
A paper prepared for the Economic Council of Canada

Un document préparé pour le

The Economic Council of Canada was established in 1963 by Act of Parliament. The Council is a crown corporation consisting of a Chairman, two Directors and not more than twenty-five Members appointed by the Governor in Council.

The Council is an independent advisory body with broad terms of reference to study, advise and report on a very wide range of matters relating to Canada's economic development. The Council is empowered to conduct studies and inquiries on its own initiative, or if directed to do so by the Minister, and to report on these activities. The Council is required to publish annually a review of medium- and long-term economic prospects and problems. In addition it may publish such other studies and reports as it sees fit.

The Chairman is the Chief Executive Officer of the Council and has supervision over and direction of the work and staff of the Council. The expenses of the Council are paid out of money appropriated by Parliament for the purpose.

The Council as a corporate body bears final responsibility for the Annual Review, and for certain other reports which are clearly designated as Council Reports. The Council also publishes Research Studies, Discussion Papers and Conference Proceedings which are clearly attributed to individual authors rather than the Council as a whole. While the Council establishes general policy regarding such studies, it is the Chairman of the Council who bears final responsibility for the decision to publish authored research studies, discussion papers and conference proceedings under the imprint of the Council. The Chairman, in reaching a judgment on the competence and relevance of each author-attributed study or paper, is advised by the two Directors. In addition, for authored Research Studies the Chairman and the two Directors weigh the views of expert outside readers who report in confidence on the quality of the work. Publication of an author-attributed study or paper signifies that it is deemed a competent treatment worthy of public consideration, but does not imply endorsement of conclusions or recommendations by either the Chairman or Council members.

Établi en 1963 par une Loi du Parlement, le **Conseil économique du Canada** est une corporation de la Couronne composée d'un président, de deux directeurs et d'au plus vingt-cinq autres membres, qui sont nommés par le gouverneur en conseil.

Le Conseil est un organisme consultatif indépendant dont le mandat lui enjoint de faire des études, donner des avis et dresser des rapports concernant une grande variété de questions rattachées au développement économique du Canada. Le Conseil est autorisé à entreprendre des études et des enquêtes, de sa propre initiative ou à la demande du Ministre, et à faire rapport de ses activités. Chaque année, il doit préparer et faire publier un exposé sur les perspectives et les problèmes économiques à long et à moyen termes. Il peut aussi faire publier les études et les rapports dont la publication lui semble opportune.

Le président est le directeur général du Conseil; il en surveille les travaux et en dirige le personnel. Les montants requis pour acquitter les dépenses du Conseil sont prélevés sur les crédits que le Parlement vote à cette fin.

En tant que personne morale, le Conseil assume l'entière responsabilité des Exposés annuels, ainsi que de certains autres rapports qui sont clairement désignés comme étant des Rapports du Conseil. Figurent également au nombre des publications du Conseil, les Études, Documents et Comptes rendus de colloques, qui sont explicitement attribués à des auteurs particuliers plutôt qu'au Conseil lui-même. Celui-ci établit une politique générale touchant ces textes, mais c'est au président qu'il incombe de prendre la décision finale de faire publier, sous les auspices du Conseil économique du Canada, les ouvrages à nom d'auteur tels que les études, documents et rapports de colloques. Pour se prononcer sur la qualité, l'exactitude et l'objectivité d'une étude ou d'un document attribué à son auteur, le président est conseillé par les deux directeurs. De plus, dans le cas des études à nom d'auteur, le président et les deux directeurs sollicitent l'avis de lecteurs extérieurs spécialisés, qui font un rapport confidentiel sur la qualité de ces ouvrages. Le fait de publier une étude ou un document à nom d'auteur ne signifie pas que le président ou les membres du Conseil souscrivent aux conclusions ou recommandations contenues dans l'ouvrage, mais plutôt que l'analyse est jugée d'une qualité suffisante pour être portée à l'attention du public.

DISCUSSION PAPER NO. 237

The Relationship Between Plant Scale and Product Diversity in Canadian Manufacturing Industries

by John R. Baldwin and Paul K. Gorecki with J. McVey and J. Crysdale

The findings of this Discussion Paper are the personal responsibility of the authors and, as such, have not been endorsed by Members of the Economic Council of Canada.

Discussion Papers are working documents made available by the Economic Council of Canada, in limited number and in the language of preparation, to interested individuals for the benefit of their professional comments.


Requests for permission to reproduce or excerpt this material should be addressed to:

Council Secretary Economic Council of Canada Post Office Box 527 Ottawa, Ontario KlP 5V6

ISSN-0225-8013

August 1983

RÉSUMÉ

Les différences de productivité observées entre les secteurs manufacturiers canadien et américain sont souvent attribuées à la plus petite échelle des usines canadiennes et à leur trop grande diversité de produits par rapport à la taille du marché canadien. Il existe cependant peu d'études traitant de l'existence ou de l'importance de ces phénomènes. Pour parer à l'insuffisance des données, la plupart de celles qui ont été réalisées portent sur seulement quelques industries, et des prédictions ou des observations qualitatives remplacent les données manquantes. La présente étude, effectuée à partir d'une importante base de données au niveau de désagrégation à quatre chiffres de la Classification des activités économiques au Canada, fait partie d'une série d'ouvrages dans lesquels on tente d'examiner les faiblesses des industries manufacturières canadiennes et de déterminer dans quelle mesure leur sous-optimalité peut être attribuée aux barrières tarifaires.

Dans d'autres ouvrages, nous avons examiné dans quelle mesure la sous-optimalité des usines est reliée aux barrières commerciales. Nous avons cherché également à déterminer dans quelle mesure les restrictions commerciales influent sur la diversité au niveau de l'usine. Dans le présent document, nous analysons la relation entre ces deux résultats. Il existe une relation entre la diversité des produits et l'importance des économies d'échelle d'une usine, car plus les économies d'échelle sont importantes, plus on sera tenté de multiplier les produits de l'usine afin de tirer parti de ces économies. Par ailleurs, plus le nombre de produits est élevé, plus la taille de l'usine sera grande, du moins en attendant qu'une nouvelle expansion ait lieu (telle la création d'une nouvelle usine). Ainsi, l'importance de la diversité peut être examinée indirectement en comparant la taille moyenne des usines canadiennes et américaines oeuvrant dans des industries comparables, au stade où elles prennent de l'expansion.

Prenant cette démarche indirecte pour mesurer les effets de la diversité, les auteurs du présent document constatent que, là où la diversité est élevée, la taille des usines canadiennes est, en moyenne, considérable par rapport à celle des usines américaines au moment où les entreprises prennent de l'expansion. Ils constatent en outre que les droits douaniers ont le même effet. Cette conclusion vient appuyer l'opinion selon laquelle les tarifs douaniers conduisent eux aussi à une plus grande diversité. Alors que, comme l'indiquaient des recherches antérieures, les tarifs douaniers peuvent avoir pour conséquence de réduire la taille des grandes usines canadiennes par rapport aux grandes usines américaines, ils peuvent également accroître la taille moyenne des usines canadiennes par rapport à celle des usines américaines au stade où les entreprises établissent une seconde usine. Ainsi faut-il conclure que les tarifs douaniers ont un double effet complexe sur la taille relative des usines.

- ii -

Il importe de souligner que les restrictions commerciales s'avèrent coûteuses, que l'on considère l'un ou l'autre des deux effets mentionnés ci-dessus. Le fait que les restrictions commerciales conduisent à un agrandissement de la taille des usines par rapport au point où les entreprises prennent de l'expansion est attribué à la diversité des produits. Bien que des économies puissent être réalisées en multipliant le nombre de produits, en ce sens qu'on évite la construction de nouvelles usines, ceci est accompli au coût d'une "diversité excessive". Le coût de la petitesse des marchés est réduit, mais non entièrement éliminé, par une plus grande diversité. Dans la comparaison au sujet des usines de grande taille, la constatation que les usines canadiennes sont plus petites que les usines américaines correspondantes lorsque les tarifs douaniers et la concentration sont élevés et que cette différence disparaît lorsque les tarifs sont abaissés indique que des économies d'échelle demeurent inexploitées. On peut donc conclure que les restrictions commerciales sont préjudiciables à l'efficacité du secteur manufacturier canadien, que nous prenions les petites ou les grandes usines comme base de comparaison.

- iii -

- iv -

ABSTRACT

Productivity differences between the Canadian and U.S. manufacturing sectors are commonly attributed to smaller Canadian plant scale and levels of product diversity that are too large for the size of the Canadian market. However, there are few studies that indicate the extent to which these phenomena either exist or are important. Because of data unavailability, most of those that have been done have either been concentrated in only a few industries, have had to predict the values of missing observations or have relied on qualitative evidence. This study, using an extensive data base at the Canadian four-digit SIC level, is one of a series that explore the existence of sub-optimality in Canadian manufacturing industries and the extent to which trade barriers are responsible for sub-optimality.

In other papers we have examined the extent to which suboptimal plant scale was related to trade barriers. We also investigated the degree to which diversity at the plant level was affected by trade restrictions. In this paper, we examine the relationship between the two. Product diversity and the importance of plant scale economies are connected since the more important are plant scale economies, the greater will be the incentive to add products to a plant to take advantage of these economies. In turn, the greater is the number of products produced, the larger will be the size of the plant before branching (second plant creation) occurs. Thus the importance of diversity can be indirectly examined by comparing the plant size at which U.S. firms, on average, branch relative to the average size of Canadian plants in the comparable industry.

Using this indirect approach to measure the effects of diversity, this paper finds that where diversity is high, Canadian plant sizes, on average, are larger, relative to size of plant at which U.S. firms branch. In addition, tariffs are found to have the same effect. This finding supports the contention that tariffs also result in higher diversity. While our earlier research found that tariffs may reduce the size of large Canadian plants relative to large U.S. plants, they also increase the average size of Canadian plants relative to the point at which small U.S. firms establish second plants. The conclusion is that tariffs have a complex two-fold effect on relative plant scale.

It should be emphasized that trade restrictions are costly no matter which of the two above-mentioned effects is examined. The fact that trade restrictions lead to higher plant scale relative to the branching estimate is attributed to product diversity. While plant economies may have been exploited by "product packing", this is accomplished at the cost of "excessive diversity". The cost of small markets is reduced

- v -

by higher diversity but not eliminated. In the large plant comparison, the finding that Canadian plants are smaller than U.S. plants where tariffs and concentration are high and that this difference falls when tariffs are lowered is indicative of unexploited economies of scale. Therefore, it may be concluded that trade restrictions affect the efficiency of the Canadian manufacturing sector -- whether we use small or large plants as our basis for comparison.

- vii -

Table of Contents

		Page
Résumé	• • • • • • • • • • • • • • • • • • • •	i
Abstract		iv
Acknowledgements		ix
l Introduct	tion	1
2 Methodolo	ogy	2
3 Measuring	g the Branching Point MES (BMES)	9
4 The Model	1	13
5 The Data	Base	26
6 The Regre	ession Results	27
7 Implicati	ions	31
Appendix A:	Estimate of U.S. Branching MES (BMES), 1972, 1977	37
Appendix B:	Concordance Between Canadian Census of Manufactures 4 Digit SIC Classification and the U.S. 1972 Enterprise Classifica- tions	40
Appendix C:	Selected Regression Results	53
Appendix D:	Correlation Matrix for Explanatory Variables, 1970 and 1979	54

Notes	56
Bibliography	59

ACKNOWLEDGEMENTS

The support and active co-operation of Statistics Canada and the efforts of J. McVey and J. Crysdale were essential for the creation of the extensive data base used in this and accompanying papers.

1. INTRODUCTION

Productivity differences between the Canadian and U.S. manufacturing sectors are commonly attributed to smaller Canadian plant scale and levels of product diversity that are too large for the size of the Canadian market. However, there are few studies that indicate the extent to which these phenomona either exist or are important.¹ Because of data unavailability, most of those that have been done have either been concentrated in only a few industries,² have had to predict the values of missing observations³ or have relied on qualitative evidence.⁴ This study, using an extensive data base at the Canadian four digit SIC level, is one of a series⁵ that explore the existence of sub-optimality in Canadian manufacturing industries and the extent to which trade barriers are responsible for sub-optimality.

In other papers we have examined the extent to which suboptimal plant scale was related to trade barriers. We also investigated the degree to which diversity at the plant level was affected by trade restrictions. In this paper, we examine the relationship between the two. Product diversity and the importance of plant scale economies are connected since the the more important are plant scale economies, the greater will be the incentive to add products to a plant to take advantage of these economies. In turn, the greater are the number of products produced, the larger will be the size of the plant before branching (second plant creation) occurs. Thus the importance of diversity can be indirectly examined by comparing the size at which Canadian firms on average branch relative to comparable U.S. firms. Using this indirect approach to measure the effects of diversity, this paper finds that where diversity is high, Canadian firms branch later than U.S. firms. In addition, tariffs are found to have the same effect. This finding supports the contention that tariffs also result in higher diversity. While tariffs may reduce the size of large Canadian plants relative to large U.S. plants (Baldwin and Gorecki 1983C), they increase the average size of Canadian plants relative to the point at which small U.S. firms establish second plants. The conclusion is that tariffs have a complex two-fold effect on relative plant scale.

