H. Boyd
G.E.J. Smith
F.G. Cooch

The Lesser

 Snow Geese of the eastern Canadian ArcticEnvironment
Canada

0016388A S
OCCASIONAL PAPER (CANADIAN WILDLIFE SERVICE)

Occasional Paper
Number 46
Canadian Wildlife Service

The Lesser Snow Geese of the eastern Canadian Arctic:
Their status during 1964-79
and their management
from 1981 to 1990
0016388 A S

Occasional Pa
Canadian Wildife Service
Aussi disponible en franças

471
C 3
N0.46

Contents

Issued under the authority of th
Minister of the Environment
Canadian Wildlife Service
(c) Minister of Supply and Services Canada 1982

Catalogue No. CW69-1/46E
ISBN 0-662-118308
ISSN-0576-6370
Design: Rolf Harder \& Associates

11 Table 5. Estimated kill of Lesser Snow Geese per 100 adult hunters in those states in the Central and Missis sippi flyways where substantial numbers of Lesser 12 Table Geese were taken, 1971-79
12 Table 6. Correlation of estimated hunting kill of Lesser Snow Geese in northern and central states of the Central and Mississippi flyways, 1971-79, with estimated population size in August and with local temperature in fall
12 Table 7. Lincoln Index estimates of Lesser Snow Geese in the eastern Canadian Arctic in August, $12 \quad$ Table 8. Lincoln Index estimates of Lesser Snow Geese in the eastern Canadian Arctic in August, 1964-7
$13 \quad$ Table 9 $13 \quad$ Table 9. Estimates of Lesser Snow Geese in winter in Mississippi and Central flyways, 1974-79 $14 \quad$ Table 10. Relative vulnerability of banded Lesser Snow Geese in their first year after fledging compared - Wihnta olderbirds markedin the same year 14 Table 11. Estimated annual survival of adult Lesser
15 Table 12. Estimated annual survival of young Lesser Snow Geese in first year after fledging, 1965-78 15 Table 13. Numbers of Lesser Snow Geese in the east$\frac{\text { ern Canadian Arctic in } 1973 \text { and during 1977-80 }}{16 \quad \text { Table 14. Estimates of numbers of eastern Arctic }}$ Lesser Snow Geese lost from one August Arctic and of numbers recruited to the flving stage $1964-78$ 17 Table 15. Models retating the total number of eastern arctic Lesser Snow Geese expected to be found in mid arctic Lesser Snow Geese expected to be form and to climatic variables
18 Table 16. Number of adults and young as dependent variables, using current year weather variables

Abstract

Résumé

Estimates of hunting kill, band recoveries, and aerial surveys of wintering places are used to describe the status of Lesser Snow Geese (Anser c. caerulescens) breeding in eastern arctic Canada during 1964-79. The population 1.35 million in 1966, a maximum of 3.3 million in 1974 and an average annual increase of 130000 birds. In winter the aerial surveys accounted for an average 1.1 million, with a mean rate of increase of 67000 birds each year. In the US, hunters killed an average of 356000 (range: $161000-575000$) geese each season in the Mississippi and Central fyways. In Canada, recreational hunters killed an average 47000 annually between 1964 and 1979 ,
though from 1975 that annual kill increased rapidly a
geese spent more time in southern Manitoba and southeast Saskatchewan and castern stocks spent less time around James Bay. The westward shift left Indian subsistence hunters with smaller kills: from 72000 in 1973-75 to less than 30000 in 1977-79. The mean annual survival rate of adults banded at three colonies was 77.1% (range: 67.6 3.4%): for geese in the first year after fedging the mea urvival rate was 44.2% (range: $23.2-71.2 \%$). The recorded hunting kill amounted to more than half of all
adult losses and about 43% of the losses suffered in the first year after fledging. The effects - on goose numbers and breeding - of weather in the breeding, staging, and wintering areas are compared with the impact of hunting and the age structure and behaviour of the goose population. There was a sustained upward trend in numbers which did not seem to be related to weather or
other population variables. These variables did, however predict yearly fluctuations about the trend. Weather in the breeding area at the onset of nesting, represented by mean une temperature, has the most effect on the production of young. Winter precipitation in the Gulf coast states affects he number of adults and their breeding success to a greater extent than spring temperatures and accumulated precipitation in the northern staging areas in the Dakotas the previous season also influences population size. There have been substantial changes in the distribution of the geese in fall, winter, and spring, initiated by the geese themselves. The numbers at particular breeding colonies changed considerably from 1973 to 1979 but the effective breeding population remained much the same. The gees are managing themselves with notable success. Wildlife gencies may be able to influence their distribution for the benefit of human users.

On a utilisé des estimations des prises des chasseurs, du nombre de bagues récupérées et des relevés aériens des lieux d'hivernage pour connaitre la situation de la Petite Oie blanche (Anser c. caerulescens) nichant dans la partie est de population movenne a été de 2,42 millions d'oiseaux, le niveau le plus bas ayant été de 1,35 million d'individus en 1966, et le plus ćlcvé, de 3,3 millions en 1974; l’augmentation annuelle moyenne est de 130000 individus. En hiver, grâce aux relevés aériens, on a compté une moyenne de 1,1 million d'oiseaux et évalué l'augmentation annuelle moyenne à 67000 . Aux États-Unis, les chasseurs ont tué en moyenne 356000 oies (de 161000 à 575000) chaque saison
dans les voies migratoires du Mississipi et du Centre Au Canada, les chasseurs sportifs ont pris en moyenne 47000 oiseaux par année entre 1964 et 1979, bien qu'à partir de 1975, le nombre de prises ait augmenté rapidement à mesure que l'oie passait davantage de temps dans le sud du Manitoba et le sud-est de la Saskatchewan, et que les populations de l'est demeuraient moins longtemps dans la région de la baie James. Par contre, ce mouvement vers I'Ouest a réduit 1 nombre des prises des autochtones qui chassent pour leur
subsistance : elles sont passées de 72000 en 1973-1975, à moins de 30000 en 1977-1979. Le taux annuel moven de moins de 30000 en 1977-1979. Le taux annuel moyen de
survie des adultes bagués dans trois colonies a été de $77,1 \%$ (de $67,6 \%$ à $93,4 \%$); le taux moyen de survie des jeunes un an après qu'ils aient acquis leurs plumes était de $44,2 \%$ (de $23,2 \%$ à $71,2 \%$). Les prises des chasseurs ont complé pour plus de la moitié de la mortalité chez les adultes et pour environ 43% des pertes chez les jeunes. Le rapport compare les
effets, sur les populations et la reproduction, des conditions météorologiques des aires de nidification, de repos et d'hivernage, avec les conséquences de la chasse et la pyramide d'âge et le comportement des populations d'oies blanches On a remarqué une tendance continue à la hausse dans les populations, laquclle ne semblait pas assujettie aux conditions climatiques ni à d'autres variables de population. Cependant, ces variables ont permis de prévoir les fluctual'aire de nidification au début de la période de reproduction, représenté par la température movenne de juin, quia le plus grand effet sur la production de jeunes. Les précipitations d'hiver dans le ELats côtiers du Golfe ont des répercussions plus marquées sur le nombre d'adultes et sur la réussite de la reproduction que les températures du printemps et l'ac-

Introduction

cumulation de précipitations dans les aires de repos des Dakotas et du sud du Manitoba. L'importance des prises de chasseurs américains influe également sur le chiffre de la population de l'année suivante. On a remarqué d'important changements dans la répartition des oies en automne, en hiver et au printemps, changements provoqués par les oies elles-mêmes. Les populations de certaines colonies ont variè
considérablement de 1973 à 1979 , mais la population reproductrice s'est maintenue pratiquement au même niveau. Les oies assurent leur permanence de façon remarquable. Les organismes de faune pourraient éventuellement influer sur la répartition de cette espèce à l'intention des utilisateurs.

Snow Geese are easier to find and count than most other geese, are abundant, and are growing in popularity as quarry for hunters. They have received a good deal of attention from researchers in northern Canada (see especially Cooke et al. 1981) and have been surveyed fairly systematically in Canada and in the US for unusually long periods - over 40 years on the Gulf coast.

This artic synthesis of some recent appraisals of the eastern arctic stocks of Lesser Snow Geese (Anser c. caeru-
lescens) i.e., those breeding in the colonies around Hudson Bay and Foxe Basin (Fig. 1). Boyd (1976a, b) described the methods used for estimating total numbers in August. Estimates of numbers in winter are obtained from aerial surveys organized by the US Fish and Wildlife Service (USFWS). Th national harvest surveys operated by the USFWS and Canaare also used in estimating abundance are we have rried to convey some f
tude of changes in a large, highly mobile population magnt to explain those changes. In contrast to the proper concern of scholarly biologists with detail and precision, this is a sketch with a broad brush, using unavoidably imprecise data to arrive at general impressions of the well-being of the entire eastern arctic st
In this

In this, as in earlier reports, the name "Lesser Snow Goose" is applied to geese of both the white and blue colour phases, for which the data and results are pooled.

```
\
```


Methods

1. Numbers in August

The August population of Lesser Snow Gcese is derived from the relationship
est. total no. geese, A
est. geese kill by hunters, K
no. geese banded, B direct recoveries of banded geese, D
so that. $\hat{\Gamma}=\frac{\hat{K} \cdot B}{D}$
where a "direct recovery" is one obtaincd in the first humting season after banding (Lincoln 1930). As not all banded geese which are shot are reported it is necessary to adjust for unn Boyd 1976b), wassume a constan anmul reporting rate of one-third, based on results for several species of gecse reported by Martinson and McCame (1966) and Heme (1967). So long as the reporting rate remains ncarly constant, cyen if unknown, A can be considered as an index. It the assumed reporting rate is too high the result will be an overestimate of the number of geese in the population.

