Migeration and population dymamics of the
 Peace-Athabasca
 Delta golaleye population

by D. IB. Donald and A. H. Kooyman

古竍

Environment
Canada

Environnement
Canada

0016388A S
OCCASIONAL PAPER (CANADIAN WILDLIFE SERVICE)

Decasional Paper
 Number Bl_{1}

Canadian Wildlife Service

Migration and

of the $7003452 H$

 Peace-Athabasca Delta goldeye populationby D. B. Donald ${ }^{1}$
and A. H. Kooyman

Canadian Wildlife Service
Occasional Paper Number 31

${ }^{1}$ Limnos Associates (Calgary), Calgary, Alta. Present address: CWS, Dept. of Biology, Univ, of Calgary, Calgary, Alta. T2N IN4 ${ }^{2}$ CWS, Winnipeg, Man. R3T 2 N 6

Contents

Issued under the authority of the
Minister of Fisheries and the Environment
Canadian Wildlife Service
(C) Minister of Supply and Services Canada 1977 Catalogue No. CW69-1/31
ISBN 0-662.00412-4
Ottawa, 1977

4	Acknowledgements
4	Abstract
5	Résumé
6	Introduction
8	Study area
9	Methods
10	Results and discussion
10	l. Distribution and migration of adult goldeye
12	2. Distribution and migration of juvenile goldeye
13	3. Distribution of young-of-the-year goldeye
15	4. Year-class strength 15
16	5. Sex ratio of adult goldeye
17	6. Growth rates of adult goldeye
19	References

List of tables

6 Table 1. Goldeye harvest records for Lake Claire
12 Table 2. Seasonal changes in the average catches of juvenile goldeye in 1972 and 1973
13 Table 3. Number of young-of-the-year goldeye collected from sampling stations at Quatre Fourches, Mamawi Lake, Prairie River and Lake Claire, June-October 1972, and July 1971 and 1973
14 Table 4. Distribution of young-of-the-year goldeye in relation to distance from the shore on Lake Claire
17 Table 5. Number of goldeye marked, examined and recaptured during four sampling periods

List of figure

6 Figure 1. Map of the study area
11 Figure 2. Diagrammatic representation of the seasonal distribution and migration of goldeye
16 Figure 3. The relationship between age, and length and weight of goldeye from the Peace-Athabasca Delta in 1947-48 and 1973, and from the Peace River in 1974

Acknowledgements

The goldeye program would not have been a success without the help of Reggie McKay, Edmond and Frank Ladoucer, Larry Paquette, Archie Marcel, and Donald Whitehead. Their knowledge of the Peace-Athabasca Delta, and of the domestic fishermen who live in this region was invaluable. For generations they and their ancestors have understood the essence of the seasonal migrations of goldeye. G. C. Lister and I. R. Tempany of the Warden Service, National and Historic Parks Branch, provided equipment and assistance. Ron Sears, an Alberta Fish and Wildlife Officer stationed in Fort Chipewyan, generously offered his support on many occasions. D. A. Fernet conducted the successful field program in 1971, with the help of staff from the Peace-Athabasca Delta Project. R.S. Anderson, W. A. Kennedy, P. McCart and W. E. Ricker reviewed various parts or drafts of this report during its preparation. Funds for the study came from the Peace-Athabasca Delta Project, the National and Historic Parks Branch, and the CWS.

Abstrac

Goldeye (Hiodon alosoides) begin moving into the Peace-Athabasca Delta area in March, but do not enter the delta lakes until after breakup in the Peace River in May. Mature goldeye spawn in the delta lakes primarily between the middle and the end of May. Goldeye of all ages begin migrating from the delta in July. The peak migration period for yearling and older goldeye is from mid-July to mid-August. The majority of adult goldeye return to the Peace River by the end of August, but some young remain in the delta until at least early December. All of these goldeye winter in the Peace River, probably throughout the lower $150-250 \mathrm{~km}$. The distance from the wintering areas in the Peace River to the delta and back can be as much as $700-800 \mathrm{~km}$ for some fish.

The eggs of goldeye hatch in early June and mortality of the larvae is high during that month, but for the rest of the summer numbers remain relatively constant. In the Mamawi-Claire Lake system, young-of-the-year goldeye are most abundant in Mamawi Lake and along the north and west shores of Lake Claire, but the relative abundance in these locations varies from year to year. Young-of-the-year goldeye are found within a few hundred metres of the shoreline in hese lakes, showing a clumped distribution.

Between 1971 and 1974, year-class strength was highly unbalanced. The 1964, 1965 and 1971 year-classes were by far the most abundant fish in the population. Goldeye in the 1970's were larger than in 1947-48 and 1954. The unusual year-class abundances and growth rates in the early 1970's are at tributed to over-harvest of this population by the 1948-66 commercial fishery, and not to unusually low water levels in the delta between 1968 and 1971. Between 1971 and 1973 females comprised from 17 to 23% of the adult stock, but in other years the sex ratio
was much closer to one to one. The natural mortality of the adult stock was about 51% and recruitment was negligible for 2 years in the early 1970's. The numbers of adult fish which entered the delta in 1972, 1973 and 1974 were 100500, 37000 and 18000 respectively, and were considerably less than the numbers of adult fish in the 1940's and 1950's when there were probably between 350000 and 1300000 fish in this population. The adult stock will recover in numbers in 1977 and 1978, the years when the 1971 year-class of goldeye are 6 and 7 years old.