2. METHODOLOGY

The link between plant scale and diversity arises from two sets of assumptions. The first has to do with plant cost functions. The second relates to the effects of diversity on distribution costs and the elasticity of demand faced by each product line.

If the costs of production at the plant level exhibit economies for total output, and economies within each product line, but diseconomies of product agglomeration -- that is, supervisory or coordination costs depend positively on the diversity of output -then the production cost disadvantages of small size may be offset, at least over some size range, by increased plant diversity. That a firm may choose to combine a number of separate products in a plant in this way does, however, presume that 1) the firm faces a demand curve for its products that is so downward sloping that it would not conceive of replacing its diversified output with the same level of output in only one or a smaller number of products and 2) that diseconomies in dis-

- 2 -

tribution costs do not offset the economies gained on the production side. 6

With these assumptions, it can be argued that some firms will be able to reduce the cost disadvantage associated with small scale by packing products into their plants. Thus plant size and diversity will be positively related. But this effect will be limited to those firms whose plants are smaller than MES -- the smallest size of plant at which unit costs are minimized. As plant size increases beyond MES, firms will branch or to create new plants that will be more specialized to avoid the extra costs of supervising diversified plants.⁷

The argument that average plant size and diversity should be positively correlated can be made more explicit by focusing on the branching decision of the firm. A firm can be assumed to consider branching when the distribution and other cost advantages arising from multiplant operations offset the production cost disadvantages. In figure 1, US1 is the long run average cost curve of operating one plant for a given level of product diversity. US2 is the long run average cost curve of operating two plants holding the number of products constant.⁸ Dividing up output into two plants incurs a cost penalty for any output less than Q^* .⁹ It is reasonable to presume that the branching decision will occur earlier the smaller is Q^* or S^{*} (since $Q^* = 2S^*$ by construction). Thus firms whose unit cost curve approaches the long run asymptote at a larger plant size will tend to branch later and generally have larger average plant sizes.

The effects of diversification can also be represented on figure 1. CAN1 is the average cost curve of a firm that differs from that of US1 only because it is more diversified -- it has more pro-

- 3 -

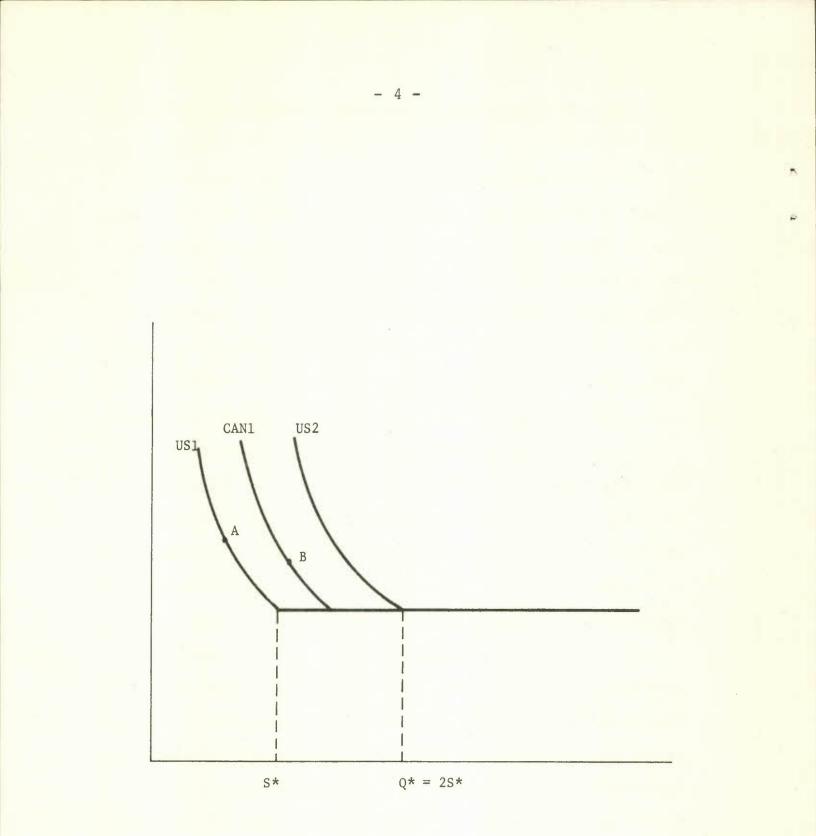


Figure 1

1 .

ducts in its single plant. Using the previous set of assumptions about the nature of the cost function, CAN1 will lie above US1 over small ranges of output but will approach the same asymptote to the right of $S^{*,10}$ A firm may choose a point B on CAN1 to a point A on US1 even though this shifts the unit cost curve to the right because the unit cost at the former is lower than the latter.

The choice of B over A is a result of a larger optimization process that involves choice of number of products per firm. In turn, this depends upon economies of scale considerations in the marketing and distribution side. However, for small firms, there is a strong presumption that plant economies are generally great and that firm level product economies rather than diseconomies probably exist. Both then suggest Canadian small firms will indeed be on curves CAN1 rather than US1. But since CAN1 approaches the long run asymptote to the right of US1, diversified small firms will tend to branch somewhat later than those firms possessing single more specialized plants.

Firms that can operate with unit cost curves like US1 will be found in large markets where they can expect very long product runs for each product. In these markets, speciality products do not have to be tacked on to the production runs of the more popular brands and firms may exploit plant economies without having to incur the agglomeration costs that smaller markets suffer. Since the U.S. market is some ten times the size of the Canadian market, it is reasonable to presume that cost curves like US1 will dominate that market and curves like CAN1 the Canadian. Thus Canadian firms are likely to be more diversified and hence will have large average size plants than in the U.S. Thus, a comparison of the branching decisions of Canadian and

_ 5 _

American firms should provide a means of evaluating the effects of diversity upon plant scale.

If the effect of diversity upon Canadian plant size is to be examined, the differences in the average size of the two markets must be taken into account. Since the U.S. market is so much larger than the Canadian, it is likely to have more large firms. This means that a simple comparison of average plant sizes in Canada and the United States is inappropriate. While Canadian firms are sufficiently small that the average plant size probably closely reflects the branching decision outlined above, this will not be the case for the U.S.

The branching size discussed above (call it A) is just the size at which, on average, firms move from possessing one to two plants. If this size (A) determines the incremental size required before additional plants are built and is constant across all size classes of firms, any firm of size S should have a number of plants M equal to S/A. Then the estimate A needed for standardization could be derived from any size class of firm as S/M.

However large and small firms do not act as if their branching points are the same. Larger firms have fewer plants than would be predicted using the branching point estimate derived from the smaller firms' branching estimate. Large firms are large not just because they have more plants but because their plants are larger.¹¹ What is needed, therefore, is an estimate of U.S. MES because it is that point that determines branching tendencies -- at least for relatively small firms such as those that populate the Canadian market.

MES can be measured in a number of different ways -- using the engineering technique, the statistical cost approach, the survivor

- 6 -

technique, and the procedure that uses summary statistics derived from actual plant size distributions. Most cross-sectional studies rely on the latter approach because the first three do not yield enough observations. Various summary statistics have been suggested -- the mean plant size, the median, and the mean of the largest firms.

In an accompanying study, we used the measure used by Comanor and Wilson (1967) and subsequently by others, including Caves et al. (1980). It is the average size of the smallest number of the largest plants accounting for 50 per cent of industry size. We examined the determinants of the ratio of the size of the largest Canadian plants to this measure of MES. Other studies that have used this measure have argued that large firms can be assumed to be in a position to build plants of at least MES. These studies recognized that such plants will often be larger than MES, but postulated that their average size will be closely correlated with MES. Where this assumption has been tested by correlating large plant average size with more precise estimates of MES devised from individual industry case studies, it has not proven to be wrong.¹²

While the large plant scale estimate of MES may have been suitable for our study of relative plant scale, it is not the measure needed for this examination of the effects of diversity upon plant scale. The reason for this is that the effects of diversity should not be expected to be felt beyond MES. Once plant economies have been exploited, increasing the number of products per plant will not serve to reduce plant unit costs. Therefore, the effects of diversity on plant size should not be felt across the complete plant size distribution -- unless plant economies are not fully exploited by any

- 7 -

plant no matter how large.

The large plant MES proxy is larger generally than the true MES and is therefore inappropriate for our purposes. It was quite acceptable when we were using Canadian large plant size in the numerator of our measure of relative plant scale. But this size plant is likely to be one where the diversification effects on plant scale are not very significant. Instead, since we use average Canadian plant size for the entire plant size distribution, we need a proxy for MES which, if it errors, does so on the low side. Such a measure should come from a group of firms that are on average similar to the majority of the Canadian sample in terms of size. It should also have a sensible interpretation.

The measure chosen is the size of firm at which, on average, U.S. firms first branch by building second plants. In each industry, firms are ranked by size and the average number of plants per firm is plotted against the size rankings. Thus if the smallest size class is used as a starting point, the U.S. reference point is obtained by moving up the ranking until that size of firm is reached at which branching may be inferred to be generally occurring. A more precise definition of this point is included in the next section.

This measure satisfies both of the specified criteria. By construction, it is derived from the smaller firms in the U.S. industry and thus should provide a reference point comparable to Canadian plants. Indeed the variable created by dividing Canadian average plant size by the branching point size is very close to one. Secondly, the U.S. reference point so estimated can be interpreted as an alternate way of estimating MES to those usually adopted. Since it

- 8 -

uses the firm branching point, it will be referred to as the branching MES or BMES.

3. MEASURING THE BRANCHING POINT MES (BMES)

Lyons (1980) points out that the branching tendency of an industry can be used to provide an estimate of MES. This method is essentially a variant of the survivorship technique but instead of concentrating on the size class that distinguishes those firms who are increasing their percentage of sales from those who are in decline, it uses information on the size where firms begin to build a second plant to infer the level of MES plant.

Assume that the long run average cost curve of operating one plant and two plants are represented by US1 and US2 respectively in figure 1. MES output is at S* and US1 = US2 at Q* where Q* = 2S*. Each firm of a given size Q_j is assumed to have a probability of operating a single plant that depends upon the size of the difference between US1 and US2.

$$P(1/Q_{j}) = g_{1}(US1(Q_{j}) - US2(Q_{j}))$$

When the costs of operating one as opposed to two plants are equal (US1=US2), it is assumed that a firm is indifferent to operating one or two plants.

 $P(1/Q_{i}) = g_{1}(0) = .5$

If the number of plants under consideration is restricted to 2, then the average number of plants that can be expected for any given firm size is

$$E(P/N)Q_{j} = P(1/Q_{j}) \cdot 1 + P(2/Q_{j}) \cdot 2$$

where $E(P/N)Q_j$ is the expected number of plants operated by firms of size Q_j .

or
$$E(P/N)Q_j = P(1/Q_j) \cdot 1 + (1 - P(1/Q_j)) \cdot 2$$

= 2 - P(1/Q_j)

When US1 = US2, $P(1/Q_j)$ = .5, thus the expected number of plants per firm at firm size twice MES is

$$E(P/N)Q_{i} = 2 - .5 = 1.5.$$

Thus, if the size of firm where, on average, 1.5 plants are operated by each firm is calculated (Q_j^*) , an estimate of MES can be derived as $Q_i^*/2$. (Since from figure 1, 2 MES = Q_i^* .)

The U.S. estimate of BMES was calculated from the U.S. Bureau of Census, Enterprise Statistics, 1972 and 1977.¹³ The estimates may be found in Appendix A. BMES is calculated as half the size (measured in terms of employees) of that firm which has on average 1.5 plants per firm. This value is calculated by taking a linear interpolation of the means of the size classes that bracket the desired value of 1.5 plants per firm. When the largest size class has less than 1.5 plants per firm, it is this category that is chosen as being equal to twice that of MES. If there is more than one size of firm at which the number of plants per firm equals 1.5 (that is, the number of plants per firm is not monotonically increasing with size class), the smallest size class where 1.5 plants per firm is first reached is used. Of the 115 estimates of MES that were calculated, 4 in 1972 and 9 in 1977 fell into the first category and 8 in 1972 and 6 in 1977 fell into the second. Therefore, generally, this methodology required little subjective interpretation -- an advantage that it possesses compared to the traditional survivor technique.