The US and Canadian national harvest surveys proimto adult and first-vear biids according to the proportions found in the samples of tail feathers in the species composition survers. In previons estimates for $196+-73$ only he 1 is kill and US recoveries werc used (Boyd 1976 6). For 1974-79 direct recoveries and kill in both countries have becn used. The US kill estimates are limited to those reported from the Mississippi and Central Ilyways. Few Lesser Snow Geese ar hot in the Allantre ryway and nearly all hose shot me the Wrangel Island (Bellrosc 197(). In Canada the kill ol Hudson Bay Lesser Snow Gecse is virtually confined to the Jame Bay and eastern Hudson Bay coasts of Qucbec and Ontario, and to Manitoloa and southeastern Saskatchewan; geese that are taken firther west come from the western Arctic (1)\%ubin) Boyd, and Stephen 1975).

The estimator is $\hat{Y}=\hat{K} \times B / d \times 1 / 3$ where d is the number of direct recoveries reported and $1 / 3$ is the assumed culations are made for adult and first--year birds. K is ilic cstimated kill in the relevant parts of Canada and the USS. This cstimator provides an index of \hat{X}, rather than an absolute value. The accuracy and precision of the estimates have no aricd significantly apart from some improvement in the 48%) of the tolal annual kill
One of the fundamental assumptions of the aloove

Lincoln Index) method (Seber 1979) is that all animals have the same probability of being caught. During 1963-79 geese cre marked at only three colonies - La Pérouse Bay, Mani-1970-69-continuing); Cape Henrietta Maria, Ontario and 1977-78) - and non-breeders were under-represented because they had moved away from the brecding areas before becoming flightless. However, Dzubin (1974) and Dzubin el al. (1975) have shown that extensive mixing occurs away from the breeding areas; therefore, we assume that the dom with respect to colony of origin, though biased towards the killing of young birds. The recovery rate of geese wearing highly visible plastic neck collars is greater than that of geese carrving only leg bands. The recoveries of geesc collarwarked at the MrComell River in the 1960s have therefore been omitted from the calculations.

Given mbiased estimate of the variance of

$$
\left.\operatorname{var} \hat{\mathcal{H}}=\frac{(B+1)(B-1)}{\left.(D+1)^{2}(D)+2\right)} \right\rvert\,(\hat{K}+1)(\hat{K}-()+\operatorname{var} \hat{K} \mid
$$

This reduces to the estimate given on page 60 of Seber 1973) when \hat{K} is known, i.e., var $\hat{K}=0$

The calculated confidence intervals are so wide as 10 be of lithe assistance in discerning what may be happening, though they show that litle weigh should be given to appat ent changes from one year to the next.

2. Winter inventory

The wimer inventore estimates (ii) are the sum of the numbers found bu the USFW'S each wimer in both the Mississippiand Contral Hywass. Betore 1973, the actial sumers and fantur?. Since 1973 hey hate bech mad momed December. The eather count ming ine expected to lead to increased estimates, as huming contmues into January: ve when counts were made in both months the January Census, for the arcas to be searched are large and cont inually hanging , and it is hard to avoid underestimating very large aggegations of geese, whether in llight or at rest. Though to detanls ol the searches are published, so we do not know hon consisten and comparable they are, the winter men cory is still usetul as an index of relative abundance for the ion of lucuds.
Bord ($87(i, k)$ used an index of fall fight (F) obtained br adding the estimate of k ill (\hat{k}) oo the wimer total (\hat{i}) and
an adjusted index ($F^{\prime \prime}$) in which $1 \hat{i}^{\prime}$ was replaced by $\hat{i}^{1 /}$, using a correction factor olbtained from May censuses in 1973 and for 1974-79 (Fig. 4). Their chief merit is to confirm that in most vears the adjusted fall flight is of the same order as,
though smaller than, the estimated population size in
August.

Results and discussion

1. Kill in Canada

Tables 1 and 2 list estimates of the kill in 1964-79 of eastern arctic Lesser Snow Geese in Canada and the US. When practicable the national totals are split into numbers of adults and of first-winter geese, on the basis of the proportion of young geese found in the samples of goose tails in the national species composition surveys.

69 to 1974 Since 1975 , growing numberly constant from reported. The upward trend is equivalent to 6000 more geese being shot each year $(r=0.70)$. Table 3 shows a grea increase in the kill in Manitoba and southeastern Saskatche-
wan, partially offset by decreases in the kill in Ontario and western Quebec. Though there is no complete and continuing system for estimating the kill by native people, who are the reported take by the Crees of northern Quebec, which averaged 25300 in 1973-75, fell to 15000 in 1977-78, and only 4800 in 1978-79 (James Bay and Northern Quebec Native Harvesting Research Committee 1976, 1980). The committee estimated that other subsistence hunters took about 40000 eastern Lesser Snow Geese in 1973-75, the mation suggests that the kill of Snow Geese by native people in Ontario has also fallen, though not as much as in northern

Table 1

Estimates (in thousands) from the national harvest survers of the retrieved
kill of Lesser Snow Geese in the Missisisippi and Central lywayss (US kill) and
in southeasten in southeastern Saskatchewan, Manitoboa, Ontario, and western Quuber
(Canadian kill), 1974 - 79 . Kill partioned into adults (Ad) and first-winter (Canadian kill), 1974 --79. Kill partitioned into adults (Ad) and frst-winter
(1st w.) on basis of fage-atios in goose tails in the US and Canadian species

$\begin{aligned} & \begin{array}{l} \text { Breeding } \\ \text { vear } \end{array} \end{aligned}$	US kill			Canadian kill			Combined kill		
	Ad.	Istw.	Total	$\overline{\text { Ad. }}$	Istw.	Total	$\overline{\text { Ad. }}$	1 stw .	Total
1974	2478	168.9	416.7	22.5	19.8	42.3	270.3	188.7	459.0
1975	169.0 0388	357.5	526.5	34.3	43.2	77.5	203.3	400.7	604.0
1976 1977 198	$\stackrel{233.8}{ }$	137.2	371.0	26.4	16.8	43.2	260.2	154.0	414.2
1977	178.4	241.6	420.0	21.4	26.7	48.1	199.8	268.3	468.1
1978	255.6	67.3	322.9	38.6	14.9	53.5			976.4
1979	190.5	306.2	496.7	40.1	69.7	115.8	236.6	375.9	612.5
Mean	212.5	213.1	425.6	31.6	31.9	63.4	244.1	245.0	489.0
SE	37.7	108.9	76.0	9.8	21.2	28.7	37.8	126	98.1

 The Cana

Ycar	Ont and	Man and	
Year	Que.	SE Sask.	Total
1969	19.2	11.9	41.1
${ }^{1977}$	19.0 19.3	10.4 9.8	29.4
1972	8.6	15.8	24.4
1973	17.2	22.4	39.6
1974	15.5	26.8	42.3
1975	24.2	53.3	77.5
1976	10.5	32.7	43.2
1977	9.1	39.0	48.1
1978	7.5	46.0	3.5
1979	14.8	101.0	115.8
Mean*	15.9	39.8	47.0
SE	6.9	28.2	29.4
Regression			
onyrs., r	-0.61	0.79	0.70

[^0]Table 4
Numbers
arcic
sel successfiul hunters of geese in provincial zones visited by eastern
ser Snow Geese. 1974-79, and their average scason kill of Lesser

	1974	1975	1976	1977	1978	1979	mean	SE	r	Ann. gain
Goose hunters										
Ont., 03(N)	2752	3656	2742	3951	2803	4821	3454	846	0.57	25
Man., $02(\mathrm{~N})$	4050	5147	5578	4749	5530	6271	5221	765	${ }^{0.80 *}$	326
$01(8)$	12469	19010	14250	11199	17551	21255	15956	3941	0.49	043
Sask., 03(SE)	5687	7881	7948	7278	8624	8872	7715	1145	0.82^{*}	500
Total	24958	35694	30518	27177	34508	41219	32346	5988	0.66	2126
Av. kill of L. Snow Geese										
Ont., 03(N)	3.46	4.90	3.49	1.47	2.45	1.74	2.92	1.28	$-0.75{ }^{*}$	0.51
Man., 02(N)	0.50	1.17	0.41	0.70	1.15	1.45	0.90	${ }^{0.42}$	0.63	0.14
	1.78	2.44	2.08	2.48	1.91	4.13	2.47	0.86	0.66	0.30
Sask, 03(SE)	0.29	0.13	0.09	1.11	0.72	0.35	0.45	0.39	0.42	0.09
Total	1.42	2.00	1.38	1.65	1.53	2.63	1.77	0.48	0.55	0.14