Résumé
La laquaiche aux yeux d'or (Hiodon alosoides) commence à arriver en mars dans le secteur du delta Paix-Athabasca, mais elle ne pénètre dans les lacs du delta qu'après le dégel de la rivière de la Paix en mai. Les adultes fraient dans les lacs du delta, surtout entre le milieu et la fin de mai. Bien que la migration hors du delta commence en juillet, la période de pointe tant pour les petits d'un an que pour les plus âgés ne survient qu'entre la mi-juillet et la mi-août. La plupart des adultes retournent à la rivière de la Paix fin août, mais il reste des petits dans le delta au moins jusqu'au début de décembre. Toutes ces laquaiches hivernent dans la rivière de la Paix probablement dans les 150 à 250 derniers
kilomètres de son cours. L'aller-retour de l'aire d'hivernage de la rivière de la Paix au delta peut pour certaines laquaiches, comporter un trajet de 700 ou même 800 kilomètres.

Les ceufs de la laquaiche aux yeux d'or éclosent début juin; le taux de mortalité des larves est élevé ce mois là, quitte à ce que l'effectif en demeure relativement constant le reste de l'été. Pour ce qui est du bassin des lacs Mamawi et Claire, les petits de l'année sont plus nombreux dans le lac Mamawi et le long des
rives nord et ouest du lac Claire, mais leur abondance relative y varie d'une année à l'autre. Les petits de l'année se trouvent à quelques centaines de mètres tout au plus du rivage de ces acs et ils présentent une distribution compacte. Entre 1971 et 1974, la rapport de la cohorte des petits de l'année à la population totale manifestait un déséquilibre très marqué. En 964, 1965 et 1971, la cohorte des petits de l'année était de loin la plus nombreuse de toute la population. Les laquaiches étaient, à compter de 1970, de plus grande taille qu'en 1947-48 et en 1954. C'est à la pêche commerciale abusive pratiquée de 1948 à 1966 et non pas à quelque influence néfaste du niveau anormalement bas des eaux du delta entre 1968 et 1971 qu'on ttribue tant l'effectif élevé des cohortes de petits de l'année que le taux de croissance tous deux inhabituels, observés peu après 1970 . Entre 1971 et 1973, les femelles constituaient de 17 à 23% de la population adulte mais, les autres années, le rapport des sexes était bien plus près de l'unité. Pendant deux ans, au début de la présente décennie le taux de mortalité naturelle a atteint environ 51% chez la population adulte tandis qu'était négligeable le renouvellement. Le nombre des poissons adultes à pénétrer dans le delta en 1972, 1973 et 1974 était respectivement de 100500,37000 et 18000 , soit bien moin que l'effect if des poissons adultes chez la population lors des décennies de 1941 et de 1951 pendan lesquelles les pêcheurs commerciaux en prélevaient souvent un poids total de plus de 45000 kg par an. Leffectif des adultes se retablira cependant en 1977 et 1978, alors que les sujets de la cohorte née en 1971 auront 6 ou 7 ans.

Introduction

Figure 1
Map of the study area. Locations where ooldeye tagged at Quatre Fourches were recovered are shown by stars

Between 1948 and 1966 a commercial fishery operated in the Mamawi Lake, Prairie River and Lake Claire areas (Fig. 1) of the PeaceAthabasca Delta. During these years the fishery produced approximately 30% of the North American commercial catch of goldeye (Hiodon alosoides). During the first 3 years of operation, the average annual catch was 65455 kg , declining to an average annual catch of 11136 kg during the last 4 years (Table 1). The fishery collapsed in 1966, and commercial fishing for goldeye was discontinued in the Mamawi-Claire Lake system.

In the fall of 1971 a temporary dam was built at Quatre Fourches (Fig. 1) to increase water levels in the Mamawi-Claire Lake system. Low water levels had existed in the delta since 1968 when the W.A.C. Bennett Dam and Shrum Generating Station were completed on the upper Peace River in British Columbia (Townsend 1975). The low water levels caused major changes in the plant communities of the delta (Dirschl 1972), and had deleterious effects on waterfowl populations (Nieman and Dirschl 1973). There was reason to believe that the dam at Quatre

Methods

Fourches and the low water levels could affect delta fish populations.

Between 1971 and 1975 the goldeye of the Peace-Athabasca Delta were studied in order to assess the status of the population. The study was designed to obtain an estimate of population size and an understanding of migration, home range, growth rates, and feeding habits. Kennedy and Sprules (1967) and Donald and Kooyman (1974) have described the feeding habits of goldeye in the Peace-Athabasca Delta and the subject will not be discussed further in this book. A report dealing with the preliminary aspects of this study was presented by Kooyman (1973).

The Peace-Athabasca Delta is formed at the confluence of the Peace and Athabasca rivers (Fig. 1), and is situated largely in Wood Buffalo National Park. The Peace and Athabasca rivers have an average annual flow of $1988 \mathrm{~m}^{3} / \mathrm{s}$ and $772 \mathrm{~m}^{3} / \mathrm{s}$ respectively. Lake Claire and Mamawi Lake, two of the delta's four large lakes, are of major importance to goldeye. Lake Claire, apprôximately $1456 \mathrm{~km}^{2}$, is seldom more than 3 m deep even at highest water levels in spring during years when there is overland flooding from the Peace and Athabasca rivers. The average annual water depth for Lake Claire would be about 2 m in a typical year. In March of 1971 Lake Claire had a maximum depth of 1.5 m , and was frozen to the bottom over most of its area. Water beneath the ice was devoid of oxygen. Mamawi Lake, approximately $168 \mathrm{~km}^{2}$, has a maximum depth of 1.5 m during flooding. In March 1971, when water levels were low, it had 46 cm of ice and was frozen to the bottom throughout its area. The above conditions indicate that fish can only remain in these lakes from May to mid-winter.