In order to compare Canadian average plant size to U.S. BMES, the U.S. and the Canadian data were matched via a specially constructed concordance. The Canadian Department of Industry, Trade and Commerce (1971) has constructed a concordance between Canadian and American four digit industry Census of Manufacturers classifications. However, the U.S. data on MES came not from the U.S. Census of Manufactures but from the U.S. Bureau of the Census, Enterprise Statistics. The level of aggregation in the Enterprise Statistics is greater than for the four digit level of the Census of Manufactures. Therefore, a special concordance was constructed using the information contained in Enterprise Statistics linking the categories contained therein to the U.S. four digit SIC level and the Department of Industry, Trade and Commerce concordance between Canada and the United States at the four digit level.

The concordance so created is presented in Appendix Table B-1. Such an exercise rarely provides exact matches of industries across countries. While 157 out of 167 four digit SIC Canadian industries

- 11 -

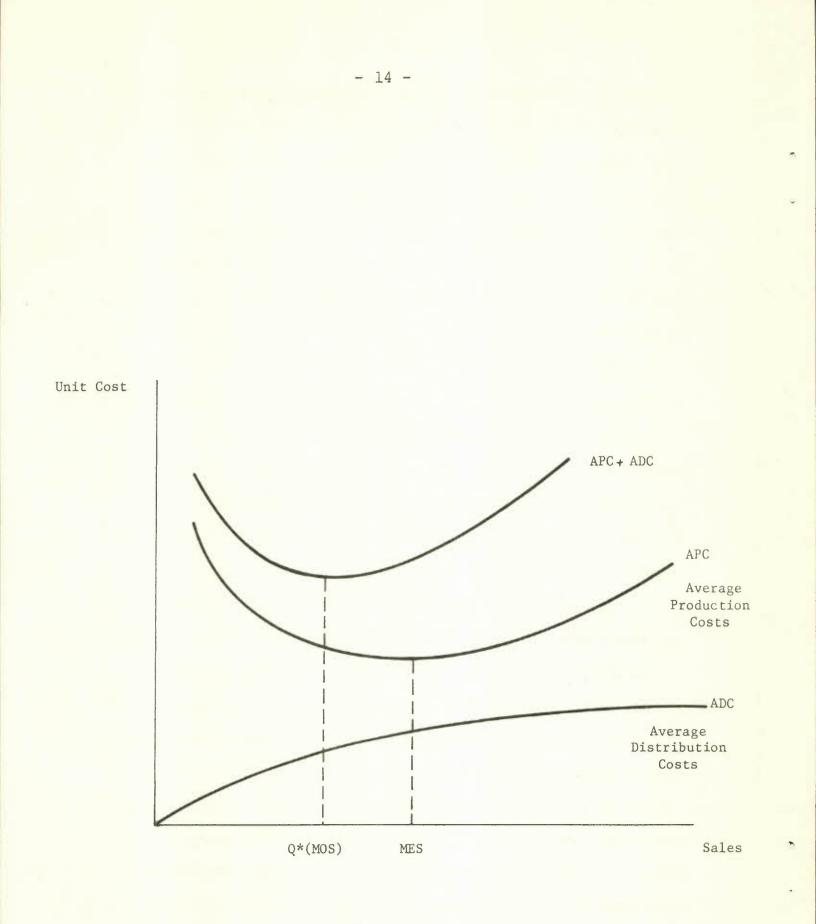
can be matched to individual U.S. four digit SIC industries or groups thereof, the concordance between Canada and the United States that uses the more aggregated Enterprise Statistics matches only 68 industries. Generally the level of aggregation was somewhere between the three and four digit SIC level. Not all matchings were regarded as equally good. Therefore, we separated the concordance into those which we felt were reasonably good (A) -- some 33 industries; those which were not quite as good (B) -- another 20 industries --; and the remainder (C) -- another 15. Table B-2 includes our evaluation of the category into which each of the matching industries fell.

The estimate of BMES was derived in terms of number of total employees since data were available on this basis for both 1972 and 1977. Data on number of plants per firm across value added size classes were available for only one of the two years and therefore value added could not be used. Since various U.S. enterprise industry categories and Canadian four digit SIC census of manufacturing industries had to be combined for purposes of comparison, a weighting system had to be adopted. The weights used were the relative size of employment in each of the subcategories. They are reported in Appendix Table B-2.

Using the estimate of U.S. BMES and the Canada-U.S. industry concordance, the degree to which Canadian plants are suboptimal is measured by

> RELBRNCH The ratio of Canadian average plant size to the U.S. branching MES estimate. Both numerator and denominator are measured in terms of wage and salary earners.

- 12 -


The measure is calculated for the early and for the late nineteen seventies. For the early seventies (RELBRNCH70), the Canadian estimate is from 1970, the U.S. estimate from 1972. For the late seventies (RELBRNCH79), the Canadian average is from 1979, the U.S. estimate from 1977. The mean for the ratio in the first case was 0.97; in the second, it was 1.11 -- when calculated across group A.¹⁴ Thus Canadian average plant size was not greatly different from the U.S. BMES.¹⁵

4. THE MODEL

The dependent variable, RELBRNCH, should be influenced by two sets of variables. First, there are those that determine the central tendency of the distribution of plant sizes. Second, there are those that determine the extent to which the distribution of plant sizes is skewed or has a large variance.

The central tendency of plant size distributions can best be described with the aid of figure 2. This figure demonstrates that the size of a plant that minimizes costs depends not only on production economies but also on distribution costs. In figure 2, APC is average production costs, ADC is average distribution costs and ATC, average total costs is the sum of APC plus ADC. APC is drawn with a familiar U shape and has a minimum at MES. ADC is increasing in Q because it is assumed that greater output levels must serve less dense or less enthusiastic markets and therefore incur higher average distribution costs (which could be interpreted to include both transportation and advertising expenditures). The optimal size plant -- what can be referred to as minimal optimal size (MOS) is found at Q^{*} and depends

- 13 -

not only on the curvature of APC but also of ADC. The steeper the ADC curve, the greater will be the amount by which the MOS falls below that size of plant that would just minimize plant average production costs (MES).

The factors that determine the size of Q^* can be broken into two sets. First there are those that influence the slope of the ADC curve in figure 2. The greater is the rate at which distribution costs increase the lower will be the average size of Canadian plants relative to American. Distribution costs will rise less steeply where markets are denser and where advertising tends not to be important. Second there are those variables that shift the cost curve APC in Canada to the right compared to the U.S. A primary factor that determines the position of the unit cost curve and therefore the point at which branching is likely to occur is the average level of product diversity at the plant level. If each product line is associated with its own fixed costs, the greater the number of products, the greater will be the plant fixed costs and the further to the right will be MES and therefore Q^{*} in figure 2. Other factors that influence the level of fixed costs will have the same effects.

The average size of plant depends not just on the variables that determine Q^* in figure 2 but also on the extent to which the distribution of plant sizes is concentrated at Q^* . If there are factors that truncate the bottom tail of the distribution (such as capital barriers), then the distribution will be skewed to the right and RELBRNCH will be larger. On the other hand, if some industries permit small less efficient firms to exist side by side with larger firms, the distribution of plant size in these industries will be

- 15 -

skewed to the left relative to most industries and RELBRNCH will be smaller.

Each of the variables used to capture the effects described above will now be discussed in turn.

Size of Industry

The size of the industry is expected to have a positive effect on RELBRNCH. The larger is the market, the greater will be the density that can be expected since more plants of MES can be fitted into the market. The greater the density, the lower will be the slope of ADC in figure 1.¹⁶ The size variable is

> SIZE The number of wage and salary earners in the industry divided by the U.S. branching estimate of MES also defined in terms of number of wage and salary earners.

Concentration

In addition to SIZE, concentration might be expected to have a positive influence on average plant size. The effects of concentration and economies of scale cannot always be separated because of the manner in which the latter is calculated. With market size deflated by MES held constant, higher concentration is achieved either by greater multiplant operations or greater than MES plants. Both factors should have a positive effect on RELBRNCH. First, the effect of greater than MES plants is clearly positive. Secondly, the greater the degree of multi-plant operations, the smaller will be the market radius served by each plant. The slope of the unit transport curve is a positive function of the radius of each sub-market (Scherer et al., 1975, pp. 23-4). Thus a multi-plant operation may be presumed to have a unit transport cost curve that has a lower slope. Therefore multiplant operations also should have a positive effect on RELBRNCH.

In order to separate out the economies of scale effect from the concentration ratio, the following variable was defined.

> RESCON The reciprocal of the difference between the four firm concentration ratio and four times MES divided by sales (where MES is the average size of those largest U.S. plants that account for the top 50 per cent of employment).

This variable captures the residual effect of those determinants of concentration other than the size of the minimum efficient sized plant. It was calculated as the reciprocal in order to define it in units that are similar to those used for SIZE. Because it bears an inverse relationship to concentration, its expected sign will be negative.

Market Segmentation

Any factors that lead to market segmentation can be regarded as increasing the slope of the distribution costs curve ADC in figure 1. Advertising intensive industries can be regarded as those where information costs and therefore market penetration costs increase steeply with increases in output. To catch this effect, advertising intensity is included

- AD
- The advertising sales ratio multiplied by a dummy variable that takes a value of 1 for all consumer non-durable goods industries.

The use of the dummy variable for non-consumer goods industries builds

on the earlier work by Porter (1974) that found a difference in barriers created by advertising in non-convenience as opposed to convenience industries.

Research and development intensive industries may also be characterized as industries with considerable market segmentation and therefore a tendency for steeply sloped distribution costs. Therefore a research and development variable was defined as:

RD The ratio of research and development personnel to all wage and salary earners.

The effect of market segmentation should cause both variables to have negative coefficients.

Market segmentation may lead to rapidly increasing market penetration costs but at the same time be associated with product diversity. Markets that are segmented may also be those characterized by a large number of products. However, where potential product diversity is high, plants may offset diseconomies from large size by product packing. This in turn increases the average size at which branching occurs. Thus the diversity effects of both advertising and research and development may offset the market segmentation effects. As a result it is difficult a priori to sign the coefficients attached to these variables.

Product Diversity

As argued above, product diversity is expected to have a positive effect on RELBRNCH. The first variable used to capture diversity is

DIV The herfindahl index of industry plant level diversity. This index is calculated as the weighted average of plant herfindahl indices. The weights were the sales of individual plants to total industry sales. The plant level indices are just the sum of the square of the proportion of sales of each product. The level of product aggregation employed at the plant level is the four digit Industrial Commodity Classification (ICC).

This variable¹⁸ is more accurate than those previously used. Previous attempts have had to guess at the distribution of sales across product classes and have been limited to a product classification scheme defined only at the four digit SIC level.¹⁹ Nevertheless our measure may not capture the notion of product line diversity entirely since the four digit ICC product classification level may not be satisfactory. Because product diversity is likely to be so important, a second variable -- the extent of inward and outward bound industry diversity²⁰ -- was used since it was thought to be closely related to aspects of product level diversity at the plant level that are not captured by DIV.

Inward and outward bound industry diversity measures the extent to which production in an industry comes from plants that belong to firms that have production in other industries. Outward bound diversity is measured as the percentage of industry sales accounted for by plants owned by multi-industry firms that are assigned to the industry on the basis of the majority of their sales. Inward bound diversity is defined as the percentage of industry sales accounted for by plants that are owned by multi-industry firms that are assigned to a different industry on the basis of the majority of their sales. The variable actually used here is

INDIV The percentage of shipments in an industry that comes from plants that are owned by multi-industry enterprises.

This measure is intended to capture the extent to which diversity affects the costs of product agglomeration at the plant level. The index DIV catches the extent to which a plant produces more ICC products irrespective of whether those products are primary or secondary to the industry. Thus, DIV does not measure the extent to which product diversity occurs within an industry as opposed to across industries.

A plant may be assigned to an industry even though it produces some products that are classified to another industry as long as the majority of its shipments are in the industry in question. Therefore the same value of DIV may occur in an industry where nothing but products in that industry are produced; or when products in that industry and others are being combined.

When the latter occurs, products are being combined in the same plant that are less compatible in the production process. This is because of the supply side or technical criteria used in defining both SIC industries and ICC products. The less related are products, the greater are the coordination costs of product agglomeration likely to be. In figure 1, US1 is shifted to the right by higher product coordination costs and the average size at which branching occurs will be larger.

Higher inward and outward bound diversification at the industry level is associated with higher levels of inter-industry product diversification at the plant level (Caves et al., 1980, p. 201). In effect, when a greater proportion of shipments in an industry come from plants that are owned by multi-industry enterprises, plants are more likely to combine products from different industries. It is, therefore, postulated that the greater is the degree of inward and outward bound diversification (INDIV), the greater will be the coordination costs associated with any level of plant diversity (DIV). Thus INDIV should have a positive coefficient.

