J. Gauvin
A. Reed

A simulation model for the Greater Snow Goose population

Occasional Paper
Number 64
Canadian Wildlife Service

Occasional Pape
Occasional
Number 64
Canadian Wildlife Service
Disponible également en français
*École Polytechnique, Montreal, Que. H3C 3A7 †CWS, Sainte-Foy, Que. G1V 4H5

Contents

Published by authority of the
Minister of the Environment
Canadian Wildlife Service
© Minister of Supply and Services Canada, 1987 Catalogue No. CW69-1/64E
ISBN 0-662-15474-6
ISSN 0576-6370
Design: Rolf Harder \& Assoc.

4	Acknowledgements
5	Abstract
5	Introduction
7	Development of the model
7	1. Population surveys
7	2. Recruitment-percentage of juveniles
9	3. Hunting kills
9	4. Annual population balance
10	5. Estimation of natural survival rate
10	6. Correction of data
13	7. Hunting rates
13	8. Model equations
14	9. Probability distributions for percentages of juveniles and hunting rates
18	Results
18	1. Simulation and scenarios
25	Conclusions
25	Literature cited
$\underline{26}$	Appendix
	List of tables
7	Table 1. Numbers of Greater Snow Geese counted in the St. Lawrence valley, Quebec, during spring
7	Table 2. Estimated percentages of juveniles in fall flights of Greater Snow Geese
9	Table 3. Estimated numbers of Greater Snow Geese killed by sport hunters in Canada and the USA
11	Table 4. Hunting rates for Greater Snow Geese and adjusted juvenile percentages

	List of figures
8	Figure 1. Greater Snow Goose spring populations, 1964-84
8	Figure 2. Percentages of juveniles in fall flights of Greater Snow Geese in Quebec
10	Figure 3. Annual population balance
11	Figure 4. Juvenile percentages of Greater Snow Geese, observed and adjusted
12	Figure 5. Adjusted estimates of Greater Snow Goose populations during spring and fall
12	Figure 6. Greater Snow Goose spring-to-spring growth rates
13	Figure 7. Canadian and American hunting rates for Greater Snow Geese
14	Figure 8. Probability distribution for juvenile percentages of Greater Snow Geese
15	Figure 9. Probability distribution for Canadian hunting rates for Greater Snow Geese
16	Figure 10. Probability distribution for American hunting rates for Greater Snow Geese
18	Figure 11. Predicted Greater Snow Goose population growth, 40 simulations with $m=0.895$
19	Figure 12. Predicted Greater Snow Goose population growth, mean and standard deviations for 40 simulations, $m=0.895$
19	Figure 13. Predicted Greater Snow Goose population growth, mean and standard deviations for 40 simulations, with reduced natural survival ($m=0.82$)
20	Figure 14. Predicted Greater Snow Goose population growth, mean and standard deviations for 40 simulations, with reduced reproductive success (juv $\% \times 0.75$)
20	Figure 15. Predicted Greater Snow Goose population growth, mean and standard deviations for 40 simulations, with increased reproductive success (juv $\% \times 1.25$)
21	Figure 16. Predicted Greater Snow Goose population growth, mean and standard deviations for 40 simulations, with reduced hunting rate (hunt $\% \times 0.75$)

Abstract

Introduction

The Greater Snow Goose population has recently undergone a rapid increase from 50000 to more than 200000 . A mathematical model was developed to under-
stand and simulate the growth of that population. Three parameters were used: the size of the population in spring parameters were used: the size of the population in spring,
the percentage of juvenile geese in the fall flight, and the numbers of geese killed by hunters in the USA and Canada over the past 20 years. Those survey data were used to estimate a rate of non-hunting mortality as well as probabilities for rates of reproduction and hunting mortality. The stochastic discrete model reproduces well the recent history
of the population and can be used to simulate scenarios for the future of the population. The model could be refined by developing and introducing other factors such as the carrying capacity of the range, annual variations in nonhunting mortality, and a function relating kill rates to population size and age structure. The model is available on diskette for interactive use on IBM PC
microcomputers.

The Greater Snow Goose (Anser caerulescens atlanticus) migrates between the northeastern Canadian Arctic and he mid-Atlantic coastal states of the United States and makes a major stopover on the St. Lawrence estuary nea Quebec City. The history of the growth of the Greater management plan 1981). From 1860 to 1930 , the population was barely maintained at a level of a few thousand. A yearround prohibition on iiunting in the United States and an open season limited to the fall in Canada allowed the popu-
lation to increase to 50000 by 1967 and to more than 190000 in the spring of 1978 . Resumption of the hunt the United States from 1975 seems to have slowed down the population increase.

The Snow Goose population is well suited to model simulations because of the tendency of Greater Snow Geese to gather in a limited area of the St. Lawrence estu ary for several weeks each spring, thus permitting complete photographic censuses. Another characteristic of be distinguished from older birds in the fall; we can thus determine the percentage of juveniles among the total fall population and obtain an indication of reproductive success. These two parameters, spring population size and fall juvenile percentage, have been measured regularly for nearly two decades by the Canadian Wildlife Service (CWS) and the United States Fish and Wildlife Service
(USFWS). A hird parameter, the number of geese killed by sport hunters, has been estimated annually in Canada since 1967 and in the United States since 1975. We used hese three parameters, which can be measured easily and relatively cheaply, to develop a stochastic discrete mathe matical model to simulate the dynamics of the Greater Snow Goose population. Our aim was not to produce ophisticated model, but ruer to examine whether a imple, hree-pase in a known population All thre parameters, being pestablis.
are subject to biases and errors. Although we discuss the possible sources of error for each type of survey, we have not undertaken the complex (perhaps impossible) task of establishing the magnitude of any such inaccuracies. Ultimately, the success or failure of the model to produce the data.