In this study goldeye were considered to be adult when 6 years old. They were caught in 9.5 and $10.2 \mathrm{~cm}(33 \sqrt{4}$ and 4 in .) stretch mesh multifilament nylon twine gill nets, 0.91 to 1.22 m deep and 45.7 m long. Juvenile goldeye were those which were $1-5$ years old. They were sampled with survey nets 36.4 m long and 1.8 m deep, made up of four mesh sizes, 9.1 m each, of $3.8,5.1,7.6$ and 10.2 cm stretch measure. The 1971 yearclass was sampled from July to November in 1972 and in May and June of 1973 with nets of one mesh size (3.8 cm), 22.8 m long and 2.4 m deep. Gill netting was carried out in Lake Claire, Prairie River, Mamawi Lake, Quatre Fourches, Lake Athabasca, Baril Lake, Baril River, Rivière des Rochers, Slave River, and the Peace River (Fig. 1). In these lakes and rivers the nets were set perpendicular to the shoreline and not more than 50 m from it.

Young-of-the-year goldeye (and yearling and 2 -year-old goldeye caught in May and June) were collected by towing two $1-\mathrm{m}^{2}$ trawl nets, one on each side of a boat powered by an outboard motor. The nets were tapered to a point 160 cm from the square frame. A $2-\mathrm{min}$ tow was made at each station with the motor at full throttle. Trawling was carried out 3-10 m from the bank in streams, and close to the shore (never more than 300 m from land) in lakes where water was $1.0-1.5 \mathrm{~m}$ deep.

In July and August of each year, samples of goldeye were collected with gill nets from the Mamawi-Claire Lake system. In 1974, they were collected in June and October from the upper Peace River near the towns of Peace River and Fort Vermilion. For each year and location samples ranged from 105 to 307 fish. These goldeye were weighed and measured fresh in the field. Scale samples were taken from below the dorsal fin of each fish and were dried for age determination in the laboratory. Sex was deter-
mined by anal fin shape in mature goldeye, and by examination of the gonads in juvenile goldeye. Sexual maturity was assessed by examining gonadal development and testing for the presence of ripe sexual products.

In order to determine the seasonal migrations of goldeye and the population dynamics of the adult stock, adult fish were either marked with coloured Floy tags or numbered spaghetti tags using a method described by Dell (1968), or they were fin-clipped. A total of 4375 goldeye, of which 480 were recaptured, were marked and released at Quatre Fourches during the study. Donald and Kooyman (1976) have discussed the merits of the tagging method in detail. Estimates of various population parameters were made by using mark. recapture data and Bailey's triple catch method or the Petersen method. The formulae for both methods were taken from Ricker (1975).

1. Distribution and migration of adult goldeye
Adult goldeye were first caught at Quatre Fourches during early March. Between March and break-up, three tagged goldeye were recovered by domestic fishermen in this area. These first catches indicated that during late winter some goldeye were moving into Chenal des Quatre Fourches from their wintering areas in the Peace River, although they could not enter the delta lakes, which were frozen to the bottom at this time of the year.

In the spring, shortly after break-up, goldeye which winter in the lower Peace River migrate into the Peace-Athabasca Delta to spawn (Fig. 2). During the study, break-up on the Peace River and Chenal des Quatre Fourches began during the last week of April and was essentially completed during the first week of May. Break-up in Mamawi Lake andLake Claire was completed one to two weeks later than in the rivers and channels. The earliest and latest dates for the beginning and the end of migration at Quatre Fourches were 4 May and 26 May. In 1972, the peak of the migration was on 21 May; in 1973 and 1974 it was on 11 May; and in 1975 it was on 14 May. The migration in 1972 was delayed because of construction of the dam at Quatre Fourches.

Tag recoveries on Rivière des Rochers during the spawning migration in 1974 and a spring survey for immature goldeye in Chenal des Quatre Fourches and Rivière des Rochers indicated that both rivers are used by large numbers of goldeye migrating into the Mamawi-Claire Lake system. A tag recovery from Richardson Lake in July 1973, and another in May 1974, indicated that the small population of goldeye which spawn in this lake also comes from the Peace River. The goldeye recovered in May had reached this location a maximum of 18 days after
being tagged at Quatre Fourches. Those fish which spawn in Richardson Lake migrate through Chenal des Quatre Fourches or Rivière des Rochers, Lake Athabasca, and the Athabasca River. Those which spawn in Baril Lake probably migrate into this lake through the Baril River, although it is possible that they could reach Baril Lake through a channel which joins this lake with Lake Claire.

Gill net catches at Quatre Fourches showed that the majority, if not all, of the goldeye migrated into the delta after break-up and after ice had cleared from the Peace River. Therefore, the spring migration may be initiated by completion of these events followed by increasing water temperatures in the Peace River. The delay in the spring migration following break-up minimizes the chances of goldeye being stranded in inland lakes during years when flooding occurs, and also ensures that fish will have open water conditions in the large delta lakes which freeze to the bottom in the late winter of most years.

The migration from the Peace River to Quatre Fourches can be upstream or downstream depending on spring water levels or the chamnel used. During the study, the migration from Quatre Fourches into Mamawi Lake was upstream.

Before the end of May mature goldeye migrate through Mamawi Lake and Prairie River, and reach all the shoreline areas of Lake Claire. However, gill net catches in the Mamawi-Claire Lake system in late May and early June indicated that not all goldeye undertake the complete migration from Quatre Fourches to Lake Claire. Many fish remained in the Mamawi Lake and Prairie River area.

During June, July and August adult goldeye were found throughout the Peace-Athabasca Delta. Goldeye tagged at Quatre Fourches during the spawning migration were recaptured in

Mamawi Lake, Prairie River, along the north, west, and east shores of Lake Claire, in the west end of Lake Athabasca, and in Richardson Lake. Catches of mature goldeye in the latter two lakes were very small in number compared with those from Mamawi Lake and Lake Claire.