Trade Variables

There is a long standing tradition that the level of trade will have an effect upon the degree of specialization in an industry. Recently a number of theoretic models have been formulated to catch the interaction between the degree of product variety and the extent of trade.²¹ Generally, it is argued that protected markets will be characterized by greater diversity at the plant level. Higher tariffs lead to more products being produced per industry. They may also lead to more products per plant -- depending upon the nature of cost complementarities across product lines and the degree of competition in the industry.

Whether tariff reductions will always result in increased specialization is unclear. For example, if unbalanced specialization (see Scherer et al. (1975), ch. 8) is sensible -- because of large economies in one product line and unimportant product line economies elsewhere -- it is possible that a movement to freer trade between Canada and the U.S. will see the U.S. plants concentrate on these high economy product lines and Canadian plants continue to produce a range of products whose transportation costs are relatively high. In this case trade liberalization might be assumed to have little effect on diversity.

Since, Scherer (1975) found little evidence of such unbalanced specialization, it can be argued that, on balance, protected markets should be characterized by higher plant diversity. And, of course, the greater the diversity, the later will be the branching decision. To catch this trade influence on RELBRNCH, two variables were used

- ERP The effective rate of tariff protection.
- IMP The ratio of the level of imports to domestic disappearance.

The sign on the tariff variable is expected to be positive. The sign on the import variable is expected to be negative.

In addition, a variable was used to catch Canada's ability to compete in world markets. This variable was

CA The comparative advantage, defined as exports minus imports, divided by the sum of exports plus imports.

Where an industry is able to compete in world markets, it is unlikely to rely upon diversity to bring down its unit costs. As such its branching point and therefore average plant size relative to the U.S. BMES will be lower. Therefore, the comparative advantage variable is expected to have a negative sign.

Foreign Ownership

Foreign ownership can be postulated to have two effects on RELBRNCH. First, foreign firms' plants may not have the same level of fixed costs associated with plant operations as domestically-owned firms. The foreign-owned subsidiary may be able to call upon engineering expertise or other management skills from its parent that effectively reduces its level of fixed costs compared to a domestic firm. As such foreign ownership would have a negative effect on the dependent variable.

On the other hand, there is evidence to suggest that foreign subsidiaries' plants of a given scale are more diversified than those belonging to Canadian domestic companies (Caves, 1975, ch. 5). Caves explains this by arguing that the same advantages referred to above also affect the incremental cost of adding product lines. Thus the foreign owned subsidiary will sometimes diversify where the domestic firm would not find it profitable. This would cause foreign ownership to have a positive effect on RELBRNCH.

The foreign ownership variable is defined as

FOR The proportion of sales of an industry that are accounted for by foreign controlled firms as of 1970.

Because of the offsetting effects outlined above, its effect cannot be signed a priori.

Size Distribution Effects

In addition to the variables that affect the central tendency of the plant size distribution, several variables that were expected to influence the shape of the distribution were included. The first is meant to proxy the slope of the average cost curve. It is

> CDR1 The ratio of value added per manhour of the smallest plants accounting for 50 per cent of industry employment divided by value added per manhour for the largest plants accounting for 50 per cent of industry employment, all

multiplied by a dummy variable set equal to one where market size divided by MES is less than its median and 0 otherwise.

This variable (CDR1) only operates in small markets and captures the degree to which the value added per manhour of small plants is less than that of large plants. A previous study by the authors (Baldwin and Gorecki, 1983c) determined that the ratio of value added per manhour of small to large firms only measures the cost disadvantage incurred by small firms in markets that are small relative to MES. In large markets, there is room for numerous efficient sized plants and competition will be stronger, forcing price toward long run average cost. This reduces the importance of the fringe that otherwise might have located itself on the negatively sloped section of the average cost curve. Thus, where most plants are located along a flat portion of the cost curve, the cost disadvantage ratio is relatively meaningless as an estimate of the slope of the cost curve below MES.

Since CDR1 is inversely related to the cost disadvantage ratio, then to the extent that the cost disadvantage of small firms is positively related to the diversification incentive, CDR1 should have a negative effect on RELBRNCH. However, it must be recognized that the variable CDR1 may be small where, because of a lack of competition, small firms with a cost disadvantage are not eliminated from the market. In this case, CDR1 might have a positive though probably insignificant coefficient.

In a previous paper (Baldwin and Gorecki, 1983c), we found CDR1 was negatively related to relative Canadian-American plant size when only large plants were compared in the two countries. Thus, steeply sloped cost curves caused those firms that managed to get larger to approach more closely their American counterparts. This accords with the expectations outlined above since, in the case of large firms, the small firm effect should not be felt. In contrast, the small firm effect should be felt in this analysis since plant size is being measured as the average of the entire distribution. It is, therefore, more likely that the two opposite signed effects will cancel one another out. Therefore the expected sign of CDR1 is ambiguous.

This simply recognizes that the curves drawn in figure 1 determine central tendencies for firms and plant sizes. In any industry, a distribution of plant sizes exist. In effect then CDR1 is a proxy for the degree to which the distribution of plant sizes is skewed because small firms are missing. With this interpretation in mind, we also defined a variable

> CVAR The coefficient of variation of the net margins/sales ratio for 1970. Net margin is total activity value added less wages and salaries.

This variable captures the extent to which the dispersion of profitability is large and skewed because of the existence of small firms -if the existence of the latter leads to lower profits generally. Thus, this variable should catch the same effect that CDR1 partially captures. Its sign is expected to be negative.

The final variable that is used to capture the cost disadvantage that small firms might face is the capital/labour ratio.

CAPLAB The ratio of the gross value of capital to the number of wage and salary earners.

While not all industries with large capital investments must ne-

cessarily have a component of capital that is fixed, the variable is meant to capture this general tendency. Its effect on RELBRNCH should be positive.

The Eastman-Stykolt Effect

In two previous papers, the degree of plant suboptimality was found to be a function not just of concentration, but also of tariff levels. It was the interaction of the two -- both high tariffs and high concentration -- that led to Canadian large plants being smaller than their American counterparts and to a greater percentage of the Canadian industry having suboptimal scale plant. In order to capture this interdependence between tariffs and market structure, the following variables were specified.

HVTRHCR A dummy variable which takes the value of 1 when both concentration and effective tariff protection are greater than their respective means, 0 otherwise.

EAST The variable SIZE multiplied by HVTRHCR.

The variable HVTRHCR, like both the concentration and tariff variable, is expected to have a positive coefficient. On the other hand, EAST is expected to have a negative coefficient; for the larger the market, the less should be the joint affect of tariffs and concentration on the tendency to pack more products into a plant in order to take advantage of plant level economies.²²

5. THE DATA BASE

The data for Canadian average plant size and Canadian industry characteristics were drawn from the universe of 167 four digit Canadian manufacturing industries. Contrary to other recent studies, this study did not have to rely upon only those industries for which published data was available. As a result of an arrangement with Statistics Canada, a complete but confidential data base was used for this study. Therefore estimating missing observations was not a major problem. However, in a small number of instances, data was not available at the four digit level but only at a somewhat more aggregative level of industry classification. This necessitated some prorating or spreading of the data. Effective tariffs were based on a 122 industry division of the manufacturing sector. Research and development statistics were available only at the three digit level, which divides the manufacturing sector into 112 industries. Finally, the trade data needed some minor prorating for 21 of the four digit industries. An appendix is available on request that details the data base and its sources.

6. THE REGRESSION RESULTS

The regression was estimated both for the early and the late nineteen seventies using the two dependent variables -- RELBRNCH70 and RELBRNCH79 respectively. It was estimated just for the best two matchings (Group A and Group A plus B). The results for Group A are reported in Table I. Not all of the independent variables specified above are included in the reported regression equations. Those excluded proved to be insignificant. The results for Group A and B together are similar to those for Group A and are therefore relegated to Appendix C. Table I presents the estimated coefficients, their standard errors and the significance of each coefficient for Group A.

- 27 -

TABLE 1

The Determinants of the Ratio of Canadian Average Plant Size

to the U.S. Branching Estimate of MES for 33

Canadian Manufacturing Industries

VARIABLE	COEFF.	1970 S.E.	SIGNIF.	COEFF.	1979 S.E.	SIGNIF.
INDIV	0.03	0.01	0.001	0.03	0.01	0.001
RESCON	-0.02	0.01	0.28	0.39	1.54	0.80
IMP	-0.82	1.04	0.44	-0.34	0.30	0.26
ERP	1.81	0.82	0.03	2.03	0.39	0.00
SIZE	0.005	0.002	0.002	0.005	0.001	0.000
DIV	-0.14	0.07	0.05	-0.82	0.54	0.14
СА	-0.55	0.39	0.17	-0.24	0.27	0.39
CDR1	0.35	0.62	0.57	0.71	0.46	0.14
FOR	-0.89	0.69	0.21	-0.54	0.54	0.33
R ²	.66			.78		
F (9,23)	8.116			14.3		
RELBRNCH Mean	.97			1.11		

These significance levels are the levels that would have to be adopted in order to reject the null hypotheses that the parameter is zero when a one-tailed test is used. The correlation matrix for each of the regressions is reported in Appendix D.

The regression results reported in Table I for both years are remarkably similar. The dominant variable is market size (SIZE) with its positive coefficient. Residual concentration (RESCON) has the expected negative sign in 1970 but changes sign in 1979 and is not significant in either year. Thus it is the interaction between market size and plant economies (as is caught by SIZE) rather than the multiplant nature of large firms (that is caught by RESCON) that significantly affects average Canadian plant size relative to BMES.

The two variables that are meant to capture the effect of diversity (DIV and INDIV) have the right signs and are generally significant. The greater the plant diversity (the smaller DIV) the greater the average plant size. The greater the inward and outward bound industry diversity (INDIV), the larger the average plant size. Of interest is the greater significance of the inward and outward bound diversification measure. It is cross industry diversification that leads to the most significant impact on RELBRNCH. Diversity therefore leads to greater average plant size relative to BMES.

The trade variables have the predicted sign though only tariff rates (ERP) were significant. Tariffs (ERP) had a positive and significant coefficient as they should, since they tend to increase the diversity of Canadian plant.²³

Foreign ownership (FOR) has a negative but insignificant coefficient in each of the two regressions. This suggests that the

- 29 -

greater tendency for foreign firms to diversify that has been observed (Caves, 1975) is offset by the lower fixed costs that were postulated to accompany subsidiary operation.

The variables that were meant to capture the Eastman/Skykolt effect are not reported in Table I. HVTRHCR was positive, EAST was negative but both were generally insignificant when included with either tariffs or concentration -- because of the high degree of collinearity between ERP and HVTRHCR and between SIZE and EAST. When the HVTRHCR variable was included but ERP excluded, HVTRHCR was positive and significant but the explanatory power of the equation was less than when ERP alone was included. It may therefore be concluded that the tariff effect on RELBRNCH is a general one and not confined to only high tariff, high concentration industries.²⁴

Both measures that are meant to capture the rate of decline in the average cost curve are not significant when included with all other variables.²⁵ Indeed the capital/labour ratio (CAPLAB) is not even reported in Table I because it is so insignificant. The cost disadvantage ratio (CDR1) has a positive not a negative sign -thereby indicating it is catching plant size dispersion rather than the pressure to exploit significant plant economies.

The problem with CAPLAB and the cost disadvantage ratio (CDR1) is that both are highly collinear with other variables. The removal of inward and outward bound industry diversity makes CDR1 significant. CAPLAB likewise becomes quite significant but only after everything but industry size and industry diversification are removed.

Several other variables that were defined previously were tried but not reported. While research and development (RD), and

- 30 -

advertising (AD) each had their expected negative sign, neither was significant. The coefficient of variation of margins variable (CVAR) had the expected negative sign but was not significant.

7. IMPLICATIONS

Productivity problems in Canada have often been attributed to excessive product line diversity at the plant level as well as to suboptimal plant scale. All too infrequently, little recognition is given to the relationship between the two. For the cost of suboptimal plant scale may be offset somewhat by increased product level diversity. Moreover, there have been few attempts to measure the relationship between the two.

This paper has measured the relationship by testing the extent to which the extent of sub-optimal scale is related to plant level diversity. It uses a recently proposed measure of MES -- the branching point estimate -- to overcome several traditional problems with the usual MES estimates. The results show the importance of diversity. Both the direct and indirect measures of product diversity have the effect expected. Where diversity is high or where it may be inferred to be high, Canadian plants on average were large compared to the U.S. branching estimate of MES. It may, therefore, be concluded that there are both substantial benefits and costs of diversity. The benefits, of course, relate to the gains in plant scale obtained. The costs may be inferred from the effect of diversity on the ratio of average plant scale relative to the branching estimate. Canadian average plant size would not have increased relative to the branching estimate if diversity did not make it more costly to establish new

- 31 -

plants.