Table 5 Estimated kill of Lesser Snow Geese per 100 adul hunters in those states in the Central and Mississippi flyways where substantial numbers of Lesser Snow Geese were taken, 1971-79.										
Flyway state	1971	1972	1973	1974	1975	1976	1977	1978	1979	Mean
N. Dak.	116	72	136	167	228	147	200	128	220	157
${ }_{\text {S }}^{\text {S. Daks. }}$	${ }_{8}^{90}$	$\frac{62}{7}$	74 18	64 36 36	91 13	38 19	85 13	$\begin{array}{r}31 \\ 8 \\ \hline\end{array}$	$\begin{array}{r}65 \\ 14 \\ \hline\end{array}$	67 15
Nebr.	19	14	36	37	42	11	${ }_{29}$	${ }_{23}$	39	${ }_{26}$
Tex.	40	55	91	63	106	95	95	49	94	76
Cent. Flyway	-	-	57	57	80	58	69	43	76	63
Minn.	18	12	10	28	9	4	6	3	30	
lowa	66	54	48	55	59	24	41	31	77	51
Mo.	41	22	34	48	61	17	29	16	${ }^{25}$	33
La.	39	27	75	39	60	47	49	67	39	42
Miss. Flyway	-	-	19	19	18	12	14	16	21	17

Quebec: in 1977-79 native people took no more than 30000 . These reductions appear to be due to smaller numbers of Lesser Snow Geese staging in fall in those parts of th shore of eastern Hudson Bay and James Bay frequented by Indian hunters. That shift may also account for the decreascommercial hunting camps along those coasts (Boyd and Wendt, in press).

The changes in kill are related to the estimated numbers of successful goose hunters in the zones where most eastern arctic Lesser Snow Geese are taken (Table 4). Because the information on goose-hunting effort was formerly estimated in a different way it is only practicable to examine data for the six seasons 1974-79, so that the reduced (for $n=6$ and $p<0.05, r>0.707$). There has bee a general increase in successful goose hunters in all four zones, proportionately most evident in Manitoba and southeastern Saskatchewan. Many of these hunters are taking other geese, perhaps exclusively. The average kill of Lesser Snow Geese has increased in Manitoba but decreased in northern Ontario, consistent with the changes in the total provincial kill of this goose

2. Kill in the US

Over the 16 years 1964-79 the estimated kill in the Mississippi and Central flyways averaged 356000 , ranging from 161000 in 1968-69 to 575000 in 1970-71 and showing a small though significant increase over time ($r=0.566$, $p<0.05$), equivalent to 4.0% of the mean annual kill. Most
of the increase has been in the Central Flyway (Table 5), and particularly in the north central states, with a marked decline in recent years in the central tier (Kansas, Nebraska, Missouri). On the Gulf coast there have been large fluctuations in the size of the kill, both absolutely and in proportion to the vest due to "short stopping" that was feared in the early 1970 s and which prompted much of the US interest in these geese seems to have been prevented
Though it is not possible to determine from the USFWS harvest surveys how many of the waterfowl hunters in a state were seeking to kill Lesser Snow Geese, it is of some interest to relate the kill to the numbers of adult hunters (Table 5). The five states with the largest kills are also
those with the highest kill per hundred hunters in 1971-79. In descending order they are North Dakota (157), Texas (76), South Dakota (67), Iowa (51), and Louisiana (42). If the number of hunters is used as an index of hunting effort, it is notable that none of the states with a substantial kill of Lesser Snow Geese showed a significant trend in yield for effort dur ing 1971-79.

To understand the population fluctuations of the geese it is more important to consider the extent to which the lation in August. The first column of Table 6 shows that in the west north central region there was a strong correlation between population size and kill ($r=0.843$), with significan correlations also for several, but not all, individual states. The second column of Table 6 shows that the size of the kill in the west north central region was also strongly correlated
partial correlation coefficients (col. 3 and 4) suggest that the kill in Minnesota and Iowa was affected by local temperature rather than by the size of the fall fight. Presumably seasonably high temperatures encourage geese to remain longer in the northern states.

The kill in Louisiana and Texas was not simply related to the size of the population in August, whether or not kill in Canada and the northern states is included. The souththe Gulf states or in the more northerly fall staging areas. Perhaps this lack of fit reflects the consequences of extending the southern season into late January in recent years, so as to increase hunting opportunities.

Table 6

Correlation of estimated hunting kill (K) of Lesser Snow Geess in the
northern and central states of the Central and Missisispi flyways, $1971-79$,
with estimated population size in August (N) and with local temperatures in with estuma
fall (T)

State, region	$r_{\text {N }}$	${ }_{\text {T }}$	$r_{\text {KN, } T}$	${ }_{\text {KTI.N }}$
N Dak.	0.784^{*}	0.584	0.646	0.145
S. Dak.	0.411	0.448	0.284	0.241
Mim.	0.352	$0.803+$	-0.295	0.812
Iowa	${ }^{0.095}$.	${ }^{0.793+}$	-0.490	0.875
Nebr, Kans.	0.633^{*}	${ }^{0.372}$.	0.552	0.045
Mo.	0.608 •	0.640^{*}	0.617	0.651
West North Central Region	$0.843 \dagger$	$0.836 \dagger$	0.768	0.621

West Nor - Signifcant a l level $P=0.05$.
$+P=0.01$.

$0.843 \dagger$	$0.836 \dagger$	0.768	0.621

$+P=0.01$.
Table 7
Lincoln Index estimates (in thousands) of Lesser Snow Geese in the eastern
Canadian Arccic in August, $1974-79$, based on samples from banding at La

estimates
McConnell River.

$\begin{aligned} & \text { Banding } \\ & \text { yr. and } \\ & \text { place } \end{aligned}$	Adults (more than 1 yr . old)				Young (just prior to fledging)				$\begin{aligned} & \text { Total no } \\ & \bar{N}=\hat{N}_{\mathrm{a}}+\hat{N}_{\mathrm{l}} \end{aligned}$
	Banded	Recov'd	Est. no	SE(\hat{N}_{a})	Banded	Recovd	$\begin{gathered} \text { Est. no. } \\ N_{1} \end{gathered}$	SE($\left(\hat{N}_{1}\right)$	
1974	3014	110	2469	681	2451	186	829	173	3298
1975	1470	76	1311	428	3930	349	1504	229	2815
1976	1858	87				355	546	82	2397
1977	2141	89	1602	488	3745	330	1015	159	2617
1978	2213	101	2149	636	3010	244	338	62	2487
1979	5103	141	2854	701	8027	487	2065	271	4919
McConnell River \& LPB and CHM									
1977	18164		2283	288	12846	877	1310	128	3593
1978	44649	1223	3580	302	13803	1072	353	31	3933

Table 8

 2 and on recoveries from samples banded at the McConnell River, NWT , in

$\overline{\text { McConnell River }}$

1964	1443	49	975	657	24	860	1835
1965	6745	223	1050	4851	205	789	839
1966	400	37	554	4052	327	797	351
1967	${ }_{8716}^{2421}$	103		3427	${ }^{274}$	497	63
1968	8716	154	2228	1217	123	140	2368
Mean			193			617	1811

Meantob-68

12

3. Numbers in August

Tables 7 and 8 list estimates of the numbers of adult and young geese in late summer derived from the estimate of kill in Table 2 and records of geese banded and direct ecoveries. The estimates derived from banding at the pooled results of banding at La Pérouse Bay (LPB) and Cape Henrietta Maria (CHM), because the probability of recovery and the extent of mixing are likely to be different. Figure 2 suggests that the 1964-68 McConnell-based estimates are compatible both with the LPB-CHM estimates for 1969-78 and with the 1977-78 McConnell-based figures. Yet the results from the McConnell banding lead to the infere series suggests little growth, if any. The large discrepancie between the alternative estimates for the years 1977 and 1978 seem to result from low recovery rates for the geese banded at the McConnell River colony.

The estimates for adults show much the same trends as those for total numbers. The numbers of young geese show no time trend over the series as a whole ($r=0.025$) for the LPB-CHM series of 1969-78. From McConnell band($r=0.411$) when the 1977 and 1978 estimates are included

Yearly variations in the weather at breeding areas eem to have had an effect on breeding, as well as the trend in adult numbers discussed later. Yet it is worth remarking

Figure 2
Lincoln IIdex estimates of the total number of Lesser Snow Geese in the
eastern Canadian Arctic in Augus, 1964-78 eastern Canadian Arcicic in August, 1964-78

the existence of an inverse correlation ($r=-0.486$) between the estimated numbers of adults and of young, just significant at the
4. Numbers in winter

The inventory made by searches and counts from light aircraft in the US wintering areas suggests a substantial rate of increase during 1965-80 (Fig. 3 and Table 9), with a peak in 1977, when the numbers recorded in the winter inventory represented about 75% of the Lincoln Index estimates for the preceding August. On average for the entire period the winter inventories account for only about 50% of be accounted for by hunting between August and December

5. Numbers in fall

Fall fight indices (F) have been calculated for 1974-79 by adding the Canadian and US kill to the winter -inventory total. An adjusted fall fight index (F^{1}) was obtained by multiplying the winter estimate by the factor
1.58 derived by Boyd (1976b) from a comparison of winter surveys and inventories along the Hudson Bay coast in May 1973 and 1974. As Figure 4 shows, the numbers were larger in recent years than in 1964-68, reflecting the upward trends in the winter inventories and, to a lesser degree, in the recorded kill.