Adult goldeye catches remained relatively low at Quatre Fourches throughout June and the first week of July, but increased thereafter, and reached peak numbers during the last week of July and the first week of August, indicating the summer migration to the Peace River was well underway. Catch records from Quatre Fourches and other stations throughout the delta indicated that this migration was essentially completed by the end of August (Fig. 2).

During late summer and fall, three tagged goldeye were recaptured near the junction of the Peace River and Chenal des Quatre Fourches (Fig. 1), and four were caught on the Peace River
near the mouth of the Jackfish River (about 164 km from Quatre Fourches). Tagged goldeye were also reported from the Peace River near Garden River (about 257 km from Quatre Fourches).

A total of 46 goldeye were caught in the lower Peace River in the fall of 1973 , of which three (6.5%) were tagged. It was determined that 5.8% of a much larger sample of 2123 goldeye, which were migrating from the Mamawi-Claire Lake system during the summer of 1973, had been tagged. The similarity of these two percentages suggests that most of the goldeye in the lower Peace River in September and October came from the Mamawi-Claire Lake system.

In 1974, no tagged goldeye were recovered from 154 adult goldeye caught in the Peace River downstream from the town of Peace River in June or from 113 adult goldeye collected near Fort Vermilion in October. There is an obvious
contrast between the above catches and the 12.4% tag recovery from 105 adult goldeye collected from the Peace-Athabasca Delta in July and August of 1974. The sample of goldeye taken near Fort Vermilion was collected upstream from the Vermilion Rapids and Falls (Fig. 1).
These rapids are probably a difficult, but not an impassable, barrier to fish moving upstream. There is evidence that goldeye taken upstream from these rapids differ in their life history (see following section) from those taken in the lower Peace River. The proportion of tagged fish taken in the two locations also differs. This suggests that the Vermilion Rapids and Falls separate two distinct populations of goldeye

A goldeye tagged at Cumberland Lake during a migration on the Saskatchewan River was recovered 4 days later, 177 km downstream at The Pas (Reed 1962). The Saskatchewan River, between Cumberland Lake and The Pas, is similar in size and current velocity to the lower Peace River. If it is assumed that goldeye can move 177 km downstream in 4 days, then goldeye wintering in the Peace River downstream from the Vermilion Falls could reach Chenal des Quatre Fourches within 7 or 8 days once the spring migration is underway.
2. Distribution and migration of juvenile goldeye
On 30 May 1972, large numbers of yearling goldeye were observed migrating into Mamawi Lake through a fishway at Quatre Fourches. There was no indication of any migration of young fish before this date. In late May of 1973 52 trawl samples were taken in an area whic included Lake Mamawi, Chenal des Quatre Fourches, Rivière des Rochers, Revillon Coupé, and Lake Athabasca. The young goldeye were concentrated near Quatre Fourches and in the Riviere des Rochers within a few miles of Lake

Athabasca, but had not reached Lake Mamawi Young goldeye were migrating into Lake Mamaw by 31 May. These data indicate that the spring migration of juvenile goldeye follows the migration of adult goldeye by 1 or 2 weeks,

Juvenile goldeye were abundant throughout the Peace-Athabasca Delta, and the lower Peace River in the summer (Table 2). The best catches in 1973 were obtained from the Mamawi-Claire Lake system. The Slave River was the only area where juvenile goldeye were rare. Gill nets set in Lake Claire in November failed to yield any goldeye, although net catches at Quatre Fourches showed the outward migration continued until December. Thus, at least some juvenile goldeye

remain in the delta well after most adult fis have returned to the Peace River (Fig. 2).

The main migration of juvenile and adult fish from the Mamawi-Claire Lake system back to the Peace River occurred after mid-July, a time when the flow direction in Prairie River, Chenal des Quatre Fourches and Rivière des Rochers was consistently toward the Peace River. Therefore the migration to the Peace River is a "downstream" movement of fish, but this becomes an "upstream" migration once the fish reach the Peace River.

3. Distribution of young-of-the-year

goldeye
Observations during 3 years indicated tha spawning in the Mamawi-Claire Lake system began approximately in mid-May and was essentially completed by the end of May, although a few fish spawned as late as mid-June. Apparently most spawning occurred over a 5-7 day period. Kennedy and Sprules (1967) noted that goldeye spawn in May or June, and that spawning continues for $3-6$ weeks. Goldeye larvae were first collected on 4 June 1972 and on

June 1973. On these dates the larvae were similar in appearance to the pro-larvae described by Battle and Sprules (1960), which indicated they had recently hatched. The incubation period asted 1 or 2 weeks at most.

In 1971, 1972 and 1973 the distribution of young-of-the-year goldeye was monitored by aking trawl samples in Quatre Fourches, Mamawi Lake, Prairie River and Lake Claire. Samples were collected from June to September n 1972, but only during July in the other years. The sampling data are summarized in Tables 3 and 4. Additional trawl samples were taken in Richardson Lake, Lake Athabasca, Rivière des Rochers, Baril Lake and the Baril River.

From June to July 1972, the number of young-of-the-year goldeye caught by trawling declined drastically throughout the study area (Table 3). For the remainder of the summer, the catch of young goldeye remained relatively constant. The decline in numbers probably reflects a high larval mortahity, a common phenomenon for most species of fish.

Throughout the summer of 1972 , following the initial decline, the abundance of young

Average number of young.oftheyear goldeye collected from sampling stations at Quatre Fourchea, Mamawi Lake, Prairie River and Lake Claire,
June-October 1972 and July 1977 and 1973^{*}.