This paper has also shed light on a different aspect of the sub-optimal plant scale literature. In an earlier paper, we used a different measure of plant suboptimality -- relative plant scale defined as the ratio of Canadian average large plant size to U.S. large plant size (RELSIZ). This paper has used the ratio of Canadian average plant size to the U.S. branching estimate of MES (BMES) --(RELBRNCH).

Examination of the relationships shown to influence the two suboptimal variables -- RELSIZ and RELBRNCH -- reveals dramatic differences. While some of the same variables were found to be significant in each, generally the direction of their effect was not. Tariffs combined with high concentration had a significant negative effect on RELSIZ while tariffs alone had a significant positive effect on RELBRNCH. Comparative advantage had a significant positive effect on the former but was not significant in the RELBRNCH regression. Concentration had a significant positive effect on the former, but an insignificant negative effect on the latter. Foreign ownership was insignificant in both regressions. The cost disadvantage ratio had a significant negative effect on the first but generally, an insignificant positive effect on the second.

The results differ because the two measures of suboptimality capture different phenomena. RELBRNCH, the ratio used in this paper, captures the extent to which Canadian plants are large or small relative to the size at which branching first occurs. RELSIZ, the measure used in the earlier paper, captures the extent to which Canadian large plant size differs from U.S. large plant size. The difference

- 32 -

between the two results cannot be attributed to the numerator used. While the measure of Canadian plant size relates to the total sample in one paper and only large plants in the other paper, the two measures are highly correlated (Baldwin and Gorecki, 1983c). The difference in the results must be attributed to the different U.S. MES measures used.

The two U.S. measures are related. The branching estimate of MES is essentially just the size at which on average smaller firms move from possessing one to two plants. As previously indicated, if this was the incremental size at which larger firms always created a new plant, large firm average plant size would just equal BMES. However, while the two measures are related, they are not identical. Large and small firms do not act as if their branching points are the same. Larger firms have fewer plants than would be predicted using BMES. Large firms are large not just because they have more plants but because their plants are larger.

Thus the two suboptimal plant measures use information about average plant size taken from different parts of the distribution of plant and firm size. As such, they might be expected to yield different results. In particular, a comparison of Canadian plant size to that found in U.S. markets must keep in mind the fact that the size of markets in the two countries is not the same and that the diversity of plants is not the same. This makes comparisons of plant scale complicated.

Canadian market size is smaller than that of the U.S. For nonexporting industries, small market size should mean that plants are somewhat smaller but at the same time more diversified to take ad-

- 33 -

vantage of plant economies. Thus when considering plants that are generally in the same lower size range in the two countries, Canadian plants should be more diversified than their American counterparts. This should not be the case in the larger size ranges because plant economies of scale are more likely to be exhausted and there is less need to add product lines to obtain such economies.²⁶

There are, however, several other related factors at work. The Canadian market, being smaller than the American, will not support the production of as wide a range of products. Specialized goods will not be produced in Canada, but instead will be imported from the United States. With fewer products being produced than in the large U.S. market, the typical Canadian enterprise should be less diversified than its U.S. counterpart "unless small size in the national market somehow shrinks the enterprise population more than proportionately" (Caves et al., 1980, p. 207).

There is also evidence that the size of firm is positively related to the diversity of plants. Large firms tend to be larger because they produce more products (Caves et al., (1980), p. 208). Our work also indicates large firms not only produce more products but that they do so by producing more per plant -- or that diversity is greater where average size per plant is greater. (Baldwin and Gorecki, 1983b) These results support the notion that different sized firms may coexist using different strategies. (Caves and Porter, 1977, Newman, 1978, Caves and Pugel, 1980, Porter, 1979) Small firms tend to be relatively specialized, while larger firms less so. Large firms offset any diseconomies of diversity at the plant level with economies at the firm level from full product line distribution.

- 34 -

These considerations suggest that because of the small size of the Canadian market, the branching point MES will characterize those firms most closely resembling the average Canadian firm in size. Indeed, the fact that RELBRNCH takes a value close to one confirms this supposition. It is therefore RELBRNCH that should capture the diversity effects related to trade barriers. The results of both our earlier study and this investigation show that higher tariffs lead to greater product diversity and thus generally to larger average plant size relative to the U.S. BMES.

In contrast, a comparison of large average plant size in Canada to the United States utilizes firms and plants that differ substantially both in terms of size and diversity of products. The ratio of large Canadian plant size to large American plant size essentially captures the extent to which Canadian large firms are smaller than U.S. large firms. In this instance, higher tariffs in concentrated industries lead to smaller large plant size relative to the U.S. standard.

Neither measure of suboptimality is superior to the other. This is not just because the actual measurement of MES is difficult and it is not clear which of these contains the closer approximation to the MES. It is because the strategic group approach suggests that different size classes of firms can coexist with one another. This has led some to ask what factors permit a wide diversity of firm sizes to exist side by side. Our analyses allow us to ask how external factors -- such as trade restrictions -- affect different strategic groups. As such each of our measures yields information about different size groupings.

- 35 -

In the discussion about the effects of trade protection, apparently conflicting claims have sometimes been made. Some have noted that tariffs should have a deleterious effect on plant size -that they lead to excessive entry in oligopolistic industries.²⁷ Others have noted that the effects of diversity can offset the cost penalty of small markets thereby suggesting that small firms in small markets may have somewhat larger plants than small firms in large markets where product specialization is greater.²⁸ Our results have shown that both results occur and suggest a reason for the simultaneous existence of both. The effect then of trade restrictions differs across the size distribution of firms.

Finally, it should be emphasized that trade restrictions are costly no matter which of the two above mentioned effects is examined. The fact that trade restrictions lead to higher plant scale relative to the branching estimate is attributed to product diversity. While plant economies may have been exploited by "product packing", this is accomplished at the cost of "excessive diversity". The cost of small markets is reduced by higher diversity but not eliminated. In the large plant comparison, the finding that Canadian plants are smaller than U.S. plants where tariffs and concentration are high and that this difference falls when tariffs are lowered is indicative of unexploited economies of scale. Therefore, it maybe concluded that trade restrictions affect the efficiency of the Canadian manufacturing sector -- whether we use small or large firms as our basis for comparison.

- 36 -

APPENDIX A

Table A-1

Estimate of U.S. Branching MES (BMES), 1972, 1977

(No. Of Employees)

1972		BME	S
Code	Manufacturing Industries	1972	1977
20A	Meat Packing Plt.	391.825	221.563
20B	Prepared Meat & Poultry Pr.	204.466	191.476
200	Fluid Milk Co.	93.603	79.383
20D	Dairy Pr. n.e.c.	50.019	57.727
20E	Canned Fruit & Veg. Co.	106.803	129.151
20F	Preserved Fruit & Veg. n.e.c.	202.384	73.043
20G	Mill Grain Pr.	51.990	36.896
20H	Bread & Cake & Related Pr.	116.071	115.506
201	Cookies & Crackers Co.	200.285	158.088
20J	Sugar & Confectionery Pr.	194.712	115.404
20K	Fats & Oils	53.724	64.109
20L	Alcoholic Beverages	103.107	89.566
20M	Bottled Soft Drink & Flavorings	73.460	48.699
20N	Misc. Food & Kindred Pr.	85.593	88.289
21A	Tobacco Manufactures	145.554	187.500
22A	Weaving & Finishing Mills	126.467	125.585
22B	Hosiery	206.653	195.652
220	Knitting Mills n.e.c.	517.857	239.130
22D	Floor Covering Mills	187.500	196.039
22E	Yarn & Thread Mills	166.071	154.841
22F	Textile Mill Pr. n.e.c.	113.216	97.547
23A	Men's & Boy's Suits & Coats	288.841	375.000
23B	" Shirts & Nightwear	183.370	136.256
230	" Clothing n.e.c.	155.890	123.182
23D	Blouses & Dresses	122.369	150.954
23E	Women's & Misses' Suits & Coats	195.574	132.675
23F	" Outerwear n.e.c.	198.253	134.283
23G	" & Children's Undergarments	142.715	119.844
23H	Children's Outerwear	155.401	111.975
231	Apparel & Accessories n.e.c.	132.996	121.994
23J	Misc. Fabricated Textile Pr.	131.205	109.591
24A	Logging, Camps & Logging Contractors	187.500	116.071
24B	Sawmills & Planning Mills	125.619	117.620
24C	Millwork & Plywood	375.000	154.395
24D	Wood Building & Mobile Homes	104.603	102.806
24E	Wood Pr. n.e.c.	101.480	103.041
25A	Wood Household Furniture	446.551	292.114
258	Upholstered Household Furniture	261.501	169.118
25C	Household Furniture n.e.c.	123.152	103.445
25D	Furniture & Fixtures n.e.c.	112.417	145.114

26A	Pulp, Paper & Board Mills	107.452	129,559	
26B	Misc. Converted Paper Pr.	104.659	98.944	
260	Paperboard Container & Boxes	124.898	99.973	
27A	Newspapers	137.265	77.920	
278	Periodicals	89.500	77.885	
27C	Books	77.248	118.172	
27D	Greeting Cards & Publishing n.e.c.	500.000	68.545	
27E	Commercial Printing & Business Forms	106.820	98.665	
27F	Bookbinding & Printing Services	156.661	113.348	
28A	Industrial Chemicals & Synthetics	91.529	46.586	
28B	Drugs	81.842	51.999	
280	Soap, Cleaners & Toilet Goods	74.444	92.515	
28D	Paints & Allied Pr.	50.279	58.128	
28E	Agriculture Chemicals	100.965	45.736	
28F	Misc. Chemical Pr.	34.198	32.520	
29A	Petroleum Refining	47.177	48.102	
29B	Petroleum & Coal Pr.	91.474	31.322	
30A	Rubber Pr.	198.778	123.999	
30B	Misc. Plastic Pr.	107.592	101.429	
31A	Footwear, Except Rubber	217.967	205.848	
31B	Leather & Leather Pr. n.e.c.	133.737	132.721	
32A	Glass Pr.	318.683	199.219	
32B	Structural Clay Pr.	77.133	61.577	
320	Ready-Mixed Concrete	48.012	32.704	
32D	Concrete & Gypsum Pr.	53.696	41.812	
32E	Nonmetalic Mineral Pr.	132.675	93.534	
33A	Blast Furnaces & Steel Mills	63.237	158.929	
33B	Gray Iron Foundries	271.658	162.682	
330	Steel & Malleable Iron Foundries	875.000	333.972	
33D	Primary Steel Pr. n.e.c.	85.285	67.163	
33E	Nonferrous Metal, Except Foundries	142.271	86.029 210.814	
33F 34A	Nonferrous Foundries	375.000 80.512	83.968	
34B	Metal Can & Shipping Containers Cutlery, Hand Tools & Hardware	154.755	166.269	
340	Plumbing & Heating, Except Electric	156.347	123.480	
34D	Fabricated Structural Steel	141.570	208.185	
34E	Metal Doors, Sash & Trim	87.500	98.214	
34F	Structural Metal Pr. n.e.c.	108.765	122.771	
34G	Screw Machine Pr. Bolts etc.	108.704	92.612	
34H	Metal Forgings	281.250	187.500	
341	Metal Stampings	189.356	143.322	
34J	Metal Services n.e.c.	95.452	105.398	
34K	Ordnance & Accessories n.e.c.	875.000	87.500	
34L	Fabricated Wire Pr.	105.517	102.298	
34M	Fabricated Metal Pr. n.e.c.	160.044	267.903	
35A	Engines & Turbines	87.500	87.500	
35B	Farm & Garden Machinery	241.071	287.926	
350	Construction Machinery	109.369	204.545	
35D 35E	Mining & Materials Handling Equip. Machine Tools	76.210 172.264	60.768 105.317	
35E	Metalworking Machinery n.e.c.	114.507	219.527	
35G	Special Industrial Machinery	118.096	103.163	
35H	Pumps & Compressors	91.387	87.500	
5011		51007	07.000	

351	General Industrial Machinery n.e.c.	112.472	157.821
35J	Office & Computing Machines	382.692	377.134
35K	Refrigeration & Service Machinery	141.796	392.892
35L	Misc. Machinery, Except Electrical	133.621	143.563
36A	Household Appliances	254.550	191.973
36B	Elect. Lighting & Wiring Equipment	166.966	224.750
36C	Radio, TV, Communication Equipment	191.327	233.268
360	Electronic Components & Accessories	165.366	201.817
36E	Electrical Machinery n.e.c.	142.794	129.899
37A	Motor Vehicles & Equipment	127.712	202.040
37B	Aircraft & Guided Missiles	187.500	92.763
370	Aircraft Guided Missile Parts	145.775	187.500
370	Ship & Boat Building & Repairing	257.813	267.241
37E	Transportation Equipment n.e.c.	375.000	101.995
38A	Scientific & Measuring Instruments	190.204	135.836
38B	Optical & Ophthalmic Goods	109.073	121.711
380	Medical Instruments & Supplies	88.985	100.634
38D	Photographic Equipment & Supplies	159.480	71.053
38E	Watches, Clocks & Watchglass	187.500	375.000
39A	Jewelry, Silverware, & Plated Ware	131.083	109.026
39B	Toys & Sporting Goods	202.023	252.206
390	Manufacturing Industries n.e.c.	119.849	129.808

Source: United States. Department of Census. Enterprise Statistics. 1972, 1977.

