D.K. McNicol
B.E. Bendell
R.K. Ross

Environment
Canada

Canada

Studies of the effects of acidification on aquatic wildlife in Canada:

 waterfowl and trophic relationships in small lakes in northern OntarioOccasional Paper
Number 62
Canadian Wildlife Service

4. Environment

Canada
Canadian Wildlife Service canadien
$\begin{array}{ll}\text { Canadian Wildife } & \begin{array}{l}\text { Service can } \\ \text { Service }\end{array} \\ \text { de la faune }\end{array}$

Studies of the effects of acidification on aquatic wildlife in Canada: waterfowl and trophic relationships in small lakes in northern Ontario

Occasional Paper
 Occasional Number 62
 Canadian Wildlife Service

Disponible également en français

*CWS (Ontario Region),
1725 Woodward Drive,
Ottawa, Ont K1A 0H3

Contents

Published under the authority of the
Minister of Environment
Canadian Wildlife Servic
©Minister of Supply and Services Canada 1987
Catalogue No. CW69-1/62E
Catalogue No. CW6
ISBN 0.662-15213-1
ISSN 0576-6370

8	Acknowledgements
9	Abstract
11	Foreword
12	Introduction
14	Acid deposition in Ontario
16	Study framework
17	Study areas
17	1. Description of the Ranger Lake study area
18	2. Description of the Wanapitei study area
18	2.1. Atmospheric deposition and lake acidification
19	2.2. Geomorphology and hydrology
20	Methods
20	1. Aerial survey design and schedule
20	1.1. Systematic surveys
20	1.2. Selective surveys
21	1.3. Habitat description
21	1.4. Field procedure
21	1.5. Timing
21	1.6. Data analysis
21	2. Limnology, waterfowl utilization and trophic studies
21	2.1. Pilot studies (1980-82)
22	2.2. Water quality
22	2.3. Habitat description
22	2.4. Minnow sampling
22	2.5. Aquatic invertebrate sampling
23	2.6. Waterfowl surveys
23	Results and discussion
23	1. Waterfowl breeding distribution in northeastern Ontario
23	1.1. General patterns
25	1.2. Temporal variability in waterfowl abundance
25	1.3. Waterfowl distribution in the study areas
26	2. Description of lake environments
26	2.1. Factor analysis
28	2.2. Geochemistry and bedrock sensitivity
34	2.3. Organic acidity of surface waters

29 Table 7c. Principal factor analysis output for 69 lakes the Ranger Lake study area
30 Tabe 8 Compar -_-_-_ nutrient ratios in study lakes, including the Sudbury Environmental Study lakes, according to bedrock sensitivity groups
32 Table 9. Comparison of average concentrations and percentage composition of major ions, according to bedrock sensitivity groups
33 Table 10. Comparison of average trace metal levels in study lakes
36 Table 11 The Table 11. The number and percentage of lakes
occupied by non-game fish species and families the Ranger Lake and Wanapitei study areas
36 Table 12. Number of occurrences of each cyprinid species among 58 lakes in the Ranger Lake study stream species expected proportion if occurrence were random with respect to (other) stream species, and chisquared tests of independence of occurrence of each species with (other) stream species
38 Table 13. Differences between the average occur rence of major fish assemblage types and individual factor scores in the two study areas combined, tested by studentized t test procedures
39 Table 14. Presence of major insect taxa in sweep net samples from 18 lakes in the Ranger Lake study area Table 15. Presence of major insect taxa in sweep net samples from 18 lakes in the Wanapitei study area 43 Table 16. Differences in the number and percentage of lakes occupied by seven waterfowl species and combined taxonomic groups in the Ranger Lake and Wanapitei study areas, expressed as indicated nesting pairs, combined adult andor brood sightings during the brood-rearing period, and brood sightings only, tested using chi-squared tests of independence or
Fisher exact probability test
3 Table 17. The number and percentage of lakes occupied by indicated nesting pairs and broods of
seven waterfowl species and combined then groups in the Ranger Lake combined taxonomic areas, as well as ratios of brood versus indicated nesting pair occupancy
$44 \quad$ Table 18. Differences between the average occur. rence of (i) indicated nesting pairs during the nestinitiation period, and (ii) combined adult andor brood sightings during the brood-rearing period, and
individual factor scores for seven waterfowl species individual factor scores for seven waterfowl species areas combined, tested by studentized t test procedures
Table 19. Relationships between the distribution of
individual waterfowl species and fish occurrence in the two study areas combined as examined using a stepwise variable selection Table I. Components of pilot studies conducted in - the Ranger Lake area between 1980 and 1982

53 Table II. Differences of selected chemical parameters between surface ($0-1 \mathrm{~m}$) and deep ($>1 \mathrm{~m}$) water samples collected on 14 lakes in the Ranger Lake area during the spring run-off period in 1981, tested using paired t-tests 36 lakes chemical and physical area in 1981, according to fish assemblage types
57 Table IV. The occurrence of aquatic invertebrate tax in sweep net samples collected in 10 lakes in the Ranger Lake area in 1981, recorded as scores out of 20 samples from each lake
58 Table V . The occurrence of aquatic invertebrate taxa in Ekman dredge samples collected in 10 lakes in the Ranger Lake area in 1981, recorded as scores out of 30 samples from each lake
59 Table VI. The occurrence of aquatic ina collected in individual emergence traps in 10 lakes in the Ranger Lake area during the period 23-25 June
60 Table VII. Aquatic vascular plants in 34 lakes in the Ranger Lake area in 1981 scored out of 10 littoral Tale VIII The
orre of floating-leaved and submerged aquatic vascular plants in 34 lakes in the Ranger Lake area in 1981

List of figures

12 Figure 1. Diagram illustrating the probable pathway of effects of, and biolog
13 Figure 2. Diagram illustrating the complexity of habitat selection parameters which influence water owl reproductive success
15 Figure 3. Maps of Ontario illustrating (a) precipia tion amount-weighted mean annual pH in 1980; b) mean annual wet sulphate deposition showing outline of Precambrian Shield and geologically sens tive areas which contain surface waters at risk from acidification; (c) percentage of lakes and streams with
moderate to low alkalinity by county or district nd (d) density of small lakes by secon distric, and (d) density of small lakes
17 Figure 4. Map of north-eastern Ontario showing the ocation of the eight systematic survey blocks and the Vanapitei study areas block, the Ranger Lake and Watershed calibrated basin
18 Figure 5. Map of the Wanapitei study area showing Figure 5. Map of the Wanapitei study area showing
the outline of the 12 townships used in selective sur veys and the location and lake pH class of study lakes in relation to the bedrock sensitivity groups
24 Figure 6. Breeding densities of eight common waterfowl species and combined taxonomic groups in the eight blocks surveyed in north-eastern Ontario, xpressed as mean density of indicated parrs per $100 \mathrm{~km}^{2}$
24 Figure 7. Dendrogram produced by TWINSPAN illustrating major associations of waterfowl species from systematic surveys conducted in the eight blocks in northeastern Ontario, and depicting the relative numbers of indicated pairs breeding in geologically excess of 10 kg ha $-1 . \mathrm{yr}-1 \mathrm{l}$
6 Figure 8. Breeding densities of six common waterstudy areas combined, expressed as the number of of the number of
26 Figure 9 Diaram illustrating the resut of cipal factor analysis on the combined Ranger Lake and Wanapitei data set

29 Figure 10. Comparisons among bedrock sensitivity groups for each of the four factors, illustrated by the 95% confidence intervals about the average factor - Figer
. centage composition of bicarbonate versus excess sulphate composition of bicarbonate versus excess waters in eastern in polluted and unpolluted fresh among bedrock sensitivity groups in the present study
31 Figure 13. Least squares regression between alkalinity and the sum of calcium and magnesium content for bedrock sensitivity groups
33 Figure 14. Relationship between lake pH and total aluminum levels by bedrock sensitivity groups
34 Figure 15 Comparison betweer the distributions of water colour in littoral between the distribution Ranger Lake and Wanapitei study areas during mid summer of 1984
35 Figure 16. The percentage composition and concen trations of major ions by bedrock sensitivity concen and comparisons between two estimates of organic anion concentrations
37 Figure 17. Range and 95% confidence intervals about the mean lake pH of major fish assemblage about the mean lake pH of major fish assemblage
$37 \quad$ Figure 18. Distribution of individual fish species occurrences in relation to lake pH in the Ranger Lake and Wanapitei study areas
38 Figure 19. Patterns of association among major fish assemblage types in the Ranger Lake and Wanapitei study areas, as depicted by their average scores on three environmental factors
39 Figure 20. Mean log of drainage area for each of the major cyprinid taxa in the Ranger Lake study area compared with the overall mean
$40 \quad$ Figure 21. Lake pH versus first axis correspondence analysis scores (DECORANA) calculated on presence-absence data for 31 insect taxa in lakes with and without fish in the Ranger Lake study area 41 Figure 22. Lake pH versus first axis correspondence analysis scores (DECORANA) calculated on presence-absence data for 27 insect taxa in lakes with and without fish in the Wanapitei study area

41 Figure 23. First axis correspondence analysis scores (DECORANA) calculated on presence-absence data for 37 insect taxa in lakes in the Ranger Lake and Wanapitei study areas
42 Figure 24. Log abundance of (a) all aquatic insects, (b) nekton, and (c) Gerridae in the Ranger Lake and Wanapitei study areas
45 Figure 25. Comparison between average scores on the three environmental factors for indicated nesting pairs and adult and/or brood sightings during the brood-rearing period for six waterfowl species in the two study areas combined
45 Figure 26. Comparison of adult and/or brood sightings during the brood-rearing period in the two study areas combined, in relation to the occurrence
$46 \quad$ Figure 27. Patterns of association in the two study reas combined among average scores on the ightings during the brood-rearing period and sightings during the brood-rearing period and major
47 Figure 28. Brood to indicated nesting pair occupanc ratios for three major waterfowl groups in the Ranger Lake and Wanapitei study areas
52 Figure I. The frequency of occurrence of lakes in the VIXEN and GONG study areas in 1981, by size and alkalinity classes
53 Figure II. Comparison of seasonal and spatial differences in mean lake pH , conductivity and alkalinity of samples collected in the VIXEN and GONG study areas in 1980 and 1981
54 Figure III. The distribution, relative abundance and assemblage classifications of eight common and six uncommon fish species in 28 lakes in the Ranger Lake area in 198
54 Figure IV Cluster dendrogm on dissimilarity values, using Ward's method of aggomeration, for aquatic insect taxa in sweep net without fish in the Ranger I ake area in 1981 lak
55 Figure V. Relationship between the number of fis species and the number and \log abundance of aquatic invertebrate taxa in sweep net samples co lected in 10 lakes in the Ranger Lake area in 1981

56 Figure VI. Relationship between the number of fish species and the number of aquatic vascular plant taxa in 34 lakes sampled in the Ranger Lake area in 1981, according to fish assemblage types
$56 \quad$ Figure VII. Comparison between lakes with and without fish of indicated nesting pair estimates, adult andor brood sightings during the brood-rearing period and brood sightings only for lakes surveyed in the Ranger Lake area in 198

List of appendices

51 Appendix 1. Sensitivity of bedrock and derived soils to acid precipitation in the Ranger Lake and Wanapitei study areas
51 Appendix 2. Summary of counts and measurements of lakes by watershed unit and size class for major watersheds in the present study
52 Appendix 3. Summary of sampling methods and results of pilot studies conducted in the Ranger Lake area between 1980 and 1982
\qquad 1.1. Lake bathymetr
1.2. Water quality

1.3. Ekman samp

52 1.4. Emergence trap sampling
52 1.5. Shoreline vegetation

| 52 | 1.5 . Shorelime vegetation |
| :--- | :--- | :--- |
| 52 | 1.6. Waterfowl surveys |

$\frac{52}{52} \quad$ 2. Res

$\frac{52}{53}$
$\frac{53}{53}$

53	2.2.1. Minnow trap sampling
53	2.2.2. Aquatic invertebrate sampling

24 2.2.3. Littoral vegetation
$\frac{54}{62} \quad$ Appendix 4. Summary of the procedures and Appendix 4. Summary of the procedures and
principal cquipment used in water chemical principal equipm
63 Appendix 5. Annotated list of waterfowl species in Appendix 5. Annot
the survey region

64 Appendix 6. Indicated nesting pair occupanc frequencies for (a) the Common Loon, (b) combined MallardBlack Ducks, (c) the Ring-necked Duck, (d) the Common Goldeneye, (e) the Hooded Merganser and (f) the Common Merganser in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters
7 Appendix 7. Chemical composition of fresh waters eastern North America including Scandinavia and from the present study, according to bedrock sensitivity groups
68 Appendix 8. Major fish species and numbers taken with wire minnow traps at (a) Ranger Lake and (b) Wanapitei during the summer of 1983

Abstract

Acknowledgements

The authors wish to acknowledge the contribution made by the Ontario Ministries of Natural Resources and Environment and the staff at the Great Lakes Forestry Research Centre Long-range Transport of Airborne Pollutants (LRTAP) laboratory, in particular Don Kurylo For field, laboratory and computer assistance, we are indebted to many summer students, contract assistants and term employees. Brian Collins provided statistical guid
Peter Blancher helped with the data analysis, and Don Fillman and Sharon Bradford helped with the prepar of figures and typing, respectively. Helpful guidance in the preparation of the manuscript was provided by Hugh Boyd and Dan Welsh. We gratefully acknowledge Peter Blancher, Hugh Boyd, JeanLuc DesGranges, Kathy Fischer, Joe Kerekes and David Peakall for their helpful comments, and jerry Longcore for his review of the manuscript. This

This study investigates the effects on waterfowl of ecological changes in aquatic ecosystems associated with acid precipitation. The distribution, density and habitat preferences of waterfowl were examined throughout much counts of indicated nesting pairs. The number of waterfow breeding in acid-sensitive areas was estimated at 105000 pairs. Breeding densities were relatively low (about one odicated pair per square kilometre), and no significant rends in population levels have been noted since 1980. Boreal species, including Common Goldeneye (Bucephala clangula), Hooded Merganser (Lophodytes cucullatus), Ring necked Duck (Aythya collaris) and American Black Duck (Anas and wetlands most vulnerable to acidification, whereas Common Loon (Grvia immer) and Common Merganser (Mergus merganser) use large lakes and rivers. Dabbling ducks, including Wood Duck (Aix sponsa), Blue-winged Teal (Anas iscors), Green-winged Teal (Anas crecca) and Mallard (Anas platyrhynchos), use well-buffered wetlands often associated with agricultural land.

In 1983, trophic relationships were studied on 123 small head-water lakes at different stages of acidification. Data on water quality, fish and macroinvertebrate community composition and waterfowl productivity were moderate inputs of atmosphive area which receives and a heavily acid-stressed area (Wanapitei) of north-easter Ontario. The latter area receives a higher rate of acid deposition both from long-range transport processes and from smelting activities in nearby Sudbury, Ontario.

Lake environments were categorized by factor nalysis into four major components of variation nterpreted as axes of acidity (atmospheric deposition
status), ionic strength (buffering status), eutrophication (wetland productivity status) and lake morphometry. Bedrock lithology explained much of the variability observed on the acidity and ionic strength axes and was a function of the balance between mineral acid inputs $\left(\mathrm{SO}_{4}{ }^{2}\right)$ and acid-neutralizing capacity $\left(\mathrm{HCO}_{3}^{-}, \mathrm{Ca}^{2}+\right.$ and $\left.\mathrm{Mg}{ }^{2+}\right)$. Weak organic acids did not contribute significantly to the mineral acids into senstive takes in the Ranger I me area will lead to further mean annual pH declines and pH depressions in shallow lakes during the spring melt-water period. The availability of food for many waterfowl species
has been influenced by lake acidification in the lakes we studied in north-eastern Ontario. An increased occurrence
of fishless lakes in the acid-stressed area was correlated with
lake acidity. Small, non-game fish species richness wa primarily a function of lake acidity, although physical parameters (lake and drainage basin morphometry) also afluenced fish species composition, especially within th prinid assemblage. Both piscivorous species studied with large drainage basins. The number of broods produced in relation to the number of indicated nesting pairs observed was lower in the acid-stressed area than in the unaffected area. The Common Loon and Common Merganser are most at risk from acidification because of effects on fish.

In the absence of fish, in either acidic or non-acidi kes, large, mobile macroinvertebrates, such as Notonectidae, Corixidae, Graphoderus liberus (Dytiscidae) and chaoborus americanus (Chaoboridac), were abundant
Hooded Mergaterfowl, e.g., Common Goldeneye and consequence of reduced competition with fish for common nsect prey. Omnivores, e.g., Ring.necked Duck and American Black Duck, showed no preference for acidic or ishless lakes, but did prefer shallow, nutrient-rich wetland urther research to determine whether acidity ultimately limits the abundance of invertebrate prey of non-piscivorous

Foreword

This report contains the results of research carried out under the auspices of the Long Range Transport of Air Pollutants programme, an interdepartmental research inita Fisheries and Oceans Canada, Energy Mines and Resources Canada, Health and Welfare Canada, and Environment Canada. Within Environment Canada, research into various aspects of longrange transport of air pollutants is being ca ried out by the Atmospheric Environment Service, Inland WatersLLands, and the Canadian Wildlife Service (CWS).

The CWS research programme was started in 1980 to assess the impacts of acid deposition on wildlife and wildlif habitats in eastern Canada. The results of the first phase of the programme are contained in series A major objective of the CWS res
avian breeding and feeding ecology data collected from sensitive head-water habitats receiving different rates of acid loading. This first paper describes the work on waterfowl and their food-chains in Ontario, while a forthcoming one will include the results of surveys of freshwater bird commu nities in Qusch in in
athonimnortion

Other important areas of interest are the influence of long-range deposition and acidification on metal uptake by wildlife prey organisms and the toxicity of low-level metal exposure to aquatic birds. Longrange transport of airborne pollutants can affect the availability of heavy metals to biota both by direct transport and by the mobilization of metals from soils and sediments as acidity increases. Another forth coming Occasional Paper will include preliminary results fate of heavy metals in waterfowl food.chains, as well as laboratory studies of the effects of dietary heavy metals the reproductive output of birds under controlled conditions.

Together these volumes will provide a summary of he first phase of the CWS LRTAP programme. The objec ive of this phase was to determine which species and tudies are designed to establish a more definite cause-and effect relationship between acidification and biological changes, chiefly in bird communities; to provide the basis for a biomonitoring programme which will track the changes expected to occur as emissions are reduced to the targe oading (i.e., 50% of 1980 levels by 1994); and to evaluat he adequacy of that target loading for protecting aquatic biota.

Interdisciplinary studies of calibrated basins form an important aspect of the LRTAP programme. CWS ha played a major role in one of these, the Kejimkujik Caliand limnological characteristics of acidified waters in Kejim kujik in Atlantic Canada. Results of these and other related CWS studies on acidification are included in the Final repor of Impact Assessment Work Group I of the U.S.-Canada Memoran dum of Intent (1983); the twovolume proceedings of the Inter national sympos Vol. 30 of Water, Air and Soil Pollution (1986). and the pro ceedings of an International Workshop on Birds as Bioindicators held in Kingston, Ontario, in 1986 and published in The uses of birds, edited by A.W. Diamond and F.L. Filion, a Technical Publication of the International Council for Bird Preservation (Cambridge, U.K., 1987)

D.B. Peakall

Scientific Advisor, LRTAP Programme Canadian Wildlife Service
W. Diamond

Coordin
Canadian Wildlife Service

Introduction

Acid precipitation has become a serious
environmental threat to aquatic and terrestrial ecosystems in castern North America, Scandinavia and other parts of Europe (Memorandum of Intent 1983). The deposition of atmospheric pollutants, such as sulphur and nitrous oxides, and their interaction with hydrological and soil processes in water (lake/stream) chemistry, including decreased pH , increased trace metal concentrations and modified base cation, organic anion and nutrient relationships, as depicted in Figure 1. These chemical changes have been linked to biological changes (Dillon et al. 1984; Kelso et al. 1986a), including mortality of biota (Nyholm 1981; Magnuson et 1984; Campbell and Stokes 1985) and deterioration in habitat quality, often resulting in reproductive impairm behavioural changes (Nyholm and Myhrberg 1977; Ormerod et al. 1985). Such changes may alter the composition and abundance of several levels of the food-chain and affect predator-prey interactions (Eriksson et al. 1980; Haines 1981) (Fig. 1).

Despite evidence linking acid precipitation with damage to aquatic biota, including fish (Beamish and Harvey 1982; Beamish 1974; Schofield 1976; Magnuson et al 1977; Campbell and Stokes 1985; Stephenson and Mackie 1986) and amphibians (Pough and Wilson 1977; Clark and LaZerte 1985; Freda and Dunson 1985), little is known about the effects of acidification on organisms that are not wholly aquatic (Clark and Fischer 1981). Because of their dependence on the aquatic environment for nest sites, brood protection and food, waterfowl may be seriously affected by acid precipitation (Haines and Hunter 1982;
Eriksson 1984) (Fig. 2). The loss and degradation of aquatic habitat may have serious implications for the future of the waterfowl resource in eastern North America. Formerly secure waterfowl habitats in the forests of eastern Canad are now threatened by hydroelectric power and recreational developments, certain forestry practices, and industrial effluent pollution and atmospheric contamination (North American Waterfowl Management Plan 1986). Concern for the potential threat to the waterfowl resource prompted the take studies to determine effects of acid precipitation on waterfowl populations breeding in north-eastern Ontario These studies have been designed to provide comparisons of waterfowl breeding success and food-chain relationships between areas receiving different rates of acid deposition, but with similar waterfowl breeding distributions and

$\underset{\substack{\text { Figure 2 } \\ \text { Diagran }}}{ }$
aagram illustrating the complexity of habitat selection paramete

Waterfowl, including the Common Loon (Gavia

 immer) in this study, were identified as particularly suscepible to acidification of the aquatic environment for the following reasons:(1) They largely rely on aquatic and riparian habitat for both food and cover for nesting and brood-rearing.
resources for egr production near the breeding of their and do not carry extensive fat reserves from wintering or staging grounds.
(3) Young, being praecocial, must forage in the immediate vicinity of the nest site and are not brought food by the adults.
4) Their relatively large size necessitates a greater concenration of food resources and thus less latitude before eclines in food become detrimental.

Increased acidity, combined with elevated trace metal oncentrations, may lead to changes in predator-prey re direct toxicological effects, could limit the availability, abun dance and quality of waterfowl foods (Eriksson et al. 1980, 1986; Haines and Hunter 1982). Increased acidity has been linked to reduced food resources for certain waterfowl DesGranges and Darveau 1985; McAuley 1986; DesGranges nd Nilsson 1978) and Dippers (Cinclus cinclus) in Wales Ormerod et al. 1985, 1986)

More than 700000 lakes in eastern Canada receive acid deposition above background levels; more than twothirds of this lake area is in Ontario (Kelso et al. 1986a), Much of north-eastern, central and southern Ontario receives substantial acid precipitation, with the average annual pH below 4.5 (Memorandum of Intent 1983) (Fig. 3a). Both the greater Sudbury area and the lower Great
Lakes-St. Lawrence River valley corridor receive highly Lakes-St. Lawrence River valley corridor receive highly
acidic precipitation, with the average annual pH in pre. cipitation below 4.2. Sulphate is the dominant anion in precipitation and contributes most to the long term acidification of surface waters. Annual wet sulphate deposition levels exceed $20 \mathrm{kgha}^{-1} \cdot \mathrm{yr}^{-1}$ for much of north-eastern and southern Ontario, with areas of south-western Ontario receiving in excess of $40 \mathrm{~kg} \cdot \mathrm{ha}^{-1} \mathrm{yr}^{-1}$ (Memorandum of Intent 1983) (Fig. 3b).

The extent to which an area receiving acid precipita ion will ultimately suffer surface water acidification 1981), the ratio of drainars. These include elevation (Verry l. 1978), hydrologic characteristics of the terrain (Dillon et al. 1980; Eilers et al. 1983) and vegetation type and land-use management practices. The most important factor, however, is the geochemistry of the watershed (Kramer 1976; Kaplan t al. 1981; Brousseau et al. 1985). Although southern Ontario (south of $45^{\circ} \mathrm{N}$ Lat.) receives high levels of acid effects of acid precipitation by limestone bedrock that con tains an almost infinite acid-neutralizing capacity. Much of north-eastern and central Ontario, however, is underlain by sensitive Precambrian bedrock covered by a thin layer of glacial moraine deposits (Fig. 3b). Streams, rivers and lakes in regions such as Muskoka, Haliburton, Parry Sound and Algonquin Park, as well as parts of Manitoulin, Sudbury, Timiskaming and Algoma Districts, receive atmospheric
loadings several times greater than those in more northerly and westerly areas of the province moreover, they offer ittle to neutralize acidic inputs and are therefore more likely to incur decreases in alkalinity and pH as a consequence.

Minns (1981) estimated that more than 300000 ha , or approximately 11400 lakes, fall into moderate to highisk categories. Of the 5341 lakes surveyed recently in tained low acid-neutralizing capacity (defined as having alkalinities $<200 \mu \mathrm{eq} \mathrm{L}^{-1}$), and may be recarded as moder ately to highly sensitive to acid precipitation (Fig. 3c). The most severely affected lakes are located in areas associated with the mining and smelting industries near Sudbury.

Among the most sensitive aquatic resources are those in the head-water portion of watersheds and small, enclosed water bodies (Haines 1981). Head-water systems may be expected to acidify more quickly than larger lakes, because their ionic chemistry is governed to a greater extent by precipitation chemistry and the hydrogeochemical con position of the watershed (Eilers et al. 1983). On the Precambrian Shield, small head-water lakes occur frequently and comprise a sizear sor waterfowl. Small lakes ($<99 \mathrm{ha}$) are particula abundant in geologically sensitive watersheds of northeastern and central Ontario (Cox 1978) (Fig. 3d).

Figure 3 Maps of Ontario illustrating (a) precipitation amount-weighted mean and sulphate deposition (kg ha- ${ }^{-1} \mathrm{yr}^{-1}$) (from Memorandum of Intent men 19833) showing outine of Precambrian Shield and geotogically sensitive areas which conain surface waters at risk from acidification from areas which contain surface waters at rist from aciidification (trom National Research Council of Canada 1981); (c) percentage of lakes and sseams with moderie or district (from Ministry of Environment ig85) classed as foliows: $1=0-25,2=26-50 \%, 3=51-75,4=>75 \%$; and (d) density (no. per $100 \mathrm{~km}^{2}$) of sman liakes $(<9.9$ ha) by secondary watershed (from Cox 1978) classed as follows: $1=0,2=1-20,3=21-40$, $4=>40$

A

pH af PRECIPITATIGN

C. SENSITIVITY DF SURFACE WATERS

B
SULPHATE DEPOSITIIN AND

Si frecambian
SENSTITVE
D

Head-water lakes represent significant nesting and brood-rearing habitat for many waterfowl species. The breeding ranges of several species, including Common Goldeneye (Bucephala clangula), Hooded Merganser (Lophodytes cucullatus), Ring-necked Duck (Aythya collaris), chos), Common Merganser (Mervus merganser) and Common Loon, overlap geologically sensitive regions of the province Little is known about the distribution and habitat preferences of waterfowl breeding in northern Ontario, although nesting densities are generally considered to be low. Only one reconnaissance survey (Dennis 1974a) has examined the breeding distribution of waterfowl in north-eastern Ontario,
but few of these plots fell close to areas in this but few of these plots fell close to areas in this study. We entire region, as well as more intensive surveys in the mmediate vicinity of each study area. The objectives of urvey component of this study were. The objectives of the (1) To quantify waterfowl breeding density thro
northeastern Ontario so as to (a) calculate the number of waterfowl breeding in acid-sensitive areas that are potentially susceptible to habitat degradation, and (b) examine rends in species distribution across the region;
(3) To determine basic patterns of habitat selection pance; larly with respect to wetland size and to compare these patterns between the two study areas.

To develop a framework in which to study the effects of acid precipitation on waterfowl, a pilot study was con ducted from 1980 to 1982 in a moderately stressed, but largely unaffected, area of north eastern Ontario (Ranger ke) to determine

1) The chemical and physical parameters, as well as biotic
 (2) Predi
eedictions of how surface water acidification would alter
 uccess of waterfowl species.

As a consequence of these studies on waterfowl populations, water chemistry and food-chain interactions, we hypothesized that the adverse effects of lake acidificatio abundance and availability of prey species.

Local extinctions of fish populations have occurred in acid-sensitive areas of eastern North America (Beamish and Harvey 1972; Schofield 1976; Pfeiffer and Festa 1980; Watt et al. 1983) and Scandinavia (Wright and Snekvik 1978 Muniz and Leivestad 1980). Swedish workers (Eriksson et al.
1980) have postulated observed in acidifying lakes result from biological changes
tor-prey relations as a consequence of the loss of fish populations. The disappearance of fish would create an environment suitable for the proliferation of more acidtolerant invertebrates. Such a shift from a fish- to an invertebrate-dominated trophic system would have clear implications for waterfowl species that preferentially breed on small ponds, temporary pools, beaver flowages and head the following predictions in an area that has undergone considerable acid loading (Wanapitei), by drawing compari sons with an area currently undergoing acidification Ranger Lake).
Hypothesis: The reproductive performance (brood produc tion) of waterfowl in small head-water lakes undergoing acidification depends directly on food resources that can be altered and/or lost a (1) The reduction in acidification.
moderately high pH levels (>5.5) would adversely affect piscivores, e.g., Common Loon and Common Merganser.
(2) The loss of fish would lead to the prolifera tion of acid-tolerant invertebrates to the hort-term benefit of insectivorous wate fowl, e.g., Common Goldeneye and
(3) As acidity ingrease
(3) As acidity increased, invertebrates would tivorous species as well.

1. Description of the Ranger Lake study area

In 1980, a pilot study was initiated in the Ranger Lake area in the Algoma District, north-cast of Sault Ste Marie, Ontario ($46^{\circ} 55^{\prime} \mathrm{N}$ Lat:; $83^{\circ} 35^{\prime} \mathrm{W}$ Long.) (Fig. 4). Ranger Lake was selected because it currenty receives an be attributed to long-range transport processes. The rea is typical of northeastern Ontario and contains terres rial and aquatic ecosystems relatively free from human disturbance such as logging and cottage development. It is underlain by early Precambrian granitic bedrock with low to insignificant buffering capacity (Fig. 3b). Ranger Lake lies within the Great Lakes - St. Lawrence lowland forest region Rowe 1972), and is characterized by mixed hardwood forests, although elements of the boreal forest extend into

Located 50 km to the north-west of Ranger Lake is he Turkey Lakes Watershed (TLW) calibrated basin (Fig. 4). The Turkey Lakes Watershed is one of five calibrated watersheds in eastern Canada where detailed benchmark monitoring studies of long-range pollutant deposition are in progress. Data on terrestrial, aquatic and atmospheric understand how these ecosystems function and respond to cid rain. The Turkey Lakes Watershed area receives a moderate to high level of acid deposition. Estimates of we sulphate inputs have ranged from 20 to $35 \mathrm{~kg}^{-1} \mathrm{ha}^{-1} \cdot \mathrm{yr}^{-1}$ Barrie et al. 1982; Thompson and Hutton 1985). Annual mean precipitation pH values for the period 1981-83 were $4.43,4.31$ and 4.25 , respectively (Semkin et al. 1984). Similar deposition levels would be expected at Ranger Lake. Ranger of head-water lakes conducive to waterfowl studies.

```
Hape of north-eastern Ontario showing the location of the eight
stematic survey,
Lakes Watershed (ILW) calibrated basin
```


In the Ranger Lake area, two major vegetational and geological zones were studied (Fig. 4). The VIXEN area,
located south-west of Ranger Lake, contains a mixed har wood forest dominated by yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum), with white pine (Pinus strobus) and white spruce (Picea glauca) dominant on minera soil sites. In this area lacustrine outwash, deltaic and end moraine deposits, rich in calcium salts, override the general sensitivity of the underlying granitic bedrock (App. 1). Thes surface materials are often different from the underlying
bedrock because they have been transported long distancs from their source (Cowell et al. 1980; Brousseau et al. 1985) As a result the buffering potential of streams and lakes associated with the Goulais River system is enhanced (Boissonneau 1968). The GONG area, north-west of Ranger Lake, lacks any additional buffering potential and is highly sensitive to acidification (App. 1). The area contains boreal forests dominated by black spruce (Picea mariana), white Spipe, balsam fir (Abies blas ame) and whte binc (Beta a forest fire in 1969
Both the GO

Both the GONG and VIXEN study areas cover parts of three different drainage systems. VIXEN lakes drain via the Goulais River (watershed code 2BF-3) towards Lake Superior or via the Garden River (2CA-2) towards Lak George. GONG lakes are drained either by the Goulais drains south into the North Chang River (2CB-2), which contained within the three watersheds stotal of 3186 lakes is 1978). Of these, 81% are less than 9.9 ha in size (App. 2) (Cox age density of small lakes in the watersheds studied is 549
per $100 \mathrm{~km}^{2}$, which is comparable with that found through out the Eastern Lake Superior Tributaries watersheds (2B) (Fig. 3d).