Another way to estimate an annual index of population size is to use survival rates of banded geese. That method requires the following information about the relative abundance of young birds.

6. Age-ratios

The Lincoln Index estimates of the numbers of adult and nearly-fledged goslings yield estimates of the age ratio. $\oint(\%)=100 \hat{N}_{\mathrm{y}} /\left(\hat{N}_{\mathrm{a}}+\hat{N}_{\mathrm{y}}\right)$. A second and third set can be derived from the age-ratios in the tail fans of shot geese sen
in to the CWS and USFWS species composition surveys, in to the CWS and USFWS species composition surveys, geese to the gun. There are also field counts made on the US Gulf coast (Lynch and Singleton 1964 and later USFWS

 Number of eastern arctic Lesser Snow Geese in fall, estimated from adjusted
winter inventry and from hunting kill, $1964-79(F$, index of fall fight; $; F$,
adjusted index)

reports). Figure 5 compares these four sets of data. The Lin coln Index estimates are not independent of those from the species composition surveys, for it will be recalled that the estimate \hat{K}, so that the resemblance between the variations in
those age-ratios might be expected. The very strong correla Index) and the observed ratio in counts of geese flocks on the Gulf coast in late fall $(r=0.912$) is more useful, helping to confirm the reliability of both measures. The correlations between the observed Gulf coast ratio and those in the Cana dian tail samples ($r=0.900$) and the US tail samples $(r=$ 0.932) are of the same high order.

Recovery rates and vulnerability

Suppose B_{a} and B_{1} are, respectively, the numbers of adult and juvenile geese banded, and d_{a} and d_{1} are the num-
$\underset{\substack{\text { Figure } \\ \text { Proporion }}}{\substack{\text { and }}}$
Figure 5
Proforion of young eastern arciti Lesser Snow Geese in the Canadian and
US kill and in in focks wintering in the Gulf coass slates compared with propor ion in August obtained from Lincoln Index estimates

bers of adult and juvenile direct reported recoveries from these bandings. These have already been used to estimate \hat{N} vulnerability of young geese to the gun, using the vulnerabil ity quotient $V=d_{1} \cdot B_{1} / d_{\mathrm{a}} . B_{\mathrm{a}}$ (Bellrose in Hanson and Smith 1950). The annual values of such a quotient are susceptible to chance variations in the numbers of banded geese reported so are widely scattered around the period means (Table 10), which themselves vary considerably. This reflect a relative poor correlation between the direct (first-year) more than a year old when marked.

8. Mortality and hunting kill

A thorough investigation of the methods of estimating the survival of western arctic Lesser Snow Geese banded since 1964 was made in 1979-80 by G. Buter (unpubl.), who found differences in the reliability and robustness of the mertival of white- and blue-phase geese from some colonies and rather small differences between the survival rates of males and females. We have made one estimate for all adults and young marked at any one colony in one year (Tables 11 and 12, Fig. 6). Wherever possible we used the "maximum likelihood method" of estimation (Seber 1973, Brownie et al 1978), and Ricker's (1975) method to calculate some additional values.
n compiling the data for estimating recovery and survival rates Butler used only records of geese shot in Seprelatively few. There is litule correlation between the direct

Table 10
 Table 10 Relative yulnerability of banded Lesser Snow Geesse in their first year afier
 Relative yulnerability of banded Lesser Snow Geese in their first year fedging. compared with that of older birds marked in the same ycar: and

$V_{\left.=\left(d_{1} / B_{1}\right) / A_{2} / B_{2}\right)}$

$$
\underset{\substack{\text { LPB/CHM } \\ \text { pooled }}}{\text { V }}
$$

McConnell $\quad \begin{gathered}\text { LPB/CHM } \\ \text { pooled }\end{gathered}$					${ }^{\text {LPB }}$	CHM	Pooled	$\xrightarrow{\text { McComell }}$
Year	v	Year	v	Ycar				
1964	1.08	1969	3.19	1974	1.54	1.74	2.08	
${ }^{1965}$	${ }^{1.28}$	1970	2.18		1.38 2.01 201	2.18 1.73	1.72 2.01	
${ }_{1067}^{1966}$	0.87	1971	1.80	19976	2.01	1.73	${ }_{2}^{2.01}$	
${ }_{1968}^{1967}$	1.88 5.72	1972 1973	${ }_{2.36}^{2.05}$	1978	$\underline{2.28}$	1.39 23	2.14 1.78	$\underline{2.91}$
Mean	1.21 .		2.61		1.74	1.99	1.95	2.60

Table 11

stimated annual survival (\%) of adut Lesser Snow Geese (more uhan 1 - year
old at banding), $9665-78$. Estimates by G. Buler, using "maximum likeli-
hood models', excepf for those shown in italic type, which were calculated
using Ricker's sexthod. Survival estimate refers io 12 following months, c.g.

Bandingyear	Banding location						$\begin{gathered} \text { Arithmetic } \\ \text { meann } \\ 3 \end{gathered}$
	McConnell River		La Pérouse Bay		C. Henrictua Maria		
	3	SE	;	sE	3	sE	
1965	69.46	7.18	-	-	-		(69.5)
${ }_{1966}$	67.47 7896	7.11					(67.5)
1968	78.28	6.15	-	-			(76.3)
1969	68.99	8.35	${ }_{91.37}$	23.60	98.58	11.07	86.3
1970	68.35	7.19	74.27	8.38	60.17	7.16	67.6
1971		-	80.64	8.75	10.64	14.13	91.6
1972	-	-	75.57	7.10	67.62	8.61	71.6
1973	-	-	99.63	10.83	96.18	10.05	93.4
1974		-	70.98	9.91	64.31	8.23	67.6
1975		-	92.17	12.97	88.96	15.26	90.6
1976			77.41	12.08	64.41	12.02	70.9
1977	84.8t	3.58	59.00	10.60	96.15.	17.88	77.6
1978	-	S	68.94	15.68	70.76	17.69	69.9
Arithmetic mean	$\begin{gathered} 71.47 \\ (1965-70) \end{gathered}$		$\begin{array}{r} 78.08 \\ (9699-78) \end{array}$	2.81	$\begin{array}{r} 80.98 \\ (1969-78) \end{array}$	3.80	$\underset{(1969-78)}{78.7 \pm 3.4}$

Table 12

"ls" except for hose in italic ype, which were calculated using Ricker's

mechod.
july 1966

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{$$
\begin{aligned}
& \text { Banding } \\
& \text { year }
\end{aligned}
$$} \& \multicolumn{6}{|c|}{Banding location} \& \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Arithmetic
mean
\vdots}}

\hline \& \multicolumn{2}{|r|}{McConnell River} \& \multicolumn{2}{|r|}{La Pérouse Bay} \& \multicolumn{2}{|l|}{C. Henrieta Maria} \& \&

\hline \& \% \& sE \& S \& sf \& ${ }_{3}$ \& ${ }_{\text {sE }}$ \& \&

\hline 1965 \& 50.80 \& 34.24 \& - \& - \& \& - \& \& (50.8)

\hline 1966 \& 28.79 \& 2.68 \& - \& - \& \& \& \& (28.8)

\hline 1967 \& 23.13 \& 2.44 \& - \& - \& - \& \& \& (23.1)

\hline 1968 \& 50.34 \& 4.99 \& \& \& \& \& \& (50.3)

\hline 1969 \& 35.83 \& t.74 \& 44.90 \& 6.56 \& 31.79 \& 2.53 \& \& 37.5

\hline ${ }^{1970}$ \& 52.06 \& 7.27 \& 37.36 \& 4.11 \& 40.66 \& 4.83 \& \& 39.0

\hline 1971
1972 \& 二 \& = \& 46.85
39.01 \& 5.86
386 \& 52.49
58.24 \& 23.42 ${ }_{8}$ \& \& 49.7
48.6

\hline 1973 \& \& \& \& \& \& \& \&

\hline 1974 \& - \& - \& 36.24 \& 5.35 \& 36.12 \& 7.36 \& \& 36.2

\hline $\begin{array}{r}1975 \\ 1976 \\ \hline\end{array}$ \& \& - \& ${ }_{5}^{64.06}$ \& 7.90
893 \& 78.34

2008 \& ${ }_{7}^{13.91}$ \& \& | 71.2 |
| :--- |
| 4.8 |

\hline 1977 \& 61.47 \& 3.85 \& 58.45
42.96 \& 8.93
7.76 \& ${ }^{29.08}$ \& 7.44 \& \& 43.8
59.3