The model is based on the change in the population from spring 1965 to spring 1984. The model's dependent variable is the spring population; random variables are the juvenile percentages and the Canadian and American hunting kill rates. An estimated rate of non-hunting mor
tality is also applied. The random variables are generated from probability distributions constructed from data published in A Greater Snow Goose management plan (1981) and Reed et al. (1981) and, for recent years, from unpublished CWS and USFWS data. By adjusting the non-hunting the model to simulate population trends under various scenarios. The model is available as a program suitable for interactive use on an IBM PC microcomputer equipped with a graphics card and colour monitor.
Although a mathematical model does not generally have medium- or long-term predictive value (Levin 1984), it can help us to understand the dara and identify features associated with population trends. We can thus anticipate the effects of actions that could modify these trends. The
creation of models for animal populations is an iterative search for an approximate, realistic, and intelligible representation of a living entity that by its nature is too complex to be wholly described by a limited number of mathematical formulas.

Development of the model

1. Population surveys

Since 1950, aerial surveys have been conducted in midwinter on the wintering grounds in the US and, since 1965, in the spring and most falls in the St. Lawrence used to improve accuracy of flock counts since 1969 in the St. Lawrence (Heyland 1972; A Greater Snow Goose management plan 1981) and on the Atlantic coast since 1978. The spring census in the St. Lawrence since 1969 (Table 1) is the most accurate of the surveys because it involves almost complete photographic coverage at a time when the entire population is present within a relatively small, well-defined
area. In early May a single flight is made over the staging area, and all flocks larger than $200-300$ geese are photographed on $70 \times 70-\mathrm{mm}$ black and white film; for smaller flocks, visual estimates are made and a sample is photographed to establish correction factors (P. Dupuis, pers commun.). The geese are counted directly from enlarged prints using a stereomicroscope, acetate overlay grids, and an automatic point counter. All geese are counted on each photograph, and the results are summed and added to th

Up to 1980-81, few, if any, geese were
spring survey because the areas used were well circumscribed. Since then, a longer stretch of the St. Lawrence has been used by the geese, and inland foraging flights have become more extensive. Those changes have increased the likelihood that some flocks were undetected, but this source of error is minor. Although it is not possible to quantify the accuracy of th
purpose it is a total count.

Before 1968, neither the US nor Quebec surveys benefited from aerial photography; we have used the more complete US winter data for 1964-68 (Appendix 1), along with the 1969-84 St. Lawrence spring counts, to construct a graph showing population growth (Fig. 1). The substantial increase between 1969 and 1978 is noteworthy
2. Recruitment-percentage of juveniles

The goslings, born during summer in the Arctic, are grey when they take part in the fall migration. It is therefore possible to measure the percentage of juveniles in the population and thus estimate reproductive success (Lynch and Singleton 1964). However, several factors make it difficult to obtain an unbiased estimate of recruitment. First, the juvenile birds are not distributed uniflocks are composed entirely of non-breeding adults (sub-
adults and failed breeders), whereas others are groupings of individual families (containing juvenile birds and their parents) and still others contain a mixture of non-breeders and family units. There is considerable variation in the flock) and temporal distribution (migration schedules, claily activity patterns) of family units in comparison with non-breeders (H. Boyd and A. R., personal observations). Second, juvenile geese, being more vulnerable, are shot at a greater rate than adult birds by hunters who are active throughout the fall survey period. Thus, the proportion of young birds in the population is decreasing while the

Table 1 Numbers of Greater Snow Geese counted in the St Lawrence Valley. Qucbec during spring	
Year	Number of gesse
1969	68800
1970	89600
1971	123300
1972	134800
1973	143000
1974	165000
1975	153800 165600
1976 1977	165600 160000
1978	192600
1979	170100
1980	180000
${ }_{1}^{1981}$	170800 163000
1983	185000
1984	225400

Table 2 Estimated percentages of juveniles in fall flights of Greater Snow Geese		
Year	Canada	USA
1965	$11.2{ }^{\circ}$	2.8
1966	38.4 :	37.0
1967	$18.8{ }^{\text {* }}$	12.4
1968	$18.9{ }^{*}$	12.5
1969	30.0	24.3
1970	45.6	
1971		11.3
1972	${ }_{46.6}^{0.0}$	${ }_{41.1}^{0.4}$
1974	6.4	2.0
1975	32.7	37.3
1976	12.6	9.8
1977	23.9	23.7
1978	20.1	14.7
1979	28.2	23.2
1980	40.1	36.4
1981	16.8	17.0
1982	25.1	23.8
1983	${ }_{31.6}$	48.9
1984	37.6	27.4

Figure 2
Percentages of juveniles in fall fights of Greater Snow Geese in Quebec

counts are being conducted. No satisfactory way of adjust ing the data to account for the many sources of bias has been found. However, considerable effort has been made to reduce bias by collecting large samples distributed throughof habitat. ates and Canada since 1965 are listed in Appendix 1 Two annual estimates of juvenile percentages are available for Quebec, one based on counts from aerial photographs, the other from ground counts. For modelling we have retained only the higher of the two annual Quebec value (Table 2) because the surveys appear to yield low estimates. She US values, generally derived from smaller years 1965-68, from the linear regression:

$$
\% \text { juvenile Quebec }=0.795(\% \text { juvenile US })+8.95 .
$$

The Quebec values are plotted in Fig. 2, which shows that reproductive success fluctuates considerabl from year to year and in an apparently random (in the mathematical sense) fachion.