2. Description of the Wanapitei study area

2.1. Atmospheric deposition and lake acidification In 1983, concurrent studies were conducted in two areas of northeastern Ontario receiving different acid load ing levels: Ranger Lake and Wanapitei. As previously described, Ranger Lake contains sensitive aquatic ecosystems that currently receive moderate acid deposition stress, but
whose surface waters remain largely non-acidic ($\mathrm{p} H>55$) whose surface waters remain largely non-acidic ($\mathrm{pH}>5.5$) ($46^{\circ} 45^{\prime} \mathrm{N}$ Lat.; $80^{\circ} 45^{\prime} \mathrm{W}$ Long.) (Fig. 4), contains lakes who surface waters range from heavily stressed and acidic ($\mathrm{pH}<5.5$) to unstressed ($\mathrm{pH}>5.5$) (Fig. 5).

Although Ranger Lake and Wanapitei are geograph cally quite close (within 225 km), the latter has received much higher mean annual inputs of sulphate deposition compared with Algoma (Fig. 3b). In their review of sulphate yields in lakes in relation to sulphate deposition in eastern estimates of wet sulphate deposition in Algoma (Turkey Lakes Watershed, 1980) were substantially lower than at Sudbury (1976), $20 \mathrm{vs} .37 \mathrm{kgha}^{-1} \mathrm{yr}^{-1}$, although recent estimates (1981-84) show a much higher current rate of input to Algoma ($25-35 \mathrm{kgha}^{-1} \mathrm{yr}^{-1}$) than previously thought. The greater Sudbury area has had a history of fumigation problems, dating back to the early 1900s. Mining, smelting
and lumbering activities have caused extensive alterations of the environment surrounding Sudbury, including con tamination of soils and lake waters with trace metals (Hutchinson and Whitby 1977) and the reduction in pH and elevation of
roy et al. 1974).

Wanapitei lies within the large zone of high sulphate deposition which extends to the northeast and south-west of the sulphide ore smelting centres in Sudbury. The emission of sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ ranged from 4240 to $7034 \mathrm{t}^{2}$ day ${ }^{-1}$ for the period 1960-69. Since the mid-1970s, a number of factors, including the construction of the $381-\mathrm{m}$ "super stack," smelting process changes, pollution abatement measures and extended strike and shut-down periods in the tially reduced airborne emissions (Keller and Pitblado 1986). During the period 1978-83, estimated annual SO_{2} emissions from the Sudbury smelters ranged from 1065 to 2562 t day ${ }^{-1}$, whereas during the 1970-77 period annual SO_{2} emissions ranged from 3663 to 6383 tday ${ }^{-1}$.

In response to the threat of permanent damage to Sudbury area ecosystems, the Ontario Ministry of the Environment mounted the Sudbury Environmental Study (SES) in 1973. During the period 1974-76, a survey of 209 document the influence of atmospheric deposition on take waters on a regional basis and to provide a data base to predict future trends. These surveys revealed that many lakes to the north-ast and south-west of Sudbury were acidic ($\mathrm{pH}<5.5$) and had suffered reduced salmonid fisheries (Conroy et al. 1974; Pitblado et al. 1980), similar to problems encountered elsewhere in North America and Scandinavia. Dry deposition of SO_{2} and sulphur fumigation
as well as deposition rates of $\mathrm{SO}_{4}{ }^{-}$and the trace metals copper (Cu) nickel (Ni) zinc (Zn) and iron (Fe) to Sudbury area per (Cu), nickel (Ni$)$, zinc (Zn) and iron (Fe) to Sudbury area from the smelter stack. Precipitation chemistry monitored during the June 1978 to May 1979 period showed that collecting stations north of Sudbury received, on average, lower annual bulk deposition levels of $\mathrm{SO}_{4}{ }^{2-}\left(34 \mathrm{kgha}^{-1} \cdot \mathrm{yr}^{-1}\right)$ than stations near Sudbury ($46 \mathrm{kgha}^{-1} \mathrm{yr}^{-1}$) (Jeffries 1984). Measurements for these lakes were only slightly higher than milar measurements caken in (Schekider et aliburton and although substantially lower than historical levels. In the immediate vicinity of Sudbury (within 40 km), local emissions contribute up to 70% of the total Ni and Cu deposited (Chan $e t$ al. 1984), although declines in trace metal emissions have accompanied recent reductions in SO_{2} emissions (Keller and Pitblado 1986). The deposition rates of aluminum (Al), manganese (Mn), nutrients and major ions (except of Sudbury than rates in south central Ontario (MuskokaHaliburton) (Jeffries 1984). Therefore, to minimize the effec of local deposition of metals ($\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ and Fe) and dry deposition of SO_{2} in the present study, study lakes were selected between 38 and 70 km from the smelter at Copper Cliff (Fig. 4), yet well within the zone of low pH lakes extending northeast of Sudbury

A survey conducted between 1981 and 1983 to revealed that substantial improvements in water quality ha taken place in the intervening period (Keller and Pitblado 1986). Observed water quality changes included increases in pH and decreases in $\mathrm{SO}_{4^{2}}, \mathrm{Ni}$ and Cu concentrations. In one extremely acidic lake close to the smelter, the pH
increased from 4.05 in 1972 to 5.8 in 1984, while concentrations of $\mathrm{SO}_{4}{ }^{2-}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn}$ and Zn in the lake water decreased by $60-90 \%$ during the same period (Hutchinson and Havas 1986). The degree of observed changes showed a seneral relationship to distance from the Sudbury smeler deposition from Sudbury sources was responsible for the observed recent improvement in water quality (Keller and Pitblado 1986).
2.2. Geomorphology and hydrology

Situated at the convergence of the Superior, South en and Grenville formations of the Precambrian Shield and two major fault systems, the greater Sudbury basin metavolcanic and metasedimentary types of silicate bed rock are found in the area. Within the lake basins studied, bedrock types range from felsic end members (quartzite) through rocks of intermediate composition (volcanics,
gneiss, migmatite) to carbonate-rich siliceous sedimentary rocks (App. 1). Although igneous and metamorphic rocks predominate northeast of Sudbury, substantial variability in he acid-neutralizing capacities of surface waters exists Cormediate groups contrasts with the occurrence of arbonate-rich siliceous sedimentary rocks, often coupled with an ample cover of post-glacial sediment. Such bedrock and surficial geology contributes to the enhanced buffering potential of surface waters within certain lake basins. Bedrock sensitivity ratings for individual lake basins were determined at Ranger Lake (Map 1549A) and Wanapitei Map 1550A) (App. 1) using Geological Survey of Canada naps, which depp. 1. atern Canada (Shils 1981) Additional information obtained from Ontario Geological Survey maps of bedrock (Map 2419) and surficial (Map 5465) geology. As in Brousseau et al. (1985), each lake was classified according to its sensitivity and then compared with the bedrock and surfi cial geology type that formed its watershed. Lakes with watersheds containing several geological types were classi fied according to the least sensitive rock type.

At Wanapitei, three distinct geomorphological regions were defined according to these bedrock sensitivity ratings (Fig. 5), as follows:

1) LOW SENSITIVITY (WLS): carbonate-rich siliceous sedimentary rocks.
2) MODERATE SENSITIVITY (WMS): mafic to intermed ate metavolcanic rocks.
) HIGH SENSITIVITY (WHS): felsic intrusive and meta morphic rock
Over much of the area characterized by moderately or posed of a thin overburden of silty to sandy till (App. 1). Thicker end moraine deposits of sand and gravel occur in the low-sensitivity region, further enhancing the residual acid-neutralizing capacity of the area (Fig. 5)

Five watersheds of the French River system (2D) are contained within the area studied (App. 2). The Upper Wanapitei River (2DA-2), East Wanapitei River (2DA-3) and parkin Creek (2DA-4) drain int-2) and Sturgeon (2DC-1) Rivers drain into Georgian Bay via Lake Nipissing and the French River. A total of 2152 lakes is contained within these watersheds, of which nearly 80% are less than 9.9 ha in area (App. 2). The average density of small lakes in the Upper

Wanapitei system (2DA) (55.1 per $100 \mathrm{~km}^{2}$) is roughly the same as Ranger Lake (54.9 per $100 \mathrm{~km}^{2}$). Fewer small lake density (37.3 per $100 \mathrm{~km}^{2}$) remains higher than ovort sec dary watersheds in the Precambrian Shield (Fig. 3d)

To support the open roasting methods of early sm ing, the forest surrounding Sudbury was logged heavily in the early 1900 s. Regeneration has resulted in a poorly developed, second-growth forest characterized by jackpine

Unksiana), white spruce, balsam fir and white birch. isturbance from cottage development is notably human both the Ranger Lake and Wanapitei study areas. Because of their geographic proximity, factors such as migration habits, mortality levels, nesting habitat selection and breeding chronology would likely not differ between the two study areas.

Methods

veys were restricted to a zone enA random selection of all wetlands that fit within a plot of $2 \times 2 \mathrm{~km}$ was made in each township so that approximately equal numbers of wetlands were chosen from each. A total of 414 wetlands was surveyed in 1983 , some of which were elected for more intensive ground studies of potential mechanisms of food limitations to developing waterfowl

1.3. Habitat description

Basic habitat characteristics of all wetlands surveyed in the study areas were determined through interpretation of aerial photographs (scale 1:15 840). Parameters include rea of open water, total shoreline length, and length of horeline with well-developed littoral zone (e.g., marsh, belt of ericaceous plants). Shoreline development indices (shore ine length divided by the square root of the area of open
1.4. Field procedure

All surveys employed a common field procedure detailed in Ross (1985) and summarized as follows. The surveys were undertaken from a Bell 206 B helicopte bubble windows on the back doors. These windows allowed he observers to extend their heads approximately 25 cm outside the limits of the original body of the aircraft so that visibility was greatly enhanced

An observer sitting in the front passenger seat of the helicopter acted as navigator and data recorder and alerted the other observers to upcoming birds. These observers sat
at the back of the aircraft by each window and notified the navigator of waterfowl sightings through an intercom system. The species, sex, number and exact location of all birds seen were recorded directly on acetate covered aerial photographs on which the location of the wetlands and the oundaries of the plots were drawn. For this study, a an aerial photograph (scale $1: 15840$). Individual bodies of standing water (lakes, ponds, beaver flowages and sloughs) were usually self-evident; however, where they were irregularly shaped or in a series along a drainage, each was delineated by the presence of a clearly visible outlet stream. Streams and rivers were usually treated as separate wedand unless they were very small, in which case they were considered part of the nearest lake or pond with which they among the associated standing water bodies. Occasionally wetlands had undergone considerable change since the photography and, in some cases, new ones had been created by beaver activity. A note was made during the survey and the new shoreline sketched on the aerial photos. The aircraft passed over all wetland habitat at altitudes as low as 20 m above the ground and speeds ranging from a hover to $100 \mathrm{~km}^{-1} \mathrm{~h}^{-1}$. Multiple passes were made over some wetlands and species of the birds could not be ascertained on the firs pass. Because of the small, discrete nature of boreal forest wetlands on the Precambrian Shield, total coverage of the habitat was accomplished by following the shorelines

1.5. Timing

Surveys were undertaken during a limited period or "survey window" when most of the local breeders had passed through the area and before the desertion by the
males during incubation (as in Dzubin 1969 and Dennis 974a. The extent of this period in northern Ontais is not known, as no detailed phenology studies are available for hat area. These surveys have used a conservatively short period of two weeks, starting one week after the smallest wetlands ($<10 \mathrm{ha}$) were free of ice (early to mid-May). As only one survey flight was made, it was not always possible to sample each species within its appropriate "window." icularly the Ring-necked Duck should be species, par pproximate. They nest almost one monh after mos pecies, although their actual migration appeared to be complete prior to the survey flights.
1.6. Data analysis

Results are expressed in numbers of "indicated pairs" per species, which is based on the number of lone male pairs and males in flocks of five males and fewer (as in be determined in the field and so "indicated pair" estimates were generated using the known sex ratios of the closely related Mallard as in Dennis (1974a). The following multiple egression equation was developed using all bree urvey data available for Ontario wetlands where Mallard. ere found
$Y=0.0700+0.632 X_{1}+1.1166 X_{2}+0.7398 X_{3} \quad[1]$ $R^{2}=0.9577, p<0.00001$
where $Y=$ nuber of indi
$X_{1}=$ number of lone Mallards
$X_{2}=$ number of flocks of two Mallards
$X_{3}=$ number of Mallards in flocks between 3 and 10 Indicated pair estimates for Black Ducks can then be enerated by substituting Black Duck sighting information or that of Mallards in the equation. Wetands which had no Black Ducks ($X_{1}=X_{2}=X_{3}=O$) were assumed to have no idicated pairs $(Y=0)$, i.e., the equation was not employed under these circumstances.

The Common Loon is also effectively monomorphic Because these birds are very strongly territorial, indicated pairs were determined from the presence of either a single anadensis), indicated pairs were counted for each single ird, pair or flock of three, whereas larger flocks were ignored.

Breeding densities are expressed as a number of dicated pairs per $100 \mathrm{~km}^{2}$ and are accompanied by a formula developed by G.E S Smith for systematic sample Ross 1987).

Limnology, waterfowl utilization and trophic studies
.1. Pilot studies (1980-82)
The methods used in the pilot study undertaken in he Ranger Lake area between 1980 and 1982 are described 1983. Where these methods differ, further elaboration is contained in Appendix 3.

Ground studies conducted in the two areas in 1983 ncluded water sampling and waterfowl surveys, as well as minnow and aquatic invertebrate sampling. Small, shallow head-water ponds and lakes, draining relatively small areas were studied (Table 2). Lakes ranged in size from 0.6 to $1.0-30.5 \mathrm{~m}$ median $=4.4 \mathrm{~m}$)

Table 2 Lake murphometry parameters used in study lake selection, expressed as medians whit range in parentheses					
				Hydro	ype
Studrarea N			area, ha	1-11	
Ranger	$\underset{(0,-250.3)}{506}$	$\begin{array}{r} 4.59 \\ (1,0-30.5) \\ \hline \end{array}$	$\begin{array}{r} 189.8 \\ (16.3-2078.0) \end{array}$	41\%	
Wanapitei is	$\begin{array}{r} 4.39 \\ (0.6-272) \end{array}$	$\begin{array}{r} 4.39 \\ (1.01-140) \\ \hline \end{array}$	$\begin{array}{r} 70.4 \\ (2.7-1855.10) \end{array}$	66%	

All statistical analyses were performed using the Statistical Analysis System (SAS) computer procedure Statisticl Andys System Institute Inc 1989)
2.2. Water quality

Water sampling was conducted between 5 and 9 June at Wanapitei and between 12 and 17 June at Ranger Lake. Prior to sampling, temperature profiles were measured at the deepest location in the lake. Following Ministry of Environment (1979) guidelines, a non-weighted, composite water sample was collected, using flexible plastic Tygon tubing lowered through the ep 1 m above the bottom in shallow ponds or lakes. Where maximum depths did not exceed 1 m , grab samples were collected. Following preservation, samples were cooled to $4^{\circ} \mathrm{C}$ and transported to the Great Lakes Forestry Research Centre in Sault Ste. Marie, Ontario, for chemical analyses. All samples underwent coarse filtering using a Wheaton No. 4 filter to remove suspended particulate matter. Samples prepared fo nutrient and carbon analyses undervent fu
using a 045 -um millipore (Sartorius) filter.

Chemical determinations, procedures and cuipment, given in the Department of the Environmen (1979) guidelines, were followed (App. 4), except for total inflection point alkalinity $\left(\mathrm{HCO}_{3}^{-}\right)$, which was measured by an electrometric titration method equivalent to the Gran technique. Within 24 h of collection, conductivity ($\mu \mathrm{mho} \mathrm{cm}^{-1}$ at $25^{\circ} \mathrm{C}$) and pH were determined potentiometrically. Conductivity measurements were concentration (KCORR) using methods presented by Sjors (1950). Analyses were completed for other major ions, including calcium (Ca^{2+}), magnesium (Mg^{2+}), potassium $\left(\mathrm{K}^{+}\right)$, sodium $\left(\mathrm{Na}^{+}\right)$, sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, chloride $\left(\mathrm{Cl}^{-}\right)$and silica (SiO_{2}); nutrients including total Kjeldhal nitrogen (TKN), ammonia $\left(\mathrm{NH}_{3}\right)$, nitrite-nitrate $\left(\mathrm{NO}_{2}+\mathrm{NO}_{3}\right)$, total phosphorus (TP) and soluble reactive phosphorus $\left(\mathrm{PO}_{4}\right)$; total carbon (TC), total organic carbon (TOC) and total $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}$, lead (Pb), cadmium (Cd) and Fe . Sulphate determinations were made using the methyl thymol blue (MTB) method. True and apparent water colour determinations (expressed in APHA Platinum-Cobalt Colour Units) were made on samples collected in both the littoral zone ($<1 \mathrm{~m}$) and midlake from 24 June to 5 July 1984 at Ranger Lake and 25 July to 8 August 1984 at Wanapitei.
23. Habitat description

As in section 1.3, data were also collected on physio graphic characteristics of lakes and their watersheds. Estimates of lake surface area (LA), shoreline length (SL) and riparian area (RIP), which was calculated as the area
within the forested edge minus the open water area were en water area, we
derived from interpretation of aerial photographs (scale 1:15 840). Wetland ratios (WETRAT) were calculated as the ratio of riparian area to lake surface area. Shoreline lake depths (ZMAX) were determined from bathymetricdata collected for each lake. For Wanapitei study lakes, the distance to the Copper Cliff smetter was measured. Lake ele vation (ELEV) and the total upstream drainage area
(DRAIN) of each lake were measured from topographic maps (scale 1:50 000)

Topographic maps and aerial photographs were used to define hydrologic types of lakes according to drainage surface water exchange through inlets and outlets (modified from Eilers et a. 1983) as follows:
(1) Type I: no permanent inlets or outlets (ground-water inflow may be very small or moderate)
(2) Type 11: intermittent outlet only (ground water inflow may be moderately strong).
(3) Type III: permanent inlet and outlet (reflecting relatively strong surface water through flow).
(4) Type IV: more than one permanent inlet and outlet (reflecing downstream drainage order hierarchy and strong surface water through flow).
2.4. Minnow sampling

Estimates of small, non-game fish species occurrence and abundance were obtained using baited wire minnow traps. Fish sampling was conducted between 30 June and
3 August 1983. The cylindrical traps were constructed of 3 August 1983. The cylindrical traps were constructed of
$6 . \mathrm{mm}$ wire mesh and measured 1.0 m by 0.30 m with 40 mm 6 -mm wire mesh and measured. A trap, baited with dog biscuits, was located in shallow water ($<2.5 \mathrm{~m}$) for 24 h at each of five sites equidistant around the shoreline of each lake. Each trap was suspended from floats and anchored to prevent drifting, except in shallow water where the traps often rested on the bottom. Captured minnows were preserved in 10% formalin prior to sorting, identification and counting Other organisms found in the traps, including tadpoles, newts, cra
released.
2.5. Aquatic invertebrate sampling

Aquatic macroinvertebrate communities were examined on a subset of 18 lakes in each area. Lakes were chosen across the available range of pH , included those with and without fish, and ranged in size from 1.5 to 7.5 ha .

A standardized sweep net procedure was used to compile lists of invertebrate taxa for comparative purpose taken at equidistant points parallel to the shoreline of each lake in water less than 1 m deep. Each sweep was taken over the bow of a forward-moving canoe and described an arc from the water surface to as near the substrate as possible and back to the surface. The net used had a bag 43 cm deep with 9 meshes per centimetre, on a D.frame with 625 cm rea, and a 122 cm handle. Invertebrates were sampled and 1 August in the Ranger Lake area

Insects were identified to as low a taxonomic level as possible, given the life stage that made up the major part of ach taxon. The only exception was Corixidae, for whic identification has been made only on adults because mmatures, which made up a large portion of many amples, could not be adequate not included in the analyses were those of terrestrial origins
and the aerial adults of aquatic forms, especially Diptera, which were often taken from the water surface. Each lake was scored for the presence or absence of major insect taxa,
which were defined as those recorded in sweep net samples from more than one lake in an area
2.6. Waterfowl surveys

Distributions and densities of breeding adult water during the nestinitiation period in May 1980 and 1981 for Ranger Lake and May 1983 for Wanapitei (as described in section 1.2.). Regular ground surveys were conducted on all water bodies in 1983 to assess adult and brood activity. Each water body was surveyed twice during the brood-rearing period, once between 19 June and 5 July, and a second time between 26 July and 7 August. Surveys were conducted concurrently in both study areas using two teams of two trained 1200 h . Water bodies were not surveyed under extreme wind or rain conditions. Survey teams undertook complete canoe and/or ground checks of all aquatic and riparian habitat. The location, number and age of young were noted on scale maps of the study lakes, along with observations on foraging and other behaviour. Ducklings were aged according to the Gollop and Marshall (1954) plumage developmen

Results and discussion

1. Waterfowl breeding distribution in north-eastern Ontario

1.1. General patterns

The northeastern Ontario survey blocks (Fig. 4) extend over a zone of intergradation between Great Lakes St. Lawrence and boreal forest regions (Rowe 1972) Throughout the region, the amount of wetland habitat was surprisingly consistent, ranging from 4.9 to 6.0 wetlands per plot (Table 3). The northern tier of blocks, including the Sault Ste. Marie convergence block, which best represent the VIXEN and GONG study areas, are physiognomically with patchy coniferous forest and lakes of various sizes evenly distributed throughout. Overall waterfowl breedin densities are quite similar in these blocks (about one pair per square kilometre) (Fig. 6). The southern tier of block extends over more deciduous habitat, except in the Nipissing block, where much of the area is low-lying and fla with more extensive swampy wetlands and agricultural influence. The superior habitat in the Nipissing block is
reflected by the highest overall breeding densities recorde anthere, whereas similar to those of more northerly blocks (Fig. 6)

Patterns in the geographic distribution of certain waterfowl species and taxonomic groups are evident in Figure 6, and are described in the annotated list of species

Table 3 Brecting densities of wa expressed as mean det	$\begin{aligned} & \text { uerfowl } \\ & \text { tur } \\ & \text { inf and } \end{aligned}$						$100 \mathrm{kr}$	$\begin{aligned} & \text { Mmario. } \\ & m^{2} \end{aligned}$										
Bluck		Sault						New		Ellioot lake lat and						meville		erage
Number of plas:		28						25		19		${ }_{23}$						
Wellandsplot:		5.20		5.49		4.92		4.52		6.00		5.30		5.72		5.76		
Species	Dens	\pm s"	Den	\pm si	Der	\pm sid	Dens.	$\pm \mathrm{sb}$	De			ns. \pm sp		ns. \pm sir				\pm s
Canada G	3	2.09	22.00	4.29	17.00	3.85	1300	3.43	8.42	. 7	1.22	23.2	5.00	2.67				10
Maltard	6.25	3.00		2.84		05	9.00	6.46	17.11	7.04	26.09	9.929	52.00	13.66	14.00	4.94	16.80	
American Black	9.64	62	12.00	5	18.60	77	16.80	34	5. 53	2.25	12.61	14.99	16.40	40435		6.71	15.54	2.56
Norrtern Pintail																	0.13	.12
Grech winged Teal			2.00	1.93	2.00	1.24		0.96			6.52	7 $\quad 4.74$	10.00	3.56	4.00	2.36	3.20	
${ }^{\text {Bluc.winged Teal }}$		0.72						${ }^{1.47}$			${ }^{7.61}$	4.28	11.00	7.04	3.00		${ }^{3} 3188$	
Wood Duck		3.28		1.93				2.22	19.74	5.81	10.87	73.96	18.00		1.00	${ }_{-73}^{0.96}$	7.31	
${ }_{\text {Ringrinecked Duck }}$	28.57	${ }_{6}^{6.82}$	13.00	4.41	16.00	4.34	22.00	9.84	789	2.91	20.65	56.59		(100 6.12	19.00	7.73	$\xrightarrow{18,20} 0$	
Commmon Goldencye	3.57 16.96	${ }_{2}^{2.87} \mathbf{5 . 4 3}$	13.00	6.04					3.95	1.84			00	00			7	
Bufflehead			2.00	1.11	1.00			2.89							2.00	1.47	1.15	
Houded Merganser		3.79	13.00	3.73	15.00		14.00		10.53		1.99	1.22	11.00		16.00	5.64	11.41	
Common Merganscr	8.04	3.94	14.00	3.60	7.00	3.20	6.00)	2.36	13.16	4.69	15.22	$2 \begin{aligned} & 2.33\end{aligned}$	8.00	3.47	10.00	3.56	10.00	1.29
Red.breasied Merganser	0.89	0.88											1.00	.00 0.96			0.26	
Toual	95.36	16.77	99.00	15.49	92.60		99.80		9.63	7.79	116.96	5.02	149.40		110.8		. 59	6.74
\% wellands occupied	34.3		39.3		43.9		45.1		42.1			1.8\%		42.7\%				

laxonomic groups in the eight blocks surveyed in northea
expressed as mean density of indicated pairs per 100 on

presented in Appendix 5. Dabblers, in particular Mallard and Wood Duck (A ix stonsa), were abundant in the southern tier of blocks, especially the Nipissing block. Diving ducks, in particular Common Goldeneye and Hooded Merganser were more common in the boreal forests of the northern tier of blocks, including Sault Ste. Marie. In the Huntsville block, patterns of waterfowl distribution were similar to those in the northern tier of blocks, with the exception teat
Goldeneyes are notably absent. Piscivore numbers increased from east to west within the survey region, although numbers were lowest near the Lake Superior shore.

Using a modified reciprocal averaging ordination technique (TWINSPAN; Hill 1979a), an analysis of species and plot associations was performed on indicated nesting pair data from 191 systematic survey plots throughout the eight survey blocks. The resulting dendrogram (Fig. .7) illus.
trates the major associations among the 11 waterfowl species rates the major associations among the nesting pair per $100 \mathrm{~km}^{2}$ in the region. Piscivorous waterbirds (i.e., Common Loon and Common Merganser) often co-occurred in plots, although the Common Merganser was often found on rivers and streams. Typical boreal waterfowl species, including Common Goldeneye, Hooded Merganser, Ring. necked Duck and Black Duck, often occurrred togecher on plots. Of the two remaining groups, the most significant is the Wood
Duck, Blue-winged Teal (Anas discors) and Mallard group (Fig. 7), which is often associated with agricultural areas in the survey region.

An estimate of the number of breeding waterfowl potentially at risk from the effects of acid precipitation was 4 and acid sensitivity information (Fig. 7). As most but not all,

species per kilometre of shoreline of lakes in the five size classes used in the previous analysis (Fig. 8). Clearly, insectigeneralists (Bon Goldeneye and Hooded Merganser) and prefer small lakes, usually under 20 ha and particularly in the 1.5 - to 4.0 -ha range. Piscivores (Common Merganser and Common Loon) occupy larger water bodies, although Common Mergansers also used river and stream habitats These results support the decision to restrict the study to

2. Description of lake environments

2.1. Factor analysis

Basic statistics (mean $\pm \mathrm{sD}$, median) for 31 morpho metric and chemical variables are summarized in Table 6 , according to the five bedrock sensitivity groups defined in
Appendix 1 (Ranger Lake - VIXEN and GONG; Wanapite Appendix 1 (Ranger Lake - VIXEN and GONG; Wanapite

- high (WHS), moderate (WMS) and low (WLS) sensitivity) To describe the environment of the head-water lakes studied, a principal factor analysis was applied to 22 environmental variables. The variables were selected to reflect lake and basin morphometry (lake area, shoreline development indices, wetland ratio, cumulative drainage basin area and maximum detected depth), major ion chemistry ($\mathrm{pH}, \mathrm{KCORR},\left(\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}\right), \mathrm{K}+, \mathrm{Na}^{+}, \mathrm{HCO}_{3}{ }^{-}$ Fe) and nutrient levels (TOC, TKN, $\mathrm{NH}_{3}, \mathrm{NO}_{2}+\mathrm{NO}_{3}$ and PO_{4}). Those variables with highly skewed distributions or missing data were rejected, as indicated in Table 6. To normalize the distributions, the data were \log transformed (except pH) and converted to unit scores so that each variable would be weighted equally for comparative purposes in the ánalysis. Only lakes with complete chemical,

Figure 9
iagram i
Diagram illustrating the results of the principal factor analysis on the
Combined Ranger Lake and Wanapitei data set ($N=123$ lakes). The

eigenvalue \% VARIANCE EXPLAINED	FACTER 1 Acidity 4.879 (35.9\%) $\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	factar a IUNIC STRENGTH 3.269 (24.0\%) $\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	factur 3 Eutrophication $1.946(14.3 \%)$ $\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$	FACTOR 4 mIRPHIMETRY 1.547 (11.4\%) $\begin{array}{lllll}0 & 10 & 20 & 30 & 40\end{array}$
	-	$\begin{aligned} & +\quad \times \text { 苃 } \\ & +\infty \end{aligned}$		
$\begin{gathered} \text { Toc } \\ \substack{\text { Por } \\ \text { FE } \\ \text { TKN } \\ \text { THAX } \\ \text { VETRAT }} \end{gathered}$	$\begin{aligned} & -Z Z \\ & +\square \end{aligned}$			
			- \triangle	

