953), Allocation of Highway Cost in Ohio by the Incremental Method, Ohio Department of Highways, Ohio, December.

Samuelson, Paul A., (1954), "The Pure Theory of Public Expenditure," Review of Economics and Statistics, Vol. XXXVI, November, pp. 387-389.
---------, (1969), "Pure Theory of Public Expenditure and Taxation," in J. Margolis and H. Guitton (eds.), Public Economics, An Analysis of Public Production and Consumption and their Relations to the Private Sector, Macmillan, Toronto, pp. 98-123.

Saskatchewan Newstart, (1971), Social Inventions and Social Progress, Saskatchewan Newstart, Department of Regional Economic Expansion, Ottawa,

Sazama, Gerald W., (1970), "A Benefit-Cost Analysis of a Regional Development Incentive: State Loans," Journal of Regional Science, Vol. 10, No. 3, pp. 385-396.

Springate, David J.V., (1972), "Regional Development Incentive Grants and Private Investment in Canada: A Case Study of the Effect of Regional Development Incentives on the Investment Decisions of Manufacturing Firms," Ph.D. Thesis, Harvard University, Graduate School of Business Administration.
(1973), Regional Incentives and Private Investment, C.D. Howe Research Institute, Montreal, 69 pp.

Stober, William J. and Lawrence H. Falk, (1969), "The Effect of Financial Inducements on the Location of Firms," Southern Economic Journal, July, pp. 25-35.

Struyk, Raymond J., (1967), "An Analysis of Tax Structure, Public Service Levels and Economic Growth," Journal of Regional Science, Vol. 7, No. 2, pp. 175-185.

Turner, John N., (1972), Budget Speech, Department of Finance, Government of Canada, May 8.
--.-------., (1974), Budget Speech, May 6, Department of Finance, mimeo.

Turvey, R., (1965), "On Divergences Between Social and Private Costs," Economica, August, pp. 309-313.
U.S. Congress, (1961), The Final Report of the Highway Cost Allocation Study, Parts I through V, 87th Congress, Ist Session, House Document 54, U.S. Government Printing Office, Washington, D.C.
U.S. Congress House Ways and Means Committee, (1961), "A Preliminary Allocation of Cost Responsibility by the Incremental Method," Hearings on the President's Proposals for Financing the Federal-Aid Highway, 87th Congress, Ist Session, U.S. Government Printing Office, Washington, D.C., pp. 114-130.

Usher, Dan, (1975), "Some Questions About the Regional Development Incentives Act," Canadian Public Policy - Analyse de Politiques, Vol. 1, No. 4, Autamn, pp. 557-575.

Wilson, Thomas, (1968), "The Regional Multiplier - A Critique," Oxford Economic Papers, Vol. 20, No. 3, November, pp. 374-393.

Woodward, Robert S., (1974), "The Capital Bias of DREE Incentives," Canadian Journal of Economics, Vol. VII, No. 2, May, pp. 161-173.
(1974a), "Effective Location Subsidies: An Evaluation of DREE Industrial Incentives," Canadian Journal of Economics, Vol. VII, No. 3, August, pp. 501-510.
----------, (1975), "The Effectiveness of DREE's New Location Subsidies," Canadian Public Policy - Analyse de Politiques, Vol. 1, No. 2, Spring, pp. 219-229.

HC/111/.E28/n. 85

[^0]: Note: details may not add to totals due to rounding
 Source: Appendix Table A-3(b)

[^1]: Atlantic
 Quebec
 Prairies

[^2]:
 instrauent lem refers to the original experiment designation as round in Appendix A.
 (2) other industrial assistance of Table, encompasses the two categories: (l) capital incentive grants, and
 -

[^3]: Solirce: Appendix Table A-5(d)
 Note: Details may not add to totals due to rounding.

[^4]: Note: Details may not add to totals, due to rounding

[^5]: Note: Details may not add to totals, due to rounding.

[^6]: Note：Details may not add to totals，due to rounding

[^7]: Note: Details may not add to totals due to rounding.

[^8]: Note: Details do not add to totals due to rounding

[^9]: Note: Details may not add to totals due to rounding

[^10]: Note: Details may not add to totals due to rounding.

[^11]: SABM IIGNACXE TVIOL

[^12]: Functional classification for grants and contributions.

 1. Functional classification for grants and contributions.
 2. Other industrial assistance includes: other industrial assistance and tourist-related industrial

 Sewers and other infrastructure includes: sewers, water, power and industrial parks.
 Social assistance includes: health, social assistance, housing and native people.
 Manpower includes: adult education and manpower assistance.
 5. Manpower includes: adult education and manpower assistance.