Sampling dates	Quatre Fourches (west)			Mamawi Lake			Prairie River		
	X	S	N	$\overline{\text { x }}$	s	N	\bar{X}	s	N
June 4-161972							${ }^{29.30}$	57.90	10
June 20-26 1972	18.30	40.20	4	15.70	11.30	9	45.40	26.30	10
July 10-24 1971	0.00	0.00	11	0.20	0.42	10	3.32	12.63	34
Juyy $10-241972$	9.20	2.23		9.20	8.81	10	5.50	5.10	10
July $10-241973$	2.80	2.79	5	6.10	6.32	10	6.22	6.89	
Aug. 8-22 1972	5.80	53.44	5	9.90	14.75	10	3.00	4.34	10
Aug. 30-Sept. 141972		16.41		5.20		10	6.00	6.10	10
Sept. 21-27 1972	1.80	1.33	5	2.20	1.60	10	10.33	11.29	
	$\begin{aligned} & \text { Lake Claire } \\ & \text { (north atore) } \end{aligned}$			Lake Claire			Lake Clsire(south and east shores)		
	X	s	N	$\overline{\mathrm{x}}$	S	N	$\overline{\mathrm{X}}$	s	N
June 4-161972	3.78	7.38	13	${ }^{14.20}$	14.25	10	${ }^{3.89}$	7.65	
July 10-24 1971	6.25	10.82	4	${ }^{2.43}$	2.97	${ }^{7}$	${ }^{0.80}$	${ }^{0.98}$	
July 10-24 1972	${ }_{1.27}^{2.00}$	${ }_{2}^{2.29}$	16	${ }_{2}^{0.92}$	${ }_{2}^{2.13}$	$\stackrel{13}{13}$	1.57	3.27	14
Aug. 8-22 1972	135	1.34	14	1.75	3.00	12	0.57	090	1
Aug. 30 -Sept. 141972		1.3	$\underline{4}$				0.33	0.47	14

X , mean no.; S , standard devistion.
goldeye remained more or less constant in each of the designated areas (Table 3). Areas such as Quatre Fourches (west of the dam), where many larval goldeye were collected, had high densities of young-of-the-year fish throughout the ummer. Areas such as Lake Claire (east shore) where few larval goldeye were found, had low densities throughout the summer. This suggests that most young-of-the-year goldeye remain relatively close to the spawning areas, at least until they migrate from the delta.

In 1971 young-of-the-year goldeye were abundant in Lake Claire, but were virtually absent from Mamawi Lake. In all years goldeye were more abundant along the north and west shores of Lake Claire than along the south and east shores. In 1972 the areas of greatest bundance were Mamawi Lake and Quatre Fourches (west of the dam), and in 1973, Prairie River and Mamawi Lake. The differences reflect the areas where goldeye spawned in these years

In 1971 break-up occurred about 2 weeks earlier than usual. Mature goldeye entered the delta earlier, and were probably well into Prairie River and Lake Claire when water temperatures and other conditions suitable for spawning had developed. In 1972 the dam at Quatre Fourches probably delayed the spawning migration for a few days and provided quiet water conditions west of the dam. Afternoon water temperatures between 20 May and 27 May 1972 were above $12^{\circ} \mathrm{C}$ for at least 4 days. Kennedy and Sprules 1967) reported that goldeye begin to spawn in quiet waters when temperatures reach $10-13^{\circ} \mathrm{C}$. Thus conditions were suitable for spawning west of the dam at Quatre Fourches and in Mamawi Lake at the time when the inward migration of goldeye was at its peak. These observations indicate that the actual time and place of spawning is dependent on weather, and its effects on break-up and subsequent water temperatures.

Table t Distrilution of young.of. he-year goldeye in relation to distance

from the shore on Lake Clire ${ }^{*}$

The variability from year to year in the spawning location is unusual. Ripe goldeye are apparently "areal homing", rather than being "site specific" as are most salmonids

Table 4 shows the number of young-of-theyear goldeye collected in 87 two-minute trawl samples made at various distances from the shoreline on Lake Claire. All young-of-the-year goldeye were found within 1000 m of the shore line, over half of these within the first 150 m .

In June 1973, 20 trawl samples were taken in the west end of Lake Athabasca, Rivière des Rochers, Revillon Coupé, the Peace River, and Quatre Fourches (east of the dam). Only six larval goldeye were found in the samples, indicating that these areas were seldom used for spawning. Trawl samples taken in Richardson Lake and Baril Lake indicated that a small population of goldeye spawned in these areas.

When the variance (S^{2}) in numbers of organisms for a series of samples from a population is larger than the mean ($\overline{\mathrm{X}}$) number, the population is said to have a clumped distribution (MacArthur and Connell 1966). Young-of-theyear goldeye consistently displayed this distribu tion throughout the study area (Tables 3 and 4) This indicated that the young goldeye formed loose aggregations, although they did not form schools.

In general, trawl samples taken in Chenal des Quatre Fourches showed that young-of-theyear goldeye began to migrate out of the Mamawi-Claire Lake system sometime after mid July, and this migration continued until at least November. There was no consistent peak in thi migration in the 3 years in which systematic sampling was carried out. Sprules (1947) reported that young-of-the-year goldeye in the Saskatch ewan River Delta were moving into the outlet channels of the spawning lakes early in August, but he did not state when this migration was complete.

4. Year-class strength

Year-class strength can be determined from a selective type of fishing gear by accumulating annual catch data on each year-class from the time it becomes vulnerable to the fishing gear until all individuals of the year-class are dead. Although gill net samples from the adult stock in the delta were taken for only 4 years, these data can be interpreted in a general way. The 1964 and 1965 year-classes (fish which were 6 and 7 years old in 1971) were the dominant fish in samples collected between 1971 and 1974. During these years, they comprised a total of 30 and 25% of the catch, respectively. Both Kennedy and Sprules (1967) and Schultz (1955) have shown that strong year-classes will be well represented in the catch at least until they are 9 and 10 years old. These age groups were never abundant in the early 1970 's. This would suggest that the 1961, 1962, and 1963 year-classes were relatively weak. The 1966 to 1968 year-classes (fish which were 6 years old in 1972 to 1974) were also weak. Year-class abundance in the 1970's is probably related to the effects of the 1948 to 1960 commercial fishery.