Table 6 Summary
 Lammary statistics (mean $\pm \mathrm{sv}$, median) for 31 chemical and physical parameters

in lakes sampled in the Ranger Lake and Wanapitei sudy areas in 1983 ,

Variable	Units	Wanapitei									Ranger Lake					
		$\begin{gathered} \text { WHS } \\ (N=20) \end{gathered}$			$\begin{gathered} \text { WMS } \\ (N=24) \end{gathered}$			$\begin{gathered} \text { WLS } \\ (N=11) \end{gathered}$			$\begin{aligned} & \hline \text { VIXEN } \\ & (N=35) \end{aligned}$			$\begin{aligned} & \hline \text { GONG } \\ & (N=34) \end{aligned}$		
		Mean	\pm so	Medi	ean		Median	Mean	\pm sp	Median	Mean	\pm si	Median	Mea		Median
Lake morphometry																
1. Lake elevation	$f t$	1098	79	1050	1040	94	1000	1096	61	1100	1374	153	1450	1582	103	1600
2. Shoreline length			566		1947	1304	1708	1584	725	1786	1514	965	1188	2009		
3. Lake area	ha	4.24	3.08	3.15	8.68	8.33	4.55	6.75	4.85	7.0	6.59	6.28	4.60	9.74	6.73	8.25
4. Riparian area	ha	1.97	1.63	1.50	4.37	6.60	2.35	1.91	2.04	1.90	2.71	6.25	1.10	2.79	5.91	1.30
5. Wetland ratio		1.62	0.63	1.48	1.69	0.74	1.53	1.51	0.67	1.28	1.55	0.78	1.33	1.34	0.47	1.17
6. Shoreline development		1.57	0.34	1.55	2.00	0.84	1.78	1.82	0.34	1.76	1.78	0.45	1.66	1.82	1.19	1.69
7. Basin area	ha	1228	130.4	63.4	296.1	464.9	81.3	74.1	40.5	74.6	445.4	54.9	230.7	256.8	235.1	
8. Maximum depth	m	4.36	2.69	3.40	5.31	3.58	4.50	6.38	4.24	5.20	6.24	5.80	4.60	6.64	6.31	4.50
Lake chemistry																
		4.75	0.40	${ }^{4.65}$	${ }_{5}^{5.50}$	0.67	5.69	${ }^{6.09}$	0.89	${ }^{6.33}$	${ }^{6.57}$	0.49	${ }^{6.66}$	6.17	93	
10. Corrected conductivity	$\mu \mathrm{mh} \cdot \mathrm{cm}^{-1}$	27.3	4.9	27.8	31.5	6.6	31.1	39.2	14.0	34.2	33.7	9.2	34.8	23.0	3.3	${ }_{23.3}$
11. Water colour	Hazen units	14	13	10	37	18	20	${ }^{25}$	1		44	32	88	25	16	20
12. Alkalinity (TIP)	$\mu \mathrm{eqL} \mathrm{L}^{-1}$	3.4	12.4	0	37.3	53.2	16.7	119.9	${ }^{150.4}$	52.1	141.5	82.7	${ }^{141.8}$	50.1	33.9	${ }^{52.7}$
13. Calcium	mg ${ }^{-1}$	2.32	${ }^{0.74}$	2.04	3.71	1.23	3.69	5.71	3.49	4.14	4.12	1.21	4.17	2.78	0.65	2.68
14. Magnesium		0.56	0.09	0.54	0.74	0.21	0.71	0.88	0.32	0.82	1.03	0.38	1.02	0.61	0.09	
15. Potassium	mg ${ }^{-1}$	0.49	0.10	0.45	0.55	0.16	0.50	0.71	0.27	0.64	0.62	0.23	${ }^{0.56}$	0.53	0.15	0.54
16. Sodium	${ }_{\text {mg }}^{\text {mg }}$ -	0.79 10.7	- 1.14	${ }^{0.76}$	0.94 11.1	${ }_{2.21}^{0.18}$	0.96 10.6	0.91 10.8	${ }_{0}^{0.09} 0$	0.87 10.7	1.04 7.4	0.26 1.04 1	1.07 7.4	$\stackrel{0.72}{6.9}$	0.11 0.98	71 6.9
lit. Sulphate	$\mathrm{mgLL}_{\mathrm{mg}} \mathrm{L}^{-1}$	10.7 3	1.05	${ }_{3}^{11.4}$	${ }_{2} 1.97$	${ }_{1}^{2.21}$	${ }_{3.05}^{10.6}$	${ }_{2.05}^{10.8}$	1.08	1.87	3.63	1.37	3.71	2.56	1.12	6.9 2.54
19. Chloride	$\mathrm{mg}^{\text {L }} \mathrm{L}^{-1}$	0.35	0.15	0.32	0.41	0.16	0.38	0.44	0.09	0.42	0.69	0.15	0.67	0.57	15	
20. Nickel	$\mu \mathrm{g} \mathrm{L}^{-1}$	13.07	5.91	13.1	8.05	4.51	7.5	9.71	6.35	7.0	0.12	0.24	0.1	0.05		
21. Manganese			59.4	90.1	47.9	32.6	51.3	69.5	98.8	38.6	13.2	11.3	9.7	14.0	9.3	
22. Aluminum	$\mu \mathrm{g} \mathrm{L}^{-1}$	* 396.9	201.3	403.5	189.3	131.9	154.2	152.6	95.2	148.0	115.6	64.2	109.0	149.8	51.9	
23. Copper		1.95	1.18	${ }^{2.15}$	${ }^{5} 93$	16.19	1.95	1.75	0.98	1.80	0.97	0.73	1.1	0.67	0.93	35
24. Zinc	$\mu \mathrm{g} \mathrm{L}^{-1}$	10.26	5.81	10.10	7.33	4.99	6.90	6.15	3.59	6.00	5.49	2.95	4.90	7.60	7.39	5.35
25. Iron	$\mu \mathrm{g}$ L-	142.1	117.2	101.6	114.9	96.9	87.0	94.5	67.9	73.0	113.9	81.8	87.0	83.2	51.5	
26. Total organic carbon	mgL-	3.66	1.94	3.70	4.86	2.51	4.35	6.15	3.41	6.30	8.75	2.82	9.10	8.27	2.01	8.50
27. Total Kjeldhal nitrogen	$\mu \mathrm{g} \mathrm{L}^{-1}$		119	210	195	254	205	320	188	250	293	78	290	256	0.55	245
${ }_{\text {29. }}{ }_{\text {28, }} \mathrm{NH}_{3}$	${ }_{\mu \mathrm{mg}}^{\mathrm{mg} \mathrm{L}^{-1}}$	21.33	11.79	${ }_{4.64}^{19.05}$	19.58	10.62 17.66	${ }_{\substack{16.30 \\ 351}}^{1}$	${ }_{1049}^{22.87}$	${ }_{1211}^{8.75}$		${ }_{60}^{22.75}$	7.39	${ }_{313}^{21.90}$	${ }_{1759}^{20.91}$		
29. $\mathrm{NO}_{2}+\mathrm{NO}_{3}$			${ }_{3.04}^{16.51}$	4.64	(11.44	${ }_{\text {2.62 }}^{17.66}$	${ }_{4}^{3.51}$	10.49 3.59	${ }_{23}^{12.11}$	2.09	(60.78	$\begin{array}{r}75.57 \\ 2.15 \\ \hline 15\end{array}$	- 31.3	${ }_{3}^{17.59}$	-16.35	
31. Soluble reactive phosphorus	${ }_{\mu \mathrm{g} \mathrm{L}^{-1}}^{\mu \mathrm{L}}$	1.14	${ }^{3.46}$	1.09	1.41	${ }_{0}^{2.66}$	1.29	${ }_{1.47}$	1.18	0.98	1.21	0.38	1.10	1.35	2.55	

Vriables used in principal factor anavis
physical and biological data, including fisheries and waterfowl surveys, were included. Data from 123 lakes (69 from Ranger Lake and 54 from Wanapitei) were used.

To reduce the data to the major axes which accoun for most of the variation between the descriptor variables, tical Analysis System Institute Inc. 1982) was employed, using the squared multiple correlations of each variable wit all the other variables as the prior communality estimate. To aid in the interpretation of the factor loadings, the VARIMAX rotation method was used (Statistical Analysis System Institute Inc. 1982). This is an orthogonal rotation nethod which simplifies the columns by maximizing the

The results of the factor analysis' performed
mbined data set $(N=123)$ are summarized in Table $7 a$. The percentages of the individual factor variability explained by each descriptor are illustrated in Figure 9. Four principal factors, accounting for 85.6% of the total rotated variance, were generated. Each is described below: 1) Factor 1 - Described as the "acidity" axis, factor 1 explains 35.9% of the variance. The chemical variables mos srongly associated with factor 1 are all linked to acid depo high positive correlations for several metals ($\mathrm{Mn}, \mathrm{Al} \mathrm{Zn}, \mathrm{C}$ and Fe) and sulphate ($\mathrm{SO}_{4}{ }^{2-}$). The strong negative correlation of $\mathrm{pH}(-0.888)$ and bicarbonate (-0.793) on this factor consistent with this interpretation
Factor 2 - Described as the "ionic strength" axis, Factor 2 - Described as the ionic strength" axis,
factor 2 explains 24.0% of the variance. The strength of
mineral influence in these head-water lakes is reflected in the second factor axis. The content of $\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}, \mathrm{Na}^{+}$ and $K+$ load positively on factor 2, as does the associated measure of ionic strength (KCORR). This axis could also be considered a measure of mineral buffering capacity as bicarbonate $(+0.538)$, in addition to the cations mentione above. Sulphate has a moderate positive influence $(+0.406)$ on the axis but loads more strongly on factor 1 .
(3) Factor 3-Described as the "eutrophication" axis factor 3 explains 14.3% of the variance and is defined by both chemical and morphometric parameters that together describe a gradient of trophic conditions. The concentration of organic constituents and nutrients in the water is
reflected by positive loadings for TOC, PO_{4}, Fe and TKN and coincides with the moderately high positive loading for wetland ratio (WETRAT $=+0.356$), which indicates a high proportion of riparian habitat versus open water in the wetland, indicative of a more mature successional stage. Negative loadings for maximum depth (-0.536) and lak rea (-0.429) were also associated with this axis.

[^0]
(4) Factor 4-Described as the "morphometry" axis, factor 4 explains 11.4% of the variance and is defined solely by positive loadings of physical variables, including lake are

Using the procedures described above, separate fac tor analyses were performed on Wanapitei and Ranger Lake study lakes. The results of the combined analysis (Table 7a) were similar to those obtained for Wanapitei lakes only (Table 7b). Nearly one half of the total variance was explained by factor 1 , which was weighted $\mathrm{pH}, \mathrm{Mn}, \mathrm{Al}$ parameters Zn . Factors 2,3 and 4 contributed almost equally to the overall factor pattern generated comprising 41.9% of the variation. Factors 2 and 3 corresponded closely to the eutrophication and ionic strength factors defined in the combined analysis, whereas factor 4 was again weighted primarily by morphometric parameters.

The Ranger Lake factor output (Table 7c) was also similar to the combined scores. The combined factors 1 and 2 explained 58.1% of the 80.3%, Mn, Al and Zn tended however, parameters stor 1, ionic strength, and factor 2, eutrophication. Factors 3 and 4 explained only 22.2% of the variance. Although factor 3 includes several morphometric parameters, it is difficult to interpret factor 4. While the acidity gradient at Ranger Lake was less well defined than at wanapit
similar.

The results obtained in the present study are similar to those obtained by Pitblado et al. (1980) following an anal ysis of water chemistrydata (23 variables) collected for 182 lakes within 200 km of Sudbury. A principal component analysis showed that most of the chemical variability in these systems was attributable to four components deoined as mutr and sodium chloride status. In our study, ionic composition, nutrient levels and morphometric parameters combined to describe a major portion of the head-water lake environments measured. Because our waterfowl studie were designed to assess the effects of aquatic ecosystem acidification on a cross-section of head-water lakes in north eastern Ontario, further analyses of habitat corselates were performed using scores from the factor
on all study lakes combined (Table 7a).
2.2. Geochemistry and bedrock sensitivity

To assess the importance of bedrock sensitivity on the geochemistry of study lakes, a one way analysis of variance (ANOVA) was performed on factor scores derived from the combined factor analysis for lakes grouped by the five bedrock sensitivity classifications defined in Appen dix 1. Significant paired companited using Tukey's Studenized range test. The results are depicted in Figure 10. Geological influence was substantial in the distribution of scores on both factor 1 , acidity, and factor 2 , ionic strength

No significant differences among bedrock types were found on factor 3, eutrophication, and only minor differences were apparent on factor 4 , morphometry.

In general, the physiographic features of lakes and watersheds were similar between study areas and among bedrock sensitivity groups (Table 6). These lakes can be described simply as small, shallow head water lakes with moderately irregular shorelines. Most lakes drain relatively zone community, with considerable riparian habitat composed of ericaceous shrub and graminoid vegetation. The minor differences in lake morphometry between highsensitivity lakes at Wanapitei (WHS) and both VIXEN and GONG lakes (Fig. 10) can be largely attributed to the rather confined catchment basins and smaller average size of WHS lakes compared with those sampled at Ranger Lake

Those chemical and physical parameters that describe factor 3, eutrophication, showed no significant dence that bedrock sensitivity explains any of the variability in organic carbon content (TOC), nutrient levels (PO_{4} and TKN) or lake morphometry (ZMAX, WETRAT and LA). Although arbitrary in nature, the fixed boundary system for trophic categories proposed by Vollenweider and Kerekes (1982) does provide a clear definition of trophic terminology. The majority of lakes sampled in our study (64 and be classed as tra ligotrophic (TP ≤ 40 pL-1) would

Table $7 c$ Principal factor analysis output for 69 lakes in the Ranger Lake study						
Variable ${ }^{\text {E }}$	Eigenvalue:$\%$ variance:	Rotated factor patern				$\begin{gathered} \text { Total } \\ 12.558 \\ 80.3 \% \end{gathered}$
		Factor 1 "acidity" 5.366			$\begin{gathered} \text { Factor 4 } \\ \text { "morpho. } \\ \text { metry" } \\ 1.701 \end{gathered}$	
		34.5\%	23.6\%	11.3\%	10.9\%	
1. pH		$\underline{+816}$	-.400			
2. Mn		-.407	$\underline{+514}$	+		
3. HCO_{3}		+.893	-			
4. Al		-. 470	+.741			
5. SO_{4}		+	$\underline{+.585}$			
6. Zn		- 429	+ 379		$+401$	
7. Cu		+			+.580	
8. $\mathrm{NO}_{2}+\mathrm{NO}$		$\underline{+462}$		$\underline{+439}$	+	
9. NH_{3}					+652	
10. KCORR		+.959				
11. $\mathrm{Ca}+\mathrm{Mg}$		+.946				
12. Na		+.875				
13. K		+		$\underline{-419}$	+ 367	
14. TOC			$\underline{+664}$			
15. PO_{4}		-	+. 574	-		
16. Fe			+.755			
17. ZMAX			-.606	+	+ 377	
18. wetrat					$\underline{-496}$	
19. TKN			+. 377			
20. drain		+		+.664		
21. LA		-	- 399	+ 6.69		
${ }^{22 .}$ SDI				+.446		

the remaining lakes categorized as oligotrophic (TP $\left.\leq 10.0 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}\right)($ Table 8$)$. Fewer than $3 \%(N=3)$ of the lakes sampled could be considered mesotrophic (TP $\left.=10-35 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}\right)$. In our study, median levels of total phosphorus (TP) ranged from $2.4 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ (WLS) to $5.2 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ (WMS) (Table 8), and are, on average, lower than levels found in dilute soft-water lakes elsewhere in the Precam brian Shield (ca. $7 \mu \mathrm{~g} \mathrm{~L}^{-1}$ at the Experimental Lakes Area) $\left(\mathrm{TN}=\mathrm{TKN}+\left(\mathrm{NO}_{2}+\mathrm{NO}_{3}\right)+\mathrm{NH}_{3}\right)$ levels ranged from low of $224.8 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ (WMS) to $343.2 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ (VIXEN). Phosphorus is clearly the element in short supply in these dilute head-water lakes. The ratio of total nitrogen (TN) to total phosphorus (TP) was particularly high for the least sensitive bedrock groups in either study area (VIXEN (118:1) and WLS (115:1) lakes), compared with the moderate $($ WMS $=50: 1)$ and high $($ WHS $=45: 1)$ sensitivity systems at Pitblado et al.

Pitblado et al. (1980) found that nutrient status was extremely important in characterizing lakes in the greater influence of nutrient abundance in lentic systems. However, the productive nature of many lakes sampled was directly related to cultural eutrophication, as many lakes contained considerable shoreline (cottage) development. Although Yan and Miller (1984) detected remarkably high average Pitblado et al (1980) found no relationship between nutrien

Figure 10
Figure 1i
Conparisons among bedrock sensitivity groups (Ranger Lake-VIXEN
and GONG; Wanapitei-high (WHS) moderate WMS and
and GONG; Wanapitei-high (WHS), moderate (WMS) and low (WLS)
sensitivity for each of he fo sensitivity for each of the four factors, ilustrated by the 95% confidence
intervals about the average factor scores. Significant difter ces

	FACTOR 1	ACtIR	FACtar	FACtur
	Aciony	tame strearth	еитеорисатан	
ANDVA	Еяязля	Follagroueor	${ }_{\text {roz.us }}$	fa3.6.0.0s
TUKEY'S				
$\begin{gathered} \text { BEDRDCK } \\ \text { SENSITIVITY } \end{gathered}$				

Table 8

Yan and Miller 1984), according to bedrock sensitivity (roups
(Ranger Lake-VIXEN .and GONG; Wanapitei-high (WHS), moderate (WMS)

Location	$\begin{aligned} & \text { Distance } \\ & \text { firom } \\ & \text { Sudbury, } \end{aligned}$		Parameter, yg [$\mathrm{L}^{-1 * *}$				Ratio		
			TP	TN	TKN $\mathrm{NO}_{2}+\mathrm{NO}_{3}$		NH_{3}	IINTN	TNIT
SES			5.7		150	576.0	17.3	0.798	130.4
Hannah		5	7.3	660.0	180	442.0		${ }_{0}^{0.727}$	
Middic		11	6.1	338.5	193		${ }^{68.6}$	0.429	55.5 30.7
Clearwater		13	${ }^{6} 5$	199.8	$\begin{array}{r}102 \\ 256 \\ \hline\end{array}$	61.5 20.3	${ }_{24,6}^{36.2}$	${ }_{0}^{0.149}$	28.1
Labelle		${ }_{28}^{27}$	10.6	${ }_{218.2}$	${ }_{178}$	21.3	18.9	0.184	47.4
		52	6.4	251.6	191	36.5	24.1	0.241	39.3
Wanapitei WHS	29	36	5.8	270.1	237	11.8	21.3	0.123	(46.6
				(233.7)	(210)		(19.1)	${ }^{(0.191)}$	(44.9) 46.1
was	24	58	(4.9	${ }_{(224.8)}^{296.0}$	195 (205)	(13.5)	${ }_{\text {(19.3) }}^{19.6}$	(0.088)	(49.9)
	11	44	${ }^{(4.5)}$			${ }^{10.5}(7.1)$	$\begin{array}{r} 22.9 \\ (18.5) \end{array}$		
wLS			(2.4)	$\begin{array}{r} 353.4 \\ (275.6) \end{array}$	$\begin{gathered} 300 \\ (250) \end{gathered}$			(0.093)	(114.8)
Ranger Lake gong	34	210	(35)	${ }^{2944.5}$	(256 $\begin{array}{r}256 \\ (245) \\ 293\end{array}$	17.6	20.9	0.131(0.110)	84.3 (8.5) 1395
							(19.0)		
vixen	35	230	2.7			60.8	22.8	0.222	
			(2.9)	(343.2)	(290)	(31.3)	(21.9)	0.155)	(118.3)

* Median values are expressed in parentheses.
HAbbreviations used: $\mathrm{TP}=\left[\right.$ tetal phosphorus; $\mathrm{N}=\left[\mathrm{TKN}+\mathrm{NH}_{3}+\left(\mathrm{NO}_{2}+\mathrm{NO}_{3}\right)\right] ; \mathrm{TKN}=$ total Kjleldhal nitrogen; $\mathrm{TIN}=\left[\mathrm{NH}_{3}+\left(\mathrm{NO}_{4}+\mathrm{NO}_{3}\right)\right]$
tatus and proximity to Sudbury. In our study, concentrations of nitrogen and phosphorus were unrelated to smelte influence and were characteristic of most dilute, oligotrophic lakes on the Precambrian Shield. Variations in nutrient levels reflect the influence of morphometric and thological factors or natural load ese lakes
 composition of study lakes varied dramatically between sudy areas and among bedrock sensitivity groups. Major differences in surface water acidity were found between the wwo study areas (Fig. 11). Whereas a broad range of lake ccurred across both areas, more than 66% or the laker sampled at Wanapitei were acidic ($\mathrm{PH}<5.5$), conpa ars etween the two areas, ranging from heavily stressed and acidic lakes situated on moderately to highly sensitive bedrock at Wanapitei (WMS and WHS) to less heavily affected lakes located on less sensitive bedrock in both study areas (WLS, VIXEN and GONG) (Fig. 10). In the greater Sudbury area, Pitblado et al. (1980) found that both buffer ing status and atmospheric deposition status of lak conrelated to the impact of atmospherically conveyed con the moderating influences of bedrock lithology. Brousseau al. (1985) examined the role of bedrock and surficial geology in determining the sensitivity to acidification of lakes in the Thunder Bay area. They found that, in an area receiving low to moderate acid deposition, the small head-water lakes with low drainage basin/lake area ratios were extremely sen sitive to acidification (alkalinity $<40 \mu \mathrm{eq} \mathrm{L}^{-1}$).

To show the degree of acidification of our study lakes, standard empirical relationships were employed using non-marine adjusted ion balance data. Comparisons of the chemical composition of fresh waters in unpolluted and pol luted areas of Scandinavia and eastern North America are presented in Appendix 7. The ionic composition of lake

Figure 11 , 11
omparison between lake pH distributions in the Ranger Lake and

Figure 12.
The linear relationship between the percentage conposition of bicar.
. bonate $\left(\mathrm{HCO}^{-}\right)^{-}$) versus excess sulphate ($\left(\mathrm{SO},{ }^{2}{ }^{2}-{ }^{2}\right)$ anions in polluted an
unpolluted fresh waters in eastern North America and comparis unpoluted fersh waters in easters in the present sudy (Ranger Lake-
among bedrock sentive grap
VIXEN and GONG; Wanapitei- high (WHS), moderate (WMS) and low

is usually manifested as decreased acid-neutralizing capacity (i.e., alkalinity, $\mathrm{HCO}_{3}{ }^{-}$) and increased excess sulphate the relative concentrations of cations (Henriksen 1982).

Given the predictable nature of these changes, it is possible to evaluate the influence of geography on acid deposition effects by comparing appropriate ion ratios. Th alkalinity to excess sulphate (Alk:SO ${ }_{4}{ }_{4}$-) ratio provides a direct indication of the sulphate for bicarbonate replace range from large values $(>10$) when buffering is abundan (ie in relatively insensitive terrain) and $\mathrm{SO}_{4}{ }^{2}$ - is low (i.e, low deposition areas) to values of zero when alkalinity is zero. In a recent evaluation of the regional acidification of lakes in eastern Canada using ion ratios, Jeffries (1986) illus trated that a large area of south central Ontario (MuskokaHaliburton) and southern Quebec (Laurentians) has been acidified, with the most dramatic evidence of acidification found in smaller areas of Nova Scotua and New Brunswick In unpolluted areas the proportion of HCO_{3}^{-}- in lake water exceeds $\mathrm{SO}_{4}{ }^{2-}$, as is the case in the Experimental Lakes Area of north-western Ontario (Beamish et al. 1976) and elsewhere in eastern Canada (Fig. 12 and App. 7).

In the present study, excess sulphate $\left(\mathrm{SO}_{4}{ }^{2-}\right.$) concentrations are uniformly high at Wanapitei (median = $10.9 \mathrm{mg} \mathrm{L}^{-1}$, range $7.85-16.3$), with correspondingly low Alk:SO ${ }_{4}{ }^{2-}$ - ratios exhibited. Similar ion balance data have
been obtained from other Sudbury locations (Yan and Miller 1984) and Killarney (Beamish and Harvey 197° (Fig. 12). Excess $\mathrm{SO}_{4}{ }^{2-}$ concentrations were, on average lower at Ranger Lake (median $=7.27 \mathrm{mg} \mathrm{L}^{-1}$, range 4.58-9.66), and overlapped Alk: $\mathrm{SO}_{4}{ }^{2-}$ balances for lakes in south central Ontario (Muskoka-Haliburton) (Dillon et al. 1980), in the Laurentian Mountain region of Quebec (Rod rigue and DesGranges 1986) and the Adirondack Mountain region of the northeastem USA. (Charles 1985).

Figure 13.
Least squares regression between alkalinity (HCO_{3}^{-}) and the sum of c a
 sensitivity groups (Ranger Lake-VIXEN and CoNG; Wanapitei-high (WHS), moderate (WMS) and low (WLS) sensitivity).
dashed line" gives the preacidification relationship

The Alk:SO ${ }_{4}{ }^{2-}$ ratio also differed dramatically among bedrock sensitivity groups in the present study (Fig. 12). These results may be attributed to the combined influence on water quality of the high deposition from the point source in sudbury and/or high terrain sensitivity. At Wanapitei, the average Alk: $\mathrm{SO}_{4}{ }^{2-}$ ratios decline from low (WLS $=0.24$) to moderate $($ WMS $=0.08)$ to high (WHS $=0.02$) bedrock sensitivities. This result is not a function of local variability in sulphate inputs, because no either lake pH or bedrock types (Fig. 5). Low-sensitivity lakes (WLS) are clustered between 38 and 57 km of the smelter (mean $=46 \mathrm{~km}$), and yet are characterized by relatively high pHs (median $=6.33$), whereas the most sensitive lakes (WHS) (median $\mathrm{pH}=4.65$) were on average 55 km (range ${ }^{43-64} \mathrm{~km}$) from the smelter. These results show that lake buffering capacity in an acid-stressed area was related to the bedrock and surficial geology of the watershed, as was found area (Brousseau et al 1985) Despite uniformly high lake $\mathrm{SO}_{4}{ }^{2}$ - levels at Wanapitei, bedrock geochemistry clearly tains relatively normal major ion chemistry in certain lakes All lakes with calcareous material in their watersheds (WLS; see App. 1) had elevated alkalinities, regardless of surficial geology. At Ranger Lake, $\mathrm{SO}_{4}{ }_{4}{ }^{--}$concentrations were nearly balanced by HCO_{3} in the moderately well-buffered VIXEN area (0.92), but were substantially lower in the moderately sensitive GONG area (0.37) (Fig. 12). Glacial lacustrine and with higher alkalinities on sensitive bedrock terrain, wherea glacial ground and end moraines contributed less to the acid-neutralizing capacity of lakes in the GONG area.

In our study, all lakes exhibited a bicarbonate
$\left(\mathrm{HCO}_{3}{ }^{-}\right)$deficiency, as determined by the alkalinity versus $\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}$ relationship ($\mathrm{Alk}: \mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}$) (Henriksen 1982) (Fig. 13). In systems unaffected by acid precipitation,
the Ca and Mg content should balance the bicarbonate component, because alkalinity is derived from the weather ing of calcareous materials that comprise the carbonatebicarbonate buffer system (Henriksen 1982). Hence, the $\mathrm{Alk}: \mathrm{Ca}^{2}++\mathrm{Mg}^{2+}$ ratio responds in a predictable manner to differing $\mathrm{SO}_{4}{ }_{4}{ }^{-}$levels, with the magnitude of the respo (i.e., the ratio sensitivity) directly reflecting the terrain' capability of supplying basic cations Mg^{2+} ratio will decrease (Jeffries ing low deposition) to zero as the alkalinity is exhausted, to negative values as the lake becomes increasingly acidic. In Figure 13, the extent of acidification is expressed by the distance below the "unpolluted" line where Alk $=0.91$ $\left(\mathrm{Ca}^{2+}+\mathrm{Mg}^{2+}\right)$. Of the 124 lakes sampled, 36% were located on terrain dominated by silicate rocks with a thin glacial overburden (GONG and WHS) and were, without exception, poorly buffered (App. showed a much broaderence of thick calcareous overburden (VIXEN) or to either non-granitic (WLS) or conglomerate (WMS) underlying bedrock. At Wanapitei, lakes situated on highly sensitive bedrock (WHS) displayed almost no acidneutralizing capacity whatsoever (slope $=0.25, R=0.85$, $p<0.001$), a consequence of the naturally low buffering potential of the underlying bedrock having been completely exhausted by high $\mathrm{SO}_{4}{ }^{2-}$ inputs over a number of
Other Wanapitei area lakes contained moderate
Other Wanapitei area lakes contained moderate (WLS: slope $=0.75, R=0.98, p<0.001$) buffering capacities. At Ranger Lake, the acid-neutralizing capacity was higher for both GONG (slope $=0.72, R=0.78, p<0.001$) and particularly VIXEN (slope $=0.98, R=0.93, p<0.001$) lakes.

The concentration of major cations (excluding H^{+}) decreased in the order $\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+}>\mathrm{K}+$ in both areas. The relative proportions of major cations, expressed $\mathrm{Na}^{+}+\mathrm{K}^{+}+\mathrm{H}^{+}$) in Table 9 , were consistent among
bedrock sensitivity groups, with the exception that H increased in relative importance in lakes situated on highl sensitive bedrock at Wanapitei (WHS). However, overall ${ }^{2+}$ concentrations of cations, and in particular Ca^{2+} and Mg^{2} were much with WHS and GONG lakes (Table 9). The sig nificant differences observed in factor 2, ionic strength (Fig. 10), reflect the enhanced buffering capacity present in WLS, WMS and VIXEN bedrock groups, compared with the rather dilute nature of GONG and WHS lakes. The geochemical similarity between GONG and WHS lakes, in particular, suggests that the potential for severe lake acidification exists with continued additions of sulphate to GONG lakes.

In instances of extreme acidification, the major ion content may be elevated (Yan and Miller 1984). Elevated levels of major cations (in particular Ca^{2+} and Mg^{2+}) have been observed in lakes near Sudbury that have been acidic for several decades, mainly because of increased rates of weathering in watersheds close to the point sources. Similarly, Yan and Miller (1984) attributed the decline in with anion levels in Sudbury Environmental Study lakes with increasing distance from Sudbury to elevated sulpite of centrations, arising primarinty (within 20 km) of Sudbury. Elevated levels of major cations and anions were not observed in Wanapitei area lakes in our study, the levels were comparable with those of non-acidic lakes in south central Ontario (Muskoka-Haliburton) and souther Quebec (Laurentians and Appalachians) (App. 7)

Trace metal concentrations also contributed to the significant trends observed on the acidity axis (Fig. 10). Concentrations of certain metals (including ca, Ne of increased atmospheric deposition (Beamish and VanLoon 1977; Jeffries and Snyder 1980). Acidification also increases the dissolution and mobilization of many elements-including $\mathrm{Ag}, \mathrm{Al}, \mathrm{Cd}$, cobalt (Co), mercury (Hg), $\mathrm{Mn}, \mathrm{Ni}, \mathrm{Pb}$ and Zn from soils in the watershed or from surface sediments of
acidic lakes (Wright and Gjessing 1976; Schindler et al. 1980 Campbell and Stokes 1985). Aluminum and Mn are particu are readily mobilized from soils by mineral acids and occur naturally at low levels in lakes on the Precambrian Shield (Scheider et al. 1979). In our study, both Al and Mn contributed to the gradient of acidity defined by factor 1. In both areas, Al and Mn were negatively correlated with pH ($r_{s}=-0.72$ and -0.58 at Ranger Lake and $r_{s}=-0.81$ and 0.81 at Wanapitei, respectively).

Acidification of fresh waters can influence metalpH may affect metal speciation in solution, or it may affect biological sensitivity at the level of the cell surface. In their review of acidification and toxicity of metals to aquatic biota, Campbell and Stokes (1985) concluded that a pH dependent biological response has been documented over a realistic range of H^{+}and metal concentrations for 6 of the 10 metals mentioned above ($\mathrm{Al}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Zn}$ and, to a lesser extent, Hg and Pb). For those organisms that are inherently are of little interest. However, for aquatic biota that can tolerate pH levels between 6 and 5 , these interactions may be important, as this level of acidification ($\mathrm{pH} 6-5$) corresponds to that at which a number of metals are mobilized ($\mathrm{H}^{+}-\mathrm{Al}$ and $\mathrm{H}^{+}-\mathrm{Hg}$ interactions). For example, lethal limits for Al have been set as low as $70 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ for sensitive salmonids, although $200 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$ is the generally accepted level (Cronan and Schofield 1979). In lakes with pH greater exceeded 200μ. L-i (Fig 14). Elevated Al levels were more pronounced at Wanapitei where the proportion of low pH high Al levels ($>200 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}$) followed the general gra dient of lake acidity from low ($\mathrm{WLS}=27 \%$) to moderate (WMS $=38 \%$) to high (WHS $=80 \%$) bedrock sensitivities. A similar pattern also existed for Mn levels, with average

$\underset{\substack{\text { Figure } 14 \\ \text { Relationsh }}}{ }$

elationship between lake pH and total aluminum levels $\left(\mathrm{mLL}^{-1}\right)$ b
edrock sensitivity groups (Ranger Lake-VIXEN and GONG) bedrock sensitivity groups (Ranger Lake-VIXEN and GONG;
Wanapitei-high (WHS), moderate (WMS) and low (WLS) sensitivity)

levels at Ranger Lake (median $\left.=10.7 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}\right)$ substantially lower than at Wanapitei $\left(\right.$ median $\left.=59.5 \mu \mathrm{~g} \cdot \mathrm{~L}^{-1}\right)$, and well below average estimates for two non-acidic lakes (Labell Haliburton lakes (Table 10)

Yan and Miller (1984) reported that levels of Zn, Cu and Ni were elevated in acidic Sudbury Environmental Study lakes and concluded that this was a result of direct deposition. With the exception of Fe , which is a major
lithological element, levels of metals in their study lakes

Table 10
Comparison of average trace metal levels ($\mu \mathrm{g} \mathrm{L}^{-1}$) in study lakes*

$\underline{\text { Location }}$	$\begin{gathered} \text { Distance } \\ \text { from } \\ \text { Sudbury, } \\ \text { kin } \end{gathered}$		Parameter, $\mu \mathrm{E}$ L L^{-1}					
			Cu	Ni	Zn	Fe	Al	Mn
SES								
Hannah		4	1108.0	1865.0	120.0	47.0	1097.0	340.0
Middle		5	496.0	1068.0	91.3	143.0		354.0
Lohi		11	83.6	254.0	41.6	90.0		284.0
Clearwater		13	81.3	278.0	39.2	88.2	381.0	290.0
Labelle		27	4.8	12.7	10.6	73.0	73.3	74.8
		28	22.0	17.1	18.3	60.8	86.6	63.1
Mountaintop		52	24.0	12.2	28.0	215.0	440.0	120.0
Wanapitei								
	20	56	1.9	13.1	10.3	142.1	396.9	104.8
wms	24	58	(2.2)	(13.1)	(10.1)	(101.6)	(403.5)	(90.1)
			5.4			114.9	189.3	(47.9
wLs	11		(1.9)	${ }^{(7.5)}$	${ }^{(6.9)}$	(87.0)	(154.2)	(51.3)
		44	(1.8)	(7.0)	6.2 (6.0)	(73.0)	152.6 (148.0)	(38.6)
${ }_{\text {cong }}^{\substack{\text { Ranger Lake } \\ \text { GONG }}}$								
	34	210	<1	<1	7.6	83.2	149.8	14.0
vixen	35	230			(5.4)	${ }^{(77.6)}$	${ }_{(151.9)}^{1156}$	(11.9)
			<1	<1	$(5.5$	113.9 (87.0)	115.6 (109.0)	$\stackrel{13.2}{(9.7)}$
Muskoka- Haliburton	15	214						
			<2	<2	5.0 (3.8)	$\begin{array}{r} 98.0 \\ (20-230) \\ \hline \end{array}$	$\begin{gathered} 42.0 \\ (8-91) \\ \hline \end{gathered}$	$\left(\begin{array}{r}33.0 \\ (15-71)\end{array}\right.$

$\xrightarrow[\substack{\text { Table } 9 \\ \text { Comparis }}]{\text { and }}$
of major ions (corrected for sear salts), according it to bedrcock sensisitivity groups
(Ranger Lake- VIXEN and
and low (WIS) sessitivity)

Data from the Sudbury Environmental Study (SES) lakes are averages from 1976 -78 data (modified from Yan and Miller 1984). Data from the present study are presented
accordin according to bedrock sensitivity groups (Ranger Lake-UIXEN and GONG; Wanapite - hight (WHS), moderate (WMS) and Io
are expressed in parentheses. Muskoka-Haliburton data (Dillon et al. 1980) are expressed as means with range in parentheses.