3. Hunting kills

Hunting kills of Snow Geese are estimated annually in both countries in the course of national surveys designed for all migratory waterfowl species (see Boyd and Finney 1978). Greater Snow Goose kill areas are geographically restricted in both countries, which renders kill estimates
less accurate than for other species that are hunted more widely. Some field biologists believe the national surveys overestimate the Greater Snow Goose kill (A Greater Snow Goose management plan 1981), but a special survey conducted in Quebec from 1978 to 1980 (Hyslop and Wendt 1982) suggested an underestimation. In earlier population modeling exercises (A Greater Snow Goose management plan 1981; Reed et al. 1981) it was judged that the national surveys provided acceptable estimates. For the sake of reported by the national survey for all Snow Geese (Anser caerulescens, A. c. atlanticus) in southern Quebec (zone 1) and the American kill as that of all Snow Geese for the Atlantic Flyway States (A Greater Snow Goose management plan 1981 and more recent CWS and USFWS unpublished data). Table 3 gives estimates of hunting kills in Canada since 1967 and in the United States since resumption of the

Table 3

stimated numbers of Greater Snow Geese killed by sport hunters in Canad $\frac{\text { and the US }}{}$

Year	Canada	USA	Total
1967	16800	-	16800
1968	2700		2700
1969	3300		3300
1970	25300		25300
1971	13300		13300
1972	6100		6100
1973	26200		26200
1974	9000		9000
1975	31400	8500	39900
1976	25100	12300	37400
1977	20100	28200	${ }^{48} 300$
1978	41200	21500	62800
1979	23400		48400
1980	54400	27300	81700 43000
1981	29500	13500	${ }^{43} 000$
1982	$\begin{array}{r}40 \\ 4500 \\ \hline 500\end{array}$	21700	62400 85700
1983	45300	40400	85700

hunt in 1975. The total hunting kill has fluctuated considerably over the 18 -year period, showing an increasing trend, especially since 1975. After a ban of more than 40 years, the US hunt was not great at the start, but built hunt Greater Snow Geese. American kill figures appear to be independent of juvenile percentages, perhaps because the young birds, having experienced the Canadian hunt, are less vulnerable to the gun when reaching the United States. The relationship between Canadian hunting kills and juvenile percentages is difficult to quantify, because the hunting kill is influenced by weather, the length of th flocks' stay, the birds' social behaviour, and other factors that would help to explain the numbers of hunting kills, we assume in this study that hunting success is random.

4. Annual population balance

Taking the spring population $P(k)^{1}$ as a reference and assuming a fixed mean annual natural survival rate m (i.e., accounting only for non-hunting mortality), we have The fall population can be written as:

$$
P A(k)=\sqrt{m} P(k)+J(k)
$$

where $J(k)$, the number of juveniles in the fall population, is calculated from the juvenile percentage $R(k)$ measured in be the \sqrt{m} is the semi-annual survival rate, assumed to be the same in both halves of the year:

$$
R(k)=\frac{100 J(k)}{\sqrt{m} P(k)+J(k)}
$$

from which we obtain the number of juveniles

$$
J(k)=\frac{R(k) \sqrt{m} P(k)}{100-R(k)}
$$

and then the fall population:

$$
P A(k)=\frac{100 \sqrt{m} P(k)}{100-R(k)}
$$

in terms of the juvenile percentage and the spring popula tion. By subtracting Canadian and American hunting kills, $C(k)$ and $D(k)$, we obtain the US winter population

$$
P H(k)=\frac{100 \sqrt{m} P(k)}{100-R(k)}-C(k)-D(k)
$$

and finally the population for the following spring:

$$
\begin{equation*}
P(k+1)=\frac{100 m P(k)}{100-R(k)}-\sqrt{m}[C(k)+D(k)] \tag{1}
\end{equation*}
$$

Formula [1] gives the population balance from one spring to the next taking into account reproduct
hunting) mortality, and hunting kills.

Pdesignates the year: e.g., $($ ($)=$ popplation, sprimg 1980 $P(k+1)=$ population, autumn 1989; $P H(k)=$ population, winter 1980/81;
$\underset{\substack{\text { Figure } 3 \\ \text { Annual p }}}{ }$

5. Estimation of natural survival rate

The literature on Greater Snow Geese gives little information on individual longevity or the natural survival rate. The annual natural survival rate can be estimated by determining the value m that minimizes the sum of the standard deviations between the measured values for the spring population and those calculated using formula [1]:

$$
\begin{aligned}
& \underset{m}{\operatorname{minimize}} \quad \sum_{k}^{1980}\left[{ }_{1967}[P(k+1)-\right. \\
& \left.\frac{100 m^{2} P(k)}{100-R(k)}+\sqrt{m} C(k)+\sqrt{m} D(k)\right]^{2}
\end{aligned}
$$

where $P(k)$ is the spring populations from Table $1, R(k)$ is the Canadian juvenile percentages from Table 2 , and $C(k)$ and $D(k)$ are the Canadian and American hunting kills from Table 3. The problem is formulated only for the period starting in 1967, the first year for which hunting kill data are available. The minimization calculation, made
using the SAS software PROC NLIN procedure, gives a result of $m=0.895$ with a confidence interval of $[0.812$ 0.982 . This yields an annual mortality rate of 10.5%,
with a confidence interval of $[2.8 \%, 19.8 \%]$. In an excepronally detailed study involving resightings of individuall marked Barnacle Geese (Branta leucopsis), on which there was no open huncing season, O aduls and 16.8% fo uveniles. Our estimate therefore seems plausible. Our large confidence intervals are not surprising in view of the imprecise nature of some of the raw data used in calculation of the mortality rate and the likelihood that the rate varies somewhat from year to year (Owen 1982). For the remainder of the study we assume that the population has a fixed annual survival coefficient of $m=0.895$.

6. Correction of data

The population balance formula [1] can be used to detect anomalies in the data and make certain corrections First, it is necessary to correct the spring population estimates for the years 1965-68, which are incompatible with he corresponding fall estimates. Because the American winter population estimates for the same years are consis-
tent, the figures for the subsequent springs can be obtained by multiplying the US figures by the semi-annual survival coefficient $\sqrt{m}=0.946$. This gives

year	spring population	hunting kills
k	$P(k)$	$C(k)$
1965	44000	5100
1966	41000	20100
1967	56600	
1968	47800	

where the hunting kills for 1965-66 are obtained by subracting American from Canadian fall population values for the corresponding years.