Survey net samples of goldeye in 1973 showed the 1971 year-class comprised 92.4% of
the immature catch and about 90% of the tota population of goldeye which inhabit the delta. Other year-classes of immature goldeye were present, but were poorly represented.

There are probably several factors which could have contributed to the success of the 1971 year-class, but the most important may have been the number of fish spawning in that year. In 1971 a previously successful year-class, that of 1964 , entered the spawning population for the first time as mature (7 -year-old) fish. It has been previously argued that older year-classes were relatively weak, and consequently the spawning population in 1968, 1969, and 1970 would be small.

Two other factors may have been favourable for young goldeye in 1971. Mature goldeye entered the Mamawi-Claire Lake system about 1 or 2 weeks earlier than in 1972 to 1975 , and spawning was completed earlier, resulting in larger young-of-the-year goldeye at the end of the growing season in 1971 than in four other known years. The length of the growing season in this year combined with an abundance of food (Donald and Kooyman 1974) may have contributed to the success of this year-class.

The low water levels which existed through out the Peace-Athabasca Delta between 1968 and 1971 had no obvious detrimental effect on the goldeye population. The average and minmum water levels in May and the average water level during the summer were similar for all years between 1968 and 1971 (Peace-Athabasca Delta Project Group 1973). It is noteworthy that in 1964 the mean and minimum water levels in May were similar to levels in 1968 to 1971. The 1964 and 1971 year-classes were successful.

5. Sex ratio of adult goldeye

In 1971, 1972, 1973, and 1974 the adult catch consisted of $24,18,17$, and 41% adult female goldeye, respectively. The percentage of

Figure 3

The relationship bet ween age and length and weight of goldeye from the Peace-Athabasca Delta in 1947-48 (e) Data for 1947-48 from Kennedy and Sprules (1967)

females in 1947-48 (Kennedy and Sprules 1967) and in 1954 (Schultz 1955) was 59 and 49%, respectively. The differences between the 1974 and earlier years' catches were related to changes in the age structure of the population, but there is no obvious reason for the discrepancy in the male-female ratio in the early 1970's.

6. Growth rates of adult goldeye

Figure 3 shows the growth rates of goldeye from the Peace-Athabasca Delta in 1947-48 and 1973 and from the upper Peace River in 1974. In 1973 goldeye from the delta were larger than from this same area in 1947-48 and 1954 (Kooyman 1972). Goldeye from the delta in 1971, 1972, and 1974 were similar in size to those in 1973 . Consequently, the larger size of goldeye in the early 1970's may be due to a reduction in intraspecific competition for the available food resources during the 1960 's and early 1970 's,

a factor directly related to the small number of goldeye which were present in the delta.

Goldeye from the upper Peace River differed from those which inhabited the Peace-Athabasca Delta in three ways. First, goldeye from the upper Peace River were distinctly smaller at a given age than those in the Peace-Athabasca Delta (Fig. 3).Second, the age composition in the two areas was quite different. Third, a significant percentage of the mature goldeye in the upper Peace River did not spawn each year (Bishop 1974, and this study), as do the goldeye from Lake Claire and other areas in Canada (Kennedy and Sprules 1967). These characteristics indicate that goldeye in the upper Peace River belong to a distinctly different population from those found in the PeaceAthabasca Delta and lower Peace River.
7. Population dynamics of adult goldeye

The two seasonal migrations of a population of adult fish through the Chenal des Quatre Fourches provided an opportunity for markrecapture experiments, which furnished data for obtaining estimates of mortality, survival, recruitment, and the size of the population. Adult goldeye were tagged, primarily at Quatre Fourches in May of 1972, 1973, and 1974 during the spring spawning migration into the PeaceAthabasca Delta. From 1972 to 1975, recovery samples taken during the summer return migration and spring spawning migration of the following year were combined in order to obtain a large recovery catch. The number of goldeye which were tagged (M), and the size of the recovery catch (C) from which recaptured goldeye (\mathbf{R}) were obtained are given in Table 5.

Several requirements must be satisfactorily met if estimates of population survival, recruitment, and size are to be reliable. These requirements are: (a) marked fish must be randomly distributed throughout the population (b) marked fish should not lose their tags; (c) marked and unmarked fish must have the sam mortality rate; and (d) all fish must be equally vulnerable to the fishing gear. Donald and Kooyman (1976) have shown these requirements were either satisfactorily met or, in the case of tag loss, could be corrected.

The following population statistics can be estimated by using values for M, C, and R from Table 5, and formulae from Bailey's triple catch method and from the Petersen method (Ricker 1975). We define $\mathrm{N}_{1}, \mathrm{~N}_{2}$, and N_{3} as the population size in May 1972, 1973, and 1974, respectively; s_{12} and s_{23} as the survival rate from January 1972 to January 1973, and from January 1973 to January 1974; and r_{23} and r_{34} as the rate of recruitment from January 1973 to January 1974 and from January 1974 to January
Nabe 5 of goldeye marked, examined and recaptured during four