Fomparis
ittoral samples collected is istributions of wanger Lake and Wanapitei (Hazen unity area during mid-summer of 1984
water lakes sampled, clear, acidic waters were rather dilute in nature, and were more characteristic of ultra-oligotroph conditions, whereas non-acidic, coloured waters often represented more producive
dered on mesotrophic conditions.

The toxicity of ind the organic acids (Baker and Schofield 1982). The ability of organic acids to bind AI and remove or greatly reduce its toxicity to biota could vary with the composition of the organic acidity, the levels of Al in the system and the pH of the system (ESSA 1986). It is unlikely that metal complexation by organic matter would severely limit potential toxicity of Al in our study lakes, give
rather low average levels of DOC recorded (Table 9)
Recent studies in Nova Scotia (Kerekes et al. 1984) and elsewhere (Gorham and Detenbeck 1986) have demonstrated problems associated with sulphate determinations in coloured, humic waters. These findings are particularly relevant in view of increased concerns about the relative importance of organic anions in the acidity of fresh-wate systems receiving mineral acids in the form of airbor acidifi pollutants. Until recently, many studies investigating acidid Can (MTB) method for sulphate ($\mathrm{SO}_{4}{ }_{4}^{2-}$) determination. Compared with ion chromatography (IC), the MTB method overestimates $\mathrm{SO}_{4}{ }^{2-}$ in coloured waters (Cronan and
Schofield 1979), thereby underestimating the contribution of organic anions to the dissociated hydrogen ion $\left(\mathrm{H}^{+}\right)$con centrations of these surface waters.

In the present study, MTB SO $4_{4}{ }^{2}$ - determinations were used in the calculation of charge balances (Table 9), To assess the analytical error introduced by $\mathrm{MBr}_{4}{ }_{4}$ acidity in our study lakes, charge balances were calculated by the Oliver et al. (1983) equation as follows.
Organic Anion ${ }^{2}=K * C t /\left(K+\mathrm{H}^{+}\right)$
where Organic Anion ${ }^{2}=$ organic anion concentration
$\begin{array}{ll} & \left(\mu e q-\mathrm{L}^{-1}\right) \\ K & =10-\mathrm{pK} \\ \mathrm{pK} & =0.958+0.90 \mathrm{pH}-0.039(\mathrm{pH})^{2} \\ C l & =10 \times \mathrm{DOC}=\text { organic acid } \\ & \text { concentration }\left(\mu \mathrm{eqL} \mathrm{L}^{-1}\right)\end{array}$
$\mathrm{DOC}=$ dissolved organic carbon concentration (mgL^{-1})
The traditional calculation of organic anion content using the deficit relationship \{Organic Anion ${ }^{1}=$ cations - anio using MTB $\mathrm{SO}_{4}{ }^{2-}$)) provides a reasonably good charge balance in the more dilute, clear-water systems at Wanapite WHS, WMS and WLS) (Fig. 16), where the combined nfluence of the $\mathrm{SO}_{4}{ }^{2-}$ overestimation and organic anion areas, however, the deficit relationship (Organic Anion! explains only a fraction of the measurable Organic Anion ${ }^{2}$ content. Overestimation of $\mathrm{SO}_{4}{ }^{2}$ - levels would explain only a portion of the discrepancy between Organic Anion ${ }^{2}$ and he deficit estimate (Organic Anion). However, the results of recent (May 1985) testing using duplicate measurements of both MTB and IC SO ${ }_{4}{ }_{4}{ }^{2-}$ determinations in 75 peatland water samples at Ranger Lake and Wanapiei (Nico, unp two estimates with the following regression equation generated from the relationship:
generated from the relationship:
$\mathrm{SO}_{4}{ }^{2}-(\mathrm{CC})=$
$0.09+\left(0.914 \times \mathrm{SO}_{4}{ }^{2-}(\mathrm{MTB})\right)-(0.0118 \times$ Colour $)$ where $\mathrm{SO}_{4}{ }^{2}-(\mathrm{IC})$ and $\mathrm{SO}_{4}{ }^{2}-(\mathrm{MTB})$ are expressed as $\mathrm{mg} \cdot \mathrm{L}^{-1}$, and Colour is expressed in Hazen units. Using mean values
decreased with increasing distance from Sudbury (Table 10) Acid deposition in lakes studied by Pitblado et al. (1980) was indicated by high concentrations of $\mathrm{SO}_{4}{ }^{2-}$, $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ and influence of atmospheric deposition compared with lakes farther away from Sudbury. In our study, levels of Cu and Zn were only marginally higher in low- and moderate sensitivity lakes at Wanapitei compared with either Ranger Lake or Muskoka-Haliburton lakes (Table 10). Nickel levels were uniformly higher at Wanapitei compared with Ranger Lake and might
of this element.

In recent years, declines in trace metal emissions from Sudbury smelters have accompanied SO_{2} emission
reductions (Keller and Pitblado 1986). The reduced concen trations of Ni and Cu in many Sudbury area lakes may be of considerable biological importance, as alone, or in combina tion, high concentrations of these metals may be toxic to aquatic biota, particularly in association with low pH . In Keller and Pitblado (1986) found that only a relatively smal proportion of lakes (7 and 22%, respectively) had average ment (1978) objectives (25 and $5 \mu \mathrm{~g} . \mathrm{L}^{-1}$ for Ni and Cu , respectively) during the 1981-83 surveys compared with $1974-76$ surveys (8 and 62% for Ni and Cu , respectively). Only 3 of the 55 lakes sampled at Wanapitei exceeded $5 \mu \mathrm{gL-}$ level for Cu , no lakes sampled exceeded the $25 \mu \mathrm{gL-}$ evel for Ni . Lead and in the present study.
2.3. Organic acidity of surface waters

Mid-summer water samples collected in the littoral zone ($<1 \mathrm{~m}$) of lakes in the present study ranged from clear to tea-coloured, with dark, humic waters octurn were infrequently (Fig. 15). Average water colour estima Hazen substantially higher at Ranger Lake (median $=18$ Hazen units), with 17% of the lakes sampled at Ranger Lake notice ably coloured (≥ 55 Hazen units). At Wanapitei, 69% of the only 46% at Ranger Lake. With the exception of VIXEN lakes (median $=38$ Hazen units), median colour values were 20 Hazen units or less for all bedrock sensitivity groups (Table 9), with values ranging from 5 to 55 Hazen units. For both study areas, a good relationship exists between water colour and dissolved organic carbon content Wanapitei, respectively). Organic carbon (TOC) content wa a significant parameter in both factor 1 , acidity, and factor 3, eutrophication (Fig. 9), and provides a good indication or
aquatic ecosystem productivity. Within the range of head-

Figure 16
The percen
The percentage composition and concentrations (μ eq L^{-1}) of major ion
by bedock sensitivivy roups (Ranger Lake-VIXEN and GONG;
Wanapitei-hist we
Wanapiteit shish (WHS), moderate (WMS) and low (WLS) sensitivity),
and comparisons betwen wo estimates of organic anion concentration and comparisons between two estimates of organic anion concentrations
$\left(\mu \mathrm{eq} \mathrm{L}^{-1}\right.$)

for $\mathrm{SO}_{4}{ }^{2-}$ and water colour from Table 9, the above equa tion predicts the following overestimates of sulphate ions using MTB: WHS $=+10.2 \%$, WMS $=+1$
WIS $=+11.7 \%, G O N G=+130 \%$ and VIXEN $=+16.8 \%$. The overestimate using the MTB method, over the range of water colours present in head water lake samples, would rarely exceed 17% of the IC measurement. Including other cations ($\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Mn}^{2+}$ and NH_{4}^{+}) in the calculation of total cations would improve charge balances considerably at Ranger Lake (GONGOrganic Anion ${ }^{1}=45.3 ;$ VIXEN-Organic Anion ${ }^{1}=43.6$, WMS $=58.7$ and WHS $=49.9$)

Although the results are inconclusive, the data sug. gest that inaccuracies in charge balance calculations, arising from MTB $\mathrm{SO}_{4}{ }^{2-}$ measurements, would be minimal over the range of water colour and organic carbon content in this study. Only in a small percentage of lakes studied, particularly at Ranger Lake, would organic anions constitute a major ionic constituent, but they would not contribute substantially to the acidity of these systems
3. Biological response to lake acidification
3.1. Fish community structure

Much of the historical information on fish commun ies in Ontario deals specifically with the large game species and Sault Ste Marie lake trout (Saluelinus namagh) brook trout (Salvelinus fontinalis) and centrarchid communities are common. However, the breakdown of fish communities by lake-size categories in this region confirmed that lakes with no fish or no game fish are mostly less than 10 ha in size (Minns 1981). Head-water lakes, which are most susceptible by waterfowl (Fig 8) are not necessarily critical habitot for most large game fish. However, trophic relationships in suc systems are influenced by the occurrence, composition and abundance of forage or non-game fish species.

The structure of small nongame fish assemblages and the physical and chemical factors that determine their organization were examined in head-water lakes in the two study areas. Seven cyprinid species were commonly capredbelly dace (Chrocomus eas) finescale dace (Chorn neogaeus) pearl dace (Semotilus marrarita) fathead minnow (Pimephales promelas), common shiner (Notropis cornutus), creek chub (Semotilus atromaculatus) and blacknose dace (Rhinichth atratulus). Because populations consisting totally of C. eas \times C. neogaeus hybrids were found, they and their parent specie have been designated as Chrosomus spp. Non-cyprinids taken in minnow traps were white sucker (Catostomus commersoni), brook stickleback (Culbea inconstans), lowa darter (Etheostoma (Lepomis gibbosus) and rock bass (Amploplites rupestris) Specie taken infrequently were brook trout (Salvelinus fontmalis) lake chub (Couesius plumbeus), blacknose shiner (Notropis heter olepis) and golden shiner (Notemigomus crysolewcas) at Ranger Lake, and smallmouth bass (Micropterus dolomievi), northern pike (Esox lucius) and brown bullhead (Ictalurus nebulosus) at Wanapitei. A complete summary of minnow trapping results is presented in Appendix 8.

Differences in fish occurrence and species composition were found between the two study areas (Table 11). The had no fish compared with only 12% without fish at Range Lake. In the 31 lakes at Wanapitei that contained fish, the families represented were percids (68%), cyprinids (52%), catostomids (26%), centrarchids (23%) and gasterosteids (19%). The most prevalent species recorded was yellow perch, which was found in 45% of the lakes supporting fish At Ranger Lake, no centraschids were recorded, and only one lake (002R) contained yellow perch (App. 8a). Cyprinid were nearly ubiquitous in their distribution, with white sucker and brook stickleback also common.

Data on the distribution of cyprinids at Ranger Lake have been analysed for evidence that their occurrence was related to the chemical and physical characteristics of the lakes (Bendell and McNicol 1987b). To summarize these findings, he six major cyps. The "pond-dwelling" species, such as Chrosomus spp., pearl dace and fathead minnow, often occur together in north-eastern Ontario in "stained acid waters of beaver ponds and small lakes," often in association with brook stickleback (Scott and Crossman 1973). The other three species, common shiner, creek chub and blacknose dace, are common "stream-dwelling species"

Table 11
The number and percentage of lakes occupied by nongame fish species
he number and percentage of lakes occupied by non game fish specia
and families in the Ranger Lake and Wanapiei study areas Fish occurrence

Speci			$\begin{gathered} \text { Ranger Lake } \\ (N=69) \end{gathered}$		$\begin{gathered} \text { Wanapitei } \\ (N=54) \end{gathered}$	
	Common name	Scientific name	No.	\%	No.	\%
F.	Cyprinidue		61	88.4	16	29.6
$\begin{aligned} & \text { r. } \\ & 1 . \end{aligned}$	Chrosomus spp.		46	66.7		18.5
$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	common shiner	Notropis cornutus	22	31.9	3	
3.	pearl dace	Senotilus margarita	33	47.8	6	11.1
4	creek chub	Semotilus atromaculatus	27	39.1	1	1.9
$5 .$	fathead minnow	Pimethales tromelas	20	28.9	6	1.1
	blacknose dace	R Rinichthys atratulus	15	21.7	0	
7.	golden shiner	Notemigonus crysoleucas	2	2.9	4	7.4
F.	Centrarchidne		0			
1.	rock bass	Ambloplies rupestris	0	0	3	5.6
2.	pumpkinseed	Lepomis gibosus	0	0	6	11.1
F.	Perciase	Perca favescens	1	1.5	14	25.9
$\frac{1}{2 .}$	Iowa darter	Etheostoma exile	6	8.7	7	12.9
	brook stickleback	Culaea inconstans	25	36.2	6	11.1
F.			28	40.6	8	14.8
1.	white sucker	Catostomus commess	28	40.6	8	
					23	
	sh present		61	88.4	31	57.4

that use the gravel beds of streams as spawning sites. In con rast, typical pond-dwelling species, Chrosomus spp. and the trrates, whereas the pearl dace breeds either over hard sub strates in streams (Langlois 1929) or "in the vegetation on the periphery of lakes" (Tallman et al. 1984). These pond species were widespread, and at least one of them occurred in all but 4 of the 61 lakes supporting cyprinids (App. 8a). In contrast, stream species were absent from 25 lakes, and appeared to constitute a distinct assemblage of frequently
co-occurring species. Stream species occurred more often than expected with other stream species than without them x^{2} test, Table 12). Fathead minnows and pearl dace did not occur more often in the presence of stream species, and Chrosomus spp. tended to occur more frequently in thei absence. Although these chi-squared tests are not independent, they strongly support the hypothesis that the pond/stream dichotoma a major se This analysis can be cyprinid community at Ranger Lake. This analysis can be extended to the mell The brook stickleback, a pond-breeding species, co-occurred with stream cyprinids in only 10 of the 25 lakes where it was found ($\chi^{2}=0.20, p>0.05$), whereas the white sucker, which spawns in the gravel beds of streams, occurred with stream cyprinids in 20 of the 27 lakes in which it was recorded ($\chi^{2}=6.08, p<0.05$)
3.2. Fish community structure and lake acidification Comparative tolerances of native fish species to lake acidity have been investigated extensively, usually through population surveys (Harvey 1975; Kelso et al. 1981; Harve and Lee 1982; Somers and Harvey 1984; Beggs et al. 1985 IEC Beak 1985; Frenette et al. 1986), experimental acidification (Schindler and Turner 1982; Mills 1985; Mills et al. 1987; Schindler et al. 1985) or single-species toxicity or Harvey 1980; Baker and Schofield 1982; Holtze 1983. Frase

Number of occurrences of each cyprinid species among 58 lakes in the
Ranger Lake sudy area, proporion of those occurrences with (other) stre pecies, expected proportion if occurrences were random with respect to
other) streas other) stream species, and chis squared cests of independence of occurrence of
each species with (other) stream species $(* * x p<0.001, * * p<0.01, p p<0.05)$

Species		Proportion of occurrences with (other) stream species species	Expected proportion of occurrences with (other) stream species	$\begin{gathered} \text { Chi- } \\ \substack{\text { syuared } \\ \text { staisicic }} \\ \hline \end{gathered}$
Pond species				
${ }^{\text {Chrasomus spp. }}$	${ }_{32}^{44}$	${ }_{0.59}$	${ }_{0.57}$	0.18
pearl dace fathead minnow	32 20	${ }_{0}^{0.65}$	${ }_{0} 0.57$	0.82
Stream species				
common shiner	20	${ }_{0}^{0.80}$	${ }_{0}^{0.50}$	10.99***
creek chub	${ }^{26}$	${ }_{0}^{0.77}$	${ }_{0}^{0.47}$	${ }_{8.96 * *}$

and Harvey 1984; Lemly and Smith 1985). Most studies have concentrated on species that are important to sport or commercial fisheries, particularly the salmonidae (brook trout, lake trout, rainbow trout (Salmo gairdneri)) (Packer and Dunson 1972; Menendez 1976; Robinson et al. 1976; Trojnar 1977; MacCrimmon et al. 1983; Moreau and Barbeau 1983; Brown and Eales 1984; Neville 1985), rauner
munities composed of small non-game species.
Relating changes in fish communities to acidification
Relawnowledge of community composition prior to acid inputs. For many regions, however, fishery data are sparse or available only for a few lakes (rarely head-waters) or selected species (rarely minnows). In Ontario, Minn 1981) confirmed that most small lakes between 10 and 100 ha located in watersheds 2C-E in the Sault Ste. Marie Sudbury axis (Fig. $3 d$) would contain primarily brook trou in most lakes less than 10 ha. In the present study, we assessed the biological, chemical and physical characteristics of small lakes subjected to varying atmospheric inputs and geochemical influences that together affect fish community composition.

Historical information on fish population status in lakes surrounding Sudbury is scarce. The extent to which trace metal toxicity, in association with low pH , can be implicated in observed fish populand Harvey 1972; Ministry of Environment 1979). Assuming that metal emissions are roughly proportional to SO_{2} emissions, Keller and Pitblado (1986) concluded that trace metal toxicity likely played large role during the period when most fishery losses occurred, 1950-70 (Beamish and Harvey 1972; Gunn 1982), and when trace metal emissions were probably two to fou times present levels. However, there are indications of improvements in the fishery in response to recent pH Sudbury area lakes (Gunn and Keller 1984). Fewer lakes cur rently exceed Ministry of Environment (1978) objectives for protection of fish and aquatic life (1981-83 surveys) conpared with 1974-76 (Keller and Pitblado 1986).

The results of non-game fish sampling conducted in the Wanapitei area support previous findings of fishery losses in the greater Sudbury area. Where lake pH exceeded 6 , fish assemblages were dominated by diverse cyprin cyprinid community, dominated by the acid-tolerant yellow
perch, was commonly found between pH 6 and 5 a Wanapitei. Of the 30 acidic lakes ($\mathrm{pH}<5.5$) examined at lake pH were found between cyprinid and fishless groups Ranger Lake (t-test, $t=2.31, p>0.05$). Significant differences were apparent among fish assemblages at Wanapitei (ANOVA, $F=21.82, p<0.0001$); cyprinid lakes had a significantly higher average pH than either non-cyprinid or fishless lakes (Tukey's multiple-range test).

At Ranger Lake, the occurrence of eight fishless lake was unrelated to lake pH. Nearly 10% of the 63 non-acidic lakes sampled were fishless, which is similar to the 13% of Wanapitei. These results suggest that a small proportion of head-water pond and lake systems do not sustain fish populations of any kind, as a result of natural causes, including biogeographic isolation and/or winter anoxia (IEC Beak 1985).

The linear regression of species richness on pH was highly significant at Wanapitei $\left(R^{2}=0.65, Y=-5.24+\right.$ $1.22 \mathrm{pH}, p<0.0001$). This suggests that species richness decreases as acidification increases because of the loss of diverse cyprinid community, with no obvious relationship observed between species richness and lake $\mathrm{pH}\left(R^{2}=0.11\right.$, $Y=0.06+0.47 \mathrm{pH}, 力>0.05)$.

Cyprinids were less tolerant of acidic conditions than non-cyprinids. A comparison among individual species dis tributions in the two study areas in relation to lake pH is given in Figure 18. The average distribution (mean $\pm 1 \mathrm{sD}$) of several cyprinids, including common shiner, fathead min noth areas, although the last two species were not recorded at Wanapitei. No cyprinids were common below pH 5.5 , although the typical pond-dwelling species, Chrosomus spp and pearl dace, were found in the $\mathrm{pH} 6-5.5$ range, along with white suckers. Below pH 5.5 , several non-cyprinid species, particularly brook stickleback, pumpkinseed sunfish, Iowa darter and yellow perch, were recorded. Below pH 5 , lakes which contained fish were infrequent.

The loss of sport and commercial fish population the pH of fresh waters is less than 5 . Althoug recruitmen failures are probably the ultimate cause for loss of fish populations, changes in food webs accelerate the proces (Mills and Schindler 1986). As pH of an aquatic ecosysten

Figure 17
Range and 95% confidence intervals about the mean lake pH of major
俍 Range and 95% confididence intervals about the mean lake pH of major
fish assemblage types cyprini, non cyprinid and fishless lakes) in the
Ranger Lake and Wanapitiei study areas

$\underset{\substack{\text { Figure } \\ \text { Distributio }}}{ }$
istribution of individual fish species occurrences (mean ± 1 sp) in
relation to lake pH in the Ranger Lake (R) and Wanapitei (W) study

declines from 6 to 5 , many changes occur in lower trophic levels of the aquatic food web. The results of small non game fish sampling undertaken in the present study substantiate the aciddtolerance levels noted in other popula tion surveys and/or toxicity tests. For example, the fathead
minnow is a relatively intolerant species, often disappearin entirely below pH 6 (Mount 1973; Schindler and Turner 1982; Rahel and Magnuson 1983; Zischke et al. 1983), and is extremely vulnerable to the effects of various pollutants (Veith et al. 1983; Lemly and Smith 1985). Holtze and Hutch inson (1987) found that the common shiner was the most sensitive of six native fish species tested for aluminum and hydrogen ion stress, whereas Mills (pers. comm.) noted the disappearance of common shiners at an early stage at the Experimental Lakes Area. In the same study, pearl dace were capable of surviving below pH 5.6 , but suffered adverse effects at pH 5.1 (Mills and Schindler 1986). The yel low perch appears to be tolerant of a wide range of lake pH although recruitment failures and poor condition have been observed under extremely acidic conditions (Ryan and Har vey 1980; Suns et al. 1980; Rask 1984a, 1984b; Frenette et al. 1987).

Notwithstanding the importance of pH as an indica tor of the chemical and fishery status of head-water lakes, many other abiotic factors may also influence fish community structure. Fish assemblages, and the physical and che cal factors that influence their organization, have been studied extensively in lakes in northern Wisconsin (Tonn and Magnuson 1982; Rahel 1984, 1986; Tonn 1985). In our study, data on both physical and chemical variables have been analysed onsible for maintaining the structural organiza tion of small non-game fish assemblages. Scores generated in the combined principal factor analysis on all study lakes (Table 7a) were used to assess relationships between major fish assemblages and environmental descriptors. Difference between the average scores of cyprinid, non-cyprinid and
fishless groups, and individual factors, along with compar sons among fish groups for each factor independently, ar presented in Table 13. Factor 1 "acidity" explains the distibution of nongame fish populations with respect to the chemical properties associated with acidification. Cyprinids, in general, are not found actor was significantly different from the average scores of either non-cyprinid or fishless groups (Table 13). In Figure 19, the average scores of major fish assemblage types are projected onto the three major environmental factors. At Wanapitei, increasing acidity environmenty coincides with the loss of sensitive fish populations (cyprinids) and the increased occurrence of tolerant species (non-cyprinids) and fishless lakes.

Other factors also influence the occurrence and distribution of these species. Whereas factor 2, ionic strengu, major fish assemblage types (Table 13), significant differences were found on factor 4, morphometry. On average, fishless lakes have significantly lower scores on factor 4 than do either cyprinid or non-cyprinid lakes. These results suggest that small lakes, with confined drainage basins, are not only predisposed to surface water acidification, but are also more likely to lack fish purely as a result of biogeographic considerations. Large more likely to support diverse cyprinid assemblages.

Lake morphometry also distinguished pond from stream cyprinids at Ranger Lake, with stream species prefe ring larger, welldrained lakes (Fig. 19). The physical and chemical characteristics responsible for the separation of pond from stream cyprinids at Ranger Lake have been reported elsewhere (Bendell and MCNicol $198 /$). In that analysis, cyprinid species were found to be added to the increased (Fig. 20). We concluded that the addition of those species can be accounted for by the increased availability of stream habitat in lakes downstream. Other studies have found significant relationships between the diversity of fish communities and the size of lakes in acidified (Harvey 1975 Somers and Harvey 1984) and unacidified (Harvey 1982; Tonn and Magnuson 1982) areas of eastern North America, Changes in fish assemblage structure al Remical changes that to dramage basinical processes within the watershed and yet were not themselves responsible for limiting the distribution of stream cyprinids.

From the evidence of sampling conducted at Ranger Lake in 1981, blacknose dace and fathead minnow popula tions were believed to be largely restricted to the VIXEN area (see App. 3). This, however, was not found to be true

Table 13
Differences betwen the average occurrence of major fish assemblage types and
Differences between the average occurrence of najor fish assemblage
individuail factur scores in the wo study aras conbinct tested by
int

Tukcys $A<B, C \quad A>C$

Figure 19
Figure 19
Paturns of association among major fish assemblage types in the Range
Lake (R) and Wanapitei (W) study areas, as depicted by their average Lake (R) and Wanapitei (W) study ares
scores on three environmental factors

from the broader sampling completed in 1983. There is no reason to believe that blacknose dace and fathead minnow were restricted by pH and alkalinity within the range of values observed at Ranger Lake. Irrespective of geographic location (VIXEN or GONG), lakes with small drainage areas tended to support a more restricted cyprinid fauna and had a lower average buffering capacity, at a given pH , than lak with larger drainage areas and a more diverse cyprinid fauna (Bendell and McNicol 1987b). Those lakes also fish of low pH (Brown 1982).

These results suggest that fish populations in headwater lakes are more likely to suffer losses at a given level of acid deposition than lakes with large basins and similar soils and geology. Under a comparable range of drainage basin characteristics at Wanapitei, fish species richness was highly correlated with lake pH , although both chemical and phys cal parameters, including drainage basin size, contribut. Similarly, Rahel (1986) noted that both chemical (alkalinity) and biogeographic (lake size and isolation from other water bodies) factors strongly influenced fish community composition in northern Wisconsin lakes. He concluded that low alkalinity and associated chemical conditions (e.g., low pH) limited the occurrence of many cyprinids and some percids (genus Etheostoma), whereas ouher species were unch or lakes in small lakes (e.g., smalmoses, genus Moxostoma). Other species, including white sucker, sunfish (Lepomis spp.) and yellow perch, were present across a wide range of lake size and alkalinity.
3.3. Macroinvertebrates and lake acidification

Acidification of lakes in regions affected by acid deposition can result in substantial changes to communities of planktonic and benthic organisms (Almer et al. 1974; holm and Eriksson 1977; Mossberg and Nyberg 1979). Changes in the occurrence, abundance, seasonal succession of species and diversity of the community have been used a

Mean log of drainage area for each of the magor cyprinid taxa in the
Kanger Lake study area compared with the overall mean (horizontal
dashed line)

indicators of lake acidification. Kelso et al. (1986a) showed that the trend of fewer species of fish, phytoplankton, ooplankton and benthos below pH 6 persists throughout benthos where certain orgnisms receive the benefits of buffering from their substrate (Dermott et al. 1986). However, Kelso et al. (1986a) also concluded that the evidence from eastern Canada indicates that the physical limits of the aquatic habitat, further affected by pH and alkalinity, exert a trong influence upon community diversity of all the biotic components.

Macrofauna of both the benthic and nektonic communities were examined in the 1981 pilot study conducted conducted in 1983 focussed entirely on epifaunic and nektonic organisms considered to be of potential value as waterfowl foods. Although many benthic invertebrates, such as species of snails, clams, craytish, amphipods and variou quatic insects, are seldom found in acidic lakes, certain large predaceous aquatic insects, such as water boatmen and ackswimmers, are very a al. 1980; Dillon et al. 1984)

The composition of aquatic insect assemblages was examined in relation to fish predation and lake acidity on a subset of 18 lakes in the two study areas. Fish were not recorded in 4 lakes examined at Ranger Lake and 8 lakes at Wanapitei. Among the 24 lakes with fish, a total of 12 ish species was recorded (see App. 8). The number of fis individuals collected on 10 lakes sampled

Table 14
Presence of major insect taxa in sweep net samples from 18 lakes in the
Ranger Lake sudy areat
$\xrightarrow{\begin{array}{l}\text { Presence of najor insect taxa in sweep net samples from } 18 \text { lakes in the } \\ \text { Ranger Liake study } \mathbf{a} \text { ieca* }\end{array}}$

Arrangement
fishless takes.
Abbreviations:
Issenuations:
Eph
Eph
Ophemerop
Col-Coleoptera
Trii-Trichoptera
Dip-Diptera
Fanilies of Hemiptera
Cor -Corixidae
Tri - Trichopter
Dip
Diptera
Not - Nototiocctida
Ger-Gerridae
Ger-Gerridae
Nep - Nepidae

The results of the macroinvertebrate studies are reported elsewhere (Bendell 1986; Bendell and McNic 1987a) and summarized in this paper. Matrices of presence-absence scores for the major aquatic insect taxa for each area were analysed using the TWINSPAN program
(Hill 1979a). Ordered two way tables (lakes by insect taxa) were produced for both the Ranger Lake (Table 14) and Wanapitei (Table 15) study areas. Insect assemblages from fishless lakes in both areas, along with those lakes containing only a few fish, shared many more taxa in common than those from lakes containing large numbers of fish. These taxa were primarily nektonic, and included backswimmer (Notonectidae), water boatmen (Corixidae), the dytisc beetle Grap

Using the DECORANA program (Hill 1979b) a detrended correspondence analysis was performed to obtain ordination scores for each lake. A description and discus sion of the use of this ordination technique are given by
Hill and Gauch (1980). Separate ordinations of the 18 lakes at Ranger Lake and at Wanapitei contrasted fishless or nearly fishless lakes with those containing fish. When lake pH is plotted against first axis ordination scores, it is eviden that a strong positive relationship existed at Wanapitei $\left(r_{s}=-0.006, p>0.05\right)$ (Fig. 21). An ordination combining

Insect Orders Eph - Ephemeroptera Odo - Odonata Meg - Megaloptera Col - Coleoptera Tri - Trichoptera Dip - Diptera

Families of Hemiptera
Cor -Corixidae
or - Corixi
ot-Notone
Ger-Gerridae
lakes from both areas showed that fishless lakes had simila aquatic insect assemblages (Fig. 23), although the range in pH of fishless lakes at Ranger Lake (6.45-5.0) was higher than that observed at Wanapitei (5.27early fishless lakes support a similar aquatic insect assemblage distinct from lakes with fish, and that the fishless lake assemblage occurs irrespective of lake pH . At Wanapitei, differences in aquatic insect assemblages were likely related to lake pH as a proba ble consequence of the effects of lake acidification on fish populations.

Aquatic insect species richness was also significantly greater in fishless lakes (Mann-Whitney U tests, $p<0.05$). The average number of major taxa identified was more than
twice as high in fishless lakes at Wanapitei and Ranger Lake (11.9 and 13.5, respectively) than in lakes containing fish (5.3 and 6.0 , respectively).