Assuming that the spring population figures are fairly accurate, we must still verify the consistency of the juvenile percentages and hunting kills. Formula [1] can be juvenile percentages; this yields hunting kill figures that in comparison with the established estimates, are doubtfu In particular, a number of negative values are obtained, suggesting that some juvenile percentages have been under estimated. On the other hand, using the same formula to calculate juvenile percentages from the other parameters, we obtain values that are fairly consistent with the observa ions from Quebec that were sometimes based on small fall uvenile percentages are plotted in Fig. 4. The two chrono ogical series are similar in appearance and except for 1968, vary only in magnitude. The adjusted juvenile per centages $R(k)$ can be used to estimate the fall population in Canada with the formula:

$$
P A(k)=\frac{100 \sqrt{m} P(k)}{100-R(k)}
$$

[2]

Table 4Hunting rates for Greater Snow Geese and adjusted juverile percentag				
Hunting rates (\% of fall population)				$\begin{gathered} \text { Adjusted } \\ \text { juvenile } \\ \text { percentage } \\ R(k) \end{gathered}$
$\mathrm{Y}_{k}^{\mathrm{car}}$	$\underset{S(k)}{\substack{\text { Canada }}}$	$\operatorname{USA}_{T(k)}$	total	
1965	10.5	-	10.5	14.2
1966	25.2		25.2	51.4
1967	24.9		24.9	20.5
1968	${ }^{3.6}$	-	3.6	${ }^{40.0}$
- 1969 1970	3.4		3.4	${ }^{33.6}$
1971	16.3	-	16.3	45.5 25 15
1972	3.9	-	3.9	18.9
1973	13.1		13.1	32.6
1974	5.2		5.2	9.0
1975	14.6	4.6	19.2	32.3
1976	12.2	6.8	19.0	24.1
1977	8.0	12.2	20.2	39.9
1978	17.0	10.7	27.7	24.9
		11.6	21.4	32.6
1980	20.7	13.1	33.8	35.1
1981	13.7	7.3	21.0	24.9
1982	15.8	10.0	${ }^{25.8}$	40.2
${ }_{1984}^{1983}$	${ }^{13.8}$	13.3	29.1	46.4 37.6
1984	-	-	-	37.6

where $P(k)$ represents the spring populations. The estimated populations with those for the preceding springs are plotted in Fig. 5. The spring population net growth rates, calculated using the formula:

$$
100[P(k+1)-P(k)] / P(k)
$$

are plotted in Fig. 6

Figure 4
Juvenile percentages of Greater Snow Gecse, observed and adjusted

Figure 5
Adjusted estimates of Greater Snow Goose populations during spring and fall

Figure 6 Greater Snow Goose spring to-spring growth rates

7. Hunting rates

Because recruitment is expressed as a percentage, hunting kills must be represented in the same manner.
The Canadian hunting rate is calculated using the formula The Canadian hunting rate is calculated using the formula:

$$
\begin{equation*}
S(k)=100 \frac{C(k)}{P A(k)} \tag{3}
\end{equation*}
$$

where $C(k)$ is the size of the Canadian hunting kill and $P A(k)$ is the fall population in Canada derived from formula [2]. The American hunting rate, which must take into account the earlier Canadian hunt, is calculated from
the formula:

$$
\begin{equation*}
T(k)=100 \frac{D(k)}{P A(k)-C(k)} \tag{4}
\end{equation*}
$$

where $D(k)$ is the size of the American hunting kill. The calculated hunting kill rates appear in Table 4, which also shows the corrected juvenile percentages. The hunting shows the corrected juvenile percentages. The hunting
rates are plotted in Fig. 7; they too vary, essentially at random. In 1968 and 1969 the juvenile percentages were very high and the hunting rates very low. In addition to contributing to an immediate population gain, the many juveniles from those years that did not fall victim to the hunt went on to form a large group of young breeders in 1971 and 1973. They thus ensured high juvenile percentages in subsequent years, accompanied in 1971, 1972, and
1974 by very low hunting rates. This explains the spectacular population increase between 1968 and 1975 and shows that a series of favourable chance occurrences can lead to

Figure 7
Canadian and American hunting rates for Greater Snow Geese

rapid population growth. It also suggests that a series of unfavourable circumstances could cause a correspondingly steep decline in the population.

8. Model equations

From formulas [2] and [3] we can derive an expres sion for the Canadian hunting kill:

$$
\begin{equation*}
C(k)=\frac{S(k) \sqrt{m} P(k)}{100-R(k)} \tag{5}
\end{equation*}
$$

From this formula, with [2] and [4], we can also represent American hunting kill

$$
\begin{equation*}
D(k)=\frac{\sqrt{m} P(k)}{100-R(k)}\left[T(k)-\frac{S(k) T(k)}{100}\right] \tag{6}
\end{equation*}
$$

Insertion of these formulas for $C(k)$ and $D(k)$ into balance equation [1], after simplification, yields the relation:

$$
\begin{align*}
& P(k+1)=\frac{m P(k)}{100-R(k)} \\
& {\left[100-S(k)-T(k)+\frac{S(k) T(k)}{100}\right]} \tag{7}
\end{align*}
$$

which gives the spring population in year $k+1$ based on he natural survival coefficient m, the juvenile percentage $S(k)$ and $T(k)$ for year k. This recurrent relationship can be properties. To improve it would require the addition of capacity of the range, would link hunting rates to juveni percentages and population levels while also compensating for hunting effort. However, Clark (1976, Ch. 7) showed that for models of this type any population $P(k)$ is at equilibrium, but the equilibrium is neither stable nor unstable. That is undesirable in a predictive model.
9. Probability distributions for percentages of juveniles and hunting rates
The corrected juvenile percentages listed in Table 4 and plotted in Fig. 4 are highly random from one fall to the next. For the purpose of the simulation, a probability distribution is estimated to reproduce this phenomenon Examination of the juvenile percentages suggests that a Beta distribution may be suitable. If x is defined as the proportion of juveniles ($\% / 100$), $0 \leqslant x \leqslant 1$, a Beta distribu tion may be written as follows:

$$
f(x ; p, q)=\frac{1}{B(p, q)} x^{p-1}(1-x)^{q-1}
$$

where p and q are parameters that can be determined by the method of moments:

$$
\begin{gathered}
p /(p+q)=\bar{x}=0.314 \\
-)^{2}(p+a+1)=s^{2}=
\end{gathered}
$$

$$
p q /(p+q)^{2}(p+q+1)=s^{2}=0.0124
$$

where \bar{x} is the mean of the observed values and s^{2} is the variance. Resolution of these two equations yields:

$$
p=5.15, q=11.23
$$

To ensure that this probability distribution is acceptable, we conducted a Kolmogorov significance test, which consists of comparing the experimental distribution function:

$$
F_{n}(x)=\frac{i}{n} \text { if } x(i) \leqslant x \leqslant x(i+1)
$$

$i=1, \ldots, 19, x(0)=0, x(20)=1$, where $x(i)$ are obser $i=1, \ldots, 19, x(0)=0, x(20)=1$, where
vations, and the Beta distribution function:

$$
F(x ; p, q)=\int_{0}^{x} \frac{1}{B(p, q)} y^{p-1}(1-y)^{q-1} d y
$$

by measuring the maximum deviation:

$$
D=\max \left|F_{n}(x)-F(x ; p, q)\right|, x=0.00,0.01, \ldots, 0.79
$$

The calculated maximum deviation was $D=0.145$; the 5% rejection criterion is $D \geqslant 0.301$. The Beta distribution

Figure 9
Probability distribution for Canadian hunting rates for Greater Snow Geese

function $F(x ; p, q)$ and experimental distribution function $n_{n}(x)$ are plotted in Fig. 8

The Canadian hunting rates shown in Fig. 7 also appear to be highly random. Since the mean and variance of $S(k) / 100$ are:

$$
\bar{x}=0.123, s^{2}=0.0048
$$

a Beta function can be estimated with parameters:

$$
p=3.12 \text { and } q=21.5
$$

The Kolmogorov test yields a maximum deviation of $D=0.107$ between the Beta distribution function and the
experimental distribution function in Fig. 9, making the probability distribution acceptable

While we have few data on the American hunting with a Beta distribution. The mean and variance of $T(k) / 100$ being

$$
\bar{x}=0.102, s^{2}=0.0011
$$

the parameters are:

$$
p=8.369 \text { and } q=73.76 \text {. }
$$

The maximum deviation between the Beta distribution function and the experimental distribution function in Fig. 10 is $D=0.076$, meaning that this probability distribution is also acceptable

Figure 10 distibution for American hunting rates for Greater Snow Gcesc
Probability dist

Results

1. Simulation and scenarios

Formula [7] yields a stochastic model for simulating population growth when juvenile percentages $R(k)$ and
hunting rates $S(k)$ and $T(k)$ are considered random varia hunting rates $S(k)$ and $T(k)$ are considered random variales distribimated from the data to probability distribes, different random numbers are produced bes, dinerent random numbers are produced
(k) and $T(k)$ are calculated by applying the which $R(k)$ tion of each of the corresponding probability distributions The model is available in the form of a program for IBM PC microcomputers equipped with a graphics card and colour monitor. Figures 11-21 illustrate the results of a number of experiments conducted with the program to
show the relative influence of the survival parameter and random variables on population growth.

Figure 11 shows the plots of 40 simulations for 20 years starting in 1984 with the estimated natural survival rate $m=0.895(10.5 \%$ natural mortality); populaand range of standard deviations shown in Fig. 12 indicate a tendency toward positive population growth. This is to a tendency toward positive population growth. Whis is
be expected, because the probability functions were derived from data for a period when the population exhibited strong growth.

Replacing the natural survival rate with a lower value $m=0.82$ (18% natural mortality) results in a tendency toward negative population growth (Fig. 13). This add to the credibility of the higher rate estimated from the data.

Figure 12
Preicted Greater Snow Goose population growth, mean and standard
deviations for 40 simulations, $m=0.895$

${ }^{\text {Figure }} 13$

deviatiod Greater Snow Goose population growth, mean and standard
dimulations, with reduced natural survival $(m=0.82)$

Figure 14 Predicted

deviations for 40 simulations, with reduced reproductive success $(j$ juv. $\% \times 0.75)$

igure 15

deviations for 40 simulations, with increased reproductive success $(\mathrm{juv} \% \times 1.25$)

Figure 14 indicates that consistently reducing the enerated juvenile percentages by one-quarter leads to rapid population decline. On the other hand, increasing the juvenile percentages by one-quarter produces an incredible population explosion (Fig. 15). This demonstrates the very high sensitivity of the population (or the model) to fluctuations in juvenile percentages.

Reducing he generated hunting rates by one
suggesting that hunting kill is slowing down population increase. Raising hunting rates by one-quarter results in a slow decline (Fig. 17).

Five successive years of poor reproductive success (juvenile percentage $=10 \%$) would cause the population to drop quickly to its 1965 level (Fig. 18); the success rate is then allowed to return to normal, and the population slowly starts to grow again. A constant juvenile percentage of Figure 20 suggests that without the American hunt the population might have exhibited even more rapid growth population since 1975.