\hline 1978 \& 寺 \& 8,8 \& 2S. 80 \& 6.97 \& 27.29 \& 11.50 \& \& 28.0

\hline Arithmetic mean \& $$
\begin{array}{r}
39.82 \\
(1965-70)
\end{array}
$$ \& 13.00 \& \[

$$
\begin{array}{r}
47.43 \\
(1969-77)
\end{array}
$$

\] \& 2.18 \& \[

$$
\begin{gathered}
56.78 \\
(1970-77)
\end{gathered}
$$

\] \& 4.67 \& \[

$$
\begin{gathered}
(1965-78) \\
(1969-78)
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 44.0 \\
& 46.5 \pm 12.5
\end{aligned}
$$
\]

\hline
\end{tabular}

Figure 6
Figure 6
Ancual survival of daduls and first-year Lesser Snow Geese, estimated from
recoveries of Lesser Snow Geese banded at Mc Connell River, $19644-69$ and
recoveries of Lesser Snow Geese banded at McConnell River, 1964-69, and
at La Pérouse Bay and Cape Henrieta Maria, $1969-78$

recovery rates and the corresponding mortality rates
$=\mathrm{I}-\hat{\mathrm{s}}):(n=14 ; r=0.212$ for adults, -0.035 for young $)$ Pbanded gecse and that of the population are ther the mortality rates nor the direct recovery rates are significantly correlated with the size of the US kill: for $\hat{m}, r=$ 0.122 for adults, 0.067 for young: for $d, r=0.159$ for adults, 0.269 for young ($n=14$)

The Lincoln Index estimates of population size can be used to derive another crude measure of survival, the ratio of August of year Those survival iudices, which inolve a ture of adult and first-vear survival, have a 14 -year mean of $74.2 \pm 21.5 \%$, Falling as low as 39.7% in $1974-75$ and apparently exceeding 100\% in 1967-68 and 1978-79. The corresponding mean and range for the survival of banded geese can be obtained by weighting the adult and first-year estimates by the numbers of newly-marked adults and young
(though this is not equivalent to the ratio of adults to young

Table 13
Numbers (in housandss) of Lesser S Sow Gecse in the castern Canadian Arctic
in 1973 and during 1977-80. Counns froma cerin) the arcas in June. 1973 results from Kerbes (1975). Later counts of from R 4

	1973	1977	1978	1979	0
S. Hudson Bay	65				
W. Hudson Bay	390	93	332	$283 *$	263
Southantion Is.	156			214	
Baffin Is.	447			455	
Total	1057		-	1069	

Total 1057
in the total population). The pooled 14 -year mean survival of banded geese is $65.8 \%+11.0 \%$. Again, there is no hit between the two annual survival estimates obtained in thes wo different, though not independent, ways: $r=-0.009$. There is no association between "Lincoln Index" mortality
rates and the size of the US kill ($r=0.080$).

9. Numbers of breeding Lesser Snow Geese

Kerbes (1975) reported on a photographic inventory f breeding geese in 1973 and on the recent history of the colonies around Hudson Bay and Foxe Basin. Photographic inventories conducted in 1978-80 are being reported in detail elsewhere by the scientists responsible but Table 13 ummarizes the relevant results. The most interesting, yet 1979 was much the same size as in 1973 , about 1.06 million birds. Although the number of geese at the Cape Henrietta Maria colony had nearly doubled, from 59000 to 110000 birds (H.G. Lumsden, pers. comm.) and the population on Southampton island had increased from 156000 to 214000 he McConnell River colony declined after 1977. Though no aerial survey of that colony could be made in 1979 it was sur bout 283000 geese for 1979 The reduction of 39% from 977 to 1980 at the McConnell River group of colonies is the most rapid large decrease yet recorded. R.H. Kerbes, A Reed, H.G. Lumsden, and others will discuss the reasons fo hat and other changes in another place
The aerial photographs taken in June do not provide total census because large numbers of non-breeding gees enot recorded. These geese tend to ly away at the
approach of the survey aircraft, while the breeders remain. Also, other non-breeders have already moved away from the nesting places. Kerbes (097) estimated that in summer 1973 mate how many non-breeders there were in summer 1979 until reliable estimates of the total numbers that year have been obtained.

10. What is there to account for?

Figure 7 compares four population indices derived from data in earlier sections, using a standardized base, the have already been described. The fourth, labelled "survival," was obtained by starting with a population arbitrarily put at 1 million, using the Gulf coast age-ratios to reflect the proportion of young geese entering each year and using the pooled annual survival rates of banded birds, the rates for adults and young being applied to the appropriate cohorts, to determ

It is a reflection of the similarity of the trends shown by the four indices, after 1968, that they had to be plotted in pairs, rather than all on one graph, in order to be distin-
guishable. The resemblance between the plots of winter inventory and fall fight, especially the large fluctuations of 1975-78 is, of course, due to both of them being derived from the winter counts. The high values of the "survival" only around 60 are puzzling The importani general result is that, despite individual deviations, all four indices show an upward trend over most of the period. The annual rates of increase are of the order of 5%, and are arithmetic, rather than exponential.

An alternative way of looking at the changes over the period is by means of a loss-and-recruitment account (Table 14), derived from the Lincoln Index estimates. This suggests

Figure 7
Comparison of population estimates in summer, fall, and winer, and from
Comparison of population estimates in summer, fall, and
survival estimates. Each index uses $100=$ period mean

Tabimates of mumbers (in thousands) of eastern arctic Lesser Snow Geese lost from one August to the next and of numbers then recruited to the flying stage, $1964-78$.				
$\begin{aligned} & \text { Year } \\ & t \rightarrow t+1 \end{aligned}$	$\begin{gathered} \hline \text { Initial } \\ \text { stick } \end{gathered}$	Losses	$\begin{gathered} \text { Recruits } \\ \text { in } i+1 \end{gathered}$	Net change
$1964-65$	1835	781	789	
1965-66	1839			-488
1966-67	1351	195	497	+302
1967-68	1653	-575	140	+715
1968-69	2368	886	667	-219
1969-70	2149	165	1036	+871
1970-71	2902	1431	531	-900
1971-72	1897	654	220	-434
1972-73	1693	208	1025	+817
1973-74	2499	34	829	+795
1974-75	3298	1987	1504	-483
1975-76	2815	964		-418
$1976-77$ $1977-78$	${ }_{2617}^{2397}$	795 468	1015 338	+ +130 -130
1977-78	2617	468	338	
				$\begin{array}{r} +3728 \\ { }_{-3072} \end{array}$

of the imprecision of the estimates. The point of interest in Table 14 is the repeated alternation between net gains and losses after 1 or 2 years, with no long runs. The same characteristics are exhibited in the production of young (Fig. 5) and

11. Effects of climate on breeding success and survival

The breeding of arctic-nesting geese is adverselv affected by persisting snow cover: if extensive snow remains until mid June, nesting may not be attempted at all. Recent evidence suggests that drought in northern spring staging areas lowers the breedng performance of Lesser

There are no weather stations with long runs of records situated close to northern nesting colonies of Lesser Snow Geese, though the one at Churchill is only about 60 km from the perimeter of the small colony at La Pérouse Bay. The other stations used here are at Chesterfield, Coral Harbour, Hall Beach, and Longstaff Bluff, the two latter began io operate only in 1958 and 1961 respectively. As there are few detaled records of the dates of first laying or full occupation
at the northern colonies there is little point in trving to use at the northern colonies there is little point in trying to use
daily weather data. Pooled monthly mean temperatures for May and June, together with the depth of snow cover on Ma 31, are used here as indices of the severity of conditions. For conditions on the spring staging areas in southern Mamitoba and the northern midwest states and in the winter quarters the indices are derived from monthly records of temperature and precipitation.
There is no reason to expect a strong or a linea relationship between these area weather indices and the
performance of the geese, such as emerges from the long continued study of the gesce at La Perouse Bay (Cooke e (al. 1981). As the data summarized in Table 1 and Figure 5 have shown, substantial year-to-vear vanations in breeding success can be inferred from field obscrvations in the following fall and winter. In Figure $8 a$ the data on brood-
size and on the percentage of young birds in wintering flocks are combinced into a single index, taking values from 1 to 5 . Production in seasons close to the mean values is given a score of 3 ; higher proportions of young and larger mean brood-sizes are scored 4 to 5 and poor output 2 or 1. Figure 8 a shows good breeding seasons in 1952, 1955. and 1959 but none since. The four poorest seasons were 1951, 1961, 1972, and 1978. Figure 86 depicts condilio

Figure 8 Breding ss

colonies; ligure $8 c$ summarizes temperature and snow cover in the West North Central Region in March and April and $8 d$ the precipitation and temperature in
ouisiana and Texas in December-March.
While there are some obvious correspondences between the annual indices of breeding success and of the 1951 (poor), 1955 (good), 1972 and 1978 (boh poor) a1 other times there are none. The high production in 1952 and 959 and poor production in 1961 do not reflect unusually favourable or inclement weather, either around Foxe Basir and Hudson Bay or in the staging and wintering places. Much of the lack of fit may simply be the consequence of the oversimplification involved in expressing production nd weather variation by means of simgle annual index means of correlation and regression using five parameters

describe the goose population, eight to describe the weathe toba in March, April, and May and in Foxe Basin in May and June, and two for the sport hunting kill in Canada and the US. The data are tabulated in Appendix 2, which also includes the statistically significant correlation coefficients between pairs of variables, including parameters for previou years as well as current years, so that lagged responses can be detected.