To test the hypothesis that more aquatic insects were available to sweep net sampling in lakes without fish than in lakes with fish, contrasts of means of \log transformed numbers in net samples from the two lake types were performed. Highly significant differences were found at Ranger Lake The greater number of insects in samples from fishless lakes was largely the result of the abundance of nektonic organisms (Fig. 24). However, several lakes with fish and without nekton nonetheless recorded numbers of insects comparable with those in fishless lakes because of large numbers of waterstriders (Gerridae), particularly Rheumatobates rileyi, and less often Metrobates hesperius.

Lakes with and without fish in the Wanapitei area generally supported two distinct and very separate types of insect assemblages (o the same extremes (Figs. 21 and 24). Two major factors

Figure 21
Lake pH versus first axis correspondence analysis scores (DECORANA),
calculated on presence-absencece data for 3 insect taxa in lakes with and without fish in the Ranger L.ake (R) study area. The size of the open
circles is proportional to the number of fish taken in five minnow traps.

counted for such differences. First, at Wanapitei, the waterstrider R. rileyi was often abundant on lakes with fish and scarce on acidic fishless lakes, whereas at Ranger Lake as recorded in large numbers on three of four non-acidic $\mathrm{pH}>5.5$) fishless lakes. Its absence from acidic lakes sug. gests that it is affected by acidification independently of the iffects of fish predation. Secondly, as outlined earlier, majo differences in fish faunas occur between the two areas. Hal
of the lakes containing fish at Wanapitei support yellow of the lakes containing fish at Wanapitei support yellow perch, which is a particularly effective insectivore (Eriksson . Prost and Cucin 1984), and which is also acid-tolerant erized by an assemblage of cyprinids, with yellow perch recorded in only one lake. Cyprinids are less likely to be effective predators of insects because several of them,
cluding Chrosomus spp. and fathead minnow, are gape therefore, prey only on their aquatic insects and must, blage is characteristic of lakes subject to winter kill (Tonn and Magnuson 1982). One can expect fish populations in uch lakes to be limited by winter oxygen levels or the avail ability of stream refugia from anoxic conditions. Such conditions occurred more often at Ranger Lake, where shallow head-waters (ZMAX $<3 \mathrm{~m}$) are common and there fore likely to develop anoxic conditions. Of those 18 lakes which contained fish, and the ave no shallow head water $(7.7 \mathrm{~m})$ was twice that at Ranger Lake (3.8 m).

Figure 22
Lake pH versus first axis correspondence analysis scores (DECORANA)
calculated on presence-absence data for 97 insect taxa in lakes with and alculated on presence-absence data for 27 insect taxa in lakes with anc
without fish in the Wanapitei $(W$) study area. The size of the open circle proportional to the number of fish in five minnow traps. An X X denotes

Figure 23
Firist axis correspondence analysis scores (DECORANA) calculated on
presence-absence data for 37 insect taxa in lakes in the Ranger Lake (R)
presence-absence data for 37 insect taxa in lakes in the Renger LLake (R)
and Wanapitei (W) study areas. Open and closed circles represent lakes
with and without fish, respectively

Tigure 24
 Log abundance of (a) all aquatic insects, (b) nekton (sum of the numbers of corixids, notonectids, G. Wiberus and and C. americanus), and (c) Gerridac in the Ranger Iate (R) and Wanapiei (W) study areas. Lakes are ordered by increasing first axis correspondence analysis scores (DECORANA) (see increasing first axis correspondence analysis s. Fig. 23). An asterisk (${ }^{*}$) denotes fishless lakes

Lake Number

The results of this study support the postulations of Eriksson et al. (1980) that many of the changes in the macronvertebrate assemblages that coincide with acidification are elated to changes in predator-prey relations and are not hemselves. In general, fish select the largest and most conpicuous food organisms in the water column (Brooks 1968; Werner and Hall 1974; Zaret 1980). Often fish eliminate arge crustacean zooplankters (Brooks and Dodson 1965 Galbraith 1967; Wells 1970), as well as many large, active ektonic insects, such as some Chaoborus spp. (Pope et al. 973; Northcote et al. 1978; von Ende 1979; Mossberg and Nyberg 1979), Corixidae and Notonectidae (Macan 1965; Mulla 1981). Fish can also have a great effect on other
components of the fresh-water community (Thorp 1986).

Significant relationships have been identified between fish and phytoplankton (Hrbacek et a.. 1961; Lynch and Shapiro 1981), benthos (Hall et al. 1970; Gilinsky 1984; Post and Cucin 1984), macrophytes (Spencer and King 1984) and 1982). In fishless lakes, predatory insects become the to predators in the limnetic zone. This insect assemblage is naturally occurring ensemble of species that can be found in mall lakes and ponds where biogeographic isolation, winter anoxia, overfishing or natural (organic) acidity excludes fish. Given that a limited number of aquatic insect taxa are as acid-sensitive as fish, changes in the abundance of particular species, or changes in overall community structure, mus examined with respect to changes in fish populations. will occur at different levels of pH depending on the
ensitivity of the particular fish species involved. In the Wanapitei area, acid lakes containing populations of acid support populations of nektonic insects that were abundant in fishless lakes at similar pH levels.
3.4. Lake characteristics and waterfowl habitat selection Data from aerial and ground surveys were used to examine the differences in breeding success and habitat occurrence of waterfowl during the nest-initiation period of well as sightings of broods and adults during the broodrearing period, are summarized in Table 16. A compariso of the brood and indicated nesting pair occupancy rates is presented in lable 17. Indicated nesting pair estimates for Ranger Lake were derived from surveys conducted in 198 only, whereas estimates at Wanapitei were taken from 1983 urveys (see Results and Discussion 1.2. for discussion of
poral comparability of indicated nesting pair results).
nd surveys. More than two thirds (67%) of the 95 lake urveyed during the nest-initiation period in both sudy
areas combined contained at least one indicated nesting pacupangy Lake, 59%; Wanapitel, 26%) (Table 16). These observed in systematic aerial surver higher than those responding blocks (Sault Ste Mrveys conducted in cor45%) (Table 3). However fewer than $\%$; New Liskeard, lakes surveyed actually supported broods (Table 16) The Common Loon was the most frequently encountered spe during both the nest-initiation and brood-rearing periods, followed by Ring necked Duck and Common Goldeneye, with Hooded Merganser, American Black Duck and Common Merganser also being seen regularly. Mallards
were observed infrequently.
Few significant differ

Few significant differences in occupancy observed between the two study areas (Table 16). On were age, slightly more study lakes were occupied by waterfowl at Wanapitei than at Ranger Lake during the nest-initiation period ($\chi^{2}=3.18, p<0.10$). The opposite trend was observed during the brood-rearing period, with slightly fewer lakes containing broods at Wanapitei than at Ranger Lake ($x^{2}=3.67, p<0.10$).

Table 16 Difference

$$
\begin{aligned}
& \begin{array}{l}
\text { Differences in the number and percertage of takes occupied by seve } \\
\text { species and combined taxonomic grops in the Ranger Lake and } \\
\text { Wanapite sudy areas expresed sindiciact }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { adult andor brood sightings during the brood rearing period, and } \\
\text { borod sighang only tested using di.s.suared test of independence or } \\
\text { Fisher exact probability test }(* * p p<0.05, p x<0.10)
\end{array}
\end{aligned}
$$

Species	Indicated pairs				Adults and broods				Broods only			
	$\begin{gathered} \text { Ranger Lake } \\ (N=49) \\ \hline \end{gathered}$		Wanapitei ($N=46$)		Ranger Lake$(N=68)$		$\begin{aligned} & \text { Wanapitei } \\ & (N=54) \\ & \hline \end{aligned}$		$\begin{gathered} \text { Ranger Lake } \\ (N=68) \end{gathered}$		$\begin{gathered} \text { Wanapitei } \\ (N=54) \end{gathered}$	
	No.	\%	No.	${ }_{6}$								
1. Common Loon	12	25	15	33	24							
2. Common Merganser	4	8		7	13	19	${ }_{5}^{2}$	9	${ }_{5}^{4}$	7		${ }_{0}{ }^{*}$
3. Common Goldeneye	8	16	10	22	16	24	13	24	9	13	5	
4. Hooded Merganser	4	8	6		15	22	10	19	¢	7	5	
5. Ringnecked Duck	${ }_{6}$	12	14		20	29	10	19	10	15	3	6
6. American Black Duck	8	16	8	17		9	4	7	1	2	3	6
						4	0	0	1	2	0	
Piscivores (1,2)		${ }^{29}$						43				
Insectivores $(3,4)$ Omnivores (5, 6, 7)	10 14	20 29	${ }_{20}^{15}$	${ }_{44}^{33}$	${ }_{22}^{24}$	${ }_{3}^{35}$	20.	37	14	${ }_{20} 20$	8	15
Total duck (2-7)												
Total waterbird (1-7)	29	59	35	${ }_{76 *}$	52	77	${ }_{40}^{28}$	${ }_{74}$	${ }_{26}^{24}$	$\begin{aligned} & 35 \\ & 38 \\ & \hline \end{aligned}$	111	${ }_{22 *}^{20 *}$

Table 17

Species	Ranger Lake$(N=49)$				Wanapitei ($N=46$)				$\begin{gathered} \text { Brood: } \\ \text { indicated } \\ \text { pair } \\ \text { (BR:IP ratio) } \\ \hline \end{gathered}$	
	IP		BR		IP		BR		Ranger Wana- lake pitei	
	No.	\%	No.	\%	No	\%	.	\%		
1. Common Loon	12	24.5	4	8.2	15	32.6	1	2.2	0.33	0.07
3. Common Merganser	4	${ }^{8.2}$	3	6.1	3	${ }^{6.5}$	0		0.74	0.00
		16.3	7	14.3	10	21.7	5	10.9	0.88	0.50
5. Ring neckeed Duck	${ }_{6}^{4}$	${ }_{122}^{8.2}$	${ }_{4}^{4}$	${ }_{14.9}$	${ }_{6}^{6}$	13.0	4	8.7	1.00	${ }^{0.67}$
6. American Black Duck	8	16.3	7	14.3	14	174.	${ }_{2}$		1.17	${ }_{0}^{0.21}$
7. Mallard	4	16.3 8.2	1	2.0	${ }_{3}^{8}$	${ }_{6.5}^{17.4}$	$\stackrel{2}{0}$	$\stackrel{4}{4}$	0	${ }_{0}^{0.25}$
Piscivores (1, 2)				14.3		34.8	1			
	10	20.4	11	33.0	15	32.6	7	15.2	1.09	0.47
Omnivores (5, 6, 7)	14	28.6		44.0	20	43.5		8.7	0.57	0.20
Total duc	${ }^{21}$	42.9	18	36.7	28	60.9	9	19.6	. 86	0.32

Table 18
he nestinin between the average occurrence of (i) indicated nesting pairs during
during the brood rearing period, and individual factor scores for seven
watertowl species and combined taxonomic groups in the two study
reas
areas combined, tested by Sudentized t.est procedur
$(* * * p p<0.001, * * * p<0.01, * * p<0.05, p p<0.10)$

Species		$\begin{aligned} & \text { Factor } 1 \\ & \text { "acidity" } \end{aligned}$	$\begin{array}{r} \text { Factor }{ }^{2} \\ \text { "ionic strength" } \end{array}$	$\begin{array}{r} \text { Factor 3, } \\ \text { "eutrophication" } \end{array}$	$\begin{array}{r} \text { Factor } 4 \\ \text { "morphomerry" } \end{array}$
(i) Nestinititiation period	($\mathrm{N}=94$)				
1. Common Loon	27	+.148	-.196	- $466{ }^{\text {a }}$	+ $6292 * * * *$
2. Common Merranser	18	+186 $-\quad .189$ +	-. 035	-.388	+342 +936
3. Common Goldeneye	18	+ +392	-.168	-. 115	-. 102
Hooded Merganser	10	$+$	-. 876	+169	+086
Ringneecked Dack	$\begin{array}{r}16 \\ \hline 1\end{array}$	$\stackrel{+}{+.641}$	-.115	+ + +.239	
6. American Black Duck	7	+ + +.165	-.057	$+.442$	$+105$
Piscivores (1,2)	30	+. 158	-. 132	- $.423 * *$	+ $.519 * *$
Insectivores (3,4)	25	+.415	-. 163		- 178
Omnivores ($5,6,7$)	34	+.384*	- 199	+.149	+. 021
(ii) Brood rearing period	($\mathrm{N}=122$)				
Common Loon	46	- . 089	+.044	-. $418 * * *$	+.448****
2. Common Merganser	18	- 159	+.256	+. 014	+.722****
3. Common Goldeneye	29	+.285*	-.086	+.292**	-. 252
4. Hooded Merganser	25	-. 257	-. 069	-. 002	- 166
5. Ringnecked Duck	30	-. 119	+. 154	+.423****	+. 052
6. American Black Duck	10	-. 129	+. 226	+. $633 * * * *$	+. 216
7. Mallard	${ }^{\text {t }}$				
Piscivores (1,2)	56	-. 173 *	+. 103	-.263**	
Insectivores (3, 4)	44	+.066	+.041	+.059	.213**
Omnivores ($5,6,7$)	34	-. 081	+. 011	$\pm .453 * * * *$	

nsufficient sample size.

Many factors, including both chemical and physical parameters, influence the suitability of a lake for breeding waterfowl. Scores generated in the factor analysis were used o assess the relationship between waterfowl and environmental descriptors. Differences between the occurrence of ndicated nesting pairs and combined adult and/or brood sightings during the brood-rearing period and individual
factors are presented in Table 18. No significant separation factors are presented in Table 18. No significant separation
was detected amongst any waterfowl group and factor 2, ionic strength.

Few significant differences were found in a comparison of indicated nesting pair estimates. During the nest-initiation period; Common Loons have significantly higher scores on factor 4, morphometry, and lower scores on factor 3, eutrophication. The preference shown by Common Loons for larger, more oligotrophic lakes is con Cond with the results of broader systematic aerial survey ducted in northeastern Ontario (Fig. 8).
With the exception of Common Mergansers, all spe factor during the nest-initiation period (Fig. 25). The pronounced acidity of Wanapitei lakes, coupled with the higher overall occupancy levels observed at Wanapitei (76%) compared with Ranger Lake (59%), partially explains this trend. The results suggest that the distribution of indicated nesting pairs during spring aerial surveys was positively correlated with the acidity of the lakes on which they were recorded. During the brood-rearing period,
significant associations between waterfowl and abiotic environmental descriptors were also found. With the excep ion of Common Goldeneye and Common Merganser, the average score of lakes occupied by other species during the brood-rearing period shifted towards the non-acidic portion of the gradient (Fig. 25), suggesting that lakes occupied by broods tend the less acidic than those used during
pronounced for the Ring.necked Duck and Hooded Mer ganser: average scores for lakes where only indicated nesting pairs were seen were significantly more acidic than those lakes where adults and/or broods were seen during the $F=6.22, p<0.05$, respectively)

Biotic factors, especially the occurrence of fish, also influence the distribution and ultimate success of waterfowl broods and must be considered in any analysis of waterfowl the importance of fish in head-water lakes for their ultimate use by certain waterfowl species (Fig. 26), as suspected in the 1981 survey data (see App. 3). Based on the percentage of lakes occupied by adults and/or broods, under both fish and fishless conditions, piscivorous species, including Common Merganser and, in particular, Common Loon, preferred lakes with fish. Conversely, the insectivorous species, Com mon Goldeneye and Hooded Merganser, showed a distinct preference for fishless lakes, whereas more generalized Duck, showed little preference for either condition.

Patterns of association of waterfowl species, based on adult and/or brood sightings during the brood-rearing period, and major fish assemblage types (cyprinid, non cyprinid and fishless lakes) are depicted in Figure 27, where the average score for any biological group is projected on the three major environmental factors. To interpret the significance of the habitat and biotic associations depicted, comm.), where the probability (p_{i}) that lake $i(i=1 . . N$ has a bird present was assumed to be a linear function of the independent variables (factor scores and presence of fish).

Figure 2
Conparison between average scores on the three environmental factor
or indicated nesting pairs and adult and/or brood sightings during the
broodrearing period for six waterfowl species in the wwo study
combined. The direction of change between average factor loadings for
indicated nesting pairs (May surveys) and adult andlor brood sighings
(une-July surveys) is indicated by an arrow

Figure 26
Comparison of adult andor brood sightings during the brood.rearing
period in the two study areas combined. in relation to the occurrence of
period in the two study areas combined, in relation to the occurrence of
fish (Fisher exact probability test, $* *<0.001, * p<0.01)$

The distribution of the variable y_{i}, which is 1 if a bird is present on lake i a
likelihood equatio

$$
\begin{equation*}
L=\sum_{i=1}^{N} p_{i}^{y_{i}}\left(1-p_{i}\right)^{\left(1-y_{i}\right)} \tag{4}
\end{equation*}
$$

p_{i} can be modelled as a linear function:
where b_{o} and b_{i} are selected to maximize the likelihood func tion (L). The significance of each variable can be assessed using the likelihood ratio or G test (Sokal and Rohlf 1981). The analysis was performed in a stepwise manner separately for each waterfowl species, with equation [4] fitted five time with x_{i} set to one of the four factor scores or the presence of fish variable. If the G test indicated a significant improve the greatest improvement was selected, and the curve fitting proceeded. Otherwise the variable selection process was terminated. In the next step, the following model was fitted
$p_{i}=b_{0}+b_{i} * x_{i}+b_{2} * y_{i}$
where x_{i} denotes the variable selected in equation [4] and y_{i} one of the other variables. This model was fitted for each of the four variables not selected in the first step. However, if fish presence was one of the variables in equation [5], then an interaction term, which indicates whether the effect of
the factor variable is the same for lakes with and without fish, was included in the model

$$
\begin{equation*}
p_{i}=b_{o}+b_{1} * x_{i}+b_{2} * y_{i}+b_{3} * x_{i} * y_{i} \tag{7}
\end{equation*}
$$ If the G test indicated that the likelihood equation increased significantly by including a second variable, then a model involving three terms was fitted. The stepwise selection was hood equation were made.

Figure 27
Paturns
Cores on the thrce environe two sudy areas combined among average sightings during the broodrearing period and major fish assemblage types

The results of this stepwise analysis are summarized in Table 19, with each species represented by the best-fitting small non-game fish was not, in itself, the major factor influencing the distribution of piscivorous species, eithe Common Loon or Common Merganser, in the lakes studied Fish presence was among three variables selected in step nificant $(p<0.05)$ interaction with factor 3 in the second step. Both Common Loon and Common Merganser occurred most frequently on lakes with high factor 4 scores, suggesting that they preferred large lakes with irregular shorelines often draining a substantial area. Also, the occur rence of Common Loons was negatively correlated with factor 3, eutrophication, suggesting a preference for the deeper, more dilute lakes, often characterized by low nutrient and organic carbon levels. Also unaffected by fish Duck, both of which preferred the shallow, nutrient-rich wetlands, which were often dominated by riparian and emergent vegetation.

The presence of fish did reduce the likelihood of any lake supporting either Common Goldeneye or Hooded Merganser (Fig. 26), suggesting that fish may act as competi tors for insect prey exploited by these ducks. Common Goldeneye occurrence was also positively correlated with
factor 3, eutrophication. In much the same way, Hooded Merganser occurrence was negatively correlated with factor 1 , acidity, in the second step of the analysis. This suggests that, in addition to preferring fishless conditions, this spe cies also tended to avoid acidic conditions and may favour those non-acidic, naturally fishless lakes (always head.water) which composed a small proportion ($<15 \%$) of all habitat studied

Waterfowl data are expressed as combined adut andor brood sightings
during the brood rearing period. Equations providing the best fit o the during the brood. rearing period. Equations providing the best fit to the
linear model tested for each species are presented in part (i). The figures under
the parameters are estimates of the standard errors of the parameters. Those linear modet tested tor each species are presented in part (i). The tigures und
the parameters arc estimates of the slandard errors of the parameters. Those
significant relationshimps found are ilustrated schematicically in part (ii) signepifcant relataionships found are ilustartated schematically in part (ii
Values in parentheses indicate order of inclusion in the model.

Figure 28

aterfowl groups (pesting pair occupancy ratios for three major insectivores-Common Goldenome + Hooded + Common Merganser mnivores-Ring-necked Duck + Black Duck + Mallard) in the Ranger

Despite the pronounced differences in chemical con ditions and trophic structure between the two study areas no significant differences were detected berween the wo areas in the distribution of nesting waterfowl observed in indicated nesting pair surveys. However, the percentage of lakes occupied by broods, in relation to the percentage of lakes occupied by indicated nesting pairs, does suggest differences in reproductive output per indicated pair between two study areas (Table 17). At Ranger Lake, there
was a very good relationship between brood and indicated westing pair occupancy rates for Common Merganser Common Goldeneye, Hooded Merganser and Ring-necked Duck, with the brood versus indicated pair (BR-IP) ratio ranging from 0.74 to 1.17 . The ratio was substantially lower for Common Loon (0.33), Black Duck (0) and Mallard (0.24). Overall, the ratio between brood and indicated nesting pair occupancy rates was 0.50 for piscivores (Common Loon and Duck, Black Duck and Mallard) and 1.09 for insecked Common Goldeneye and Hooded Merganser) (Fig 28) Wanapitei, this ratio was generally lower for all species). At xcept Black Duck (Table 17). Both omnivore (0.20) and insectivore (0.47) ratios were substantially lower at Wanapitei than at Ranger Lake, although the most pronounced difference in success rates was shown by pisci
vores (0.06).

Conclusions

1. Waterfowl populations in north-eastern Ontario

The loss and degradation of habitat are the major waterfowl management problems currently facing m
ment agencies in North America (North American Waterfowl Management Plan 1986). Wetlands in the boreal forest, although supporting lower densities of breeding ducks than those of the Prairie Provinces (Wellein and Lumsden 1964), have become increasingly important to continental waterfowl populations, particulary aricultural
and as prairie wetlands are destroyed by agr and as prairie wettands are destroyed by agricultural
drainage (Gilmer $e t$ al. 1975). However, these formerly secure waterfowl habitats in the vast boreal forests of eastern Canada are now affected by hydropower and recreational developments, forestry practices, industrial effluent pollu tion and atmospheric contamination. In eastern North America, the marked dedine in Black Duck numbers and
suspected drop in the Common Goldeneye and Greensuspected drop in the Common Goldeneye and Green-
winged Teal populations may be related to boreal habitat winged Teal populations may be related to borear habitat
degradation (North American Waterfowl Management Plan 1986). On the Precambrian Shield of north-eastern and south-central Ontario substantial input of atmospheric pollutants to sensitive terrain might threaten the quality of aquatic systems for waterfowl production.

Prior to the current work, only one reconnaissance survey (Dennis 1974b) had examined breeding distributions of waterfowl in north-eastern Ontario. Consequenty, are not available. Surveys conducted in the region since 1980 have shown no significant trends in population levels, with the exception of Wood Ducks, which showed a consistent rise in numbers. Such short term surveys, however, could not possibly establish relationships between lake acidification and waterfowl population responses. Breeding pair surveys have shown that only a portion ($<45 \%$) of the
aquatic habitat available to nesting waterfowl in the region aquatic habitat available to nesting waterfow in the region
is being utilized. Several factors, including overhunting and habitat degradation, could account for this situation; certainly no one factor alone is responsible for the rather low population densities (about one pair per square kilometre) observed throughout northeastern Ontario. Yet the total number of waterfowl (including Common Loons) breeding in these extensive acidsensitive areas is substantial (roughly trends for both atmospheric pollutants and waterfowl popu trends for both atmospheric pollutants and waterfowl popu
lations, a considerable segment of the waterfowl resource in Ontario is potentially at risk from the continued influence of acid precipitation on aquatic systems.
Several dabbling ducks (Blue-winged Teal, Green-winged

Teal and Mallard) and the Wood Duck were commonly found in the Killarney and Nipissing blocks, where agricul tural influences, combined with extensive swamp habitat, provide a variety of well-buffered wetland types, not unlike situations in southern Ontario. However, waterfow of par ticular concern in acidification research are those that rel on aquatic habitats derived through glacial processes and
characterized by low acid-neutralizing capabilities. The inter characterized by low acid-neutralizing capabilicies. The inter
gradation between Great Lakes - St. Lawrence and boreal forest regions, along with the added influence of agricultural land use along the North Channel and Lake Nipissing, provides a natural separation in the distribution of typical boreal lake waterfowl from more southerly species, such as Mallard and Wood Duck. Boreal species, including Common Goldeneye, Hooded Merganse, Rurg on plots and Amenican Bla of northeastern Ontario. These species utilized small head-water lakes and wetlands during the nest ing period, whereas the piscivorous Common Loon and Common Merganser cooccurred on plots containing large lakes and river habitat. Such patterns of habitat use differ from those reported by Hunter et al. (1986) and Longcore and Stromborg (unpubl.) in eastern Maine, where marshes and other eutrophic systems were found to be more imporDespite the overall low breeding densities recorded, small, oligotrophic wetlands were found to be extremely important as waterfowl nesting and brood-rearing habitat in our study It is clear from our work that the conclusion by Hunter et al (1986) that "relatively few waterfowl in north-eastern North America live in the types of aquatic ecosystems that are mos vulnerable to acidification" is invalid in relation to the current situation throughout much of central and northern
Ontario. As a significant proportion of the breeding waterfowl resource in northeastern Ontario is associated with fowl resource in north-eastern ontanatic habitats vulnerable to the effects of acidification (i.e. small head-water lakes) (Haines 1981; Kelso and Minns 1982), waterfowl/food-chain studies were concentrated in these habitats and focussed on these species.

2. Patterns of lake acidification

Patterson (1976) and Murphy et al. (1984) investigated he importance of environmental factors in regulating duck populations and acknowledged the importance of limno logic considerations in habitat evaluation. Waterfowl reproductive success is influenced by the natural het ogeneity of the aquatic environment and the man interacting physical and chemical factors that influence the

Most of the chemical and physical variability within the small head-water lakes in the present study could be explained on the basis of the four major components: acidity, ionic strength, eutrophication and lake morphometry status. Although effects associated with inputs of air borne contaminants are widespread in North America
and reflect long-range pollutant transport, the problem surface water acidification in Canada remains most pronounced in areas adjacent to point sources emitt large amounts of sulphur and nitrogen oxides. Northeast of Sudbury in Ontario, it is reported that "the extent of acidifi cation is as great or greater than any recorded elsewhere" (Beamish et al. 1976) and can be largely attributed to the local smelting complexes there. The importance of the acidity and ionic strength factors in explaining the variation
in the chemical composition of our Wanapitei study lakes in the chemical composition of our Wanapitei study lake stances and the potential moderating influences of bedrock and surficial lithology. In a multivariate classification and description of 187 lakes influenced by acid precipitation in northeastern Ontario (within a $200-\mathrm{km}$ radius of Sudbury), Pitblado et al. (1980) also demonstrated the importance of atmospherically conveyed contaminants from the Sudbury smelting complex and the potential moderating influences components derived in their analyses were very similar to those produced in the current study. Variables directly related to smelting activity, particularly high lake sulphate concentrations arising from the direct deposition of SO_{2} and sulphur fumigation, were inversely related to distance from Sudbury. The observed pattern was skewed in a south west-north-east direction, as a result of the prevailing winds and north-east of Lake Wanapitei have a wide range of chemical conditions. On average, the Alk: $\mathrm{SO}_{4}{ }^{2 \text { - }}$ ratio was much lower in lakes surveyed at Wanapitei than at Ranger Lake. As a result, increased acidity and elevated metal levels were found in lakes situated on sensitive bedrock at Wanapitei. Yet there was little evidence of extremely elevated levels of certain metals (Cu, Ni and Zn) whose concentrations would be linked to local deposition effects,
as was observed in some lakes sampled in the immediate vicinity of Sudbury (Yan and Miller 1984). Lakes situated on resistant bedrock in the Wanapitei area are well buffered, generally nutrient-rich, and comparable with many produc. tive sites (especially VIXEN lakes) surveyed in the Ranger Lake area. The differing nutrient status of lakes, particularly in relation to phosphorus levels, may reflect variation in natural nutrient loadings as influenced by morphometric (i.e., large drainage basin area relative to lake size) and litho
logical factors. Despite the importance of organic anions in the natural acidity of certain peatland systems in eastern North America (Gorham et al. 1984; Kerekes et al. 1984), no such contribution was noted in this study.

In spite of lower overall inputs of acids in the Ranger Lake area, surface water acidification threatens many lakes with low to exhausted buffering capacities in this region The similarity in chemical composition between certai (WHS) suggests that these aquatic systems are sensitive may suffer significant $\mathrm{pH} /$ metal stress in the long term, or seasonally as a consequence of acidic spring melt-water inputs.

3. Testing of hypothesis

The capability of any habitat to support breeding waterfowl is a complex function of various ecological parameters, including nest site characteristics, cover for broods frequently a limiting resource for ducklings and egrelaying females during the breeding season because they are the top predators in the aquatic food.chain (Swanson and Meyer 1973; Reinecke and Owen 1980). We investigated the
hypothesis that the adverse effects of acid precipitation on waterfowl would be mediated through changes in the abundance and availability of prey species.

In north-eastern Ontario, the availability of food for many waterfowl species has been influenced by lake acidificaion. Such acio-nduced changes are largely due to he
decline in the abundance of fish, which are one of the first groups to be affected by lake acidification (Schofield 1976). In the acid-stressed area, small non-game fish stocks had fewer individuals and fewer species than Ranger Lake. At moderately high pH levels (5.5), most cyprinid species were absent. Below pH 5.5 several non-cyprinid species occurred, in particular yellow perch, which was recorded at Wanapitei only. Whereas fish species richness was primarily a function
of lake acidity, both chemical and physical parameters contributed to the gradient of fish communities observed (Bendell and McNicol 1987b). Lake and drainage basin morphometry also influenced fish species composition. We concluded that the separation of lakes with and without cyprinids at Ranger Lake was accounted for by the increased availability of stream habitat in lakes downstream such that cyprinid species were added to the head-water
pond species assemblage as drainage basin size increased pond species assemblage as drainage basin size increased.
Adverse effects of lake acidification on small nongame fish species appear to have influenced the breeding capabilities of fish eating waterbirds in the Wanapitei area Both Common Loons and Common Mergansers preferred the larger, well-drained oligotrophic lakes that also support diverse cyprinid populations (Bendell and McNicol 1987b), as well as brook trout (Salvelinus fontinalis) in Ontario (Kelso and Minns 1982). A similar relationship was found in
Quebec (DesGranges and Darveau 1985). In the present study, both piscivores were equally abundant in the stressed and unstressed areas during the nest initiation period, occupying nearly one of three lakes surveyed. Yet a much smaller percentage of lakes supported broods at Wanapitei than at Ranger Lake. Although predation may set the general mortality level of waterfowl in any given area, the particularly small percentage of piscivore broods observed declining food resource is also causing nest failure or brood mortality.

Evidence from Ontario (Alvo 1985) and Scandinavia (Almer et al. 1978) indicates that loss of fish population from acidic lakes may be responsible for the observed decline of loons in Ontario and of both loons and mergansers in Sweden. Alvo (1985) reported with a 100 km
productivity in lakes less than 100 ha in size with produc of Sudbury was negatively correlated with lake acidity.
Our results support the conclusions of Eriksson et al. (1980) that many of the biological changes in macroinve tebrate assemblages that coincide with acidification are related to changes in predator-prey relations. The shift to
an invertebrate-dominated trophic system, following the disan invertebrate-dominated trophic system, following the disappearacterized by the increased occurrence and abundance
of large, free-swimming organisms, such as notonectids, corixids, Graphoderus liberus and Chaoborus americanus. Th Ranger Lake area, where the absence of fish is likely a fu tion of biogeographic isolation or winter anoxia.