Figure 21 shows the mean values and range of standard deviations of 40 simulations for 1964-84, as well as the observed population values. With the exception of one year the observed curve fell within the limits of the model's curve, which gives credibility to the model. On a more refined scale, however, the real population grew mo
rapidly from 1969 to 1974 than the average growth predicted by the model. From then on the two curves move predicted by the model. From then on the two curves move the chance occurrence of abnormally favourable combinations of low hunting kills and high juvenile percentages between 1968 and 1974

Figure 16

Figure 16
Predicted Greater Snow Goose population growth, mean and standard
deviations for 40 simulations, with reduced huming rate (hunt $\% \times 0.75$)
deviations for 40 simmainens, with

Figure 18
Predictadreater Snow Goose population growth, mean and standard devia-
tions for 40 simulations, with low $(10 \%$) reproductive sucess over the first 5 year

igure 19
Medicted Greater Snow Goose population growth, mean and standard devia-
ions for 40 simulations, with fixed annual reproductive rate (juv $\%=314$)

Figure 20
Predicted Greater Snow Goose population growth, with and without the

Figure 21
Cigure 21
Comparison of 40 model simulations with the observed growth of he Greatc
Snow C Coosc population

During fall migration the juvenile geese, then about trree months old are easily disisinguished by their gree plumage, which contrasts with the white plumage of the adult.

Conclusions

Literature cited

This paper describes a stochastic model capable of convincingly re-creating recent trends in the Greater Snow Goose population and permitting simulation of future population trends under various scenarios. In designing the model we assumed that the population figures measured in the spring were fairly accurate, that hunting kills measured in the fall might have been generally underestimated. The model also assumes that hunting kills are random, an assumption that is clearly not totally accurate. This very basic model does not take into account the carrying capacity of the range or other ecological conditions. Moreover, the model assumes a uniform natural survival coefficient that does not account for annual variations in natural mortality caused by the age composition of th

A ood knowledse of the spring
Henile percentage, and hunting kills is indispensable for effective monitoring of population trends. Accurate juvenile percentages permit an accurate a posteriori calculation of hunting kills. We cannot stress too much the importance of good estimates of fall juvenile percentages based on larger samples than those available for certain past years (see Johnson et al. 1985 for further discussion on th populations). Accurate measurements of fall and winter population size would appear not to be very importantthe model can generate figures for these populations, which are difficult to survey.
Several factors warrant consideration in the design of models for the Greater Snow Goose population. One important inclusion would be a function to account for the carrying capacity of the range and other ecological condikill rates to population levels and juvenile percentages. Although kill rates contain a random component, they a undoubtedly linked to those parameters. At the same time, it would be desirable to inclucle a relation quantifying hunting effort. Once these components have been added to the model, we will seek quantifiable objectives for which it should be possible to determine optimum hunting or management policies.

AGreater Snow Goose management plan. 1981. Prepared by the Canadia
Wildifice Service, the US Fish and Wildifire Service and the Allantic Flyway解cil. Can. Wildl. Serv. Ste. Foy. 68 pp.

Boyd, H.; Finney, G.H. eds. 1978 . Migratory game bird hunters and hunt
ing in Canada. Can. Widd. Serv. Otawa. Rep. No. 43.127 pp.
Clark, C.W. 1976. Mathematical bioeconomics: The optimal management
of renewablc resources. John Wiley and Sons, Toronto 352 pp.
Heyland, J.D. 1972 . Vertical a arial photography as an aid in wildilife popu-
lation suducies. Proc. Can Symp. Repote Sensing 1:Vol. 2: 121 I-136. Energ lation studics. Proc. Can. Symp. Rem.
Mines Resour. Can. Ottawa. 344 pp.
Hyslop, C.; Wendt, S. 1982 . Kill of Greater Snow Gecse in Quebcc, 1978 -
80. Can Wildl. Scrv. Ottawa. Prog. Note 128.11 pp.
Johnson, D.H.; Conroy, M.J.; Nichols, J.D. 1985. The need for accuracy
in modeling: An example. Ecol. Modclling 30: $157-161$.
Levin, S.A. 1984. Mathematical population biology. Pages $1-8$ in Popula tion hiology: Proceectings of symposia in applied mathematics, vol. 30. A
Math. Soc. Providence, RI

Lynch, J.L.; Singleton, J.R. 1964. Winter appraisals of annual produc

tivity in geese and other warcrbbids. Wildow P Prust Annu. Rep. 15. | Livity 12 |
| :---: |
| $114-126$ |

Owen, M. 1982. Population dynamics of Svalbard Barnacle Geese 1979 Reed, A.; Boyd, H.; Wendt, S. 1981 . Characteristics of the harvest of
GreaterS Sow Geese. Trans. Northeast Sec. Widdl. Soc. 38: 77-86.

Other publications

in the Occasional Papers Series

No. 1
Birds protected in Canada under the Migratory Birds Convention Act,
Cor
4rds ed. Precticication banada ungue.
Cat the Migrat.
Co. CW69-1/1. Publ. 1957, rev. 1980.
No. 2
Canadian bird names, French, English and scientific.
Publication bilingue.
Cat. .o. CW69-1/2. Publ. 1957, rev. 1972.
No. 3
Use of aerial surveys by the Canadian Wildlife Service by D.A. Benson.
Out of print.
Cat. . 0 . CW69-1/3. Publ. 1963 , repr. 1966.
Queen Elizabech Islands game survey, 1961 by J. S. Tener
Cat. No. CW69-1/4. Publ. 1963 , repr. 1972 .
Cat. No. CW69-1/4. Publ. 1963 , repr. 1972 .
No. 5 .
Age determination in the polar bears by T.H. Manning.

A. wildife biologist looks at sampling, data processing and computers by
D.A. eenson.
D.A. Benson.
Out of print.

Out of print.
Cat. No. R69-1/6. Publ. 1964.
No. 7. .
Preliminary report on the effects of phosphamidon on bird populations in
New Brunswick by
Pretiminary report on the effects of phospham
New Brunswick by C.D. Fowle. Out of print.
Cat. No. R69-17. Publ. 1965 .
No.
Birds of Nova Scotia-New Brunswick border region by G.F. Boye
Cat. No. CW69-1/8. Publ. 1966 , repr. 1981 .

Cat. No. CW69-1/8. Publ. 1966, repr. 1981
No.