Many observers have had difficulty finding and count ing Lesser Snow Geese and identifying the broods and the proportion of young birds (see Voelzer 1980). The Lincoln
Index method of estimating population size has rarely been used on this scale, either because the assumptions of the model were not met or because the data were incomplete or biased. Thus it is encouraging to find that the estumated proportions of young geese in mid August correlate cosely with hose found in the field from October to December, and to find that the relationship between pairs of total population
The significant correlation

$$
\begin{aligned}
& \text { The significant correlation coefficients help to iden- } \\
& \text { ify the parameters most likely to have affected the number }
\end{aligned}
$$ nd production of Lesser Snow Geese in 1964-79. We have used stepwise multiple regression analysis to obtain models describing the relationships of the number of geese, in Auguand in December, composition and to some of the weather variables. As the ongest runs of data are no more than 16 years in most cas is appropriate to use models with few variables.

After obtaining suitable models by ordinar
quares (OLS), i.e., standard regression techniques, we tried refine the estimates using autoregressive series of orders one and two to allow for dependencies among years in the error term. However, the autocorrelations were generally not significant, and there was litule difference in the parameer cstimates. The significance levels for the parameters ended to be somewhat higher using an autoregressive Because much of the data is derived from rough measure ments, the series of data is rather short, and in the interest of implicity, we present the results of the OLS procedure. We used the statistical package, SAS, (SAS User's Guide, 1979 Edition) to perform the calculation

Taking the total number of geese found in mid December as the dependent variable and maximizing ${ }^{\prime 2}$, two 15). The appearance of "year" as an independent variable reflects the presence of a trend which was not explained by other independent variables. "Year" was inserted so that varlability due to unexplained long-term trends would not mask hort-term fluctuations in numbers of geese caused by simiar fluctuations in other dependent variable

In the best three-variable model (Fig. $9 a$) the other wo variables, with nearly equal effect, are the spring temperof the previous vear (ENAI - "1" afier the abbreviation dentifies a variable for the preceding year). The latter per haps serves as an index of the number of potential breeders in the current summer, since the survivors of the "adults" present in August of the previous year would now be mature

The six-variabie model (Fig. $9 b$, Table 156) is outstand $\operatorname{ng}\left(v^{2}=0.980, F=69.67\right.$, prob. $\left(Y_{6,8}>69.67\right)<0.000$ The largest connbuionis again made by he year. The December are the proportion of juveniles in August (PIA) and, in a negative way, the mean brood size in November

Figure 9
Comparisn of predicions from models with numbers of geese recorded in
winter inventorices (a, b) and estimates of A augusin numbers (κ, d)

(MBW), and the proportion of juveniles presem in the
preceding winter ('J WI). The latucr would be responsible for the presence of immature birds in the summer. The nega
tive effect of MBW reftects the lac than tive effect of MBW reffects the lact that the larger the mean
brood size the smaller the number of successful parents brond size the smaller the number of successful parents geese. The influential weather variables in this model are the spring temperature in the Dakotas (DS 1) having a positive effect, and the accumulated winter precipitation in the Dakotas (DWP) having, surprisingly, a negative offect.

Two other simple models (Fig. 9c and d) account for much of the variation in goose numbers in August, as estimated by the Lincoln lndex technique. Some 75% of the var-
iation in size of the estimated Hedging population (ENAY) is determined by the June temperature around the Foxe Basin (Fig. 9 and Table 16 6). The three-variable model (Table 160 estimating total numbers draws on lators reflecting erents in the US in the previous winter: the comulatie precipiation in Lowisiana and T Texas (GW'P), the mean brood size (AFW' 1), and the US harvest (USKII.). The numbers of athuts in dugust are harder to predict. A five-variable model
vields $r^{2}=0.65$ and a small F value (Table $16 a$). It is of inter est chicfly because it would enable a prediction to be made as soon as the Jule temperature was known, as the other variables are from the previous winter.

Table 16 curremy lion in mid		$\begin{aligned} & \text { and young yoss } \\ & \text { lis: (() be bes } \end{aligned}$	ee-variab	pendent variables, usimg model for adulis: (b) bes - model for total popula-
a Adulis, five variables:		$r^{2}=0.650$	$F=2.98$	$P\left(F_{5,8}>2.98\right)=0.0826$
	b-value	SE	F	$P(f)$
intercep	-14367.26			
	223.62	82.45	7.36	${ }^{0.0266}$
$\mathrm{ENNAY}^{\text {a }}$		${ }_{0} 9.588$	7.98	${ }_{0}^{0} 0.0278$
	-2.222	0.98	5.14	0.0531
GWP	4.77	2.177	4.80	0.0598
b. Young. one variable: $r^{2}=0.756$			$F=37.28 \quad P$	$P\left(F_{1,12}>37.28\right)<0.000$
	b-valuc	sE	F	${ }^{P\left(F_{1,12}\right.}$
incr	491.64			
FJT	145.50	8. 83	. 28	0001
otal number, three variables:				
	b-valuc	$\mathrm{r}^{2}=0.876$	$\begin{array}{r} r=23.49 \\ F \end{array}$	$P\left(F_{1.10}<\right.$
intercep	-6510.94			
	${ }_{4}^{9.63}$	${ }_{0}^{1.2929}$	${ }_{48}^{55.53}$	${ }_{0}^{0.0001}$
MBW1	4.75	(2, 98	${ }_{2112}^{48.19}$	0.0010

12. Comparison of predictions of goose numbers with observations and estimates

It is interesting to compare the August population of Lesser Snow Geese as predicted from the linear models with the number of adults and jurenile geese in August calculated by means of the Lincoln Index and to see how well the threcand six-factor models predict numbers in December Because those other estimates are themselves imprecise we ther, in calculating the predicted valucs, we omitued the values for the latest vears, one at a time, so that, for example the prediction for 1979 was derived from data for $1964-78$ (in practicc only 14 years because of missing valucs) while that for 1974 was based on only nine years of data. Thus, although the same dependent variables are used, the parameter estimates (b-valucs) will differ from one vear to the next. spurious fit between actual numbers and numbers predicied by the model. (We would be using all the data to estimate parameters and then comparing using the same data.)

The above procedure docs not eliminate a spurious fir sunce, mitially, all the data were used to choose the independ ent variables. Normatly, a better method of testing a model would be to use a subsci of years, say up to 1973, choose var ables using a stepwise regression, then procced to make of data was not long enough to do this. The acid test of the
models will be their future success. In Figure 9 the predicted numbers of adults and juveniles in August in the 6 years mates. As might be expected from the relatively low r^{2} in the five-factor model (Fig. 9d) for adults in August the fit between the values for adults is poor for 1975 and 1978. In 1975 the predicted value was more than the number calculated from direct recoveries. In 1978 those values were reversed. The model for juveniles in August based solcty on the Index estimates remarkably closcly. The exception was in 1979, for which the Lincoln Index estimates seem to be wild due to a shortage of recoverics. This will be re-cxamined when the reporis of recoverics in 1980 and 1981 are availa ble for analysis.

The three-factor model for total numbers in December (lig. $9 a$) yiclds values close to the winter inventories in. much higher than in the other vears but the prediction wal low. The predictions for the six-factor model (Fig. 9b) correspond very well with the observed numbers, supporting the occurrence of a high value in 1977.
these results emphasize the necessity for sustained monitoring of the principal parameters year by year. Until data for at least 10 years are available the degrees of freedom are so few that only very simple models can be used, with a
serious reduction in the confidence with which predictions can be made for the Forthcoming August and December.

Literature cited

Although the Migratory Birds Convention requires he federal governments of Canada and the US to manage Lesser Snow Geese, the birds regulate themselves effectively or international level.

The self-regulation of the geese is not effective fro he point of view of hunters, who are so much less mobile Are agencies under any obligation to maintain hunting opportunities in particular areas at specified levels? If so, how might that be done, given the freedom of the geese to choose where and when to travel or stay?

Only the 1979 James Bay and Northern Quebec Agreement imposes such an obligation on the federal gov App. 1) requires the determination of the "present levels of harvesting" in the territory by native hunters, the kill by other hunters in the territory, and "the total kill figures for each migratory bird population", so that "the percentage of the total kill from each population now being taken in the Territory" can be calculated. Section 24.6.5. states "This percentage figure shall constitute a guarantee so that in any
given year the Territory would be guaranteed at least the same percentage of the total kill from each population as is presently hunted and harvested." The implications of this undertaking have yet to be worked out in numerical detail, although the James Bay and Northern Quebec Native Har vesting Research Committee has now collected data for a 5 year period.