$\begin{aligned} & \text { Time } \\ & \text { period } \\ & \text { (t) } \end{aligned}$	$\begin{aligned} & \text { Goldeye } \\ & \text { new } \\ & \text { marked } \end{aligned}$	Coldeyed examined for marka	$\underset{\substack{\text { Recaptures } \\ \text { from } \\ \text { tmarking }}}{\text { ls. }}$	$\begin{gathered} \text { Recaptures } \\ \text { from } \\ \text { marking } \\ \text { marking } \end{gathered}$	$\begin{gathered} \text { Recaptures } \\ \text { from } \begin{array}{c} \text { rid } \\ \text { marking } \end{array} \end{gathered}$
May 1972	1375				
	(19)				
May 1973	1450	3291			
May 1974	(M2)	(C)	${ }^{\left(\mathrm{R}_{19} 9\right.}$		
May 1974		(c)			
${ }_{\text {May }}^{(t)}$	(M)	569		19	
(4)		(C)	$\left(\mathrm{R}_{14}{ }^{\text {a }}\right.$	(22) $^{\text {a }}$	(H_{3})

$1975(\mathrm{r} \geq 1)$. The values for these population statistics approximately are:

Petersen method

$$
N_{1}=100588 \quad \text { standard error }= \pm 14729
$$

Triple catch method
$N_{2}=37231 \quad$ standard error $= \pm 8000$
$\mathrm{N}_{3}=18190 \quad$ standard error $= \pm 5175$
$\mathrm{s}_{12}=0.37013$ standard error $= \pm 0.05890$
$s_{23}=0.49537$ standard error $= \pm 0.13583$
$r_{23}=0.94677$ standard error $= \pm 0.18978$
$\begin{array}{ll}\mathrm{r}_{23}=0.94678 & \text { standard error }= \pm 0.18978 \\ \mathrm{r}_{34}=1.11793 & \text { standard error }= \pm 0.25788\end{array}$
In theory, the rate of recruitment cannot be less than 1 . The r_{23} value was less than 1 , but nevertheless indicates that recruitment into the adult stock of the population was negligible between 1972 and 1973. This was confirmed by the age structure of the population. In 1972 and 1973,5 - and 6 -year-old goldeye were rare. These age classes are the primary source of recruitment into the "catchable" adult population.

The Petersen method provides a reliable estimate of the population size at the time of marking as long as there is negligible recruitment in the time interval between the mark and recapture samples. Therefore, under the prevail ing conditions of recruitment in 1972-73,

References

the population estimate $\left(\mathrm{N}_{1}\right)$ calculated by the Petersen method is reliable. This is confirmed when it is compared to an estimate of N_{1} obtained by using values from the triple catch method.

$$
\begin{aligned}
\mathrm{N}_{1} & =\mathrm{N}_{2} / \mathrm{s}_{12}\left(\mathrm{r}_{23}\right) \\
& =95235
\end{aligned}
$$

Mortality rate estimates can be obtained from catch data by plotting the logarithm of the number of fish at each age against age, and determining the mortality from the resulting "catch curve" (see Ricker 1975). Kennedy and Sprules (1967) found the "catch curve" mortality rate for Lake Claire goldeye in 1947-48 was 42% for fish 8-10 years old. More reliable estimates of mortality rates $(1-s)$ are obtained from mark-recapture data, and were 63% for 1973-74 and 51\% for 1974-75.

The dam at Quatre Fourches provided ideal conditions for a domestic fishery in 1973, but not in 1974 because the dam had washed out. In 1973, we examined 82 domestic catches, obtained 121 tags, and calculated that the domestic fishermen caught 4600 goldeye. The approximate fishing mortality would then be $4600 / 37231=12 \%$. Natural mortality would account for $63 \%-12 \%=51 \%$ of the total mortality. This value is identical with the 1974-75 estimate of total mortality which was obtained during a year when the domestic fishing was considerably reduced.

In 1954 the commercial fishery, using 3.75 in . (95 mm) mesh gill nets, produced an estimated 119000 kg (round weight) of goldeye from the Mamawi-Claire Lake system (Schultz 1955). If the average goldeye in this catch weighed about 450 g (an overestimate), and this fishery removed between 20 and 75% (fishing mortality) of the population, then the goldeye population at this time would have consisted of
between 350000 and 1300000 fish. The estimates of 100000,37000 and 18000 goldeye for 1972, 1973, and 1974, respectively, clearly indicate that the adult stocks are extremely small even though there has been no commercial fishing since 1966. The adult stocks in this population will probably recover by 1977 or 1978 , the years when the 1971 year class will be 6 and 7 years old.

Battle, H. I. and W. M. Sprules. 1960. A description of the semi-buoyant eggs and early developmental stages of the goldeye, Hiodon alosoides (Rafinesque). J. Fish. Res. Board Can. 17:245-266.

Bishop, F. G. 1974. Observations on the fish fauna of the Peace River in Alberta. Alta. Fish and Wildl. Ms. Rep. 30 p .

Dell, M. B. 1968. A new fish tag and rapid cartridge-fed applicator. Trans. Amer. Fish. Soc. 97:57-59.

Dirschl, H. J. 1972. Evaluation of ecological effects of recent low water levels in the Peace-Athabasca Delta. Can. Wildl. Serv. Occ. Pap. No. 13.28 p.
Donald, D. B. and A. H. Kooyman. 1974. Status of the goldeye (Hiodon alosoides) populations in the PeaceAthabasca Delta of Wood Buffalo National Park,
1971-1973. Can. Wildl. Serv., Ms. Rep. 63 p.
Donald, D. B. and A. H. Kooyman. 1976. Preliminary studies on the effects of tagging goldeye, Hiodon alosoides (Rafinesque). Can. Wildl. Serv. Ms. Rep.

Kennedy, W. A. and W. M. Sprules. 1967. Goldeye in Canada. Fish. Res. Board Can. Bull. 161.45 p.