APPENDIX B

Table B-1

Concordance Between Canadian Census of Manufactures 4 digit SIC Classification and the U.S. 1972 Enterprise Classifications

Category	Matching Classifications	Title
1.	Can 1011 Can 1012	Slaughtering & Meat Processors Poultry Processors
	U.S. 20A U.S. 20B	Meat Packing Plt. Prepared Meat & Poultry Pr.
2.	Can 1031 Can 1032	Fruit & Veg. Canners & Preservers Frozen Fruit & Veg. Processors
	U.S. 20E U.S. 20F	Canned Fruit & Veg. Co. Preserved Fruit & Veg. n.e.c.
3.	Can 1040	Dairy Products
	U.S. 20C U.S. 20D	Fluid Milk Co. Dairy Processors n.e.c.
4.	Can 1050 Can 1060	Flour & Breakfast Cereal Products Fried Industry
	U.S. 20G	Mill Grain Products
5.	Can 1071	Biscuit Manufacturers
	U.S. 201	Cookies & Crackers
6.	Can 1072	Bakeries
	U.S. 20H	Bread & Cake & Related Products
7.	Can 1081 Can 1082	Confectionery Cane & Beet Sugar
	U.S. 20J	Sugar & Confectionery Products
8.	Can 1083	Veg. Oil Mills
	U.S. 20K	Fats & Oils
9.	Can 1091	Soft Drinks
	U.S. 20M	Bottled Soft Drinks & Flavouring

10.	Can Can Can	1092 1093 1094	Distilleries Breweries Wineries
	U.S.	20L	Alcoholic Beverages
11.	Can Can	1510 1530	Leaf Tobacco Tobacco Products
	U.S.	21A	Tobacco Manufactures
12.	Can	1740	Shoe Factories
	U.S.	31A	Footwear, Except Rubber
13.	Can Can Can Can Can	1810 1820 1832 1891 1894	Cotton Yarn & Cloth Mills Wool Yarn & Cloth Mills Throwsters, Spun Yarn & Cloth Mills Thread Mills Textile Dyeing & Finishing Plants
	U.S. U.S.	22A 22E	Weaving & Finishing Mills Yarn & Thread Mills
14.	Can Can Can Can Can Can Can Can	1840 1851 1852 1892 1871 1872 1893 1899 1831	Cordage & Twine Fibre Processing Mills Pressed & Punched Felt Mills Narrow Fabric Mills Cotton & Jute Bags Canvas Products Embroidery, Pleating & Hemstitching Misc. Textile Industries, n.e.c. Fibre & Filament Yarn Manufacturers
	U.S. U.S.	22F 23J	Textile Mill Processors n.e.c. Misc. Fabricated Textile Processors
15.	Can	1860	Carpet, Mat, & Rug
	U.S.	22D	Floor Covering Mills
16.	Can	2310	Hosiery Mills
	U.S.	22B	Hosiery
17.	Can Can Can Can Can	2480 2460 2491 2492 2499 231	Foundation Garments Fur Goods Fabric Glove Manufacturers Hat & Cap Industry Miscellaneous Clothing Industries
	U.S.	231	Apparel & Accessories n.e.c.

	U.S.	23G	Women's & Children's Undergarments
18.	Can	2450	Children's Clothing
	U.S.	23H	Children's Outerwear
19.	Can Can Can Can Can	2513	Shingle Mills Veneer & Plywood Mills Sawmills & Planing Mills Sash, Door & Other Millwork Plants, n.e.c. Pre-Fabricated Buildings
	U.S. U.S. U.S.	24C	Sawmills & Planing Mills Millwork & Plywood Wood Building & Mobile Homes
20.	Can	2710	Pulp & Paper Mills
	U.S.	26A	Pulp, Paper & Board Mills
21.	Can Can Can		Asphalt Roofing Lubricating Oils & Greases Miscellaneous Petroleum & Coal Products
	U.S.	29B	Petroleum & Coal Products
22.	Can Can Can Can		Folding, Carton & Set-Up Box Corrugated Boxes Paper & Plastic Bags Other Paper Converters
	U.S. U.S.		Miscellaneous Converted Paper Products Paperboard, Container & Boxes
23.	Can	2880	Publishing
	U.S.	27A	Newspapers
24.	Can	2870	Platemaking, Typesetting & Trade Bindery
	U.S.	27F	Bookbinding & Printing Services
25.	Can Can	2860 2890	Commercial Printing Publishing & Printing
	U.S. U.S. U.S. U.S.		Periodicals Books Greeting Cards & Publishing, n.e.c. Commercial Printing & Business Forms
26.	Can Can Can	2910 2920 2940	Iron & Steel Mills Steel Pipe & Tube Mills Iron Foundaries

	Can 3050	Wire & Wire Products
	U.S. 33A U.S. 33B U.S. 33C U.S. 33D U.S. 34G U.S. 34L	Blast Furnaces & Steel Mills Gray Iron Foundaries Steel & Malleable Iron Foundaries Primary Steel Products, n.e.c. Screw Machine Products, Bolts, etc. Fabricated Wire Products
27.	Can 2950 Can 2960 Can 2970 Can 2980 Can 3380	Smelting & Refining Aluminum Rolling, Casting, & Extruding Copper & Copper Alloy Rolling, Casting, & Extruding Metal Rolling, Casting, & Extruding, n.e.c. Electric Wire & Cable
	U.S. 33E U.S. 33F	Nonferrous Metal, Except Foundries Nonferrous Founderies
28.	Can 3010 Can 3039 Can 3042	Boiler & Plate Works Ornamental & Architectural Metal, n.e.c. Metal Stamping & Pressing
	U.S. 34A U.S. 34F U.S. 34I	Metal Can & Shipping Containers Structural Metal Products, n.e.c. Metal Stampings
29.	Can 3020	Fabricated Structural Metal
	U.S. 34D	Fabricated Structural Steel
30.	Can 3031	Metal Door & Window
	U.S. 34E	Metal Doors, Sash, & Trim
31.	Can 3041	Metal Coating
	U.S. 34J	Metal Services, n.e.c.
32.	Can 3060	Hardware, Tool & Cutlery
	U.S. 34B	Cutlery, Hand Tools, & Hardware
33.	Can 3110	Agricultural Implements
	U.S. 35B	Farm & Garden Machinery
34.	Can 3160	Commercial Refrigeration & Air-Conditioning
	U.S. 35K	Refrigeration & Service Machinery
35.	Can 3180	Office & Store Machinery

	U.S.	35J	Office & Computing Machines
36.	Can Can Can Can	3230 3241 3243 3250	Motor Vehicles Truck Body Manufacturers Commercial Trailer Manufacturers Motor Vehicle Parts & Accessories
	U.S. U.S.	35L 37A	Misc. Machinery, Except Electrical Motor Vehicles & Equipment
37.	Can Can	3270 3280	Shipbuilding & Repair Boatbuilding & Repair
	U.S.	37D	Ship & Boat Building & Repairing
38.	Can Can	3310 3320	Small Electrical Appliances Major Appliances
	U.S.	36A	Household Appliances
39.	Can Can	3340 3350	Household Radio & TV Receivers Communication Equipment
	U.S. U.S.	36C 36D	Radio, TV, Communication Equipment Electronic Components & Accessories
40.	Can Can	3511 3591	Clay Product Manufacturers (from domestic clays) Refractories
	U.S.	32B	Structural Clay Products
41.	Can	3550	Ready-Mix Concrete
	U.S.	320	Ready-Mixed Concrete
42.	Can Can	3561 3562	Glass Manufacturers Glass Products
	U.S.	32A	Glass Products
43.	Can	3651	Petroleum Refining
	U.S.	29A	Petroleum Refining
44.	Can	3740	Pharmaceuticals & Medicines
	U.S.	28B	Drugs
45.	Can	3750	Paint & Varnish
	U.S.	28D	Paints & Allied Products
46.	Can	3760	Soap & Cleaning Compounds

- 44 -

	Can	3770	Toilet Preparations
	U.S.	280	Soap, Cleaners, & Toilet Goods
47.	Can	3912	Clock & Watch
	U.S.	38E	Watches, Clocks & Watchglass
48.	Can	3920	Jewellery & Silverware
	U.S.	39A	Jewellery, Silverware, & Plated Wire
49.	Can Can	3931 3932	Sporting Goods Toys & Games
	U.S.	39B	Toys & Sporting Goods
50.	Can Can Can Can	1720 1750 1792 1799	Leather Tanneries Leather Glove Factories Boot & Shoe Findings Luggage, Handbag, & Miscellaneous Leather Products
	U.S.	31B	Leather & Leather Products, n.e.c.
51.	Can Can	2391 2392	Knitted Fabric Manufacturers Other Knitted Mills
	U.S.	220	Knitting Mills, n.e.c.
52.	Can Can Can Can	2560 2591 2592 2593 2599	Wooden Box Factories Wood Preservation Industry Wood Handles & Turning Industry Manufacturers of Particle Board Miscellaneous Wood Industries
	U.S.	24E	Wood Products, n.e.c.
53.	Can	2619	Household Furniture
	U.S. U.S. U.S.	25A 25B 25C	Wood Household Furniture Upholstered Household Furniture Household Furniture, n.e.c.
54.	Can Can	1020 1089	Fish Products Miscellaneous Food Processors
	U.S.	20N	Miscellaneous Food & Kindred Products
55.	Can	1620	Rubber Products
	U.S.	30A	Rubber Products
56.	Can	1650	Plastics Fabricating, n.e.c.

- 45 -

	U.S. 30	В	Miscellaneous Plastic Products
57.	Can 24 Can 24		Men's Clothing Factories Men's Clothing Contractors
	U.S. 23 U.S. 23 U.S. 23	B	Men's & Boy's Suits & Coats """ Shirts & Nightwear """ Clothing, n.e.c.
58.	Can 24 Can 24		Women's Clothing Factories Women's Clothing Contractors
	U.S. 23 U.S. 23 U.S. 23	E	Women's & Misses' Blouses & Dresses """ Suits & Coats """ Outerwear, n.e.c.
59.	Can 26 Can 26		Office Furniture Miscellaneous Furniture & Fixtures
	U.S. 25	D	Furniture & Fixtures, n.e.c.
60.	Can 30 Can 30		Heating Equipment Miscellaneous Metal Fabricating
	U.S. 34 U.S. 34 U.S. 34 U.S. 34 U.S. 34	H K	Plumbing & Heating, Except Electric Metal Forgings Ordinance & Accessories, n.e.c. Fabricated Metal Products, n.e.c.
61.	Can 32	210	Aircraft & Aircraft Parts
	U.S. 37 U.S. 37		Aircraft & Guided Missiles Aircraft & Guided Missile Parts
62.	Can 32	60	Non-Commercial Trailer Manufacturers Railway Rolling Stock Miscellaneous Vehicles
	U.S. 37	E	Transportation Equipment, n.e.c.
63.		30 60 91	Electric Lamp & Shade Lighting Fixtures Electrical Industrial Equipment Battery Manufacturers Miscellaneous Electrical Products, n.e.c.
	U.S. 36 U.S. 36		Electrical Lighting & Wiring Equipment Electrical Machinery, n.e.c.
64.	Can 35 Can 35 Can 35	20	Clay Product Manufacturers (from imported clays) Cement Manufacturers Stone Products

- 46 -

	Can 357	Abereiver	
		Abrasives	
	Can 359	Miscellaneous Non-Metallic Mineral Products	
	U.S. 32E	Non-Metallic Mineral Products	
65.	Can 354	Concrete Pipe Manufacturers	
	Can 354	Manufacturers of Structural Concrete Products	
	Can 354	Concrete Products Manufacturers, n.e.c.	
	Can 358	Lime Manufacturers	
	U.S. 32D	Concrete & Gypsum Products	
66.	Can 372	Mixed Fertilizers	
00.			
	Can 373	Plastics & Synthetic Resins	
	Can 378	Manufacturers of Pigments & Dry Colours	
	Can 378	" " Industrial Chemicals (Inorganic, n	
	Can 378	""" (Organic, n.e	.c.)
	Can 379	" Printing Inks	
	Can 379	Miscellaneous Chemicals Industries n.e.c.	
	U.S. 28A	Industrial Chemicals & Synthetics	
	U.S. 28E	Agriculture Chemicals	
	U.S. 28F	Miscellaneous Chemical Products	
67.	Can 391	Instruments & Related Products	
07.	Can 391	Orthopaedic & Surgical Appliances	
	Can 391		
		Ophthalmic Goods	
	Can 391	Dental Laboratories	
	U.S. 38A	Scientific & Measuring Instruments	
	U.S. 38B	Optical & Ophthalmic Goods	
	U.S. 38C	Medical Instruments & Supplies	
	U.S. 38D	Photographic Equipment & Supplies	
68.	Can 258	Coffin & Casket	
	Can 397	Signs & Displays	
	Can 399	Broom, Brush, & Mop	
	Can 399	Button, Buckle, & Fastener	
	Can 399	Floor Tile, Linoleum & Coated Fabrics	
	Can 399	Sound Recording & Musical Instruments	
		Pens & Pencils	
	Can 399	Fur Dressing & Dyeing	
	Can 399	Other Miscellaneous Manufacturing Industries	
	U.S. 39C	Manufacturing Industries, n.e.c.	
Source		Department of Industry, Trade & Commerce.	
		or concordance between Canadian and U.S.	
	Indus	ries at the 4 digit SIC level.	
	2) Unito	States: Bureau of the Consus Enterprise	

United States: Bureau of the Census. <u>Enterprise</u> <u>Statistics</u> for concordance between U.S. 4 digit SIC classification and Enterprise Statistics classifications.