Invertebrates eaten by waterfowl are often also exploited by fish, some of which are very efficient com petitors of waterfowl (Andersson 1981). The increase in abundance of large predatory insects following a decline in for species whose young require large amounts of protein rich insect food for growth. Both Eriksson (1979) and Eadie and Keast (1982) argued that competition between fish and Common Goldeneyes affected the selection of feeding locali ties and broodrearing sites for this species. Following the experimental removal of fish, Eriksson (1976) found that goldeneye ducklings fed largely on free-swimming aquatic insects, such as notonectids, corixids and dytiscids, in preference to benthic prey. In the present study, the absence of uitability of lakes for Common Goldeneyes during the brood-rearing period and was also important for Hooded Mergansers. Ring necked Ducks and Black Ducks were unaffected by either acidity or fish occurrence in their selec. tion of lakes. Instead, broods of these species occupied shallow, nutrient-rich wetlands, with a well developed shorezone community, as observed in southern Quebec (Desnges and Darveau 1985).
Ducklings of several species of dabbling and diving ducks feed largely on invertebrate prey (Bartonek 1972;
Swanson et al. 1979; Reinecke and Owen 1980). In this stu Swanson et al. 1979 ; Reinecke and Owen 1980). Sn this study and Mallards, on aquatic insects was largely unaffected by fish predation, possibly because of the cover afforded by the tructurally complex littoral zone of eutrophic lakes. In contrast, the large, mobile prey that expand into the pelagic parts of the lake, following release from fish predation,
can be exploited by "pursuit divers" such as Common can be exploited by "pursuit divers," such as Common Because of bill morphology or delays in developing full div ing capabilities, the young of other diving ducks, such as Ring-necked Ducks, may not be able to exploit increased stocks of nektonic prey in fishless lakes until a much later stage of development. Downy young of Ring-necked Duck ely on surface feeding in near-shore vegetation to a much greater extent than Goldeneyes (McNicol, unpubl.).

In summary, comparisons of waterfowl brood proloading have shown that fewer waterfowl broods are produced in the area of higher deposition in relation to the number of pairs nesting in the spring. The worst case was found for fish-eating species (Common Loon and Common Merganser) in the Wanapitei area, in which five to eight imes fewer young were produced. Such piscivorous species are, therefore, immediately at risk from the effects of acidif Similar, though less dramatic, reductions in brood production were found for other waterfowl in this nsectivores (Common Goldeneye and Hooded Merganse) may derive short-term benefits from reduced competition with fish for common nektonic insect prey. Omnivores der ved no immediate advantage from the disappearance of fish. Whereas most waterfowl select more productive and akes comprise a large preir young, small head-water
occupied by breeding pairs in some areas and for some spe cies. Our findings indicate that the success of these birds be lower in areas receiving deposition in the order determine whether acidity is limiting the abundance of both fish and invertebrate prey to the detriment of all waterfowl.

Appendices

Appendix 3

Summary of sampling methods and results of pilot sudies conducted in the Range
Lake area betwecn 1980 and 1982

Pilot studies to examine waterfowl productivity, water chemistry and Fod. chain interactions were conducted in the Ranger LLake area betwee
1980 and 1982 , but were nost intensive in 1981 , Summarized below is a
description of those sampling methodologies used only in the piloo sudies and the major findings of these sutudeses, specifically as they pertain to the com

1. Methods

The in Thumber of lakes surveyed and the paramelers measured are out
 ooct chain interactions were examine med by sampsping mintinnows on water cotour. macroinvertebrates on 10 of these. The sweep net sampling procedure fol.
lowed in 1981 I iffered from that used in 1983 in that a $700 . \mathrm{cm}$ circular net
was was used and samples were taken at randomly selected sites on each lake during two sanppling periods, one in June and the other in July. The minnow
trapping procedure was alsosimiar to that oflowed in 1983 , but differed
primariv in that primariy in that the number of trap nights per lake varied from two to seven.
A summary of sampling methodologies not described in Methods, Section 2, A summar
follows.

Ape bathynery
Aproximations of littoral zone volume (defined as the volume to a
maximum depth of 1.3 m), as well as total lake volume and maximunn depth maximum depth of 1.3 m , as well as total lake vocume and maximunn depth Contour maps were generated from depth sounding transects on each lake. epphs (in feet) were recorded at 5 .s intervals along the rransects using depth
sounding equipment (Lowrance Bluewater Model LFG. 225).
12. Water quality

The water sampling progranme was designed to determine the
major chenical characteristics of lakes selcected for waterfowl productivity
 $981(N=80$. Although the May 1981 survey covered 148 lakes, information
 nte May (during therinal stratification) and late July (following thermal
ratification), tave been included in the analysis of seasonal fuctuations

 the surface lens of colder $\left(0-2{ }^{\circ} \mathrm{C}\right)$, tess dense melt water which overrides the
warmer $\left(4^{\circ} \mathrm{C}\right.$) denser endcnic water. Surface $(0-1 \mathrm{~m})$ and deep $(>1 \mathrm{~m})$ water warmer $4^{\circ}{ }^{\circ} \mathrm{C}$) denser endenic c water. Surface ($(0-1 \mathrm{n}$)
samples were collected using flexible Tygon tubing.
1.3. Ekman sampling

Tcluded 10 samplest taknan on dreach of samples was collected on each lake. This . Samples were sieved through 2 mm diameter wire mesh The relatively
 muck.
4. Emeryence trap sampling Two energence raxps were placed on each of nine lakes, and one placed on the tenth. 044 R . These enclosures covered al $1 . \mathrm{m}^{\text {an}}$ area of the
water's surface and resembled an asymmerrical pyramid with a vertical fron.
 tained a hole into which was inserted a translucent white plumbing elbow
atrached to a 500 -mL $~$ algene bottle. Emerging insects were atracted to the
 dearing bottle containing $2: 1$ nixure of 95% ethanol and ethylene glycol. Clearing botudes were changed every five
ally fromin $23-25$ Junc to $22-27$ July 1981 .
1.5. Shoreline vegetation

Wone (0-1 men liteorp) of quadrats 34 lakes. Three quadrats were located at the water's edge, three at 1 m deep and four at 4.5 mm Each quardatat contained threce verti
cal components: above the surface, at the surface and below the surface. Vege cal components above the surface, at the surface and below the surface. Vege
tation wihtin each verical stratum was identified and percentage cover csti-
mates were nade
1.6. Waterfuwl surveys

Observations on waterfowl reproductive success were made during
both 1980 and 1981 Regular ground surveys to assess adult and brood activity were made from mid May to late July in both years. Ground surveys were
expanded in 1981 to encompass 148 lakes; fewert ivisied in 1980.1 In 1981 , complete canoe andor ground checks were made on

Only minor differences in lake morphomecry were found between VIXE.
and GONG sudy lakes. and GONG study lakes.
Cherrical properies for 100 lakes sampled in May 1981 were exa mined to assess spatial variabsity major ion chemistry, While a broad
range of water $q u a l i t y$ was observed few acidic lakes $(\mathrm{pH}<55$) were found

 alkainity, and were sensitive to acidicten, with fewer than 34\% of the VixE
relative sensitivities of lakes were vevident lakes having alkalinities below 120μ eqL. ${ }^{-1}$ compared with 76% of the GONG
lakes (Fig. 1). Seasonal differences in water quatiy between He VIXEN and GONG
study areas were evident during als sampling periods (Fig. II), with GONG
takes extibining lower lakes exhibting lower average values of PH , conductivity and alkalinity than VIXEN Lakes. Lakes sampled during the spring run-off period ($5-9$ Aprili) in
1981 had lower average HH , conducivity and alkalinity that 1981 had lower average pH, conductivity and alkalinity than at other times of
the year (Fig. II). On the 14 lakes where surface $(0-1 \mathrm{~m})$ and deep $(>1 \mathrm{~m})$
 levels were significantly lower in the colder, surface melt water layer than in
the wwimer, deeper endenic waters (Tatbe 11). During the spring snownelto
toser

 adidneutralizing capacity in surface waters suggests that melt.water undergoes
litile geochemical modification during run-off even in the naurally well.
 tants in the snowpack and their subsequent release as acidic melt- water is
especially critical for stallow head water systems. In Ontario, snowmelt is the
 annual run-off occurring in the spring months of March to May. The snow
pack mett in the spring can provide between 66 and 77% of the annual acid
 low, near-shore areas of these head water lakes could be at risk because of the
effects of the "acid shock" phenomenon. in sensitivity anough few sudy licic lakes were recorded at Ranger Lake, differences study areas were established. in sensitivity among study lakes and between study areas were establisis
Such sensitive head water ssyems, might suffer adverse biogogial effects
nider current deposition tevels, or as a a response to snowpack
2.2. Biological studies
2.2.1. Minumu urap sampling - Fifteen fish species were recorded from min now trap sampling on 28 lakes (Figg III). On the remaining 9 lakes, no fish
were recorded. Eight fish taxa were common; hese included six cyprinidae (Chnsomus spp, pearr dace, common shiner, creek chub, fathead minnow an
blacknose dpe blacknose dacc), brook stickleback and white sucker.
In Figure III, these common taxa have been

 pearl dace. Such lakes occurred in both the VIXEN and GONG study areas.
The remaining lakes in the GONG area added at least three species from a
 now. Blacknose dace never occurred in the GONG area, whereas the fathee
minnow occurred in small numbers in only one lake in that area. That is,
hes were separated among those containing only Chosomus sp. andlor lakes were separated among those containing only Chrosomus spp. andor
pearl dace and those with more diverse assemblages, which differed between pear dace, and thase with mo
te GONG and VIXN areas.
This classification of
This classification of lakes conforms to differences in the chemical
nd physical charaterisicof of the lakes (Table III). Chrosomus spp. and pearl
ace are often associated wit

 the availability of stream habitat for breeding by several species, including
common shiner, creck chub, blacknose dace and white sucker. SIreams are

$$
\begin{aligned}
& \begin{array}{l}
\text { Differences of selected chemical parameters (mean } \pm \text { sol betwen surface } \\
(0-1 \text { mi) and deep }(>1 \mathrm{~m}) \text { water samples collected on } 14 \text { lake in the }
\end{array}
\end{aligned}
$$

Figure II
Comparison of seasonal and spatial differences in mean lake pH ,

(he

Levels (pH < 6.01) Schindler and Turner 1992, Rahel and Magnuson 1983;
Zischke et al. 1983 ; Mills 1934) and metal levels (Mount 1973). 2.2.2. Aquatic inuertetrates sampting - The number of samples from which
each major invertebrate taxan was recorded in the otolal of 20 sweep net sam Ples and 30 Ekman samples from each of the 10 core lakes is shown in Tabk IV and V , respectively. Major taxa were defined as those occurring in more
than thre samples from all lakes. Emergence trap samples were scored for than three samples from all lakes. Emergence trap sam.
presence-absence of invertebrate taxa only (Table VI. The sweep net datas (Tabte IV) were analysed using clustering tcch.

 pected ${ }^{\text {pition. The remaining group of six lakes contained from two to six fish }}$ species (F . .II) species (Fig. .III).
To didenty those invertebrate taxa associated with the two groups of
lakes, we pertormed Mann-Whitney U tests on the scores for each taxa. Ten lakes, we performed Mann-Whitrey U tests on the scores for each taxa Ten
taxa in swep net samples were associated with lakes withour viable fish pop
 backswimmers, Notonecta and Buenou, inmiature corixids, the trichopteran
genera, Oecetis and Triaenodes, the whiri 1 gig beetle, Gyrinus pectoratis, the diving
 midges Ceratopogonidac, and the trichopteran Oeectis, were associated with this group of lakes (Table

[^1]The four lakes without viable fish populations had consistently mor Whitney U tests, $p=0.005$). The number of taxa and log number of Whiney U tests,$p=0.005$. The number of taxa and log number of
individuals inswep net samples tended to fall in a linear fashion with an
increase in the number of fish seecies in each increase in the number of fish species in each lake (Fig. V.
The number of taxa taken in Ekran samples and individuals taken in both Ekman and emergence trap sampling also tended to be higher on the lakes withour viable fish populataioss, although the donfer.
ences were less dramatic than for the limnetic fauna sampled using the swee ences were less
net procedure.
2.2.3. Litural vegetation-The major aquatic macrophyte taxa recorded in
the 34 alakes sampled are summarized in Table VII. A further comparison of
 in the number of taxa and the number of quadrats occupied by floating.
leaved and submerged vegeation, and the percentage cover by floaingty leaved and submerged vegetation, and the percen tage cover by floating leave
vegetation A comparison between aquatic plant and fish species richness sug gests hat as the number of aquataic plant taxa increases. so ocoes fish species
richness $\left(R^{2}=0.573, p<0.001\right.$ (Fig. VI). In particular, fishless lakes and richness $\left(R^{2}=0.573, p<0.011\right.$ (Fig . VI). In particular, fishless lakes and
Chrosomus spp. andor pearl dace lakes usually supported fewer macrophyte
 of quadrats occupied or percentage cover, compared with either VIXEN or
GONG lakes. Both Nymphaec sp. and Potamogeten spp. showed measurable differences in their occurrence among fish assemblage ypes. occurring infre
quently in fishless lakes (Table VII). This absence of macrophytes, in general,

Figure III
The distribution, relative abundance (high >1, low <1 fish per 24 trap hours) and assem
uncommone classifications of eight common and six
sif

LAKE GRDUP	CIMMAN UNCDMMDN SPECIES SPECIES
CHRISAMUSS PEARL DACE 019R 㟶 $401 R$ $044 R$ 453R 崖 079R $466 R$	
($\mathrm{N}=$)	1914141512106511211132
LEGEND	$\because \geqslant 1$ IISH PER 24 TRAP hDURS - <1 fish per 24 TRAP hours

54 ${ }^{\circ}$
aate rakes restrcts the access of both fish and macrophytes. Aiken and bec, was a finction of the isolated positions of some it aterneau Park, hers and of the limited accidental rransfer of aquatic plant material to lakes has been linked to the chemical properties (in of pariculara aquatatic vasculity) of plat lakes in which they grow (Hellquist 1980; Fraser and Morton 1983, Fraser et a (1985) also found flora to be impoverished in acidic lakes that had elecyated
2.2.4. Wateffoul survegs - Seven waterfowl species were commonly found in the Ranger Lake area in 1980 and 1981 and included Common Goldeney
Hooded Merganser mon Merganser and Common Loon. Other species that nest infrequently are Wood Duck (Aits sponsas), Blue winged Teal (Anas discors), Green winged Teal
(Anas receca) and Bufle loon broods were observed in the two years, fewer than now were seen mor than once. The likelihood of resighting a brood on a a given lake is dependen on its mo oby, morlatity and vish in. Common Goldeneye broods were fre
quently observed on the same wetands 77% of broods resighted) in compar
 lings of different species, including Common Merganser. Black Duck, Mallard
and Common Goldeneye, has been reported during the brood rearing period
 in different lakes (Eriksson s 1978). Clearly, such movements would increase

Figure IV
Cluster dendrogram on average distance dissimilarity values, using Ward's methoc of agglomeration, for aquatic insect taxa in sweep net
samples collected in in xiakes with fish and four lakes without fish (or a samples collected ons lakes with fish and four lakes witho
very small fish population) in the Ranger Lake area in 1981

Data from aerial and ground surveys conducted at Ranger Lake were
ed to assess patierns of habitiat selection by waterfowl during the brood rearing period. Nearly two thirds of the wetland surveyed supported at least one waterfow brood in either 1980 or 1981 . Whereas information from aeria tain species and the occurrence of fish in study lakes (Fig. V11). Aerial surveys of auluts (thaccated nesting pairs) and ground ses were recorded more young fishless lakes. The piscivorous species, i.e., Common Merganser and Com allard and Ring necked Duck displayed no obvious preference fo e either Mallard and Ring.necked Duck displayed no obvious preference for either
condition, although broods were found more frequently on lakes with fish.

Them

Comparison of chemical and physical parameters (mean \pm sip) for 36 lakes
sampled in the Ranger Lake area in 1981 , according to fish assemblage type

Parameter	Fish assemblage type							
	Fishless*$(N=8)$		$\begin{aligned} & \text { Chrosomus } \\ & \text { pearl dace } \\ & (N=8) \end{aligned}$		$\begin{gathered} \text { GONG } \\ (N=10) \end{gathered}$		$\begin{aligned} & \text { VIXEN } \\ & (N=10) \end{aligned}$	
	Mean	\pm so	Mean	\pm si	Mean	\pm so	Mear	\pm sp
pH	${ }_{6}^{6.41}$	0.74	${ }_{6}^{6.67}$	0.32	${ }_{6}^{6.44}$	0.29	6.92	0.39
Conductivity (μ mho cm^{-1})		13.5		12.3		8.1		
Alkalinity ($\mathrm{ueq}^{\left(\mathrm{L}^{-1} \text {) }\right.}$	130.3	133.9	104.7	69.3	87.4	63.5	17.8	80.9
Calcium ($\mathrm{mg}^{\text {L-1 }}$)	3.88	1.82	3.59	1.31	3.28	1.12	4.23	1.14
Sulphate (mgL L^{-1})	8.08	1.68	7.41	1.38	7.19	0.96	8.28	1.43
Aluminum ($\mathrm{mg}^{\text {L-1 }}$)	170.4	91.1	60.6	42.8	103.4	26.3	56.3	32.8
Elevation (m)	452	86	465	56	476	30	412	51
Maximum depth (\mathbf{m})	6.4	3.2	8.5	10.3	5.1	4.2	7.7	6.6
Drainage area (ha)	302.9	365.6	98.4	48.0	382.3	282.4	733.0	875.4
Total volume (10 $\left.000 \mathrm{~m}^{3}\right)^{3}$	33.4	49.2	30.9	57.7	33.9	65.9	35.0	54.0
Littoral volume ($10000 \mathrm{~m}^{3}$)	2.1	3.2	1.3	0.5	3.8	3.1	4.6	4.2
Surface area (ha)	10.6	12.8	${ }_{6}^{6.4}$	4.7	13.4	14.9	13.4	11.1
Shoreline length (m)	1879	1158	1331	597	2492	1914	2505	1443

Lake 436R excluded because of incomplete data.

Figure V

abinalip between the number of fish species and the number and lo abundance of aquatic invertebrate taxa in sweep net samples collected in
10 lakes in the Reanger Lake area in 1981 . The least squares regression

$\overline{\text { Figure VII }}$
Comparison between lakes with and without fish of indicated nesting

Taxonomic classification	Lake No．										${ }_{\text {test }}^{U}$
	$\begin{aligned} & \text { 皆 } \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \text { ? } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$			曹	登	$\begin{aligned} & \text { x } \\ & \stackrel{y}{5} \end{aligned}$	\％	彩	璦	
0．Diptera											
1．Chironomidae	14	10	3	9	11	8	${ }^{9}$	3	6	2	${ }^{\text {ns }}$
2．Cerabopogonicae	${ }_{6}^{4}$	1384	－	8	－	$\underline{1}$	$\underline{1}$	－	－	－	${ }_{p=0.033}$
0．Hemiptera											
1．Buenoa	1	7	3	1	－	－	－	－	－	－	$p=0.005$
2．Notoreta	12	16	4	13			－				$p=0.005$
3．Sigara spp．（A）	4	1	${ }_{1}{ }^{7}$	${ }^{2}$	－	2	5	1	5	2	
4．Corixidae（1）	19	16	14	18	－	2	1	1	5	4	$p=0.005$
5．Gerris	2	2	－		－	2	－	－	－	7	
6．Rheumatobates rilegi	－	－	1	4	－	1	－	－	－	－	ns
0．TRICHOPTERA											
1．Mystacides	－	－	1	－	4	－	－	－	1	－	
2．Ocetis	1	4	2	1	－	－	1	－	－	－	$p=0.01$
3．Triaerodes	15	1	2					－	－	－	$p=0.033$
4．Pobyeentropus	1	3	1	2	2	－	4	－	－	－	ns
5．Oxyethira	4		$\bar{\square}$	1		－		－	1	－	${ }^{\text {ns }}$
6．Limnephius	－	$\underline{1}$	$\stackrel{2}{ }$	－	－	－	$\stackrel{2}{3}$	－	－	－	ns
0．Coleoptera											
Gerrinus pectoralis（A）	－	5	2	3	－	－	－	－	－	－	$p=0.03$
2．Gyrius affinis（A）		1	1		－	1		－			
3．Gyrinus（1）	4	－	1	3	－	i	1	－	1	1	${ }^{\text {ns }}$
4．Donacia ${ }^{\text {a }}$ Gratoderus	10	$\stackrel{\square}{16}$	1	8	－	－	－	$=$	－	1	
5．Phyphouters ablongus	1	16	$\frac{3}{7}$	$\stackrel{8}{-}$	－	－	－	－	－	－	$p=0.005$
0．odonata											
1．Aeshnidae	1	3	${ }^{2}$	－	1	－	－	－	－	－	，
2．Coenagrionidae	1	5	－	－	2	1	－	－	1	－	ns
3．Leuxarrtinia	1	3	－	1	－	－	－	－	－	－	$p=0.03$
4．Somperam	1	$\frac{1}{8}$	5	$\bar{\square}$	－	－	1	－	－	－	$p=0.01$
0．EPHEMEROPTERA											
1．Baetidae	－	－	1		3	1	－	－	－		
2．Siphlonuridae	－	－	－	2	1	－	－	－	－	－	ns
AMPHPODA											
1．Hyalledn azteca	－	－	6	1	3	－	－	－	－	－	ns
2．Crangouyx richmordensis	－	－	5	－	－	－	－	－	－	－	ns
ACARI	12	11	11	10	9	5	13	3	4	－	ns
MOLLUSCA											
1．Sphaeriidae	2	－	1	1			${ }^{3}$	1	－	－	ns
2．Girausus deflectus	－	－	－	${ }_{4}$	${ }_{2}^{2}$	$\stackrel{2}{1}$	－	－	－	－	ns nis
oligochamta	1	1	1	－	－	1	1	－	－	－	ns
Hirudinea	1	－	－	2	－	－	1	－	－	－	ns

The probability of occurrence（Mann－Whitney U statistic）is calculated to test whether a taxon occurred in more samples in lakes without fish（significance evel
$=0.05 ;$ ；ms $=$ not significant）．Lakes without viable fish populations are denoted by an asterisk（）．Adtult（A）and immaure（1）designations are provided where a for hor signiticant，Lakes withourv via

Table Y
he occurrence of quatic invertebrate taxa in Ekman dredge samples collected
10 lakes in the Ranger Lake area in 1981 ，recorded as scores ofto of 30
samples from each lake \dagger gake area 198 ，recorded as scorsser

Taxonomic classification	Lake No．										
	$\begin{aligned} & \text { \% } \\ & \stackrel{3}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \% } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 笑 } \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 替 } \\ & \stackrel{y y}{c} \\ & \hline \end{aligned}$	豪	桀	$\frac{\tilde{y}}{\frac{1}{U}}$	$\frac{\text { 笭 }}{}$	\％	\％	
0．Diptera											
1．Chironomidae	18	25	8	19	20	6	${ }^{22}$	9	11	16	
2．Ceratopogonidae	3	2	1	5	2	－	1	1		－	$p=0.03$
3．Chaoborus albatis	－	－				1	－	－	5	－	
4．Chrysops exitans	－	－	3	4	1	－	1	－		1	
0．HEmiptera											
1．Corixidae	3	－	－	－	－	－	－	－	－	－	
0．TRICHOPTERA											
1．Palycentropus	－	－	i	1	$\stackrel{2}{-}$	$=$	${ }_{1}$	－	－	－	
3．Banksioblas	－	$\overline{7}$	－	1	－	－	$\underline{1}$	－	－	－	
4．Mystacides			3			－	－	－	－	－	
5．Oectis	1	1	2	1	1	－	－	－	－	－	$p=0.02$
COLEOPTERA											
1．Donuxia－Plateumaris	－	－	－	1	2	1	1	－	－	－	
0．odonata											
1．Lilellual			3	1	2	－		－	－	2	
2．Leurorrimia	3	${ }^{7}$	$\bar{\square}$	${ }_{1}$	$\overline{3}$	－	${ }_{5}^{2}$	i	－	－	
	$\stackrel{1}{2}$	13	2	1	3	－	5	1	1	－	
4．Tetragnerina	i	－	－	－	$\begin{array}{r}3 \\ \hline\end{array}$	－	－	－	－	i	
0．EPHEMEROPTERA											
Caenidae	－	－	2	1	6	1	－	2	1	－	
2．Siphlonuridae	$-$	1	－	1	1	－	－	－	－	－	
AMPHIPODA											
1．Hyallea azteca		－				－		－		－	
2．Crangonjx richmondensis	1	－	10	1	2	－	1	－	－	－	
mollusca											
1．Sphaeriidae	${ }^{20}$	4	${ }_{8}^{8}$	10	20	${ }^{2}$	7	4	${ }^{2}$	6	n
2．Gyrautus deflectus		－	3		－		－	－	－	－	
ollgochaeta	15	3	－	4	6	－	4	2	1	2	
HIRUDINEA	4	－	1	4	1	1	－	2	－	－	

The probability of occurrence（Mann－Whitney U statistic）is calculated to test whether a taxon occurred in more samples in lakes without fish（significance level
$=0.055$ ，ns $=$ not significant）．Lakes without viable fish populations are denoted by an asterisk（ ${ }^{*}$ ）．

Table VI
The occurrence of aquatic invertebrate taxa collected in ind ividual emergence
traps in 10 lakes in the Ranger Lake area during the period $23-25$ June to

traps in 10 lakes
$22-27$ July 981

Lakes without viable fish populations are denoted by an asterisk（ $*$ ．．Because of trap disruptions and relocations，data from only one of the two traps on lake
015R are presented．The presence of a axon has been recorded as 1 ，whereas blanks $(-)$ denote absence of taxa．

$\begin{aligned} & \begin{array}{l} \text { Fish } \\ \text { assemblage } \\ \text { ype } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{No} \\ \text { of } \\ \text { of axa } \end{gathered}$	$\begin{gathered} \text { occupied } \\ \text { (score out of } 19 \end{gathered}$		$(N=10 \text { quadrats })$		
		Floating.		Floating leaved Submerged		
Fishless						
422R	1	\bigcirc	3	0		
014 R	1	0		0		
013R	2	0		0		
${ }^{4200}$	2	1	8	1		
436 R .	2	0	3	5	10	
459 R	3	0	4	0		
015	3	0	5	${ }_{0}$	20	
027 R	5	0	6	0	39	
Chrosomuspearl dace						
	${ }_{4}^{4}$	0	8	0	12	
044 R	3	1	4	1	7	
401 R	2	1	,	1		
404R	3	2	4	,	13	
${ }^{4455}$	${ }^{6}$	2	7	1	18	
453 R 466 R	${ }_{3}$	0	2	0	14	
GONG						
409R	5	1	7	1	5	
${ }_{4}^{416 \mathrm{R}}$	${ }_{5}^{5}$	5		15		
${ }_{49}^{424 \mathrm{R}}$	5	7	6	16	7	
441 R	5	4	9	6	39	
406 R	6	8	${ }_{9}^{8}$	${ }_{24}^{8}$	${ }_{51}$	
423 R	7	4	7	${ }_{12}$		
469 R	7	6	7	${ }_{5}$	$\stackrel{27}{27}$	
vixen						
${ }^{0168}$	2	5	5			
	${ }_{3}$	2	8	2	8	
${ }_{\substack{0027 \\ 002 \mathrm{R}}}^{0}$	3	0	10	0	42	
006 R	4	0	7	1	27	
063 K	4	${ }_{4}$	${ }_{4}^{8}$	1	25	
022 R	5	+	4	${ }_{9}^{8}$	11	
004R	5	8	8		19	
003R	8	7	8	9	16	
O10R	8	3	8	20	20	
Chisquared						
	13.32	17.23	8.98	16.79	1.89	
	(p<)0.004	0.0006	0.029	0.0008	ns	

[^2]| Appendix 4
 Summary of the procedures and principal equipment used in water chemical determinations | | | |
| :---: | :---: | :---: | :---: |
| No. | Chemical determination | Procedure | Principal equipment |
| 1 | pH | Ross electrode | Fisher Accumet Model 750 |
| 2 | Specific conductance | $\mu \mathrm{S} \cdot \mathrm{cm}^{-1}$ at $25^{\circ} \mathrm{C}$ | Radioneter Type CDM2e Conductivity Meter |
| 3 | Total alkalinity | Electromerric tirration | Metrohm E636 Titroprocessor |
| 4 | Total nitrogen | Automated micro-Kjeldahl | Technicon Auto-Analyzer If |
| 5 | NH_{3} - nitrogen | Automated sodium nitroprusside | Technicon Auto Analyzer ric plus |
| ${ }_{7}^{6}$ | $\mathrm{NO}_{2}+{ }_{\text {Total }}+\mathrm{NO}_{3}-$ nitrogen ${ }^{\text {cosphorus }}$ | Automated molytydophosphoricic blue | |
| 8 | Soluble reactive phosphorus | Automated molybdophosphoric blue | Tectricon Auto.Analyzer IIC plus |
| | Potassium (K) | Flame emission | Varian 1275 Spectrophotometer |
| 10 | Sodium (Na) | Flame emission | Varian 1275 Spectrophotometer |
| 11 | Calcium (Ca) | Atomic absorption | Varian 1275 Spectrophotometer |
| 12 | Magnesium (Mg) | Automated Atomic absorption | Varian 1275 Spectrophotometer Technicon Auto nalyer IIC plus |
| 13 14 | | Automated mercuric thiocyanate | Technicon Auto-Analyzer IIC plus |
| 15 | Silica (SiO_{2}) | Automated ascorbic acid | Technicon Auto Analyzer IIC plus |
| 16 | Iron(Fe) | Atomic absorption | Perkin Elmer 4000 Spectrophotometer \& Varian 975 |
| | | Atomic absorption | ${ }_{\text {(Graphite Furnace) }}^{\text {Perkin-Elmer } 4000}$ |
| 17 | Aluminum (A) | Atomic absorption | Spectrophotometer \& Varian 975 |
| | | | (Graphite Furnace) |
| 18 | Manganese (Mn) | Atomic absorption | Perkin Elimer 4000 |
| | | | Spectrophotometer \& Varian 975 |
| 19 | Zinc (Zn) | Atomic absorption | Perkin-Elmer 4000 |
| | | | Spectrophotometer \& Varian 975 |
| 20 | Copper (Cu) | Atomic absorption | Perkin-Elmer 4000 |
| | | | Spectrophotometer \& Varian 975 |
| 21 | Nickel (Ni) | Atomic absorption | (Graphite Furnace) Perkin-Elmer 4000 |
| | Nosent | Aomic absorpon | Spectrophotometer \& Varian 975 |
| 22 | Cadmium (Cd) | Atomic absorption | ${ }_{\text {Perkin }}$ (LImmer 4000 |
| | Cadrom(| A\%tic | Spectrophotometer \& Varian 975
 Graphise Furnace |
| 23 | Lead (Pb) | Atomic absorption | Perkin-Elmer 4000 |
| | | | Spectrophotometer \& Varian 975 (Graphite Furnace) |
| 24 | Inorganic carbon (TIC) | UV oxidation | Astro Model 1850 Toral Organic |
| 25 | Oryanic carbon (TOC) | UV oxidarion | Astro Model 1850 Torbon Anal Orgater |
| | Oga | | Carbon Analyzer |
| 26 | Total carbon (TC) | UV oxidation | Astro Model ${ }^{1850}$ Cotal Organic |
| 27 | Water colour | Hazen platinum-cobalt scale | Helige Aqua Testa |

Common Loon (Giata immer) - This widespread and common piscivor
is found in large lakes. There is no obvious reason for low counts in the Suult ste
 higher in the Eastem Lake superior Tributary Watersted deB) (Fig sab) than else
where in the region. This species was often found on known acidic lakes.
Canada Goose (Branta crumudenisis)-A small resident flock breeds
2.
around Pumpkin Point (Sault ste. Maric block) where a plot happened to fall 3. Mallard (Anases phatyhyyciass) - An uncommon species in the northem
tier of blocks, but much more common to the south, particularly around agricul tural areas. This species has risen rapidy yn numbers in southern Ontario (Ross

American Black Duck (Anas rutripes) - This species is common through
out the region. The count in the Hunssile block is the highest so far recorded for such an area anywhere in Ontario. Although the overall population of the
Black Duck is currenly declining at a slow buts steady rate, po suldedine Black Duck is currenty declining at a slow but steady rate, no such decline is evi
dent from any survey data for this region. The species regularly coorccurs with dent from any survery datat for this region. The species regularly Coorccurs with
the Ring necked ducc (Ross 1987) and in found in
widd range of smaller wet lands, paticicularty those that are shallow with well.developed littoral zones.
often the only species found on peatdominated wetlands (bogs and fers) often the only species found
(Blancher and MCNicol 1986).
5. Northern Pintai (Amass anuta) - A single male was noted
6. Green-winged Teal (Anas screcta) - Generally found at low densites and
sporadically distribued in the regions higher counts were associated with swampy sporatically distsibuted in the region: higher counts were associated with swamp.
hatitat particularly in the Nipisising block, but also in the Killamey and Hunts.
ville bocks. ville blocks.
the-winged Teal Anas discors) - Similiar in distribution and abundanc to the previous speciess the Bluewinged Teal was most ofien encountered on
larger open marshes. 8 Wod Duek uncommon species is increasing rapidfly indence southicrates that this of currently region, ys it

${ }_{9} 9$.
widespread species, being well sepresented in all blocks. Although present in a welldeneve of lake types, it was often found on lakes wane with extensive sections of in making condusions on breeding pabitat from the survey results.
10. Lesser Scaup (Aythyu affinis) - Four pairs were recorded near Pumpkin
Point and may not necessarily be breeding.
11. Common Goldeneye (Buctphaia clawequa) - This species was common
only in the northern nore boreal plos and appeared to show a dectine in aburn only in uhe northenn more boreal plos and appeared to show a deccine en abuun
dance from west to east. Tbe species was very yare in the southere blocks. This and the other of the Mewgini tribe semed to prefer lakes with deeper water
ofien with less litoraal zone than those of the previous species (Ross 1987).
12. Buffehead (Buechhala a albeotik) - This rare species breeds sporadically
throughour the region.
13. Hooded Merganser (LLephddyes suaullatus) - This conmon species was recorded in good numbers in all but hhe Killarney block. The low count in that
arear may ban antifact as previous surveys (Table 3) give results comparable with
thosc of the other blocks 14.
abundance to the previous species, idthought nore likely to be found on larger
lakes and on
-
15. Red.breasted Merganser (Mergus serator) - A very rare species usually
associaied with the largest lakes (e.g. Lake Superior, Lake Nipissing).