Kooyman, A. H. 1973. Status of goldeye, Hiodon alosoides, populations in the Peace-Athabasca Delta. In Peace-Athabasca Delta Project. Ecological Investigations. Vol. 2. Information Canada, and Queen's Printer Edmonton, Alta.

MacArthur, R. H. and J. H. Connell. 1966.

The biology of populations. John Wiley and Sons, Inc., New York.
Nicman, D. J. and H. J. Dirschl. 1973. Waterfowl populations on the Peace-Athabasca Delta, 1969 and 1970. Can. Wildl. Serv. Occ. Pap. No. 17. 26 p.

Peace-Athabasca Delta Project Group. 1973. The Peace-Athabasca Delta Project. Hydrologic Investigations. Vol. l. Information Canada, and Queen's Printer, Edmonton, Alta.

Reed, E. B. 1962. Limnology and fisheries of the Saskatchewan River in Saskatchewan. Fish. Rep. No. 6. Fish. Branch, Dept. Nat. Res. Sask. 48 p.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can. Bull. 191. 382 p.

Schultz, G. H. 1955. A report of investigations of the 1954 goldeye fishery in Lake Claire, W ood Buffalo National Park, Alberta. Can. Wildl. Serv. Ms. Rep. 17 p.

Sprules, W. M. 1947. A management program for goldeye (Amphiodon alosoides) in Manitoba's marsh regions. Can. Fish. Cult. 2:9-12.

Townsend, G. H. 1975. Impact of the Bennett Dam on the Peace-Athabasca Delta. J. Fish. Res. Board Can. 32:171-176.

Other publications

in the Dccasional Papers

Series

No. 1

Birds protected in Canada under the Migratory Birds Convention Act. 4 th ed. Also available in French.
Cat. No. R69-1/1
No. 2
Canadian bird names, French, English and scientific. Bilingual publication.
Cat. No. R69-1/2
No. 3
Use of aerial surveys by the Canadian Wildife Service by D. A. Benson. Out of print.
Cat. 4
Queen Elizabeth Islands game survey, 1961 by J. S. Tener. Cat. No. R69-1/4

Age determination in the polar bear by T. H. Manning. Cat. No. R69-1/5
No. 6
A wildlife biologist looks at sampling, data processing and computers by D. A. Benson. Out of print.
Cat. No. R69-1/6
No. 7
Preliminary report on the effects of phosphamidon on bird populations in New Brunswick by C.D. Fowle. Out of print

No. 8
Birds of Nova Scotia-New Brunswick border region by G.F. Boyer.
Cat. No. R69.1/8
No. 9
Effects of dietary methylmercury on Ring-necked Pheasants, with special reference to reproduction by N. Fimreite.

Cat. No. R69-1/9
No. 10
Trends in populations af barren-ground caribou over the last two decades: a re-evaluation of the evidence by G. R. Parker.

Cat. No. R69-1/10
No. 11
The Canada migratory game bird hunting permit and related surveys by D. A. Benson.
Cat. No
No. 12
Observations on duck hunting in eastern Canada in 1968 and 1969 by H. J. Boyd.
Cat. No. R69-1/12

No. 13

Evaluation of ecological effects of recent low water
evels in the Peace-Athabasca Delta by H. J. Dirschl
Cat. No. CW69.1 / 13
No. 14
The Great Cormorants of eastern Canada by A. J. Erskine
Cat. No. CW69-1/14
No. 15
Distribution of barren-4round caribou harvest in
northcentral Canada by G. R. Parker.
Cat. No. CW69-1/15
No. 16
ird nigration forecasts for military air operations y H. Blokpoel.
o. 17

Waterfowl populations on the Peace-Athabasca Delta,
1969 and 1970 by D. J. Nieman and H. J. Dirschl.
Cat. No. CW69-1/17
No. 18
Gammaras predation and the possible effects of Gammaru and Chaoborus feeding on the zooplankton composition in some small lakes and ponds in western Canada by R.S. nderson and L. G. Raasveldt.
Cat. No. CW69.1 / 18
No. 19
A summary of DDE and PCB determinations in Canadian birds, 1969 to 1972 by M. Gilbertson and L. Reynolds
Cat. No, CW69.1/19
No. 20
Development of a simulation model of Mallard Duck
populations by C. J. Walters, R. Hilborn, E. Oguss,
.. M. Peterman and J. M. Stander.
Cat. No. CW69-1/20
se of museum specimens in toxic chemical research by A. M. Rick.
Cat. No. CW69-1/21
No. 22
mpoundments for waterfowl by W. R. Whitman
Cat. No. CW69-1/22
No. 23
Minimizing the dangers of nesting studies to raptors and ther sensitive species by R. W. Fyfe and R. R. Olendorff Cat. No. CW69-1/23
No. 24
Waterfowl damage to Canadian grain: current problems and research needs by L. G. Sugden

No. 25

Census techniques for seabirds of arctic and easter
Canada by D. N. Nettleship.
Cat. No. CW69.1/25
No. 26
Notes on the present status of the polar bear in James
Bay and Belcher Islands area by Charles Jonkel, Pauline
Smith, Ian Stirling and George B. Kolenosky.
Cat. No. CW69-1/26
No. 27
Limnological and planktonic studies in the Waterton Lakes, Alberta by R. Stewart Anderson and Roderick
B. Green.

Cat. No. CW6 69-1/27
No. 29
Birds and mammals of the Belcher, Sleeper, Ottawa, and King George Islands, Northwest Territories by
T. H. Manning

Cat. No. CW69-1/28
No. 29
Developments in PPS sampling - Impact on current
research by A. R. Sen.
No. 30
Dynamics of snowshoe hare populations in
Maritime Provinces by Thomas J. Wood
and Stanley A. Munroe
Cat. No. CW 69.1/30