- 47 -

APPENDIX B

TABLE B-2

Weights Used For	· Concordance	and (Quality	of	Industry	Matchings
------------------	---------------	-------	---------	----	----------	-----------

Category No.	Canada 4 digit SIC Category		ights 1979	U.S. Enterprise Category		S. ights <u>1977</u>	Quality of Matching
1	1011 1012	.806 .194	.772	20A 20B	.512 .488	.513 .469	В
2	1031 1032	.851 .149	.760	20E 20F	.382 .618	.377	С
3	1040	1.000	1.000	20C 20D	.670 .330	.622 .378	А
4	1050 1060	.351 .649	.362 .638	20G	1.000	1.000	В
5	1071	1.000	1.000	201	1.000	1.000	A
6	1072	1.000	1.000	20H	1.000	1.000	А
7	1081 1082	.778	.764 .236	20J	1.000	1.000	А
8	1083	1.000	1.000	20K	1.000	1.000	С
9	1091	1.000	1.000	20M	1.000	1.000	А
10	1092 1093 1094	.363 .579 .058	.449 .168 .383	20L	1.000	1.000	В
11	1510 1530	.151	.115	21A	1.000	1.000	A
12	1740	1.000	1.000	31A	1.000	1.000	А
13	1810 1820 1832 1891 1894	.356 .190 .346 .025 .083	.304 .162 .396 .028 .110	22A 22E	.712 .288	.780 .220	A

14	1831 1840 1851 1852 1871 1872 1892 1893 1899	.314 .039 .037 .016 .041 .088 .092 .061 .312	.219 .023 .023 .026 .029 .090 .080 .056 .454	22F 23J	.345 .655	.269 .731	В
15	1860	1.000	1.000	22D	1.000	1.000	А
16	2310	1.000	1.000	22B	1.000	1.000	А
17	2460 2480 2491 2492 2499	.241 .459 .052 .162 .086	.278 .346 .062 .133 .181	23G 23I	.567 .433	•553 •447	С
18	2450	1.000	1.000	23H	1.000	1.000	А
19	2511 2513 2520 2541 2543	.019 .635 .160 .144 .042	.019 .658 .131 .145 .047	24B 24C 24D	.415 .387 .198	.436 .393 .171	В
20	2710	1.000	1.000	26A	1.000	1.000	А
21	2720 3652 3690	.553 .205 .242	.560 .265 .175	298	1.000	1.000	A
22	2731 2732 2733 2740	.201 .229 .164 .406	.169 .280 .160 .391	268 26C	.462 .538	.516 .484	A
23	2880	1.000	1.000	27A	1.000	1.000	А
24	2870	1.000	1.000	27F	1.000	1.000	В
25	2860 2890	.542 .458	•570 •430	27B 27C 27D 27E	.113 .156 .102 .629	.106 .133 .098 .663	В

26	2910 2920 2940 3050	.602 .065 .130 .203	.617 .067 .110 .206	33A 33B 33C 33D 34G 34L	.492 .145 .084 .114 .106 .059	.578 .092 .079 .088 .108 .055	A	
27	2950 2960 2970 2980 3380	.620 .105 .062 .068 .145	.548 .128 .062 .105 .157	33E 33F	.765 .235	.739 .261	8	
28	3010 3039 3042	.191 .163 .646	.207 .181 .612	34A 34F 34I	.151 .421 .428	.133 .540 .327	С	
29	3020	1.000	1.000	34D	1.000	1.000	А	
30	3031	1.000	1.000	34E	1.000	1.000	А	
31	3041	1.000	1.000	34J	1.000	1.000	А	
32	3060	1.000	1.000	34B	1.000	1.000	А	
33	3110	1.000	1.000	35B	1.000	1.000	А	
34	3160	1.000	1.000	35K	1.000	1.000	В	
35	3180	1.000	1.000	35J	1.000	1.000	В	
36	3230 3241 3243 3250	.463 .041 .024 .472	.443 .050 .039 .468	35L 37A	.186	.194 .806	С	
37	3270 3280	.836 .164	.810	37D	1.000	1.000	A	
38	3310 3320	.331 .669	.271 .729	36A	1.000	1.000	А	
39	3340 3350	.149 .851	.070	36C 36D	.627 .373	.593 .407	В	
40	3511 3591	.701 .299	.663 .337	32B	1.000	1.000	В	
41	3550	1.000	1.000	320	1.000	1.000	А	
42	3561 3562	.730 .270	.712	32A	1.000	1.000	A	

43	3651	1.000	1.000	29A	1.000	1.000	А
44	3740	1.000	1.000	288	1.000	1.000	А
45	3750	1.000	1.000	28D	1.000	1.000	A
46	3760 3770	.515 .485	•508 •492	28C	1.000	1.000	А
47	3912	1.000	1.000	38E	1.000	1.000	А
48	3920	1.000	1.000	39A	1.000	1.000	В
49	3931 3932	.587 .413	.624 .376	39B	1.000	1.000	В
50	1720 1750 1792 1799	.274 .139 .104 .483	.240 .111 .163 .486	318	1.000	1.000	A
51	2391 2392	.209 .791	.257 .743	220	1.000	1.000	С
52	2560 2591 2592 2593 2599	.360 .157 .113 .091 .279	.346 .147 .083 .212 .212	24E	1.000	1.000	A
53	2619	1.000	1.000	25A 25B 25C	.423 .290 .287	.472 .308 .220	A
54	1020 1089	.513 .487	•552 •448	20N	1.000	1.000	С
55	1620	1.000	1.000	30A	1.000	1.000	В
56	1650	1.000	1.000	30B	1.000	1.000	В
57	2431 2432	.824 .176	.803 .197	23A 23B 23C	.257 .233 .510	.209 .237 .554	С
58	2441 2442	.801 .199	.733 .267	23D 23E 23F	.638 .172 .190	.603 .190 .207	С
59	2640 2660	.276 .724	.354 .646	25D	1.000	1.000	В
60	3070 3090	.185 .815	.197 .803	34C 34H 34K 34M	.155 .101 .276 .469	.158 .123 .124 .595	С

			- 51	2 -			
61	3210	1.000	1.000	37B 37C	.585 .415	.703 .297	С
62	3242 3260 3290	.280 .348 .372	.321 .544 .135	37E	1.000	1.000	С
63	2680 3330 3360 3391 3399	.032 .080 .608 .060 .220	.034 .069 .566 .064 .267	36B 36E	.296 .704	.200 .800	С
64	3512 3520 3530 3570 3599	.121 .243 .038 .160 .438	.089 .240 .060 .132 .479	32E	1.000	1.000	В
65	3541 3542 3549 3580	.186 .226 .523 .065	.206 .224 .484 .086	32D	1.000	1.000	В
66	3720 3730 3781 3782 3783 3791 3799	.029 .096 .029 .220 .272 .029 .325	.022 .119 .031 .266 .246 .034 .282	28A 28E 28F	.751 .091 .158	.822 .061 .117	С
67	3911 3913 3914 3915	.656 .025 .190 .129	.644 .027 .151 .178	38A 38B 38C 38D	.453 .107 .216 .224	.434 .107 .203 .256	В
68	2580 3970 3991 3992 3993 3994 3996 3998 3999	.053 .234 .096 .082 .157 .081 .047 .025 .225	.030 .260 .077 .059 .121 .105 .038 .039 .271	39C	1.000	1.000	С

Note: 1) Each category was assigned an ordinal ranking, A, B or C based on the authors' assessment of the precision of the matching

- A best matching
 - B intermediate case
 - C worst matching

The Canadian 4-digit classification uses the 1970 SIC definitions. 2)

The U.S. Enterprise Codes are taken from the U.S. 1972 Enterprise Statistics. 3)

The weights are calculated as the percentage of employees in the category 4) and is taken from the Canadian Census of Manufactures for 1970 and 1979 and from the U.S. Census Enterprise Statistics for 1972 and 1977.

APPENDIX C

Table C-1

The Determinants of the Ratio of Canadian Average Plant Size

to the U.S. Branching Estimate of MES, for 52 Canadian Manufacturing

Industries, 1970 and 1979

VARIABLE	COEFF.	1970 S.E.	SIGNIF.	COEFF.	1979 S.E.	SIGNIF.
INDIV	0.017	0.007	0.03	0.02	0.007	0.002
RESCON	0.009	0.011	0.43	0.49	1.74	0.78
IMP	-0.55	0.90	0.55	-0.52	0.33	0.12
ERP	1.43	0.84	0.10	2.03	0.42	0.00
SIZE	0.004	0.001	0.001	0.003	0.001	0.002
DIV	-0.78	0.58	0.19	-0.81	0.60	0.19
СА	-0.17	0.27	0.53	-0.11	0.23	0.64
CDR1	1.10	0.49	0.03	1.05	0.39	0.01
FOR	0.13	0.51	0.80	-0.30	0.51	0.55
R ²	.50			.64		
F (9,43)	7.01			11.42		
Mean of RELBRNCH	.92			1.00		

APPENDIX D

TABLE D-1

Correlation Matrix for 1970

	INDIV	RESCON	IMP	ERP	SIZE	DIV	СА	FOR	CDR1
INDIV	1.000	0.209	-0.044	0.060	0.297	-0.150	0.396	0.613	0.379
RESCON	0.209	1.000	-0.382	-0.232	0.541	0.078	0.020	-0.078	-0.264
IMP	-0.044	-0.382	1.000	-0.226	-0.273	-0.258	-0.181	-0.104	0.392
ERP	0.060	-0.232	-0.226	1.000	-0.156	0.013	0.194	0.179	0.082
SIZE	0.297	0.541	-0.273	-0.156	1.000	-0.096	0.471	0.065	-0.285
DIV	-0.150	0.078	-0.258	0.013	-0.096	1.000	-0.008	-0.239	-0.107
CA	0.396	0.020	-0.181	0.194	0.471	-0.008	1.000	0.159	0.325
FOR	0.613	-0.078	-0.104	0.179	0.065	-0.239	0.159	1.000	0.112
CDR1	0.379	-0.264	0.392	0.082	-0.285	-0.107	0.325	0.112	1.000

- 54 -

TI	0.6	4	~	0	2
14	4 K	£	E	11-	1
1 1	10	6	law and		-

Corre	lation	Matrix	for 1979

	INDIV	RESCON	IMP	ERP	SIZE	DIV	СА	FOR	DCR1
INDIV	1.000	-0.116	0.182	0.136	0.251	0.144	0.588	0.636	0.450
RESCON	-0.116	1.000	-0.021	0.049	-0.022	0.320	-0.112	-0.109	-0.267
IMP	0.182	-0.021	1.000	0.118	-0.145	-0.005	0.053	0.086	0.348
ERP	0.136	0.049	0.118	1.000	-0.028	-0.266	0.273	0.243	-0.118
SIZE	0.251	-0.022	-0.145	-0.028	1.000	-0.060	0.347	0.075	-0.316
DIV	0.144	0.320	-0.005	-0.266	-0.060	1.000	0.030	0.033	-0.006
CA	0.588	-0.112	0.053	0.273	0.347	0.030	1.000	0.423	0.333
FOR	0.636	-0.109	0.086	0.243	0.075	0.033	0.423	1.000	0.178
CDR1	0.450	-0.267	0.348	-0.118	-0.316	-0.006	0.333	0.178	1.000

FOOTNOTES

- Plant scale has been examined by Bain (1966), Eastman and Stykolt (1967), Scherer et al. (1975), Gorecki (1976), Caves et al. (1980), Dickson (1979) and Gupta (1979); diversity has been studied by Caves (1975) and (1980), and Daly et al. (1968).
- 2. Bain (1966); Eastman and Stykolt (1967); Scherer et al. (1975).
- 3. Caves et al. (1980).
- 4. Daly et al. (1968).
- 5. Baldwin and Gorecki (1983a, b, c, d).
- 6. The reasonableness of the assumptions requires some attention. The first set, having to do with the plant cost curve, has been used profitably by others (Caves et al. 1980). The second set does not seem unreasonable. Others have argued (Royal Commission on Corporate Concentration, 1978) that firm level economies are not fully exploited at the point where plant level economies are exhausted.
- 7. This does not mean that plant level diversity will necessarily fall as plants get larger because another separate phenomenon is taking place. Large firms tend to be more diversified (Caves et al. 1980). Large firms also possess larger average size plants. Thus as plant sizes get larger, the actual level of plant diversity may continue to increase well beyond the MES point. But in this size range, diversity is not being used to increase plant size to exploit plant economies.
- 8. These assumptions -- plant fixed cost of d; product line fixed cost of a; constant marginal cost per product line of b -- yield a plant cost curve of

TC = d + Na + bQ

where $N \equiv$ number of products.