Supposing that the arithmetic of the James Bay case with respect to Lesser Snow Geese will soon be argued, the CWS do to check or reverse the very recent tendency of Baffin Island geese to spend less time on the Quebec coast of Hudson Bay and James Bay in the fall? (They have long made comparatively litule use of the Quebec coast in spring.) This paper provides no more than an indication of how the distribution is changing. Why is it happening and what, if anything, can be done about it will require more intensive
studies, chiefly, though not exclusively, in northern Quebec While it appears that the recent level of exploitation his stock of geese is too low to be having a detrimental ffect at the continental level, if the intensity of exploitation continues to increase, locally or continentally, more intensive monitoring of hunting, as well as the resources of the geese, will be needed. The rapidly growing harvest in the Atlanic Flyway (Reed, Boyd and Wendt, 1981), since 1975 when hunting of the Greater Snow Goose (A. caerulescens atlanticus) er case
Because of the greater abundance and geographic range of the Lesser Snow Goose, many states and provinces
must be involved in its management. Their local interests are often conflicting - more geese at A means fewer at B, or more crop damage at A . The decisions on distribution made agers might wish to undertake. That is surely a good thing.
ellrose, F.C. 1976. Ducks grese and swans of North America. Stackpole.
lokpoel, \mathbf{H}. 1980. The influence of weather on timing and amount of goose
Geese, 1967-1974.
Boyd. H. $1976 a$ M Mrality rates of Huds
Can. Widd. Serv. Prog. Nore No. 61.4 Pp
Royd, H. 19766 . Estimates of total numbers in the Hudson Bay population of
Lesser Snow Geese, 1964-1973. Can. Wildl. Serv. Prog. Note No. 63.7 pp.
Boyd, H.; Wendt, J.S. (In presss. The kill of waterfowl in northern Quebec by
hocters of Migratory Game Bird Huning Permits in 1969-1979. Can. Wildl. hoders of Migrat
Serv. Prog. Note.
Srownie, C.; Anderson, D.R.; Burnham, K.P.; Robson, D.S. 1978. Statisti
dinfercne from band recovery dala a hand book. US. Fish \& Wild. Ser cal inference from band recovery data -2 hand b
Resour. Publ. No. 131 . Washington, D.C. 212 pp.

Cooke, F.; Abraham, K.F.; Davies, J.C.; Findlay, C.S.; Henley, R.F.; Sadura, A.; Seguin, R.J. 1981. Snow Goose studies at La Pecrousc Bay, Manitoba. | A.; |
| :--- |
| $\begin{array}{l}968-1981 \\ 81.153 \mathrm{pp}\end{array}$ |

Pavies, C . 1981. Prairie drough and ins effect on producivity at the La Perrouse Bay Snow Goose col-
Kingson, Ont., 2 Apr. 1981 .

Dzubin, A. 1974. Snow and Blue Goose distribution in the Mississipp and Central Flyways: a comparison of re
Wild. Serv. Mincogr. Rep. 566 pp.
 ution in the Mississipp an.
Hanson, H.C.; Smith, R.H. 1950. Canada Geese of the Mississippi Flyway urv. 25(3):210 pp.
Henny, C.J. 1967. Estimating band reporing rates from banding and crip
pling loss daa. J. Widd. Manage. 31(3):533-536.
James Bay and Northern Quebec Native Harvesting Research Committee. Iames Bay and Norhern
1976. Researct to ctablish present tevels of harvesting by native peoples of
Northem Quebec Part 1 A rep. in the harvesis bv the James Bay Cree. Mon. Northeren Qué
reál. 376 pp. James Bay and Northern Quebec Native Harvesting Research Committee.
1980. Harvests by the fames Bay Cree- 197778 and 1978 -79. 4h. Progr

Kerbes, R.H. 1975. The nesting population of Lesser Snow Gerse in the eastern Canadian Arcucica ph
Serv. Rep. Ser. No. 35.47 Pp .
Lincoln, E.C. 1930. Calculating waterfow labundance on the basis of banding Leturns. U.S. Dep. Agric. Circ. No. 118,4 Pp
Lynch, J.J.; Singleton, J.R. 1964. Winter appraisals of annual productivity in Martinson, R.K.; McCann, J.R. 1966. Proportion of recovered geesc and Owen, M. 1980. Wild geese of the world. Batsford. London. 236 p.

Reed, A;; Boyd, H: Wendt, S. 1981. Characteristics of the harvest of Greater Seod, A.; Boyd. H.: Wendt, S. W8,
Ricker, W.E. 1975. Compilation and interpreatation of fiologicicl statistiç of
fish populations. Environ. Can. Fish. and Mar. Serv., Bull. No. 191.OUtawa.
3s2 382 pp.
AS User's Guide, 1979 dition. SAS Instiute lac. P.O. Box 1006
aleigh, N.C. 27605.
Seber, G.A.F. 1973 . Estimation of animal abundance and related parametcrs.
Voetzer, J.F. 1980 Producivity surveys of geese, swans and brant wintering on North America in 1979 U. U. Fish. Wil
gge. Admin. Rep. Columbia, Mo. 65 pp.

Appendices

Appendix 1
Section 24.6 .5 of the James Bay and Northern Québec Agreement of Novem-

ber 1976. | Section 24. |
| :--- |
| ber 1976 . |
| 4.65, |

24.6.5. Subiect to the principle of conservation and where populations of
these species permit, he principle of prioitity of Native ${ }^{\text {anves }}$ these species permit, the principle of priority of Native harvesting shalt be
applied ompromer bird in a manner similar or equivalent to the proce-
dures hereinafter set forth:
a) In conformity with the procedure provided in paragraph 24.6 .2 , the pres-
ent levels of harvesting of migratory birds shall be estabished.
b) The present level of harvesting stall be combined with the present level of non-Native huncing of such birds in the Territory to establish the total pres-
ent kill for the Territery
c) Based upon the total
c) Based upon the total kill figures for each migratory bird papulation and
the total kill in the Terriory for each migratory bird population, there shall the total kill in the Territiory for each migratory bird population, there shall
be a determination of the percentage of the total kill from each population taken in the Territory
d). This percentage figure shall constitute a guarantee so that in any given
year the Territory would be guaranteed a l least the same percentage of the year the Territory would be guaranteed at least the same percentage
toal kill from each population as is presently hunted and harvested.
e) Within the Territory itelf, the principle of priority for Native harvesting
shall apply to the allocation of ouotas or use of other manazement techniques in suct a way as at oe ensure hat the thaturve people are guaranteed a harvest based on present levels of harvesting of migratary birds.

In any given year when populations perrit a kill for the Territery higher than the guaranteed allocation equal to present levels of harvesting, the
Native people shall be allowed a barvest equal to the guarantee based on
 Territory shall be divided in such a way as to ensure primarity the continu-
ance of te traditional pursuist of the Native epeple and secondarily so the
non-Native people non-Native people may saisfy thcir needs for recreational hunting.
 lower than the evaranteed allocation for the Natite people equal to present
levels of harvesting, the entre kill for he he Tertiory shall be balocated do he
Native people who shal have the right in turn to allocate a portion of this kil

h) This guarantee shall not operate to endanger migratory bird populations. i) This guarantee in itself shall not operate toprohibit or reduce hunting of
migratory birds elsewhere in the flyway or in Canada.

Appendix 2
Relationship between Lesser Show Goose breeding and weather variables (a) Identifier, means, standard deviation, and range of descriptive parameters

Variable	$\begin{aligned} & \text { No, of } \\ & \mathrm{yrs}, N \end{aligned}$	Mean	SD	Range
Year	16	71.5	4.76	964-79
GNW-midwinter count, $\times 10^{3}$	16	1108.8	359.11	633.0-2027.0
ENA - no. in Aug, $\times 10^{3}$	15	2278.5	541.71	1351.0-3298.0
PJA-\% juws. Aug.	16	32.5	${ }^{15.30}$	5.9 - 59.0
MBW-mea juvs winter	16 16	${ }_{196}^{26.4}$	(1.75	7.5 $1.49-$
GWP-precip, Oct.-Feb. La.to Tex., mm	16	360	82.3	201-525
NWP- central, ${ }^{\circ} \mathrm{C}$ \%	16	8.47	. 17	6.9 - 11.8
DWP-precip, Oct.-Mar.				
MSM-Manitoba soil	16	159	24.9	$104-191$
FMS - snow cover, Foxe Basin				
31 May, mm	16	359	144.4	$170-571$
FSI-Foxe Basin, spring				
FJT- June temp. ${ }_{\text {Foxe Basin, }}{ }^{\circ} \mathrm{C}$	16	-230	1015	-2233 to 1508
	16	1.4	2.08	-2.7 to 6.3
CDNKIL-spork kill, Can, $\times 10^{3}$		49.4	26.28	24.4-115.8
$\underline{\text { USKIL-kill in US } \times 10^{3}}$	16	658.8	120.81	160.7-574.6

(b) Parameter values
 Over-estimates due to incomplete reporting of
calculations, hough shown in Figure $9 c$ and d.