Effects of dietary methylmercury on Ring-nccked Pheasants, with special
reference to reproduction by N. Fimreite. reference to reproduction by N
Cat. . Co. . $69-19$. . Publ .1971.
No. 10.
No. 100 .
a re-evaluation of the evidence by G. R. Parker.
Cat. No. CW69-1/10. Publ 1971, repr. 1972 .

Cat. No
No
No
1

The Canada migratory game bird hunting permit and related surveys by
D.A. Benson.
Cat. No. R69-1/11. Publ. 1971.
No. 12.

Observations on duck hunting in eastern Canada in 1968 and 1969
Observations on duck hunting in
by H.J. Boyd.
Cat. No. R .-1/12. Publ. 1971.
No. 13
Evaluation of ecological effects of recent low water levels in the Peace-
Athabasca Deta
Athabasca Delta by H.J. Dirschl
Cat. No. CW69-113. Publ. 1972 .
Cat. No.
No 14
The
The Great Cormorants of eastern Canada by A.J. Erskine.
Cat. No.
No 15
Distribut
Distribution of barrcn-ground caribou harvest in north-central Canada by
G.R. Parker.
Cat: No. CW6-1/15. Publ. 1972.

No. 16.
Bird migration forecasts for militiary air operations by H . Blokpoel.
Cat
Bird migration foreceasts for miltary
Cat. No. CW69-1/16. Publ. 1973 .
No. 17
No. 17 .
Waterfowi populations on the Peace-Athabassa Delta. 1969 and 1970
by D J. Neiman and
by DJ.J. Neimanalations on the the Pea
Carch
Cat. No. CW69.1/17. Publ. 1973 .
Cat. No.
No. 18
Cammarus predation and the possible effects of Gammarus and Chaoborus feed-
ing on the zooplanktor composition in some small lakes and ponds in western
ing on the zooplankton composition in some smal
Canada b $\mathrm{R} . \mathrm{S}$ Anderson and L. . Raasveldt.
Can

No. 19
summary of DDE and PCB determinations in Canadian birds, 1969 to
1972 by M, Gilbertson and L. Reynolds.
Cat. No. CW69-1/19. Publ. 1974 .
Cat. No
No. 20
Develo
cevelopment of a simulation model of Mallard Duck populations by
CJ. Walters, , Hilbor, E. Oguss, R.M. Peterman and J.M. Stander C.J. Waters, R. Hilborn, E. Oguss,
Cat. No. CW69-1/20. Pub. 1974 .
No. 21

Use of museum specimens in toxic chemical research by A.M. Rick.
Cat. No. CE69-1/21. Publ. 1975.
No. 22
Impoundments for waterfowl by W. R. Whitman.
Cat. NW $69-1 / 2$. Publ.
No. No. CW69-1/22. Publ. 1976.
Minimizing the dangers of nesting studies to raptors and other sensitive
species by R.W. Fyfe and Resting IOtudies
Cat. No. CW69-1/23. Publ. 1976.
Vaterfowl damage to Canadian grain: current problems and research needs

No. 25. CWes-1/24. Publ. 1976.
Census techniques for seabirds of arctic and eastern Canada by
D.N. Nettleship.
Cat. No. CW69-1/25. Publ. 1976.

No. 26
Notes on the present status of the polar bear in James Bay and Belcher Islands
otes on the present status of the polar bear in James Bay and
area by Charles Jonkel, Pauline Smith, Ian Stiring and George
B. Kolenosky
Cat. No. CW69-1/26. Publ. 1976.

No. 27 Limnological and planktonic studies in the Waterton Lakes, Alberta
by Stewart Anderson and Roderick B. Green.
Cat. No. CW69-1/27. Publ. 1976.
No. 28.
Birds and mammals of the Belcher, Sleper, Ottawa, and King George
俗 slands, Northwest Territories sy T. T. M. Manning,
at No. CW69-1/28. Publ. 1976.
Cot. No. CW69-1/28. Publ. 1976 .
Novel 29
evel
Cevelopments in PPS sampling-Impact on current research by A. R. Sen
Cat. No. CW69-1/29. Publ. 1976 .
No. 30 .
No. 30
Dynamics of snowshoe hare populations in the Maritime Provinces by
Dynamics of snowshoe hare populations
Thomas J Wood and Sandey A. Munroe.
hat. No. Wood and Staniey A.
Co. 31 . $1 / 30$. Publ. 1977
Migration and population dynamics of the Peace-Athabasca Delta goldeye
俍 population by D.B. Donald and A. H. Kooyman.
Cat. No. CW69-1/31. Publ. 1977 .
No. 32 effect of fire on the ecology of the Boreal Forest, with particular refer
The The effects of fire on the ecology of the Boreal Forsst, with particular refer-
nece to the Canadian north, a review and selected bibbiography by John P.
Kelsall E. Eesall, E.S. Telfer and Thomas D. Wright.
Cat. No. C
No. 33
No.
The ecology of the polar bear (Ursus maritimus) along the western coast of
Hudson Bay by Ian Stiring, Charles Jonkel, Pauline Smith, Richard Robertson and Dale Cross.
Cat. No. CW69-1/33. Pubbi
No. 34 nasback habitat use and production in Saskatchewan parklands by Lawson C. Sugden. Cat No. CW69.1/34. Publ. 1978.
Cat. No
No. 35
The
The diets of muskoxen and Peary caribou on some islands of the Canadian
High Arctic by Gerald d. Pearker.
Cat. No. CW69-1/35. Publ. 1978.
Cat. No. CW69-1/35. Publ. 1978
No. 36
Observations of Mallards in the parkland of Alberta by Michael F. Sorensen.
Cat. No. CW $69-1 / 136$. Publ 1978 .
Cat. No. CW69-1/36. Publ. 1978.
to. 37 .
The wildilit valuation problem: A critical review of economic approaches by
William A. Langford and Donald J. Cocheba.
Cat. No. CW69.1/37. Publ. 1978.