Thus

AC = b + aN+d.

9. This presumes that the reduction in fixed costs associated with the product line Na is more than offset by the increase in d to 2d. More generally, if the optimal number of plants (M) for a given products (n) is chosen, increasing the number of plants above M will shift the firm average cost curve up as is shown in figure 1.

- 56 -

- 10. CAN1 = $\frac{d + N_2 a}{Q} + b$.

 $US1 = \frac{d + N_1 a}{0} + b.$ CAN1 > US1 if $Q \lt \infty$ and $N_2 > N_1$.

- 11. See McVey (1972) for an article discussing average establishment size for large and small enterprises.
- 12. Masson and Shaanan (1982), p. 418, Scherer et al. (1975), pp. 182-183, and Weiss (1976), pp. 132-136.
- 13. The U.S. Enterprise Statistics contain data on number of plants per firm for both single industry and multi-industry firms. All plants belonging to single industry firms are located in the same industry as the firm; but plants belonging to multi-industry firms and assigned to the industry of the multi-industry firm may actually come from a different industry. Primary plants of multiindustry firms are those that are appropriately assigned to the industry in which the multi-industry firm is located; but secondary plants are from other industries. Unfortunately the Enterprise Statistics do not publish the number of primary plants per firm by size class -- only the total of primary and secondary plants. The multi-industry category is inadequate then because its use will tend to bias downward the MES estimates. Multi-industry firms will be listed as opening a second plant when that plant may be in another industry. To the extent that all size categories for multi-industry firms contain some firms that have diversified into other industries, the value of the plant per firm variables is shifted upwards for every size class and the size at which a firm first has on average 1.5 plants is biased downwards. Indeed, this appears in the data. MES calculated from multi-industry firms is smaller than for single industry firms. Thus, multi-industry firms were excluded and only single industry firms were used in calculating the branching estimate of MES.
- 14. The mean of RELBRNCH is .92 and 1.00 for the early and late seventies for groups A and B together. No importance can be attached to the growth in RELBRNCH since the years used in numerator and denominator of the two ratios should, in a growing economy, have led to an increase in the ratio.
- 15. This result is different from that reported in our previous work where large U.S. plant size is used as a proxy for MES and compared to Canadian large plant size. The average plant size for large Canadian plants was about 70 per cent of the average U.S. large plants.
- 16. See Scherer et al. (1975), pp. 23-24, and 88-89 for a more detailed discussion of the relationship between market density and the slope of ADC.

- 17. MES is here defined as the size of the larger plants and not BMES because otherwise RESCON would measure not only the residual effects other than plant size that determine concentration but also the effects that determine the difference between large firm plant size and BMES.
- 18. See the data appendix for a description of this variable. Baldwin and Gorecki (1983d)contains a more detailed description of the difference between the diversity measure used here and that used by Caves.
- 19. See Caves et al. (1980) and Gorecki (1980) for details.
- 20. It might be argued that outbound diversification rather than inbound diversification would more closely approximate this phenomenon. An experiment with alternate formulations of the INDIV variable turned up no significant differences so the two industry level diversification measures were combined.
- 21. Snape (1977), Curtis (1983), Krugman (1980).
- 22. It may be that EAST will be picking up some of the general size affect represented by SIZE. Since collinearity between SIZE and EAST is very high, this possibility cannot be excluded.
- 23. Baldwin and Gorecki (1983d).
- 24. While the relative plant scale effect (Baldwin and Gorecki, 1983c) was indeed primarily a function of tariffs only in high concentration industries, this does not appear to be the case for the tariff effect on RELBRNCH.
- 25. Appendix Table C-1 shows CDR1 is significant for Groups A and B together.
- 26. Our evidence is broadly consistent with this. If diversity is included in the relative plant scale equations reported in Baldwin and Gorecki (1983c), it has a negative coefficient which is generally insignificant. Thus while the effect of diversification is felt across the size range, it is generally only significant in Canadian plant size as measured against U.S. BMES.
- 27. Eastman and Stykolt (1967), English (1964).
- 28. Caves et al. (1980).

BIBLIOGRAPHY

- Bain, J. (1966). International Differences in Industrial Structure (New Haven: Yale University Press).
- Baldwin, J. and P.K. Gorecki. 1983a. "The Determinants of Entry and Exit to Canadian Manufacturing Industries". Discussion Paper #225 (Ottawa: Economic Council of Canada).
- Baldwin, J. and P.K. Gorecki. 1983b. "The Determinants of Sub-Optimal Capacity in Canadian Manufacturing Industries in the 1970's". Unpublished Paper (Ottawa: Economic Council of Canada).
- Baldwin, J. and P. Gorecki. 1983c. "Trade, Tariffs and Relative Plant Scale in Canadian Manufacturing Industries, 1970-79". Discussion Paper #232, Economic Council of Canada.
- Baldwin, J. and P. Gorecki, 1983d. "The Determinants of Plant Diversity in Canadian Manufacturing Industries". Unpublished Paper, Economic Council of Canada.
- Canada. Department of Industry, Trade and Commerce. 1971. Comparative Tables of Principal Statistics and Ratios for Selected Manufacturing Industries. Canada and the United States 1967, 1963 and 1958. (Ottawa: Department of Industry, Trade and Commerce).
- Canada. Report of the Royal Commission on Corporate Concentration. 1978. (Ottawa: Minister of Supply and Services).
- Canada. Statistics Canada. 1972. <u>General Review of the Manufacturing</u> Industries of Canada, 1969. (Ottawa: Information Canada).
- Canada. Statistics Canada. 1973. <u>Manufacturing Industries of Canada:</u> <u>Type of Organization and Size of Establishments, 1969, Catalogue</u> <u>No. 31-210</u>. (Ottawa: Information Canada).
- Canada. Statistics Canada. 1977. Industrial Organization and Concen tration in the Manufacturing, Mining, and Logging Industries - 1972. (Ottawa: September 1977).
- Caves, R.E. 1975. Diversification, Foreign Investment, and Scale in North American Manufacturing Industries. (Ottawa: Information Canada).
- Caves, R.E., J. Knalizadeh-Shirazi and M.E. Porter. 1975. "Scale Economies in Statistical Analyses of Market Power". <u>Review of Economics and</u> Statistics, 57 (May): 133-140.

Caves, R.E. and M. Porter. 1977. "From Entry Barriers to Mobility Barriers". Quarterly Journal of Economics, May, pp. 241-61. Caves, R.E., et al. 1980. Competition in the Open Economy. (Cambridge, Mass.: Harvard University Press).

- Caves, R.E. and T.A. Pugel. 1980. Intraindustry Differences in Conduct and Performance: Viable Strategies in U.S. Manufacturing Industries. Monograph #1980-2 in Monograph Series in Finance and Economics, New York University, Graduate School of Business Administration, Saloman Brothers Center for the Study of Financial Institutions.
- Comanor, W.S. and T.A. Wilson. 1967. "Advertising Market Structure and Performance", <u>Review of Economics and Statistics</u>, Vol. 49, Nov., pp. 423-440.
- Curtis, D.C.A. 1983. "Trade Policy to Promote Entry with Scale Economies, Product Variety, and Export Potential". <u>Canadian Journal of</u> <u>Economics</u>, XVI, No. 1 (February): 109-121.
- Daly, D.J., B.A. Keys, and E.J. Spence. 1968. Scale and Specialization in Canadian Manufacturing. Economic Council of Canada Staff Study, No. 21, (Ottawa: Queen's Printer).
- Davies, Stephen. 1980. "Minimum Efficient Size and Seller Concentration: An Empirical Problem". <u>The Journal of Industrial Economics</u>, 28 (March): 287-301.
- Dickson, V.A. 1979. "Sub-Optimal Capacity and Market Structure in Canadian Industry". Southern Economic Journal, (Vol. 46, July): 206-217.
- Eastman, H. and S. Skykolt. 1967. The Tariff and Competition in Canada. (Toronto: MacMillan of Canada).
- English, H.E. 1964. Industrial Structure in Canada's International Competitive Position. (Montreal: Canadian Trade Committee).
- Gorecki, P.K. 1976. Economics of Scale and Efficient Plant Size in Canadian Manufacturing Industries. (Ottawa: Bureau of Competition Policy, Department of Consumer and Corporate Affairs).
- Gorecki, P.K. 1980. "A Problem of Measurement from Plants to Enterprises in the Analysis of Diversification: A Note". Journal of Industrial Economics, Vol. 68, March, pp. 327-334.
- Gupta, V.K. 1979. "Sub-Optimal Capacity and its Determinants in Canadian Manufacturing Industries". Review of Economics and Statistics, (Vol. 61, Nov.): 506-512.
- Krugman, P. 1980. "Scale Economies, Product Differentiation and the Pattern of Trade". American Economic Review, 70: 950-959.

Lyons, B.R. 1980. "A New Measure of Minimum Efficient Plant Size in U.K. Manufacturing Industry". Economica, (Vol. 47): 19-34.

- Masson, R.T. and J.Shaanan. 1982. "Stochastic-Dynamic Limit Pricing: An Empirical Test", <u>Review of Economics and Statistics</u>, Vol. 64, August, pp. 413-422.
- McVey, S. 1972. "The Industrial Diversification of Multi-Establishment Manufacturing Firms". Canadian Statistical Review, (July): 4,6,112-17.
- Newman, H.H. 1978. "Strategic Groups and the Structure-Performance Relationships". <u>Review of Economics and Statistics</u>, (August): 417-27.
- Porter, M.E. 1979. "The Structure Within Industries and Companies' Performance". Review of Economics and Statistics, (May): 214-227.
- Porter, M., 1974. "Consumer Behaviour, Retailer Power and Market Performance in Consumer Goods Industries". <u>Review of Economics and</u> Statistics, 56 (November): 419-36.
- Pratten, C. 1971. Economies of Scale in Manufacturing Industries. (London: Cambridge University Press).
- Rosenbluth, G. 1957. <u>Concentration in Canadian Manufacturing Industries</u>. National Bureau of Economic Research, General Series, No. 61, (Princeton, N.J.: Princeton University Press).
- Scherer, F.M., A. Beckenstein, E. Kaufer, R.D. Bougeon-Maassen. 1975. <u>The Economics of Multi-Plant Operation: An International Comparisons</u> <u>Study.</u> (Cambridge, Mass.: Harvard University Press).
- Snape, R. 1977. "Trade Policy in the Presence of Economies of Scale and Product Variety". Economic Record (53): 525-34.
- United States. U.S. Bureau of the Census. <u>Enterprise Statistics 1972</u>. (Washington, D.C.: U.S. Government Printing Office).
- United States. U.S. Bureau of the Census. <u>Census of Manufacturers</u>, 1972. (Washington, D.C.: U.S. Government Printing Office).
- Weiss, L.W. 1976. "Optimal Plant Size and the Extent of Suboptimal Capacity", in R.T. Masson and P.D. Qualls (eds.). Essays on Industrial Organization in Honor of Joe S. Bain. (Cambridge, Mass.: Ballinger): 123-141.

HC/111/.E28/n.237 McVey, J. S The relationship between plant scale dctu c.1 tor mai

1

į,