$\begin{aligned} & \text { (c) Corr } \\ & { }^{\text {coig }} \end{aligned}$	$\begin{aligned} & \text { in coeffic } \\ & \text { ntat } p< \end{aligned}$	nes of cu $.05 ;+p$	$\begin{aligned} & \text { rent year } \\ & \text { 0.01; } \end{aligned}$	$\begin{aligned} & \text { paramete } \\ & p<0.00 \end{aligned}$											
	Year	GNW	ENA	PJW	PJA	MBW	GWT	GWP	DST	DWP	msm	FMS	FSI	FJT	USKIL
Year	-	$0.836 \pm$	${ }^{0.820 *}$												${ }^{0.567 *}$
GNW			0.560*												${ }^{0.575 *}$
ENA								0.520^{*}						0.499**	0.636*
${ }_{\text {P }} \mathrm{PW}$				-	$0.913 \ddagger$	${ }^{0.781+}$							${ }_{0}^{0.623 \dagger} 0$	${ }_{0}^{0.707+}$	
${ }_{\text {MBW }}^{\text {PA }}$												0.532^{*}			
GWT							-								
GWP								-		${ }^{0.671} \dagger$					
${ }^{\text {DST }}$									-		${ }^{0.626 \dagger}$				
DWP															
MMS												-			
FSI													-	$0.809 \ddagger$	
USKIL															$0.621+$
ENAA	0.581*		${ }^{0.722 \dagger}$	$0.832 \pm$									$0.697 \dagger$	$0.840 \pm$	$0.666+$

	Year	GNW	ENA	PJW	PJA	GWT	GWP	DST	DWP	USKIL
GNW1	$0.848 \pm$	${ }^{0.637 *}$								0559*
ENAL	0.620^{*}	$0.669 \dagger$							$-0.586{ }^{*}$	$0.55{ }^{*}$
MBW1							$-0.715 t$		${ }_{-0.642 \dagger}$	
${ }_{\text {PJAI }}$		0.531*					$-0.756 \dagger$		-0.679†	
GWT1								${ }^{0.535 *}$		
${ }_{\text {DWP1 }}^{\text {DST1 }}$			0.612*			-0.542*				
FMSI						-0.604*				
FSII						${ }_{0}^{0.564 *}$	-0.515^{*}		-0.573^{*}	
$\underset{\text { ENAAI }}{ }$		$0.652 \dagger$					-0.631^{*}			0.632^{*}
GNWI	0.848£									

Other publications

in the Occasional Papers Series

No. 1
Birds protected in Canada under the Migratory Birds Convention Act
4.thed. Aussi disponible en francais
Cat No. R69-1/1

Cat. No. R69-1/1
Na.
Canadian bird na
Canadian bird names, French, English and scientific.
Publication bilingue.
Cat. No. R69-1/2
No. 3 .
Use of aerial surveys by the Canadian Wildife Service by D.A. Benson.
Out of print.
Cat. $\mathrm{N} . \mathrm{R} 69.1 / 3$
No. 4
Cat. No. R69-1/4

Cat. No.
No.

Age delermination in the polar bear by T.H. Manning
Cat. . R . $69.1 / 5$
Cat. No. R69-1/5
A wildife biologist locks at sampling, data processing and computers by
D.A. Benson. Out of print.
Cat. No. $\mathrm{B} 69-1 / 6$
Na. 7 .
Preliminary report on the effects of phosphamidon on bird populations in
New Brunswick by C.D. Fowle. Out of print. New Bruanswick be b
Cat. No. R69.-1/7

Car
$\substack{\mathrm{Ca}, \mathrm{N} \\ \text { Birds }}$
Bir

Birds of Nova Scotia - New Brunswick border region by G.F. Boyer.
Cat. No. R69.1/8 Cat. No.
Not
Efter
Effects of dietary methylmercury on Ring-necked Pheasants, with special
reference to reproduction by N Finreite reference tor reprod
Cat. No. R69-1/9
No 10 .
Trends in populations of barren-ground caribou over the last two decades
a re-evaluation of the exidence by G R Parker. Cal. No. R69-1/10
Cat. No. R69-1/10
No. 11 .
The Canada migratory game bird hunting permit and related surveys by D.A.
. The Canada migrat
Benson,
Cat. No. R69-1/11
No. 12 . 12 andions on duck hunting in eastern Canada in 1968 and 1969 by H. Boyd.
Cat. No R $69-1 / 12$
Na. 13
Evaluation of ecological effects of recent low water levels in the Peace
Athabasca Detia by H.J. Dirschl. Athabasa Delta by H.].
Cat. $\mathrm{Ho.CW69-1/13}$
No. 14
No. 14 Great Cormorants of eastern Canada by AJJ. Erskine.
The Great Cormoran
Cat. $15 . \mathrm{CW} 69-1 / 14$
No.
No. 15
Disribution of barren-ground caribou harvest in north-central Canada by G.R.R Parker.
Cat. No. CW9.1/15
sird migration foreca
Cal No.
No. 17.
Waterfowt populations on the Peace - Athabasca Delta, 1969 and 1970 by
DJ. Nieman and H.J. Dirschl.
Cal C. Nieman and H/J. Dirsch
Cal No. $\mathrm{CW} 69.1 / 17$
 ing on the zooplankton composition in some small lakes and ponds in western Canada by R.S. Anderson and L.G. Raasyeld.
Cat. No. CW69-1/18.

No. 19 unmary of DDE and PCB determinations in Canadian birds, 1969 to 197 A summary ofDDE and PCB deter
by M. Gilberson and L Reynolds.
Cat. No. CW69-1/19
No. 20
Development of a simulation model of Mallard Duck populations
by. W. Waltes, R. H ilborn, E. Oguss, R.M. Peterman and J.M. Stander.
Car. No. CW69. by C. Walters, R.
Cat. No.CW69-1/2
No. 21
No. 21
Use of m
Cse of museum specimens in toxic chemical research by A.M. Rick.
Cal. No. CW69.-1

Impoundments for waterfowl by W.R. Whitman.
Cat. No. CW69-1/22
N. 2.
Minizing the dangers of nessing studies to raptors and other sensitive
speciess by R.W. Fyte and R.R. Olendorft.
Cat No CW69-1 23 . simimizing the dangers of nesting studies
sacies by R.W.Fyte and R.R. Olendorf.
Ca. No. $2 f .69 .1 / 23$
No. 24
Wearfowl damage to Canadian grain: current problems and research
needs by L G. Surden
needs by L.G.Sugden.
Cat. No. CW69-1/24.
No 25
No 25
Census tectniques for seabirds of arctic and eastern Canada
Census techniques
by D.N. Nelleship.
Cos.
$\mathrm{Cat} . \mathrm{No}$
No.
Na
Notes on the present status of the polar bear in James Bay and Belcher
Islands area by Charles Jonkel, Pauline Smith, Jan Stiring and
George B. Kolemosky.
Cat.
No. CW69.1/26
No. 27 .
Limnological and planktonic studies in the Waterton Lakes, Alberta
Limnological and planktonic sudies in the Wate.
by R. Stiwatr Anderson and Roderick B. Green.
C.

Cal. No.
No. 28
No

Birds and mammals of the Belcher, Sleeper, Ottawa, and King George
Islands, Northwest Territories by T.H. Manning. Islands, Northwest 7
Ca. No. CW69-1/28
Cin
No. 29
Developments in PPS sampling - Impact on current research by
de Aevelopments in
A. Sen
Ca No. CW69-1/29
Dy. 3 amics of snowshoe hare populations in the Maritime Provinces by
Thomas 1 Wood Thomas I. Wood and Stanley A. Munroe.
Cal. No. CW69-1/30
No. 31
Migration and population dynamics of the Peace - Athabasca Delta goldeye Migration and population dynamics of the Peace
population by.B.D.Doald and A.H. Kooyman.
Cat. No. CW69-1/31
Copulation by. $\mathrm{B} . \mathrm{D}$,
No. $32 . \mathrm{CW} 69-1 / 31$
No. 32 . 2 fects of fire on the ecology of the Boreal Forest, with particular
 John P. Kelsall. E.S. Telfer and Thomas D. Wright.
Cat. . $33 . \mathrm{CW} 69.1 / 32$
No. 33 ecology of the polar bear (Usysus mantitimus along the western coast of
The ecology of the polar bear (Virusu manitimus) along the western coas
Hudson Bay by tan Siriling, Charles Jonkel, Pauline Smith, Richard

No. 24
Nava
Cat
Canvasback habitat use and production in Saskatchewan parklands by Lawson G. Sugden,
Cat .No. .W69.1/34
Thie e iets of muskoxen and Peary caribou on some islands of the Canadian
High Arctic by Gerald R. Parker. High Arcticb byerald R. Parker.
Cat. No. CWG9.


```
Ca. No.CW69-1/36
No.,37
William A.Langford and DonaldJ.Cocheba.
Cat.No.
M Patial changes in waterfowl habitat, 1964.74, on two land types in the 
    *at.No.CW69-1/38
FP.39
M,
M. N. Netleship and A.J. Caston.
Cat. No.CW69-1/39
Responses of Peary caribou and muskoxen to helicopter harassment by
Mesponses of Peary caribu and
```



```
Avian Community structure of six forest stands in La Mauricie National Park
Cucbec byJ.-L. DesGranges. Aussi disponible en français.
Cat.No
Na,
Cat.No.CW69-1/42E
Census methods for murres, Uria species: a unified approach by
M.... Birkhead and D.N.
M Population ecology sudies of the polar bear in the area of southeastern 
```



```
Polynyas in the Canadian Arctic edited by Lan Stirling and Holly Cleator.
Aussi disponible en francais.
```


[^0]: Not avaitable. 578 The toals may not equal the