Appendix $6 a$ Indicated nesting pair occupancy frequencies for the Common Loon in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters							Appendix $6 b$ Indicated nesting pair occupancy frequencies for combined MallardBlack Ducks in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters						
Area of water, water, h	$\begin{array}{r} \text { Shoreline } \\ \text { development } \\ \text { class } \\ \hline \end{array}$	Length ofwell-vegetatedittoralzone, m	Ranger Lake		Wanapitei		Area of water, ha	$\begin{gathered} \text { Shoreline } \\ \text { development } \\ \text { class } \end{gathered}$	$\begin{array}{r} \text { Length of } \\ \text { well-vegetated } \\ \text { litoralal } \\ \text { zone, } m \end{array}$	Ranger Lake		Wanapitei	
			Present	Absent	Present	Absent				Present	Absent	Present	Absen
$0-0.40$	1	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 54 \\ & 13 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\sqrt{17}$	${ }_{0}^{0-0.40}$	1	$\begin{aligned} & 0-100 \\ & 101-500 \end{aligned}$	0 0	54 13	0	${ }_{17}^{6}$
	2	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 25 \\ & 19 \end{aligned}$	0	$\begin{array}{r} 1 \\ 21 \end{array}$		2	$\begin{array}{r} 0-100 \\ 101-5000 \end{array}$	0 0	$\begin{array}{r}25 \\ \hline 19\end{array}$	${ }_{2}^{0}$	19 19
	3	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17 \\ 39 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} \overline{4} \\ 6 \\ \hline \end{array}$		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \\ \hline \end{gathered}$	1 2 0	16 37 31 21	-	${ }_{6}^{6}$
$0.41-1.50$	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	- ${ }_{0}^{0}$	24 27 -	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ 38 \\ 1 \end{gathered}$	0.41-1.50	1	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \end{array}$	2 2 -	${ }_{25}^{22}$	-	1 35 1
	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3 21 9 13	${ }^{0}$	13 19		2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	-	31 18 12	1 4	12 15
	3	$\begin{gathered} 0-100 \\ 10-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	4 5 25	0	$\overline{24}$		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	1 0 4 4	$\begin{array}{r}4 \\ 5 \\ \hline\end{array}$	$\overline{-}$	21
1.51-4.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	17 11 15	0 0	-4 28	1.51-4.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	2 3 4 4	16 9 11	$\stackrel{1}{2}$	3 26
	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 3 \end{aligned}$	19 8 19	$\bar{\square}$	50		2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	4 3 4 4	15 5 18	12	39
	3	$\begin{gathered} 0-100 \\ 101-500 \\ 1050 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 7 \\ 11 \\ 22 \\ \hline 2 \end{array}$	$\bar{\square}$	31		3	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \\ \hline \end{array}$	1	$\begin{array}{r}6 \\ 10 \\ 17 \\ \hline\end{array}$	$\frac{7}{7}$	25
$4.01-20.00$	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 4 \\ & \frac{4}{2} \\ & 2 \end{aligned}$	14 3 10	$\frac{-}{5}$	$\overline{10}$	4.01-20.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \\ \hline \end{gathered}$	2 1 4	16 4 8	$\bar{\square}$	14
	2	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \end{array}$	$\begin{gathered} 10 \\ 9 \\ 6 \end{gathered}$	19 92 98 19	18	40		2	$\begin{gathered} 0-100 \\ 101-500 \\ >5000 \end{gathered}$	4 3	24 27 27 27	$\bar{\square}$	45
	3	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	$\begin{array}{r}5 \\ 3 \\ 38 \\ \hline 8\end{array}$	$\bar{\square}$	35		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \\ \hline \end{gathered}$	1 0 8	5 4 24 24	$\overline{-}$	40
>20	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\frac{2}{5}$	1 3	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	>20	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\frac{0}{0}$	6	0	1
	3	$\begin{aligned} & 0-100 \\ & >5000 \end{aligned}$	3 3	1	10	1		3	$\begin{gathered} 0-100 \\ >5000 \\ \hline 5 \end{gathered}$	${ }_{1}^{0}$	4	$\stackrel{\square}{2}$	9

Appendix $6 c$ Indicated nesting pair occupancy frequencies for the Ring-necked Duck in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters							Appendix 6d hicated nesting pair occupancy frequencies for the Common Coldeneye in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters						
Area of open water, ha	$\begin{array}{r} \text { Shoreline } \\ \text { development } \\ \text { class } \end{array}$	Length ofwell-vegetatedittoralzone, m	Ranger Lake		Wanapitei		Area of water h water, h	$\begin{array}{r} \text { Shoreline } \\ \text { development } \\ \text { class } \end{array}$	$\begin{array}{r} \text { Length of } \\ \text { well wegetated } \\ \text { itioral } \\ \text { zone, } m \\ \hline \end{array}$	Ranger Lake		Wanapitei	
			Present	Absent	Present	Absent				Present	Absent	Present	Absent
$0-0.40$	1	-100	1	53	0	6	--0.40	1	0-100	0	${ }^{54}$	${ }_{0}^{0}$	6 17
		$1-500$		11									
	2	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	- $\begin{array}{r}0 \\ 1\end{array}$	$\begin{aligned} & 25 \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	${ }_{20}^{1}$		2	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	0	25 18	${ }_{0}^{0}$	${ }_{21}^{11}$
	3	$\begin{gathered} 0-100 \\ 101-500 \\ \gg 500 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	16 39 30	$\stackrel{\square}{0}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		3	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 1 \\ \hline \end{array}$	16 38 30 20	$\overline{0}$ 0	7
0.41-1.50							$0.41-1.50$	1	0-100				
	1	101-500	${ }_{1}$	${ }_{26}^{24}$	${ }_{2}^{0}$	36			101-500	2	25	2	36
		>500			0	1							
	2	0-100		29				2	$\begin{array}{r} 0-100 \\ 0 \end{array}$		${ }_{21}^{29}$	-	
		101-500	3	18	1	12			$\begin{array}{r} 101-500 \\ >500 \\ > \end{array}$	$\stackrel{0}{1}$	21 12	${ }_{0}^{2}$	11 19
		>500	2	11	1	18							
	3	0-100	0	4	-			3	(\%-100	0 0	$\frac{4}{5}$	-	-
		$\xrightarrow{101-500}$	0	${ }_{21}^{5}$	$\overline{2}$	$2{ }^{-}$			$\xrightarrow{\text { r }}$	1	24	i	23
1.51-4.00	1	$0-100$					1.51-4.00	1	0-100	7			
		$101-500$		10	${ }_{0}$	4			$\xrightarrow{101-500}$	$\frac{4}{5}$	8 10	8	${ }_{20}^{4}$
		>500											
	2	0-100	3					2	0-100	${ }^{6}$		-	
		$\xrightarrow{101-500}$	${ }_{4}^{1}$	18	$\overline{4}$	47			$\xrightarrow{\text { r }}$	$\frac{3}{5}$	17	12	39
	3	0-100		6				3	- $\begin{array}{r}\text { 0-100 } \\ 101-500\end{array}$	1	${ }_{6}^{6}$	-	
		$\xrightarrow{101-500}$	6	17	5	27			$\stackrel{101-500}{>500}$	${ }_{5}^{2}$	18	$\overline{9}$	23
4.01-20.00							4.01-20.00	1	0-100			-	
		101-500	1	4	-	-			$\xrightarrow{101-500}$	${ }_{3}^{0}$	${ }_{9}^{5}$	2	13
		>500	1	11	2	13							13
	2							2	- 0 -100	2		-	-
		$\xrightarrow{101-500}$	4	${ }_{21}^{27}$	$\overline{8}$	50			$\stackrel{101-500}{>500}$	2	$\stackrel{29}{17}$	10	48
	3	0-100	0		-			3	-0-100	${ }^{2}$	${ }_{4}^{4}$	-	
		$\xrightarrow{101-500}$	${ }_{9}^{9}$	${ }_{23}^{4}$	$\overline{7}$	47			$\stackrel{101-500}{ } \stackrel{500}{ }$	9	${ }_{25}^{4}$	$\overline{9}_{9}$	45
>20	2						>20	2	(101-500	\bigcirc		${ }_{0}$;
		$\begin{aligned} & 101-500 \\ & >500 \end{aligned}$	$\bar{\square}$	$\overline{6}$	0 0	$\frac{1}{9}$			$\xrightarrow{\text { P }}$ -	$\overline{0}$	$\overline{6}$	1	8
	3							3	${ }^{0-100}$	0	4	-	9
		>500	0	5	0	11			>500	0		2	

Appendix 6 e Indicated nesting pair occupancy frequencies for the Hooded Merganser in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters							Appendix $6 f$ Indicated nesting pair occupancy frequencies for the Common Merganser in the Ranger Lake and Wanapitei study areas, in relation to selected habitat parameters						
Area of	Shoreline	Length of well-vegetated	Ranger Lake		Wanapiti		Area of open water, ha water,	$\begin{gathered} \text { Shoreline } \\ \text { development } \\ \text { class } \end{gathered}$	$\begin{gathered} \text { Length of } \\ \text { well-vegetated } \\ \text { litoral } \\ \text { zonc, } m \end{gathered}$	Ranger Lake		Wanapitei	
${ }^{\text {open }}$ water, ha	class	$2 \mathrm{zone}, \mathrm{m}$	Present	Absent	Present	Absent				Present	Absent	Present	Absent
$0-0.40$	1	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	${ }_{0}^{0}$	54 13	0	$\begin{gathered} 6 \\ 17 \end{gathered}$	0-0.40	1	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	${ }_{0}^{0}$	54 13	${ }_{0}^{0}$	${ }_{17}^{6}$
	2	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	0	25 19	${ }_{0}^{0}$	21		2	$\begin{array}{r} 0-100 \\ 101-500 \end{array}$	${ }_{0}^{0}$	25 19	${ }_{0}^{0}$	${ }_{21}^{1}$
	3	$\begin{gathered} \begin{array}{c} 0-100 \\ 101-500 \\ >500 \end{array} \end{gathered}$	$\begin{aligned} & 0 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 17 \\ & 36 \\ & 21 \end{aligned}$	1	$\begin{aligned} & \overline{3} \\ & 6 \end{aligned}$		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	17 39 20	-	-
$0.41-1.50$	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{r}23 \\ \hline 25 \\ \hline\end{array}$		$\begin{array}{r} 1 \\ 34 \\ 1 \end{array}$	0.41-1.50	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	1 0 -	24 27	0 1 0	1 37 1
	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	3 1 1	28 20 12	1 3	$\begin{aligned} & -\overline{12} \\ & 16 \end{aligned}$		2	$\begin{gathered} 0-100 \\ 101-500 \\ >5000 \end{gathered}$	${ }_{0}^{0}$	31 21 21	0 0 0	0 13 19
	3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r}3 \\ 5 \\ 25 \\ \hline\end{array}$	$\bar{\square}$	-		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	0 0 1	4 5 24	0	-
1.51-4.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	2 1 1	16 1 14	$\frac{7}{5}$	3 23	1.51-4.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	0 0 1	18 12 14	0	$\begin{array}{r}-7 \\ 28 \\ 28 \\ \hline\end{array}$
	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	4 0 0 1	15 8 21	10	${ }_{41}^{-}$		2	$\begin{gathered} 0-100 \\ 101-500 \\ >5000 \end{gathered}$	2 1 0	17 7 7 28	2	-
	3	$\begin{array}{r} 0-100 \\ 101-500 \\ \gg 500 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{r} 7 \\ 10 \\ 16 \\ \hline \end{array}$	6	${ }_{26}^{-}$		3	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	1 0 1 1	$\begin{array}{r}6 \\ 11 \\ 12 \\ \hline 1\end{array}$	$\bar{\square}$	-
4.01-20.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	18 5 10	2	13	4.01-20.00	1	$\begin{gathered} 0-100 \\ 101-500 \\ >5000 \end{gathered}$	0 0 0	18 5 12	0	$\stackrel{-}{15}$
	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \\ & 6 \end{aligned}$	27 28 28 19	$\overline{-}$	$5 \overline{5}$		2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	5 1 2	24 30 33	$\overline{-}$	54
	3	$\begin{array}{r} 0-100 \\ 101-500 \\ >500 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 0 \\ 4 \\ \hline \end{array}$	5 4 28	7	$4 \overline{7}$		3	$\begin{gathered} \begin{array}{c} 0-100 \\ 1001-500 \\ >500 \end{array} \\ \hline \end{gathered}$	0	6 4 30	$\bar{\square}$	$\stackrel{-}{49}$
>20	2	$\begin{gathered} \begin{array}{c} 0-100 \\ 101-500 \\ >500 \end{array} \end{gathered}$	$\overline{0}$	$\frac{4}{6}$	0	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	>20	2	$\begin{gathered} 0-100 \\ 101-500 \\ >500 \end{gathered}$	$-$	$\frac{4}{4}$	1 2	0 7
	3	$\begin{gathered} 0-100 \\ > \\ >500 \end{gathered}$	0 1	${ }_{4}^{4}$	0	11		3	$\begin{aligned} & 0-100 \\ & >500 \end{aligned}$	1 $-\quad 0$	3	$\stackrel{\square}{2}$	$\overline{9}$

Appendix $8 b$
Najor ish species and numbers taken at Wanapitei during the summer of 1983 with wire minnow traps*

*Additional species taken were smallmouth bass $(475 \mathrm{~W})$, northern pike (515 W , brown bullhead $(926 \mathrm{~W})$ and an unidentified species 197 W). Lakes without fish were $013 \mathrm{~W}, 016 \mathrm{~W}, 242 \mathrm{~W}, 248 \mathrm{~W}, 251 \mathrm{~W}, 257 \mathrm{~W}, 258 \mathrm{~W}$,
$338 \mathrm{~W}, 43 \mathrm{~W}, 394 \mathrm{~W}, 401 \mathrm{~W}, 402 \mathrm{~W}, 403 \mathrm{~W}, 406 \mathrm{~W}, 407 \mathrm{~W}, 408 \mathrm{~W}, 410 \mathrm{~W}, 57 \mathrm{~W}, 572 \mathrm{~W}$ and 902 W

Literature cited

Aiken, S., Gillett, J.M. 1974. The distribuion of aquatic plants in selected
lakes of Gatineau Park, Quebec. Can Field Nat. $88: 437-448$. Almer, B, Dickson, W.; Ekstrom, C;; Hornstrom, E;; Miller, V. 1974.
Effects of acidification on Swedish lakes. Ambio $3: 30-36$. Almer, B.; Dickson, W.; Ekstrom, C.; Hornstrom, E. 1978. Sulfur pollu-
tion and the aquatic ecossstem. Pages 273 -311 in in Nriagu, J.O ed. Sulfur

Alvo, R. 1985. The breeding success of Common Loons (Gruvia inmer) in
relation to lake acidity. M.Sc. thesis, Trent Univ., Peterborough, Ontario. relauion
122 pp.
Andersson, \mathbf{G}. 1981 . Influence of fish on waterfowl and lakes (Norwegian
with English summary). Anser 20:21-34.
Armstrong, F.A.J., Schindier, D.W. 1971. Preliminary chemical charac terizationg, of wateers in the Experimental. Lakese Area, Northwestern
Ontario. J. Fish. Res. Board Can. 28:171-187.
Baker. J.P. Schofield, C.L. 1982. Aluminum toxicity to fish in acidic
waters. Water Air Soil Pollut. 18:289-309.
Ball, L.I., Gilmer, D.S.; Cowardin, LM., Reichman, J.H. 1975. Survival of
Wood Duck and Mallard broods in North-central Minnesota. J. Wild. Manage. 39:776-780.
Barrie, L.A.; Wiebe, H.A.; Anlauf, K.; Fellin, P. P. 1882. Data report: Results
of the Candian Air and Precipititaion Monitorin Network of the Canadian Air and Precipitation Monitoring Networkt APN, July
180. Do December 1991 . Turke प Lakes Watershed Unpubl. Rep. Ser. No.
ILW. $82 \cdot 14.7$ pp. +7 appendices.
Bartonek, J.C. 1972. Surrmer foods of American Widgeon, Mallards, and
Green-winged Teal near Great Slave Lake NWT. Can. Field.Nat Green-winged
Beamish, R.J. 1972. Lethal pH for the White Sucker (Catostomus commer-
seni). Trans. Am. Fish. Soc. $101: 355-358$.
Beamish, R.J. 1974. The loss of fish populations from unexploited
remote takes in Ontario, Canada as a consequence of atmospheric fallout remote lakes in Ontario, \mathbf{C}
of acid. Water Res. $8: 85-95$.
Beamish, R.J.; Harvey, H.H. 1972. Acidification of the La Cloche Mountain lakes, Ont
Beamish, R.J. VanLoon, J.C. 1977. Precipitation loading of acid and
heavy metals to asmanl acid lake near Sudbury, Ontario J. Fishh. Res.
Board Can 34:649-658.
Beamish, R.J.; Blouw, L.M.; MCFarlane, G.A. 1976. A fish and chemical
study of 109 ;akes in the Experimental Lakes Area (ELA), Northwestern Study of 109 lakes in the Experimental Lakes Area (ELA), Northwestern
Ontario with appended reportson Lake Whitefish ageing errors and the
Northwestern Ontario baifith industy Northwestern Ontario baifisis ind
Serv. Tech. Rep. No. 607.116 pp.
Beggs. G.L., Gunn, J.M.; OIver, C.E. 1985 . The sensitivity of Ontario lake
trogut (Salteeinus namaycush) and lake trout lakes to acidificiction. Ont. Fish. trout (Salvelinus namayycuhh) and
Bellrose, F.C. 1978. Ducks, geese and swans of North America. Stackpole
Books, Harrisburg, Pa. 540 pp.

Bendell, B.E.; McNicol, D.K. 1987 a. Fish predation, lake acidity and the
composition of aquatic insect assemblages. In press. Hydrobiologia. Bendell, B.E.; McNicol, D.K. 1987b. Cyprinid assemblages, and the physi-
cal and chemical characteristics of small northern Ontario lakes. In press. cal and chemical char
Environ. Biol. Fishes.
Blancher, P.J.; McNicol, D.K. 1986. Investigations into the effects of acid precipitation on welland-dwelling wildife in Northeastern Ontario.
Tech. Rep. Ser. No. 2. Can. Wildl. Serv, Ontario Region. 153 pp.
Boissonneau, A.N. 1968 . Glacial history of Northeastern Ontario 2: The
Timiskaming-Algoma area. Can. J. Eatrih Sci. 5:97-109.
Brooks, J.L. 1968. The effects of prey size selection by lake planktivores.
Syst. Zool. 17:273-291.
Brooks, J.L.; Dodson S. S. 1965. Predation, body size, and composition of
plankton. Science 150:28-35.
 ficial gicology in determining the sensitivity of
acidification. J. Great Lakes Res. 11:501-507.
Brown, D.J.A. 1982 . The effect of pH and calcium on fish and fisheries
Water Air Soil Pollut. $18: 343-351$.
Brown, S.B. Eales. J.G. 1984. Interrenal, thyroidal, and carbohydrate responses of Rianbow Trout Salma gair
tion. Can. J. Fish. Aquat. Sci. $41: 36-45$.
Campbell, P.C.C.C; Stokes, P.M. 1985. Acidification and toxicity of metals
to aquatic biota. Can. J. Fish. Aquat. Sci. 42:2034-2049.
 INCO smelter emisions on wet
Atmos. Environ. 18:1001-1008.
Charles, D.F. 1985. Relationships between surface sediment diatom
assemblage and lakewater characteristics in Adirondack lakes. Ecolog assemblage and
Clark, K.L.; Fischer, K. 1981. Acid precipitation and wildifife. Can. Wildi.
Serv. Wildi. Toxicol. Div, Ms. Rep. No. 43 Environment Canada, Otawa Serv. Wild. Tox
Canada. 95 pp.
Clark, K.L., Lazerte, B.D. 1985. A laboratory study of the effects of alumi-
num and pH on amphibian eggs and tadpoles. Can. J. Fish. Aquat. Sci. num and pH on
42:154-151.
Conroy, N.L., Jeffries, D.S.; Kramer, J.R. 1974. Acid shield lakes in the
Sudbury, Ontario region. Proc. Symp. Water Pollut. Res. Can. $9: 45-61$
Conroy, N.L.; Hawley, K.; Keller, W. 1978. Extensive monitoring of lakes
in the greater Sudbury area 1974-76. Ont. Min. Environ. Tech. Rep., Sud in the greater Sudbury area 1974-76.
bury, Ontario. 40 pp. + appendices.
Cowell, D.W.; Lucas, A.E.; Rubec, CD. A. 1980, The dever Cowell, D.W.; Lucas, A.E.; Rocical sensitivity rating for acid precipitation impact assessment. ecological sensitiviy raung for acid precipitation impact assessment
Lands Directorate, Environment Canada, Work. Pap. No. 10. Ottawa,
Ontario. Cox, E.T. 1978. Counts and measurements of Ontar
Ministry of Natural Resources. Unpubl. rep. 114 pp.
Cronan, CS, Schofield, CL. . 1979 . Aluminum leaching response to acid
precipitation: effects on high elevation watersheds in the northeast. precipitation: effects on
Science 204:304-306.
ennis, D.G. 1974a. Waterfowl observations during the nesting season in Precambrian and clay belt areas of north-central Ontario. Pages 53 -56 in
soyd, H. ed. Waterfowl studies in eastern Canada, 1969-73. Can. Wild. Rep. Ser. No. 29.105 pp .

Dennis, D.C. 1974b. Breeding pair surveys of waterfowl in southern Ontario. Pages 45-52 in Boyd, H ed. Waterfowl studies in eastern

Department of Environment. 1979. Analytical methods manual. Inland
Waters Directorate, Water Quality Branch. Ottawa, Ontario, Canada.
Dermott, R.; Kelso, J.R.M.; Douglas, A. 1986. The benthic fauna of 41
cid sensitive headwater lakes in north-central Ontario. Water Air Soil acid sensitive headw
Pollut. 28:283-292.

DesGranges, J.-L; Darveau, M. 1985 . Effect of lake acidity and morphom
etry on the distribution of aquatic birds in southern Québec. Holarctic erty on the distrib
Ecol. 8:181-190.
DesGranges. J.L.; Rodrigue, J. 1986. Influence of acidity and competi-
tion with fishon the development of duckings in Quebec. Water Air Soil tion with ish on Polif3-750.
Dillon, P.J; Jeffries, D.S., Snyder, W.R.; Reid, R.; Yan, N.D. 1978. Acidic
precipitation in south-central Ontario: recent observations. J. Fish. Res. recipitation in south
Dillon, P.J., Jeffries, D.S.S. Scheider, W.A., Yan, N.D. 1980. Some aspects
of acidificitaion in southern Ontario. Pages $212-213$ in Drablos, D. and

Dillon, P.J.; Yan, N.D.; Harrey, H.H. 1984. Acidic deposition: effects on
aquatic ecosystems. Crit. Rev. Environ. Control 13 (3):167-194. Dzubin, A. 1969 . Assessing breeding populations of ducks by ground
counts. Pages $278-280$ in Saskatoon wellands seminar. Can. Wildi. Serv counts. Per. No. 6.262 pp.
Eadie, J.M.; Keast, A. 1982. Da goldeneye and perch compete for food?
Eilers, J.M.; Glass, G.E.: Webster, K.E.; Rogalla, J.A. 1983 . Hydrologic
contolo
coltrake controne-1904.
Erikson, M.O.G. 1976. Food and feeding habisis of downy Goldeneye
Bucephakhe clangula (L.) ducklings. Ornis Scand. 7:159-169.
Eriksson, M.O.G. 1978. Lake silection by Goldeneye ducklings in relation
to the abundance of food. Widfow 29:81-85.
Eriksson, M.O.G. 1979. Competition between freshwater fish and
Goldeneyes (Buetphala alongula) for common prey. Oecologia 41:99-107. Eriksson, M.O.G. 1933 . The role of fish in the selection of lakes by non-
piscivorous ducks: Mallard, Teal and Goldeneye. Wildfowl $3427-32$.
Eriksson, M.O.G. 1984. Acidification of lakes: effects on waterbirds in
Sweden. Ambio 18:260-262.
Erikson, M.O.G. 1985. Prey detectability for fishe eating birds in relation
to fish density and water transparency. Ornis Scand. 16:1-7.
Eriksson, M.O.G. 1986. Reproduction of Black khroated Diver (Gavia aretica) in relation to fish density in o
Sweden. Ornis Scand. 17:245-248.

 Eriksson, M.O.G.; Henrikson, L.; Oscarson, H.G. 1986 . Watertirds and
acidification-some aspects (in Swedish). Var Fagelvard $39: 163-166$. $\underset{240 \text { pre A.J. 1971. Buffleheads. Can. Wild. Serv, Monogr. Ser. No. } 4 .}{ }$ ESSA (Environmental and Social Systems Analysts Ld.). 1986. Brown waters: Relative importance of external and internal sources of acidifica
tion on cachment biota Ce A revew of existing knowledge. Report pre-
pared for Environment Canada and Department of Fisheries and tion on cathment biota - A review of existing knowledge. Report pre-
Oared for Environment Canada and Department of Fisheries and

Fraser, D.; Morton, J.K. 1983. Aquatic plants in Lake Superior Provincial
Park in relation to water chemistry Can. Field-Nat. $97: 181-186$.
Fraser, D.; Morton, J.K.; Jui, P.Y. 1986. Aquatic vascular plants in Sibley
Provincial Park in relation of water chemistry and other factors. Can. Provincial Park in rel
FieldNal. 100 $15-21$.
raser, G.A.; Harvey, H.H. 1984. Effects of environmental pH on the onic composition of the white sucker (Catastomus seo
Freda, J.; Dunson, W.A. 1985. Field and laboratory studies of ion balance
and growth rates of ranid tadpoles chronically exposed to low pH. Copeia 1985:414-423.
Frenette, J.J.J. Richard, ,.;. Moreau, G. 1986 . Fish responses to acidity in
Quebec: a review. Water Air Soil Pollut. $30: 461-475$. Galbraith, M.C. 1967 . Size.selective predation on Daphnia by rainbow
trout and yellow perch. Trans. Am. Fish. Soc. $9611-10$. Gilinsky, E. is84. The role of fish predation and spatial heterogeneity in
determining benthic community structure. Ecology $65455-468$. Gilimer, D.S.; Ball, IJ.; Cowardin, LW. W. Reichmann, J.H. Tester, J.R.
1957. Habitiat use and home range of Mallards breefing in Minnesota. J.
Wild. Manage. $39781-789$.
Gollop, J.B.; Marshall, W.H. 1954 . A guide for aging duck broods in the
field. Miss. Flyway Counc. Tech. Sect. Rep. 14 pp. Gorham, E.; Detenbeck, N.E. . 1986 . Suphate in bog waters: a comparison
of ion chromatography with Mackereth's cationexchange technique and of ion chromatography with Mackereth's cation exchange technique and
a revision of earlier views on cause of bog acidity J. Ecol. $74.899-903$. Gorham, E., Gordon, A.G. 1963 . Some effects of smelter pollution upon
aquatic vegetation near Sudbury, Ontario. Can J. Bot. $41: 371-378$. Gorham, E.; Bayley, S.E.; Schindler, D.W. 1984. Ecological effects of acid Gorham, E.; Bayley, S.E.; Schindle
deposition upon peatands: a neg
d. Fish Aquat. Sci . $11: 1256$-1268.

Grahn, O.H.; Hultberg, H.; Landner, L. . 1974. Oligotrophication - a self
accelerating process in lakes subjected to excessive supply of acid sub. accelerating process in
stances. Ambio $3: 93-94$.
Gunn, J.M. 1982. Acidification of Ler near Suddury, Ontario. Page 351 in in Johnson, R.E. ed. Acid Rainifi isheries near Sudbury, Ontario. Page 351 in Johnson, R.E. ed. Acid Rainifisherie

- Proc. Int. Sym. on Aquatic Precipitation and Fishery Impacts in Northeastern North Amer
Ithaca, New York. 357 pp.
Gunn, J.M. . Keller, W. . 1984 . Spawning site water chemistry and lake
trout (Salvelinus namacoush) sac fry survival during snow melt. Can. J. Fish. trout (Salvelinus namax
Aquat Sci. $41: 319-329$
Haines, T.A. 1981. Acidic precipitation and its consequences for aquatic Haines, T.A.; Hunter, M.L. 1982. Waterfowl and their habitat: threatened by acid rain? Pages $177-188$ in Fourth International Wat
Symposium, Ducks Unlimited, New Orleans, La. 265 pp.
Hall, D.J., Cooper, W.E.; Werner, E.E. 1970. An experimental approach
to the production dynamics and structure of freshwater animal commuto the producteon dy.E., Wermer, Et.E.
nities. Limnol. Oceanogr. $15: 839-928$.
Harvey, H.H. 1975. Fish populations in a large group of acid.stressed
lakes. Verb. Int. Ver. Limnol. 19:2406-2417. Harvey, H.H. 1982 . Population responses of fish in acidified waters.
Pages 277 -244 in Johnson, RE ed. Acid Rainfisheries - Proc. Int.
 North America. An
New York,
357 pp.
Harvey, H.H.; Lee, C. 1982. Historical fisheries changes related to surfac
water pH changes in Canada. Pages $45-56$ in ohnson, R.E ed. Acid water pH changes in Canada. Pages $45-56$ in Johnson, R.E. ed. Acid
RainFisheries - Proc. Int. Symp. on Acidic Precipitation and Fishery Rainfisheries - Proc. Int. Symp. on Acidic Precipitation and
Impacts in Northeastron North America American Fisheries Society
Cornell Univ., Ithaca, New York. 357 pp.
Hellquist, C.B. 1980. Correlation of alkalinity and the distribution of
Potamogeton in New England. Rhodora 82:331-344.
Hendrey, G.R.; Baalsrud, K; Traaen, T.S.; Laake, M.; Raddum, G. 1976.
Acid precipitation: some hydrobiological chanes. Ambio $5: 224-227$.
N. Norton, S.A.; Schofield, C.L.; Burns, D.A.:

 Pand Tollanion A. eds. Proc Int. Cont. on Ecological Impact
Precipitation. SNF Project, Sandeford, Norway. 383 Pp.
Henriksen, A. 1982. Suscepibility of surface waters to acidification.
 North. America.
York. 357 pp.

Henrikson, L.; Oscarson, H.G. 1978. Fish predation limiting abundanc
and distribution of Gluemocorisa p. propinquau. Oikos 31:102-105. Hill, M.O. 1979 . TWINSPAN - A FORTRAN program for arranging
multivariate data in an ordered two way table by clasificication of the multivariate data in an ordered dwo way table by classification of the
indiduals and atributes. Fcology and Systematics, Cornell Univ, thaca Hill, M.O. 1979. DECORANA-A FORTRAN program for detrended
correspondence analysis and reciprocal averaging. Fcology and correspondence analysis and reciprocal averaa
Systematics, Cornel Univ, Ithaca, New York.
Hill, M.O., Gauch, H.G. 1980. Detrended correspondence analysis: an
improved ordination technique. Vegetatio $42: 47-58$.
Holte, K.E. 1983. Effects of pH and ionic strength on aluminum toxicity oeary developmental stag.