Cal.
$\substack{\text { No. } 38 \\ \text { Sparial }}$

 spatial changes in waterfowl habitat, 1964.74, on two land types in the
 pataia changes in waterfowl habitat, 1964.74, on two land ty.
 Manitoba Newdale Plain by G.D. Adams and G. G. Gente.
Cat. No. CW69-138. Publ 1978.
at. No. CW69-1 138 . Publ 1978.
No. 39

No. 40.
Responses of Peary caribou and muskoxen to helicopter harassment by Frank
L. Miler and Anne Gunn 1979.
Cat.
Na.
Avian
Avian community structure of sis forsest stands in La Mauricie National Park,
Quebec by J.L. DesGranges, Disponible tgalement en francais.

Cat. No
$\substack{\text { No. } 42 \\ \text { Popular }}$
No. 42
Population ecology studies of the polar bear in northern Labrador by
an Sirining and H.P.L.
lan Stiring and H.P.L. Kilitian. Disponible égatement en francais.
Cat. No. CW69-1/42E. Publ. 1980.
Census methods for murres, Uria species; a unified approach by
T. R. Brimhead and D. Netreship. Disponible egalement en francais.
C. 44 . C9-1/43E. Publ. 1980 .
opulation ecology studies of the polar bear in the area of southeastern Baffin
oland by Ian Stirling, Wendy Calvert, and Dennis Andriashek.
Cat. No. CW69-1/4te. Publ. 1980.
Polynyas in the Canadian Arctic by lan Stirling and Holly Cleator, eds.

No. 46 .
The Lesser Snow Geese of the eastern Canadian Arctic by H. Boyd.
G.E. Smith and F.G. Cooch Disponible egalement en francais.
Cat. No. CW69-1/46E. Publ. 1982 .
Cat. No. CW69-1/46E. Publ. 1982.
Vo. 47
No. 77 ,
The e sistribution and abundance of seals in the eastern Beaufort Sea, 1974-79
by lan Stirling, Michael Kingsley, and Wendy Caivert.

oraging behaviour of Peary caribou in response to springtime snow and ice
oraging behaviour of Peary caribou in response to springtime snow and ic
onditions by F.L. Miller, E. . Edmonds, and A. Gumn. Disponible
Cat. No. CW $69.1 / 48 \mathrm{E}$. . Publ. 1982
Ao. 49 review of some important techniques in sampling wildife by A.R. Sen.
Disponible égalementen francais.
Cat
Co. CW69-1/49E. Publ. 1982.
No. 50
inensive regulation of duck hunting in North America: its purpose and
Cat No. CW69.1/50E. Publ. 1983 .
Cat. No
No. 51
Human dimensions of migratory game-bird hunting in Canada by Shar
Aum. Parkerand ferm L. Filion. Disponible Egalement en francais.
Cat. No. CW69-1/51E. Publ. 1984.

No. 52
Components of hunting mortality in ducks by G.S. Hochbaum and C.J. Walters. Disponible également en francai
Cat. No. CW69-1/52E. Publ

Cat. No. CW69-1/52E. Puble 1984.
No. 53
The inter
The interpretation of aerial surveys for seabirds: some effects of behaviour by C.J. Gaston and G.E. J. Smith Disspor seabible ggalement en francais.
Co. No. CW69-1/53E. Publ. 1984 .
No. 54 No. 54
Waterowl sudies in Ontario, 1973-81 by S.G. Curtis, D.G. Dennis, and
H. Boyd, eds. Disponible efgalement en francis H. Boyd, eds. Disponible étalementen en francais.
Cat. No. CW69-1/55E. Publ 1985 .

Cat. No.
Na. 55
Th.
The reported kill of ducks and geese in Canada and the USA, 1974-82 by

No. 56 . mercurvencontaminated waters in non Lorthestern Onarario by J. F. Barr.
Disponible êgalenent en francais. Disponible également en francais.
Cat. No. CW69-1/56E. Publ. 1986.
No. 57 . ${ }^{\text {The }}$.
The Ring-billed Gull in Ontario: a review of a new problem species by
H. Blokpoel and G. Tessier. Disponible également en français. H. B.okpoe land G.D. Tessier. Disp.
Cat. No. W69.1/57E. Publ. 1936 .
No. 58.

No. 58 .
TTe birds of the Creston Valley and southeastern British Columbia by
R. W. Butler, B. G. Sushnoff, and E. McMackin. Disponible également en
trancais.
Cat.
Co.
No. 59 W69-1/58E. Publ. 1986.
Estimating densities of birds at sea and the proportion in flight from
counts made on transects of indefinite width by A.J. Gaston, B. T. Collin counts made on transects of indefinite width by A.J.
and A. W. Diamond. Disponible egalement en francais.
Cat No
Cat. No.
No. 60
Waterfowl breeding population surveys, Atlantic Provinces by
A.J. Erskine ed. Disponible egalery.
Cat. No. $\mathrm{CW} 69-1 / 60 \mathrm{C}$. Publ. 1987.
No. 61.

A survey of Lesser Snow Gese on Southampton and Baffin islands, NWT
979 by A. Reed. P. Dupuis and G. E. . Smith. Dispor
1979 by A. Reed, P. Dupuis and G.
francais.
Cat. No. CW69-1/61E. Publ. 1987.
No. 62 .
Sudies of the effects of acidification on aquatic wildifif in Canada: waterfowl Studies of the effects of acidification on aquatic wildifife in Canada: waterfowl
and tropphic ralationships in smail lakes in northern Ontario by D. K. McNicol
B.E. Bendel and R P R and rophic relationships in smain lakes in northern Ontario by
B.E. Bencll and R. R. Ross. Disponible egalement en francais.
Cat. No. CW69-1/62E. Pubbi. 1987. Cat. No.
No. 63
Bison
Ber
Bison ecology in relation to agricultural development in the Slave River
bowlands. NWT by H.W. Reynolds and A. W. L. Hawley eds lowlands, NWT by H.W. Reynold
Cat. No. CW69-1/63E. Publ. 1987.

Canadä'