Holtze, K.E.; Hutchinson, N.J. 1987 . Biological effects of acidification
XII. Comparative tolerance of siw native Ontario fish species to hydrogen XII. Comparative tolerance of six native Ontario fish species to hydrogen Hrbacek, J;; Dvorakova, M.; K Korinek, V; Prochazkova, L. 1961 . Demonstration of the effect of the fish. stocco on the species composition
of zooplankton and the intensity of metabolism of the whole plankton . Limnol 14:199-195

Hunter, M.L.; Jones. JJ., Gibbs, K.E.; Morning, J.R. 1996. Duckling
responses to lake acidfication: do black ducks and fish compete? Oikos 47:26-32.
Hurliert, S.A.; Mulla, M.S. 1981 . Impacts of mosquitofish (Gambusia
affinis) predation on plankton communities. Hydrobiologia 83:125-151. Hutchinson, T.C.; Havas, M. 1986. Recovery of previously acidified lake ear Coniston, Canata following recuctions in atmospheric sulfur and Hutchinson, T.C.; Whitby, L.M. 1977. The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury
smelting region of Canada. Water Air Soil Pollut. $7421-438$. EC Beak. 1985. Utilisation de modèes trophiques et de la sructure des
communautes planctoniques pour determines les effets de l'acidite et de cleurs environnement aux particutiers sur la chaine alimentaire dan es lacs du Québec. Vols. I-II Rapport final préparé à 'lintentio
Pêches et Océans et du Service Canadien de la Faune, Québec.
Jeffries, D.S. 1984. Atmospheric deposition of pollutants in the Sudbury
area. Pages $117-154$ in Nriagu, J.O ed. Environmental impacis of jeffries, D.S. 1984 . Atmospheric deposition of pollutants in the
area. Pages $17-15$ in Nriagu JO ed. Environmental impac
smelters. John Wiley \& Song, New York, New York. 608 pp.
Jeffries, D.S. 1986 . Evaluation of the regional acidification of lakes in
eastern Canada using ion ratios. National Water Research Institute astern Canada using ion ratios. National Water Research Institute
ontrib. Ser. No. 86-79. 19 pp. Jeffries, D.S.S Snyder, W.R. 1981. Atmospheric deposition of heavy metals
in central Ontario. Water Air Soil Pollut. 14: $133-157$. Jeffries, D.S.; Cox, C.M.: Dillon, P.J. 1979. Depression of pH in lakes and
treams in central Ontario during snowmelt. J Fish. Res. Board Can. 6:640-646.

Kaplan, E., Thode, H.C.; Protas, A. 1981. Rocks, soils, and water quality ace water in the northeastern United States. Environ. Sci. Technol. ace water in
$5.539-544$.
Keller, W.; Pitblado, J.R. 1986. Water quality changes in Sudbury area kesta a comparison of synoptic su

Kelso, J.R.M. Minns, C.K. 1982. Current status of lake acidification and
ts effect on the fishery resources in Canada. Pages $69-82$ in Johnson, R.E.
 Fishery Impacts in Northeastern North Amenicacaiderectipitation and
Society, Cornell Univ., Ithaca, New York. 357 pp.

Kelso, J.R.M.; Minns, C.K.; Gray, J.E., Jones, M.L. $1986 a$.Acidification of
surface waters in Eastern Canada and jits relationship to aquatic biot Can. Spec. Publ. Fish. Aquat. Sci. 87.42 pp.
Kelso, J.R.M.; Minns, C.K.; Lipsit, J.H.; Jeffries, D.S. . 19866 . Headwater
lake chemistry during he psring freshet in north.central Ontario. Water
Air Soil Pollut. 29:245-259.
Kerekes, J.J. . 1980 . Preliminary characterization of three lake basins sensi.
tive to acid precipitation in Nova Scotia. Canada Pages 232-233 in

Kerekes, J.J; Howell, G.; Pollock, T. 1984 . Problems associated with sul-
phate determination in colored, humic waters in Keimkuik phate determination in colored, humic waters in Kejimkuiik Nation Kerekes, J. F. Beauchamp, S.; Tordon, R.; Pollock, T. 1986. Sources of sul-
phate and acidity in wetlands and lakes in Nova Scotia. Water Air Soil
Pollut. $31: 207-214$.
 Kwiatkowski, R.E.; Roff, J.C. . 1976 . Effects of acidity on phytoplankton

and primary Production of selected northern Ontario Lakes. Can. J. Bot. | and primary |
| :--- |
| $54: 2546-256$ |

Langlois, T.H. 1929. Breeding habits of the northern dace. Ecology
10:161-163.
Lemly, A.D.; Smith, R.J.F. 1985 . Fffects of acute exposure to acidified
water on the behavioral response of fathead mimnows, Pimethades prometes, water on the behavioral response of fathead mimnows
to chemical feeding stimuli. Aquat. Toxicol. $6: 25-36$.
Lynch, M.; Shapiro, J. 1981. Predation, enrichment, and phytoplankton
community structure. Limnol. Oceanogr. $26: 86-102$. Macan, T.T. 1965. Predation as a factor in the ecology of water bugs. J
Anim. Ecol. $34.691-698$. MacCrimmon, H.R.; Wren, C.D.; Gots, B.L. 1983 . Mercury uptake by lake
trout (Saltelitinus namaycushh relative to agee growth, and diet in Tademac trout (Salvelimus namayyush) relative to age, growth, and diet in Tademac
Lake with comparative data from other Precambrian Shield lakes. Can. J
Fish. Aqual. Sci. 40:11-120 Magnuson, J.J.; Baker, J.P.;. Rahel, E.J. . 1984 . A critical assessment of
effects of acidification on fisheries in North America. Phil. Trans. R. Soc Litects of aciafication
McAuley D.G. 1986 . Ring. necked duck productivity in relation to wet
land acidity nest sucess. duckling diet and survival. M.Sc. thesis, Univ. of
Maine Orono Mine Maine, Orono, Maine. 71 pp.

Memorandum of Intent 1983. Memorandum of Intent on Transboundary Menendez, R. 1976. Chronic effects of reduced pH on brook trout
Salvelinus fontinatis). J. Fish. Res. Board Can 33 : $118-123$. Mills, K. 1984. Fish population responses to experimental acidification of
small Ontario lake. Pages $117-132$ in Hendreve G.R. ed. Early hation sesponses to advancing lake acidification. Acid Precipitation series Vol .) Butterworth Publishers, Boston
Mills, K. 1985. Responses of LLake Whitefish (Coregomus cluppafiomis) to fer-
tilization of Lake e266, the Experimental Lakes Area. Can.J. Fish. Aquat.
Sci 42.120 .
 fish populations in Lake 223 to
Mills, K.H.; Schindler, D.W. 1986. Biological indicators of lake acidifica
ion. Water Air Soil Pollut. 30:779-789.
Ministry of Environment. 1978. Water management-Goals, policies,
objectives, and implementation procedures of the Ministry of the Environment. Ontl. Min. Environ. Tech. Rep. 67 pp
Ministry of Environment. 1979. Determination of the susceptibility to Rep. 21 pp .
Ministry of Environment. 1985. Acid sensitivity of lakes in Ontario -
1985. Ont. Min. Environ. Tech. Rep. 23 pp. Minns, C.K. 1981. Acid rain: a preliminary estimate of the risk to
Ontario's inland fisheries. Can. Ms. Rep. Fish. Aquat. Sci. No. 1622. Moreau, G.; Barbeau, C. 1983. Zinc, manganese and strontium in oper
ula and scales of brook trout (Saluelinus ontitinalis) as indicators of lake cula and scales of brook trout (Salvelinus fontinatis) as
cidification. Can. J Fish. Aquat Sci. $40: 1685$ - 1691 . Mossberg, P.; Nyberg, P. P. 1979. Botom fauna of small acid forest lakes.
Inst. Freshwater Res. (Drotningholm) Sweden Rep. No. $58: 77-87$ Mount, D.I. 1973 . Chronic effect by low pH on fathead minnow surviva
growth and reproduction. Water Res. $7: 987-993$.

Muniz, J.P., Leivestad, H. 1980. Acidification effects on freshwater fish.
Pages $84-92$ in Drabtos, D. and Tollan A. eds. Proc. Int Conf. on Ecolog. Pages Impact of Acid Precipitation. SNSF Project, Sandefjord, Norway.
cal Im
383 pp. 383 pp.
Murphy, S.M.; Kessel, B.; Vining, L.J. 1984. Waterfowl populations and
limnologic characteristics of taiga ponds. I. Wildl. Manage. 48:1156-116. National Research Council of Canada. 1981. Acidification in the of acidic deposition on aquatic ecosystems. Associate Committee on Scientific Criteria for Firil 360 pp .
Neville, C.M. 1985. Physiological response of juvenile rainbow trout,
Salino gairdneri, to acid and aluminum - prediction of field responses Salno gairheri, to acid and aluminum - prediction of field re.
from Iaboratory data. Can. J. Fish. Aquat. Sci. $42: 2004-2019$. Nilsson, S.G.; Nilsson, IN. I 1978. Breeding bird community densities and
species richness in lakes. Oikos $31: 214-221$. North American Waterfowl Management Plan: A Strategy
tion. 1986. Can. Wild. Serv,, U.S. Fish Wildl. Serv. 37 pp.

Northcote, T.G.; Walters, C.J., Hume, J.M.B. 1978. Initial impacts of
experimental fish introductions on the macrozooplankton of small olig. experimental fish introductions on the macrozoon
trophic lakes. Verh. Int. Ver. Limnol. 20: 2003-201

Nyholm, N.E.I. 181. Evidence of involvement of aluminum in causation
of defective formation of egrgshells and of impaired breeding in wild pas
serine birds. Environ. Res. 28:368-371.
Nyholm, N.E.I.; Myhrberg, H.E. 1977. Severe cggshell defects and
impaired reproductive capacity in small passerines in Swedish Lapland impaired reproduc

Oliver, B.G., Thurman, E.M. Malcolm, R.L. 1983. The contribution of
humic substances to the acidity of colored natural waters. Geochim. humic substances to the acidity of
Ormerod, S.J; Tyler, S.J.; Lewis, J.M.S. 1985. Is the breeding distribution
of Dippers influenced by stream acidity? Bird Study $32: 32-39$.
Ormerod, S.J; Allinson, N.; Hudson, D. Tyler, S.J. 1986. The distribu
tion of breeding Dippers (ǐinclus cinclus) in relation to stream acidity in tion of breeeding Diponess (Cininclus cinncluss) in
upland Wales. Freshwater Biol. $16: 501-507$.

Packer, R.K., Dunson, W.A. 1972. Anoxia and sodium loss associated
with the death of brook trout at low pH. Comp. Biochem. Physiol. 41:17-26.
Patterson, J.H. 1976. The role of environmental heterogeneity in the
regulation of duck populations. J. Wild. Manage. $40: 22-32$.
Pfeiffer, M.H.; Festa, P.J. 1980. Acidity status of lakes in the Adirondack region of New York in relation to fify
Dep. Environ, Conserv. Albany, N.Y
Pithado, J.R;; Keller, W.; Conroy, N.I. 1980. A classification and descrip tion of some northeastern Ontario lakes influenced by acid precipitation

Pope, G.F.; Carter, J.C.H.; Power, G. 1973 . The influence of fish on then
distribution of Chaoborus spp. (Diptera) and density of larvae in the
distribution of Chucoborus spp. (Diptera) and density of larvae in the
Matamek River System, Quebec. Trans. Am. Fish. Soc. 102:707-714,
Post, JR., Cucin, D. 1984. Changes in the benthic community of a small
precambrian lake following the introduction of yellow perch, Perca precambrian lake following the introduction of
hanesesens. Can J. F Fish. Aquar. Sci. $41 / 1496-1501$.

Potvin, P.; Grimard, X. 1983. Etude de la qualité du milieu aquatique de
67 lacs a sauvagine de la réion de Scheffervile, Ouebec. Service de la 67 lacs às asuavine de la region de Scheffervilie, Quubece, Sevicice ede la
qualite des eaun, ministere de IE Invironnement, Québec, rapport PA-8, qualite des eaux, ministere de 1 Environe
Envirodoq 8400 南, 153 pages et annexes.
Pough, F.H; Wilson, R.E. 1977. Acid precipitation and reproductive suc
cess of Ambystoma salamanders. Water Air Soil Pollut. 7:307-316. Rahel, FJ. . 1984. Factors strucuring fish assemblages along a bog lake
successional gradient. Ecology $5: 1276-1289$.
Rahel, F.J. 1986. Biogeographic influences on fish species composition of
norhern wisconsin lakes with app
Can. J Fish. Aquat. Sci. 43:124-134.
Rahel, F.J.; Magnuson, JJ. 1983. Low pH and the absence of fish species
in maturaly acidic Wisconsin lakes: inferences for cultural acidification. Can J. Fish Aquat. Sci. 40:3-9
Rask, M. $1984 a$. The effect of low pH on perch, Perca fluxiatitis L. II. The
effect of acid stress on different development stages of perch. Ann. Zool

Rask, M. 1984. The effect of low pH on perch, Perca, fluviatilis L. II, Th
perch population in a small, acidic, extremely humic forest lake. Ann. roh population in a
Reinecke, K., Owen, R. 1980. Food use and nutrition of black ducks nest
ing in Maine.J. Wildl. Manage. $44: 549-558$. Robinson, G.D.; Dunson, W.A.; Wright, J.E.; Mamolito, G.E. 1976. Differ
ences in low thtorance anmong strains of brook trout (Saluveinus fone
 tique et des composantes biologiques de 81 lacs $\begin{aligned} & \text { saawavane du Quebebec } \\ & \text { meridional. sous presse. Service de la qualite des eaux, ministere de }\end{aligned}$ TEnvironnement, Quebe
Ross, R.K. 1985. Helicopter vs.ground surveys of waterfowl in the borea
forest. Wild. Soc. Bull. $13: 153-157$.
Ross, R.K. 1987. Interim report on waterfowl breeding pair surveys in
northern Ontario. In press. Can. Wildi. Serv. Prog. Notes.
Ross, R.K., Dennis, D.G; Buter, G. . . 1944 . Population trends of the five
most common duck species breeding in southern Ontario, 1971-76.

Rowe, J.S. 1972. Forest regions of Canada. Can. For. Serv. Publ. No. 1300
171 pp. + map.
Ryan, P.M.; Harvey, H.H. 1980. Growth responses of yellow perch, Perca
flavescens, to lake acidification in the La Cloche Mountain Lakes of flavescens, to lake acidification in the La
Ontario. Environ. Biol. Fishes $5: 97-108$.
Scheider, W.A., Jeffries, D.S., Dillon, P.J. 1979. Effects of acidic precipitia
tion on Precambrian freshwaters in southern Ontario. J. Great Lakes Res
Schindler, D.W.; Turner, M.A. 1982. Biological, chemical and physical

responses of lakes to experimental acidification. Water A ir Soil Pollut. | responses |
| :--- |
| $18: 259-271$ |

Schindler, D.W.; Hesslein, R.H.; Wagemann, R.; Broecker, W.S. 1980 Effects of acidificiction on mobilization of heay.; meotalser, and radionuclides
from sediments of a lake. Can. J. Fish. Aquat. Sci. $37.379-377$. Schindler, D.W.; Mills, K.H.; Malley, D.F; Findlay, D.L.; Shearer, J.A.;
Davies, I.];; Turner, M.A; Linsey, G.A.; Cruikshank, D.R. 1985. Long term ecosystem stress: the effects of years of experimental acidification

Schofield, C.L. 1976. Acid precipitation: effects on fish. Ambio 5
Scott, W.B.; Crossman, E.J. 1973 . Freshwater fishes of Canada. Fish. Res.
Board Can Bull 184, OUTawa, Canada 966 pp.
Semkin, R.G.; Jeffries, D.S.; Neureuther, R. 1984. Relationships betwee
 W. 84.05 .13 pp.

Shilts, W.W. 1981 Sensitivity of bedrock to acid precipitation: modifica
tions by glacial processes. Geol. Sury Can Siegel, S. 1956. Non-parametric statistics for the behavioral sciences

Sjors, $\mathbf{H} .1950$. On the relation between vegetation and electrolytes in
north Swedish mires. Oikos $2: 241$.
Sneath, H.A., Sokat, R.R. 1973. Numerical taxonony: the principles and
reactice of numerical classification. W. W. Freemany and Co., San Sneath, H.A.; Sokal, R.R.
practice or numerical clas
Francisco, Calif. 573 pp.
Sokal, R.R.; Rohlf, F.J. 1981. Biometry: the principles and practice of
statistics in biological research. W.H. Freeman and Co., San Francisco statistics in bio
Calif. 776 pp.
Somers, K.M.; Harvey, H.H. 1984. Alteration of fish communities in lake
stressed hy acid deposition and heavy metals near Wawa, Ontario. Can. stressed by acid deposition
Fish. Aquat. Sci. 41:20-29.
Spencer, C.N.; King, D.L. 1984. Role of fish in regulation of plant and
animal communities in eutrophic ponds. Can. J F Fish. Aquat. Sci. animal commu
41:1851-1855.
Statistical Analysis System Institute Inc. 1982. SAS user's guide: Statistic,
1982 Edition. SAS Institute Inc., Cary, North Carolina. 584 pp.

Stephenson, M. Mackie, G.L. 1986. Lake acidification as a limiting factor
in the distribution of the freshwater amphipod (Hyallela azteca). Can. J. in the distribution of the fre
Fish. Aquat. Sci. $43: 288-292$
Suns, K.; Curry C.; Russell, D. 1980. The effects of water quality and mor phometric parameters on mercury uptake by yearling p .

Swanson, G.A.; Meyer, M.I. 1973. The role of invertebrates in the ecology
of Anatidae during the breeding season. Pages $143-184$ in Proc. Water. of Anatidae during the breeding season. Pages 143-184 in Proc. Wa
fowl Habitat Management Symposium, Moncton, New Brunswick.
Swanson, G.A., Krapu, G.L., Serie, J.T. 1979. Foods of laying dabbling
ducks on breeding grounds. Pages 47 -57 in Brookhout, T.A. ed. Water-

Tallman, R.F.;, Mills, K.H.; Rotter, R.G. 1984. The comparative ecology of pearl Iace (Semotilus margarita) and fathead minnow (Pimephates promelhas)
in lake 14 , the
xpperimental Lakes Area, northwestern Ontario, with an ppended key to the cyprinids of the Experimental Lakes Area. Can. Ms

Thompson, M.E.; Hutton, M.B. 1985. Sulfate in lakes of eastern Canada
calculated vields with measured wet and dry deposition. Water Air Soil calculated yields
Pollut. $24: 77-83$.
Thorp, J.H. 1986. Two dial
blages. Oikos 47:75-82.
Tonn, W.M. 1985. Density compensation in Umbra-Perca fish assemblages
of northern Wisconsin lakes. Ecology 66:415-429.
Tonn, W.M., Magnuson, J.J. 1982. Patterns in the species composition
and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149-1166.
Trojnar, J.R. 1977. Egg hatchability and tolerance of brook trout (Satvelt
mus fontinais) fry to low pH. J. Fish. Res. Board Can. 34.574-579.
Veith, G.D.; Call, D.j.; Brooke, LT.T. 1983. Structure-toxicity relationships
or the fathead minnow, Pimethales promelas: narcotic industrial chemicals. or the fathead minnow, Pimethales
Can. J. Fish. Aquat. Sci. $40.743-748$
Verry, E.S. 1981 . Acidity of lakes and impoundments in North.central
Minnesota North Central Forest Experiment Station, Res. Note NC.273, St. Paul, Minn.

Vollenweider, R.; Kerekes, J. 1982 . Eutrophication of waters. Monitoring
Ssessment and control. Organization for Economic Co-operation and Development. Paris, France. 154 PP
on Ende, C.N. 1979. Fish predation, interspecific predation and the dis-
ribution of two Chaoborus species. Ecology $60: 119-128$.
Watt, W.D.; Scott, C.D.; White, W.J. 1983 . Evidence of acidification of
some Nova Scotian rivers and its impact on Atlantic salmon (Salmo sallar) Can. J. Fish Acouat. Sci. 40:462-479.

Weiderholm, T; Eriksson, L. 1977. Benthos of an acid lake, Oikos

Weir, J.S. 1972. Diversity and abundance of aquatic insects reduced by Mintroduction of the fins.
Wellein, E.G., Lumsden, H.G. 1964 . Northern forests and tundra. Pages
$67-76$ in Linduska. J.P. ed. Waterfowl tomorrow. U.S. Gov. Printing $67-76$ in Linduska. J. P. ec
Office, Washington, D.C.

Wells, L. 1970. Effects of alewife predation on zooplankion populations
in Lake Michigan. Limnol. Oceanogr. 15556 -565.
Werner, E.E., Hall, D.J. 1974. Optimal foraging and the size selection of
prey by the bluegil sunfish (Lepomis macroctimus). Ecology $55: 1042-1052$. Wile, 1.; Miller, G. 1983. The macrophyte flora of 46 acidified and acid 35 pp.
Wile, I.; Miller, G.E.; Hitchin, G.G.; Yan, N.D. 1985. Species composition

Wishart, D. 1969. An algorithm for hierarchical classifications.
Wright, R.F; Gjessing, E.T. 1976. Acid precipitation: changes in th

Wright, R.F;; Snekvik, E. 1978. Acid precipitation: chemistry and fish populations in 7001
Yan, N.D.; Milier, G.E. 1984. Effects of deposition of acids and metals on
chemistry and biology of lakes near Sudbury, Ontario. Pages $243-282$ in
 Toronto, Ontario. 608 pp .
Zaret, T.M. 1980. Predation and freshwater communities. Yale University
Press, New Haven, Conn.
Zischke, J.A.; Arthur, J.W.; Nordli, K.J;; Hermanut, R.O.; Standen, D.A.

Other publications

in the Occasional Papers Serie

4thed. Publication binadingu under the Migratory Birds Convention Act,

 Cat. No. CW69.1/1. Publ. 1957 , rev. 1980.No. 2 .
Canadian bird names, French, English and scientific
Publication bilin
Catication bilingue
Co. 3 . CW69.12. Publ. 1957, rev. 1972.
Out of print.
Cat No. 1 . 6 .13. Publ. 1963, repr. 1966
No. 4
No. 4 Elizath IIsands game survey, 1961 by J.S. Tener.
Queen
Cat. No. CW69.14. Pubb. 1963 , repr. 1972.

No. 6.
A willdife biologist looks at sampling, data processing and computers by
D.A. Benson. Out of print.

Cat. No. R6991/16. Publ. 1964.
No.

Preliminary report on the effects of phosphamidon on bird populations
in New renuswick by CD. Fowle. Out of print. Cat. No. R69-1/7. Publ. 1965.
No.
No. 8 . Nova Scotia - New Brunswick bordér region by G.F. Boyer.
Birds of No.
Cat No. CW69. 18 . Publ. 1966, repr 1981.
Cat No. CW69.1/8. Publ. 1966 , repr. 1981.
Noffects of dietary melt reference to reproduction by
Cat No. R69.19. Publ. 1971.
No. 10
Trends in populations of barren-ground caribou over the last two
decades: a reevaluation of the evidence by G.R. Parker.
decades: a reevaluation of the evidence by
Cat. No. CW69.110. Publ. 1971, erepr. 1972.
The Canada migratory game bird hunting permit and related surveys by D.A. Benson.
Cat. No. R69.1/1. Publ. 1971.
No. 12 .

R69.1/22. Publ. 1971
Evaluation of ecological effects of recent low water levels in the Peace-

Athabasca Delta by H.J. Dircsch. Ca. No. CW 69.113 . Publ. 1972. No. 14

The Great Cormorants of eastern Canada by A.J. Erskine.
Cat No. CW69.114. Publ. 1972.
${ }^{\text {No. } 15}$
by G.R. P. P.
Cat. No. CW69.1/15. Publ. 1972.
No. 16.
Bird migration forecasts for military air operations by H . Blokpoel.
Cat No
Waterfowl populations on the Peace-Athabasca Delta. 1969 and 1970
by D. Neiman and H.J. Dirschl.
Ca. No. CW69.117. Publ. 1973.
No. 18
Gammurus predation and the possible effects of Gammarus and Chaoborus
feeding on the zooplankton composition in some small lakes and pond in western Canadatay R.S. Ande
Cat. No. CW69.1/18. Publ. 1974.

No. 19
A summary of DDE and PCB determinations in Canadian birds, 1969 Cat2 by M. Gilberson and L. Re
Cat. Co . W69.119. Publ. 1974 .
No. 20
Cat No.
No. 20.
Develop
Development of a simulation model of Mallard Duck populations by
C.J. Walters. R. Hilborn, E. Oguss, R.M. Peterman and J.M. Stander. Cat No
No 21
se of museum specimens in toxic chemical research by A.M. Rick.
a. No. CW69.12 Publ 1975
a. 22 . 12. Publ. 1975.

Cat. Noudments for waterfowl by W.R. Whitman.
Jo. 23.122 . Publ. 1976.
N.
Minimizing the dangers of nesting studies to raptors and other sensitive
ppecies by R.W. Fyfe and R.R. Olendorff.
at. No. CW69.123. Publ. 1976 .
species by R.W. Fyfe and R.R.
Cat. No. CW69.123. Publ. 1976.
No. 24
Waterfowl damage to Canadian grain: current problems and research needs by L.G. Sugyden.
Cat No
No. CW69.124. Publ. 1976.
Census techniques for seabirds of arctic and eastern Canada
Cat. No. CW69.125. Publ. 1976.
Cat No.
No 26
Notes on
Notes on the present status of the polar bear in James Bay and Belcher
scands area by Charres Jonkel, Paul ine Smith. Jan Stirling and George R. Kolenosky
Car. No. CW69-1/26. Publ. 1976.
imnological and planktonic studies in the Waterton Lakes, Alberta
R. Stewart Anderson and Roderick B Green. y R. Stewart And derson and Roderick B. Green
at. No. CW69. 127. Publ 1976
No. 28
Birds and mannmals of the Belcher, Sleeper, Ottawa, and King George Birds and marnmals of the Belcher, Sleeper, Otta
Istands, Northwest Trritories by T.H. Manning.
Cat. No. CW69.128. Publ. 1976.
Islands, Northwest Territories b b
Cat No. CW69.1/28. Publ. 1976.
No. 29.
o. 29 evepments in PPS sampling - Impact on current research by A.R.

San.
Ca. No. CW69-129. Publ. 1976.
No. 30
ynamics of snowshoe hare populations in the Maritime Provinces by
Cat. No. JW69.1/30. Publ. 1977.
Migration and population dynamics of the Peace-Athabasca Delta gotrdaye pepulation byition dyna
Cat. No. No. CW69.1/31. Pubi. 1977 .
The effects of fire on the ecology of the Boreal Forest, with particular ference to the Canadian orth, a review and selecte
Hohn P. Kelsall. E. T. Telfer and Thomas D. Wright.
Cai. No. CW69.132. Publ 1977 .

he ecology of the polar bear (Ususus maritimus) along the western coast of
uudson Bay by lan Stirling, Charles Jonkel, Pauline Smith, Richard
Robertson and Dale Cross.
Cat. .1o. CW69.1133. Publ. 1977.
o. 34
o. 34 . 3 .
Canvasback habitat use and production in Saskatchewan parklands by Lawson G. Sugden.
Cat. No. CW69.134. Publ. 1978.
No. 35.
he diets of muskoxen and Peary caribou on some islands of the Cana
hie diets of muskoxen and Peary carib.
dian High Artic by Cerald P Parker.
Cat. No. CW69 $1 / 135$. Publ. 1978 .

No. 36
Observaionn of Mallards in the parkland of Alberta by
Michael
Ca. No. CW60.113n. Publ. 1978.
The widldife valuation problem: Acritical review of economic approaches by William A. Langrort and Donald J. Cocheba.
Cal No. CW691/3? Publ. 1978 .
Spatail changes in waterfowl habitat, 1964-74, on two land types in the
 Cat No. CW691/138. Publ. 1978.
N. 39.1
Paterns of pelaric distibution of seatidst in western Lancaster Sound
and Baro
Strow
 by D.N. Neuleship and AJ. Gaston.
Cal. . .o. CW69. 189. Publ. 1978.
No. 40 o onses of Peary caribou and muskoxen to helicopter harassment by
Responser Frank L. Milier and Anne Gunn.
Cand
No. 40. CW69.140. Publ 1979.
ariy structure of six form National Park, Quebec by J.L. Descranges. Disponibice équalement en français
No. ${ }^{\text {Na }}$

Cat No. CW69.1/43E. Publ. 1980.

Cat
No. 40
No.

Population ecology sudies of the polar bear in the area of southeastern

Polvnyay in the Canadian Arctic by lan Stirling and Holly Cleator, eds.
Disponite e eqailement ten francis.

$\xrightarrow{\text { Nhe }}$. 46 Lesser Snow Gecse of the eastern Canatian Arctic by H. Boyd,

No. Th distribution and abundance of seals in the castern Beaufort Se
1974 -79 by Tan Stiring, Michael Kinstey. and Wendy Calvert

$\mathrm{Na}_{\mathrm{N}}^{\mathrm{N} \text { review of some important techniques in sampling wildife by A.R. Sen. }}$

 76
${ }^{\text {No. }} 522$ Components of hunting mortality in ducks by G.S. Hochbaum and
C. Walers Disponibibe égatement en frans cais

The interpretation of aerial surveys for seabirds: some effects of
behaviour by A.J. Gaston and G.E.J. Smith. Disponible egalement
trin
$\underset{\text { francais. }}{\text { Cat. No. CW69. 1/53E. Publ. } 1984 .}$
Cat. No. CW69.1153E. Publ. 1984 . .
N. 54 St
Waterfowl studies in Ontario, 1973-81 by S.G. Curtis, D.C. Dennis, and
Waterfowl studies in Ontario, $1973-81$ by S.G. Cu
H. Boyd, eds. Disponible egalement en français.
H. Boyd. eds. Disponible égalemen
Cat. No. CW69.155E. Publ. 1985.
No. 55

The reported kill of ducks and geese in Canada and the USA, 1974-82 by he reported kil of ducks and gese
Hugh Boyd Disponible eqgalement en francais.
Cat. No. CW69.155E. Publ. 1985 .
Cat. No. CW69.155E. Publ. 1985.
No. 56
Population dynamics of the Common Loon (Gazia immer) associated with
mercury-contaminated waters in northwestern Ontario by JF. Barr.

To. 57 . he Ring.biled Gull in Ontario: a review of new problen speci.
C. Blokpoel and .D. Tessie. Disponible egalement en français.
CW6.157E. Publ. 1986. Ca. No. CW69.157E. Publ. 1986.
The birds of the Creston Valley and southeastern British Columbia by
R.W. Buter, B.G. Stushoff, and E. MCM ackin. Disponible egalement francais.
Cat No. CW69.158E. Publ. 1986.
No. N9.
No.
Estimating densities of birds at sea and the proportion in flight from
counts made on transects of indefinite width by A.J. Gaston, B.T. Collins counts made on transects of indefinite width by A.J. Gaston, B.T. Collins
and A.W. Diamond. Disponible egalement en fran çais. and A.W. Diamond. Disponible egt
Cat No. CW69.159E. Publ. 1987 .
No. 60
No. 60 .
Waterfowl breeding population surveys, Atlantic Provinces by AJ. Erskine, ed. Disponible également en francais.
Cat. No. CW69.160E. Publ. 1987.
A. survey of Lesser Snow Geese on Southampton and Baffin Istands,
NWT, 1979 by A. Reed, P. Dupuis and G.E.J Smith. Disponible également Cat. No. CW69.161E. Publ. 1987.

Canadä

[^0]: he term "europhication" is not being used in its proper limnological
 ontext, as defined by quantitative characteristics such as top horus, as teta nined by quantititative characteristitscs such as total phos Nollenweider and Kerekes 1982). It does, nevertheless, frefer to a a radient
 f trophic conditions (defined by chemical and physical constituents) of trophic conditions (detined by chemical and physical constituents),
 ranging from ulra.aigotopopicto oligorophhic and represents actal
 phases in the maturation of water bodies on the Precambrian Shield.

[^1]: grol

[^2]: Taxa not included were the graminoids and Carex spp., which occurred on almost anl lakes, and those that occurred on
 Chisquared tests were performed on each taxon, according to fish assemblage types.

